National Library of Energy BETA

Sample records for facility gan m1

  1. Ejercicios de Teoria de Numeros para las Navidades 2009 Problema 1. a) (facil) Demostrar que log m.c.m.{1, . . . , n} n.

    E-Print Network [OSTI]

    Cilleruelo, Javier

    Ejercicios de Teor´ia de N´umeros para las Navidades 2009 Problema 1. a) (f´acil) Demostrar que log m.c.m.{1, . . . , n} n. b) (dif´icil) Hallar el comportamiento asint´otico de log m.c.m.{1, 6

  2. ARM MJO Investigation Experiment on Gan Island (AMIE-Gan) Science Plan

    SciTech Connect (OSTI)

    Long, CL; Del Genio, A; Deng, M; Fu, X; Gustafson, W; Houze, R; Jakob, C; Jensen, M; Johnson, R; Liu, X; Luke, E; May, P; McFarlane, S; Minnis, P; Schumacher, C; Vogelmann, A; Wang, Y; Webster, P; Xie, S; Zhang, C

    2011-04-11

    The overarching campaign, which includes the ARM Mobile Facility 2 (AMF2) deployment in conjunction with the Dynamics of the Madden-Julian Oscillation (DYNAMO) and the Cooperative Indian Ocean experiment on intraseasonal variability in the Year 2011 (CINDY2011) campaigns, is designed to test several current hypotheses regarding the mechanisms responsible for Madden-Julian Oscillation (MJO) initiation and propagation in the Indian Ocean area. The synergy between the proposed AMF2 deployment with DYNAMO/CINDY2011, and the corresponding funded experiment on Manus, combine for an overarching ARM MJO Investigation Experiment (AMIE) with two components: AMF2 on Gan Island in the Indian Ocean (AMIE-Gan), where the MJO initiates and starts its eastward propagation; and the ARM Manus site (AMIE-Manus), which is in the general area where the MJO usually starts to weaken in climate models. AMIE-Gan will provide measurements of particular interest to Atmospheric System Research (ASR) researchers relevant to improving the representation of MJO initiation in climate models. The framework of DYNAMO/CINDY2011 includes two proposed island-based sites and two ship-based locations forming a square pattern with sonde profiles and scanning precipitation and cloud radars at both island and ship sites. These data will be used to produce a Variational Analysis data set coinciding with the one produced for AMIE-Manus. The synergy between AMIE-Manus and AMIE-Gan will allow studies of the initiation, propagation, and evolution of the convective cloud population within the framework of the MJO. As with AMIE-Manus, AMIE-Gan/DYNAMO also includes a significant modeling component geared toward improving the representation of MJO initiation and propagation in climate and forecast models. This campaign involves the deployment of the second, marine-capable, AMF; all of the included measurement systems; and especially the scanning and vertically pointing radars. The campaign will include sonde launches at a rate of eight per day for the duration of the deployment. The increased sonde launches for the entire period matches that of the AMIE-Manus campaign and makes possible a far more robust Variational Analysis forcing data set product for the entire campaign, and thus better capabilities for modeling studies and synergistic research using the data from both AMIE sites.

  3. M1 Year -Regular Curriculum ^

    E-Print Network [OSTI]

    Alford, Simon

    M1 Year - Regular Curriculum ^ Satisfactorily complete all requirements Pass at least 67% of weighted curriculum Take make-up exam(s) or approved summer course Satisfactorily complete all requirements ¹ Fail any requirement ² If No Previous Repeat Year Pass 40% to 66% of weighted curriculum * Students who

  4. K.K. Gan 1 Summary of Irradiation Activity

    E-Print Network [OSTI]

    Gan, K. K.

    K.K. Gan 1 Summary of Irradiation Activity September 22, 2010 K.K. Gan The Ohio State University with 300 MeV pions in August VCSEL/PIN Irradiation #12;K.K. Gan TWEPP2010 3 array VCSEL driver Chips Irradiation #12;K.K. Gan TWEPP2010 4 Infinicor SX+: participating institution: SMU

  5. US Department of Energy (DOE)/Gosatomnadzor (GAN) of Russia project at the Petersburg Nuclear Physics Institute (PNPI)

    SciTech Connect (OSTI)

    Baranov, I.A.; Konoplev, K.A. [Petersburg Nuclear Physics Institute, Gatchina (Russian Federation); Hauser, G.C. [Sandia National Lab., Albuquerque, NM (United States)] [and others

    1997-08-01

    This paper presents a summary of work accomplished within the scope of the DOE-Gosatomnadzor (GAN) Agreement to reduce vulnerability to theft of direct-use nuclear materials in Russia. The DOE-GAN agreement concerns the Russian Academy of Science B.P. Konstantinov Petersburg Nuclear Physics Institute (PNPI), located 45 kilometers from St. Petersburg. The PNPI operates facilities to research basic nuclear physics. Current world conditions require particular attention to the issue of Material Protection, Control, and Accounting (MPC&A) of nuclear materials. The long-term plan to increase security at the facility is outlined, including training, physical protection upgrades, and material control and accountability. 4 figs.

  6. Gruppindelning fr alla M1-studenter VT2015 Gller i samtliga M1-kurser och erstter hstens gruppindelning.

    E-Print Network [OSTI]

    .11 Knutar, Felix M1.17 Hogman, Oskar M1.04 Tagaeus, Vilhelm M1.11 Lundström, Alexander M1.17 Huber, Daniel M.12 Nilsson, Amanda M1.18 Lönnbratt, Rebecka M1.05 Barsne, Hugo M1.12 Nordgren, Pascal M1.18 Molin, Hanna M1

  7. GaN based nanorods for solid state lighting

    SciTech Connect (OSTI)

    Li Shunfeng; Waag, Andreas [Institute of Semiconductor Technology, Braunschweig University of Technology, 38106 Braunschweig (Germany)

    2012-04-01

    In recent years, GaN nanorods are emerging as a very promising novel route toward devices for nano-optoelectronics and nano-photonics. In particular, core-shell light emitting devices are thought to be a breakthrough development in solid state lighting, nanorod based LEDs have many potential advantages as compared to their 2 D thin film counterparts. In this paper, we review the recent developments of GaN nanorod growth, characterization, and related device applications based on GaN nanorods. The initial work on GaN nanorod growth focused on catalyst-assisted and catalyst-free statistical growth. The growth condition and growth mechanisms were extensively investigated and discussed. Doping of GaN nanorods, especially p-doping, was found to significantly influence the morphology of GaN nanorods. The large surface of 3 D GaN nanorods induces new optical and electrical properties, which normally can be neglected in layered structures. Recently, more controlled selective area growth of GaN nanorods was realized using patterned substrates both by metalorganic chemical vapor deposition (MOCVD) and by molecular beam epitaxy (MBE). Advanced structures, for example, photonic crystals and DBRs are meanwhile integrated in GaN nanorod structures. Based on the work of growth and characterization of GaN nanorods, GaN nanoLEDs were reported by several groups with different growth and processing methods. Core/shell nanoLED structures were also demonstrated, which could be potentially useful for future high efficient LED structures. In this paper, we will discuss recent developments in GaN nanorod technology, focusing on the potential advantages, but also discussing problems and open questions, which may impose obstacles during the future development of a GaN nanorod based LED technology.

  8. K.K. Gan Transmission Bandwidth 1 Results on Bandwidth Measurement

    E-Print Network [OSTI]

    Gan, K. K.

    K.K. Gan Transmission Bandwidth 1 Results on Bandwidth Measurement April 16, 2008 K.K, Gan The Ohio State University #12;K.K. Gan Transmission Bandwidth 2 Outline Transmission on micro-cables Transmission on TRT micro-cables Transmission on TRT HV micro-coaxs Summary #12;K.K. Gan Transmission

  9. GaN: Defect and Device Issues

    SciTech Connect (OSTI)

    Pearton, S.J.; Ren, F.; Shul, R.J.; Zolper, J.C.

    1998-11-09

    The role of extended and point defects, and key impurities such as C, O and H, on the electrical and optical properties of GaN is reviewed. Recent progress in the development of high reliability contacts, thermal processing, dry and wet etching techniques, implantation doping and isolation and gate insulator technology is detailed. Finally, the performance of GaN-based electronic and photonic devices such as field effect transistors, UV detectors, laser diodes and light-emitting diodes is covered, along with the influence of process-induced or grown-in defects and impurities on the device physics.

  10. Search for 14.4 keV solar axions emitted in the M1-transition of 57Fe nuclei with CAST

    E-Print Network [OSTI]

    CAST Collaboration; S. Andriamonje; S. Aune; D. Autiero; K. Barth; A. Belov; B. Beltrán; H. Bräuninger; J. M. Carmona; S. Cebrián; J. I. Collar; T. Dafni; M. Davenport; L. Di Lella; C. Eleftheriadis; J. Englhauser; G. Fanourakis; E. Ferrer-Ribas; H. Fischer; J. Franz; P. Friedrich; T. Geralis; I. Giomataris; S. Gninenko; H. Gómez; M. Hasinoff; F. H. Heinsius; D. H. H. Hoffmann; I. G. Irastorza; J. Jacoby; K. Jakov?i?; D. Kang; K. Königsmann; R. Kotthaus; M. Kr?mar; K. Kousouris; M. Kuster; B. Laki?; C. Lasseur; A. Liolios; A. Ljubi?i?; G. Lutz; G. Luzón; D. Miller; J. Morales; A. Ortiz; T. Papaevangelou; A. Placci; G. Raffelt; H. Riege; A. Rodríguez; J. Ruz; I. Savvidis; Y. Semertzidis; P. Serpico; L. Stewart; J. Vieira; J. Villar; J. Vogel; L. Walckiers; K. Zioutas

    2009-12-04

    We have searched for 14.4 keV solar axions or more general axion-like particles (ALPs), that may be emitted in the M1 nuclear transition of 57Fe, by using the axion-to-photon conversion in the CERN Axion Solar Telescope (CAST) with evacuated magnet bores (Phase I). From the absence of excess of the monoenergetic X-rays when the magnet was pointing to the Sun, we set model-independent constraints on the coupling constants of pseudoscalar particles that couple to two photons and to a nucleon g_{a\\gamma} |-1.19 g_{aN}^{0}+g_{aN}^{3}|<1.36\\times 10^{-16} GeV^{-1} for m_{a}<0.03 eV at the 95% confidence level.

  11. M1 Energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas:Montezuma, Arizona:Oregon:Lowell Point,Massachusetts:Kansas:M1 Energy Jump to:

  12. 29.01.03.M1.15 Information Resources Physical Access Page 1 of 4 STANDARD ADMINISTRATIVE PROCEDURE

    E-Print Network [OSTI]

    29.01.03.M1.15 Information Resources ­ Physical Access Page 1 of 4 STANDARD ADMINISTRATIVE PROCEDURE 29.01.03.M1.15 Information Resources ­ Physical Security Approved July 18, 2005 Revised February to information resource facilities is extremely important to an overall security program. Therefore, the purpose

  13. The Classification of M1-78

    E-Print Network [OSTI]

    G. T. Gussie

    1994-09-15

    The published properties of M1-78 are discussed with the purpose to resolve the object's classification as either a planetary nebula or an ultracompact HII region. A classification as a planetary nebula is rejected primarily because of the high luminosity of the object, but because of the chemical composition and expansion velocity of the nebula, a novel classification is proposed instead: that of an ultracompact HII region with a post-main sequence central star (possibly a WN star). It must therefore follow that observable ultracompact HII regions persist beyond the main sequence lifetimes of at least some massive stars, and so cannot be transient phenomena that are seen only during pre-main sequence or early main sequence evolution.

  14. Part I--Mechanics J02M.1--Flapping Toy J02M.1--Flapping Toy

    E-Print Network [OSTI]

    Petta, Jason

    /B of the electric and magnetic fields, and the impedance Z = V (z, t)/I(z, t) of the transmission line where I(z, t, (ii) m = 0, and (iii) m/M 1? #12;Part II--E & M J02E.1--Coaxial Transmission Line J02E.1--Coaxial Transmission Line Problem An infinitely long coaxial transmission line made from perfect conductors lies along

  15. Conductivity based on selective etch for GaN devices and applications thereof

    DOE Patents [OSTI]

    Zhang, Yu; Sun, Qian; Han, Jung

    2015-12-08

    This invention relates to methods of generating NP gallium nitride (GaN) across large areas (>1 cm.sup.2) with controlled pore diameters, pore density, and porosity. Also disclosed are methods of generating novel optoelectronic devices based on porous GaN. Additionally a layer transfer scheme to separate and create free-standing crystalline GaN thin layers is disclosed that enables a new device manufacturing paradigm involving substrate recycling. Other disclosed embodiments of this invention relate to fabrication of GaN based nanocrystals and the use of NP GaN electrodes for electrolysis, water splitting, or photosynthetic process applications.

  16. Ferromagnetism in undoped One-dimensional GaN Nanowires

    SciTech Connect (OSTI)

    Jeganathan, K. E-mail: jagan@physics.bdu.ac.in; Purushothaman, V.; Debnath, R.; Arumugam, S.

    2014-05-15

    We report an intrinsic ferromagnetism in vertical aligned GaN nanowires (NW) fabricated by molecular beam epitaxy without any external catalyst. The magnetization saturates at ?0.75 × emu/gm with the applied field of 3000 Oe for the NWs grown under the low-Gallium flux of 2.4 × 10{sup ?8} mbar. Despite a drop in saturation magnetization, narrow hysteresis loop remains intact regardless of Gallium flux. Magnetization in vertical standing GaN NWs is consistent with the spectral analysis of low-temperature photoluminescence pertaining to Ga-vacancies associated structural defects at the nanoscale.

  17. Highly transparent ammonothermal bulk GaN substrates

    SciTech Connect (OSTI)

    Jiang, WK; Ehrentraut, D; Downey, BC; Kamber, DS; Pakalapati, RT; Do Yoo, H; D'Evelyn, MP

    2014-10-01

    A novel apparatus has been employed to grow ammonothermal (0001) gallium nitride (GaN) with diameters up to 2 in The crystals have been characterized by x-ray diffraction rocking-curve (XRC) analysis, optical and scanning electron microscopy (SEM), cathodoluminescence (CL), and optical spectroscopy. High crystallinity GaN with FWHM values about 20-50 arcsec and dislocation densities below 1 x 10(5) cm(-2) have been obtained. High optical transmission was achieved with an optical absorption coefficient below 1 cm(-1) at a wavelength of 450 nm. (C) 2014 Elsevier B.V. All rights reserved.

  18. Mission hazard assessment for STARS Mission 1 (M1) in the Marshall Islands area

    SciTech Connect (OSTI)

    Outka, D.E.; LaFarge, R.A.

    1993-07-01

    A mission hazard assessment has been performed for the Strategic Target System Mission 1 (known as STARS M1) for hazards due to potential debris impact in the Marshall Islands area. The work was performed at Sandia National Laboratories as a result of discussion with Kwajalein Missile Range (KMR) safety officers. The STARS M1 rocket will be launched from the Kauai Test Facility (KTF), Hawaii, and deliver two payloads to within the viewing range of sensors located on the Kwajalein Atoll. The purpose of this work has been to estimate upper bounds for expected casualty rates and impact probability or the Marshall Islands areas which adjoin the STARS M1 instantaneous impact point (IIP) trace. This report documents the methodology and results of the analysis.

  19. Properties of H, O and C in GaN

    SciTech Connect (OSTI)

    Pearton, S.J.; Abernathy, C.R.; Lee, J.W.

    1996-04-01

    The electrical properties of the light ion impurities H, O and C in GaN have been examined in both as-grown and implanted material. H is found to efficiently passivate acceptors such as Mg, Ca and C. Reactivation occurs at {ge} 450 C and is enhanced by minority carrier injection. The hydrogen does not leave the GaN crystal until > 800 C, and its diffusivity is relatively high ({approximately} 10{sup {minus}11} cm{sup 2}/s) even at low temperatures (< 200 C) during injection by wet etching, boiling in water or plasma exposure. Oxygen shows a low donor activation efficiency when implanted into GaN, with an ionization level of 30--40 meV. It is essentially immobile up to 1,100 C. Carbon can produce low p-type levels (3 {times} 10{sup 17} cm{sup {minus}3}) in GaN during MOMBE, although there is some evidence it may also create n-type conduction in other nitrides.

  20. Luminescence properties of defects in GaN

    SciTech Connect (OSTI)

    Reshchikov, Michael A.; Morkoc, Hadis [Department of Electrical Engineering and Physics Department, Virginia Commonwealth University, Richmond, Virginia 23284 (United States)

    2005-03-15

    Gallium nitride (GaN) and its allied binaries InN and AIN as well as their ternary compounds have gained an unprecedented attention due to their wide-ranging applications encompassing green, blue, violet, and ultraviolet (UV) emitters and detectors (in photon ranges inaccessible by other semiconductors) and high-power amplifiers. However, even the best of the three binaries, GaN, contains many structural and point defects caused to a large extent by lattice and stacking mismatch with substrates. These defects notably affect the electrical and optical properties of the host material and can seriously degrade the performance and reliability of devices made based on these nitride semiconductors. Even though GaN broke the long-standing paradigm that high density of dislocations precludes acceptable device performance, point defects have taken the center stage as they exacerbate efforts to increase the efficiency of emitters, increase laser operation lifetime, and lead to anomalies in electronic devices. The point defects include native isolated defects (vacancies, interstitial, and antisites), intentional or unintentional impurities, as well as complexes involving different combinations of the isolated defects. Further improvements in device performance and longevity hinge on an in-depth understanding of point defects and their reduction. In this review a comprehensive and critical analysis of point defects in GaN, particularly their manifestation in luminescence, is presented. In addition to a comprehensive analysis of native point defects, the signatures of intentionally and unintentionally introduced impurities are addressed. The review discusses in detail the characteristics and the origin of the major luminescence bands including the ultraviolet, blue, green, yellow, and red bands in undoped GaN. The effects of important group-II impurities, such as Zn and Mg on the photoluminescence of GaN, are treated in detail. Similarly, but to a lesser extent, the effects of other impurities, such as C, Si, H, O, Be, Mn, Cd, etc., on the luminescence properties of GaN are also reviewed. Further, atypical luminescence lines which are tentatively attributed to the surface and structural defects are discussed. The effect of surfaces and surface preparation, particularly wet and dry etching, exposure to UV light in vacuum or controlled gas ambient, annealing, and ion implantation on the characteristics of the defect-related emissions is described.

  1. Structural defects in GaN revealed by Transmission Electron Microscopy

    SciTech Connect (OSTI)

    Liliental-Weber, Zuzanna

    2014-04-18

    This paper reviews the various types of structural defects observed by Transmission Electron Microscopy in GaN heteroepitaxial layers grown on foreign substrates and homoepitaxial layers grown on bulk GaN substrates. The structural perfection of these layers is compared to the platelet self-standing crystals grown by High Nitrogen Pressure Solution. Defects in undoped and Mg doped GaN are discussed. Some models explaining the formation of inversion domains in heavily Mg doped layers that are possible defects responsible for the difficulties of p-doping in GaN are also reviewed.

  2. Metal contacts on ZnSe and GaN

    SciTech Connect (OSTI)

    Duxstad, K J [Univ. of California, Berkeley, CA (United States). Materials Science and Mineral Engineering

    1997-05-01

    Recently, considerable interest has been focused on the development of blue light emitting materials and devices. The focus has been on GaN and ZnSe, direct band gap semiconductors with bands gaps of 3.4 and 2.6 eV, respectively. To have efficient, reliable devices it is necessary to have thermally and electrically stable Ohmic contacts. This requires knowledge of the metal-semiconductor reaction behavior. To date few studies have investigated this behavior. Much information has accumulated over the years on the behavior of metals on Si and GaAs. This thesis provides new knowledge for the more ionic wide band gap semiconductors. The initial reaction temperatures, first phases formed, and phase stability of Pt, Pd, and Ni on both semiconductors were investigated. The reactions of these metals on ZnSe and GaN are discussed in detail and correlated with predicted behavior. In addition, comparisons are made between these highly ionic semiconductors and Si and GaAs. The trends observed here should also be applicable to other II-VI and III-Nitride semiconductor systems, while the information on phase formation and stability should be useful in the development of contacts for ZnSe and GaN devices.

  3. ARM - News from the Gan Island Deployment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Comments?govInstrumentsnoaacrnBarrow, Alaska OutreachCalendar NSA Related Links FacilitiesNewsMedia

  4. K.K. Gan 1 Building New Opto-boards by 2012?

    E-Print Network [OSTI]

    Gan, K. K.

    K.K. Gan 1 Building New Opto-boards by 2012? August 3, 2010 K.K. Gan The Ohio State University #12 to fabricate prototype BeO boards by vendor 2 weeks for passive components mounting 2 weeks to fabricate/test new boards 8 weeks to fabricate production BeO boards by vendor 2 weeks for passive components

  5. Inversion of wurtzite GaN(0001) by exposure to V. Ramachandran and R. M. Feenstra

    E-Print Network [OSTI]

    Feenstra, Randall

    in the growth rate of GaN on different crystallographic planes [8], pointing to a surfactant effect of Mg on Ga in these films and the carrier concentration was therefore very low [1,2]; dopant activa- tion can be achieved of Mg at GaN growth temperatures is an issue and dopant in- corporation may be rather inefficient [5

  6. This invention relates to methods of generating NP gallium nitride (GaN) across large areas (>1 cm.sup.2) with controlled pore diameters, pore density, and porosity. Also disclosed are methods of generating novel optoelectronic devices based on porous GaN. Additionally a layer transfer scheme to separate and create free-standing crystalline GaN thin layers is disclosed that enables a new device manufacturing paradigm involving substrate recycling. Other disclosed embodiments of this invention relate to fabrication of GaN based nanocrystals and the use of NP GaN electrodes for electrolysis, water splitting, or photosynthetic process applications.

    DOE Patents [OSTI]

    Zhang, Yu; Sun, Qian; Han, Jung

    2015-12-08

    This invention relates to methods of generating NP gallium nitride (GaN) across large areas (>1 cm.sup.2) with controlled pore diameters, pore density, and porosity. Also disclosed are methods of generating novel optoelectronic devices based on porous GaN. Additionally a layer transfer scheme to separate and create free-standing crystalline GaN thin layers is disclosed that enables a new device manufacturing paradigm involving substrate recycling. Other disclosed embodiments of this invention relate to fabrication of GaN based nanocrystals and the use of NP GaN electrodes for electrolysis, water splitting, or photosynthetic process applications.

  7. Chromatin Ionic Atmosphere Analyzed by a Mesoscale Electrostatic Hin Hark Gan

    E-Print Network [OSTI]

    Schlick, Tamar

    Chromatin Ionic Atmosphere Analyzed by a Mesoscale Electrostatic Approach Hin Hark Gan and Tamar an electrostatic model to handle multivalent ions and compute the ionic distribution around a mesoscale chromatin

  8. Millimeter-wave GaN high electron mobility transistors and their integration with silicon electronics

    E-Print Network [OSTI]

    Chung, Jinwook W. (Jinwook Will)

    2011-01-01

    In spite of the great progress in performance achieved during the last few years, GaN high electron mobility transistors (HEMTs) still have several important issues to be solved for millimeter-wave (30 ~ 300 GHz) applications. ...

  9. Porous GaN nanowires synthesized using thermal chemical vapor deposition

    E-Print Network [OSTI]

    Kim, Bongsoo

    nanotube-confined reaction [4], arc discharge [5], laser ablation [6], sublimation [7], pyrolysis [8O3)/ carbons with NH3 produced the large-quantity porous GaN nanowires on the iron (Fe)/nickel (Ni

  10. Light extraction in individual GaN nanowires on Si for LEDs

    E-Print Network [OSTI]

    Zhou, Xiang

    GaN-based nanowires hold great promise for solid state lighting applications because of their waveguiding properties and the ability to grow nonpolar GaN nanowire-based heterostructures, which could lead to increased light ...

  11. Low temperature thin film transistors with hollow cathode plasma-assisted atomic layer deposition based GaN channels

    SciTech Connect (OSTI)

    Bolat, S. E-mail: aokyay@ee.bilkent.edu.tr; Tekcan, B.; Ozgit-Akgun, C.; Biyikli, N.; Okyay, A. K. E-mail: aokyay@ee.bilkent.edu.tr

    2014-06-16

    We report GaN thin film transistors (TFT) with a thermal budget below 250?°C. GaN thin films are grown at 200?°C by hollow cathode plasma-assisted atomic layer deposition (HCPA-ALD). HCPA-ALD-based GaN thin films are found to have a polycrystalline wurtzite structure with an average crystallite size of 9.3?nm. TFTs with bottom gate configuration are fabricated with HCPA-ALD grown GaN channel layers. Fabricated TFTs exhibit n-type field effect characteristics. N-channel GaN TFTs demonstrated on-to-off ratios (I{sub ON}/I{sub OFF}) of 10{sup 3} and sub-threshold swing of 3.3?V/decade. The entire TFT device fabrication process temperature is below 250?°C, which is the lowest process temperature reported for GaN based transistors, so far.

  12. ISIS Facility: Facility Design Challenges

    E-Print Network [OSTI]

    McDonald, Kirk

    ISIS Facility: Facility Design Challenges Matt Fletcher Head, Design Division ISIS Department, FNAL #12;ISIS -- neutrons Diamond -- X-rays #12;#12;· Lifetime · Reliable Operation · Flexibility

  13. GaN Initiative for Grid Applications (GIGA)

    SciTech Connect (OSTI)

    Turner, George

    2015-07-03

    For nearly 4 ½ years, MIT Lincoln Laboratory (MIT/LL) led a very successful, DoE-funded team effort to develop GaN-on-Si materials and devices, targeting high-voltage (>1 kV), high-power, cost-effective electronics for grid applications. This effort, called the GaN Initiative for Grid Applications (GIGA) program, was initially made up of MIT/LL, the MIT campus group of Prof. Tomas Palacios (MIT), and the industrial partner M/A Com Technology Solutions (MTS). Later in the program a 4th team member was added (IQE MA) to provide commercial-scale GaN-on-Si epitaxial materials. A basic premise of the GIGA program was that power electronics, for ubiquitous utilization -even for grid applications - should be closer in cost structure to more conventional Si-based power electronics. For a number of reasons, more established GaN-on-SiC or even SiC-based power electronics are not likely to reach theses cost structures, even in higher manufacturing volumes. An additional premise of the GIGA program was that the technical focus would be on materials and devices suitable for operating at voltages > 1 kV, even though there is also significant commercial interest in developing lower voltage (< 1 kV), cost effective GaN-on-Si devices for higher volume applications, like consumer products. Remarkable technical progress was made during the course of this program. Advances in materials included the growth of high-quality, crack-free epitaxial GaN layers on large-diameter Si substrates with thicknesses up to ~5 ?m, overcoming significant challenges in lattice mismatch and thermal expansion differences between Si and GaN in the actual epitaxial growth process. Such thick epilayers are crucial for high voltage operation of lateral geometry devices such as Schottky barrier (SB) diodes and high electron mobility transistors (HEMTs). New “Normally-Off” device architectures were demonstrated – for safe operation of power electronics circuits. The trade-offs between lateral and vertical devices were explored, with the conclusion that lateral devices are superior for fundamental thermal reasons, as well as for the demonstration of future generations of monolithic power circuits. As part of the materials and device investigations breakdown mechanisms in GaN-on-Si structures were fully characterized and effective electric field engineering was recognized as critical for achieving even higher voltage operation. Improved device contact technology was demonstrated, including the first gold-free metallizations (to enable processing in CMOS foundries) while maintaining low specific contact resistance needed for high-power operation and 5-order-of magnitude improvement in device leakage currents (essential for high power operation). In addition, initial GaN-on-Si epitaxial growth was performed on 8”/200 mm Si starting substrates.

  14. Nanostructural engineering of nitride nucleation layers for GaN substrate dislocation reduction.

    SciTech Connect (OSTI)

    Koleske, Daniel David; Lee, Stephen Roger; Lemp, Thomas Kerr; Coltrin, Michael Elliott; Cross, Karen Charlene; Thaler, Gerald

    2009-07-01

    With no lattice matched substrate available, sapphire continues as the substrate of choice for GaN growth, because of its reasonable cost and the extensive prior experience using it as a substrate for GaN. Surprisingly, the high dislocation density does not appear to limit UV and blue LED light intensity. However, dislocations may limit green LED light intensity and LED lifetime, especially as LEDs are pushed to higher current density for high end solid state lighting sources. To improve the performance for these higher current density LEDs, simple growth-enabled reductions in dislocation density would be highly prized. GaN nucleation layers (NLs) are not commonly thought of as an application of nano-structural engineering; yet, these layers evolve during the growth process to produce self-assembled, nanometer-scale structures. Continued growth on these nuclei ultimately leads to a fully coalesced film, and we show in this research program that their initial density is correlated to the GaN dislocation density. In this 18 month program, we developed MOCVD growth methods to reduce GaN dislocation densities on sapphire from 5 x 10{sup 8} cm{sup -2} using our standard delay recovery growth technique to 1 x 10{sup 8} cm{sup -2} using an ultra-low nucleation density technique. For this research, we firmly established a correlation between the GaN nucleation thickness, the resulting nucleation density after annealing, and dislocation density of full GaN films grown on these nucleation layers. We developed methods to reduce the nuclei density while still maintaining the ability to fully coalesce the GaN films. Ways were sought to improve the GaN nuclei orientation by improving the sapphire surface smoothness by annealing prior to the NL growth. Methods to eliminate the formation of additional nuclei once the majority of GaN nuclei were developed using a silicon nitride treatment prior to the deposition of the nucleation layer. Nucleation layer thickness was determined using optical reflectance and the nucleation density was determined using atomic force microscopy (AFM) and Nomarski microscopy. Dislocation density was measured using X-ray diffraction and AFM after coating the surface with silicon nitride to delineate all dislocation types. The program milestone of producing GaN films with dislocation densities of 1 x 10{sup 8} cm{sup -2} was met by silicon nitride treatment of annealed sapphire followed by the multiple deposition of a low density of GaN nuclei followed by high temperature GaN growth. Details of this growth process and the underlying science are presented in this final report along with problems encountered in this research and recommendations for future work.

  15. Scanning Kelvin probe microscopy of surface electronic structure in GaN grown by hydride vapor phase epitaxy

    E-Print Network [OSTI]

    Yu, Edward T.

    Scanning Kelvin probe microscopy of surface electronic structure in GaN grown by hydride vapor Engineering and Program in Materials Science and Engineering, University of California at San Diego, La Jolla microscopy is used to image surface potential variations in GaN 0001 grown by hydride vapor phase epitaxy

  16. Thermal stability of amorphous GaN1-xAsx alloys A. X. Levander,1,2

    E-Print Network [OSTI]

    Wu, Junqiao

    Thermal stability of amorphous GaN1-xAsx alloys A. X. Levander,1,2 Z. Liliental-Weber,1 R. Broesler-MBE method.10 Theoretical work has pre- dicted that amorphous GaN could be a technologically useful technological potential, es- pecially in solar energy conversion devices. In this letter we investigate

  17. First-principles studies of beryllium doping of GaN Chris G. Van de Walle* and Sukit Limpijumnong

    E-Print Network [OSTI]

    First-principles studies of beryllium doping of GaN Chris G. Van de Walle* and Sukit Limpijumnong Received 12 October 2000; published 8 June 2001 The structural and electronic properties of beryllium acceptors, and between hydrogen and substitutional beryllium. The results for wurtzite GaN are compared

  18. Thermoelectric effects in wurtzite GaN and AlxGa1-xN alloys and Alexander A. Balandin

    E-Print Network [OSTI]

    Thermoelectric effects in wurtzite GaN and AlxGa1-xN alloys Weili Liua and Alexander A. Balandin have investigated theoretically the thermoelectric effects in wurtzite GaN crystals and AlxGa1-xN-based alloys may have some potential as thermoelectric materials at high temperature. It was found

  19. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1996-10-24

    Establishes facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation.

  20. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-11-16

    Establishes facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation.

  1. Optimising GaN (1122) hetero-epitaxial templates grown on (1010) sapphire

    E-Print Network [OSTI]

    Pristovsek, Markus; Frentrup, Martin; Han, Yisong; Humphreys, Colin J.

    2015-01-01

    N (112¯2) hetero-epitaxial templates grown on (101¯0) sapphire process was monitored with a two wavelength Laytec EpiTT reflectometer. Two different approaches have been used for the initial GaN buffer. One is a nucleation of GaN islands which were... annealed and overgrown. This approach is described in [2]. The other approach is AlN nucle- ation, which is performed at 5 kPa reactor pressure with a total flow of 21.7 litres/minute. First the re- actor is heated to 1060?C under hydrogen flow and 150 Pa...

  2. Ge doped GaN with controllable high carrier concentration for plasmonic applications

    SciTech Connect (OSTI)

    Kirste, Ronny; Hoffmann, Marc P.; Sachet, Edward; Bobea, Milena; Bryan, Zachary; Bryan, Isaac; Maria, Jon-Paul; Collazo, Ramón; Sitar, Zlatko [Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695-7919 (United States)] [Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695-7919 (United States); Nenstiel, Christian; Hoffmann, Axel [Institut f?r Festkörperphsyik, TU-Berlin, Hardenbergstrasse 36, 10623 Berlin (Germany)] [Institut f?r Festkörperphsyik, TU-Berlin, Hardenbergstrasse 36, 10623 Berlin (Germany)

    2013-12-09

    Controllable Ge doping in GaN is demonstrated for carrier concentrations of up to 2.4?×?10{sup 20} cm{sup ?3}. Low temperature luminescence spectra from the highly doped samples reveal band gap renormalization and band filling (Burstein-Moss shift) in addition to a sharp transition. Infrared ellipsometry spectra demonstrate the existence of electron plasma with an energy around 3500?cm{sup ?1} and a surface plasma with an energy around 2000?cm{sup ?1}. These findings open possibilities for the application of highly doped GaN for plasmonic devices.

  3. Part I -Mechanics M05M.1 -Vibration Damping With a Piston M05M.1 -Vibration Damping With a Piston

    E-Print Network [OSTI]

    Petta, Jason

    Part I - Mechanics M05M.1 - Vibration Damping With a Piston M05M.1 - Vibration Damping With a Piston Problem Sometimes it is required to reduce the influence of vertical floor vibration larger than atmospheric pressure. The pistons are typically equipped with a mechanism to dampen

  4. Learning Deep Sigmoid Belief Networks with Data Augmentation Zhe Gan Ricardo Henao David Carlson Lawrence Carin

    E-Print Network [OSTI]

    Carin, Lawrence

    Learning Deep Sigmoid Belief Networks with Data Augmentation Zhe Gan Ricardo Henao David Carlson Abstract Deep directed generative models are devel- oped. The multi-layered model is designed by stacking available datasets: MNIST, Caltech 101 Silhouettes and OCR letters. 1 Introduction The Deep Belief Network

  5. FOURIER COEFFICIENTS OF MODULAR FORMS ON G2 WEE TECK GAN, BENEDICT GROSS AND GORDAN SAVIN

    E-Print Network [OSTI]

    Gan, Wee Teck

    FOURIER COEFFICIENTS OF MODULAR FORMS ON G2 WEE TECK GAN, BENEDICT GROSS AND GORDAN SAVIN Abstract. We develop a theory of Fourier coefficients for modular forms on the split ex- ceptional group G2 on the group SL2(Z) is the wealth of information carried by the Fourier coefficients an(f), for n 0

  6. Atomic-scale studies on the growth of palladium and titanium on GaN(0001)

    E-Print Network [OSTI]

    Castell, Martin

    Atomic-scale studies on the growth of palladium and titanium on GaN(0001) C. No¨renberg a,b,*, M nitride; Palladium; Titanium; Alloys; Epitaxy; Metal­semiconductor interfaces; Nanostructures; Scanning;Here, we have focused on atomic-scale studies of the ini- tial growth stages of palladium and titanium

  7. Importance of strain for green emitters based on (In, Ga)N films of

    E-Print Network [OSTI]

    Ghosh, Sandip

    , adding more In to lower the energy gap of the active layer for obtaining green-light emissionImportance of strain for green emitters based on (In, Ga)N films of non-polar orientation Sandip for obtaining green-light emitting diodes (LED) and lasers in the wavelength range between 520 and 550 nm

  8. Tunnel-injection GaN quantum dot ultraviolet light-emitting diodes

    SciTech Connect (OSTI)

    Verma, Jai; Kandaswamy, Prem Kumar; Protasenko, Vladimir; Verma, Amit; Grace Xing, Huili; Jena, Debdeep

    2013-01-28

    We demonstrate a GaN quantum dot ultraviolet light-emitting diode that uses tunnel injection of carriers through AlN barriers into the active region. The quantum dot heterostructure is grown by molecular beam epitaxy on AlN templates. The large lattice mismatch between GaN and AlN favors the formation of GaN quantum dots in the Stranski-Krastanov growth mode. Carrier injection by tunneling can mitigate losses incurred in hot-carrier injection in light emitting heterostructures. To achieve tunnel injection, relatively low composition AlGaN is used for n- and p-type layers to simultaneously take advantage of effective band alignment and efficient doping. The small height of the quantum dots results in short-wavelength emission and are simultaneously an effective tool to fight the reduction of oscillator strength from quantum-confined Stark effect due to polarization fields. The strong quantum confinement results in room-temperature electroluminescence peaks at 261 and 340 nm, well above the 365 nm bandgap of bulk GaN. The demonstration opens the doorway to exploit many varied features of quantum dot physics to realize high-efficiency short-wavelength light sources.

  9. Lattice Protein Folding With Two and Four-Body Statistical Hin Hark Gan,1

    E-Print Network [OSTI]

    Schlick, Tamar

    Lattice Protein Folding With Two and Four-Body Statistical Potentials Hin Hark Gan,1 Alexander/sequence compatibility of proteins,5,6 homology modeling,7 and protein folding simulations.8 ­10 Currently, most structures. Multibody potentials may help improve our understanding of the cooperativity of protein folding

  10. High-Efficiency X-Band MMIC GaN Power Amplifiers Operating as Rectifiers

    E-Print Network [OSTI]

    Popovic, Zoya

    High-Efficiency X-Band MMIC GaN Power Amplifiers Operating as Rectifiers Michael Litchfield, Scott two 10 x 100j.Lm power combined devices. The MMICs exhibit 67% and 56% power added efficiency at VDD a RF-to-DC efficiency of 64%. The output powers of the two MMIC PAs are around 3.2W. In rectifier mode

  11. Design and Experimental Characterization of an Erbium Doped GaN Waveguide

    E-Print Network [OSTI]

    Wang, Qian

    2012-05-31

    ABSTRACT The goal of this research was to develop an optical amplifier based on Erbium doped GaN waveguides, which can be used in the next-generation of planar integrated optic circuits. This thesis started from the basic concepts of fiber optic...

  12. Integrated Circuit Implementation for a GaN HFETs Driver Circuit

    E-Print Network [OSTI]

    Bakos, Jason D.

    @engr.sc.edu Abstract- The paper presents the design of an integrated circuit (IC) for a 10MHz low power-loss driver exploit the advantages of GaN devices, such as superior switching speed and operation in high-power the authors focus on the design of the IC and present preliminary results and considerations. The driver

  13. Room temperature hydrogen detection using Pd-coated GaN nanowires Wantae Lim,1

    E-Print Network [OSTI]

    Ural, Ant

    Room temperature hydrogen detection using Pd-coated GaN nanowires Wantae Lim,1 J. S. Wright,1 B. P vapor deposition were employed as gas sensors for detection of hydrogen at concentrations from 200­1500 ppm in N2 at 300 K. Palladium coating of the wires improved the sensitivity by a factor of up to 11

  14. Geomagnetic observatory GAN Jakub Velimsky K. Chandra Shakar Rao Lars W. Pedersen Ahmed Muslim

    E-Print Network [OSTI]

    Cerveny, Vlastislav

    ´imsk´y et al. (ETH,UK,DTU,NGRI,GMO) Geomagnetic observatory GAN 27.4.2011/KG MFF UK 1 / 16 #12;Participating, Univ. Stuttgart) John Riddick (BGS, retired) Vel´imsk´y et al. (ETH,UK,DTU,NGRI,GMO) Geomagnetic Measurements and Observatory Practice, 1996) Vel´imsk´y et al. (ETH,UK,DTU,NGRI,GMO) Geomagnetic observatory

  15. Excitation cross section of erbium-doped GaN waveguides under 980?nm optical pumping

    E-Print Network [OSTI]

    Hui, Rongqing; Xie, R.; Feng, I.-W.; Sun, Z. Y.; Lin, J. Y.; Jiang, H. X.

    2014-08-04

    Excitation cross section of erbium-doped GaN waveguides is measured to be approximately 2.2×10?21cm2 at 980?nm pumping wavelength. This cross section value is found relatively insensitive to the crystalline quality of ...

  16. Facility Representatives

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2006-04-06

    REPLACED BY DOE-STD-1063 | SUPERSEDING DOE-STD-1063-2000 (MARCH 2000) The purpose of the DOE Facility Representative Program is to ensure that competent DOE staff personnel are assigned to oversee the day-to-day contractor operations at DOE’s hazardous nuclear and non-nuclear facilities.

  17. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-12-22

    This Order establishes facility and programmatic safety requirements for Department of Energy facilities, which includes nuclear and explosives safety design criteria, fire protection, criticality safety, natural phenomena hazards mitigation, and the System Engineer Program. Cancels DOE O 420.1A. DOE O 420.1B Chg 1 issued 4-19-10.

  18. High Efficiency m-plane LEDs on Low Defect Density Bulk GaN Substrates

    SciTech Connect (OSTI)

    David, Aurelien

    2012-10-15

    Solid-state lighting is a key technology for reduction of energy consumption in the US and worldwide. In principle, by replacing standard incandescent bulbs and other light sources with sources based on light-emitting diodes (LEDs), ultimate energy efficiency can be achieved. The efficiency of LEDs has improved tremendously over the past two decades, however further progress is required for solid- state lighting to reach its full potential. The ability of an LED at converting electricity to light is quantified by its internal quantum efficiency (IQE). The material of choice for visible LEDs is Gallium Nitride (GaN), which is at the basis of blue-emitting LEDs. A key factor limiting the performance of GaN LEDs is the so-called efficiency droop, whereby the IQE of the LED decreases significantly at high current density. Despite decades of research, efficiency droop remains a major issue. Since high-current operation is necessary for practical lighting applications, reducing droop is a major challenge for the scientific community and the LED industry. Our approach to solving the droop issue is the use of newly available low-defect-density bulk GaN non-polar substrates. In contrast to the standard foreign substrates (sapphire, silicon carbide, silicon) used in the industry, we have employed native bulk GaN substrates with very low defect density, thus ensuring exquisite material quality and high IQE. Whereas all commercial LEDs are grown along the c-plane crystal direction of GaN, we have used m-plane non-polar substrates; these drastically modify the physical properties of the LED and enable a reduction of droop. With this approach, we have demonstrated very high IQE performance and low droop. Our results focused on violet and blue LEDs. For these, we have demonstrated very high peak IQEs and current droops of 6% and 10% respectively (up to a high current density of 200A.cm-2). All these results were obtained under electrical operation. These high IQE and low droop values are in line with the program’s milestones. They demonstrate that bulk non-polar GaN substrates represent a disruptive technology for LED performance. Application of this technology to real-world products is feasible, provided that the cost of GaN substrates is compatible with the market’s requirement.

  19. Synchrotron radiation x-ray topography and defect selective etching analysis of threading dislocations in GaN

    SciTech Connect (OSTI)

    Sintonen, Sakari, E-mail: sakari.sintonen@aalto.fi; Suihkonen, Sami; Jussila, Henri; Tuomi, Turkka O.; Lipsanen, Harri [Department of Micro- and Nanosciences, Aalto University School of Electrical Engineering, 02150 Espoo (Finland); Rudzi?ski, Mariusz [Epitaxy Department, Institute of Electronic Materials Technology, 01-919 Warsaw (Poland); Knetzger, Michael; Meissner, Elke [Fraunhofer Institute for Integrated Systems and Device Technology, 91058 Erlangen (Germany); Danilewsky, Andreas [Kristallographie Institut für Geo- und Umweltnaturwissenschaften, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg (Germany)

    2014-08-28

    The crystal quality of bulk GaN crystals is continuously improving due to advances in GaN growth techniques. Defect characterization of the GaN substrates by conventional methods is impeded by the very low dislocation density and a large scale defect analysis method is needed. White beam synchrotron radiation x-ray topography (SR-XRT) is a rapid and non-destructive technique for dislocation analysis on a large scale. In this study, the defect structure of an ammonothermal c-plane GaN substrate was recorded using SR-XRT and the image contrast caused by the dislocation induced microstrain was simulated. The simulations and experimental observations agree excellently and the SR-XRT image contrasts of mixed and screw dislocations were determined. Apart from a few exceptions, defect selective etching measurements were shown to correspond one to one with the SR-XRT results.

  20. Highly mismatched crystalline and amorphous GaN(1-x)As(x) alloys in the whole composition range

    E-Print Network [OSTI]

    Yu, K. M.

    2010-01-01

    Highly Mismatched Crystalline and Amorphous GaN 1-x As xrange of 0.17crystalline outside this region.is long enough to form crystalline lattices with uniform

  1. Band alignment between GaN and ZrO{sub 2} formed by atomic layer deposition

    SciTech Connect (OSTI)

    Ye, Gang; Wang, Hong, E-mail: ewanghong@ntu.edu.sg; Arulkumaran, Subramaniam; Ng, Geok Ing; Li, Yang; Ang, Kian Siong [Novitas, Nanoelectronics Center of Excellence, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Liu, Zhi Hong [Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, Singapore 138602 (Singapore)

    2014-07-14

    The band alignment between Ga-face GaN and atomic-layer-deposited ZrO{sub 2} was investigated using X-ray photoelectron spectroscopy (XPS). The dependence of Ga 3d and Zr 3d core-level positions on the take-off angles indicated upward band bending at GaN surface and potential gradient in ZrO{sub 2} layer. Based on angle-resolved XPS measurements combined with numerical calculations, valence band discontinuity ?E{sub V} of 1?±?0.2?eV and conduction band discontinuity ?E{sub C} of 1.2?±?0.2?eV at ZrO{sub 2}/GaN interface were determined by taking GaN surface band bending and potential gradient in ZrO{sub 2} layer into account.

  2. Influence of growth temperature and temperature ramps on deep level defect incorporation in m-plane GaN

    SciTech Connect (OSTI)

    Armstrong, A. M.; Kelchner, K.; Nakamura, S.; DenBaars, S. P.; Materials Department, University of California, Santa Barbara, California 93106 ; Speck, J. S.

    2013-12-02

    The dependence of deep level defect incorporation in m-plane GaN films grown by metal-organic chemical vapor deposition on bulk m-plane GaN substrates as a function of growth temperature (T{sub g}) and T{sub g} ramping method was investigated using deep level optical spectroscopy. Understanding the influence of T{sub g} on GaN deep level incorporation is important for InGaN/GaN multi-quantum well (MQW) light emitting diodes (LEDs) and laser diodes (LDs) because GaN quantum barrier (QB) layers are grown much colder than thin film GaN to accommodate InGaN QW growth. Deep level spectra of low T{sub g} (800?°C) GaN films grown under QB conditions were compared to deep level spectra of high T{sub g} (1150?°C) GaN. Reducing T{sub g}, increased the defect density significantly (>50×) through introduction of emergent deep level defects at 2.09?eV and 2.9?eV below the conduction band minimum. However, optimizing growth conditions during the temperature ramp when transitioning from high to low T{sub g} substantially reduced the density of these emergent deep levels by approximately 40%. The results suggest that it is important to consider the potential for non-radiative recombination in QBs of LED or LD active regions, and tailoring the transition from high T{sub g} GaN growth to active layer growth can mitigate such non-radiative channels.

  3. Photoluminescence study of the 1.047 eV emission in GaN K. Pressela)

    E-Print Network [OSTI]

    Nabben, Reinhard

    GaN/ AlGaN blue green light emitting diode, which has a much higher quantum efficiency than the SiC blue light emitting diode, became possible.2 Presently the wide bandgap semi- conductor GaN is intensively. Especially the 1.19 eV is very intense. Thus one can think of developing a light emitting diode in the near

  4. Low gap amorphous GaN1-xAsx alloys grown on glass substrate K. M. Yu,1,a

    E-Print Network [OSTI]

    Wu, Junqiao

    absorption coefficient of 105 cm-1 for the amorphous GaN1-xAsx films suggests that relatively thin films-rich GaN1-xAsx Refs. 6­8 and dilute Te-rich ZnOxTe1-x.9 Recently, we overcame the miscibility gap of GaAs fit to the solar spectrum offering the opportunity to design high efficiency multijunction solar cells

  5. Facility Status

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chinese Academy of Sciences, Hefei, Anhui, P.R. China The Engineering Design of ARC: A Compact, High Field, Fusion Nuclear Science Facility and Demonstration Power Plant B. N....

  6. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2002-05-20

    To establish facility safety requirements for the Department of Energy, including National Nuclear Security Administration. Cancels DOE O 420.1. Canceled by DOE O 420.1B.

  7. Facility Name Facility Name Facility FacilityType Owner Developer...

    Open Energy Info (EERE)

    FacilityStatus Coordinates D Metals D Metals D Metals Definition Small Scale Wind Valley City OH MW Northern Power Systems In Service AB Tehachapi Wind Farm AB Tehachapi...

  8. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-11-20

    The objective of this Order is to establish facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation. The Order has Change 1 dated 11-16-95, Change 2 dated 10-24-96, and the latest Change 3 dated 11-22-00 incorporated. The latest change satisfies a commitment made to the Defense Nuclear Facilities Safety Board (DNFSB) in response to DNFSB recommendation 97-2, Criticality Safety.

  9. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-12-22

    The order establishes facility and programmatic safety requirements for nuclear and explosives safety design criteria, fire protection, criticality safety, natural phenomena hazards (NPH) mitigation, and the System Engineer Program.Chg 1 incorporates the use of DOE-STD-1189-2008, Integration of Safety into the Design Process, mandatory for Hazard Category 1, 2 and 3 nuclear facilities. Cancels DOE O 420.1A.

  10. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2013-06-21

    DOE-STD-1104 contains the Department's method and criteria for reviewing and approving nuclear facility's documented safety analysis (DSA). This review and approval formally document the basis for DOE, concluding that a facility can be operated safely in a manner that adequately protects workers, the public, and the environment. Therefore, it is appropriate to formally require implementation of the review methodology and criteria contained in DOE-STD-1104.

  11. 15.02.99.M1 Export Controls Page 1 of 8 UNIVERSITY RULE

    E-Print Network [OSTI]

    15.02.99.M1 Export Controls Page 1 of 8 UNIVERSITY RULE 15.02.99.M1 Export Controls Approved May 20 to comply with United States export control laws and regulations including, without limitation, those implemented by the Department of Commerce through its Export Administration Regulations (EAR

  12. Surfactant assisted growth of MgO films on GaN

    SciTech Connect (OSTI)

    Paisley, E. A.; Shelton, T. C.; Collazo, R.; Sitar, Z.; Maria, J.-P.; Christen, H. M.; Biegalski, M. D.; Mita, S.

    2012-08-27

    Thin epitaxial films of <111> oriented MgO on [0001]-oriented GaN were grown by molecular beam epitaxy and pulsed laser deposition using the assistance of a vapor phase surfactant. In both cases, surfactant incorporation enabled layer-by-layer growth and a smooth terminal surface by stabilizing the {l_brace}111{r_brace} rocksalt facet. Metal-insulator-semiconductor capacitor structures were fabricated on n-type GaN. A comparison of leakage current density for conventional and surfactant-assisted growth reveals a nearly 100 Multiplication-Sign reduction in leakage current density for the surfactant-assisted samples. These data verify numerous predictions regarding the role of H-termination in regulating the habit of rocksalt crystals.

  13. Influence of oxygen in architecting large scale nonpolar GaN nanowires

    E-Print Network [OSTI]

    Patsha, Avinash; Pandian, Ramanathaswamy; Dhara, S

    2015-01-01

    Manipulation of surface architecture of semiconducting nanowires with a control in surface polarity is one of the important objectives for nanowire based electronic and optoelectronic devices for commercialization. We report the growth of exceptionally high structural and optical quality nonpolar GaN nanowires with controlled and uniform surface morphology and size distribution, for large scale production. The role of O contamination (~1-10^5 ppm) in the surface architecture of these nanowires is investigated with the possible mechanism involved. Nonpolar GaN nanowires grown in O rich condition show the inhomogeneous surface morphologies and sizes (50 - 150 nm) while nanowires are having precise sizes of 40(5) nm and uniform surface morphology, for the samples grown in O reduced condition. Relative O contents are estimated using electron energy loss spectroscopy studies. Size-selective growth of uniform nanowires is also demonstrated, in the O reduced condition, using different catalyst sizes. Photoluminescen...

  14. Involvement of the transcription factor FoxM1 in contact inhibition

    SciTech Connect (OSTI)

    Faust, Dagmar; Al-Butmeh, Firas; Linz, Berenike [Institute of Toxicology, Medical Center of the Johannes Gutenberg-University, Obere Zahlbacherstr. 67, 55131 Mainz (Germany)] [Institute of Toxicology, Medical Center of the Johannes Gutenberg-University, Obere Zahlbacherstr. 67, 55131 Mainz (Germany); Dietrich, Cornelia, E-mail: cdietric@uni-mainz.de [Institute of Toxicology, Medical Center of the Johannes Gutenberg-University, Obere Zahlbacherstr. 67, 55131 Mainz (Germany)] [Institute of Toxicology, Medical Center of the Johannes Gutenberg-University, Obere Zahlbacherstr. 67, 55131 Mainz (Germany)

    2012-10-05

    Highlights: Black-Right-Pointing-Pointer The transcription factor FoxM1 is downregulated upon contact inhibition. Black-Right-Pointing-Pointer The decrease in FoxM1 levels occurs very likely due to inhibition of ERK activity. Black-Right-Pointing-Pointer The decrease in FoxM1 is not sufficient, but required for contact inhibition. Black-Right-Pointing-Pointer We propose a new model of contact inhibition involving pRB/E2F and FoxM1. -- Abstract: Contact inhibition is a crucial mechanism regulating proliferation in vitro and in vivo. Although it is generally accepted that contact inhibition plays a pivotal role in maintaining tissue homeostasis, the molecular mechanisms of contact inhibition are still not fully understood. FoxM1 is known as a proliferation-associated transcription factor and is upregulated in many cancer types. Vice versa, anti-proliferative signals, such as TGF-{beta} and differentiation signals decrease FoxM1 expression. Here we investigated the role of FoxM1 in contact inhibition in fibroblasts. We show that protein expression of FoxM1 is severely and rapidly downregulated upon contact inhibition, probably by inhibition of ERK activity, which then leads to decreased expression of cyclin A and polo-like kinase 1. Vice versa, ectopic expression of FoxM1 prevents the decrease in cyclin A and polo-like kinase 1 and causes a two-fold increase in saturation density indicating loss of contact inhibition. Hence, we show that downregulation of FoxM1 is required for contact inhibition by regulating expression of cyclin A and polo-like kinase 1.

  15. Catalyst and its diameter dependent growth kinetics of CVD grown GaN nanowires

    SciTech Connect (OSTI)

    Samanta, Chandan [Department of Physics, Indian Institute of Technology Kanpur (India)] [Department of Physics, Indian Institute of Technology Kanpur (India); Chander, D. Sathish [Department of Physics, Indian Institute of Technology Kanpur (India) [Department of Physics, Indian Institute of Technology Kanpur (India); Department of Mechanical Engineering, Indian Institute of Technology Kanpur (India); Ramkumar, J. [Department of Mechanical Engineering, Indian Institute of Technology Kanpur (India)] [Department of Mechanical Engineering, Indian Institute of Technology Kanpur (India); Dhamodaran, S., E-mail: kdams2003@gmail.com [Department of Physics, Indian Institute of Technology Kanpur (India)

    2012-04-15

    Graphical abstract: GaN nanowires with controlled diameter and aspect ratio has been grown using a simple CVD technique. The growth kinetics of CVD grown nanowires investigated in detail for different catalysts and their diameters. A critical diameter important to distinguish the growth regimes has been discussed in detail. The results are important which demonstrates the growth of diameter and aspect ratio controlled GaN nanowires and also understand their growth kinetics. Highlights: Black-Right-Pointing-Pointer Controlled diameter and aspect ratio of GaN nanowires achieved in simple CVD reactor. Black-Right-Pointing-Pointer Nanowire growth kinetics for different catalyst and its diameters were understood. Black-Right-Pointing-Pointer Adatoms vapor pressure inside reactor plays a crucial role in growth kinetics. Black-Right-Pointing-Pointer Diffusion along nanowire sidewalls dominate for gold and nickel catalysts. Black-Right-Pointing-Pointer Gibbs-Thomson effect dominates for palladium catalyst. -- Abstract: GaN nanowires were grown using chemical vapor deposition with controlled aspect ratio. The catalyst and catalyst-diameter dependent growth kinetics is investigated in detail. We first discuss gold catalyst diameter dependent growth kinetics and subsequently compare with nickel and palladium catalyst. For different diameters of gold catalyst there was hardly any variation in the length of the nanowires but for other catalysts with different diameter a strong length variation of the nanowires was observed. We calculated the critical diameter dependence on adatoms pressure inside the reactor and inside the catalytic particle. This gives an increasing trend in critical diameter as per the order gold, nickel and palladium for the current set of experimental conditions. Based on the critical diameter, with gold and nickel catalyst the nanowire growth was understood to be governed by limited surface diffusion of adatoms and by Gibbs-Thomson effect for the palladium catalyst.

  16. K.K. Gan B Layer Workshop 1 Opto-Link Upgrade

    E-Print Network [OSTI]

    Gan, K. K.

    -Link Working Group/common projects #12;K.K. Gan B Layer Workshop 3 Need New Opto-Link for B Layer? opto current pixel opto-link architecture to take advantage of R&D effort and production experience #12;K: 14 x 1015 1-MeV neq/cm2 2.7 x 1015 p/cm2 or 71 Mrad for 24 GeV protons above estimates include 50

  17. GAnGS: Gather, Authenticate 'n Group Securely Chia-Hsin Owen Chen

    E-Print Network [OSTI]

    Xu, Wenyuan

    in a scalable, secure, and easy to use fashion. In this paper, we propose GAnGS, a protocol for the se- cure Factors This research was supported in part by the iCAST project under grant NSC96-3114-P-001-002-Y from or any of its agencies. Permission to make digital or hard copies of all or part of this work

  18. Optimization of ion-atomic beam source for deposition of GaN ultrathin films

    SciTech Connect (OSTI)

    Mach, Jind?ich, E-mail: mach@fme.vutbr.cz; Kolíbal, Miroslav; Zlámal, Jakub; Voborny, Stanislav; Bartošík, Miroslav; Šikola, Tomáš [Institute of Physical Engineering, Brno University of Technology, Technická 2, 616 69 Brno (Czech Republic); CEITEC BUT, Brno University of Technology, Technická 10, 61669 Brno (Czech Republic); Šamo?il, Tomáš [Institute of Physical Engineering, Brno University of Technology, Technická 2, 616 69 Brno (Czech Republic)

    2014-08-15

    We describe the optimization and application of an ion-atomic beam source for ion-beam-assisted deposition of ultrathin films in ultrahigh vacuum. The device combines an effusion cell and electron-impact ion beam source to produce ultra-low energy (20–200 eV) ion beams and thermal atomic beams simultaneously. The source was equipped with a focusing system of electrostatic electrodes increasing the maximum nitrogen ion current density in the beam of a diameter of ?15 mm by one order of magnitude (j ? 1000 nA/cm{sup 2}). Hence, a successful growth of GaN ultrathin films on Si(111) 7 × 7 substrate surfaces at reasonable times and temperatures significantly lower (RT, 300?°C) than in conventional metalorganic chemical vapor deposition technologies (?1000?°C) was achieved. The chemical composition of these films was characterized in situ by X-ray Photoelectron Spectroscopy and morphology ex situ using Scanning Electron Microscopy. It has been shown that the morphology of GaN layers strongly depends on the relative Ga-N bond concentration in the layers.

  19. Formation of manganese {delta}-doped atomic layer in wurtzite GaN

    SciTech Connect (OSTI)

    Shi Meng; Chinchore, Abhijit; Wang Kangkang; Mandru, Andrada-Oana; Liu Yinghao; Smith, Arthur R.

    2012-09-01

    We describe the formation of a {delta}-doped manganese layer embedded within c-plane wurtzite gallium nitride using a special molecular beam epitaxy growth process. Manganese is first deposited on the gallium-poor GaN (0001) surface, forming a {radical}(3) Multiplication-Sign {radical}(3)-R30 Degree-Sign reconstructed phase. This well-defined surface reconstruction is then nitrided using plasma nitridation, and gallium nitride is overgrown. The manganese content of the {radical}(3) Multiplication-Sign {radical}(3)-R30 Degree-Sign phase, namely one Mn per each {radical}(3) Multiplication-Sign {radical}(3)-R30 Degree-Sign unit cell, implies that the MnGaN alloy layer has a Mn concentration of up to 33%. The structure and chemical content of the surface are monitored beginning from the initial growth stage up through the overgrowth of 20 additional monolayers (MLs) of GaN. An exponential-like drop-off of the Mn signal with increasing GaN monolayers, as measured by Auger electron spectroscopy, indicates that the highly concentrated Mn layer remains at the {delta}-doped interface. A model of the resultant {delta}-doped structure is formulated based on the experimental data, and implications for possible spintronic applications are discussed.

  20. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-10-13

    Establishes facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation. Cancels DOE 5480.7A, DOE 5480.24, DOE 5480.28 and Division 13 of DOE 6430.1A. Canceled by DOE O 420.1A.

  1. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2012-12-04

    The Order establishes facility and programmatic safety requirements for DOE and NNSA for nuclear safety design criteria, fire protection, criticality safety, natural phenomena hazards (NPH) mitigation, and System Engineer Program. Cancels DOE O 420.1B, DOE G 420.1-2 and DOE G 420.1-3.

  2. Facility Operations and Maintenance Facilities Management

    E-Print Network [OSTI]

    Capogna, Luca

    Facility Operations and Maintenance Facilities Management D101 Facilities Management R -575/affirmative action institution. 354 3 373 4 373A,B,C,D 4 Alm8/31/12 #12;Facility Operations and Maintenance, B 5 1409 5 1403 5 1403 A, B 4 1408 3 1408 A,B,C 3 1610 3 #12;Facility Operations and Maintenance

  3. Multicycle rapid thermal annealing optimization of Mg-implanted GaN: Evolution of surface, optical, and structural properties

    SciTech Connect (OSTI)

    Greenlee, Jordan D.; Feigelson, Boris N.; Anderson, Travis J.; Hite, Jennifer K.; Mastro, Michael A.; Eddy, Charles R.; Hobart, Karl D.; Kub, Francis J.; Tadjer, Marko J.

    2014-08-14

    The first step of a multi-cycle rapid thermal annealing process was systematically studied. The surface, structure, and optical properties of Mg implanted GaN thin films annealed at temperatures ranging from 900 to 1200?°C were investigated by Raman spectroscopy, photoluminescence, UV-visible spectroscopy, atomic force microscopy, and Nomarski microscopy. The GaN thin films are capped with two layers of in-situ metal organic chemical vapor deposition -grown AlN and annealed in 24 bar of N{sub 2} overpressure to avoid GaN decomposition. The crystal quality of the GaN improves with increasing annealing temperature as confirmed by UV-visible spectroscopy and the full widths at half maximums of the E{sub 2} and A{sub 1} (LO) Raman modes. The crystal quality of films annealed above 1100?°C exceeds the quality of the as-grown films. At 1200?°C, Mg is optically activated, which is determined by photoluminescence measurements. However, at 1200?°C, the GaN begins to decompose as evidenced by pit formation on the surface of the samples. Therefore, it was determined that the optimal temperature for the first step in a multi-cycle rapid thermal anneal process should be conducted at 1150?°C due to crystal quality and surface morphology considerations.

  4. Time-resolved photoluminescence studies of free and donor-bound exciton in GaN grown by hydride vapor phase epitaxy

    E-Print Network [OSTI]

    Time-resolved photoluminescence studies of free and donor-bound exciton in GaN grown by hydride and Electrical and Computer Engineering and Photonics Center, Boston University, Boston, Massachusetts, 02215 R in unintentionally doped GaN grown by hydride vapor phase epitaxy. Low temperature (4 K), time-integrated PL spectra

  5. Observation of standing waves at steps on the GaN,,0001... pseudo-,,11... surface by scanning tunneling spectroscopy at room temperature

    E-Print Network [OSTI]

    Li, Lian

    Observation of standing waves at steps on the GaN,,0001... pseudo-,,1Ã1... surface by scanning August 2006; published online 25 September 2006 Standing waves formed at steps of the GaN 0001 pseudo- 1, reflected elec- tron waves emerge to interfere with incoming waves to pro- duce standing waves, thus

  6. 15.99.01.M1 Human Subjects in Research Page 1 of 9 UNIVERSITY RULE

    E-Print Network [OSTI]

    15.99.01.M1 Human Subjects in Research Page 1 of 9 UNIVERSITY RULE 15.99.01.M1 Human Subjects relating to human subjects research including 45 C.F.R., Part 46 and 21 C.F.R., Parts 50 and 56. Texas A&M University assures that all of its research involving human subjects will comply with the terms of its

  7. Selective area growth and characterization of GaN nanocolumns, with and without an InGaN insertion, on semi-polar (11–22) GaN templates

    SciTech Connect (OSTI)

    Bengoechea-Encabo, A.; Albert, S.; Barbagini, F.; Sanchez-Garcia, M. A.; Calleja, E. [ISOM and Departamento de Ingenieria Electronica, ETSI Telecomunicacion, Universidad Politecnica de Madrid, Ciudad Universitaria s/n 28040 Madrid (Spain)] [ISOM and Departamento de Ingenieria Electronica, ETSI Telecomunicacion, Universidad Politecnica de Madrid, Ciudad Universitaria s/n 28040 Madrid (Spain); Zuñiga-Perez, J.; Mierry, P. de [CRHEA-CNRS, 06560 Valbonne (France)] [CRHEA-CNRS, 06560 Valbonne (France); Trampert, A. [Paul-Drude-Institut für Festkörperelektronik, Hausvogteiplatz 5-7, 10117 Berlin (Germany)] [Paul-Drude-Institut für Festkörperelektronik, Hausvogteiplatz 5-7, 10117 Berlin (Germany)

    2013-12-09

    The aim of this work is the selective area growth (SAG) of GaN nanocolumns, with and without an InGaN insertion, by molecular beam epitaxyon semi-polar (11–22) GaN templates. The high density of stacking faults present in the template is strongly reduced after SAG. A dominant sharp photoluminescence emission at 3.473 eV points to high quality strain-free material. When embedding an InGaN insertion into the ordered GaN nanostructures, very homogeneous optical properties are observed, with two emissions originating from different regions of each nanostructure, most likely related to different In contents on different crystallographic planes.

  8. Science &Technology Facilities Council

    E-Print Network [OSTI]

    Science &Technology Facilities Council Science &Technology Facilities Council Science and Technology Facilities Council Annual Report and Accounts 2011-2012 Science and Technology Facilities Council Laboratory, Cheshire; UK Astronomy Technology Centre, Edinburgh; Chilbolton Observatory, Hampshire; Isaac

  9. Science Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDidDevelopment Top LDRDUniversitySchedules PrintNIF About BlogFacilities

  10. Mobile Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid you notHeatMaRIEdioxide capture |GE PutsgovSitesMobile Facility AMF

  11. Electroreflectance study of the effect of {gamma} radiation on the optical properties of epitaxial GaN films

    SciTech Connect (OSTI)

    Belyaev, A. E.; Klyui, N. I. Konakova, R. V.; Lukyanov, A. N.; Danilchenko, B. A.; Sveshnikov, J. N.; Klyui, A. N.

    2012-03-15

    Experimental data on the electroreflectance spectra of {gamma}-irradiated epitaxial GaN films on sapphire are reported. The irradiation doses are 10{sup 5}-2 Multiplication-Sign 10{sup 6} rad. The theoretical electroreflectance spectra calculated on the basis of a model of three types of transitions are in agreement with experimental data with reasonable accuracy. The energies and broadenings of the transitions derived in the context of the model give grounds to infer that, in the GaN films, there are internal stresses dependent on the {gamma}-irradiation dose.

  12. The impact of nanoperforation on persistent photoconductivity and optical quenching effects in suspended GaN nanomembranes

    SciTech Connect (OSTI)

    Volciuc, Olesea, E-mail: olesea.volciuc@gmail.com [Institute of Solid State Physics, University of Bremen, Bremen 28334 (Germany) [Institute of Solid State Physics, University of Bremen, Bremen 28334 (Germany); National Center for Materials Study and Testing, Technical University of Moldova, Chisinau 2004 (Moldova, Republic of); Braniste, Tudor [National Center for Materials Study and Testing, Technical University of Moldova, Chisinau 2004 (Moldova, Republic of)] [National Center for Materials Study and Testing, Technical University of Moldova, Chisinau 2004 (Moldova, Republic of); Tiginyanu, Ion, E-mail: tiginyanu@asm.md [National Center for Materials Study and Testing, Technical University of Moldova, Chisinau 2004 (Moldova, Republic of) [National Center for Materials Study and Testing, Technical University of Moldova, Chisinau 2004 (Moldova, Republic of); Institute of Electronic Engineering and Nanotechnologies, Academy of Sciences of Moldova, Chisinau 2028 (Moldova, Republic of); Stevens-Kalceff, Marion A. [School of Physics, University of New South Wales, Sydney NSW 2052 (Australia)] [School of Physics, University of New South Wales, Sydney NSW 2052 (Australia); Ebeling, Jakob; Aschenbrenner, Timo; Hommel, Detlef; Gutowski, Jürgen [Institute of Solid State Physics, University of Bremen, Bremen 28334 (Germany)] [Institute of Solid State Physics, University of Bremen, Bremen 28334 (Germany); Ursaki, Veaceslav [Institute of Applied Physics, Academy of Sciences of Moldova, Chisinau 2028 (Moldova, Republic of)] [Institute of Applied Physics, Academy of Sciences of Moldova, Chisinau 2028 (Moldova, Republic of)

    2013-12-09

    We report on fabrication of suspended ?15?nm thick GaN membranes nanoperforated in an ordered fashion using direct writing of negative charges by focused ion beam and subsequent photoelectrochemical etching of GaN epilayers. Both continuous and nanoperforated membranes exhibit persistent photoconductivity (PPC), which can be optically quenched under excitation by 546?nm radiation. Optical quenching of PPC occurs also under relatively intense intrinsic excitation of nanoperforated membranes by 355?nm radiation at T?

  13. Nucleation of single GaN nanorods with diameters smaller than 35 nm by molecular beam epitaxy

    SciTech Connect (OSTI)

    Chen, Yen-Ting [Institute of Atomic and Molecular Sciences, Academia Sinica, 10617 Taipei, Taiwan (China) [Institute of Atomic and Molecular Sciences, Academia Sinica, 10617 Taipei, Taiwan (China); Department of Physics, Chemistry and Biology (IFM), Linköping University, S-58183 Linköping (Sweden); Araki, Tsutomu [Department of Electrical and Electronic Engineering, Ritsumeikan University, 525-8577 Shiga (Japan)] [Department of Electrical and Electronic Engineering, Ritsumeikan University, 525-8577 Shiga (Japan); Palisaitis, Justinas; Persson, Per O. Å.; Olof Holtz, Per; Birch, Jens [Department of Physics, Chemistry and Biology (IFM), Linköping University, S-58183 Linköping (Sweden)] [Department of Physics, Chemistry and Biology (IFM), Linköping University, S-58183 Linköping (Sweden); Chen, Li-Chyong [Center for Condensed Matter Sciences, National Taiwan University, 10617 Taipei, Taiwan (China)] [Center for Condensed Matter Sciences, National Taiwan University, 10617 Taipei, Taiwan (China); Chen, Kuei-Hsien [Institute of Atomic and Molecular Sciences, Academia Sinica, 10617 Taipei, Taiwan (China) [Institute of Atomic and Molecular Sciences, Academia Sinica, 10617 Taipei, Taiwan (China); Center for Condensed Matter Sciences, National Taiwan University, 10617 Taipei, Taiwan (China); Nanishi, Yasushi [Global Innovation Research Organization, Ritsumeikan University, 525-8577 Shiga (Japan)] [Global Innovation Research Organization, Ritsumeikan University, 525-8577 Shiga (Japan)

    2013-11-11

    Nucleation mechanism of catalyst-free GaN nanorod grown on Si(111) is investigated by the fabrication of uniform and narrow (<35 nm) nanorods without a pre-defined mask by molecular beam epitaxy. Direct evidences show that the nucleation of GaN nanorods stems from the sidewall of the underlying islands down to the Si(111) substrate, different from commonly reported ones on top of the island directly. Accordingly, the growth and density control of the nanorods is exploited by a “narrow-pass” approach that only narrow nanorod can be grown. The optimal size of surrounding non-nucleation area around single nanorod is estimated as 88 nm.

  14. High temperature electron spin dynamics in bulk cubic GaN: Nanosecond spin lifetimes far above room-temperature

    SciTech Connect (OSTI)

    Buß, J. H.; Schaefer, A.; Hägele, D.; Rudolph, J. [Arbeitsgruppe Spektroskopie der kondensierten Materie, Ruhr-Universität Bochum, Universitätsstraße 150, D-44780 Bochum (Germany); Schupp, T.; As, D. J. [Department of Physics, University of Paderborn, Warburger Str. 100, D-33095 Paderborn (Germany)

    2014-11-03

    The electron spin dynamics in n-doped bulk cubic GaN is investigated for very high temperatures from 293?K up to 500?K by time-resolved Kerr-rotation spectroscopy. We find extraordinarily long spin lifetimes exceeding 1?ns at 500?K. The temperature dependence of the spin relaxation time is in qualitative agreement with predictions of Dyakonov-Perel theory, while the absolute experimental times are an order of magnitude shorter than predicted. Possible reasons for this discrepancy are discussed, including the role of phase mixtures of hexagonal and cubic GaN as well as the impact of localized carriers.

  15. Nanoscale size dependence parameters on lattice thermal conductivity of Wurtzite GaN nanowires

    SciTech Connect (OSTI)

    Mamand, S.M., E-mail: soran.mamand@univsul.net [Department of Physics, College of Science, University of Sulaimani, Sulaimanyah, Iraqi Kurdistan (Iraq); Omar, M.S. [Department of Physics, College of Science, University of Salahaddin, Arbil, Iraqi Kurdistan (Iraq)] [Department of Physics, College of Science, University of Salahaddin, Arbil, Iraqi Kurdistan (Iraq); Muhammad, A.J. [Department of Physics, College of Science, University of Kirkuk, Kirkuk (Iraq)] [Department of Physics, College of Science, University of Kirkuk, Kirkuk (Iraq)

    2012-05-15

    Graphical abstract: Temperature dependence of calculated lattice thermal conductivity of Wurtzite GaN nanowires. Highlights: Black-Right-Pointing-Pointer A modified Callaway model is used to calculate lattice thermal conductivity of Wurtzite GaN nanowires. Black-Right-Pointing-Pointer A direct method is used to calculate phonon group velocity for these nanowires. Black-Right-Pointing-Pointer 3-Gruneisen parameter, surface roughness, and dislocations are successfully investigated. Black-Right-Pointing-Pointer Dislocation densities are decreases with the decrease of wires diameter. -- Abstract: A detailed calculation of lattice thermal conductivity of freestanding Wurtzite GaN nanowires with diameter ranging from 97 to 160 nm in the temperature range 2-300 K, was performed using a modified Callaway model. Both longitudinal and transverse modes are taken into account explicitly in the model. A method is used to calculate the Debye and phonon group velocities for different nanowire diameters from their related melting points. Effect of Gruneisen parameter, surface roughness, and dislocations as structure dependent parameters are successfully used to correlate the calculated values of lattice thermal conductivity to that of the experimentally measured curves. It was observed that Gruneisen parameter will decrease with decreasing nanowire diameters. Scattering of phonons is assumed to be by nanowire boundaries, imperfections, dislocations, electrons, and other phonons via both normal and Umklapp processes. Phonon confinement and size effects as well as the role of dislocation in limiting thermal conductivity are investigated. At high temperatures and for dislocation densities greater than 10{sup 14} m{sup -2} the lattice thermal conductivity would be limited by dislocation density, but for dislocation densities less than 10{sup 14} m{sup -2}, lattice thermal conductivity would be independent of that.

  16. Evaluation of GaN substrates grown in supercritical basic ammonia

    SciTech Connect (OSTI)

    Saito, Makoto; Yamada, Hisashi; Iso, Kenji; Sato, Hitoshi; Hirasawa, Hirohiko; Kamber, Derrick S.; Hashimoto, Tadao; Baars, Steven P. den; Speck, James S.; Nakamura, Shuji [Materials Department, University of California, Santa Barbara, California 93106 (United States)

    2009-02-02

    GaN crystals grown by the basic ammonothermal method were investigated for their use as substrates for device regrowth. X-ray diffraction analysis indicated that the substrates contained multiple grains while secondary ion mass spectroscopy (SIMS) revealed a high concentration of hydrogen, oxygen, and sodium. Despite these drawbacks, the emission from the light emitting diode structures grown by metal organic chemical vapor deposition on both the c-plane and m-plane epitaxial wafers was demonstrated. The SIMS depth profiles showed that the diffusion of the alkali metal from the substrate into the epitaxial film was small, especially in the m-direction.

  17. p-type GaN grown by phase shift epitaxy

    SciTech Connect (OSTI)

    Zhong, M.; Steckl, A. J., E-mail: a.steckl@uc.edu [Department of Electrical Engineering and Computing Systems, University of Cincinnati, Cincinnati, Ohio 45221-0030 (United States); Roberts, J. [Nitronex Corporation, Raleigh, North Carolina 27606 (United States)] [Nitronex Corporation, Raleigh, North Carolina 27606 (United States); Kong, W.; Brown, A. S. [Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27708 (United States)] [Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27708 (United States)

    2014-01-06

    Phase shift epitaxy (PSE) is a periodic growth scheme, which desynchronizes host material growth process from dopant incorporation, allowing independent optimization. p-type doping of GaN with Mg by PSE is accomplished with molecular beam epitaxy by periodic shutter action (in order to iterate between Ga- and N-rich surface conditions) and by adjusting time delays between dopant and Ga shutters. Optimum PSE growth was obtained by turning on the Mg flux in the N-rich condition. This suppresses Mg self-compensation at high Mg concentration and produces fairly high hole concentrations (2.4?×?10{sup 18}?cm{sup ?3})

  18. Lattice location of implanted $^{147}$Nd and $^{147*}$Pm in GaN using emission channeling

    E-Print Network [OSTI]

    De Vries, B; Vantomme, A; Correia, J G

    2003-01-01

    The lattice location of $^{147}$Nd and $^{147^{*}}$Pm in thin-film, single-crystalline hexagonal GaN was studied by means of the emission channeling technique. The angular emission yields of $\\beta^{-}$-particles and conversion electrons emitted by the radioactive isotopes $^{147}$Nd and $^{147^{*}}$Pm were measured using a position-sensitive detector following 60 keV room temperature implantation at a dose of 1 $\\times 10^{13}$ cm$^{-2}$ and annealing at 900°C. The emission patterns around the [0001], [1102], [1101], and [2113] crystal axes give direct evidence that the majority (70%) of Nd and Pm atoms occupy substitutional Ga sites.

  19. Surfactant assisted growth of MgO films on GaN

    SciTech Connect (OSTI)

    Paisley, Elisibeth A.; Shelton, T C; Mita, S; Gaddy, Brian E.; Irving, D L; Christen, Hans M; Sitar, Z; Biegalski, Michael D; Maria, Jon Paul

    2012-01-01

    Thin epitaxial films of <111> oriented MgO on [0001]-oriented GaN were grown by molecular beam epitaxy (MBE) and pulsed laser deposition (PLD) using the assistance of a vapor phase surfactant. In both cases, surfactant incorporation enabled layer-by-layer growth and a smooth terminal surface due to stabilizing the {111} rocksalt facet. MBE growth of MgO in water terminates after several monolayers, and is attributed to saturation of surface active sites needed to facilitate the Mg oxidation reaction. MgO films prepared by PLD grow continuously, this occurs due to the presence of excited oxidizing species in the laser plasma eliminate the need for catalytic surface sites. Metal-insulator-semiconductor capacitor structures were fabricated on n-type GaN. A comparison of leakage current density for conventional and surfactant-assisted growth reveals a nearly two order of magnitude reduction in leakage current density for the smoother surfactant-assisted samples. Collectively, these data verify numerous predictions and calculations regarding the role of H-termination in regulating the habit of MgO crystals.

  20. M1 Master Mathematiques de Metz Mod`eles probabilistes en finance

    E-Print Network [OSTI]

    Thalmaier, Anton

    M1 ­ Master Math´ematiques de Metz Mod`eles probabilistes en finance 2007/2008 R. Lamberton, B. Lapeyre: Introduction au calcul stochastique appliqu´e `a la finance. Ellipses, 1997 (b) S. E. Shreve: Stochastic calculus for finance. I: The binomial asset pricing model. Springer Finance, 2004 (c

  1. 29.01.03.M1.28 Information Resources Security Surveillance Page 1 of 4 STANDARD ADMINISTRATIVE PROCEDURE

    E-Print Network [OSTI]

    29.01.03.M1.28 Information Resources ­ Security Surveillance Page 1 of 4 STANDARD ADMINISTRATIVE PROCEDURE 29.01.03.M1.28 Information Resources ­ Security Surveillance Approved April 13, 2010 Revised by the University Police Department #12;29.01.03.M1.28 Information Resources ­ Security Surveillance Page 2 of 4

  2. Stimulated Emission from As-grown GaN Hexagons by Selective Area Growth Hydride Vapor Phase Epitaxy

    E-Print Network [OSTI]

    Stimulated Emission from As-grown GaN Hexagons by Selective Area Growth Hydride Vapor Phase Epitaxy Engineering and the Photonics Center, Boston University, 8 Saint Mary's St., Boston, MA 02215-2421, USA R hydride vapor phase epitaxy. We found the threshold for bulk stimulated emission to be 3.4 MW cm2

  3. Impact of defects on the electrical transport, optical properties and failure mechanisms of GaN nanowires.

    SciTech Connect (OSTI)

    Armstrong, Andrew M.; Aubry, Sylvie; Shaner, Eric Arthur; Siegal, Michael P.; Li, Qiming; Jones, Reese E.; Westover, Tyler; Wang, George T.; Zhou, Xiao Wang; Talin, Albert Alec; Bogart, Katherine Huderle Andersen; Harris, C. Thomas; Huang, Jian Yu

    2010-09-01

    We present the results of a three year LDRD project that focused on understanding the impact of defects on the electrical, optical and thermal properties of GaN-based nanowires (NWs). We describe the development and application of a host of experimental techniques to quantify and understand the physics of defects and thermal transport in GaN NWs. We also present the development of analytical models and computational studies of thermal conductivity in GaN NWs. Finally, we present an atomistic model for GaN NW electrical breakdown supported with experimental evidence. GaN-based nanowires are attractive for applications requiring compact, high-current density devices such as ultraviolet laser arrays. Understanding GaN nanowire failure at high-current density is crucial to developing nanowire (NW) devices. Nanowire device failure is likely more complex than thin film due to the prominence of surface effects and enhanced interaction among point defects. Understanding the impact of surfaces and point defects on nanowire thermal and electrical transport is the first step toward rational control and mitigation of device failure mechanisms. However, investigating defects in GaN NWs is extremely challenging because conventional defect spectroscopy techniques are unsuitable for wide-bandgap nanostructures. To understand NW breakdown, the influence of pre-existing and emergent defects during high current stress on NW properties will be investigated. Acute sensitivity of NW thermal conductivity to point-defect density is expected due to the lack of threading dislocation (TD) gettering sites, and enhanced phonon-surface scattering further inhibits thermal transport. Excess defect creation during Joule heating could further degrade thermal conductivity, producing a viscous cycle culminating in catastrophic breakdown. To investigate these issues, a unique combination of electron microscopy, scanning luminescence and photoconductivity implemented at the nanoscale will be used in concert with sophisticated molecular-dynamics calculations of surface and defect-mediated NW thermal transport. This proposal seeks to elucidate long standing material science questions for GaN while addressing issues critical to realizing reliable GaN NW devices.

  4. New probe of M1 and E1 strengths in GDR regions

    SciTech Connect (OSTI)

    Hayakawa, T. [Japan Atomic Energy Agency and National Astronomical Observatory in Japan (Japan); Ogata, K. [RCNP, Osaka University (Japan); Miyamoto, S.; Mochizuki, T.; Horikawa, K.; Amano, S. [University of Hyogo (Japan); Imazaki, K.; Li, D.; Izawa, Y. [Institute for Laser Technology (Japan); Chiba, S. [Tokyo Institute of Technology (Japan)

    2014-05-02

    The M1 strengths (or level density of 1{sup +} states) are of importance for estimation of interaction strengths between neutrinos and nuclei for the study of the supernova neutrino-process. In 1957, Agodi predicted theoretically angular distribution of neutrons emitted from states excited via dipole transitions with linearly polarized gamma-ray beam at the polar angle of ?=90° should be followed by a simple function, a + b cos(2?), where ?, is azimuthal angel. However, this theoretical prediction has not been verified over the wide mass region except for light nuclei as deuteron. We have measured neutron angular distributions with (polarized gamma, n) reactions on Au, Nal, and Cu. We have verified the Agodi's prediction for the first time over the wide mass region. This suggests that (polarized gamma, n) reactions may be useful tools to study M1 strengths in giant resonance regions.

  5. Tellurium n-type doping of highly mismatched amorphous GaN1-xAsx alloys in plasma-assisted molecular beam epitaxy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Novikov, S. V.; Ting, M.; Yu, K. M.; Sarney, W. L.; Martin, R. W.; Svensson, S. P.; Walukiewicz, W.; Foxon, C. T.

    2014-10-01

    In this paper we report our study on n-type Te doping of amorphous GaN1-xAsx layers grown by plasma-assisted molecular beam epitaxy. We have used a low temperature PbTe source as a source of tellurium. Reproducible and uniform tellurium incorporation in amorphous GaN1-xAsx layers has been successfully achieved with a maximum Te concentration of 9×10²? cm?³. Tellurium incorporation resulted in n-doping of GaN1-xAsx layers with Hall carrier concentrations up to 3×10¹? cm?³ and mobilities of ~1 cm²/V s. The optimal growth temperature window for efficient Te doping of the amorphous GaN1-xAsx layers has been determined.

  6. IUP SID M1, 2005 T.P. SAS numero 01

    E-Print Network [OSTI]

    Lagnoux, Agnès

    IUP SID M1, 2005 T.P. SAS num´ero 01 Apr`es quelques g´en´eralit´es sur le logiciel SAS, l'objet de place l'environnement UNIX n´ecessaire `a l'utilisation de SAS dans des conditions commodes. G´en´eralit´es sur le logiciel SAS Le logiciel SAS est de conception am´ericaine : il est developp´e et commercialis

  7. Surface Termination of M1 Phase and Rational Design of Propane Ammoxidation Catalysts

    SciTech Connect (OSTI)

    Guliants, Vadim

    2015-02-16

    This final report describes major accomplishments in this research project which has demonstrated that the M1 phase is the only crystalline phase required for propane ammoxidation to acrylonitrile and that a surface monolayer terminating the ab planes of the M1 phase is responsible for their activity and selectivity in this reaction. Fundamental studies of the topmost surface chemistry and mechanism of propane ammoxidation over the Mo-V-(Te,Sb)-(Nb,Ta)-O M1 and M2 phases resulted in the development of quantitative understanding of the surface molecular structure – reactivity relationships for this unique catalytic system. These oxides possess unique catalytic properties among mixed metal oxides, because they selectively catalyze three alkane transformation reactions, namely propane ammoxidation to acrylonitrile, propane oxidation to acrylic acid and ethane oxidative dehydrogenation, all of considerable economic significance. Therefore, the larger goal of this research was to expand this catalysis to other alkanes of commercial interest, and more broadly, demonstrate successful approaches to rational design of improved catalysts that can be applied to other selective (amm)oxidation processes.

  8. Guide to research facilities

    SciTech Connect (OSTI)

    Not Available

    1993-06-01

    This Guide provides information on facilities at US Department of Energy (DOE) and other government laboratories that focus on research and development of energy efficiency and renewable energy technologies. These laboratories have opened these facilities to outside users within the scientific community to encourage cooperation between the laboratories and the private sector. The Guide features two types of facilities: designated user facilities and other research facilities. Designated user facilities are one-of-a-kind DOE facilities that are staffed by personnel with unparalleled expertise and that contain sophisticated equipment. Other research facilities are facilities at DOE and other government laboratories that provide sophisticated equipment, testing areas, or processes that may not be available at private facilities. Each facility listing includes the name and phone number of someone you can call for more information.

  9. Effect of ZnO seed layer on the morphology and optical properties of ZnO nanorods grown on GaN buffer layers

    SciTech Connect (OSTI)

    Nandi, R. Mohan, S. Major, S. S.; Srinivasa, R. S.

    2014-04-24

    ZnO nanorods were grown by chemical bath deposition on sputtered, polycrystalline GaN buffer layers with and without ZnO seed layer. Scanning electron microscopy and X-ray diffraction show that the ZnO nanorods on GaN buffer layers are not vertically well aligned. Photoluminescence spectrum of ZnO nanorods grown on GaN buffer layer, however exhibits a much stronger near-band-edge emission and negligible defect emission, compared to the nanorods grown on ZnO buffer layer. These features are attributed to gallium incorporation at the ZnO-GaN interface. The introduction of a thin (25 nm) ZnO seed layer on GaN buffer layer significantly improves the morphology and vertical alignment of ZnO-NRs without sacrificing the high optical quality of ZnO nanorods on GaN buffer layer. The presence of a thick (200 nm) ZnO seed layer completely masks the effect of the underlying GaN buffer layer on the morphology and optical properties of nanorods.

  10. Highly c-axis oriented GaN films grown on free-standing diamond substrates for high-power devices

    SciTech Connect (OSTI)

    Zhang, D. [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China) [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, Ministry of Education, Dalian University of Technology, Dalian 116024 (China); Bian, J.M., E-mail: jmbian@dlut.edu.cn [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); Qin, F.W.; Wang, J.; Pan, L. [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China) [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, Ministry of Education, Dalian University of Technology, Dalian 116024 (China); Zhao, J.M. [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China)] [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); Zhao, Y.; Bai, Y.Z. [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China) [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, Ministry of Education, Dalian University of Technology, Dalian 116024 (China); Du, G.T. [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China)] [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China)

    2011-10-15

    Highlights: {yields} GaN films are deposited on diamond substrates by ECR-PEMOCVD. {yields} Influence of deposition temperature on the properties of samples is investigated. {yields} Properties of GaN films are dependent on the deposition temperature. -- Abstract: GaN films with highly c-axis preferred orientation are deposited on free-standing thick diamond films by low temperature electron cyclotron resonance plasma enhanced metal organic chemical vapor deposition (ECR-PEMOCVD). The TMGa and N{sub 2} are applied as precursors of Ga and N, respectively. The quality of as-grown GaN films are systematically investigated as a function of deposition temperature by means of X-ray diffraction (XRD) analysis, Hall Effect measurement (HL), room temperature photoluminescence (PL) and atomic force microscopy (AFM). The results show that the dense and uniformed GaN films with highly c-axis preferred orientation are successfully achieved on free-standing diamond substrates under optimized deposition temperature of 400 {sup o}C, and the room temperature PL spectra of the optimized GaN film show a intense ultraviolet near band edge emission and a weak yellow luminescence. The obtained GaN/diamond structure has great potential for the development of high-power semiconductor devices due to its excellent heat dissipation nature.

  11. Monolithic single GaN nanowire laser with photonic crystal microcavity on silicon

    SciTech Connect (OSTI)

    Heo, Junseok; Guo Wei; Bhattacharya, Pallab

    2011-01-10

    Optically pumped lasing at room temperature in a silicon based monolithic single GaN nanowire with a two-dimensional photonic crystal microcavity is demonstrated. Catalyst-free nanowires with low density ({approx}10{sup 8} cm{sup -2}) are grown on Si by plasma-assisted molecular beam epitaxy. High resolution transmission electron microscopy images reveal that the nanowires are of wurtzite structure and they have no observable defects. A single nanowire laser fabricated on Si is characterized by a lasing transition at {lambda}=371.3 nm with a linewidth of 0.55 nm. The threshold is observed at a pump power density of {approx}120 kW/cm{sup 2} and the spontaneous emission factor {beta} is estimated to be 0.08.

  12. Demonstration of forward inter-band tunneling in GaN by polarization engineering

    SciTech Connect (OSTI)

    Krishnamoorthy, Sriram; Park, Pil Sung; Rajan, Siddharth

    2011-12-05

    We report on the design, fabrication, and characterization of GaN interband tunnel junction showing forward tunneling characteristics. We have achieved very high forward tunneling currents (153 mA/cm{sup 2} at 10 mV, and 17.7 A/cm{sup 2} peak current) in polarization-engineered GaN/InGaN/GaN heterojunction diodes grown by plasma assisted molecular beam epitaxy. We also report the observation of repeatable negative differential resistance in interband III-Nitride tunnel junctions, with peak-valley current ratio of 4 at room temperature. The forward current density achieved in this work meets the typical current drive requirements of a multi-junction solar cell.

  13. Method of growing GaN films with a low density of structural defects using an interlayer

    DOE Patents [OSTI]

    Bourret-Courchesne, Edith D. (Richmond, CA)

    2003-01-01

    A dramatic reduction of the dislocation density in GaN was obtained by insertion of a single thin interlayer grown at an intermediate temperature (IT-IL) after the growth of an initial grown at high temperature. A description of the growth process is presented with characterization results aimed at understanding the mechanisms of reduction in dislocation density. A large percentage of the threading dislocations present in the first GaN epilayer are found to bend near the interlayer and do not propagate into the top layer which grows at higher temperature in a lateral growth mode. TEM studies show that the mechanisms of dislocation reduction are similar to those described for the epitaxial lateral overgrowth process, however a notable difference is the absence of coalescence boundaries.

  14. Efficient Switches for Solar Power Conversion: Four Quadrant GaN Switch Enabled Three Phase Grid-Tied Microinverters

    SciTech Connect (OSTI)

    2012-02-13

    Solar ADEPT Project: Transphorm is developing power switches for new types of inverters that improve the efficiency and reliability of converting energy from solar panels into useable electricity for the grid. Transistors act as fast switches and control the electrical energy that flows in an electrical circuit. Turning a transistor off opens the circuit and stops the flow of electrical current; turning it on closes the circuit and allows electrical current to flow. In this way a transistor can be used to convert DC from a solar panel into AC for use in a home. Transphorm’s transistors will enable a single semiconductor device to switch electrical currents at high-voltage in both directions—making the inverter more compact and reliable. Transphorm is using Gallium Nitride (GaN) as a semiconductor material in its transistors instead of silicon, which is used in most conventional transistors, because GaN transistors have lower losses at higher voltages and switching frequencies.

  15. X-Band MMIC GaN Power Amplifiers Designed for High-Efficiency Supply-Modulated Transmitters

    E-Print Network [OSTI]

    Popovic, Zoya

    MMICs that utilize 0.15 µm GaN on SiC process technology are presented. Under continuous wave operating. Process Technology and Model The MMICs were fabricated in a 0.15 µm gate length process with an Al are Imax=1.15 A/mm, gm,max=380 mS/mm, and 3.5 V pinch-off at Vds=10 V. Device breakdown voltage exceeds 50

  16. Electronic and optical device applications of hollow cathode plasma assisted atomic layer deposition based GaN thin films

    SciTech Connect (OSTI)

    Bolat, Sami Tekcan, Burak; Ozgit-Akgun, Cagla; Biyikli, Necmi; Okyay, Ali Kemal

    2015-01-15

    Electronic and optoelectronic devices, namely, thin film transistors (TFTs) and metal–semiconductor–metal (MSM) photodetectors, based on GaN films grown by hollow cathode plasma-assisted atomic layer deposition (PA-ALD) are demonstrated. Resistivity of GaN thin films and metal-GaN contact resistance are investigated as a function of annealing temperature. Effect of the plasma gas and postmetallization annealing on the performances of the TFTs as well as the effect of the annealing on the performance of MSM photodetectors are studied. Dark current to voltage and responsivity behavior of MSM devices are investigated as well. TFTs with the N{sub 2}/H{sub 2} PA-ALD based GaN channels are observed to have improved stability and transfer characteristics with respect to NH{sub 3} PA-ALD based transistors. Dark current of the MSM photodetectors is suppressed strongly after high-temperature annealing in N{sub 2}:H{sub 2} ambient.

  17. 29.01.03.M1.07 Information Resources Change Management Page 1 of 6 STANDARD ADMINISTRATIVE PROCEDURE

    E-Print Network [OSTI]

    29.01.03.M1.07 Information Resources ­ Change Management Page 1 of 6 STANDARD ADMINISTRATIVE PROCEDURE 29.01.03.M1.07 Information Resources ­ Change Management Approved July 18, 2005 Revised February management of changes to information resources. Definitions Confidential - Information that must be protected

  18. 29.01.03.M1.03 Information Resources-Account Management Page 1 of 5 STANDARD ADMINISTRATIVE PROCEDURE

    E-Print Network [OSTI]

    29.01.03.M1.03 Information Resources- Account Management Page 1 of 5 STANDARD ADMINISTRATIVE PROCEDURE 29.01.03.M1.03 Information Resources ­ Account Management Approved July 18, 2005 Revised February of establishing confidence in the identity of users or information systems. There are many ways to authenticate

  19. 29.01.03.M1.12 Information Resources Network Access Page 1 of 3 STANDARD ADMINISTRATIVE PROCEDURE

    E-Print Network [OSTI]

    29.01.03.M1.12 Information Resources ­ Network Access Page 1 of 3 STANDARD ADMINISTRATIVE PROCEDURE 29.01.03.M1.12 Information Resources ­ Network Access Approved July 28, 2005 Revised May 28, 2010 Administrative Procedure Statement The information resources network infrastructure in Bryan/College Station

  20. 29.01.03.M1.06 Information Resources Backup and Recovery Page 1 of 3 STANDARD ADMINISTRATIVE PROCEDURE

    E-Print Network [OSTI]

    29.01.03.M1.06 Information Resources ­ Backup and Recovery Page 1 of 3 STANDARD ADMINISTRATIVE PROCEDURE 29.01.03.M1.06 Information Resources ­ Backup and Recovery Approved July 18, 2005 Revised February for mission critical information, and associated information resources, that are stored in an electronic

  1. 29.01.03.M1.22 Information Resources Vendor Access Page 1 of 4 STANDARD ADMINISTRATIVE PROCEDURE

    E-Print Network [OSTI]

    29.01.03.M1.22 Information Resources ­ Vendor Access Page 1 of 4 STANDARD ADMINISTRATIVE PROCEDURE 29.01.03.M1.22 Information Resources ­ Vendor Access Approved July 18, 2005 Revised December 4, 2009 that will mitigate information security risks associated with vendor access. Reason for SAP Vendors play an important

  2. 29.01.03.M1.13 Information Resources Network Configuration Page 1 of 3 STANDARD ADMINISTRATIVE PROCEDURE

    E-Print Network [OSTI]

    29.01.03.M1.13 Information Resources ­ Network Configuration Page 1 of 3 STANDARD ADMINISTRATIVE PROCEDURE 29.01.03.M1.13 Information Resources ­Network Configuration Approved July 18, 2005 Revised for change of the network infrastructure. Definitions Information Resources (IR) - the procedures, equipment

  3. 29.01.03. M1.11 Information Resources Intrusion Detection Page 1 of 3 STANDARD ADMINISTRATIVE PROCEDURE

    E-Print Network [OSTI]

    29.01.03. M1.11 Information Resources ­ Intrusion Detection Page 1 of 3 STANDARD ADMINISTRATIVE PROCEDURE 29.01.03.M1.11 Information Resources ­ Intrusion Detection Approved July 18, 2005 Revised April 27 security policy. As information systems grow in complexity, effective security systems must evolve

  4. 29.01.03.M1.32 Information Resources Disaster Recovery Planning Page 1 of 2 STANDARD ADMINISTRATIVE PROCEDURES

    E-Print Network [OSTI]

    29.01.03.M1.32 Information Resources ­ Disaster Recovery Planning Page 1 of 2 STANDARD ADMINISTRATIVE PROCEDURES 29.01.03.M1.32 Information Resources ­ Disaster Recovery Planning Revised November 5 and predictable manner. Definitions Information Resources (IR) - the procedures, equipment, and software

  5. 29.01.03.M1 Security of Electronic Information Resources Page 1 of 3 UNIVERSITY RULE

    E-Print Network [OSTI]

    29.01.03.M1 Security of Electronic Information Resources Page 1 of 3 UNIVERSITY RULE 29.01.03.M1 Security of Electronic Information Resources Approved May 27, 2002 Revised May 28, 2009 Revised October 15&M) electronic information resources are vital academic and administrative assets which require appropriate

  6. 29.01.03.M1.08 Information Resources Email Use Page 1 of 2 STANDARD ADMINISTRATIVE PROCEDURE

    E-Print Network [OSTI]

    29.01.03.M1.08 Information Resources ­ Email Use Page 1 of 2 STANDARD ADMINISTRATIVE PROCEDURE 29.01.03.M1.08 Information Resources ­ E-mail Use Approved July 18, 2005 Revised April 27, 2010 Revised University information resources are strategic assets and as such must be managed as valuable state resources

  7. 29.01.03. M1.18 Information Resources Security Monitoring Page 1 of 3 STANDARD ADMINISTRATIVE PROCEDURE

    E-Print Network [OSTI]

    29.01.03. M1.18 Information Resources ­ Security Monitoring Page 1 of 3 STANDARD ADMINISTRATIVE PROCEDURE 29.01.03.M1.18 Information Resources ­ Security Monitoring Approved July 18, 2005 Revised April 27, etc. Reason for SAP The purpose of the security monitoring policy is to ensure that information

  8. 29.01.03.M1.17 Information Resources Privacy Page 1 of 4 STANDARD ADMINISTRATIVE PROCEDURE

    E-Print Network [OSTI]

    for university information resources. Reason The University has the right to examine information on information29.01.03.M1.17 Information Resources ­ Privacy Page 1 of 4 STANDARD ADMINISTRATIVE PROCEDURE 29.01.03.M1.17 Information Resources ­ Privacy Approved July 18, 2005 Revised December 4, 2009 Revised August

  9. Search for 14.4 keV solar axions from M1 transition of Fe-57...

    Office of Scientific and Technical Information (OSTI)

    Search for 14.4 keV solar axions from M1 transition of Fe-57 with CUORE crystals Citation Details In-Document Search Title: Search for 14.4 keV solar axions from M1 transition of...

  10. 29.01.03.M1 Security of Electronic Information Resources Page 1 of 3 UNIVERSITY RULE

    E-Print Network [OSTI]

    Technology & Chief Information Officer. 2. RESPONSIBILITIES 2.1 The Associate Vice President for Information Technology & Chief Information Officer, or designee, is responsible for administering the provisions29.01.03.M1 Security of Electronic Information Resources Page 1 of 3 UNIVERSITY RULE 29.01.03.M1

  11. 29.01.03.M1.20 Information Resources Platform Management Page 1 of 4 STANDARD ADMINISTRATIVE PROCEDURE

    E-Print Network [OSTI]

    , phones, and other information technology devices) are relied upon to deliver data in a secure, reliable29.01.03.M1.20 Information Resources ­ Platform Management Page 1 of 4 STANDARD ADMINISTRATIVE PROCEDURE 29.01.03.M1.20 Information Resources ­ Platform Management Approved July 18, 2005 Revised February

  12. 15.01.01.M1 Treatment of Costs for Sponsored Agreements Page 1 of 2 UNIVERSITY RULE

    E-Print Network [OSTI]

    15.01.01.M1 Treatment of Costs for Sponsored Agreements Page 1 of 2 UNIVERSITY RULE 15.01.01.M1 Treatment of Costs for Sponsored Agreements Approved October 13, 1997 Revised June 6, 2001 Revised January by Texas A&M UniversityResearch Services (TAMU-RS). In compliance with Title 2 CFR Part 220, Cost

  13. CRAD, Facility Safety- Nuclear Facility Design

    Office of Energy Efficiency and Renewable Energy (EERE)

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) that can be used for assessment of a contractor's Nuclear Facility Design.

  14. CRAD, Facility Safety- Nuclear Facility Safety Basis

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) that can be used for assessment of a contractor's Nuclear Facility Safety Basis.

  15. Facilities | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    JLab Buildings Facilities Management & Logistics is responsible for performing or specifying performance of all Jefferson Lab facility maintenance. A D D I T I O N A L L I N K S:...

  16. Better building: LEEDing new facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Better building: LEEDing new facilities Better building: LEEDing new facilities We're taking big steps on-site to create energy efficient facilities and improve infrastructure....

  17. Influence of post-deposition annealing on interfacial properties between GaN and ZrO{sub 2} grown by atomic layer deposition

    SciTech Connect (OSTI)

    Ye, Gang; Wang, Hong, E-mail: ewanghong@ntu.edu.sg; Arulkumaran, Subramaniam; Ng, Geok Ing; Li, Yang; Ang, Kian Siong [Novitas, Nanoelectronics Center of Excellence, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Geok Ng, Serene Lay; Ji, Rong [Data Storage Institute, Agency for Science Technology and Research (A-STAR), 5 Engineering Drive 1, 117608 (Singapore); Liu, Zhi Hong [Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, Singapore 138602 (Singapore)

    2014-10-13

    Influence of post-deposition annealing on interfacial properties related to the formation/annihilation of interfacial GaO{sub x} layer of ZrO{sub 2} grown by atomic layer deposition (ALD) on GaN is studied. ZrO{sub 2} films were annealed in N{sub 2} atmospheres in temperature range of 300?°C to 700?°C and analyzed by X-ray photoelectron spectroscopy and high-resolution transmission electron microscopy. It has been found that Ga-O bond to Ga-N bond area ratio decreases in the samples annealed at temperatures lower than 500?°C, which could be attributed to the thinning of GaO{sub x} layer associated with low surface defect states due to “clean up” effect of ALD-ZrO{sub 2} on GaN. However, further increase in annealing temperature results in deterioration of interface quality, which is evidenced by increase in Ga-O bond to Ga-N bond area ratio and the reduction of Ga-N binding energy.

  18. Characterization of GaN nanowires grown on PSi, PZnO and PGaN on Si (111) substrates by thermal evaporation

    SciTech Connect (OSTI)

    Shekari, Leila; Hassan, Haslan Abu; Thahab, Sabah M.; Hassan, Zainuriah [Nano-Optoelectronics Research and Technology Laboratory School of Physics, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia); Materials Engineering Department, College of Engineering, University of Kufa, Najaf (Iraq); Nano-Optoelectronics Research and Technology Laboratory School of Physics, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia)

    2012-06-20

    In this research, we used an easy and inexpensive method to synthesize highly crystalline GaN nanowires (NWs); on different substrates such as porous silicon (PSi), porous zinc oxide (PZnO) and porous gallium nitride (PGaN) on Si (111) wafer by thermal evaporation using commercial GaN powder without any catalyst. Micro structural studies by scanning electron microscopy and transmission electron microscope measurements reveal the role of different substrates in the morphology, nucleation and alignment of the GaN nanowires. The degree of alignment of the synthesized nanowires does not depend on the lattice mismatch between wires and their substrates. Further structural and optical characterizations were performed using high resolution X-ray diffraction and energy-dispersive X-ray spectroscopy. Results indicate that the nanowires are of single-crystal hexagonal GaN. The quality and density of grown GaN nanowires for different substrates are highly dependent on the lattice mismatch between the nanowires and their substrates and also on the size of the porosity of the substrates. Nanowires grown on PGaN have the best quality and highest density as compared to nanowires on other substrates. By using three kinds of porous substrates, we are able to study the increase in the alignment and density of the nanowires.

  19. Computing Facilities Orientation

    E-Print Network [OSTI]

    California at Santa Barbara, University of

    Computing Facilities Orientation September, 2014 #12;Introductions Jason Simpson ­ Manager Computing Facilities Use Policy The Computing facilities are a shared resource for all Bren MESM students Respect the work environment of other students Protect the computer equipment and resources provided You

  20. Low resistance ohmic contacts on wide band-gap GaN M. E. Lin, Z. Ma, F. Y. Huang, Z. F. Fan, L. H. Allen, and H. MorkoG

    E-Print Network [OSTI]

    Allen, Leslie H.

    -beam evaporation onto the GaN substrate, and then thermally annealed in a temperature range from 500 to 900 "C as high temperature/high power electrical devices, there still remains much more work to be done on GaN epilayers, Foresi et aL6 used Al and Au contacts with 575 "C anneal cycle. However, the specific

  1. Modeling of electronic transport in GaN n-i-p junctions Laboratoire de Physique du Solide, Facults Universitaires Notre-Dame de la Paix, Rue de Bruxelles 61,

    E-Print Network [OSTI]

    Mayer, Alexandre

    Modeling of electronic transport in GaN n-i-p junctions A. Mayera) Laboratoire de Physique du) We propose a model and an algorithm for computing the transport properties of GaN n-i-p devices as cold cathodes2,3 or thermoelectric coolers.4­8 For applications as electronic emitters, the idea

  2. Radiation-induced defects in GaN bulk grown by halide vapor phase epitaxy

    SciTech Connect (OSTI)

    Duc, Tran Thien; Pozina, Galia; Son, Nguyen Tien; Janzén, Erik; Hemmingsson, Carl; Ohshima, Takeshi

    2014-09-08

    Defects induced by electron irradiation in thick free-standing GaN layers grown by halide vapor phase epitaxy were studied by deep level transient spectroscopy. In as-grown materials, six electron traps, labeled D2 (E{sub C}–0.24?eV), D3 (E{sub C}–0.60?eV), D4 (E{sub C}–0.69?eV), D5 (E{sub C}–0.96?eV), D7 (E{sub C}–1.19?eV), and D8, were observed. After 2?MeV electron irradiation at a fluence of 1?×?10{sup 14?}cm{sup ?2}, three deep electron traps, labeled D1 (E{sub C}–0.12?eV), D5I (E{sub C}–0.89?eV), and D6 (E{sub C}–1.14?eV), were detected. The trap D1 has previously been reported and considered as being related to the nitrogen vacancy. From the annealing behavior and a high introduction rate, the D5I and D6 centers are suggested to be related to primary intrinsic defects.

  3. DOE Facility Management Contracts Facility Owner Contractor

    Broader source: Energy.gov (indexed) [DOE]

    periods 122015 Facility Mgmt 2009 http:www.hanford.govpage.cfmDOEORPContracts Marc McCusker 509-376-2760 Susan E. Bechtol 509-376-3388 Strategic Petroleum Reserve FE Dyn...

  4. UNIVERSITY OF WASHINGTON FINANCE & FACILITIES

    E-Print Network [OSTI]

    Van Volkenburgh, Elizabeth

    UNIVERSITY OF WASHINGTON FINANCE & FACILITIES Capital Projects Office TITLE UNIVERSITY OF WASHINGTON FINANCE & FACILITIES Capital Projects Office UNIVERSITY OF WASHINGTON FINANCE & FACILITIES Capital, 2013 #12;UNIVERSITY OF WASHINGTON FINANCE & FACILITIES Capital Projects Office TITLE · 3.15-mile

  5. The development and evaluation of a sensitive minicolumn assay for the detection of aflatoxin M1 in milk 

    E-Print Network [OSTI]

    Cathey, Carol Grmela

    1993-01-01

    The aflatoxins comprise a subgroup of mycotoxins usually produced by Aspergillus parasiticus or Aspergillus flavus. Dairy cattle which ingest aflatoxin-contaminated feed will excrete aflatoxin M1 into the milk. The presence of this metabolite...

  6. Search for 14.4 keV solar axions from M1 transition of Fe-57 with CUORE crystals

    E-Print Network [OSTI]

    Alessandria, F.

    2014-01-01

    to JCAP Search for 14.4 keV solar axions from M1 transitionfor useful discussion about solar core 57 Fe content.excitation of 57 Fe in the solar core. The isotope 57 Fe is

  7. Performance enhancement of GaN metal–semiconductor–metal ultraviolet photodetectors by insertion of ultrathin interfacial HfO{sub 2} layer

    SciTech Connect (OSTI)

    Kumar, Manoj E-mail: aokyay@ee.bilkent.edu.tr; Tekcan, Burak; Okyay, Ali Kemal E-mail: aokyay@ee.bilkent.edu.tr

    2015-03-15

    The authors demonstrate improved device performance of GaN metal–semiconductor–metal ultraviolet (UV) photodetectors (PDs) by ultrathin HfO{sub 2} (UT-HfO{sub 2}) layer on GaN. The UT-HfO{sub 2} interfacial layer is grown by atomic layer deposition. The dark current of the PDs with UT-HfO{sub 2} is significantly reduced by more than two orders of magnitude compared to those without HfO{sub 2} insertion. The photoresponsivity at 360?nm is as high as 1.42 A/W biased at 5 V. An excellent improvement in the performance of the devices is ascribed to allowed electron injection through UT-HfO{sub 2} on GaN interface under UV illumination, resulting in the photocurrent gain with fast response time.

  8. Advanced Materials Facilities & Capabilites | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sciences Building Battery Processing Facility Battery and Capacitor Test Facility Nuclear Analytical Chemistry and Isotopics Laboratories Manufacturing Manufacturing Demonstration...

  9. Facility Effluent Monitoring Plan determinations for the 600 Area facilities

    SciTech Connect (OSTI)

    Nickels, J.M.

    1991-08-01

    This document determines the need for Facility Effluent Monitoring Plans for Westinghouse Hanford Company's 600 Area facilities on the Hanford Site. The Facility Effluent Monitoring Plan determinations were prepared in accordance with A Guide For Preparing Hanford Site Facility Effluent Monitoring Plans (WHC 1991). Five major Westinghouse Hanford Company facilities in the 600 Area were evaluated: the Purge Water Storage Facility, 212-N, -P, and -R Facilities, the 616 Facility, and the 213-J K Storage Vaults. Of the five major facilities evaluated in the 600 Area, none will require preparation of a Facility Effluent Monitoring Plan.

  10. Highly mismatched crystalline and amorphous GaN(1-x)As(x) alloys in the whole composition range

    SciTech Connect (OSTI)

    Yu, K. M.; Novikov, S. V.; Broesler, R.; Demchenko, I. N.; Denlinger, J. D.; Liliental-Weber, Z.; Luckert, F.; Martin, R. W.; Walukiewicz, W.; Foxon, C. T.

    2009-08-29

    Alloying is a commonly accepted method to tailor properties of semiconductor materials for specific applications. Only a limited number of semiconductor alloys can be easily synthesized in the full composition range. Such alloys are, in general, formed of component elements that are well matched in terms of ionicity, atom size, and electronegativity. In contrast there is a broad class of potential semiconductor alloys formed of component materials with distinctly different properties. In most instances these mismatched alloys are immiscible under standard growth conditions. Here we report on the properties of GaN1-xAsx, a highly mismatched, immiscible alloy system that was successfully synthesized in the whole composition range using a nonequilibrium low temperature molecular beam epitaxy technique. The alloys are amorphous in the composition range of 0.17GaN to ~;;0.8 eV at x~;;0.85. The reduction in the band gap can be attributed primarily to the downward movement of the conduction band for alloys with x>0.2, and to the upward movement of the valence band for alloys with x<0.2. The unique features of the band structure offer an opportunity of using GaN1-xAsx alloys for various types of solar power conversion devices.

  11. Poultry Facility Biosecurity 

    E-Print Network [OSTI]

    Carey, John B.; Prochaska, J. Fred; Jeffrey, Joan S.

    2005-12-21

    . When teamed with disinfection and sanitation pro - cedures, biosecurity practices can eradicate or reduce pathogens to noninfectious levels. Such preventive measures as vaccination and sero- logic monitoring also help ensure good f_lock health... economically, reducing production over the life of the facility without overt signs of disease. Once contaminated with pathogens, poultry facilities are extremely diff_icult and expensive to clean, sanitize and disinfect. Facility location and design...

  12. ARM Mobile Facilities

    SciTech Connect (OSTI)

    Orr, Brad; Coulter, Rich

    2010-12-13

    This video provides an overview of the ARM Mobile Facilities, two portable climate laboratories that can deploy anywhere in the world for campaigns of at least six months.

  13. ARM Mobile Facilities

    ScienceCinema (OSTI)

    Orr, Brad; Coulter, Rich

    2014-09-15

    This video provides an overview of the ARM Mobile Facilities, two portable climate laboratories that can deploy anywhere in the world for campaigns of at least six months.

  14. Presented by FACILITIES MANAGEMENT

    E-Print Network [OSTI]

    Meyers, Steven D.

    Presented by FACILITIES MANAGEMENT TRANSFORMING USF'S TAMPA CAMPUS SUMMER 2011 #12; WELCOME Facili:es Management #12; Facili:es Management #12; NEW CONSTRUCTION Facili

  15. Facility Survey & Transfer

    Broader source: Energy.gov [DOE]

    As DOE facilities become excess, many that are radioactively and/or chemically contaminated will become candidate for transfer to DOE-EM for deactivation and decommissioning.

  16. Texas Facilities Commission's Facility Management Strategic Plan 

    E-Print Network [OSTI]

    Ramirez, J. A.

    2009-01-01

    stream_source_info ESL-IC-09-11-12.pdf.txt stream_content_type text/plain stream_size 4735 Content-Encoding ISO-8859-1 stream_name ESL-IC-09-11-12.pdf.txt Content-Type text/plain; charset=ISO-8859-1 Texas Facilities... Commission?s Facility Management Strategic Plan Jorge A. Ramirez Deputy Executive Director Building Operations & Plant Management ESL-IC-09-11-12 Proceedings of the Ninth International Conference for Enhanced Building Operations, Austin, Texas, November 17...

  17. MINERAL FACILITIES MAPPING PROJECT

    E-Print Network [OSTI]

    Gilbes, Fernando

    Questionnaires. Update the data that pertaining to MIT's contacts worldwide. #12;BOJNOURD CEMENT PLANT Location a database using the Structural Table of Mineral Industry, which includes the location of main mineral The mineral facilities database included: Type of facility: Mine (open pit, underground) Plant ( refineries

  18. Geophysical InversionFacility

    E-Print Network [OSTI]

    Oldenburg, Douglas W.

    UBC Geophysical InversionFacility Modelling and Inversion of EMI data collected over magnetic soils of EMI data acquired at sites with magnetic soils · Geophysical Proveouts · Geonics EM63 Data · First model parameters: · Location · Orientation · Polarizabilities 4 #12;UBC Geophysical Inversion Facility

  19. Nanotechnology User Facility for

    E-Print Network [OSTI]

    A National Nanotechnology User Facility for Industry Academia Government #12;In the NanoFab, you measurement and fabrication methods in response to national nanotechnology needs. www.nist.gov/cnst Robert) is the Department of Commerce's nanotechnology user facility. The CNST enables innovation by providing rapid access

  20. Emergency Facilities and Equipment

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-08-21

    This volume clarifies requirements of DOE O 151.1 to ensure that emergency facilities and equipment are considered as part of emergency management program and that activities conducted at these emergency facilities are fully integrated. Canceled by DOE G 151.1-4.

  1. Science &Technology Facilities Council

    E-Print Network [OSTI]

    Science &Technology Facilities Council Accelerator Science and Technology Centre Daresbury Science)1235 445808 www.stfc.ac.uk/astec Head office, Science and Technology Facilities Council, Polaris House, North Newton Group, La Palma: Joint Astronomy Centre, Hawaii. ASTeC Science Highlights 2009 - 2010 Science

  2. Kauai Test Facility

    SciTech Connect (OSTI)

    Hay, R.G.

    1982-01-01

    The Kauai Test Facility (KTF) is a Department of Energy rocket launch facility operated by Sandia National Laboratories. Originally it was constructed in support of the high altitude atmospheric nuclear test phase of operation Dominic in the early 1960's. Later, the facility went through extensive improvement and modernization to become an integral part of the Safeguard C readiness to resume nuclear testing program. Since its inception and build up, in the decade of the sixties and the subsequent upgrades of the seventies, range test activities have shifted from full scale test to emphasis on research and development of materials and components, and to making high altitude scientific measurements. Primarily, the facility is intended to be utilized in support of development programs at the DOE weapons laboratories, however, other organizations may make use of the facility on a non-interface basis. The physical components at KTF and their operation are described.

  3. Facility deactivation and demolition

    SciTech Connect (OSTI)

    Cormier, S.L.; Adamowski, S.J.

    1994-12-31

    Today an improperly closed facility can be a liability to its owner, both financially and environmentally. A facility deactivation program must be planned and implemented to decrease liabilities, minimize operating costs, seek to reuse or sell processes or equipment, and ultimately aid in the sale and/or reuse of the facility and property whether or not the building(s) are demolished. These programs should be characterized within the deactivation plan incorporating the following major categories: Utility Usage; Environmental Decontamination; Ongoing Facility Management; Property Management/Real Estate Issues. This paper will outline the many facets of the facility deactivation and demolition programs implemented across the country for clients in the chemical, automotive, transportation, electronic, pharmaceutical, power, natural gas and petroleum industries. Specific emphasis will be placed on sampling and analysis plans, specification preparation, equipment and technologies utilized, ``how clean is clean`` discussions and regulatory guidelines applicable to these issues.

  4. Current crowding in GaInN / GaN LEDs grown on insulating substrates X. Guo, E. F. Schubert and J. Jahns

    E-Print Network [OSTI]

    Jahns, Jürgen

    Current crowding in GaInN / GaN LEDs grown on insulating substrates X. Guo, E. F. Schubert and J. Jahns Current crowding in mesa-structure GaInN/GaN light-emitting diodes (LEDs) grown on insulating and a saturation of the optical output power at high injection currents. It is shown that the optical power

  5. Formation of manganese -doped atomic layer in wurtzite GaN Meng Shi, Abhijit Chinchore, Kangkang Wang, Andrada-Oana Mandru, Yinghao Liu et al.

    E-Print Network [OSTI]

    is formulated based on the experimental data, and implications for possible spintronic applications The importance of spintronics in general was emphati- cally described by Wolf et al.,1 while the possibility to fabri- cate room-temperature spintronic devices based on GaN was proposed by Dietl et al.2 The idea

  6. Open-core screw dislocations in GaN epilayers observed by scanning force microscopy and high-resolution transmission electron microscopy

    E-Print Network [OSTI]

    Rohrer, Gregory S.

    -resolution transmission electron microscopy W. Qian, G. S. Rohrer, and M. Skowronski Department of Materials Science. K. Gaskill Laboratory for Advanced Material Synthesis, Naval Research Laboratory, Washington, DC of organometallic vapor phase epitaxy grown -GaN films using high-resolution transmission electron microscopy

  7. High linearity GaN HEMT power amplifier with pre-linearization gate diode Shouxuan Xie, Vamsi Paidi, Sten Heikman, Alessandro Chini,

    E-Print Network [OSTI]

    Long, Stephen I.

    GaN/GaN HEMT technology. In order to obtain high linearity, a pre-linearization gate diode is added. Introduction. Our previously described single-ended Class B power amplifier design using GaN HEMT technology is biased at exactly the pinch off point (Class B configuration) [1]. In order to further improve

  8. STAR Facility Tritium Accountancy

    SciTech Connect (OSTI)

    R. J. Pawelko; J. P. Sharpe; B. J. Denny

    2007-09-01

    The Safety and Tritium Applied Research (STAR) facility has been established to provide a laboratory infrastructure for the fusion community to study tritium science associated with the development of safe fusion energy and other technologies. STAR is a radiological facility with an administrative total tritium inventory limit of 1.5g (14,429 Ci) [1]. Research studies with moderate tritium quantities and various radionuclides are performed in STAR. Successful operation of the STAR facility requires the ability to receive, inventory, store, dispense tritium to experiments, and to dispose of tritiated waste while accurately monitoring the tritium inventory in the facility. This paper describes tritium accountancy in the STAR facility. A primary accountancy instrument is the tritium Storage and Assay System (SAS): a system designed to receive, assay, store, and dispense tritium to experiments. Presented are the methods used to calibrate and operate the SAS. Accountancy processes utilizing the Tritium Cleanup System (TCS), and the Stack Tritium Monitoring System (STMS) are also discussed. Also presented are the equations used to quantify the amount of tritium being received into the facility, transferred to experiments, and removed from the facility. Finally, the STAR tritium accountability database is discussed.

  9. STAR facility tritium accountancy

    SciTech Connect (OSTI)

    Pawelko, R. J.; Sharpe, J. P.; Denny, B. J.

    2008-07-15

    The Safety and Tritium Applied Research (STAR) facility has been established to provide a laboratory infrastructure for the fusion community to study tritium science associated with the development of safe fusion energy and other technologies. STAR is a radiological facility with an administrative total tritium inventory limit of 1.5 g (14,429 Ci) [1]. Research studies with moderate tritium quantities and various radionuclides are performed in STAR. Successful operation of the STAR facility requires the ability to receive, inventory, store, dispense tritium to experiments, and to dispose of tritiated waste while accurately monitoring the tritium inventory in the facility. This paper describes tritium accountancy in the STAR facility. A primary accountancy instrument is the tritium Storage and Assay System (SAS): a system designed to receive, assay, store, and dispense tritium to experiments. Presented are the methods used to calibrate and operate the SAS. Accountancy processes utilizing the Tritium Cleanup System (TCS), and the Stack Tritium Monitoring System (STMS) are also discussed. Also presented are the equations used to quantify the amount of tritium being received into the facility, transferred to experiments, and removed from the facility. Finally, the STAR tritium accountability database is discussed. (authors)

  10. Superior Energy Performance Industrial Facility Best Practice...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industrial Facility Best Practice Scorecard Superior Energy Performance Industrial Facility Best Practice Scorecard Superior Energy Performance logo Industrial facilities seeking...

  11. Honda: North American Manufacturing Facilities | Department of...

    Office of Environmental Management (EM)

    Honda: North American Manufacturing Facilities Honda: North American Manufacturing Facilities From October, 2008 Honda: North American Manufacturing Facilities More Documents &...

  12. Sandia Energy - About the Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facility About the FacilityTara Camacho-Lopez2015-05-11T19:38:37+00:00 Test-Bed Wind Turbines Allow Facility Flexibility While Providing Reliable Data in Many Regimes SWiFT will...

  13. 29.01.04.M1.01 Web Accessibility and Usability Procedures Page 1 of 5 STANDARD ADMINISTRATIVE PROCEDURE

    E-Print Network [OSTI]

    Bermúdez, José Luis

    29.01.04.M1.01 Web Accessibility and Usability Procedures Page 1 of 5 STANDARD ADMINISTRATIVE or redesigned Web pages/content is that they are designed and created to be accessible to, and usable by, all and maintain Texas A&M University Web pages, deans, and division heads. Definitions 508 validation tool

  14. 29.01.03.M1.12 Information Resources Network Access Page 1 of 3 STANDARD ADMINISTRATIVE PROCEDURE

    E-Print Network [OSTI]

    by University Information Technology services, and which backhaul data from a location to a central site thus Technology Risk Management #12;29.01.03.M1.12 Information Resources ­ Network Access Page 3 of 3 OFFICE OF RESPONSIBILITY: Associate Vice President for Information Technology & Chief Information Officer #12;

  15. GG 711 FALL 2015 M 1:30-4:20 pm, POST 702 "Cosmogenic Nuclides in Earth and Planetary Science"

    E-Print Network [OSTI]

    1 GG 711 FALL 2015 M 1:30-4:20 pm, POST 702 "Cosmogenic Nuclides in Earth and Planetary Science a foundational understanding of the principles of cosmogenic nuclide research. ***have developed an ability to make sound assessments of applications of the presented cosmogenic nuclide measurement modalities

  16. TRITIUM EXTRACTION FACILITY ALARA

    SciTech Connect (OSTI)

    Joye, BROTHERTON

    2005-04-19

    The primary mission of the Tritium Extraction Facility (TEF) is to extract tritium from tritium producing burnable absorber rods (TPBARs) that have been irradiated in a commercial light water reactor and to deliver tritium-containing gas to the Savannah River Site Facility 233-H. The tritium extraction segment provides the capability to deliver three (3) kilograms per year to the nation's nuclear weapons stockpile. The TEF includes processes, equipment and facilities capable of production-scale extraction of tritium while minimizing personnel radiation exposure, environmental releases, and waste generation.

  17. Kiefer Landfill Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Kiefer Landfill Biomass Facility Jump to: navigation, search Name Kiefer Landfill Biomass Facility Facility Kiefer Landfill Sector Biomass Facility Type Landfill Gas Location...

  18. Facility effluent monitoring plan determinations for the 300 Area facilities

    SciTech Connect (OSTI)

    Nickels, J.M.

    1991-08-01

    Facility Effluent Monitoring Plan determinations were conducted for the Westinghouse Hanford Company 300 Area facilities on the Hanford Site. These determinations have been prepared in accordance with A Guide For Preparing Hanford Site Facility Effluent Monitoring Plans. Sixteen Westinghouse Hanford Company facilities in the 300 Area were evaluated: 303 (A, B, C, E, F, G, J and K), 303 M, 306 E, 308, 309, 313, 333, 334 A, and the 340 Waste Handling Facility. The 303, 306, 313, 333, and 334 facilities Facility Effluent Monitoring Plan determinations were prepared by Columbia Energy and Environmental Services of Richland, Washington. The 340 Central Waste Complex determination was prepared by Bovay Northwest, Incorporated. The 308 and 309 facility determinations were prepared by Westinghouse Handford Company. Of the 16 facilities evaluated, 3 will require preparation of a Facility effluent Monitoring Plan: the 313 N Fuels Fabrication Support Building, 333 N Fuels fabrication Building, and the 340 Waste Handling Facility. 26 refs., 5 figs., 10 tabs.

  19. Pollution Control Facilities (South Carolina)

    Broader source: Energy.gov [DOE]

    For the purpose of this legislation, pollution control facilities are defined as any facilities designed for the elimination, mitigation or prevention of air or water pollution, including all...

  20. Listing of Defense Nuclear Facilities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plant Mound Facility Fernald Environmental Management Project Site Pantex Plant Rocky Flats Environmental Technology Site, including the Oxnard Facility Savannah River Site Los...

  1. Facility Modernization Report

    SciTech Connect (OSTI)

    Robinson, D; Ackley, R

    2007-05-10

    Modern and technologically up-to-date facilities and systems infrastructure are necessary to accommodate today's research environment. In response, Lawrence Livermore National Laboratory (LLNL) has a continuing commitment to develop and apply effective management models and processes to maintain, modernize, and upgrade its facilities to meet the science and technology mission. The Facility Modernization Pilot Study identifies major subsystems of facilities that are either technically or functionally obsolete, lack adequate capacity and/or capability, or need to be modernized or upgraded to sustain current operations and program mission. This study highlights areas that need improvement, system interdependencies, and how these systems/subsystems operate and function as a total productive unit. Although buildings are 'grandfathered' in and are not required to meet current codes unless there are major upgrades, this study also evaluates compliance with 'current' building, electrical, and other codes. This study also provides an evaluation of the condition and overall general appearance of the structure.

  2. Liquidity facilities and signaling

    E-Print Network [OSTI]

    Arregui, Nicolás

    2010-01-01

    This dissertation studies the role of signaling concerns in discouraging access to liquidity facilities like the IMF contingent credit lines (CCL) and the Discount Window (DW). In Chapter 1, I analyze the introduction of ...

  3. User Facilities | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    prior to granting access to a user facility. User Office User Program Manager Laura Morris Edwards 865.574.2966 Email User Office User Office User Program Manager Laura Morris...

  4. Photovoltaic Research Facilities

    Office of Energy Efficiency and Renewable Energy (EERE)

    The U.S. Department of Energy (DOE) funds photovoltaic (PV) research and development (R&D) at its national laboratory facilities located throughout the country. To encourage further innovation,...

  5. Facilities Management Mike Johnson

    E-Print Network [OSTI]

    Capogna, Luca

    , Design & Construction Services Bob Beeler Director, Facility Operations & Maintenance / Environmental Health & Safety Ron Edwards Director, Utility Operations & Maintenance Scott Turley Director, Business & Distribution Utility Plant Operations Water Treatment Zone C Utility Maintenance (HEAT) Power Distribution

  6. NETL - Fuel Reforming Facilities

    ScienceCinema (OSTI)

    None

    2014-06-27

    Research using NETL's Fuel Reforming Facilities explores catalytic issues inherent in fossil-energy related applications, including catalyst synthesis and characterization, reaction kinetics, catalyst activity and selectivity, catalyst deactivation, and stability.

  7. Painter Greenhouse Guidelines Contact: All emails regarding facilities, facilities equipment, supplies at facilities, or watering

    E-Print Network [OSTI]

    Painter Greenhouse Guidelines Contact: All emails regarding facilities, facilities equipment, supplies at facilities, or watering concerns to both the greenhouse manager, Shane Merrell for the Painter Greenhouses must be generated through Shane Merrell. Keep doors locked at all times. Repairs

  8. Vehicle Technologies Office Merit Review 2015: Advanced Low-Cost SiC and GaN Wide Bandgap Inverters for Under-the-Hood Electric Vehicle Traction Drives

    Broader source: Energy.gov [DOE]

    Presentation given by APEI Inc. at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced low-cost SiC and GaN wide...

  9. Vehicle Technologies Office Merit Review 2014: Advanced Low-Cost SiC and GaN Wide Bandgap Inverters for Under-the-Hood Electric Vehicle Traction Drives

    Broader source: Energy.gov [DOE]

    Presentation given by APEI Inc. at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Advanced low-cost SIC and GaN wide...

  10. Novel ethylenediamine-gallium phosphate containing 6-fold coordinated gallium atoms with unusual four equatorial Ga–N bonds

    SciTech Connect (OSTI)

    Torre-Fernández, Laura [Departamentos de Química Física y Analítica y Química Orgánica e Inorgánica, Universidad de Oviedo-CINN, 33006 Oviedo (Spain); Espina, Aránzazu; Khainakov, Sergei A.; Amghouz, Zakariae [Servicios Científico Técnicos, Universidad de Oviedo, 33006 Oviedo (Spain); García, José R. [Departamentos de Química Física y Analítica y Química Orgánica e Inorgánica, Universidad de Oviedo-CINN, 33006 Oviedo (Spain); García-Granda, Santiago, E-mail: sgg@uniovi.es [Departamentos de Química Física y Analítica y Química Orgánica e Inorgánica, Universidad de Oviedo-CINN, 33006 Oviedo (Spain)

    2014-07-01

    A novel ethylenediamine-gallium phosphate, formulated as Ga(H{sub 2}NCH{sub 2}CH{sub 2}NH{sub 2}){sub 2}PO{sub 4}·2H{sub 2}O, was synthesized under hydrothermal conditions. The crystal structure, including hydrogen positions, was determined using single-crystal X-ray diffraction data (monoclinic, a=9.4886(3) Å, b=6.0374(2) Å, c=10.2874(3) Å, and ?=104.226(3)°, space group Pc) and the bulk was characterized by chemical (Ga–P–C–H–N) and thermal analysis (TG–MS and DSC), including activation energy data of its thermo-oxidative degradation, powder X-ray diffraction (PXRD), solid-state nuclear magnetic resonance (SS-NMR) measurements, and transmission electron microscopy (TEM, SAED/NBD, and STEM BF-EDX). The crystal structure is built up of infinite zig-zag chains running along the c-axis, formed by vertex-shared (PO{sub 4}) and (GaO{sub 2}N{sub 4}) polyhedra. The new compound is characterized by unusual four equatorial Ga–N bonds coming from two nonequivalent ethylenediamine molecules and exhibits strong blue emission at 430 nm (?{sub ex}=350 nm) in the solid state at room temperature. - Graphical abstract: Single crystals of a new ethylenediamine-gallium phosphate, Ga(H{sub 2}NCH{sub 2}CH{sub 2}NH{sub 2}){sub 2}PO{sub 4}·2H{sub 2}O, were obtained and the structural features presented. This structure is one of the scarce examples of GaPO with Ga–N bonds reported. - Highlights: • A novel ethylenediamine-gallium phosphate was hydrothermally synthesized. • The new compound is characterized by unusual four equatorial Ga–N bonds. • Void-volume analysis shows cages and channels with sizes ideally suited to accommodate small molecules. • The new compound exhibits strong blue emission.

  11. spe438-20 page 1 Garrison, N.J., Busby, C.J., Gans, P.B., Putirka, K., and Wagner, D.L., 2008, A mantle plume beneath California? The mid-Miocene Lovejoy flood basalt, northern

    E-Print Network [OSTI]

    Busby, Cathy

    spe438-20 page 1 1 Garrison, N.J., Busby, C.J., Gans, P.B., Putirka, K., and Wagner, D.L., 2008-Miocene Lovejoy flood basalt, northern California Noah J. Garrison Cathy J. Busby Phillip B. Gans Department basalt. #12;2 Garrison et al. spe438-20 page 2 INTRODUCTION Mid-Miocene volcanism in the northern Sierra

  12. THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY The Radiological Research Accelerator Facility

    E-Print Network [OSTI]

    THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY 71 The Radiological Research Accelerator Facility the irradiated cells. Both the microbeam and the track segment facilities continue to be utilized in various investigations of this phenomenon. The single- particle microbeam facility provides precise control of the number

  13. THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY The Radiological Research Accelerator Facility

    E-Print Network [OSTI]

    THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY 1 The Radiological Research Accelerator Facility for Radiological Research (CRR). Using the mi- crobeam facility, 10% of the cells were irradiated through particle beam as well as the first fo- cused microbeam in the new microbeam facility. · Another significant

  14. Facility Location with Hierarchical Facility Costs Zoya Svitkina #

    E-Print Network [OSTI]

    Tardos, Ã?va

    Facility Location with Hierarchical Facility Costs Zoya Svitkina # â?? Eva Tardos + Abstract We consider the facility location problem with hierarchi­ cal facility costs, and give a (4 installation costs. Shmoys, Swamy and Levi [13] gave an approxi­ mation algorithm for a two­level version

  15. Working with SRNL - Our Facilities - Glovebox Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking WithTelecentricNCubictheThepresented in1: ModelGlovebox Facilities

  16. Facility Environmental Vulnerability Assessment

    SciTech Connect (OSTI)

    Van Hoesen, S.D.

    2001-07-09

    From mid-April through the end of June 2001, a Facility Environmental Vulnerability Assessment (FEVA) was performed at Oak Ridge National Laboratory (ORNL). The primary goal of this FEVA was to establish an environmental vulnerability baseline at ORNL that could be used to support the Laboratory planning process and place environmental vulnerabilities in perspective. The information developed during the FEVA was intended to provide the basis for management to initiate immediate, near-term, and long-term actions to respond to the identified vulnerabilities. It was expected that further evaluation of the vulnerabilities identified during the FEVA could be carried out to support a more quantitative characterization of the sources, evaluation of contaminant pathways, and definition of risks. The FEVA was modeled after the Battelle-supported response to the problems identified at the High Flux Beam Reactor at Brookhaven National Laboratory. This FEVA report satisfies Corrective Action 3A1 contained in the Corrective Action Plan in Response to Independent Review of the High Flux Isotope Reactor Tritium Leak at the Oak Ridge National Laboratory, submitted to the Department of Energy (DOE) ORNL Site Office Manager on April 16, 2001. This assessment successfully achieved its primary goal as defined by Laboratory management. The assessment team was able to develop information about sources and pathway analyses although the following factors impacted the team's ability to provide additional quantitative information: the complexity and scope of the facilities, infrastructure, and programs; the significantly degraded physical condition of the facilities and infrastructure; the large number of known environmental vulnerabilities; the scope of legacy contamination issues [not currently addressed in the Environmental Management (EM) Program]; the lack of facility process and environmental pathway analysis performed by the accountable line management or facility owner; and poor facility and infrastructure drawings. The assessment team believes that the information, experience, and insight gained through FEVA will help in the planning and prioritization of ongoing efforts to resolve environmental vulnerabilities at UT-Battelle--managed ORNL facilities.

  17. Compositionally graded relaxed AlGaN buffers on semipolar GaN for mid-ultraviolet emission

    SciTech Connect (OSTI)

    Young, Erin C.; Wu Feng; Haeger, Daniel A.; Nakamura, Shuji; Denbaars, Steven P.; Cohen, Daniel A.; Speck, James S.; Romanov, Alexey E.

    2012-10-01

    In this Letter, we report on the growth and properties of relaxed, compositionally graded Al{sub x}Ga{sub 1-x}N buffer layers on freestanding semipolar (2021) GaN substrates. Continuous and step compositional grades with Al concentrations up to x = 0.61 have been achieved, with emission wavelengths in the mid-ultraviolet region as low as 265 nm. Coherency stresses were relaxed progressively throughout the grades by misfit dislocation generation via primary (basal) slip and secondary (non-basal) slip systems. Threading dislocation densities in the final layers of the grades were less than 10{sup 6}/cm{sup 2} as confirmed by plan-view transmission electron microscopy and cathodoluminescence studies.

  18. Polarity characterization by anomalous x-ray dispersion of ZnO films and GaN lateral polar structures

    SciTech Connect (OSTI)

    Shelton, Christopher T.; Sachet, Edward; Paisley, Elizabeth A.; Hoffmann, Marc P.; Rajan, Joseph; Collazo, Ramón; Sitar, Zlatko; Maria, Jon-Paul

    2014-01-28

    We demonstrate the use of anomalous x-ray scattering of constituent cations at their absorption edge, in a conventional Bragg-Brentano diffractometer, to measure absolutely and quantitatively the polar orientation and polarity fraction of unipolar and mixed polar wurtzitic crystals. In one set of experiments, the gradual transition between c+ and c? polarity of epitaxial ZnO films on sapphire as a function of MgO buffer layer thickness is monitored quantitatively, while in a second experiment, we map the polarity of a lateral polar homojunction in GaN. The dispersion measurements are compared with piezoforce microscopy images, and we demonstrate how x-ray dispersion and scanning probe methods can provide complementary information that can discriminate between polarity fractions at a material surface and polarity fractions averaged over the film bulk.

  19. Mg doping of GaN grown by plasma-assisted molecular beam epitaxy under nitrogen-rich conditions

    SciTech Connect (OSTI)

    Zhang Meng; Bhattacharya, Pallab; Guo Wei; Banerjee, Animesh [Department of Electrical Engineering and Computer Science, Solid-State Electronics Laboratory, University of Michigan, Ann Arbor, Michigan 48109-2122 (United States)

    2010-03-29

    Acceptor doping of GaN with Mg during plasma-assisted molecular beam epitaxy, under N-rich conditions and a relatively high growth temperature of 740 deg. C, was investigated. The p-doping level steadily increases with increasing Mg flux. The highest doping level achieved, determined from Hall measurements, is 2.1x10{sup 18} cm{sup -3}. The corresponding doping efficiency and hole mobility are approx4.9% and 3.7 cm{sup 2}/V s at room temperature. Cross-sectional transmission electron microscopy and photoluminescence measurements confirm good crystalline and optical quality of the Mg-doped layers. An InGaN/GaN quantum dot light emitting diode (lambda{sub peak}=529 nm) with p-GaN contact layers grown under N-rich condition exhibits a low series resistance of 9.8 OMEGA.

  20. The $E1$ & $M1$ Spontaneous Decay Rates for an Emitter Inside a Cavity Within a Medium

    E-Print Network [OSTI]

    Singh, Jaideep

    2015-01-01

    We discuss the $E1$ and $M1$ spontaneous decay rates of the an emitter residing inside of a real cavity carved out of a vast, uniform, homogenous, isotropic, linear, lossless, dispersionless, and continuous medium. The ratio of the medium rate to vacuum rate is given by $\\Gamma_m/\\Gamma_0 = [G(u)]^2 n^3 / u$, where $G(u) = 3u/(2u+1)$ is the local field correction factor, $n = \\sqrt{\\epsilon\\mu/(\\epsilon_0\\mu_0)}$ is the index of refraction of the medium, $\\epsilon(\\epsilon_0)$ is the electric permitivity of the medium (vacuum), $\\mu(\\mu_0)$ is the magnetic permeability of the medium (vacuum), and $u = \\epsilon/\\epsilon_0$ for $E1$ transitions or $u = \\mu_0/\\mu$ for $M1$ transitions.

  1. Comprehensive facilities plan

    SciTech Connect (OSTI)

    1997-09-01

    The Ernest Orlando Lawrence Berkeley National Laboratory`s Comprehensive Facilities Plan (CFP) document provides analysis and policy guidance for the effective use and orderly future development of land and capital assets at the Berkeley Lab site. The CFP directly supports Berkeley Lab`s role as a multiprogram national laboratory operated by the University of California (UC) for the Department of Energy (DOE). The CFP is revised annually on Berkeley Lab`s Facilities Planning Website. Major revisions are consistent with DOE policy and review guidance. Facilities planing is motivated by the need to develop facilities for DOE programmatic needs; to maintain, replace and rehabilitate existing obsolete facilities; to identify sites for anticipated programmatic growth; and to establish a planning framework in recognition of site amenities and the surrounding community. The CFP presents a concise expression of the policy for the future physical development of the Laboratory, based upon anticipated operational needs of research programs and the environmental setting. It is a product of the ongoing planning processes and is a dynamic information source.

  2. WIPP Facility Work Plan for Solid Waste Management Units

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2001-02-25

    This 2001 Facility Work Plan (FWP) has been prepared as required by Module VII, Section VII.M.1 of the Waste Isolation Pilot Plant (WIPP) Hazardous Waste Facility Permit, NM4890139088-TSDF (the Permit); (NMED, 1999a), and incorporates comments from the New Mexico Environment Department (NMED) received on December 6, 2000 (NMED, 2000a). This February 2001 FWP describes the programmatic facility-wide approach to future investigations at Solid Waste Management Units (SWMUs) and Areas of Concern (AOCs) specified in the Permit. The permittees are evaluating data from previous investigations of the SWMUs and AOCs against the newest guidance proposed by the NMED. Based on these data, the permittees expect that no further sampling will be required and that a request for No Further Action (NFA) at the SWMUs and AOCs will be submitted to the NMED. This FWP addresses the current Permit requirements. It uses the results of previous investigations performed at WIPP and expands the investigations as required by the Permit. As an alternative to the Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI) specified in Module VII of the Permit, current NMED guidance identifies an Accelerated Corrective Action Approach (ACAA) that may be used for any SWMU or AOC (NMED, 1998). This accelerated approach is used to replace the standard RFI Work Plan and Report sequence with a more flexible decision-making approach. The ACAA process allows a Facility to exit the schedule of compliance contained in the Facility’s Hazardous and Solid Waste Amendments (HSWA) permit module and proceed on an accelerated time frame. Thus, the ACAA process can be entered either before or after an RFI Work Plan. According to the NMED's guidance, a facility can prepare an RFI Work Plan or Sampling and Analysis Plan (SAP) for any SWMU or AOC (NMED, 1998). Based on this guidance, a SAP constitutes an acceptable alternative to the RFI Work Plan specified in the Permit.

  3. RCRA facility stabilization initiative

    SciTech Connect (OSTI)

    Not Available

    1995-02-01

    The RCRA Facility Stabilization Initiative was developed as a means of implementing the Corrective Action Program`s management goals recommended by the RIS for stabilizing actual or imminent releases from solid waste management units that threaten human health and the environment. The overall goal of stabilization is to, as situations warrant, control or abate threats to human health and/or the environment from releases at RCRA facilities, and/or to prevent or minimize the further spread of contamination while long-term remedies are pursued. The Stabilization initiative is a management philosophy and should not be confused with stabilization technologies.

  4. Facilities | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation Current HABFES OctoberEvan Racah861 ANNUAL ELECTRICRashiFacilitiesFacilities

  5. Facilities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof Energy Services » Program ManagementAct4 DOE/CF-0074Facilities Facilities

  6. Structural properties of free-standing 50 mm diameter GaN waferswith (101_0) orientation grown on LiAlO2

    SciTech Connect (OSTI)

    Jasinski, Jacek; Liliental-Weber, Zuzanna; Maruska, Herbert-Paul; Chai, Bruce H.; Hill, David W.; Chou, Mitch M.C.; Gallagher, John J.; Brown, Stephen

    2005-09-27

    (10{und 1}0) GaN wafers grown on (100) face of {gamma}-LiAlO{sub 2} were studied using transmission electron microscopy. Despite good lattice matching in this heteroepitaxial system, high densities of planar structural defects in the form of stacking faults on the basal plane and networks of boundaries located on prism planes inclined to the layer/substrate interface were present in these GaN layers. In addition, significant numbers of threading dislocations were observed. High-resolution electron microscopy indicates that stacking faults present on the basal plane in these layers are of low-energy intrinsic I1type. This is consistent with diffraction contrast experiments.

  7. Temperature dependent dielectric function and the E{sub 0} critical points of hexagonal GaN from 30 to 690 K

    SciTech Connect (OSTI)

    Kim, Tae Jung Hwang, Soon Yong; Byun, Jun Seok; Barange, Nilesh S.; Park, Han Gyeol; Dong Kim, Young

    2014-02-15

    The complex dielectric function ? and the E{sub 0} excitonic and band-edge critical-point structures of hexagonal GaN are reported for temperatures from 30 to 690 K and energies from 0.74 to 6.42 eV, obtained by rotating-compensator spectroscopic ellipsometry on a 1.9 ?m thick GaN film deposited on a c-plane (0001) sapphire substrate by molecular beam epitaxy. Direct inversion and B-splines in a multilayer-structure calculation were used to extract the optical properties of the film from the measured pseudodielectric function ???. At low temperature sharp E{sub 0} excitonic and critical-point interband transitions are separately observed. Their temperature dependences were determined by fitting the data to the empirical Varshni relation and the phenomenological expression that contains the Bose-Einstein statistical factor.

  8. Manufacturing Demonstration Facility

    E-Print Network [OSTI]

    life-cycle energy and greenhouse gas emissions, lower production cost, and create new products Demonstration Facility (865) 574-4351 blueca@ornl.gov INNOVATIONS IN MANUFACTURING www to reduce risk and accelerate the development and deployment of innovative energy-efficient manufacturing

  9. NISCO Cogeneration Facility 

    E-Print Network [OSTI]

    Zierold, D. M.

    1994-01-01

    The NISCO Cogeneration facility utilizes two fluidized bed boilers to generate 200 MW of electricity and up to 80,000 LBS/HR of steam for process use. The partnership, of three industrial electricity users, Citgo, Conoco, and Vista Chemical...

  10. Structural anisotropic properties of a-plane GaN epilayers grown on r-plane sapphire by molecular beam epitaxy

    SciTech Connect (OSTI)

    Lotsari, A.; Kehagias, Th.; Katsikini, M.; Arvanitidis, J.; Ves, S.; Komninou, Ph.; Dimitrakopulos, G. P.; Tsiakatouras, G.; Tsagaraki, K.; Georgakilas, A.; Christofilos, D.

    2014-06-07

    Heteroepitaxial non-polar III-Nitride layers may exhibit extensive anisotropy in the surface morphology and the epilayer microstructure along distinct in-plane directions. The structural anisotropy, evidenced by the “M”-shape dependence of the (112{sup ¯}0) x-ray rocking curve widths on the beam azimuth angle, was studied by combining transmission electron microscopy observations, Raman spectroscopy, high resolution x-ray diffraction, and atomic force microscopy in a-plane GaN epilayers grown on r-plane sapphire substrates by plasma-assisted molecular beam epitaxy (PAMBE). The structural anisotropic behavior was attributed quantitatively to the high dislocation densities, particularly the Frank-Shockley partial dislocations that delimit the I{sub 1} intrinsic basal stacking faults, and to the concomitant plastic strain relaxation. On the other hand, isotropic samples exhibited lower dislocation densities and a biaxial residual stress state. For PAMBE growth, the anisotropy was correlated to N-rich (or Ga-poor) conditions on the surface during growth, that result in formation of asymmetric a-plane GaN grains elongated along the c-axis. Such conditions enhance the anisotropy of gallium diffusion on the surface and reduce the GaN nucleation rate.

  11. Photo-induced water oxidation at the aqueous GaN (101?0) interface: Deprotonation kinetics of the first proton-coupled electron-transfer step

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ertem, Mehmed Z. [Brookhaven National Lab. (BNL), Upton, NY (United States); Yale Univ., New Haven, CT (United States); Kharche, Neerav [Brookhaven National Lab. (BNL), Upton, NY (United States); Batista, Victor S. [Yale Univ., New Haven, CT (United States); Hybertsen, Mark S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Tully, John C. [Yale Univ., New Haven, CT (United States); Muckerman, James T. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-04-03

    Photoeclectrochemical water splitting plays a key role in a promising path to the carbon-neutral generation of solar fuels. Wurzite GaN and its alloys (e.g., GaN/ZnO and InGaN) are demonstrated photocatalysts for water oxidation, and they can drive the overall water splitting reaction when coupled with co-catalysts for proton reduction. In the present work, we investigate the water oxidation mechanism on the prototypical GaN (101?0) surface using a combined ab initio molecular dynamics and molecular cluster model approach taking into account the role of water dissociation and hydrogen bonding within the first solvation shell of the hydroxylated surface. The investigation of free-energy changes for the four proton-coupled electron-transfer (PCET) steps of the water oxidation mechanism shows that the first PCET step for the conversion of –Ga-OH to –Ga-O?? requires the highest energy input. We further examine the sequential PCETs, with the proton transfer (PT) following the electron transfer (ET), and find that photo-generated holes localize on surface –NH sites is thermodynamically more favorable than –OH sites. However, proton transfer from –OH sites with subsequent localization of holes on oxygen atoms is kinetically favored owing to hydrogen bonding interactions at the GaN (101?0)–water interface. We find that the deprotonation of surface –OH sites is the limiting factor for the generation of reactive oxyl radical ion intermediates and consequently for water oxidation.

  12. Comparative study of GaN mesa etch characteristics in Cl{sub 2} based inductively coupled plasma with Ar and BCl{sub 3} as additive gases

    SciTech Connect (OSTI)

    Rawal, Dipendra Singh, E-mail: dsrawal15@gmail.com; Arora, Henika; Sehgal, Bhupender Kumar; Muralidharan, Rangarajan [Solid State Physics Laboratory, Lucknow Road, Timarpur, Delhi-110054 (India)

    2014-05-15

    GaN thin film etching is investigated and compared for mesa formation in inductively coupled plasma (ICP) of Cl{sub 2} with Ar and BCl{sub 3} gas additives using photoresist mask. Etch characteristics are studied as a function of ICP process parameters, viz., ICP power, radio frequency (RF) power, and chamber pressure at fixed total flow rate. The etch rate at each ICP/RF power is 0.1–0.2??m/min higher for Cl{sub 2}/Ar mixture mainly due to higher Cl dissociation efficiency of Ar additive that readily provides Cl ion/radical for reaction in comparison to Cl{sub 2}/BCl{sub 3} mixture. Cl{sub 2}/Ar mixture also leads to better photoresist mask selectivity. The etch-induced roughness is investigated using atomic force microscopy. Cl{sub 2}/Ar etching has resulted in lower root-mean-square roughness of GaN etched surface in comparison to Cl{sub 2}/BCl{sub 3} etching due to increased Ar ion energy and flux with ICP/RF power that enhances the sputter removal of etch product. The GaN surface damage after etching is also evaluated using room temperature photoluminescence and found to be increasing with ICP/RF power for both the etch chemistries with higher degree of damage in Cl{sub 2}/BCl{sub 3} etching under same condition.

  13. Nano Research Facility Lab Safety Manual Nano Research Facility

    E-Print Network [OSTI]

    Subramanian, Venkat

    1 Nano Research Facility Lab Safety Manual Nano Research Facility: Weining Wang Office: Brauer---chemical, biological, or radiological. Notify the lab manager, Dr. Yujie Xiong at 5-4530. Eye Contact: Promptly flush

  14. Virginia Commonwealth University Facilities Management

    E-Print Network [OSTI]

    Hammack, Richard

    .3 Solid Waste Management 14 018.4 Pest Management Plan 14 Facilities Management Construction & Design Virginia Commonwealth University Facilities Management Construction & Design Construction Management (804) 6285199 VCU Construction & Inspection Management jghosh

  15. Biomass Feedstock National User Facility

    Office of Energy Efficiency and Renewable Energy (EERE)

    Breakout Session 1B—Integration of Supply Chains I: Breaking Down Barriers Biomass Feedstock National User Facility Kevin L. Kenney, Director, Biomass Feedstock National User Facility, Idaho National Laboratory

  16. National Ignition Facility & Photon Science What

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ignition Facility & Photon Science What is NiF? the national ignition Facility: bringing star Power to earth The National Ignition Facility (NIF) is the world's largest and...

  17. CFTF | Carbon Fiber Technology Facility | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BTRIC CNMS CSMB CFTF Working with CFTF HFIR MDF NTRC OLCF SNS Carbon Fiber Technology Facility Home | User Facilities | CFTF CFTF | Carbon Fiber Technology Facility SHARE Oak...

  18. Proton beam therapy facility

    SciTech Connect (OSTI)

    Not Available

    1984-10-09

    It is proposed to build a regional outpatient medical clinic at the Fermi National Accelerator Laboratory (Fermilab), Batavia, Illinois, to exploit the unique therapeutic characteristics of high energy proton beams. The Fermilab location for a proton therapy facility (PTF) is being chosen for reasons ranging from lower total construction and operating costs and the availability of sophisticated technical support to a location with good access to patients from the Chicago area and from the entire nation. 9 refs., 4 figs., 26 tabs.

  19. 29.01.03.M1.26 Information Resources Security Risks Assessment Reviews Page 1 of 3 STANDARD ADMINISTRATIVE PROCEDURE

    E-Print Network [OSTI]

    29.01.03.M1.26 Information Resources ­ Security Risks Assessment Reviews Page 1 of 3 STANDARD ADMINISTRATIVE PROCEDURE 29.01.03.M1.26 Information Resources ­ Information Security Risk Assessment Reviews with assurance that the information on which risk assessment assertions are made is correct. The goal

  20. 29.01.03.M1.04 Information Resources System Administrator and Special Access Page 1 of 4 STANDARD ADMINISTRATIVE PROCEDURE

    E-Print Network [OSTI]

    29.01.03.M1.04 Information Resources ­ System Administrator and Special Access Page 1 of 4 STANDARD ADMINISTRATIVE PROCEDURE 29.01.03.M1.04 Information Resources ­ System Administrator and Special Access Approved and skills. Descriptive Data (e.g., logs) - information created by a computer system or other information

  1. 29.01.03.M1.24 Information Resources Notification of Unauthorized Access, Use or Disclosure of Sensitive Personal Information Page 1 of 3

    E-Print Network [OSTI]

    29.01.03.M1.24 Information Resources ­ Notification of Unauthorized Access, Use or Disclosure of Sensitive Personal Information Page 1 of 3 STANDARD ADMINISTRATIVE PROCEDURE 29.01.03.M1.24 Information Resources ­ Notification of Unauthorized Access, Use, or Disclosure of Sensitive Personal Information

  2. 29.01.03.M1.14 Information Resources Password-based Authentication Page 1 of 7 STANDARD ADMINISTRATIVE PROCEDURE

    E-Print Network [OSTI]

    Behmer, Spencer T.

    29.01.03.M1.14 Information Resources ­ Password-based Authentication Page 1 of 7 STANDARD ADMINISTRATIVE PROCEDURE 29.01.03.M1.14 Information Resources ­ Password-based Authentication Approved July 18 authentication is a means to control who has access to an information resource system. Controlling the access

  3. 29.01.03.M1.21 Information Resources -System Development and Acquisition Page 1 of 3 STANDARD ADMINISTRATIVE PROCEDURE

    E-Print Network [OSTI]

    29.01.03.M1.21 Information Resources - System Development and Acquisition Page 1 of 3 STANDARD ADMINISTRATIVE PROCEDURE 29.01.03.M1.21 Information Resources ­ System Development and Acquisition Approved July Confidential Information - Information that must be protected from unauthorized disclosure or public release

  4. 29.01.03.M1.16 Information Resources-Portable Devices: Information Security Page 1 of 3 STANDARD ADMINISTRATIVE PROCEDURE

    E-Print Network [OSTI]

    29.01.03.M1.16 Information Resources- Portable Devices: Information Security Page 1 of 3 STANDARD ADMINISTRATIVE PROCEDURE 29.01.03.M1.16 Information Resources ­ Portable Devices: Information Security Approved on the responsibilities of information resource owners to adequately protect data residing on portable devices

  5. THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY

    E-Print Network [OSTI]

    THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY #12;115 THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY An NIH-Supported Resource Center WWW.RARAF.ORG Director: David J. Brenner, Ph.D., D.Sc. Manager delighted that NIH funding for continued development of our single-particle microbeam facility was renewed

  6. Alpha Gamma Hot Cell Facility

    E-Print Network [OSTI]

    Kemner, Ken

    . These operations can result in elevated radiological risks to the facility and workers. ARG-US -- meaning and should be developed for and deployed in nuclear and radiological facilities to aid operation and reduceAlpha Gamma Hot Cell Facility Argonne National Laboratory is a U.S. Department of Energy laboratory

  7. THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY

    E-Print Network [OSTI]

    175 THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY #12;176 #12;177 THE RADIOLOGICAL RESEARCH the microbeam and the track-segment facilities have been utilized in various investigations. Table 1 lists-segment facility. Samples are treated with graded doses of radical scavengers to observe changes in the cluster

  8. Facilities Design and Construction Services

    E-Print Network [OSTI]

    Frantz, Kyle J.

    for custodial materials as well as maintenance equipment. (The Facilities Maintenance and Operations Department be in written request to University's Facilities Maintenance and Operations Department and the Communication, corridors and facilities shall provide maximum flexibility and access for routine maintenance. (Reference

  9. Measurement of the hot electron mean free path and the momentum relaxation rate in GaN

    SciTech Connect (OSTI)

    Suntrup, Donald J.; Gupta, Geetak; Li, Haoran; Keller, Stacia; Mishra, Umesh K.

    2014-12-29

    We present a method for measuring the mean free path and extracting the momentum relaxation time of hot electrons in GaN using the hot electron transistor (HET). In this device, electrons are injected over a high energy emitter barrier into the base where they experience quasi-ballistic transport well above the conduction band edge. After traversing the base, high energy electrons either surmount the base-collector barrier and become collector current or reflect off the barrier and become base current. We fabricate HETs with various base thicknesses and measure the common emitter transfer ratio (?) for each device. The mean free path is extracted by fitting ? to a decaying exponential as a function of base width and the relaxation time is computed using a suitable injection velocity. For devices with an injection energy of ?1?eV, we measure a hot electron mean free path of 14?nm and calculate a momentum relaxation time of 16 fs. These values are in agreement with theoretical calculations where longitudinal optical phonon scattering is the dominant momentum relaxation mechanism.

  10. InGaN/GaN tunnel junctions for hole injection in GaN light emitting diodes

    SciTech Connect (OSTI)

    Krishnamoorthy, Sriram, E-mail: krishnamoorthy.13@osu.edu, E-mail: rajan@ece.osu.edu; Akyol, Fatih [Department of Electrical and Computer Engineering, The Ohio State University, Columbus, Ohio 43210 (United States); Rajan, Siddharth, E-mail: krishnamoorthy.13@osu.edu, E-mail: rajan@ece.osu.edu [Department of Electrical and Computer Engineering, The Ohio State University, Columbus, Ohio 43210 (United States); Department of Materials Science and Engineering, The Ohio State University, Columbus, Ohio 43210 (United States)

    2014-10-06

    InGaN/GaN tunnel junction contacts were grown using plasma assisted molecular beam epitaxy (MBE) on top of a metal-organic chemical vapor deposition (MOCVD)-grown InGaN/GaN blue (450?nm) light emitting diode. A voltage drop of 5.3?V at 100?mA, forward resistance of 2 × 10{sup ?2} ? cm{sup 2}, and a higher light output power compared to the reference light emitting diodes (LED) with semi-transparent p-contacts were measured in the tunnel junction LED (TJLED). A forward resistance of 5?×?10{sup ?4} ? cm{sup 2} was measured in a GaN PN junction with the identical tunnel junction contact as the TJLED, grown completely by MBE. The depletion region due to the impurities at the regrowth interface between the MBE tunnel junction and the MOCVD-grown LED was hence found to limit the forward resistance measured in the TJLED.

  11. UNIVERSITY OF WASHINGTON FINANCE & FACILITIES Faculty Council on University Facilities and Services Presentation October 30, 2014

    E-Print Network [OSTI]

    Van Volkenburgh, Elizabeth

    UNIVERSITY OF WASHINGTON FINANCE & FACILITIES Faculty Council on University Facilities and Services Presentation October 30, 2014 Capital Projects Office TITLE #12;UNIVERSITY OF WASHINGTON FINANCE & FACILITIES Office TITLE #12;UNIVERSITY OF WASHINGTON FINANCE & FACILITIES Faculty Council on University Facilities

  12. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsicloudden Documentation Data Management Facility PlotsProducts (VAP) VAP3 ARM Assists1

  13. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsicloudden Documentation Data Management Facility PlotsProducts (VAP) VAP3 ARM Assists11

  14. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsicloudden Documentation Data Management Facility PlotsProducts (VAP) VAP3 ARM Assists113

  15. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsicloudden Documentation Data Management Facility PlotsProducts (VAP) VAP3 ARM

  16. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsicloudden Documentation Data Management Facility PlotsProducts (VAP) VAP3 ARM8 ARM

  17. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsicloudden Documentation Data Management Facility PlotsProducts (VAP) VAP3 ARM8 ARM6 ARM

  18. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsicloudden Documentation Data Management Facility PlotsProducts (VAP) VAP3 ARM8 ARM6 ARM2

  19. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsicloudden Documentation Data Management Facility PlotsProducts (VAP) VAP3 ARM8 ARM6

  20. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsicloudden Documentation Data Management Facility PlotsProducts (VAP) VAP3 ARM8 ARM60 ARM

  1. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsicloudden Documentation Data Management Facility PlotsProducts (VAP) VAP3 ARM8 ARM60

  2. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsicloudden Documentation Data Management Facility PlotsProducts (VAP) VAP3 ARM8 ARM602

  3. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsicloudden Documentation Data Management Facility PlotsProducts (VAP) VAP3 ARM8 ARM6029

  4. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsicloudden Documentation Data Management Facility PlotsProducts (VAP) VAP3 ARM8 ARM60290

  5. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsicloudden Documentation Data Management Facility PlotsProducts (VAP) VAP3 ARM8 ARM602907

  6. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsicloudden Documentation Data Management Facility PlotsProducts (VAP) VAP3 ARM8

  7. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsicloudden Documentation Data Management Facility PlotsProducts (VAP) VAP3

  8. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsicloudden Documentation Data Management Facility PlotsProducts (VAP) VAP38 ARM Climate

  9. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsicloudden Documentation Data Management Facility PlotsProducts (VAP) VAP38 ARM

  10. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsicloudden Documentation Data Management Facility PlotsProducts (VAP) VAP38 ARM6 ARM

  11. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See EnergyCurrentOctoberDecember 4, 2010 [Facility News]

  12. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See EnergyCurrentOctoberDecember 4, 2010 [Facility News]New

  13. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See EnergyCurrentOctoberDecember 4, 2010 [Facility

  14. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See EnergyCurrentOctoberDecember 4, 2010 [FacilityIntensive

  15. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See EnergyCurrentOctoberDecemberDisasterMay30, 2004 [Facility

  16. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [Data Announcements, Facility News] Help Us Help

  17. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [Data Announcements, Facility News] Help Us

  18. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [Data Announcements, Facility News] Help Us27,

  19. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [Data Announcements, Facility News] Help

  20. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [Data Announcements, Facility News]

  1. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [Data Announcements, Facility News]Upgrade to

  2. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [Data Announcements, Facility News]Upgrade

  3. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [Data Announcements, Facility News]UpgradeMay 15,

  4. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [Data Announcements, Facility News]UpgradeMay

  5. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [Data Announcements, Facility

  6. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [Data Announcements, FacilityFiscal Year 2012

  7. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [Data Announcements, FacilityFiscal Year

  8. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [Data Announcements, FacilityFiscal YearThe Tale

  9. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [Data Announcements, FacilityFiscal YearThe

  10. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [Data Announcements, FacilityFiscal

  11. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [Data Announcements, FacilityFiscalEddy

  12. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [Data Announcements, FacilityFiscalEddyRecord

  13. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [Data Announcements,November 14, 2007 [Facility

  14. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [Data Announcements,November 14, 2007 [Facility5,

  15. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJuly 10, 2007 [Facility News] Jim Mather

  16. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJuly 10, 2007 [Facility News] Jim

  17. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJuly 10, 2007 [Facility News] JimJune 28,

  18. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJuly 10, 2007 [Facility News] JimJune 28,May

  19. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJuly 10, 2007 [Facility News] JimJune

  20. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJuly 10, 2007 [Facility News] JimJuneAugust

  1. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJuly 10, 2007 [Facility News]

  2. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJuly 10, 2007 [Facility News]August 19, 2013

  3. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJuly 10, 2007 [Facility News]August 19,

  4. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJuly 10, 2007 [Facility News]August 19,15,

  5. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJuly 10, 2007 [Facility News]August

  6. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJuly 10, 2007 [Facility News]AugustApril 30,

  7. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJuly 10, 2007 [Facility News]AugustApril

  8. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJuly 10, 2007 [Facility News]AugustAprilARM

  9. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJuly 10, 2007 [Facility

  10. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJuly 10, 2007 [FacilityDecember 31, 2013

  11. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJuly 10, 2007 [FacilityDecember 31,

  12. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJuly 10, 2007 [FacilityDecember 31,February

  13. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJuly 10, 2007 [FacilityDecember

  14. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJuly 10, 2007 [FacilityDecemberFebruary 28,

  15. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJuly 10, 2007 [FacilityDecemberFebruary

  16. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJuly 10, 2007 [FacilityDecemberFebruaryApril

  17. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJuly 10, 2007June28, 2015 [Facility News]

  18. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJuly 10, 2007June28, 2015 [Facility

  19. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJuly 10, 2007June28, 2015 [Facility25, 2015

  20. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJuly 10, 2007June28, 2015 [Facility25,

  1. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJuly 10, 2007June28, 2015 [Facility25,March

  2. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJuly 10, 2007June28, 20159, 2008 [Facility

  3. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJuly 10, 2007June28, 20159, 2008 [Facility6,

  4. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJuly 10,24, 2009 [Facility News] Merger of

  5. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJuly 10,24, 2009 [Facility News] Merger

  6. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJuly 10,24, 2009 [Facility News] MergerNew

  7. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJuly 10,24, 2009 [Facility News]

  8. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJuly 10,24, 2009 [Facility News]May 22, 2008

  9. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJuly 10,24, 2009 [Facility News]May 22,

  10. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJuly 10,24, 2009 [Facility News]May

  11. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJuly 10,24, 2009 [Facility News]MayMay 8,

  12. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJuly 10,24, 2009 [Facility News]MayMay

  13. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJuly 10,24, 2009 [Facility News]MayMayApril

  14. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJuly 10,24, 2009 [Facility

  15. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJuly 10,24, 2009 [FacilitySeptember 30, 2009

  16. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJuly 10,24, 2009 [FacilitySeptember 30,

  17. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJuly 10,24, 2009 [FacilitySeptember

  18. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJuly 10,24, 2009 [FacilitySeptemberARM

  19. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJuly 10,24, 2009January 21, 2008 [Facility

  20. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJuly 10,24,Best Wishes2, 2006 [Facility

  1. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJuly 10,24,Best Wishes2,5, 2009 [Facility

  2. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJuly 10,24,Best Wishes2,5, 2009 [Facility7,

  3. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJuly 10,24,Best Wishes2,5,15, 2006 [Facility

  4. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJulyMarch 27, 2010 [Facility News] DOE Seeks

  5. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJulyMarch 27, 2010 [Facility News] DOE

  6. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJulyMarch 27, 2010 [Facility News] DOEMarch

  7. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJulyMarch 27, 2010 [Facility News]

  8. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJulyMarch 27, 2010 [Facility News]Increased

  9. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJulyMarch 27, 2010 [Facility

  10. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJulyMarch 27, 2010 [Facility30, 2010

  11. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJulyMarch 27, 2010 [Facility30, 201026, 2010

  12. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJulyMarch 27, 2010 [Facility30, 201026,

  13. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJulyMarch 27, 2010 [Facility30, 201026,April

  14. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJulyMarch 27, 2010 [Facility30,

  15. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJulyMarch 27, 2010 [Facility30,ARM Exhibit

  16. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJulyMarch 27, 2010 [Facility30,ARM

  17. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJulyMarch 27, 2010 [Facility30,ARMSPARTICUS

  18. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJulyMarch 27, 201031, 2010 [Facility News]

  19. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJulyMarch 27, 201031, 2010 [Facility

  20. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJulyMarch 27, 201031, 2010 [FacilityMay 31,

  1. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJulyMarch 27, 201031, 2010 [FacilityMay

  2. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJulyMarch 27, 201031, 2010 [FacilityMay8,

  3. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJulyMarch 27, 201031, 2010 [FacilityMay8,10,

  4. ARM - SGP Extended Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Comments?govInstrumentsnoaacrnBarrow, Alaska OutreachCalendarPressExtended Facility SGP Related Links Virtual Tour

  5. ARM - SGP Intermediate Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Comments?govInstrumentsnoaacrnBarrow, Alaska OutreachCalendarPressExtended Facility SGP Related Links

  6. Research Facilities | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid youOxygen Generation |Publications TheGashome /AreasResearch Facilities

  7. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Comments? WeDatastreamstps DocumentationAtlanticENA ContactsProductsSACR2 pre-CGAJanuary 3, 2011 [Facility News]

  8. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Comments? WeDatastreamstps DocumentationAtlanticENA ContactsProductsSACR2 pre-CGAJanuary 3, 2011 [Facility

  9. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Comments? WeDatastreamstps DocumentationAtlanticENA ContactsProductsSACR2 pre-CGAJanuary 3, 2011 [FacilityOctober

  10. Facility Data Policy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation Current HABFES OctoberEvan Racah861 ANNUAL| NationalFacilities

  11. Facility Name Facility Name Facility FacilityType Owner Developer EnergyPurchaser

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdisto Electric Coop,ErosionNewCoal Jump to: navigation,FREDName Facility

  12. National User Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid you notHeatMaRIEdioxide capture CSNationalNational User Facilities Our

  13. ORPS Facility Registration Form

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested Parties -DepartmentAvailable forSite |n t787ORDER NO. 3357:ORMATORPS FACILITY

  14. HIG - Facilities - Cyclotron Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation Current HABFESOpportunitiesNERSCGrid-based29 1.921HEP User Facilities6-000

  15. NREL: Photovoltaics Research - Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJessework usesof EnergyY-12Working withPhoto of1855 m,Daniel J.Facilities

  16. NREL: Wind Research - Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJessework usesof EnergyY-12WorkingSolarTechnologiesSilver ToyotaFacilities

  17. Sandia Energy - Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II) byMultidayAlumniProjectsCyberNotLEDPhaseFacilities Home Analysis An

  18. PUREX facility hazards assessment

    SciTech Connect (OSTI)

    Sutton, L.N.

    1994-09-23

    This report documents the hazards assessment for the Plutonium Uranium Extraction Plant (PUREX) located on the US Department of Energy (DOE) Hanford Site. Operation of PUREX is the responsibility of Westinghouse Hanford Company (WHC). This hazards assessment was conducted to provide the emergency planning technical basis for PUREX. DOE Order 5500.3A requires an emergency planning hazards assessment for each facility that has the potential to reach or exceed the lowest level emergency classification. In October of 1990, WHC was directed to place PUREX in standby. In December of 1992 the DOE Assistant Secretary for Environmental Restoration and Waste Management authorized the termination of PUREX and directed DOE-RL to proceed with shutdown planning and terminal clean out activities. Prior to this action, its mission was to reprocess irradiated fuels for the recovery of uranium and plutonium. The present mission is to establish a passively safe and environmentally secure configuration at the PUREX facility and to preserve that condition for 10 years. The ten year time frame represents the typical duration expended to define, authorize and initiate follow-on decommissioning and decontamination activities.

  19. Facility effluent monitoring plan for the 327 Facility

    SciTech Connect (OSTI)

    1994-11-01

    The 327 Facility [Post-Irradiation Testing Laboratory] provides office and laboratory space for Pacific Northwest Laboratory (PNL) scientific and engineering staff conducting multidisciplinary research in the areas of post-irradiated fuels and structural materials. The facility is designed to accommodate the use of radioactive and hazardous materials in the conduct of these activities. This report summarizes the airborne emissions and liquid effluents and the results of the Facility Effluent Monitoring Plan (FEMP) determination for the facility. The complete monitoring plan includes characterization of effluent streams, monitoring/sampling design criteria, a description of the monitoring systems and sample analysis, and quality assurance requirements.

  20. US nuclear warhead facility profiles

    SciTech Connect (OSTI)

    Cochran, T.B.; Arkin, W.A.; Norris, R.S.; Hoenig, M.M.

    1987-01-01

    US Nuclear Warhead Facility Profiles is the third volume of the Nuclear Weapons Databook, a series published by the Natural Resources Defense Council. This volume reviews the different facilities in the US nuclear warhead complex. Because of the linkage between nuclear energy and nuclear weapons, the authors cover not only those facilities associated mainly with nuclear power research, but also those well known for weapons development. They are: the Argonne National Laboratory; the Hanford Reservation; the Oak Ridge National Laboratory; the Pantex plant; the Los Alamos Test Site; the Rocky Flats plant; the Sandia National Laboratories; and a host of others. Information on each facility is organized into a standard format that makes the book easy to use. The reader will find precise information ranging from a facility's address to its mission, management, establishment, budget, and staff. An additional, more in-depth presentation covers the activities and technical process of each facility. Maps, pictures, and figures complement the text.

  1. Effects of substrate temperature, substrate orientation, and energetic atomic collisions on the structure of GaN films grown by reactive sputtering

    SciTech Connect (OSTI)

    Schiaber, Ziani S.; Lisboa-Filho, Paulo N.; Silva, José H. D. da; Leite, Douglas M. G.; Bortoleto, José R. R.

    2013-11-14

    The combined effects of substrate temperature, substrate orientation, and energetic particle impingement on the structure of GaN films grown by reactive radio-frequency magnetron sputtering are investigated. Monte-Carlo based simulations are employed to analyze the energies of the species generated in the plasma and colliding with the growing surface. Polycrystalline films grown at temperatures ranging from 500 to 1000 °C clearly showed a dependence of orientation texture and surface morphology on substrate orientation (c- and a-plane sapphire) in which the (0001) GaN planes were parallel to the substrate surface. A large increase in interplanar spacing associated with the increase in both a- and c-parameters of the hexagonal lattice and a redshift of the optical bandgap were observed at substrate temperatures higher than 600 °C. The results showed that the tensile stresses produced during the film's growth in high-temperature deposition ranges were much larger than the expected compressive stresses caused by the difference in the thermal expansion coefficients of the film and substrate in the cool-down process after the film growth. The best films were deposited at 500 °C, 30 W and 600 °C, 45 W, which corresponds to conditions where the out diffusion from the film is low. Under these conditions the benefits of the temperature increase because of the decrease in defect density are greater than the problems caused by the strongly strained lattice that occurr at higher temperatures. The results are useful to the analysis of the growth conditions of GaN films by reactive sputtering.

  2. Photo-induced water oxidation at the aqueous GaN (101¯0) interface: Deprotonation kinetics of the first proton-coupled electron-transfer step

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ertem, Mehmed Z.; Kharche, Neerav; Batista, Victor S.; Hybertsen, Mark S.; Tully, John C.; Muckerman, James T.

    2015-03-12

    Photoeclectrochemical water splitting plays a key role in a promising path to the carbon-neutral generation of solar fuels. Wurzite GaN and its alloys (e.g., GaN/ZnO and InGaN) are demonstrated photocatalysts for water oxidation, and they can drive the overall water splitting reaction when coupled with co-catalysts for proton reduction. In the present work, we investigate the water oxidation mechanism on the prototypical GaN (101¯0) surface using a combined ab initio molecular dynamics and molecular cluster model approach taking into account the role of water dissociation and hydrogen bonding within the first solvation shell of the hydroxylated surface. The investigation ofmore »free-energy changes for the four proton-coupled electron-transfer (PCET) steps of the water oxidation mechanism shows that the first PCET step for the conversion of –Ga-OH to –Ga-O?? requires the highest energy input. We further examine the sequential PCETs, with the proton transfer (PT) following the electron transfer (ET), and find that photo-generated holes localize on surface –NH sites is thermodynamically more favorable than –OH sites. However, proton transfer from –OH sites with subsequent localization of holes on oxygen atoms is kinetically favored owing to hydrogen bonding interactions at the GaN (101¯0)–water interface. We find that the deprotonation of surface –OH sites is the limiting factor for the generation of reactive oxyl radical ion intermediates and consequently for water oxidation.« less

  3. Influence of stress on optical transitions in GaN nanorods containing a single InGaN/GaN quantum disk

    SciTech Connect (OSTI)

    Zhuang, Y. D.; Shields, P. A.; Allsopp, D. W. E., E-mail: d.allsopp@bath.ac.uk [Department of Electronic and Electrical Engineering, University of Bath, Bath BA2 7AY (United Kingdom); Bruckbauer, J.; Edwards, P. R.; Martin, R. W. [Department of Physics, SUPA, University of Strathclyde, Glasgow G4 0NG (United Kingdom)

    2014-11-07

    Cathodoluminescence (CL) hyperspectral imaging has been performed on GaN nanorods containing a single InGaN quantum disk (SQD) with controlled variations in excitation conditions. Two different nanorod diameters (200 and 280?nm) have been considered. Systematic changes in the CL spectra from the SQD were observed as the accelerating voltage of the electron beam and its position of incidence are varied. It is shown that the dominant optical transition in the SQD varies across the nanorod as a result of interplay between the contributions of the deformation potential and the quantum-confined Stark effect to the transition energy as consequence of radial variation in the pseudomorphic strain.

  4. Evaluation of growth methods for the heteroepitaxy of non-polar (11-20) GaN on sapphire by MOVPE

    E-Print Network [OSTI]

    Oehler, F.; Sutherland, D.; Zhu, T.; Emery, R.; Badcock, T. J.; Kappers, M. J.; Humphreys, C. J.; Dawson, P.; Oliver, R. A.

    2014-09-16

    interlayer. Keywords: A3 Metalorganic vapor phase epitaxy, B1 Nitrides, A1 Defects, A1 Characterization 1. Introduction Hexagonal gallium nitride (GaN) presents two stable growth directions inclined at 90? angle to the c-direction. Respectively named a... is kept constant at 20 standard litres per minute (SLM) by bal- ancing the flow rates of the carrier gas and NH3. Unless otherwise specified, the total reactor pressure is 100 Torr and H2 is used as the carrier gas. The growth temperatures quoted...

  5. National Ignition Facility & Photon Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    security maintaining the nuclear weapons stockpile As the largest, highest-energy laser ever built, the National Ignition Facility (NIF) can create conditions in the...

  6. Facility Safety | Department of Energy

    Office of Environmental Management (EM)

    improved DOE program and field implementation of nuclear safety management programs and fire protection and natural phenomena hazard control requirements. Nuclear facility program...

  7. Manufacturing Demonstration Facility Technology Collaborations...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Demonstration Facility (MDF) to assess applicability and of new energy efficient manufacturing technologies. This opportunity will provide selected participants access to ORNL's...

  8. Facilities | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    and oversees the operation of an exceptional suite of science, technology and engineering facilities that support and further the national stockpile stewardship agenda. Of...

  9. Highly Enriched Uranium Materials Facility

    National Nuclear Security Administration (NNSA)

    Appropriations Subcommittee, is shown some of the technology in the Highly Enriched Uranium Materials Facility by Warehousing and Transportation Operations Manager Byron...

  10. Manufacturing Demonstration Facility Workshop Videos

    Broader source: Energy.gov [DOE]

    Session recordings from the Manufacturing Demonstration Facility Workshop held in Chicago, Illinois, on March 12, 2012, and simultaneously broadcast as a webinar.

  11. Office of Science User Facilities

    Broader source: Energy.gov [DOE]

    This presentation summarizes the information on the Office of Science User Facilities, which was given during the webinar on the DOE BRIDGE funding opportunity.

  12. Better Catalysts through Microscopy: Nanometer Scale M1/M2 Intergrown Heterostructure in Mo-V-M Complex Oxides

    SciTech Connect (OSTI)

    He, Qian [ORNL; Woo, Jungwon [University of Cincinnati; Belianinov, Alex [ORNL; Guliants, Vadim V. [University of Cincinnati; Borisevich, Albina Y [ORNL

    2015-01-01

    In recent decades, catalysis research has transformed from the predominantly empirical field to one where it is possible to control the catalytic properties via characterization and modification of the atomic-scale active centers. Many phenomena in catalysis, such as synergistic effect, however, transcend the atomic scale and also require the knowledge and control of the mesoscale structure of the specimen to harness. In this paper, we use our discovery of atomic-scale epitaxial interfaces in molybdenum vanadium based complex oxide catalysts systems (i.e., MoVMO, M = Ta, Te, Sb, Nb, etc.) to achieve control of the mesoscale structure of this complex mixture of very different active phases. We can now achieve true epitaxial intergrowth between the catalytically critical M1 and M2 phases in the system that are hypothesized to have synergistic interactions, and demonstrate that the resulting catalyst has improved selectivity in the initial studies. Finally, we highlight the crucial role atomic scale characterization and mesoscale structure control play in uncovering the complex underpinnings of the synergistic effect in catalysis.

  13. Mathematical Model for the Optimal Utilization Percentile in M/M/1 Systems: A Contribution about Knees in Performance Curves

    E-Print Network [OSTI]

    Gonzalez-Horta, Francisco A; Ramirez-Cortes, Juan M; Martinez-Carballido, Jorge; Buenfil-Alpuche, Eldamira

    2011-01-01

    Performance curves of queueing systems can be analyzed by separating them into three regions: the flat region, the knee region, and the exponential region. Practical considerations, usually locate the knee region between 70-90% of the theoretical maximum utilization. However, there is not a clear agreement about where the boundaries between regions are, and where exactly the utilization knee is located. An open debate about knees in performance curves was undertaken at least 20 years ago. This historical debate is mainly divided between those who claim that a knee in the curve is not a well defined term in mathematics, or it is a subjective and not really meaningful concept, and those who define knees mathematically and consider their relevance and application. In this paper, we present a mathematical model and analysis for identifying the three mentioned regions on performance curves for M/M/1 systems; specifically, we found the knees, or optimal utilization percentiles, at the vertices of the hyperbolas tha...

  14. Power Systems Development Facility

    SciTech Connect (OSTI)

    Southern Company Services

    2009-01-31

    In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF), located in Wilsonville, Alabama, has routinely demonstrated gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a Transport Gasifier, a hot gas particulate control device, advanced syngas cleanup systems, and high-pressure solids handling systems. This final report summarizes the results of the technology development work conducted at the PSDF through January 31, 2009. Twenty-one major gasification test campaigns were completed, for a total of more than 11,000 hours of gasification operation. This operational experience has led to significant advancements in gasification technologies.

  15. Energy Systems Integration Facility Overview

    ScienceCinema (OSTI)

    Arvizu, Dan; Chistensen, Dana; Hannegan, Bryan; Garret, Bobi; Kroposki, Ben; Symko-Davies, Martha; Post, David; Hammond, Steve; Kutscher, Chuck; Wipke, Keith

    2014-06-10

    The U.S. Department of Energy's Energy Systems Integration Facility (ESIF) is located at the National Renewable Energy Laboratory is the right tool, at the right time... a first-of-its-kind facility that addresses the challenges of large-scale integration of clean energy technologies into the energy systems that power the nation.

  16. Big Explosives Experimental Facility - BEEF

    ScienceCinema (OSTI)

    None

    2015-01-07

    The Big Explosives Experimental Facility or BEEF is a ten acre fenced high explosive testing facility that provides data to support stockpile stewardship and other national security programs. At BEEF conventional high explosives experiments are safely conducted providing sophisticated diagnostics such as high speed optics and x-ray radiography.

  17. Siting analyses for existing facilities

    SciTech Connect (OSTI)

    Ford, K.; Mannan, M. [RMT/Jones and Neuse, Inc., Austin, TX (United States)

    1996-08-01

    The term {open_quotes}facility siting{close_quotes} refers to the spacial relationships between process units, process equipment within units, and the location of buildings relative to process equipment. Facility siting is an important consideration for the safe operation of manufacturing facilities. Paragraph (d) of the Process Safety Management (PSM) rule (29 CFR 1910.119) requires employers to document the codes and standards used for designing process equipment. This documentation includes facility siting. The regulation also requires employers to document that the design of the facility complies with recognized and generally accepted good engineering practices. In addition, paragraph (e) of the PSM regulation requires that facility siting be evaluated during Process Hazard Analyses. Facility siting issues may also need to be considered in emergency planning and response which are required under paragraph (n) of the PSM rule. This paper will demonstrate, by utilizing an example, one technique for evaluating whether buildings could be affected by a catastrophic incident and for determining if these buildings should be included in the PSM programs developed at the facility such as Process Hazard Analysis and Mechanical Integrity. In addition, this example will illustrate a methodology for determining if the buildings are designed and located in accordance with good engineering practice and industry standards.

  18. Energy Systems Integration Facility Overview

    SciTech Connect (OSTI)

    Arvizu, Dan; Chistensen, Dana; Hannegan, Bryan; Garret, Bobi; Kroposki, Ben; Symko-Davies, Martha; Post, David; Hammond, Steve; Kutscher, Chuck; Wipke, Keith

    2014-02-28

    The U.S. Department of Energy's Energy Systems Integration Facility (ESIF) is located at the National Renewable Energy Laboratory is the right tool, at the right time... a first-of-its-kind facility that addresses the challenges of large-scale integration of clean energy technologies into the energy systems that power the nation.

  19. Big Explosives Experimental Facility - BEEF

    SciTech Connect (OSTI)

    None

    2014-10-31

    The Big Explosives Experimental Facility or BEEF is a ten acre fenced high explosive testing facility that provides data to support stockpile stewardship and other national security programs. At BEEF conventional high explosives experiments are safely conducted providing sophisticated diagnostics such as high speed optics and x-ray radiography.

  20. Canastota Renewable Energy Facility Project

    SciTech Connect (OSTI)

    Blake, Jillian; Hunt, Allen

    2013-12-13

    The project was implemented at the Madison County Landfill located in the Town of Lincoln, Madison County, New York. Madison County has owned and operated the solid waste and recycling facilities at the Buyea Road site since 1974. At the onset of the project, the County owned and operated facilities there to include three separate landfills, a residential solid waste disposal and recycled material drop-off facility, a recycling facility and associated administrative, support and environmental control facilities. This putrescible waste undergoes anaerobic decomposition within the waste mass and generates landfill gas, which is approximately 50% methane. In order to recover this gas, the landfill was equipped with gas collection systems on both the east and west sides of Buyea Road which bring the gas to a central point for destruction. In order to derive a beneficial use from the collected landfill gases, the County decided to issue a Request for Proposals (RFP) for the future use of the generated gas.

  1. CANISTER HANDLING FACILITY DESCRIPTION DOCUMENT

    SciTech Connect (OSTI)

    J.F. Beesley

    2005-04-21

    The purpose of this facility description document (FDD) is to establish requirements and associated bases that drive the design of the Canister Handling Facility (CHF), which will allow the design effort to proceed to license application. This FDD will be revised at strategic points as the design matures. This FDD identifies the requirements and describes the facility design, as it currently exists, with emphasis on attributes of the design provided to meet the requirements. This FDD is an engineering tool for design control; accordingly, the primary audience and users are design engineers. This FDD is part of an iterative design process. It leads the design process with regard to the flowdown of upper tier requirements onto the facility. Knowledge of these requirements is essential in performing the design process. The FDD follows the design with regard to the description of the facility. The description provided in this FDD reflects the current results of the design process.

  2. Facility effluent monitoring plan for the 325 Facility

    SciTech Connect (OSTI)

    1998-12-31

    The Applied Chemistry Laboratory (325 Facility) houses radiochemistry research, radioanalytical service, radiochemical process development, and hazardous and mixed hazardous waste treatment activities. The laboratories and specialized facilities enable work ranging from that with nonradioactive materials to work with picogram to kilogram quantities of fissionable materials and up to megacurie quantities of other radionuclides. The special facilities include two shielded hot-cell areas that provide for process development or analytical chemistry work with highly radioactive materials, and a waste treatment facility for processing hazardous, mixed, low-level, and transuranic wastes generated by Pacific Northwest Laboratory. Radioactive material storage and usage occur throughout the facility and include a large number of isotopes. This material is in several forms, including solid, liquid, particulate, and gas. Some of these materials are also heated during testing which can produce vapors. The research activities have been assigned to the following activity designations: High-Level Hot Cell, Hazardous Waste Treatment Unit, Waste Form Development, Special Testing Projects, Chemical Process Development, Analytical Hot Cell, and Analytical Chemistry. The following summarizes the airborne and liquid effluents and the results of the Facility Effluent Monitoring Plan (FEMP) determination for the facility. The complete monitoring plan includes characterization of effluent streams, monitoring/sampling design criteria, a description of the monitoring systems and sample analysis, and quality assurance requirements.

  3. Photoconduction efficiencies and dynamics in GaN nanowires grown by chemical vapor deposition and molecular beam epitaxy: A comparison study

    SciTech Connect (OSTI)

    Chen, R. S. [Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan (China); Tsai, H. Y. [Graduate Institute of Electro-Optical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan (China); Huang, Y. S. [Graduate Institute of Electro-Optical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan (China); Department of Electronic Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan (China); Chen, Y. T. [Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan (China); Chen, L. C. [Center for Condensed Matter Sciences, National Taiwan University, Taipei 10617, Taiwan (China); Chen, K. H. [Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan (China); Center for Condensed Matter Sciences, National Taiwan University, Taipei 10617, Taiwan (China)

    2012-09-10

    The normalized gains, which determines the intrinsic photoconduction (PC) efficiencies, have been defined and compared for the gallium nitride (GaN) nanowires (NWs) grown by chemical vapor deposition (CVD) and molecular beam epitaxy (MBE). By excluding the contributions of experimental parameters and under the same light intensity, the CVD-grown GaN NWs exhibit the normalized gain which is near two orders of magnitude higher than that of the MBE-ones. The temperature-dependent time-resolved photocurrent measurement further indicates that the higher photoconduction efficiency in the CVD-GaN NWs is originated from the longer carrier lifetime induced by the higher barrier height ({phi}{sub B} = 160 {+-} 30 mV) of surface band bending. In addition, the experimentally estimated barrier height at 20 {+-} 2 mV for the MBE-GaN NWs, which is much lower than the theoretical value, is inferred to be resulted from the lower density of charged surface states on the non-polar side walls.

  4. Surface energy calculations from Zinc blende (111)/(-1-1-1) to Wurtzite (0001)/(000-1):a study of ZnO and GaN

    E-Print Network [OSTI]

    Zhang, Jingzhao; Tse, Kinfai; Deng, Bei; Xu, Hu; Zhu, Junyi

    2015-01-01

    The accurate absolute surface energies of (0001)/(000-1) surfaces of wurtzite structures are crucial in determining the thin film growth mode of important energy materials. However, the surface energies still remain to be solved due to the intrinsic difficulty of calculating dangling bond energy of asymmetrically bonded surface atoms. In this study, we used a pseudo-hydrogen passivation method to estimate the dangling bond energy and calculate the polar surfaces of ZnO and GaN. The calculations were based on the pseudo chemical potentials obtained from a set of tetrahedral clusters or simple pseudo-molecules, using density functional theory approaches. And the surface energies of (0001)/(000-1) surfaces of wurtzite ZnO and GaN we obtained showed relatively high self-consistencies. A wedge structure calculation with a new bottom surface passivation scheme of group I and group VII elements was also proposed and performed to show converged absolute surface energy of wurtzite ZnO polar surfaces, and the result we...

  5. Total current collapse in High-Voltage GaN MIS-HEMTs induced by Zener trapping D. Jin, J. Joh*, S. Krishnan*, N. Tipirneni*, S. Pendharkar* and J. A. del Alamo

    E-Print Network [OSTI]

    del Alamo, Jesús A.

    observed after OFF-state stress at high voltage. We attribute this to high-field tunneling-induced electron/detrapping dynamics have been extracted. All of our experimental results are consistent with electron trapping insideTotal current collapse in High-Voltage GaN MIS-HEMTs induced by Zener trapping D. Jin, J. Joh*, S

  6. Depth dependence of defect density and stress in GaN grown on SiC Department of Electrical and Computer Engineering, University of Delaware, 140 Evans Hall, Newark,

    E-Print Network [OSTI]

    Holtz, Mark

    of Electrical and Computer Engineering, University of Delaware, 140 Evans Hall, Newark, Delaware 19716 H. Temkin Department of Electrical Engineering, Texas Tech University, Lubbock, Texas 79409 I. Ahmad and M. Holtz 2 107 /cm2 in GaN layer grown by hydride vapor phase epitaxy HVPE on SiC 0001 .16 Despite a number

  7. BFL Research Greenhouse Guidelines (BFLRG) Contact: All emails regarding facilities, facilities equipment, supplies at facilities, or watering

    E-Print Network [OSTI]

    BFL Research Greenhouse Guidelines (BFLRG) Contact: All emails regarding facilities, facilities equipment, supplies at facilities, or watering concerns to both the greenhouse manager, Shane Merrell sanitized in the appropriate location. Supplies: Requests for supplies ordered by greenhouse staff must

  8. Hanford surplus facilities programs facilities listings and descriptions. Revision 1

    SciTech Connect (OSTI)

    Kiser, S.K.; Witt, T.L.

    1994-01-01

    On the Hanford Site, many surplus facilities exist (including buildings, stacks, tanks, cribs, burial grounds, and septic systems) that are scheduled to be decommissioned. Many of these facilities contain large inventories of radionuclides, which present potential radiological hazards on and off the Hanford Site. Some structures with limited structural deterioration present potential radiological and industrial safety hazards to personnel. Because of the condition of these facilities, a systematic surveillance and maintenance program is performed to identify and correct potential hazards to personnel and the environment until eventual decommissioning operations are completed.

  9. Power Systems Development Facility

    SciTech Connect (OSTI)

    None

    2003-07-01

    This report discusses Test Campaign TC12 of the Kellogg Brown & Root, Inc. (KBR) Transport Gasifier train with a Siemens Westinghouse Power Corporation (SW) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The Transport Gasifier is an advanced circulating fluidized-bed reactor designed to operate as either a combustor or a gasifier using a particulate control device (PCD). While operating as a gasifier, either air or oxygen can be used as the oxidant. Test run TC12 began on May 16, 2003, with the startup of the main air compressor and the lighting of the gasifier start-up burner. The Transport Gasifier operated until May 24, 2003, when a scheduled outage occurred to allow maintenance crews to install the fuel cell test unit and modify the gas clean-up system. On June 18, 2003, the test run resumed when operations relit the start-up burner, and testing continued until the scheduled end of the run on July 14, 2003. TC12 had a total of 733 hours using Powder River Basin (PRB) subbituminous coal. Over the course of the entire test run, gasifier temperatures varied between 1,675 and 1,850 F at pressures from 130 to 210 psig.

  10. Facility effluent monitoring plan for the Plutonium Uranium Extraction Facility

    SciTech Connect (OSTI)

    Greager, E.M.

    1997-12-11

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438-01. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether these systems are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan will ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated, at a minimum, every 3 years.

  11. Irradiation facilities at the Los Alamos Meson Physics Facility

    SciTech Connect (OSTI)

    Sandberg, V.

    1990-01-01

    The irradiation facilities for testing SSC components and detector systems are described. Very high intensity proton, neutron, and pion fluxes are available with beam kinetic energies of up to 800 MeV. 4 refs., 12 figs., 2 tabs.

  12. User's guide to DOE facilities

    SciTech Connect (OSTI)

    Not Available

    1984-01-01

    The Department of Energy's research laboratories represent valuable, often unique, resources for university and industrial scientists. It is DOE policy to make these laboratories and facilities available to qualified scientists. The answers to such questions as who are eligible, what and where are the facilities, what is the cost, when can they be used, are given. Data sheets are presented for each facility to provide information such as location, user contact, description of research, etc. A subject index refers to areas of research and equipment available.

  13. High-Average Power Facilities

    SciTech Connect (OSTI)

    Dowell, David H.; Power, John G.; /Argonne

    2012-09-05

    There has been significant progress in the development of high-power facilities in recent years yet major challenges remain. The task of WG4 was to identify which facilities were capable of addressing the outstanding R&D issues presently preventing high-power operation. To this end, information from each of the facilities represented at the workshop was tabulated and the results are presented herein. A brief description of the major challenges is given, but the detailed elaboration can be found in the other three working group summaries.

  14. Total Energy Facilities Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al., 2013)OpenEnergy Facilities Biomass Facility Jump to: navigation,

  15. Idaho Waste Vitrification Facilities Project Vitrified Waste Interim Storage Facility

    SciTech Connect (OSTI)

    Bonnema, Bruce Edward

    2001-09-01

    This feasibility study report presents a draft design of the Vitrified Waste Interim Storage Facility (VWISF), which is one of three subprojects of the Idaho Waste Vitrification Facilities (IWVF) project. The primary goal of the IWVF project is to design and construct a treatment process system that will vitrify the sodium-bearing waste (SBW) to a final waste form. The project will consist of three subprojects that include the Waste Collection Tanks Facility, the Waste Vitrification Facility (WVF), and the VWISF. The Waste Collection Tanks Facility will provide for waste collection, feed mixing, and surge storage for SBW and newly generated liquid waste from ongoing operations at the Idaho Nuclear Technology and Engineering Center. The WVF will contain the vitrification process that will mix the waste with glass-forming chemicals or frit and turn the waste into glass. The VWISF will provide a shielded storage facility for the glass until the waste can be disposed at either the Waste Isolation Pilot Plant as mixed transuranic waste or at the future national geological repository as high-level waste glass, pending the outcome of a Waste Incidental to Reprocessing determination, which is currently in progress. A secondary goal is to provide a facility that can be easily modified later to accommodate storage of the vitrified high-level waste calcine. The objective of this study was to determine the feasibility of the VWISF, which would be constructed in compliance with applicable federal, state, and local laws. This project supports the Department of Energy’s Environmental Management missions of safely storing and treating radioactive wastes as well as meeting Federal Facility Compliance commitments made to the State of Idaho.

  16. POWER SYSTEMS DEVELOPMENT FACILITY

    SciTech Connect (OSTI)

    Unknown

    2002-11-01

    This report discusses test campaign GCT4 of the Kellogg Brown & Root, Inc. (KBR) transport reactor train with a Siemens Westinghouse Power Corporation (Siemens Westinghouse) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The transport reactor is an advanced circulating fluidized-bed reactor designed to operate as either a combustor or a gasifier using one of two possible particulate control devices (PCDs). The transport reactor was operated as a pressurized gasifier during GCT4. GCT4 was planned as a 250-hour test run to continue characterization of the transport reactor using a blend of several Powder River Basin (PRB) coals and Bucyrus limestone from Ohio. The primary test objectives were: Operational Stability--Characterize reactor loop and PCD operations with short-term tests by varying coal-feed rate, air/coal ratio, riser velocity, solids-circulation rate, system pressure, and air distribution. Secondary objectives included the following: Reactor Operations--Study the devolatilization and tar cracking effects from transient conditions during transition from start-up burner to coal. Evaluate the effect of process operations on heat release, heat transfer, and accelerated fuel particle heat-up rates. Study the effect of changes in reactor conditions on transient temperature profiles, pressure balance, and product gas composition. Effects of Reactor Conditions on Synthesis Gas Composition--Evaluate the effect of air distribution, steam/coal ratio, solids-circulation rate, and reactor temperature on CO/CO{sub 2} ratio, synthesis gas Lower Heating Value (LHV), carbon conversion, and cold and hot gas efficiencies. Research Triangle Institute (RTI) Direct Sulfur Recovery Process (DSRP) Testing--Provide syngas in support of the DSRP commissioning. Loop Seal Operations--Optimize loop seal operations and investigate increases to previously achieved maximum solids-circulation rate.

  17. Sandia Energy - Central Receiver Test Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Central Receiver Test Facility Home Stationary Power Energy Conversion Efficiency Solar Energy Concentrating Solar Power (CSP) National Solar Thermal Test Facility Central Receiver...

  18. Idaho National Engineering Laboratory Federal Facility Agreement...

    Office of Environmental Management (EM)

    Federal Facility Agreement and Consent Order State Idaho Agreement Type Federal Facility Agreement Legal Driver(s) CERCLA Scope Summary Ensure that the environmental impacts...

  19. New Mexico State University Facilities and Services

    E-Print Network [OSTI]

    Johnson, Eric E.

    New Mexico State University Facilities and Services Electronic Door Access FS ALL Access Reset #12;New Mexico State University Facilities and Services Electronic Door Access

  20. Facilities and Capabilities | Neutron Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SHARE Facilities and Capabilities ORNL operates two of the world's most powerful neutron scattering user facilities: the High Flux Isotope Reactor and the Spallation...

  1. 2014 Headquarters Facilities Master Security Plan- Acronyms

    Broader source: Energy.gov [DOE]

    2014 Headquarters Facilities Master Security Plan - Acronyms A list of the acronyms contained in the 2014 Headquarters Facilities Master Security Plan (HQFMSP).

  2. Lawrence Livermore National Laboratory Federal Facility Compliance...

    Office of Environmental Management (EM)

    Federal Facility Compliance Act Order for Lawrence Livermore National Laboratory Compliance Order HWCA 9697-5002 State California Agreement Type Federal Facility Agreement Legal...

  3. Carbon Fiber Technology Facility | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Carbon Fiber Technology Facility Carbon Fiber Technology Facility 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation...

  4. CMR: Chemistry and Metallurgy Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CMR: Chemistry and Metallurgy Research Facility CMR: Chemistry and Metallurgy Research Facility The Los Alamos National Laboratory (LANL) Chemistry and Metallurgy Research (CMR)...

  5. ETEC - Radioactive Handling Materials Facility (RMHF) Leachfield...

    Office of Environmental Management (EM)

    - Radioactive Handling Materials Facility (RMHF) Leachfield ETEC - Radioactive Handling Materials Facility (RMHF) Leachfield January 1, 2014 - 12:00pm Addthis US Department of...

  6. Louisiana: Verenium Cellulosic Ethanol Demonstration Facility...

    Office of Environmental Management (EM)

    Louisiana: Verenium Cellulosic Ethanol Demonstration Facility Louisiana: Verenium Cellulosic Ethanol Demonstration Facility April 9, 2013 - 12:00am Addthis In 2010, Verenium...

  7. Facility Operations Specialist | Department of Energy

    Energy Savers [EERE]

    in Germantown, Maryland within Facilities Management Operations (FMO), Office of Logistics and Facility Operations, Office of Administration. The FMO is responsible for...

  8. Independent Activity Report, Defense Nuclear Facilities Safety...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Defense Nuclear Facilities Safety Board Public Meeting - October 2012 Independent Activity Report, Defense Nuclear Facilities Safety Board Public Meeting - October 2012 October...

  9. Office of Nuclear Facility Safety Programs

    Broader source: Energy.gov [DOE]

    The Office of Nuclear Facility Safety Programs establishes nuclear safety requirements related to safety management programs that are essential to the safety of DOE nuclear facilities.

  10. Biosafety Facilities - DOE Directives, Delegations, and Requirements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5, Biosafety Facilities by David Freshwater Functional areas: Defense Nuclear Facility Safety and Health Requirement, Safety and Security, The Guide assists DOENNSA field elements...

  11. Waste Treatment Facility Passes Federal Inspection, Completes...

    Office of Environmental Management (EM)

    Waste Treatment Facility Passes Federal Inspection, Completes Final Milestone, Begins Startup Waste Treatment Facility Passes Federal Inspection, Completes Final Milestone, Begins...

  12. Vice President of Core Facilities

    E-Print Network [OSTI]

    MacAdam, Keith

    ) Research Integrity Federal Relations Sponsored Projects Administration, AVPR Advanced Science & Technology Veterinarian Research Communications Centers & Institutes · Center for Applied Energy Research (CAER) · CenterVice President of Research Core Facilities · Clinical Research Development and Operations Center

  13. A Stored Picture Hacking Facility

    E-Print Network [OSTI]

    Markowitz, Sidney

    A short description of LISP functions that have been written for use with the stored picture facility. These functions allow one to display an image of a stored scene on the 340 scope, and produce graphs and histograms of ...

  14. UNIVERSITY BOULEVARD FAU Research Facility

    E-Print Network [OSTI]

    Marques, Oge

    Harriet L.Wilkes Honors College FAU Research Facility Expansion Satellite Utility Plant Chiller Lift Station SCRIPPS Research Complex LOT 77 LEGEND BLDG. # BUILDING NAME 5353 Parkside Drive, Jupiter, FL

  15. Hanford Facility RCRA permit handbook

    SciTech Connect (OSTI)

    1996-03-01

    Purpose of this Hanford Facility (HF) RCRA Permit Handbook is to provide, in one document, information to be used for clarification of permit conditions and guidance for implementing the HF RCRA Permit.

  16. Freestall Facilities in Central Texas 

    E-Print Network [OSTI]

    Stokes, Sandra R.; Gamroth, Mike

    1999-06-04

    -5311 5-99 Freestall Dairy Facilities in Central Texas Sandy Stokes and Mike Gamroth* *Extension Dairy Specialist, Texas A&M University System, and Extension Dairy Specialist, Oregon State University. Freestall housing is an option for many traditional...

  17. MSGP Documents & Reports by Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    benchmark parameters and impaired waters MSGP Documents & Reports by Facility TA-3-22 Power Steam Plant TA-3-38 Metal Fabrication Shop TA-3-38 Wood Shop TA-3-39 & 102 Metal...

  18. Land and Facility Use Planning

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1996-07-09

    The Land and Facility Use Planning process provides a way to guide future site development and reuse based on the shared long-term goals and objectives of the Department, site and its stakeholders. Does not cancel other directives.

  19. The National Ignition Facility Project

    SciTech Connect (OSTI)

    Paisner, J.A.; Campbell, E.M.; Hogan, W.J.

    1994-06-16

    The mission of the National Ignition Facility is to achieve ignition and gain in ICF targets in the laboratory. The facility will be used for defense applications such as weapons physics and weapons effect testing, and for civilian applications such as fusion energy development and fundamental studies of matter at high temperatures and densities. This paper reviews the design, schedule and costs associated with the construction project.

  20. Site maps and facilities listings

    SciTech Connect (OSTI)

    Not Available

    1993-11-01

    In September 1989, a Memorandum of Agreement among DOE offices regarding the environmental management of DOE facilities was signed by appropriate Assistant Secretaries and Directors. This Memorandum of Agreement established the criteria for EM line responsibility. It stated that EM would be responsible for all DOE facilities, operations, or sites (1) that have been assigned to DOE for environmental restoration and serve or will serve no future production need; (2) that are used for the storage, treatment, or disposal of hazardous, radioactive, and mixed hazardous waste materials that have been properly characterized, packaged, and labelled, but are not used for production; (3) that have been formally transferred to EM by another DOE office for the purpose of environmental restoration and the eventual return to service as a DOE production facility; or (4) that are used exclusively for long-term storage of DOE waste material and are not actively used for production, with the exception of facilities, operations, or sites under the direction of the DOE Office of Civilian Radioactive Waste Management. As part of the implementation of the Memorandum of Agreement, Field Offices within DOE submitted their listings of facilities, systems, operation, and sites for which EM would have line responsibility. It is intended that EM facility listings will be revised on a yearly basis so that managers at all levels will have a valid reference for the planning, programming, budgeting and execution of EM activities.

  1. Subsurface Facility System Description Document

    SciTech Connect (OSTI)

    Eric Loros

    2001-07-31

    The Subsurface Facility System encompasses the location, arrangement, size, and spacing of the underground openings. This subsurface system includes accesses, alcoves, and drifts. This system provides access to the underground, provides for the emplacement of waste packages, provides openings to allow safe and secure work conditions, and interfaces with the natural barrier. This system includes what is now the Exploratory Studies Facility. The Subsurface Facility System physical location and general arrangement help support the long-term waste isolation objectives of the repository. The Subsurface Facility System locates the repository openings away from main traces of major faults, away from exposure to erosion, above the probable maximum flood elevation, and above the water table. The general arrangement, size, and spacing of the emplacement drifts support disposal of the entire inventory of waste packages based on the emplacement strategy. The Subsurface Facility System provides access ramps to safely facilitate development and emplacement operations. The Subsurface Facility System supports the development and emplacement operations by providing subsurface space for such systems as ventilation, utilities, safety, monitoring, and transportation.

  2. 155:208 Chemical Engineering Thermodynamics I Spring 2015 Lectures: Tue. & Fri., 12:00 p.m.1:20 p.m., Hill-116

    E-Print Network [OSTI]

    Muzzio, Fernando J.

    155:208 Chemical Engineering Thermodynamics I Spring 2015 Lectures: Tue. & Fri., 12:00 p.m1:20 p and solve physical and chemical problems encountered in chemical and biochemical engineering. The course to apply these to the solution of chemical and biochemical engineering problems. Students will be provided

  3. POWER SYSTEMS DEVELOPMENT FACILITY

    SciTech Connect (OSTI)

    Unknown

    2002-05-01

    This report discusses test campaign GCT3 of the Halliburton KBR transport reactor train with a Siemens Westinghouse Power Corporation (Siemens Westinghouse) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The transport reactor is an advanced circulating fluidized-bed reactor designed to operate as either a combustor or a gasifier using one of two possible particulate control devices (PCDs). The transport reactor was operated as a pressurized gasifier during GCT3. GCT3 was planned as a 250-hour test run to commission the loop seal and continue the characterization of the limits of operational parameter variations using a blend of several Powder River Basin coals and Bucyrus limestone from Ohio. The primary test objectives were: (1) Loop Seal Commissioning--Evaluate the operational stability of the loop seal with sand and limestone as a bed material at different solids circulation rates and establish a maximum solids circulation rate through the loop seal with the inert bed. (2) Loop Seal Operations--Evaluate the loop seal operational stability during coal feed operations and establish maximum solids circulation rate. Secondary objectives included the continuation of reactor characterization, including: (1) Operational Stability--Characterize the reactor loop and PCD operations with short-term tests by varying coal feed, air/coal ratio, riser velocity, solids circulation rate, system pressure, and air distribution. (2) Reactor Operations--Study the devolatilization and tar cracking effects from transient conditions during transition from start-up burner to coal. Evaluate the effect of process operations on heat release, heat transfer, and accelerated fuel particle heat-up rates. Study the effect of changes in reactor conditions on transient temperature profiles, pressure balance, and product gas composition. (3) Effects of Reactor Conditions on Syngas Composition--Evaluate the effect of air distribution, steam/coal ratio, solids circulation rate, and reactor temperature on CO/CO{sub 2} ratio, H{sub 2}/converted carbon ratio, gasification rates, carbon conversion, and cold and hot gas efficiencies. Test run GCT3 was started on December 1, 2000, with the startup of the thermal oxidizer fan, and was completed on February 1, 2001. This test was conducted in two parts; the loop seal was commissioned during the first part of this test run from December 1 through 15, which consisted of hot inert solids circulation testing. These initial tests provided preliminary data necessary to understand different parameters associated with the operation and performance of the loop seal. The loop seal was tested with coal feed during the second part of the test run and additional data was gathered to analyze reactor operations and to identify necessary modifications to improve equipment and process performance. In the second part of GCT3, the gasification portion of the test, from January 20 to February 1, 2001, the mixing zone and riser temperatures were varied between 1,675 and 1,825 F at pressures ranging from 200 to 240 psig. There were 306 hours of solid circulation and 184 hours of coal feed attained in GCT3.

  4. ESIF 2014 (Energy Systems Integration Facility) (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2015-01-01

    This report covers research highlights and achievements for the Energy Systems Integration Facility in 2014.

  5. CAMPUS PEDESTRIAN FACILITIES ADA ASSESSMENT & SURVEY

    E-Print Network [OSTI]

    Escher, Christine

    CAMPUS PEDESTRIAN FACILITIES ADA ASSESSMENT & SURVEY OREGONSTATEUNIVERSITY(OSU) #12;SZSCONSULTING) 130 Oak Creek Corvallis, OR 97331-2001 Re: OSU Campus Accessibility Survey and Assessment ­ Pedestrian Facilities Dear Mike, We are pleased to submit this facility report for the campus pedestrian facility

  6. Groundbreaking for Stanley Biosciences and Bioengineering Facility

    E-Print Network [OSTI]

    Atkinson, Richard

    2003-01-01

    for Stanley Biosciences and Bioengineering Facility BerkeleyCalifornia Institute for Bioengineering, Biotechnology, and

  7. Donor impurity states and related terahertz range nonlinear optical response in GaN cylindrical quantum wires: Effects of external electric and magnetic fields

    SciTech Connect (OSTI)

    Correa, J. D.; Mora-Ramos, M. E.; Duque, C. A.

    2014-06-07

    We report a study on the optical absorption coefficient associated to hydrogenic impurity interstate transitions in zinc-blende GaN quantum wires of cylindrical shape taking into account the effects of externally applied static electric and magnetic fields. The electron states emerge within the effective mass approximation, via the exact diagonalization of the donor-impurity Hamiltonian with parabolic confinement and external field effects. The nonlinear optical absorption is calculated using a recently derived expression for the dielectric susceptibility, obtained via a nonperturbative solution of the density-matrix Bloch equation. Our results show that this treatment eliminates not only the intensity-dependent bleaching effect but also the change in sign of the nonlinear contribution due to the combined effect of asymmetric impurity location and the applied electric field.

  8. Hanford Facility dangerous waste permit application, liquid effluent retention facility and 200 area effluent treatment facility

    SciTech Connect (OSTI)

    Coenenberg, J.G.

    1997-08-15

    The Hanford Facility Dangerous Waste Permit Application is considered to 10 be a single application organized into a General Information Portion (document 11 number DOE/RL-91-28) and a Unit-Specific Portion. The scope of the 12 Unit-Specific Portion is limited to Part B permit application documentation 13 submitted for individual, `operating` treatment, storage, and/or disposal 14 units, such as the Liquid Effluent Retention Facility and 200 Area Effluent 15 Treatment Facility (this document, DOE/RL-97-03). 16 17 Both the General Information and Unit-Specific portions of the Hanford 18 Facility Dangerous Waste Permit Application address the content of the Part B 19 permit application guidance prepared by the Washington State Department of 20 Ecology (Ecology 1987 and 1996) and the U.S. Environmental Protection Agency 21 (40 Code of Federal Regulations 270), with additional information needs 22 defined by the Hazardous and Solid Waste Amendments and revisions of 23 Washington Administrative Code 173-303. For ease of reference, the Washington 24 State Department of Ecology alpha-numeric section identifiers from the permit 25 application guidance documentation (Ecology 1996) follow, in brackets, the 26 chapter headings and subheadings. A checklist indicating where information is 27 contained in the Liquid Effluent Retention Facility and 200 Area Effluent 28 Treatment Facility permit application documentation, in relation to the 29 Washington State Department of Ecology guidance, is located in the Contents 30 Section. 31 32 Documentation contained in the General Information Portion is broader in 33 nature and could be used by multiple treatment, storage, and/or disposal units 34 (e.g., the glossary provided in the General Information Portion). Wherever 35 appropriate, the Liquid Effluent Retention Facility and 200 Area Effluent 36 Treatment Facility permit application documentation makes cross-reference to 37 the General Information Portion, rather than duplicating text. 38 39 Information provided in this Liquid Effluent Retention Facility and 40 200 Area Effluent Treatment Facility permit application documentation is 41 current as of June 1, 1997.

  9. Survey of neutron radiography facilities

    SciTech Connect (OSTI)

    Imel, G.R.; McClellan, G.G.

    1996-08-01

    A directory of neutron radiography facilities around the world was informally compiled about ten years ago under the auspices of the American Society for Testing and Materials (ASTM), Subcommittee E7.05 (Radiology, Neutron). The work lay dormant for a number of years, but was revived in earnest in the fall of 1995. At that time, letters were mailed to all the facilities with available addresses in the original directory, requesting updated information. Additionally, information was gathered at the Second Topical meeting on neutron Radiography Facility System Design and Beam Characterization (November, 1995, Shonan Village, Japan). A second mailing was sent for final confirmation and updates in January, 1996. About 75% of the information in the directory has now been confirmed by the facility management. This paper presents a summary of the information contained in the facility directory. An electronic version of the directory in Wordperfect 6.1, uuencode, or rtf format is available by sending e-mail to the authors at imel{at}anl.gov or imel{at}baobab.cad.cea.fr. A WWW site for the directory is presently under construction.

  10. PRTR/309 building nuclear facility preliminary

    SciTech Connect (OSTI)

    Cornwell, B.C.

    1994-12-08

    The hazard classification of the Plutonium Recycle Test Reactor (PRTR)/309 building as a ``Radiological Facility`` and the office portions as ``Other Industrial Facility`` are documented by this report. This report provides: a synopsis of the history and facility it`s uses; describes major area of the facility; and assesses the radiological conditions for the facility segments. The assessment is conducted using the hazard category threshold values, segmentation methodology, and graded approach guidance of DOE-STD-1027-92.

  11. About the facility The CleanCat Facility at Northwestern

    E-Print Network [OSTI]

    Chen, Wei

    measurement of reaction products: Analytical 1 is configured with an FID for hydrocarbon analysis. We on Their Measured Electronic Structure," Topics in catalysis, 53 (2010) 348 CleanCat User Facility https 2 is configured with an FID for hydrocarbon analysis. Additionally, this unit is configured

  12. Tandem mirror technology demonstration facility

    SciTech Connect (OSTI)

    Not Available

    1983-10-01

    This report describes a facility for generating engineering data on the nuclear technologies needed to build an engineering test reactor (ETR). The facility, based on a tandem mirror operating in the Kelley mode, could be used to produce a high neutron flux (1.4 MW/M/sup 2/) on an 8-m/sup 2/ test area for testing fusion blankets. Runs of more than 100 h, with an average availability of 30%, would produce a fluence of 5 mW/yr/m/sup 2/ and give the necessary experience for successful operation of an ETR.

  13. Facility Engineering | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof Energy Services » Program ManagementAct4 DOE/CF-0074FacilitiesFacility

  14. STABILITY OF WASTE CONTAINMENT FACILITIES

    E-Print Network [OSTI]

    placement or regrading, (v) typical landfilling, and (vi) final closure. After identifying the potential containment facilities. These failures include landfill liner and cover systems and involve both natural recirculation, lateral and vertical expansions, and interim or temporary slopes on the stability of landfills

  15. Fusion Test Facilities John Sheffield

    E-Print Network [OSTI]

    Fusion Test Facilities John Sheffield ISSE - University of Tennessee FPA meeting Livermore December Stambaugh, and their colleagues #12;Destructive Testing · It is common practice to test engineered components to destruction prior to deployment of a system e.g., - Automobile crash tests - Airplane wing

  16. Integrated Disposal Facility Risk Assessment

    SciTech Connect (OSTI)

    MANN, F. M.

    2003-06-03

    An environmental risk assessment associated with the disposal of projected Immobilized Low-Activity Waste, solid wastes and failed or decommissioned melters in an Integrated Disposal Facility was performed. Based on the analyses all performance objectives associated with the groundwater, air, and intruder pathways were met.

  17. December 2010 FACILITIES & PROPERTY MANAGEMENT

    E-Print Network [OSTI]

    change with carbon management being the key issue for many organisations. The HE sector must play itsDecember 2010 FACILITIES & PROPERTY MANAGEMENT CARBON MANAGEMENT AND SUSTAINABILITY ACTIVITIES REPORT 2009/10 #12;Contents Page · Introduction 1 · Carbon and Energy Management 3 · Waste and Recycling

  18. Environmental Health Facilities Experimental laboratories

    E-Print Network [OSTI]

    Stuart, Amy L.

    , and a Nanopure® DiamondTM analytical ultra-pure water treatment system. Common facilities include two temperature, and low temperature freezer. Major analytical equipment in the Environmental Health group includes reference method PM2.5 sampler, TEI nitrogen oxides (NOx) sulfur dioxide, and carbon monoxide analyzers, two

  19. COMPARATIVE MEDICINE LABORATORY ANIMAL FACILITIES

    E-Print Network [OSTI]

    Krovi, Venkat

    Procedure Suite, 310 BEB. 1. Except for routine diagnostic radiographs ordered by veterinarians all other with CMLAF Facility Manager and CMLAF Main office 116 BEB 3.5 Fluoroscopic procedures are performed are stored in 204 BEB. 3. Notify Radiation Safety when there is an addition in personnel by sending

  20. Magnetic Resonance Facility (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-03-01

    This fact sheet provides information about Magnetic Resonance Facility capabilities and applications at NREL's National Bioenergy Center. Liquid and solid-state analysis capability for a variety of biomass, photovoltaic, and materials characterization applications across NREL. NREL scientists analyze solid and liquid samples on three nuclear magnetic resonance (NMR) spectrometers as well as an electron paramagnetic resonance (EPR) spectrometer.

  1. Director of Classroom Classroom Facilities

    E-Print Network [OSTI]

    Ciocan-Fontanine, Ionut

    Standards Classroom Renovation/New Const Coord OCM Capital Projects Lead Classroom Facilities Project Coordination & Liaison CPPM Classroom Tech Design Classroom Tech Standards Classroom Tech/AV Repair & Install Classroom Tech Project Oversight AV Equip Support NTS - Tech Project Coordination Proj Capable Classroom

  2. Facilities Management March 23, 2004

    E-Print Network [OSTI]

    Capogna, Luca

    estimates prepared in the future for such projects will reflect the A&E hours required, if any, as wellFacilities Management March 23, 2004 Charges for Design (Architectural & Engineering) Services and/or design services directly in support of maintenance projects or alteration/renovation (i

  3. Program of Study Research Facilities

    E-Print Network [OSTI]

    Thomas, Andrew

    of mobile, spatial, and context-aware technologies, the building of interoperable coordinated information live and communicate. The information technology sector will continue to grow and evolve over the yearsProgram of Study Research Facilities Financial Aid Spatial technologies are changing relations

  4. Fusion Nuclear Science Facility (FNSF)

    E-Print Network [OSTI]

    Fusion Nuclear Science Facility (FNSF) ­ Motivation, Role, Required Capabilities YK Martin Peng;1 Managed by UT-Battelle for the Department of Energy Example: fusion nuclear-nonnuclear coupling effects-composites; Nano-structure alloy; PFC designs, etc. · Nuclear-nonnuclear coupling in PFC: - Plasma ion flux induces

  5. Deep acceptors trapped at threading edge dislocations in GaN J. Elsner 1;2 , R. Jones 1 , M. Haugk 2 , Th. Frauenheim 2 , M.I. Heggie 3 , S.

    E-Print Network [OSTI]

    Jones, Robert

    Deep acceptors trapped at threading edge dislocations in GaN J. Elsner 1;2 , R. Jones 1 , M. Haugk--fold coordinated in a bridge position. V Ga --O N is found to be a deep double accecptor, V Ga --(O N ) 2 is a deep defects are responsible for a deep acceptor level associated with the mid­gap yellow luminescence band. Ga

  6. 10 Gb/s Radiation-Hard VCSEL Array Driver K.K. Gan, P. Buchholz, S. Heidbrink, H. Kagan, R. Kass, J. Moore, D.S. Smith, M. Vogt, M. Ziolkowski

    E-Print Network [OSTI]

    Gan, K. K.

    to enhance the radiation-hardness. Each ASIC contains eight low voltage differential signal (LVDS) receivers10 Gb/s Radiation-Hard VCSEL Array Driver K.K. Gan, P. Buchholz, S. Heidbrink, H. Kagan, R. Kass, JV protons to a dose of 0.92x1015 1-MeV neq/cm2 and remain operational. For the 10 Gb/s VCSEL array driver

  7. * email: nidhi@ece.ucsb.edu phone: +1-805-893-3812 ext 202 Ultra-low contact resistance for Self-aligned HEMT structures on N-polar GaN by MBE

    E-Print Network [OSTI]

    Rodwell, Mark J. W.

    * email: nidhi@ece.ucsb.edu phone: +1-805-893-3812 ext 202 Ultra-low contact resistance for SelfN) are regrown to achieve ultra-low Ohmic contact resistance. All MBE regrowths were done on MOCVD GaN templates of InN. To summarize, ultra-low Ohmic contact resistance of 60 -µm was obtained for a self-aligned devi

  8. Wheelabrator Millbury Facility Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEtGeorgia: EnergyMaryland: EnergyWexford County,Wheaton,Millbury Facility

  9. HIGHER EDUCATION FACILITIES MANAGEMENT: READY FOR INTERNATIONALIZATION? 

    E-Print Network [OSTI]

    Aizuddin, N.; Yahya, M.

    2009-01-01

    The last ten years has seen dramatic growth in Facilities Management (FM) activities worldwide, including Malaysia. Facilities Management is responsible for coordinating all efforts related to planning, designing and managing physical structure...

  10. Radiological Research Accelerator Facility Service Request Form

    E-Print Network [OSTI]

    Radiological Research Accelerator Facility Service Request Form National Institute of Biomedical Imaging and Bioengineering Radiological Research Accelerator Facility Service request form Estimate when(s) to control for this experiment (if more than one, please prioritize): Radiological Research Accelerator

  11. Startup and Restart of Nuclear Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-09-29

    The order establishes the requirements for startup of new nuclear facilities and for the restart of existing nuclear facilities that have been shutdown. Cancels DOE 5480.31. Canceled by DOE O 425.1A.

  12. Startup and Restart of Nuclear Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1998-12-28

    To establish the requirements for startup of new nuclear facilities and for the restart of existing nuclear facilities that have been shut down. Cancels DOE O 425.1. Canceled by DOE O 425.1B.

  13. Diversion scenarios in an aqueous reprocessing facility

    E-Print Network [OSTI]

    Calderón, Lindsay Lorraine

    2009-01-01

    The International Atomic Energy Agency requires nuclear facilities around the world to abide by heavily enforced safeguards to prevent proliferation. Nuclear fuel reprocessing facilities are designed to be proliferation-resistant ...

  14. Sandia National Laboratories: Research: Facilities: Technology...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Science and Engineering Center Pulsed Power and Systems Validation Facility Radiation Detection Materials Characterization Laboratory Shock Thermodynamic Applied...

  15. Building Emergency Action Plan Facility Name: _____________________

    E-Print Network [OSTI]

    Powers, Robert

    Building Emergency Action Plan (Template) Facility Name: _____________________ Date Prepared .....................................................................................................................................................3 2. Building Description..................................................................................................................................3 3. Building Emergency Personnel

  16. Great Lakes Steel -- PCI facility

    SciTech Connect (OSTI)

    Eichinger, F.T. [BMH Claudius Peters AG, Buxtehude (Germany); Dake, S.H.; Wagner, E.D.; Brown, G.S. [Raytheon Engineers and Constructors, Pittsburgh, PA (United States)

    1997-12-31

    This paper discusses the planning, design, and start-up of the 90 tph PCI facility for National Steel`s Great Lakes Steel Division in River Rouge, MI. This project is owned and operated by Edison Energy Services, and was implemented on a fast-track basis by Raytheon Engineers and Constructors, Babcock Material Handling, and Babcock and Wilcox. This paper presents important process issues, basic design criteria, an the challenges of engineering and building a state-of-the-art PCI facility in two existing plants. Pulverized coal is prepared at the River Rouge Power Plant of Detroit Edison, is pneumatically conveyed 6,000 feet to a storage silo at Great Lakes Steel, and is injected into three blast furnaces.

  17. High Exposure Facility Technical Description

    SciTech Connect (OSTI)

    Carter, Gregory L.; Stithem, Arthur R.; Murphy, Mark K.; Smith, Alex K.

    2008-02-12

    The High Exposure Facility is a collimated high-level gamma irradiator that is located in the basement of the 318 building. It was custom developed by PNNL back in 1982 to meet the needs for high range radiological instrument calibrations and dosimeter irradiations. At the time no commercially available product existed that could create exposure rates up to 20,000 R/h. This document is intended to pass on the design criteria that was employed to create this unique facility, while maintaining compliance with ANSI N543-1974, "General Safety Standard for Installations Using Non-Medical X-Ray and Sealed Gamma-Ray Sources, Energies up to 10 MeV."

  18. The Radiological Research Accelerator Facility

    SciTech Connect (OSTI)

    Hall, E.J.; Marino, S.A.

    1993-05-01

    The Radiological Research Accelerator Facility (RARAF) is based on a 4-MV Van de Graaff accelerator, which is used to generate a variety of well-characterized radiation beams for research in radiobiology, radiological physics, and radiation chemistry. It is part of the Center for Radiological Research (CRR) - formerly the Radiological Research Laboratory of Columbia University, and its operation is supported as a National Facility by the US Department of Energy (DOE). As such, RARAF is available to all potential users on an equal basis and scientists outside the CRR are encouraged to submit proposals for experiments at RARAF. The operation of the Van de Graaff is supported by the DOE, but the research projects themselves must be supported separately. This report provides a listing and brief description of experiments performed at RARAF during the May 1, 1992 through April 30, 1993.

  19. Seismic Analysis of Facilities and Evaluation of Risk | Department...

    Office of Environmental Management (EM)

    Seismic Analysis of Facilities and Evaluation of Risk Seismic Analysis of Facilities and Evaluation of Risk Seismic Analysis of Facilities and Evaluation of Risk Michael Salmon,...

  20. Major Risk Factors to the Integrated Facility Disposition Project...

    Office of Environmental Management (EM)

    Major Risk Factors to the Integrated Facility Disposition Project Major Risk Factors to the Integrated Facility Disposition Project The scope of the Integrated Facility Disposition...

  1. DOE Facility Database - Datasets - OpenEI Datasets

    Open Energy Info (EERE)

    DOE Facility Database Data and Resources DOE Facility DatabaseCSV Preview Download Research and Develo... User Facilities Additional Info Field Value Author U.S. Office of...

  2. Los Alamos National Laboratory Plutonium Facility (PF-4) Seismic...

    Office of Environmental Management (EM)

    Laboratory Plutonium Facility (PF-4) Seismic Safety Los Alamos National Laboratory Plutonium Facility (PF-4) Seismic Safety Los Alamos National Laboratory Plutonium Facility (PF-4)...

  3. Greening Federal Facilities: An Energy, Environmental, and Economic...

    Energy Savers [EERE]

    Greening Federal Facilities: An Energy, Environmental, and Economic Resource Guide for Federal Facility managers and Designers; Second Edition Greening Federal Facilities: An...

  4. DOE Site Facility Management Contracts Internet Posting | Department...

    Energy Savers [EERE]

    DOE Site Facility Management Contracts Internet Posting DOE Site Facility Management Contracts Internet Posting PDF icon DOE NNSA Site Facility Management Contracts - November...

  5. Biocorrosive Thermophilic Microbial Communities in Alaskan North Slope Oil Facilities

    E-Print Network [OSTI]

    Duncan, Kathleen E.

    2010-01-01

    in Alaskan North Slope Oil Facilities Kathleen E. Duncan,in Alaskan North Slope oil production facilities. Title:in Alaskan North Slope Oil Facilities Authors: Kathleen E.

  6. Key Energy-Saving Projects for Smaller Facilities | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Key Energy-Saving Projects for Smaller Facilities Key Energy-Saving Projects for Smaller Facilities This presentation discusses how smaller industrial facilities can save energy...

  7. Los Alamos Critical Assemblies Facility

    SciTech Connect (OSTI)

    Malenfant, R.E.

    1981-06-01

    The Critical Assemblies Facility of the Los Alamos National Laboratory has been in existence for thirty-five years. In that period, many thousands of measurements have been made on assemblies of /sup 235/U, /sup 233/U, and /sup 239/Pu in various configurations, including the nitrate, sulfate, fluoride, carbide, and oxide chemical compositions and the solid, liquid, and gaseous states. The present complex of eleven operating machines is described, and typical applications are presented.

  8. Facility Security Officer Contractor Toolcart

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submitKansasCommunitiesofExtrans -ORGANIZATIONOperations »DepartmentFacility

  9. Facility Safety | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof Energy Services » Program ManagementAct4Facility Safety Policy,

  10. Facility Operations | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeVehicleDepartmentMediaEnergy HistoryFY13Facilities

  11. New Mexico State University Facilities and Services

    E-Print Network [OSTI]

    Johnson, Eric E.

    New Mexico State University Facilities and Services ADM-001: Procedure Process Effective: June 30 and Services #12;New Mexico State University Facilities and Services ADM-002: Use of Facilities and Services & Procedures: 1. New Mexico State University Vehicle Use Procedures issued by Environmental Health and Safety

  12. Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation Current HABFES OctoberEvan Racah861 ANNUAL ELECTRICRashi Iyer

  13. Facilities Usage Policy Page 1 of 2 100.1 Facilities Usage Policy

    E-Print Network [OSTI]

    Yang, Eui-Hyeok

    Facilities Usage Policy Page 1 of 2 100.1 Facilities Usage Policy Approval Authority" in Section 4 Effective: 15 January 2010 1. Policy Statement Use of facilities is consistent with furthering the mission, goals, and objectives of the university. This policy sets the guidelines for facility usage

  14. SASE FEL at the TESLA Facility, Phase 2 The TESLA Test Facility FEL team

    E-Print Network [OSTI]

    SASE FEL at the TESLA Facility, Phase 2 The TESLA Test Facility FEL team June 2002, TESLA-FEL 2002-01 #12;SASE FEL at the TESLA Facility, Phase 2 Abstract The last description of the TESLA Test Facility FEL has been written in 1995 (TESLA- FEL report 95-03). Since then, many changes have developed

  15. Facility Interface Capability Assessment (FICA) project report

    SciTech Connect (OSTI)

    Pope, R.B.; MacDonald, R.R.; Viebrock, J.M.; Mote, N.

    1995-09-01

    The US Department of Energy`s (DOE) Office of Civilian Radioactive Waste Management (OCRWM) is responsible for developing the Civilian Radioactive Waste Management System (CRWMS) to accept spent nuclear fuel from commercial facilities. The objective of the Facility Interface Capability Assessment (FICA) project was to assess the capability of each commercial spent nuclear fuel (SNF) storage facility, at which SNF is stored, to handle various SNF shipping casks. The purpose of this report is to present and analyze the results of the facility assessments completed within the FICA project. During Phase 1, the data items required to complete the facility assessments were identified and the database for the project was created. During Phase 2, visits were made to 122 facilities on 76 sites to collect data and information, the database was updated, and assessments of the cask-handling capabilities at each facility were performed. Each assessment of cask-handling capability contains three parts: the current capability of the facility (planning base); the potential enhanced capability if revisions were made to the facility licensing and/or administrative controls; and the potential enhanced capability if limited physical modifications were made to the facility. The main conclusion derived from the planning base assessments is that the current facility capabilities will not allow handling of any of the FICA Casks at 49 of the 122 facilities evaluated. However, consideration of potential revisions and/or modifications showed that all but one of the 49 facilities could be adapted to handle at least one of the FICA Casks. For this to be possible, facility licensing, administrative controls, and/or physical aspects of the facility would need to be modified.

  16. Facility Interface Capability Assessment (FICA) summary report

    SciTech Connect (OSTI)

    Viebrock, J.M.; Mote, N.; Pope, R.B.

    1992-05-01

    The Office of Civilian Radioactive Waste Management (OCRWM) is responsible for developing the Civilian Radioactive Waste Management System (CRWMS) to accept spent nuclear fuel from the commercial facilities. In support of the development of the CRWMS, OCRWM sponsored the Facility Interface Capability Assessment (FICA) project. The objective of this project was to assess the capability of each commercial facility to handle various spent nuclear fuel shipping casks. The purpose of this report is to summarize the results of the facility assessments completed within the FICA project. The project was conducted in two phases. During Phase I, the data items required to complete the facility assessments were identified and the data base for the project was created. During Phase II, visits were made to 122 facilities on 76 sites to collect data and information, the data base was updated, and assessments of the cask-handling capabilities at each facility were performed.

  17. Relaxation and critical strain for maximum In incorporation in AlInGaN on GaN grown by metal organic vapour phase epitaxy

    SciTech Connect (OSTI)

    Reuters, Benjamin; Finken, M.; Wille, A.; Kalisch, H.; Vescan, A.; Hollaender, B.; Heuken, M.

    2012-11-01

    Quaternary AlInGaN layers were grown on conventional GaN buffer layers on sapphire by metal organic vapour phase epitaxy at different surface temperatures and different reactor pressures with constant precursor flow conditions. A wide range in compositions within 30-62% Al, 5-29% In, and 23-53% Ga was covered, which leads to different strain states from high tensile to high compressive. From high-resolution x-ray diffraction and Rutherford backscattering spectrometry, we determined the compositions, strain states, and crystal quality of the AlInGaN layers. Atomic force microscopy measurements were performed to characterize the surface morphology. A critical strain value for maximum In incorporation near the AlInGaN/GaN interface is presented. For compressively strained layers, In incorporation is limited at the interface as residual strain cannot exceed an empirical critical value of about 1.1%. Relaxation occurs at about 15 nm thickness accompanied by strong In pulling. Tensile strained layers can be grown pseudomorphically up to 70 nm at a strain state of 0.96%. A model for relaxation in compressively strained AlInGaN with virtual discrete sub-layers, which illustrates the gradually changing lattice constant during stress reduction is presented.

  18. 2014 HEADQUARTERS FACILITIES MASTER SECURITY PLAN - CHAPTER 13...

    Office of Environmental Management (EM)

    HEADQUARTERS FACILITIES MASTER SECURITY PLAN - CHAPTER 13, CONTROLLED UNCLASSIFIED INFORMATION 2014 HEADQUARTERS FACILITIES MASTER SECURITY PLAN - CHAPTER 13, CONTROLLED...

  19. 2014 Assisting Federal Facilities with Energy Conservation Technologie...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technical Assistance 2014 Assisting Federal Facilities with Energy Conservation Technologies (AFFECT) Funding Recipients 2014 Assisting Federal Facilities with Energy...

  20. Moratorium on Construction of Nuclear Power Facilities (Connecticut...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Moratorium on Construction of Nuclear Power Facilities (Connecticut) Moratorium on Construction of Nuclear Power Facilities (Connecticut) < Back Eligibility Agricultural Commercial...

  1. Celgard US Manufacturing Facilities Initiative for Lithium-ion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Celgard US Manufacturing Facilities Initiative for Lithium-ion Battery Separator Celgard US Manufacturing Facilities Initiative for...

  2. An introduction to the National Tritium Labeling Facility

    SciTech Connect (OSTI)

    Dorsky, A.M.; Morimoto, H.; Saljoughian, M.; Williams, P.G.; Rapoport, H.

    1988-06-01

    The facilities and projects of the National Tritium Labeling Facility are described. 5 refs., 1 fig., 1 tab.

  3. The DOE ARM Aerial Facility

    SciTech Connect (OSTI)

    Schmid, Beat; Tomlinson, Jason M.; Hubbe, John M.; Comstock, Jennifer M.; Mei, Fan; Chand, Duli; Pekour, Mikhail S.; Kluzek, Celine D.; Andrews, Elisabeth; Biraud, S.; McFarquhar, Greg

    2014-05-01

    The Department of Energy Atmospheric Radiation Measurement (ARM) Program is a climate research user facility operating stationary ground sites that provide long-term measurements of climate relevant properties, mobile ground- and ship-based facilities to conduct shorter field campaigns (6-12 months), and the ARM Aerial Facility (AAF). The airborne observations acquired by the AAF enhance the surface-based ARM measurements by providing high-resolution in-situ measurements for process understanding, retrieval-algorithm development, and model evaluation that are not possible using ground- or satellite-based techniques. Several ARM aerial efforts were consolidated into the AAF in 2006. With the exception of a small aircraft used for routine measurements of aerosols and carbon cycle gases, AAF at the time had no dedicated aircraft and only a small number of instruments at its disposal. In this "virtual hangar" mode, AAF successfully carried out several missions contracting with organizations and investigators who provided their research aircraft and instrumentation. In 2009, AAF started managing operations of the Battelle-owned Gulfstream I (G-1) large twin-turboprop research aircraft. Furthermore, the American Recovery and Reinvestment Act of 2009 provided funding for the procurement of over twenty new instruments to be used aboard the G-1 and other AAF virtual-hangar aircraft. AAF now executes missions in the virtual- and real-hangar mode producing freely available datasets for studying aerosol, cloud, and radiative processes in the atmosphere. AAF is also engaged in the maturation and testing of newly developed airborne sensors to help foster the next generation of airborne instruments.

  4. NREL Research Support Facilities (RSF)

    High Performance Buildings Database

    Golden, CO NREL's Research Support Facilities building (RSF) will be a total of 218,000 sq. feet. It will have two parallel secured employee wings, one of which will be 4 stories and the other 3 stories. A connector building housing most of the public spaces will run perpendicular through both wings. The RSF will provide workspace for 742 employees. The RSF is designed to be a zero energy building through the use of innovative energy efficiency, daylighting, and renewable energy strategies, including photovoltaic solar electric systems to generate electricity.

  5. WIRELESS FOR A NUCLEAR FACILITY

    SciTech Connect (OSTI)

    Shull, D; Joe Cordaro, J

    2007-03-28

    The introduction of wireless technology into a government site where nuclear material is processed and stored brings new meaning to the term ''harsh environment''. At SRNL, we are attempting to address not only the harsh RF and harsh physical environment common to industrial facilities, but also the ''harsh'' regulatory environment necessitated by the nature of the business at our site. We will discuss our concepts, processes, and expected outcomes in our attempts to surmount the roadblocks and reap the benefits of wireless in our ''factory''.

  6. User Facility | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-Inspired SolarAbout /Two0 - 19PortalStatusUserUser Facility Center for

  7. ARM - SGP Radiometric Calibration Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Comments?govInstrumentsnoaacrnBarrow, Alaska OutreachCalendarPressExtended Facility SGP Related

  8. NREL: Electricity Integration Research - Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on771/6/14 Contact:NewsWebmaster PleaseSpringEducationFacilities

  9. Facilities | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation Current HABFES OctoberEvan Racah861 ANNUAL| National Nuclear SecurityFacilities

  10. Facility Security Officer Contractor Toolcart

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation Current HABFES OctoberEvan Racah861 ANNUAL|Facility Operations

  11. NREL: Research Facilities Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJessework usesof EnergyY-12WorkingSolar Energy Research FacilityWorkingNREL

  12. Facility Security Officer Contractor Toolcart

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submitKansasCommunitiesofExtrans -ORGANIZATIONOperations »DepartmentFacilityFlowdown

  13. Fact Sheet for Industrial Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submitKansasCommunitiesofExtransScientific User Facility |Fact Sheet FactSheet for

  14. Propane ammoxidation over the Mo-V-Te-Nb-O M1 phase: Reactivity of surface cations in hydrogen abstraction steps

    SciTech Connect (OSTI)

    Muthukumar, Kaliappan; Yu, Junjun; Xu, Ye; Guliants, Vadim V.

    2011-01-01

    Density functional theory calculations (GGA-PBE) have been performed to investigate the adsorption of C3 (propane, isopropyl, propene, and allyl) and H species on the proposed active center present in the surface ab planes of the bulk Mo-V-Te-Nb-O M1 phase in order to better understand the roles of the different surface cations in propane ammoxidation. Modified cluster models were employed to isolate the closely spaced V=O and Te=O from each other and to vary the oxidation state of the V cation. While propane and propene adsorb with nearly zero adsorption energy, the isopropyl and allyl radicals bind strongly to V=O and Te=O with adsorption energies, {Delta}E, being {le} -1.75 eV, but appreciably more weakly on other sites, such as Mo=O, bridging oxygen (Mo-O-V and Mo-O-Mo), and empty metal apical sites ({Delta}E > -1 eV). Atomic H binds more strongly to Te = O ({Delta}E {le} -3 eV) than to all the other sites, including V = O ({Delta}E = -2.59 eV). The reduction of surface oxo groups by dissociated H and their removal as water are thermodynamically favorable except when both H atoms are bonded to the same Te=O. Consistent with the strong binding of H, Te=O is markedly more active at abstracting the methylene H from propane (E{sub a} {le} 1.01 eV) than V = O (E{sub a} = 1.70 eV on V{sup 5+} = O and 2.13 eV on V{sup 4+} = O). The higher-than-observed activity and the loose binding of Te = O moieties to the mixed metal oxide lattice of M1 raise the question of whether active Te = O groups are in fact present in the surface ab planes of the M1 phase under propane ammoxidation conditions.

  15. DECONTAMINATION TECHNOLOGIES FOR FACILITY REUSE

    SciTech Connect (OSTI)

    Bossart, Steven J.; Blair, Danielle M.

    2003-02-27

    As nuclear research and production facilities across the U.S. Department of Energy (DOE) nuclear weapons complex are slated for deactivation and decommissioning (D&D), there is a need to decontaminate some facilities for reuse for another mission or continued use for the same mission. Improved technologies available in the commercial sector and tested by the DOE can help solve the DOE's decontamination problems. Decontamination technologies include mechanical methods, such as shaving, scabbling, and blasting; application of chemicals; biological methods; and electrochemical techniques. Materials to be decontaminated are primarily concrete or metal. Concrete materials include walls, floors, ceilings, bio-shields, and fuel pools. Metallic materials include structural steel, valves, pipes, gloveboxes, reactors, and other equipment. Porous materials such as concrete can be contaminated throughout their structure, although contamination in concrete normally resides in the top quarter-inch below the surface. Metals are normally only contaminated on the surface. Contamination includes a variety of alpha, beta, and gamma-emitting radionuclides and can sometimes include heavy metals and organic contamination regulated by the Resource Conservation and Recovery Act (RCRA). This paper describes several advanced mechanical, chemical, and other methods to decontaminate structures, equipment, and materials.

  16. STEM HAADF Image Simulation of the Orthorhombic M1 Phase in the Mo-V-Nb-Te-O Propane Oxidation Catalyst

    SciTech Connect (OSTI)

    D Blom; X Li; S Mitra; T Vogt; D Buttrey

    2011-12-31

    A full frozen phonon multislice simulation of high angle annular dark field scanning transmission electron microscopy (HAADF STEM) images from the M1 phase of the Mo-V-Nb-Te-O propane oxidation catalyst has been performed by using the latest structural model obtained using the Rietveld method. Simulated contrast results are compared with experimental HAADF images. Good agreement is observed at ring sites, however significant thickness dependence is noticed at the linking sites. The remaining discrepancies between the model based on Rietveld refinement and image simulations indicate that the sampling of a small volume element in HAADF STEM and averaging elemental contributions of a disordered site in a crystal slab by using the virtual crystal approximation might be problematic, especially if there is preferential Mo/V ordering near the (001) surface.

  17. Facility overview for commercial application of selected Rocky Flats facilities

    SciTech Connect (OSTI)

    1996-11-01

    The purpose of this Facility Overview is to support the Rocky Flats Local Impacts Initiative`s Request for Interest, to solicit interest from commercial corporations for utilizing buildings 865 and 883, and the equipment contained within each building, for a commercial venture. In the following sections, this document describes the Rocky Flats Site, the buildings available for lease, the equipment within these buildings, the site services available to a tenant, the human resources available to support operations in buildings 865 and 883, and the environmental condition of the buildings and property. In addition, a brief description is provided of the work performed to date to explore the potential products that might be manufactured in Buildings 865 and 883, and the markets for these products.

  18. Performance specifications for proton medical facility

    SciTech Connect (OSTI)

    Chu, W.T.; Staples, J.W.; Ludewigt, B.A.; Renner, T.R.; Singh, R.P.; Nyman, M.A.; Collier, J.M.; Daftari, I.K.; Petti, P.L.; Alonso, J.R. [Lawrence Berkeley Lab., CA (United States); Kubo, H.; Verhey, L.J. [University of California Davis Medical Center, Sacramento, CA (United States). Cancer Center]|[California Univ., San Francisco, CA (United States). School of Medicine; Castro, J.R. [Lawrence Berkeley Lab., CA (United States)]|[University of California Davis Medical Center, Sacramento, CA (United States). Cancer Center]|[California Univ., San Francisco, CA (United States). School of Medicine

    1993-03-01

    Performance specifications of technical components of a modern proton radiotherapy facility are presented. The technical items specified include: the accelerator; the beam transport system including rotating gantry; the treatment beamline systems including beam scattering, beam scanning, and dosimetric instrumentation; and an integrated treatment and accelerator control system. Also included are treatment ancillary facilities such as diagnostic tools, patient positioning and alignment devices, and treatment planning systems. The facility specified will accommodate beam scanning enabling the three-dimensional conformal therapy deliver .

  19. ITEP Course: Greening Tribal Operations and Facilities

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Institute for Tribal Environmental Professionals will be offering a new course, Greening Tribal Operations and Facilities in San Diego, California, December 9 -11, 2014, for employees of...

  20. 2015 Nuclear & Facility Safety Programs Workshop | Department...

    Office of Environmental Management (EM)

    featuring tracks for the Facility Representative (FR), Safety System Oversight (SSO), Fire Safety (FS) and Readiness communities. Distinguished speakers from inside and outside...