Powered by Deep Web Technologies
Note: This page contains sample records for the topic "facility gan m1" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

ARM MJO Investigation Experiment on Gan Island (AMIE-Gan) Science Plan  

SciTech Connect (OSTI)

The overarching campaign, which includes the ARM Mobile Facility 2 (AMF2) deployment in conjunction with the Dynamics of the Madden-Julian Oscillation (DYNAMO) and the Cooperative Indian Ocean experiment on intraseasonal variability in the Year 2011 (CINDY2011) campaigns, is designed to test several current hypotheses regarding the mechanisms responsible for Madden-Julian Oscillation (MJO) initiation and propagation in the Indian Ocean area. The synergy between the proposed AMF2 deployment with DYNAMO/CINDY2011, and the corresponding funded experiment on Manus, combine for an overarching ARM MJO Investigation Experiment (AMIE) with two components: AMF2 on Gan Island in the Indian Ocean (AMIE-Gan), where the MJO initiates and starts its eastward propagation; and the ARM Manus site (AMIE-Manus), which is in the general area where the MJO usually starts to weaken in climate models. AMIE-Gan will provide measurements of particular interest to Atmospheric System Research (ASR) researchers relevant to improving the representation of MJO initiation in climate models. The framework of DYNAMO/CINDY2011 includes two proposed island-based sites and two ship-based locations forming a square pattern with sonde profiles and scanning precipitation and cloud radars at both island and ship sites. These data will be used to produce a Variational Analysis data set coinciding with the one produced for AMIE-Manus. The synergy between AMIE-Manus and AMIE-Gan will allow studies of the initiation, propagation, and evolution of the convective cloud population within the framework of the MJO. As with AMIE-Manus, AMIE-Gan/DYNAMO also includes a significant modeling component geared toward improving the representation of MJO initiation and propagation in climate and forecast models. This campaign involves the deployment of the second, marine-capable, AMF; all of the included measurement systems; and especially the scanning and vertically pointing radars. The campaign will include sonde launches at a rate of eight per day for the duration of the deployment. The increased sonde launches for the entire period matches that of the AMIE-Manus campaign and makes possible a far more robust Variational Analysis forcing data set product for the entire campaign, and thus better capabilities for modeling studies and synergistic research using the data from both AMIE sites.

Long, CL; Del Genio, A; Deng, M; Fu, X; Gustafson, W; Houze, R; Jakob, C; Jensen, M; Johnson, R; Liu, X; Luke, E; May, P; McFarlane, S; Minnis, P; Schumacher, C; Vogelmann, A; Wang, Y; Webster, P; Xie, S; Zhang, C

2011-04-11T23:59:59.000Z

2

Nanoair-bridged lateral overgrowth of GaN on ordered nanoporous GaN template  

SciTech Connect (OSTI)

We report the growth of high-quality GaN epilayers on an ordered nanoporous GaN template by metalorganic chemical vapor deposition. The nanopores in GaN template were created by inductively coupled plasma etching using anodic aluminum oxide film as an etch mask. The average pore diameter and interpore distance is about 65 and 110 nm, respectively. Subsequent overgrowth of GaN first begins at the GaN crystallite surface between the pores, and then air-bridge-mediated lateral overgrowth leads to the formation of the continuous layer. Microphotoluminescence and micro-Raman measurements show improved optical properties and significant strain relaxation in the overgrown layer when compared to GaN layer of same thickness simultaneously grown on sapphire without any template. Similar to conventional epitaxial lateral overgrown GaN, such overgrown GaN on a nanopatterned surface would also serve as a template for the growth of ultraviolet-visible light-emitting III-nitride devices.

Wang, Y.D.; Zang, K.Y.; Chua, S.J.; Tripathy, S.; Chen, P.; Fonstad, C.G. [Singapore-MIT Alliance, E4-04-10, 4 Engineering Drive 3, Singapore 117576 (Singapore) and Centre for Optoelectronics, Department of Electrical and Computer Engineering, National University of Singapore, 2 Engineering Drive 3, Singapore 117576 (Singapore); Institute of Materials Research and Engineering, 3 Research Link, Singapore 117602 (Singapore); Department of Electrical and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

2005-12-19T23:59:59.000Z

3

Development of a Bulk GaN Growth Technique for Low Defect Density...  

Broader source: Energy.gov (indexed) [DOE]

current due to bulk defects GaN is Grown Heteroepitaxially on Sapphire (and Silicon Carbide) Substrates * As grown GaN nucleation layers contain disordered GaN with many...

4

M1 Energy | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(MonasterLowell Point, Alaska:Luz IILynnM Setek Co Ltd JumpM1 Energy Jump

5

The Classification of M1-78  

E-Print Network [OSTI]

The published properties of M1-78 are discussed with the purpose to resolve the object's classification as either a planetary nebula or an ultracompact HII region. A classification as a planetary nebula is rejected primarily because of the high luminosity of the object, but because of the chemical composition and expansion velocity of the nebula, a novel classification is proposed instead: that of an ultracompact HII region with a post-main sequence central star (possibly a WN star). It must therefore follow that observable ultracompact HII regions persist beyond the main sequence lifetimes of at least some massive stars, and so cannot be transient phenomena that are seen only during pre-main sequence or early main sequence evolution.

G. T. Gussie

1994-09-15T23:59:59.000Z

6

ARM - AMIE Gan Island - Data Plots  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01) (See95TI07)Operations2AP-XPSAPS50 -IssuegovFieldOverviewGan

7

E-Print Network 3.0 - aln gan inn Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Summary: size. Introduction GaN and its alloys with InN and AlN have been used for optoelectronic devices... region. The formation of self-assembled GaN nanostructures on aluminum...

8

K.K. Gan EPS 2001 1 New Results on Charm  

E-Print Network [OSTI]

K.K. Gan EPS 2001 1 New Results on Charm Semileptonic Decays and Lifetime K.K. Gan The Ohio State University July 14, 2001 Representing CLEO Collaboration #12;K.K. Gan EPS 2001 2 l measurement of l first+ B(D+ K* 0 l+ l ) (D*+ ) c + #12;K.K. Gan EPS 2001 3 l P measurement of form factors helps to guide

Gan, K. K.

9

29.01.03.M1.15 Information Resources Physical Access Page 1 of 4 STANDARD ADMINISTRATIVE PROCEDURE  

E-Print Network [OSTI]

the processes to grant, control, monitor and remove physical access to information resource facilities of their function at the university. 2.1.2 All physical security systems shall comply with applicable regulations PROCEDURE 29.01.03.M1.15 Information Resources ­ Physical Security Approved July 18, 2005 Revised February

10

Joint ATLAS/CMS SLHC Opto WG 1 K.K. Gan Lesson Learned from  

E-Print Network [OSTI]

Joint ATLAS/CMS SLHC Opto WG 1 K.K. Gan Lesson Learned from ATLAS Pixel Optical Link #12;Joint ATLAS/CMS SLHC Opto WG 2 Outline Introduction VCSEL/PIN monitoring Analysis of opto-board/VCSEL/PIN failures Summary K.K. Gan #12;K.K. Gan Joint ATLAS/CMS SLHC Opto WG 3 Introduction Architecture

Gan, K. K.

11

K.K. Gan ATLAS Tracker Upgrade Workshop 1 Progress Report on Joint ATLAS/CMS  

E-Print Network [OSTI]

K.K. Gan ATLAS Tracker Upgrade Workshop 1 Progress Report on Joint ATLAS/CMS SLHC Opto ATLAS Tracker Upgrade Workshop 2 Outline Introduction Subgroups activities Summary #12;K.K. Gan ATLAS System #12;K.K. Gan ATLAS Tracker Upgrade Workshop 4 Group A: Lesson Learned and to be Learned from LHC

Gan, K. K.

12

K.K. Gan RD07 1 Radiation-Hard Optical Link for SLHC  

E-Print Network [OSTI]

spliced SIMM-GRIN fiber Radiation hardness of PIN/VCSEL arrays Results on MT-style optical packages irradiation? What is optical power after irradiation? What current is needed for annealing? #12;K.K. Gan RDK.K. Gan RD07 1 Radiation-Hard Optical Link for SLHC June 28, 2007 W. Fernando, K.K. Gan, A. Law, H

Gan, K. K.

13

Anti-phase domains in cubic GaN  

SciTech Connect (OSTI)

The existence of anti-phase domains in cubic GaN grown on 3C-SiC/Si (001) substrates by plasma-assisted molecular beam epitaxy is reported. The influence of the 3C-SiC/Si (001) substrate morphology is studied with emphasis on the anti-phase domains (APDs). The GaN nucleation is governed by the APDs of the substrate, resulting in equal plane orientation and the same anti-phase boundaries. The presence of the APDs is independent of the GaN layer thickness. Atomic force microscopy surface analysis indicates lateral growth anisotropy of GaN facets in dependence of the APD orientation. This anisotropy can be linked to Ga and N face types of the {l_brace}111{r_brace} planes, similar to observations of anisotropic growth in 3C-SiC. In contrast to 3C-SiC, however, a difference in GaN phase composition for the two types of APDs can be measured by electron backscatter diffraction, {mu}-Raman and cathodoluminescence spectroscopy.

Maria Kemper, Ricarda; Schupp, Thorsten; Haeberlen, Maik; Lindner, Joerg; Josef As, Donat [University of Paderborn, Department of Physics, Warburger Str. 100, D-33098 Paderborn (Germany); Niendorf, Thomas; Maier, Hans-Juergen [University of Paderborn, Lehrstuhl fuer Werkstoffkunde, Pohlweg 47-49, D-33098 Paderborn (Germany); Dempewolf, Anja; Bertram, Frank; Christen, Juergen [University of Magdeburg, Institut fuer Festkoerperphysik, P.O. Box 4120, D-39016 Magdeburg (Germany); Kirste, Ronny; Hoffmann, Axel [Technische Universitaet Berlin, Institute of Solid State Physics, Hardenbergstr. 36, D-10623 Berlin (Germany)

2011-12-15T23:59:59.000Z

14

Maskless lateral epitaxial overgrowth of GaN on sapphire  

SciTech Connect (OSTI)

The authors demonstrate a technique of lateral epitaxial overgrowth (LEO) of GaN, termed maskless LEO, in which no mask is deposited prior to LEO regrowth. Instead, a bulk (> 2 {micro}m) GaN layer on sapphire is selectively dry etched, leaving {approximately} 5 {micro}m-wide stripe mesas oriented in the <10{bar 1}0>{sub GaN} direction, with a 20 {micro}m period. These stripes serve as seeds for LEO GaN growth, which proceeds from the tops of the stripes and expands laterally, resulting in a T, or overhang, morphology. As for LEO over an SiO{sub 2} mask, significant defect reduction (from {approximately} 10{sup 9} cm{sup {minus}2} to {approximately} 10{sup 6} cm{sup {minus}2}) is observed in cross-sectional transmission electron microscopy (TEM). Atomic force microscopy of the top surface of the LEO GaN reveals that no threading dislocations with screw component terminate at the surfaces of laterally overgrown regions. X-ray diffraction measurements reveal that the wings exhibit a crystallographic tilt away from the seed regions in an azimuth perpendicular to the stripe direction; the tilt angle ({approximately} 0.4--0.5{degree}) is relatively independent of growth temperature and wing aspect ratio.

Fini, P.; Marchand, H.; Ibbetson, J.P.; Moran, B.; Zhao, L.; Denbaars, S.P.; Speck, J.S.; Mishra, U.K.

1999-07-01T23:59:59.000Z

15

Pulsed laser annealing of Be-implanted GaN  

SciTech Connect (OSTI)

Postimplantation thermal processing of Be in molecular-beam-epitaxy-grown GaN by rapid thermal annealing (RTA) and pulsed laser annealing (PLA) was investigated. It has been found that the activation of Be dopants and the repair of implantation-induced defects in GaN films cannot be achieved efficiently by conventional RTA alone. On the other hand, good dopant activation and surface morphology and quality were obtained when the Be-implanted GaN film was annealed by PLA with a 248 nm KrF excimer laser. However, observations of off-resonant micro-Raman and high-resolution x-ray-diffraction spectra indicated that crystal defects and strain resulting from Be implantation were still existent after PLA, which probably degraded the carrier mobility and limited the activation efficiency to some extent. This can be attributed to the shallow penetration depth of the 248 nm laser in GaN, which only repaired the crystal defects in a thin near-surface layer, while the deeper defects were not annealed out well. This situation was significantly improved when the Be-implanted GaN was subjected to a combined process of PLA followed by RTA, which produced good activation of the dopants, good surface morphology, and repaired bulk and surface defects well.

Wang, H.T.; Tan, L.S.; Chor, E.F. [Centre for Optoelectronics, Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576 (Singapore)

2005-11-01T23:59:59.000Z

16

Properties of H, O and C in GaN  

SciTech Connect (OSTI)

The electrical properties of the light ion impurities H, O and C in GaN have been examined in both as-grown and implanted material. H is found to efficiently passivate acceptors such as Mg, Ca and C. Reactivation occurs at {ge} 450 C and is enhanced by minority carrier injection. The hydrogen does not leave the GaN crystal until > 800 C, and its diffusivity is relatively high ({approximately} 10{sup {minus}11} cm{sup 2}/s) even at low temperatures (< 200 C) during injection by wet etching, boiling in water or plasma exposure. Oxygen shows a low donor activation efficiency when implanted into GaN, with an ionization level of 30--40 meV. It is essentially immobile up to 1,100 C. Carbon can produce low p-type levels (3 {times} 10{sup 17} cm{sup {minus}3}) in GaN during MOMBE, although there is some evidence it may also create n-type conduction in other nitrides.

Pearton, S.J.; Abernathy, C.R.; Lee, J.W. [Univ. of Florida, Gainesville, FL (United States)] [and others

1996-04-01T23:59:59.000Z

17

Facility Microgrids  

SciTech Connect (OSTI)

Microgrids are receiving a considerable interest from the power industry, partly because their business and technical structure shows promise as a means of taking full advantage of distributed generation. This report investigates three issues associated with facility microgrids: (1) Multiple-distributed generation facility microgrids' unintentional islanding protection, (2) Facility microgrids' response to bulk grid disturbances, and (3) Facility microgrids' intentional islanding.

Ye, Z.; Walling, R.; Miller, N.; Du, P.; Nelson, K.

2005-05-01T23:59:59.000Z

18

M/M/1 Queueing System with Delayed Controlled Vacation  

E-Print Network [OSTI]

M/M/1 Queueing System with Delayed Controlled Vacation Yonglu Deng , Zhongshan University W. John systems using a time division multiple access (TDMA) scheme (Frey and Takahashi, [7]). Researchers have that of a server's cold switch-on. The case of delayed vacation has also very recently been studied by Frey

Zhao, Yiqiang Q.

19

M1 internship account On update schedules and dynamics of  

E-Print Network [OSTI]

M1 internship account 2007-2008 On update schedules and dynamics of boolean networks Mathilde Noual Internship done at the university of ConcepciĂłn under the direction of Julio Aracena hal-00688157,version1 network rely on several dierent parameters. During this internship, we have especially been looking

Paris-Sud XI, Université de

20

Part I -Mechanics J05M.1 -Rope Around a Cylinder J05M.1 -Rope Around a Cylinder  

E-Print Network [OSTI]

slipping? Explain why a small child can hold a large ocean liner in place using a device like this. µs f F with = 1016 s-1 ( 106 Ohm-1 m-1 in SI units) reflects 90% of the incident radiation. Assume the and µ

Petta, Jason

Note: This page contains sample records for the topic "facility gan m1" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Structural defects in GaN revealed by Transmission Electron Microscopy  

SciTech Connect (OSTI)

This paper reviews the various types of structural defects observed by Transmission Electron Microscopy in GaN heteroepitaxial layers grown on foreign substrates and homoepitaxial layers grown on bulk GaN substrates. The structural perfection of these layers is compared to the platelet self-standing crystals grown by High Nitrogen Pressure Solution. Defects in undoped and Mg doped GaN are discussed. Some models explaining the formation of inversion domains in heavily Mg doped layers that are possible defects responsible for the difficulties of p-doping in GaN are also reviewed.

Liliental-Weber, Zuzanna

2014-04-18T23:59:59.000Z

22

The E2/M1 ratio in {Delta} photoproduction  

SciTech Connect (OSTI)

New high-precision measurements of p({rvec {gamma}}, {pi}) and p({rvec {gamma}}, {gamma}) cross sections and beam asymmetries have been combined with other polarization ratios in a simultaneous analysis of both reactions. The E2/M1 mixing ratio for the n {r_arrow} {Delta} transition extracted from this analysis is EMR = {minus}3.0% {+-} 0.3 (stat+sys) {+-} 0.2 (model).

Hoblit, S. [Brookhaven National Lab., Upton, NY (United States). Physics Dept.]|[Univ. of Virginia, Charlottesville, VA (United States). Dept. of Physics; Blanpied, G. [Univ. of South Carolina, Columbia, SC (United States). Dept. of Physics; Blecher, M. [Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (United States). Physics Dept.] [and others; LEGS Collaboration

1997-10-01T23:59:59.000Z

23

The E2/M1 ratio in {Delta} photoproduction  

SciTech Connect (OSTI)

The properties of the transition from the nucleon to the {Delta}(1232) serve as a benchmark for models of nucleon structure. To first order, N {r_arrow} {Delta} photo-excitation is dominated by a simple M1 quark spin-flip transition. At higher order, small L = 2 components in the N and {Delta} wavefunctions allow this excitation to proceed via an electric quadrupole transition. Since Nucleon models differ greatly on the mechanisms used to generate these L = 2 components,, the ratio of E2/M1 transitions (EMR) provides a sensitive test for structure models. Here, new high-precision measurements of p({rvec {gamma}}, {pi}) and p({rvec {gamma}}, {gamma}) cross sections and beam asymmetries have been combined with other polarization ratios in a simultaneous analysis of both reactions. Compton scattering has provided two important new constraints on the photo-pion amplitude. The E2/M1 mixing ratio for the N {r_arrow} {Delta} transition extracted from this analysis is EMR = {minus}3.0% {+-} 0.3 (stat+sys) {+-} 0.2 (model).

Sandorfi, A.M. [Brookhaven National Lab., Upton, NY (United States). Physics Dept.; Blanpied, G. [Univ. of South Carolina, Columbia, SC (United States). Dept. of Physics; Blecher, M. [Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (United States). Physics Dept.] [and others; LEGS Collaboration

1997-08-01T23:59:59.000Z

24

Facility Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

Establishes facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation.

1996-10-24T23:59:59.000Z

25

Facility Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

Establishes facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation.

1995-11-16T23:59:59.000Z

26

International Facility Management Association Strategic Facility  

Broader source: Energy.gov (indexed) [DOE]

Facility Management Association Strategic Facility Planning: A WhIte PAPer Strategic Facility Planning: A White Paper on Strategic Facility Planning 2009 | International...

27

Hexagonal Growth Spirals on GaN Grown by Molecular Beam Epitaxy: Kinetics vs Thermodynamics  

E-Print Network [OSTI]

prepared, Ga-polar GaN(0001) templates. The surface morphology was studied using reflection high-energy-edge energy of 0.26 eV/Ă?. They suggest that local conditions at step edges dominate the growth. 1 conducted ex situ using AFM. Desorption mass spectrometry (DMS) was used to measure the GaN growth rate. Our

Cohen, Philip I.

28

K.K. Gan Opto-Link PRR 1 Status of Opto-Board Development  

E-Print Network [OSTI]

irradiation) LVDS fall time (after irradiation) Optical signal 4 rise and fall times after irradiation Results l Irradiation Results l Conclusions #12;K.K. Gan Opto-Link PRR 3 Opto-link #12;K.K. Gan Opto-Link PRR 4 l converts: optical signal Ă· electrical signal l provide 7 optical links: P disks and 50

Gan, K. K.

29

K.K. Gan HEP2007 1 Radiation-Hard Optical Link for SLHC  

E-Print Network [OSTI]

of fusion spliced SIMM-GRIN fiber Radiation hardness of PIN/VCSEL arrays Results on MT-style optical What is rise/fall time after irradiation? What is optical power after irradiation? What currentK.K. Gan HEP2007 1 Radiation-Hard Optical Link for SLHC July 20, 2007 W. Fernando, K.K. Gan, A. Law

Gan, K. K.

30

K.K. Gan Pixel Engineering Layout 1 Optical Link Layout Options  

E-Print Network [OSTI]

optical-link locations Predictions of degradation in fibers Predictions of degradation in VCSEL for r > 110 cm Loss calculated for Corning Infinicor GRIN fiber Fibers irradiated with gammas fromK.K. Gan Pixel Engineering Layout 1 Optical Link Layout Options K.K. Gan The Ohio State

Gan, K. K.

31

K.K. Gan ATLAS Tracker Upgrade Workshop 1 Summary of Optical Link R&D  

E-Print Network [OSTI]

-Hardness of Optical Fiber Corning Infinicor GRIN fiber irradiated with 's from Co60 Attenuation parameterized into optical signal for transmission in fibers PINs convert optical signal into electrical signal PlanK.K. Gan ATLAS Tracker Upgrade Workshop 1 Summary of Optical Link R&D K.K. Gan The Ohio State

Gan, K. K.

32

Controlled oxygen doping of GaN using plasma assisted molecular-beam epitaxy  

E-Print Network [OSTI]

Controlled oxygen doping of GaN using plasma assisted molecular-beam epitaxy A. J. Ptak, L. J-assisted molecular-beam epitaxy to study the dependence of oxygen incorporation on polarity and oxygen partial pressure. Oxygen incorporates at a rate ten times faster on nitrogen-polar GaN than on the Ga polarity

Myers, Tom

33

K.K. Gan Siena02 1 The Ohio State University  

E-Print Network [OSTI]

.K. Gan Siena02 6 l Decode Bi-Phase Mark encoded (BPM) clock and command signals from PIN diode l Input Error Rate (BER): BPM #12;K.K. Gan Siena02 7 l Training period: ~25 ms of 20 MHz clock (BPM with no data) DORIC Logic ] Ready

Gan, K. K.

34

Facility Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Order establishes facility and programmatic safety requirements for Department of Energy facilities, which includes nuclear and explosives safety design criteria, fire protection, criticality safety, natural phenomena hazards mitigation, and the System Engineer Program. Cancels DOE O 420.1A. DOE O 420.1B Chg 1 issued 4-19-10.

2005-12-22T23:59:59.000Z

35

Facility Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To establish facility safety requirements for the Department of Energy, including National Nuclear Security Administration. Cancels DOE O 420.1. Canceled by DOE O 420.1B.

2002-05-20T23:59:59.000Z

36

Facility Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

DOE-STD-1104 contains the Department's method and criteria for reviewing and approving nuclear facility's documented safety analysis (DSA). This review and approval formally document the basis for DOE, concluding that a facility can be operated safely in a manner that adequately protects workers, the public, and the environment. Therefore, it is appropriate to formally require implementation of the review methodology and criteria contained in DOE-STD-1104.

2013-06-21T23:59:59.000Z

37

Facility Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The order establishes facility and programmatic safety requirements for nuclear and explosives safety design criteria, fire protection, criticality safety, natural phenomena hazards (NPH) mitigation, and the System Engineer Program.Chg 1 incorporates the use of DOE-STD-1189-2008, Integration of Safety into the Design Process, mandatory for Hazard Category 1, 2 and 3 nuclear facilities. Cancels DOE O 420.1A.

2005-12-22T23:59:59.000Z

38

Facility Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The objective of this Order is to establish facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation. The Order has Change 1 dated 11-16-95, Change 2 dated 10-24-96, and the latest Change 3 dated 11-22-00 incorporated. The latest change satisfies a commitment made to the Defense Nuclear Facilities Safety Board (DNFSB) in response to DNFSB recommendation 97-2, Criticality Safety.

2000-11-20T23:59:59.000Z

39

Thermal annealing characteristics of Si and Mg-implanted GaN thin films  

SciTech Connect (OSTI)

In this letter, we report the results of ion implantation of GaN using {sup 28}Si and {sup 24}Mg species. Structural and electrical characterizations of the GaN thin films after thermal annealing show that native defects in the GaN films dominate over implant doping effects. The formation energies of the annealing induced defects are estimated to range from 1.4 to 3.6 eV. A 40 keV 10{sup 14} cm{sup {minus}2} Mg implant results in the decrease of the free-carrier concentration by three orders of magnitude compared to unimplanted GaN up to an annealing temperature of 690{degree}C. Furthermore, we have observed the correlation between these annealing-induced defects to both improved optical and electrical properties. {copyright} {ital 1996 American Institute of Physics.}

Chan, J.S.; Cheung, N.W. [Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720 (United States)] [Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720 (United States); Schloss, L.; Jones, E.; Wong, W.S.; Newman, N.; Liu, X.; Weber, E.R. [Department of Material Science and Mineral Engineering, University of California, Berkeley, California 64720 (United States)] [Department of Material Science and Mineral Engineering, University of California, Berkeley, California 64720 (United States); Gassman, A.; Rubin, M.D. [Lawrence Berkeley Laboratory, 1 Cyclotron Road, University of California, Berkeley, California 64720 (United States)] [Lawrence Berkeley Laboratory, 1 Cyclotron Road, University of California, Berkeley, California 64720 (United States)

1996-05-01T23:59:59.000Z

40

In-situ ellipsometry: Identification of surface terminations during GaN growth , T. Schmidtling1  

E-Print Network [OSTI]

1 In-situ ellipsometry: Identification of surface terminations during GaN growth C. Cobet1 , T SE, one is not limited to any special bulk or surface symmetry for optical characterisation. In PAMBE

Feenstra, Randall

Note: This page contains sample records for the topic "facility gan m1" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Physics of electrical degradation in GaN high electron mobility transistors  

E-Print Network [OSTI]

The deployment of GaN high electron mobility transistors (HEMT) in RF power applications is currently bottlenecked by their limited reliability. Obtaining the required reliability is a difficult issue due to the high voltage ...

Joh, Jungwoo

2009-01-01T23:59:59.000Z

42

Watching GaN Nanowires Grow Eric A. Stach,*, Peter J. Pauzauskie, Tevye Kuykendall,  

E-Print Network [OSTI]

Vision, Lawrence Berkeley National Laboratory, Berkeley, California 94720, and Department of Chemistry, Uni and experimentally demonstrated that congruent sublimation of GaN is possible, which yields diatomic or polymeric

Yang, Peidong

43

Light extraction in individual GaN nanowires on Si for LEDs  

E-Print Network [OSTI]

GaN-based nanowires hold great promise for solid state lighting applications because of their waveguiding properties and the ability to grow nonpolar GaN nanowire-based heterostructures, which could lead to increased light ...

Zhou, Xiang

44

K.K. Gan ATLAS Pixel Week 1 New Results on Opto-Electronics  

E-Print Network [OSTI]

University #12;K.K. Gan ATLAS Pixel Week 2 Outline l VDC-I5 l VDC/DORIC-I5e l QA l BeO Opto-board l Summary reset from active high to low for ease of implementation by DCS ] slightly better performance at ±3s: Engineering Run #12;K.K. Gan ATLAS Pixel Week 9 l circuit boards: designed/built/tested l LabView programs

Gan, K. K.

45

Low temperature thin film transistors with hollow cathode plasma-assisted atomic layer deposition based GaN channels  

SciTech Connect (OSTI)

We report GaN thin film transistors (TFT) with a thermal budget below 250?°C. GaN thin films are grown at 200?°C by hollow cathode plasma-assisted atomic layer deposition (HCPA-ALD). HCPA-ALD-based GaN thin films are found to have a polycrystalline wurtzite structure with an average crystallite size of 9.3?nm. TFTs with bottom gate configuration are fabricated with HCPA-ALD grown GaN channel layers. Fabricated TFTs exhibit n-type field effect characteristics. N-channel GaN TFTs demonstrated on-to-off ratios (I{sub ON}/I{sub OFF}) of 10{sup 3} and sub-threshold swing of 3.3?V/decade. The entire TFT device fabrication process temperature is below 250?°C, which is the lowest process temperature reported for GaN based transistors, so far.

Bolat, S., E-mail: bolat@ee.bilkent.edu.tr, E-mail: aokyay@ee.bilkent.edu.tr; Tekcan, B. [Department of Electrical and Electronics Engineering, Bilkent University, Ankara 06800 (Turkey); UNAM, National Nanotechnology Research Center, Bilkent University, Ankara 06800 (Turkey); Ozgit-Akgun, C.; Biyikli, N. [UNAM, National Nanotechnology Research Center, Bilkent University, Ankara 06800 (Turkey); Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800 (Turkey); Okyay, A. K., E-mail: bolat@ee.bilkent.edu.tr, E-mail: aokyay@ee.bilkent.edu.tr [Department of Electrical and Electronics Engineering, Bilkent University, Ankara 06800 (Turkey); UNAM, National Nanotechnology Research Center, Bilkent University, Ankara 06800 (Turkey); Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800 (Turkey)

2014-06-16T23:59:59.000Z

46

Part I -Mechanics M05M.1 -Vibration Damping With a Piston M05M.1 -Vibration Damping With a Piston  

E-Print Network [OSTI]

Part I - Mechanics M05M.1 - Vibration Damping With a Piston M05M.1 - Vibration Damping With a Piston Problem Sometimes it is required to reduce the influence of vertical floor vibration-filled pistons (which have face area A and equilibrium volume V0). The gas pressure in the cylinder is much

Petta, Jason

47

Deposition of CVD diamond onto GaN P.W. May a,*, H.Y. Tsai b  

E-Print Network [OSTI]

of the polycrystalline diamond surface would prevent light from leaking out of the GaN layer and channel it to the endsDeposition of CVD diamond onto GaN P.W. May a,*, H.Y. Tsai b , W.N. Wang c , J.A. Smith a a School performed to deposit continuous layers of CVD diamond onto epitaxial GaN films. Such diamond coatings would

Bristol, University of

48

Facility Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The Order establishes facility and programmatic safety requirements for DOE and NNSA for nuclear safety design criteria, fire protection, criticality safety, natural phenomena hazards (NPH) mitigation, and System Engineer Program. Cancels DOE O 420.1B, DOE G 420.1-2 and DOE G 420.1-3.

2012-12-04T23:59:59.000Z

49

Facility Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

Establishes facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation. Cancels DOE 5480.7A, DOE 5480.24, DOE 5480.28 and Division 13 of DOE 6430.1A. Canceled by DOE O 420.1A.

1995-10-13T23:59:59.000Z

50

Micro-Raman and cathodoluminescence studies of epitaxial laterally overgrown GaN with tungsten masks: A method to map the free-carrier  

E-Print Network [OSTI]

Micro-Raman and cathodoluminescence studies of epitaxial laterally overgrown GaN with tungsten properties of two epitaxial-laterally overgrown GaN structures with tungsten masks in 1100 and 1120 direction by tungsten masks3 to prevent the in-diffusion of silicon and oxygen atoms in the overgrown GaN, which

Nabben, Reinhard

51

Journal of Crystal Growth 293 (2006) 273277 A study of semi-insulating GaN grown on AlN buffer/sapphire  

E-Print Network [OSTI]

-temperature GaN interlayer. In comparison with the normal GaN grown on sapphire, the crystal quality measurement results of GaN grown directly on an AlN buffer indicated that the as-grown-undoped Ga, or high density of edge-type dislocations [6­10]. However, Fe and other heavy metals tend to have reactor

Ozbay, Ekmel

52

Nanostructural engineering of nitride nucleation layers for GaN substrate dislocation reduction.  

SciTech Connect (OSTI)

With no lattice matched substrate available, sapphire continues as the substrate of choice for GaN growth, because of its reasonable cost and the extensive prior experience using it as a substrate for GaN. Surprisingly, the high dislocation density does not appear to limit UV and blue LED light intensity. However, dislocations may limit green LED light intensity and LED lifetime, especially as LEDs are pushed to higher current density for high end solid state lighting sources. To improve the performance for these higher current density LEDs, simple growth-enabled reductions in dislocation density would be highly prized. GaN nucleation layers (NLs) are not commonly thought of as an application of nano-structural engineering; yet, these layers evolve during the growth process to produce self-assembled, nanometer-scale structures. Continued growth on these nuclei ultimately leads to a fully coalesced film, and we show in this research program that their initial density is correlated to the GaN dislocation density. In this 18 month program, we developed MOCVD growth methods to reduce GaN dislocation densities on sapphire from 5 x 10{sup 8} cm{sup -2} using our standard delay recovery growth technique to 1 x 10{sup 8} cm{sup -2} using an ultra-low nucleation density technique. For this research, we firmly established a correlation between the GaN nucleation thickness, the resulting nucleation density after annealing, and dislocation density of full GaN films grown on these nucleation layers. We developed methods to reduce the nuclei density while still maintaining the ability to fully coalesce the GaN films. Ways were sought to improve the GaN nuclei orientation by improving the sapphire surface smoothness by annealing prior to the NL growth. Methods to eliminate the formation of additional nuclei once the majority of GaN nuclei were developed using a silicon nitride treatment prior to the deposition of the nucleation layer. Nucleation layer thickness was determined using optical reflectance and the nucleation density was determined using atomic force microscopy (AFM) and Nomarski microscopy. Dislocation density was measured using X-ray diffraction and AFM after coating the surface with silicon nitride to delineate all dislocation types. The program milestone of producing GaN films with dislocation densities of 1 x 10{sup 8} cm{sup -2} was met by silicon nitride treatment of annealed sapphire followed by the multiple deposition of a low density of GaN nuclei followed by high temperature GaN growth. Details of this growth process and the underlying science are presented in this final report along with problems encountered in this research and recommendations for future work.

Koleske, Daniel David; Lee, Stephen Roger; Lemp, Thomas Kerr; Coltrin, Michael Elliott; Cross, Karen Charlene; Thaler, Gerald

2009-07-01T23:59:59.000Z

53

Effect of Trapping on the Critical Voltage for Degradation in GaN High Electron Mobility Transistors  

E-Print Network [OSTI]

conditions, UV illumination decreases the critical voltage for the onset of degradation in gate current in Ga traps in the fresh state. Keywords­ GaN HEMTs, critical voltage, degradation, UV illuminationEffect of Trapping on the Critical Voltage for Degradation in GaN High Electron Mobility

del Alamo, JesĂşs A.

54

Synthesis, morphology and optical properties of GaN and AlGaN semiconductor nanostructures  

SciTech Connect (OSTI)

Hexagonal Gallium Nitride (GaN) and Aluminum Gallium Nitride (AlGaN) nanoparticles were synthesized by sol-gel method using Ethylene Diamine Tetra Acetic acid (EDTA) complex route. Powder X-ray diffraction (PXRD) analysis confirms the hexagonal wurtzite structure of GaN and Al{sub 0.25}Ga{sub 0.75}N nanoparticles. Surface morphology and elemental analysis were carried out by Scanning Electron Microscope (SEM) and Energy Dispersive X-ray spectroscopy (EDX). The room temperature Photoluminescence (PL) study shows the near band edge emission for GaN at 3.35 eV and at 3.59 eV for AlGaN nanoparticles. The Aluminum (Al) composition of 20% has been obtained from PL emission around 345 nm.

Kuppulingam, B., E-mail: drbaskar2009@gmail.com; Singh, Shubra, E-mail: drbaskar2009@gmail.com; Baskar, K., E-mail: drbaskar2009@gmail.com [Crystal Growth Centre, Anna University, Chennai-600025 (India)

2014-04-24T23:59:59.000Z

55

Ge doped GaN with controllable high carrier concentration for plasmonic applications  

SciTech Connect (OSTI)

Controllable Ge doping in GaN is demonstrated for carrier concentrations of up to 2.4?×?10{sup 20} cm{sup ?3}. Low temperature luminescence spectra from the highly doped samples reveal band gap renormalization and band filling (Burstein-Moss shift) in addition to a sharp transition. Infrared ellipsometry spectra demonstrate the existence of electron plasma with an energy around 3500?cm{sup ?1} and a surface plasma with an energy around 2000?cm{sup ?1}. These findings open possibilities for the application of highly doped GaN for plasmonic devices.

Kirste, Ronny; Hoffmann, Marc P.; Sachet, Edward; Bobea, Milena; Bryan, Zachary; Bryan, Isaac; Maria, Jon-Paul; Collazo, Ramón; Sitar, Zlatko [Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695-7919 (United States)] [Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695-7919 (United States); Nenstiel, Christian; Hoffmann, Axel [Institut f?r Festkörperphsyik, TU-Berlin, Hardenbergstrasse 36, 10623 Berlin (Germany)] [Institut f?r Festkörperphsyik, TU-Berlin, Hardenbergstrasse 36, 10623 Berlin (Germany)

2013-12-09T23:59:59.000Z

56

Nucleation and Growth of GaN on GaAs (001) Substrates  

SciTech Connect (OSTI)

The nucleation of GaN thin films on GaAs is investigated for growth at 620 "C. An rf plasma cell is used to generate chemically active nitrogen from N2. An arsenic flux is used in the first eight monolayer of nitride growth to enhance nucleation of the cubic phase. Subsequent growth does not require an As flux to preserve the cubic phase. The nucleation of smooth interfaces and GaN films with low stacking fault densities is dependent upon relative concentrations of active nitrogen species in the plasma and on the nitrogen to gallium flux ratio.

Drummond, Timothy J.; Hafich, Michael J.; Heller, Edwin J.; Lee, Stephen R.; Liliental-Weber, Zuzanna; Ruvimov, Sergei; Sullivan, John P.

1999-05-03T23:59:59.000Z

57

X-ray detectors based on GaN Schottky diodes  

SciTech Connect (OSTI)

GaN Schottky diodes have been fabricated and tested as x-ray detectors in the range from 6 to 21 keV. The spectral response has been measured and is compared to its theoretical value. The study of the response and its temporal dynamics as a function of the bias allows to identify a photovoltaic behavior at low bias and a photoconductive one at larger reverse biases. The GaN diode turned out to be linear as a function of the incident power. The noise and detectivity are given and discussed.

Duboz, Jean-Yves; Frayssinet, Eric; Chenot, Sebastien [CRHEA, CNRS, Rue Bernard Gregory, Sophia Antipolis, F-06560 Valbonne (France); Reverchon, Jean-Luc [THALES R and T, Campus Polytechnique, 1 avenue Augustin Fresnel, F-91767 Palaiseau Cedex (France); Idir, Mourad [Synchrotron SOLEIL L'Orme des Merisiers, Saint-Aubin-BP 48 91192, GIF-sur-Yvette Cedex (France)

2010-10-18T23:59:59.000Z

58

Design and Experimental Characterization of an Erbium Doped GaN Waveguide  

E-Print Network [OSTI]

temperatures as compared to other semiconductor host materials such as Si and GaAs. 1540nm optical emission in Er- doped waveguide has also been demonstrated using a 365nm light emitting diode as the optical pumping source. UV pumping above the GaN bandgap....9 eV In Table 2 - 1, GaN is the semiconductor material with the largest bandgap (SiO2 is not a semiconductor), which has proven to be an accomplished host of erbium, with reports of fabrication of light- emitting diodes operating in the visible...

Wang, Qian

2012-05-31T23:59:59.000Z

59

Partially filled intermediate band of Cr-doped GaN films  

SciTech Connect (OSTI)

We investigated the band structure of sputtered Cr-doped GaN (GaCrN) films using optical absorption, photoelectron yield spectroscopy, and charge transport measurements. It was found that an additional energy band is formed in the intrinsic band gap of GaN upon Cr doping, and that charge carriers in the material move in the inserted band. Prototype solar cells showed enhanced short circuit current and open circuit voltage in the n-GaN/GaCrN/p-GaN structure compared to the GaCrN/p-GaN structure, which validates the proposed concept of an intermediate-band solar cell.

Sonoda, S. [Department of Electronics, Kyoto Institute of Technology, Kyoto 606-8585 (Japan)

2012-05-14T23:59:59.000Z

60

28.99.99.M1 Student Health Services Page 1 of 1 UNIVERSITY RULE  

E-Print Network [OSTI]

The Department of Student Health Services (A.P. Beutel Health Center) is an ambulatory health care provider serving the Texas A&M University student body through the provision of primary health care services28.99.99.M1 Student Health Services Page 1 of 1 UNIVERSITY RULE 28.99.99.M1 Student Health Services

Note: This page contains sample records for the topic "facility gan m1" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

The development and evaluation of a sensitive minicolumn assay for the detection of aflatoxin M1 in milk  

E-Print Network [OSTI]

M1 (CSID-M1) in milk has been developed in our laboratory. In this new method, aflatoxin M1 (AfM1) is selectively adsorbed in a small glass minicolumn at the interface of a layer of packed neutral sand and a narrow band of magnesium silicate (or...

Cathey, Carol Grmela

1993-01-01T23:59:59.000Z

62

Piezo-Phototronic Effect on Electroluminescence Properties of p-Type GaN Thin Films  

E-Print Network [OSTI]

significance on the practical applications of GaN in optoelectronic devices under a working environment where,9 Recent studies have shown its applications in improving the performance of optoelectronic devices based result in great influence for this most popular III-V semiconductor used in optoelectronic devices

Wang, Zhong L.

63

Optimal Decentralized Protocol for Electric Vehicle Charging Lingwen Gan Ufuk Topcu Steven Low  

E-Print Network [OSTI]

Abstract-- Motivated by the power-grid-side challenges in the integration of electric vehicles, we proposeOptimal Decentralized Protocol for Electric Vehicle Charging Lingwen Gan Ufuk Topcu Steven Low a decentralized protocol for negotiating day-ahead charging schedules for electric vehicles. The overall goal

Low, Steven H.

64

K.K. Gan ATLAS Tracker Upgrade Workshop 1 Nov 5, 2008  

E-Print Network [OSTI]

Upgrade Workshop 5 Optical Fiber Irradiation Corning Infinicor GRIN fiber irradiated with 's from Co60 Upgrade Workshop 6 Optical Fiber Irradiation assume L = 3,000 fb-1 including safety factor of 1 Radiation-Hardness of Optical Components #12;K.K. Gan ATLAS Tracker Upgrade Workshop 2 Outline

Gan, K. K.

65

K.K. Gan ATLAS Tracker Upgrade Workshop 1 Irradiation Results and Transmission on  

E-Print Network [OSTI]

Power vs Dosage all VCSELs still produce optical power at SLHC dosage should irradiate at lower Workshop 14 Post-Irradiation Analysis all arrays except ULM 5 G still produce optical power post-irradiationK.K. Gan ATLAS Tracker Upgrade Workshop 1 Irradiation Results and Transmission on Small Cables

Gan, K. K.

66

Fermi Level Control of Point Defects During Growth of Mg-Doped GaN  

E-Print Network [OSTI]

, and photodetectors have been developed, but the optical transitions in GaN:Mg are still not well under- stood.2 Mg.1007/s11664-012-2342-9 Ă? 2012 TMS #12;irradiation during growth affected the material, but the nature demonstrate point defect control in Mg-doped GaN, by UV irradiation during growth. First, details

Nabben, Reinhard

67

K.K. Gan ATLAS Tracker Ungrade Workshop 1 Bandwidths of Micro Twisted-Pair Cables  

E-Print Network [OSTI]

/fall time after irradiation? What is optical power after irradiation? What current is needed for annealing Spliced SIMM-GRIN Fibers and Radiation Hardness of PIN/VCSEL Dec 8, 2006 W. Fernando, K.K. Gan, A. Law, H Bandwidth of micro twisted-pair cables Bandwidth of fusion spliced SIMM-GRIN fibers Radiation hardness

Gan, K. K.

68

K.K. Gan IPRD06 1 Bandwidths of Micro Twisted-Pair Cables  

E-Print Network [OSTI]

A or more What is rise/fall time after irradiation? What is optical power after irradiation? What currentK.K. Gan IPRD06 1 Bandwidths of Micro Twisted-Pair Cables and Fusion Spliced SIMM-GRIN Fibers Introduction Bandwidth of micro twisted-pair cables Bandwidth of fusion spliced SIMM-GRIN fibers Radiation

Gan, K. K.

69

Reverse-bias leakage current reduction in GaN Schottky diodes by electrochemical surface treatment  

E-Print Network [OSTI]

Reverse-bias leakage current reduction in GaN Schottky diodes by electrochemical surface treatment Received 15 July 2002; accepted 27 December 2002 An electrochemical surface treatment has been developed to the large power consumption and noise levels that can be present in circuits that incorporate such devices.1

Yu, Edward T.

70

VISIBLE AND INFRARED RARE-EARTH ACTIVATED ELECTROLUMINESCENCE FROM ERBIUM DOPED GaN  

E-Print Network [OSTI]

. At the same time novel work is being conducted using rare earth elements as sources of light emission. Results. III-V semiconductors doped with rare-earth elements have also been used10VISIBLE AND INFRARED RARE-EARTH ACTIVATED ELECTROLUMINESCENCE FROM ERBIUM DOPED GaN M. Garter*, R

Steckl, Andrew J.

71

An Effective Subdivision Algorithm for Diffuse Scattering of Ray Tracing Mingming Gan1  

E-Print Network [OSTI]

Department of Electrical and Information Technology, Lund University, Lund, Sweden Contact: gan@ftw.at Abstract Accurate modeling of electromagnetic wave propagation by means of ray tracing (RT) includes by evaluating the power delay profile (PDP), delay spread and angular spread. 1 Introduction Diffuse scattering

Zemen, Thomas

72

Lattice Protein Folding With Two and Four-Body Statistical Hin Hark Gan,1  

E-Print Network [OSTI]

Lattice Protein Folding With Two and Four-Body Statistical Potentials Hin Hark Gan,1 Alexander/sequence compatibility of proteins,5,6 homology modeling,7 and protein folding simulations.8 ­10 Currently, most structures. Multibody potentials may help improve our understanding of the cooperativity of protein folding

Schlick, Tamar

73

Tunnel-injection GaN quantum dot ultraviolet light-emitting diodes  

SciTech Connect (OSTI)

We demonstrate a GaN quantum dot ultraviolet light-emitting diode that uses tunnel injection of carriers through AlN barriers into the active region. The quantum dot heterostructure is grown by molecular beam epitaxy on AlN templates. The large lattice mismatch between GaN and AlN favors the formation of GaN quantum dots in the Stranski-Krastanov growth mode. Carrier injection by tunneling can mitigate losses incurred in hot-carrier injection in light emitting heterostructures. To achieve tunnel injection, relatively low composition AlGaN is used for n- and p-type layers to simultaneously take advantage of effective band alignment and efficient doping. The small height of the quantum dots results in short-wavelength emission and are simultaneously an effective tool to fight the reduction of oscillator strength from quantum-confined Stark effect due to polarization fields. The strong quantum confinement results in room-temperature electroluminescence peaks at 261 and 340 nm, well above the 365 nm bandgap of bulk GaN. The demonstration opens the doorway to exploit many varied features of quantum dot physics to realize high-efficiency short-wavelength light sources.

Verma, Jai; Kandaswamy, Prem Kumar; Protasenko, Vladimir; Verma, Amit; Grace Xing, Huili; Jena, Debdeep [Department of Electrical Engineering, University of Notre Dame, Indiana 46556 (United States)] [Department of Electrical Engineering, University of Notre Dame, Indiana 46556 (United States)

2013-01-28T23:59:59.000Z

74

Ultra High p-doping Material Research for GaN Based Light Emitters  

SciTech Connect (OSTI)

The main goal of the Project is to investigate doping mechanisms in p-type GaN and AlGaN and controllably fabricate ultra high doped p-GaN materials and epitaxial structures. Highly doped p-type GaN-based materials with low electrical resistivity and abrupt doping profiles are of great importance for efficient light emitters for solid state lighting (SSL) applications. Cost-effective hydride vapor phase epitaxial (HVPE) technology was proposed to investigate and develop p-GaN materials for SSL. High p-type doping is required to improve (i) carrier injection efficiency in light emitting p-n junctions that will result in increasing of light emitting efficiency, (ii) current spreading in light emitting structures that will improve external quantum efficiency, and (iii) parameters of Ohmic contacts to reduce operating voltage and tolerate higher forward currents needed for the high output power operation of light emitters. Highly doped p-type GaN layers and AlGaN/GaN heterostructures with low electrical resistivity will lead to novel device and contact metallization designs for high-power high efficiency GaN-based light emitters. Overall, highly doped p-GaN is a key element to develop light emitting devices for the DOE SSL program. The project was focused on material research for highly doped p-type GaN materials and device structures for applications in high performance light emitters for general illumination P-GaN and p-AlGaN layers and multi-layer structures were grown by HVPE and investigated in terms of surface morphology and structure, doping concentrations and profiles, optical, electrical, and structural properties. Tasks of the project were successfully accomplished. Highly doped GaN materials with p-type conductivity were fabricated. As-grown GaN layers had concentration N{sub a}-N{sub d} as high as 3 x 10{sup 19} cm{sup -3}. Mechanisms of doping were investigated and results of material studies were reported at several International conferences providing better understanding of p-type GaN formation for Solid State Lighting community. Grown p-type GaN layers were used as substrates for blue and green InGaN-based LEDs made by HVPE technology at TDI. These results proved proposed technical approach and facilitate fabrication of highly conductive p-GaN materials by low-cost HVPE technology for solid state lighting applications. TDI has started the commercialization of p-GaN epitaxial materials.

Vladimir Dmitriev

2007-06-30T23:59:59.000Z

75

High Efficiency m-plane LEDs on Low Defect Density Bulk GaN Substrates  

SciTech Connect (OSTI)

Solid-state lighting is a key technology for reduction of energy consumption in the US and worldwide. In principle, by replacing standard incandescent bulbs and other light sources with sources based on light-emitting diodes (LEDs), ultimate energy efficiency can be achieved. The efficiency of LEDs has improved tremendously over the past two decades, however further progress is required for solid- state lighting to reach its full potential. The ability of an LED at converting electricity to light is quantified by its internal quantum efficiency (IQE). The material of choice for visible LEDs is Gallium Nitride (GaN), which is at the basis of blue-emitting LEDs. A key factor limiting the performance of GaN LEDs is the so-called efficiency droop, whereby the IQE of the LED decreases significantly at high current density. Despite decades of research, efficiency droop remains a major issue. Since high-current operation is necessary for practical lighting applications, reducing droop is a major challenge for the scientific community and the LED industry. Our approach to solving the droop issue is the use of newly available low-defect-density bulk GaN non-polar substrates. In contrast to the standard foreign substrates (sapphire, silicon carbide, silicon) used in the industry, we have employed native bulk GaN substrates with very low defect density, thus ensuring exquisite material quality and high IQE. Whereas all commercial LEDs are grown along the c-plane crystal direction of GaN, we have used m-plane non-polar substrates; these drastically modify the physical properties of the LED and enable a reduction of droop. With this approach, we have demonstrated very high IQE performance and low droop. Our results focused on violet and blue LEDs. For these, we have demonstrated very high peak IQEs and current droops of 6% and 10% respectively (up to a high current density of 200A.cm-2). All these results were obtained under electrical operation. These high IQE and low droop values are in line with the program’s milestones. They demonstrate that bulk non-polar GaN substrates represent a disruptive technology for LED performance. Application of this technology to real-world products is feasible, provided that the cost of GaN substrates is compatible with the market’s requirement.

David, Aurelien

2012-10-15T23:59:59.000Z

76

Ab initio density functional theory study of non-polar (101{sup Ż}0),?(112{sup Ż}0) and semipolar (202{sup Ż}1) GaN surfaces  

SciTech Connect (OSTI)

The atomic structures of non-polar GaN(101{sup Ż}0),?(112{sup Ż}0) and semipolar GaN(202{sup Ż}1),?(202{sup Ż}1{sup Ż}) surfaces were studied using ab initio calculations within density functional theory. The bulk-like truncated (1?×?1) structure with buckled Ga-N or Ga-Ga dimers was found stable on the non-polar GaN(101{sup Ż}0) surface in agreement with previous works. Ga-N heterodimers were found energetically stable on the GaN(112{sup Ż}0)-(1?×?1) surface. The formation of vacancies and substitution site defects was found unfavorable for non-polar GaN surfaces. Semipolar GaN(202{sup Ż}1)-(1?×?1) surface unit cells consist of non-polar (101{sup Ż}0) and semipolar (101{sup Ż}1) nano-facets. The (101{sup Ż}1) nano-facets consist of two-fold coordinated atoms, which form N-N dimers within a (2?×?1) surface unit cell on a GaN(202{sup Ż}1) surface. Dimers are not formed on the GaN(202{sup Ż}1{sup Ż}) surface. The stability of the surfaces with single (101{sup Ż}0) or (101{sup Ż}1) nano-facets was analyzed. A single non-polar (101{sup Ż}0)-(1?×?1) nano-facet was found stable on the GaN(202{sup Ż}1) surface, but unstable on the GaN(202{sup Ż}1{sup Ż}) surface. A single (101{sup Ż}1) nano-facet was found unstable. Semipolar GaN surfaces with (202{sup Ż}1) and (202{sup Ż}1{sup Ż}) polarity can be stabilized with a Ga overlayer at Ga-rich experimental conditions.

Mutombo, P.; Romanyuk, O., E-mail: romanyuk@fzu.cz [Institute of Physics, Academy of Sciences of the Czech Republic, Cukrovarnická 10, 16200 Prague (Czech Republic)

2014-05-28T23:59:59.000Z

77

Facilities Services Overview & Discussion  

E-Print Network [OSTI]

& Finance Facilities Services Director: Jeff Butler Human Resources Administrative Services Engineering) Environmental Services Morrison (3) Admin Services Evans (1) Human Resources Engineering (4) ·EngineeringFacilities Services Overview & Discussion Jeff Butler Director ­ Facilities Services November 2011

Maxwell, Bruce D.

78

from Isotope Production Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cancer-fighting treatment gets boost from Isotope Production Facility April 13, 2012 Isotope Production Facility produces cancer-fighting actinium 2:32 Isotope cancer treatment...

79

Fuel Fabrication Facility  

National Nuclear Security Administration (NNSA)

Construction of the Mixed Oxide Fuel Fabrication Facility Construction of the Mixed Oxide Fuel Fabrication Facility November 2005 May 2007 June 2008 May 2012...

80

Substrate-dependent wetting layer formation during GaN growth: Impact on the morphology of the films  

SciTech Connect (OSTI)

We have compared epitaxial growth of GaN films on 6H-SiC(0001)-({radical}(3)x{radical}(3))R30 deg. -Ga and on (0001)-sapphire. Predeposited Ga layers were nitrided by ion beam assisted molecular beam epitaxy. Whereas on SiC the initially deposited Ga covers the substrate surface completely, on sapphire only Ga droplets are present. The different distribution of the predeposited Ga affects the morphology of GaN significantly. Scanning electron microscopy and atomic force microscopy analysis of the grown films show that the complete wetting of the SiC substrate with Ga enhances finally the size and the flatness of GaN terraces and thus the quality of the film. X-ray photoelectron spectroscopy measurements reveal that metallic Ga resides also on top of the GaN films during the growth.

Sidorenko, A.; Peisert, H.; Neumann, H.; Chasse, T. [Universitaet Tuebingen, Institut fuer Physikalische und Theoretische Chemie, Auf der Morgenstelle 8, D-72076 Tuebingen (Germany); Leibniz-Institut fuer Oberflaechenmodifizierung e.V. Permoserstrasse 15, D-04318 Leipzig (Germany); Universitaet Tuebingen, Institut fuer Physikalische und Theoretische Chemie, Auf der Morgenstelle 8, D-72076 Tuebingen (Germany)

2007-08-15T23:59:59.000Z

Note: This page contains sample records for the topic "facility gan m1" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Guide to research facilities  

SciTech Connect (OSTI)

This Guide provides information on facilities at US Department of Energy (DOE) and other government laboratories that focus on research and development of energy efficiency and renewable energy technologies. These laboratories have opened these facilities to outside users within the scientific community to encourage cooperation between the laboratories and the private sector. The Guide features two types of facilities: designated user facilities and other research facilities. Designated user facilities are one-of-a-kind DOE facilities that are staffed by personnel with unparalleled expertise and that contain sophisticated equipment. Other research facilities are facilities at DOE and other government laboratories that provide sophisticated equipment, testing areas, or processes that may not be available at private facilities. Each facility listing includes the name and phone number of someone you can call for more information.

Not Available

1993-06-01T23:59:59.000Z

82

Influence of growth temperature and temperature ramps on deep level defect incorporation in m-plane GaN  

SciTech Connect (OSTI)

The dependence of deep level defect incorporation in m-plane GaN films grown by metal-organic chemical vapor deposition on bulk m-plane GaN substrates as a function of growth temperature (T{sub g}) and T{sub g} ramping method was investigated using deep level optical spectroscopy. Understanding the influence of T{sub g} on GaN deep level incorporation is important for InGaN/GaN multi-quantum well (MQW) light emitting diodes (LEDs) and laser diodes (LDs) because GaN quantum barrier (QB) layers are grown much colder than thin film GaN to accommodate InGaN QW growth. Deep level spectra of low T{sub g} (800?°C) GaN films grown under QB conditions were compared to deep level spectra of high T{sub g} (1150?°C) GaN. Reducing T{sub g}, increased the defect density significantly (>50×) through introduction of emergent deep level defects at 2.09?eV and 2.9?eV below the conduction band minimum. However, optimizing growth conditions during the temperature ramp when transitioning from high to low T{sub g} substantially reduced the density of these emergent deep levels by approximately 40%. The results suggest that it is important to consider the potential for non-radiative recombination in QBs of LED or LD active regions, and tailoring the transition from high T{sub g} GaN growth to active layer growth can mitigate such non-radiative channels.

Armstrong, A. M., E-mail: aarmstr@sandia.gov [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States); Kelchner, K. [Department of Electrical and Computer Engineering, University of California, Santa Barbara, California 93106 (United States)] [Department of Electrical and Computer Engineering, University of California, Santa Barbara, California 93106 (United States); Nakamura, S.; DenBaars, S. P. [Department of Electrical and Computer Engineering, University of California, Santa Barbara, California 93106 (United States) [Department of Electrical and Computer Engineering, University of California, Santa Barbara, California 93106 (United States); Materials Department, University of California, Santa Barbara, California 93106 (United States); Speck, J. S. [Materials Department, University of California, Santa Barbara, California 93106 (United States)] [Materials Department, University of California, Santa Barbara, California 93106 (United States)

2013-12-02T23:59:59.000Z

83

Photoluminescence study of the 1.047 eV emission in GaN K. Pressela)  

E-Print Network [OSTI]

GaN/ AlGaN blue green light emitting diode, which has a much higher quantum efficiency than the SiC blue light emitting diode, became possible.2 Presently the wide bandgap semi- conductor GaN is intensively. Especially the 1.19 eV is very intense. Thus one can think of developing a light emitting diode in the near

Nabben, Reinhard

84

Growth and characterizations of GaN micro-rods on graphene films for flexible light emitting diodes  

SciTech Connect (OSTI)

We report the growth of GaN micro-rods and coaxial quantum-well heterostructures on graphene films, together with structural and optical characterization, for applications in flexible optical devices. Graphene films were grown on Cu foil by means of chemical vapor deposition, and used as the substrates for the growth of the GaN micro-rods, which were subsequently transferred onto SiO{sub 2}/Si substrates. Highly Si-doped, n-type GaN micro-rods were grown on the graphene films using metal–organic chemical vapor deposition. The growth and vertical alignment of the GaN micro-rods, which is a critical factor for the fabrication of high-performance light-emitting diodes (LEDs), were characterized using electron microscopy and X-ray diffraction. The GaN micro-rods exhibited promising photoluminescence characteristics for optoelectronic device applications, including room-temperature stimulated emission. To fabricate flexible LEDs, In{sub x}Ga{sub 1–x}N/GaN multiple quantum wells and a p-type GaN layer were deposited coaxially on the GaN micro-rods, and transferred onto Ag-coated polymer substrates using lift-off. Ti/Au and Ni/Au metal layers were formed to provide electrical contacts to the n-type and p-type GaN regions, respectively. The micro-rod LEDs exhibited intense emission of visible light, even after transfer onto the flexible polymer substrate, and reliable operation was achieved following numerous cycles of mechanical deformation.

Chung, Kunook; Beak, Hyeonjun; Tchoe, Youngbin; Oh, Hongseok; Yi, Gyu-Chul, E-mail: gcyi@snu.ac.kr [Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul 151-747 (Korea, Republic of); Yoo, Hyobin; Kim, Miyoung [Department of Materials Science and Engineering, Seoul National University, Seoul 151-744 (Korea, Republic of)

2014-09-01T23:59:59.000Z

85

Materials physics and device development for improved efficiency of GaN HEMT high power amplifiers.  

SciTech Connect (OSTI)

GaN-based microwave power amplifiers have been identified as critical components in Sandia's next generation micro-Synthetic-Aperture-Radar (SAR) operating at X-band and Ku-band (10-18 GHz). To miniaturize SAR, GaN-based amplifiers are necessary to replace bulky traveling wave tubes. Specifically, for micro-SAR development, highly reliable GaN high electron mobility transistors (HEMTs), which have delivered a factor of 10 times improvement in power performance compared to GaAs, need to be developed. Despite the great promise of GaN HEMTs, problems associated with nitride materials growth currently limit gain, linearity, power-added-efficiency, reproducibility, and reliability. These material quality issues are primarily due to heteroepitaxial growth of GaN on lattice mismatched substrates. Because SiC provides the best lattice match and thermal conductivity, SiC is currently the substrate of choice for GaN-based microwave amplifiers. Obviously for GaN-based HEMTs to fully realize their tremendous promise, several challenges related to GaN heteroepitaxy on SiC must be solved. For this LDRD, we conducted a concerted effort to resolve materials issues through in-depth research on GaN/AlGaN growth on SiC. Repeatable growth processes were developed which enabled basic studies of these device layers as well as full fabrication of microwave amplifiers. Detailed studies of the GaN and AlGaN growth of SiC were conducted and techniques to measure the structural and electrical properties of the layers were developed. Problems that limit device performance were investigated, including electron traps, dislocations, the quality of semi-insulating GaN, the GaN/AlGaN interface roughness, and surface pinning of the AlGaN gate. Surface charge was reduced by developing silicon nitride passivation. Constant feedback between material properties, physical understanding, and device performance enabled rapid progress which eventually led to the successful fabrication of state of the art HEMT transistors and amplifiers.

Kurtz, Steven Ross; Follstaedt, David Martin; Wright, Alan Francis; Baca, Albert G.; Briggs, Ronald D.; Provencio, Paula Polyak; Missert, Nancy A.; Allerman, Andrew Alan; Marsh, Phil F.; Koleske, Daniel David; Lee, Stephen Roger; Shul, Randy John; Seager, Carleton Hoover; Tigges, Christopher P.

2005-12-01T23:59:59.000Z

86

Future Fixed Target Facilities  

SciTech Connect (OSTI)

We review plans for future fixed target lepton- and hadron-scattering facilities, including the 12 GeV upgraded CEBAF accelerator at Jefferson Lab, neutrino beam facilities at Fermilab, and the antiproton PANDA facility at FAIR. We also briefly review recent theoretical developments which will aid in the interpretation of the data expected from these facilities.

Melnitchouk, Wolodymyr

2009-01-01T23:59:59.000Z

87

Subpicosecond time-resolved Raman studies of nonequilibrium excitations in wurtzite GaN  

SciTech Connect (OSTI)

Non-equilibrium electron distributions as well as phonon dynamics in wurtzite GaN have been measured by subpicosecond time-resolved Raman spectroscopy. The experimental results have demonstrated that for electron densities n {ge} 5 {times} 10{sup 17} cm{sup {minus}3}, the non-equilibrium electron distributions in wurtzite GaN can be very well described by Fermi-Dirac distribution functions with the temperature of electrons substantially higher than that of the lattice. The population relaxation time of longitudinal optical phonons was directly measured to be {tau} {approx_equal} 5 {+-} 1 ps at T = 25 K. The experimental results on the temperature dependence of the lifetime of longitudinal optical phonons suggest that the primary decay channels for these phonons are the decay into (1) one transverse optical phonon and one high energy, longitudinal or transverse acoustical phonons; and (2) one transverse optical phonon and one E{sub 2} phonon.

Tsen, K.T.; Ferry, D.K. [Arizona State Univ., Tempe, AZ (United States). Dept. of Physics and Astronomy; Joshi, R.P. [Old Dominion Univ., Norfolk, VA (United States). Dept. of Electrical Engineering; Botchkarev, A.; Sverdlov, B.; Salvador, A.; Morkoc, H. [Univ. of Illinois, Urbana, IL (United States). Coordinated Science Lab.

1997-12-31T23:59:59.000Z

88

Strong light-matter coupling in ultrathin double dielectric mirror GaN microcavities  

SciTech Connect (OSTI)

Strong light-matter coupling is demonstrated at low temperature in an ultrathin GaN microcavity fabricated using two silica/zirconia Bragg mirrors, in addition to a three-period epitaxial (Al,Ga)N mirror serving as an etch stop and assuring good quality of the overgrown GaN. The {lambda}/2 cavity is grown by molecular beam epitaxy on a Si substrate. Analysis of angle-resolved data reveal key features of the strong coupling regime in both reflectivity and transmission spectra at 5 K: anticrossing with a normal mode splitting of 43{+-}2 meV and 56{+-}2 meV for reflectivity and transmission, respectively, and narrowing of the lower polariton linewidth near resonance.

Bejtka, K.; Martin, R. W. [Department of Physics, SUPA, University of Strathclyde, Glasgow G4 0NG (United Kingdom); CRHEA-CNRS, Rue Bernard Gregory, Parc Sophia Antipolis, 06560 Valbonne (France); Reveret, F.; Vasson, A.; Leymarie, J. [LASMEA, UMR 6602 UBP/CNRS, 24 Avenue des Landais, F-63177 Aubiere Cedex (France); Edwards, P. R. [Department of Physics, SUPA, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Sellers, I. R.; Duboz, J. Y.; Leroux, M.; Semond, F. [CRHEA-CNRS, Rue Bernard Gregory, Parc Sophia Antipolis, 06560 Valbonne (France)

2008-06-16T23:59:59.000Z

89

Spectroscopic study of semipolar (112{sup Ż}2)-HVPE GaN exhibiting high oxygen incorporation  

SciTech Connect (OSTI)

Spatially resolved luminescence and Raman spectroscopy investigations are applied to a series of (112{sup Ż}2)-GaN samples grown by hydride vapor phase epitaxy (HVPE) grown over an initial layer deposited by metal organic vapor phase epitaxy on patterned sapphire substrates. Whereas these two differently grown GaN layers are crystallographically homogeneous, they differ largely in their doping level due to high unintentional oxygen uptake in the HVPE layer. This high doping shows up in luminescence spectra, which can be explained by a free-electron recombination band for which an analytical model considering the Burstein-Moss shift, conduction band tailing, and the bandgap renormalization is included. Secondary ion mass spectrometry, Raman spectroscopy, and Hall measurements concordantly determine the electron density to be above 10{sup 19?}cm{sup ?3}. In addition, the strain state is assessed by Raman spectroscopy and compared to a finite element analysis.

Schustek, Philipp, E-mail: philipp.schustek@gmail.com [Institute of Quantum Matter, Ulm University, 89081 Ulm (Germany); Research Unit, Parc Sanitari Sant Joan de Déu and Foundation Sant Joan de Déu, Esplugues de Llobregat, 08950, Barcelona (Spain); Hocker, Matthias; Thonke, Klaus [Institute of Quantum Matter, Ulm University, 89081 Ulm (Germany); Klein, Martin; Scholz, Ferdinand [Institute of Optoelectronics, Ulm University, 89081 Ulm (Germany); Simon, Ulrich [Scientific Computing Centre Ulm, Ulm University, 89081 Ulm (Germany)

2014-10-28T23:59:59.000Z

90

Charge transfer in Fe-doped GaN: The role of the donor  

SciTech Connect (OSTI)

Several nitride-based device structures would benefit from the availability of high quality, large-area, freestanding semi-insulating GaN substrates. Due to the intrinsic n-type nature of GaN, however, the incorporation of compensating centers such as Fe is necessary to achieve the high resistivity required. We are using electron paramagnetic resonance (EPR) to explore charge transfer in 450 um thick GaN:Fe plates to understand the basic mechanisms related to compensation so that the material may be optimized for device applications. The results suggest that the simple model based on one shallow donor and a single Fe level is insufficient to describe compensation. Rather, the observation of the neutral donor and Fe3+ indicates that either the two species are spatially segregated or additional compensating and donor defects must be present.

Sunay, Ustun; Dashdorj, J.; Zvanut, M. E.; Harrison, J. G. [Department of Physics, University of Alabama at Birmingham, 1300 University Blvd., CH 310, Birmingham, Alabama 35294-1170 (United States); Leach, J. H.; Udwary, K. [Kyma Technologies, 8829 Midway West Rd., Raleigh, North Carolina 27617 (United States)

2014-02-21T23:59:59.000Z

91

Search for 14.4 keV solar axions from M1 transition of Fe-57 with CUORE crystals  

E-Print Network [OSTI]

We report the results of a search for axions from the 14.4 keV M1 transition from Fe-57 in the core of the sun using the axio-electric e?ect in TeO2 bolometers. The detectors are 5x5x5 cm3 crystals operated at about 10 mK in a facility used to test bolometers for the CUORE experiment at the Laboratori Nazionali del Gran Sasso in Italy. An analysis of 43.65 kg d of data was made using a newly developed low energy trigger which was optimized to reduce the detectors energy threshold. An upper limit of 0.63 c kg-1 d-1 was established at 95% C.L.. From this value, a lower bound at 95% C.L. was placed on the Peccei-Quinn energy scale of fa >= 0.76 10**6 GeV for a value of S=0.55 for the flavor-singlet axial vector matrix element. Bounds are given for the interval 0.15 < S < 0.55.

The Cuore Collaboration; F. Alessandria; R. Ardito; D. R. Artusa; F. T. Avignone III; O. Azzolini; M. Balata; T. I. Banks; G. Bari; J. Beeman; F. Bellini; A. Bersani; M. Biassoni; T. Bloxham; C. Brofferio; C. Bucci; X. Z. Cai; L. Canonica; S. Capelli; L. Carbone; L. Cardani; M. Carrettoni; N. Casali; N. Chott; M. Clemenza; C. Cosmelli; O. Cremonesi; R. J. Creswick; I. Dafinei; A. Dally; V. Datskov; A. De Biasi; M. P. Decowski; M. M. Deninno; S. Di Domizio; M. L. di Vacri; L. Ejzak; R. Faccini; D. Q. Fang; H. A. Farach; E. Ferri; F. Ferroni; E. Fiorini; M. A. Franceschi; S. J. Freedman; B. K. Fujikawa; A. Giachero; L. Gironi; A. Giuliani; J. Goett; P. Gorla; C. Gotti; E. Guardincerri; T. D. Gutierrez; E. E. Haller; K. Han; K. M. Heeger; H. Z. Huang; R. Kadel; K. Kazkaz; G. Keppel; L. Kogler; Yu. G. Kolomensky; D. Lenz; Y. L. Li; C. Ligi; X. Liu; Y. G. Ma; C. Maiano; M. Maino; M. Martinez; R. H. Maruyama; N. Moggi; S. Morganti; T. Napolitano; S. Newman; S. Nisi; C. Nones; E. B. Norman; A. Nucciotti; F. Orio; D. Orlandi; J. L. Ouellet; M. Pallavicini; V. Palmieri; L. Pattavina; M. Pavan; M. Pedretti; G. Pessina; S. Pirro; E. Previtali; V. Rampazzo; F. Rimondi; C. Rosenfeld; C. Rusconi; S. Sangiorgio; N. D. Scielzo; M. Sisti; A. R. Smith; L. Taffarello; M. Tenconi; W. D. Tian; C. Tomei; S. Trentalange; G. Ventura; M. Vignati; B. S. Wang; H. W. Wang; C. A. Whitten Jr.; T. Wise; A. Woodcraft; L. Zanotti; C. Zarra; B. X. Zhu; S. Zucchelli

2013-04-26T23:59:59.000Z

92

Structure and electronic properties of mixed (a?+?c) dislocation cores in GaN  

SciTech Connect (OSTI)

Classical atomistic models and atomic-resolution scanning transmission electron microscopy studies of GaN films reveal that mixed (a?+?c)-type dislocations have multiple different core structures, including a dissociated structure consisting of a planar fault on one of the (12{sup Ż}10) planes terminated by two different partial dislocations. Density functional theory calculations show that all cores introduce localized states into the band gap, which affects device performance.

Horton, M. K., E-mail: m.horton11@imperial.ac.uk [Department Materials, Imperial College London, Exhibition Road, London SW7 2AZ (United Kingdom); Rhode, S. L. [Department Materials Science and Metallurgy, University of Cambridge, Charles Babbage Road, Cambridge CB3 0FS (United Kingdom); Moram, M. A. [Department Materials, Imperial College London, Exhibition Road, London SW7 2AZ (United Kingdom); Department Materials Science and Metallurgy, University of Cambridge, Charles Babbage Road, Cambridge CB3 0FS (United Kingdom)

2014-08-14T23:59:59.000Z

93

K.K. Gan IWORID-8 1 Bandwidths of Micro Twisted-Pair Cables  

E-Print Network [OSTI]

-V Characteristics very good optical power candidate for irradiation study Optowell TP85-LCP0N 0.0 0.5 1.0 1.5 2K.K. Gan IWORID-8 1 Bandwidths of Micro Twisted-Pair Cables and Fusion Spliced SIMM-GRIN Fibers Bandwidth of micro twisted-pair cables Bandwidth of fusion spliced SIMM-GRIN fibers Measurement of VCSEL

Gan, K. K.

94

K.K. Gan DPF/JPS06 1 Bandwidths of Micro Twisted-Pair Cables  

E-Print Network [OSTI]

/fall time after irradiation? What is optical power after irradiation? What current is needed for annealing during irradiation SLHC AOC 71 MRad 0.0 0.3 0.6 0.9 1.2 1.5 1.8 0 100 200 300 400 Time (Hours) DataOpticalPK.K. Gan DPF/JPS06 1 Bandwidths of Micro Twisted-Pair Cables and Fusion Spliced SIMM-GRIN Fibers

Gan, K. K.

95

K.K. Gan US Pixel Meeting 1 Tracker Optical Link Upgrade  

E-Print Network [OSTI]

-V Characteristics very good optical power candidate for irradiation study AOC HFE419X-441 0.0 0.5 1.0 1.5 2.0 2 Pixel Meeting 10 I-L and I-V Characteristics very good optical power candidate for irradiation study 2500 OpticalPower(µW) #12;K.K. Gan US Pixel Meeting 11 Bandwidth of Spliced Fiber 29 m spliced fiber20

Gan, K. K.

96

K.K. Gan ATLAS Pixel Week 1 New Results on Opto-Electronics  

E-Print Network [OSTI]

with lower thresholds with BPM/DRX ] opto-board design is compatible with BPM/DRX PIN Current Thresholds with BPM/DRX 0 5 10 15 20 25 30 35 link#1 link#2 link#3 link#4 link#5 link#6 link#7 Ipin(mA) Opto-Board on Test Board Opto-Board on Test Board with BPM/DRX #12;K.K. Gan ATLAS Pixel Week 8 l one irradiated VCSEL

Gan, K. K.

97

CRAD, Facility Safety- Nuclear Facility Safety Basis  

Broader source: Energy.gov [DOE]

A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) that can be used for assessment of a contractor's Nuclear Facility Safety Basis.

98

M1 Master Mathematiques de Metz Mod`eles probabilistes en finance  

E-Print Network [OSTI]

M1 ­ Master Math´ematiques de Metz Mod`eles probabilistes en finance 2007/2008 R. Lamberton, B. Lapeyre: Introduction au calcul stochastique appliqu´e `a la finance. Ellipses, 1997 (b) S. E. Shreve: Stochastic calculus for finance. I: The binomial asset pricing model. Springer Finance, 2004 (c

Thalmaier, Anton

99

FACILITY SAFETY (FS)  

Broader source: Energy.gov (indexed) [DOE]

FACILITY SAFETY (FS) OBJECTIVE FS.1 - (Core Requirement 7) Facility safety documentation in support of SN process operations,is in place and has been implemented that describes the...

100

Technology Transitions Facilities Database  

Broader source: Energy.gov [DOE]

The types of R&D facilities at the DOE Laboratories available to the public typically fall into three broad classes depending on the mode of access: Designated User Facilities, Shared R&D...

Note: This page contains sample records for the topic "facility gan m1" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Multicycle rapid thermal annealing optimization of Mg-implanted GaN: Evolution of surface, optical, and structural properties  

SciTech Connect (OSTI)

The first step of a multi-cycle rapid thermal annealing process was systematically studied. The surface, structure, and optical properties of Mg implanted GaN thin films annealed at temperatures ranging from 900 to 1200?°C were investigated by Raman spectroscopy, photoluminescence, UV-visible spectroscopy, atomic force microscopy, and Nomarski microscopy. The GaN thin films are capped with two layers of in-situ metal organic chemical vapor deposition -grown AlN and annealed in 24 bar of N{sub 2} overpressure to avoid GaN decomposition. The crystal quality of the GaN improves with increasing annealing temperature as confirmed by UV-visible spectroscopy and the full widths at half maximums of the E{sub 2} and A{sub 1} (LO) Raman modes. The crystal quality of films annealed above 1100?°C exceeds the quality of the as-grown films. At 1200?°C, Mg is optically activated, which is determined by photoluminescence measurements. However, at 1200?°C, the GaN begins to decompose as evidenced by pit formation on the surface of the samples. Therefore, it was determined that the optimal temperature for the first step in a multi-cycle rapid thermal anneal process should be conducted at 1150?°C due to crystal quality and surface morphology considerations.

Greenlee, Jordan D., E-mail: jordan.greenlee.ctr@nrl.navy.mil [National Research Council, 500 Fifth St. NW, Washington, DC 20001 (United States); Feigelson, Boris N.; Anderson, Travis J.; Hite, Jennifer K.; Mastro, Michael A.; Eddy, Charles R.; Hobart, Karl D.; Kub, Francis J. [Naval Research Laboratory, 4555 Overlook Ave SW, Washington, DC 20375 (United States); Tadjer, Marko J. [American Society for Engineering Education, 1818 N St. NW, Washington, DC 20036 (United States)

2014-08-14T23:59:59.000Z

102

Better building: LEEDing new facilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Better building: LEEDing new facilities Better building: LEEDing new facilities We're taking big steps on-site to create energy efficient facilities and improve infrastructure....

103

New probe of M1 and E1 strengths in GDR regions  

SciTech Connect (OSTI)

The M1 strengths (or level density of 1{sup +} states) are of importance for estimation of interaction strengths between neutrinos and nuclei for the study of the supernova neutrino-process. In 1957, Agodi predicted theoretically angular distribution of neutrons emitted from states excited via dipole transitions with linearly polarized gamma-ray beam at the polar angle of ?=90° should be followed by a simple function, a + b cos(2?), where ?, is azimuthal angel. However, this theoretical prediction has not been verified over the wide mass region except for light nuclei as deuteron. We have measured neutron angular distributions with (polarized gamma, n) reactions on Au, Nal, and Cu. We have verified the Agodi's prediction for the first time over the wide mass region. This suggests that (polarized gamma, n) reactions may be useful tools to study M1 strengths in giant resonance regions.

Hayakawa, T. [Japan Atomic Energy Agency and National Astronomical Observatory in Japan (Japan); Ogata, K. [RCNP, Osaka University (Japan); Miyamoto, S.; Mochizuki, T.; Horikawa, K.; Amano, S. [University of Hyogo (Japan); Imazaki, K.; Li, D.; Izawa, Y. [Institute for Laser Technology (Japan); Chiba, S. [Tokyo Institute of Technology (Japan)

2014-05-02T23:59:59.000Z

104

Ab initio study on noncompensated CrO codoping of GaN for enhanced solar energy conversion  

SciTech Connect (OSTI)

We describe a novel photocatalyst obtained by codoping GaN with CrO, according to a new "noncompensated" codoping concept based on first-principles calculations. The approach enables controllable narrowing of the GaN band gap with significantly enhanced carrier mobility and photocatalytic activity in the visible light region and thus offers immense potential for application in solar energy conversion, water splitting, and a variety of solar-assisted photocatalysis. Our calculations indicate that the formation energy for the cation doping is greatly reduced by noncompensated codoping with an anion. Although Cr doping alone can split the band gap with the formation of an intermediate band, the mobility is low due to carrier trapping by the localized states. The first-principles calculations also demonstrate that CrO codoping of GaN shifts the Fermi level into the conduction band resulting in high carrier density and mobility.

Pan, Hui [ORNL; Gu, Baohua [ORNL; Eres, Gyula [ORNL; Zhang, Zhenyu [ORNL

2010-03-01T23:59:59.000Z

105

Small Power Production Facilities (Montana)  

Broader source: Energy.gov [DOE]

For the purpose of these regulations, a small power production facility is defined as a facility that:...

106

High temperature electron spin dynamics in bulk cubic GaN: Nanosecond spin lifetimes far above room-temperature  

SciTech Connect (OSTI)

The electron spin dynamics in n-doped bulk cubic GaN is investigated for very high temperatures from 293?K up to 500?K by time-resolved Kerr-rotation spectroscopy. We find extraordinarily long spin lifetimes exceeding 1?ns at 500?K. The temperature dependence of the spin relaxation time is in qualitative agreement with predictions of Dyakonov-Perel theory, while the absolute experimental times are an order of magnitude shorter than predicted. Possible reasons for this discrepancy are discussed, including the role of phase mixtures of hexagonal and cubic GaN as well as the impact of localized carriers.

Buß, J. H.; Schaefer, A.; Hägele, D.; Rudolph, J. [Arbeitsgruppe Spektroskopie der kondensierten Materie, Ruhr-Universität Bochum, Universitätsstraße 150, D-44780 Bochum (Germany); Schupp, T.; As, D. J. [Department of Physics, University of Paderborn, Warburger Str. 100, D-33095 Paderborn (Germany)

2014-11-03T23:59:59.000Z

107

Nanoscale size dependence parameters on lattice thermal conductivity of Wurtzite GaN nanowires  

SciTech Connect (OSTI)

Graphical abstract: Temperature dependence of calculated lattice thermal conductivity of Wurtzite GaN nanowires. Highlights: Black-Right-Pointing-Pointer A modified Callaway model is used to calculate lattice thermal conductivity of Wurtzite GaN nanowires. Black-Right-Pointing-Pointer A direct method is used to calculate phonon group velocity for these nanowires. Black-Right-Pointing-Pointer 3-Gruneisen parameter, surface roughness, and dislocations are successfully investigated. Black-Right-Pointing-Pointer Dislocation densities are decreases with the decrease of wires diameter. -- Abstract: A detailed calculation of lattice thermal conductivity of freestanding Wurtzite GaN nanowires with diameter ranging from 97 to 160 nm in the temperature range 2-300 K, was performed using a modified Callaway model. Both longitudinal and transverse modes are taken into account explicitly in the model. A method is used to calculate the Debye and phonon group velocities for different nanowire diameters from their related melting points. Effect of Gruneisen parameter, surface roughness, and dislocations as structure dependent parameters are successfully used to correlate the calculated values of lattice thermal conductivity to that of the experimentally measured curves. It was observed that Gruneisen parameter will decrease with decreasing nanowire diameters. Scattering of phonons is assumed to be by nanowire boundaries, imperfections, dislocations, electrons, and other phonons via both normal and Umklapp processes. Phonon confinement and size effects as well as the role of dislocation in limiting thermal conductivity are investigated. At high temperatures and for dislocation densities greater than 10{sup 14} m{sup -2} the lattice thermal conductivity would be limited by dislocation density, but for dislocation densities less than 10{sup 14} m{sup -2}, lattice thermal conductivity would be independent of that.

Mamand, S.M., E-mail: soran.mamand@univsul.net [Department of Physics, College of Science, University of Sulaimani, Sulaimanyah, Iraqi Kurdistan (Iraq); Omar, M.S. [Department of Physics, College of Science, University of Salahaddin, Arbil, Iraqi Kurdistan (Iraq)] [Department of Physics, College of Science, University of Salahaddin, Arbil, Iraqi Kurdistan (Iraq); Muhammad, A.J. [Department of Physics, College of Science, University of Kirkuk, Kirkuk (Iraq)] [Department of Physics, College of Science, University of Kirkuk, Kirkuk (Iraq)

2012-05-15T23:59:59.000Z

108

Metallicity of InN and GaN surfaces exposed to NH{sub 3}.  

SciTech Connect (OSTI)

A systematic study of energies and structures of InN and GaN (0001) surfaces exposed to NH{sub 3} and its decomposition products was performed with first-principles methods. A phenomenological model including electron counting contributions is developed based on calculated DFT energies and is used to identify low-energy structures. These predictions are checked with additional DFT calculations. The equilibrium phase diagrams are found to contain structures that violate the electron counting rule. Densities of states for these structures indicate n-type conductivity, consistent with available experimental results.

Walkosz, W.; Zapol, P.; Stephenson, G. B. (Materials Science Division)

2012-01-01T23:59:59.000Z

109

Evaluation of GaN substrates grown in supercritical basic ammonia  

SciTech Connect (OSTI)

GaN crystals grown by the basic ammonothermal method were investigated for their use as substrates for device regrowth. X-ray diffraction analysis indicated that the substrates contained multiple grains while secondary ion mass spectroscopy (SIMS) revealed a high concentration of hydrogen, oxygen, and sodium. Despite these drawbacks, the emission from the light emitting diode structures grown by metal organic chemical vapor deposition on both the c-plane and m-plane epitaxial wafers was demonstrated. The SIMS depth profiles showed that the diffusion of the alkali metal from the substrate into the epitaxial film was small, especially in the m-direction.

Saito, Makoto; Yamada, Hisashi; Iso, Kenji; Sato, Hitoshi; Hirasawa, Hirohiko; Kamber, Derrick S.; Hashimoto, Tadao; Baars, Steven P. den; Speck, James S.; Nakamura, Shuji [Materials Department, University of California, Santa Barbara, California 93106 (United States)

2009-02-02T23:59:59.000Z

110

Damage Evolution in GaN Under MeV Heavy Ion Implantation. | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganizationElectronic2005-2007 BudgetFlightEvolution in GaN

111

Science and Technology Facility  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

IBRF Project Lessons Learned Report Integrated Biorefinery Research Facility Lessons Learned - Stage I Acquisition through Stage II Construction Completion August 2011 This...

112

Programs & User Facilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research Facility Climate, Ocean, and Sea Ice Modeling (COSIM) Terrestrial Ecosystem and Climate Dynamics Fusion Energy Sciences Magnetic Fusion Experiments Plasma Surface...

113

FACILITY SAFETY (FS)  

Broader source: Energy.gov (indexed) [DOE]

- (Core Requirements 4 and 6) Sufficient numbers of qualified personnel are available to conduct and support operations. Adequate facilities and equipment are available to ensure...

114

ARM Mobile Facilities  

ScienceCinema (OSTI)

This video provides an overview of the ARM Mobile Facilities, two portable climate laboratories that can deploy anywhere in the world for campaigns of at least six months.

Orr, Brad; Coulter, Rich

2014-09-15T23:59:59.000Z

115

Existing Facilities Program  

Broader source: Energy.gov [DOE]

The NYSERDA Existing Facilities program merges the former Peak Load Reduction and Enhanced Commercial and Industrial Performance programs. The new program offers a broad array of different...

116

Idaho National Laboratory Facilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

National Scientific User Facility Center for Advanced Energy Studies Light Water Reactor Sustainability Idaho Regional Optical Network LDRD Next Generation Nuclear Plant Docs...

117

Supercomputing | Facilities | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

facilities, and authorization checks for physical access. An integrated cyber security plan encompasses all aspects of computing. Cyber security plans are risk-based....

118

Facility Survey & Transfer  

Broader source: Energy.gov [DOE]

As DOE facilities become excess, many that are radioactively and/or chemically contaminated will become candidate for transfer to DOE-EM for deactivation and decommissioning.

119

Hot Fuel Examination Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Working with INL Community Outreach Visitor Information Calendar of Events ATR National Scientific User Facility Center for Advanced Energy Studies Light Water Reactor...

120

DOE Designated Facilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Reactor** Lawrence Berkeley National Laboratory Joint Genome Institute - Production Genomics Facility (PGF)** (joint with LLNL, LANL, ORNL and PNNL) Advanced Light Source (ALS)...

Note: This page contains sample records for the topic "facility gan m1" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

GFMC calculations of electromagnetic moments and M1 transitions in A {<=} 9 nuclei  

SciTech Connect (OSTI)

We present recent Green?s function Monte Carlo calculations of magnetic moments and M1 transitions in A{<=}#20;9 nuclei, which include corrections arising from two-body meson-exchange electromagnetic currents. Two-body effects provide significant corrections to the calculated observables, bringing them in excellent agreement with the experimental data. In particular, we find that two body corrections are especially large in the A = 9, T = 3/2 systems, in which they account for up to ~#24; 20% (~#24; 40%) of the total predicted value for the {sup 9}Li ({sup 9}C) magnetic moment.

Pastore, Saori [Department of Physics and Astronomy, University of South Carolina, Columbia, SC; Pieper, Steven C. [Argonne National Laboratory; Schiavilla, Rocco [JLAB, Old Dominion U.; Wiringa, Robert Bruce [Physics Division, Argonne National Laboratory, Argonne, Illinois

2013-08-01T23:59:59.000Z

122

25.07.03.M1.01 Vendor Protest Procedures Page 1 of 2 STANDARD ADMINISTRATIVE PROCEDURE  

E-Print Network [OSTI]

25.07.03.M1.01 Vendor Protest Procedures Page 1 of 2 STANDARD ADMINISTRATIVE PROCEDURE 25.07.03.M1.01 Vendor Protest Procedures Approved July 18, 1997 Revised January 7, 2002 Revised May 22, 2007 Revised This Standard Administrative Procedure (SAP) details the steps necessary for a vendor to challenge a purchase

123

29.01.03.M1.22 Information Resources Vendor Access Page 1 of 4 STANDARD ADMINISTRATIVE PROCEDURE  

E-Print Network [OSTI]

29.01.03.M1.22 Information Resources ­ Vendor Access Page 1 of 4 STANDARD ADMINISTRATIVE PROCEDURE 29.01.03.M1.22 Information Resources ­ Vendor Access Approved July 18, 2005 Revised December 4, 2009 that will mitigate information security risks associated with vendor access. Reason for SAP Vendors play an important

124

29.01.03.M1.01 Network Scanning and Vulnerability Assessments Page 1 of 3 STANDARD ADMINISTRATIVE PROCEDURE  

E-Print Network [OSTI]

29.01.03.M1.01 Network Scanning and Vulnerability Assessments Page 1 of 3 STANDARD ADMINISTRATIVE PROCEDURE 29.01.03.M1.01 Network Scanning and Vulnerability Assessments Approved October 1, 2002 Revised review: August 14, 2016 Statement and Reason for Standard Administrative Procedure The purpose

125

Nucleotide sequence of the 2 matrix protein genes (M1 and M2) of hirame rhabdovirus (HRV),  

E-Print Network [OSTI]

Nucleotide sequence of the 2 matrix protein genes (M1 and M2) of hirame rhabdovirus (HRV), a fish of hirame rhabdovirus (HRV). The M1 protein gene was 684 nucleotides long, encoding 227 amino acids.8% at the nucleotide level and 81.1 and 44.8% at the amino acid level. The M2 protein gene was 582 nucleotides long

Boyer, Edmond

126

Tricalcium silicate Ca3SiO5 superstructure analysis: a route towards the structure of the M1 polymorph  

E-Print Network [OSTI]

Tricalcium silicate Ca3SiO5 superstructure analysis: a route towards the structure of the M1 a structural model for the M1 polymorph of tricalcium silicate Ca3SiO5 from Powder X-Ray Diffraction (XRD) data of a synthetic rock named clinker, which contains at least four major phases: two calcium silicates called alite

Boyer, Edmond

127

29.01.03. M1.11 Information Resources Intrusion Detection Page 1 of 3 STANDARD ADMINISTRATIVE PROCEDURE  

E-Print Network [OSTI]

includes, but is not limited to, all information resources management personnel, owners, and system29.01.03. M1.11 Information Resources ­ Intrusion Detection Page 1 of 3 STANDARD ADMINISTRATIVE PROCEDURE 29.01.03.M1.11 Information Resources ­ Intrusion Detection Approved July 18, 2005 Revised April 27

128

Atomistic simulation of Er irradiation induced defects in GaN nanowires  

SciTech Connect (OSTI)

Classical molecular dynamics simulation was used to irradiate a GaN nanowire with rear-earth erbium (Er). Ten cumulative irradiations were done using an ion energy of 37.5?keV on a 10?×?10?nm{sup 2} surface area which corresponds to a fluence of 1?×?10{sup 13?}cm{sup ?2}. We studied the location and types of defects produced in the irradiation. Er implantation leads to a net positive (expansion) strain in the nanowire and especially at the top region a clear expansion has been observed in the lateral and axial directions. The lattice expansion is due to the hydrostatic strain imposed by a large number of radiation induced defects at the top of the NW. Due to the large surface-to-volume ratio, most of the defects were concentrated at the surface region, which suggests that the experimentally observed yellow luminescence (YL) in ion implanted GaN NWs arises from surface defects. We observed big clusters of point defects and vacancy clusters which are correlated with stable lattice strain and the YL band, respectively.

Ullah, M. W., E-mail: mohammad.ullah@helsinki.fi; Kuronen, A.; Djurabekova, F.; Nordlund, K. [Department of Physics, University of Helsinki, P.O. Box 64, FIN-00014 (Finland); Stukowski, A. [Technische Universität Darmstadt, 64287 Darmstadt (Germany)

2014-09-28T23:59:59.000Z

129

Privacy Impact Assessment OFEO Facilities Management System Facilities Center  

E-Print Network [OSTI]

Privacy Impact Assessment OFEO Facilities Management System ­ Facilities Center I. System Identification 1. IT System Name: Facilities Management System - FacilityCenter 2. IT System Sponsor: Office. IT System Manager: Michelle T. Gooch, Facilities Management Systems Manager 5. PIA Author: Michelle T. Gooch

Mathis, Wayne N.

130

A Transient Stability Constrained Optimal Power Flow Deqiang Gan (M) Robert J. Thomas (F) Ray D. Zimmerman (M)  

E-Print Network [OSTI]

1 A Transient Stability Constrained Optimal Power Flow Deqiang Gan (M) Robert J. Thomas (F) Ray D. The methodology involves a stability constrained Optimal Power Flow (OPF). The theoretical development between controllable generation dispatch and indices such as an energy margin, rotor angles, etc

131

OPTIMIZATION OF GaN WINDOW LAYER FOR InGaN SOLAR CELLS USING POLARIZATION EFFECT  

E-Print Network [OSTI]

on the design of wide-band gap GaN window layers for InGaN solar cells. Window layers serve to passivate the top into account during design of the solar cell to improve its collection efficiency. Previously, we have. The present work is a subset of the design optimization process for such solar cells, where we focus

Honsberg, Christiana

132

Role of Embedded Clustering in Dilute Magnetic Semiconductors: Cr Doped GaN X. Y. Cui,1  

E-Print Network [OSTI]

, typically 5 (20­30) times smaller for Cr-based (Mn-based) III-V DMS than the value expected, 3 B= Cr4 BRole of Embedded Clustering in Dilute Magnetic Semiconductors: Cr Doped GaN X. Y. Cui,1 J. E configurations coexist and the statistical distribution and associated magnetism will depend sensitively

Medvedeva, Julia E.

133

A Comparison of Magnesium and Beryllium Acceptors in GaN Grown by rf-Plasma Assisted Molecular Beam Epitaxy  

E-Print Network [OSTI]

A Comparison of Magnesium and Beryllium Acceptors in GaN Grown by rf-Plasma Assisted Molecular Beam Evans and Associates, Sunnyvale, CA 94086 ABSTRACT Step-doped structures of both magnesium and beryllium activation energy of approximately 100 meV. INTRODUCTION While magnesium is currently the most

Myers, Tom

134

Infrared reflection of GaN and AlGaN thin film heterostructures with AlN buffer layers  

E-Print Network [OSTI]

Infrared reflection of GaN and AlGaN thin film heterostructures with AlN buffer layers C. Wetzel, Nagoya, Japan Received 11 December 1995; accepted for publication 21 February 1996 Infrared reflection, their alloys and potential substrates need to be investigated as well. Here we present a study of the infrared

Wetzel, Christian M.

135

Band gap tuning in GaN through equibiaxial in-plane strains S. K. Yadav,2  

E-Print Network [OSTI]

in photovoltaics and light emission diodes LEDs . The InGaN system has been intensively studied during the past to the large atomic size mismatch between Ga and In.3 Thus, other methods to tune the band gap are needed for potential appli- cations of GaN and related materials systems. It is well-known that the structure

Alpay, S. Pamir

136

Atom probe tomography studies of Al{sub 2}O{sub 3} gate dielectrics on GaN  

SciTech Connect (OSTI)

Atom probe tomography was used to achieve three-dimensional characterization of in situ Al{sub 2}O{sub 3}/GaN structures grown by metal organic chemical vapor deposition (MOCVD). Al{sub 2}O{sub 3} dielectrics grown at three different temperatures of 700, 900, and 1000?°C were analyzed and compared. A low temperature GaN cap layer grown atop Al{sub 2}O{sub 3} enabled a high success rate in the atom probe experiments. The Al{sub 2}O{sub 3}/GaN interfaces were found to be intermixed with Ga, N, and O over the distance of a few nm. Impurity measurements data showed that the 1000?°C sample contains higher amounts of C (4?×?10{sup 19}/cm{sup 3}) and lower amounts of H (7?×?10{sup 19}/cm{sup 3}), whereas the 700?°C sample exhibits lower C impurities (<10{sup 17}/cm{sup 3}) and higher H incorporation (2.2?×?10{sup 20}/cm{sup 3}). On comparing with Al{sub 2}O{sub 3} grown by atomic layer deposition (ALD), it was found that the MOCVD Al{sub 2}O{sub 3}/GaN interface is comparatively abrupt. Scanning transmission electron microscopy data showed that the 900?°C and 1000?°C MOCVD films exhibit polycrystalline nature, while the ALD films were found to be amorphous.

Mazumder, Baishakhi, E-mail: bmazumder@engineering.ucsb.edu; Wu, Feng; Speck, James S. [Materials Department, University of California, Santa Barbara, California 93106 (United States); Liu, Xiang; Yeluri, Ramya; Mishra, Umesh K. [Electrical and Computer Engineering Department, University of California, Santa Barbara, California 93106 (United States)

2014-10-07T23:59:59.000Z

137

Facilities Management CAD Standards  

E-Print Network [OSTI]

Facilities Management CAD Standards 2011 #12;Facilities Management CAD Standards Providing: Layering Standards 2.1 Layer Name Format 2.2 Layer Name Modifiers 2.3 Layer Attributes 2.4 Special Layer of PDF and DWG Files APPENDIX A: DAL FM CAD Standard Layers APPENDIX B: DAL FM CAD Special Layers

Brownstone, Rob

138

Cornell University Facilities Services  

E-Print Network [OSTI]

requirements, building code, and sustainability objectives. This plan takes a long- term view, projecting workCornell University Facilities Services Contract Colleges Facilities Fernow and Rice Hall in Fernow, Rice, Bruckner, Bradfield and Plant Science buildings. It includes a surging and phasing plan

Manning, Sturt

139

Argonne Leadership Computing Facility  

E-Print Network [OSTI]

Argonne Leadership Computing Facility Argonne Leadership Computing Facility 2010 ANNUAL REPORT S C I E N C E P O W E R E D B Y S U P E R C O M P U T I N G ANL-11/15 The Argonne Leadership Computing States Government nor any agency thereof, nor UChicago Argonne, LLC, nor any of their employees

Kemner, Ken

140

A Materials Facilities Initiative -  

E-Print Network [OSTI]

A Materials Facilities Initiative - FMITS & MPEX D.L. Hillis and ORNL Team Fusion & Materials for Nuclear Systems Division July 10, 2014 #12;2 Materials Facilities Initiative JET ITER FNSF Fusion Reactor Challenges for materials: fluxes and fluence, temperatures 50 x divertor ion fluxes up to 100 x neutron

Note: This page contains sample records for the topic "facility gan m1" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Nanotechnology User Facility for  

E-Print Network [OSTI]

A National Nanotechnology User Facility for Industry Academia Government #12;The National Institute of Commerce's nanotechnology user facility. The CNST enables innovation by providing rapid access to the tools new measurement and fabrication methods in response to national nanotechnology needs. www

142

Science &Technology Facilities Council  

E-Print Network [OSTI]

and Science & Technology Facilities Council invite you to The ESA Technology Transfer Network SpaceTech2012Science &Technology Facilities Council Innovations Issue 31 October 2012 This issue: 1 STFC International prize for `no needles' breast cancer diagnosis technique 6 CEOI Challenge Workshop ­ Current

143

Emergency Facilities and Equipment  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This volume clarifies requirements of DOE O 151.1 to ensure that emergency facilities and equipment are considered as part of emergency management program and that activities conducted at these emergency facilities are fully integrated. Canceled by DOE G 151.1-4.

1997-08-21T23:59:59.000Z

144

Impact of defects on the electrical transport, optical properties and failure mechanisms of GaN nanowires.  

SciTech Connect (OSTI)

We present the results of a three year LDRD project that focused on understanding the impact of defects on the electrical, optical and thermal properties of GaN-based nanowires (NWs). We describe the development and application of a host of experimental techniques to quantify and understand the physics of defects and thermal transport in GaN NWs. We also present the development of analytical models and computational studies of thermal conductivity in GaN NWs. Finally, we present an atomistic model for GaN NW electrical breakdown supported with experimental evidence. GaN-based nanowires are attractive for applications requiring compact, high-current density devices such as ultraviolet laser arrays. Understanding GaN nanowire failure at high-current density is crucial to developing nanowire (NW) devices. Nanowire device failure is likely more complex than thin film due to the prominence of surface effects and enhanced interaction among point defects. Understanding the impact of surfaces and point defects on nanowire thermal and electrical transport is the first step toward rational control and mitigation of device failure mechanisms. However, investigating defects in GaN NWs is extremely challenging because conventional defect spectroscopy techniques are unsuitable for wide-bandgap nanostructures. To understand NW breakdown, the influence of pre-existing and emergent defects during high current stress on NW properties will be investigated. Acute sensitivity of NW thermal conductivity to point-defect density is expected due to the lack of threading dislocation (TD) gettering sites, and enhanced phonon-surface scattering further inhibits thermal transport. Excess defect creation during Joule heating could further degrade thermal conductivity, producing a viscous cycle culminating in catastrophic breakdown. To investigate these issues, a unique combination of electron microscopy, scanning luminescence and photoconductivity implemented at the nanoscale will be used in concert with sophisticated molecular-dynamics calculations of surface and defect-mediated NW thermal transport. This proposal seeks to elucidate long standing material science questions for GaN while addressing issues critical to realizing reliable GaN NW devices.

Armstrong, Andrew M.; Aubry, Sylvie; Shaner, Eric Arthur; Siegal, Michael P.; Li, Qiming; Jones, Reese E.; Westover, Tyler; Wang, George T.; Zhou, Xiao Wang; Talin, Albert Alec; Bogart, Katherine Huderle Andersen; Harris, C. Thomas; Huang, Jian Yu

2010-09-01T23:59:59.000Z

145

Department of Residential Facilities Facilities Student Employment Office  

E-Print Network [OSTI]

Department of Residential Facilities Facilities Student Employment Office 1205E Leonardtown Service Updated 3/09 #12;EMPLOYMENT HISTORY Have you worked for Residential Facilities before? Yes No If so list

Hill, Wendell T.

146

Test Facility Daniil Stolyarov, Accelerator Test Facility User...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Development of the Solid-State Laser System for the Accelerator Test Facility Daniil Stolyarov, Accelerator Test Facility User's Meeting April 3, 2009 Outline Motivation for...

147

Photovoltaic Research Facilities  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy (DOE) funds photovoltaic (PV) research and development (R&D) at its national laboratory facilities located throughout the country. To encourage further innovation,...

148

NETL - Fuel Reforming Facilities  

ScienceCinema (OSTI)

Research using NETL's Fuel Reforming Facilities explores catalytic issues inherent in fossil-energy related applications, including catalyst synthesis and characterization, reaction kinetics, catalyst activity and selectivity, catalyst deactivation, and stability.

None

2014-06-27T23:59:59.000Z

149

NEW RENEWABLE FACILITIES PROGRAM  

E-Print Network [OSTI]

's electricity from renewable resources by 2010. The Guidebook outlines eligibility and legal requirementsCALIFORNIA ENERGY COMMISSION ` NEW RENEWABLE FACILITIES PROGRAM GUIDEBOOK March 2007 CEC-300 Executive Director Heather Raitt Technical Director RENEWABLE ENERGY OFFICE CALIFORNIA ENERGY COMMISSION

150

NEW RENEWABLE FACILITIES PROGRAM  

E-Print Network [OSTI]

CALIFORNIA ENERGY COMMISSION NEW RENEWABLE FACILITIES PROGRAM GUIDEBOOK APRIL 2006 CEC-300 Director Heather Raitt Technical Director Renewable Energy Program Drake Johnson Office Manager Renewable Energy Office Valerie Hall Deputy Director Efficiency, Renewables, and Demand Analysis Division #12;These

151

Liquidity facilities and signaling  

E-Print Network [OSTI]

This dissertation studies the role of signaling concerns in discouraging access to liquidity facilities like the IMF contingent credit lines (CCL) and the Discount Window (DW). In Chapter 1, I analyze the introduction of ...

Arregui, Nicolás

2010-01-01T23:59:59.000Z

152

NETL - Fuel Reforming Facilities  

SciTech Connect (OSTI)

Research using NETL's Fuel Reforming Facilities explores catalytic issues inherent in fossil-energy related applications, including catalyst synthesis and characterization, reaction kinetics, catalyst activity and selectivity, catalyst deactivation, and stability.

None

2013-06-12T23:59:59.000Z

153

Cornell University Facilities Services  

E-Print Network [OSTI]

Description: The Large Animal Teaching Complex (LATC) will be a joint facility for the College of Veterinary or increase operating costs of the dairy barn; therefore, the College of Veterinary Medicine has agreed

Manning, Sturt

154

B Plant facility description  

SciTech Connect (OSTI)

Buildings 225B, 272B, 282B, 282BA, and 294B were removed from the B Plant facility description. Minor corrections were made for tank sizes and hazardous and toxic inventories.

Chalk, S.E.

1996-10-04T23:59:59.000Z

155

Facilities Management Department Restructuring  

E-Print Network [OSTI]

­ Zone 2 ­ Mission Bay/East Side: Includes Mission Bay, Mission Center Bldg, Buchanan Dental, Hunters Point, 654 Minnesota, Oyster Point 2. Recommendation that UCSF align all Facility Services and O

Mullins, Dyche

156

Hazardous Waste Facilities Siting (Connecticut)  

Broader source: Energy.gov [DOE]

These regulations describe the siting and permitting process for hazardous waste facilities and reference rules for construction, operation, closure, and post-closure of these facilities.

157

Nuclear Power Generating Facilities (Maine)  

Broader source: Energy.gov [DOE]

The first subchapter of the statute concerning Nuclear Power Generating Facilities provides for direct citizen participation in the decision to construct any nuclear power generating facility in...

158

Pollution Control Facilities (South Carolina)  

Broader source: Energy.gov [DOE]

For the purpose of this legislation, pollution control facilities are defined as any facilities designed for the elimination, mitigation or prevention of air or water pollution, including all...

159

Structural Properties of Eu-Doped GaN Investigated by Raman Spectroscopy  

SciTech Connect (OSTI)

Rare-earth (RE) impurities doped GaN are highly promising candidates for light emitting device applications due to their efficient electroluminescence properties at room temperature. Among those, Eu doped GaN has been identified as an excellent material for the red spectral region due to its strong emission at 620 nm. As a transition internal to the Eu doping atom (4f-4f), light emission originates in a much smaller complex than the more flexibly controllable quantum structures of wells, wires, and dots. This is thought to make the center less susceptible to structural defects and in particular radiation damage in the lattice host. Nevertheless, the lattice host is crucial for providing the excitation in from of free electrons and holes. In this respect, the actual lattice site Eu occupies in the host lattice, i.e. in GaN, is important. A large fraction of Eu atoms are typically inactive which must be attributed to their lattice site and local environment. GaN films implanted with Eu to concentrations of {approx}10{sup 18} cm{sup -3} were subjected to a highly directed beam of 500 keV He{sup +} at a dose of 5 x 10{sup 14} cm{sup -2}. By means of a shadow mask, irradiated and unexposed regions lie very close to each other on the same sample. We used optical and structural analysis to identify the exerted radiation damage. At the full radiation dose, photoluminescence intensity has decayed to {approx}0.01 of its initial value. From the dose dependence of the radiation decay we previously concluded, that this decay is in part due to the destruction of radiative Eu sites [J.W. Tringe, unpublished (2006)]. Along the transition from virgin to irradiated material we analyze the accumulated damage in terms of surface morphology (atomic force microscopy), crystallinity (x-ray diffraction), and phonon dispersion using micro-Raman spectroscopy. In addition to the well-studied E{sub 2}(high) mode, two new vibrational modes at 659 cm{sup -1} and 201 cm{sup -1} were observed in the Eu implanted and annealed sample, prior to He{sup +} irradiation. These modes are either remnants of the implantation damage or related to the Eu impurity. As such they can be indicative of the actual lattice site the Eu atom resides on. After irradiation, broad Raman modes at 300 cm-1 are being observed. This band indicates disorder activated Raman scattering (DARS) due to the radiation damage. An additional narrow mode appears at 672 cm{sup -1}, which can possibly be due to a nitrogen vacancy related vibrational mode. The continuous transition from irradiated to un-irradiated sample allows the direct evolution of radiation damage and its coordinated effects in structural, optical and vibrational properties. By its systematic correlation we anticipate to be able to elucidate the Eu lattice interaction and the processes of radiation damage.

Senawiratne, J; Xia, Y; Detchprohm, T; Tringe, J W; Stevens, C G; Wetzel, C

2006-06-20T23:59:59.000Z

160

Working with SRNL - Our Facilities - Glovebox Facilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste and MaterialsWenjun1 Table 1.14Working WithGlovebox Facilities

Note: This page contains sample records for the topic "facility gan m1" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Brookhaven Facility Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: EnergyBoston Areais a village in Cook County, Illinois. ItBrookhaven Facility

162

Determination of gamma from Charmless B --> M1 M2 Decays Using U-Spin  

E-Print Network [OSTI]

In our previous paper we applied U-spin symmetry to charmless hadronic B+- --> M0 M+- decays for the purpose of precise extraction of the unitarity angle gamma. In this paper we extend our approach to neutral B0 and Bs --> M1 M2 decays. A very important feature of this method is that no assumptions regarding relative sizes of topological decay amplitudes need to be made. As a result, this method avoids an uncontrollable theoretical uncertainty that is often related to the neglect of some topological diagrams (e.g., exchange and annihilation graphs) in quark-diagrammatic approaches. In charged B+- decays, each of the four data sets, P0 P+-, P0 V+-, V0 P+- and V0 V+-, with P=pseudoscalar and V=vector, can be used to obtain a value of gamma. Among neutral decays, only experimental data in the B0, Bs --> P- P+ subsector is sufficient for a U-spin fit. Application of the U-spin approach to the current charged and neutral B decay data yields: gamma=(80^{+6}_{-8}) degrees. In this method, which is completely data dr...

Soni, A; Soni, Amarjit; Suprun, Denis A.

2007-01-01T23:59:59.000Z

163

Determination of gamma from Charmless B --> M1 M2 Decays Using U-Spin  

E-Print Network [OSTI]

In our previous paper we applied U-spin symmetry to charmless hadronic B+- --> M0 M+- decays for the purpose of precise extraction of the unitarity angle gamma. In this paper we extend our approach to neutral B0 and Bs --> M1 M2 decays. A very important feature of this method is that no assumptions regarding relative sizes of topological decay amplitudes need to be made. As a result, this method avoids an uncontrollable theoretical uncertainty that is often related to the neglect of some topological diagrams (e.g., exchange and annihilation graphs) in quark-diagrammatic approaches. In charged B+- decays, each of the four data sets, P0 P+-, P0 V+-, V0 P+- and V0 V+-, with P=pseudoscalar and V=vector, can be used to obtain a value of gamma. Among neutral decays, only experimental data in the B0, Bs --> P- P+ subsector is sufficient for a U-spin fit. Application of the U-spin approach to the current charged and neutral B decay data yields: gamma=(80^{+6}_{-8}) degrees. In this method, which is completely data driven, in a few years we should be able to obtain a model independent determination of gamma with an accuracy of O(few degrees).

Amarjit Soni; Denis A. Suprun

2006-09-08T23:59:59.000Z

164

UNIVERSITY BOULEVARD FAU Research Facility  

E-Print Network [OSTI]

Harriet L.Wilkes Honors College FAU Research Facility Expansion Satellite Utility Plant Chiller Lift

Fernandez, Eduardo

165

Hanford facility contingency plan  

SciTech Connect (OSTI)

The Hanford Facility Contingency Plan, together with each TSD unit- specific contingency plan, meets the WAC 173-303 requirements for a contingency plan. Applicability of this plan to Hanford Facility activities is described in the Hanford Facility RCRA Permit, Dangerous Waste Portion, General Condition II.A. General Condition II.A applies to Part III TSD units, Part V TSD units, and to releases of hazardous substances which threaten human health or the environment. Additional information about the applicability of this document may also be found in the Hanford Facility RCRA Permit Handbook (DOE/RL-96-10). This plan includes descriptions of responses to a nonradiological hazardous substance spill or release at Hanford Facility locations not covered by TSD unit-specific contingency plans or building emergency plans. The term hazardous substances is defined in WAC 173-303-040 as: ``any liquid, solid, gas, or sludge, including any material, substance, product, commodity, or waste, regardless of quantity, that exhibits any of the physical, chemical or biological properties described in WAC 173-303-090 or 173-303-100.`` Whenever the term hazardous substances is used in this document, it will be used in the context of this definition. This plan includes descriptions of responses for spills or releases of hazardous substances occurring at areas between TSD units that may, or may not, threaten human health or the environment.

Sutton, L.N.

1996-07-01T23:59:59.000Z

166

Efficient Switches for Solar Power Conversion: Four Quadrant GaN Switch Enabled Three Phase Grid-Tied Microinverters  

SciTech Connect (OSTI)

Solar ADEPT Project: Transphorm is developing power switches for new types of inverters that improve the efficiency and reliability of converting energy from solar panels into useable electricity for the grid. Transistors act as fast switches and control the electrical energy that flows in an electrical circuit. Turning a transistor off opens the circuit and stops the flow of electrical current; turning it on closes the circuit and allows electrical current to flow. In this way a transistor can be used to convert DC from a solar panel into AC for use in a home. Transphorm’s transistors will enable a single semiconductor device to switch electrical currents at high-voltage in both directions—making the inverter more compact and reliable. Transphorm is using Gallium Nitride (GaN) as a semiconductor material in its transistors instead of silicon, which is used in most conventional transistors, because GaN transistors have lower losses at higher voltages and switching frequencies.

None

2012-02-13T23:59:59.000Z

167

Fitness facilities, facilities for extracurricular activities and other purposes Facility Location Department in charge  

E-Print Network [OSTI]

Facility Location Department in charge Student Hall (1) Common Facility 1 for Extracurricular Activities (2 tennis courts, Swimming pool (25 m, not officially approved) Rokkodai Area (Tsurukabuto 2 Campus) Martial art training facility, Japanese archery training facility, Playground, 4 tennis courts, Swimming pool

Banbara, Mutsunori

168

RCRA facility stabilization initiative  

SciTech Connect (OSTI)

The RCRA Facility Stabilization Initiative was developed as a means of implementing the Corrective Action Program`s management goals recommended by the RIS for stabilizing actual or imminent releases from solid waste management units that threaten human health and the environment. The overall goal of stabilization is to, as situations warrant, control or abate threats to human health and/or the environment from releases at RCRA facilities, and/or to prevent or minimize the further spread of contamination while long-term remedies are pursued. The Stabilization initiative is a management philosophy and should not be confused with stabilization technologies.

Not Available

1995-02-01T23:59:59.000Z

169

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMayMarch 1, 2012 [Facility

170

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMayMarch 1, 2012 [FacilityMay

171

Facility Data Policy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series toESnet4:Epitaxial ThinFOR IMMEDIATE5Facilities SomeFacilities Glove

172

Study of gain and photoresponse characteristics for back-illuminated separate absorption and multiplication GaN avalanche photodiodes  

SciTech Connect (OSTI)

The gain and photoresponse characteristics have been numerically studied for back-illuminated separate absorption and multiplication (SAM) GaN avalanche photodiodes (APDs). The parameters of fundamental models are calibrated by simultaneously comparing the simulated dark and light current characteristics with the experimental results. Effects of environmental temperatures and device dimensions on gain characteristics have been investigated, and a method to achieve the optimum thickness of charge layer is obtained. The dependence of gain characteristics and breakdown voltage on the doping concentration of the charge layer is also studied in detail to get the optimal charge layer. The bias-dependent spectral responsivity and quantum efficiency are then presented to study the photoresponse mechanisms inside SAM GaN APDs. It is found the responsivity peak red-shifts at first due to the Franz-Keldysh effect and then blue-shifts due to the reach-through effect of the absorption layer. Finally, a new SAM GaN/AlGaN heterojunction APD structure is proposed for optimizing SAM GaN APDs.

Wang, Xiaodong; Pan, Ming; Hou, Liwei; Xie, Wei [No. 50 Research Institute of China Electronics Technology Group Corporation, 200331 Shanghai (China); Hu, Weida, E-mail: wdhu@mail.sitp.ac.cn; Xu, Jintong; Li, Xiangyang; Chen, Xiaoshuang, E-mail: xschen@mail.sitp.ac.cn; Lu, Wei [National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 200083 Shanghai (China)

2014-01-07T23:59:59.000Z

173

WIPP Facility Work Plan for Solid Waste Management Units  

SciTech Connect (OSTI)

This 2001 Facility Work Plan (FWP) has been prepared as required by Module VII, Section VII.M.1 of the Waste Isolation Pilot Plant (WIPP) Hazardous Waste Facility Permit, NM4890139088-TSDF (the Permit); (NMED, 1999a), and incorporates comments from the New Mexico Environment Department (NMED) received on December 6, 2000 (NMED, 2000a). This February 2001 FWP describes the programmatic facility-wide approach to future investigations at Solid Waste Management Units (SWMUs) and Areas of Concern (AOCs) specified in the Permit. The permittees are evaluating data from previous investigations of the SWMUs and AOCs against the newest guidance proposed by the NMED. Based on these data, the permittees expect that no further sampling will be required and that a request for No Further Action (NFA) at the SWMUs and AOCs will be submitted to the NMED. This FWP addresses the current Permit requirements. It uses the results of previous investigations performed at WIPP and expands the investigations as required by the Permit. As an alternative to the Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI) specified in Module VII of the Permit, current NMED guidance identifies an Accelerated Corrective Action Approach (ACAA) that may be used for any SWMU or AOC (NMED, 1998). This accelerated approach is used to replace the standard RFI Work Plan and Report sequence with a more flexible decision-making approach. The ACAA process allows a Facility to exit the schedule of compliance contained in the Facility’s Hazardous and Solid Waste Amendments (HSWA) permit module and proceed on an accelerated time frame. Thus, the ACAA process can be entered either before or after an RFI Work Plan. According to the NMED's guidance, a facility can prepare an RFI Work Plan or Sampling and Analysis Plan (SAP) for any SWMU or AOC (NMED, 1998). Based on this guidance, a SAP constitutes an acceptable alternative to the RFI Work Plan specified in the Permit.

Washington TRU Solutions LLC

2001-02-25T23:59:59.000Z

174

Service & Reliability Equipment & Facilities  

E-Print Network [OSTI]

termites E5 Marine applications, panel & block E7 Field Stake tests (FST colonies) E9 Above ground L-joint stake test (Formosan termites & decay), E9 L- joint, E16 (horizontal lap-joint), E18 ground proximity facilities for AWPA test: A9 X-ray, E1 (termites), E10 (soil block), E11 (leaching), E12 metal corrosion

175

Graph algorithms experimentation facility  

E-Print Network [OSTI]

DRAWADJMAT 2 ~e ~l 2. ~f ~2 2 ~t ~& [g H 2 O? Z Mwd a P d ed d Aid~a sae R 2-BE& T C dbms Fig. 2. External Algorithm Handler The facility is menu driven and implemented as a client to XAGE. Our implementation follows very closely the functionality...

Sonom, Donald George

1994-01-01T23:59:59.000Z

176

Strategies for Facilities Renewal  

E-Print Network [OSTI]

of steam production is from exothermic chem ical processes. A large gas fired cogeneration unit was completed in 1987 and supplies 90% of the facil ities' electrical needs and 25% of total steam demand (the remaining steam is supplied by process heat...

Good, R. L.

177

FACILITIES INSTRUCTIONS, STANDARDS, & TECHNIQUES  

E-Print Network [OSTI]

to the repair of hydraulic turbine runners and large pump impellers. Reclamation operates and maintains a wideFACILITIES INSTRUCTIONS, STANDARDS, & TECHNIQUES VOLUME 2-5 TURBINE REPAIR Internet Version variety of reaction and impulse turbines as well as axial flow, mixed flow, radial flow pumps and pump

Laughlin, Robert B.

178

Biomass Anaerobic Digestion Facilities and Biomass Gasification Facilities (Indiana)  

Broader source: Energy.gov [DOE]

The Indiana Department of Environmental Management requires permits before the construction or expansion of biomass anaerobic digestion or gasification facilities.

179

Spatial distribution and magnetism in poly-Cr-doped GaN from first principles X. Y. Cui,1 J. E. Medvedeva,2 B. Delley,3 A. J. Freeman,4 and C. Stampfl1  

E-Print Network [OSTI]

Spatial distribution and magnetism in poly-Cr-doped GaN from first principles X. Y. Cui,1 J. E the spatial distribution and magnetic coupling of Cr-doped GaN, in which exhaustive structural and magnetic direct evidence that the distribution of the doped magnetic ions is neither homogeneous nor random

Medvedeva, Julia E.

180

Large low-energy $M1$ strength for $^{56,57}$Fe within the nuclear shell model  

E-Print Network [OSTI]

A strong enhancement at low $\\gamma$-ray energies has recently been discovered in the $\\gamma$-ray strength function of $^{56,57}$Fe. In this work, we have for the first time obtained theoretical $\\gamma$ decay spectra for states up to $\\approx 8$ MeV in excitation for $^{56,57}$Fe. We find large $B(M1)$ values for low $\\gamma$-ray energies that provide an explanation for the experimental observations. The role of mixed $E2$ transitions for the low-energy enhancement is addressed theoretically for the first time, and it is found that they contribute a rather small fraction. Our calculations clearly show that the high-$\\ell$ ($=f$) diagonal terms are most important for the strong low-energy $M1$ transitions. As such types of $0\\hbar\\omega$ transitions are expected for all nuclei, our results indicate that a low-energy $M1$ enhancement should be present throughout the nuclear chart. This could have far-reaching consequences for our understanding of the $M1$ strength function at high excitation energies, with profound implications for astrophysical reaction rates.

B. Alex Brown; A. C. Larsen

2014-09-11T23:59:59.000Z

Note: This page contains sample records for the topic "facility gan m1" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

29.01.03.M1.12 Information Resources Network Access Page 1 of 3 STANDARD ADMINISTRATIVE PROCEDURE  

E-Print Network [OSTI]

29.01.03.M1.12 Information Resources ­ Network Access Page 1 of 3 STANDARD ADMINISTRATIVE PROCEDURE Administrative Procedure Statement The information resources network infrastructure in Bryan/College Station for SAP The purpose of this Texas A&M University network access standard administrative procedure

182

29.01.03.M1.13 Information Resources Network Configuration Page 1 of 3 STANDARD ADMINISTRATIVE PROCEDURE  

E-Print Network [OSTI]

29.01.03.M1.13 Information Resources ­ Network Configuration Page 1 of 3 STANDARD ADMINISTRATIVE to this infrastructure. 2. APPLICABILITY This Standard Administrative Procedure (SAP) applies to all University network.27 Exclusions from Required Risk Mitigation Measures. The intended audience is all network system administrators

183

Biomass Feedstock National User Facility  

Broader source: Energy.gov [DOE]

Breakout Session 1B—Integration of Supply Chains I: Breaking Down Barriers Biomass Feedstock National User Facility Kevin L. Kenney, Director, Biomass Feedstock National User Facility, Idaho National Laboratory

184

The Caterpillar Coal Gasification Facility  

E-Print Network [OSTI]

This paper is a review of one of America's premier coal gasification installations. The caterpillar coal gasification facility located in York, Pennsylvania is an award winning facility. The plant was recognized as the 'pace setter plant of the year...

Welsh, J.; Coffeen, W. G., III

1983-01-01T23:59:59.000Z

185

Facilities evaluation report  

SciTech Connect (OSTI)

The Buried Waste Integrated Demonstration (BWID) is a program of the Department of Energy (DOE) Office of Technology Development whose mission is to evaluate different new and existing technologies and determine how well they address DOE community waste remediation problems. Twenty-three Technical Task Plans (TTPs) have been identified to support this mission during FY-92; 10 of these have identified some support requirements when demonstrations take place. Section 1 of this report describes the tasks supported by BWID, determines if a technical demonstration is proposed, and if so, identifies the support requirements requested by the TTP Principal Investigators. Section 2 of this report is an evaluation identifying facility characteristics of existing Idaho National Engineering Laboratory (INEL) facilities that may be considered for use in BWID technology demonstration activities.

Sloan, P.A.; Edinborough, C.R.

1992-04-01T23:59:59.000Z

186

PUREX facility preclosure work plan  

SciTech Connect (OSTI)

This preclosure work plan presents a description of the PUREX Facility, the history of the waste managed, and addresses transition phase activities that position the PUREX Facility into a safe and environmentally secure configuration. For purposes of this documentation, the PUREX Facility does not include the PUREX Storage Tunnels (DOE/RL-90/24). Information concerning solid waste management units is discussed in the Hanford Facility Dangerous Waste Permit Application, General Information Portion (DOE/RL-91-28, Appendix 2D).

Engelmann, R.H.

1997-04-24T23:59:59.000Z

187

Reed Reactor Facility Annual Report  

SciTech Connect (OSTI)

This is the report of the operations, experiments, modifications, and other aspects of the Reed Reactor Facility for the year.

Frantz, Stephen G.

2000-09-01T23:59:59.000Z

188

Lunch & Learn Facilities &  

E-Print Network [OSTI]

" 3 #12;What are F&A costs? OMB Circular A-21 provides guidance on F&A costs F&A a.k.a. Overhead a #12;F&A Rate Development Process FSU's process must be designed to ensure that Federal sponsors do usage ­ Allocate facilities costs ­ Provide productivity analysis Space survey tool WebSpace ­ On-line

McQuade, D. Tyler

189

ARM - SGP Intermediate Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUC :ProductsSCM Forcing Data DerivedInstrumentsPolarExtended Facility

190

Facilities | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataCombined Heat & PowerEnergy BlogExchangeSummary TableFacilities

191

Temperature dependence of photoconductivity in Zn-doped GaN  

SciTech Connect (OSTI)

In agreement with predictions from a model that explained an abrupt thermal quenching of the blue luminescence (BL) band in high-resistivity Zn-doped GaN [Reshchikov et al., Phys. Rev. B 84, 075212 (2011) and Phys. Rev. B 85, 245203 (2012)], we observed the stepwise decrease of photoconductivity in this material with increasing temperature. For the sample studied in this work, the decrease in photoconductivity occurred in two steps at characteristic temperatures T{sub 1} and T{sub 2}. The characteristic temperatures increased with increasing excitation intensity, very similar to the photoluminescence (PL) behavior. The steps in photoconductivity at about 100 K and 200 K are attributed to drop in the concentration of free electrons due to the thermal emission of holes from a shallow acceptor and the Zn{sub Ga} acceptor, respectively, to the valence band and their recombination with electrons via nonradiative centers. This finding supports the model suggested previously and helps to explain other examples of tunable photoconductivity reported in literature.

Reshchikov, Michael A. [Department of Physics, Virginia Commonwealth University, Richmond, VA 23284 (United States)

2014-02-21T23:59:59.000Z

192

CFTF | Carbon Fiber Technology Facility | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

BTRIC CNMS CSMB CFTF Working with CFTF HFIR MDF NTRC OLCF SNS Carbon Fiber Technology Facility Home | User Facilities | CFTF CFTF | Carbon Fiber Technology Facility SHARE Oak...

193

CRAD, Nuclear Facility Construction - Structural Concrete, May...  

Broader source: Energy.gov (indexed) [DOE]

CRAD, Nuclear Facility Construction - Structural Concrete, May 29, 2009 CRAD, Nuclear Facility Construction - Structural Concrete, May 29, 2009 May 29, 2009 Nuclear Facility...

194

Polarity determination for MOCVD growth of GaN on Si(111) by convergent beam electron diffraction[Metal Organic Chemical Vapor Deposition  

SciTech Connect (OSTI)

The polarity of laterally epitaxially overgrown (LEO) GaN on Si(111) with an AlN buffer layer grown by MOCVD has been studied by convergent beam electron diffraction (CBED). The LEO GaN was studied by cross-section and plan-view transmission electron microscopy (TEM). The threading dislocation density is less than 10{sup 8} cm{sup {minus}2} and no inversion domains were observed. CBED patterns were obtained at 200 kV for the <1 {bar 1} 00> zone. Simulation was done by many-beam solution with 33 zero-order beams. The comparison of experimental CBED patterns and simulated patterns indicates that the polarity of GaN on Si(111) is Ga face.

Zhao, L.; Marchand, H.; Fini, P.; Denbaars, S.P.; Mishra, U.K.; Speck, J.S.

2000-07-01T23:59:59.000Z

195

Evaluation of growth methods for the heteroepitaxy of non-polar (11-20) GaN on sapphire by MOVPE  

E-Print Network [OSTI]

double grating spectrometer equipped with a Peltier-cooled GaAs photomultiplier tube. The spectra were recorded with signal lock-in processing techniques. As the HeCd laser absorption length is ca. 350 nm for 99% absorption in GaN (ignoring any carrier... double grating spectrometer equipped with a Peltier-cooled GaAs photomultiplier tube. The spectra were recorded with signal lock-in processing techniques. As the HeCd laser absorption length is ca. 350 nm for 99% absorption in GaN (ignoring any carrier...

Oehler, F.; Sutherland, D.; Zhu, T.; Emery, R.; Badcock, T. J.; Kappers, M. J.; Humphreys, C. J.; Dawson, P.; Oliver, R. A.

2014-09-16T23:59:59.000Z

196

Development of an Infrastructure for the Growth and Characterization of GaN on Nitrided Sapphire  

E-Print Network [OSTI]

and prospered. To Dr. C. Stinespring and his lab members I would like to thank for the use of the facilities and specifically Jeff Gold for the mass spectrometer measurements. I would also like to thank Dr. C. Stinespring

Myers, Tom

197

Canyon Facilities - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone6Energy,MUSEUM DISPLAY STATUS4Tours SHARE ToursCanyon Facilities

198

NREL: Photovoltaics Research - Facilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | National NuclearoverAcquisitionEnergy153014TheFacilities NREL's

199

ARM - SGP Extended Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUC :ProductsSCM Forcing Data DerivedInstrumentsPolarExtended Facility SGP Related

200

Accelerator Test Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUCProductstwrmrAre the Effects ofAboutTest Facility Vitaly Yakimenko October 6-7,

Note: This page contains sample records for the topic "facility gan m1" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcal Documentation(AVIRIS) ProductsAirborneOctober 11, 2011 [Facility News] Final Recovery Act Milestone Complete!

202

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcal Documentation(AVIRIS) ProductsAirborneOctober 11, 2011 [Facility News] Final Recovery Act Milestone

203

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcal Documentation(AVIRIS) ProductsAirborneOctober 11, 2011 [Facility News] Final Recovery Act MilestoneOctober

204

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcal Documentation(AVIRIS) ProductsAirborneOctober 11, 2011 [Facility News] Final Recovery Act

205

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcal Documentation(AVIRIS) ProductsAirborneOctober 11, 2011 [Facility News] Final Recovery ActJanuary 20, 2015

206

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcal Documentation(AVIRIS) ProductsAirborneOctober 11, 2011 [Facility News] Final Recovery ActJanuary 20, 2015June

207

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcal Documentation(AVIRIS) ProductsAirborneOctober 11, 2011 [Facility News] Final Recovery ActJanuary 20,

208

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcal Documentation(AVIRIS) ProductsAirborneOctober 11, 2011 [Facility News] Final Recovery ActJanuary 20,August

209

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcal Documentation(AVIRIS) ProductsAirborneOctober 11, 2011 [Facility News] Final Recovery ActJanuary

210

ARM - Guest Instrument Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcal Documentation(AVIRIS) ProductsAirborneOctober 11, 2011 [FacilityIndiaGVAX News GangesListGreenhouse

211

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010 [DataDatastreamstoms3,4,3, 200828,15, 2005 [Facility

212

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010 [DataDatastreamstoms3,4,3, 200828,15, 2005 [Facility31,

213

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010 [DataDatastreamstoms3,4,3,October 28, 2010 [Facility

214

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010 [DataDatastreamstoms3,4,3,October 28, 2010 [FacilityUser

215

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010 [DataDatastreamstoms3,4,3,October15, 2005 [Facility

216

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010 [DataDatastreamstoms3,4,3,October15, 2005 [Facility31,

217

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [Facility News] New Instrumentation on

218

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [Facility News] New Instrumentation

219

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [Facility News] New

220

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [Facility News] NewNew Look for

Note: This page contains sample records for the topic "facility gan m1" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [Facility News] NewNew Look

222

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [Facility News] NewNew Look15, 2004

223

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [Facility News] NewNew Look15,

224

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [Facility News] NewNew Look15,August

225

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [Facility News] NewNew

226

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [Facility News] NewNewAugust 15, 2004

227

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [Facility News] NewNewAugust 15,

228

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [Facility News] NewNewAugust

229

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [Facility News] NewNewAugustHigh Speed

230

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [Facility News] NewNewAugustHigh

231

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [Facility News] NewNewAugustHighArctic

232

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [Facility News]

233

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [Facility News]Disaster Plan Deflects

234

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [Facility News]Disaster Plan

235

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [Facility News]Disaster PlanFebruary

236

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [Facility News]Disaster PlanFebruary5,

237

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [Facility News]Disaster

238

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [Facility News]Disaster9, 2011

239

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [Facility News]Disaster9, 201125, 2011

240

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [Facility News]Disaster9, 201125,

Note: This page contains sample records for the topic "facility gan m1" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [Facility News]Disaster9, 201125,May

242

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [Facility News]Disaster9,

243

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [Facility News]Disaster9,Website

244

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [Facility News]Disaster9,WebsiteApril

245

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [Facility

246

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMay 14, 2011 [Education,

247

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMay 14, 2011

248

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMay 14, 2011May 20, 2011

249

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMay 14, 2011May 20, 2011,

250

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMay 14, 2011May 20, 2011,5,

251

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMay 14, 2011May 20,

252

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMay 14, 2011May 20,9, 2011

253

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMay 14, 2011May 20,9, 201110,

254

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMay 14, 2011May 20,9,

255

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMay 14, 2011May 20,9,23, 2011

256

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMay 14, 2011May 20,9,23,

257

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMay 14, 2011May 20,9,23,31,

258

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMay 14, 2011May

259

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMay 14, 2011MayMilitary

260

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMay 14, 2011MayMilitary30,

Note: This page contains sample records for the topic "facility gan m1" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMay 14, 2011MayMilitary30,New

262

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMay 14,

263

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMay 14,October 27, 2011

264

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMay 14,October 27, 2011CIMEL

265

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMay 14,October 27,

266

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMay 14,October 27,, 2011

267

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMay 14,October 27,, 20114,

268

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMay 14,October 27,, 20114,22,

269

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMay 14,October 27,,

270

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMay 14,October 27,,22, 2012

271

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMay 14,October 27,,22,

272

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMay 14,October 27,,22,27,

273

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMay 14,October

274

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMay 14,OctoberSunphotometer

275

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMay

276

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMayMarch 1, 2012

277

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMayMarch 1, 2012Upgrades to

278

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMayMarch 1, 2012Upgrades

279

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMayMarch 1,

280

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMayMarch 1,The Tale of the

Note: This page contains sample records for the topic "facility gan m1" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMayMarch 1,The Tale of

282

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMayMarch 1,The Tale

283

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMayMarch 1,The TaleEddy

284

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMayMarch 1,The TaleEddyRecord

285

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMayMarch 1,The

286

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMayMarch 1,TheNovember 14,

287

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMayMarch 1,TheNovember 14,5,

288

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMayMarch 1,TheNovember

289

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMayMarch 1,TheNovember6, 2012

290

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMayMarch 1,TheNovember6,

291

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMayMarch 1,TheNovember6,5,

292

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMayMarch 1,TheNovember6,5,May

293

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMayMarch

294

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMayMarchMay 18, 2012

295

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMayMarchMay 18, 2012October

296

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMayMarchMay 18,

297

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMayMarchMay 18,July 10, 2012

298

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMayMarchMay 18,July 10,

299

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMayMarchMay 18,July 10,14,

300

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMayMarchMay 18,July 10,14,23,

Note: This page contains sample records for the topic "facility gan m1" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMayMarchMay 18,July

302

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMayMarchMay 18,July4, 2012

303

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMayMarchMay 18,July4, 20127,

304

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMayMarchMay 18,July4,

305

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMayMarchMay 18,July4,October

306

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMayMarchMay

307

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMayMarchMayApril 24, 2013

308

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMayMarchMayApril 24,

309

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMayMarchMayApril 24,2, 2012

310

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMayMarchMayApril 24,2, 20128,

311

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMayMarchMayApril 24,2,

312

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMayMarchMayApril 24,2,October

313

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMayMarchMayApril

314

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMayMarchMayAprilApril 8, 2013

315

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMayMarchMayAprilApril 8,

316

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMayMarchMayAprilApril 8,17,

317

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMayMarchMayAprilApril

318

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMayMarchMayAprilAprilMay 10,

319

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMayMarchMayAprilAprilMay

320

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMayMarchMayAprilAprilMayApril

Note: This page contains sample records for the topic "facility gan m1" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004Airborne InstrumentationARM Facility

322

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004AirborneJune 28, 2013 [Facility News]

323

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004AirborneJune 28, 2013 [Facility

324

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004AirborneJune 28, 2013 [FacilityJuly 10,

325

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004AirborneJune 28, 2013 [FacilityJuly

326

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004AirborneJune13, 2014 [Facility News]

327

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004AirborneJune13, 2014 [Facility News]22,

328

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004AirborneJune13, 2014 [Facility

329

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004AirborneJune13, 2014 [FacilityJune 2,

330

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004AirborneJune13, 2014 [FacilityJune

331

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004AirborneJune13, 2014 [FacilityJuneApril

332

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30,June 24, 2009 [Facility News] Mobile

333

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30,June 24, 2009 [Facility News] MobileMarch

334

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30,June 24, 2009 [Facility News]

335

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30,June 24, 2009 [Facility News]June 15, 2008

336

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30,June 24, 2009 [Facility News]June 15,

337

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30,June 24, 2009 [Facility News]June 15,June

338

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30,June 24, 2009 [Facility News]June

339

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30,June 24, 2009 [Facility News]JuneAugust 6,

340

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30,June 24, 2009 [Facility News]JuneAugust

Note: This page contains sample records for the topic "facility gan m1" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30,June 24, 2009 [Facility

342

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30,June 24, 2009 [FacilityAugust 31, 2009

343

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30,June 24, 2009 [FacilityAugust 31,

344

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30,June 24, 2009 [FacilityAugust 31,February

345

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30,June 24, 2009 [FacilityAugust

346

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30,June 24, 2009 [FacilityAugust24, 2009

347

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30,June 24, 2009 [FacilityAugust24,

348

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30,June 24, 2009 [FacilityAugust24,New

349

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30,June 24, 2009 [FacilityAugust24,NewJanuary

350

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30,June 24, 2009January 15, 2008 [Facility

351

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30,JuneMay 15, 2006 [Facility News] New

352

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30,JuneMay 15, 2006 [Facility News] NewApril

353

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30,JuneMay 15, 2006 [Facility News]

354

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30,JuneMay 15, 2006 [Facility News]April 30,

355

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30,JuneMay 15, 2006 [Facility News]April 30,May

356

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30,JuneMay 15, 2006 [Facility News]April

357

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30,JuneMay 15, 2006 [Facility News]AprilMarch

358

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30,JuneMay 15, 2006 [Facility

359

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30,JuneMay 15, 2006 [FacilityIncreased Weather

360

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30,JuneMay 15, 2006 [FacilityIncreased

Note: This page contains sample records for the topic "facility gan m1" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30,JuneMay 15, 2006 [FacilityIncreased30, 2010

362

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30,JuneMay 15, 2006 [FacilityIncreased30,

363

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30,JuneMay 15, 2006April 30,31, 2010 [Facility

364

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30,JuneMay 15,October 6, 2010 [Facility News]

365

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30,JuneMay 15,October 6, 2010 [Facility

366

Jupiter Laser Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region serviceMission Statement Titan TargetInJupiter Laser Facility The

367

Facilities | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series toESnet4:Epitaxial ThinFOR IMMEDIATE5Facilities Some of the nation's most

368

NREL: Biomass Research - Facilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of Women |hitsAwards andAnalysesData andFacilities

369

User Facilities | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearchScheduledProductionCCEIResearch UpperFacilities at aUSER

370

Sandia National Laboratories: Facilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLS Exhibit at Explora Museum On AprilExploraSandiaFacilities

371

SERAPH facility capabilities  

SciTech Connect (OSTI)

The SERAPH (Solar Energy Research and Applications in Process Heat) facility addresses technical issues concerning solar thermal energy implementation in industry. Work will include computer predictive modeling (refinement and validation), system control and evaluation, and the accumulation of operation and maintenance experience. Procedures will be consistent (to the extent possible) with those of industry. SERAPH has four major components: the solar energy delivery system (SEDS); control and data acquisition (including sequencing and emergency supervision); energy distribution system (EDS); and areas allocated for storage development and load devices.

Castle, J.; Su, W.

1980-06-01T23:59:59.000Z

372

Effect of pressure and temperature on electronic structure of GaN in the zinc-blende structure  

SciTech Connect (OSTI)

The effect of the hydrostatic pressure and the temperature on the electronic structure in GaN semiconductor has been calculated using the local empirical pseudopotential method. The variation of the direct and indirect energy gaps with the pressure up to 120 kbar and with the temperature up to 500 K has been done. The calculated fundamental energy gap at different pressures and different temperatures are calculated and compared with the available experimental data which show excellent agreement. The effect of pressure and temperature on the refractive index of the considered materials has also been studied.

Degheidy, A. R., E-mail: ardegheidy@mans.edu.eg; Elkenany, E. B., E-mail: kena@mans.edu.eg [Mansoura University, Department of Physics, Faculty of Science (Egypt)

2011-10-15T23:59:59.000Z

373

GaN nanorod light emitting diodes with suspended graphene transparent electrodes grown by rapid chemical vapor deposition  

SciTech Connect (OSTI)

Ordered and dense GaN light emitting nanorods are studied with polycrystalline graphene grown by rapid chemical vapor deposition as suspended transparent electrodes. As the substitute of indium tin oxide, the graphene avoids complex processing to fill up the gaps between nanorods and subsequent surface flattening and offers high conductivity to improve the carrier injection. The as-fabricated devices have 32% improvement in light output power compared to conventional planar GaN-graphene diodes. The suspended graphene remains electrically stable up to 300?°C in air. The graphene can be obtained at low cost and high efficiency, indicating its high potential in future applications.

Xu, Kun; Xu, Chen, E-mail: xuchen58@bjut.edu.cn; Deng, Jun; Zhu, Yanxu; Guo, Weiling; Mao, Mingming; Xun, Meng; Chen, Maoxing; Zheng, Lei [Key Laboratory of Optoelectronics Technology, Beijing University of Technology, Ministry of Education, Beijing 100124 (China)] [Key Laboratory of Optoelectronics Technology, Beijing University of Technology, Ministry of Education, Beijing 100124 (China); Xie, Yiyang [State Key Laboratory of Integrated Optoelectronics, Institute of Semiconductor, Chinese Academy of Sciences, Beijing 100083 (China)] [State Key Laboratory of Integrated Optoelectronics, Institute of Semiconductor, Chinese Academy of Sciences, Beijing 100083 (China); Sun, Jie, E-mail: jie.sun@chalmers.se [Key Laboratory of Optoelectronics Technology, Beijing University of Technology, Ministry of Education, Beijing 100124 (China) [Key Laboratory of Optoelectronics Technology, Beijing University of Technology, Ministry of Education, Beijing 100124 (China); Mikroteknologi och Nanovetenskap, Chalmers Tekniska Högskola AB, Göteborg 41296 (Sweden)

2013-11-25T23:59:59.000Z

374

Implications for Damage Recognition during Dpo4-Mediated Mutagenic Bypass of m1G and m3C Lesions  

SciTech Connect (OSTI)

DNA is susceptible to alkylation damage by a number of environmental agents that modify the Watson-Crick edge of the bases. Such lesions, if not repaired, may be bypassed by Y-family DNA polymerases. The bypass polymerase Dpo4 is strongly inhibited by 1-methylguanine (m1G) and 3-methylcytosine (m3C), with nucleotide incorporation opposite these lesions being predominantly mutagenic. Further, extension after insertion of both correct and incorrect bases, introduces additional base substitution and deletion errors. Crystal structures of the Dpo4 ternary extension complexes with correct and mismatched 3'-terminal primer bases opposite the lesions reveal that both m1G and m3C remain positioned within the DNA template/primer helix. However, both correct and incorrect pairing partners exhibit pronounced primer terminal nucleotide distortion, being primarily evicted from the DNA helix when opposite m1G or misaligned when pairing with m3C. Our studies provide insights into mechanisms related to hindered and mutagenic bypass of methylated lesions and models associated with damage recognition by repair demethylases.

Rechkoblit, Olga; Delaney, James C.; Essigmann, John M.; Patel, Dinshaw J. (MIT); (MSKCC)

2012-05-08T23:59:59.000Z

375

FRACTURING FLUID CHARACTERIZATION FACILITY  

SciTech Connect (OSTI)

Hydraulic fracturing technology has been successfully applied for well stimulation of low and high permeability reservoirs for numerous years. Treatment optimization and improved economics have always been the key to the success and it is more so when the reservoirs under consideration are marginal. Fluids are widely used for the stimulation of wells. The Fracturing Fluid Characterization Facility (FFCF) has been established to provide the accurate prediction of the behavior of complex fracturing fluids under downhole conditions. The primary focus of the facility is to provide valuable insight into the various mechanisms that govern the flow of fracturing fluids and slurries through hydraulically created fractures. During the time between September 30, 1992, and March 31, 2000, the research efforts were devoted to the areas of fluid rheology, proppant transport, proppant flowback, dynamic fluid loss, perforation pressure losses, and frictional pressure losses. In this regard, a unique above-the-ground fracture simulator was designed and constructed at the FFCF, labeled ''The High Pressure Simulator'' (HPS). The FFCF is now available to industry for characterizing and understanding the behavior of complex fluid systems. To better reflect and encompass the broad spectrum of the petroleum industry, the FFCF now operates under a new name of ''The Well Construction Technology Center'' (WCTC). This report documents the summary of the activities performed during 1992-2000 at the FFCF.

Subhash Shah

2000-08-01T23:59:59.000Z

376

PUREX facility hazards assessment  

SciTech Connect (OSTI)

This report documents the hazards assessment for the Plutonium Uranium Extraction Plant (PUREX) located on the US Department of Energy (DOE) Hanford Site. Operation of PUREX is the responsibility of Westinghouse Hanford Company (WHC). This hazards assessment was conducted to provide the emergency planning technical basis for PUREX. DOE Order 5500.3A requires an emergency planning hazards assessment for each facility that has the potential to reach or exceed the lowest level emergency classification. In October of 1990, WHC was directed to place PUREX in standby. In December of 1992 the DOE Assistant Secretary for Environmental Restoration and Waste Management authorized the termination of PUREX and directed DOE-RL to proceed with shutdown planning and terminal clean out activities. Prior to this action, its mission was to reprocess irradiated fuels for the recovery of uranium and plutonium. The present mission is to establish a passively safe and environmentally secure configuration at the PUREX facility and to preserve that condition for 10 years. The ten year time frame represents the typical duration expended to define, authorize and initiate follow-on decommissioning and decontamination activities.

Sutton, L.N.

1994-09-23T23:59:59.000Z

377

Studsvik Processing Facility Update  

SciTech Connect (OSTI)

Studsvik has completed over four years of operation at its Erwin, TN facility. During this time period Studsvik processed over 3.3 million pounds (1.5 million kgs) of radioactive ion exchange bead resin, powdered filter media, and activated carbon, which comprised a cumulative total activity of 18,852.5 Ci (6.98E+08 MBq). To date, the highest radiation level for an incoming resin container has been 395 R/hr (3.95 Sv/h). The Studsvik Processing Facility (SPF) has the capability to safely and efficiently receive and process a wide variety of solid and liquid Low Level Radioactive Waste (LLRW) streams including: Ion Exchange Resins (IER), activated carbon (charcoal), graphite, oils, solvents, and cleaning solutions with contact radiation levels of up to 400 R/hr (4.0 Sv/h). The licensed and heavily shielded SPF can receive and process liquid and solid LLRWs with high water and/or organic content. This paper provides an overview of the last four years of commercial operations processing radioactive LLRW from commercial nuclear power plants. Process improvements and lessons learned will be discussed.

Mason, J. B.; Oliver, T. W.; Hill, G. M.; Davin, P. F.; Ping, M. R.

2003-02-25T23:59:59.000Z

378

Regulatory facility guide for Ohio  

SciTech Connect (OSTI)

The Regulatory Facility Guide (RFG) has been developed for the DOE and contractor facilities located in the state of Ohio. It provides detailed compilations of international, federal, and state transportation-related regulations applicable to shipments originating at destined to Ohio facilities. This RFG was developed as an additional resource tool for use both by traffic managers who must ensure that transportation operations are in full compliance with all applicable regulatory requirements and by oversight personnel who must verify compliance activities.

Anderson, S.S.; Bock, R.E.; Francis, M.W.; Gove, R.M.; Johnson, P.E.; Kovac, F.M.; Mynatt, J.O. [Oak Ridge National Lab., TN (United States); Rymer, A.C. [Transportation Consulting Services, Knoxville, TN (United States)

1994-02-28T23:59:59.000Z

379

Facilities | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Research and Development manages and oversees the operation of an exceptional suite of science, technology and engineering facilities that support and further the national...

380

About the Geocentrifuge Research Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research Facility is being used to improve mathematical models for the movement of fluids and contaminants and long-term performance of engineered caps and barriers used for...

Note: This page contains sample records for the topic "facility gan m1" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Toda Cathode Materials Production Facility  

Broader source: Energy.gov (indexed) [DOE]

Cathode Materials Production Facility 2013 DOE Vehicle Technologies Annual Merit Review May 13-17, 2013 David Han, Yasuhiro Abe Toda America Inc. Project ID: ARRAVT017...

382

Reed Reactor Facility. Final report  

SciTech Connect (OSTI)

This report discusses the operation and maintenance of the Reed Reactor Facility. The Reed reactor is mostly used for education and train purposes.

Frantz, S.G.

1994-12-31T23:59:59.000Z

383

Space & Security Power Systems Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Working with INL Community Outreach Visitor Information Calendar of Events ATR National Scientific User Facility Center for Advanced Energy Studies Light Water Reactor...

384

MDF | Manufacturing Demonstration Facility | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

MDF Working with MDF NTRC OLCF SNS Titanium robotic hand holding sphere fabricated using additive manufacturing Home | User Facilities | MDF MDF | Manufacturing Demonstration...

385

Establishing nuclear facility drill programs  

SciTech Connect (OSTI)

The purpose of DOE Handbook, Establishing Nuclear Facility Drill Programs, is to provide DOE contractor organizations with guidance for development or modification of drill programs that both train on and evaluate facility training and procedures dealing with a variety of abnormal and emergency operating situations likely to occur at a facility. The handbook focuses on conducting drills as part of a training and qualification program (typically within a single facility), and is not intended to included responses of personnel beyond the site boundary, e.g. Local or State Emergency Management, Law Enforcement, etc. Each facility is expected to develop its own facility specific scenarios, and should not limit them to equipment failures but should include personnel injuries and other likely events. A well-developed and consistently administered drill program can effectively provide training and evaluation of facility operating personnel in controlling abnormal and emergency operating situations. To ensure the drills are meeting their intended purpose they should have evaluation criteria for evaluating the knowledge and skills of the facility operating personnel. Training and evaluation of staff skills and knowledge such as component and system interrelationship, reasoning and judgment, team interactions, and communications can be accomplished with drills. The appendices to this Handbook contain both models and additional guidance for establishing drill programs at the Department`s nuclear facilities.

NONE

1996-03-01T23:59:59.000Z

386

Power Systems Development Facility  

SciTech Connect (OSTI)

In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF), located in Wilsonville, Alabama, has routinely demonstrated gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a Transport Gasifier, a hot gas particulate control device, advanced syngas cleanup systems, and high-pressure solids handling systems. This final report summarizes the results of the technology development work conducted at the PSDF through January 31, 2009. Twenty-one major gasification test campaigns were completed, for a total of more than 11,000 hours of gasification operation. This operational experience has led to significant advancements in gasification technologies.

Southern Company Services

2009-01-31T23:59:59.000Z

387

Top-gate thin-film transistors based on GaN channel layer Rongsheng Chen, Wei Zhou, and Hoi Sing Kwok  

E-Print Network [OSTI]

liquid gallium target. The GaN TFTs exhibit good electrical performance such as field effect mobility of 1 cm2 /Vs, threshold voltage of Ă?0.4 V, on/off current ratio of 105 , and subthreshold swing of 0 electrical sta- bility of ZnO-based TFTs is still a main issue preventing from commercialization.9 Bottom

388

The reaction of carbon tetrachloride with gallium arsenide ,,001... L. Li., S, Gan, B.-K. Han, H. Qi, and R. F. Hicksa)  

E-Print Network [OSTI]

The reaction of carbon tetrachloride with gallium arsenide ,,001... L. Li., S, Gan, B.-K. Han, H, California 90095 Received 26 June 1997; accepted for publication 30 December 1997 Carbon tetrachloride of steps during the vapor-phase epitaxial growth of III­V compound semiconductors.3,4 Carbon tetrachloride

Li, Lian

389

STUDY OF THE RADIATION HARDNESS OF VCSEL AND PIN K.K. GAN, W. FERNANDO, H.P. KAGAN, R.D. KASS, A. LAW,  

E-Print Network [OSTI]

that the main radiation effect is bulk damage in the VCSEL and PIN with the displacement of atoms. After five and VCSEL arrays coupled to radiation-hard ASICs produced for the current pixel optical link [5], the DORIC1 STUDY OF THE RADIATION HARDNESS OF VCSEL AND PIN ARRAYS K.K. GAN, W. FERNANDO, H.P. KAGAN, R

Gan, K. K.

390

Growth of GaN on SiC(0001) by Molecular Beam Epitaxy C. D. LEE (a), ASHUTOSH SAGAR (a), R. M. FEENSTRA  

E-Print Network [OSTI]

]. Silicon carbide has a much better lattice match to GaN (3.4%), and has gained in popularity in recent years as a substrate for both molecular beam epitaxy (MBE) and metal-organic vapor phase epitaxy of Ga where a transition between streaky and spotty behavior occurs in the reflection high energy electron

Feenstra, Randall

391

National Ignition Facility system design requirements conventional facilities SDR001  

SciTech Connect (OSTI)

This System Design Requirements (SDR) document specifies the functions to be performed and the minimum design requirements for the National Ignition Facility (NIF) site infrastructure and conventional facilities. These consist of the physical site and buildings necessary to house the laser, target chamber, target preparation areas, optics support and ancillary functions.

Hands, J.

1996-04-09T23:59:59.000Z

392

Nano Research Facility Lab Safety Manual Nano Research Facility  

E-Print Network [OSTI]

1 Nano Research Facility Lab Safety Manual Nano Research Facility: Weining Wang Office: Brauer rules and procedures (a) Accidents and spills for chemicals Not containing Nano-Materials Spills of non for chemicals Containing Nano-Materials In a fume hood small spills of nano-materials in a liquid may

Subramanian, Venkat

393

The E2/M1 mixing ratio in the excitation of the {Delta} from polarized photo-reactions  

SciTech Connect (OSTI)

In constituent quark models, a tensor interaction, mixing quark spins with their relative motion, is introduced to reproduce the observed baryon spectrum. This has a consequence completely analogous to the nuclear tensor force between the n and p in deuterium. A D state component is mixed into what would otherwise be a purely S-wave object. The D-wave component breaks spherical symmetry, resulting in a non-vanishing matrix element for the nucleon and a static quadrupole moment and deformation for its first excited state, the {Delta} resonance, at {approximately}325 MeV. The magnitude and sign of this D-state component are quite sensitive to the internal structure of the proton and have been of great interest in recent years. The intrinsic deformation of the spin 1/2 nucleon cannot be observed directly; it must be inferred from transition amplitudes such as N {yields} {Delta}. In a spherical bag model, the {Delta} is viewed as a pure quark-spin-flip transition proceeding only through M1 excitation. If there are D-state admixtures in the ground state of the nucleon and/or {Delta}, quadrupole excitation, in addition to spin-flip M1, is also allowed. The problem is to evaluate the relative magnitude of this E2 excitation in the presence of the dominant M1 transition. A variety of models predict this mixing ratio to be quite small, anywhere from {minus}0.9% to {minus}6%, so that a high degree of precision is demanded of experiment.

The LEGS Collaboration

1993-12-01T23:59:59.000Z

394

Painter Greenhouse Guidelines Contact: All emails regarding facilities, facilities equipment, supplies at facilities, or watering  

E-Print Network [OSTI]

, supplies at facilities, or watering concerns to both the greenhouse manager, Shane Merrell Greenhouses is supplemented by heating and cooling from the main Painter Building. The smaller Painter

395

29.01.03.M1.06 Information Resources Backup and Recovery Page 1 of 3 STANDARD ADMINISTRATIVE PROCEDURE  

E-Print Network [OSTI]

for off-site storage, shall be documented and reviewed periodically. Additionally, mission critical data shall be backed up on a scheduled basis and stored off-site in a secure, environmentally safe facility decisions by the data owner. 3.3 Physical access controls implemented at off-site backup storage locations

396

Big Explosives Experimental Facility - BEEF  

SciTech Connect (OSTI)

The Big Explosives Experimental Facility or BEEF is a ten acre fenced high explosive testing facility that provides data to support stockpile stewardship and other national security programs. At BEEF conventional high explosives experiments are safely conducted providing sophisticated diagnostics such as high speed optics and x-ray radiography.

None

2014-10-31T23:59:59.000Z

397

End points for facility deactivation  

SciTech Connect (OSTI)

DOE`s Office of Nuclear Material and Facility Stabilization mission includes deactivating surplus nuclear facilities. Each deactivation project requires a systematic and explicit specification of the conditions to be established. End Point methods for doing so have been field developed and implemented. These methods have worked well and are being made available throughout the DOE establishment.

Szilagyi, A.P. [Dept. of Energy, Germantown, MD (United States); Negin, C.A. [Oak Technologies, Washington Grove, MD (United States); Stefanski, L.D. [Westinghouse Hanford, Richland, WA (United States)

1996-12-31T23:59:59.000Z

398

Thomas Jefferson National Accelerator Facility  

SciTech Connect (OSTI)

The Thomas Jefferson National Accelerator Facility (Jefferson Lab) in Newport News, Virginia, USA, is one of ten national laboratories under the aegis of the Office of Science of the U.S. Department of Energy (DOE). It is managed and operated by Jefferson Science Associates, LLC. The primary facility at Jefferson Lab is the Continuous Electron Beam Accelerator Facility (CEBAF) as shown in an aerial photograph in Figure 1. Jefferson Lab was created in 1984 as CEBAF and started operations for physics in 1995. The accelerator uses superconducting radio-frequency (srf) techniques to generate high-quality beams of electrons with high-intensity, well-controlled polarization. The technology has enabled ancillary facilities to be created. The CEBAF facility is used by an international user community of more than 1200 physicists for a program of exploration and study of nuclear, hadronic matter, the strong interaction and quantum chromodynamics. Additionally, the exceptional quality of the beams facilitates studies of the fundamental symmetries of nature, which complement those of atomic physics on the one hand and of high-energy particle physics on the other. The facility is in the midst of a project to double the energy of the facility and to enhance and expand its experimental facilities. Studies are also pursued with a Free-Electron Laser produced by an energy-recovering linear accelerator.

Joseph Grames, Douglas Higinbotham, Hugh Montgomery

2010-09-01T23:59:59.000Z

399

Big Explosives Experimental Facility - BEEF  

ScienceCinema (OSTI)

The Big Explosives Experimental Facility or BEEF is a ten acre fenced high explosive testing facility that provides data to support stockpile stewardship and other national security programs. At BEEF conventional high explosives experiments are safely conducted providing sophisticated diagnostics such as high speed optics and x-ray radiography.

None

2015-01-07T23:59:59.000Z

400

Energy Systems Integration Facility Overview  

ScienceCinema (OSTI)

The U.S. Department of Energy's Energy Systems Integration Facility (ESIF) is located at the National Renewable Energy Laboratory is the right tool, at the right time... a first-of-its-kind facility that addresses the challenges of large-scale integration of clean energy technologies into the energy systems that power the nation.

Arvizu, Dan; Chistensen, Dana; Hannegan, Bryan; Garret, Bobi; Kroposki, Ben; Symko-Davies, Martha; Post, David; Hammond, Steve; Kutscher, Chuck; Wipke, Keith

2014-06-10T23:59:59.000Z

Note: This page contains sample records for the topic "facility gan m1" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Alpha Gamma Hot Cell Facility  

E-Print Network [OSTI]

-reactor nuclear facility being decommissioned. It is also used to support the de-inventory of other facilities PROGRAM Contact: Yung Y. Liu Senior Nuclear Engineer, Section Manager Argonne National Laboratory yyliu on the Argonne site. As part of decommissioning, large quantities of radioactive material and waste are being

Kemner, Ken

402

COMPARATIVE MEDICINE LABORATORY ANIMAL FACILITIES  

E-Print Network [OSTI]

3.E.1 COMPARATIVE MEDICINE LABORATORY ANIMAL FACILITIES STANDARD OPERATING PROCEDURES for ACCESS, and the correct way to leave the facility. 2.0 Scope: This procedure applies to all CMLAF staff, maintenance, ENTRY, AND EXIT PROCEDURES FOR THE ANIMAL BIOSAFETY SUITE ROOM 305 BEB 1.0 Purpose: The Biosafety suite

Krovi, Venkat

403

COMPARATIVE MEDICINE LABORATORY ANIMAL FACILITIES  

E-Print Network [OSTI]

1.E.1 COMPARATIVE MEDICINE LABORATORY ANIMAL FACILITIES STANDARD OPERATING PROCEDURE for ENTRY RODENT FACILITY 1. I have read, understand, and will follow the Standard Operating Procedures listed: This procedure applies to all CMLAF, principal investigator and maintenance personnel 3.0 Procedure: 3

Krovi, Venkat

404

Licensed fuel facility status report  

SciTech Connect (OSTI)

NRC is committed to the periodic publication of licensed fuel facilities inventory difference data, following agency review of the information and completion of any related NRC investigations. Information in this report includes inventory difference data for active fuel fabrication facilities possessing more than one effective kilogram of high enriched uranium, low enriched uranium, plutonium, or uranium-233.

Joy, D.; Brown, C.

1993-04-01T23:59:59.000Z

405

CANISTER HANDLING FACILITY DESCRIPTION DOCUMENT  

SciTech Connect (OSTI)

The purpose of this facility description document (FDD) is to establish requirements and associated bases that drive the design of the Canister Handling Facility (CHF), which will allow the design effort to proceed to license application. This FDD will be revised at strategic points as the design matures. This FDD identifies the requirements and describes the facility design, as it currently exists, with emphasis on attributes of the design provided to meet the requirements. This FDD is an engineering tool for design control; accordingly, the primary audience and users are design engineers. This FDD is part of an iterative design process. It leads the design process with regard to the flowdown of upper tier requirements onto the facility. Knowledge of these requirements is essential in performing the design process. The FDD follows the design with regard to the description of the facility. The description provided in this FDD reflects the current results of the design process.

J.F. Beesley

2005-04-21T23:59:59.000Z

406

Canastota Renewable Energy Facility Project  

SciTech Connect (OSTI)

The project was implemented at the Madison County Landfill located in the Town of Lincoln, Madison County, New York. Madison County has owned and operated the solid waste and recycling facilities at the Buyea Road site since 1974. At the onset of the project, the County owned and operated facilities there to include three separate landfills, a residential solid waste disposal and recycled material drop-off facility, a recycling facility and associated administrative, support and environmental control facilities. This putrescible waste undergoes anaerobic decomposition within the waste mass and generates landfill gas, which is approximately 50% methane. In order to recover this gas, the landfill was equipped with gas collection systems on both the east and west sides of Buyea Road which bring the gas to a central point for destruction. In order to derive a beneficial use from the collected landfill gases, the County decided to issue a Request for Proposals (RFP) for the future use of the generated gas.

Blake, Jillian; Hunt, Allen

2013-12-13T23:59:59.000Z

407

07.03.01.M1: Political Campaign Events and Partisan Political Activities on Texas A&M University Property Page 1 of 2 UNIVERSITY RULE  

E-Print Network [OSTI]

07.03.01.M1: Political Campaign Events and Partisan Political Activities on Texas A&M University Property Page 1 of 2 UNIVERSITY RULE 07.03.01.M1 Political Campaign Events and Partisan Political partisan political activity. Texas A&M Universitycannot endorse, support or promote any political candidate

408

29.01.03.M1.26 Information Resources Security Risks Assessment Reviews Page 1 of 3 STANDARD ADMINISTRATIVE PROCEDURE  

E-Print Network [OSTI]

29.01.03.M1.26 Information Resources ­ Security Risks Assessment Reviews Page 1 of 3 STANDARD ADMINISTRATIVE PROCEDURE 29.01.03.M1.26 Information Resources ­ Information Security Risk Assessment Reviews security risk assessments are vital procedures for maintaining the security of information resources

409

29.01.03.M1.16 Information Resources-Portable Devices: Information Security Page 1 of 3 STANDARD ADMINISTRATIVE PROCEDURE  

E-Print Network [OSTI]

information resources. This includes, but is not limited to: laptops, Personal Digital Assistants (PDAs29.01.03.M1.16 Information Resources- Portable Devices: Information Security Page 1 of 3 STANDARD ADMINISTRATIVE PROCEDURE 29.01.03.M1.16 Information Resources ­ Portable Devices: Information Security Approved

410

Power Systems Development Facility  

SciTech Connect (OSTI)

This report discusses Test Campaign TC12 of the Kellogg Brown & Root, Inc. (KBR) Transport Gasifier train with a Siemens Westinghouse Power Corporation (SW) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The Transport Gasifier is an advanced circulating fluidized-bed reactor designed to operate as either a combustor or a gasifier using a particulate control device (PCD). While operating as a gasifier, either air or oxygen can be used as the oxidant. Test run TC12 began on May 16, 2003, with the startup of the main air compressor and the lighting of the gasifier start-up burner. The Transport Gasifier operated until May 24, 2003, when a scheduled outage occurred to allow maintenance crews to install the fuel cell test unit and modify the gas clean-up system. On June 18, 2003, the test run resumed when operations relit the start-up burner, and testing continued until the scheduled end of the run on July 14, 2003. TC12 had a total of 733 hours using Powder River Basin (PRB) subbituminous coal. Over the course of the entire test run, gasifier temperatures varied between 1,675 and 1,850 F at pressures from 130 to 210 psig.

None

2003-07-01T23:59:59.000Z

411

PFBC HGCU Test Facility  

SciTech Connect (OSTI)

This is the thirteenth Technical Progress Report submitted to the Department of Energy (DOE) in connection with the cooperative agreement between the DOE and Ohio Power Company for the Tidd PFBC Hot Gas Clean Up Test Facility. This report covers the period of work completed during the Fourth Quarter of CY 1992. The following are highlights of the activities that occurred during this report period: Initial operation of the Advanced Particle Filter (APF) occurred during this quarter. The following table summarizes the operating dates and times. HGCU ash lockhopper valve plugged with ash. Primary cyclone ash pluggage. Problems with the coal water paste. Unit restarted warm 13 hours later. HGCU expansion joint No. 7 leak in internal ply of bellows. Problems encountered during these initial tests included hot spots on the APP, backup cyclone and instrumentation spools, two breakdowns of the backpulse air compressor, pluggage of the APF hopper and ash removal system, failure (breakage) of 21 filter candles, leakage of the inner ply of one (1) expansion joint bellows, and numerous other smaller problems. These operating problems are discussed in detail in a subsequent section of this report. Following shutdown and equipment inspection in December, design modifications were initiated to correct the problems noted above. The system is scheduled to resume operation in March, 1993.

Not Available

1993-01-01T23:59:59.000Z

412

Power Systems Development Facility  

SciTech Connect (OSTI)

This report discusses Test Campaign TC15 of the Kellogg Brown & Root, Inc. (KBR) Transport Gasifier train with a Siemens Power Generation, Inc. (SPG) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The Transport Gasifier is an advanced circulating fluidized-bed reactor designed to operate as either a combustor or gasifier using a particulate control device (PCD). While operating as a gasifier, either air or oxygen can be used as the oxidant. Test run TC15 began on April 19, 2004, with the startup of the main air compressor and the lighting of the gasifier startup burner. The Transport Gasifier was shutdown on April 29, 2004, accumulating 200 hours of operation using Powder River Basin (PRB) subbituminous coal. About 91 hours of the test run occurred during oxygen-blown operations. Another 6 hours of the test run was in enriched-air mode. The remainder of the test run, approximately 103 hours, took place during air-blown operations. The highest operating temperature in the gasifier mixing zone mostly varied from 1,800 to 1,850 F. The gasifier exit pressure ran between 200 and 230 psig during air-blown operations and between 110 and 150 psig in oxygen-enhanced air operations.

Southern Company Services

2004-04-30T23:59:59.000Z

413

Advanced hybrid gasification facility  

SciTech Connect (OSTI)

The objective of this procurement is to provide a test facility to support early commercialization of advanced fixed-bed coal gasification technology for electric power generation applications. The proprietary CRS Sirrine Engineers, Inc. PyGas{trademark} staged gasifier has been selected as the initial gasifier to be developed under this program. The gasifier is expected to avoid agglomeration when used on caking coals. It is also being designed to crack tar vapors and ammonia, and to provide an environment in which volatilized alkali may react with aluminosilicates in the coal ash thereby minimizing their concentration in the hot raw coal gas passing through the system to the gas turbine. This paper describes a novel, staged, airblown, fixed-bed gasifier designed to solve both through the incorporation of pyrolysis (carbonization) with gasification. It employs a pyrolyzer (carbonizer) to avoid sticky coal agglomeration which occurs in a fixed-bed process when coal is gradually heated through the 400{degrees}F to 900{degrees}F range. In a pyrolyzer, the coal is rapidly heated such that coal tar is immediately vaporized. Gaseous tars are then thermally cracked prior to the completion of the gasification process. During the subsequent endothermic gasification reactions, volatilized alkali can be chemically bound to aluminosilicates in (or added to) the ash. To reduce NOx from fuel home nitrogen, moisture is minimized to control ammonia generation, and HCN in the upper gasifier region is partially oxidized to NO which reacts with NH3/HCN to form N2.

Sadowski, R.S.; Skinner, W.H. [CRS Sirrine, Inc., Greenville, SC (United States); Johnson, S.A. [PSI Technology Co., Andover, MA (United States); Dixit, V.B. [Riley Stoker Corp., Worcester, MA (United States). Riley Research Center

1993-08-01T23:59:59.000Z

414

340 waste handling facility interim safety basis  

SciTech Connect (OSTI)

This document presents an interim safety basis for the 340 Waste Handling Facility classifying the 340 Facility as a Hazard Category 3 facility. The hazard analysis quantifies the operating safety envelop for this facility and demonstrates that the facility can be operated without a significant threat to onsite or offsite people.

VAIL, T.S.

1999-04-01T23:59:59.000Z

415

340 Waste handling facility interim safety basis  

SciTech Connect (OSTI)

This document presents an interim safety basis for the 340 Waste Handling Facility classifying the 340 Facility as a Hazard Category 3 facility. The hazard analysis quantifies the operating safety envelop for this facility and demonstrates that the facility can be operated without a significant threat to onsite or offsite people.

Stordeur, R.T.

1996-10-04T23:59:59.000Z

416

M-1C.  

Broader source: Energy.gov (indexed) [DOE]

DEPARTlIENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA DETERlIINATION RECIPI ENT:City of Boston PROJECT TITLE: EECBG City Of Boston (S) Page 1 01'2 STATE:MA Funding...

417

Facility effluent monitoring plan for the tank farm facility  

SciTech Connect (OSTI)

A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements.

Crummel, G.M.

1998-05-18T23:59:59.000Z

418

Neutron Scattering Facilities | U.S. DOE Office of Science (SC...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Neutron Scattering Facilities User Facilities User Facilities Home User Facilities at a Glance All User Facilities ASCR User Facilities BES User Facilities X-Ray Light Sources...

419

spe438-20 page 1 Garrison, N.J., Busby, C.J., Gans, P.B., Putirka, K., and Wagner, D.L., 2008, A mantle plume beneath California? The mid-Miocene Lovejoy flood basalt, northern  

E-Print Network [OSTI]

-Miocene Lovejoy flood basalt, northern California Noah J. Garrison Cathy J. Busby Phillip B. Gans Department the eastern Snake River Plain toward the Yellowstone caldera (Armstrong et al., 1975; Rodgers et al., 1990

Busby, Cathy

420

Vehicle Technologies Office Merit Review 2014: Advanced Low-Cost SiC and GaN Wide Bandgap Inverters for Under-the-Hood Electric Vehicle Traction Drives  

Broader source: Energy.gov [DOE]

Presentation given by APEI Inc. at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Advanced low-cost SIC and GaN wide...

Note: This page contains sample records for the topic "facility gan m1" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Irradiation facilities at the Los Alamos Meson Physics Facility  

SciTech Connect (OSTI)

The irradiation facilities for testing SSC components and detector systems are described. Very high intensity proton, neutron, and pion fluxes are available with beam kinetic energies of up to 800 MeV. 4 refs., 12 figs., 2 tabs.

Sandberg, V.

1990-01-01T23:59:59.000Z

422

Facility effluent monitoring plan for the Plutonium Uranium Extraction Facility  

SciTech Connect (OSTI)

A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438-01. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether these systems are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan will ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated, at a minimum, every 3 years.

Greager, E.M.

1997-12-11T23:59:59.000Z

423

Facility effluent monitoring plan for the plutonium uranium extraction facility  

SciTech Connect (OSTI)

A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438-01. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated at a minimum of every three years.

Wiegand, D.L.

1994-09-01T23:59:59.000Z

424

Idaho Waste Vitrification Facilities Project Vitrified Waste Interim Storage Facility  

SciTech Connect (OSTI)

This feasibility study report presents a draft design of the Vitrified Waste Interim Storage Facility (VWISF), which is one of three subprojects of the Idaho Waste Vitrification Facilities (IWVF) project. The primary goal of the IWVF project is to design and construct a treatment process system that will vitrify the sodium-bearing waste (SBW) to a final waste form. The project will consist of three subprojects that include the Waste Collection Tanks Facility, the Waste Vitrification Facility (WVF), and the VWISF. The Waste Collection Tanks Facility will provide for waste collection, feed mixing, and surge storage for SBW and newly generated liquid waste from ongoing operations at the Idaho Nuclear Technology and Engineering Center. The WVF will contain the vitrification process that will mix the waste with glass-forming chemicals or frit and turn the waste into glass. The VWISF will provide a shielded storage facility for the glass until the waste can be disposed at either the Waste Isolation Pilot Plant as mixed transuranic waste or at the future national geological repository as high-level waste glass, pending the outcome of a Waste Incidental to Reprocessing determination, which is currently in progress. A secondary goal is to provide a facility that can be easily modified later to accommodate storage of the vitrified high-level waste calcine. The objective of this study was to determine the feasibility of the VWISF, which would be constructed in compliance with applicable federal, state, and local laws. This project supports the Department of Energy’s Environmental Management missions of safely storing and treating radioactive wastes as well as meeting Federal Facility Compliance commitments made to the State of Idaho.

Bonnema, Bruce Edward

2001-09-01T23:59:59.000Z

425

PLANS FOR FUTURE MEGAWATT FACILITIES.  

SciTech Connect (OSTI)

Proton accelerators producing beam powers of up to 1 MW are presently either operating or under construction and designs for Multi-Megawatt facilities are being developed. High beam power has applications in the production of high intensity secondary beams of neutrons, muons, kaons and neutrinos as well as in nuclear waste transmutation and accelerator-driven sub-critical reactors. Each of these applications has additional requirements on beam energy and duty cycle. This paper will review how present designs for future Multi-Megawatt facilities meet these requirements and will also review the experience with present high power facilities.

ROSER,T.

2004-10-13T23:59:59.000Z

426

High-Average Power Facilities  

SciTech Connect (OSTI)

There has been significant progress in the development of high-power facilities in recent years yet major challenges remain. The task of WG4 was to identify which facilities were capable of addressing the outstanding R&D issues presently preventing high-power operation. To this end, information from each of the facilities represented at the workshop was tabulated and the results are presented herein. A brief description of the major challenges is given, but the detailed elaboration can be found in the other three working group summaries.

Dowell, David H.; /SLAC; Power, John G.; /Argonne

2012-09-05T23:59:59.000Z

427

Hazardous Waste Facility Siting Program (Maryland)  

Broader source: Energy.gov [DOE]

The Hazardous Waste Facilities Siting Board is responsible for overseeing the siting of hazardous waste facilities in Maryland, and will treat hazardous waste facilities separately from low-level...

428

Facility effluent monitoring plan for 242-A evaporator facility  

SciTech Connect (OSTI)

A facility effluent monitoring plan is required by the U.S. Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could affect employee or public safety or the environment. A facility effluent monitoring plan determination was performed during Calendar Year 1991 and the evaluation showed the need for a facility effluent monitoring plan. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438-1. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated, as a minimum, every three years.

Crummel, G.M.; Gustavson, R.D.

1995-02-01T23:59:59.000Z

429

Polarity characterization by anomalous x-ray dispersion of ZnO films and GaN lateral polar structures  

SciTech Connect (OSTI)

We demonstrate the use of anomalous x-ray scattering of constituent cations at their absorption edge, in a conventional Bragg-Brentano diffractometer, to measure absolutely and quantitatively the polar orientation and polarity fraction of unipolar and mixed polar wurtzitic crystals. In one set of experiments, the gradual transition between c+ and c? polarity of epitaxial ZnO films on sapphire as a function of MgO buffer layer thickness is monitored quantitatively, while in a second experiment, we map the polarity of a lateral polar homojunction in GaN. The dispersion measurements are compared with piezoforce microscopy images, and we demonstrate how x-ray dispersion and scanning probe methods can provide complementary information that can discriminate between polarity fractions at a material surface and polarity fractions averaged over the film bulk.

Shelton, Christopher T.; Sachet, Edward; Paisley, Elizabeth A.; Hoffmann, Marc P.; Rajan, Joseph; Collazo, Ramón; Sitar, Zlatko; Maria, Jon-Paul [Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States)

2014-01-28T23:59:59.000Z

430

Mg doping of GaN grown by plasma-assisted molecular beam epitaxy under nitrogen-rich conditions  

SciTech Connect (OSTI)

Acceptor doping of GaN with Mg during plasma-assisted molecular beam epitaxy, under N-rich conditions and a relatively high growth temperature of 740 deg. C, was investigated. The p-doping level steadily increases with increasing Mg flux. The highest doping level achieved, determined from Hall measurements, is 2.1x10{sup 18} cm{sup -3}. The corresponding doping efficiency and hole mobility are approx4.9% and 3.7 cm{sup 2}/V s at room temperature. Cross-sectional transmission electron microscopy and photoluminescence measurements confirm good crystalline and optical quality of the Mg-doped layers. An InGaN/GaN quantum dot light emitting diode (lambda{sub peak}=529 nm) with p-GaN contact layers grown under N-rich condition exhibits a low series resistance of 9.8 OMEGA.

Zhang Meng; Bhattacharya, Pallab; Guo Wei; Banerjee, Animesh [Department of Electrical Engineering and Computer Science, Solid-State Electronics Laboratory, University of Michigan, Ann Arbor, Michigan 48109-2122 (United States)

2010-03-29T23:59:59.000Z

431

Item No. 3 process facilities cost estimates and schedules for facilities capability assurance program nuclear facilities modernization - FY 1989 line item, authorization No. D79  

SciTech Connect (OSTI)

Data is presented concerning cost estimates and schedules for process facilities and nuclear facilities modernization.

NONE

1989-07-01T23:59:59.000Z

432

Utility Lines and Facilities (Montana)  

Broader source: Energy.gov [DOE]

These regulations apply to the construction of utility and power lines and facilities. They address the use of public right-of-ways for such construction, underground power lines, and construction...

433

Solid Waste Disposal Facilities (Massachusetts)  

Broader source: Energy.gov [DOE]

These sections articulate rules for the maintenance and operation of solid waste disposal facilities, as well as site assignment procedures. Applications for site assignment will be reviewed by the...

434

Solid Waste Facilities Regulations (Massachusetts)  

Broader source: Energy.gov [DOE]

This chapter of the Massachusetts General Laws governs the operation of solid waste facilities. It seeks to encourage sustainable waste management practices and to mitigate adverse effects, such as...

435

Global Environment Facility Evaluation Office  

E-Print Network [OSTI]

Global Environment Facility Evaluation Office PROTECTED AREAS AND AVOIDED DEFORESTATION #12;Protected Areas and Avoided Deforestation: An Econometric Evaluation - i - TABLE OF CONTENTS 1................................................................................4 3.3 ESTIMATED EFFECTS OF PROTECTED AREAS ON DEFORESTATION

Pfaff, Alex

436

Regulatory Facility Guide for Tennessee  

SciTech Connect (OSTI)

This guide provides detailed compilations of international, federal, and state transportation related regulations applicable to shipments originating at or destined to Tennessee facilities. Information on preferred routes is also given.

Anderson, S.S.; Bock, R.E.; Francis, M.W.; Gove, R.M.; Johnson, P.E.; Kovac, F.M.; Mynatt, J.O. [Oak Ridge National Lab., TN (United States); Rymer, A.C. [Transportation Consulting Services, Knoxville, TN (United States)

1994-02-28T23:59:59.000Z

437

Associate Vice President Facilities Management  

E-Print Network [OSTI]

Operations & Energy Services Jack Baker Executive Director Building & Landscape Maintenance Harry Teabout III Safety HVAC Systems HVAC Systems Administration/ Signs & Graphics Administration/ Signs & Graphics Piped-Campus Facilities Director Department of Engineering & Energy VACANT Energy Management Energy Management Engineering

Milchberg, Howard

438

Hanford Facility RCRA permit handbook  

SciTech Connect (OSTI)

Purpose of this Hanford Facility (HF) RCRA Permit Handbook is to provide, in one document, information to be used for clarification of permit conditions and guidance for implementing the HF RCRA Permit.

NONE

1996-03-01T23:59:59.000Z

439

Freestall Facilities in Central Texas  

E-Print Network [OSTI]

surveyed recently for infor- L-5311 5-99 Freestall Dairy Facilities in Central Texas Sandy Stokes and Mike Gamroth* *Extension Dairy Specialist, Texas A&M University System, and Extension Dairy Specialist, Oregon State University. Freestall housing...

Stokes, Sandra R.; Gamroth, Mike

1999-06-04T23:59:59.000Z

440

Land and Facility Use Planning  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The Land and Facility Use Planning process provides a way to guide future site development and reuse based on the shared long-term goals and objectives of the Department, site and its stakeholders. Does not cancel other directives.

1996-07-09T23:59:59.000Z

Note: This page contains sample records for the topic "facility gan m1" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

DOE/NNSA Facility Management Contracts  

Office of Environmental Management (EM)

NNSA Facility Management Contracts March 2015 version Facility Owner Contractor Award Date End Date OptionsAward Term Ultimate Potential Expiration Date Contract FY Competed...

442

Voluntary Protection Program Onsite Review, Facility Engineering...  

Office of Environmental Management (EM)

Facility Engineering Services KCP, LLC - November 2008 Voluntary Protection Program Onsite Review, Facility Engineering Services KCP, LLC - November 2008 November 2008 This report...

443

Voluntary Protection Program Onsite Review, Facility Engineering...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Facility Engineering Services KCP, LLC - September 2012 Voluntary Protection Program Onsite Review, Facility Engineering Services KCP, LLC - September 2012 September 2012...

444

Carbon Fiber Pilot Plant and Research Facilities  

Broader source: Energy.gov (indexed) [DOE]

for the U.S. Department of Energy Presentationname Carbon Fiber Facilities Materials Carbon Fiber Research Facility Type Production Fiber Types Tow Size Tensioning Line...

445

Energy Performance Contracting in State Facilities | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Contracting in State Facilities Energy Performance Contracting in State Facilities Provides a brief overview of the performance contracting process, the benefits of using...

446

Office of Nuclear Facility Safety Programs  

Broader source: Energy.gov [DOE]

The Office of Nuclear Facility Safety Programs establishes nuclear safety requirements related to safety management programs that are essential to the safety of DOE nuclear facilities.

447

Independent Activity Report, Defense Nuclear Facilities Safety...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Defense Nuclear Facilities Safety Board Public Meeting - October 2012 Independent Activity Report, Defense Nuclear Facilities Safety Board Public Meeting - October 2012 October...

448

Company Name Tax Credit* Manufacturing Facility's  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Delphi Automotive Systems plans to invest 35.3 million through 2017 in equipment and tooling at its Kokomo Power Electronics facility in Indiana. This facility expansion will...

449

Montana Major Facility Siting Act (Montana)  

Broader source: Energy.gov [DOE]

The Montana Major Facility Siting Act aims to protect the environment from unreasonable degradation caused by irresponsible siting of electric transmission, pipeline, and geothermal facilities. The...

450

Louisiana: Verenium Cellulosic Ethanol Demonstration Facility...  

Energy Savers [EERE]

Louisiana: Verenium Cellulosic Ethanol Demonstration Facility Louisiana: Verenium Cellulosic Ethanol Demonstration Facility April 9, 2013 - 12:00am Addthis In 2010, Verenium...

451

Chapter 47 Solid Waste Facilities (Kentucky)  

Broader source: Energy.gov [DOE]

This chapter establishes the permitting standards for solid waste sites or facilities, the standards applicable to all solid waste sites or facilities, and the standards for certification of...

452

Field's Point Wastewater Treatment Facility (Narragansett Bay...  

Open Energy Info (EERE)

Field's Point Wastewater Treatment Facility (Narragansett Bay Commission) Jump to: navigation, search Name Field's Point Wastewater Treatment Facility (Narragansett Bay Commission)...

453

CMR: Chemistry and Metallurgy Research Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CMR: Chemistry and Metallurgy Research Facility CMR: Chemistry and Metallurgy Research Facility The Los Alamos National Laboratory (LANL) Chemistry and Metallurgy Research (CMR)...

454

Independent Oversight Assessment, Salt Waste Processing Facility...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Salt Waste Processing Facility Project - January 2013 January 2013 Assessment of Nuclear Safety Culture at the Salt Waste Processing Facility Project The U.S. Department...

455

UK FT PDU Facility Draft EA  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Process Development Unit Facility February 2014 The facility is sized as a small-scale pilot CBTL plant that would produce research quantities of FT liquid fuels at...

456

WIPP Facility Work Plan for Solid Waste Management Units  

SciTech Connect (OSTI)

This Facility Work Plan (FWP) has been prepared as required by Module VII,Section VII.M.1 of the Waste Isolation Pilot Plant (WIPP) Hazardous Waste Permit, NM4890139088-TSDF (the Permit); (NMED, 1999a). This work plan describes the programmatic facility-wide approach to future investigations at Solid Waste Management Units (SWMUs) and Areas of Concern (AOCs) specified in the Permit. This FWP addresses the current Permit requirements. It uses the results of previous investigations performed at WIPP and expands the investigations as required by the Permit. As an alternative to the Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI) specified in Module VII of the Permit, current New Mexico Environment Department (NMED) guidance identifies an Accelerated Corrective Action Approach (ACAA) that may be used for any SWMU or AOC (NMED, 1998). This accelerated approach is used to replace the standard RFI Work Plan and Report sequence with a more flexible decision-making approach. The ACAA process allows a Facility to exit the schedule of compliance contained in the Facility’s Hazardous and Solid Waste Amendments (HSWA) permit module and proceed on an accelerated time frame. Thus, the ACAA process can be entered either before or after an RFI Work Plan. According to NMED’s guidance, a facility can prepare an RFI Work Plan or Sampling and Analysis Plan (SAP) for any SWMU or AOC (NMED, 1998). Based on this guidance, a SAP constitutes an acceptable alternative to the RFI Work Plan specified in the Permit. The scope of work for the RFI Work Plan or SAP is being developed by the Permittees. The final content of the RFI Work Plan or SAP will be coordinated with the NMED for submittal on May 24, 2000. Specific project-related planning information will be included in the RFI Work Plan or SAP. The SWMU program at WIPP began in 1994 under U.S. Environmental Protection Agency (EPA) regulatory authority. NMED subsequently received regulatory authority from EPA. A Phase I RFI was completed at WIPP as part of a Voluntary Release Assessment (VRA). The risk-based decision criteria recommended by EPA for the VRA were contained in a proposed Corrective Action rule for SWMUs (EPA, 1990). EPA Region VI has issued new risk-based screening criteria applicable to the WIPP SWMUs and AOCs.

Washington TRU Solutions LLC

2000-02-25T23:59:59.000Z

457

Site maps and facilities listings  

SciTech Connect (OSTI)

In September 1989, a Memorandum of Agreement among DOE offices regarding the environmental management of DOE facilities was signed by appropriate Assistant Secretaries and Directors. This Memorandum of Agreement established the criteria for EM line responsibility. It stated that EM would be responsible for all DOE facilities, operations, or sites (1) that have been assigned to DOE for environmental restoration and serve or will serve no future production need; (2) that are used for the storage, treatment, or disposal of hazardous, radioactive, and mixed hazardous waste materials that have been properly characterized, packaged, and labelled, but are not used for production; (3) that have been formally transferred to EM by another DOE office for the purpose of environmental restoration and the eventual return to service as a DOE production facility; or (4) that are used exclusively for long-term storage of DOE waste material and are not actively used for production, with the exception of facilities, operations, or sites under the direction of the DOE Office of Civilian Radioactive Waste Management. As part of the implementation of the Memorandum of Agreement, Field Offices within DOE submitted their listings of facilities, systems, operation, and sites for which EM would have line responsibility. It is intended that EM facility listings will be revised on a yearly basis so that managers at all levels will have a valid reference for the planning, programming, budgeting and execution of EM activities.

Not Available

1993-11-01T23:59:59.000Z

458

POWER SYSTEMS DEVELOPMENT FACILITY  

SciTech Connect (OSTI)

This report discusses test campaign GCT3 of the Halliburton KBR transport reactor train with a Siemens Westinghouse Power Corporation (Siemens Westinghouse) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The transport reactor is an advanced circulating fluidized-bed reactor designed to operate as either a combustor or a gasifier using one of two possible particulate control devices (PCDs). The transport reactor was operated as a pressurized gasifier during GCT3. GCT3 was planned as a 250-hour test run to commission the loop seal and continue the characterization of the limits of operational parameter variations using a blend of several Powder River Basin coals and Bucyrus limestone from Ohio. The primary test objectives were: (1) Loop Seal Commissioning--Evaluate the operational stability of the loop seal with sand and limestone as a bed material at different solids circulation rates and establish a maximum solids circulation rate through the loop seal with the inert bed. (2) Loop Seal Operations--Evaluate the loop seal operational stability during coal feed operations and establish maximum solids circulation rate. Secondary objectives included the continuation of reactor characterization, including: (1) Operational Stability--Characterize the reactor loop and PCD operations with short-term tests by varying coal feed, air/coal ratio, riser velocity, solids circulation rate, system pressure, and air distribution. (2) Reactor Operations--Study the devolatilization and tar cracking effects from transient conditions during transition from start-up burner to coal. Evaluate the effect of process operations on heat release, heat transfer, and accelerated fuel particle heat-up rates. Study the effect of changes in reactor conditions on transient temperature profiles, pressure balance, and product gas composition. (3) Effects of Reactor Conditions on Syngas Composition--Evaluate the effect of air distribution, steam/coal ratio, solids circulation rate, and reactor temperature on CO/CO{sub 2} ratio, H{sub 2}/converted carbon ratio, gasification rates, carbon conversion, and cold and hot gas efficiencies. Test run GCT3 was started on December 1, 2000, with the startup of the thermal oxidizer fan, and was completed on February 1, 2001. This test was conducted in two parts; the loop seal was commissioned during the first part of this test run from December 1 through 15, which consisted of hot inert solids circulation testing. These initial tests provided preliminary data necessary to understand different parameters associated with the operation and performance of the loop seal. The loop seal was tested with coal feed during the second part of the test run and additional data was gathered to analyze reactor operations and to identify necessary modifications to improve equipment and process performance. In the second part of GCT3, the gasification portion of the test, from January 20 to February 1, 2001, the mixing zone and riser temperatures were varied between 1,675 and 1,825 F at pressures ranging from 200 to 240 psig. There were 306 hours of solid circulation and 184 hours of coal feed attained in GCT3.

Unknown

2002-05-01T23:59:59.000Z

459

Preparation of Ag Schottky contacts on n-type GaN bulk crystals grown in nitrogen rich atmosphere by the hydride vapor phase epitaxy technique  

SciTech Connect (OSTI)

Electrical properties of Schottky contacts on n-type GaN grown in nitrogen rich atmosphere with different N/Ga ratios by hydride vapor phase epitaxy were investigated. We show that tunneling of electrons from the conduction band of GaN to the metal is dominant in our samples. The quality of Schottky contacts does not only depend on surface preparation but also on the growth conditions of the crystals. Schottky contacts on these crystals show an increasing deterioration when higher N/Ga growth ratios are used. We correlate our results with the presence of negatively charged gallium vacancies in the samples. These charges compensate the positively charged donors and lead to a significant increase in series resistance.

Stübner, R., E-mail: ronald.stuebner@physik.tu-dresden.de; Kolkovsky, Vl.; Weber, J. [Technische Universität Dresden, 01062 Dresden (Germany); Leibiger, Gunnar; Habel, Frank [Freiberger Compound Materials GmbH, 09599 Freiberg (Germany)

2014-10-14T23:59:59.000Z

460

Confirmation of intrinsic electron gap states at nonpolar GaN(1-100) surfaces combining photoelectron and surface optical spectroscopy  

SciTech Connect (OSTI)

The electronic structure of GaN(1–100) surfaces is investigated in-situ by photoelectron spectroscopy (PES) and reflection anisotropy spectroscopy (RAS). Occupied surface states 3.1?eV below the Fermi energy are observed by PES, accompanied by surface optical transitions found in RAS around 3.3?eV, i.e., below the bulk band gap. These results indicate that the GaN(1–100) surface band gap is smaller than the bulk one due to the existence of intra-gap states, in agreement with density functional theory calculations. Furthermore, the experiments demonstrate that RAS can be applied for optical surface studies of anisotropic crystals.

Himmerlich, M., E-mail: marcel.himmerlich@tu-ilmenau.de; Eisenhardt, A.; Shokhovets, S.; Krischok, S. [Institut für Physik and Institut für Mikro- und Nanotechnologien, TU Ilmenau, PF 100565, 98684 Ilmenau (Germany); Räthel, J.; Speiser, E.; Neumann, M. D.; Navarro-Quezada, A.; Esser, N. [Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Albert-Einstein-Strasse 9, 12489 Berlin (Germany)

2014-04-28T23:59:59.000Z

Note: This page contains sample records for the topic "facility gan m1" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Facility effluent monitoring plan for the tank farms facilities  

SciTech Connect (OSTI)

A facility effluent monitoring plan is required by the US Department of Energy for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using specific guidelines. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated as a minimum every three years.

Bachand, D.D.; Crummel, G.M.

1995-05-01T23:59:59.000Z

462

Facility effluent monitoring plan for the 324 Facility  

SciTech Connect (OSTI)

The 324 Facility [Waste Technology Engineering Laboratory] in the 300 Area primarily supports the research and development of radioactive and nonradioactive waste vitrification technologies, biological waste remediation technologies, spent nuclear fuel studies, waste mixing and transport studies, and tritium development programs. All of the above-mentioned programs deal with, and have the potential to, release hazardous and/or radioactive material. The potential for discharge would primarily result from (1) conducting research activities using the hazardous materials, (2) storing radionuclides and hazardous chemicals, and (3) waste accumulation and storage. This report summarizes the airborne and liquid effluents, and the results of the Facility Effluent Monitoring Plan (FEMP) determination for the facility. The complete monitoring plan includes characterizing effluent streams, monitoring/sampling design criteria, a description of the monitoring systems and sample analysis, and quality assurance requirements.

NONE

1994-11-01T23:59:59.000Z

463

ESIF 2014 (Energy Systems Integration Facility) (Brochure)  

SciTech Connect (OSTI)

This report covers research highlights and achievements for the Energy Systems Integration Facility in 2014.

Not Available

2015-01-01T23:59:59.000Z

464

AGING FACILITY WORKER DOSE ASSESSMENT  

SciTech Connect (OSTI)

The purpose of this calculation is to estimate radiation doses received by personnel working in the Aging Facility performing operations to transfer aging casks to the aging pads for thermal and logistical management, stage empty aging casks, and retrieve aging casks from the aging pads for further processing in other site facilities. Doses received by workers due to aging cask surveillance and maintenance operations are also included. The specific scope of work contained in this calculation covers both collective doses and individual worker group doses on an annual basis, and includes the contributions due to external and internal radiation from normal operation. There are no Category 1 event sequences associated with the Aging Facility (BSC 2004 [DIRS 167268], Section 7.2.1). The results of this calculation will be used to support the design of the Aging Facility and to provide occupational dose estimates for the License Application. The calculations contained in this document were developed by Environmental and Nuclear Engineering of the Design and Engineering Organization and are intended solely for the use of the Design and Engineering Organization in its work regarding facility operation. Yucca Mountain Project personnel from the Environmental and Nuclear Engineering should be consulted before use of the calculations for purposes other than those stated herein or use by individuals other than authorized personnel in Environmental and Nuclear Engineering.

R.L. Thacker

2005-03-24T23:59:59.000Z

465

Comparative study of GaN mesa etch characteristics in Cl{sub 2} based inductively coupled plasma with Ar and BCl{sub 3} as additive gases  

SciTech Connect (OSTI)

GaN thin film etching is investigated and compared for mesa formation in inductively coupled plasma (ICP) of Cl{sub 2} with Ar and BCl{sub 3} gas additives using photoresist mask. Etch characteristics are studied as a function of ICP process parameters, viz., ICP power, radio frequency (RF) power, and chamber pressure at fixed total flow rate. The etch rate at each ICP/RF power is 0.1–0.2??m/min higher for Cl{sub 2}/Ar mixture mainly due to higher Cl dissociation efficiency of Ar additive that readily provides Cl ion/radical for reaction in comparison to Cl{sub 2}/BCl{sub 3} mixture. Cl{sub 2}/Ar mixture also leads to better photoresist mask selectivity. The etch-induced roughness is investigated using atomic force microscopy. Cl{sub 2}/Ar etching has resulted in lower root-mean-square roughness of GaN etched surface in comparison to Cl{sub 2}/BCl{sub 3} etching due to increased Ar ion energy and flux with ICP/RF power that enhances the sputter removal of etch product. The GaN surface damage after etching is also evaluated using room temperature photoluminescence and found to be increasing with ICP/RF power for both the etch chemistries with higher degree of damage in Cl{sub 2}/BCl{sub 3} etching under same condition.

Rawal, Dipendra Singh, E-mail: dsrawal15@gmail.com; Arora, Henika; Sehgal, Bhupender Kumar; Muralidharan, Rangarajan [Solid State Physics Laboratory, Lucknow Road, Timarpur, Delhi-110054 (India)

2014-05-15T23:59:59.000Z

466

Compression part of Egan Hub facility`s expansion  

SciTech Connect (OSTI)

Egan Hub Partners, L.P. (EHP), a subsidiary of Market Hub Partners (MHP), is the owner and operator of the Egan Hub Partners gas storage facility located near the town of Evangeline in south Louisiana. Located on the Jennings salt dome, EHP provides high-deliverability (injection and/or withdrawal capabilities on demand) salt storage, giving its customers rapid response to market fluctuation and demand. In addition to long-term storage contracts, EHP offers natural gas hub services using interruptible storage entitlements and multiple pipeline interchange flexibility. Hub services include wheeling, parking, loaning and balancing. The EHP facility was put into service in September 1995. EHP just completed the installation of a fourth compressor unit. This is the second unit to be put in service at the facility this year and is identical to the previous one. Hanover Compression packaged both units which consist of a Caterpillar G-3616 engine (4,450 hp) and an Ariel JGC-6 compressor. The units are configured to accommodate the wide operating range encountered at a natural gas salt dome storage facility and are designed to operate with a suction range of 600--900 psi and a discharge range of 800--3,000 psi.

NONE

1997-11-01T23:59:59.000Z

467

Tandem mirror technology demonstration facility  

SciTech Connect (OSTI)

This report describes a facility for generating engineering data on the nuclear technologies needed to build an engineering test reactor (ETR). The facility, based on a tandem mirror operating in the Kelley mode, could be used to produce a high neutron flux (1.4 MW/M/sup 2/) on an 8-m/sup 2/ test area for testing fusion blankets. Runs of more than 100 h, with an average availability of 30%, would produce a fluence of 5 mW/yr/m/sup 2/ and give the necessary experience for successful operation of an ETR.

Not Available

1983-10-01T23:59:59.000Z

468

Status of the GRANIT facility  

E-Print Network [OSTI]

The GRANIT facility is a follow-up project, which is motivated by the recent discovery of gravitational quantum states of ultracold neutrons. The goal of the project is to approach the ultimate accuracy in measuring parameters of such quantum states and also to apply this phenomenon and related experimental techniques to a broad range of applications in particle physics as well as in surface and nanoscience studies. We overview the current status of this facility, the recent test measurements and the nearest prospects.

Damien Roulier; Francis Vezzu; Stefan Baessler; Benoît Clément; Daniel Morton; Valery Nesvizhevsky; Guillaume Pignol; Dominique Rebreyend

2014-10-06T23:59:59.000Z

469

Nuclear Facilities | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartment of Energy Advanced1, 2014Nuclear Facilities Nuclear Facilities

470

Facility Engineering | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicy andExsolutionFES6FY 2011Facility Engineering Facility Engineering

471

Facility Security Officer Contractor Toolcart  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicy andExsolutionFES6FY 2011Facility EngineeringFacilityFSO

472

Facility Security Officer Contractor Toolcart  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicy andExsolutionFES6FY 2011Facility EngineeringFacilityFSOFlowdown

473

Weapons engineering tritium facility overview  

SciTech Connect (OSTI)

Materials provide an overview of the Weapons Engineering Tritium Facility (WETF) as introductory material for January 2011 visit to SRS. Purpose of the visit is to discuss Safety Basis, Conduct of Engineering, and Conduct of Operations. WETF general description and general GTS program capabilities are presented in an unclassified format.

Najera, Larry [Los Alamos National Laboratory

2011-01-20T23:59:59.000Z

474

Fusion Test Facilities John Sheffield  

E-Print Network [OSTI]

Fusion Test Facilities John Sheffield ISSE - University of Tennessee FPA meeting Livermore December Stambaugh, and their colleagues #12;Destructive Testing · It is common practice to test engineered components to destruction prior to deployment of a system e.g., - Automobile crash tests - Airplane wing

475

Program of Study Lab Facilities  

E-Print Network [OSTI]

Program of Study Lab Facilities Financial Aid Applying Individuals in all areas of private of commercial, on- profit and government settings. While the market-place demand for students with graduate courses taught within Business, Computer Science, Education, Electrical and Computer Engineering

Thomas, Andrew

476

Fusion Nuclear Science Facility (FNSF)  

E-Print Network [OSTI]

Fusion Nuclear Science Facility (FNSF) ­ Motivation, Role, Required Capabilities YK Martin Peng;1 Managed by UT-Battelle for the Department of Energy Example: fusion nuclear-nonnuclear coupling effects-composites; Nano-structure alloy; PFC designs, etc. · Nuclear-nonnuclear coupling in PFC: - Plasma ion flux induces

477

Magnetic Resonance Facility (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet provides information about Magnetic Resonance Facility capabilities and applications at NREL's National Bioenergy Center. Liquid and solid-state analysis capability for a variety of biomass, photovoltaic, and materials characterization applications across NREL. NREL scientists analyze solid and liquid samples on three nuclear magnetic resonance (NMR) spectrometers as well as an electron paramagnetic resonance (EPR) spectrometer.

Not Available

2012-03-01T23:59:59.000Z

478

DMBC: Introductions ATLAS Building Facilities  

E-Print Network [OSTI]

DMBC: Introductions ATLAS Building Facilities 3rd Floor - Film Editing Bays (South Hallway://tam.colorado.edu/checkout.php · ATLAS Building: Main Office (Room 223) · Checkout times: M-F, 1:00pm - 4:00pm Redwood Server Access it running. o Once connected, you may log into the Redwood server from off campus. File Management ATLAS

Stowell, Michael

479

December 2010 FACILITIES & PROPERTY MANAGEMENT  

E-Print Network [OSTI]

and water management and issued our Sustainability Specification for construction projects. The CollegeDecember 2010 FACILITIES & PROPERTY MANAGEMENT CARBON MANAGEMENT AND SUSTAINABILITY ACTIVITIES REPORT 2009/10 #12;Contents Page · Introduction 1 · Carbon and Energy Management 3 · Waste and Recycling

480

COMPARATIVE MEDICINE LABORATORY ANIMAL FACILITIES  

E-Print Network [OSTI]

4.A.7 COMPARATIVE MEDICINE LABORATORY ANIMAL FACILITIES STANDARD OPERATING PROCEDURES LUNAR PIXIMUS MACHINE 1.0 Purpose This procedure outlines precautions, maintenance and use of the Lunar PIXImus Machine housed in room 310 BEB. 2.0 Scope This procedure applies to all CMLAF and principal investigator staff. 3

Krovi, Venkat

Note: This page contains sample records for the topic "facility gan m1" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

COMPARATIVE MEDICINE LABORATORY ANIMAL FACILITIES  

E-Print Network [OSTI]

5.A.4 COMPARATIVE MEDICINE LABORATORY ANIMAL FACILITIES STANDARD OPERATING PROCEDURE for CRITICAL Plant and maintenance personnel as well as CMLAF personnel that will be notified. 3.0 Procedure ALARM RESPONSE PROCEDURE FOR CHILLED WATER PLANT 1.0 Purpose: This SOP outlines the procedure

Krovi, Venkat

482

Army Regulation 4201 Facilities Engineering  

E-Print Network [OSTI]

and management, mil- itary construction program development and execution, master planning, utilities services of the United States for use by the National Guard; single project-owned or leased civil works facilities as tenants when support is provided by another government agency. In areas outside the United States, Status

US Army Corps of Engineers

483

Temperature-dependent Raman and ultraviolet photoelectron spectroscopy studies on phase transition behavior of VO{sub 2} films with M1 and M2 phases  

SciTech Connect (OSTI)

Structural and electronic phase transitions behavior of two polycrystalline VO{sub 2} films, one with pure M1 phase and the other with pure M2 phase at room temperature, were investigated by temperature-controlled Raman spectroscopy and ultraviolet photoelectron spectroscopy (UPS). We observed characteristic transient dynamics in which the Raman modes at 195?cm{sup ?1} (V-V vibration) and 616?cm{sup ?1} (V-O vibration) showed remarkable hardening along the temperature in M1 phase film, indicating the rearrangements of V-V pairs and VO{sub 6} octahedra. It was also shown that the M1 Raman mode frequency approached those of invariant M2 peaks before entering rutile phase. In UPS spectra with high energy resolution of 0.03?eV for the M2 phase film, narrower V{sub 3d} band was observed together with smaller gap compared to those of M1 phase film, supporting the nature of Mott insulator of M2 phase even in the polycrystalline film. Cooperative behavior of lattice rearrangements and electronic phase transition was suggested for M1 phase film.

Okimura, Kunio, E-mail: okifn@keyaki.cc.u-tokai.ac.jp; Hanis Azhan, Nurul [Graduate School of Engineering, Tokai University, Hiratsuka 259-1292 (Japan); Hajiri, Tetsuya [UVSOR Facility, Institute for Molecular Science, Okazaki 444-8585 (Japan); Graduate School of Engineering, Nagoya University, Nagoya 464-8603 (Japan); Kimura, Shin-ichi [UVSOR Facility, Institute for Molecular Science, Okazaki 444-8585 (Japan); Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871 (Japan); Zaghrioui, Mustapha; Sakai, Joe [GREMAN, UMR 7347 CNRS, Université François Rabelais de Tours, Parc de Grandmont, 37200 Tours (France)

2014-04-21T23:59:59.000Z

484

Section 6 -Facilities Usage and Maintenance A. Facilities Usage and Maintenance  

E-Print Network [OSTI]

Section 6 - Facilities Usage and Maintenance A. Facilities Usage and Maintenance 1 be held financially responsible. Financial responsibility extends to abandoned belongings, excessive is not permitted under any circumstances. Storage facilities are provided in most student housing units for storing

Pantaleone, Jim

485

CHROMOSPHERIC EVAPORATION IN AN M1.8 FLARE OBSERVED BY THE EXTREME-ULTRAVIOLET IMAGING SPECTROMETER ON HINODE  

SciTech Connect (OSTI)

We discuss observations of chromospheric evaporation for a complex flare that occurred on 2012 March 9 near 03:30 UT obtained from the Extreme-ultraviolet Imaging Spectrometer (EIS) on board the Hinode spacecraft. This was a multiple event with a strong energy input that reached the M1.8 class when observed by EIS. EIS was in raster mode and fortunately the slit was almost at the exact location of a significant energy input. Also, EIS obtained a full-CCD spectrum of the flare, i.e., the entire CCD was readout so that data were obtained for about the 500 lines identified in the EIS wavelength ranges. Chromospheric evaporation characterized by 150-200 km s{sup -1} upflows was observed in multiple locations in multi-million degree spectral lines of flare ions such as Fe XXII, Fe XXIII, and Fe XXIV, with simultaneous 20-60 km s{sup -1} upflows in million degree coronal lines from ions such as Fe XII-Fe XVI. The behavior of cooler, transition region ions such as O VI, Fe VIII, He II, and Fe X is more complex, but upflows were also observed in Fe VIII and Fe X lines. At a point close to strong energy input in space and time, the flare ions Fe XXII, Fe XXIII, and Fe XXIV reveal an isothermal source with a temperature close to 14 MK and no strong blueshifted components. At this location there is a strong downflow in cooler active region lines from ions such as Fe XIII and Fe XIV, on the order of 200 km s{sup -1}. We speculate that this downflow may be evidence of the downward shock produced by reconnection in the current sheet seen in MHD simulations. A sunquake also occurred near this location. Electron densities were obtained from density sensitive lines ratios from Fe XIII and Fe XIV. Atmospheric Imaging Assembly (AIA) observations from the Solar Dynamics Observatory are used with JHelioviewer to obtain a qualitative overview of the flare. However, AIA data are not presented in this paper. In summary, spectroscopic data from EIS are presented that can be used for predictive tests of models of chromospheric evaporation as envisaged in the Standard Flare Model.

Doschek, G. A.; Warren, H. P. [Space Science Division, Naval Research Laboratory, Washington, DC 20375 (United States)] [Space Science Division, Naval Research Laboratory, Washington, DC 20375 (United States); Young, P. R. [College of Science, George Mason University, 4400 University Drive, Fairfax, VA 22030 (United States)] [College of Science, George Mason University, 4400 University Drive, Fairfax, VA 22030 (United States)

2013-04-10T23:59:59.000Z

486

08.01.01.M1.02 Investigation and Resolution of Complaints Against Faculty Members for Illegal Discrimination, Sexual Harassment, or Related Retaliation Charges Page 1 of 5  

E-Print Network [OSTI]

a discrimination, sexual harassment or related retaliation complaint as provided by University Rule 08.01.01.M1. 1

Behmer, Spencer T.

487

Diversion scenarios in an aqueous reprocessing facility  

E-Print Network [OSTI]

The International Atomic Energy Agency requires nuclear facilities around the world to abide by heavily enforced safeguards to prevent proliferation. Nuclear fuel reprocessing facilities are designed to be proliferation-resistant ...

Calderón, Lindsay Lorraine

2009-01-01T23:59:59.000Z

488

Massachusetts Hazardous Waste Facility Siting Act (Massachusetts)  

Broader source: Energy.gov [DOE]

This Act establishes the means by which developers of proposed hazardous waste facilities will work with the community in which they wish to construct a facility. When the intent to construct,...

489

Energy Conversion and Transmission Facilities (South Dakota)  

Broader source: Energy.gov [DOE]

This legislation applies to energy conversion facilities designed for or capable of generating 100 MW or more of electricity, wind energy facilities with a combined capacity of 100 MW, certain...

490

Startup and Restart of Nuclear Facilities  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The order establishes the requirements for startup of new nuclear facilities and for the restart of existing nuclear facilities that have been shutdown. Cancels DOE 5480.31. Canceled by DOE O 425.1A.

1995-09-29T23:59:59.000Z

491

Startup and Restart of Nuclear Facilities  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To establish the requirements for startup of new nuclear facilities and for the restart of existing nuclear facilities that have been shut down. Cancels DOE O 425.1. Canceled by DOE O 425.1B.

1998-12-28T23:59:59.000Z

492

Functional Facilities Management Energy Management Structure  

E-Print Network [OSTI]

Functional Facilities Management Energy Management Structure Jerome Malmquist Director Erick Van Controls Systems Jeff Davis Assistant Director, Facilities Engineering & Energy Efficiency Gene Husted Principal Engineer / Commissioning Emily Robin-Abbott St. Paul Energy Engineer & Technicians Supervisor Dan

Gulliver, Robert

493

Nuclear Facility Construction - Structural Concrete, May 29,...  

Broader source: Energy.gov (indexed) [DOE]

Nuclear Facility Construction - Structural Concrete, May 29, 2009 (HSS CRAD 64-15, Rev. 0) Nuclear Facility Construction - Structural Concrete, May 29, 2009 (HSS CRAD 64-15, Rev....

494

HIGHER EDUCATION FACILITIES MANAGEMENT: READY FOR INTERNATIONALIZATION?  

E-Print Network [OSTI]

The last ten years has seen dramatic growth in Facilities Management (FM) activities worldwide, including Malaysia. Facilities Management is responsible for coordinating all efforts related to planning, designing and managing physical structure...

Aizuddin, N.; Yahya, M.

495

Great Lakes Steel -- PCI facility  

SciTech Connect (OSTI)

This paper discusses the planning, design, and start-up of the 90 tph PCI facility for National Steel`s Great Lakes Steel Division in River Rouge, MI. This project is owned and operated by Edison Energy Services, and was implemented on a fast-track basis by Raytheon Engineers and Constructors, Babcock Material Handling, and Babcock and Wilcox. This paper presents important process issues, basic design criteria, an the challenges of engineering and building a state-of-the-art PCI facility in two existing plants. Pulverized coal is prepared at the River Rouge Power Plant of Detroit Edison, is pneumatically conveyed 6,000 feet to a storage silo at Great Lakes Steel, and is injected into three blast furnaces.

Eichinger, F.T. [BMH Claudius Peters AG, Buxtehude (Germany); Dake, S.H.; Wagner, E.D.; Brown, G.S. [Raytheon Engineers and Constructors, Pittsburgh, PA (United States)

1997-12-31T23:59:59.000Z

496

High Exposure Facility Technical Description  

SciTech Connect (OSTI)

The High Exposure Facility is a collimated high-level gamma irradiator that is located in the basement of the 318 building. It was custom developed by PNNL back in 1982 to meet the needs for high range radiological instrument calibrations and dosimeter irradiations. At the time no commercially available product existed that could create exposure rates up to 20,000 R/h. This document is intended to pass on the design criteria that was employed to create this unique facility, while maintaining compliance with ANSI N543-1974, "General Safety Standard for Installations Using Non-Medical X-Ray and Sealed Gamma-Ray Sources, Energies up to 10 MeV."

Carter, Gregory L.; Stithem, Arthur R.; Murphy, Mark K.; Smith, Alex K.

2008-02-12T23:59:59.000Z

497

Hazard Baseline Downgrade Effluent Treatment Facility  

SciTech Connect (OSTI)

This Hazard Baseline Downgrade reviews the Effluent Treatment Facility, in accordance with Department of Energy Order 5480.23, WSRC11Q Facility Safety Document Manual, DOE-STD-1027-92, and DOE-EM-STD-5502-94. It provides a baseline grouping based on the chemical and radiological hazards associated with the facility. The Determination of the baseline grouping for ETF will aid in establishing the appropriate set of standards for the facility.

Blanchard, A.

1998-10-21T23:59:59.000Z

498

Safety of Accelerator Facilities - DOE Directives, Delegations...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Health, Environmental Protection, Facility Authorization, Safety The order defines accelerators and establishes accelerator specific safety requirements and approval authorities...

499

Heating National Ignition Facility, Realistic Financial Planning...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

DOEEIS-0236, Oakland Operations Office, National Ignition Facility Final Supplemental Environmental Impact Statement to the Stockpile Stewardship and Management Programmatic...

500

ASD Facility Hazard Analysis Document  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUCProductstwrmrAre the Effects of GlobalASCR User Facilities User