National Library of Energy BETA

Sample records for facility disposition safety

  1. Facility Disposition Safety Strategy RM

    Broader source: Energy.gov [DOE]

    The Facility Disposition Safety Strategy (FDSS) Review Module is a tool that assists DOE federal project review teams in evaluating the adequacy of the facility documentation, preparations or...

  2. Integration of Environment, Safety, and Health into Facility Disposition Activities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1998-05-01

    Volume One of this Standard has been revised to provide a Department of Energy (DOE) approved methodology for preparing a Documented Safety Analysis (DSA) for decommissioning of nuclear facilities, as well as environmental restoration activities that involve work not done within a permanent structure. Methodologies provided in this Standard are intended to be compliant with Title 10 of the Code of Federal Regulations (CFR) Part 830, Nuclear Safety Management, Subpart B, Safety Basis Requirements. Volume Two contains the appendices that provide additional environment, safety and health (ES&H) information to complement Volume 1 of this Standard. Volume 2 of the Standard is much broader in scope than Volume 1 and satisfies several purposes. Integrated safety management expectations are provided in accordance with facility disposition requirements contained in DOE O 430.1B, Real Property Asset Management.

  3. DOE Standard Integration Of Environment,Safety, and Health Into Facility Disposition Activities

    Broader source: Energy.gov [DOE]

    The original release of DOE-STD-1120-98 provided integrated safety management guidance for enhancing worker, public, and environmental protection during all facility disposition activities.

  4. DOE-STD-1120-2005; Integration of Environment, Safety, and Health into Facility Disposition Activities

    Office of Environmental Management (EM)

    120-2005 Volume 2 of 2 DOE STANDARD INTEGRATION OF ENVIRONMENT, SAFETY, AND HEALTH INTO FACILITY DISPOSITION ACTIVITIES Volume 2 of 2: Appendices U.S. Department of Energy AREA SAFT Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. NOT MEASUREMENT SENSITIVE This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from the Office of Scientific and Technical Information, P.O. Box 62, Oak

  5. DOE standard: Integration of environment, safety, and health into facility disposition activities. Volume 2: Appendices

    SciTech Connect (OSTI)

    1998-05-01

    This volume contains the appendices that provide additional environment, safety, and health (ES and H) information to complement Volume 1 of this Standard. Appendix A provides a set of candidate DOE ES and H directives and external regulations, organized by hazard types that may be used to identify potentially applicable directives to a specific facility disposition activity. Appendix B offers examples and lessons learned that illustrate implementation of ES and H approaches discussed in Section 3 of Volume 1. Appendix C contains ISMS performance expectations to guide a project team in developing and implementing an effective ISMS and in developing specific performance criteria for use in facility disposition. Appendix D provides guidance for identifying potential Applicable or Relevant and Appropriate Requirements (ARARs) when decommissioning facilities fall under the Comprehensive Environmental Response, Compensation, Liability Act (CERCLA) process. Appendix E discusses ES and H considerations for dispositioning facilities by privatization. Appendix F is an overview of the WSS process. Appendix G provides a copy of two DOE Office of Nuclear Safety Policy and Standards memoranda that form the bases for some of the guidance discussed within the Standard. Appendix H gives information on available hazard analysis techniques and references. Appendix I provides a supplemental discussion to Sections 3.3.4, Hazard Baseline Documentation, and 3.3.6, Environmental Permits. Appendix J presents a sample readiness evaluation checklist.

  6. DOE standard: Integration of environment, safety, and health into facility disposition activities. Volume 1: Technical standard

    SciTech Connect (OSTI)

    1998-05-01

    This Department of Energy (DOE) technical standard (referred to as the Standard) provides guidance for integrating and enhancing worker, public, and environmental protection during facility disposition activities. It provides environment, safety, and health (ES and H) guidance to supplement the project management requirements and associated guidelines contained within DOE O 430.1A, Life-Cycle Asset Management (LCAM), and amplified within the corresponding implementation guides. In addition, the Standard is designed to support an Integrated Safety Management System (ISMS), consistent with the guiding principles and core functions contained in DOE P 450.4, Safety Management System Policy, and discussed in DOE G 450.4-1, Integrated Safety Management System Guide. The ISMS guiding principles represent the fundamental policies that guide the safe accomplishment of work and include: (1) line management responsibility for safety; (2) clear roles and responsibilities; (3) competence commensurate with responsibilities; (4) balanced priorities; (5) identification of safety standards and requirements; (6) hazard controls tailored to work being performed; and (7) operations authorization. This Standard specifically addresses the implementation of the above ISMS principles four through seven, as applied to facility disposition activities.

  7. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1996-10-24

    Establishes facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation.

  8. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-11-16

    Establishes facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation.

  9. DOE-STD-1120-2005; Integration of Environment Safety and Health into Facility Disposition Activities

    Office of Environmental Management (EM)

    7-92 DOE-STD-1027-92 December 12, 1997 Hazard Categorization and Accident Analysis Techniques for Compliance with DOE Order 5480.23, Nuclear Safety Analysis Reports Change Notice No. 1 (September 1997) The purpose of this DOE Standard is to establish guidance for the preparation and review of hazard categorization and accident analyses techniques as required in DOE Order 5480.23, Nuclear Safety Analysis Reports. PDF icon DOE-STD-1027-92, Hazard Categorization and Accident Analysis Techniques For

  10. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-11-20

    The objective of this Order is to establish facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation. The Order has Change 1 dated 11-16-95, Change 2 dated 10-24-96, and the latest Change 3 dated 11-22-00 incorporated. The latest change satisfies a commitment made to the Defense Nuclear Facilities Safety Board (DNFSB) in response to DNFSB recommendation 97-2, Criticality Safety.

  11. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-12-22

    This Order establishes facility and programmatic safety requirements for Department of Energy facilities, which includes nuclear and explosives safety design criteria, fire protection, criticality safety, natural phenomena hazards mitigation, and the System Engineer Program. Cancels DOE O 420.1A. DOE O 420.1B Chg 1 issued 4-19-10.

  12. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2012-12-04

    The Order establishes facility and programmatic safety requirements for DOE and NNSA for nuclear safety design criteria, fire protection, criticality safety, natural phenomena hazards (NPH) mitigation, and System Engineer Program. This Page Change is limited in scope to changes necessary to invoke DOE-STD-1104, Review and Approval of Nuclear Facility Safety Basis and Safety Design Basis Document, and revised DOE-STD-3009-2014, Preparation of Nonreactor Nuclear Facility Documented Safety Analysis as required methods. DOE O 420.1C Chg 1, dated 2-27-15, supersedes DOE O 420.1C.

  13. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-12-22

    The order establishes facility and programmatic safety requirements for nuclear and explosives safety design criteria, fire protection, criticality safety, natural phenomena hazards (NPH) mitigation, and the System Engineer Program.Chg 1 incorporates the use of DOE-STD-1189-2008, Integration of Safety into the Design Process, mandatory for Hazard Category 1, 2 and 3 nuclear facilities. Cancels DOE O 420.1A.

  14. Summary - Major Risk Factors Integrated Facility Disposition...

    Office of Environmental Management (EM)

    Office of Environmental Management (DOE-EM) External Technical Review of the Major Risk Factors Integrated Facility Disposition Project (IFDP) Oak Ridge, TN Why DOE-EM Did...

  15. 8.0 FACILITY DISPOSITION PROCESS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8-1 8.0 FACILITY DISPOSITION PROCESS 8.1 INTRODUCTION The facility disposition process defines the approach by which DOE, with involvement of the lead regulatory agencies, will take a facility from operational status to its end state condition (final disposition) at Hanford. This is accomplished by the completion of facility transition, surveillance and maintenance (S&M), and disposition phase activities. The process is designed to integrate DOE Order 430.1B, U.S. Department of Energy Real

  16. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2012-12-04

    The Order establishes facility and programmatic safety requirements for DOE and NNSA for nuclear safety design criteria, fire protection, criticality safety, natural phenomena hazards (NPH) mitigation, and System Engineer Program. Cancels DOE O 420.1B, DOE G 420.1-2 and DOE G 420.1-3.

  17. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-10-13

    Establishes facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation. Cancels DOE 5480.7A, DOE 5480.24, DOE 5480.28 and Division 13 of DOE 6430.1A. Canceled by DOE O 420.1A.

  18. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2002-05-20

    To establish facility safety requirements for the Department of Energy, including National Nuclear Security Administration. Cancels DOE O 420.1. Canceled by DOE O 420.1B.

  19. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2013-06-21

    DOE-STD-1104 contains the Department's method and criteria for reviewing and approving nuclear facility's documented safety analysis (DSA). This review and approval formally document the basis for DOE, concluding that a facility can be operated safely in a manner that adequately protects workers, the public, and the environment. Therefore, it is appropriate to formally require implementation of the review methodology and criteria contained in DOE-STD-1104.

  20. Major Risk Factors to the Integrated Facility Disposition Project |

    Energy Savers [EERE]

    Department of Energy to the Integrated Facility Disposition Project Major Risk Factors to the Integrated Facility Disposition Project The scope of the Integrated Facility Disposition Project (IFDP) needs to comprehensively address a wide range of environmental management risks at the Oak Ridge Reservation (ORO). PDF icon Major Risk Factors to the Integrated Facility Disposition Project More Documents & Publications Major Risk Factors Integrated Facility Disposition Project - Oak Ridge

  1. Facility Disposition Safety Strategy RM

    Office of Environmental Management (EM)

    ... Transition Team TT General Guidance GG Hazard Characterization HC Turnover ... (TT-4.4) General RequirementsGuidance GG-0 Have an inventory of available documents ...

  2. Idaho High-Level Waste & Facilities Disposition, Final Environmental...

    Office of Environmental Management (EM)

    must prepare an Environmental Impact Statement (EIS). Copies of the Idaho High-Level Waste and Facilities Disposition Final Environmental Impact Statement are available at the...

  3. Major Risk Factors to the Integrated Facility Disposition Project

    Office of Environmental Management (EM)

    Oak Ridge Reservation Tennessee Major Risk Factors to the Integrated Facility Disposition Project (IFDP) Challenge The scope of the Integrated Facility Disposition Project (IFDP) needs to comprehensively address a wide range of environmental management risks at the Oak Ridge Reservation (ORO). These include: environmental remediation, regulatory compliance, deactivation and decommissioning (D&D) activities, and disposition of legacy materials and waste, along with the ongoing modernization,

  4. CRAD, Facility Safety- Nuclear Facility Safety Basis

    Office of Energy Efficiency and Renewable Energy (EERE)

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) that can be used for assessment of a contractor's Nuclear Facility Safety Basis.

  5. Defense Nuclear Facility Safety Board

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8, 2014 Defense Nuclear Facility Safety Board Defense Nuclear Facility Safety Board (DNSFB) Vice Chairwoman Jesse Roberson visited and toured the WIPP site this week. While...

  6. Facility Safety | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Facility Safety Facility Safety In addition to establishing nuclear safety requirements related to safety management programs that are essential to the safety of DOE nuclear facilities, the U.S. Department of Energy's (DOE) Office of Nuclear Facility Safety works proactively with headquarters and field offices to foster continuous improvement and nuclear safety excellence. In addition, the Office provides high quality, customer-oriented assistance that enables improved DOE program and field

  7. Facility Safety | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Facility Safety Facility Safety In addition to establishing nuclear safety requirements related to safety management programs that are essential to the safety of DOE nuclear facilities, the U.S. Department of Energy's (DOE) Office of Nuclear Facility Safety works proactively with headquarters and field offices to foster continuous improvement and nuclear safety excellence. In addition, the Office provides high quality, customer-oriented assistance that enables improved DOE program and field

  8. DOE Standard Integration Of Environment,Safety, and Health Into...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Standard Integration Of Environment,Safety, and Health Into Facility Disposition Activities DOE Standard Integration Of Environment,Safety, and Health Into Facility Disposition ...

  9. Facility Safety - DOE Directives, Delegations, and Requirements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0.1C Chg 1, Facility Safety by Pranab Guha Functional areas: DNFSB, Defense Nuclear Facility Safety and Health Requirement, Facility Safety, Requires Crosswalk When Revised,...

  10. Office of Nuclear Facility Safety Programs

    Broader source: Energy.gov [DOE]

    The Office of Nuclear Facility Safety Programs establishes nuclear safety requirements related to safety management programs that are essential to the safety of DOE nuclear facilities.

  11. Implementation Guide for Surveillance and Maintenance during Facility Transition and Disposition

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-09-29

    As DOE facilities complete mission operations and are declared excess, they pass into a transition phase that ultimately prepares them for disposition. The disposition phase of a facility's life cycle usually includes deactivation, decommissioning, and surveillance and maintenance (S&M) activities.

  12. Safety of Accelerator Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-07-21

    The order defines accelerators and establishes accelerator specific safety requirements and approval authorities which, when supplemented by other applicable safety and health requirements, promote safe operations to ensure protection of workers, the public, and the environment. Supersedes DOE O 420.2B.

  13. Safety of Accelerator Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-01-08

    To establish accelerator-specific safety requirements which, when supplemented by other applicable safety and health requirements, will serve to prevent injuries and illnesses associated with Department of Energy (DOE) or National Nuclear Security Administration (NNSA) accelerator operations. Cancels DOE O 420.2. Canceled by DOE O 420.2B.

  14. Safety of Accelerator Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2004-07-23

    To establish accelerator-specific safety requirements which, when supplemented by other applicable safety and health requirements, will serve to prevent injuries and illnesses associated with Department of Energy (DOE) or National Nuclear Security Administration (NNSA) accelerator operations. Cancels DOE O 420.2A. Certified 5-13-08. Canceled by DOE O 420.2C.

  15. Independent Activity Report, Defense Nuclear Facilities Safety...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Defense Nuclear Facilities Safety Board Public Meeting - October 2012 Independent Activity Report, Defense Nuclear Facilities Safety Board Public Meeting - October 2012 October...

  16. CRAD, Facility Safety- Documented Safety Analysis

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) that can be used for assessment of a contractor's Documented Safety Analysis.

  17. Facility Safety - DOE Directives, Delegations, and Requirements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    facility and programmatic safety requirements for DOE and NNSA for nuclear safety design criteria, fire protection, criticality safety, natural phenomena hazards (NPH)...

  18. Major Risk Factors Integrated Facility Disposition Project - Oak Ridge

    Office of Environmental Management (EM)

    D D e e p p a a r r t t m m e e n n t t o o f f E E n n e e r r g g y y O O f f f f i i c c e e o o f f E E n n v v i i r r o o n n m m e e n n t t a a l l M M a a n n a a g g e e m m e e n n t t ( ( E E M M ) ) E E n n g g i i n n e e e e r r i i n n g g a a n n d d T T e e c c h h n n o o l l o o g g y y External Technical Review (ETR) Report Major Risk Factors Integrated Facility Disposition Project (IFDP) Oak Ridge, TN AUGUST 1, 2008 Acknowledgement The External Technical Review of the

  19. Summary - Major Risk Factors Integrated Facility Disposition Project (IFDP) Oak Ridge, TN

    Office of Environmental Management (EM)

    & ORNL, Oak Ridge, TN EM Project: Integrated Facility Disposition Project (IFDP) ETR Report Date: August 2008 ETR-15 United States Department of Energy Office of Environmental Management (DOE-EM) External Technical Review of the Major Risk Factors Integrated Facility Disposition Project (IFDP) Oak Ridge, TN Why DOE-EM Did This Review Approximately two million pounds of mercury are unaccounted for at Y-12 and mercury contamination has been detected in both soils and groundwater. The IFDP will

  20. Review and Approval of Nuclear Facility Safety Basis and Safety...

    Office of Environmental Management (EM)

    DOE STANDARD REVIEW AND APPROVAL OF NUCLEAR FACILITY SAFETY BASIS AND SAFETY DESIGN BASIS ... Neither a reviewer nor the preparer has veto power over ultimate resolution or ...

  1. Safety and Security at Trident Laser Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safety and Security Safety and Security at Trident Laser Facility Enabling world-class science in high-energy density physics and fundamental laser-matter interactions Contact ...

  2. AGING FACILITY CRITICALITY SAFETY CALCULATIONS

    SciTech Connect (OSTI)

    C.E. Sanders

    2004-09-10

    The purpose of this design calculation is to revise and update the previous criticality calculation for the Aging Facility (documented in BSC 2004a). This design calculation will also demonstrate and ensure that the storage and aging operations to be performed in the Aging Facility meet the criticality safety design criteria in the ''Project Design Criteria Document'' (Doraswamy 2004, Section 4.9.2.2), and the functional nuclear criticality safety requirement described in the ''SNF Aging System Description Document'' (BSC [Bechtel SAIC Company] 2004f, p. 3-12). The scope of this design calculation covers the systems and processes for aging commercial spent nuclear fuel (SNF) and staging Department of Energy (DOE) SNF/High-Level Waste (HLW) prior to its placement in the final waste package (WP) (BSC 2004f, p. 1-1). Aging commercial SNF is a thermal management strategy, while staging DOE SNF/HLW will make loading of WPs more efficient (note that aging DOE SNF/HLW is not needed since these wastes are not expected to exceed the thermal limits form emplacement) (BSC 2004f, p. 1-2). The description of the changes in this revised document is as follows: (1) Include DOE SNF/HLW in addition to commercial SNF per the current ''SNF Aging System Description Document'' (BSC 2004f). (2) Update the evaluation of Category 1 and 2 event sequences for the Aging Facility as identified in the ''Categorization of Event Sequences for License Application'' (BSC 2004c, Section 7). (3) Further evaluate the design and criticality controls required for a storage/aging cask, referred to as MGR Site-specific Cask (MSC), to accommodate commercial fuel outside the content specification in the Certificate of Compliance for the existing NRC-certified storage casks. In addition, evaluate the design required for the MSC that will accommodate DOE SNF/HLW. This design calculation will achieve the objective of providing the criticality safety results to support the preliminary design of the Aging Facility. As the ongoing design evolution remains fluid, the results from this design calculation should be evaluated for applicability to any new or modified design. Consequently, the results presented in this document are limited to the current design. The information contained in this document was developed by Environmental and Nuclear Engineering and is intended for the use of Design and Engineering in its work regarding the various criticality related activities performed in the Aging Facility. Yucca Mountain Project personnel from Environmental and Nuclear Engineering should be consulted before the use of the information for purposes other than those stated herein or use by individuals other than authorized personnel in Design and Engineering.

  3. Evaluation of existing United States` facilities for use as a mixed-oxide (MOX) fuel fabrication facility for plutonium disposition

    SciTech Connect (OSTI)

    Beard, C.A.; Buksa, J.J.; Chidester, K.; Eaton, S.L.; Motley, F.E.; Siebe, D.A.

    1995-12-31

    A number of existing US facilities were evaluated for use as a mixed-oxide fuel fabrication facility for plutonium disposition. These facilities include the Fuels Material Examination Facility (FMEF) at Hanford, the Washington Power Supply Unit 1 (WNP-1) facility at Hanford, the Barnwell Nuclear Fuel Plant (BNFP) at Barnwell, SC, the Fuel Processing Facility (FPF) at Idaho National Engineering Laboratory (INEL), the Device Assembly Facility (DAF) at the Nevada Test Site (NTS), and the P-reactor at the Savannah River Site (SRS). The study consisted of evaluating each facility in terms of available process space, available building support systems (i.e., HVAC, security systems, existing process equipment, etc.), available regional infrastructure (i.e., emergency response teams, protective force teams, available transportation routes, etc.), and ability to integrate the MOX fabrication process into the facility in an operationally-sound manner that requires a minimum amount of structural modifications.

  4. Review and Approval of Nuclear Facility Safety Basis and Safety...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    104-2014, Review and Approval of Nuclear Facility Safety Basis and Safety Design Basis Documents by Website Administrator This Standard describes a framework and the criteria to be...

  5. Facility Safety (9-23-10)--Withdrawn

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2010-09-23

    Withdrawn, 5-19-2014--This approval includes revision of the three implementing Guides: DOE G 420.1-1, Nonreactor Nuclear Safety Design Criteria and Explosive Safety Criteria Guide for Use with DOE O 420.1, Facility Safety; DOE G 420.1-2, Guide for the Mitigation of Natural Phenomena Hazards for DOE Nuclear Facilities and NonNuclear Facilities; and DOE G 420.1-3, Implementation Guide for DOE Fire Protection and Emergency Services Programs for Use with DOE O 420.1B, Facility Safety

  6. Preparation Of Nonreactor Nuclear Facility Documented Safety...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9-2014, Preparation Of Nonreactor Nuclear Facility Documented Safety Analysis by Website Administrator This Department of Energy (DOE) Standard (STD), DOE-STD-3009-2014, describes...

  7. CRAD, Facility Safety- Nuclear Facility Design

    Office of Energy Efficiency and Renewable Energy (EERE)

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) that can be used for assessment of a contractor's Nuclear Facility Design.

  8. CRAD, Facility Safety - Unreviewed Safety Question Requirements |

    Office of Environmental Management (EM)

    Equipment and Piping Labeling Assessment Plan CRAD, Equipment and Piping Labeling Assessment Plan Performance Objective: To verify that facility equipment and piping are labeled in a manner such that facility personnel are able to positively identify equipment they operate. To ensure that an effective labeling program is in effect to reduce operator and maintenance errors from incorrect identification of equipment, to increase training effectiveness by tracing the actual facility system as

  9. Superfund Policy Statements and Guidance Regarding Disposition of Radioactive Waste in Non-NRC Licensed Disposal Facilities - 13407

    SciTech Connect (OSTI)

    Walker, Stuart

    2013-07-01

    This talk will discuss EPA congressional testimony and follow-up letters, as well as letters to other stakeholders on EPA's perspectives on the disposition of radioactive waste outside of the NRC licensed disposal facility system. This will also look at Superfund's historical practices, and emerging trends in the NRC and agreement states on waste disposition. (author)

  10. Facility Safety Policy, Guidance & Reports | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Facility Safety Policy, Guidance & Reports Facility Safety Policy, Guidance & Reports The Office of Nuclear Facility Safety Programs within the U.S. Department of Energy's (DOE) Environment, Health, Safety and Security organization, establishes nuclear safety requirements related to safety management programs that are essential to the safety of DOE nuclear facilities. In addition, establishes requirements for facility design and operation for facility-wide hazards that are not unique to

  11. Hot Cell Facility (HCF) Safety Analysis Report

    SciTech Connect (OSTI)

    MITCHELL,GERRY W.; LONGLEY,SUSAN W.; PHILBIN,JEFFREY S.; MAHN,JEFFREY A.; BERRY,DONALD T.; SCHWERS,NORMAN F.; VANDERBEEK,THOMAS E.; NAEGELI,ROBERT E.

    2000-11-01

    This Safety Analysis Report (SAR) is prepared in compliance with the requirements of DOE Order 5480.23, Nuclear Safety Analysis Reports, and has been written to the format and content guide of DOE-STD-3009-94 Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Safety Analysis Reports. The Hot Cell Facility is a Hazard Category 2 nonreactor nuclear facility, and is operated by Sandia National Laboratories for the Department of Energy. This SAR provides a description of the HCF and its operations, an assessment of the hazards and potential accidents which may occur in the facility. The potential consequences and likelihood of these accidents are analyzed and described. Using the process and criteria described in DOE-STD-3009-94, safety-related structures, systems and components are identified, and the important safety functions of each SSC are described. Additionally, information which describes the safety management programs at SNL are described in ancillary chapters of the SAR.

  12. Idaho Waste Treatment Facility Improves Worker Safety and Efficiency...

    Office of Environmental Management (EM)

    Waste Treatment Facility Improves Worker Safety and Efficiency, Saves Taxpayer Dollars Idaho Waste Treatment Facility Improves Worker Safety and Efficiency, Saves Taxpayer Dollars ...

  13. 2015 Nuclear & Facility Safety Programs Workshop Agenda | Department...

    Broader source: Energy.gov (indexed) [DOE]

    2015 Nuclear and Facility Safety Programs Workshop agenda outlining following: Training Plenary Session Award Presentations Guest speakers Fire Safety Workshop Facility...

  14. Occupational Safety Review of High Technology Facilities

    SciTech Connect (OSTI)

    Lee Cadwallader

    2005-01-31

    This report contains reviews of operating experiences, selected accident events, and industrial safety performance indicators that document the performance of the major US DOE magnetic fusion experiments and particle accelerators. These data are useful to form a basis for the occupational safety level at matured research facilities with known sets of safety rules and regulations. Some of the issues discussed are radiation safety, electromagnetic energy exposure events, and some of the more widespread issues of working at height, equipment fires, confined space work, electrical work, and other industrial hazards. Nuclear power plant industrial safety data are also included for comparison.

  15. SLUDGE TREATMENT PROJECT KOP DISPOSITION - THERMAL AND GAS ANALYSIS FOR THE COLD VACUUM DRYING FACILITY

    SciTech Connect (OSTI)

    SWENSON JA; CROWE RD; APTHORPE R; PLYS MG

    2010-03-09

    The purpose of this document is to present conceptual design phase thermal process calculations that support the process design and process safety basis for the cold vacuum drying of K Basin KOP material. This document is intended to demonstrate that the conceptual approach: (1) Represents a workable process design that is suitable for development in preliminary design; and (2) Will support formal safety documentation to be prepared during the definitive design phase to establish an acceptable safety basis. The Sludge Treatment Project (STP) is responsible for the disposition of Knock Out Pot (KOP) sludge within the 105-K West (KW) Basin. KOP sludge consists of size segregated material (primarily canister particulate) from the fuel and scrap cleaning process used in the Spent Nuclear Fuel process at K Basin. The KOP sludge will be pre-treated to remove fines and some of the constituents containing chemically bound water, after which it is referred to as KOP material. The KOP material will then be loaded into a Multi-Canister Overpack (MCO), dried at the Cold Vacuum Drying Facility (CVDF) and stored in the Canister Storage Building (CSB). This process is patterned after the successful drying of 2100 metric tons of spent fuel, and uses the same facilities and much of the same equipment that was used for drying fuel and scrap. Table ES-l present similarities and differences between KOP material and fuel and between MCOs loaded with these materials. The potential content of bound water bearing constituents limits the mass ofKOP material in an MCO load to a fraction of that in an MCO containing fuel and scrap; however, the small particle size of the KOP material causes the surface area to be significantly higher. This relatively large reactive surface area represents an input to the KOP thermal calculations that is significantly different from the calculations for fuel MCOs. The conceptual design provides for a copper insert block that limits the volume available to receive KOP material, enhances heat conduction, and functions as a heat source and sink during drying operations. This use of the copper insert represents a significant change to the thermal model compared to that used for the fuel calculations. A number of cases were run representing a spectrum of normal and upset conditions for the drying process. Dozens of cases have been run on cold vacuum drying of fuel MCOs. Analysis of these previous calculations identified four cases that provide a solid basis for judgments on the behavior of MCO in drying operations. These four cases are: (1) Normal Process; (2) Degraded vacuum pumping; (3) Open MCO with loss of annulus water; and (4) Cool down after vacuum drying. The four cases were run for two sets of input parameters for KOP MCOs: (1) a set of parameters drawn from safety basis values from the technical data book and (2) a sensitivity set using parameters selected to evaluate the impact of lower void volume and smaller particle size on MCO behavior. Results of the calculations for the drying phase cases are shown in Table ES-2. Cases using data book safety basis values showed dry out in 9.7 hours and heat rejection sufficient to hold temperature rise to less than 25 C. Sensitivity cases which included unrealistically small particle sizes and corresponding high reactive surface area showed higher temperature increases that were limited by water consumption. In this document and in the attachment (Apthorpe, R. and M.G. Plys, 2010) cases using Technical Databook safety basis values are referred to as nominal cases. In future calculations such cases will be called safety basis cases. Also in these documents cases using parameters that are less favorable to acceptable performance than databook safety values are referred to as safety cases. In future calculations such cases will be called sensitivity cases or sensitivity evaluations Calculations to be performed in support of the detailed design and formal safety basis documentation will expand the calculations presented in this document to include: additional features of the drying cycle, more realistic treatment of uranium metal consumption during oxidation, larger water inventory, longer time scales, and graphing of results of hydrogen gas concentration.

  16. 2016 Nuclear and Facility Safety Program Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nuclear and Facility Safety Program Workshop 2016 Nuclear and Facility Safety Program Workshop March 22, 2016 - 3:48pm Addthis 2016 Nuclear and Facility Safety Program Workshop The Office of Environmental Health, Safety, and Security will sponsor the 2016 Nuclear and Facility Safety Program Workshop which will be held May 2-6, 2016 at the Alexis Park in Las Vegas, Nevada. The Workshop will include meetings for the DOE Safety Culture Improvement Panel, Federal Technical Capability Panel, Facility

  17. Office of Nuclear Safety Basis and Facility Design

    Broader source: Energy.gov [DOE]

    The Office of Nuclear Safety Basis & Facility Design establishes safety basis and facility design requirements and expectations related to analysis and design of nuclear facilities to ensure protection of workers and the public from the hazards associated with nuclear operations.

  18. Interim Safety Basis for Fuel Supply Shutdown Facility

    SciTech Connect (OSTI)

    BENECKE, M.W.

    2000-09-07

    This ISB, in conjunction with the IOSR, provides the required basis for interim operation or restrictions on interim operations and administrative controls for the facility until a SAR is prepared in accordance with the new requirements or the facility is shut down. It is concluded that the risks associated with tha current and anticipated mode of the facility, uranium disposition, clean up, and transition activities required for permanent closure, are within risk guidelines.

  19. CRAD, New Nuclear Facility Documented Safety Analysis and Technical...

    Broader source: Energy.gov (indexed) [DOE]

    December 2, 2014 New Nuclear Facility Documented Safety Analysis and Technical Safety Requirements Criteria Review and Approach Document (EA CRAD 31-07, Rev. 0) CRAD, New Nuclear...

  20. CANISTER HANDLING FACILITY CRITICALITY SAFETY CALCULATIONS

    SciTech Connect (OSTI)

    C.E. Sanders

    2005-04-07

    This design calculation revises and updates the previous criticality evaluation for the canister handling, transfer and staging operations to be performed in the Canister Handling Facility (CHF) documented in BSC [Bechtel SAIC Company] 2004 [DIRS 167614]. The purpose of the calculation is to demonstrate that the handling operations of canisters performed in the CHF meet the nuclear criticality safety design criteria specified in the ''Project Design Criteria (PDC) Document'' (BSC 2004 [DIRS 171599], Section 4.9.2.2), the nuclear facility safety requirement in ''Project Requirements Document'' (Canori and Leitner 2003 [DIRS 166275], p. 4-206), the functional/operational nuclear safety requirement in the ''Project Functional and Operational Requirements'' document (Curry 2004 [DIRS 170557], p. 75), and the functional nuclear criticality safety requirements described in the ''Canister Handling Facility Description Document'' (BSC 2004 [DIRS 168992], Sections 3.1.1.3.4.13 and 3.2.3). Specific scope of work contained in this activity consists of updating the Category 1 and 2 event sequence evaluations as identified in the ''Categorization of Event Sequences for License Application'' (BSC 2004 [DIRS 167268], Section 7). The CHF is limited in throughput capacity to handling sealed U.S. Department of Energy (DOE) spent nuclear fuel (SNF) and high-level radioactive waste (HLW) canisters, defense high-level radioactive waste (DHLW), naval canisters, multicanister overpacks (MCOs), vertical dual-purpose canisters (DPCs), and multipurpose canisters (MPCs) (if and when they become available) (BSC 2004 [DIRS 168992], p. 1-1). It should be noted that the design and safety analyses of the naval canisters are the responsibility of the U.S. Department of the Navy (Naval Nuclear Propulsion Program) and will not be included in this document. In addition, this calculation is valid for the current design of the CHF and may not reflect the ongoing design evolution of the facility. However, it is anticipated that design changes to the facility layout will have little or no impact on the criticality results and/or conclusions presented in this document. This calculation is subject to the ''Quality Assurance Requirements and Description'' (DOE 2004 [DIRS 171539]) because the CHF is included in the Q-List (BSC 2005 [DIRS 171190], p. A-3) as an item important to safety. This calculation is prepared in accordance with AP-3.12Q, ''Design Calculations and Analyses'' [DIRS 168413].

  1. Nonreactor Nuclear Safety Design Criteria and Explosive Safety Criteria Guide for Use with DOE O 420.1, Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-03-28

    This Guide provides guidance on the application of requirements for nonreactor nuclear facilities and explosives facilities of Department of Energy (DOE) O 420.1, Facility Safety, Section 4.1, Nuclear and Explosives Safety Design Criteria. No cancellation.

  2. CRAD, Nuclear Facility Safety System- September 25, 2009

    Broader source: Energy.gov [DOE]

    Nuclear Facility Safety System Functionality Inspection Criteria, Inspection Activities, and Lines of Inquiry (HSS CRAD 64-17, Rev 0 )

  3. Defense Nuclear Facilities Safety Board (DNFSB) Letters and Recommendations

    Energy Savers [EERE]

    | Department of Energy Defense Nuclear Facilities Safety Board (DNFSB) Letters and Recommendations Defense Nuclear Facilities Safety Board (DNFSB) Letters and Recommendations Defense Nuclear Facilities Safety Board (DNFSB) Letters and Recommendations The Defense Nuclear Facilities Safety Board (DNFSB) is an independent organization within the executive branch chartered with the responsibility of providing recommendations and advice to the President and the Secretary of Energy regarding

  4. Accelerator Facility Safety Implementation Guide for DOE O 420.2B, Safety of Accelerator Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-07-01

    This document is an aid to understanding and meeting the requirements of DOE O 420.2B, Safety of Accelerator Facilities, dated 7/23/04. It does not impose requirements beyond those stated in that Order or any other DOE Order. No cancellation.

  5. NEW - DOE O 420.1 Chg 1, Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    The Order establishes facility and programmatic safety requirements for DOE and NNSA for nuclear safety design criteria, fire protection, criticality safety, natural phenomena hazards (NPH) mitigation, and System Engineer Program. This Page Change is limited in scope to changes necessary to invoke DOE-STD-1104, Review and Approval of Nuclear Facility Safety Basis and Safety Design Basis Document, and revised DOE-STD-3009-2014, Preparation of Nonreactor Nuclear Facility Documented Safety Analysis as required methods. DOE O 420.1C Chg 1, dated 2-27-15, cancels DOE O 420.1C, dated 12-4-12.

  6. Defense Nuclear Facilities Safety Board (DNFSB) Update - Dale Govan,

    Energy Savers [EERE]

    Departmental Representative to the DNFSB | Department of Energy Defense Nuclear Facilities Safety Board (DNFSB) Update - Dale Govan, Departmental Representative to the DNFSB Defense Nuclear Facilities Safety Board (DNFSB) Update - Dale Govan, Departmental Representative to the DNFSB DNFSB Mission The Board provides independent analysis, advice and recommendations to the Secretary to ensure adequate protection to public health and safety at defense nuclear facilities. Identify Department

  7. Safety Culture And Best Practices At Japan's Fusion Research Facilities

    SciTech Connect (OSTI)

    Rule, K.; King, M.; Takase, Y.; Oshima, Y.; Nishimura, K.; Sukegawa, A.

    2014-04-01

    The Safety Monitor Joint Working Group (JWG) is one of the magnetic fusion research collaborations between the US Department of Energy and the government of Japan. Visits by occupational safety personnel are made to participating institutions on a biennial basis. In the 2013 JWG visit of US representatives to Japan, the JWG members noted a number of good safety practices in the safety walkthroughs. These good practices and safety culture topics are discussed in this paper. The JWG hopes that these practices for worker safety can be adopted at other facilities. It is a well-known, but unquantified, safety principle that well run, safe facilities are more productive and efficient than other facilities (Rule, 2009). Worker safety, worker productivity, and high quality in facility operation all complement each other (Mottel, 1995).

  8. Safety Culture and Best Practices at Japan's Fusion Research Facilities

    SciTech Connect (OSTI)

    Rule, Keith

    2014-05-01

    The Safety Monitor Joint Working Group (JWG) is one of the magnetic fusion research collaborations between the US Department of Energy and the government of Japan. Visits by occupational safety personnel are made to participating institutions on a biennial basis. In the 2013 JWG visit of US representatives to Japan, the JWG members noted a number of good safety practices in the safety walkthroughs. These good practices and safety culture topics are discussed in this paper. The JWG hopes that these practices for worker safety can be adopted at other facilities. It is a well-known, but unquantified, safety principle that well run, safe facilities are more productive and efficient than other facilities (Rule, 2009). Worker safety, worker productivity, and high quality in facility operation all complement each other (Mottel, 1995).

  9. NNSA and Defense Nuclear Facilities Safety Board certifications...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    allocated funding NNSA and Defense Nuclear Facilities Safety Board certifications free up 47 million in previously allocated funding The DNFSB and NNSA required the CMRR...

  10. Defense Nuclear Facilities Safety Board (DNFSB) Update - Dale...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Defense Nuclear Facilities Safety Board (DNFSB) Update - Dale Govan, Departmental Representative to the DNFSB DNFSB Mission The Board provides independent analysis, advice and ...

  11. FUEL HANDLING FACILITY CRITICALITY SAFETY CALCULATIONS

    SciTech Connect (OSTI)

    C.E. Sanders

    2005-06-30

    The purpose of this design calculation is to perform a criticality evaluation of the Fuel Handling Facility (FHF) and the operations and processes performed therein. The current intent of the FHF is to receive transportation casks whose contents will be unloaded and transferred to waste packages (WP) or MGR Specific Casks (MSC) in the fuel transfer bays. Further, the WPs will also be prepared in the FHF for transfer to the sub-surface facility (for disposal). The MSCs will be transferred to the Aging Facility for storage. The criticality evaluation of the FHF features the following: (I) Consider the types of waste to be received in the FHF as specified below: (1) Uncanistered commercial spent nuclear fuel (CSNF); (2) Canistered CSNF (with the exception of horizontal dual-purpose canister (DPC) and/or multi-purpose canisters (MPCs)); (3) Navy canistered SNF (long and short); (4) Department of Energy (DOE) canistered high-level waste (HLW); and (5) DOE canistered SNF (with the exception of MCOs). (II) Evaluate the criticality analyses previously performed for the existing Nuclear Regulatory Commission (NRC)-certified transportation casks (under 10 CFR 71) to be received in the FHF to ensure that these analyses address all FHF conditions including normal operations, and Category 1 and 2 event sequences. (III) Evaluate FHF criticality conditions resulting from various Category 1 and 2 event sequences. Note that there are currently no Category 1 and 2 event sequences identified for FHF. Consequently, potential hazards from a criticality point of view will be considered as identified in the ''Internal Hazards Analysis for License Application'' document (BSC 2004c, Section 6.6.4). (IV) Assess effects of potential moderator intrusion into the fuel transfer bay for defense in depth. The SNF/HLW waste transfer activity (i.e., assembly and canister transfer) that is being carried out in the FHF has been classified as safety category in the ''Q-list'' (BSC 2003, p. A-6). Therefore, this design calculation is subject to the requirements of the ''Quality Assurance Requirements and Description'' (DOE 2004), even though the FHF itself has not yet been classified in the Q-list. Performance of the work scope as described and development of the associated technical product conform to the procedure AP-3.124, ''Design Calculations and Analyses''.

  12. Safety analysis report for the Waste Storage Facility. Revision 2

    SciTech Connect (OSTI)

    Bengston, S.J.

    1994-05-01

    This safety analysis report outlines the safety concerns associated with the Waste Storage Facility located in the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory. The three main objectives of the report are: define and document a safety basis for the Waste Storage Facility activities; demonstrate how the activities will be carried out to adequately protect the workers, public, and environment; and provide a basis for review and acceptance of the identified risk that the managers, operators, and owners will assume.

  13. Facility Safety - DOE Directives, Delegations, and Requirements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Alamos Site Office | National Nuclear Security Administration Facility Representative, Technical Area (TA-55) Plutonium Facility, Los Alamos Site Office John Krepps John Krepps June 2010 U.S. Department of Energy Facility Representative of the Year John Krepps, a facility representative for the National Nuclear Security Administration's (NNSA) Los Alamos Site Office, received the Department of Energy's top award for oversight of nuclear and non-nuclear facilities. Krepps, a Los Alamos

  14. Technical Safety Requirements for the Waste Storage Facilities May 2014

    SciTech Connect (OSTI)

    Laycak, D. T.

    2014-04-16

    This document contains the Technical Safety Requirements (TSR) for the Radioactive and Hazardous Waste Management (RHWM) WASTE STORAGE FACILITIES, which include Area 625 (A625) and the Building 693 (B693) Yard Area of the Decontamination and Waste Treatment Facility (DWTF) at LLNL. The TSRs constitute requirements for safe operation of the WASTE STORAGE FACILITIES. These TSRs are derived from the Documented Safety Analyses for the Waste Storage Facilities (DSA) (LLNL 2011). The analysis presented therein concluded that the WASTE STORAGE FACILITIES are low-chemical hazard, Hazard Category 2 non-reactor nuclear facilities. The TSRs consist primarily of inventory limits and controls to preserve the underlying assumptions in the hazard and accident analyses. Further, appropriate commitments to safety programs are presented in the administrative controls sections of the TSRs.

  15. Criticality Safety Evaluation of Hanford Tank Farms Facility

    SciTech Connect (OSTI)

    WEISS, E.V.

    2000-12-15

    Data and calculations from previous criticality safety evaluations and analyses were used to evaluate criticality safety for the entire Tank Farms facility to support the continued waste storage mission. This criticality safety evaluation concludes that a criticality accident at the Tank Farms facility is an incredible event due to the existing form (chemistry) and distribution (neutron absorbers) of tank waste. Limits and controls for receipt of waste from other facilities and maintenance of tank waste condition are set forth to maintain the margin subcriticality in tank waste.

  16. Interface with the Defense Nuclear Facilities Safety Board

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1996-12-30

    The manual defines the process DOE will use to interface with the Defense Nuclear Facilities Safety Board and its staff. Canceled by DOE M 140.1-1A. Does not cancel other directives.

  17. Review and Approval of Nuclear Facility Safety Basis Documents...

    Energy Savers [EERE]

    CHANGE NOTICE NO. 3 Date December 2005 DOE STANDARD REVIEW AND APPROVAL OF NUCLEAR FACILITY SAFETY ... Neither a reviewer nor the preparer has veto power over ultimate resolution or ...

  18. Interface with the Defense Nuclear Facilities Safety Board

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-01-26

    This Manual presents the process the Department of Energy will use to interface with the Defense Nuclear Facilities Safety Board (DNFSB) and its staff. Cancels DOE M 140.1-1.

  19. Preparation Of Nonreactor Nuclear Facility Documented Safety Analysis

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2014-11-12

    This Department of Energy (DOE) Standard (STD), DOE-STD-3009-2014, describes a method for preparing a Documented Safety Analysis (DSA) that is acceptable to DOE for nonreactor nuclear facilities.

  20. Interface with the Defense Nuclear Facilities Safety Board

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-03-30

    This Manual presents the process the Department of Energy will use to interface with the Defense Nuclear Facilities Safety Board (DNFSB) and its staff. Supersedes DOE M 140.1-1A.

  1. Idaho Waste Treatment Facility Improves Worker Safety and Efficiency, Saves

    Office of Environmental Management (EM)

    Taxpayer Dollars | Department of Energy Waste Treatment Facility Improves Worker Safety and Efficiency, Saves Taxpayer Dollars Idaho Waste Treatment Facility Improves Worker Safety and Efficiency, Saves Taxpayer Dollars August 27, 2013 - 12:00pm Addthis The box retrieval forklift carriage is used to lift a degraded box as retrieval personnel monitor progress. The box retrieval forklift carriage is used to lift a degraded box as retrieval personnel monitor progress. The new soft-sided

  2. Environmental Restoration Disposal Facility (Project W-296) Safety Assessment

    SciTech Connect (OSTI)

    Armstrong, D.L.

    1994-08-01

    This Safety Assessment is based on information derived from the Conceptual Design Report for the Environmental Restoration Disposal Facility (DOE/RL 1994) and ancillary documentation developed during the conceptual design phase of Project W-296. The Safety Assessment has been prepared to support the Solid Waste Burial Ground Interim Safety Basis document. The purpose of the Safety Assessment is to provide an evaluation of the design to determine if the process, as proposed, will comply with US Department of Energy (DOE) Limits for radioactive and hazardous material exposures and be acceptable from an overall health and safety standpoint. The evaluation considered affects on the worker, onsite personnel, the public, and the environment.

  3. SAVANNAH RIVER SITE'S H-CANYON FACILITY: IMPACTS OF FOREIGN OBLIGATIONS ON SPECIAL NUCLEAR MATERIAL DISPOSITION

    SciTech Connect (OSTI)

    Magoulas, V.

    2013-06-03

    The US has a non-proliferation policy to receive foreign and domestic research reactor returns of spent fuel materials of US origin. These spent fuel materials are returned to the Department of Energy (DOE) and placed in storage in the L-area spent fuel basin at the Savannah River Site (SRS). The foreign research reactor returns fall subject to the 123 agreements for peaceful cooperation. These 123 agreements are named after section 123 of the Atomic Energy Act of 1954 and govern the conditions of nuclear cooperation with foreign partners. The SRS management of these foreign obligations while planning material disposition paths can be a challenge.

  4. 2015 Nuclear & Facility Safety Programs Workshop

    Office of Energy Efficiency and Renewable Energy (EERE)

    The workshop will feature training opportunities, sharing of best practices and lessons-learned, thought-provoking discussions, and an award ceremony recognizing outstanding performance by DOE safety professionals.

  5. CRAD, Occupational Safety & Health- Idaho MF-628 Drum Treatment Facility

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2006 Commencement of Operations assessment of the Occupational Safety and Industrial Hygiene programs at the MF-628 Drum Treatment Facility at the Idaho National Laboratory Advanced Mixed Waste Treatment Project.

  6. DOE/EIS-0287-SA-01: Supplement Analysis for the Idaho High-Level Waste and Facilities Disposition Final Environmental Impact Statement (June 2005)

    Office of Environmental Management (EM)

    7 -SA-Ol SUPPLEMENT ANALYSIS For The Idaho High-Level Waste and Facilities Disposition Final Environmental Impact Statement June 2005 United States Department of Energy Idaho Operations Office 1.0 2.0 3.0 4.0 5.0 6.0 DOEÆIS-0287 -SA-O 1 TABLE OF CONTENTS Introduction......................................................................................................................... 4

  7. A safety overview of Sandia National Laboratories' reactor facilities

    SciTech Connect (OSTI)

    Philbin, J.S.

    1989-04-01

    This report provides an overview of Sandia National Laboratories' safety policies and practices supporting the operation of Sandia's nuclear reactor facilities. These policies and practices have evolved from Sandia's 30 years of experience and leadership in the design, construction, and operation of steady-state and pulse research reactors. The report illustrates how Sandia has implemented DOE orders and research reactor standards with the goal of reducing risks to the lowest reasonable levels for its employees, contractors, the public, and the environment. The impact of DOE orders and standards on virtually all aspects of reactor operations and administration is illustrated. Included in the report are descriptions of safety documentation (Technical Specifications and Safety Analysis Reports); the facility safety review system for addressing radiological protection and other environmental, safety and health issues; experiment activities; quality assurance; training and certification; and emergency planning.

  8. CRAD, Facility Safety- Readiness Review Program

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) that can be used for assessment of a contractor's Readiness Review Program.

  9. Nonreactor Nuclear Safety Design Guide for use with DOE O 420.1C, Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2012-12-04

    This Guide provides an acceptable approach for safety design of DOE hazard category 1, 2 and 3 nuclear facilities for satisfying the requirements of DOE O 420.1C. Supersedes DOE G 420.1-1.

  10. Fissile Material Disposition Program: Deep Borehole Disposal Facility PEIS data input report for direct disposal. Direct disposal of plutonium metal/plutonium dioxide in compound metal canisters. Version 3.0

    SciTech Connect (OSTI)

    Wijesinghe, A.M.; Shaffer, R.J.

    1996-01-15

    The US Department of Energy (DOE) is examining options for disposing of excess weapons-usable nuclear materials [principally plutonium (Pu) and highly enriched uranium (HEU)] in a form or condition that is substantially and inherently more difficult to recover and reuse in weapons production. This report is the data input report for the Programmatic Environmental Impact Statement (PEIS). The PEIS examines the environmental, safety, and health impacts of implementing each disposition alternative on land use, facility operations, and site infrastructure; air quality and noise; water, geology, and soils; biotic, cultural, and paleontological resources; socioeconomics; human health; normal operations and facility accidents; waste management; and transportation. This data report is prepared to assist in estimating the environmental effects associated with the construction and operation of a Deep Borehole Disposal Facility, an alternative currently included in the PEIS. The facility projects under consideration are, not site specific. This report therefore concentrates on environmental, safety, and health impacts at a generic site appropriate for siting a Deep Borehole Disposal Facility.

  11. Fuel Storage Facility Final Safety Analysis Report. Revision 1

    SciTech Connect (OSTI)

    Linderoth, C.E.

    1984-03-01

    The Fuel Storage Facility (FSF) is an integral part of the Fast Flux Test Facility. Its purpose is to provide long-term storage (20-year design life) for spent fuel core elements used to provide the fast flux environment in FFTF, and for test fuel pins, components and subassemblies that have been irradiated in the fast flux environment. This Final Safety Analysis Report (FSAR) and its supporting documentation provides a complete description and safety evaluation of the site, the plant design, operations, and potential accidents.

  12. Nuclear and Facility Safety Directives | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Directives Nuclear and Facility Safety Directives DOE Order (O) 252.1A, Technical Standards Program DOE O 252.1A promotes DOE's use of Voluntary Consensus Standards (VCS) as the primary method for application of technical standards and establishes and manages the DOE Technical Standards Program (TSP) including technical standards development, information, activities, issues, and interactions. AU-30 Contact: Jeff Feit DOE Policy (P) 420.1, Department of Energy Nuclear Safety Policy DOE P 420.1,

  13. Nuclear and Facility Safety Policy Rules | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Policy Rules Nuclear and Facility Safety Policy Rules DOE provides safety requirements and guidance in a number of forms. One form in which we publish requirements is through rulemaking. Federal rules and regulations are published in the Code of Federal Regulations (CFR) and are noticed for review and comment by members of the public in the Federal Register (FR) consistent with the Administrative Procedures Act. Requirements in rules apply to our contractors whether or not they are also

  14. CRAD, Safety Basis- Idaho MF-628 Drum Treatment Facility

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a May 2007 readiness assessment of the Safety Basis at the Advanced Mixed Waste Treatment Project.

  15. The Safety and Tritium Applied Research (STAR) Facility: Status-2004

    SciTech Connect (OSTI)

    Anderl, R.A.; Longhurst, G.R.; Pawelko, R.J.; Sharpe, J.P.; Schuetz, S.T.; Petti, D.A.

    2005-07-15

    The Safety and Tritium Applied Research (STAR) Facility, a US DOE National User Facility at the Idaho National Engineering and Environmental Laboratory (INEEL), comprises capabilities and infrastructure to support both tritium and non-tritium research activities important to the development of safe and environmentally friendly fusion energy. Research thrusts include (1) interactions of tritium and deuterium with plasma-facing-component (PFC) materials, (2) fusion safety issues [PFC material chemical reactivity and dust/debris generation, activation product mobilization, tritium behavior in fusion systems], and (3) molten salts and fusion liquids for tritium breeder and coolant applications. This paper updates the status of STAR and the capabilities for ongoing research activities, with an emphasis on the development, testing and integration of the infrastructure to support tritium research activities. Key elements of this infrastructure include a tritium storage and assay system, a tritium cleanup system to process glovebox and experiment tritiated effluent gases, and facility tritium monitoring systems.

  16. Documented Safety Analysis for the Waste Storage Facilities March 2010

    SciTech Connect (OSTI)

    Laycak, D T

    2010-03-05

    This Documented Safety Analysis (DSA) for the Waste Storage Facilities was developed in accordance with 10 CFR 830, Subpart B, 'Safety Basis Requirements,' and utilizes the methodology outlined in DOE-STD-3009-94, Change Notice 3. The Waste Storage Facilities consist of Area 625 (A625) and the Decontamination and Waste Treatment Facility (DWTF) Storage Area portion of the DWTF complex. These two areas are combined into a single DSA, as their functions as storage for radioactive and hazardous waste are essentially identical. The B695 Segment of DWTF is addressed under a separate DSA. This DSA provides a description of the Waste Storage Facilities and the operations conducted therein; identification of hazards; analyses of the hazards, including inventories, bounding releases, consequences, and conclusions; and programmatic elements that describe the current capacity for safe operations. The mission of the Waste Storage Facilities is to safely handle, store, and treat hazardous waste, transuranic (TRU) waste, low-level waste (LLW), mixed waste, combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL (as well as small amounts from other DOE facilities).

  17. Documented Safety Analysis for the Waste Storage Facilities

    SciTech Connect (OSTI)

    Laycak, D

    2008-06-16

    This documented safety analysis (DSA) for the Waste Storage Facilities was developed in accordance with 10 CFR 830, Subpart B, 'Safety Basis Requirements', and utilizes the methodology outlined in DOE-STD-3009-94, Change Notice 3. The Waste Storage Facilities consist of Area 625 (A625) and the Decontamination and Waste Treatment Facility (DWTF) Storage Area portion of the DWTF complex. These two areas are combined into a single DSA, as their functions as storage for radioactive and hazardous waste are essentially identical. The B695 Segment of DWTF is addressed under a separate DSA. This DSA provides a description of the Waste Storage Facilities and the operations conducted therein; identification of hazards; analyses of the hazards, including inventories, bounding releases, consequences, and conclusions; and programmatic elements that describe the current capacity for safe operations. The mission of the Waste Storage Facilities is to safely handle, store, and treat hazardous waste, transuranic (TRU) waste, low-level waste (LLW), mixed waste, combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL (as well as small amounts from other DOE facilities).

  18. DOE Records Disposition Schedule Changes | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Records Disposition Schedule Changes DOE Records Disposition Schedule Changes Disposition Schedule Changes PDF icon DOE Records Disposition Schedule Changes More Documents & Publications DOE Administrative Records Schedules Changes DOERS Records Schedule Cross Index to DOE Administrative Records Disposition Schedules ADMINISTRATIVE RECORDS SCHEDULE 18: SECURITY, EMERGENCY PLANNING, AND SAFETY RECORDS

  19. Order Module--DOE O 420.1B, FACILITY SAFETY | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1B, FACILITY SAFETY Order Module--DOE O 420.1B, FACILITY SAFETY To ensure that new DOE ... To ensure that new DOE nuclear reactors comply with the requirements of DOE O 420.1B and ...

  20. Order Module--DOE O 420.2B, SAFETY OF ACCELERATOR FACILITIES...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Order Module--DOE O 420.2B, SAFETY OF ACCELERATOR FACILITIES This module will discuss the ... PDF icon DOE Order Self Study Modules - DOE O 420.1B Facility Safety More Documents & ...

  1. Independent Activity Report, Defense Nuclear Facilities Safety Board Public Meeting- October 2012

    Broader source: Energy.gov [DOE]

    Defense Nuclear Facilities Safety Board Public Meeting on the Status of Integration of Safety Into the Design of the Uranium Processing Facility [HIAR-Y-12-2012-10-02

  2. Construction safety program for the National Ignition Facility Appendix A: Safety Requirements

    SciTech Connect (OSTI)

    Cerruti, S.J.

    1997-01-14

    These rules apply to all LLNL employees, non-LLNL employees (including contract labor, supplemental labor, vendors, personnel matrixed/assigned from other National Laboratories, participating guests, visitors and students) and construction contractors/subcontractors. The General Safety and Health rules shall be used by management to promote accident prevention through indoctrination, safety and health training and on-the-job application. As a condition for contracts award, all contractors and subcontractors and their employees must certify on Form S & H A-1 that they have read and understand, or have been briefed and understand, the National Ignition Facility OCIP Project General Safety Rules.

  3. Pre-operational safety appraisal Tritiated Scrap Recovery Facility, Mound facility

    SciTech Connect (OSTI)

    Dauby, J.J.; Flanagan, T.M.; Metcalf, L.W.; Rhinehammer, T.B.

    1996-07-01

    The purpose of this report is to identify, assess, and document the hazards which are associated with the proposed operation of the Tritiated Scrap Recovery Facility at Mound Facility. A Pre-operational Safety Appraisal is a requirement as stated in Department of Energy Order 5481.1, Safety Analysis and Review System. The operations to be conducted in the new Tritiated Scrap Waste Recovery Facility are not new, but a continuation of a prime mission of Mound`s i.e. recovery of tritium from waste produced throughout the DOE complex. The new facility is a replacement of an existing process started in the early 1960`s and incorporates numerous design changes to enhance personnel and environmental safety. This report also documents the safety of a one time operation involving the recovery of tritium from material obtained by the Department of Energy from the State of Arizona. This project will involve the processing of 240,000 curies of tritium contained in glass ampoules that were to be used in items such as luminous dial watches. These were manufactured by the now defunct American Atomics Corporation, Tucson, Arizona.

  4. Preliminary safety assessment for an IFE target fabrication facility

    SciTech Connect (OSTI)

    Latkowski, J F; Reyes, S; Besenbruch, G E; Goodin, D T

    2000-10-13

    We estimate possible ranges of tritium inventories for an inertial fusion energy (IFE) target fabrication facility producing various types of targets and using various production technologies. Target fill is the key subtask in determining the overall tritium inventory for the plant. By segmenting the inventory into multiple, parallel production lines--each with its own fill canister--and including an expansion tank to limit releases, we are able to ensure that a target fabrication facility would meet the accident dose goals of 10 mSv (1 rem) set forth in the Department of Energy's Fusion Safety Standards. For indirect-drive targets, we calculate release fractions for elements from lithium to bismuth and show that nearly all elements meet the dose goal. Our work suggests directions for future R&D that will help reduce total tritium inventories and increase the flexibility of target fabrication facilities.

  5. TRANSPORTATION CASK RECEIPT/RETURN FACILITY CRITICALITY SAFETY EVALUATIONS

    SciTech Connect (OSTI)

    C.E. Sanders

    2005-04-26

    The purpose of this design calculation is to demonstrate that the handling operations of transportation casks performed in the Transportation Cask Receipt and Return Facility (TCRRF) and Buffer Area meet the nuclear criticality safety design criteria specified in the ''Project Design Criteria (PDC) Document'' (BSC [Bechtel SAIC Company] 2004 [DIRS 171599], Section 4.9.2.2), and the functional nuclear criticality safety requirement described in the ''Transportation Cask Receipt/Return Facility Description Document'' (BSC 2004 [DIRS 170217], Section 3.2.3). Specific scope of work contained in this activity consists of the following items: (1) Evaluate criticality effects for both dry and fully flooded conditions pertaining to TCRRF and Buffer Area operations for defense in depth. (2) Evaluate Category 1 and 2 event sequences for the TCRRF as identified in the ''Categorization of Event Sequences for License Application'' (BSC 2004 [DIRS 167268], Section 7). This evaluation includes credible fuel reconfiguration conditions. In addition to the scope of work listed above, an evaluation was also performed of modeling assumptions for commercial spent nuclear fuel (CSNF) regarding inclusion of plenum and end regions of the active fuel. This calculation is limited to CSNF and US Department of Energy (DOE) SNF. it should be mentioned that the latter waste form is evaluated more in depth in the ''Canister Handling Facility Criticality Safety Calculations (BSC 2004 [DIRS 167614]). Further, the design and safety analyses of the naval SNF canisters are the responsibility of the US Department of the Navy (Naval Nuclear Propulsion Program) and will not be included in this document. In addition, this calculation is valid for the current design of the TCRRF and Buffer Area and may not reflect the ongoing design evolution of the facility. However, it is anticipated that design changes to the facility layout will have little or no impact on the criticality results and/or conclusions presented in this document. This calculation is subject to the ''Quality Assurance Requirements and Description'' (DOE 2004 [DIRS 171539]) because the TCRRF is included in the Q-List (BSC 2004 [DIRS 168361], p. A-3) as an item important to safety. This calculation is prepared in accordance with AP-3.12Q, ''Design Calculations and Analyses'' [DIRS 168413].

  6. 3S (Safeguards, Security, Safety) based pyroprocessing facility safety evaluation plan

    SciTech Connect (OSTI)

    Ku, J.H.; Choung, W.M.; You, G.S.; Moon, S.I.; Park, S.H.; Kim, H.D.

    2013-07-01

    The big advantage of pyroprocessing for the management of spent fuels against the conventional reprocessing technologies lies in its proliferation resistance since the pure plutonium cannot be separated from the spent fuel. The extracted materials can be directly used as metal fuel in a fast reactor, and pyroprocessing reduces drastically the volume and heat load of the spent fuel. KAERI has implemented the SBD (Safeguards-By-Design) concept in nuclear fuel cycle facilities. The goal of SBD is to integrate international safeguards into the entire facility design process since the very beginning of the design phase. This paper presents a safety evaluation plan using a conceptual design of a reference pyroprocessing facility, in which 3S (Safeguards, Security, Safety)-By-Design (3SBD) concept is integrated from early conceptual design phase. The purpose of this paper is to establish an advanced pyroprocessing hot cell facility design concept based on 3SBD for the successful realization of pyroprocessing technology with enhanced safety and proliferation resistance.

  7. Facility Disposition Projects

    Office of Environmental Management (EM)

    6 NE Budget Request Presentation FY16 NE Budget Request Presentation PDF icon Office of Nuclear Energy FY16 Budget Request Presentation More Documents & Publications FY17 NE Budget Request Presentation Office of Nuclear Energy Fiscal Year 2014 Budget Request FY 2016 Budget Justification

    7 NE Budget Request Presentation FY17 NE Budget Request Presentation PDF icon FY17 NE Budget Request Presentation More Documents & Publications FY16 NE Budget Request Presentation Office of

  8. Integrated Facilities Disposition Program

    Office of Environmental Management (EM)

    Examples of IFDP legacy materials * RTG inventory - Sr activity - 700,000 Ci Sr-90 RTG - 5' x 5' x 4' * Melton Valley inventory - Size and weight - Concrete vault - 9' x 9' x 9' - ...

  9. Review and Approval of Nuclear Facility Safety Basis and Safety Design Basis Documents

    Energy Savers [EERE]

    SENSITIVE DOE-STD-1104-2009 May 2009 Superseding DOE-STD-1104-96 DOE STANDARD REVIEW AND APPROVAL OF NUCLEAR FACILITY SAFETY BASIS AND SAFETY DESIGN BASIS DOCUMENTS U.S. Department of Energy AREA SAFT Washington, DC 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. DOE-STD-1104-2009 ii Available on the Department of Energy Technical Standards web page at http://www.hss.energy.gov/nuclearsafety/ns/techstds/ DOE-STD-1104-2009 iii CONTENTS FOREWORD

  10. Mixed Waste Management Facility Preliminary Safety Analysis Report. Chapters 1 to 20

    SciTech Connect (OSTI)

    Not Available

    1994-09-01

    This document provides information on waste management practices, occupational safety, and a site characterization of the Lawrence Livermore National Laboratory. A facility description, safety engineering analysis, mixed waste processing techniques, and auxiliary support systems are included.

  11. Guidelines for Preparing Criticality Safety Evaluations at Department of Energy Non-Reactor Nuclear Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2007-02-07

    This standard provides a framework for generating Criticality Safety Evaluations (CSE) supporting fissionable material operations at Department of Energy (DOE) nonreactor nuclear facilities. This standard imposes no new criticality safety analysis requirements.

  12. Proceedings of the 1984 DOE nuclear reactor and facility safety conference. Volume II

    SciTech Connect (OSTI)

    Not Available

    1984-01-01

    This report is a collection of papers on reactor safety. The report takes the form of proceedings from the 1984 DOE Nuclear Reactor and Facility Safety Conference, Volume II of two. These proceedings cover Safety, Accidents, Training, Task/Job Analysis, Robotics and the Engineering Aspects of Man/Safety interfaces.

  13. Process Guide for the Identification and Disposition of S/CI...

    Office of Environmental Management (EM)

    Process Guide for the Identification and Disposition of SCI or Defective Items at Department of Energy Facilities Process Guide for the Identification and Disposition of SCI or...

  14. CRAD, New Nuclear Facility Documented Safety Analysis and Technical Safety Requirements- December 2, 2014 (EA CRAD 31-07, Rev. 0)

    Broader source: Energy.gov [DOE]

    New Nuclear Facility Documented Safety Analysis and Technical Safety Requirements Criteria Review and Approach Document (EA CRAD 31-07, Rev. 0)

  15. Dismantlement and Disposition | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Dismantlement and Disposition Maintaining the safety, security and effectiveness of the nuclear deterrent without nuclear testing - especially at lower numbers - requires increased investments across the nuclear security enterprise. Maintaining the safety, security and effectiveness of the nuclear deterrent without nuclear testing - especially at lower numbers - requires increased investments across the nuclear security enterprise. Weapons dismantlement [1] and disposition are major parts of

  16. DOE's Approach to Nuclear Facility Safety Analysis and Management

    Broader source: Energy.gov [DOE]

    Presenter: Dr. James O'Brien, Director, Office of Nuclear Safety, Office of Health, Safety and Security, US Department of Energy

  17. Mission Need Statement: Calcine Disposition Project Major Systems Acquisition Project

    SciTech Connect (OSTI)

    J. T. Beck

    2007-04-26

    This document identifies the need to establish the Calcine Disposition Project to determine and implement the final disposition of calcine including characterization, retrieval, treatment (if necessary), packaging, loading, onsite interim storage pending shipment to a repository or interim storage facility, and disposition of related facilities.

  18. Improving the regulation of safety at DOE nuclear facilities. Final report

    SciTech Connect (OSTI)

    1995-12-01

    The report strongly recommends that, with the end of the Cold War, safety and health at DOE facilities should be regulated by outside agencies rather than by DOE itself. The three major recommendations are: under any regulatory scheme, DOE must maintain a strong internal safety management system; essentially all aspects of safety at DOE`s nuclear facilities should be externally regulated; and existing agencies rather than a new one should be responsible for external regulation.

  19. Improving the regulation of safety at DOE nuclear facilities. Final report: Appendices

    SciTech Connect (OSTI)

    1995-12-01

    The report strongly recommends that, with the end of the Cold War, safety and health at DOE facilities should be regulated by outside agencies rather than by any regulatory scheme, DOE must maintain a strong internal safety management system; essentially all aspects of safety at DOE`s nuclear facilities should be externally regulated; and existing agencies rather than a new one should be responsible for external regulation.

  20. 340 Waste handling Facility Hazard Categorization and Safety Analysis

    SciTech Connect (OSTI)

    T. J. Rodovsky

    2010-10-25

    The analysis presented in this document provides the basis for categorizing the facility as less than Hazard Category 3.

  1. EA-1410: Proposed Disposition of the Omega West Facility at Los Alamos National Laboratory, Los Alamos, New Mexico

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts for the proposal to remove the Omega West Facility and the remaining support structures from Los Alamos Canyon at the U.S. Department of Energy Los...

  2. Records Disposition

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1988-09-13

    To assign responsibilities and authorities and to prescribe policies, procedures, standards, and guidelines for the orderly disposition of records of the Department of Energy (DOE) and its management and operating contractors. Cancels DOE O 1324.2 dated 5-28-80. Chg 1 dated 4-9-92. Canceled by DOE O 1324.2B dated 1-12-95.

  3. Description of the OSU APEX test facility to assess AP600 passive safety

    SciTech Connect (OSTI)

    Hochreiter, L.E.; Lau, L.K.; Reyes, J.N. Jr.; Groome, J.T.

    1995-12-31

    The objective of this paper is to describe the Advanced Plant Experiment (APEX) test facility, which is a new integral system test facility located at Oregon State University (OSU) specifically scaled, designed, and built to simulate all of the important geometrical details of the Westinghouse AP600. The APEX facility has been designed and constructed to develop a database that can be used to validate the thermal hydraulic safety analysis codes that will be used in the AP600 design certification process. The test facility has been specifically designed and scaled to model small break loss-of-coolant and long-term cooling transients, which utilize the AP600 passive safety systems.

  4. Construction safety program for the National Ignition Facility, Appendix A

    SciTech Connect (OSTI)

    Cerruti, S.J.

    1997-06-26

    Topics covered in this appendix include: General Rules-Code of Safe Practices; 2. Personal Protective Equipment; Hazardous Material Control; Traffic Control; Fire Prevention; Sanitation and First Aid; Confined Space Safety Requirements; Ladders and Stairways; Scaffolding and Lift Safety; Machinery, Vehicles, and Heavy Equipment; Welding and Cutting-General; Arc Welding; Oxygen/Acetylene Welding and Cutting; Excavation, Trenching, and Shoring; Fall Protection; Steel Erection; Working With Asbestos; Radiation Safety; Hand Tools; Electrical Safety; Nonelectrical Work Performed Near Exposed High-Voltage Power-Distribution Equipment; Lockout/Tagout Requirements; Rigging; A-Cranes; Housekeeping; Material Handling and Storage; Lead; Concrete and Masonry Construction.

  5. OAK RIDGE CERCLA DISPOSAL FACILITY ACHIEVES SAFETY MILESTONE

    Broader source: Energy.gov [DOE]

    Oak Ridge, TN - The Environmental Management Waste Management Facility (EMWMF) provides the onsite disposal capability for the majority of cleanup-generated wastes on the Oak Ridge Reservation....

  6. Construction safety program for the National Ignition Facility, Appendix B

    SciTech Connect (OSTI)

    Cerruti, S.J.

    1997-06-26

    This Appendix contains material from the LLNL Health and Safety Manual as listed below. For sections not included in this list, please refer to the Manual itself. The areas covered are: asbestos, lead, fire prevention, lockout, and tag program confined space traffic safety.

  7. Safety

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safety All JLF participants must comply fully with all LLNL safety regulations and procedures by becoming a Registered User of the facility. All JLF participants must complete available LLNL safety training: HS5200-W Laser Safety HS4258-W Beryllium Awareness HS4261-W Lead Awareness HS5220-W Electrical Safety Awareness HS6001-W General Employee Radiological HS4240-W Chemical Safety HS4680-W PPE To access these training modules link here [LTRAIN] from inside LLNL, or here from anywhere. All JLF

  8. Review and Approval of Nuclear Facility Safety Basis and Safety Design Basis Documents

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2014-12-19

    This Standard describes a framework and the criteria to be used for approval of (1) safety basis documents, as required by 10 Code of Federal Regulation (C.F.R.) 830, Nuclear Safety Management, and (2) safety design basis documents, as required by Department of Energy (DOE) Standard (STD)-1189-2008, Integration of Safety into the Design Process.

  9. Records Disposition

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1980-05-28

    To assign responsibilities and authorities and to prescribe policies, procedures, standards, and guidelines for the orderly disposition of records of the Department of Energy (DOE) and its operating and onsite service contractors. Cancels DOE O 1324.1 dated 7-10-78. Chg 1 dated 7-2-81. Chg 2 dated 11-9-82. Canceled by DOE O 1324.2A dated 9-13-88.

  10. 2015 Nuclear and Facility Safety Programs Workshop Block Agenda

    Broader source: Energy.gov (indexed) [DOE]

    Worthington (AU-10) ISM o Colette Broussard (AU-23) QA and Other Data Trending o Pat Lewis (SC-CH) Lessons From Safety Basis Reviews o Carl Sykes (NA-511) Exemptions * Readiness...

  11. CRAD, Criticality Safety- Y-12 Enriched Uranium Operations Oxide Conversion Facility

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a January 2005 assessment of the Criticality Safety program at the Y-12 - Enriched Uranium Facility.

  12. CRAD, Occupational Safety & Health- Y-12 Enriched Uranium Operations Oxide Conversion Facility

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a January 2005 assessment of Industrial Safety and Industrial Health programs at the Y-12 - Enriched Uranium Operations Oxide Conversion Facility.

  13. Frequently Asked Questions Regarding DOE Order 420.1C, Facility Safety

    Broader source: Energy.gov [DOE]

    Frequently Asked Questions Regarding DOE Order 420.1C, Facility Safety, and its supporting directives, DOE‐STD‐1020‐2012, Natural Phenomena Hazards Analysis and Design Criteria for DOE Facilities, and DOE‐STD‐1066‐2012, Fire Protection

  14. CRAD, Safety Basis- Los Alamos National Laboratory TA 55 SST Facility

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for an assessment of the Safety Basis at the Los Alamos National Laboratory TA 55 SST Facility.

  15. CRAD, Safety Basis- Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for an assessment of the Safety Basis portion of an Operational Readiness Review at the Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility.

  16. CRAD, Safety Basis- Y-12 Enriched Uranium Operations Oxide Conversion Facility

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a January 2005 assessment of the Safety Basis at the Y-12 - Enriched Uranium Operations Oxide Conversion Facility.

  17. CRAD, Criticality Safety- Los Alamos National Laboratory TA 55 SST Facility

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for an assessment of the Criticality Safety program at the Los Alamos National Laboratory, TA 55 SST Facility.

  18. CRAD, Occupational Safety & Health- Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for an assessment of the Occupational and Industrial Safety and Hygiene Program portion of an Operational Readiness Review at the Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility.

  19. Spent Nuclear Fuel Project path forward: nuclear safety equivalency to comparable NRC-licensed facilities

    SciTech Connect (OSTI)

    Garvin, L.J.

    1995-11-01

    This document includes the Technical requirements which meet the nuclear safety objectives of the NRC regulations for fuel treatment and storage facilities. These include requirements regarding radiation exposure limits, safety analysis, design and construction. This document also includes administrative requirements which meet the objectives of the major elements of the NRC licensing process. These include formally documented design and safety analysis, independent technical review, and oppportunity for public involvement.

  20. Accelerator Facility Safety Implementation Guide for DOE Order (0) 420.2C, Safety of Accelerator Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2013-07-17

    The revision will address implementation of roles and responsibilities, improve operational efficiency using operating experience, and clarify the use of program requirements such as the Unreviewed Safety Issue and Accelerator Readiness Review.

  1. Construction safety program for the National Ignition Facility

    SciTech Connect (OSTI)

    Cerruti, S.J.

    1997-06-26

    The Construction Safety Program (CSP) for NIF sets forth the responsibilities, guidelines, rules, policies and regulations for all workers involved in the construction, special equipment installation, acceptance testing, and initial activation and operation of NIF at LLNL during the construction period of NIF.

  2. Request For Records Disposition Autnority | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Posters depicting Department of Energy facilities, research projects, security awareness themes, and related topics. PDF icon Request For Records Disposition Autnority More...

  3. ESTIMATING IMPURITIES IN SURPLUS PLUTONIUM FOR DISPOSITION

    SciTech Connect (OSTI)

    Allender, J.; Moore, E.

    2013-07-17

    The United States holds at least 61.5 metric tons (MT) of plutonium that is permanently excess to use in nuclear weapons programs, including 47.2 MT of weapons-grade plutonium. Surplus inventories will be stored safely by the Department of Energy (DOE) and then transferred to facilities that will prepare the plutonium for permanent disposition. The Savannah River National Laboratory (SRNL) operates a Feed Characterization program for the Office of Fissile Materials Disposition of the National Nuclear Security Administration and the DOE Office of Environmental Management. Many of the items that require disposition are only partially characterized, and SRNL uses a variety of techniques to predict the isotopic and chemical properties that are important for processing through the Mixed Oxide Fuel Fabrication Facility and alternative disposition paths. Recent advances in laboratory tools, including Prompt Gamma Analysis and Peroxide Fusion treatment, provide data on the existing inventories that will enable disposition without additional, costly sampling and destructive analysis.

  4. Receiving Basin for Offsite Fuels and the Resin Regeneration Facility Safety Analysis Report, Executive Summary

    SciTech Connect (OSTI)

    Shedrow, C.B.

    1999-11-29

    The Safety Analysis Report documents the safety authorization basis for the Receiving Basin for Offsite Fuels (RBOF) and the Resin Regeneration Facility (RRF) at the Savannah River Site (SRS). The present mission of the RBOF and RRF is to continue in providing a facility for the safe receipt, storage, handling, and shipping of spent nuclear fuel assemblies from power and research reactors in the United States, fuel from SRS and other Department of Energy (DOE) reactors, and foreign research reactors fuel, in support of the nonproliferation policy. The RBOF and RRF provide the capability to handle, separate, and transfer wastes generated from nuclear fuel element storage. The DOE and Westinghouse Savannah River Company, the prime operating contractor, are committed to managing these activities in such a manner that the health and safety of the offsite general public, the site worker, the facility worker, and the environment are protected.

  5. Los Alamos National Laboratory corregated metal pipe saw facility preliminary safety analysis report. Volume I

    SciTech Connect (OSTI)

    1990-09-19

    This Preliminary Safety Analysis Report addresses site assessment, facility design and construction, and design operation of the processing systems in the Corrugated Metal Pipe Saw Facility with respect to normal and abnormal conditions. Potential hazards are identified, credible accidents relative to the operation of the facility and the process systems are analyzed, and the consequences of postulated accidents are presented. The risk associated with normal operations, abnormal operations, and natural phenomena are analyzed. The accident analysis presented shows that the impact of the facility will be acceptable for all foreseeable normal and abnormal conditions of operation. Specifically, under normal conditions the facility will have impacts within the limits posted by applicable DOE guidelines, and in accident conditions the facility will similarly meet or exceed the requirements of all applicable standards. 16 figs., 6 tabs.

  6. Safety - Radiation Effects Facility / Cyclotron Institute / Texas A&M

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    University Safety Numerous safety mechanisms in the form of administrative and engineered controls are incorporated into the design of the Radiation Effects Facility. Radiation levels in the surrounding areas were measured while each available beam was brought into the heavily shielded target area at full intensity. It was found that the measured radiation levels would be safe for the beam intensities several orders of magnitude larger than those needed for typical radiation testing

  7. Preliminary Safety Design Report for Remote Handled Low-Level Waste Disposal Facility

    SciTech Connect (OSTI)

    Timothy Solack; Carol Mason

    2012-03-01

    A new onsite, remote-handled low-level waste disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled low-level waste disposal for remote-handled low-level waste from the Idaho National Laboratory and for nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled low-level waste in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This preliminary safety design report supports the design of a proposed onsite remote-handled low-level waste disposal facility by providing an initial nuclear facility hazard categorization, by discussing site characteristics that impact accident analysis, by providing the facility and process information necessary to support the hazard analysis, by identifying and evaluating potential hazards for processes associated with onsite handling and disposal of remote-handled low-level waste, and by discussing the need for safety features that will become part of the facility design.

  8. Integration of health physics, safety and operational processes for management and disposition of recycled uranium wastes at the Fernald Environmental Management Project (FEMP)

    SciTech Connect (OSTI)

    Barber, James; Buckley, James

    2003-02-23

    Fluor Fernald, Inc. (Fluor Fernald), the contractor for the U. S. Department of Energy (DOE) Fernald Environmental Management Project (FEMP), recently submitted a new baseline plan for achieving site closure by the end of calendar year 2006. This plan was submitted at DOE's request, as the FEMP was selected as one of the sites for their accelerated closure initiative. In accordance with the accelerated baseline, the FEMP Waste Management Project (WMP) is actively evaluating innovative processes for the management and disposition of low-level uranium, fissile material, and thorium, all of which have been classified as waste. These activities are being conducted by the Low Level Waste (LLW) and Uranium Waste Disposition (UWD) projects. Alternatives associated with operational processing of individual waste streams, each of which poses potentially unique health physics, industrial hygiene and industrial hazards, are being evaluated for determination of the most cost effective and safe met hod for handling and disposition. Low-level Mixed Waste (LLMW) projects are not addressed in this paper. This paper summarizes historical uranium recycling programs and resultant trace quantity contamination of uranium waste streams with radionuclides, other than uranium. The presentation then describes how waste characterization data is reviewed for radiological and/or chemical hazards and exposure mitigation techniques, in conjunction with proposed operations for handling and disposition. The final part of the presentation consists of an overview of recent operations within LLW and UWD project dispositions, which have been safely completed, and a description of several current operations.

  9. Conceptual Safety Design Report for the Remote Handled Low-Level Waste Disposal Facility

    SciTech Connect (OSTI)

    Boyd D. Christensen

    2010-02-01

    A new onsite, remote-handled LLW disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled LLW disposal for remote-handled LLW from the Idaho National Laboratory and for spent nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled LLW in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This conceptual safety design report supports the design of a proposed onsite remote-handled LLW disposal facility by providing an initial nuclear facility hazard categorization, by identifying potential hazards for processes associated with onsite handling and disposal of remote-handled LLW, by evaluating consequences of postulated accidents, and by discussing the need for safety features that will become part of the facility design.

  10. Conceptual Safety Design Report for the Remote Handled Low-Level Waste Disposal Facility

    SciTech Connect (OSTI)

    Boyd D. Christensen

    2010-05-01

    A new onsite, remote-handled LLW disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled LLW disposal for remote-handled LLW from the Idaho National Laboratory and for spent nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled LLW in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This conceptual safety design report supports the design of a proposed onsite remote-handled LLW disposal facility by providing an initial nuclear facility hazard categorization, by identifying potential hazards for processes associated with onsite handling and disposal of remote-handled LLW, by evaluating consequences of postulated accidents, and by discussing the need for safety features that will become part of the facility design.

  11. Annual Report To Congress. Department of Energy Activities Relating to the Defense Nuclear Facilities Safety Board, Calendar Year 2003

    SciTech Connect (OSTI)

    None, None

    2004-02-28

    The Department of Energy (Department) submits an Annual Report to Congress each year detailing the Departments activities relating to the Defense Nuclear Facilities Safety Board (Board), which provides advice and recommendations to the Secretary of Energy (Secretary) regarding public health and safety issues at the Departments defense nuclear facilities. In 2003, the Department continued ongoing activities to resolve issues identified by the Board in formal recommendations and correspondence, staff issue reports pertaining to Department facilities, and public meetings and briefings. Additionally, the Department is implementing several key safety initiatives to address and prevent safety issues: safety culture and review of the Columbia accident investigation; risk reduction through stabilization of excess nuclear materials; the Facility Representative Program; independent oversight and performance assurance; the Federal Technical Capability Program (FTCP); executive safety initiatives; and quality assurance activities. The following summarizes the key activities addressed in this Annual Report.

  12. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2014-06-25

    Changes include invoking DOE-STD-3009 and DOE-STD-1104 as requirements documents. NOTE: The two standards are not final documents but can be found in Technical Standards RevCom at https://www.standards.doe.gov/login.jsp. Login as an SME using your email address.

  13. Investigation of criticality safety control infraction data at a nuclear facility

    SciTech Connect (OSTI)

    Cournoyer, Michael E.; Merhege, James F.; Costa, David A.; Art, Blair M.; Gubernatis, David C.

    2014-10-27

    Chemical and metallurgical operations involving plutonium and other nuclear materials account for most activities performed at the LANL's Plutonium Facility (PF-4). The presence of large quantities of fissile materials in numerous forms at PF-4 makes it necessary to maintain an active criticality safety program. The LANL Nuclear Criticality Safety (NCS) Program provides guidance to enable efficient operations while ensuring prevention of criticality accidents in the handling, storing, processing and transportation of fissionable material at PF-4. In order to achieve and sustain lower criticality safety control infraction (CSCI) rates, PF-4 operations are continuously improved, through the use of Lean Manufacturing and Six Sigma (LSS) business practices. Employing LSS, statistically significant variations (trends) can be identified in PF-4 CSCI reports. In this study, trends have been identified in the NCS Program using the NCS Database. An output metric has been developed that measures ADPSM Management progress toward meeting its NCS objectives and goals. Using a Pareto Chart, the primary CSCI attributes have been determined in order of those requiring the most management support. Data generated from analysis of CSCI data help identify and reduce number of corresponding attributes. In-field monitoring of CSCI's contribute to an organization's scientific and technological excellence by providing information that can be used to improve criticality safety operation safety. This increases technical knowledge and augments operational safety.

  14. Investigation of criticality safety control infraction data at a nuclear facility

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cournoyer, Michael E.; Merhege, James F.; Costa, David A.; Art, Blair M.; Gubernatis, David C.

    2014-10-27

    Chemical and metallurgical operations involving plutonium and other nuclear materials account for most activities performed at the LANL's Plutonium Facility (PF-4). The presence of large quantities of fissile materials in numerous forms at PF-4 makes it necessary to maintain an active criticality safety program. The LANL Nuclear Criticality Safety (NCS) Program provides guidance to enable efficient operations while ensuring prevention of criticality accidents in the handling, storing, processing and transportation of fissionable material at PF-4. In order to achieve and sustain lower criticality safety control infraction (CSCI) rates, PF-4 operations are continuously improved, through the use of Lean Manufacturing andmore » Six Sigma (LSS) business practices. Employing LSS, statistically significant variations (trends) can be identified in PF-4 CSCI reports. In this study, trends have been identified in the NCS Program using the NCS Database. An output metric has been developed that measures ADPSM Management progress toward meeting its NCS objectives and goals. Using a Pareto Chart, the primary CSCI attributes have been determined in order of those requiring the most management support. Data generated from analysis of CSCI data help identify and reduce number of corresponding attributes. In-field monitoring of CSCI's contribute to an organization's scientific and technological excellence by providing information that can be used to improve criticality safety operation safety. This increases technical knowledge and augments operational safety.« less

  15. The Greening of a Plutonium Facility through Personnel Safety, Operational Efficiency, and Infrastructure Improvements - 12108

    SciTech Connect (OSTI)

    Dodge, Robert L.; Cournoyer, Michael E.

    2012-07-01

    Chemical and metallurgical operations involving plutonium and other hazardous materials account for most activities performed at the Los Alamos National Laboratory's Plutonium Facility (TA-55). Engineered barriers provide the most effective protection from hazardous materials. These safety features serve to protect workers and provide defense in depth against the hazards associated with operations. Although not designed to specifically meet environmental requirements the safety-based design does meet or exceed the requirements of the environmental regulations enacted during and since its construction. TA-55's Waste Services Group supports this safety methodology by ensuring safe, efficient and compliant management of all radioactive and hazardous wastes generated at the TA-55. A key function of this group is the implementation of measures that lower the overall risk of radiological and hazardous material operations. Processes and procedures that reduce waste generation compared to current, prevalent processes or procedures used for the same purpose are identified. Some of these 'Best Practices' include implementation of a chemical control system, elimination of aerosol cans, reduction in hazardous waste, implementation of zero liquid discharge, and the re-cyclization of nitric acid. P2/WMin opportunities have been implemented in the areas of personnel and facility attributes, environmental compliance, energy conservation, and green focused infrastructure expansion with the overall objective of minimizing raw material and energy consumption and waste generation. This increases technical knowledge and augments operational safety. (authors)

  16. Documented Safety Analysis Addendum for the Neutron Radiography Reactor Facility Core Conversion

    SciTech Connect (OSTI)

    Boyd D. Christensen

    2009-05-01

    The Neutron Radiography Reactor Facility (NRAD) is a Training, Research, Isotope Production, General Atomics (TRIGA) reactor which was installed in the Idaho National Laboratory (INL) Hot Fuels Examination Facility (HFEF) at the Materials and Fuels Complex (MFC) in the mid 1970s. The facility provides researchers the capability to examine both irradiated and non-irradiated materials in support of reactor fuel and components programs through non-destructive neutron radiography examination. The facility has been used in the past as one facet of a suite of reactor fuels and component examination facilities available to researchers at the INL and throughout the DOE complex. The facility has also served various commercial research activities in addition to the DOE research and development support. The reactor was initially constructed using Fuel Lifetime Improvement Program (FLIP)- type highly enriched uranium (HEU) fuel obtained from the dismantled Puerto Rico Nuclear Center (PRNC) reactor. In accordance with international non-proliferation agreements, the NRAD core will be converted to a low enriched uranium (LEU) fuel and will continue to utilize the PRNC control rods, control rod drives, startup source, and instrument console as was previously used with the HEU core. The existing NRAD Safety Analysis Report (SAR) was created and maintained in the preferred format of the day, combining sections of both DOE-STD-3009 and Nuclear Regulatory Commission Regulatory Guide 1.70. An addendum was developed to cover the refueling and reactor operation with the LEU core. This addendum follows the existing SAR format combining required formats from both the DOE and NRC. This paper discusses the project to successfully write a compliant and approved addendum to the existing safety basis documents.

  17. Preliminary safety analysis report for the Auxiliary Hot Cell Facility, Sandia National Laboratories, Albuquerque, New Mexico

    SciTech Connect (OSTI)

    OSCAR,DEBBY S.; WALKER,SHARON ANN; HUNTER,REGINA LEE; WALKER,CHERYL A.

    1999-12-01

    The Auxiliary Hot Cell Facility (AHCF) at Sandia National Laboratories, New Mexico (SNL/NM) will be a Hazard Category 3 nuclear facility used to characterize, treat, and repackage radioactive and mixed material and waste for reuse, recycling, or ultimate disposal. A significant upgrade to a previous facility, the Temporary Hot Cell, will be implemented to perform this mission. The following major features will be added: a permanent shield wall; eight floor silos; new roof portals in the hot-cell roof; an upgraded ventilation system; and upgraded hot-cell jib crane; and video cameras to record operations and facilitate remote-handled operations. No safety-class systems, structures, and components will be present in the AHCF. There will be five safety-significant SSCs: hot cell structure, permanent shield wall, shield plugs, ventilation system, and HEPA filters. The type and quantity of radionuclides that could be located in the AHCF are defined primarily by SNL/NM's legacy materials, which include radioactive, transuranic, and mixed waste. The risk to the public or the environment presented by the AHCF is minor due to the inventory limitations of the Hazard Category 3 classification. Potential doses at the exclusion boundary are well below the evaluation guidelines of 25 rem. Potential for worker exposure is limited by the passive design features incorporated in the AHCF and by SNL's radiation protection program. There is no potential for exposure of the public to chemical hazards above the Emergency Response Protection Guidelines Level 2.

  18. Securing Operating Data From Passive Safety Tests at the Fast Flux Test Facility

    SciTech Connect (OSTI)

    Wootan, David W.; Omberg, Ronald P.; Makenas, Bruce J.; Nielsen, Deborah L.; Nelson, Joseph V.; Polzin, David L.

    2011-06-01

    The Fast Flux Test Facility (FFTF) is the most recent Liquid Metal Reactor (LMR) to operate in the United States, from 1982 to 1992. The technologies employed in designing and constructing this reactor, along with information obtained from tests conducted during its operation, are currently being secured and archived by the Department of Energy’s Office of Nuclear Energy Fuel Cycle Research and Development Program. This report is one in a series documenting the overall project efforts to retrieve and preserve critical information related to advanced reactors. A previous report summarized the initial efforts to review, retrieve and preserve the most salient documents related to Passive Safety Testing (PST) in the FFTF. Efforts continue to locate, secure, and retrieve record copies of original plant data tapes for the series of passive safety tests conducted between 1986 and 1991.

  19. Securing Operating Data From Passive Safety Tests at the Fast Flux Test Facility

    SciTech Connect (OSTI)

    Wootan, David W.; Omberg, Ronald P.; Makenas, Bruce J.; Nielsen, Deborah L.; Nelson, Joseph V.; Polzin, David L.

    2011-06-01

    The Fast Flux Test Facility (FFTF) is the most recent Liquid Metal Reactor (LMR) to operate in the United States, from 1982 to 1992. The technologies employed in designing and constructing this reactor, along with information obtained from tests conducted during its operation, are currently being secured and archived by the Department of Energy's Office of Nuclear Energy Fuel Cycle Research and Development Program. This report is one in a series documenting the overall project efforts to retrieve and preserve critical information related to advanced reactors. A previous report summarized the initial efforts to review, retrieve and preserve the most salient documents related to Passive Safety Testing (PST) in the FFTF. Efforts continue to locate, secure, and retrieve record copies of original plant data tapes for the series of passive safety tests conducted between 1986 and 1991.

  20. Risk-Informing Safety Reviews for Non-Reactor Nuclear Facilities

    SciTech Connect (OSTI)

    Mubayi, V.; Azarm, A.; Yue, M.; Mukaddam, W.; Good, G.; Gonzalez, F.; Bari, R.A.

    2011-03-13

    This paper describes a methodology used to model potential accidents in fuel cycle facilities that employ chemical processes to separate and purify nuclear materials. The methodology is illustrated with an example that uses event and fault trees to estimate the frequency of a specific energetic reaction that can occur in nuclear material processing facilities. The methodology used probabilistic risk assessment (PRA)-related tools as well as information about the chemical reaction characteristics, information on plant design and operational features, and generic data about component failure rates and human error rates. The accident frequency estimates for the specific reaction help to risk-inform the safety review process and assess compliance with regulatory requirements.

  1. FAST FLUX TEST FACILITY (FFTF) A HISTORY OF SAFETY & OPERATIONAL EXCELLENCE

    SciTech Connect (OSTI)

    NIELSEN, D L

    2004-02-26

    The Fast Flux Test Facility (FFTF) is a 400-megawatt (thermal) sodium-cooled, high temperature, fast neutron flux, loop-type test reactor. The facility was constructed to support development and testing of fuels, materials and equipment for the Liquid Metal Fast Breeder Reactor program. FFTF began operation in 1980 and over the next 10 years demonstrated its versatility to perform experiments and missions far beyond the original intent of its designers. The reactor had several distinctive features including its size, flux, core design, extensive instrumentation, and test features that enabled it to simultaneously carry out a significant array of missions while demonstrating its features that contributed to a high level of plant safety and availability. FFTF is currently being deactivated for final closure.

  2. DOE-HDBK-1113-98; Radiological Safety Training for Uranium Facilities (Reaffirmation Memorandum)

    Energy Savers [EERE]

    DATE M a y 9, 2005 REPLY TO EH-52:Judith D. Foulke:3-5865 ATTN OF: REAFFIRMATION WITH ERRATA OF DEPARTMENT OF ENERGY (DOE) URANIUM FACILITIES" Dennis Kubicki, Technical Standards Manager, EH-24 SUBJECT. HANDBOOK, DOE-HDBK-1113-98, "RADIOLOGICAL SAFETY TRAINING FOR TO: In February 2005, a notice of intent to reaffirm with errata DOE-HDBK-1113-98 was sent to the DOE Technical Standards Managers. The notice requested comments regarding the planned reaffirmation of the handbook. No

  3. Disposition Schedules | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Disposition Schedules Disposition Schedules keyboard-70506__180.jpg Records Disposition Schedules The DOE Records Disposition Schedules provide the authority for transfer and disposal of records created and maintained by the Department. Disposition Schedules and the citations to the disposition authorities are available at the following links: DOE Administrative Records Schedules -- provides a list of records contained in the NARA General Records Schedule as customized to the needs of the

  4. Environmental Management Waste Management Facility (EMWMF) Site-Specific Health and Safety Plan, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Flynn, N.C. Bechtel Jacobs

    2008-04-21

    The Bechtel Jacobs Company LLC (BJC) policy is to provide a safe and healthy workplace for all employees and subcontractors. The implementation of this policy requires that operations of the Environmental Management Waste Management Facility (EMWMF), located one-half mile west of the U.S. Department of Energy (DOE) Y-12 National Security Complex, be guided by an overall plan and consistent proactive approach to environment, safety and health (ES&H) issues. The BJC governing document for worker safety and health, BJC/OR-1745, 'Worker Safety and Health Program', describes the key elements of the BJC Safety and Industrial Hygiene (IH) programs, which includes the requirement for development and implementation of a site-specific Health and Safety Plan (HASP) where required by regulation (refer also to BJC-EH-1012, 'Development and Approval of Safety and Health Plans'). BJC/OR-1745, 'Worker Safety and Health Program', implements the requirements for worker protection contained in Title 10 Code of Federal Regulations (CFR) Part 851. The EMWMF site-specific HASP requirements identifies safe operating procedures, work controls, personal protective equipment, roles and responsibilities, potential site hazards and control measures, site access requirements, frequency and types of monitoring, site work areas, decontamination procedures, and outlines emergency response actions. This HASP will be available on site for use by all workers, management and supervisors, oversight personnel and visitors. All EMWMF assigned personnel will be briefed on the contents of this HASP and will be required to follow the procedures and protocols as specified. The policies and procedures referenced in this HASP apply to all EMWMF operations activities. In addition the HASP establishes ES&H criteria for the day-to-day activities to prevent or minimize any adverse effect on the environment and personnel safety and health and to meet standards that define acceptable waste management practices. The HASP is written to make use of past experience and best management practices to eliminate or minimize hazards to workers or the environment from events such as fires, falls, mechanical hazards, or any unplanned release to the environment.

  5. Safety and licensing issues that are being addressed by the Power Burst Facility test programs. [PWR; BWR

    SciTech Connect (OSTI)

    McCardell, R.K.; MacDonald, P.E.

    1980-01-01

    This paper presents an overview of the results of the experimental program being conducted in the Power Burst Facility and the relationship of these results to certain safety and licensing issues. The safety issues that were addressed by the Power-Cooling-Mismatch, Reactivity Initiated Accident, and Loss of Coolant Accident tests, which comprised the original test program in the Power Burst Facility, are discussed. The resolution of these safety issues based on the results of the thirty-six tests performed to date, is presented. The future resolution of safety issues identified in the new Power Burst Facility test program which consists of tests which simulate BWR and PWR operational transients, anticipated transients without scram, and severe fuel damage accidents, is described.

  6. Public Comment Period for Portsmouth Site D&D and Waste Disposition Decisions

    Broader source: Energy.gov [DOE]

    Public Comment Period for the Process Buildings and Complex Facilities Decontamination and Decommissioning and Site-Wide Waste Disposition Decisions at the Portsmouth Gaseous Diffusion Plant

  7. EIS-0229: Storage and Disposition of Weapons-Usable Fissile Materials

    Broader source: Energy.gov [DOE]

    The EIS will evaluate the reasonable alternatives and potential environmental impacts for the proposed siting, construction, and operation of three types of facilities for plutonium disposition.

  8. Safety Assessment for the Kozloduy National Disposal Facility in Bulgaria - 13507

    SciTech Connect (OSTI)

    Biurrun, E.; Haverkamp, B.; Lazaro, A.; Miralles, A.; Stefanova, I.

    2013-07-01

    Due to the early decommissioning of four Water-Water Energy Reactors (WWER) 440-V230 reactors at the Nuclear Power Plant (NPP) near the city of Kozloduy in Bulgaria, large amounts of low and intermediate radioactive waste will arise much earlier than initially scheduled. In or-der to manage the radioactive waste from the early decommissioning, Bulgaria has intensified its efforts to provide a near surface disposal facility at Radiana with the required capacity. To this end, a project was launched and assigned in international competition to a German-Spanish consortium to provide the complete technical planning including the preparation of the Intermediate Safety Assessment Report. Preliminary results of operational and long-term safety show compliance with the Bulgarian regulatory requirements. The long-term calculations carried out for the Radiana site are also a good example of how analysis of safety assessment results can be used for iterative improvements of the assessment by pointing out uncertainties and areas of future investigations to reduce such uncertainties in regard to the potential radiological impact. The computer model used to estimate the long-term evolution of the future repository at Radiana predicted a maximum total annual dose for members of the critical group, which is carried to approximately 80 % by C-14 for a specific ingestion pathway. Based on this result and the outcome of the sensitivity analysis, existing uncertainties were evaluated and areas for reasonable future investigations to reduce these uncertainties were identified. (authors)

  9. Criticality Safety Lessons Learned in a Deactivation and Decommissioning Environment [A Guide for Facility and Project Managers

    SciTech Connect (OSTI)

    NIRIDER, L.T.

    2003-08-06

    This document was designed as a reference and a primer for facility and project managers responsible for Deactivation and Decommissioning (D&D) processes in facilities containing significant inventories of fissionable materials. The document contains lessons learned and guidance for the development and management of criticality safety programs. It also contains information gleaned from occurrence reports, assessment reports, facility operations and management, NDA program reviews, criticality safety experts, and criticality safety evaluations. This information is designed to assist in the planning process and operational activities. Sufficient details are provided to allow the reader to understand the events, the lessons learned, and how to apply the information to present or planned D&D processes. Information is also provided on general lessons learned including criticality safety evaluations and criticality safety program requirements during D&D activities. The document also explores recent and past criticality accidents in operating facilities, and it extracts lessons learned pertinent to D&D activities. A reference section is included to provide additional information. This document does not address D&D lessons learned that are not pertinent to criticality safety.

  10. Notice of Intent to Develop a Page Change for DOE O 420.1C, Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2013-06-21

    The Page Change will be strictly limited in scope to changes necessary to accomplish the following objectives: (1) to invoke revised DOE-STD- 1104-20xx, Review and Approval of Nuclear Facility Safety Basis and Safety Design Basis Document, as a required method; (2) to invoke revised DOE-STD-3009-20xx, Preparation of Nonreactor Nuclear Facility Documented Safety Analysis, as a required method for new nuclear facilities as discussed below; and (3) to make miscellaneous administrative corrections and clarifications based on the one-year implementation review required by DOE O 251.1C, Departmental Directives Program. This JM is an update to one approved June 21, 2013.

  11. Enterprise Assessments Operational Awareness Record for the Review of the WTP Low-Activity Waste Facility Preliminary Documented Safety Analysis Change Package for the Effluent Management Facility (OAR # EA-WTP-LAW-2016-01-25)

    Broader source: Energy.gov [DOE]

    Operational Awareness Record for the Review of the Waste Treatment and Immobilization Plant Low-Activity Waste Facility Preliminary Documented Safety Analysis Change Package for the Effluent Management Facility

  12. Enterprise Assessments Targeted Review of the Safety System Management of the Secondary Confinement System and Power Distribution Safety System at the Y-12 National Security Complex Highly Enriched Uranium Materials Facility – December 2015

    Broader source: Energy.gov [DOE]

    Targeted Review of the Safety System Management of the Secondary Confinement System and Power Distribution Safety System at the Y-12 National Security Complex Highly Enriched Uranium Materials Facility

  13. Safety requirements, facility user needs, and reactor concepts for a new Broad Application Test Reactor

    SciTech Connect (OSTI)

    Ryskamp, J.M.; Liebenthal, J.L.; Denison, A.B.; Fletcher, C.D.

    1992-07-01

    This report describes the EG&G Laboratory Directed Research and Development Program (LDRD) Broad Application Test Reactor (BATR) Project that was conducted in fiscal year 1991. The scope of this project was divided into three phases: a project process definition phase, a requirements development phase, and a preconceptual reactor design and evaluation phase. Multidisciplinary teams of experts conducted each phase. This report presents the need for a new test reactor, the project process definition, a set of current and projected regulatory compliance and safety requirements, a set of facility user needs for a broad range of projected testing missions, and descriptions of reactor concepts capable of meeting these requirements. This information can be applied to strategic planning to provide the Department of Energy with management options.

  14. Safety requirements, facility user needs, and reactor concepts for a new Broad Application Test Reactor

    SciTech Connect (OSTI)

    Ryskamp, J.M.; Liebenthal, J.L.; Denison, A.B.; Fletcher, C.D.

    1992-07-01

    This report describes the EG G Laboratory Directed Research and Development Program (LDRD) Broad Application Test Reactor (BATR) Project that was conducted in fiscal year 1991. The scope of this project was divided into three phases: a project process definition phase, a requirements development phase, and a preconceptual reactor design and evaluation phase. Multidisciplinary teams of experts conducted each phase. This report presents the need for a new test reactor, the project process definition, a set of current and projected regulatory compliance and safety requirements, a set of facility user needs for a broad range of projected testing missions, and descriptions of reactor concepts capable of meeting these requirements. This information can be applied to strategic planning to provide the Department of Energy with management options.

  15. Enterprise Assessments Targeted Review of the Safety System Management of the Secondary Confinement System and Power Distribution Safety System at the Y-12 National Security Complex Highly Enriched Uranium Materials Facility … December 2015

    Energy Savers [EERE]

    Targeted Review of the Safety System Management of the Secondary Confinement System and Safety Significant Power Distribution System at the Y-12 National Security Complex Highly Enriched Uranium Materials Facility December 2015 Office of Nuclear Safety and Environmental Assessments Office of Environment, Safety and Health Assessments Office of Enterprise Assessments U.S. Department of Energy i Table of Contents Acronyms

  16. DISPOSITION PATHS FOR ROCKY FLATS GLOVEBOXES: EVALUATING OPTIONS

    SciTech Connect (OSTI)

    Lobdell, D.; Geimer, R.; Larsen, P.; Loveland, K.

    2003-02-27

    The Kaiser-Hill Company, LLC has the responsibility for closure activities at the Rocky Flats Environmental Technology Site (RFETS). One of the challenges faced for closure is the disposition of radiologically contaminated gloveboxes. Evaluation of the disposition options for gloveboxes included a detailed analysis of available treatment capabilities, disposal facilities, and lifecycle costs. The Kaiser-Hill Company, LLC followed several processes in determining how the gloveboxes would be managed for disposition. Currently, multiple disposition paths have been chosen to accommodate the needs of the varying styles and conditions of the gloveboxes, meet the needs of the decommissioning team, and to best manage lifecycle costs. Several challenges associated with developing a disposition path that addresses both the radiological and RCRA concerns as well as offering the most cost-effective solution were encountered. These challenges included meeting the radiological waste acceptance criteria of available disposal facilities, making a RCRA determination, evaluating treatment options and costs, addressing void requirements associated with disposal, and identifying packaging and transportation options. The varying disposal facility requirements affected disposition choices. Facility conditions that impacted decisions included radiological and chemical waste acceptance criteria, physical requirements, and measurement for payment options. The facility requirements also impacted onsite activities including management strategies, decontamination activities, and life-cycle cost.

  17. Annual report to Congress: Department of Energy activities relating to the Defense Nuclear Facilities Safety Board, calendar year 1998

    SciTech Connect (OSTI)

    1999-02-01

    This is the ninth Annual Report to the Congress describing Department of Energy (Department) activities in response to formal recommendations and other interactions with the Defense Nuclear Facilities Safety Board (Board). The Board, an independent executive-branch agency established in 1988, provides advice and recommendations to the Secretary of energy regarding public health and safety issues at the Department`s defense nuclear facilities. The Board also reviews and evaluates the content and implementation of health and safety standards, as well as other requirements, relating to the design, construction, operation, and decommissioning of the Department`s defense nuclear facilities. The locations of the major Department facilities are provided. During 1998, Departmental activities resulted in the proposed closure of one Board recommendation. In addition, the Department has completed all implementation plan milestones associated with four other Board recommendations. Two new Board recommendations were received and accepted by the Department in 1998, and two new implementation plans are being developed to address these recommendations. The Department has also made significant progress with a number of broad-based initiatives to improve safety. These include expanded implementation of integrated safety management at field sites, a renewed effort to increase the technical capabilities of the federal workforce, and a revised plan for stabilizing excess nuclear materials to achieve significant risk reduction.

  18. Nuclear Materials Disposition

    Broader source: Energy.gov [DOE]

    In fulfilling its mission, EM frequently manages and completes disposition of surplus nuclear materials and spent nuclear fuel.  These are not waste. They are nuclear materials no longer needed for...

  19. REQUEST FOR RECORDS DISPOSITION AUTHORITY | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    REQUEST FOR RECORDS DISPOSITION AUTHORITY REQUEST FOR RECORDS DISPOSITION AUTHORITY Request for Records Disposition Authority PDF icon REQUEST FOR RECORDS DISPOSITION AUTHORITY More Documents & Publications Request For Records Disposition Authority Request For Records Disposition Request For Records Disposition Authority

  20. Characterizing Surplus US Plutonium for Disposition - 13199

    SciTech Connect (OSTI)

    Allender, Jeffrey S.; Moore, Edwin N.

    2013-07-01

    The United States (US) has identified 61.5 metric tons (MT) of plutonium that is permanently excess to use in nuclear weapons programs, including 47.2 MT of weapons-grade plutonium. Surplus inventories will be stored safely by the Department of Energy (DOE) and then transferred to facilities that will prepare the plutonium for permanent disposition. The Savannah River National Laboratory (SRNL) operates a Feed Characterization program for the Office of Fissile Materials Disposition (OFMD) of the National Nuclear Security Administration (NNSA) and the DOE Office of Environmental Management (DOE-EM). SRNL manages a broad program of item tracking through process history, laboratory analysis, and non-destructive assay. A combination of analytical techniques allows SRNL to predict the isotopic and chemical properties that qualify materials for disposition through the Mixed Oxide (MOX) Fuel Fabrication Facility (MFFF). The research also defines properties that are important for other disposition paths, including disposal to the Waste Isolation Pilot Plant (WIPP) as transuranic waste (TRUW) or to high-level waste (HLW) systems. (authors)

  1. Characterizing surplus US plutonium for disposition

    SciTech Connect (OSTI)

    Allender, Jeffrey S.; Moore, Edwin N.

    2013-02-26

    The United States (US) has identified 61.5 metric tons (MT) of plutonium that is permanently excess to use in nuclear weapons programs, including 47.2 MT of weapons-grade plutonium. Surplus inventories will be stored safely by the Department of Energy (DOE) and then transferred to facilities that will prepare the plutonium for permanent disposition. The Savannah River National Laboratory (SRNL) operates a Feed Characterization program for the Office of Fissile Materials Disposition (OFMD) of the National Nuclear Security Administration (NNSA) and the DOE Office of Environmental Management (DOE-EM). SRNL manages a broad program of item tracking through process history, laboratory analysis, and non-destructive assay. A combination of analytical techniques allows SRNL to predict the isotopic and chemical properties that qualify materials for disposition through the Mixed Oxide (MOX) Fuel Fabrication Facility (MFFF). The research also defines properties that are important for other disposition paths, including disposal to the Waste Isolation Pilot Plant (WIPP) as transuranic waste (TRUW) or to high-level waste (HLW) systems.

  2. SELECTION OF SURPLUS PLUTONIUM MATERIALS FOR DISPOSITION TO WIPP

    SciTech Connect (OSTI)

    Allender, J.; Mcclard, J.; Christopher, J.

    2012-06-08

    The U.S. Department of Energy (DOE) is preparing a Surplus Plutonium Disposition (SPD) Supplemental Environmental Impact Statement (SEIS). Included in the evaluation are up to 6 metric tons (MT) of plutonium in the form of impure oxides and metals for which a disposition plan has not been decided, among options that include preparation as feed for the Mixed Oxide Fuel Fabrication Facility; disposing to high-level waste through the Savannah River Site (SRS) HB Line and H Canyon; can-in-canister disposal using the SRS Defense Waste Processing Facility; and preparation for disposal at the Waste Isolation Pilot Plant (WIPP). DOE and SRS have identified at least 0.5 MT of plutonium that, because of high levels of chemical and isotopic impurities, is impractical for disposition by methods other than the WIPP pathway. Characteristics of these items and the disposition strategy are discussed.

  3. Revisions to the Facility Safety Order and DOE‐STD‐1066

    Broader source: Energy.gov [DOE]

    Presenter: Jim Bisker, Fire Protection Program Manager, Office of Health, Safety and Security (HS‐32)

  4. Annual report to Congress. Department of Energy activities relating to the Defense Nuclear Facilities Safety Board, calendar year 2000

    SciTech Connect (OSTI)

    2001-03-01

    This Annual Report to the Congress describes the Department of Energy's activities in response to formal recommendations and other interactions with the Defense Nuclear Facilities Safety Board. During 2000, the Department completed its implementation and proposed closure of one Board recommendation and completed all implementation plan milestones associated with two additional Board recommendations. Also in 2000, the Department formally accepted two new Board recommendations and developed implementation plans in response to those recommendations. The Department also made significant progress with a number of broad-based safety initiatives. These include initial implementation of integrated safety management at field sites and within headquarters program offices, issuance of a nuclear safety rule, and continued progress on stabilizing excess nuclear materials to achieve significant risk reduction.

  5. CHARACTERIZATION OF SURPLUS PLUTONIUM FOR DISPOSITION OPTIONS

    SciTech Connect (OSTI)

    Allender, J; Edwin Moore, E; Scott Davies, S

    2008-07-15

    The United States (U.S.) has identified 61.5 metric tons (MT) of plutonium that is permanently excess to use in nuclear weapons programs, including 47.2 MT of weapons-grade plutonium. Except for materials that remain in use for programs outside of national defense, including programs for nuclear-energy development, the surplus inventories will be stored safely by the Department of Energy (DOE) and then transferred to facilities that will prepare the plutonium for permanent disposition. Some items will be disposed as transuranic waste, low-level waste, or spent fuel. The remaining surplus plutonium will be managed through: (1) the Mixed Oxide (MOX) Fuel Fabrication Facility (FFF), to be constructed at the Savannah River Site (SRS), where the plutonium will be converted to fuel that will be irradiated in civilian power reactors and later disposed to a high-level waste (HLW) repository as spent fuel; (2) the SRS H-Area facilities, by dissolving and transfer to HLW systems, also for disposal to the repository; or (3) alternative immobilization techniques that would provide durable and secure disposal. From the beginning of the U.S. program for surplus plutonium disposition, DOE has sponsored research to characterize the surplus materials and to judge their suitability for planned disposition options. Because many of the items are stored without extensive analyses of their current chemical content, the characterization involves three interacting components: laboratory sample analysis, if available; non-destructive assay data; and rigorous evaluation of records for the processing history for items and inventory groups. This information is collected from subject-matter experts at inventory sites and from materials stabilization and surveillance programs, in cooperation with the design agencies for the disposition facilities. This report describes the operation and status of the characterization program.

  6. Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Future MissionFacilities FacilitiesTara Camacho-Lopez2016-04-06T18:06:13+00:00 National Solar Thermal ... experimental engineering data for the design, ...

  7. Chemical Safety Vulnerability Working Group report. Volume 1

    SciTech Connect (OSTI)

    Not Available

    1994-09-01

    The Chemical Safety Vulnerability (CSV) Working Group was established to identify adverse conditions involving hazardous chemicals at DOE facilities that might result in fires or explosions, release of hazardous chemicals to the environment, or exposure of workers or the public to chemicals. A CSV Review was conducted in 148 facilities at 29 sites. Eight generic vulnerabilities were documented related to: abandoned chemicals and chemical residuals; past chemical spills and ground releases; characterization of legacy chemicals and wastes; disposition of legacy chemicals; storage facilities and conditions; condition of facilities and support systems; unanalyzed and unaddressed hazards; and inventory control and tracking. Weaknesses in five programmatic areas were also identified related to: management commitment and planning; chemical safety management programs; aging facilities that continue to operate; nonoperating facilities awaiting deactivation; and resource allocations. Volume 1 contains the Executive summary; Introduction; Summary of vulnerabilities; Management systems weaknesses; Commendable practices; Summary of management response plan; Conclusions; and a Glossary of chemical terms.

  8. Enterprise Assessments Lessons Learned from Targeted Reviews of the Management of Safety Systems at U.S. Department of Energy Nuclear Facilities … April 2016

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Office of Enterprise Assessments Lessons Learned from Targeted Reviews of the Management of Safety Systems at U.S. Department of Energy Nuclear Facilities April 2016 Office of Nuclear Safety and Environmental Assessments Office of Environment, Safety and Health Assessments Office of Enterprise Assessments U.S. Department of Energy i Table of Contents Acronyms

  9. Safety analysis--200 Area Savannah River Site: Separations Area operations Building 211-H Outside Facilities. Supplement 11, Revision 1

    SciTech Connect (OSTI)

    Not Available

    1993-01-01

    The H-Area Outside Facilities are located in the 200-H Separations Area and are comprised of a number of processes, utilities, and services that support the separations function. Included are enriched uranium loadout, bulk chemical storage, water handling, acid recovery, general purpose evaporation, and segregated solvent facilities. In addition, services for water, electricity, and steam are provided. This Safety Analysis Report (SAR) documents an analysis of the H-Area Outside Facilities and is one of a series of documents for the Separations Area as specified in the SR Implementation Plan for DOE order 5481.1A. The primary purpose of the analysis was to demonstrate that the facility can be operated without undue risk to onsite or offsite populations, to the environment, and to operating personnel. In this report, risks are defined as the expected frequencies of accidents, multiplied by the resulting radiological consequences in person-rem. Following the summary description of facility and operations is the site evaluation including the unique features of the H-Area Outside Facilities. The facility and process design are described in Chapter 3.0 and a description of operations and their impact is given in Chapter 4.0. The accident analysis in Chapter 5.0 is followed by a list of safety related structures and systems (Chapter 6.0) and a description of the Quality Assurance program (Chapter 7.0). The accident analysis in this report focuses on estimating the risk from accidents as a result of operation of the facilities. The operations were evaluated on the basis of three considerations: potential radiological hazards, potential chemical toxicity hazards, and potential conditions uniquely different from normal industrial practice.

  10. ACCELERATION OF LOS ALAMOS NATIONAL LABORATORY TRANSURANIC WASTE DISPOSITION

    SciTech Connect (OSTI)

    O'LEARY, GERALD A.

    2007-01-04

    One of Los Alamos National Laboratory's (LANL's) most significant risks is the site's inventory of transuranic waste retrievably stored above and below-ground in Technical Area (TA) 54 Area G, particularly the dispersible high-activity waste stored above-ground in deteriorating facilities. The high activity waste represents approximately 50% (by activity) of the total 292,000 PE-Ci inventory remaining to be disposed. The transuramic waste inventory includes contact-handled and remote-handled waste packaged in drums, boxes, and oversized containers which are retrievably stored both above and below-ground. Although currently managed as transuranic waste, some of the inventory is low-level waste that can be disposed onsite or at approved offsite facilities. Dispositioning the transuranic waste inventory requires retrieval of the containers from above and below-ground storage, examination and repackaging or remediation as necessary, characterization, certification and loading for shipment to the Waste Isolation Pilot Plant in Carlsbad New Mexico, all in accordance with well-defined requirements and controls. Although operations are established to process and characterize the lower-activity contact-handled transuranic waste containers, LAN L does not currently have the capability to repack high activity contact-handled transuranic waste containers (> 56 PE-Ci) or to process oversized containers with activity levels over 0.52 PE-Ci. Operational issues and compliance requirements have resulted in less than optimal processing capabilities for lower activity contact-handled transuranic waste containers, limiting preparation and reducing dependability of shipments to the Waste Isolation Pilot Plant. Since becoming the Los Alamos National Laboratory contract in June 2006, Los Alamos National Security (LANS) L.L.C. has developed a comprehensive, integrated plan to effectively and efficiently disposition the transuranic waste inventory, working in concert with the Department of Energy Los Alamos Site Office, Carlsbad Field Office and the Department of Energy Headquaeters. Rather than simply processing containers as retrieved, the plan places priority on efficient curie disposition, a direct correlation to reducing risk. Key elements of the approch include balancing inventory and operational risks, tailoring methods to meet requirements, optimizing existing facilities, equipment and staff, and incorporating best practices from other Department of Energy sites. With sufficient funding this will enable LANL to ship the above-ground high activity contact-handled transuranic waste offsite by the end of Fiscal Year (FY) 2007 and to disposition the remaining above- and below-ground contact-handled and remote-handled transuranic waste inventory by December 2010. Nearly 70% of the contact-handled transuranic waste containers, including the high activity waste, require processing and repackaging before characterization and certification for shipment to the Waste Isolation Pilot Plant. LANL is employing a balanced risk approach that accomplishes significant long-term risk reduction by accepting short-term increased facility operations risk under well-developed and justified interim controls. Reviews of facility conditions and additional analyses show that the Waste Characterization, Reduction and Repackaging Facility and the Radioassay and Nondestructive Testing Facility are the most appropriate facilities to safetly remediate, repackage, and ship lower activity and the remaining high activity drums. Updated safety documentation supporting limited Hazard Category 2 operations in these facilities has been developed. Once approved, limited-term operations to process the high activity drums can begin in early 2007, building upon the experience base established performing Hazard Category 3 operations processing lower activity waste in these facilities. LANL is also implementing a series of actions to improve and sustain operations for processing contact-handled transuranic waste inventory. Building 412 Decontamination and Volume Facility and Dome 231 Permacon will be reconfigured to remediate and repackage oversized containers. Actions are underway to stage the inventory in a manner that facilitiates handling and processing, and builds a backlog at key process steps to improve efficienty and minimize the impact of operational slowdown elsewhere in the process. Several initiatives will improve safety and strengthen disciplined operations and compliance with established requirements. Retrieval is a critical element in dispositioning the below-ground contact-handled and remote-handled transuranic waste inventory and will be subcontracted to a firm(s) with the experience and specialized capability to retrieve the contact-handled and remote-handled inventories. Performance specifications consider likely container integrity issues and anticipated challenges recoveirng the waste from storage in pits, trenches, and lined shafts.

  11. HANFORD SAFETY ANALYSIS & RISK ASSESSMENT HANDBOOK (SARAH)

    SciTech Connect (OSTI)

    EVANS, C B

    2004-12-21

    The purpose of the Hanford Safety Analysis and Risk Assessment Handbook (SARAH) is to support the development of safety basis documentation for Hazard Category 2 and 3 (HC-2 and 3) U.S. Department of Energy (DOE) nuclear facilities to meet the requirements of 10 CFR 830, ''Nuclear Safety Management''. Subpart B, ''Safety Basis Requirements.'' Consistent with DOE-STD-3009-94, Change Notice 2, ''Preparation Guide for U.S. Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses'' (STD-3009), and DOE-STD-3011-2002, ''Guidance for Preparation of Basis for Interim Operation (BIO) Documents'' (STD-3011), the Hanford SARAH describes methodology for performing a safety analysis leading to development of a Documented Safety Analysis (DSA) and derivation of Technical Safety Requirements (TSR), and provides the information necessary to ensure a consistently rigorous approach that meets DOE expectations. The DSA and TSR documents, together with the DOE-issued Safety Evaluation Report (SER), are the basic components of facility safety basis documentation. For HC-2 or 3 nuclear facilities in long-term surveillance and maintenance (S&M), for decommissioning activities, where source term has been eliminated to the point that only low-level, residual fixed contamination is present, or for environmental remediation activities outside of a facility structure, DOE-STD-1120-98, ''Integration of Environment, Safety, and Health into Facility Disposition Activities'' (STD-1120), may serve as the basis for the DSA. HC-2 and 3 environmental remediation sites also are subject to the hazard analysis methodologies of this standard.

  12. An overview of research activities on materials for nuclear applications at the INL Safety, Tritium and Applied Research facility

    SciTech Connect (OSTI)

    P. Calderoni; P. Sharpe; M. Shimada

    2009-09-01

    The Safety, Tritium and Applied Research facility at the Idaho National Laboratory is a US Department of Energy National User Facility engaged in various aspects of materials research for nuclear applications related to fusion and advanced fission systems. Research activities are mainly focused on the interaction of tritium with materials, in particular plasma facing components, liquid breeders, high temperature coolants, fuel cladding, cooling and blanket structures and heat exchangers. Other activities include validation and verification experiments in support of the Fusion Safety Program, such as beryllium dust reactivity and dust transport in vacuum vessels, and support of Advanced Test Reactor irradiation experiments. This paper presents an overview of the programs engaged in the activities, which include the US-Japan TITAN collaboration, the US ITER program, the Next Generation Power Plant program and the tritium production program, and a presentation of ongoing experiments as well as a summary of recent results with emphasis on fusion relevant materials.

  13. Emergency preparedness source term development for the Office of Nuclear Material Safety and Safeguards-Licensed Facilities

    SciTech Connect (OSTI)

    Sutter, S.L.; Mishima, J.; Ballinger, M.Y.; Lindsey, C.G.

    1984-08-01

    In order to establish requirements for emergency preparedness plans at facilities licensed by the Office of Nuclear Materials Safety and Safeguards, the Nuclear Regulatory Commission (NRC) needs to develop source terms (the amount of material made airborne) in accidents. These source terms are used to estimate the potential public doses from the events, which, in turn, will be used to judge whether emergency preparedness plans are needed for a particular type of facility. Pacific Northwest Laboratory is providing the NRC with source terms by developing several accident scenarios for eleven types of fuel cycle and by-product operations. Several scenarios are developed for each operation, leading to the identification of the maximum release considered for emergency preparedness planning (MREPP) scenario. The MREPP scenarios postulated were of three types: fire, tornado, and criticality. Fire was significant at oxide fuel fabrication, UF/sub 6/ production, radiopharmaceutical manufacturing, radiopharmacy, sealed source manufacturing, waste warehousing, and university research and development facilities. Tornadoes were MREPP events for uranium mills and plutonium contaminated facilities, and criticalities were significant at nonoxide fuel fabrication and nuclear research and development facilities. Techniques for adjusting the MREPP release to different facilities are also described.

  14. Safety training and safe operating procedures written for PBFA (Particle Beam Fusion Accelerator) II and applicable to other pulsed power facilities

    SciTech Connect (OSTI)

    Donovan, G.L.; Goldstein, S.A.

    1986-12-01

    To ensure that work in advancing pulsed power technology is performed with an acceptably low risk, pulsed power research facilities at Sandia National Laboratories must satisfy general safety guidelines established by the Department of Energy, policies and formats of the Environment, Safety, and Health (ES and H) Department, and detailed procedures formulated by the Pulsed Power Sciences Directorate. The approach to safety training and to writing safe operating procedures, and the procedures presented here are specific to the Particle Beam Fusion Accelerator II (PBFA II) Facility but are applicable as guidelines to other research and development facilities which have similar hazards.

  15. Savannah River Site Achieves Transuranic Waste Disposition Goal in 2013 |

    Energy Savers [EERE]

    Department of Energy Site Achieves Transuranic Waste Disposition Goal in 2013 Savannah River Site Achieves Transuranic Waste Disposition Goal in 2013 December 24, 2013 - 12:00pm Addthis Workers gather behind a “Safety and Security begins with Me” banner at the Savannah River Site. Workers gather behind a "Safety and Security begins with Me" banner at the Savannah River Site. Workers sort through transuranic waste at the Savannah River Site. Workers sort through

  16. Mixed Oxide Fuel Fabrication Facility | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration Mixed Oxide Fuel Fabrication Facility Mixed Oxide (MOX) Fuel Fabrication Facility Documents related to the project: Plutonium Disposition Study Options Independent Assessment Phase 1 Report, April 13, 2015 Plutonium Disposition Study Options Independent Assessment Phase 2 Report, August 20, 2015 Final Report of the Plutonium Disposition Red Team, August 13, 2015 Commentary on

  17. Health and safety plan for characterization sampling of ETR and MTR facilities

    SciTech Connect (OSTI)

    Baxter, D.E.

    1994-10-01

    This health and safety plan establishes the procedures and requirements that will be used to minimize health and safety risks to persons performing Engineering Test Reactor and Materials Test Reactor characterization sampling activities, as required by the Occupational Safety and Health Administration standard, 29 CFR 1910.120. It contains information about the hazards involved in performing the tasks, and the specific actions and equipment that will be used to protect persons working at the site.

  18. Safety Issues

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Site Safety Orientation April, 2015 Atmospheric Radiation Measurement Climate Research ... with operations at the Atmospheric Radiation Measurement Climate Research Facility...

  19. U.S. Department of Energy, Oak Ridge Operations Office Nuclear Facility Safety Basis Fundamentals Self-Study Guide [Fulfills ORO Safety Basis Competency 1, 2 (Part 1), or 7 (Part 1)

    Broader source: Energy.gov [DOE]

    "This self-study guide provides an overview of safety basis terminology, requirements, and activities that are applicable to DOE and Oak Ridge Operations Office (ORO) nuclear facilities on the Oak...

  20. Subject: Integrated Safety Analysis: Why It Is Appropriate for Fuel Recycling Facilities Project Number: 689Nuclear Energy Institute (NEI) Letter, 9/10/10

    Broader source: Energy.gov [DOE]

    Enclosed for your review is a Nuclear Energy Institute white paper on the use of Integrated Safety Analysis (ISA) at U.S. Nuclear Regulatory Commission-licensed recycling facilities. This paper is...

  1. Fissile Material Disposition Program: Deep borehole disposal Facility PEIS date input report for immobilized disposal. Immobilized disposal of plutonium in coated ceramic pellets in grout with canisters. Version 3.0

    SciTech Connect (OSTI)

    Wijesinghe, A.M.; Shaffer, R.J.

    1996-01-15

    Following President Clinton`s Non-Proliferation Initiative, launched in September, 1993, an Interagency Working Group (IWG) was established to conduct a comprehensive review of the options for the disposition of weapons-usable fissile materials from nuclear weapons dismantlement activities in the United States and the former Soviet Union. The IWG review process will consider technical, nonproliferation, environmental budgetary, and economic considerations in the disposal of plutonium. The IWG is co-chaired by the White House Office of Science and Technology Policy and the National Security Council. The Department of Energy (DOE) is directly responsible for the management, storage, and disposition of all weapons-usable fissile material. The Department of Energy has been directed to prepare a comprehensive review of long-term options for Surplus Fissile Material (SFM) disposition, taking into account technical, nonproliferation, environmental, budgetary, and economic considerations.

  2. CRAD, Occupational Safety & Health- Los Alamos National Laboratory TA 55 SST Facility

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for an assessment of the Industrial Hygiene program at the Los Alamos National Laboratory TA 55 SST Facility.

  3. Hight-Level Waste & Facilities Disposition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Administration Highly Enriched Uranium Transparency Program November 13, 2013 The U.S. National Nuclear Security Administration's (NNSA) Highly Enriched Uranium (HEU) Transparency Program reduces nuclear risk by monitoring the conversion of 500 metric tons (MT) of Russian HEU, enough material for 20,000 nuclear weapons, into low enriched uranium (LEU). This LEU is put into peaceful use in the United States, generating nearly 10% of all U.S. electrical power. The HEU Purchase Agreement:

  4. Major Risk Factors Integrated Facility Disposition Project -...

    Office of Environmental Management (EM)

    ... of Decision LGWTS Liquid and Gaseous Waste Treatment System LLW low-level waste LLLW liquid low-level waste LTTD low-temperature thermal desorption MLLW mixed low-level waste MV ...

  5. safety

    National Nuclear Security Administration (NNSA)

    contractor at the Nevada National Security Site, has been recognized by the Department of Energy for excellence in occupational safety and health protection. National Nuclear...

  6. Fuel-cycle facilities: preliminary safety and environmental information document. Volume VII

    SciTech Connect (OSTI)

    Not Available

    1980-01-01

    Information is presented concerning the mining and milling of uranium and thorium; uranium hexafluoride conversion; enrichment; fuel fabrication; reprocessing; storage options; waste disposal options; transportation; heavy-water-production facilities; and international fuel service centers.

  7. DOE-HDBK-1113-98; Radiological Safety Training for Uranium Facilities...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DATE M a y 9, 2005 REPLY TO EH-52:Judith D. Foulke:3-5865 ATTN OF: REAFFIRMATION WITH ERRATA OF DEPARTMENT OF ENERGY (DOE) URANIUM FACILITIES" Dennis Kubicki, Technical Standards ...

  8. Portsmouth Waste Disposition Record of Decision | Department...

    Office of Environmental Management (EM)

    Waste Disposition Record of Decision Portsmouth Waste Disposition Record of Decision The Ohio Environmental Protection Agency (Ohio EPA) and the U.S. Department of Energy (DOE) ...

  9. Savannah River Site Waste Disposition Project

    Office of Environmental Management (EM)

    Terrel J. Spears Assistant Manager Waste Disposition Project DOE Savannah River Operations Office Savannah River Site Savannah River Site Waste Disposition Project Waste ...

  10. Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  11. Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  12. Waste Receiving and Processing (WRAP) Facility Final Safety Analysis Report (FSAR)

    SciTech Connect (OSTI)

    TOMASZEWSKI, T.A.

    2000-04-25

    The Waste Receiving and Processing Facility (WRAP), 2336W Building, on the Hanford Site is designed to receive, confirm, repackage, certify, treat, store, and ship contact-handled transuranic and low-level radioactive waste from past and present U.S. Department of Energy activities. The WRAP facility is comprised of three buildings: 2336W, the main processing facility (also referred to generically as WRAP); 2740W, an administrative support building; and 2620W, a maintenance support building. The support buildings are subject to the normal hazards associated with industrial buildings (no radiological materials are handled) and are not part of this analysis except as they are impacted by operations in the processing building, 2336W. WRAP is designed to provide safer, more efficient methods of handling the waste than currently exist on the Hanford Site and contributes to the achievement of as low as reasonably achievable goals for Hanford Site waste management.

  13. Safety Software Quality Assurance Functions, Responsibilities, and Authorities for Nuclear Facilities and Activities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2003-08-27

    To assign roles and responsibilities for improving the quality of safety software. DOE N 411.2 (archived) extends this Notice until 01/31/2005. DOE N 411.3 extends this Notice until 1/31/06. Canceled by DOE O 414.1C. does not cancel other directives.

  14. Facility Security Officer Contractor Toolcart

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facility Safety Policy, Guidance & Reports Facility Safety Policy, Guidance & Reports The Office of Nuclear Facility Safety Programs within the U.S. Department of Energy's (DOE) Environment, Health, Safety and Security organization, establishes nuclear safety requirements related to safety management programs that are essential to the safety of DOE nuclear facilities. In addition, establishes requirements for facility design and operation for facility-wide hazards that are not unique to

  15. Disposition of Uranium Oxide From Conversion of Depleted Uranium Hexafluoride

    Broader source: Energy.gov [DOE]

    This Supplemental Environmental Impact Statement (SEIS) for Disposition of Uranium Oxide Conversion Product Generated from Conversion of DOE’s Inventory of Depleted Uranium Hexafluoride [DOE/EIS-0359-S1 and DOE/EIS-0360-S1] evaluates the environmental impacts resulting from the disposition of up to 800,000 metric tons of uranium oxide resulting from the conversion of depleted uranium hexafluoride (DUF6) at the Department’s two operating DUF6 conversion facilities in Paducah, Kentucky and Portsmouth, Ohio.

  16. Uranium Downblending and Disposition Project Technology Readiness

    Energy Savers [EERE]

    Assessment | Department of Energy Uranium Downblending and Disposition Project Technology Readiness Assessment Uranium Downblending and Disposition Project Technology Readiness Assessment Full Document and Summary Versions are available for download PDF icon Uranium Downblending and Disposition Project Technology Readiness Assessment PDF icon Summary - Uranium233 Downblending and Disposition Project More Documents & Publications Compilation of TRA Summaries EA-1574: Final Environmental

  17. DISPOSITION AUTHORITIES FROZEN UNDER THE EPIDEMIOLOGICAL MORATORIUM |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy DISPOSITION AUTHORITIES FROZEN UNDER THE EPIDEMIOLOGICAL MORATORIUM DISPOSITION AUTHORITIES FROZEN UNDER THE EPIDEMIOLOGICAL MORATORIUM Listed on this document are all the disposition authorities which are under the moratorium on the destruction of health related records as of March 2008. PDF icon DISPOSITION AUTHORITIES FROZEN UNDER THE EPIDEMIOLOGICAL MORATORIUM More Documents & Publications ADMINISTRATIVE RECORDS SCHEDULE 17: CARTOGRAPHIC, AERIAL PHOTOGRAPHIC,

  18. PROJECT STRATEGY FOR THE REMEDIATION AND DISPOSITION OF LEGACY TRANSURANIC WASTE AT THE SAVANNAH RIVER SITE, South Carolina, USA

    SciTech Connect (OSTI)

    Rodriguez, M.

    2010-12-17

    This paper discusses the Savannah River Site Accelerated Transuranic (TRU) Waste Project that was initiated in April of 2009 to accelerate the disposition of remaining legacy transuranic waste at the site. An overview of the project execution strategy that was implemented is discussed along with the lessons learned, challenges and improvements to date associated with waste characterization, facility modifications, startup planning, and remediation activities. The legacy waste was generated from approximately 1970 through 1990 and originated both on site as well as at multiple US Department of Energy sites. Approximately two thirds of the waste was previously dispositioned from 2006 to 2008, with the remaining one third being the more hazardous waste due to its activity (curie content) and the plutonium isotope Pu-238 quantities in the waste. The project strategy is a phased approach beginning with the lower activity waste in existing facilities while upgrades are made to support remediation of the higher activity waste. Five waste remediation process lines will be used to support the full remediation efforts which involve receipt of the legacy waste container, removal of prohibited items, venting of containers, and resizing of contents to fit into current approved waste shipping containers. Modifications have been minimized to the extent possible to meet the accelerated goals and involve limited upgrades to address life safety requirements, radiological containment needs, and handling equipment for the larger waste containers. Upgrades are also in progress for implementation of the TRUPACT III for the shipment of Standard Large Boxes to the Waste Isolation Pilot Plant, the US TRU waste repository. The use of this larger shipping container is necessary for approximately 20% of the waste by volume due to limited size reduction capability. To date, approximately 25% of the waste has been dispositioned, and several improvements have been made to the overall processing plan as well as facility processing rates. These lessons learned, challenges, and improvements will be discussed to aid other sites in their efforts to conduct similar activities.

  19. FS65 Disposition Option Report

    SciTech Connect (OSTI)

    Wenz, Tracy R.

    2015-09-25

    This report outlines the options for dispositioning the MOX fuel stored in FS65 containers at LANL. Additional discussion regarding the support equipment for loading and unloading the FS65 transport containers is included at the end of the report.

  20. Safety

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  1. CRAD, Assessment Criteria and Guidelines for Determining the Adequacy of Software Used in the Safety Analysis and Design of Defense Nuclear Facilities

    Broader source: Energy.gov [DOE]

    These guidelines and criteria provide a consistent overall framework for assessment of the processes that are currently in place to ensure that the software being used in the safety analysis and design of the SSCs in defense nuclear facilities is adequate. These reviews will be conducted only on software that is currently in use, not on software that was previously used as part of a safety analysis and design process.

  2. REQUEST FOR RECORDS DISPOSITION AUTHORITY | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FOR RECORDS DISPOSITION AUTHORITY REQUEST FOR RECORDS DISPOSITION AUTHORITY RS-Weapons X-Rays PDF icon REQUEST FOR RECORDS DISPOSITION AUTHORITY More Documents & Publications...

  3. NNSA Holds Groundbreaking at MOX Facility | National Nuclear...

    National Nuclear Security Administration (NNSA)

    NNSA's plutonium disposition program moved another step forward with the start of site preparation for its Mixed Oxide (MOX) Fuel Fabrication Facility at the Savannah River Site. ...

  4. Chemical Safety Vulnerability Working Group report. Volume 3

    SciTech Connect (OSTI)

    Not Available

    1994-09-01

    The Chemical Safety Vulnerability (CSV) Working Group was established to identify adverse conditions involving hazardous chemicals at DOE facilities that might result in fires or explosions, release of hazardous chemicals to the environment, or exposure of workers or the public to chemicals. A CSV Review was conducted in 148 facilities at 29 sites. Eight generic vulnerabilities were documented related to: abandoned chemicals and chemical residuals; past chemical spills and ground releases; characterization of legacy chemicals and wastes; disposition of legacy chemicals; storage facilities and conditions; condition of facilities and support systems; unanalyzed and unaddressed hazards; and inventory control and tracking. Weaknesses in five programmatic areas were also identified related to: management commitment and planning; chemical safety management programs; aging facilities that continue to operate; nonoperating facilities awaiting deactivation; and resource allocations. Volume 3 consists of eleven appendices containing the following: Field verification reports for Idaho National Engineering Lab., Rocky Flats Plant, Brookhaven National Lab., Los Alamos National Lab., and Sandia National Laboratories (NM); Mini-visits to small DOE sites; Working Group meeting, June 7--8, 1994; Commendable practices; Related chemical safety initiatives at DOE; Regulatory framework and industry initiatives related to chemical safety; and Chemical inventory data from field self-evaluation reports.

  5. ORNL necessary and sufficient standards for environment, safety, and health. Final report of the Identification Team for other industrial, radiological, and non-radiological hazard facilities

    SciTech Connect (OSTI)

    1998-07-01

    This Necessary and Sufficient (N and S) set of standards is for Other Industrial, Radiological, and Non-Radiological Hazard Facilities at Oak Ridge National Laboratory (ORNL). These facility classifications are based on a laboratory-wide approach to classify facilities by hazard category. An analysis of the hazards associated with the facilities at ORNL was conducted in 1993. To identify standards appropriate for these Other Industrial, Radiological, and Non-Radiological Hazard Facilities, the activities conducted in these facilities were assessed, and the hazards associated with the activities were identified. A preliminary hazards list was distributed to all ORNL organizations. The hazards identified in prior hazard analyses are contained in the list, and a category of other was provided in each general hazard area. A workshop to assist organizations in properly completing the list was held. Completed hazard screening lists were compiled for each ORNL division, and a master list was compiled for all Other Industrial, Radiological Hazard, and Non-Radiological facilities and activities. The master list was compared against the results of prior hazard analyses by research and development and environment, safety, and health personnel to ensure completeness. This list, which served as a basis for identifying applicable environment, safety, and health standards, appears in Appendix A.

  6. Report to the Secretary of Energy on Beyond Design Basis Event Pilot Evaluations, Results and Recommendations for Improvements to Enhance Nuclear Safety at DOE Nuclear Facilities

    Broader source: Energy.gov [DOE]

    In the six months after the March 2011 Fukushima Daiichi nuclear power plant accident in Japan, the U.S. Department of Energy (DOE) took several actions to review the safety of its nuclear facilities and identify situations where near-term improvements could be made.

  7. Hanford Site waste tank farm facilities design reconstitution program plan

    SciTech Connect (OSTI)

    Vollert, F.R.

    1994-09-06

    Throughout the commercial nuclear industry the lack of design reconstitution programs prior to the mid 1980`s has resulted in inadequate documentation to support operating facilities configuration changes or safety evaluations. As a result, many utilities have completed or have ongoing design reconstitution programs and have discovered that without sufficient pre-planning their program can be potentially very expensive and may result in end-products inconsistent with the facility needs or expectations. A design reconstitution program plan is developed here for the Hanford waste tank farms facility as a consequence of the DOE Standard on operational configuration management. This design reconstitution plan provides for the recovery or regeneration of design requirements and basis, the compilation of Design Information Summaries, and a methodology to disposition items open for regeneration that were discovered during the development of Design Information Summaries. Implementation of this plan will culminate in an end-product of about 30 Design Information Summary documents. These documents will be developed to identify tank farms facility design requirements and design bases and thereby capture the technical baselines of the facility. This plan identifies the methodology necessary to systematically recover documents that are sources of design input information, and to evaluate and disposition open items or regeneration items discovered during the development of the Design Information Summaries or during the verification and validation processes. These development activities will be governed and implemented by three procedures and a guide that are to be developed as an outgrowth of this plan.

  8. Plutonium_Disposition_Phase_2_TOR_082015_FINAL

    National Nuclear Security Administration (NNSA)

    ... Future, Report to the Secretary of Energy, January 2012. 14 "Preapplication Safety ... to early concept design of green-field facilities that were produced in the 1990's. ...

  9. Criticality Safety | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Services » Nuclear Safety » Criticality Safety Criticality Safety Nuclear Safety Basis The Nuclear Facility Safety Program establishes and maintains the DOE requirements for nuclear criticality safety. The DOE detailed requirements for criticality safety are contained in Section 4.3 of the DOE Order 420.1,Facility Safety. Criticality safety requirements are based on the documented safety analysis required by 10 CFR 830, Subpart B. Related Links 10 CFR 830, Nuclear Safety Management American

  10. Request For Records Disposition | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Request For Records Disposition Request For Records Disposition Spent Nuclear Fuels PDF icon Request For Records Disposition More Documents & Publications Report on Separate Disposal of Defense High-Level Radioactive Waste The Report To The President And The Congress By The Secretary Of Energy On The Need For A Second Repository A REPORT TO CONGRESS BY THE SECRETARY OF ENERGY

  11. Mixed Oxide (MOX) Fuel Fabrication Facility | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration Savannah River Field Office Mixed Oxide (MOX) Fuel Fabrication Facility Documents related to the project: Plutonium Disposition Study Options Independent Assessment Phase 1 Report, April 13, 2015 Plutonium Disposition Study Options Independent Assessment Phase 2 Report, August 20, 2015 Final Report of the Plutonium Disposition Red Team, August 13, 2015 Commentary on Report by High Bridge Associates, Inc., Feb. 12, 2016 Related Topics Mixed Oxide Fuel Fabrication Facility MOX

  12. Safety Basis Requirements for Nonnuclear Facilities at Lawrence Livermore National Laboratory Site-Specific Work Smart Standard Revision 3 December 2006

    SciTech Connect (OSTI)

    Beach, D; Brereton, S; Failor, R; Hildum, J; Ingram, C; Spagnolo, S; van Warmerdam, C

    2007-06-07

    This standard establishes requirements that, when coupled with Lawrence Livermore National Laboratory's (LLNL's) Integrated Safety Management System (ISMS) methods and other Work Smart Standards for assuring worker safety, assure that the impacts of nonnuclear operations authorized in LLNL facilities are well understood and controlled in a manner that protects the health of workers, the public, and the environment. All LLNL facilities shall be classified based on potential for adverse impact of operations to the health of co-located (i.e., nearby) workers and the public in accordance with this standard, Title 10 Code of Federal Regulations (10 CFR) 830, Subpart B, and Department of Energy Order (DOE O) 420.2A.

  13. Disposition of Radioisotope Thermoelectric Generators Currently Located at the Oak Ridge National Laboratory - 12232

    SciTech Connect (OSTI)

    Glenn, J.; Patterson, J.; DeRoos, K.; Patterson, J.E.; Mitchell, K.G.

    2012-07-01

    Under the American Recovery and Reinvestment Act (ARRA), the U.S. Department of Energy (DOE) awarded SEC Federal Services Corporation (SEC) a 34-building demolition and disposal (D and D) project at the Oak Ridge National Laboratory (ORNL) that included the disposition of six Strontium (Sr-90) powered Radioisotope Thermoelectric Generators (RTGs) stored outside of ORNL Building 3517. Disposition of the RTGs is very complex both in terms of complying with disposal facility waste acceptance criteria (WAC) and U.S. Department of Transportation (DOT) requirements for packaging and transportation in commerce. Two of the RTGs contain elemental mercury which requires them to be Land Disposal Restrictions (LDR) compliant prior to disposal. In addition, all of the RTGs exceed the Class C waste concentration limits under Nuclear Regulatory Commission (NRC) Waste Classification Guidelines. In order to meet the LDR requirements and Nevada National Security Site (NNSS) WAC, a site specific treatability variance for mercury was submitted to the U.S. Environmental Protection Agency (EPA) to allow macro-encapsulation to be an acceptable treatment standard for elemental mercury. By identifying and confirming the design configuration of the mercury containing RTGs, the SEC team proved that the current configuration met the macro-encapsulation standard of 40 Code of Federal Regulations (CFR) 268.45. The SEC Team also worked with NNSS to demonstrate that all radioisotope considerations are compliant with the NNSS low-level waste (LLW) disposal facility performance assessment and WAC. Lastly, the SEC team determined that the GE2000 Type B cask met the necessary size, weight, and thermal loading requirements for five of the six RTGs. The sixth RTG (BUP-500) required a one-time DOT shipment exemption request due to the RTG's large size. The DOT exemption justification for the BUP-500 relies on the inherent robust construction and material make-up of the BUP- 500 RTG. DOE-ORO, SEC, and the entire SEC RTG team are nearing the conclusion of the Sr-90 RTG disposition challenge - a legacy now 50 years in the making. Over 600,000 Ci of Sr-90 waste await disposal and its removal from ORNL will mark an historical moment in the clean-up of the cold-war legacy in the ORNL central industrial area. Elimination (i.e., removal) of the RTGs will reduce security risks at ORNL and disposal will permanently eliminate security risks. The RTGs will eventually decay to benign levels within a reasonable timeframe relative to radiological risks posed by long-lived isotopes. The safety authorization basis at ORNL Building 3517 will be reduced enabling greater operational flexibility in future clean-out and D and D campaigns. Upon disposition the Department of Energy will realize reduced direct and indirect surveillance and maintenance costs that can be reapplied to accelerated and enhanced clean-up of the Oak Ridge Reservation. At present, waste profiles for the RTGs are developed and under review by NNSS RWAP staff and approval authorities. Disposition schedule is driven by the availability of compliant shipping casks necessary to safely transport the RTGs from ORNL to NNSS. The first disposal of the RCA RTG is expected in April 2012 and the remaining RTGs disposed in 2012 and 2013. (authors)

  14. The Process, Methods and Tool Used To Integrate Safety During Design of a Category 2 Nuclear Facility

    Broader source: Energy.gov [DOE]

    Presenter: Lynn J. Harkey, SDIT Project Engineer, Uranium Processing Facility Project, B&W Y-12 Track 5-2

  15. Report to the Secretary of Energy on Beyond Design Basis Event Pilot Evaluations, Results and Recommendations for Improvements to Enhance Nuclear Safety at DOE Nuclear Facilities, January 2013

    Broader source: Energy.gov [DOE]

    In the six months after the March 2011 Fukushima Daiichi nuclear power plant accident in Japan, the U.S. Department of Energy (DOE) took several actions to review the safety of its nuclear facilities and identify situations where near-term improvements could be made. These actions and recommendations were addressed in an August 2011 report to the Secretary of Energy, Review of Requirements and Capabilities for Analyzing and Responding to Beyond Design Basis Events.

  16. Status and Effectiveness of DOE Efforts to Learn from Internal and External Operating Experience in Accordance with Commitment #20 of the DOE Implementation Plan for Defense Nuclear Facilities Safety Board Recommendation 2004-1

    Energy Savers [EERE]

    Safety and Security Report to the Secretary on the Status and Effectiveness of DOE Efforts to Learn from Internal and External Operating Experience in Accordance with Commitment #20 of the DOE Implementation Plan for Defense Nuclear Facilities Safety Board Recommendation 2004-1 February 2011 Office of Health, Safety and Security U.S. Department of Energy Office of Health, Safety and Security HSS Table of Contents 1.0 Introduction

  17. Review of Nevada Site Office Criticality Safety Assessments at the Criticality Experiments Facility and Training Assembly for Criticality Safety and Appraisal of the Criticality Experiments Facility Startup Plan, October 2011

    Broader source: Energy.gov [DOE]

    This report provides the results of an independent oversight review of criticality safety assessment activities conducted by the Department of Energy's (DOE) Nevada Site Office

  18. Facility Floorplan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facility Floorplan

  19. Personal Property Disposition - Community Reuse Organizations (CROs) |

    Energy Savers [EERE]

    Department of Energy Personal Property Disposition - Community Reuse Organizations (CROs) Personal Property Disposition - Community Reuse Organizations (CROs) MEMORANDUM TO: DISTRIBUTION FROM: Michael Owen (signed) Director, Office of Worker and Community Transition Department of Energy Washington, DC 20505 January 22, 2003 Disposition of Excess Personal Property BACKGROUND AND PURPOSE CROs have been operating asset conversion and personal property transfer programs since shortly after the

  20. Surplus Plutonium Disposition Supplemental Environmental Impact Statement |

    National Nuclear Security Administration (NNSA)

    National Nuclear Security Administration Surplus Plutonium Disposition Supplemental Environmental Impact Statement ANNOUNCEMENT - March 30, 2016 Today I signed the Record of Decision (ROD) for Disposition of Surplus Non-Pit Plutonium for the Final Surplus Plutonium Disposition (SPD) Supplemental Environmental Impact Statement (Supplemental EIS). The ROD outlines the Department of Energy's National Nuclear Security Administration (DOE/NNSA) path forward to prepare and process six metric tons

  1. Biosafety Facilities - DOE Directives, Delegations, and Requirements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5, Biosafety Facilities by David Freshwater Functional areas: Defense Nuclear Facility Safety and Health Requirement, Safety and Security, The Guide assists DOENNSA field elements...

  2. Used Fuel Disposition Campaign Preliminary Quality Assurance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Preliminary Quality Assurance Implementation Plan Used Fuel Disposition Campaign Preliminary Quality Assurance Implementation Plan The primary objective of this report is to ...

  3. Weapons Dismantlement and Disposition NNSS Capabilities

    SciTech Connect (OSTI)

    Pat Arnold

    2011-12-01

    The U.S. Department of Energy (DOE) has tasked the WDD working group to disposition the large inventory of legacy classified weapon components scattered across the complex.

  4. EIS-0283: Surplus Plutonium Disposition Environmental Impact...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    10, 2008 EIS-0283: Amended Record of Decision Surplus Plutonium Disposition: Waste Solidification Building November 26, 2008 EIS-0283-SA-02: Supplement Analysis Surplus Plutonium...

  5. Complete Safety Training

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Complete Safety Training Print Facility Safety Training Required for ALL Users Users must register with the ALS to obtain an LBNL ID number before they can complete safety training...

  6. Chemical Safety Vulnerability Working Group report. Volume 2

    SciTech Connect (OSTI)

    Not Available

    1994-09-01

    The Chemical Safety Vulnerability (CSV) Working Group was established to identify adverse conditions involving hazardous chemicals at DOE facilities that might result in fires or explosions, release of hazardous chemicals to the environment, or exposure of workers or the public to chemicals. A CSV Review was conducted in 148 facilities at 29 sites. Eight generic vulnerabilities were documented related to: abandoned chemicals and chemical residuals; past chemical spills and ground releases; characterization of legacy chemicals and wastes; disposition of legacy chemicals; storage facilities and conditions; condition of facilities and support systems; unanalyzed and unaddressed hazards; and inventory control and tracking. Weaknesses in five programmatic areas were also identified related to: management commitment and planning; chemical safety management programs; aging facilities that continue to operate; nonoperating facilities awaiting deactivation; and resource allocations. Volume 2 consists of seven appendices containing the following: Tasking memorandums; Project plan for the CSV Review; Field verification guide for the CSV Review; Field verification report, Lawrence Livermore National Lab.; Field verification report, Oak Ridge Reservation; Field verification report, Savannah River Site; and the Field verification report, Hanford Site.

  7. Consent Order, Uranium Disposition Services, LLC - NCO-2010-01...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Uranium Disposition Services, LLC - NCO-2010-01 Consent Order, Uranium Disposition Services, LLC - NCO-2010-01 March 26, 2010 Issued to Uranium Disposition Services, LLC related to ...

  8. Mixed and low-level waste treatment project: Appendix C, Health and safety criteria for the mixed and low-level waste treatment facility at the Idaho National Engineering Laboratory

    SciTech Connect (OSTI)

    Neupauer, R.M.; Thurmond, S.M.

    1992-09-01

    This report describes health and safety concerns associated with the Mixed and Low-level Waste Treatment Facility at the Idaho National Engineering Laboratory. Various hazards are described such as fire, electrical, explosions, reactivity, temperature, and radiation hazards, as well as the potential for accidental spills, exposure to toxic materials, and other general safety concerns.

  9. Mixed and low-level waste treatment project: Appendix C, Health and safety criteria for the mixed and low-level waste treatment facility at the Idaho National Engineering Laboratory. Part 1, Waste streams and treatment technologies

    SciTech Connect (OSTI)

    Neupauer, R.M.; Thurmond, S.M.

    1992-09-01

    This report describes health and safety concerns associated with the Mixed and Low-level Waste Treatment Facility at the Idaho National Engineering Laboratory. Various hazards are described such as fire, electrical, explosions, reactivity, temperature, and radiation hazards, as well as the potential for accidental spills, exposure to toxic materials, and other general safety concerns.

  10. Comparison of Integrated Safety Analysis (ISA) and Probabilistic Risk Assessment (PRA) for Fuel Cycle Facilities, 2/17/11

    Broader source: Energy.gov [DOE]

    During the 580th meeting of the Advisory Committee on Reactor Safeguards (ACRS), February10-12, 2011, we reviewed the staff’s white paper, “A Comparison of Integrated Safety Analysisand...

  11. Management response plan for the Chemical Safety Vulnerability Working Group report. Volume 1

    SciTech Connect (OSTI)

    Not Available

    1994-09-01

    The Chemical Safety Vulnerability (CSV) Working Group was established to identify adverse conditions involving hazardous chemicals at DOE facilities that might result in fires or explosions, release of hazardous chemicals to the environment, or exposure of workers or the public to chemicals. A CSV Review was conducted in 146 facilities at 29 sites. Eight generic vulnerabilities were documented related to: abandoned chemicals and chemical residuals; past chemical spills and ground releases; characterization of legacy chemicals and wastes; disposition of legacy chemicals; storage facilities and conditions; condition of facilities and support systems; unanalyzed and unaddressed hazards; and inventory control and tracking. Weaknesses in five programmatic areas were also identified related to: management commitment and planning; chemical safety management programs; aging facilities that continue to operate; nonoperating facilities awaiting deactivation; and resource allocations. Volume 1 contains a discussion of the chemical safety improvements planned or already underway at DOE sites to correct facility or site-specific vulnerabilities. The main part of the report is a discussion of each of the programmatic deficiencies; a description of the tasks to be accomplished; the specific actions to be taken; and the organizational responsibilities for implementation.

  12. Request For Records Disposition Authority | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fossil Energy Equity Re-determination Records PDF icon Request For Records Disposition Authority More Documents & Publications REQUEST FOR RECORDS DISPOSITION AUTHORITY Inspection ...

  13. CXD 4605, Disposition Excess Equipment from Alpha 1 (4605)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Disposition Excess Equipment from Alpha 1 (4605) Y-12 Site Office Oak Ridge, Anderson County, Tennessee The proposed action is to characterize and disposition equipment that was...

  14. Topic Index to the DOE Administrative Records Disposition Schedules...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Topic Index to the DOE Administrative Records Disposition Schedules Topic Index to the DOE Administrative Records Disposition Schedules Topic Index to the DOE Administrative...

  15. REQUEST FOR RECORDS DISPOSITION AUTHORITY | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lawrence Berkeley National Laboratory: Cyclotron Records PDF icon REQUEST FOR RECORDS DISPOSITION AUTHORITY More Documents & Publications REQUEST FOR RECORDS DISPOSITION AUTHORITY...

  16. Integrated Tool Development for Used Fuel Disposition Natural...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Integrated Tool Development for Used Fuel Disposition Natural System Evaluation Phase I Report Integrated Tool Development for Used Fuel Disposition Natural System Evaluation Phase...

  17. PROCEDURE FOR PREPARING RECORDS INVENTORY AND DISPOSITION SCHEDULES...

    Energy Savers [EERE]

    records inventory and disposition schedules PDF icon PROCEDURE FOR PREPARING RECORDS INVENTORY AND DISPOSITION SCHEDULES (RIDS) More Documents & Publications DOE F 1324.10...

  18. Used Fuel Disposition Used Nuclear Fuel Storage and Transportation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ASI Review Meeting September 17, 2014 Used Fuel Disposition Today's Discussion n Our ... - Transportation - Analysis Used Fuel Disposition 3 Overall Objectives * Develop ...

  19. Feasibility study for a transportation operations system cask maintenance facility

    SciTech Connect (OSTI)

    Rennich, M.J.; Medley, L.G.; Attaway, C.R.

    1991-01-01

    The US Department of Energy (DOE), Office of Civilian Radioactive Waste Management (OCRWM) is responsible for the development of a waste management program for the disposition of spent nuclear fuel (SNF) and high-level waste (HLW). The program will include a transportation system for moving the nuclear waste from the sources to a geologic repository for permanent disposal. Specially designed casks will be used to safely transport the waste. The cask systems must be operated within limits imposed by DOE, the Nuclear Regulatory Commission (NRC), and the Department of Transportation (DOT). A dedicated facility for inspecting, testing, and maintaining the cask systems was recommended by the General Accounting Office (in 1979) as the best means of assuring their operational effectiveness and safety, as well as regulatory compliance. In November of 1987, OCRWM requested a feasibility study be made of a Cask Maintenance Facility (CMF) that would perform the required functions. 46 refs., 16 figs., 13 tabs.

  20. disposition

    National Nuclear Security Administration (NNSA)

    MT of surplus HEU has been down-blended for use as fuel in Tennessee Valley Authority reactors (completed in October 2011);

  21. 22 MT of surplus HEU has been set aside for...

  1. DOE SEEKS CONTRACTOR TO DISPOSITION WASTE AT THE ADVANCED MIXED WASTE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    TREATMENT PROJECT (AMWTP) SEEKS CONTRACTOR TO DISPOSITION WASTE AT THE ADVANCED MIXED WASTE TREATMENT PROJECT (AMWTP) Inside the AMWTP facility The AMWTP facility Idaho Falls - The U.S. Department of Energy, Idaho Operations Office, in coordination with the Office of Environmental Management today released a Final �Request for Proposal� to obtain a contractor to perform waste processing at the Advanced Mixed Waste Treatment Project at the Department�s Idaho Site near Idaho Falls,

  2. Management response plan for the Chemical Safety Vulnerability Working Group report. Volume 2

    SciTech Connect (OSTI)

    Not Available

    1994-09-01

    The Chemical Safety Vulnerability (CSV) Working Group was established to identify adverse conditions involving hazardous chemicals at DOE facilities that might result in fires or explosions, release of hazardous chemicals to the environment, or exposure of workers or the public to chemicals. A CSV Review was conducted in 146 facilities at 29 sites. Eight generic vulnerabilities were documented related to: abandoned chemicals and chemical residuals; past chemical spills and ground releases; characterization of legacy chemicals and wastes; disposition of legacy chemicals; storage facilities and conditions; condition of facilities and support systems; unanalyzed and unaddressed hazards; and inventory control and tracking. Weaknesses in five programmatic areas were also identified related to: management commitment and planning; chemical safety management programs; aging facilities that continue to operate; nonoperating facilities awaiting deactivation; and resource allocations. To address the facility-specific and site-specific vulnerabilities, responsible DOE and site-contractor line organizations have developed initial site response plans. These plans, presented as Volume 2 of this Management Response Plan, describe the actions needed to mitigate or eliminate the facility- and site-specific vulnerabilities identified by the CSV Working Group field verification teams. Initial site response plans are described for: Brookhaven National Lab., Hanford Site, Idaho National Engineering Lab., Lawrence Livermore National Lab., Los Alamos National Lab., Oak Ridge Reservation, Rocky Flats Plant, Sandia National Laboratories, and Savannah River Site.

  3. CRAD, Criteria and Guidelines For the Assessment of Safety System Software and Firmware at Defense Nuclear Facilities

    Broader source: Energy.gov [DOE]

    The purpose and scope of this CRAD is to provide a set of consistent assessment criteria and guidelines for the assessment of safety system software and firmware that performs an SC or SS function, as described in the Background section. The scope of the assessment, henceforth, is called "I&C software."

  4. EIS-0283: Surplus Plutonium Disposition Environmental Impact Statement

    Broader source: Energy.gov [DOE]

    This EIS analyzes the potential environmental impacts associated with alternatives for the disposition of surplus plutonium.

  5. Safety & Training | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safety & Training The UES Group provides facility ESH oversight for all user experiment safety and day-to-day beamline activities. The UES Floor Coordinators are deployed around...

  6. Barriers and Issues Related to Achieving Final Disposition of Depleted Uranium

    SciTech Connect (OSTI)

    Gillas, D. L.; Chambers, B. K.

    2002-02-26

    Approximately 750,000 metric tons (MT) of surplus depleted uranium (DU) in various chemical forms are stored at several Department of Energy (DOE) sites throughout the United States. Most of the DU is in the form of DU hexafluoride (DUF6) that resulted from uranium enrichment operations over the last several decades. DOE plans to convert the DUF6 to ''a more stable form'' that could be any one or combination of DU tetrafluoride (DUF4 or green salt), DU oxide (DUO3, DUO2, or DU3O8), or metal depending on the final disposition chosen for any given quantity. Barriers to final disposition of this material have existed historically and some continue today. Currently, the barriers are more related to finding uses for this material versus disposing as waste. Even though actions are beginning to convert the DUF6, ''final'' disposition of the converted material has yet to be decided. Unless beneficial uses can be implemented, DOE plans to dispose of this material as waste. This expresses the main barrier to DU disposition; DOE's strategy is to dispose unless uses can be found while the strategy should be only dispose as a last resort and make every effort to find uses. To date, only minimal research programs are underway to attempt to develop non-fuel uses for this material. Other issues requiring resolution before these inventories can reach final disposition (uses or disposal) include characterization, disposal of large quantities, storage (current and future), and treatment options. Until final disposition is accomplished, these inventories must be managed in a safe and environmentally sound manner; however, this is becoming more difficult as materials and facilities age. The most noteworthy final disposition technical issues include the development of reuse and treatment options.

  7. Safety System Oversight Assessment of the Los Alamos National Laboratory Weapons Engineering Tritium Facility Tritium Gas Handling System

    Office of Environmental Management (EM)

    the Dynamics of Coupled Systems | Department of Energy SWiFT Turbines Full Dynamic Characterization Opens Doors for Research in the Dynamics of Coupled Systems SWiFT Turbines Full Dynamic Characterization Opens Doors for Research in the Dynamics of Coupled Systems March 31, 2014 - 11:19am Addthis Research conducted at the Scaled Wind Farm Technology Facility (SWiFT) in Lubbock, Texas, drew a lot of interest from attendees at the International Modal Analysis Conference held in Orlando,

  8. Excess plutonium disposition using ALWR technology

    SciTech Connect (OSTI)

    Phillips, A.; Buckner, M.R.; Radder, J.A.; Angelos, J.G.; Inhaber, H.

    1993-02-01

    The Office of Nuclear Energy of the Department of Energy chartered the Plutonium Disposition Task Force in August 1992. The Task Force was created to assess the range of practicable means of disposition of excess weapons-grade plutonium. Within the Task Force, working groups were formed to consider: (1) storage, (2) disposal,and(3) fission options for this disposition,and a separate group to evaluate nonproliferation concerns of each of the alternatives. As a member of the Fission Working Group, the Savannah River Technology Center acted as a sponsor for light water reactor (LWR) technology. The information contained in this report details the submittal that was made to the Fission Working Group of the technical assessment of LWR technology for plutonium disposition. The following aspects were considered: (1) proliferation issues, (2) technical feasibility, (3) technical availability, (4) economics, (5) regulatory issues, and (6) political acceptance.

  9. Waste Disposition Update by Christine Gelles

    Office of Environmental Management (EM)

    Waste Disposition Update Christine Gelles Associate Deputy Assistant Secretary for Waste Management (EM-30) EM SSAB Chairs Meeting Washington, DC 2 October 2012 www.em.doe.gov 2 o ...

  10. SLIGHTLY IRRADIATED FUEL (SIF) INTERIM DISPOSITION PROJECT

    SciTech Connect (OSTI)

    NORTON SH

    2010-02-23

    CH2M HILL Plateau Remediation Company (CH2M HILL PRC) is proud to submit the Slightly Irradiated Fuel (SIF) Interim Disposition Project for consideration by the Project Management Institute as Project of the Year for 2010. The SIF Project was a set of six interrelated sub-projects that delivered unique stand-alone outcomes, which, when integrated, provided a comprehensive and compliant system for storing high risk special nuclear materials. The scope of the six sub-projects included the design, construction, testing, and turnover of the facilities and equipment, which would provide safe, secure, and compliant Special Nuclear Material (SNM) storage capabilities for the SIF material. The project encompassed a broad range of activities, including the following: Five buildings/structures removed, relocated, or built; Two buildings renovated; Structural barriers, fencing, and heavy gates installed; New roadways and parking lots built; Multiple detection and assessment systems installed; New and expanded communication systems developed; Multimedia recording devices added; and A new control room to monitor all materials and systems built. Project challenges were numerous and included the following: An aggressive 17-month schedule to support the high-profile Plutonium Finishing Plant (PFP) decommissioning; Company/contractor changeovers that affected each and every project team member; Project requirements that continually evolved during design and construction due to the performance- and outcome-based nature ofthe security objectives; and Restrictions imposed on all communications due to the sensitive nature of the projects In spite of the significant challenges, the project was delivered on schedule and $2 million under budget, which became a special source of pride that bonded the team. For years, the SIF had been stored at the central Hanford PFP. Because of the weapons-grade piutonium produced and stored there, the PFP had some of the tightest security on the Hanford nuclear reservation. Workers had to pass through metal detectors when they arrived at the plant and materials leaving the plant had to be scanned for security reasons. Whereas other high-security nuclear materials were shipped from the PFP to Savannah River, S.C. as part ofa Department of Energy (DOE) program to consolidate weapons-grade plutonium, it was determined that the SIF should remain onsite pending disposition to a national repository. Nevertheless, the SIF still requires a high level of security that the PFP complex has always provided. With the 60-year PFP mission of producing and storing plutonium concluded, the environmental cleanup plans for Hanford call for the demolition of the 63-building PFP complex. Consequently, if the SIF remained at PFP it not only would have interfered with the environmental cleanup plans, but would have required $100 million in facility upgrades to meet increased national security requirements imposed after the 9/11 terrorist attacks. A new smaller and more cost-effective area was needed to store this material, which led to the SIF Project. Once the SIF project was successfully completed and the SIF was safely removed from PFP, the existing Protected Area at PFP could be removed, and demolition could proceed more quickly without being encumbered by restrictive security requirements that an active Protected Area requires. The lightened PFP security level brought by safely removing and storing the SIF would also yield lowered costs for deactivation and demolition, as well as reduce overall life-cycle costs.

  11. Health, Safety & Environment System Description and Worker Safety...

    National Nuclear Security Administration (NNSA)

    ... facilities by staying below hazardous chemical usestorage threshold amounts as defined ... superior safety performance. Chemical Management Committee: This committee ...

  12. TA-55: LANL Plutonium-Processing Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities » TA-55: LANL Plutonium-Processing Facilities TA-55: LANL Plutonium-Processing Facilities TA-55 supports a wide range of national security programs that involve stockpile stewardship, plutonium processing, nuclear materials stabilization, materials disposition, nuclear forensics, nuclear counter-terrorism, and nuclear energy. ...the only fully operational, full capability plutonium facility in the nation. National Security At the Los Alamos National Laboratory (LANL), virtually all

  13. Capturing Process Knowledge for Facility Deactivation and Decommissioning

    Broader source: Energy.gov [DOE]

    The Office of Environmental Management (EM) is responsible for the disposition of a vast number of facilities at numerous sites around the country which have been declared excess to current mission...

  14. Environmental, Health and Safety Assessment: ATS 7H Program (Phase 3R) Test Activities at the GE Power Systems Gas Turbine Manufacturing Facility, Greenville, SC

    SciTech Connect (OSTI)

    1998-11-17

    International Technology Corporation (IT) was contracted by General Electric Company (GE) to assist in the preparation of an Environmental, Health and Safety (HI&3) assessment of the implementation of Phase 3R of the Advanced Turbine System (ATS) 7H program at the GE Gas Turbines facility located in Greenville, South Carolina. The assessment was prepared in accordance with GE's contractual agreement with the U.S. Department of Energy (GE/DOE Cooperative Agreement DE-FC21-95MC3 1176) and supports compliance with the requirements of the National Environmental Policy Act of 1970. This report provides a summary of the EH&S review and includes the following: General description of current site operations and EH&S status, Description of proposed ATS 7H-related activities and discussion of the resulting environmental, health, safety and other impacts to the site and surrounding area. Listing of permits and/or licenses required to comply with federal, state and local regulations for proposed 7H-related activities. Assessment of adequacy of current and required permits, licenses, programs and/or plans.

  15. Major Risk Factors Integrated Facility Disposition Project - Oak Ridge |

    Energy Savers [EERE]

    Biomass Program Major DOE Biofuels Project Locations in the United States PDF icon Major DOE Biofuels Project Locations More Documents & Publications Major DOE Biofuels Project Locations Major DOE Biofuels Project Locations Algal Biofuel Technologies

    Slide 1 The Current State of Technology for Cellulosic Ethanol

    Algal Biofuel Technologies Slide 1

    101 Major Program Offices Doing Business with... Energy Efficiency and Renewable Energy Office of Environmental Management

  16. Master EM Project Definition Rating Index - Facility Disposition...

    Office of Environmental Management (EM)

    ... C21 LoadingUnloadingStorage Requirements List of requirements identifying raw materials ... Plan is prepared, approved, and ready for implementation by the performing organization. ...

  17. Assessment of the Integrated Facility Disposition Project at Oak Ridge

    Energy Savers [EERE]

    Department of Energy Vessel Requirements for the U.S. Offshore Wind Sector Assessment of Vessel Requirements for the U.S. Offshore Wind Sector Report that investigates the anticipated demand for various vessel types associated with offshore wind development in the United States through 2030 and assesses related market barriers and mitigating policy options. PDF icon Assessment of Vessel Requirements for the U.S. Offshore Wind Sector PDF icon Assessment of Vessel Requirements for the U.S.

  18. EIS-0287: Idaho High-Level Waste & Facilities Disposition

    Broader source: Energy.gov [DOE]

    This EIS analyzes the potential environmental consequences of alternatives for managing high-level waste (HLW) calcine, mixed transuranic waste/sodium bearing waste (SBW) and newly generated liquid...

  19. NRC comprehensive records disposition schedule. Revision 3

    SciTech Connect (OSTI)

    1998-02-01

    Title 44 US Code, ``Public Printing and Documents,`` regulations issued by the General Service Administration (GSA) in 41 CFR Chapter 101, Subchapter B, ``Management and Use of Information and Records,`` and regulations issued by the National Archives and Records Administration (NARA) in 36 CFR Chapter 12, Subchapter B, ``Records Management,`` require each agency to prepare and issue a comprehensive records disposition schedule that contains the NARA approved records disposition schedules for records unique to the agency and contains the NARA`s General Records Schedules for records common to several or all agencies. The approved records disposition schedules specify the appropriate duration of retention and the final disposition for records created or maintained by the NRC. NUREG-0910, Rev. 3, contains ``NRC`s Comprehensive Records Disposition Schedule,`` and the original authorized approved citation numbers issued by NARA. Rev. 3 incorporates NARA approved changes and additions to the NRC schedules that have been implemented since the last revision dated March, 1992, reflects recent organizational changes implemented at the NRC, and includes the latest version of NARA`s General Records Schedule (dated August 1995).

  20. Facilities Condition and Hazards Assessment for Materials and Fuel Complex Facilities MFC-799, 799A, and 770C

    SciTech Connect (OSTI)

    Gary Mecham; Don Konoyer

    2009-11-01

    The Materials & Fuel Complex (MFC) facilities 799 Sodium Processing Facility (a single building consisting of two areas: the Sodium Process Area (SPA) and the Carbonate Process Area (CPA), 799A Caustic Storage Area, and 770C Nuclear Calibration Laboratory have been declared excess to future Department of Energy mission requirements. Transfer of these facilities from Nuclear Energy to Environmental Management, and an associated schedule for doing so, have been agreed upon by the two offices. The prerequisites for this transfer to occur are the removal of nonexcess materials and chemical inventory, deinventory of the calibration source in MFC-770C, and the rerouting and/or isolation of utility and service systems. This report provides a description of the current physical condition and any hazards (material, chemical, nuclear or occupational) that may be associated with past operations of these facilities. This information will document conditions at time of transfer of the facilities from Nuclear Energy to Environmental Management and serve as the basis for disposition planning. The process used in obtaining this information included document searches, interviews and facility walk-downs. A copy of the facility walk-down checklist is included in this report as Appendix A. MFC-799/799A/770C are all structurally sound and associated hazardous or potentially hazardous conditions are well defined and well understood. All installed equipment items (tanks, filters, etc.) used to process hazardous materials remain in place and appear to have maintained their integrity. There is no evidence of leakage and all openings are properly sealed or closed off and connections are sound. The pits appear clean with no evidence of cracking or deterioration that could lead to migration of contamination. Based upon the available information/documentation reviewed and the overall conditions observed during the facilities walk-down, it is concluded that these facilities may be disposed of at minimal risk to human health, safety or the environment.

  1. RECOMMENDATION FOR DISPOSITION OF REMOTE-HANDLED WASTE BURIED IN 33 SHAFTS AT TA-54

    Office of Environmental Management (EM)

    0-01 Approved by the NNMCAB on January 27, 2010 NORTHERN NEW MEXICO CITIZENS' ADVISORY BOARD (NNMCAB) Waste Management Committee Recommendation to the Department of Energy No. 2010-01 Recommendation for Disposition of Remote-handled Waste Buried in 33 Shafts at Technical Area 54 (TA-54) Background The Consent Order between the State of New Mexico, the Department of Energy/National Nuclear Safety Administration (DOE/NNSA) and Los Alamos National Security (LANS) requires that TA-54 Material

  2. 324 Facility special-case waste assessment in support of 324 closure (TPA milestone M-89-05)

    SciTech Connect (OSTI)

    Hobart, R.L.

    1998-06-25

    Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement Milestone M-89-05, requires US Department of Energy, Richland Operations Office to complete a 324 Facility Special-Case Waste Assessment in Support of 324 Closure. This document, HNF-1270, has been prepared with the intent of meeting this regulatory commitment. Alternatives for the special-case wastes located in the 324 Building were defined and analyzed. Based on the criteria of safety, environmental, complexity of interfaces, risk, cost, schedule, and long-term operability and maintainability, the best alternative was chosen. Waste packaging and transportation options are also included in the recommendations. The waste disposition recommendations for the B-Cell dispersibles/tank heels and High-Level Vault packaged residuals are to direct them to the Plutonium Uranium Extraction Facility (PUREX) Number 2 storage tunnel.

  3. Request For Records Disposition Authority | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Records Schedule Contractor Checks PDF icon Request For Records Disposition Authority More Documents & Publications DOE-STD-4001-2000 DOE Records Disposition Schedule Changes Audit Letter Report: INS-L-07-05

  4. ANL-W MOX fuel lead assemblies data report for the surplus plutonium disposition environmental impact statement

    SciTech Connect (OSTI)

    O`Connor, D.G.; Fisher, S.E.; Holdaway, R.

    1997-08-01

    The purpose of this document is to support the US Department of Energy (DOE) Fissile Materials Disposition Program`s preparation of the draft surplus plutonium disposition environmental impact statement (EIS). This is one of several responses to data call requests for background information on activities associated with the operation of the lead assembly (LA) mixed-oxide (MOX) fuel fabrication facility. The DOE Office of fissile Materials Disposition (DOE-MD) has developed a dual-path strategy for disposition of surplus weapons-grade plutonium. One of the paths is to disposition surplus plutonium through irradiation of MOX fuel in commercial nuclear reactors. MOX fuel consists of plutonium and uranium oxides (PuO{sub 2} and UO{sub 2}), typically containing 95% or more UO{sub 2}. DOE-MD requested that the DOE Site Operations Offices nominate DOE sites that meet established minimum requirements that could produce MOX LAs. The paper describes the following: Site map and the LA facility; process descriptions; resource needs; employment requirements; wastes, emissions, and exposures; accident analysis; transportation; qualitative decontamination and decommissioning; post-irradiation examination; LA fuel bundle fabrication; LA EIS data report assumptions; and LA EIS data report supplement.

  5. Waste Disposition News | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Waste Disposition News Waste Disposition News April 27, 2016 The WIPP Blue Mine Rescue Team moves through the course in the field competition of the Southwest Regional Mine Rescue Contest. WIPP's Mine Rescue Teams Win Big in Contest CARLSBAD, N.M. - The EM Waste Isolation Pilot Plant (WIPP) Blue Mine Rescue Team was named the overall champion at the Southwest Regional Mine Rescue Contest held in Carlsbad in April. WIPP's Red Mine Rescue Team took first place in the first aid competition. April

  6. Analysis of disposition alternatives for radioactively contaminated scrap metal

    SciTech Connect (OSTI)

    Nieves, L.A.; Chen, S.Y.; Kohout, E.J.; Nabelssi, B.; Tilbrook, R.W.; Wilson, S.E.

    1997-01-01

    Millions of tonnes of slightly radioactive, scrap iron and steel, stainless steel, and copper are likely to become available as nuclear and other facilities and equipment are withdrawn from service. Disposition of this material is an international policy issue under consideration currently. The major alternatives for managing this material are to either develop a regulatory process for decontamination and recycling that will safeguard human health or to dispose of the scrap and replace the metal stocks. To evaluate the alternatives, we estimate quantities of scrap arising from nuclear power plant decommissioning, evaluate potential price impacts of recycling on regional markets, and assess the health and environmental impacts of the management alternatives. We conclude that decontaminating and recycling the scrap is the superior alternative.

  7. H. R. S. 182 - Reservation and Disposition of Government Mineral...

    Open Energy Info (EERE)

    (Redirected from Hawaii Revised Statute 182-1, Definitions for Reservation and Disposition of Government Mineral Rights)...

  8. Waste and Materials Disposition Information | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Waste and Materials Disposition Information Waste and Materials Disposition Information Waste and Materials Disposition Information As the Office of Environmental Management (EM) fulfills its mission, waste and materials disposition plays a vital role in the cleanup of radioactive waste and the environmental legacy of nuclear weapons production and nuclear energy research. Disposal of waste frequently falls on the critical path of cleanup projects. Significant planning resources are spent to

  9. Life cycle costs for the domestic reactor-based plutonium disposition option

    SciTech Connect (OSTI)

    Williams, K.A.

    1999-10-01

    Projected constant dollar life cycle cost (LCC) estimates are presented for the domestic reactor-based plutonium disposition program being managed by the US Department of Energy Office of Fissile Materials Disposition (DOE/MD). The scope of the LCC estimate includes: design, construction, licensing, operation, and deactivation of a mixed-oxide (MOX) fuel fabrication facility (FFF) that will be used to purify and convert weapons-derived plutonium oxides to MOX fuel pellets and fabricate MOX fuel bundles for use in commercial pressurized-water reactors (PWRs); fuel qualification activities and modification of facilities required for manufacture of lead assemblies that will be used to qualify and license this MOX fuel; and modification, licensing, and operation of commercial PWRs to allow irradiation of a partial core of MOX fuel in combination with low-enriched uranium fuel. The baseline cost elements used for this document are the same as those used for examination of the preferred sites described in the site-specific final environmental impact statement and in the DOE Record of Decision that will follow in late 1999. Cost data are separated by facilities, government accounting categories, contract phases, and expenditures anticipated by the various organizations who will participate in the program over a 20-year period. Total LCCs to DOE/MD are projected at approximately $1.4 billion for a 33-MT plutonium disposition mission.

  10. Safety Management System Policy

    Energy Savers [EERE]

    Health, Safety and Security U.S. Department of Energy POLICY Washington, D.C. Approved: 4-25-11 SUBJECT: INTEGRATED SAFETY MANAGEMENT POLICY PURPOSE AND SCOPE To establish the Department of Energy's (DOE) expectation for safety, 1 including integrated safety management that will enable the Department's mission goals to be accomplished efficiently while ensuring safe operations at all departmental facilities and activities. This Policy cancels and supersedes DOE Policy (P) 411.1, Safety

  11. Nuclear Safety Regulatory Framework

    Energy Savers [EERE]

    Department of Energy Nuclear Safety Regulatory Framework DOE's Nuclear Safety Enabling Legislation Regulatory Enforcement & Oversight Regulatory Governance Atomic Energy Act 1946 Atomic Energy Act 1954 Energy Reorganization Act 1974 DOE Act 1977 Authority and responsibility to regulate nuclear safety at DOE facilities 10 CFR 830 10 CFR 835 10 CFR 820 Regulatory Implementation Nuclear Safety Radiological Safety Procedural Rules ISMS-QA; Operating Experience; Metrics and Analysis Cross Cutting

  12. Complete Safety Training

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Complete Safety Training Print Facility Safety Training Required for ALL Users Users must register with the ALS to obtain an LBNL ID number before they can complete safety training courses. Once registered, choose the non-LDAP login and enter your LBNL ID number to begin. ALS 1001: Safety at the ALS EHS 0470: General Employee Radiation Training (GERT) Special Training Required for Some Users Laser Safety Users working with a Class 3B/4 laser EHS 0302 Macromolecular Crystallography Users

  13. Complete Safety Training

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Complete Safety Training Print Facility Safety Training Required for ALL Users Users must register with the ALS to obtain an LBNL ID number before they can complete safety training courses. Once registered, choose the non-LDAP login and enter your LBNL ID number to begin. ALS 1001: Safety at the ALS EHS 0470: General Employee Radiation Training (GERT) Special Training Required for Some Users Laser Safety Users working with a Class 3B/4 laser EHS 0302 Macromolecular Crystallography Users

  14. Complete Safety Training

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Complete Safety Training Print Facility Safety Training Required for ALL Users Users must register with the ALS to obtain an LBNL ID number before they can complete safety training courses. Once registered, choose the non-LDAP login and enter your LBNL ID number to begin. ALS 1001: Safety at the ALS EHS 0470: General Employee Radiation Training (GERT) Special Training Required for Some Users Laser Safety Users working with a Class 3B/4 laser EHS 0302 Macromolecular Crystallography Users

  15. Complete Safety Training

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Complete Safety Training Print Facility Safety Training Required for ALL Users Users must register with the ALS to obtain an LBNL ID number before they can complete safety training courses. Once registered, choose the non-LDAP login and enter your LBNL ID number to begin. ALS 1001: Safety at the ALS EHS 0470: General Employee Radiation Training (GERT) Special Training Required for Some Users Laser Safety Users working with a Class 3B/4 laser EHS 0302 Macromolecular Crystallography Users

  16. Complete Safety Training

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Complete Safety Training Print Facility Safety Training Required for ALL Users Users must register with the ALS to obtain an LBNL ID number before they can complete safety training courses. Once registered, choose the non-LDAP login and enter your LBNL ID number to begin. ALS 1001: Safety at the ALS EHS 0470: General Employee Radiation Training (GERT) Special Training Required for Some Users Laser Safety Users working with a Class 3B/4 laser EHS 0302 Macromolecular Crystallography Users

  17. Complete Safety Training

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Complete Safety Training Print Facility Safety Training Required for ALL Users Users must register with the ALS to obtain an LBNL ID number before they can complete safety training courses. Once registered, choose the non-LDAP login and enter your LBNL ID number to begin. ALS 1001: Safety at the ALS EHS 0470: General Employee Radiation Training (GERT) Special Training Required for Some Users Laser Safety Users working with a Class 3B/4 laser EHS 0302 Macromolecular Crystallography Users

  18. Permitted Mercury Storage Facility Notifications | Department of Energy

    Energy Savers [EERE]

    Services » Waste Management » Waste Disposition » Long-Term Management and Storage of Elemental Mercury is in the Planning Stages » Permitted Mercury Storage Facility Notifications Permitted Mercury Storage Facility Notifications As provided for and authorized under the MEBA statue, certain options exist for the storage of elemental mercury until DOE is able to open its mercury storage facility. Elemental mercury may be stored at a permitted facility if the owner or operator of the facility

  19. User Facilities | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Photon Source Argonne Leadership Computing Facility Argonne Tandem Linear Accelerator System Center for Nanoscale Materials Transportation Research and Analysis Computing Center Science Work with Argonne About Safety News Careers Education Community Diversity Directory Argonne National Laboratory About Safety News Careers Education Community Diversity Directory Energy Environment Security User Facilities Science Work with Argonne User Facilities Advanced Photon Source Argonne

  20. SWIFT Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SWIFT Facility - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear

  1. Tag: Safety | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the purification facility. More... Category: About Best Practices Workshop for Safety Culture A two-day Safety Culture workshop featured more than two dozen presentations on...

  2. Independent Oversight Inspection, Thomas Jefferson National Accelerator Facility- August 2008

    Broader source: Energy.gov [DOE]

    Inspection of Environment, Safety and Health Programs at the Thomas Jefferson National Accelerator Facility

  3. Study of plutonium disposition using the GE Advanced Boiling Water Reactor (ABWR)

    SciTech Connect (OSTI)

    1994-04-30

    The end of the cold war and the resulting dismantlement of nuclear weapons has resulted in the need for the U.S. to disposition 50 to 100 metric tons of excess of plutonium in parallel with a similar program in Russia. A number of studies, including the recently released National Academy of Sciences (NAS) study, have recommended conversion of plutonium into spent nuclear fuel with its high radiation barrier as the best means of providing long-term diversion resistance to this material. The NAS study {open_quotes}Management and Disposition of Excess Weapons Plutonium{close_quotes} identified light water reactor spent fuel as the most readily achievable and proven form for the disposition of excess weapons plutonium. The study also stressed the need for a U.S. disposition program which would enhance the prospects for a timely reciprocal program agreement with Russia. This summary provides the key findings of a GE study where plutonium is converted into Mixed Oxide (MOX) fuel and a 1350 MWe GE Advanced Boiling Water Reactor (ABWR) is utilized to convert the plutonium to spent fuel. The ABWR represents the integration of over 30 years of experience gained worldwide in the design, construction and operation of BWRs. It incorporates advanced features to enhance reliability and safety, minimize waste and reduce worker exposure. For example, the core is never uncovered nor is any operator action required for 72 hours after any design basis accident. Phase 1 of this study was documented in a GE report dated May 13, 1993. DOE`s Phase 1 evaluations cited the ABWR as a proven technical approach for the disposition of plutonium. This Phase 2 study addresses specific areas which the DOE authorized as appropriate for more in-depth evaluations. A separate report addresses the findings relative to the use of existing BWRs to achieve the same goal.

  4. FLUOR HANFORD SAFETY MANAGEMENT PROGRAMS

    SciTech Connect (OSTI)

    GARVIN, L J; JENSEN, M A

    2004-04-13

    This document summarizes safety management programs used within the scope of the ''Project Hanford Management Contract''. The document has been developed to meet the format and content requirements of DOE-STD-3009-94, ''Preparation Guide for US. Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses''. This document provides summary descriptions of Fluor Hanford safety management programs, which Fluor Hanford nuclear facilities may reference and incorporate into their safety basis when producing facility- or activity-specific documented safety analyses (DSA). Facility- or activity-specific DSAs will identify any variances to the safety management programs described in this document and any specific attributes of these safety management programs that are important for controlling potentially hazardous conditions. In addition, facility- or activity-specific DSAs may identify unique additions to the safety management programs that are needed to control potentially hazardous conditions.

  5. LLNL MOX fuel lead assemblies data report for the surplus plutonium disposition environmental impact statement

    SciTech Connect (OSTI)

    O`Connor, D.G.; Fisher, S.E.; Holdaway, R.

    1998-08-01

    The purpose of this document is to support the US Department of Energy (DOE) Fissile Materials Disposition Program`s preparation of the draft surplus plutonium disposition environmental impact statement. This is one of several responses to data call requests for background information on activities associated with the operation of the lead assembly (LA) mixed-oxide (MOX) fuel fabrication facility. The DOE Office of Fissile Materials Disposition (DOE-MD) has developed a dual-path strategy for disposition of surplus weapons-grade plutonium. One of the paths is to disposition surplus plutonium through irradiation of MOX fuel in commercial nuclear reactors. MOX fuel consists of plutonium and uranium oxides (PuO{sub 2} and UO{sub 2}), typically containing 95% or more UO{sub 2}. DOE-MD requested that the DOE Site Operations Offices nominate DOE sites that meet established minimum requirements that could produce MOX LAs. LLNL has proposed an LA MOX fuel fabrication approach that would be done entirely inside an S and S Category 1 area. This includes receipt and storage of PuO{sub 2} powder, fabrication of MOX fuel pellets, assembly of fuel rods and bundles, and shipping of the packaged fuel to a commercial reactor site. Support activities will take place within a Category 1 area. Building 332 will be used to receive and store the bulk PuO{sub 2} powder, fabricate MOX fuel pellets, and assemble fuel rods. Building 334 will be used to assemble, store, and ship fuel bundles. Only minor modifications would be required of Building 332. Uncontaminated glove boxes would need to be removed, petition walls would need to be removed, and minor modifications to the ventilation system would be required.

  6. PROGRESS IN REDUCING THE NUCLEAR THREAT: UNITED STATES PLUTONIUM CONSOLIDATION AND DISPOSITION

    SciTech Connect (OSTI)

    Allender, J.; Koenig, R.; Davies, S.

    2009-06-01

    Following the end of the Cold War, the United States identified 61.5 metric tons (MT) of plutonium and larger quantities of enriched uranium that are permanently excess to use in nuclear weapons programs. The Department of Energy (DOE) also began shutting down, stabilizing, and removing inventories from production facilities that were no longer needed to support weapons programs and non-weapons activities. The storage of 'Category I' nuclear materials at Rocky Flats, Sandia National Laboratories, and several smaller sites has been terminated to reduce costs and safeguards risks. De-inventory continues at the Hanford site and the Lawrence Livermore National Laboratory. Consolidation of inventories works in concert with the permanent disposition of excess inventories, including several tonnes of plutonium that have already been disposed to waste repositories and the preparation for transfers to the planned Mixed Oxide (MOX) Fuel Fabrication Facility (for the bulk of the excess plutonium) and alternative disposition methods for material that cannot be used readily in the MOX fuel cycle. This report describes status of plutonium consolidation and disposition activities and their impacts on continuing operations, particularly at the Savannah River Site.

  7. Worker Safety and Health Enforcement Letter issued to Los Alamos National Security, LLC, related to Worker Beryllium Exposure during Machining at the Los Alamos National Laboratorys Beryllium Technology Facility, May 29, 2013 (WEL-2013-01)

    Energy Savers [EERE]

    29, 2013 Dr. Charles F. McMillan, President Los Alamos National Security, LLC Los Alamos National Laboratory Mailstop A 100, Drop Point 03140071S Bikini Atoll Road, TA-3 Los Alamos, New Mexico 87454 WEL-2013-01 Dear Dr. McMillan: The Office of Health, Safety and Security's Office of Enforcement and Oversight evaluated the circumstances surrounding a work evolution performed at Los Alamos National Laboratory (LANL) Technical Area 3, Building 141, Beryllium Technology Facility (BTF), on July 11,

  8. Used fuel disposition research and development roadmap - FY10 status.

    SciTech Connect (OSTI)

    Nutt, W. M.

    2010-10-01

    Since 1987 the U.S. has focused research and development activities relevant to the disposal of commercial used nuclear fuel and U.S. Department of Energy (DOE) owned spent nuclear fuel and high level waste on the proposed repository at Yucca Mountain, Nevada. At the same time, the U.S. successfully deployed a deep geologic disposal facility for defense-related transuranic waste in bedded salt at the Waste Isolation Pilot Plant. In 2009 the DOE established the Used Fuel Disposition Campaign (UFDC) within the Office of Nuclear Energy. The Mission of the UFDC is to identify alternatives and conduct scientific research and technology development to enable storage, transportation and disposal of used nuclear fuel and wastes generated by existing and future nuclear fuel cycles. The U.S. national laboratories have participated on these programs and has conducted research and development related to these issues to a limited extent. However, a comprehensive research and development (R&D) program investigating a variety of geologic media has not been a part of the U.S. waste management program since the mid 1980s. Such a comprehensive R&D program is being developed in the UFDC with a goal of meeting the UFDC Grand Challenge to provide a sound technical basis for absolute confidence in the safety and security of long-term storage, transportation, and disposal of used nuclear fuel and wastes from the nuclear energy enterprise. The DOE has decided to no longer pursue the development of a repository at Yucca Mountain, Nevada. Since a repository site will ultimately have to be selected, sited, characterized, designed, and licensed, other disposal options must now be considered. In addition to the unsaturated volcanic tuff evaluated at Yucca Mountain, several different geologic media are under investigation internationally and preliminary assessments indicate that disposal of used nuclear fuel and high level waste in these media is feasible. Considerable progress has been made in the U.S. and other nations in understanding disposal concepts in different geologic media, but gaps in knowledge still exist. A principal aspect of concern to the UFDC as it considers the broad issues of siting a repository in different geologic media are the marked differences in the regulatory bases for assessing suitability and safety of a repository between the U.S. and other nations. Because the probability based - risked informed nature of the current U.S. regulations for high-level radioactive waste and spent nuclear fuel is sufficiently different from other regulations, information gained in previous studies, while useful, likely need to be supplemented to enable more convincing communication with the public, better defense of the numerical models, and stronger safety cases. Thus, it was recognized when the UFDC was established that there were readily identified disposal-related R&D opportunities to address knowledge gaps. An effort to document these research opportunities was a key component of Fiscal Year (FY) 2010 engineered system, natural system, and system-level modeling activities for a range of disposal environments. A principal contribution to identifying these gaps was a workshop held to gather perspectives from experts both within and external to the UFDC regarding R&D opportunities. In the planning for FY2010 it was expected that these activities would culminate with a UFDC research and development roadmap that would identify the knowledge gaps, discuss the R&D needed to fill these gaps, and prioritize the proposed R&D over both the near- and long-term. A number of knowledge gaps and needed R&D were identified and are discussed in this report. However, these preliminary R&D topics have not been evaluated in detail nor have they been prioritized to support future planning efforts. This will be completed in FY11 and the final UFDC Research and Development Roadmap will be completed. This report discusses proposed R&D topics in three areas related to repository siting, design, and performance: natural systems, engineered systems, and overall disposal system. The intent of this report is to consolidate the proposed R&D topics to support subsequent discussions among UFDC and external expertise to identify additional R&D needs and to prioritize these needs, leading to the development for the UFDC Research and Development Roadmap.

  9. Disposition and transportation of surplus radioactive low specific activity nitric acid. Volume 1, Environmental Assessment

    SciTech Connect (OSTI)

    1995-05-01

    DOE is deactivating the PUREX plant at Hanford; this will involve the disposition of about 692,000 liters (183,000 gallons) of surplus nitric acid contaminated with low levels of U and other radionuclides. The nitric acid, designated as low specific activity, is stored in 4 storage tanks at PUREX. Five principal alternatives were evaluated: transfer for reuse (sale to BNF plc), no action, continued storage in Hanford upgraded or new facility, consolidation of DOE surplus acid, and processing the LSA nitric acid as waste. The transfer to BNF plc is the preferred alternative. From the analysis, it is concluded that the proposed disposition and transportation of the acid does not constitute a major federal action significantly affecting the quality of the human environment within the meaning of NEPA; therefore an environmental impact statement is not required.

  10. The ultimate disposition of depleted uranium

    SciTech Connect (OSTI)

    Lemons, T.R.

    1991-12-31

    Depleted uranium (DU) is produced as a by-product of the uranium enrichment process. Over 340,000 MTU of DU in the form of UF{sub 6} have been accumulated at the US government gaseous diffusion plants and the stockpile continues to grow. An overview of issues and objectives associated with the inventory management and the ultimate disposition of this material is presented.

  11. NNSA and Defense Nuclear Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Defense Nuclear Facilities Safety Board certifications free up 47 million in previously allocated funding October 2, 2009 Los Alamos, New Mexico, Oct. 2, 2009 - The Chemistry...

  12. Standard Review Plan (SRP) Modules | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Design RM Preliminary Safety Design RM Facility Disposition Safety Strategy RM Construction Project Safety and Health Plan RM Review of SAR for Packaging Report Nuclear Safety ...

  13. Electrical safety guidelines

    SciTech Connect (OSTI)

    Not Available

    1993-09-01

    The Electrical Safety Guidelines prescribes the DOE safety standards for DOE field offices or facilities involved in the use of electrical energy. It has been prepared to provide a uniform set of electrical safety standards and guidance for DOE installations in order to affect a reduction or elimination of risks associated with the use of electrical energy. The objectives of these guidelines are to enhance electrical safety awareness and mitigate electrical hazards to employees, the public, and the environment.

  14. Safety | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News Careers Education Community Diversity Directory Argonne National Laboratory About Safety News Careers Education Community Diversity Directory Energy Environment Security User Facilities Science Work with Argonne Safety Biosafety Safety Safety is integral to Argonne's scientific research and engineering technology mission. As a leading U.S. Department of Energy multi-program research laboratory, our obligation to the American people demands that we conduct our research and operations safely

  15. DOE handbook electrical safety

    SciTech Connect (OSTI)

    1998-01-01

    Electrical Safety Handbook presents the Department of Energy (DOE) safety standards for DOE field offices or facilities involved in the use of electrical energy. It has been prepared to provide a uniform set of electrical safety guidance and information for DOE installations to effect a reduction or elimination of risks associated with the use of electrical energy. The objectives of this handbook are to enhance electrical safety awareness and mitigate electrical hazards to employees, the public, and the environment.

  16. EM Opens New Waste Repackaging Facility at Laboratory | Department of

    Office of Environmental Management (EM)

    Energy Opens New Waste Repackaging Facility at Laboratory EM Opens New Waste Repackaging Facility at Laboratory March 7, 2013 - 12:00pm Addthis A view of the new facility where transuranic waste will be repackaged at Los Alamos National Laboratory. A view of the new facility where transuranic waste will be repackaged at Los Alamos National Laboratory. EM Deputy Assistant Secretary for Waste Management Frank Marcinowski, left, talks with LANL’s Oversized Container Disposition Project

  17. DOE - Office of Legacy Management -- Oxnard Facility - 002

    Office of Legacy Management (LM)

    Oxnard Facility - 002 FUSRAP Considered Sites Site: Oxnard Facility (002) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: This facility was used to produce forging for weapons parts from 1981-1995. The Department of Energy¿s Grand Junction Office performed the characterization and remediation of the Oxnard Facility. Also see Documents Related

  18. WASTE DISPOSITION PROJECT MAKES GREAT STRIDES AT THE IDAHO SITE |

    Energy Savers [EERE]

    Department of Energy WASTE DISPOSITION PROJECT MAKES GREAT STRIDES AT THE IDAHO SITE WASTE DISPOSITION PROJECT MAKES GREAT STRIDES AT THE IDAHO SITE April 1, 2010 - 12:00pm Addthis An operator uses robotic manipulators to process RH TRU. An operator uses robotic manipulators to process RH TRU. Idaho - The Waste Disposition Project Team at the Department of Energy's Idaho Site has continued to keep its commitment to remove remote handled (RH) transuranic (TRU) waste out of Idaho, protecting

  19. Team Surpasses 1 Million Hours Safety Milestone

    Broader source: Energy.gov [DOE]

    NISKAYUNA, N.Y. – Vigilance and dedication to safety led the EM program’s disposition project team at the Separations Process Research Unit (SPRU) to achieve a milestone of one million hours — over two-and-a-half-years — without injury or illness resulting in time away from work.

  20. Analysis of Surplus Weapons-Grade Plutonium Disposition Options...

    National Nuclear Security Administration (NNSA)

    that cost analysis along with a preliminary study of the potential options, which will serve as a basis for determining the most efficient path forward for plutonium disposition. ...

  1. Used Fuel Disposition Campaign Disposal Research and Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Disposal Research and Development Roadmap Rev. 01 Used Fuel Disposition Campaign Disposal Research and Development Roadmap Rev. 01 The U.S. Department of Energy Office of Nuclear...

  2. Table 6. Source and disposition of photovoltaic module shipments...

    U.S. Energy Information Administration (EIA) Indexed Site

    Source and disposition of photovoltaic module shipments, 2013" "(peak kilowatts)" "Module ... Administration, Form EIA-63B, 'Annual Photovoltaic CellModule Shipments Report.'rounding. ...

  3. Used Fuel Disposition Campaign Phase I Ring Compression Testing...

    Energy Savers [EERE]

    Phase I Ring Compression Testing of High Burnup Cladding Used Fuel Disposition Campaign ... of the technical basis for extended storage and transportation of high-burnup fuel. ...

  4. REQUEST FOR RECORDS DISPOSITION AUTHORITY | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nuclear Power Plant Docket Records PDF icon REQUEST FOR RECORDS DISPOSITION AUTHORITY More Documents & Publications PIA - Savannah River Remediation Accreditation Boundary (SRR AB) ...

  5. EIS-0327: Disposition of Scrap Metals Programmatic EIS | Department...

    Broader source: Energy.gov (indexed) [DOE]

    intent to prepare an EIS that would evaluate the environmental impacts of policy alternatives for the disposition of scrap metals (primarily carbon steel and stainless steel)...

  6. Portsmouth Proposed Plan for the Site-wide Waste Disposition...

    Energy Savers [EERE]

    Plan for the Site-wide Waste Disposition Evaluation Project DOE has evaluated alternatives for managing waste that would be created by decomtamination and decommissioning of...

  7. DEPARTMENT OF ENERGY Surplus Plutonium Disposition AGENCY: National...

    National Nuclear Security Administration (NNSA)

    6450-01-P DEPARTMENT OF ENERGY Surplus Plutonium Disposition AGENCY: National Nuclear Security Administration, U.S. Department of Energy. ACTION: Record of Decision. SUMMARY: On ...

  8. ,"U.S. Natural Gas Monthly Supply and Disposition Balance"

    U.S. Energy Information Administration (EIA) Indexed Site

    Monthly Supply and Disposition Balance" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

  9. ,"U.S. Natural Gas Annual Supply and Disposition Balance"

    U.S. Energy Information Administration (EIA) Indexed Site

    Annual Supply and Disposition Balance" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

  10. Used Fuel Disposition R&D Documents | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    28, 2012 Integrated Tool Development for Used Fuel Disposition Natural System Evaluation Phase I Report The natural barrier system (NBS) is an integral part of a geologic nuclear...

  11. Processing and Disposition of Remote-Handled Transuranic Liquid...

    Office of Scientific and Technical Information (OSTI)

    Liquid Waste Generated at Oak Ridge National Laboratory Citation Details In-Document Search Title: Processing and Disposition of Remote-Handled Transuranic Liquid Waste Generated ...

  12. Nuclear Safety | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nuclear Safety Nuclear Safety The Nuclear Safety Program mission is to support the design, construction, operation, and deactivation and decommissioning of the Paducah and Portsmouth nuclear facilities in a manner that ensures adequate protection of workers, the public, and the environment. Major Responsibilities: Establish and implement nuclear safety requirements that utilize national consensus (or other government) standards or applicable external agency regulations (Nuclear Regulatory

  13. ARM - ARM Safety Policy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safety Policy About Become a User Recovery Act Mission FAQ Outreach Displays History Organization Participants Facility Statistics Forms Contacts Facility Documents ARM Management Plan (PDF, 1.3MB) Field Campaign Guidelines (PDF, 574KB) ARM Climate Research Facility Expansion Workshop (PDF, 1.46MB) Facility Activities ARM and the Recovery Act Contributions to International Polar Year Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send ARM Safety

  14. Seismic Safety Guide

    SciTech Connect (OSTI)

    Eagling, D.G.

    1983-09-01

    This guide provides managers with practical guidelines for administering a comprehensive earthquake safety program. The Guide is comprehensive with respect to earthquakes in that it covers the most important aspects of natural hazards, site planning, evaluation and rehabilitation of existing buildings, design of new facilities, operational safety, emergency planning, special considerations related to shielding blocks, non-structural elements, lifelines, fire protection and emergency facilities. Management of risk and liabilities is also covered. Nuclear facilities per se are not dealt with specifically. The principles covered also apply generally to nuclear facilities but the design and construction of such structures are subject to special regulations and legal controls.

  15. TWRS safety program plan

    SciTech Connect (OSTI)

    Calderon, L.M., Westinghouse Hanford

    1996-08-01

    Management of Nuclear Safety, Industrial Safety, Industrial Hygiene, and Fire Protection programs, functions, and field support resources for Tank Waste Remediation Systems (TWRS) has, until recently, been centralized in TWRS Safety, under the Emergency, Safety, and Quality organization. Industrial hygiene technician services were also provided to support operational needs related to safety basis compliance. Due to WHC decentralization of safety and reengineering efforts in West Tank Farms, staffing and safety responsibilities have been transferred to the facilities. Under the new structure, safety personnel for TWRS are assigned directly to East Tank Farms, West Tank Farms, and a core Safety Group in TWRS Engineering. The Characterization Project Operations (CPO) safety organization will remain in tact as it currently exists. Personnel assigned to East Tank Farms, West Tank Farms, and CPO will perform facility-specific or project-specific duties and provide field implementation of programs. Those assigned to the core group will focus on activities having a TWRS-wide or programmatic focus. Hanford-wide activities will be the responsibility of the Safety Center of Expertise. In order to ensure an effective and consistent safety program for TWRS under the new organization program functions, goals, organizational structure, roles, responsibilities, and path forward must be clearly established. The purpose of the TWRS Safety Program Plan is to define the overall safety program, responsibilities, relationships, and communication linkages for safety personnel under the new structure. In addition, issues associated with reorganization transition are addressed, including training, project ownership, records management, and dissemination of equipment. For the purpose of this document ``TWRS Safety`` refers to all safety professionals and technicians (Industrial Safety, Industrial Hygiene, Fire Protection, and Nuclear Safety) within the TWRS organization, regardless of their location in the organization.

  16. Spent nuclear fuel project, Cold Vacuum Drying Facility human factors engineering (HFE) analysis: Results and findings

    SciTech Connect (OSTI)

    Garvin, L.J.

    1998-07-17

    This report presents the background, methodology, and findings of a human factors engineering (HFE) analysis performed in May, 1998, of the Spent Nuclear Fuels (SNF) Project Cold Vacuum Drying Facility (CVDF), to support its Preliminary Safety Analysis Report (PSAR), in responding to the requirements of Department of Energy (DOE) Order 5480.23 (DOE 1992a) and drafted to DOE-STD-3009-94 format. This HFE analysis focused on general environment, physical and computer workstations, and handling devices involved in or directly supporting the technical operations of the facility. This report makes no attempt to interpret or evaluate the safety significance of the HFE analysis findings. The HFE findings presented in this report, along with the results of the CVDF PSAR Chapter 3, Hazards and Accident Analyses, provide the technical basis for preparing the CVDF PSAR Chapter 13, Human Factors Engineering, including interpretation and disposition of findings. The findings presented in this report allow the PSAR Chapter 13 to fully respond to HFE requirements established in DOE Order 5480.23. DOE 5480.23, Nuclear Safety Analysis Reports, Section 8b(3)(n) and Attachment 1, Section-M, require that HFE be analyzed in the PSAR for the adequacy of the current design and planned construction for internal and external communications, operational aids, instrumentation and controls, environmental factors such as heat, light, and noise and that an assessment of human performance under abnormal and emergency conditions be performed (DOE 1992a).

  17. Bases, Assumptions, and Results of the Flowsheet Calculations for the Decision Phase Salt Disposition Alternatives

    SciTech Connect (OSTI)

    Dimenna, R.A.; Jacobs, R.A.; Taylor, G.A.; Durate, O.E.; Paul, P.K.; Elder, H.H.; Pike, J.A.; Fowler, J.R.; Rutland, P.L.; Gregory, M.V.; Smith III, F.G.; Hang, T.; Subosits, S.G.; Campbell, S.G.

    2001-03-26

    The High Level Waste (HLW) Salt Disposition Systems Engineering Team was formed on March 13, 1998, and chartered to identify options, evaluate alternatives, and recommend a selected alternative(s) for processing HLW salt to a permitted wasteform. This requirement arises because the existing In-Tank Precipitation process at the Savannah River Site, as currently configured, cannot simultaneously meet the HLW production and Authorization Basis safety requirements. This engineering study was performed in four phases. This document provides the technical bases, assumptions, and results of this engineering study.

  18. ACTION: Technical Position on the Use of National Consensus and Building Codes to Meet DOE Order 420.18, Facility Safety, Albright, 9/13/07

    Broader source: Energy.gov [DOE]

    The attached technical position was developed in response to line organization requests for clarification and it will be posted on the Office ofNuclear Safety and Environmental Policy web page for...

  19. DOE issues Finding of No Significant Impact on the Disposition of Five

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Signature Properties at Idaho National Laboratory September 22, 2014 NEWS MEDIA CONTACT: DOE-Idaho - Tim Jackson, (208) 526-8484 DOE issues Finding of No Significant Impact on the Disposition of Five Signature Properties at Idaho National Laboratory The U.S. Department of Energy (DOE) has determined that tearing down four World War II-era historic structures and part of another structure at Idaho National Laboratory's Central Facilities Area that remain from when the area served as the U.S.

  20. Disposition of ORNL's Spent Nuclear Fuel

    SciTech Connect (OSTI)

    Turner, D. W.; DeMonia, B. C.; Horton, L. L.

    2002-02-26

    This paper describes the process of retrieving, repackaging, and preparing Oak Ridge spent nuclear fuel (SNF) for off-site disposition. The objective of the Oak Ridge SNF Project is to safely, reliably, and efficiently manage SNF that is stored on the Oak Ridge Reservation until it can be shipped off-site. The project required development of several unique processes and the design and fabrication of special equipment to enable the successful retrieval, transfer, and repackaging of Oak Ridge SNF. SNF was retrieved and transferred to a hot cell for repackaging. After retrieval of SNF packages, the storage positions were decontaminated and stainless steel liners were installed to resolve the vulnerability of water infiltration. Each repackaged SNF canister has been transferred from the hot cell back to dry storage until off-site shipments can be made. Three shipments of aluminum-clad SNF were made to the Savannah River Site (SRS), and five shipments of non-aluminum-clad SNF are planned to the Idaho National Engineering and Environmental Laboratory (INEEL). Through the integrated cooperation of several organizations including the U.S. Department of Energy (DOE), Bechtel Jacobs Company LLC (BJC), Oak Ridge National Laboratory (ORNL), and various subcontractors, preparations for the disposition of SNF in Oak Ridge have been performed in a safe and successful manner.

  1. Integrated Safety Management Policy

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-04-25

    The policy establishes DOE's expectation for safety, including integrated safety management that will enable the Department’s mission goals to be accomplished efficiently while ensuring safe operations at all departmental facilities and activities. Supersedes DOE P 450.4, DOE P 411.1, DOE P 441.1, DOE P 450.2A, and DOE P 450.7

  2. Laser Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laser Facilities Current Schedule of Experiments Operation Schedule Janus Titan Europa COMET Facility Floorplan

  3. EM Cleanup Chief Discusses Path Forward for DOE's Excess Facilities |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Cleanup Chief Discusses Path Forward for DOE's Excess Facilities EM Cleanup Chief Discusses Path Forward for DOE's Excess Facilities April 27, 2016 - 1:00pm Addthis Panel moderator Jenny Freeman, president of the Energy Technology and Environmental Business Association (second from left), talks as panelists (left to right) Ken Harrawood, senior director of Y-12 Legacy Facility Disposition, Mark Duff, director of Environmental Management, Fluor Paducah Deactivation

  4. Weapons-grade plutonium dispositioning. Volume 2: Comparison of plutonium disposition options

    SciTech Connect (OSTI)

    Brownson, D.A.; Hanson, D.J.; Blackman, H.S.

    1993-06-01

    The Secretary of Energy requested the National Academy of Sciences (NAS) Committee on International Security and Arms Control to evaluate disposition options for weapons-grade plutonium. The Idaho National Engineering Laboratory (INEL) offered to assist the NAS in this evaluation by investigating the technical aspects of the disposition options and their capability for achieving plutonium annihilation levels greater than 90%. This report was prepared for the NAS to document the gathered information and results from the requested option evaluations. Evaluations were performed for 12 plutonium disposition options involving five reactor and one accelerator-based systems. Each option was evaluated in four technical areas: (1) fuel status, (2) reactor or accelerator-based system status, (3) waste-processing status, and (4) waste disposal status. Based on these evaluations, each concept was rated on its operational capability and time to deployment. A third rating category of option costs could not be performed because of the unavailability of adequate information from the concept sponsors. The four options achieving the highest rating, in alphabetical order, are the Advanced Light Water Reactor with plutonium-based ternary fuel, the Advanced Liquid Metal Reactor with plutonium-based fuel, the Advanced Liquid Metal Reactor with uranium-plutonium-based fuel, and the Modular High Temperature Gas-Cooled Reactor with plutonium-based fuel. Of these four options, the Advanced Light Water Reactor and the Modular High Temperature Gas-Cooled Reactor do not propose reprocessing of their irradiated fuel. Time constraints and lack of detailed information did not allow for any further ratings among these four options. The INEL recommends these four options be investigated further to determine the optimum reactor design for plutonium disposition.

  5. Sandia Energy - Excellence Award in the 2012 Facilities Environmental...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Excellence Award in the 2012 Facilities Environmental, Safety and Health Go Green Initiative Home Renewable Energy Energy Events Facilities News News & Events Concentrating Solar...

  6. Nuclear Facilities Production Facilities

    National Nuclear Security Administration (NNSA)

    Facilities Production Facilities Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Sand 2011-4582P. ENERGY U.S. DEPARTMENT OF Gamma Irradiation Facility (GIF) The GIF provides test cells for the irradiation of experiments with high-intensity gamma ray sources. The main features

  7. EM Waste and Materials Disposition & Transportation | Department...

    Office of Environmental Management (EM)

    & Publications TEC Meeting Summaries - February 2008 Presentations Radioactive Waste Management Complex Wide Review Communication Is Key to Packaging and Transportation Safety...

  8. Topic: Cesium Management and Disposition Alternatives for the Low Activity Waste Pre-Treatment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Department of Energy Topic Index to the DOE Administrative Records Disposition Schedules Topic Index to the DOE Administrative Records Disposition Schedules Topic Index to the DOE Administrative Records Disposition Schedules PDF icon Topic Index to the DOE Administrative Records Disposition Schedules More Documents & Publications ADMINISTRATIVE RECORDS SCHEDULE 20: ELECTRONIC RECORDS ADMINISTRATIVE RECORDS SCHEDULE 20: ELECTRONIC RECORDS ADMINISTRATIVE RECORDS SCHEDULE 12: COMMUNICATIONS

  9. Enforcement handbook: Enforcement of DOE nuclear safety requirements

    SciTech Connect (OSTI)

    1995-06-01

    This Handbook provides detailed guidance and procedures to implement the General Statement of DOE Enforcement Policy (Enforcement Policy or Policy). A copy of this Enforcement Policy is included for ready reference in Appendix D. The guidance provided in this Handbook is qualified, however, by the admonishment to exercise discretion in determining the proper disposition of each potential enforcement action. As discussed in subsequent chapters, the Enforcement and Investigation Staff will apply a number of factors in assessing each potential enforcement situation. Enforcement sanctions are imposed in accordance with the Enforcement Policy for the purpose of promoting public and worker health and safety in the performance of activities at DOE facilities by DOE contractors (and their subcontractors and suppliers) who are indemnified under the Price-Anderson Amendments Act. These indemnified contractors, and their suppliers and subcontractors, will be referred to in this Handbook collectively as DOE contractors. It should be remembered that the purpose of the Department`s enforcement policy is to improve nuclear safety for the workers and the public, and this goal should be the prime consideration in exercising enforcement discretion.

  10. User Safety | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    User Safety User Facilities User Facilities Home User Facilities at a Glance User Resources Getting Started User Safety Access Models User Agreements Data Management Resources Acknowledging User Facilities User Statistics Policies and Processes Frequently Asked Questions User Facility Science Highlights User Facility News Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 User Resources User Safety Print Text Size: A

  11. Plutonium Disposition Program | National Nuclear Security Administrati...

    National Nuclear Security Administration (NNSA)

    to fabricate it into Mixed Oxide (MOX) fuel and irradiate it in existing light water reactors. This approach requires construction of new facilities including the MOX Fuel...

  12. Tritium research activities in Safety and Tritium Applied Research...

    Office of Environmental Management (EM)

    research activities in Safety and Tritium Applied Research (STAR) facility, Idaho National Laboratory Tritium research activities in Safety and Tritium Applied Research (STAR)...

  13. Interim Storage of Plutonium in Existing Facilities

    SciTech Connect (OSTI)

    Woodsmall, T.D.

    1999-05-10

    'In this era of nuclear weapons disarmament and nonproliferation treaties, among many problems being faced by the Department of Energy is the safe disposal of plutonium. There is a large stockpile of plutonium at the Rocky Flats Environmental Technology Center and it remains politically and environmentally strategic to relocate the inventory closer to a processing facility. Savannah River Site has been chosen as the final storage location, and the Actinide Packaging and Storage Facility (APSF) is currently under construction for this purpose. With the ability of APSF to receive Rocky Flats material an estimated ten years away, DOE has decided to use the existing reactor building in K-Area of SRS as temporary storage to accelerate the removal of plutonium from Rocky Flats. There are enormous cost savings to the government that serve as incentive to start this removal as soon as possible, and the KAMS project is scheduled to receive the first shipment of plutonium in January 2000. The reactor building in K-Area was chosen for its hardened structure and upgraded seismic qualification, both resulting from an effort to restart the reactor in 1991. The KAMS project has faced unique challenges from Authorization Basis and Safety Analysis perspectives. Although modifying a reactor building from a production facility to a storage shelter is not technically difficult, the nature of plutonium has caused design and safety analysis engineers to make certain that the design of systems, structures and components included will protect the public, SRS workers, and the environment. A basic overview of the KAMS project follows. Plutonium will be measured and loaded into DOT Type-B shipping packages at Rocky Flats. The packages are 35-gallon stainless steel drums with multiple internal containment boundaries. DOE transportation vehicles will be used to ship the drums to the KAMS facility at SRS. They will then be unloaded, stacked and stored in specific locations throughout the reactor building. The storage life is projected to be ten years to allow the preparation of APSF. DOE has stipulated that there be no credible release during storage, since there are no design features in place to mitigate a release of plutonium (i.e. HEPA filters, facility containment boundaries, etc.). This mandate has presented most of the significant challenges to the safety analysis team. The shipping packages are designed to withstand certain accidents and conditions, but in order to take credit for these the storage environment must be strictly controlled. Damages to the packages from exposure to fire, dropping, crushing and other impact accidents have been analyzed, and appropriate preventative design features have been incorporated. Other efforts include the extension of the shipping life (roughly two years) to a suitable storage life of ten years. These issues include the effects of internal pressure increases, seal degradation and the presence of impurities. A process known as the Container Qualification Program has been conducted to address these issues. The KAMS project will be ready to receive the first shipment from Rocky Flats in January 2000. No credible design basis scenarios resulting in the release of plutonium exist. This work has been useful in the effort to provide a safer disposition of plutonium, but also the lessons learned and techniques established by the team will help with the analysis of future facility modifications.'

  14. Health and Safety Training Reciprocity

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2014-04-14

    Establishes a policy for reciprocity of employee health and safety training among DOE entities responsible for employee health and safety at DOE sites and facilities to increase efficiency and effectiveness of Departmental operations while meeting established health and safety requirements. Does not cancel other directives.

  15. Independent Oversight Review, Savannah River Site Salt Waste Processing Facility- August 2013

    Broader source: Energy.gov [DOE]

    Review of the Savannah River Site Salt Waste Processing Facility Safety Basis and Design Development.

  16. CRAD, Occupational Safety & Health - Los Alamos National Laboratory...

    Office of Environmental Management (EM)

    & Health - Los Alamos National Laboratory TA 55 SST Facility CRAD, Occupational Safety & Health - Los Alamos National Laboratory TA 55 SST Facility A section of Appendix C to DOE...

  17. Radiation Safety

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safety Home MSDS Search MSDS Help Safety Training and Tests Contact Links LSU Campus Safety Glossary Radiation Safety Manual Radiation Safety Test NOTE: All Training and Testing Material is for LSU CAMD Users ONLY! **Please allow two weeks for your badge to be processed.** Regulations and Hierarchy The CAMD Safety Officer reports to two separate individuals regarding safety. These are the Radiation Safety Officer for the University, and the Campus Safety Officer in all other matters. Thus safety

  18. Progress on ARRA-funded Facility & Capability Upgrades for the...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ARRA-funded Facility & Capability Upgrades for the Battery AbuseSafety Laboratory Progress on ARRA-funded Facility & Capability Upgrades for the Battery AbuseSafety Laboratory 2011 ...

  19. EIS-0327: Disposition of Scrap Metals Programmatic EIS

    Broader source: Energy.gov [DOE]

    DOE announced its intent to prepare an EIS that would evaluate the environmental impacts of policy alternatives for the disposition of scrap metals (primarily carbon steel and stainless steel) that may have residual surface radioactivity. DOE cancelled this EIS.

  20. EA-1977: Acceptance and Disposition of Spent Nuclear Fuel Containing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Containing U.S.-Origin Highly Enriched Uranium from the Federal Republic of Germany EA-1977: Acceptance and Disposition of Spent Nuclear Fuel Containing U.S.-Origin Highly Enriched ...

  1. Draft Environmental Assessment on the Remote-handled Waste Disposition...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Draft Environmental Assessment on the Remote-handled Waste Disposition Project available for public review and comment The U.S. Department of Energy invites the public to review...

  2. EA-1977: Acceptance and Disposition of Used Nuclear Fuel Containing...

    Energy Savers [EERE]

    Fuel Containing U.S.-Origin Highly Enriched Uranium from the Federal Republic of Germany EA-1977: Acceptance and Disposition of Used Nuclear Fuel Containing U.S.-Origin...

  3. Low Level Waste Disposition – Quantity and Inventory

    Broader source: Energy.gov [DOE]

    This study has been prepared by the Used Fuel Disposition (UFD) campaign of the Fuel Cycle Research and Development (FCR&D) program. The purpose of this study is to provide an estimate of the...

  4. Used Fuel Disposition Campaign Disposal Research and Development Roadmap

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy Office of Nuclear Energy (DOE-NE), Office of Fuel Cycle Technology (OFCT) has established the Used Fuel Disposition Campaign (UFDC) to conduct the research and...

  5. Americium/Curium Disposition Life Cycle Planning Study

    SciTech Connect (OSTI)

    Jackson, W.N.; Krupa, J.; Stutts, P.; Nester, S.; Raimesch, R.

    1998-04-30

    At the request of the Department of Energy Savannah River Office (DOE- SR), Westinghouse Savannah River Company (WSRC) evaluated concepts to complete disposition of Americium and Curium (Am/Cm) bearing materials currently located at the Savannah River Site (SRS).

  6. U.S. and Russia Sign Plutonium Disposition Agreement | National...

    National Nuclear Security Administration (NNSA)

    Our Jobs Our Jobs Working at NNSA Blog Home About Us Our History NNSA Timeline U.S. and Russia Sign Plutonium Disposition Agreement U.S. and Russia Sign Plutonium...

  7. Office of UNF Disposition International Program- Strategic Plan

    Broader source: Energy.gov [DOE]

    The Department of Energy’s Office of Nuclear Energy, Used Nuclear Fuel Disposition Research and Development Office (UFD), performs the critical mission of addressing the need for an integrated...

  8. Update of the Used Fuel Disposition Campaign Implementation Plan

    Broader source: Energy.gov [DOE]

    The Used Fuel Disposition Campaign will identify alternatives and conduct scientific research and technology development to enable storage, transportation, and disposal of used nuclear fuel and wastes generated by existing and future nuclear fuel cycles.

  9. Experimental Program for Used Fuel Disposition in Crystalline Rocks.

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Experimental Program for Used Fuel Disposition in Crystalline Rocks. Citation Details In-Document Search Title: Experimental Program for Used Fuel Disposition in Crystalline Rocks. Abstract not provided. Authors: Wang, Yifeng Publication Date: 2014-10-01 OSTI Identifier: 1242086 Report Number(s): SAND2014-19251C 540815 DOE Contract Number: AC04-94AL85000 Resource Type: Conference Resource Relation: Conference: Proposed for presentation at the DOE Fuel Cycle

  10. Experimental Program for Used Fuel Disposition in Crystalline Rocks.

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Experimental Program for Used Fuel Disposition in Crystalline Rocks. Citation Details In-Document Search Title: Experimental Program for Used Fuel Disposition in Crystalline Rocks. Abstract not provided. Authors: Wang, Yifeng Publication Date: 2015-04-01 OSTI Identifier: 1248848 Report Number(s): SAND2015-2980C 583331 DOE Contract Number: AC04-94AL85000 Resource Type: Conference Resource Relation: Conference: Proposed for presentation at the USA-ROK Joint Fuel

  11. Hanford Tank Waste Retrieval, Treatment and Disposition Framework |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Hanford Tank Waste Retrieval, Treatment and Disposition Framework Hanford Tank Waste Retrieval, Treatment and Disposition Framework Completing the Office of River Protection (ORP) mission of stabilizing 56 million gallons of chemical and radioactive waste stored in Hanford's 177 tanks is one of the Energy Department's highest priorities. This Framework document outlines a phased approach for beginning tank waste treatment while continuing to resolve technical issues with

  12. Used Fuel Disposition Campaign Preliminary Quality Assurance Implementation

    Energy Savers [EERE]

    Plan | Department of Energy Preliminary Quality Assurance Implementation Plan Used Fuel Disposition Campaign Preliminary Quality Assurance Implementation Plan The primary objective of this report is to determine whether the existing Fuel Cycle Technologies (FCT) Quality Assurance Program Document (QAPD) is sufficient for work to be performed in the Used Fuel Disposition Campaign (UFDC), and where the existing QAPD is not sufficient, supply recommendations for changes to the QAPD to

  13. Used Fuel Disposition Used Nuclear Fuel Storage and Transportation

    Energy Savers [EERE]

    Storage and Transportation Overview Steve Marschman Field Demonstration Lead Idaho National Laboratory NEET ASI Review Meeting September 17, 2014 Used Fuel Disposition Today's Discussion n Our R&D Objectives n What Guides Our Work n FY14 and FY15 Work - Full-Scale High Burn-Up Demo - Experiments - Transportation - Analysis Used Fuel Disposition 3 Overall Objectives * Develop the technical bases to demonstrate the continued safe and secure storage of used nuclear fuel for extended

  14. Processing and Disposition of Remote-Handled Transuranic Liquid Waste

    Office of Scientific and Technical Information (OSTI)

    Generated at Oak Ridge National Laboratory (Conference) | SciTech Connect SciTech Connect Search Results Conference: Processing and Disposition of Remote-Handled Transuranic Liquid Waste Generated at Oak Ridge National Laboratory Citation Details In-Document Search Title: Processing and Disposition of Remote-Handled Transuranic Liquid Waste Generated at Oak Ridge National Laboratory Authors: Robinson, Sharon M [1] ; DePaoli, David W [1] ; Jubin, Robert Thomas [1] ; Patton, Bradley D [1] ;

  15. Processing and Disposition of Special Actinide Target Materials

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect SciTech Connect Search Results Conference: Processing and Disposition of Special Actinide Target Materials Citation Details In-Document Search Title: Processing and Disposition of Special Actinide Target Materials Authors: Robinson, Sharon M [1] ; Patton, Bradley D [1] + Show Author Affiliations ORNL Publication Date: 2013-01-01 OSTI Identifier: 1088123 DOE Contract Number: DE-AC05-00OR22725 Resource Type: Conference Resource Relation: Conference: WM2013,

  16. Disposition of DOE Excess Depleted Uranium, Natural Uranium, and

    Energy Savers [EERE]

    Low-Enriched Uranium | Department of Energy Disposition of DOE Excess Depleted Uranium, Natural Uranium, and Low-Enriched Uranium Disposition of DOE Excess Depleted Uranium, Natural Uranium, and Low-Enriched Uranium The U.S. Department of Energy (DOE) owns and manages an inventory of depleted uranium (DU), natural uranium (NU), and low-enriched uranium (LEU) that is currently stored in large cylinders as depleted uranium hexafluoride (DUF6), natural uranium hexafluoride (NUF6), and

  17. EA-1488: Environmental Assessment for the U-233 Disposition, Medical

    Energy Savers [EERE]

    Isotope Production, and Building 3019 Complex Shutdown at the Oak Ridge National Laboratory, Oak Ridge, Tennessee | Department of Energy 88: Environmental Assessment for the U-233 Disposition, Medical Isotope Production, and Building 3019 Complex Shutdown at the Oak Ridge National Laboratory, Oak Ridge, Tennessee EA-1488: Environmental Assessment for the U-233 Disposition, Medical Isotope Production, and Building 3019 Complex Shutdown at the Oak Ridge National Laboratory, Oak Ridge,

  18. EA-1977: Acceptance and Disposition of Spent Nuclear Fuel Containing

    Energy Savers [EERE]

    U.S.-Origin Highly Enriched Uranium from the Federal Republic of Germany | Department of Energy 7: Acceptance and Disposition of Spent Nuclear Fuel Containing U.S.-Origin Highly Enriched Uranium from the Federal Republic of Germany EA-1977: Acceptance and Disposition of Spent Nuclear Fuel Containing U.S.-Origin Highly Enriched Uranium from the Federal Republic of Germany SUMMARY This EA will evaluate the potential environmental impacts of a DOE proposal to accept spent nuclear fuel from the

  19. Hanford Tank Waste Retrieval, Treatment, and Disposition Framework |

    Office of Environmental Management (EM)

    Department of Energy Hanford Tank Waste Retrieval, Treatment and Disposition Framework Hanford Tank Waste Retrieval, Treatment and Disposition Framework Completing the Office of River Protection (ORP) mission of stabilizing 56 million gallons of chemical and radioactive waste stored in Hanford's 177 tanks is one of the Energy Department's highest priorities. This Framework document outlines a phased approach for beginning tank waste treatment while continuing to resolve technical issues with

  20. Draft Surplus Plutonium Disposition Supplemental Environmental Impact Statement

    National Nuclear Security Administration (NNSA)

    Savannah River Site - South Carolina Sequoyah Nuclear Plant - Tennessee Browns Ferry Nuclear Plant - Alabama Waste Isolation Pilot Plant - New Mexico Los Alamos National Laboratory - New Mexico DOE/EIS-0283-S2 July 2012 U.S. Department of Energy Office of Fissile Materials Disposition and Office of Environmental Management Washington, DC AVAILABILITY OF THE DRAFT SURPLUS PLUTONIUM DISPOSITION SUPPLEMENTAL ENVIRONMENTAL IMPACT STATEMENT (SPD Supplemental EIS) To submit comments on this SPD

  1. Final Surplus Plutonium Disposition Supplemental Environmental Impact Statement

    National Nuclear Security Administration (NNSA)

    283-S2 April 2015 U.S. Department of Energy Office of Material Management and Minimization and Office of Environmental Management Washington, DC Summary Final Surplus Plutonium Disposition Supplemental Environmental Impact Statement AVAILABILITY OF THE FINAL SURPLUS PLUTONIUM DISPOSITION SUPPLEMENTAL ENVIRONMENTAL IMPACT STATEMENT (SPD Supplemental EIS) For further information on this SPD Supplemental EIS, or to request a copy, please contact: Sachiko McAlhany, NEPA Document Manager SPD

  2. Draft - DOE G 410.2-1, Nuclear Material Disposition

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    This document provides a roadmap for implementing the requirements for disposition of nuclear material as outlined in the U.S. Department of Energy (DOE) Order 410.2, Management of Nuclear Materials, and DOE Order 474.2, Nuclear Material Control and Accountability. This Guide provides the basic framework for the nuclear material disposition process, includes information related to the Programmatic Value Determination (PVD) process, and identifies Discard Limits (DL) for specific low-equity nuclear materials.

  3. Plutonium Finishing Plant (PFP) Final Safety Analysis Report (FSAR) [SEC 1 THRU 11

    SciTech Connect (OSTI)

    ULLAH, M K

    2001-02-26

    The Plutonium Finishing Plant (PFP) is located on the US Department of Energy (DOE) Hanford Site in south central Washington State. The DOE Richland Operations (DOE-RL) Project Hanford Management Contract (PHMC) is with Fluor Hanford Inc. (FH). Westinghouse Safety Management Systems (WSMS) provides management support to the PFP facility. Since 1991, the mission of the PFP has changed from plutonium material processing to preparation for decontamination and decommissioning (D and D). The PFP is in transition between its previous mission and the proposed D and D mission. The objective of the transition is to place the facility into a stable state for long-term storage of plutonium materials before final disposition of the facility. Accordingly, this update of the Final Safety Analysis Report (FSAR) reflects the current status of the buildings, equipment, and operations during this transition. The primary product of the PFP was plutonium metal in the form of 2.2-kg, cylindrical ingots called buttoms. Plutonium nitrate was one of several chemical compounds containing plutonium that were produced as an intermediate processing product. Plutonium recovery was performed at the Plutonium Reclamation Facility (PRF) and plutonium conversion (from a nitrate form to a metal form) was performed at the Remote Mechanical C (RMC) Line as the primary processes. Plutonium oxide was also produced at the Remote Mechanical A (RMA) Line. Plutonium processed at the PFP contained both weapons-grade and fuels-grade plutonium materials. The capability existed to process both weapons-grade and fuels-grade material through the PRF and only weapons-grade material through the RMC Line although fuels-grade material was processed through the line before 1984. Amounts of these materials exist in storage throughout the facility in various residual forms left from previous years of operations.

  4. Front-end Nuclear Facilities (2008) | Department of Energy

    Energy Savers [EERE]

    Significant Safety Instrumented Systems Used at DOE Non-Reactor Nuclear Facilities | Department of Energy Frequently Asked Questions Regarding DOE-STD-1195-2011, Design of Safety Significant Safety Instrumented Systems Used at DOE Non-Reactor Nuclear Facilities Frequently Asked Questions Regarding DOE-STD-1195-2011, Design of Safety Significant Safety Instrumented Systems Used at DOE Non-Reactor Nuclear Facilities January 7, 2015 Frequently Asked Questions regarding DOE-STD-1195-2011 which

  5. Final Surplus Plutonium Disposition Supplemental Environmental...

    National Nuclear Security Administration (NNSA)

    ... Director Concerned Citizens for Nuclear Safety 3-309, 3-404, 3-487, 3-569 B Barczak, Sara Southern Alliance for Clean Energy 3-487 Barnhart, Amy M , Executive Director ...

  6. ARM - SGP Extended Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Extended Facility SGP Related Links Virtual Tour Facilities and Instruments Central Facility Boundary Facility Extended Facility Intermediate Facility Radiometric Calibration...

  7. ARM - SGP Intermediate Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Intermediate Facility SGP Related Links Virtual Tour Facilities and Instruments Central Facility Boundary Facility Extended Facility Intermediate Facility Radiometric Calibration...

  8. ARM - SGP Central Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Central Facility SGP Related Links Virtual Tour Facilities and Instruments Central Facility Boundary Facility Extended Facility Intermediate Facility Radiometric Calibration...

  9. Paducah Demolition Debris Shipped for Disposition

    Broader source: Energy.gov [DOE]

    PADUCAH, Ky. – Twenty-eight rail cars filled with debris from a major demolition project under the EM program at the Paducah site have been delivered to an offsite disposal facility.

  10. TRACKING SURPLUS PLUTONIUM FROM WEAPONS TO DISPOSITION

    SciTech Connect (OSTI)

    Allender, J.; Beams, J.; Sanders, K.; Myers, L.

    2013-07-16

    Supporting nuclear nonproliferation and global security principles, beginning in 1994 the United States has withdrawn more than 50 metric tons (MT) of government-controlled plutonium from potential use in nuclear weapons. The Department of Energy (DOE), including the National Nuclear Security Administration, established protocols for the tracking of this "excess" and "surplus" plutonium, and for reconciling the current storage and utilization of the plutonium to show that its management is consistent with the withdrawal policies. Programs are underway to ensure the safe and secure disposition of the materials that formed a major part of the weapons stockpile during the Cold War, and growing quantities have been disposed as waste, after which they are not included in traditional nuclear material control and accountability (NMC&A) data systems. A combination of resources is used to perform the reconciliations that form the basis for annual reporting to DOE, to U.S. Department of State, and to international partners including the International Atomic Energy Agency.

  11. Facilities & Engineering Services | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    constructionfacility safety, construction contract oversight, maintaining up-to-date CAD drawings of the facility for use in space management and Real Property Asset...

  12. ORAU South Campus Facility | Department of Energy

    Energy Savers [EERE]

    ORAU South Campus Facility ORAU South Campus Facility This document discusses the ORAU South Campus Facility. Topics include: * The area's safety * Any use limitations for the area * History and cleanup background for this area * How DOE's cleanup program addressed the problem PDF icon ORAU South Campus Facility More Documents & Publications Bethel Valley Watershed Cleanup Progress Report - 2011 Oak Ridge National Laboratory Cleanup

  13. Safety System Oversight Assessment, Los Alamos National Laboratory- May 2011

    Broader source: Energy.gov [DOE]

    Safety System Oversight Assessment of the Los Alamos National Laboratory Weapons Engineering Tritium Facility Tritium Gas Handling System

  14. Hanford MOX fuel lead assemblies data report for the surplus plutonium disposition environmental impact statement

    SciTech Connect (OSTI)

    O`Connor, D.G.; Fisher, S.E.; Holdaway, R.

    1998-08-01

    The purpose of this document is to support the US Department of Energy (DOE) Fissile Materials Disposition Program`s preparation of the draft surplus plutonium disposition environmental impact statement. This is one of several responses to data call requests for background information on activities associated with the operation of the lead assembly (LA) mixed-oxide (MOX) fuel fabrication facility. DOE-MD requested that the DOE Site Operations Offices nominate DOE sites that meet established minimum requirements that could produce MOX LAs. Six initial site combinations were proposed: (1) Argonne National Laboratory-West (ANL-W) with support from Idaho National Engineering and Environmental Laboratory (INEEL), (2) Hanford, (3) Los Alamos National Laboratory (LANL) with support from Pantex, (4) Lawrence Livermore National Laboratory (LLNL), (5) Oak Ridge Reservation (ORR), and (6) Savannah River Site (SRS). After further analysis by the sites and DOE-MD, five site combinations were established as possible candidates for producing MOX LAs: (1) ANL-W with support from INEEL, (2) Hanford, (3) LANL, (4) LLNL, and (5) SRS. Hanford has proposed an LA MOX fuel fabrication approach that would be done entirely inside an S and S Category 1 area. An alternate approach would allow fabrication of fuel pellets and assembly of fuel rods in an S and S Category 1 facility. In all, a total of three LA MOX fuel fabrication options were identified by Hanford that could accommodate the program. In every case, only minor modification would be required to ready any of the facilities to accept the equipment necessary to accomplish the LA program.

  15. LANL MOX fuel lead assemblies data report for the surplus plutonium disposition environmental impact statement

    SciTech Connect (OSTI)

    Fisher, S.E.; Holdaway, R.; Ludwig, S.B.

    1998-08-01

    The purpose of this document is to support the US Department of Energy (DOE) Fissile Materials Disposition Program`s preparation of the draft surplus plutonium disposition environmental impact statement. This is one of several responses to data call requests for background information on activities associated with the operation of the lead assembly (LA) mixed-oxide (MOX) fuel fabrication facility. LANL has proposed an LA MOX fuel fabrication approach that would be done entirely inside an S and S Category 1 area. This includes receipt and storage of PuO{sub 2} powder, fabrication of MOX fuel pellets, assembly of fuel rods and bundles, and shipping of the packaged fuel to a commercial reactor site. Support activities will take place within both Category 1 and 2 areas. Technical Area (TA) 55/Plutonium Facility 4 will be used to store the bulk PuO{sub 2} powder, fabricate MOX fuel pellets, assemble rods, and store fuel bundles. Bundles will be assembled at a separate facility, several of which have been identified as suitable for that activity. The Chemistry and Metallurgy Research Building (at TA-3) will be used for analytical chemistry support. Waste operations will be conducted in TA-50 and TA-54. Only very minor modifications will be needed to accommodate the LA program. These modifications consist mostly of minor equipment upgrades. A commercial reactor operator has not been identified for the LA irradiation. Postirradiation examination (PIE) of the irradiated fuel will take place at either Oak Ridge National Laboratory or ANL-W. The only modifications required at either PIE site would be to accommodate full-length irradiated fuel rods. Results from this program are critical to the overall plutonium distribution schedule.

  16. CRAD, NNSA- Facility Representatives (FR)

    Office of Energy Efficiency and Renewable Energy (EERE)

    CRAD for Facility Representatives (FR). Criteria Review and Approach Documents (CRADs) that can be used to conduct a well-organized and thorough assessment of elements of safety and health programs.

  17. Completing Salt Waste Processing Facility is an EM Priority and Key to SRS Cleanup Progress

    Broader source: Energy.gov [DOE]

    AIKEN, S.C. – Cleanup of the Savannah River Site (SRS) is set to reach an important milestone in May with completion of the Salt Waste Processing Facility (SWPF) construction. When operational, the facility will significantly increase the amount of high-level radioactive tank waste processed and prepared for disposition.

  18. Wheelabrator Sherman Energy Facility Biomass Facility | Open...

    Open Energy Info (EERE)

    Sherman Energy Facility Biomass Facility Jump to: navigation, search Name Wheelabrator Sherman Energy Facility Biomass Facility Facility Wheelabrator Sherman Energy Facility Sector...

  19. Huntington Resource Recovery Facility Biomass Facility | Open...

    Open Energy Info (EERE)

    Resource Recovery Facility Biomass Facility Jump to: navigation, search Name Huntington Resource Recovery Facility Biomass Facility Facility Huntington Resource Recovery Facility...

  20. Spent Nuclear Fuel Project Safety Management Plan

    SciTech Connect (OSTI)

    Garvin, L.J.

    1996-02-01

    The Spent Nuclear Fuel Project Safety Management Plan describes the new nuclear facility regulatory requirements basis for the Spemt Nuclear Fuel (SNF) Project and establishes the plan to achieve compliance with this basis at the new SNF Project facilities.

  1. FUEL CYCLE POTENTIAL WASTE FOR DISPOSITION

    SciTech Connect (OSTI)

    Jones, R.; Carter, J.

    2010-10-13

    The United States (U.S.) currently utilizes a once-through fuel cycle where used nuclear fuel (UNF) is stored on-site in either wet pools or in dry storage systems with ultimate disposal in a deep mined geologic repository envisioned. Within the Department of Energy's (DOE) Office of Nuclear Energy (DOE-NE), the Fuel Cycle Research and Development Program (FCR&D) develops options to the current commercial fuel cycle management strategy to enable the safe, secure, economic, and sustainable expansion of nuclear energy while minimizing proliferation risks by conducting research and development of advanced fuel cycles, including modified open and closed cycles. The safe management and disposition of used nuclear fuel and/or nuclear waste is a fundamental aspect of any nuclear fuel cycle. Yet, the routine disposal of used nuclear fuel and radioactive waste remains problematic. Advanced fuel cycles will generate different quantities and forms of waste than the current LWR fleet. This study analyzes the quantities and characteristics of potential waste forms including differing waste matrices, as a function of a variety of potential fuel cycle alternatives including: (1) Commercial UNF generated by uranium fuel light water reactors (LWR). Four once through fuel cycles analyzed in this study differ by varying the assumed expansion/contraction of nuclear power in the U.S; (2) Four alternative LWR used fuel recycling processes analyzed differ in the reprocessing method (aqueous vs. electro-chemical), complexity (Pu only or full transuranic (TRU) recovery) and waste forms generated; (3) Used Mixed Oxide (MOX) fuel derived from the recovered Pu utilizing a single reactor pass; and (4) Potential waste forms generated by the reprocessing of fuels derived from recovered TRU utilizing multiple reactor passes.

  2. FUEL CYCLE POTENTIAL WASTE FOR DISPOSITION

    SciTech Connect (OSTI)

    Carter, J.

    2011-01-03

    The United States (U.S.) currently utilizes a once-through fuel cycle where used nuclear fuel (UNF) is stored on-site in either wet pools or in dry storage systems with ultimate disposal in a deep mined geologic repository envisioned. Within the Department of Energy's (DOE) Office of Nuclear Energy (DOE-NE), the Fuel Cycle Research and Development Program (FCR&D) develops options to the current commercial fuel cycle management strategy to enable the safe, secure, economic, and sustainable expansion of nuclear energy while minimizing proliferation risks by conducting research and development of advanced fuel cycles, including modified open and closed cycles. The safe management and disposition of used nuclear fuel and/or nuclear waste is a fundamental aspect of any nuclear fuel cycle. Yet, the routine disposal of used nuclear fuel and radioactive waste remains problematic. Advanced fuel cycles will generate different quantities and forms of waste than the current LWR fleet. This study analyzes the quantities and characteristics of potential waste forms including differing waste matrices, as a function of a variety of potential fuel cycle alternatives including: (1) Commercial UNF generated by uranium fuel light water reactors (LWR). Four once through fuel cycles analyzed in this study differ by varying the assumed expansion/contraction of nuclear power in the U.S. (2) Four alternative LWR used fuel recycling processes analyzed differ in the reprocessing method (aqueous vs. electro-chemical), complexity (Pu only or full transuranic (TRU) recovery) and waste forms generated. (3) Used Mixed Oxide (MOX) fuel derived from the recovered Pu utilizing a single reactor pass. (4) Potential waste forms generated by the reprocessing of fuels derived from recovered TRU utilizing multiple reactor passes.

  3. SSC Safety Review Document

    SciTech Connect (OSTI)

    Toohig, T.E. [ed.

    1988-11-01

    The safety strategy of the Superconducting Super Collider (SSC) Central Design Group (CDG) is to mitigate potential hazards to personnel, as far as possible, through appropriate measures in the design and engineering of the facility. The Safety Review Document identifies, on the basis of the Conceptual Design Report (CDR) and related studies, potential hazards inherent in the SSC project independent of its site. Mitigative measures in the design of facilities and in the structuring of laboratory operations are described for each of the hazards identified.

  4. Capturing Process Knowledge for Facility Deactivation and Decommissioning

    Office of Environmental Management (EM)

    Tech Assistance Savannah River National Laboratory- Assess Adequacy of Process Knowledge for D&D Guidance for Determining Adequacy of Process Knowledge Page 1 of 2 Savannah River National Laboratory South Carolina Capturing Process Knowledge for Facility Deactivation and Decommissioning Challenge The Office of Environmental Management (EM) is responsible for the disposition of a vast number of facilities at numerous sites around the country which have been declared excess to current mission

  5. EM's SPRU Celebrates Waste Removal Success, Safety Milestone | Department

    Office of Environmental Management (EM)

    of Energy SPRU Celebrates Waste Removal Success, Safety Milestone EM's SPRU Celebrates Waste Removal Success, Safety Milestone February 27, 2014 - 12:00pm Addthis Members of the EM and URS SPRU Project Team gather to celebrate the last shipment of solidified sludge liners today. Members of the EM and URS SPRU Project Team gather to celebrate the last shipment of solidified sludge liners today. The final waste shipment from the SPRU Disposition Project leaves the site today. The final waste

  6. Pretest predictions of the Fast Flux Test Facility Passive Safety Test Phase IIB transients using United States derived computer codes and methods

    SciTech Connect (OSTI)

    Heard, F.J.; Harris, R.A.; Padilla, A.

    1992-07-01

    The SASSYS/SAS4A systems analysis code was used to simulate a series of unprotected loss of flow (ULOF) tests planned at the Fast Flux Test Facility (FFTF). The subject tests were designed to investigate the transient performance of the FFTF during various ULOF scenarios for two different loading patterns designed to produce extremes in the assembly load pad clearance and the direction of the initial assembly bows. The tests are part of an international program designed to extend the existing data base on the performance of liquid metal reactors (LMR). The analyses demonstrate that a wide range of power-to-flow ratios can be reached during the transients and, therefore, will yield valuable data on the dynamic character of the structural feedbacks in LMRS. These analyses will be repeated once the actual FFTF core loadings for the tests are available. These predictions, similar ones obtained by other international participants in the FFTF program, and post-test analyses will be used to upgrade and further verify the computer codes used to predict the behavior of LMRS.

  7. Byron Extended Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Byron Extended Facility Map

  8. Ashton Extended Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ashton Extended Facility Map

  9. User Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    User Facilities User Facilities User facility agreements allow Los Alamos partners and other entities to conduct research at our unique facilities. In 2011, LANL hosted more than 1,200 users at CINT, LANSCE, and NHMFL. Users came from across the DOE complex, from international academia, and from industrial companies from 45 states across the U.S. Unique world-class user facilities foster rich research opportunities Through its technology transfer efforts, LANL can implement user facility

  10. Development of an ACP facility

    SciTech Connect (OSTI)

    Gil-Sung You; Won-Myung Choung; Jeong-Hoe Ku; il-Je Cho; Dong-Hak Kook; Kie-Chan Kwon; Eun-Pyo Lee; Ji-Sup Yoon; Seong-Won Park; Won-Kyung Lee

    2007-07-01

    KAERI has been developing an advanced spent fuel conditioning process (ACP). The ACP facility for a process demonstration consists of two air-sealed type hot cells. The safety analysis results showed that the facility was designed safely. The relevant integrated performance tests were also carried out successfully. (authors)

  11. Assessment of technologies for hazardous waste site remediation: Non-treatment technologies and pilot scale facility implementation -- excavation -- storage technology -- safety analysis and review statement. Final report

    SciTech Connect (OSTI)

    Johnson, H.R.; Overbey, W.K. Jr.; Koperna, G.J. Jr.

    1994-02-01

    The purpose of this study is to assess the state-of-the-art of excavation technology as related to environmental remediation applications. A further purpose is to determine which of the excavation technologies reviewed could be used by the US Corp of Engineers in remediating contaminated soil to be excavated in the near future for construction of a new Lock and Dam at Winfield, WV. The study is designed to identify excavation methodologies and equipment which can be used at any environmental remediation site but more specifically at the Winfield site on the Kanawha River in Putnam County, West Virginia. A technical approach was determined whereby a functional analysis was prepared to determine the functions to be conducted during the excavation phase of the remediation operations. A number of excavation technologies were identified from the literature. A set of screening criteria was developed that would examine the utility and ranking of the technologies with respect to the operations that needed to be conducted at the Winfield site. These criteria were performance, reliability, implementability, environmental safety, public health, and legal and regulatory compliance. The Loose Bulk excavation technology was ranked as the best technology applicable to the Winfield site. The literature was also examined to determine the success of various methods of controlling fugitive dust. Depending upon any changes in the results of chemical analyses, or prior remediation of the VOCs from the vadose zone, consideration should be given to testing a new ``Pneumatic Excavator`` which removes the VOCs liberated during the excavation process as they outgas from the soil. This equipment however would not be needed on locations with low levels of VOC emissions.

  12. User Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Collaboration User Facilities collaborationassetsimagesicon-collaboration.jpg User Facilities A new research frontier awaits Our door is open and we thrive on mutually...

  13. Mobile Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2009-2010 Shouxian, China, 2008 Black Forest, Germany, 2007 Niamey, Niger, 2006 Point Reyes, California, 2005 Mobile Facilities Pictured here in Gan, the second mobile facility...

  14. Used Fuel Disposition Research & Development | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Used Fuel Disposition Research & Development Used Fuel Disposition Research & Development A typical spent nuclear fuel cask sitting on a railcar. Since the early 1960s, the United States has safely conducted more than 3,000 shipments of used nuclear fuel without any harmful release of radioactive material. A typical spent nuclear fuel cask sitting on a railcar. Since the early 1960s, the United States has safely conducted more than 3,000 shipments of used nuclear fuel without any harmful

  15. Optimizing the Use of Federal Lands Through Disposition | Department of

    Energy Savers [EERE]

    Energy Optimizing the Use of Federal Lands Through Disposition Optimizing the Use of Federal Lands Through Disposition July 14, 2014 - 1:20pm Addthis What does this project do? Goal 4. Optimize the use of land and assets. The foundation of the U.S. Department of Energy (DOE) Office of Legacy Management's (LM) Goal 4, "Optimize the use of land and assets," is to establish environmentally sound and protective land uses on LM sites. LM believes there can be beneficial uses of land

  16. Development of a fresh MOX fuel transport package for disposition of weapons plutonium

    SciTech Connect (OSTI)

    Ludwig, S.B.; Pope, R.B.; Shappert, L.B.; Michelhaugh, R.D.; Chae, S.M.

    1998-11-01

    The US Department of Energy announced its Record of Decision on January 14, 1997, to embark on a dual-track approach for disposition of surplus weapons-usable plutonium using immobilization in glass or ceramics and burning plutonium as mixed-oxide (MOX) fuel in reactors. In support of the MOX fuel alternative, Oak Ridge National Laboratory initiated development of conceptual designs for a new package for transporting fresh (unirradiated) MOX fuel assemblies between the MOX fabrication facility and existing commercial light-water reactors in the US. This paper summarizes progress made in development of new MOX transport package conceptual designs. The development effort has included documentation of programmatic and technical requirements for the new package and development and analysis of conceptual designs that satisfy these requirements.

  17. Recommendation 219: Recommendation Regarding the Creation of a Graphic Representation of Waste Disposition Paths

    Broader source: Energy.gov [DOE]

    The Environmental Management Site-Specific Advisory Board recommends that DOE develop graphic representations of waste disposition paths.

  18. Nuclear Reactor Safety Design Criteria

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1993-01-19

    The order establishes nuclear safety criteria applicable to the design, fabrication, construction, testing, and performance requirements of nuclear reactor facilities and safety class structures, systems, and components (SSCs) within these facilities. Cancels paragraphs 8a and 8b of DOE 5480.6. Cancels DOE O 5480.6 in part. Supersedes DOE 5480.1, dated 1-19-93. Certified 11-18-10.

  19. Hanford Generic Interim Safety Basis

    SciTech Connect (OSTI)

    Lavender, J.C.

    1994-09-09

    The purpose of this document is to identify WHC programs and requirements that are an integral part of the authorization basis for nuclear facilities that are generic to all WHC-managed facilities. The purpose of these programs is to implement the DOE Orders, as WHC becomes contractually obligated to implement them. The Hanford Generic ISB focuses on the institutional controls and safety requirements identified in DOE Order 5480.23, Nuclear Safety Analysis Reports.

  20. K Basin safety analysis

    SciTech Connect (OSTI)

    Porten, D.R.; Crowe, R.D.

    1994-12-16

    The purpose of this accident safety analysis is to document in detail, analyses whose results were reported in summary form in the K Basins Safety Analysis Report WHC-SD-SNF-SAR-001. The safety analysis addressed the potential for release of radioactive and non-radioactive hazardous material located in the K Basins and their supporting facilities. The safety analysis covers the hazards associated with normal K Basin fuel storage and handling operations, fuel encapsulation, sludge encapsulation, and canister clean-up and disposal. After a review of the Criticality Safety Evaluation of the K Basin activities, the following postulated events were evaluated: Crane failure and casks dropped into loadout pit; Design basis earthquake; Hypothetical loss of basin water accident analysis; Combustion of uranium fuel following dryout; Crane failure and cask dropped onto floor of transfer area; Spent ion exchange shipment for burial; Hydrogen deflagration in ion exchange modules and filters; Release of Chlorine; Power availability and reliability; and Ashfall.

  1. Facility Representative Program Outstanding at ID

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    June 19, 2007 Facility Representative Program Outstanding at ID Idaho's three DOE Complex-wide Facility Representative of the Year (FROTY) recipients at this year's conference pose for a photo shoot with Elvis. L to R: Dary Newbry 2005 FROTY, Bob Seal 2006 FROTY, Bob Knighten 2004 FROTY Facility representatives (FRs) are the eyes and ears of the federal government at the Idaho National Laboratory. They oversee the people, processes, facilities and systems that ensure safety at INL facilities.

  2. Safety Basis Information System | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Basis Information System Safety Basis Information System Safety Basis Report (Public Access) Click on the above link to see the current Safety Basis report. This report provides a list of all DOE nuclear facilities with the safety basis status, hazard categorization, and safety basis type. Safety Basis Login Click on the above link to log in to the Safety Basis web interface. "RESTRICTED; access only to DOE and DOE contractors" Safety Basis Account Request Click on the above link to

  3. Site Visit Report, Hanford Waste Encapsulation Storage Facility - January

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2011 | Department of Energy Site Visit Report, Hanford Waste Encapsulation Storage Facility - January 2011 Site Visit Report, Hanford Waste Encapsulation Storage Facility - January 2011 January 2011 Hanford Waste Encapsulation Storage Facility Documented Safety Analysis results of a review conducted by the Department of Energy's Office of Health, Safety and Security (HSS) of the documented safety analysis for the Waste Encapsulation Storage Facility at DOE's Hanford Site. The review was

  4. Analysis of environment, safety, and health (ES{ampersand}H) management systems for Department of Energy (DOE) Defense Programs (DP) facilities

    SciTech Connect (OSTI)

    Neglia, A. V., LLNL

    1998-03-01

    The purpose of this paper is to provide a summary analysis and comparison of various environment, safety, and health (ES&H) management systems required of, or suggested for use by, the Departrnent of Energy Defense Programs` sites. The summary analysis is provided by means of a comparison matrix, a set of Vean diagrams that highlights the focus of the systems, and an `End Gate` filter diagram that integrates the three Vean diagrams. It is intended that this paper will act as a starting point for implementing a particular system or in establishing a comprehensive site-wide integrated ES&H management system. Obviously, the source documents for each system would need to be reviewed to assure proper implementation of a particular system. The matrix compares nine ES&H management systems against a list of elements generated by identifying the unique elements of all the systems. To simplify the matrix, the elements are listed by means of a brief title. An explanation of the matrix elements is provided in Attachment 2 entitled, `Description of System Elements.` The elements are categorized under the Total Quality Management (TQM) `Plan, Do, Check, Act` framework with the added category of `Policy`. (The TQM concept is explained in the `DOE Quality Management implementation Guidelines,` July 1997 (DOE/QM- 0008)). The matrix provides a series of columns and rows to compare the unique elements found in each of the management systems. A `V` is marked if the element is explicitly identified as part of the particular ES&H management system. An `X` is marked if the element is not found in the particular ES&H management system, or if it is considered to be inadequately addressed. A `?` is marked if incorporation of the element is not clear. Attachment I provides additional background information which explains the justification for the marks in the matrix cells. Through the Vean diagrams and the `End Gate` filter in Section 3, the paper attempts to pictorially display the focus of each system with respect to ES&H, the hazard of concern, and any limitations with respect to the TQM categories. A summary evaluation and explanation of each of the systems is provided in Section 4 of the paper. Several other ES&H systems were reviewed in preparation of the paper, but were not specifically included as a system in this matrix. Only those ES&H management systems that are potentially applicable to DOE Defense Program sites were included as part of the matrix comparison. A description of other ES&H management systems that were evaluated, but not specifically incorporated in this matrix comparison, are provided in Attachment 3 entitled, `Other ES&H Management Systems Reviewed.` In the past, it has been difficult integrating ES&H into work planning for several reasons. One barrier to this integration has been the complexity caused by the existence of several `stove pipe` ES&H systems. By analyzing the unique elements of the various ES&H systems, as well as their strengths and limitations, and their similarities and differences, it is envisioned that this paper will aid in facilitating the integration of ES&H into work planning. This paper was developed by the Office of Defense Programs (DP-45) and all questions or comments should be directed to Anthony Neglia of that office at (301) 903-3531 or Anthony.Neglia@dp.doe.gov.

  5. Health & Safety

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Health & Safety Health & Safety1354608000000Health & SafetySome of these resources are LANL-only and will require Remote Access.NoQuestions? 667-5809library@lanl.gov Health &...

  6. Facility Representatives

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-03-01

    This standard, DOE-STD-1063, Facility Representatives, defines the duties, responsibilities and qualifications for Department of Energy (DOE) Facility Representatives, based on facility hazard classification; risks to workers, the public, and the environment; and the operational activity level. This standard provides the guidance necessary to ensure that DOE’s hazardous nuclear and non-nuclear facilities have sufficient staffing of technically qualified facility representatives (FRs) to provide day-to-day oversight of contractor operations.

  7. Transportable Vitrification System RCRA Closure Practical Waste Disposition Saves Time And Money

    SciTech Connect (OSTI)

    Brill, Angie; Boles, Roger; Byars, Woody

    2003-02-26

    The Transportable Vitrification System (TVS) was a large-scale vitrification system for the treatment of mixed wastes. The wastes contained both hazardous and radioactive materials in the form of sludge, soil, and ash. The TVS was developed to be moved to various United States Department of Energy (DOE) facilities to vitrify mixed waste as needed. The TVS consists of four primary modules: (1) Waste and Additive Materials Processing Module; (2) Melter Module; (3) Emissions Control Module; and (4) Control and Services Module. The TVS was demonstrated at the East Tennessee Technology Park (ETTP) during September and October of 1997. During this period, approximately 16,000 pounds of actual mixed waste was processed, producing over 17,000 pounds of glass. After the demonstration was complete it was determined that it was more expensive to use the TVS unit to treat and dispose of mixed waste than to direct bury this waste in Utah permitted facility. Thus, DOE had to perform a Resource Conservation and Recovery Act (RCRA) closure of the facility and find a reuse for as much of the equipment as possible. This paper will focus on the following items associated with this successful RCRA closure project: TVS site closure design and implementation; characterization activities focused on waste disposition; pollution prevention through reuse; waste minimization efforts to reduce mixed waste to be disposed; and lessons learned that would be integrated in future projects of this magnitude.

  8. DOE Seeks Industry Input on Nickel Disposition Strategy

    Broader source: Energy.gov [DOE]

    WASHINGTON, D.C. – The Energy Department’s prime contractor, Fluor-B&W Portsmouth (FBP), managing the Portsmouth Gaseous Diffusion Plant (GDP), issued a request for Expressions of Interest (EOI) seeking industry input to support the development of an acquisition strategy for potential disposition of DOE nickel.

  9. Safety, Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safety, Security Safety, Security The Lab's mission is to develop and apply science and technology to ensure the safety, security, and reliability of the U.S. nuclear deterrent; reduce global threats; and solve other emerging national security and energy challenges. Contact Operator Los Alamos National Laboratory (505) 667-5061 We do not compromise safety for personal, programmatic, or operational reasons. Safety: we integrate safety, security, and environmental concerns into every step of our

  10. Waste Characterization, Reduction, and Repackaging Facility

    Energy Savers [EERE]

    (WCRRF)Technical Safety Requirements (TSR), ABD-WFM-006, Revision 2.1 | Department of Energy Characterization, Reduction, and Repackaging Facility (WCRRF)Technical Safety Requirements (TSR), ABD-WFM-006, Revision 2.1 Waste Characterization, Reduction, and Repackaging Facility (WCRRF)Technical Safety Requirements (TSR), ABD-WFM-006, Revision 2.1 The documents included in this listing are additional references not included in the Phase 2 Radiological Release at the Waste Isolation Pilot Plant,

  11. Cold Vacuum Drying Facility hazard analysis report

    SciTech Connect (OSTI)

    Krahn, D.E.

    1998-02-23

    This report describes the methodology used in conducting the Cold Vacuum Drying Facility (CVDF) hazard analysis to support the CVDF phase 2 safety analysis report (SAR), and documents the results. The hazard analysis was performed in accordance with DOE-STD-3009-94, Preparation Guide for US Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports, and implements the requirements of US Department of Energy (DOE) Order 5480.23, Nuclear Safety Analysis Reports.

  12. CLOSURE OF THE FAST FLUX TEST FACILITY (FFTF) CURRENT STATUS & FUTURE PLANS

    SciTech Connect (OSTI)

    BURKE, T.M.

    2005-04-13

    Deactivation activities are currently in progress at the Fast Flux Test Facility. These deactivation activities are intended to remove most hazardous materials and prepare the facility for final disposition. The two major hazards to be removed are the nuclear fuel and the alkali metal (most sodium) coolant. The fuel and coolant removal activities are proceeding well and are expected to complete in 2006. Plant systems are being shut down as allowed by completion of various fuel and coolant removal actions. A Decommissioning Environmental Impact Statement is in progress to evaluate a range of potential final disposition end states.

  13. Implementation Guide for Use in Developing Technical Safety Requirements

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2010-11-03

    This Guide provides elaboration for the content of TSRs. Section 10 CFR 830.205 of the Nuclear Safety Management rule, requires Department of Energy (DOE) contractors responsible for category 1, 2, and 3 DOE nuclear facilities to develop Technical Safety Requirements (TSRs). These TSRs identify the limitations to each DOE owned, contractor operated nuclear facility based on the documented safety analysis (DSA) and any additional safety requirements established for the facility. Cancels DOE G 423.1-1.

  14. Implementation Guide for Use in Developing Technical Safety Requirements

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2010-11-03

    This Guide provides elaboration for the content of TSRs. Section 10 CFR 830.205 of the Nuclear Safety Management rule, requires Department of Energy (DOE) contractors responsible for category 1, 2, and 3 DOE nuclear facilities to develop Technical Safety Requirements (TSRs). These TSRs identify the limitations to each DOE owned, contractor operated nuclear facility based on the documented safety analysis (DSA) and any additional safety requirements established for the facility. Does not cancel other directives.

  15. Safety Basis Report

    SciTech Connect (OSTI)

    R.J. Garrett

    2002-01-14

    As part of the internal Integrated Safety Management Assessment verification process, it was determined that there was a lack of documentation that summarizes the safety basis of the current Yucca Mountain Project (YMP) site characterization activities. It was noted that a safety basis would make it possible to establish a technically justifiable graded approach to the implementation of the requirements identified in the Standards/Requirements Identification Document. The Standards/Requirements Identification Documents commit a facility to compliance with specific requirements and, together with the hazard baseline documentation, provide a technical basis for ensuring that the public and workers are protected. This Safety Basis Report has been developed to establish and document the safety basis of the current site characterization activities, establish and document the hazard baseline, and provide the technical basis for identifying structures, systems, and components (SSCs) that perform functions necessary to protect the public, the worker, and the environment from hazards unique to the YMP site characterization activities. This technical basis for identifying SSCs serves as a grading process for the implementation of programs such as Conduct of Operations (DOE Order 5480.19) and the Suspect/Counterfeit Items Program. In addition, this report provides a consolidated summary of the hazards analyses processes developed to support the design, construction, and operation of the YMP site characterization facilities and, therefore, provides a tool for evaluating the safety impacts of changes to the design and operation of the YMP site characterization activities.

  16. SRS MOX fuel lead assemblies data report for the surplus plutonium disposition environmental impact statement

    SciTech Connect (OSTI)

    O`Connor, D.G.; Fisher, S.E.; Holdaway, R.

    1998-08-01

    The purpose of this document is to support the US Department of Energy (DOE) Fissile Materials Disposition Program`s preparation of the draft surplus plutonium disposition environmental impact statement. This is one of several responses to data call requests for background information on activities associated with the operation of the lead assembly (LA) mixed-oxide (MOX) fuel fabrication facility. DOE-MD requested that the DOE Site Operations Offices nominate DOE sites that meet established minimum requirements that could produce MOX LAs. Six initial site combinations were proposed: (1) Argonne National Laboratory-West (ANL-W) with support from Idaho National Engineering and Environmental Laboratory (INEEL), (2) Hanford, (3) Los Alamos National Laboratory (LANL) with support from Pantex, (4) Lawrence Livermore National Laboratory (LLNL), (5) Oak Ridge Reservation (ORR), and (6) Savannah River Site(SRS). After further analysis by the sites and DOE-MD, five site combinations were established as possible candidates for producing MOX LAs: (1) ANL-W with support from INEEL, (2) Hanford, (3) LANL, (4) LLNL, and (5) SRS. SRS has proposed an LA MOX fuel fabrication approach that would be done entirely inside an S and S Category 1 area. An alternate approach would allow fabrication of fuel pellets and assembly of fuel rods in an S and S Category 2 or 3 facility with storage of bulk PuO{sub 2} and assembly, storage, and shipping of fuel bundles in an S and S Category 1 facility. The total Category 1 approach, which is the recommended option, would be done in the 221-H Canyon Building. A facility that was never in service will be removed from one area, and a hardened wall will be constructed in another area to accommodate execution of the LA fuel fabrication. The non-Category 1 approach would require removal of process equipment in the FB-Line metal production and packaging glove boxes, which requires work in a contamination area. The Immobilization Hot Demonstration Program equipment in the Savannah River Technology Center would need to be removed to accommodate pellet fabrication. This work would also be in a contaminated area.

  17. DOE-STD-1104-96 CN-1; Review and Approval of Nuclear Facility...

    Office of Environmental Management (EM)

    DOE STANDARD REVIEW AND APPROVAL OF NUCLEAR FACILITY SAFETY BASIS DOCUMENTS (DOCUMENTED SAFETY ... Neither a reviewer nor the preparer has veto power over ultimate resolution or ...

  18. STAR Facility Tritium Accountancy

    SciTech Connect (OSTI)

    R. J. Pawelko; J. P. Sharpe; B. J. Denny

    2007-09-01

    The Safety and Tritium Applied Research (STAR) facility has been established to provide a laboratory infrastructure for the fusion community to study tritium science associated with the development of safe fusion energy and other technologies. STAR is a radiological facility with an administrative total tritium inventory limit of 1.5g (14,429 Ci) [1]. Research studies with moderate tritium quantities and various radionuclides are performed in STAR. Successful operation of the STAR facility requires the ability to receive, inventory, store, dispense tritium to experiments, and to dispose of tritiated waste while accurately monitoring the tritium inventory in the facility. This paper describes tritium accountancy in the STAR facility. A primary accountancy instrument is the tritium Storage and Assay System (SAS): a system designed to receive, assay, store, and dispense tritium to experiments. Presented are the methods used to calibrate and operate the SAS. Accountancy processes utilizing the Tritium Cleanup System (TCS), and the Stack Tritium Monitoring System (STMS) are also discussed. Also presented are the equations used to quantify the amount of tritium being received into the facility, transferred to experiments, and removed from the facility. Finally, the STAR tritium accountability database is discussed.

  19. STAR facility tritium accountancy

    SciTech Connect (OSTI)

    Pawelko, R. J.; Sharpe, J. P.; Denny, B. J.

    2008-07-15

    The Safety and Tritium Applied Research (STAR) facility has been established to provide a laboratory infrastructure for the fusion community to study tritium science associated with the development of safe fusion energy and other technologies. STAR is a radiological facility with an administrative total tritium inventory limit of 1.5 g (14,429 Ci) [1]. Research studies with moderate tritium quantities and various radionuclides are performed in STAR. Successful operation of the STAR facility requires the ability to receive, inventory, store, dispense tritium to experiments, and to dispose of tritiated waste while accurately monitoring the tritium inventory in the facility. This paper describes tritium accountancy in the STAR facility. A primary accountancy instrument is the tritium Storage and Assay System (SAS): a system designed to receive, assay, store, and dispense tritium to experiments. Presented are the methods used to calibrate and operate the SAS. Accountancy processes utilizing the Tritium Cleanup System (TCS), and the Stack Tritium Monitoring System (STMS) are also discussed. Also presented are the equations used to quantify the amount of tritium being received into the facility, transferred to experiments, and removed from the facility. Finally, the STAR tritium accountability database is discussed. (authors)

  20. Strengthening Line Management Oversight and Federal Monitoring of Nuclear Facilities

    Office of Environmental Management (EM)

    Volume 3 - Nuclear Safety Basis Program Review During Facility Operations and Transitions February 2015 i Standard Review Plan Volume 3 Nuclear Safety Basis Program Review during Facility Operations and Transitions Facility Life Cycle Applicability CD-1 CD-2 CD-3 CD-4 Operations and Transitions Decommissioning & Environmental Restoration February 2015 ii Table of Contents Acronyms

  1. Jefferson Lab Names New Safety Director | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Safety Director Jefferson Lab Names New Safety Director NEWPORT NEWS, Va., April 9, 2008 - Mary K. Logue, an experienced safety professional responsible for the implementation of the Environment, Health and Safety program at the Department of Energy's Fermi National Accelerator Facility, has been named as the associate director for Environment, Safety, Health and Quality division at Thomas Jefferson National Accelerator Facility. Logue, currently an associate section head for environment,

  2. ORISE: Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ORISE Facilities Unique laboratories and training centers among the assets managed on behalf of the U.S. Department of Energy The Oak Ridge Institute for Science and Education (ORISE) is home to a number of on- and off-site facilities that support the U.S. Department of Energy's (DOE) science education and research mission. From on-site medical laboratories to radiation emergency medicine training facilities, ORISE facilities are helping to address national needs in the following areas:

  3. Science Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities /science-innovation/_assets/images/icon-science.jpg Science Facilities The focal point for basic and applied R&D programs with a primary focus on energy but also encompassing medical, biotechnology, high-energy physics, and advanced scientific computing programs. Center for Integrated Nanotechnologies» Dual Axis Radiographic Hydrodynamic Test Facility (DARHT)» Electron Microscopy Lab» Ion Beam Materials Lab» Isotope Production Facility» Los Alamos Neutron Science Center»

  4. Microsoft PowerPoint - Fire Safety workshop NQA-1 CGD 4 29 15...

    Office of Environmental Management (EM)

    v Nuclear and Facility Safety Programs Workshop Fire Safety Track May 5th, 2015 Overview ... of Replacement Items in Nuclear Power Plants" * EPRI 1016157, "Information for ...

  5. CRAD, Safety Basis Upgrade Review (DOE-STD-3009-2014) - May 15...

    Office of Environmental Management (EM)

    1) provides objectives, criteria, and approaches for establishing and maintaining the safety basis at nuclear facilities. CRAD, Safety Basis Upgrade Review (DOE-STD-3009-2014)...

  6. CRITICALITY SAFETY TRAINING AT FLUOR HANFORD (FH)

    SciTech Connect (OSTI)

    TOFFER, H.

    2005-05-02

    The Fluor Hanford Criticality Safety engineers are extensively trained. The objectives and requirements for training are derived from Department of Energy (DOE) and American National Standards Institute/American Nuclear Society Standards (ANSI/ANS), and are captured in the Hanford Criticality Safety Program manual, HNF-7098. Qualification cards have been established for the general Criticality Safety Engineer (CSE) analyst, CSEs who support specific facilities, and for the facility Criticality Safety Representatives (CSRs). Refresher training and continuous education in the discipline are emphasized. Weekly Brown Bag Sessions keep the criticality safety engineers informed of the latest developments and historic perspectives.

  7. Chemical Safety Vulnerability Working Group Report

    SciTech Connect (OSTI)

    Not Available

    1994-09-01

    This report marks the culmination of a 4-month review conducted to identify chemical safety vulnerabilities existing at DOE facilities. This review is an integral part of DOE's efforts to raise its commitment to chemical safety to the same level as that for nuclear safety.

  8. Facilities, Partnerships, and Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities, Partnerships, and Resources - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management

  9. Cell Prototyping Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cell Prototyping Facility - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs

  10. Central Receiver Test Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Receiver Test Facility - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced

  11. About the Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Facility - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear

  12. Risk Assessment in Support of DOE Nuclear Safety, Risk Information Notice, June 2010

    Broader source: Energy.gov [DOE]

    On August 12, 2009, the Defense Nuclear Facilities Safety Board(DNFSB) issued Recommendation 2009‐1, Risk Assessment Methodologies at Defense Nuclear Facilities. Thisrecommendation focused on the...

  13. Engineering evaluation of alternatives for the disposition of Niagara Falls Storage Site, its residues and wastes

    SciTech Connect (OSTI)

    Not Available

    1984-01-01

    The final disposition scenarios selected by DOE for assessment in this document are consistent with those stated in the Notice of Intent to prepare an Environmental Impact Statement (EIS) for the Niagara Falls Storage Site (NFSS) (DOE, 1983d) and the modifications to the alternatives resulting from the public scoping process. The scenarios are: take no action beyond interim remedial measures other than maintenance and surveillance of the NFSS; retain and manage the NFSS as a long-term waste management facility for the wastes and residues on the site; decontaminate, certify, and release the NFSS for other use, with long-term management of the wastes and residues at other DOE sites; and partially decontaminate the NFSS by removal and transport off site of only the more radioactive residues, and upgrade containment of the remaining wastes and residues on site. The objective of this document is to present to DOE the conceptual engineering, occupational radiation exposure, construction schedule, maintenance and surveillance requirements, and cost information relevant to design and implementation of each of the four scenarios. The specific alternatives within each scenario used as the basis for discussion in this document were evaluated on the bases of engineering considerations, technical feasibility, and regulatory requirements. Selected alternatives determined to be acceptable for each of the four final disposition scenarios for the NFSS were approved by DOE to be assessed and costed in this document. These alternatives are also the subject of the EIS for the NFSS currently being prepared by Argonne National Laboratory (ANL). 40 figures, 38 tables.

  14. DOE Honors Idaho Facility with Safety Award

    Broader source: Energy.gov [DOE]

    IDAHO FALLS, Idaho – Jack Zimmerman, DOE Idaho Operations Office’s deputy manager for EM, presented the Department’s Voluntary Protection Program (VPP) Star flag to Advanced Mixed Waste Treatment Project (AMWTP) employees this month.

  15. Preparation of Nonreactor Nuclear Facility Documented Safety...

    Energy Savers [EERE]

    ......... 21 3.2.4.3 Chemical Source Term and Consequence ... and hazardous materials by mechanical, chemical, or other techniques to achieve a stated ...

  16. Radiological Safety Training for Plutonium Facilities

    Energy Savers [EERE]

    ... Pre-Course Delivery Activities Checklist ... Based on this review, management may provide exemptions ... May result in a low spontaneous ignition temperature. ...

  17. Radiological Safety Training for Plutonium Facilities

    Energy Savers [EERE]

    ... Delivery Activities Checklist ......Based on this review, management may provide exemptions ... May result in a low spontaneous ignition temperature. ...

  18. Radiological Safety Training for Uranium Facilities

    Energy Savers [EERE]

    ... their assigned duties at a predetermined level of expertise. ... Radon is a gas at all but very low temperatures; therefore, ... * fabrication, * use, * waste disposalstorage, and * ...

  19. Radiological Safety Training for Accelerator Facilities

    Energy Savers [EERE]

    ... for the senior-level radiation protection ... available. . - Program Management - Instructor's Material ... VI. RADIOACTIVE WASTE ISSUES ......

  20. Radiological Safety Training for Plutonium Facilities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... The actual weapons were built at Los Alamos, New Mexico, which was known as Project Y. The ... body, it is distributed to various organs, depending on its physical and chemical makeup. ...

  1. Facility Safety (For Informational Purposes Only)

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2014-12-04

    This draft has been scheduled for final review before the Directives Review Board on 12/18/14. All major comments and concerns should be provided to your DRB representative, following your organization process. If you do not know who your representative is, please see the list of DRB members. If your office is represented by Ingrid Kolb, Director, Office of Management, please submit your major concerns and comments to the DRB Liaison, Camille Beben (Camille.Beben@hq.doe.gov; 202-586-1014). All major comments and concerns should be submitted by COB 12/16/2014.

  2. Radiological safety training for uranium facilities

    SciTech Connect (OSTI)

    1998-02-01

    This handbook contains recommended training materials consistent with DOE standardized core radiological training material. These materials consist of a program management guide, instructor`s guide, student guide, and overhead transparencies.

  3. Radiological Safety Training for Accelerator Facilities

    Office of Environmental Management (EM)

    1-2008 August 2008 DOE HANDBOOK Radiological Assessor Training U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. NOT MEASUREMENT SENSITIVE This document is available on the Department of Energy Technical Standards Program Web site at http://tis.eh.doe.gov/techs\ Foreword This Handbook describes an implementation process for training as recommended in Implementation Guide G441.1-1B, Radiation Protection

  4. Plutonium disposition via immobilization in ceramic or glass

    SciTech Connect (OSTI)

    Gray, L.W.; Kan, T.; Shaw, H.F.; Armantrout, A.

    1997-03-05

    The management of surplus weapons plutonium is an important and urgent task with profound environmental, national, and international security implications. In the aftermath of the Cold War, Presidential Policy Directive 13, and various analyses by renown scientific, technical, and international policy organizations have brought about a focused effort within the Department of Energy to identify and implement paths for the long term disposition of surplus weapons- usable plutonium. The central goal of this effort is to render surplus weapons plutonium as inaccessible and unattractive for reuse in nuclear weapons as the much larger and growing stock of plutonium contained in spent fuel from civilian reactors. One disposition option being considered for surplus plutonium is immobilization, in which the plutonium would be incorporated into a glass or ceramic material that would ultimately be entombed permanently in a geologic repository for high-level waste.

  5. Update of the Used Fuel Disposition Campaign Implementation Plan

    SciTech Connect (OSTI)

    Jens Birkholzer; Robert MacKinnon; Kevin McMahon; Sylvia Saltzstein; Ken Sorenson; Peter Swift

    2014-09-01

    This Campaign Implementation Plan provides summary level detail describing how the Used Fuel Disposition Campaign (UFDC) supports achievement of the overarching mission and objectives of the Department of Energy Office of Nuclear Energy Fuel Cycle Technologies Program The implementation plan begins with the assumption of target dates that are set out in the January 2013 DOE Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste (http://energy.gov/downloads/strategy-management-and-disposal-used-nuclear-fuel-and-high-level-radioactive-waste). These target dates and goals are summarized in section III. This implementation plan will be maintained as a living document and will be updated as needed in response to progress in the Used Fuel Disposition Campaign and the Fuel Cycle Technologies Program.

  6. Safety Comes First | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safety Comes First Safety Comes First When it comes to providing for the safety of employees and visiting researchers and protecting the environment, the Thomas Jefferson National Accelerator Facility is one of the best. "I don't compare the labs, but the results here are very good," said Thomas Staker, who led a team of inspectors that conducted an extensive inspection of environment, safety and health programs at Jefferson Lab in May and June. Staker is director of the U.S.

  7. Lessons Learned from Three Mile Island Packaging, Transportation and Disposition that Apply to Fukushima Daiichi Recovery

    SciTech Connect (OSTI)

    Layne Pincock; Wendell Hintze; Dr. Koji Shirai

    2012-07-01

    Following the massive earthquake and resulting tsunami damage in March of 2011 at the Fukushima Daiichi nuclear power plant in Japan, interest was amplified for what was done for recovery at the Three Mile Island Unit 2 (TMI-2) in the United States following its meltdown in 1979. Many parallels could be drawn between to two accidents. This paper presents the results of research done into the TMI-2 recovery effort and its applicability to the Fukushima Daiichi cleanup. This research focused on three topics: packaging, transportation, and disposition. This research work was performed as a collaboration between Japan’s Central Research Institute of Electric Power Industry (CRIEPI) and the Idaho National Laboratory (INL). Hundreds of TMI-2 related documents were searched and pertinent information was gleaned from these documents. Other important information was also obtained by interviewing employees who were involved first hand in various aspects of the TMI-2 cleanup effort. This paper is organized into three main sections: (1) Transport from Three Mile Island to Central Facilities Area at INL, (2) Transport from INL Central Receiving Facility to INL Test Area North (TAN) and wet storage at TAN, and (3) Transport from TAN to INL Idaho Nuclear Technology and Engineering Center (INTEC) and Dry Storage at INTEC. Within each of these sections, lessons learned from performing recovery activities are presented and their applicability to the Fukushima Daiichi nuclear power plant cleanup are outlined.

  8. Experimental Program for Used Fuel Disposition in Crystalline Rocks

    Office of Scientific and Technical Information (OSTI)

    SAND2015-2980C Nuclear Energy Experimental Program for Used Fuel Disposition in Crystalline Rocks Yifeng Wang Sandia National Laboratories Nuclear Energy Crystalline Disposal R&D Work Packages ■ Objectives * Advance our understanding of long-term disposal of used fuel in crystalline rocks; * Develop experimental and computational capabilities to evaluate various disposal concepts in such media. ■ Focus on two key components of deep geologic repository in crystalline rocks * Better

  9. Used Fuel Disposition Stainless Steel Canister Challenges Steve Marschman

    Energy Savers [EERE]

    Stainless Steel Canister Challenges Steve Marschman Field Demonstration Lead Idaho National Laboratory NEET ASI Review Meeting September 17, 2014 Used Fuel Disposition Date 2 Overview n Chloride-Induced Stress Corrosion Cracking (CISCC) has been identified by the NRC as a potential degradation mechanism for welded, stainless steel used fuel canisters (not bare fuel storage casks). n Systems are difficult to inspect and monitor n Three in-service inspections have been performed - Results

  10. Microsoft PowerPoint - REVWaste_Disposition_Update.061411.pptx

    Office of Environmental Management (EM)

    Organizational Chart Office of Project Management Oversight and Assessments (PM) PM-1 Paul Bosco Director Under Secretary for Management and Performance (S3) Tony Ermovick PM-20 Departmental Project Oversight Melvin Frank PM-30 Project Management Policy & Systems Linda Ott PM-40 Professional Development PM-2 Michael Peek Deputy Director New Organization Effective: July 12, 2015 John White PM-10 Project Assessments Jay Glascock Chief of Staff

    Materials and Disposition Update Environmental

  11. Draft Surplus Plutonium Disposition Supplemental Environmental Impact Statement

    National Nuclear Security Administration (NNSA)

    SHEET Lead Agency: U.S. Department of Energy (DOE) / National Nuclear Security Administration (NNSA) Cooperating Agency: Tennessee Valley Authority Title: Draft Surplus Plutonium Disposition Supplemental Environmental Impact Statement (SPD Supplemental EIS) (DOE/EIS-0283-S2) Locations: South Carolina, New Mexico, Alabama, and Tennessee For further information or for copies of this Draft SPD Supplemental EIS, contact: Sachiko McAlhany, NEPA Document Manager SPD Supplemental EIS U.S. Department

  12. Draft Surplus Plutonium Disposition Supplemental Environmental Impact Statement

    National Nuclear Security Administration (NNSA)

    SHEET Lead Agency: U.S. Department of Energy (DOE) / National Nuclear Security Administration (NNSA) Cooperating Agency: Tennessee Valley Authority Title: Draft Surplus Plutonium Disposition Supplemental Environmental Impact Statement (SPD Supplemental EIS) (DOE/EIS-0283-S2) Locations: South Carolina, New Mexico, Alabama, and Tennessee For further information or for copies of this Draft SPD Supplemental EIS, contact: Sachiko McAlhany, NEPA Document Manager SPD Supplemental EIS U.S. Department of

  13. Facility effluent monitoring plan for the Plutonium Uranium Extraction Facility

    SciTech Connect (OSTI)

    Greager, E.M.

    1997-12-11

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438-01. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether these systems are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan will ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated, at a minimum, every 3 years.

  14. Facility effluent monitoring plan for the plutonium uranium extraction facility

    SciTech Connect (OSTI)

    Wiegand, D.L.

    1994-09-01

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438-01. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated at a minimum of every three years.

  15. Incentives for the Department's Facility Representative Program,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    12/17/1998 | Department of Energy Incentives for the Department's Facility Representative Program, 12/17/1998 Incentives for the Department's Facility Representative Program, 12/17/1998 The Department's Revised Implementation Plan for Defense Nuclear Facilities Safety Board Recommendation 93-3 has once again underscored the Department's commitment to maintaining the technical capability necessary to safely manage and operate our defense nuclear facilities. Attracting and retaining highly

  16. Radiation Safety System

    SciTech Connect (OSTI)

    Vylet, Vaclav; Liu, James C.; Walker, Lawrence S.; /Los Alamos

    2012-04-04

    The goal of this work is to provide an overview of a Radiation safety system (RSS) designed for protection from prompt radiation hazard at accelerator facilities. RSS design parameters, functional requirements and constraints are derived from hazard analysis and risk assessment undertaken in the design phase of the facility. The two main subsystems of a RSS are access control system (ACS) and radiation control system (RCS). In this text, a common approach to risk assessment, typical components of ACS and RCS, desirable features and general design principles applied to RSS are described.

  17. Working with SRNL - Our Facilities - Glovebox Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Glovebox Facilities Working with SRNL Our Facilities - Glovebox Facilities Govebox Facilities are sealed, protectively-lined compartments with attached gloves, allowing workers to safely handle dangerous materials

  18. Wheelabrator Millbury Facility Biomass Facility | Open Energy...

    Open Energy Info (EERE)

    Facility Facility Wheelabrator Millbury Facility Sector Biomass Facility Type Municipal Solid Waste Location Worcester County, Massachusetts Coordinates 42.4096528, -71.8571331...

  19. Research To Underpin The UK Plutonium Disposition Strategy

    SciTech Connect (OSTI)

    Hanson, B.C.; Scales, C.R.; Worrall, A.; Thomas, M.; Davies, P.; Gilchrist, P.

    2006-07-01

    In April 2005, the UK Nuclear Decommissioning Authority (NDA) took ownership of most of the civil nuclear liabilities and assets in the UK. These include separated civil plutonium stocks, which are expected to rise to over 100 tonnes. Future UK national policy for disposition remains to be finalised. The feasibility of management options needs to be determined in order to allow the NDA to advise government on the ultimate disposition of this material. Nexia Solutions has a contract with NDA to develop and carry out a research project which will result in a recommendation on the technical feasibility of a number of disposition options, focussing on re-use and immobilisation of plutonium as a waste for disposal. Initial work is already underway evaluating re-use with MOX and IMF fuels and immobilisation using ceramics, glasses and MOX for disposal. The programme is expected to result, circa 2010, in a recommendation of a preferred route for immobilisation and a preferred route for re-use for the UK's civil Pu stocks. (authors)

  20. Independent Oversight Review, Los Alamos National Laboratory Chemistry and Metallurgy Research Facility- January 2012

    Broader source: Energy.gov [DOE]

    Review of the Los Alamos National Laboratory Chemistry and Metallurgy Research Facility Fire Suppression Vital Safety System

  1. A probabilistic risk assessment of the LLNL Plutonium facility`s evaluation basis fire operational accident

    SciTech Connect (OSTI)

    Brumburgh, G.

    1994-08-31

    The Lawrence Livermore National Laboratory (LLNL) Plutonium Facility conducts numerous involving plutonium to include device fabrication, development of fabrication techniques, metallurgy research, and laser isotope separation. A Safety Analysis Report (SAR) for the building 332 Plutonium Facility was completed rational safety and acceptable risk to employees, the public, government property, and the environment. This paper outlines the PRA analysis of the Evaluation Basis Fire (EDF) operational accident. The EBF postulates the worst-case programmatic impact event for the Plutonium Facility.

  2. Biological Safety

    Broader source: Energy.gov [DOE]

    The DOE's Biological Safety Program provides a forum for the exchange of best practices, lessons learned, and guidance in the area of biological safety. This content is supported by the Biosurety Executive Team. The Biosurety Executive Team is a DOE-chartered group. The DOE Office of Worker Safety and Health Policy provides administrative support for this group. The group identifies biological safety-related issues of concern to the DOE and pursues solutions to issues identified.

  3. Safety Fest | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safety Fest Safety Fest Posted: September 11, 2014 - 7:54pm CNS Y-12 Site Manager Bill Tindal addresses attendees of this year's Safety Fest TN. Tindal has 24 years of experience in highly hazardous nuclear facility operations, including 18 years of management at Y-12. CNS served as a sponsor and as the host site for the weeklong annual event presented by the Oak Ridge Business Safety Partnership

  4. Worker Health and Safety | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Safety Worker Health and Safety The U.S. Department of Energy's (DOE) worker health and safety requirements and expectations ensure protection of workers from the hazards associated with Department operations. Worker health and safety policy, program tools and assistance resources available for current and former DOE Federal, contractor, and subcontractor workers who work at Department of Energy facilities. The Department implements medical surveillance and screening programs for current and

  5. Used Fuel Disposition R&D Documents | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Initiatives » Fuel Cycle Technologies » Used Fuel Disposition Research & Development » Used Fuel Disposition R&D Documents Used Fuel Disposition R&D Documents September 22, 2015 Application of Generic Disposal System Models Two of the high priorities for UFDC disposal R&D are design concept development and disposal system modeling; these are directly addressed in the Generic Disposal Systems Analysis (GDSA) work. This report describes specific GDSA activities during fiscal

  6. Portsmouth RI/FS Report for the Site-Wide Waste Disposition Evaluation

    Energy Savers [EERE]

    Project | Department of Energy Site-Wide Waste Disposition Evaluation Project Portsmouth RI/FS Report for the Site-Wide Waste Disposition Evaluation Project This Remedial Investigation and Feasibility Study Report for the Site-Wide Waste Disposition Evaluation Project at the Portsmouth Gaseous Diffusion Plant, Piketon, Ohio, presents the information necessary to select a Site-wide disposal alternative for the waste generated under the Director's Final Findings and Orders (DFF&O) for

  7. Beamlines & Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Imaging Group: Beamlines The X-ray Micrscopy and Imaging Group operates several beamlines and facilities. The bending magnet beamline (2-BM) entertaines 2 general user programs in...

  8. Expertise & Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and shock and nonshock initiation proton radiography Facilities Los Alamos has a ... Science Laboratory National High Magnetic Field Laboratory War Reserve Detonator ...

  9. Facility Representatives

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... facilities under a single lineprogram manager within the ... unique position in the transmission of information between ... performance, any areas of theory or fundamentals, if any, ...

  10. DOE standard: Firearms safety

    SciTech Connect (OSTI)

    1996-02-01

    Information in this document is applicable to all DOE facilities, elements, and contractors engaged in work that requires the use of firearms as provided by law or contract. The standard in this document provides principles and practices for implementing a safe and effective firearms safety program for protective forces and for non-security use of firearms. This document describes acceptable interpretations and methods for meeting Order requirements.

  11. Live from Greenbuild: From the Industrial Facilities Connect...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Owners must address compliance, regulations and safety of tenants in working towards their energy efficiency goals. This morning's Industrial Facilities Connect & Learn at ...

  12. Waste receiving and processing facility module 1 auditable safetyanalysis

    SciTech Connect (OSTI)

    Bottenus, R.J.

    1997-02-01

    The Waste Receiving and Processing Facility Module 1 Auditable Safety Analysis analyzes postulated accidents and determines controls to prevent the accidents or mitigate the consequences.

  13. DOE Standard 3009-2014, Preparation of Nonreactor Nuclear Facility

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Documented Safety Analysis, Roll Out Training | Department of Energy Standard 3009-2014, Preparation of Nonreactor Nuclear Facility Documented Safety Analysis, Roll Out Training DOE Standard 3009-2014, Preparation of Nonreactor Nuclear Facility Documented Safety Analysis, Roll Out Training February 4, 2015 - 3:08pm Addthis The Office of Nuclear Safety is performing a series of site visits to provide roll-out training and assistance to Program and Site Offices and their contractors on

  14. Portsmouth RI/FS Report for the Site-Wide Waste Disposition Evaluation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for the Site-Wide Waste Disposition Evaluation Project at the Portsmouth Gaseous Diffusion Plant, Piketon, Ohio, presents the information necessary to select a Site-wide...

  15. DRAFT EM SSAB Chairs Meeting Waste Disposition Strategies...

    Office of Environmental Management (EM)

    EM HQ Updates Waste Disposition Overview Christine Gelles Associate Deputy Assistant Secretary for Waste Management Office of Environmental Management EM SSAB Chairs Meeting 5 ...

  16. Strengthening Line Management Oversight and Federal Monitoring of Nuclear Facilities

    Office of Environmental Management (EM)

    Strengthening Line Management Oversight and Federal Monitoring of Nuclear Facilities Standard Review Plan Volume 4 - Nuclear Safety Basis Program Review During Facility Decommissioning and Environmental Restoration February 2015 i Standard Review Plan Volume 4 Nuclear Safety Basis Program Review during Facility Decommissioning and Environmental Restoration Facility Life Cycle Applicability CD-1 CD-2 CD-3 CD-4 Operations and Transitions Decommissioning & Environmental Restoration February

  17. Frequently Asked Questions Regarding DOE-STD-1195-2011, Design of Safety

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Significant Safety Instrumented Systems Used at DOE Non-Reactor Nuclear Facilities | Department of Energy Frequently Asked Questions Regarding DOE-STD-1195-2011, Design of Safety Significant Safety Instrumented Systems Used at DOE Non-Reactor Nuclear Facilities Frequently Asked Questions Regarding DOE-STD-1195-2011, Design of Safety Significant Safety Instrumented Systems Used at DOE Non-Reactor Nuclear Facilities January 7, 2015 Frequently Asked Questions regarding DOE-STD-1195-2011 which

  18. Microsoft PowerPoint - Fire Safety workshop NQA-1 CGD 4 29 15 [Read-Only]

    Office of Environmental Management (EM)

    v Nuclear and Facility Safety Programs Workshop Fire Safety Track May 5th, 2015 Overview NQA 1 Commercial Grade Dedication Critical Characteristics Department of Energy Nuclear and Facility Safety Programs Workshop Fire Safety Track May 5 th , 2015 Randy P. Lanham PE, CSP Dale Moon, PE Fire Protection Chief Engineer Facility Engineering Depart. Mng. Randy.Lanham@cns.doe.gov Consolidated Nuclear Security Pantex and Y12 2 Overview CGD Definition Safety Function / DSA Requirements Example of CGD

  19. Effective safety communications | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Effective safety ... Effective safety communications Posted: September 11, 2014 - 7:44pm CNS Communications Specialist Kathryn King spoke on effective safety communications at Safety Fest TN held this week at Y-12's New Hope Center. King was joined by two safety and health experts from Oak Ridge Associated Universities, Dr. Jeff Miller and Dr. David Duncan. The presentation included a case study of the Uranium Processing Facility Project, where the effectiveness of safety communications has

  20. Hanford safety analysis and risk assessment handbook (SARAH)

    SciTech Connect (OSTI)

    GARVIN, L.J.

    2003-01-20

    The purpose of the Hanford Safety Analysis and Risk Assessment Handbook (SARAH) is to support the development of safety basis documentation for Hazard Category 1,2, and 3 U.S. Department of Energy (DOE) nuclear facilities. SARAH describes currently acceptable methodology for development of a Documented Safety Analysis (DSA) and derivation of technical safety requirements (TSR) based on 10 CFR 830, ''Nuclear Safety Management,'' Subpart B, ''Safety Basis Requirements,'' and provides data to ensure consistency in approach.