Powered by Deep Web Technologies
Note: This page contains sample records for the topic "facility disposition safety" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Facility Disposition Safety Strategy RM  

Energy.gov (U.S. Department of Energy (DOE))

The Facility Disposition Safety Strategy (FDSS) Review Module is a tool that assists DOE federal project review teams in evaluating the adequacy of the facility documentation, preparations or...

2

Facility Disposition Safety Strategy RM  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Facility Disposition Safety Strategy Review Module Facility Disposition Safety Strategy Review Module March 2010 CD-0 O 0 OFFICE OF Facilit C CD-1 F ENVIRO Standard R ty Dispos Rev Critical Decis CD-2 M ONMENTAL Review Plan sition Saf view Module sion (CD) Ap CD March 2010 L MANAGE n (SRP) fety Strat e pplicability D-3 EMENT tegy CD-4 Post Ope eration Standard Review Plan, 2 nd Edition, March 2010 i FOREWORD The Standard Review Plan (SRP) 1 provides a consistent, predictable corporate review framework to ensure that issues and risks that could challenge the success of Office of Environmental Management (EM) projects are identified early and addressed proactively. The internal EM project review process encompasses key milestones established by DOE O 413.3A, Change 1, Program and Project Management for the Acquisition of Capital Assets, DOE-STD-1189-2008,

3

DOE standard: Integration of environment, safety, and health into facility disposition activities. Volume 2: Appendices  

SciTech Connect

This volume contains the appendices that provide additional environment, safety, and health (ES and H) information to complement Volume 1 of this Standard. Appendix A provides a set of candidate DOE ES and H directives and external regulations, organized by hazard types that may be used to identify potentially applicable directives to a specific facility disposition activity. Appendix B offers examples and lessons learned that illustrate implementation of ES and H approaches discussed in Section 3 of Volume 1. Appendix C contains ISMS performance expectations to guide a project team in developing and implementing an effective ISMS and in developing specific performance criteria for use in facility disposition. Appendix D provides guidance for identifying potential Applicable or Relevant and Appropriate Requirements (ARARs) when decommissioning facilities fall under the Comprehensive Environmental Response, Compensation, Liability Act (CERCLA) process. Appendix E discusses ES and H considerations for dispositioning facilities by privatization. Appendix F is an overview of the WSS process. Appendix G provides a copy of two DOE Office of Nuclear Safety Policy and Standards memoranda that form the bases for some of the guidance discussed within the Standard. Appendix H gives information on available hazard analysis techniques and references. Appendix I provides a supplemental discussion to Sections 3.3.4, Hazard Baseline Documentation, and 3.3.6, Environmental Permits. Appendix J presents a sample readiness evaluation checklist.

NONE

1998-05-01T23:59:59.000Z

4

DOE standard: Integration of environment, safety, and health into facility disposition activities. Volume 1: Technical standard  

Science Conference Proceedings (OSTI)

This Department of Energy (DOE) technical standard (referred to as the Standard) provides guidance for integrating and enhancing worker, public, and environmental protection during facility disposition activities. It provides environment, safety, and health (ES and H) guidance to supplement the project management requirements and associated guidelines contained within DOE O 430.1A, Life-Cycle Asset Management (LCAM), and amplified within the corresponding implementation guides. In addition, the Standard is designed to support an Integrated Safety Management System (ISMS), consistent with the guiding principles and core functions contained in DOE P 450.4, Safety Management System Policy, and discussed in DOE G 450.4-1, Integrated Safety Management System Guide. The ISMS guiding principles represent the fundamental policies that guide the safe accomplishment of work and include: (1) line management responsibility for safety; (2) clear roles and responsibilities; (3) competence commensurate with responsibilities; (4) balanced priorities; (5) identification of safety standards and requirements; (6) hazard controls tailored to work being performed; and (7) operations authorization. This Standard specifically addresses the implementation of the above ISMS principles four through seven, as applied to facility disposition activities.

NONE

1998-05-01T23:59:59.000Z

5

DOE-STD-1120-2005; Integration of Environment Safety and Health into Facility Disposition Activities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

20-2005 20-2005 Volume 1 of 2 April 2005 DOE STANDARD INTEGRATION OF ENVIRONMENT, SAFETY, AND HEALTH INTO FACILITY DISPOSITION ACTIVITIES Volume 1 of 2: Documented Safety Analysis for Decommissioning and Environmental Restoration Projects U.S. Department of Energy AREA SAFT Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. NOT MEASUREMENT SENSITIVE TS i This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from the Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831; (423) 576-8401. Available to the public from the U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161; (703) 605-6000.

6

Integrated Facilities Disposition Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Facilities Facilities Disposition Program Tank Waste Corporate Board Meeting at ORNL Sharon Robinson Dirk Van Hoesen Robert Jubin Brad Patton July 29, 2009 2 Managed by UT-Battelle for the U.S. Department of Energy The Integrated Facility Disposition Program (IFDP) addresses the remaining EM Scope at both ORNL and Y-12 Cost Range: $7 - $14B Schedule: 26 Years 3 Managed by UT-Battelle for the U.S. Department of Energy Scope of work * Treatment and disposition of legacy materials and waste * D&D 327 (1.5 M ft 2 ) excess facilities generating >2 M yd 3 debris * Soil and groundwater remedial actions generating >1 M yd 3 soils * Facilities surveillance and maintenance * Reconfiguration of waste management facilities * Ongoing waste management operations * Project management

7

Cost-effective facility disposition planning with safety and health lessons learned and good practices from the Oak Ridge Decontamination and Decommissioning Program  

SciTech Connect

An emphasis on transition and safe disposition of DOE excess facilities has brought about significant challenges to managing worker, public, and environmental risks. The transition and disposition activities involve a diverse range of hazardous facilities that are old, poorly maintained, and contain radioactive and hazardous substances, the extent of which may be unknown. In addition, many excess facilities do not have historical facility documents such as operating records, plant and instrumentation diagrams, and incident records. The purpose of this report is to present an overview of the Oak Ridge Decontamination and Decommissioning (D and D) Program, its safety performance, and associated safety and health lessons learned and good practices. Illustrative examples of these lessons learned and good practices are also provided. The primary focus of this report is on the safety and health activities and implications associated with the planning phase of Oak Ridge facility disposition projects. Section 1.0 of this report provides the background and purpose of the report. Section 2.0 presents an overview of the facility disposition activities from which the lessons learned and good practices discussed in Section 3.0 were derived.

NONE

1998-05-01T23:59:59.000Z

8

Summary - Major Risk Factors Integrated Facility Disposition...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

& ORNL, Oak Ridge, TN EM Project: Integrated Facility Disposition Project (IFDP) ETR Report Date: August 2008 ETR-15 United States Department of Energy Office of Environmental...

9

Major Risk Factors Integrated Facility Disposition Project -...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

- Oak Ridge Summary - Major Risk Factors Integrated Facility Disposition Project (IFDP) Oak Ridge, TN More Documents & Publications Major Risk Factors to the Integrated...

10

Major Risk Factors to the Integrated Facility Disposition Project...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Facility Disposition Project The scope of the Integrated Facility Disposition Project (IFDP) needs to comprehensively address a wide range of environmental management risks at the...

11

Assessment of the Integrated Facility Disposition Project at Oak Ridge  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Assessment of the Integrated Facility Disposition Project at Oak Assessment of the Integrated Facility Disposition Project at Oak Ridge National Laboratory & Y-12 for Transfer of Facilities & Materials to EM Assessment of the Integrated Facility Disposition Project at Oak Ridge National Laboratory & Y-12 for Transfer of Facilities & Materials to EM In December 2007, the Assistant Secretary for Environmental Management (EM-1) invited the DOE Program Secretarial Offices (PSOs) of Nuclear Energy (NE), Science (SC), and the National Nuclear Security Administration (NNSA) to propose facilities and legacy waste for transfer to Environmental Management (EM) for final disposition or deactivation and decommissioning (D&D). Assessment of the Integrated Facility Disposition Project at Oak Ridge National Laboratory & Y-12 for Transfer of Facilities & Materials to EM

12

Assessment of the Integrated Facility Disposition Project at Oak Ridge  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

the Integrated Facility Disposition Project at Oak the Integrated Facility Disposition Project at Oak Ridge National Laboratory & Y-12 for Transfer of Facilities & Materials to EM Assessment of the Integrated Facility Disposition Project at Oak Ridge National Laboratory & Y-12 for Transfer of Facilities & Materials to EM In December 2007, the Assistant Secretary for Environmental Management (EM-1) invited the DOE Program Secretarial Offices (PSOs) of Nuclear Energy (NE), Science (SC), and the National Nuclear Security Administration (NNSA) to propose facilities and legacy waste for transfer to Environmental Management (EM) for final disposition or deactivation and decommissioning (D&D). Assessment of the Integrated Facility Disposition Project at Oak Ridge National Laboratory & Y-12 for Transfer of Facilities & Materials to EM

13

Hight-Level Waste & Facilities Disposition  

NLE Websites -- All DOE Office Websites (Extended Search)

High-Level Waste (HLW) and Facilities Disposition Final High-Level Waste (HLW) and Facilities Disposition Final Environmental Impact Statement You are here: DOE-ID Home > Environmental Management > Idaho High-Level Waste (HLW) Table of Contents Documents are in the Adobe® PDF format and require the Adobe® Reader to access them. If you do not currently have the Acrobat Reader, you can download the Free Adobe Reader at http://get.adobe.com/reader/ Icon link to Free Adobe Acrobat Reader software * Large chapters broken down into sections Summary* Cover [ Adobe Acrobat File Size 1.48 MB] Section, 1.0 [ Adobe Acrobat File Size 612 KB] Section, 2.0 [ Adobe Acrobat File Size 251 KB] Sections, 3.0 - 3.2.1a [ Adobe Acrobat File Size 1.4 MB] Section, 3.2.1b [ Adobe Acrobat File Size 2.0 MB] Sections, 3.2.2 - 4.0 [ Adobe Acrobat File Size 1.4 MB]

14

EIS-0287: Idaho High-Level Waste and Facilities Disposition Final...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Idaho High-Level Waste and Facilities Disposition Final Environmental Impact Statement, EIS-0287 (September 2002) EIS-0287: Idaho High-Level Waste and Facilities Disposition Final...

15

DOE 2010 Safety and Security Reform Project - HSS Directives Disposition and Status (December 4, 2012)  

NLE Websites -- All DOE Office Websites (Extended Search)

10 Safety and Security Reform Project - HSS Directives Disposition and Status (December 4, 2012) 10 Safety and Security Reform Project - HSS Directives Disposition and Status (December 4, 2012) Page 1 of 3 2010 HSS Directives Disposition Status Secretary of Energy Notice SEN-35-91, Nuclear Safety Policy Revise Complete - see Policy 420.1. Order 5400.5, Radiation Protection of the Public and the Environment Revise Complete - see Order 458.1. Order 5480.19, Conduct of Operations Requirements for DOE Facilities Revise Complete - see Order 422.1. Order 5480.20A, Personnel Selection, Training, Qualification, and Certification Requirements Revise Complete - see Order 426.2. Order 5480.30, Nuclear Reactor Design Criteria Re-certify Complete - re-certified. Manual 140.1-1B, Interface with the Defense Nuclear Facilities Safety Board Re-certify Complete - re-certified.

16

Major Risk Factors to the Integrated Facility Disposition Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oak Ridge Reservation Tennessee Major Risk Factors to the Integrated Facility Disposition Project (IFDP) Challenge The scope of the Integrated Facility Disposition Project (IFDP) needs to comprehensively address a wide range of environmental management risks at the Oak Ridge Reservation (ORO). These include: environmental remediation, regulatory compliance, deactivation and decommissioning (D&D) activities, and disposition of legacy materials and waste, along with the ongoing modernization, reindustrialization, and reconfiguration initiatives at the Oak Ridge National Laboratory and at the Y-12 National Security Complex. The balancing of the broad nature of these activities and issues at ORO are a key challenge for the IFDP especially since their interrelationship is not always obvious.

17

Facility Safety Assessment - Nuclear Engineering Division (Argonne...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

18

Review of the Facility Centered Assessment of the Los Alamos National Laboratory Waste Disposition Project, September 2011  

NLE Websites -- All DOE Office Websites (Extended Search)

Facility Centered Assessment of the Facility Centered Assessment of the Los Alamos National Laboratory Waste Disposition Project September 2011 Office of Safety and Emergency Management Evaluations Office of Health, Safety and Security U.S. Department of Energy Table of Contents 1.0 Introduction ............................................................................................................................ 1 2.0 Background ............................................................................................................................ 1 3.0 Results .................................................................................................................................... 2 4.0 Conclusions ............................................................................................................................ 7

19

Review of the Facility Centered Assessment of the Los Alamos National Laboratory Waste Disposition Project, September 2011  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Facility Centered Assessment of the Facility Centered Assessment of the Los Alamos National Laboratory Waste Disposition Project September 2011 Office of Safety and Emergency Management Evaluations Office of Health, Safety and Security U.S. Department of Energy Table of Contents 1.0 Introduction ............................................................................................................................ 1 2.0 Background ............................................................................................................................ 1 3.0 Results .................................................................................................................................... 2 4.0 Conclusions ............................................................................................................................ 7

20

FACILITY SAFETY (FS)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FACILITY SAFETY (FS) FACILITY SAFETY (FS) OBJECTIVE FS.1 - (Core Requirement 7) Facility safety documentation in support of SN process operations,is in place and has been implemented that describes the safety envelope of the facility. The, safety documentation should characterize the hazards/risks associated with the facility and should, identify preventive and mitigating measures (e.g., systems, procedures, and administrative, controls) that protect workers and the public from those hazards/risks. (Old Core Requirement 4) Criteria 1. A DSA has been prepared by FWENC, approved by DOE, and implemented to reflect the SN process operations in the WPF. (10 CFR 830.200, DOE-STD-3009-94) 2. A configuration control program is in place and functioning such that the DSA is

Note: This page contains sample records for the topic "facility disposition safety" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Nuclear Facility Safety Basis  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Safety Basis Safety Basis FUNCTIONAL AREA GOAL: A fully compliant Nuclear Facility Safety Basis. Program is implemented and maintained across the site. REQUIREMENTS:  10 CFR 830 Subpart B Guidance:  DOE STD 3009  DOE STD 1104  DOE STD  DOE G 421.1-2 Implementation Guide For Use in Developing Documented Safety Analyses To Meet Subpart B Of 10 CFR 830  DOE G 423.1-1 Implementation Guide For Use In Developing Technical Safety Requirements  DOE G 424.1-1 Implementation Guide For Use In Addressing Unreviewed Safety Question Requirements Performance Objective 1: Contractor Program Documentation The site contractor has developed an up-to-date, comprehensive, compliant, documented nuclear facility safety basis and associated implementing mechanisms and procedures for all required nuclear facilities and activities (10 CFR

22

CRAD, Facility Safety - Nuclear Facility Safety Basis | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CRAD, Facility Safety - Nuclear Facility Safety Basis CRAD, Facility Safety - Nuclear Facility Safety Basis CRAD, Facility Safety - Nuclear Facility Safety Basis A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) that can be used for assessment of a contractor's Nuclear Facility Safety Basis. CRADs provide a recommended approach and the types of information to gather to assess elements of a DOE contractor's programs. CRAD, Facility Safety - Nuclear Facility Safety Basis More Documents & Publications CRAD, Facility Safety - Unreviewed Safety Question Requirements Site Visit Report, Livermore Site Office - February 2011 FAQS Job Task Analyses - Nuclear Safety Specialist

23

Major Risk Factors Integrated Facility Disposition Project -...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

(Treatment Alternatives For Process Wastewater at ORNL, ORNLCF-0603-R1, November 2007; HFIR and REDC Process Waste Drains and Waste Treatment Plant, ORNL Facilities Development...

24

DOE Standard Integration Of Environment,Safety, and Health Into...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Standard Integration Of Environment,Safety, and Health Into Facility Disposition Activities DOE Standard Integration Of Environment,Safety, and Health Into Facility Disposition...

25

Site Selection for Surplus Plutonium Disposition Facilities at the Savannah River Site  

Science Conference Proceedings (OSTI)

The purpose of this study is to identify, assess, and rank potential sites for the proposed Surplus Plutonium Disposition Facilities complex at the Savannah River Site.

Wike, L.D.

2000-12-13T23:59:59.000Z

26

Major Risk Factors Integrated Facility Disposition Project - Oak Ridge  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

O O O f f f f i i c c e e o o f f E E n n v v i i r r o o n n m m e e n n t t a a l l M M a a n n a a g g e e m m e e n n t t ( ( E E M M ) ) E E n n g g i i n n e e e e r r i i n n g g a a n n d d T T e e c c h h n n o o l l o o g g y y External Technical Review (ETR) Report Major Risk Factors Integrated Facility Disposition Project (IFDP) Oak Ridge, TN AUGUST 1, 2008 Acknowledgement The External Technical Review of the Integrated Facility Disposition Project was conducted simultaneous to other assessments and visits. The ETR Team wishes to note the outstanding support received from all parties involved in the review, including the DOE Oak Ridge Office, the National Nuclear Security Administration Y-12 Site Office, UT-Battelle, B&W Y-12, and the Professional Project Services, Inc. (Pro2Serve). The ETR Team feels compelled to note, and

27

Master EM Project Definition Rating Index - Facility Disposition Definitions  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

43 43 Master EM Project Definition Rating Index - Facility Disposition Definitions The following definitions describe the criteria required to achieve a maximum rating or maturity value of 5. It should be assumed that maturity values of 1-5 represent a subjective assessment of the quality of definition and/or the degree to which the end-state or maximum criteria have been met, or the product has been completed in accordance with the definition of maturity values. Rating Element Criteria for Maximum Rating COST A1 Cost Estimate A cost estimate has been developed and formally approved by DOE and is the basis for the cost baselines. The cost estimate is a reasonable approximation of Total Project Costs, and covers all phases of the project. The estimate is prepared in

28

EIS-0287: Idaho High-Level Waste & Facilities Disposition | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7: Idaho High-Level Waste & Facilities Disposition 7: Idaho High-Level Waste & Facilities Disposition EIS-0287: Idaho High-Level Waste & Facilities Disposition SUMMARY This EIS analyzes the potential environmental consequences of alternatives for managing high-level waste (HLW) calcine, mixed transuranic waste/sodium bearing waste (SBW) and newly generated liquid waste at the Idaho National Engineering and Environmental Laboratory (INEEL) in liquid and solid forms. This EIS also analyzes alternatives for the final disposition of HLW management facilities at the INEEL after their missions are completed. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD January 12, 2010 EIS-0287: Amended Record of Decision Idaho High-Level Waste and Facilities Disposition January 4, 2010

29

EIS-0287: Idaho High-Level Waste and Facilities Disposition Final  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Idaho High-Level Waste and Facilities Disposition Final Idaho High-Level Waste and Facilities Disposition Final Environmental Impact Statement, EIS-0287 (September 2002) EIS-0287: Idaho High-Level Waste and Facilities Disposition Final Environmental Impact Statement, EIS-0287 (September 2002) This EIS analyzes the potential environmental consequences of alternatives for managing high-level waste (HLW) calcine, mixed transuranic waste/sodium bearing waste (SBW) and newly generated liquid waste at the Idaho National Engineering and Environmental Laboratory (INEEL) in liquid and solid forms. This EIS also analyzes alternatives for the final disposition of HLW management facilities at the INEEL after their missions are completed. Idaho High-Level Waste and Facilities Disposition Final Environmental Impact Statement, DOE/EIS-0287 (September 2002)

30

FACILITY SAFETY (FS)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

OBJECTIVE OBJECTIVE OP.1 - (Core Requirements 4 and 6) Sufficient numbers of qualified personnel are available to conduct and support operations. Adequate facilities and equipment are available to ensure operational support services are adequate for operations. The level of knowledge of managers, operations personnel, and support personnel is adequate based on reviews of examinations and examination results and selected interviews of personnel. (Old Core Requirements 3, 8, 13, and 19) Criteria 1. Minimum staffing requirements for safe operations have been established for operations personnel, supervisors, and managers. These staffing levels are met and are consistent with the safety basis requirements and assumptions. (DOE O 5480.19; WPF DSA) 2. All ES&H matrix support functions are identified for system operations. Adequate

31

Nuclear and Facility Safety Policy Rules  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety (HS-30) Office of Nuclear Safety Home Directives Nuclear and Facility Safety Policy Rules Nuclear Safety Workshops Technical Standards Program Search ...

32

EA-1410: Proposed Disposition of the Omega West Facility at Los Alamos  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

10: Proposed Disposition of the Omega West Facility at Los 10: Proposed Disposition of the Omega West Facility at Los Alamos National Laboratory, Los Alamos, New Mexico EA-1410: Proposed Disposition of the Omega West Facility at Los Alamos National Laboratory, Los Alamos, New Mexico SUMMARY This EA evaluates the environmental impacts for the proposal to remove the Omega West Facility and the remaining support structures from Los Alamos Canyon at the U.S. Department of Energy Los Alamos National Laboratory in Los Alamos, New Mexico. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD March 28, 2002 EA-1410: Finding of No Significant Impact Proposed Disposition of the Omega West Facility at Los Alamos National Laboratory, Los Alamos, New Mexico March 28, 2002 EA-1410: Final Environmental Assessment

33

DOE Standard Integration Of Environment,Safety, and Health Into Facility  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Standard Integration Of Environment,Safety, and Health Into DOE Standard Integration Of Environment,Safety, and Health Into Facility Disposition Activities DOE Standard Integration Of Environment,Safety, and Health Into Facility Disposition Activities The original release of DOE-STD-1120-98 provided integrated safety management guidance for enhancing worker, public, and environmental protection during all facility disposition activities. Volume One of this Standard has been revised to provide a Department of Energy (DOE) approved methodology for preparing a Documented Safety Analysis (DSA) for decommissioning of nuclear facilities, as well as environmental restoration activities that involve work not done within a permanent structure. Methodologies provided in this Standard are intended to be compliant with Title 10 of the Code of Federal Regulations (CFR) Part

34

DOE Standard Integration Of Environment,Safety, and Health Into Facility  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Standard Integration Of Environment,Safety, and Health Into Standard Integration Of Environment,Safety, and Health Into Facility Disposition Activities DOE Standard Integration Of Environment,Safety, and Health Into Facility Disposition Activities The original release of DOE-STD-1120-98 provided integrated safety management guidance for enhancing worker, public, and environmental protection during all facility disposition activities. Volume One of this Standard has been revised to provide a Department of Energy (DOE) approved methodology for preparing a Documented Safety Analysis (DSA) for decommissioning of nuclear facilities, as well as environmental restoration activities that involve work not done within a permanent structure. Methodologies provided in this Standard are intended to be compliant with Title 10 of the Code of Federal Regulations (CFR) Part

35

Facilities Services and Environmental Health and Safety  

E-Print Network (OSTI)

Facilities Services and Environmental Health and Safety Laboratory Ventilation Management Program Guidance Document Facilities Services and Environmental Health and Safety This group is comprised of support staff from Facilities Services and Environmental Health and Safety who make observations

Pawlowski, Wojtek

36

FACILITY SAFETY (FS)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

- (Core Requirement 1) Line management has established a QA program to ensure safe accomplishment of work. Personnel exhibit an awareness of public and worker safety, health, and...

37

Office of Nuclear Facility Safety Programs  

NLE Websites -- All DOE Office Websites (Extended Search)

Safety Programs establishes requirements related to safety management programs that are essential to the safety of DOE nuclear facilities. In addition, establishes requirements...

38

Office of Nuclear Facility Safety Programs: Nuclear Facility Training  

NLE Websites -- All DOE Office Websites (Extended Search)

Safety (HS-30) Safety (HS-30) Office of Nuclear Safety Home » Directives » Nuclear and Facility Safety Policy Rules » Nuclear Safety Workshops Technical Standards Program » Search » Approved Standards » Recently Approved » RevCom for TSP » Monthly Status Reports » Archive » Feedback DOE Nuclear Safety Research & Development Program Office of Nuclear Safety Basis & Facility Design (HS-31) Office of Nuclear Safety Basis & Facility Design - About Us » Nuclear Policy Technical Positions/Interpretations » Risk Assessment Working Group » Criticality Safety » DOE O 420.1C Facility Safety » Beyond Design Basis Events Office of Nuclear Facility Safety Programs (HS-32) Office of Nuclear Facility Safety Programs - About Us » Facility Representative Program

39

DOE G 430.1-2, Implementation Guide for Surveillance and Maintenance during Facility Transition and Disposition  

Directives, Delegations, and Requirements

As DOE facilities complete mission operations and are declared excess, they pass into a transition phase that ultimately prepares them for disposition. The ...

1999-09-29T23:59:59.000Z

40

Assessment of the Integrated Facility Disposition Project at Oak Ridge National Laboratory & Y-12 for Transfer of Facilities & Materials to EM  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Integrated Facilities Disposition Project Integrated Facilities Disposition Project Technical Assistance Page 1 of 2 Oak Ridge National Laboratory Y-12 National Security Complex Tennessee Tennessee Assessment of the Integrated Facility Disposition Project at ORNL & Y-12 for Transfer of Facilities & Materials to EM Challenge In December 2007, the Assistant Secretary for Environmental Management (EM-1) invited the DOE Program Secretarial Offices (PSOs) of Nuclear Energy (NE), Science (SC), and the National Nuclear Security Administration (NNSA) to propose facilities and legacy waste for transfer to Environmental Management (EM) for final disposition or deactivation and decommissioning (D&D). In parallel with the EM-1 initiative, the Oak Ridge Reservation was conducting a Critical

Note: This page contains sample records for the topic "facility disposition safety" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Alternatives for the disposition of fuel stored in the PUREX facility  

SciTech Connect

This document provides an evaluation of five alternatives for the disposition of 3.4 metric tons of irradiated fuel from PUREX to support facility turnover following deactivation. The alternatives for disposition of the fuel include transfer to the K Basins, transfer to T Plant, passivation and dry vault storage, and dissolution and underground tank storage. The five alternatives were compared and it was determined that the fuel should be transferred from PUREX to the K Basins where it would be placed into pool storage.

Enghusen, M.B.; Gore, D.B.

1995-01-01T23:59:59.000Z

42

Supplement Analysis for the Idaho High-Level Waste and Facilities Disposition Final Environmental Impact Statement  

Science Conference Proceedings (OSTI)

In October 2002, DOE issued the Idaho High-Level Waste and Facilities Disposition Final Environmental Impact Statement (Final EIS) (DOE 2002) that provided an analysis of the potential environmental consequences of alternatives/options for the management and disposition of Sodium Bearing Waste (SBW), High-Level Waste (HL W) calcine, and HLW facilities at the Idaho Nuclear Technology and Engineering Center (INTEC) located at the Idaho National Engineering and Environmental Laboratory (INEEL), now known as the Idaho National Laboratory (INL) and referred to hereafter as the Idaho Site. Subsequent to the issuance of the Final EIS, DOE included the requirement for treatment of SBW in the Request for Proposals for Environmental Management activities on the Idaho Site. The new Idaho Cleanup Project (ICP) Contractor identified Steam Reforming as their proposed method to treat SBW; a method analyzed in the Final EIS as an option to treat SBW. The proposed Steam Reforming process for SBW is the same as in the Final EIS for retrieval, treatment process, waste form and transportation for disposal. In addition, DOE has updated the characterization data for both the HLW Calcine (BBWI 2005a) and SBW (BBWI 2004 and BBWI 2005b) and identified two areas where new calculation methods are being used to determine health and safety impacts. Because of those changes, DOE has prepared this supplement analysis to determine whether there are ''substantial changes in the proposed action that are relevant to environmental concerns'' or ''significant new circumstances or information'' within the meaning of the Council of Environmental Quality and DOE National Environmental Policy Act (NEPA) Regulations (40 CFR 1502.9 (c) and 10 CFR 1021.314) that would require preparation of a Supplemental EIS. Specifically, this analysis is intended to determine if: (1) the Steam Reforming Option identified in the Final EIS adequately bounds impacts from the Steam Reforming Process proposed by the new ICP Contractor using the new characterization data, (2) the new characterization data is significantly different than the data presented in the Final EIS, (3) the new calculation methods present a significant change to the impacts described in the Final EIS, and (4) would the updated characterization data cause significant changes in the environmental impacts for the action alternatives/options presented in the Final EIS. There are no other aspects of the Final EIS that require additional review because DOE has not identified any additional new significant circumstances or information that would warrant such a review.

N /A

2005-06-30T23:59:59.000Z

43

Safety of magnetic fusion facilities: Requirements  

SciTech Connect

This Standard identifies safety requirements for magnetic fusion facilities. Safety functions are used to define outcomes that must be achieved to ensure that exposures to radiation, hazardous materials, or other hazards are maintained within acceptable limits. Requirements applicable to magnetic fusion facilities have been derived from Federal law, policy, and other documents. In addition to specific safety requirements, broad direction is given in the form of safety principles that are to be implemented and within which safety can be achieved.

1996-05-01T23:59:59.000Z

44

AGING FACILITY CRITICALITY SAFETY CALCULATIONS  

Science Conference Proceedings (OSTI)

The purpose of this design calculation is to revise and update the previous criticality calculation for the Aging Facility (documented in BSC 2004a). This design calculation will also demonstrate and ensure that the storage and aging operations to be performed in the Aging Facility meet the criticality safety design criteria in the ''Project Design Criteria Document'' (Doraswamy 2004, Section 4.9.2.2), and the functional nuclear criticality safety requirement described in the ''SNF Aging System Description Document'' (BSC [Bechtel SAIC Company] 2004f, p. 3-12). The scope of this design calculation covers the systems and processes for aging commercial spent nuclear fuel (SNF) and staging Department of Energy (DOE) SNF/High-Level Waste (HLW) prior to its placement in the final waste package (WP) (BSC 2004f, p. 1-1). Aging commercial SNF is a thermal management strategy, while staging DOE SNF/HLW will make loading of WPs more efficient (note that aging DOE SNF/HLW is not needed since these wastes are not expected to exceed the thermal limits form emplacement) (BSC 2004f, p. 1-2). The description of the changes in this revised document is as follows: (1) Include DOE SNF/HLW in addition to commercial SNF per the current ''SNF Aging System Description Document'' (BSC 2004f). (2) Update the evaluation of Category 1 and 2 event sequences for the Aging Facility as identified in the ''Categorization of Event Sequences for License Application'' (BSC 2004c, Section 7). (3) Further evaluate the design and criticality controls required for a storage/aging cask, referred to as MGR Site-specific Cask (MSC), to accommodate commercial fuel outside the content specification in the Certificate of Compliance for the existing NRC-certified storage casks. In addition, evaluate the design required for the MSC that will accommodate DOE SNF/HLW. This design calculation will achieve the objective of providing the criticality safety results to support the preliminary design of the Aging Facility. As the ongoing design evolution remains fluid, the results from this design calculation should be evaluated for applicability to any new or modified design. Consequently, the results presented in this document are limited to the current design. The information contained in this document was developed by Environmental and Nuclear Engineering and is intended for the use of Design and Engineering in its work regarding the various criticality related activities performed in the Aging Facility. Yucca Mountain Project personnel from Environmental and Nuclear Engineering should be consulted before the use of the information for purposes other than those stated herein or use by individuals other than authorized personnel in Design and Engineering.

C.E. Sanders

2004-09-10T23:59:59.000Z

45

ORGANIZATIONAL CULTURE, SAFETY CULTURE, AND SAFETY PERFORMANCE AT RESEARCH FACILITIES.  

Science Conference Proceedings (OSTI)

Organizational culture surveys of research facilities conducted several years ago and archival occupational injury reports were used to determine whether differences in safety performance are related to general organizational factors or to ''safety culture'' as reflected in specific safety-related dimensions. From among the organizations surveyed, a pair of facilities was chosen that were similar in size and scientific mission while differing on indices of work-related injuries. There were reliable differences in organizational style between the facilities, especially among workers in environment, safety, and health functions; differences between the facilities (and among job categories) on the safety scale were more modest and less regular.

BROWN,W.S.

2000-07-30T23:59:59.000Z

46

Site Selection for Surplus Plutonium Disposition Facilities at the Savannah River Site  

Science Conference Proceedings (OSTI)

A site selection study was conducted to evaluate locations for the proposed Surplus Plutonium Disposition Facilities. Facilities to be located include the Mixed Oxide (MOX) Fuel Fabrication Facility, the Pit Disassembly and Conversion Facility (PDCF), and the Plutonium Immobilization Project (PIP) facility. Objectives of the study include: (1) Confirm that the Department of Energy (DOE) selected locations for the MOX and PDCF were suitable based on selected siting criteria, (2) Recommend a site in the vicinity of F Area that is suitable for the PIP, and (3) Identify alternative suitable sites for one or more of these facilities in the event that further geotechnical characterization or other considerations result in disqualification of a currently proposed site.

Wike, L.D.

2000-08-17T23:59:59.000Z

47

SLUDGE TREATMENT PROJECT KOP DISPOSITION - THERMAL AND GAS ANALYSIS FOR THE COLD VACUUM DRYING FACILITY  

DOE Green Energy (OSTI)

The purpose of this document is to present conceptual design phase thermal process calculations that support the process design and process safety basis for the cold vacuum drying of K Basin KOP material. This document is intended to demonstrate that the conceptual approach: (1) Represents a workable process design that is suitable for development in preliminary design; and (2) Will support formal safety documentation to be prepared during the definitive design phase to establish an acceptable safety basis. The Sludge Treatment Project (STP) is responsible for the disposition of Knock Out Pot (KOP) sludge within the 105-K West (KW) Basin. KOP sludge consists of size segregated material (primarily canister particulate) from the fuel and scrap cleaning process used in the Spent Nuclear Fuel process at K Basin. The KOP sludge will be pre-treated to remove fines and some of the constituents containing chemically bound water, after which it is referred to as KOP material. The KOP material will then be loaded into a Multi-Canister Overpack (MCO), dried at the Cold Vacuum Drying Facility (CVDF) and stored in the Canister Storage Building (CSB). This process is patterned after the successful drying of 2100 metric tons of spent fuel, and uses the same facilities and much of the same equipment that was used for drying fuel and scrap. Table ES-l present similarities and differences between KOP material and fuel and between MCOs loaded with these materials. The potential content of bound water bearing constituents limits the mass ofKOP material in an MCO load to a fraction of that in an MCO containing fuel and scrap; however, the small particle size of the KOP material causes the surface area to be significantly higher. This relatively large reactive surface area represents an input to the KOP thermal calculations that is significantly different from the calculations for fuel MCOs. The conceptual design provides for a copper insert block that limits the volume available to receive KOP material, enhances heat conduction, and functions as a heat source and sink during drying operations. This use of the copper insert represents a significant change to the thermal model compared to that used for the fuel calculations. A number of cases were run representing a spectrum of normal and upset conditions for the drying process. Dozens of cases have been run on cold vacuum drying of fuel MCOs. Analysis of these previous calculations identified four cases that provide a solid basis for judgments on the behavior of MCO in drying operations. These four cases are: (1) Normal Process; (2) Degraded vacuum pumping; (3) Open MCO with loss of annulus water; and (4) Cool down after vacuum drying. The four cases were run for two sets of input parameters for KOP MCOs: (1) a set of parameters drawn from safety basis values from the technical data book and (2) a sensitivity set using parameters selected to evaluate the impact of lower void volume and smaller particle size on MCO behavior. Results of the calculations for the drying phase cases are shown in Table ES-2. Cases using data book safety basis values showed dry out in 9.7 hours and heat rejection sufficient to hold temperature rise to less than 25 C. Sensitivity cases which included unrealistically small particle sizes and corresponding high reactive surface area showed higher temperature increases that were limited by water consumption. In this document and in the attachment (Apthorpe, R. and M.G. Plys, 2010) cases using Technical Databook safety basis values are referred to as nominal cases. In future calculations such cases will be called safety basis cases. Also in these documents cases using parameters that are less favorable to acceptable performance than databook safety values are referred to as safety cases. In future calculations such cases will be called sensitivity cases or sensitivity evaluations Calculations to be performed in support of the detailed design and formal safety basis documentation will expand the calculations presented in this document to include: additional features of th

SWENSON JA; CROWE RD; APTHORPE R; PLYS MG

2010-03-09T23:59:59.000Z

48

Hot Cell Facility (HCF) Safety Analysis Report  

Science Conference Proceedings (OSTI)

This Safety Analysis Report (SAR) is prepared in compliance with the requirements of DOE Order 5480.23, Nuclear Safety Analysis Reports, and has been written to the format and content guide of DOE-STD-3009-94 Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Safety Analysis Reports. The Hot Cell Facility is a Hazard Category 2 nonreactor nuclear facility, and is operated by Sandia National Laboratories for the Department of Energy. This SAR provides a description of the HCF and its operations, an assessment of the hazards and potential accidents which may occur in the facility. The potential consequences and likelihood of these accidents are analyzed and described. Using the process and criteria described in DOE-STD-3009-94, safety-related structures, systems and components are identified, and the important safety functions of each SSC are described. Additionally, information which describes the safety management programs at SNL are described in ancillary chapters of the SAR.

MITCHELL,GERRY W.; LONGLEY,SUSAN W.; PHILBIN,JEFFREY S.; MAHN,JEFFREY A.; BERRY,DONALD T.; SCHWERS,NORMAN F.; VANDERBEEK,THOMAS E.; NAEGELI,ROBERT E.

2000-11-01T23:59:59.000Z

49

Idaho Waste Treatment Facility Improves Worker Safety and Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Waste Treatment Facility Improves Worker Safety and Efficiency, Saves Taxpayer Dollars Idaho Waste Treatment Facility Improves Worker Safety and Efficiency, Saves Taxpayer Dollars...

50

Radiological Safety Training for Plutonium Facilities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Change Notice No. 1. and Reaffirmation January 2007 DOE HANDBOOK Radiological Safety Training for Plutonium Facilities U.S. Department of Energy AREA TRNG Washington, D.C. 20585...

51

Radiological Safety Training for Plutonium Facilities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

MEASUREMENT SENSITIVE DOE-HDBK-1145-2013 March 2013 DOE HANDBOOK Radiological Safety Training for Plutonium Facilities U.S. Department of Energy TRNG-0061 Washington, D.C. 20585...

52

Occupational Safety Review of High Technology Facilities  

Science Conference Proceedings (OSTI)

This report contains reviews of operating experiences, selected accident events, and industrial safety performance indicators that document the performance of the major US DOE magnetic fusion experiments and particle accelerators. These data are useful to form a basis for the occupational safety level at matured research facilities with known sets of safety rules and regulations. Some of the issues discussed are radiation safety, electromagnetic energy exposure events, and some of the more widespread issues of working at height, equipment fires, confined space work, electrical work, and other industrial hazards. Nuclear power plant industrial safety data are also included for comparison.

Lee Cadwallader

2005-01-31T23:59:59.000Z

53

DOE O 420.1C, Facility Safety  

Energy.gov (U.S. Department of Energy (DOE))

The Order establishes facility and programmatic safety requirements for DOE and NNSA for nuclear safety design criteria, fire protection, and criticality safety.

54

DOE O 420.1C, Facility Safety  

Directives, Delegations, and Requirements

The Order establishes facility and programmatic safety requirements for DOE and NNSA for nuclear safety design criteria, fire protection, criticality safety, ...

2012-12-04T23:59:59.000Z

55

Safety of magnetic fusion facilities: Guidance  

Science Conference Proceedings (OSTI)

This document provides guidance for the implementation of the requirements identified in DOE-STD-6002-96, Safety of Magnetic Fusion Facilities: Requirements. This guidance is intended for the managers, designers, operators, and other personnel with safety responsibilities for facilities designated as magnetic fusion facilities. While the requirements in DOE-STD-6002-96 are generally applicable to a wide range of fusion facilities, this Standard, DOE-STD-6003-96, is concerned mainly with the implementation of those requirements in large facilities such as the International Thermonuclear Experimental Reactor (ITER). Using a risk-based prioritization, the concepts presented here may also be applied to other magnetic fusion facilities. This Standard is oriented toward regulation in the Department of Energy (DOE) environment as opposed to regulation by other regulatory agencies. As the need for guidance involving other types of fusion facilities or other regulatory environments emerges, additional guidance volumes should be prepared. The concepts, processes, and recommendations set forth here are for guidance only. They will contribute to safety at magnetic fusion facilities.

NONE

1996-05-01T23:59:59.000Z

56

Assessment of criticality safety in DOE facilities  

SciTech Connect

A study was made to assess nuclear criticality safety in DOE Facilities and to assess the effects of various types of possible improvements. The accident statistics in DOE operations show that the fatalities caused by Nuclear Criticality accidents are small compared to other accident categories. The data show the safety performance after 1965, compared to prior years, was considerably improved indicating that overall safety programs have been effective. Data on criticality safety violations were collected from eight major facilities. These data were categorized by severity indexes and causes were assigned. A total of 421 violations were used in the data base for analysis in a fault tree model. Calculations were made using the fault tree methodology to show expected improvement in safety (reduction in probability of a criticality accident) for a fixed reduction in the number of criticality violations. Based on this analysis, about equal emphasis should be placed on reducing mechanical failures and operator errors as efforts in these two areas will likely produce the most significant improvements in safety. A criticality safety infraction form was prepared to facilitate uniformity in recording data on infractions for subsequent analysis. Discussions with Nuclear Safety Specialists working in the field instilled confidence that criticality safety is being handled by concerned, capable, and knowledgable persons.

Lloyd, R.C.; Clayton, E.D.; Converse, W.E.; Kottwitz, D.A.

1981-05-01T23:59:59.000Z

57

Safety audit of refrigerated liquefied gas facilities  

SciTech Connect

An Exxon Research and Engineering Co. comprehensive review of engineering practices and application of safety requirements at Exxon's world-wide refrigerated liquefied hydrocarbon gas storage and handling installations, which included a field audit of about 90 tanks at 30 locations, showed that catastrophic tank failure was not a credible event with properly operated and maintained tanks designed, constructed, and tested in accordance with API Standard 620, Design and Construction of Large Welded Low-Pressure Storage Tanks, although supplemental requirements were suggested to further enhance safety. The review also showed that any meaningful safety audit should be comprehensive and must include all facilities with careful attention to detail. The review embraces products of -1 to -167C and included LNG, ethylene, LPG, and LPG olefins. Recent and proposed LNG safety legislation; some field audit results; and recommendations as to design, construction, and operation of LNG and LPG storage facilities, marine terminals, and tankers, are also discussed.

Feely, F.J.; Sommer, E.C.; Marshall, B.T.; Palmer, A.J.

1980-01-01T23:59:59.000Z

58

Safety of Decommissioning of Nuclear Facilities  

Science Conference Proceedings (OSTI)

Full text of publication follows: ensuring safety during all stages of facility life cycle is a widely recognised responsibility of the operators, implemented under the supervision of the regulatory body and other competent authorities. As the majority of the facilities worldwide are still in operation or shutdown, there is no substantial experience in decommissioning and evaluation of safety during decommissioning in majority of Member States. The need for cooperation and exchange of experience and good practices on ensuring and evaluating safety of decommissioning was one of the outcomes of the Berlin conference in 2002. On this basis during the last three years IAEA initiated a number of international projects that can assist countries, in particular small countries with limited resources. The main IAEA international projects addressing safety during decommissioning are: (i) DeSa Project on Evaluation and Demonstration of Safety during Decommissioning; (ii) R{sup 2}D{sup 2}P project on Research Reactors Decommissioning Demonstration Project; and (iii) Project on Evaluation and Decommissioning of Former Facilities that used Radioactive Material in Iraq. This paper focuses on the DeSa Project activities on (i) development of a harmonised methodology for safety assessment for decommissioning; (ii) development of a procedure for review of safety assessments; (iii) development of recommendations on application of the graded approach to the performance and review of safety assessments; and (iv) application of the methodology and procedure to the selected real facilities with different complexities and hazard potentials (a nuclear power plant, a research reactor and a nuclear laboratory). The paper also outlines the DeSa Project outcomes and planned follow-up activities. It also summarises the main objectives and activities of the Iraq Project and introduces the R{sup 2}D{sup 2} Project, which is a subject of a complementary paper.

Batandjieva, B.; Warnecke, E.; Coates, R. [International Atomic Energy Agency, Vienna (Austria)

2008-01-15T23:59:59.000Z

59

Mechanistic facility safety and source term analysis  

SciTech Connect

A PC-based computer program was created for facility safety and source term analysis at Hanford The program has been successfully applied to mechanistic prediction of source terms from chemical reactions in underground storage tanks, hydrogen combustion in double contained receiver tanks, and proccss evaluation including the potential for runaway reactions in spent nuclear fuel processing. Model features include user-defined facility room, flow path geometry, and heat conductors, user-defined non-ideal vapor and aerosol species, pressure- and density-driven gas flows, aerosol transport and deposition, and structure to accommodate facility-specific source terms. Example applications are presented here.

PLYS, M.G.

1999-06-09T23:59:59.000Z

60

DRY TRANSFER FACILITY CRITICALITY SAFETY CALCULATIONS  

SciTech Connect

This design calculation updates the previous criticality evaluation for the fuel handling, transfer, and staging operations to be performed in the Dry Transfer Facility (DTF) including the remediation area. The purpose of the calculation is to demonstrate that operations performed in the DTF and RF meet the nuclear criticality safety design criteria specified in the ''Project Design Criteria (PDC) Document'' (BSC 2004 [DIRS 171599], Section 4.9.2.2), the nuclear facility safety requirement in ''Project Requirements Document'' (Canori and Leitner 2003 [DIRS 166275], p. 4-206), the functional/operational nuclear safety requirement in the ''Project Functional and Operational Requirements'' document (Curry 2004 [DIRS 170557], p. 75), and the functional nuclear criticality safety requirements described in the ''Dry Transfer Facility Description Document'' (BSC 2005 [DIRS 173737], p. 3-8). A description of the changes is as follows: (1) Update the supporting calculations for the various Category 1 and 2 event sequences as identified in the ''Categorization of Event Sequences for License Application'' (BSC 2005 [DIRS 171429], Section 7). (2) Update the criticality safety calculations for the DTF staging racks and the remediation pool to reflect the current design. This design calculation focuses on commercial spent nuclear fuel (SNF) assemblies, i.e., pressurized water reactor (PWR) and boiling water reactor (BWR) SNF. U.S. Department of Energy (DOE) Environmental Management (EM) owned SNF is evaluated in depth in the ''Canister Handling Facility Criticality Safety Calculations'' (BSC 2005 [DIRS 173284]) and is also applicable to DTF operations. Further, the design and safety analyses of the naval SNF canisters are the responsibility of the U.S. Department of the Navy (Naval Nuclear Propulsion Program) and will not be included in this document. Also, note that the results for the Monitored Geologic Repository (MGR) Site specific Cask (MSC) calculations are limited to the specific design chosen (see Assumption 3.4). A more current design will be included in the next revision of the criticality calculations for the Aging Facility. In addition, this calculation is valid for the current design as provided in Attachment III of the DTF and may not reflect the ongoing design evolution of the facility. However, it is anticipated that design changes to the facility layout will have little or no impact on the criticality results and/or conclusions presented in this document.

C.E. Sanders

2005-05-17T23:59:59.000Z

Note: This page contains sample records for the topic "facility disposition safety" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Criticality safety and facility design considerations  

SciTech Connect

Operations with fissile material introduce the risk of a criticality accident that may be lethal to nearby personnel. In addition, concerns over criticality safety can result in substantial delays and shutdown of facility operations. For these reasons, it is clear that the prevention of a nuclear criticality accident should play a major role in the design of a nuclear facility. The emphasis of this report will be placed on engineering design considerations in the prevention of criticality. The discussion will not include other important aspects, such as the physics of calculating limits nor criticality alarm systems.

Waltz, W.R.

1991-06-01T23:59:59.000Z

62

Review of the Facility Centered Assessment of the Los Alamos...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Facility Centered Assessment of the Los Alamos National Laboratory Waste Disposition Project September 2011 Office of Safety and Emergency Management Evaluations Office of Health,...

63

Radiological Safety Training for Plutonium Facilities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

145-2008 145-2008 April 2008 DOE HANDBOOK Radiological Safety Training for Plutonium Facilities U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. NOT MEASUREMENT SENSITIVE This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax (301) 903-9823. Available to the public from the U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161; (703) 605-6000. Radiological Safety Training for Plutonium Facilities DOE-HDBK-1145-2008 Program Management Guide

64

Radiological Safety Training for Plutonium Facilities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NOT MEASUREMENT NOT MEASUREMENT SENSITIVE DOE-HDBK-1145-2013 March 2013 DOE HANDBOOK Radiological Safety Training for Plutonium Facilities U.S. Department of Energy TRNG-0061 Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax (301) 903-9823. Available to the public from the U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161; (703) 605-6000. ii Radiological Safety Training for Plutonium Facilities DOE-HDBK-1145-2013 Program Management Foreword

65

Radiological Safety Training for Accelerator Facilities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

TS TS NOT MEASUREMENT SENSITIVE DOE-HDBK-1108-2002 May 2002 Reaffirmation with Change Notice 2 July 2013 DOE HANDBOOK RADIOLOGICAL SAFETY TRAINING FOR ACCELERATOR FACILITIES U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. This document is available on the Department of Energy Technical Standards Program Web Site at http://www.hss.energy.gov/nuclearsafety/techstds/ Change Notice No.2 Radiological Training for Accelerator Facilities Page/Section Change Throughout the document: Program Management Guide Instructor's Guide Student's Guide "Shall" and "Must" statements Revised to: Program Management Instructor's Material Student's Material Reworded to non-mandatory language unless associated with a requirement

66

Plutonium Disposition Now!  

SciTech Connect

A means for use of existing processing facilities and reactors for plutonium disposition is described which requires a minimum capital investment and allows rapid implementation. The scenario includes interim storage and processing under IAEA control, and fabrication into MOX fuel in existing or planned facilities in Europe for use in operating reactors in the two home countries. Conceptual studies indicate that existing Westinghouse four-loop designs can safety dispose of 0.94 MT of plutonium per calendar year. Thus, it would be possible to consume the expected US excess stockpile of about 50 MT in two to three units of this type, and it is highly likely that a comparable amount of the FSU excess plutonium could be deposed of in a few VVER-1000`s. The only major capital project for this mode of plutonium disposition would be the weapons-grade plutonium processing which could be done in a dedicated international facility or using existing facilities in the US and FSU under IAEA control. This option offers the potential for quick implementation at a very low cost to the governments of the two countries.

Buckner, M.R.

1995-05-24T23:59:59.000Z

67

THE NGA-DOE GRANT TO EXAMINE CRITICAL ISSUES RELATED TO RADIOACTIVE WASTE AND MATERIALS DISPOSITION INVOLVING DOE FACILITIES  

Science Conference Proceedings (OSTI)

Through the National Governors' Association (NGA) project ''Critical Issues Related to Radioactive Waste and Materials Disposition Involving DOE Facilities'' NGA brings together Governors' policy advisors, state regulators, and DOE officials to examine critical issues related to the cleanup and operation of DOE nuclear weapons and research facilities. Topics explored through this project include: Decisions involving disposal of mixed, low-level, and transuranic (TRU) waste and disposition of nuclear materials. Decisions involving DOE budget requests and their effect on environmental cleanup and compliance at DOE facilities. Strategies to treat mixed, low-level, and transuranic (TRU) waste and their effect on individual sites in the complex. Changes to the FFCA site treatment plans as a result of proposals in the Department's Accelerating Cleanup: Paths to Closure plan and contractor integration analysis. Interstate waste and materials shipments. Reforms to existing RCRA and CERCLA regulations/guidance to address regulatory overlap and risks posed by DOE wastes. The overarching theme of this project is to help the Department improve coordination of its major program decisions with Governors' offices and state regulators and to ensure such decisions reflect input from these key state officials and stakeholders. This report summarizes activities conducted during the period from April 1, 2001 through June 30, 2001, under the NGA grant.

Ethan W. Brown

2001-09-01T23:59:59.000Z

68

Independent Activity Report, Defense Nuclear Facilities Safety Board Public  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Defense Nuclear Facilities Safety Defense Nuclear Facilities Safety Board Public Meeting - October 2012 Independent Activity Report, Defense Nuclear Facilities Safety Board Public Meeting - October 2012 October 2012 Defense Nuclear Facilities Safety Board Public Meeting on the Status of Integration of Safety Into the Design of the Uranium Processing Facility [HIAR-Y-12-2012-10-02] The Office of Health, Safety and Security (HSS) observed the public hearing of the DNFSB review of the UPF project status for integrating safety into design. The meeting was broken into three parts: a panel discussion and questioning of National Nuclear Security Administration (NNSA) oversight and execution; a panel discussion and questioning of the B&W Y-12 Technical Services, LLC (B&W Y-12) design project team leadership; and an open public

69

Independent Activity Report, Defense Nuclear Facilities Safety Board Public  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Defense Nuclear Facilities Safety Defense Nuclear Facilities Safety Board Public Meeting - October 2012 Independent Activity Report, Defense Nuclear Facilities Safety Board Public Meeting - October 2012 October 2012 Defense Nuclear Facilities Safety Board Public Meeting on the Status of Integration of Safety Into the Design of the Uranium Processing Facility [HIAR-Y-12-2012-10-02] The Office of Health, Safety and Security (HSS) observed the public hearing of the DNFSB review of the UPF project status for integrating safety into design. The meeting was broken into three parts: a panel discussion and questioning of National Nuclear Security Administration (NNSA) oversight and execution; a panel discussion and questioning of the B&W Y-12 Technical Services, LLC (B&W Y-12) design project team leadership; and an open public

70

Independent Activity Report, Defense Nuclear Facilities Safety Board Public  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Defense Nuclear Facilities Safety Defense Nuclear Facilities Safety Board Public Meeting - October 2012 Independent Activity Report, Defense Nuclear Facilities Safety Board Public Meeting - October 2012 October 2012 Defense Nuclear Facilities Safety Board Public Meeting on the Status of Integration of Safety Into the Design of the Uranium Processing Facility [HIAR-Y-12-2012-10-02] The Office of Health, Safety and Security (HSS) observed the public hearing of the DNFSB review of the UPF project status for integrating safety into design. The meeting was broken into three parts: a panel discussion and questioning of National Nuclear Security Administration (NNSA) oversight and execution; a panel discussion and questioning of the B&W Y-12 Technical Services, LLC (B&W Y-12) design project team leadership; and an open public

71

DOE-STD-1120-2005; Integration of Environment Safety and Health...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

INTO FACILITY DISPOSITION ACTIVITIES Volume 1 of 2: Documented Safety Analysis for Decommissioning and Environmental Restoration Projects U.S. Department of Energy AREA SAFT...

72

NNSA and Defense Nuclear Facilities Safety Board certifications...  

NLE Websites -- All DOE Office Websites (Extended Search)

allocated funding NNSA and Defense Nuclear Facilities Safety Board certifications free up 47 million in previously allocated funding The DNFSB and NNSA required the CMRR...

73

Radiological Safety Training for Uranium Facilities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE HDBK-1113-2008 DOE HDBK-1113-2008 April 2008 DOE HANDBOOK RADIOLOGICAL SAFETY TRAINING FOR URANIUM FACILITIES U.S. Department of Energy FSC 6910 Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. NOT MEASUREMENT SENSITIVE DOE-HDBK-1113-2008 ii This document is available on the Department of Energy Technical Standards Program Web Site at http://www.hss.energy.gov/nuclearsafety/techstds/ DOE-HDBK-1113-2008 iii Foreword This Handbook describes a recommended implementation process for additional training as outlined in DOE-STD-1098-99, Radiological Control (RCS). Its purpose is to assist those individuals, Department of Energy (DOE) employees, Managing and Operating (M&O) contractors, and Managing and Integrating

74

Defense Nuclear Facilities Safety Board's enabling legislation  

NLE Websites -- All DOE Office Websites (Extended Search)

ENABLING STATUTE OF THE ENABLING STATUTE OF THE DEFENSE NUCLEAR FACILITIES SAFETY BOARD 42 U.S.C. § 2286 et seq. NATIONAL DEFENSE AUTHORIZATION ACT, FISCAL YEAR 1989 (Pub. L. No. 100-456, September 29, 1988), AS AMENDED BY NATIONAL DEFENSE AUTHORIZATION ACT, FISCAL YEAR 1991 (Pub. L. No. 101-510, November 5, 1990), NATIONAL DEFENSE AUTHORIZATION ACT FISCAL YEARS 1992 AND 1993 (Pub. L. No. 102-190, December 5, 1991), ENERGY POLICY ACT OF 1992 (Pub. L. No. 102-486, October 24, 1992), NATIONAL DEFENSE AUTHORIZATION ACT FISCAL YEAR 1994 (Pub. L. No. 103-160, November 30, 1993), FEDERAL REPORTS ELIMINATION ACT OF 1998 (Pub. L. No. 105-362, November 10, 1998), NATIONAL DEFENSE AUTHORIZATION ACT FISCAL YEAR 2001 (Pub. L. No. 106-398, October 30, 2000), AND

75

THE NGA-DOE GRANT TO EXAMINE CRITICAL ISSUES RELATED TO RADIOACTIVE WASTE AND MATERIALS DISPOSITION INVOLVING DOE FACILITIES  

SciTech Connect

Through the National Governors' Association (NGA) project ''Critical Issues Related to Radioactive Waste and Materials Disposition Involving DOE Facilities'' NGA brings together Governors' policy advisors, state regulators, and DOE officials to examine critical issues related to the cleanup and operation of DOE nuclear weapons and research facilities. Topics explored through this project include: Decisions involving disposal of mixed, low-level, and transuranic (TRU) waste and disposition of nuclear materials. Decisions involving DOE budget requests and their effect on environmental cleanup and compliance at DOE facilities. Strategies to treat mixed, low-level, and transuranic (TRU) waste and their effect on individual sites in the complex. Changes to the FFCA site treatment plans as a result of proposals in DOE's Accelerating Cleanup: Paths to Closure strategy and contractor integration analysis. Interstate waste and materials shipments. Reforms to existing RCRA and CERCLA regulations/guidance to address regulatory overlap and risks posed by DOE wastes. The overarching theme of this project is to help the Department improve coordination of its major program decisions with Governors' offices and state regulators and to ensure such decisions reflect input from these key state officials and stakeholders. This report summarizes activities conducted during the quarter from December 31, 1997 through April 30, 1998 under the NGA project. The work accomplished by the NGA project team during the past four months can be categorized as follows: maintained open communication with DOE on a variety of activities and issues within the DOE environmental management complex; and provided ongoing support to state-DOE interactions in preparation for the March 30-31, 1998 NGA Federal Facilities Compliance Task Force Meeting with DOE. maintained communication with NGA Federal Facilities Compliance Task Force members regarding DOE efforts to formulate a configuration for mixed low-level waste and low-level treatment and disposal, DOE's Environmental Management Budget, and DOE's proposed Intersite Discussions.

NONE

1998-04-01T23:59:59.000Z

76

Nuclear and Facility Safety Directives | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Safety » Nuclear and Facility Safety Nuclear Safety » Nuclear and Facility Safety Directives Nuclear and Facility Safety Directives DOE Order (O) 252.1A, Technical Standards Program DOE O 252.1A promotes DOE's use of Voluntary Consensus Standards (VCS) as the primary method for application of technical standards and establishes and manages the DOE Technical Standards Program (TSP) including technical standards development, information, activities, issues, and interactions. HS-30 Contact: Jeff Feit DOE Policy (P) 420.1, Department of Energy Nuclear Safety Policy DOE P 420.1, documents the Department's nuclear safety policy to design, construct, operate, and decommission its nuclear facilities in a manner that ensures adequate protection of workers, the public, and the environment. HS-30 Contact: James O'Brien

77

THE NGA-DOE GRANT TO EXAMINE CRITICAL ISSUES RELATED TO RADIOACTIVE WASTE AND MATERIALS DISPOSITION INVOLVING DOE FACILITIES  

SciTech Connect

Through the National Governors' Association (NGA) project ''Critical Issues Related to Radioactive Waste and Materials Disposition Involving DOE Facilities'' NGA brings together Governors' policy advisors, state regulators, and DOE officials to examine critical issues related to the cleanup and operation of DOE nuclear weapons and research facilities. Topics explored through this project include: Decisions involving disposal of mixed, low-level, and transuranic (TRU) waste and disposition of nuclear materials; Decisions involving DOE budget requests and their effect on environmental cleanup and compliance at DOE facilities; Strategies to treat mixed, low-level, and transuranic (TRU) waste and their effect on individual sites in the complex; Changes to the FFCA site treatment plans as a result of proposals in the Department's Accelerating Cleanup: Paths to Closure plan and contractor integration analysis; Interstate waste and materials shipments; and Reforms to existing RCRA and CERCLA regulations/guidance to address regulatory overlap and risks posed by DOE wastes. The overarching theme of this project is to help the Department improve coordination of its major program decisions with Governors' offices and state regulators and to ensure such decisions reflect input from these key state officials and stakeholders. This report summarizes activities conducted during the quarter from May 1, 1999, through July 30, 1999, under the NGA grant. The work accomplished by the NGA project team during the past four months can be categorized as follows: maintained open communication with DOE on a variety of activities and issues within the DOE environmental management complex; maintained communication with NGA Federal Facilities Compliance Task Force members regarding DOE efforts to formulate a configuration for mixed low-level waste and low-level treatment and disposal, external regulation of DOE; and continued to facilitate interactions between the states and DOE to develop a foundation for an ongoing substantive relationship between the Governors of key states and Secretary Richardson.

Ann M. Beauchesne

1999-07-30T23:59:59.000Z

78

THE NGA-DOE GRANT TO EXAMINE CRITICAL ISSUES RELATED TO RADIOACTIVE WASTE AND MATERIALS DISPOSITION INVOLVING DOE FACILITIES  

Science Conference Proceedings (OSTI)

Through the National Governors' Association (NGA) project ''Critical Issues Related to Radioactive Waste and Materials Disposition Involving DOE Facilities'' NGA brings together Governors' policy advisors, state regulators, and DOE officials to examine critical issues related to the cleanup and operation of DOE nuclear weapons and research facilities. Topics explored through this project include: Decisions involving disposal of mixed, low-level, and transuranic (TRU) waste and disposition of nuclear materials; Decisions involving DOE budget requests and their effect on environmental cleanup and compliance at DOE facilities; Strategies to treat mixed, low-level, and transuranic (TRU) waste and their effect on individual sites in the complex; Changes to the FFCA site treatment plans as a result of proposals in the Department's Accelerating Cleanup: Paths to Closure plan and contractor integration analysis; Interstate waste and materials shipments; and Reforms to existing RCRA and CERCLA regulations/guidance to address regulatory overlap and risks posed by DOE wastes. The overarching theme of this project is to help the Department improve coordination of its major program decisions with Governors' offices and state regulators and to ensure such decisions reflect input from these key state officials and stakeholders. This report summarizes activities conducted during the quarter from February 1, 1999, through April 30, 1999, under the NGA grant. The work accomplished by the NGA project team during the past four months can be categorized as follows: maintained open communication with DOE on a variety of activities and issues within the DOE environmental management complex; maintained communication with NGA Federal Facilities Compliance Task Force members regarding DOE efforts to formulate a configuration for mixed low-level waste and low-level treatment and disposal, external regulation of DOE; and EM Integration activities; and continued to serve as a liaison between the NGA FFCA Task Force states and the Department.

Ann M. Beauchesne

1999-04-30T23:59:59.000Z

79

THE NGA-DOE GRANT TO EXAMINE CRITICAL ISSUES RELATED TO RADIOACTIVE WASTE AND MATERIALS DISPOSITION INVOLVING DOE FACILITIES  

SciTech Connect

Through the National Governors Association (NGA) project ``Critical Issues Related to Radioactive Waste and Materials Disposition Involving DOE Facilities'' NGA brings together Governors' policy advisors, state regulators, and DOE officials to examine critical issues related to the cleanup and operation of DOE nuclear weapons and research facilities. Topics explored through this project include: Decisions involving disposal of mixed, low-level, and transuranic (TRU) waste and disposition of nuclear materials; Decisions involving DOE budget requests and their effect on environmental cleanup and compliance at DOE facilities; Strategies to treat mixed, low-level, and transuranic (TRU) waste and their effect on individual sites in the complex; Changes to the FFCA site treatment plans as a result of proposals in the Department's Accelerating Cleanup: Paths to Closure plan and contractor integration analysis; Interstate waste and materials shipments; and Reforms to existing RCRA and CERCLA regulations/guidance to address regulatory overlap and risks posed by DOE wastes. The overarching theme of this project is to help the Department improve coordination of its major program decisions with Governors' offices and state regulators and to ensure such decisions reflect input from these key state officials and stakeholders. This report summarizes activities conducted during the period from October 1, 1999 through January 31, 2000, under the NGA grant. The work accomplished by the NGA project team during the past three months can be categorized as follows: maintained open communication with DOE on a variety of activities and issues within the DOE environmental management complex; convened and facilitated the October 6--8 NGA FFCA Task Force Meeting in Oak Ridge, Tennessee; maintained communication with NGA Federal Facilities Compliance Task Force members regarding DOE efforts to formulate a configuration for mixed low-level waste and low-level treatment and disposal, external regulation of DOE; and continued to facilitate interactions between the states and DOE to develop a foundation for an ongoing substantive relationship between the Governors of key states and the Department.

Ann M. Beauchesne

2000-01-01T23:59:59.000Z

80

THE NGA-DOE GRANT TO EXAMINE CRITICAL ISSUES RELATED TO RADIOACTIVE WASTE AND MATERIALS DISPOSITION INVOLVING DOE FACILITIES  

Science Conference Proceedings (OSTI)

Through the National Governors' Association (NGA) project ''Critical Issues Related to Radioactive Waste and Materials Disposition Involving DOE Facilities'' NGA brings together Governors' policy advisors, state regulators, and DOE officials to examine critical issues related to the cleanup and operation of DOE nuclear weapons and research facilities. Topics explored through this project include: Decisions involving disposal of mixed, low-level, and transuranic (TRU) waste and disposition of nuclear materials. Decisions involving DOE budget requests and their effect on environmental cleanup and compliance at DOE facilities. Strategies to treat mixed, low-level, and transuranic (TRU) waste and their effect on individual sites in the complex. Changes to the FFCA site treatment plans as a result of proposals in DOE's Accelerating Cleanup: Paths to Closure strategy and contractor integration analysis. Interstate waste and materials shipments. Reforms to existing RCRA and CERCLA regulations/guidance to address regulatory overlap and risks posed by DOE wastes. The overarching theme of this project is to help the Department improve coordination of its major program decisions with Governors' offices and state regulators and to ensure such decisions reflect input from these key state officials and stakeholders. This report summarizes activities conducted during the quarter from April 30, 1998 through June 30, 1998 under the NGA project. The work accomplished by the NGA project team during the past four months can be categorized as follows: maintained open communication with DOE on a variety of activities and issues within the DOE environmental management complex; and provided ongoing support to state-DOE interactions. maintained communication with NGA Federal Facilities Compliance Task Force members regarding DOE efforts to formulate a configuration for mixed low-level waste and low-level treatment and disposal, DOE's Environmental Management Budget, and DOE's proposed Intersite Discussions.

NONE

1998-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "facility disposition safety" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

THE NGA-DOE GRANT TO EXAMINE CRITICAL ISSUES RELATED TO RADIOACTIVE WASTE AND MATERIALS DISPOSITION INVOLVING DOE FACILITIES  

Science Conference Proceedings (OSTI)

Through the National Governors' Association (NGA) project ''Critical Issues Related to Radioactive Waste and Materials Disposition Involving DOE Facilities'' NGA brings together Governors' policy advisors, state regulators, and DOE officials to examine critical issues related to the cleanup and operation of DOE nuclear weapons and research facilities. Topics explored through this project include: (1) Decisions involving disposal of mixed, low-level, and transuranic (TRU) waste and disposition of nuclear materials; (2) Decisions involving DOE budget requests and their effect on environmental cleanup and compliance at DOE facilities; (3) Strategies to treat mixed, low-level, and transuranic (TRU) waste and their effect on individual sites in the complex; (4) Changes to the FFCA site treatment plans as a result of proposals in the Department's Accelerating Cleanup: Paths to Closure plan and contractor integration analysis; (5) Interstate waste and materials shipments; and (6) Reforms to existing RCRA and CERCLA regulations/guidance to address regulatory overlap and risks posed by DOE wastes. The overarching theme of this project is to help the Department improve coordination of its major program decisions with Governors' offices and state regulators and to ensure such decisions reflect input from these key state officials and stakeholders. This report summarizes activities conducted during the quarter from October 1, 1998 through January 31, 1999, under the NGA grant. The work accomplished by the NGA project team during the past four months can be categorized as follows: (1) maintained open communication with DOE on a variety of activities and issues within the DOE environmental management complex; (2) maintained communication with NGA Federal Facilities Compliance Task Force members regarding DOE efforts to formulate a configuration for mixed low-level waste and low-level treatment and disposal, external regulation of DOE; and EM Integration activities; and (3) continued to serve as a liaison between the NGA FFCA Task Force states and the Department.

Ann M. Beauchesne

1999-01-31T23:59:59.000Z

82

THE NGA-DOE GRANT TO EXAMINE CRITICAL ISSUES RELATED TO RADIOACTIVE WASTE AND MATERIALS DISPOSITION INVOLVING DOE FACILITIES  

SciTech Connect

Through the National Governors' Association (NGA) project ''Critical Issues Related to Radioactive Waste and Materials Disposition Involving DOE Facilities'' NGA brings together Governors' policy advisors, state regulators, and DOE officials to examine critical issues related to the cleanup and operation of DOE nuclear weapons and research facilities. Topics explored through this project include: (1) Decisions involving disposal of mixed, low-level, and transuranic (TRU) waste and disposition of nuclear materials; (2) Decisions involving DOE budget requests and their effect on environmental cleanup and compliance at DOE facilities; (3) Strategies to treat mixed, low-level, and transuranic (TRU) waste and their effect on individual sites in the complex; (4) Changes to the FFCA site treatment plans as a result of proposals in the Department's Accelerating Cleanup: Paths to Closure plan and contractor integration analysis; (5) Interstate waste and materials shipments; and (6) Reforms to existing RCRA and CERCLA regulations/guidance to address regulatory overlap and risks posed by DOE wastes. The overarching theme of this project is to help the Department improve coordination of its major program decisions with Governors' offices and state regulators and to ensure such decisions reflect input from these key state officials and stakeholders. This report summarizes activities conducted during the quarter from June 1, 1998 through September 30, 1998, under the NGA grant. The work accomplished by the NGA project team during the past four months can be categorized as follows: (1) maintained open communication with DOE on a variety of activities and issues within the DOE environmental management complex; (2) maintained communication with NGA Federal Facilities Compliance Task Force members regarding DOE efforts to formulate a configuration for mixed low-level waste and low-level treatment and disposal, external regulation of DOE; and EM Integration activities; and (3) continued to serve as a liaison between the NGA FFCA Task Force states and the Department.

Ann B. Beauchesne

1998-09-30T23:59:59.000Z

83

Electrical Safety Assessment Plan--NNSA/NSO IOD Facility Representative,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electrical Safety Assessment Plan--NNSA/NSO IOD Facility Electrical Safety Assessment Plan--NNSA/NSO IOD Facility Representative, 12/03 Electrical Safety Assessment Plan--NNSA/NSO IOD Facility Representative, 12/03 An assessment of the Electrical Safety (ES) program at XXXX was conducted during the week of December XX-XX, 2003. The assessment team evaluated the program using the programmatic areas and specific Lines of Inquiry (LOI) contained in the approved Assessment plan provided. The team consisted of the Facility Representative from National Nuclear Security Administration, as well as ES, Subject Matter Expert support. The assessment plan identified 5 areas of review for Electrical Safety. An integrated process has been established to ensure electrical safety hazards are identified and that adequate controls are defined and

84

OAK RIDGE CERCLA DISPOSAL FACILITY ACHIEVES SAFETY MILESTONE | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

OAK RIDGE CERCLA DISPOSAL FACILITY ACHIEVES SAFETY MILESTONE OAK RIDGE CERCLA DISPOSAL FACILITY ACHIEVES SAFETY MILESTONE OAK RIDGE CERCLA DISPOSAL FACILITY ACHIEVES SAFETY MILESTONE December 1, 2010 - 12:00pm Addthis OAK RIDGE CERCLA DISPOSAL FACILITY ACHIEVES SAFETY MILESTONE Oak Ridge, TN - The Environmental Management Waste Management Facility (EMWMF) provides the onsite disposal capability for the majority of cleanup-generated wastes on the Oak Ridge Reservation. EMWMF has continued a long-standing pattern of safe, complaint operations with 3,000 days without a lost workday case since operations commenced on May 28, 2002. The EMWMF has placed 1.5 million tons of waste and fill in the facility. The EMWMF receives waste from many Oak Ridge cleanup projects, including American Recovery and Reinvestment Act-funded projects, multiple

85

Safety analysis report for the Waste Storage Facility. Revision 2  

SciTech Connect

This safety analysis report outlines the safety concerns associated with the Waste Storage Facility located in the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory. The three main objectives of the report are: define and document a safety basis for the Waste Storage Facility activities; demonstrate how the activities will be carried out to adequately protect the workers, public, and environment; and provide a basis for review and acceptance of the identified risk that the managers, operators, and owners will assume.

Bengston, S.J.

1994-05-01T23:59:59.000Z

86

SAVANNAH RIVER SITE'S H-CANYON FACILITY: IMPACTS OF FOREIGN OBLIGATIONS ON SPECIAL NUCLEAR MATERIAL DISPOSITION  

SciTech Connect

The US has a non-proliferation policy to receive foreign and domestic research reactor returns of spent fuel materials of US origin. These spent fuel materials are returned to the Department of Energy (DOE) and placed in storage in the L-area spent fuel basin at the Savannah River Site (SRS). The foreign research reactor returns fall subject to the 123 agreements for peaceful cooperation. These 123 agreements are named after section 123 of the Atomic Energy Act of 1954 and govern the conditions of nuclear cooperation with foreign partners. The SRS management of these foreign obligations while planning material disposition paths can be a challenge.

Magoulas, V.

2013-06-03T23:59:59.000Z

87

FUEL HANDLING FACILITY CRITICALITY SAFETY CALCULATIONS  

SciTech Connect

The purpose of this design calculation is to perform a criticality evaluation of the Fuel Handling Facility (FHF) and the operations and processes performed therein. The current intent of the FHF is to receive transportation casks whose contents will be unloaded and transferred to waste packages (WP) or MGR Specific Casks (MSC) in the fuel transfer bays. Further, the WPs will also be prepared in the FHF for transfer to the sub-surface facility (for disposal). The MSCs will be transferred to the Aging Facility for storage. The criticality evaluation of the FHF features the following: (I) Consider the types of waste to be received in the FHF as specified below: (1) Uncanistered commercial spent nuclear fuel (CSNF); (2) Canistered CSNF (with the exception of horizontal dual-purpose canister (DPC) and/or multi-purpose canisters (MPCs)); (3) Navy canistered SNF (long and short); (4) Department of Energy (DOE) canistered high-level waste (HLW); and (5) DOE canistered SNF (with the exception of MCOs). (II) Evaluate the criticality analyses previously performed for the existing Nuclear Regulatory Commission (NRC)-certified transportation casks (under 10 CFR 71) to be received in the FHF to ensure that these analyses address all FHF conditions including normal operations, and Category 1 and 2 event sequences. (III) Evaluate FHF criticality conditions resulting from various Category 1 and 2 event sequences. Note that there are currently no Category 1 and 2 event sequences identified for FHF. Consequently, potential hazards from a criticality point of view will be considered as identified in the ''Internal Hazards Analysis for License Application'' document (BSC 2004c, Section 6.6.4). (IV) Assess effects of potential moderator intrusion into the fuel transfer bay for defense in depth. The SNF/HLW waste transfer activity (i.e., assembly and canister transfer) that is being carried out in the FHF has been classified as safety category in the ''Q-list'' (BSC 2003, p. A-6). Therefore, this design calculation is subject to the requirements of the ''Quality Assurance Requirements and Description'' (DOE 2004), even though the FHF itself has not yet been classified in the Q-list. Performance of the work scope as described and development of the associated technical product conform to the procedure AP-3.124, ''Design Calculations and Analyses''.

C.E. Sanders

2005-06-30T23:59:59.000Z

88

Criticality Safety Evaluation of Hanford Tank Farms Facility  

SciTech Connect

Data and calculations from previous criticality safety evaluations and analyses were used to evaluate criticality safety for the entire Tank Farms facility to support the continued waste storage mission. This criticality safety evaluation concludes that a criticality accident at the Tank Farms facility is an incredible event due to the existing form (chemistry) and distribution (neutron absorbers) of tank waste. Limits and controls for receipt of waste from other facilities and maintenance of tank waste condition are set forth to maintain the margin subcriticality in tank waste.

WEISS, E.V.

2000-12-15T23:59:59.000Z

89

Facility Representative Program: Nuclear Safety Basis Fundamentals...  

NLE Websites -- All DOE Office Websites (Extended Search)

Qualification Information Qualification Standards DOE Order Self-Study Modules DOE Fundamentals Handbooks Nuclear Safety Basis Self-Study Guide Energy Online Courses Available...

90

Criticality safety considerations for low-level-waste facilities  

SciTech Connect

The nuclear criticality safety for handling and burial of certain special nuclear materials (SNM) at low-level-waste (LLW) facilities is licensed by the US Nuclear Regulatory Commission (NRC). Recently, Oak Ridge National Laboratory (ORNL) staff assisted the NRC Office of Nuclear Material Safety and Safeguards, Low-Level-Waste and Decommissioning Projects Branch, in developing technical specifications for the nuclear criticality safety of {sup 235}U and {sup 235}Pu in LLW facilities. This assistance resulted in a set of nuclear criticality safety criteria that can be uniformly applied to the review of LLW package burial facility license applications. These criteria were developed through the coupling of the historic surface-density criterion with current computational technique to establish safety criteria considering SNM material form and reflector influences. This paper presents a summary of the approach used to establish and to apply the criteria to the licensing review process.

Hopper, C.M.

1995-04-01T23:59:59.000Z

91

Review and Approval of Nuclear Facility Safety Basis Documents (Documented Safety Analyses and Technical Safety Requirements)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

February 1996 February 1996 CHANGE NOTICE NO. 2 Date November 2005 DOE STANDARD REVIEW AND APPROVAL OF NUCLEAR FACILITY SAFETY BASIS DOCUMENTS (DOCUMENTED SAFETY ANALYSES AND TECHNICAL SAFETY REQUIREMENTS) U.S. Department of Energy AREA SAFT Washington, DC 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, Fax: (301) 903-9823. Available to the public from the U.S. Department of Commerce, Technology Adminis tration, National Technical Information Service, Springfield, VA 22161; (703) 605-6000.

92

Environmental Restoration Disposal Facility (Project W-296) Safety Assessment  

SciTech Connect

This Safety Assessment is based on information derived from the Conceptual Design Report for the Environmental Restoration Disposal Facility (DOE/RL 1994) and ancillary documentation developed during the conceptual design phase of Project W-296. The Safety Assessment has been prepared to support the Solid Waste Burial Ground Interim Safety Basis document. The purpose of the Safety Assessment is to provide an evaluation of the design to determine if the process, as proposed, will comply with US Department of Energy (DOE) Limits for radioactive and hazardous material exposures and be acceptable from an overall health and safety standpoint. The evaluation considered affects on the worker, onsite personnel, the public, and the environment.

Armstrong, D.L.

1994-08-01T23:59:59.000Z

93

Technical Safety Requirements (TSR) for Waste Receiving & Processing (WRAP) facility  

SciTech Connect

These Technical Safety Requirements (TSRs) define the Administrative Controls required to ensure safe operation of the Waste Receiving and Processing Facility (WRAP). As will be shown in the report, Safety Limits, Limiting Control Settings, Limiting Conditions for Operation, and Surveillance Requirements are not required for safe operation of WRAP.

TOMASZEWSKI, T.A.

2001-07-10T23:59:59.000Z

94

Safety of magnetic fusion facilities: Volume 2, Guidance  

SciTech Connect

This document provides guidance for the implementation of the requirements identified in Vol. 1 of this Standard. This guidance is intended for the managers, designers, operators, and other personnel with safety responsibilities for facilities designated as magnetic fusion facilities. While Vol. 1 is generally applicable in that requirements there apply to a wide range of fusion facilities, this volume is concerned mainly with large facilities such as the International Thermonuclear Experimental Reactor (ITER). Using a risk-based prioritization, the concepts presented here may also be applied to other magnetic fusion facilities. This volume is oriented toward regulation in the Department of Energy (DOE) environment.

NONE

1995-07-01T23:59:59.000Z

95

Transmutation facility for weapons-grade plutonium disposition based on a tokamak fusion neutron source  

Science Conference Proceedings (OSTI)

It is suggested that weapons-grade plutonium could be processed through a transmutation facility to build up sufficient actinide and fission product inventories to serve as a deterrent to diversion or theft during subsequent storage, pending eventual use as fuel in commercial nuclear reactors. A transmutation facility consisting of a tokamak fusion neutron source surrounded by fuel assemblies containing the weapons-grade plutonium in the form of PuO{sub 2} pebbles in a lithium slurry is investigated. A design concept/operation scenario is developed for a facility that would be able to transmute the world`s estimated surplus inventory of weapons-grade plutonium to 11% {sup 240}Pu concentration in nearly 25 yr. The fusion neutron source would be based on plasma physics and plasma support technology being qualified in ongoing research and development (R&D) programs, and the plutonium fuel would be based on existing technology. A new R&D program would be required to qualify a refractory metal alloy structural material that would be needed to handle the high heat fluxes; otherwise, extensions of existing technologies and acceleration of existing R&D programs would seem to be adequate to qualify all required technologies. Such a facility might feasibly be deployed in 20 to 30 yr, or sooner with a crash program. 49 refs., 5 figs., 13 tabs.

Stacey, W.M.; Pilger, B.L.; Mowrey, J.A. [Georgia Inst. of Technology, Atlanta, GA (United States)] [and others

1995-05-01T23:59:59.000Z

96

CFN Operations and Safety Awareness (COSA) Checklist Proximal Probes Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Proximal Probes Facility Proximal Probes Facility Building 735 This COSA form must be completed for all experimenters working in the CFN and must be submitted to the CFN User Office for badge access. CFN Safety Awareness Policy: Each user must be instructed in the safe procedures in CFN related activities. CFN Facility Laboratory personnel shall keep readily available all relevant instructions and safety literature. Employee/Guest Name Life/Guest Number Department/Division ES&H Coordinator/Ext. Facility Manager COSA Trainer Guest User Staff USER ADMINISTRATION Checked in at User Administration and has valid BNL ID badge Safety Approval Form (SAF) approved. Training requirements completed (Indicate additional training specified in SAF or ESR in lines provided below): Select ESRs

97

CFN Operations and Safety Awareness (COSA) Checklist Electronic Nanomaterials Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Electronic Nanomaterials Facility Electronic Nanomaterials Facility Building 735 This COSA form must be completed for all experimenters working in the CFN and must be submitted to the CFN User Office for badge access. CFN Safety Awareness Policy: Each user must be instructed in the safe procedures in CFN related activities. CFN Facility Laboratory personnel shall keep readily available all relevant instructions and safety literature. Employee/Guest Name Life/Guest Number Department/Division ES&H Coordinator/Ext. Facility Manager COSA Trainer Guest User Staff USER ADMINISTRATION Checked in at User Administration and has valid BNL ID badge Safety Approval Form (SAF) approved. Training requirements completed (Indicate additional training specified in SAF or ESR in lines provided below):

98

CFN Operations and Safety Awareness (COSA) Checklist Electron Microscopy Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Electron Microscopy Facility Electron Microscopy Facility Building 735 This COSA form must be completed for all experimenters working in the CFN and must be submitted to the CFN User Office for badge access. CFN Safety Awareness Policy: Each user must be instructed in the safe procedures in CFN related activities. CFN Facility Laboratory personnel shall keep readily available all relevant instructions and safety literature. Employee/Guest Name Life/Guest Number Department/Division ES&H Coordinator/Ext. Facility Manager COSA Trainer Guest User Staff USER ADMINISTRATION Checked in at User Administration and has valid BNL ID badge Safety Approval Form (SAF) approved. Training requirements completed (Indicate additional training specified in SAF or ESR in lines provided below):

99

Technical safety requirements for the Auxiliary Hot Cell Facility (AHCF).  

Science Conference Proceedings (OSTI)

These Technical Safety Requirements (TSRs) identify the operational conditions, boundaries, and administrative controls for the safe operation of the Auxiliary Hot Cell Facility (AHCF) at Sandia National Laboratories, in compliance with 10 CFR 830, 'Nuclear Safety Management.' The bases for the TSRs are established in the AHCF Documented Safety Analysis (DSA), which was issued in compliance with 10 CFR 830, Subpart B, 'Safety Basis Requirements.' The AHCF Limiting Conditions of Operation (LCOs) apply only to the ventilation system, the high efficiency particulate air (HEPA) filters, and the inventory. Surveillance Requirements (SRs) apply to the ventilation system, HEPA filters, and associated monitoring equipment; to certain passive design features; and to the inventory. No Safety Limits are necessary, because the AHCF is a Hazard Category 3 nuclear facility.

Seylar, Roland F.

2004-02-01T23:59:59.000Z

100

Amended Record of Decision: Idaho High-Level Waste and Facilities Disposition Final Environmental Impact Statement (DOE/EIS-0287) (11/28/06)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

811 Federal Register 811 Federal Register / Vol. 71, No. 228 / Tuesday, November 28, 2006 / Notices Information Relay Service (FIRS) at 1-800-877-8339. [FR Doc. E6-20124 Filed 11-27-06; 8:45 am] BILLING CODE 4000-01-P DEPARTMENT OF ENERGY Amended Record of Decision: Idaho High-Level Waste and Facilities Disposition Final Environmental Impact Statement AGENCY: Department of Energy. ACTION: Amended Record of Decision. SUMMARY: The U.S. Department of Energy (DOE) is amending its Record of Decision (ROD) published December 19, 2005 (70 Federal Register [FR] 75165), pursuant to the Idaho High-Level Waste and Facilities Disposition Final Environmental Impact Statement (Final EIS) (DOE/EIS-0287, September 2002). The Final EIS analyzed two sets of alternatives for accomplishing DOE's

Note: This page contains sample records for the topic "facility disposition safety" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Idaho Waste Treatment Facility Improves Worker Safety and Efficiency, Saves  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Waste Treatment Facility Improves Worker Safety and Waste Treatment Facility Improves Worker Safety and Efficiency, Saves Taxpayer Dollars Idaho Waste Treatment Facility Improves Worker Safety and Efficiency, Saves Taxpayer Dollars August 27, 2013 - 12:00pm Addthis The box retrieval forklift carriage is used to lift a degraded box as retrieval personnel monitor progress. The box retrieval forklift carriage is used to lift a degraded box as retrieval personnel monitor progress. The new soft-sided overpack is placed for shipment for treatment and repackaging. The new soft-sided overpack is placed for shipment for treatment and repackaging. The box retrieval forklift carriage is used to lift a degraded box as retrieval personnel monitor progress. The new soft-sided overpack is placed for shipment for treatment and repackaging.

102

Idaho High-Level Waste & Facilities Disposition, Final Environmental Impact Statement  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Appendix A Appendix A Site Evaluation Process A-iii DOE/EIS-0287 Idaho HLW & FD EIS TABLE OF CONTENTS Section Page Appendix A Site Evaluation Process A-1 A.1 Introduction A-1 A.2 Methodology A-1 A.3 High-Level Waste Treatment and Interim Storage Site Selection A-3 A.3.1 Identification of "Must" Criteria A-3 A.3.2 Identification of "Want" Criteria A-3 A.3.3 Identification of Candidate Sites A-3 A.3.4 Evaluation Process A-4 A.3.5 Results of Evaluation Process A-6 A.4 Low-Activity Waste Disposal Site Selection A-6 A.4.1 Identification of "Must" Criteria A-7 A.4.2 Identification of "Want" Criteria A-8 A.4.3 Identification of Candidate Sites A-8 A.4.4 Evaluation Process A-8 A.4.5 Results of Evaluation Process A-9 A.4.6 Final Selection of a Low-Activity Waste Disposal Facility

103

Criticality safety training at the Hot Fuel Examination Facility  

SciTech Connect

HFEF comprises four hot cells and out-of-cell support facilities for the US breeder program. The HFEF criticality safety program includes training in the basic theory of criticality and in specific criticality hazard control rules that apply to HFEF. A professional staff-member oversees the implementation of the criticality prevention program. (DLC)

Garcia, A.S.; Courtney, J.C.; Thelen, V.N.

1983-01-01T23:59:59.000Z

104

2012 Facility Representative/Safety System Oversight/Fire Safety Workshop - Registrants  

NLE Websites -- All DOE Office Websites (Extended Search)

Facility Representative / Safety System Oversight Workshop Facility Representative / Safety System Oversight Workshop DOE Fire Safety Workshop Federal Technical Capability Panel (FTCP) Meeting May 14 - 18, 2012, at the Alexis park Resort Hotel, Las Vegas, NV Registrants As of 5/15/2012 Total Number: 218 First Name Last Name Government /Contractor Agency Secretarial Office Site Position Training Course FTCP FS 5/15 FS 5/16 FR/SSO Plenary FR Track SSO Track Fire Safety Training Tour Ron Alderson Government Employee DOE NNSA Nevada SSO SAF-271 No No No Yes No Yes No No Josh Allen Government Employee DOE EM Richland FR No No No No Yes Yes No No No Mark Alsdorf Government Employee DOE HSS Headquarters NTC Safety Training Manager SAF-271 Yes No No Yes No No No No Xavier Aponte Government Employee

105

Technical Safety Requirements for the Waste Storage Facilities  

SciTech Connect

This document contains Technical Safety Requirements (TSR) for the Radioactive and Hazardous Waste Management (RHWM) WASTE STORAGE FACILITIES, which include Area 612 (A612) and the Decontamination and Waste Treatment Facility (DWTF) Storage Area at Lawrence Livermore National Laboratory (LLNL). The TSRs constitute requirements regarding the safe operation of the WASTE STORAGE FACILITIES. These TSRs are derived from the Documented Safety Analysis for the Waste Storage Facilities (DSA) (LLNL 2006). The analysis presented therein determined that the WASTE STORAGE FACILITIES are low-chemical hazard, Hazard Category 2 non-reactor nuclear facilities. The TSRs consist primarily of inventory limits and controls to preserve the underlying assumptions in the hazard and accident analyses. Further, appropriate commitments to safety programs are presented in the administrative controls sections of the TSRs. The WASTE STORAGE FACILITIES are used by RHWM to handle and store hazardous waste, TRANSURANIC (TRU) WASTE, LOW-LEVEL WASTE (LLW), mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL as well as small amounts from other U.S. Department of Energy (DOE) facilities, as described in the DSA. In addition, several minor treatments (e.g., drum crushing, size reduction, and decontamination) are carried out in these facilities. The WASTE STORAGE FACILITIES are located in two portions of the LLNL main site. A612 is located in the southeast quadrant of LLNL. The A612 fenceline is approximately 220 m west of Greenville Road. The DWTF Storage Area, which includes Building 693 (B693), Building 696 Radioactive Waste Storage Area (B696R), and associated yard areas and storage areas within the yard, is located in the northeast quadrant of LLNL in the DWTF complex. The DWTF Storage Area fenceline is approximately 90 m west of Greenville Road. A612 and the DWTF Storage Area are subdivided into various facilities and storage areas, consisting of buildings, tents, other structures, and open areas as described in Chapter 2 of the DSA. Section 2.4 of the DSA provides an overview of the buildings, structures, and areas in the WASTE STORAGE FACILITIES, including construction details such as basic floor plans, equipment layout, construction materials, controlling dimensions, and dimensions significant to the hazard and accident analysis. Chapter 5 of the DSA documents the derivation of the TSRs and develops the operational limits that protect the safety envelope defined for the WASTE STORAGE FACILITIES. This TSR document is applicable to the handling, storage, and treatment of hazardous waste, TRU WASTE, LLW, mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste received or generated in the WASTE STORAGE FACILITIES. Section 5, Administrative Controls, contains those Administrative Controls necessary to ensure safe operation of the WASTE STORAGE FACILITIES. Programmatic Administrative Controls are in Section 5.6. This Introduction to the WASTE STORAGE FACILITIES TSRs is not part of the TSR limits or conditions and contains no requirements related to WASTE STORAGE FACILITIES operations or to the safety analyses of the DSA.

Larson, H L

2007-09-07T23:59:59.000Z

106

Documented Safety Analysis for the Waste Storage Facilities March 2010  

SciTech Connect

This Documented Safety Analysis (DSA) for the Waste Storage Facilities was developed in accordance with 10 CFR 830, Subpart B, 'Safety Basis Requirements,' and utilizes the methodology outlined in DOE-STD-3009-94, Change Notice 3. The Waste Storage Facilities consist of Area 625 (A625) and the Decontamination and Waste Treatment Facility (DWTF) Storage Area portion of the DWTF complex. These two areas are combined into a single DSA, as their functions as storage for radioactive and hazardous waste are essentially identical. The B695 Segment of DWTF is addressed under a separate DSA. This DSA provides a description of the Waste Storage Facilities and the operations conducted therein; identification of hazards; analyses of the hazards, including inventories, bounding releases, consequences, and conclusions; and programmatic elements that describe the current capacity for safe operations. The mission of the Waste Storage Facilities is to safely handle, store, and treat hazardous waste, transuranic (TRU) waste, low-level waste (LLW), mixed waste, combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL (as well as small amounts from other DOE facilities).

Laycak, D T

2010-03-05T23:59:59.000Z

107

Documented Safety Analysis for the Waste Storage Facilities  

Science Conference Proceedings (OSTI)

This documented safety analysis (DSA) for the Waste Storage Facilities was developed in accordance with 10 CFR 830, Subpart B, 'Safety Basis Requirements', and utilizes the methodology outlined in DOE-STD-3009-94, Change Notice 3. The Waste Storage Facilities consist of Area 625 (A625) and the Decontamination and Waste Treatment Facility (DWTF) Storage Area portion of the DWTF complex. These two areas are combined into a single DSA, as their functions as storage for radioactive and hazardous waste are essentially identical. The B695 Segment of DWTF is addressed under a separate DSA. This DSA provides a description of the Waste Storage Facilities and the operations conducted therein; identification of hazards; analyses of the hazards, including inventories, bounding releases, consequences, and conclusions; and programmatic elements that describe the current capacity for safe operations. The mission of the Waste Storage Facilities is to safely handle, store, and treat hazardous waste, transuranic (TRU) waste, low-level waste (LLW), mixed waste, combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL (as well as small amounts from other DOE facilities).

Laycak, D

2008-06-16T23:59:59.000Z

108

DOE | Office of Health, Safety and Security | 2012 Facility Representative,  

NLE Websites -- All DOE Office Websites (Extended Search)

Facility Representative Facility Representative Office of Nuclear Safety Home Facility Representative Home Annual Facility Rep Workshop › 2012 › 2011 › 2010 › 2009 › 2008 › 2007 › 2006 › 2005 › 2004 › 2003 › 2002 › 2001 › 2000 DOE Safety Links › ORPS Info › Operating Experience › DOE Lessons Learned › Accident Investigation Assessment Tools › FR CRADs › Surveillance Guides › Manager's Guide for Safety and Health Subject Matter Links General Program Information › Program Mission Statement › Program Directives and Guidance › FR of the Year Award Program › FR of the Year Award › FR Program Assessment Guide (Appendix B, DOE STD 1063-2011) FR Quarterly Performance Indicators Training & Qualification Information › Qualification Standards › Energy Online Courses

109

Facility Disposition Projects  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Score Maturity Value Target Score Maturity Value Target Score A1 Cost Estimate H 7.5 1 7.5 5 37.5 5 37.5 A2 Cost Risk/Contingency Analysis P 3.0 1 3.0 5 15.0 5 15.0 A3 Funding Requirements/Profile H 7.5 1 7.5 4 30.0 5 37.5 A4 Independent Cost Estimate/Schedule Review P 3.0 N/A 0.0 5 15.0 5 15.0 A5 Life Cycle Cost P 3.0 1 3.0 4 12.0 5 15.0 A6 Forecast of Cost at Completion P 3.0 N/A 0.0 3 9.0 5 15.0 A7 Cost Estimate for Next Phase Work Scope P 3.0 5 15.0 5 15.0 5 15.0 Subtotal Cost 36.0 133.5 150.0 B1 Project Schedule H 7.5 1 7.5 4 30.0 5 37.5 B2 Major Milestones P 3.0 1 3.0 5 15.0 5 15.0 B3 Resource Loading P 3.0 1 3.0 4 12.0 5 15.0 B4 Critical Path Management H 7.5 1 7.5 4 30.0 5 37.5 B5 Schedule Risk/Contingency Analysis P 3.0 1 3.0 5 15.0 5 15.0 B6 Forecast of Schedule Completion P 3.0 N/A 0.0 3 9.0 5 15.0 B7 Schedule for Next Phase Work Scope P 3.0 5 15.0 5 15.0 5 15.0 Subtotal Schedule

110

Technical Safety Requirements for the Waste Storage Facilities  

SciTech Connect

This document contains Technical Safety Requirements (TSR) for the Radioactive and Hazardous Waste Management (RHWM) WASTE STORAGE FACILITIES, which include Area 625 (A625) and the Decontamination and Waste Treatment Facility (DWTF) Storage Area at Lawrence Livermore National Laboratory (LLNL). The TSRs constitute requirements regarding the safe operation of the WASTE STORAGE FACILITIES. These TSRs are derived from the Documented Safety Analysis for the Waste Storage Facilities (DSA) (LLNL 2009). The analysis presented therein determined that the WASTE STORAGE FACILITIES are low-chemical hazard, Hazard Category 2 non-reactor nuclear facilities. The TSRs consist primarily of inventory limits and controls to preserve the underlying assumptions in the hazard and accident analyses. Further, appropriate commitments to safety programs are presented in the administrative controls sections of the TSRs. The WASTE STORAGE FACILITIES are used by RHWM to handle and store hazardous waste, TRANSURANIC (TRU) WASTE, LOW-LEVEL WASTE (LLW), mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL as well as small amounts from other U.S. Department of Energy (DOE) facilities, as described in the DSA. In addition, several minor treatments (e.g., size reduction and decontamination) are carried out in these facilities. The WASTE STORAGE FACILITIES are located in two portions of the LLNL main site. A625 is located in the southeast quadrant of LLNL. The A625 fenceline is approximately 225 m west of Greenville Road. The DWTF Storage Area, which includes Building 693 (B693), Building 696 Radioactive Waste Storage Area (B696R), and associated yard areas and storage areas within the yard, is located in the northeast quadrant of LLNL in the DWTF complex. The DWTF Storage Area fenceline is approximately 90 m west of Greenville Road. A625 and the DWTF Storage Area are subdivided into various facilities and storage areas, consisting of buildings, tents, other structures, and open areas as described in Chapter 2 of the DSA. Section 2.4 of the DSA provides an overview of the buildings, structures, and areas in the WASTE STORAGE FACILITIES, including construction details such as basic floor plans, equipment layout, construction materials, controlling dimensions, and dimensions significant to the hazard and accident analysis. Chapter 5 of the DSA documents the derivation of the TSRs and develops the operational limits that protect the safety envelope defined for the WASTE STORAGE FACILITIES. This TSR document is applicable to the handling, storage, and treatment of hazardous waste, TRU WASTE, LLW, mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste received or generated in the WASTE STORAGE FACILITIES. Section 5, Administrative Controls, contains those Administrative Controls necessary to ensure safe operation of the WASTE STORAGE FACILITIES. Programmatic Administrative Controls are in Section 5.4.

Laycak, D T

2010-03-05T23:59:59.000Z

111

Technical Safety Requirements for the Waste Storage Facilities  

SciTech Connect

This document contains Technical Safety Requirements (TSR) for the Radioactive and Hazardous Waste Management (RHWM) WASTE STORAGE FACILITIES, which include Area 625 (A625) and the Decontamination and Waste Treatment Facility (DWTF) Storage Area at Lawrence Livermore National Laboratory (LLNL). The TSRs constitute requirements regarding the safe operation of the WASTE STORAGE FACILITIES. These TSRs are derived from the 'Documented Safety Analysis for the Waste Storage Facilities' (DSA) (LLNL 2008). The analysis presented therein determined that the WASTE STORAGE FACILITIES are low-chemical hazard, Hazard Category 2 non-reactor nuclear facilities. The TSRs consist primarily of inventory limits and controls to preserve the underlying assumptions in the hazard and accident analyses. Further, appropriate commitments to safety programs are presented in the administrative controls sections of the TSRs. The WASTE STORAGE FACILITIES are used by RHWM to handle and store hazardous waste, TRANSURANIC (TRU) WASTE, LOW-LEVEL WASTE (LLW), mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL as well as small amounts from other U.S. Department of Energy (DOE) facilities, as described in the DSA. In addition, several minor treatments (e.g., size reduction and decontamination) are carried out in these facilities. The WASTE STORAGE FACILITIES are located in two portions of the LLNL main site. A625 is located in the southeast quadrant of LLNL. The A625 fenceline is approximately 225 m west of Greenville Road. The DWTF Storage Area, which includes Building 693 (B693), Building 696 Radioactive Waste Storage Area (B696R), and associated yard areas and storage areas within the yard, is located in the northeast quadrant of LLNL in the DWTF complex. The DWTF Storage Area fenceline is approximately 90 m west of Greenville Road. A625 and the DWTF Storage Area are subdivided into various facilities and storage areas, consisting of buildings, tents, other structures, and open areas as described in Chapter 2 of the DSA. Section 2.4 of the DSA provides an overview of the buildings, structures, and areas in the WASTE STORAGE FACILITIES, including construction details such as basic floor plans, equipment layout, construction materials, controlling dimensions, and dimensions significant to the hazard and accident analysis. Chapter 5 of the DSA documents the derivation of the TSRs and develops the operational limits that protect the safety envelope defined for the WASTE STORAGE FACILITIES. This TSR document is applicable to the handling, storage, and treatment of hazardous waste, TRU WASTE, LLW, mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste received or generated in the WASTE STORAGE FACILITIES. Section 5, Administrative Controls, contains those Administrative Controls necessary to ensure safe operation of the WASTE STORAGE FACILITIES. Programmatic Administrative Controls are in Section 5.6.

Laycak, D T

2008-06-16T23:59:59.000Z

112

Preparation of Safety Basis Documents for Transuranic (TRU) Waste Facilities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5506-2007 5506-2007 April 2007 DOE STANDARD Preparation of Safety Basis Documents for Transuranic (TRU) Waste Facilities U.S. Department of Energy Washington, D.C. 20585 AREA-SAFT DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. DOE-STD-5506-2007 ii Available on the Department of Energy Technical Standards Program Web Site at Http://tis.eh.doe.gov/techstds/ DOE-STD-5506-2007 iii Foreword This Standard provides analytical assumptions and methods, as well as hazard controls to be used when developing Safety Basis (SB) documents for transuranic (TRU) waste facilities in the U.S. Department of Energy (DOE) Complex. It also provides supplemental technical

113

DOE/EIS-0287-SA-01: Supplement Analysis for the Idaho High-Level Waste and Facilities Disposition Final Environmental Impact Statement (June 2005)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7 7 -SA-Ol SUPPLEMENT ANALYSIS For The Idaho High-Level Waste and Facilities Disposition Final Environmental Impact Statement June 2005 United States Department of Energy Idaho Operations Office 1.0 2.0 3.0 4.0 5.0 6.0 DOEÆIS-0287 -SA-O 1 TABLE OF CONTENTS Introduction......................................................................................................................... 4 Background......................................................................................................................... 4 Areas of Review.................................................................................................................. 6 3.1 3.2 3.3 3.4 Proposed Waste Treatment Technology.......... .......................................................

114

2012 Facility Representative/Safety System Oversight/Fire Safety Workshop Agenda  

NLE Websites -- All DOE Office Websites (Extended Search)

Facility Representative  Safety System Oversight  Fire Safety Facility Representative  Safety System Oversight  Fire Safety Overall Workshop Agenda May 14-18, 2012  Alexis Park Hotel  Las Vegas, Nevada Monday, May 14, 2012 8:00 a.m. - 5:00 p.m. SAF-271, SSO Assessments (Day 1) Zeus B Quality Assurance Overview for FR/SSO Personnel Zeus A 5:00 p.m. - 7:00 p.m. Workshop Registration Zeus Foyer Tuesday, May 15, 2012 8:00 a.m. - 5:00 p.m. Fire Safety Workshop Track Begins (see track agenda) Parthenon 4 SAF-271, SSO Assessments (Day 2) Zeus B . Safety Culture Workshop Zeus A Federal Technical Capability Panel Parthenon 2 5:00 p.m. - 7:00 p.m. Workshop Registration Zeus Foyer Wednesday, May 16, 2012 6:30 a.m. - 7:45 a.m. Workshop Registration Zeus Foyer 8:00 a.m. - 11:30 a.m. FR/SSO Tracks Begin; Plenary session with Fire Safety Track Parthenon 2 & 4

115

Assessment of Nuclear Safety Culture at the Salt Waste Processing Facility Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oversight Assessment of Oversight Assessment of Nuclear Safety Culture at the Salt Waste Processing Facility Project May 2011 January 2013 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy Independent Oversight Assessment of Nuclear Safety Culture at the Salt Waste Processing Facility Project

116

Assessment of Nuclear Safety Culture at the Salt Waste Processing Facility Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Oversight Assessment of Oversight Assessment of Nuclear Safety Culture at the Salt Waste Processing Facility Project May 2011 January 2013 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy Independent Oversight Assessment of Nuclear Safety Culture at the Salt Waste Processing Facility Project

117

TRANSPORTATION CASK RECEIPT/RETURN FACILITY CRITICALITY SAFETY EVALUATIONS  

SciTech Connect

The purpose of this design calculation is to demonstrate that the handling operations of transportation casks performed in the Transportation Cask Receipt and Return Facility (TCRRF) and Buffer Area meet the nuclear criticality safety design criteria specified in the ''Project Design Criteria (PDC) Document'' (BSC [Bechtel SAIC Company] 2004 [DIRS 171599], Section 4.9.2.2), and the functional nuclear criticality safety requirement described in the ''Transportation Cask Receipt/Return Facility Description Document'' (BSC 2004 [DIRS 170217], Section 3.2.3). Specific scope of work contained in this activity consists of the following items: (1) Evaluate criticality effects for both dry and fully flooded conditions pertaining to TCRRF and Buffer Area operations for defense in depth. (2) Evaluate Category 1 and 2 event sequences for the TCRRF as identified in the ''Categorization of Event Sequences for License Application'' (BSC 2004 [DIRS 167268], Section 7). This evaluation includes credible fuel reconfiguration conditions. In addition to the scope of work listed above, an evaluation was also performed of modeling assumptions for commercial spent nuclear fuel (CSNF) regarding inclusion of plenum and end regions of the active fuel. This calculation is limited to CSNF and US Department of Energy (DOE) SNF. it should be mentioned that the latter waste form is evaluated more in depth in the ''Canister Handling Facility Criticality Safety Calculations (BSC 2004 [DIRS 167614]). Further, the design and safety analyses of the naval SNF canisters are the responsibility of the US Department of the Navy (Naval Nuclear Propulsion Program) and will not be included in this document. In addition, this calculation is valid for the current design of the TCRRF and Buffer Area and may not reflect the ongoing design evolution of the facility. However, it is anticipated that design changes to the facility layout will have little or no impact on the criticality results and/or conclusions presented in this document. This calculation is subject to the ''Quality Assurance Requirements and Description'' (DOE 2004 [DIRS 171539]) because the TCRRF is included in the Q-List (BSC 2004 [DIRS 168361], p. A-3) as an item important to safety. This calculation is prepared in accordance with AP-3.12Q, ''Design Calculations and Analyses'' [DIRS 168413].

C.E. Sanders

2005-04-26T23:59:59.000Z

118

Department of Energy National Nuclear Security Administration Finding of No Significant Impact for the Proposed Disposition of the Omega West Facility at Los Alamos National Laboratory, Los Alamos, New Mexico  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Finding of No Significant Impact for the Proposed Disposition of the Omega West Facility at Los Alamos National Laboratory, Los Alamos, New Mexico U. S. Department of Energy National Nuclear Security Administration Office of Los Alamos Site Operations 528 35th Street Los Alamos, NM 87544 DEPARTMENT OF ENERGY, NATIONAL NUCLEAR SECUIRTY ADMINISTRATION FINDING OF NO SIGNIFICANT IMPACT Proposed Disposition of the Omega West Facility at Los Alamos National Laboratory FINAL ENVIRONMENTAL ASSESSMENT: The Environmental Assessment (EA) for the Proposed Disposition of the Omega West Facility at Los Alamos National Laboratory [DOE/EA- 74 IO) (attached) provides sufficient evidence and analysis to determine that a Finding Of No Significant Impact is appropriate for the Proposed Action (Complete

119

Order Module--DOE O 420.1B, FACILITY SAFETY | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE O 420.1B, FACILITY SAFETY DOE O 420.1B, FACILITY SAFETY Order Module--DOE O 420.1B, FACILITY SAFETY To ensure that new DOE hazard category 1, 2, and 3 nuclear facilities are designed and constructed in a manner that ensures adequate protection to the public, workers, and the environment from nuclear hazards. To ensure that major modifications to hazard category 1, 2, and 3 nuclear facilities comply with the design and construction requirements for new hazard category 1, 2, and 3 nuclear facilities. To ensure that new DOE nuclear reactors comply with the requirements of DOE O 420.1B and the design requirements of DOE O 5480.30, Nuclear Reactor Safety Design Criteria. DOE Order Self Study Modules - DOE O 420.1B Facility Safety More Documents & Publications Order Module--DOE O 420.2B, SAFETY OF ACCELERATOR FACILITIES

120

Review and Approval of Nuclear Facility Safety Basis and Safety Design Basis Documents  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SENSITIVE DOE-STD-1104-2009 May 2009 Superseding DOE-STD-1104-96 DOE STANDARD REVIEW AND APPROVAL OF NUCLEAR FACILITY SAFETY BASIS AND SAFETY DESIGN BASIS DOCUMENTS U.S. Department of Energy AREA SAFT Washington, DC 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. DOE-STD-1104-2009 ii Available on the Department of Energy Technical Standards web page at http://www.hss.energy.gov/nuclearsafety/ns/techstds/ DOE-STD-1104-2009 iii CONTENTS FOREWORD .................................................................................................................................. v INTRODUCTION ..........................................................................................................................

Note: This page contains sample records for the topic "facility disposition safety" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Independent Oversight Review of the Idaho National Laboratory Fuel Conditioning Facility Safety Basis  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

INDEPENDENT OVERSIGHT INDEPENDENT OVERSIGHT REVIEW OF THE IDAHO NATIONAL LABORATORY FUEL CONDITIONING FACILITY SAFETY BASIS April 2010 U.S. Department of Energy Office of Health, Safety and Security Office of Independent Oversight i INDEPENDENT OVERSIGHT REVIEW OF THE IDAHO NATIONAL LABORATORY FUEL CONDITIONING FACILITY SAFETY BASIS Table of Contents Acronyms ............................................................................................................................ ii Executive Summary ........................................................................................................... iii 1.0 Introduction ..................................................................................................................1

122

Nuclear Facility Safety Basis Fundamentals Self-Study Guide - November 2002  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oak Ridge Operations Office Oak Ridge Operations Office Nuclear Facility Safety Basis Fundamentals Self-Study Guide [Fulfills ORO Safety Basis Competency 1, 2 (Part 1), or 7 (Part 1)] November 2002 Nuclear Facility Safety Basis Fundamentals Self-Study Guide TABLE OF CONTENTS Acronyms and Abbreviations ......................................................................................... iii List of Figures ....................................................................................................................iv List of Tables......................................................................................................................iv INTRODUCTION..............................................................................................................1

123

Safety analysis of the 700-horsepower combustion test facility  

SciTech Connect

The objective of the program reported herein was to provide a Safety Analysis of the 700 h.p. Combustion Test Facility located in Building 93 at the Pittsburgh Energy Technology Center. Extensive safety related measures have been incorporated into the design, construction, and operation of the Combustion Test Facility. These include: nitrogen addition to the coal storage bin, slurry hopper, roller mill and pulverizer baghouse, use of low oxygen content combustion gas for coal conveying, an oxygen analyzer for the combustion gas, insulation on hot surfaces, proper classification of electrical equipment, process monitoring instrumentation and a planned remote television monitoring system. Analysis of the system considering these factors has resulted in the determination of overall probabilities of occurrence of hazards as shown in Table I. Implementation of the recommendations in this report will reduce these probabilities as indicated. The identified hazards include coal dust ignition by hot ductwork and equipment, loss of inerting within the coal conveying system leading to a coal dust fire, and ignition of hydrocarbon vapors or spilled oil, or slurry. The possibility of self-heating of coal was investigated. Implementation of the recommendations in this report will reduce the ignition probability to no more than 1 x 10/sup -6/ per event. In addition to fire and explosion hazards, there are potential exposures to materials which have been identified as hazardous to personal health, such as carbon monoxide, coal dust, hydrocarbon vapors, and oxygen deficient atmosphere, but past monitoring experience has not revealed any problem areas. The major environmental hazard is an oil spill. The facility has a comprehensive spill control plan.

Berkey, B.D.

1981-05-01T23:59:59.000Z

124

DOE M 140.1-1B, Interface with the Defense Nuclear Facilities Safety Board  

Directives, Delegations, and Requirements

This Manual presents the process the Department of Energy will use to interface with the Defense Nuclear Facilities Safety Board (DNFSB) and its staff. Cancels ...

2001-03-30T23:59:59.000Z

125

DOE-HDBK-1113-98; Radiological Safety Training for Uranium Facilities...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FACILITIES" Dennis Kubicki, Technical Standards Manager, EH-24 SUBJECT. HANDBOOK, DOE-HDBK-1113-98, "RADIOLOGICAL SAFETY TRAINING FOR TO: In February 2005, a notice of intent...

126

JM for Page Change to DOE O 420.1C, Facility Safety  

Directives, Delegations, and Requirements

DOE-STD-1104 contains the Department's method and criteria for reviewing and approving nuclear facility's documented safety analysis (DSA). This review and ...

2013-06-21T23:59:59.000Z

127

Mission Need Statement: Calcine Disposition Project Major Systems Acquisition Project  

SciTech Connect

This document identifies the need to establish the Calcine Disposition Project to determine and implement the final disposition of calcine including characterization, retrieval, treatment (if necessary), packaging, loading, onsite interim storage pending shipment to a repository or interim storage facility, and disposition of related facilities.

J. T. Beck

2007-04-26T23:59:59.000Z

128

Environment, safety, and health considerations for a new accelerator facility  

SciTech Connect

A study of siting considerations for possible future accelerators at Fermilab is underway. Each candidate presents important challenges in environment, safety, and health (ES&H) that are reviewed generically in this paper. Some of these considerations are similar to those that have been encountered and solved during the construction and operation of other accelerator facilities. Others have not been encountered previously on the same scale. The novel issues will require particular attention coincident with project design efforts to assure their timely cost-effective resolution. It is concluded that with adequate planning, the issues can be addressed in a manner that merits the support of the Laboratory, the US Department of Energy (DOE), and the public.

J. Donald Cossairt [and others

2001-04-23T23:59:59.000Z

129

DOE G 420.2-1, Accelerator Facility Safety Implementation Guide for DOE O 420.2B, Safety of Accelerator Facilities  

Directives, Delegations, and Requirements

This document is an aid to understanding and meeting the requirements of DOE O 420.2B, Safety of Accelerator Facilities, dated 7/23/04. It does not impose ...

2005-07-01T23:59:59.000Z

130

Plutonium Disposition Program | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Plutonium Disposition Program Plutonium Disposition Program Home > About Us > Our Programs > Nonproliferation > Fissile Materials Disposition > Plutonium Disposition Program Plutonium Disposition Program The U.S.-Russia Plutonium Management and Disposition Agreement (PMDA), which entered into force on July 13, 2011, commits each country to dispose of at least 34 metric tons (MT) of weapon-grade plutonium withdrawn from their respective nuclear weapon programs. The U.S. remains firmly committed to its PMDA obligation to dispose of excess weapons plutonium. U.S. Plutonium Disposition The current U.S. plan to dispose of 34 MT of weapon-grade plutonium is to fabricate it into Mixed Oxide (MOX) fuel and irradiate it in existing light water reactors. This approach requires construction of new facilities

131

Disposition of excess fissile materials in deep boreholes  

SciTech Connect

As a result of recent changes throughout the world, a substantial inventory of excess separated plutonium is expected to result from dismantlement of US nuclear weapons. The safe and secure management and eventual disposition of this plutonium, and of a similar inventory in Russia, is a high priority. A variety of options (both interim and permanent) are under consideration to manage this material. The permanent solutions can be categorized into two broad groups: direct disposal and utilization. Plutonium utilization options have in common the generation of high-level radioactive waste which will be disposed of in a mined geologic disposal system to be developed for spent reactor fuel and defense high level waste. Other final disposition forms, such as plutonium metal, plutonium oxide and plutonium immobilized without high-level radiation sources may be better suited to placement in a custom facility. This paper discusses a leading candidate for such a facility; deep (several kilometer) borehole disposition. The deep borehole disposition concept involves placing excess plutonium deep into old stable rock formations with little free water present. The safety argument centers around ancient groundwater indicating lack of migration, and thus no expected communication with the accessible environment until the plutonium has decayed.

Halsey, W.G. [Lawrence Livermore National Lab., CA (United States); Danker, W. [USDOE, Washington, DC (United States); Morley, R. [Los Alamos National Lab., NM (United States)

1995-09-01T23:59:59.000Z

132

Appraisal of the Uranium Processing Facility Safety Basis Preliminary...  

NLE Websites -- All DOE Office Websites (Extended Search)

Safety Design Report Process at the Y-12 National Security Complex May 2011 May 2013 Office of Safety and Emergency Management Evaluations Office of Enforcement and...

133

Review and Approval of Nuclear Facility Safety Basis Documents...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

institutional programs in Integrated Safety Management System documents and site-wide manuals was added. p. 13 Sect. 3 Approval Bases for Technical Safety Requirements New...

134

Development of an auditable safety analysis in support of a radiological facility classification  

SciTech Connect

In recent years, U.S. Department of Energy (DOE) facilities commonly have been classified as reactor, non-reactor nuclear, or nuclear facilities. Safety analysis documentation was prepared for these facilities, with few exceptions, using the requirements in either DOE Order 5481.1B, Safety Analysis and Review System; or DOE Order 5480.23, Nuclear Safety Analysis Reports. Traditionally, this has been accomplished by development of an extensive Safety Analysis Report (SAR), which identifies hazards, assesses risks of facility operation, describes and analyzes adequacy of measures taken to control hazards, and evaluates potential accidents and their associated risks. This process is complicated by analysis of secondary hazards and adequacy of backup (redundant) systems. The traditional SAR process is advantageous for DOE facilities with appreciable hazards or operational risks. SAR preparation for a low-risk facility or process can be cost-prohibitive and quite challenging because conventional safety analysis protocols may not readily be applied to a low-risk facility. The DOE Office of Environmental Restoration and Waste Management recognized this potential disadvantage and issued an EM limited technical standard, No. 5502-94, Hazard Baseline Documentation. This standard can be used for developing documentation for a facility classified as radiological, including preparation of an auditable (defensible) safety analysis. In support of the radiological facility classification process, the Uranium Mill Tailings Remedial Action (UMTRA) Project has developed an auditable safety analysis document based upon the postulation criteria and hazards analysis techniques defined in DOE Order 5480.23.

Kinney, M.D. [Roy F. Weston, Inc., Rockville, MD (United States); Young, B. [Dept. of Energy, Albuquerque, NM (United States)

1995-03-01T23:59:59.000Z

135

Order Module--DOE O 420.2B, SAFETY OF ACCELERATOR FACILITIES | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

420.2B, SAFETY OF ACCELERATOR FACILITIES 420.2B, SAFETY OF ACCELERATOR FACILITIES Order Module--DOE O 420.2B, SAFETY OF ACCELERATOR FACILITIES This module will discuss the objectives and requirements associated with the Order and the contractor requirements document. We have provided an example to help familiarize you with the material. The example will also help prepare you for the practice at the end of this module and for the criterion test. Before continuing, you should obtain a copy of the Order at DOE Directives, Regulations, and Standards Portal Home Page or through the course manager. You may need to refer to these documents to complete the example, practice, and criterion test. DOE Order Self Study Modules - DOE O 420.1B Facility Safety More Documents & Publications Order Module--DOE O 420.1B, FACILITY SAFETY

136

Improving the regulation of safety at DOE nuclear facilities. Final report: Appendices  

Science Conference Proceedings (OSTI)

The report strongly recommends that, with the end of the Cold War, safety and health at DOE facilities should be regulated by outside agencies rather than by any regulatory scheme, DOE must maintain a strong internal safety management system; essentially all aspects of safety at DOE`s nuclear facilities should be externally regulated; and existing agencies rather than a new one should be responsible for external regulation.

NONE

1995-12-01T23:59:59.000Z

137

Style, content and format guide for writing safety analysis documents. Volume 1, Safety analysis reports for DOE nuclear facilities  

Science Conference Proceedings (OSTI)

The purpose of Volume 1 of this 4-volume style guide is to furnish guidelines on writing and publishing Safety Analysis Reports (SARs) for DOE nuclear facilities at Sandia National Laboratories. The scope of Volume 1 encompasses not only the general guidelines for writing and publishing, but also the prescribed topics/appendices contents along with examples from typical SARs for DOE nuclear facilities.

Not Available

1994-06-01T23:59:59.000Z

138

Guidelines for preparing criticality safety evaluations at Department of Energy non-reactor nuclear facilities  

SciTech Connect

This document contains guidelines that should be followed when preparing Criticality Safety Evaluations that will be used to demonstrate the safety of operations performed at DOE non-reactor nuclear facilities. Adherence to these guidelines will provide consistency and uniformity in criticality safety evaluations (CSEs) across the complex and will document compliance with the requirements of DOE Order 5480.24.

1993-11-01T23:59:59.000Z

139

Defense Nuclear Facilities Safety Board Public Meeting on the Status of Integration of Safety Into the Design of the Uranium Processing Facility, October 2012  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

HSS Independent Activity Report - HSS Independent Activity Report - Rev. 0 Report Number: HIAR-Y-12-2012-10-02 Site: Y-12 UPF Subject: Office of Enforcement and Oversight's Office of Safety and Emergency Management Evaluations Activity Report for the Defense Nuclear Facilities Safety Board (DNFSB) Public Meeting on the Status of Integration of Safety into the Design of the Uranium Processing Facility (UPF) Dates of Activity: October 2, 2012 Report Preparer: Timothy Mengers Activity Description/Purpose: The Office of Health, Safety and Security (HSS) observed the public hearing of the DNFSB review of the UPF project status for integrating safety into design. The meeting was broken into three parts: a panel discussion and questioning of National Nuclear Security Administration (NNSA) oversight and execution; a panel discussion and questioning of the B&W Y-12

140

2012 DOE Facility Representatives/Safety System Oversight Workshop...  

NLE Websites -- All DOE Office Websites (Extended Search)

Safety System Oversight Fire Safety Overall Workshop Agenda May 14-18, 2012 Alexis Park Hotel Las Vegas, Nevada Monday, May 14, 2012 8:00 a.m. - 5:00 p.m. SAF-271, SSO...

Note: This page contains sample records for the topic "facility disposition safety" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Use of a computer-assisted administrative control to enhance criticality safety in LLNL for fissile material disposition operations  

SciTech Connect

This paper deals primarily with the use of a two-person rule on the mass limit control. Main emphasis is placed on the appropriate use of a computer program to assist operators in carrying out mass control. An attempt will be exercised to compare the use of a mass control card system under a two-person rule with a computer-assist two-person system. The interface points relevant to criticality safety between computer and human operators will be identified. Features that will make a computer program useful in a multiple workstation application environment will be discussed along with the merits of the using the computer program. How such a computer-assist administrative control may be incorporated in the overall infrastructure for criticality safety will be analyzed. Suggestion of future development of using a computer program to enhance safety margin will also be made to stimulate further discussion on the application of computer technology for real-time criticality safety control.

Huang, Song T.; Lappa, D.A.; Chiao, Tang

1997-04-01T23:59:59.000Z

142

DOE O 420.2C, Safety of Accelerator Facilities  

Directives, Delegations, and Requirements

The order defines accelerators and establishes accelerator specific safety requirements and approval authorities which, when supplemented by other applicable ...

2011-07-21T23:59:59.000Z

143

Program for documenting the criticality safety basis for operations in a research and development facility consistent with new regulatory requirements  

SciTech Connect

A program was developed and implemented at LLNL to provide more detailed, documented Criticality Safety Evaluations of operations in an R&D facility. The new Criticality Safety evaluations were consistent with regulatory requirements of the then new DOE Order 5480.24, Nuclear Criticality Safety. The evaluations provide a criticality safety basis for each operation in the facility in support of the facility Safety Analysis Report. This implementation program provided a transition from one method of conducting and documenting Criticality Safety Evaluations to a new method consistent with new regulatory requirements. The program also allowed continued safe operation of the facility while the new implementation level Criticality Safety Evaluations were developed.

Pearson, J.S.; Evarts, R.B.; Huang, S.T.; Goebel, G.

1997-04-24T23:59:59.000Z

144

Safety analysis of IFR fuel processing in the Argonne National Laboratory Fuel Cycle Facility  

SciTech Connect

The Integral Fast Reactor (IFR) concept developed by Argonne National Laboratory (ANL) includes on-site processing and recycling of discharged core and blanket fuel materials. The process is being demonstrated in the Fuel Cycle Facility (FCF) at ANL`s Idaho site. This paper describes the safety analyses that were performed in support of the FCF program; the resulting safety analysis report was the vehicle used to secure authorization to operate the facility and carry out the program, which is now under way. This work also provided some insights into safety-related issues of a commercial IFR fuel processing facility. These are also discussed.

Charak, I; Pedersen, D.R. [Argonne National Lab., IL (United States); Forrester, R.J.; Phipps, R.D. [Argonne National Lab., Idaho Falls, ID (United States)

1993-09-01T23:59:59.000Z

145

Integrated Safety Analysis: Why It Is Appropriate for Fuel Recycling Facilities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Integrated Safety Analysis: Why It Is Appropriate for Fuel Recycling Facilities Executive Summary This paper addresses why the use of an Integrated Safety Analysis ("ISA") is appropriate for fuel recycling facilities 1 which would be licensed under new regulations currently being considered by NRC. The use of the ISA for fuel facilities under Part 70 is described and compared to the use of a Probabilistic Risk Assessment ("PRA") for reactor facilities. A basis is provided for concluding that future recycling facilities - which will possess characteristics similar to today's fuel cycle facilities and distinct from reactors - can best be assessed using established qualitative or semi-quantitative ISA techniques to achieve and demonstrate safety in an effective and efficient manner.

146

U.S. Department of Energy Oak Ridge Operations Nuclear Facility Safety  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

U.S. Department of Energy Oak Ridge Operations Nuclear Facility U.S. Department of Energy Oak Ridge Operations Nuclear Facility Safety Basis Fundamentals, Self-Study Guide U.S. Department of Energy Oak Ridge Operations Nuclear Facility Safety Basis Fundamentals, Self-Study Guide This is an open-book evaluation. Complete the questions, and submit your answers (hand-written or electronically) to the Training Center. Someone will check and grade your answers. If you achieve a score of at least 80%, you will receive a completion certificate. Nuclear Facility Safety Basis Fundamentals Self-Study Guide Review Questions More Documents & Publications Requirements in DOE O 5480.19, Conduct of Operations Requirements for DOE Facilities Cross-referenced to DOE O 422.1, Conduct of Operations. U.S. Department of Energy, Oak Ridge Operations Office Nuclear Facility

147

340 Waste handling Facility Hazard Categorization and Safety Analysis  

DOE Green Energy (OSTI)

The analysis presented in this document provides the basis for categorizing the facility as less than Hazard Category 3.

T. J. Rodovsky

2010-10-25T23:59:59.000Z

148

September 10, 2010 HSS Briefing to the Defense Nuclear Facilities Safety Board (DNFSB) on Union Activities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Labor Union and Stakeholder Labor Union and Stakeholder Outreach and Collaboration Office of Health, Safety and Security Briefing to the Defense Nuclear Facilities Safety Board Briefing to the Defense Nuclear Facilities Safety Board Leadership Commitment Leadership Commitment " h "It is imperative that we communicate and establish relationships with those elements that train manage and elements that train, manage and represent our workforce to improve the safety culture at DOE sites." safety culture at DOE sites. Glenn S. Podonsky Chief Health, Safety and Security Officer 2 History History History History October 2006: Formation of HSS to provide an integrated DOE HQ-level function for health, safety, environment, and security into one unified office. February 2007: Established HSS Focus Group -

149

Observation challenges in a glovebox environment : behavior based safety at a plutonium facility.  

SciTech Connect

Los Alamos National Laboratory (LANL) is one of the Nation's leading scientific and defense laboratories, owned by the Department of Energy and managed by the University of California. LANL is one of the original weapons complex labs dating back to the days of the Manhattan Project during World War II. Since then, radioactive materials research has continued at LANLs Plutonium Facility, and remains a primary responsibility of the Laboratory. The Nuclear Materials Technology Division (NMT) is a multidisciplinary organization responsible for daily operations of the Plutonium Facility and the Chemistry Research Metallurgy Facility. NMT Division is responsible for the saence, engineering and technology of plutonium and other actinides in support of the Nation's nuclear weapons stockpile, nuclear materials disposition, and nuclear energy programs. A wide amy of activities are performed within NMT Division, such as analytical chemistry, metallurgical operations, actinide processes, waste operations, radioactive materials research and related administrative tasks.

Montalvo, M. L. (Maryrose L.)

2002-01-01T23:59:59.000Z

150

Plutonium Disposition Program | National Nuclear Security Administrati...  

NLE Websites -- All DOE Office Websites (Extended Search)

Plutonium Disposition Program Home > About Us > Our Programs > Nonproliferation > Fissile Materials Disposition > Plutonium Disposition Program Plutonium Disposition Program The...

151

Computer Facilities - Nuclear Engineering Division (Argonne)  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

152

Steam Generator Tube Integrity Facilities - Nuclear Engineering...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

153

ESTIMATING IMPURITIES IN SURPLUS PLUTONIUM FOR DISPOSITION  

Science Conference Proceedings (OSTI)

The United States holds at least 61.5 metric tons (MT) of plutonium that is permanently excess to use in nuclear weapons programs, including 47.2 MT of weapons-grade plutonium. Surplus inventories will be stored safely by the Department of Energy (DOE) and then transferred to facilities that will prepare the plutonium for permanent disposition. The Savannah River National Laboratory (SRNL) operates a Feed Characterization program for the Office of Fissile Materials Disposition of the National Nuclear Security Administration and the DOE Office of Environmental Management. Many of the items that require disposition are only partially characterized, and SRNL uses a variety of techniques to predict the isotopic and chemical properties that are important for processing through the Mixed Oxide Fuel Fabrication Facility and alternative disposition paths. Recent advances in laboratory tools, including Prompt Gamma Analysis and Peroxide Fusion treatment, provide data on the existing inventories that will enable disposition without additional, costly sampling and destructive analysis.

Allender, J.; Moore, E.

2013-07-17T23:59:59.000Z

154

NASA Benchmarks Safety Functions Assessment plan - Developed By NNSA/Nevada Site Office Facility Representative Division  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SAFETY FUNCTIONS SAFETY FUNCTIONS Assessment Plan Developed By NNSA/Nevada Site Office Facility Representative Division Performance Objective: Management should be proactive in addressing safety-related issues. Management should have an established system to provide a ranking of safety considerations founded upon risk-based priorities. Criteria: A system is in place to provide a ranking of safety considerations founded upon risk-based priorities. (DOE/EH-0135) Procedures clearly define management's responsibility for safety- related decisions and provide for the escalation of matters in an appropriate time frame. (DOE/EH-0135) Management promotes safety programs and the organization's safety culture through sponsoring and attending safety meetings. (DOE/EH- 0135) Management encourages and supports effective programs for reporting

155

DOE/EIS-0287 Idaho High-Level Waste & Facilities Disposition Draft Environmental Impact Statement (December 1999)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

HLW & FD EIS HLW & FD EIS 3-13 DOE/EIS-0287D Calcine storag e i n b i n s ets Calcine storag e i n b i n s et s Cesium ion exchange & grouting Cesium ion exchange & grouting NWCF* NWCF* Calcine Mixed transuranic waste/SBW Mixed transuranic waste/NGLW Low-level waste disposa l*** disposa l*** Tank heels Transuranic waste (from tank heels) * * * * Mixed transuranic waste/ NGLW Mixed transuranic waste/ NGLW M i x e d t r a nsuran ic w a s t e / M i x e d t r a nsuran ic w a s t e / S B W s t o rage in Ta n k F a r m S B W s t o rage in Ta n k F a r m Low-leve l waste Low-leve l waste FIGURE 3-2. Continued Current Operations Alternative. LEGEND * Including high-temperature and maximum achievable control technology upgrades. Mixed transuranic waste/ newly generated liquid waste New Waste Calcining Facility ** Calcine would be transferred from bin set #1 to bin set #6 or #7.

156

Development of a safety assessment approach for decontamination and decommissioning operations at nuclear facilities  

SciTech Connect

The US Department of Energy (DOE) is responsible for nearly 1000 nuclear facilities which will eventually be decommissioned. In order to ensure that the health and safety of the workers, other personnel on site and the public in general is maintained during decontamination and decommissioning (D&D) operations, a methodology specifically for use in evaluating the nuclear safety of the associated activities is being developed within the Department. This methodology represents not so much a departure from that currently fish in the DOE when conducting safety assessments of operations at nuclear facilities but, rather, a formalization of those methods specifically adapted to the D&D activities. As such, it is intended to provide the safety assessment personnel with a framework on which they can base their technical judgement, to assure a consistent approach to safety assessment of D&D operations and to facilitate the systematic collection of data from facilities in the post-operational part of the life cycle.

Worthington, P.R. [USDOE, Washington, DC (United States); Cowgill, M.G. [Brookhaven National Lab., Upton, NY (United States)

1994-12-31T23:59:59.000Z

157

Facility Siting and Layout Optimization Based on Process Safety.  

E-Print Network (OSTI)

??In this work, a new approach to optimize facility layout for toxic release, fire and explosion scenarios is presented. By integrating a risk analysis in (more)

Jung, Seungho

2012-01-01T23:59:59.000Z

158

Interim safety basis for fuel supply shutdown facility  

SciTech Connect

This ISB in conjunction with the new TSRs, will provide the required basis for interim operation or restrictions on interim operations and administrative controls for the Facility until a SAR is prepared in accordance with the new requirements. It is concluded that the risk associated with the current operational mode of the Facility, uranium closure, clean up, and transition activities required for permanent closure, are within Risk Acceptance Guidelines. The Facility is classified as a Moderate Hazard Facility because of the potential for an unmitigated fire associated with the uranium storage buildings.

Brehm, J.R.; Deobald, T.L.; Benecke, M.W.; Remaize, J.A.

1995-05-23T23:59:59.000Z

159

The Defense Nuclear Facilities Safety Board - Strategic Plan...  

NLE Websites -- All DOE Office Websites (Extended Search)

all of its defense nuclear facilities. Message from the Board Peter S. Winokur, Chariman Jessie H. Roberson, Vice Chariman John E. Mansfield Joseph F. Bader DEFENSE NUCLEAR...

160

Defense Nuclear Facilities Safety Board Review at the Nevada...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

air filters. The Board members and staff toured CEF, DAF, and the Joint Actinide Shock Physics Experimental Research (JASPER) facility. Additional discussions of subcritical...

Note: This page contains sample records for the topic "facility disposition safety" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

International Safety Projects - Nuclear Engineering Division...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

162

Safety Related Applications (Sensors and Instrumentation and...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

163

Safety - Vulnerability Assessment Team - Nuclear Engineering...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

164

Nuclear Criticality Safety: Current Activities - Nuclear Engineering...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

165

Nuclear Criticality Safety - Nuclear Engineering Division (Argonne...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

166

Defense Nuclear Facilities Safety Board Public Meeting on the...  

NLE Websites -- All DOE Office Websites (Extended Search)

HSS Independent Activity Report - Rev. 0 Report Number: HIAR-Y-12-2012-10-02 Site: Y-12 UPF Subject: Office of Enforcement and Oversight's Office of Safety and Emergency Management...

167

Systems engineering applied to integrated safety management for high consequence facilities  

SciTech Connect

Integrated Safety Management is a concept that is being actively promoted by the U.S. Department of Energy as a means of assuring safe operation of its facilities. The concept involves the integration of safety precepts into work planning rather than adjusting for safe operations after defining the work activity. The system engineering techniques used to design an integrated safety management system for a high consequence research facility are described. An example is given to show how the concepts evolved with the system design.

Barter, R; Morais, B

1998-11-10T23:59:59.000Z

168

Safety Software Guide Perspectives for the Design of New Nuclear Facilities (U)  

SciTech Connect

In June of this year, the Department of Energy (DOE) issued directives DOE O 414.1C and DOE G 414.1-4 to improve quality assurance programs, processes, and procedures among its safety contractors. Specifically, guidance entitled, ''Safety Software Guide for use with 10 CFR 830 Subpart A, Quality Assurance Requirements, and DOE O 414.1C, Quality Assurance, DOE G 414.1-4'', provides information and acceptable methods to comply with safety software quality assurance (SQA) requirements. The guidance provides a roadmap for meeting DOE O 414.1C, ''Quality Assurance'', and the quality assurance program (QAP) requirements of Title 10 Code of Federal Regulations (CFR) 830, Subpart A, Quality Assurance, for DOE nuclear facilities and software application activities. [1, 2] The order and guide are part of a comprehensive implementation plan that addresses issues and concerns documented in Defense Nuclear Facilities Safety Board (DNFSB) Recommendation 2002-1. [3] Safety SQA requirements for DOE as well as National Nuclear Security Administration contractors are necessary to implement effective quality assurance (QA) processes and achieve safe nuclear facility operations. DOE G 414.1-4 was developed to provide guidance on establishing and implementing effective QA processes tied specifically to nuclear facility safety software applications. The Guide includes software application practices covered by appropriate national and international consensus standards and various processes currently in use at DOE facilities. While the safety software guidance is considered to be of sufficient rigor and depth to ensure acceptable reliability of safety software at all DOE nuclear facilities, new nuclear facilities are well suited to take advantage of the guide to ensure compliant programs and processes are implemented. Attributes such as the facility life-cycle stage and the hazardous nature of each facility operations are considered, along with the category and level of importance of the software. The discussion provided herein illustrates benefits of applying the Safety Software Guide to work activities dependent on software applications and directed toward the design of new nuclear facilities. In particular, the Guide-based systematic approach with software enables design processes to effectively proceed and reduce the likelihood of rework activities. Several application examples are provided for the new facility.

VINCENT, Andrew

2005-07-14T23:59:59.000Z

169

Final safety analysis report for the irradiated fuels storage facility  

SciTech Connect

A fuel storage facility has been constructed at the Idaho Chemical Processing Plant to provide safe storage for spent fuel from two commercial HTGR's, Fort St. Vrain and Peach Bottom, and from the Rover nuclear rocket program. The new facility was built as an addition to the existing fuel storage basin building to make maximum use of existing facilities and equipment. The completed facility provides dry storage for one core of Peach Bottom fuel (804 elements), 1$sup 1$/$sub 2$ cores of Fort St. Vrain fuel (2200 elements), and the irradiated fuel from the 20 reactors in the Rover program. The facility is designed to permit future expansion at a minimum cost should additional storage space for graphite-type fuels be required. A thorough study of the potential hazards associated with the Irradiated Fuels Storage Facility has been completed, indicating that the facility is capable of withstanding all credible combinations of internal accidents and pertinent natural forces, including design basis natural phenomena of a 10,000 year flood, a 175-mph tornado, or an earthquake having a bedrock acceleration of 0.33 g and an amplification factor of 1.3, without a loss of integrity or a significant release of radioactive materials. The design basis accident (DBA) postulated for the facility is a complete loss of cooling air, even though the occurrence of this situation is extremely remote, considering the availability of backup and spare fans and emergency power. The occurrence of the DBA presents neither a radiation nor an activity release hazard. A loss of coolant has no effect upon the fuel or the facility other than resulting in a gradual and constant temperature increase of the stored fuel. The temperature increase is gradual enough that ample time (28 hours minimum) is available for corrective action before an arbitrarily imposed maximum fuel centerline temperature of 1100$sup 0$F is reached. (LK)

Bingham, G.E.; Evans, T.K.

1976-01-01T23:59:59.000Z

170

AGENCY: Defense Nuclear Facilities Safety Board, ACTION: Notice...  

NLE Websites -- All DOE Office Websites (Extended Search)

upon to accomplish the mission assigned to DOE and NNSA under the Atomic Energy Act of 1954, as amended, at defense nuclear facilities . We will focus on what impact DOE's and...

171

CFN Operations and Safety Awareness (COSA) Checklist Nanofabrication (Clean Room) Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Nanofabrication (Clean Room) Facility Nanofabrication (Clean Room) Facility Building 735 This COSA form must be completed for all experimenters working in the CFN and must be submitted to the CFN User Office for badge access. CFN Safety Awareness Policy: Each user must be instructed in the safe procedures in CFN related activities. CFN Facility Laboratory personnel shall keep readily available all relevant instructions and safety literature. Employee/Guest Name Life/Guest Number Department/Division ES&H Coordinator/Ext. Facility Manager COSA Trainer Guest User Staff USER ADMINISTRATION Checked in at User Administration and has valid BNL ID badge Safety Approval Form (SAF) approved. Training requirements completed (Indicate additional training specified in SAF or ESR in lines provided below):

172

CFN Operations and Safety Awareness (COSA) Checklist Soft-Bio Nanomaterials Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Soft-Bio Nanomaterials Facility Soft-Bio Nanomaterials Facility Building 735 This COSA form must be completed for all experimenters working in the CFN and must be submitted to the CFN User Office for badge access. CFN Safety Awareness Policy: Each user must be instructed in the safe procedures in CFN related activities. CFN Facility Laboratory personnel shall keep readily available all relevant instructions and safety literature. Employee/Guest Name Life/Guest Number Department/Division ES&H Coordinator/Ext. Facility Manager COSA Trainer Guest User Staff USER ADMINISTRATION Checked in at User Administration and has valid BNL ID badge Safety Approval Form (SAF) approved. Training requirements completed (Indicate additional training specified in SAF or ESR in lines provided below):

173

DOE G 420.1-1A, Nonreactor Nuclear Safety Design Guide for use with DOE O 420.1C, Facility Safety  

Directives, Delegations, and Requirements

This Guide provides an acceptable approach for safety design of DOE hazard category 1, 2 and 3 nuclear facilities for satisfying the requirements of DOE O ...

2012-12-04T23:59:59.000Z

174

Review of Safety Basis Development for the Savannah River Site Salt Waste Processing Facility  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of5 of5 U.S. Department of Energy Subject: Review of Safety Basis Development for the Savannah River Site Salt Waste Processing Facility - Inspection Criteria, Approach, and Line:~ HS: Rev: Eff. Date: HSS CRAD 45-57 0 January 31,2013 Office of Safety and Emergency Management Evaluations Acting Direc or, Office of Sifety and Emergency Management Evaluations Date: January 31, 2013 Criteria Review and Approach Document LL.v. ~·M Criteria Lead:ife\riew of Safety Basis Development for the Savannah River Site Salt Waste Processing Facility Page 1 of 5 Date: January 31, 2013 1.0 PURPOSE Within the Office of Health, Safety and Security (HSS), the Office of Enforcement and Oversight, Office of Safety and Emergency Management Evaluations (HS-45) mission is to assess the effectiveness of the

175

Integration of health physics, safety and operational processes for management and disposition of recycled uranium wastes at the Fernald Environmental Management Project (FEMP)  

Science Conference Proceedings (OSTI)

Fluor Fernald, Inc. (Fluor Fernald), the contractor for the U. S. Department of Energy (DOE) Fernald Environmental Management Project (FEMP), recently submitted a new baseline plan for achieving site closure by the end of calendar year 2006. This plan was submitted at DOE's request, as the FEMP was selected as one of the sites for their accelerated closure initiative. In accordance with the accelerated baseline, the FEMP Waste Management Project (WMP) is actively evaluating innovative processes for the management and disposition of low-level uranium, fissile material, and thorium, all of which have been classified as waste. These activities are being conducted by the Low Level Waste (LLW) and Uranium Waste Disposition (UWD) projects. Alternatives associated with operational processing of individual waste streams, each of which poses potentially unique health physics, industrial hygiene and industrial hazards, are being evaluated for determination of the most cost effective and safe met hod for handling and disposition. Low-level Mixed Waste (LLMW) projects are not addressed in this paper. This paper summarizes historical uranium recycling programs and resultant trace quantity contamination of uranium waste streams with radionuclides, other than uranium. The presentation then describes how waste characterization data is reviewed for radiological and/or chemical hazards and exposure mitigation techniques, in conjunction with proposed operations for handling and disposition. The final part of the presentation consists of an overview of recent operations within LLW and UWD project dispositions, which have been safely completed, and a description of several current operations.

Barber, James; Buckley, James

2003-02-23T23:59:59.000Z

176

Review of Safety Basis Development for the Los Alamos National Laboratory Transuranic Waste Facility  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of6 of6 Subject: Review of Safety Basis HS: HSS CRAD 45-59 U.S. Department of Development for the Los Alamos Rev: 0 National Laboratory Transuranic Eff. Date: May 6, 2013 Energy Waste Facility - Criteria and Review Approach Document Office of Safety and ~ Emergency Management Acting Djector, Of~e of Safety and Evaluations Emergency Management Evaluations Date: May 6, 2013 firo,~ Page 1of6 Criteria and Review e;dJatnes 0. Low Approach Document Date: May 6, 2013 1.0 PURPOSE Within the Office of Health, Safety and Security (HSS), the Office of Enforcement and Oversight, Office of Safety and Emergency Management Evaluations (HS-45) mission is to assess the effectiveness of the environment, safety, health, and emergency management systems and practices used by line and

177

Safety/safeguards interactions during safety-related emergencies at Nuclear Power Reactor Facilities  

Science Conference Proceedings (OSTI)

This report contains an analysis of the safety/safeguards interactions that could occur during safety-related emergencies at licensed nuclear power reactors, and the extent to which these interactions are addressed in existing or proposed NRC guidance. The safety/safeguards interaction during a series of postulated emergencies was systematically examined to identify any potential performance deficiencies or conflicts between the Operations (safety) and Security (safeguards) organizations. This examination included the impacts of coordination with off-site emergency response personnel. Duties, responsibilities, optimal methods, and procedural actions inherent in these interactions were explored.

Moul, D.A.; Pilgrim, M.K.; Schweizer, R.L.; McEwen, J.E. Jr.

1985-03-01T23:59:59.000Z

178

Receiving Basin for Offsite Fuels and the Resin Regeneration Facility Safety Analysis Report, Executive Summary  

Science Conference Proceedings (OSTI)

The Safety Analysis Report documents the safety authorization basis for the Receiving Basin for Offsite Fuels (RBOF) and the Resin Regeneration Facility (RRF) at the Savannah River Site (SRS). The present mission of the RBOF and RRF is to continue in providing a facility for the safe receipt, storage, handling, and shipping of spent nuclear fuel assemblies from power and research reactors in the United States, fuel from SRS and other Department of Energy (DOE) reactors, and foreign research reactors fuel, in support of the nonproliferation policy. The RBOF and RRF provide the capability to handle, separate, and transfer wastes generated from nuclear fuel element storage. The DOE and Westinghouse Savannah River Company, the prime operating contractor, are committed to managing these activities in such a manner that the health and safety of the offsite general public, the site worker, the facility worker, and the environment are protected.

Shedrow, C.B.

1999-11-29T23:59:59.000Z

179

BIOLOGICAL EVIDENCE disposition process  

Science Conference Proceedings (OSTI)

... Notification of destruction sent per statutory requirements In-house tickler system tracks evidence and identifies upcoming disposition time ...

2013-05-14T23:59:59.000Z

180

Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Facilities Facilities Facilities LANL's mission is to develop and apply science and technology to ensure the safety, security, and reliability of the U.S. nuclear deterrent; reduce global threats; and solve other emerging national security and energy challenges. Contact Operator Los Alamos National Laboratory (505) 667-5061 Some LANL facilities are available to researchers at other laboratories, universities, and industry. Unique facilities foster experimental science, support LANL's security mission DARHT accelerator DARHT's electron accelerators use large, circular aluminum structures to create magnetic fields that focus and steer a stream of electrons down the length of the accelerator. Tremendous electrical energy is added along the way. When the stream of high-speed electrons exits the accelerator it is

Note: This page contains sample records for the topic "facility disposition safety" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Defense Nuclear Facilities Safety Board Review at the Nevada National Security Site  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NNSS-2011-001 NNSS-2011-001 Site: Nevada National Security Site Subject: Office of Independent Oversight's Office of Environment, Safety and Health Evaluations Activity Report for the Defense Nuclear Facilities Safety Board Review at the Nevada National Security Site Dates of Activity 02/14/2011 - 02/17/2011 Report Preparer William Macon Activity Description/Purpose: The U.S. Department of Energy Office of Independent Oversight, within the Office of Health, Safety and Security (HSS), visited the Nevada Site Office (NSO) and the Nevada National Security Site (NNSS) from February 14-17, 2011. The purpose of the visit was to observe the Defense Nuclear Facilities Safety Board (DNFSB) review and maintain operational awareness of NNSS activities. Result:

182

Siting of nuclear facilities. Selections from Nuclear Safety  

SciTech Connect

The report presented siting policy and practice for nuclear power plants as developed in the U.S. and abroad. Twenty-two articles from Nuclear Safety on this general topic are reprinted since they provide a valuable reference source. The appendices also include reprints of some relevant regulatory rules and guides on siting. Advantages and disadvantages of novel siting concepts such as underground containment, offshore siting, and nuclear energy parks are addressed. Other topics include site criteria, risk criteria, and nuclear ship criteria.

Buchanan, J.R.

1976-07-01T23:59:59.000Z

183

RADIOACTIVE MATERIALS LABORATORY SAFETY REPORT, MARTIN NUCLEAR FACILITY, QUEHANNA SITE  

SciTech Connect

A description is given of the safety features and the major alterations to be performed prior to occupancy. The evaluation was made in support of fubrication work on the production of safe isotopic power sources from Cm/sup 242/ and Sr/sup 90/. The chemical, nuclear, and radiobiological properties of Cm/sup 242/ and Sr/sup 90/ are outlined. The projected physical fiow of materials for production of the isotopic power souroes is schematically given. An evaluation of the malfunctions, operational hazards, and remedial health physics procedures is presented. The analysis and evaluation of postulated maximum credible incidents are demonstrated. (B.O.G.)

1960-09-01T23:59:59.000Z

184

Office of UNF Disposition International Program - Strategic Plan |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

UNF Disposition International Program - Strategic Plan UNF Disposition International Program - Strategic Plan Office of UNF Disposition International Program - Strategic Plan The Department of Energy's Office of Nuclear Energy, Used Nuclear Fuel Disposition Research and Development Office (UFD), performs the critical mission of addressing the need for an integrated strategy that combines safe storage of spent nuclear fuel with expeditious progress toward siting and licensing a disposal facility or facilities. The UFD International Program plays a key role in this effort. International collaboration provides a forum for exchanging strategies, expertise, and technologies with other nations that have also been investigating solutions to the problems of nuclear waste disposal-information that otherwise would have

185

International Cooperation on Safety of Nuclear Plants - Nuclear...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

186

Current R&D Activities in Nuclear Criticality Safety - Nuclear...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

187

Reactor Safety Testing and Analysis - Nuclear Engineering Division...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

188

Work for NASA, Safety Related Applications (Sensors and Instrumentatio...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

189

Analysis Tools for Nuclear Criticality Safety - Nuclear Engineering...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

190

Risk and Safety Assessments - Nuclear Engineering Division (Argonne...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

191

Preliminary Safety Design Report for Remote Handled Low-Level Waste Disposal Facility  

SciTech Connect

A new onsite, remote-handled low-level waste disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled low-level waste disposal for remote-handled low-level waste from the Idaho National Laboratory and for nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled low-level waste in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This preliminary safety design report supports the design of a proposed onsite remote-handled low-level waste disposal facility by providing an initial nuclear facility hazard categorization, by discussing site characteristics that impact accident analysis, by providing the facility and process information necessary to support the hazard analysis, by identifying and evaluating potential hazards for processes associated with onsite handling and disposal of remote-handled low-level waste, and by discussing the need for safety features that will become part of the facility design.

Timothy Solack; Carol Mason

2012-03-01T23:59:59.000Z

192

Evaluation of natural phenomena hazards as part of safety assessments for nuclear facilities  

Science Conference Proceedings (OSTI)

The continued operation of existing US Department of Energy (DOE) nuclear facilities and laboratories requires a safety reassessment based on current criteria and guidelines. This also includes evaluations for the effects of Natural Phenomena Hazards (NPH), for which these facilities may not have been designed. The NPH evaluations follow the requirements of DOE Order 5480.28, Natural Phenomena Hazards Mitigation (1993) which establishes NPH Performance Categories (PCs) for DOE facilities and associated target probabilistic performance goals. These goals are expressed as the mean annual probability of exceedance of acceptable behavior for structures, systems and components (SSCs) subjected to NPH effects. The assignment of an NPH Performance Category is based on the overall hazard categorization (low, moderate, high) of a facility and on the function of an SSC under evaluation (DOE-STD-1021, 1992). Detailed guidance for the NPH analysis and evaluation criteria are also provided (DOE-STD-1020, 1994). These analyses can be very resource intensive, and may not be necessary for the evaluation of all SSCs in existing facilities, in particular for low hazard category facilities. An approach relying heavily on screening inspections, engineering judgment and use of NPH experience data (S. J. Eder et al., 1993), can minimize the analytical effort, give reasonable estimates of the NPH susceptibilities, and yield adequate information for an overall safety evaluation of the facility. In the following sections this approach is described in more detail and is illustrated by an application to a nuclear laboratory complex.

Kot, C.A.; Hsieh, B.J.; Srinivasan, M.G.; Shin, Y.W.

1995-02-01T23:59:59.000Z

193

Concurrent consideration of evacuation safety and productivity in manufacturing facility planning using multi-paradigm simulations  

Science Conference Proceedings (OSTI)

Manufacturing facilities are expected to maintain a high level of production and at the same time, employ strict safety standards to ensure the safe evacuation of the people in the event of emergencies (fire is considered in this paper). These two goals ... Keywords: Agent based simulation, BDI, Emergency management, Layout planning

Karthik Vasudevan; Young-Jun Son

2011-11-01T23:59:59.000Z

194

Appraisal of the Uranium Processing Facility Safety Basis Preliminary Safety Design Report Process at the Y-12 National Security Complex, May 2013  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Appraisal of the Appraisal of the Uranium Processing Facility Safety Basis Preliminary Safety Design Report Process at the Y-12 National Security Complex May 2011 May 2013 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U. S. Department of Energy Table of Contents 1.0 Purpose ................................................................................................................................................. 1 2.0 Background........................................................................................................................................... 1 3.0 Scope..................................................................................................................................................... 2

195

Appraisal of the Uranium Processing Facility Safety Basis Preliminary Safety Design Report Process at the Y-12 National Security Complex, May 2013  

NLE Websites -- All DOE Office Websites (Extended Search)

Appraisal of the Appraisal of the Uranium Processing Facility Safety Basis Preliminary Safety Design Report Process at the Y-12 National Security Complex May 2011 May 2013 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U. S. Department of Energy Table of Contents 1.0 Purpose ................................................................................................................................................. 1 2.0 Background........................................................................................................................................... 1 3.0 Scope..................................................................................................................................................... 2

196

DOE Order Self Study Modules - DOE O 420.1B Facility Safety  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0.1B 0.1B FACILITY SAFETY NATIONAL NUCLEAR SECURITY ADMINISTRATION LEARNING AND CAREER DEVELOPMENT DEPARTMENT CHANGE NO: 2 DOE O 420.1B Level: Familiar Date: 12/1/08 1 DOE ORDER O 420.1B FACILITY SAFETY FAMILIAR LEVEL _________________________________________________________________________ OBJECTIVES Given the familiar level of this module and the listed resources, you will be able to perform the following: 1. State the purpose of implementing DOE O 420.1B. 2. State who is responsible for complying with the requirements of this Order. 3. State the general and design requirements for nuclear safety. 4. State the general programmatic requirements for an acceptable fire protection program. 5. State the fire protection design requirements for a comprehensive fire protection

197

Lessons learnt from ITER safety & licensing for DEMO and future nuclear fusion facilities  

E-Print Network (OSTI)

One of the strong motivations for pursuing the development of fusion energy is its potentially low environmental impact and very good safety performance. But this safety and environmental potential can only be fully realized by careful design choices. For DEMO and other fusion facilities that will require nuclear licensing, S&E objectives and criteria should be set at an early stage and taken into account when choosing basic design options and throughout the design process. Studies in recent decades of the safety of fusion power plant concepts give a useful basis on which to build the S&E approach and to assess the impact of design choices. The experience of licensing ITER is of particular value, even though there are some important differences between ITER and DEMO. The ITER project has developed a safety case, produced a preliminary safety report and had it examined by the French nuclear safety authorities, leading to the licence to construct the facility. The key technical issues that arose during ...

Taylor, Neill

2013-01-01T23:59:59.000Z

198

Conceptual Safety Design Report for the Remote Handled Low-Level Waste Disposal Facility  

SciTech Connect

A new onsite, remote-handled LLW disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled LLW disposal for remote-handled LLW from the Idaho National Laboratory and for spent nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled LLW in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This conceptual safety design report supports the design of a proposed onsite remote-handled LLW disposal facility by providing an initial nuclear facility hazard categorization, by identifying potential hazards for processes associated with onsite handling and disposal of remote-handled LLW, by evaluating consequences of postulated accidents, and by discussing the need for safety features that will become part of the facility design.

Boyd D. Christensen

2010-05-01T23:59:59.000Z

199

Conceptual Safety Design Report for the Remote Handled Low-Level Waste Disposal Facility  

Science Conference Proceedings (OSTI)

A new onsite, remote-handled LLW disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled LLW disposal for remote-handled LLW from the Idaho National Laboratory and for spent nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled LLW in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This conceptual safety design report supports the design of a proposed onsite remote-handled LLW disposal facility by providing an initial nuclear facility hazard categorization, by identifying potential hazards for processes associated with onsite handling and disposal of remote-handled LLW, by evaluating consequences of postulated accidents, and by discussing the need for safety features that will become part of the facility design.

Boyd D. Christensen

2010-02-01T23:59:59.000Z

200

Management of radioactive material safety programs at medical facilities. Final report  

SciTech Connect

A Task Force, comprising eight US Nuclear Regulatory Commission and two Agreement State program staff members, developed the guidance contained in this report. This report describes a systematic approach for effectively managing radiation safety programs at medical facilities. This is accomplished by defining and emphasizing the roles of an institution`s executive management, radiation safety committee, and radiation safety officer. Various aspects of program management are discussed and guidance is offered on selecting the radiation safety officer, determining adequate resources for the program, using such contractual services as consultants and service companies, conducting audits, and establishing the roles of authorized users and supervised individuals; NRC`s reporting and notification requirements are discussed, and a general description is given of how NRC`s licensing, inspection and enforcement programs work.

Camper, L.W.; Schlueter, J.; Woods, S. [and others

1997-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "facility disposition safety" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Assessment of nuclear safety and nuclear criticality potential in the Defense Waste Processing Facility  

SciTech Connect

A panel of experts in the fields of process engineering, process chemistry, and safety analysis met together on January 26, 1993, and February 19, 1993, to discuss nuclear safety and nuclear criticality potential in the Defense Waste Processing Facility (DWPF) processes. Nuclear safety issues and possibilities of nuclear criticality incidents in the DWPF were examined in depth. The discussion started at the receipt of slurry feeds: The Low Point Pump Pit Precipitate Tank (LPPPPT) and the Low Point Pump Pit Sludge Tank (LPPPST), and went into detail the whole DWPF processes. This report provides discussion of each of the areas and processes of the DWPF in terms of potential nuclear safety issues and nuclear criticality concerns.

Ha, B.C.

1993-05-10T23:59:59.000Z

202

Assessment of Nuclear Safety Culture at the Y-12 National Security Complex Urnaium Processing Facility Project, June 2012  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Y-12 National Security Complex Y-12 National Security Complex Uranium Processing Facility Project May 2011 June 2012 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy i Independent Oversight Assessment of Safety Culture at the Y-12 National Security Complex Uranium Processing Facility Project Table of Contents 1.0 Introduction ........................................................................................................................................... 1 2.0 Scope and Methodology ....................................................................................................................... 2 3.0 Results and Conclusions ....................................................................................................................... 3

203

Assessment of Nuclear Safety Culture at the Y-12 National Security Complex Urnaium Processing Facility Project, June 2012  

NLE Websites -- All DOE Office Websites (Extended Search)

Y-12 National Security Complex Y-12 National Security Complex Uranium Processing Facility Project May 2011 June 2012 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy i Independent Oversight Assessment of Safety Culture at the Y-12 National Security Complex Uranium Processing Facility Project Table of Contents 1.0 Introduction ........................................................................................................................................... 1 2.0 Scope and Methodology ....................................................................................................................... 2 3.0 Results and Conclusions ....................................................................................................................... 3

204

Review of the Los Alamos National Laboratory Chemistry and Metallurgy Research Facility Fire Suppression Vital Safety System, January 2012  

NLE Websites -- All DOE Office Websites (Extended Search)

the the Los Alamos National Laboratory Chemistry and Metallurgy Research Facility Fire Suppression Vital Safety System January 2012 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy i Table of Contents 1.0 Purpose ................................................................................................................................................... 1 2.0 Background ............................................................................................................................................ 1 3.0 Scope ...................................................................................................................................................... 1

205

Review of the Los Alamos National Laboratory Chemistry and Metallurgy Research Facility Fire Suppression Vital Safety System, January 2012  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

the the Los Alamos National Laboratory Chemistry and Metallurgy Research Facility Fire Suppression Vital Safety System January 2012 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy i Table of Contents 1.0 Purpose ................................................................................................................................................... 1 2.0 Background ............................................................................................................................................ 1 3.0 Scope ...................................................................................................................................................... 1

206

SRTC criticality safety technical review: Nuclear criticality safety evaluation 94-02, uranium solidification facility pencil tank module spacing  

SciTech Connect

Review of NMP-NCS-94-0087, ``Nuclear Criticality Safety Evaluation 94-02: Uranium Solidification Facility Pencil Tank Module Spacing (U), April 18, 1994,`` was requested of the SRTC Applied Physics Group. The NCSE is a criticality assessment to show that the USF process module spacing, as given in Non-Conformance Report SHM-0045, remains safe for operation. The NCSE under review concludes that the module spacing as given in Non-Conformance Report SHM-0045 remains in a critically safe configuration for all normal and single credible abnormal conditions. After a thorough review of the NCSE, this reviewer agrees with that conclusion.

Rathbun, R. [Westinghouse Savannah River Co., Aiken, SC (United States)

1994-04-26T23:59:59.000Z

207

Criticality Safety  

NLE Websites -- All DOE Office Websites (Extended Search)

Left Tab EVENTS Office of Nuclear Safety (HS-30) Office of Nuclear Safety Home Directives Nuclear and Facility Safety Policy Rules Nuclear Safety Workshops Technical...

208

DESIGN SAFETY FEATURES OF THE BNL HIGH-TEMPERATURE COMBUSTION FACILITY  

DOE Green Energy (OSTI)

The Brookhaven National Laboratory (BNL) High-Temperature Combustion Facility (HTCF) was used to perform hydrogen deflagration and detonation experiments at temperatures to 650 K. Safety features that were designed to ensure safe and reliable operation of the experimental program are described. Deflagration and detonation experiments have been conducted using mixtures of hydrogen, air, and steam. Detonation cell size measurements were made as a function of mixture composition and thermodynamic gas conditions. Deflagration-to-detonation transition experiments were also conducted. Results of the experimental program are presented, and implications with respect to hydrogen safety are discussed.

GINSBERG,T.; CICCARELLI,G.; BOCCIO,J.

2000-06-11T23:59:59.000Z

209

DOE-HDBK-1145-2001; Radiological Safety Training for Plutonium Facilities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SENSITIVE SENSITIVE DOE-HDBK-1145-2001 August 2001 DOE STANDARD Radiological Safety Training for Plutonium Facilities U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax (301) 903-9823. Available to the public from the U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161; (703) 605-6000. Radiological Safety Training for Plutonium Facilities DOE-HDBK-1145-2001 Program Management Guide Foreword This Handbook describes an implementation process for training as recommended in

210

Preparation Guide for U.S. Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3009-94 3009-94 July 1994 CHANGE NOTICE NO.1 January 2000 CHANGE NOTICE NO. 2 April 2002 CHANGE NOTICE NO. 3 March 2006 DOE STANDARD PREPARATION GUIDE FOR U.S DEPARTMENT OF ENERGY NONREACTOR NUCLEAR FACILITY DOCUMENTED SAFETY ANALYSES U.S. Department of Energy AREA SAFT Washington, DC 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. DOE-STD-3009-94 Page ii This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax: (301) 903-9823. DOE-STD-3009-94 Page iii Preparation Guide for U.S. Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses Table of Changes

211

Preclosure radiological safety analysis for the exploratory shaft facilities; Yucca Mountain Site Characterization Project  

SciTech Connect

This study assesses which structures, systems, and components of the exploratory shaft facility (ESF) are important to safety when the ESF is converted to become part of the operating waste repository. The assessment follows the methodology required by DOE Procedure AP-6.10Q. Failures of the converted ESF during the preclosure period have been evaluated, along with other underground accidents, to determine the potential offsite radiation doses and associated probabilities. The assessment indicates that failures of the ESF will not result in radiation doses greater than 0.5 rem at the nearest unrestricted area boundary. Furthermore, credible accidents in other underground facilities will not result in radiation doses larger than 0.5 rem, even if any structure, system, or component of the converted ESF fails at the same time. Therefore, no structure, system, or component of the converted ESF is important to safety.

Ma, C.W.; Miller, D.D.; Jardine, L.J. [Bechtel National, Inc., San Francisco, CA (United States)

1992-06-01T23:59:59.000Z

212

Nuclear Facility Safety Basis Fundamentals Self-Study Guide Review Questions  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oak Ridge Operations Oak Ridge Operations Nuclear Facility Safety Basis Fundamentals Self-Study Guide Review Questions Name: Organization: Directions: This is an open-book evaluation. Complete the questions, and submit your answers (hand-written or electronically) to the Training Center. Someone will check and grade your answers. If you achieve a score of at least 80%, you will receive a completion certificate. Questions: 1. What is safety basis (SB)? 2. How does SB fit with integrated safety management (ISM)? 3. In what primary DOE documents can requirements and guidance for SB be found? 4. What are the "graded approach" factors that DOE takes into account in ensuring that the level of analysis and documentation and the actions used to comply with the requirements are

213

Electrical Safety Assessment Plan - Developed By NNSA/NSO IOD Facility Representative  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

December 2003 December 2003 An assessment of the Electrical Safety (ES) program at XXXX was conducted during the week of December XX-XX, 2003. The assessment team evaluated the program using the programmatic areas and specific Lines of Inquiry (LOI) contained in the approved Assessment plan provided. The team consisted of the Facility Representative from National Nuclear Security Administration, as well as ES, Subject Matter Expert support. The assessment plan identified 5 areas of review for Electrical Safety. An integrated process has been established to ensure electrical safety hazards are identified and that adequate controls are defined and implemented. The M&O contractor and other NTS Users management actively participate in the ES program. An implemented Work Control process is in place that ensures

214

Nuclear Facility Safety Basis Fundamentals Self-Study Guide Review Questions  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oak Ridge Operations Oak Ridge Operations Nuclear Facility Safety Basis Fundamentals Self-Study Guide Review Questions Name: Organization: Directions: This is an open-book evaluation. Complete the questions, and submit your answers (hand-written or electronically) to the Training Center. Someone will check and grade your answers. If you achieve a score of at least 80%, you will receive a completion certificate. Questions: 1. What is safety basis (SB)? 2. How does SB fit with integrated safety management (ISM)? 3. In what primary DOE documents can requirements and guidance for SB be found? 4. What are the "graded approach" factors that DOE takes into account in ensuring that the level of analysis and documentation and the actions used to comply with the requirements are

215

Surplus Plutonium Disposition (SPD) Environmental Data Summary  

Science Conference Proceedings (OSTI)

This document provides an overview of existing environmental and ecological information at areas identified as potential locations of the Savannah River Site's (SRS) Surplus Plutonium Disposition (SPD) facilities. This information is required to document existing environmental and baseline conditions from which SPD construction and operation impacts can be defined. It will be used in developing the required preoperational monitoring plan to be used at specific SPD facilities construction sites.

Fledderman, P.D.

2000-08-24T23:59:59.000Z

216

Excess plutonium disposition: The deep borehole option  

SciTech Connect

This report reviews the current status of technologies required for the disposition of plutonium in Very Deep Holes (VDH). It is in response to a recent National Academy of Sciences (NAS) report which addressed the management of excess weapons plutonium and recommended three approaches to the ultimate disposition of excess plutonium: (1) fabrication and use as a fuel in existing or modified reactors in a once-through cycle, (2) vitrification with high-level radioactive waste for repository disposition, (3) burial in deep boreholes. As indicated in the NAS report, substantial effort would be required to address the broad range of issues related to deep bore-hole emplacement. Subjects reviewed in this report include geology and hydrology, design and engineering, safety and licensing, policy decisions that can impact the viability of the concept, and applicable international programs. Key technical areas that would require attention should decisions be made to further develop the borehole emplacement option are identified.

Ferguson, K.L.

1994-08-09T23:59:59.000Z

217

Nuclear criticality safety evaluation -- DWPF Late Wash Facility, Salt Process Cell and Chemical Process Cell  

SciTech Connect

The Savannah River Site (SRS) High Level Nuclear Waste will be vitrified in the Defense Waste Processing Facility (DWPF) for long term storage and disposal. This is a nuclear criticality safety evaluation for the Late Wash Facility (LWF), the Salt Processing Cell (SPC) and the Chemical Processing Cell (CPC). of the DWPF. Waste salt solution is processed in the Tank Farm In-Tank Precipitation (ITP) process and is then further washed in the DWPF Late Wash Facility (LWF) before it is fed to the DWPF Salt Processing Cell. In the Salt Processing Cell the precipitate slurry is processed in the Precipitate Reactor (PR) and the resultant Precipitate Hydrolysis Aqueous (PHA) produce is combined with the sludge feed and frit in the DWPF Chemical Process Cell to produce a melter feed. The waste is finally immobilized in the Melt Cell. Material in the Tank Farm and the ITP and Extended Sludge processes have been shown to be safe against a nuclear criticality by others. The precipitate slurry feed from ITP and the first six batches of sludge feed are safe against a nuclear criticality and this evaluation demonstrates that the processes in the LWF, the SPC and the CPC do not alter the characteristics of the materials to compromise safety.

Williamson, T.G.

1994-10-17T23:59:59.000Z

218

Preliminary safety analysis report for the Auxiliary Hot Cell Facility, Sandia National Laboratories, Albuquerque, New Mexico  

Science Conference Proceedings (OSTI)

The Auxiliary Hot Cell Facility (AHCF) at Sandia National Laboratories, New Mexico (SNL/NM) will be a Hazard Category 3 nuclear facility used to characterize, treat, and repackage radioactive and mixed material and waste for reuse, recycling, or ultimate disposal. A significant upgrade to a previous facility, the Temporary Hot Cell, will be implemented to perform this mission. The following major features will be added: a permanent shield wall; eight floor silos; new roof portals in the hot-cell roof; an upgraded ventilation system; and upgraded hot-cell jib crane; and video cameras to record operations and facilitate remote-handled operations. No safety-class systems, structures, and components will be present in the AHCF. There will be five safety-significant SSCs: hot cell structure, permanent shield wall, shield plugs, ventilation system, and HEPA filters. The type and quantity of radionuclides that could be located in the AHCF are defined primarily by SNL/NM's legacy materials, which include radioactive, transuranic, and mixed waste. The risk to the public or the environment presented by the AHCF is minor due to the inventory limitations of the Hazard Category 3 classification. Potential doses at the exclusion boundary are well below the evaluation guidelines of 25 rem. Potential for worker exposure is limited by the passive design features incorporated in the AHCF and by SNL's radiation protection program. There is no potential for exposure of the public to chemical hazards above the Emergency Response Protection Guidelines Level 2.

OSCAR,DEBBY S.; WALKER,SHARON ANN; HUNTER,REGINA LEE; WALKER,CHERYL A.

1999-12-01T23:59:59.000Z

219

disposition | OpenEI  

Open Energy Info (EERE)

disposition disposition Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 11, and contains only the reference case. The dataset uses million barrels per day. The data is broken down into crude oil, other petroleum supply, other non petroleum supply and liquid fuel consumption. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO disposition EIA liquid fuels Supply Data application/vnd.ms-excel icon AEO2011: Liquid Fuels Supply and Disposition- Reference Case (xls, 117 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually Time Period 2008-2035

220

Review of the Savannah River Site Salt Waste Processing Facility Safety Basis and Design Development, August 2013  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Savannah River Site Savannah River Site Salt Waste Processing Facility Safety Basis and Design Development May 2011 August 2013 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy Table of Contents 1.0 Purpose.................................................................................................................................................... 1 2.0 Background ............................................................................................................................................. 1 3.0 Scope and Methodology ......................................................................................................................... 2 4.0 Results .................................................................................................................................................... 3

Note: This page contains sample records for the topic "facility disposition safety" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Review of the Los Alamos National Laboratory Weapons Engineering Tritium Facility Tritium Gas Containment Vital Safety System, January 2013  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Independent Oversight Review of the Independent Oversight Review of the Los Alamos National Laboratory Weapons Engineering Tritium Facility Tritium Gas Containment Vital Safety System January 2013 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy Table of Contents 1.0 Purpose............................................................................................................................................. 1 2.0 Background...................................................................................................................................... 1 3.0 Scope................................................................................................................................................ 1

222

"Defense-in-Depth" Laser Safety and the National Ignition Facility  

SciTech Connect

The National Ignition Facility (NIF) is the largest and most energetic laser in the world contained in a complex the size of a football stadium. From the initial laser pulse, provided by telecommunication style infrared nanoJoule pulsed lasers, to the final 192 laser beams (1.8 Mega Joules total energy in the ultraviolet) converging on a target the size of a pencil eraser, laser safety is of paramount concern. In addition to this, there are numerous high-powered (Class 3B and 4) diagnostic lasers in use that can potentially send their laser radiation travelling throughout the facility. With individual beam paths of up to 1500 meters and a workforce of more than one thousand, the potential for exposure is significant. Simple laser safety practices utilized in typical laser labs just don't apply. To mitigate these hazards, NIF incorporates a multi layered approach to laser safety or 'Defense in Depth.' Most typical high-powered laser operations are contained and controlled within a single room using relatively simplistic controls to protect both the worker and the public. Laser workers are trained, use a standard operating procedure, and are required to wear Personal Protective Equipment (PPE) such as Laser Protective Eyewear (LPE) if the system is not fully enclosed. Non-workers are protected by means of posting the room with a warning sign and a flashing light. In the best of cases, a Safety Interlock System (SIS) will be employed which will 'safe' the laser in the case of unauthorized access. This type of laser operation is relatively easy to employ and manage. As the operation becomes more complex, higher levels of control are required to ensure personnel safety. Examples requiring enhanced controls are outdoor and multi-room laser operations. At the NIF there are 192 beam lines and numerous other Class 4 diagnostic lasers that can potentially deliver their hazardous energy to locations far from the laser source. This presents a serious and complex potential hazard to personnel. Because of this, a multilayered approach to safety is taken. This paper presents the philosophy and approach taken at the NIF in the multi-layered 'defense-in-depth' approach to laser safety.

King, J J

2010-12-02T23:59:59.000Z

223

Securing Operating Data From Passive Safety Tests at the Fast Flux Test Facility  

Science Conference Proceedings (OSTI)

The Fast Flux Test Facility (FFTF) is the most recent Liquid Metal Reactor (LMR) to operate in the United States, from 1982 to 1992. The technologies employed in designing and constructing this reactor, along with information obtained from tests conducted during its operation, are currently being secured and archived by the Department of Energys Office of Nuclear Energy Fuel Cycle Research and Development Program. This report is one in a series documenting the overall project efforts to retrieve and preserve critical information related to advanced reactors. A previous report summarized the initial efforts to review, retrieve and preserve the most salient documents related to Passive Safety Testing (PST) in the FFTF. Efforts continue to locate, secure, and retrieve record copies of original plant data tapes for the series of passive safety tests conducted between 1986 and 1991.

Wootan, David W.; Omberg, Ronald P.; Makenas, Bruce J.; Nielsen, Deborah L.; Nelson, Joseph V.; Polzin, David L.

2011-06-01T23:59:59.000Z

224

Securing Operating Data From Passive Safety Tests at the Fast Flux Test Facility  

SciTech Connect

The Fast Flux Test Facility (FFTF) is the most recent Liquid Metal Reactor (LMR) to operate in the United States, from 1982 to 1992. The technologies employed in designing and constructing this reactor, along with information obtained from tests conducted during its operation, are currently being secured and archived by the Department of Energy's Office of Nuclear Energy Fuel Cycle Research and Development Program. This report is one in a series documenting the overall project efforts to retrieve and preserve critical information related to advanced reactors. A previous report summarized the initial efforts to review, retrieve and preserve the most salient documents related to Passive Safety Testing (PST) in the FFTF. Efforts continue to locate, secure, and retrieve record copies of original plant data tapes for the series of passive safety tests conducted between 1986 and 1991.

Wootan, David W.; Omberg, Ronald P.; Makenas, Bruce J.; Nielsen, Deborah L.; Nelson, Joseph V.; Polzin, David L.

2011-06-01T23:59:59.000Z

225

Coordination Meeting with National Nuclear Security Administration Los Alamos Field Office Safety Basis Review Team Leader for Transuranic Waste Facility Preiminary Documented Safety Analysis Report  

NLE Websites -- All DOE Office Websites (Extended Search)

HIAR-LANL-2013-04-08 HIAR-LANL-2013-04-08 Site: Los Alamos National Laboratory Subject: Office of Enforcement and Oversight's Office of Safety and Emergency Management Evaluations Activity Report for Coordination Meeting with National Nuclear Security Administration Los Alamos Field Office Safety Basis Review Team Leader for Transuranic Waste Facility Preliminary Documented Safety Analysis Report Dates of Activity : 04/08/13 Report Preparer: James O. Low Activity Description/Purpose: The Office of Health, Safety and Security (HSS) staff visited the Los Alamos National Laboratory (LANL) to coordinate with the National Nuclear Security Administration (NNSA) Los Alamos Field Office (NA-00-LA) Safety Basis Review Team (SBRT) Leader for review of the revised preliminary documented safety analysis (PDSA) for the Transuranic Waste

226

Coordination Meeting with National Nuclear Security Administration Los Alamos Field Office Safety Basis Review Team Leader for Transuranic Waste Facility Preiminary Documented Safety Analysis Report  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

HIAR-LANL-2013-04-08 HIAR-LANL-2013-04-08 Site: Los Alamos National Laboratory Subject: Office of Enforcement and Oversight's Office of Safety and Emergency Management Evaluations Activity Report for Coordination Meeting with National Nuclear Security Administration Los Alamos Field Office Safety Basis Review Team Leader for Transuranic Waste Facility Preliminary Documented Safety Analysis Report Dates of Activity : 04/08/13 Report Preparer: James O. Low Activity Description/Purpose: The Office of Health, Safety and Security (HSS) staff visited the Los Alamos National Laboratory (LANL) to coordinate with the National Nuclear Security Administration (NNSA) Los Alamos Field Office (NA-00-LA) Safety Basis Review Team (SBRT) Leader for review of the revised preliminary documented safety analysis (PDSA) for the Transuranic Waste

227

Nuclear criticality safety analysis summary report: The S-area defense waste processing facility  

SciTech Connect

The S-Area Defense Waste Processing Facility (DWPF) can process all of the high level radioactive wastes currently stored at the Savannah River Site with negligible risk of nuclear criticality. The characteristics which make the DWPF critically safe are: (1) abundance of neutron absorbers in the waste feeds; (2) and low concentration of fissionable material. This report documents the criticality safety arguments for the S-Area DWPF process as required by DOE orders to characterize and to justify the low potential for criticality. It documents that the nature of the waste feeds and the nature of the DWPF process chemistry preclude criticality.

Ha, B.C.

1994-10-21T23:59:59.000Z

228

Environmental Management Waste Management Facility (EMWMF) Site-Specific Health and Safety Plan, Oak Ridge, Tennessee  

SciTech Connect

The Bechtel Jacobs Company LLC (BJC) policy is to provide a safe and healthy workplace for all employees and subcontractors. The implementation of this policy requires that operations of the Environmental Management Waste Management Facility (EMWMF), located one-half mile west of the U.S. Department of Energy (DOE) Y-12 National Security Complex, be guided by an overall plan and consistent proactive approach to environment, safety and health (ES&H) issues. The BJC governing document for worker safety and health, BJC/OR-1745, 'Worker Safety and Health Program', describes the key elements of the BJC Safety and Industrial Hygiene (IH) programs, which includes the requirement for development and implementation of a site-specific Health and Safety Plan (HASP) where required by regulation (refer also to BJC-EH-1012, 'Development and Approval of Safety and Health Plans'). BJC/OR-1745, 'Worker Safety and Health Program', implements the requirements for worker protection contained in Title 10 Code of Federal Regulations (CFR) Part 851. The EMWMF site-specific HASP requirements identifies safe operating procedures, work controls, personal protective equipment, roles and responsibilities, potential site hazards and control measures, site access requirements, frequency and types of monitoring, site work areas, decontamination procedures, and outlines emergency response actions. This HASP will be available on site for use by all workers, management and supervisors, oversight personnel and visitors. All EMWMF assigned personnel will be briefed on the contents of this HASP and will be required to follow the procedures and protocols as specified. The policies and procedures referenced in this HASP apply to all EMWMF operations activities. In addition the HASP establishes ES&H criteria for the day-to-day activities to prevent or minimize any adverse effect on the environment and personnel safety and health and to meet standards that define acceptable waste management practices. The HASP is written to make use of past experience and best management practices to eliminate or minimize hazards to workers or the environment from events such as fires, falls, mechanical hazards, or any unplanned release to the environment.

Flynn, N.C. Bechtel Jacobs

2008-04-21T23:59:59.000Z

229

Nuclear Safety  

Energy.gov (U.S. Department of Energy (DOE))

Nuclear Safety information site that provides assistance and resources to field elements in implementation of requirements and resolving nuclear safety, facility safety, and quality assurance issues.

230

Style, content and format guide for writing safety analysis documents: Volume 2, Safety assessment reports for DOE non-nuclear facilities  

SciTech Connect

The purpose of Volume 2 of this 4-volume style guide is to furnish guidelines on writing and publishing Safety Assessment Reports (SAs) for DOE non-nuclear facilities at Sandia National Laboratories. The scope of Volume 2 encompasses not only the general guidelines for writing and publishing, but also the prescribed topics/appendices contents along with examples from typical SAs for DOE non-nuclear facilities.

Mahn, J.A.; Silver, R.C.; Balas, Y.; Gilmore, W.

1995-07-01T23:59:59.000Z

231

2009 VHA Facility Quality and Safety Report - Infrastructure | Data.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Infrastructure Infrastructure Consumer Data Apps Challenges Resources About Blogs Let's Talk Feedback Consumer You are here Data.gov » Communities » Consumer » Data 2009 VHA Facility Quality and Safety Report - Infrastructure Dataset Summary Description The 2008 Hospital Report Card was mandated by the FY08 Appropriations Act, and focused on Congressionally-mandated metrics applicable to general patient populations. The 2009 VHA Facility Quality and Safety Repor report, not required by Congress, shifts to Veteran-centered metrics, and includes information related to infrastructure, care provided in outpatient and hospital settings, quality of care within given patient populations, accreditation status, patient satisfaction and patient outcomes for FY2008. The data in this report have been compiled from multiple sources throughout VHA. This dataset is a compilation of available services within each medical center, whether a medical center is accreditated by Joint commission and/or CARF and details the number of admissions by bed section, admissions per 1000 uniques, and average length of stay by bed sections. Total number of outpatient visits, number of unique patients and the medical center staffing.

232

SRS - Programs - Liquid Waste Disposition  

NLE Websites -- All DOE Office Websites (Extended Search)

Liquid Waste Disposition Liquid Waste Disposition This includes both the solidification of highly radioactive liquid wastes stored in SRS's tank farms and disposal of liquid low-level waste generated as a by-product of the separations process and tank farm operations. This low-level waste is treated in the Effluent Treatment Facility. High-activity liquid waste is generated at SRS as by-products from the processing of nuclear materials for national defense, research and medical programs. The waste, totaling about 36 million gallons, is currently stored in 49 underground carbon-steel waste tanks grouped into two "tank farms" at SRS. While the waste is stored in the tanks, it separates into two parts: a sludge that settles on the bottom of the tank, and a liquid supernate that resides on top of the sludge. The waste is reduced to about 30 percent of its original volume by evaporation. The condensed evaporator "overheads" are transferred to the Effluent Treatment Project for final cleanup prior to release to the environment. As the concentrate cools a portion of it crystallizes forming solid saltcake. The concentrated supernate and saltcake are less mobile and therefore less likely to escape to the environment in the event of a tank crack or leak.

233

Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Environment Feature Stories Public Reading Room: Environmental Documents, Reports LANL Home Phonebook Calendar Video About Operational Excellence Facilities Facilities...

234

SELECTION OF SURPLUS PLUTONIUM MATERIALS FOR DISPOSITION TO WIPP  

SciTech Connect

The U.S. Department of Energy (DOE) is preparing a Surplus Plutonium Disposition (SPD) Supplemental Environmental Impact Statement (SEIS). Included in the evaluation are up to 6 metric tons (MT) of plutonium in the form of impure oxides and metals for which a disposition plan has not been decided, among options that include preparation as feed for the Mixed Oxide Fuel Fabrication Facility; disposing to high-level waste through the Savannah River Site (SRS) HB Line and H Canyon; can-in-canister disposal using the SRS Defense Waste Processing Facility; and preparation for disposal at the Waste Isolation Pilot Plant (WIPP). DOE and SRS have identified at least 0.5 MT of plutonium that, because of high levels of chemical and isotopic impurities, is impractical for disposition by methods other than the WIPP pathway. Characteristics of these items and the disposition strategy are discussed.

Allender, J.; Mcclard, J.; Christopher, J.

2012-06-08T23:59:59.000Z

235

Mound facility physical characterization  

Science Conference Proceedings (OSTI)

The purpose of this report is to provide a baseline physical characterization of Mound`s facilities as of September 1993. The baseline characterizations are to be used in the development of long-term future use strategy development for the Mound site. This document describes the current missions and alternative future use scenarios for each building. Current mission descriptions cover facility capabilities, physical resources required to support operations, current safety envelope and current status of facilities. Future use scenarios identify potential alternative future uses, facility modifications required for likely use, facility modifications of other uses, changes to safety envelope for the likely use, cleanup criteria for each future use scenario, and disposition of surplus equipment. This Introductory Chapter includes an Executive Summary that contains narrative on the Functional Unit Material Condition, Current Facility Status, Listing of Buildings, Space Plans, Summary of Maintenance Program and Repair Backlog, Environmental Restoration, and Decontamination and Decommissioning Programs. Under Section B, Site Description, is a brief listing of the Site PS Development, as well as Current Utility Sources. Section C contains Site Assumptions. A Maintenance Program Overview, as well as Current Deficiencies, is contained within the Maintenance Program Chapter.

Tonne, W.R.; Alexander, B.M.; Cage, M.R.; Hase, E.H.; Schmidt, M.J.; Schneider, J.E.; Slusher, W.; Todd, J.E.

1993-12-01T23:59:59.000Z

236

Proliferation resistance criteria for fissile material disposition issues  

Science Conference Proceedings (OSTI)

The 1994 National Acdaemy of Sciences study ``Management and Disposition of Excess Weapons Plutonium`` defined options for reducing the national and international proliferation risks of materials declared excess to the nuclear weapons program. This paper proposes criteria for assessing the proliferation resistance of these options as well defining the ``Standards`` from the report. The criteria are general, encompassing all stages of the disposition process from storage through intermediate processing to final disposition including the facilities, processing technologies and materials, the level of safeguards for these materials, and the national/subnational threat to the materials.

Rutherford, D.A.; Fearey, B.L.; Markin, J.T.; Close, D.A. [Los Alamos National Lab., NM (United States); Tolk, K.M.; Mangan, D.L. [Sandia National Labs., Albuquerque, NM (United States); Moore, L. [Lawrence Livermore National Lab., CA (United States)

1995-09-01T23:59:59.000Z

237

Request For Records Disposition | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Strategic Petroleum Reserve Request For Records Disposition More Documents & Publications Request For Records Disposition Authority: Strategic Petroleum Reserve Project Management...

238

Draft Surplus Plutonium Disposition Supplemental Environmental...  

National Nuclear Security Administration (NNSA)

DOE could decide, based on programmatic, engineering, facility safety, cost, and schedule information, and on the environmental impact analysis in this SPD Supplemental EIS, which...

239

Safety System Oversight Assessment of the Los Alamos National Laboratory Weapons Engineering Tritium Facility Tritium Gas Handling System  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Site Visit Report Site Visit Report Safety System Oversight Assessment of the Los Alamos National Laboratory Weapons Engineering Tritium Facility Tritium Gas Handling System INTRODUCTION AND OVERVIEW This report documents the results of the Office of Health, Safety and Security's (HSS) review of a safety system oversight (SSO) assessment of the Los Alamos National Laboratory (LANL) Weapons Engineering Tritium Facility (WETF) tritium gas handling system (TGHS). The assessment evaluated the TGHS's ability to perform as required by safety bases and other applicable requirements. The assessment was sponsored by the U.S. Department of Energy (DOE) Los Alamos Site Office (LASO) and was conducted October 25 - November 5, 2010. LASO was the overall lead organization for the evaluation, which included independent

240

CHARACTERIZATION OF SURPLUS PLUTONIUM FOR DISPOSITION OPTIONS  

SciTech Connect

The United States (U.S.) has identified 61.5 metric tons (MT) of plutonium that is permanently excess to use in nuclear weapons programs, including 47.2 MT of weapons-grade plutonium. Except for materials that remain in use for programs outside of national defense, including programs for nuclear-energy development, the surplus inventories will be stored safely by the Department of Energy (DOE) and then transferred to facilities that will prepare the plutonium for permanent disposition. Some items will be disposed as transuranic waste, low-level waste, or spent fuel. The remaining surplus plutonium will be managed through: (1) the Mixed Oxide (MOX) Fuel Fabrication Facility (FFF), to be constructed at the Savannah River Site (SRS), where the plutonium will be converted to fuel that will be irradiated in civilian power reactors and later disposed to a high-level waste (HLW) repository as spent fuel; (2) the SRS H-Area facilities, by dissolving and transfer to HLW systems, also for disposal to the repository; or (3) alternative immobilization techniques that would provide durable and secure disposal. From the beginning of the U.S. program for surplus plutonium disposition, DOE has sponsored research to characterize the surplus materials and to judge their suitability for planned disposition options. Because many of the items are stored without extensive analyses of their current chemical content, the characterization involves three interacting components: laboratory sample analysis, if available; non-destructive assay data; and rigorous evaluation of records for the processing history for items and inventory groups. This information is collected from subject-matter experts at inventory sites and from materials stabilization and surveillance programs, in cooperation with the design agencies for the disposition facilities. This report describes the operation and status of the characterization program.

Allender, J; Edwin Moore, E; Scott Davies, S

2008-07-15T23:59:59.000Z

Note: This page contains sample records for the topic "facility disposition safety" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Annual report to Congress: Department of Energy activities relating to the Defense Nuclear Facilities Safety Board, calendar year 1998  

Science Conference Proceedings (OSTI)

This is the ninth Annual Report to the Congress describing Department of Energy (Department) activities in response to formal recommendations and other interactions with the Defense Nuclear Facilities Safety Board (Board). The Board, an independent executive-branch agency established in 1988, provides advice and recommendations to the Secretary of energy regarding public health and safety issues at the Department`s defense nuclear facilities. The Board also reviews and evaluates the content and implementation of health and safety standards, as well as other requirements, relating to the design, construction, operation, and decommissioning of the Department`s defense nuclear facilities. The locations of the major Department facilities are provided. During 1998, Departmental activities resulted in the proposed closure of one Board recommendation. In addition, the Department has completed all implementation plan milestones associated with four other Board recommendations. Two new Board recommendations were received and accepted by the Department in 1998, and two new implementation plans are being developed to address these recommendations. The Department has also made significant progress with a number of broad-based initiatives to improve safety. These include expanded implementation of integrated safety management at field sites, a renewed effort to increase the technical capabilities of the federal workforce, and a revised plan for stabilizing excess nuclear materials to achieve significant risk reduction.

NONE

1999-02-01T23:59:59.000Z

242

Preparation Guide for U. S. Department of Energy Nonreator Nuclear Facility Document Safety Analysis  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SENSITIVE DOE-STD-3009-94 July 1994 CHANGE NOTICE NO. 1 January 2000 CHANGE NOTICE NO. 2 April 2002 DOE STANDARD PREPARATION GUIDE FOR U.S DEPARTMENT OF ENERGY NONREACTOR NUCLEAR FACILITY DOCUMENTED SAFETY ANALYSES U.S. Department of Energy AREA SAFT Washington, DC 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. TS TS This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax: (301) 903-9823. Available to the public from the U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161;

243

Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Facility Documented Safety Analysis  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE-STD-3009-94 July 1994 CHANGE NOTICE NO. 12 January 2000 5 December 24 April 20021 DOE STANDARD PREPARATION GUIDE FOR U.S DEPARTMENT OF ENERGY NONREACTOR NUCLEAR FACILITY DOCUMENTED SAFETY ANALYSISANALYSES REPORTS U.S. Department of Energy AREA SAFT Washington, DC 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. TS This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax: (301) 903-9823. Available to the public from the U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161;

244

DOE-HDBK-1113-98, CN 1, Reaffirm; Radiological Safety Training for Uranium Facilities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

REAFFIRMATION WITH REAFFIRMATION WITH ERRATA April 2005 DOE HANDBOOK RADIOLOGICAL SAFETY TRAINING FOR URANIUM FACILITIES U.S. Department of Energy FSC 6910 Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. DOE-HDBK-1113-98 ii This document has been reproduced from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax: (301) 903-9823. Available to the public from U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161; (703) 605-6000. DOE-HDBK-1113-98 iii April 2005 Reaffirmation with Errata Changes to DOE-HDBK-1113-98, Radiological

245

DOE-HDBK-1113-98, CH 1; Radiological Safety Training for Uranium Facilities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3-9 8 February 199 8 CHANGE NOTICE NO. 1 December 2002 DOE HANDBOOK RADIOLOGICAL SAFETY TRAINING FOR URANIUM FACILITIES U.S. Department of Energy FSC 6910 Washington, D.C. 20585 DISTRIBUTION STATEMENT A. A pproved for public release; dist ribution is unlim ited. DOE-HDBK-1113-98 This document has been reproduced from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax: (301) 903-9823. Available to the public from U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161; (703) 605-6000. DOE-HDBK-1113-98 iii Foreword This Handbook describes a recommended implementation process for additional training as outlined in

246

Accident safety analysis for 300 Area N Reactor Fuel Fabrication and Storage Facility  

SciTech Connect

The purpose of the accident safety analysis is to identify and analyze a range of credible events, their cause and consequences, and to provide technical justification for the conclusion that uranium billets, fuel assemblies, uranium scrap, and chips and fines drums can be safely stored in the 300 Area N Reactor Fuel Fabrication and Storage Facility, the contaminated equipment, High-Efficiency Air Particulate filters, ductwork, stacks, sewers and sumps can be cleaned (decontaminated) and/or removed, the new concretion process in the 304 Building will be able to operate, without undue risk to the public, employees, or the environment, and limited fuel handling and packaging associated with removal of stored uranium is acceptable.

Johnson, D.J.; Brehm, J.R.

1994-01-01T23:59:59.000Z

247

DOE-STD-6002-96; DOE Standard Safety of Magnetic Fusion Facilities: Requirements  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6002-96 6002-96 May 1996 DOE STANDARD SAFETY OF MAGNETIC FUSION FACILITIES: REQUIREMENTS U.S. Department of Energy AREA SAFT Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from the Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831; (423) 576-8401. Available to the public from the U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161; (703) 487-4650. Order No. DE96009495 DOE-STD-6002-96 iii TABLE OF CONTENTS Page FOREWORD....................................................................................................................... v

248

Criticality safety strategy for the Fuel Cycle Facility electrorefiner at Argonne National Laboratory, West  

Science Conference Proceedings (OSTI)

The Integral Fast Reactor being developed by Argonne National Laboratory (ANL) combines the advantages of metal-fueled, liquid-metal-cooled reactors and a closed fuel cycle. Presently, the Fuel Cycle Facility (FCF) at ANL-West in Idaho Falls, Idaho is being modified to recycle spent metallic fuel from Experimental Breeder Reactor II as part of a demonstration project sponsored by the Department of Energy. A key component of the FCF is the electrorefiner (ER) in which the actinides are separated from the fission products. In the electrorefining process, the metal fuel is anodically dissolved into a high-temperature molten salt and refined uranium or uranium/plutonium products are deposited at cathodes. In this report, the criticality safety strategy for the FCF ER is summarized. FCF ER operations and processes formed the basis for evaluating criticality safety and control during actinide metal fuel refining. In order to show criticality safety for the FCF ER, the reference operating conditions for the ER had to be defined. Normal operating envelopes (NOES) were then defined to bracket the important operating conditions. To keep the operating conditions within their NOES, process controls were identified that can be used to regulate the actinide forms and content within the ER. A series of operational checks were developed for each operation that wig verify the extent or success of an operation. The criticality analysis considered the ER operating conditions at their NOE values as the point of departure for credible and incredible failure modes. As a result of the analysis, FCF ER operations were found to be safe with respect to criticality.

Mariani, R.D.; Benedict, R.W. [Argonne National Lab., Idaho Falls, ID (United States); Lell, R.M.; Turski, R.B.; Fujita, E.K. [Argonne National Lab., IL (United States)

1993-09-01T23:59:59.000Z

249

Savannah River Site Achieves Transuranic Waste Disposition Goal in 2013 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Savannah River Site Achieves Transuranic Waste Disposition Goal in Savannah River Site Achieves Transuranic Waste Disposition Goal in 2013 Savannah River Site Achieves Transuranic Waste Disposition Goal in 2013 December 24, 2013 - 12:00pm Addthis Workers gather behind a “Safety and Security begins with Me” banner at the Savannah River Site. Workers gather behind a "Safety and Security begins with Me" banner at the Savannah River Site. Workers sort through transuranic waste at the Savannah River Site. Workers sort through transuranic waste at the Savannah River Site. SRR employees Glenn Kelly and Fred Merriweather pour the final amount of grout into Tank 6. SRR employees Glenn Kelly and Fred Merriweather pour the final amount of grout into Tank 6. Workers gather behind a "Safety and Security begins with Me" banner at the Savannah River Site.

250

Annual report to Congress: Department of Energy activities relating to the Defense Nuclear Facilities Safety Board, Calendar Year 1999  

SciTech Connect

This is the tenth Annual Report to the Congress describing Department of Energy activities in response to formal recommendations and other interactions with the Defense Nuclear Facilities Safety Board (Board). The Board, an independent executive-branch agency established in 1988, provides advice and recommendations to the Secretary of Energy regarding public health and safety issues at the Department's defense nuclear facilities. The Board also reviews and evaluates the content and implementation of health and safety standards, as well as other requirements, relating to the design, construction, operation, and decommissioning of the Department's defense nuclear facilities. During 1999, Departmental activities resulted in the closure of nine Board recommendations. In addition, the Department has completed all implementation plan milestones associated with three Board recommendations. One new Board recommendation was received and accepted by the Department in 1999, and a new implementation plan is being developed to address this recommendation. The Department has also made significant progress with a number of broad-based initiatives to improve safety. These include expanded implementation of integrated safety management at field sites, opening of a repository for long-term storage of transuranic wastes, and continued progress on stabilizing excess nuclear materials to achieve significant risk reduction.

None

2000-02-01T23:59:59.000Z

251

Office of Nuclear Facility Basis & Facility Design  

NLE Websites -- All DOE Office Websites (Extended Search)

Office of Nuclear Safety Basis & Facility Design(HS-31) Reports to the Office of Nuclear Safety About Us The Office of Nuclear Safety Basis & Facility Design establishes safety...

252

Highly enriched uranium (HEU) storage and disposition program plan  

SciTech Connect

Recent changes in international relations and other changes in national priorities have profoundly affected the management of weapons-usable fissile materials within the United States (US). The nuclear weapon stockpile reductions agreed to by the US and Russia have reduced the national security requirements for these fissile materials. National policies outlined by the US President seek to prevent the accumulation of nuclear weapon stockpiles of plutonium (Pu) and HEU, and to ensure that these materials are subjected to the highest standards of safety, security and international accountability. The purpose of the Highly Enriched Uranium (HEU) Storage and Disposition Program Plan is to define and establish a planned approach for storage of all HEU and disposition of surplus HEU in support of the US Department of Energy (DOE) Fissile Material Disposition Program. Elements Of this Plan, which are specific to HEU storage and disposition, include program requirements, roles and responsibilities, program activities (action plans), milestone schedules, and deliverables.

Arms, W.M.; Everitt, D.A.; O`Dell, C.L.

1995-01-01T23:59:59.000Z

253

REQUEST FOR RECORDS DISPOSITION AUTHORITY | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FOR RECORDS DISPOSITION AUTHORITY REQUEST FOR RECORDS DISPOSITION AUTHORITY Atomic Energy Commission REQUEST FOR RECORDS DISPOSITION AUTHORITY More Documents & Publications...

254

REQUEST FOR RECORDS DISPOSITION AUTHORITY | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

RECORDS DISPOSITION AUTHORITY More Documents & Publications Disposition Schedule: Human Radiation Experiments REQUEST FOR RECORDS DISPOSITION AUTHORITY REQUEST FOR RECORDS...

255

Letter from Nuclear Energy Institute regarding Integrated Safety Analysis: Why it is Appropropriate for Fuel Recycling Facilities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

082 l F: 202.533.0166 l rxm@nei.org l www.nei.org 082 l F: 202.533.0166 l rxm@nei.org l www.nei.org Rod McCullum DIRECTOR FUEL CYCLE PROJECTS NUCLEAR GENERATION DIVISION September 10, 2010 Ms. Catherine Haney Director Office of Nuclear Material Safety and Safeguards U.S. Nuclear Regulatory Commission Washington, DC 20555-0001 Subject: Integrated Safety Analysis: Why It Is Appropriate for Fuel Recycling Facilities Project Number: 689 Dear Ms. Haney: Enclosed for your review is a Nuclear Energy Institute white paper on the use of Integrated Safety Analysis (ISA) at U.S. Nuclear Regulatory Commission-licensed recycling facilities. This paper is intended as an information source for the NRC and should serve as a foundation for discussion with industry representatives on the issue.

256

JM to Revise DOE O 420.1B, Facility Safety (9-23-10)  

Directives, Delegations, and Requirements

This approval includes revision of the three implementing Guides: DOE G 420.1-1, Nonreactor Nuclear Safety Design Criteria and Explosive Safety Criteria Guide ...

2010-09-23T23:59:59.000Z

257

Used Fuel Disposition R&D Documents | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technologies Used Fuel Disposition Research & Development Used Fuel Disposition R&D Documents Used Fuel Disposition R&D Documents April 30, 2012 Office of UNF Disposition...

258

Hanford Tank Waste Retrieval, Treatment and Disposition Framework |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hanford Tank Waste Retrieval, Treatment and Disposition Framework Hanford Tank Waste Retrieval, Treatment and Disposition Framework Hanford Tank Waste Retrieval, Treatment and Disposition Framework Completing the Office of River Protection (ORP) mission of stabilizing 56 million gallons of chemical and radioactive waste stored in Hanford's 177 tanks is one of the Energy Department's highest priorities. This Framework document outlines a phased approach for beginning tank waste treatment while continuing to resolve technical issues with the Pretreatment and High-Level Waste Facilities. Hanford Tank Waste Retrieval, Treatment and Disposition Framework More Documents & Publications EIS-0391: Draft Environmental Impact Statement Waste Treatment Plant and Tank Farm Program EIS-0356: Notice of Intent to Prepare an Environmental Impact Statement

259

Hanford Tank Waste Retrieval, Treatment and Disposition Framework |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hanford Tank Waste Retrieval, Treatment and Disposition Framework Hanford Tank Waste Retrieval, Treatment and Disposition Framework Hanford Tank Waste Retrieval, Treatment and Disposition Framework Completing the Office of River Protection (ORP) mission of stabilizing 56 million gallons of chemical and radioactive waste stored in Hanford's 177 tanks is one of the Energy Department's highest priorities. This Framework document outlines a phased approach for beginning tank waste treatment while continuing to resolve technical issues with the Pretreatment and High-Level Waste Facilities. Hanford Tank Waste Retrieval, Treatment and Disposition Framework More Documents & Publications EIS-0391: Draft Environmental Impact Statement Waste Treatment Plant and Tank Farm Program EIS-0356: Notice of Intent to Prepare an Environmental Impact Statement

260

Chemical Safety Vulnerability Working Group report. Volume 1  

Science Conference Proceedings (OSTI)

The Chemical Safety Vulnerability (CSV) Working Group was established to identify adverse conditions involving hazardous chemicals at DOE facilities that might result in fires or explosions, release of hazardous chemicals to the environment, or exposure of workers or the public to chemicals. A CSV Review was conducted in 148 facilities at 29 sites. Eight generic vulnerabilities were documented related to: abandoned chemicals and chemical residuals; past chemical spills and ground releases; characterization of legacy chemicals and wastes; disposition of legacy chemicals; storage facilities and conditions; condition of facilities and support systems; unanalyzed and unaddressed hazards; and inventory control and tracking. Weaknesses in five programmatic areas were also identified related to: management commitment and planning; chemical safety management programs; aging facilities that continue to operate; nonoperating facilities awaiting deactivation; and resource allocations. Volume 1 contains the Executive summary; Introduction; Summary of vulnerabilities; Management systems weaknesses; Commendable practices; Summary of management response plan; Conclusions; and a Glossary of chemical terms.

Not Available

1994-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "facility disposition safety" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Safety classification of systems 300 area N reactor fuel supply facilities  

Science Conference Proceedings (OSTI)

Classification of the Fuel Supply Shutdown (FSS) safety systems, equipment, and components is presented.

Benecke, M.W., Westinghouse Hanford, Richland, WA

1997-10-10T23:59:59.000Z

262

Annual report to Congress. Department of Energy activities relating to the Defense Nuclear Facilities Safety Board, calendar year 2000  

Science Conference Proceedings (OSTI)

This Annual Report to the Congress describes the Department of Energy's activities in response to formal recommendations and other interactions with the Defense Nuclear Facilities Safety Board. During 2000, the Department completed its implementation and proposed closure of one Board recommendation and completed all implementation plan milestones associated with two additional Board recommendations. Also in 2000, the Department formally accepted two new Board recommendations and developed implementation plans in response to those recommendations. The Department also made significant progress with a number of broad-based safety initiatives. These include initial implementation of integrated safety management at field sites and within headquarters program offices, issuance of a nuclear safety rule, and continued progress on stabilizing excess nuclear materials to achieve significant risk reduction.

None

2001-03-01T23:59:59.000Z

263

Safety analysis--200 Area Savannah River Site: Separations Area operations Building 211-H Outside Facilities. Supplement 11, Revision 1  

Science Conference Proceedings (OSTI)

The H-Area Outside Facilities are located in the 200-H Separations Area and are comprised of a number of processes, utilities, and services that support the separations function. Included are enriched uranium loadout, bulk chemical storage, water handling, acid recovery, general purpose evaporation, and segregated solvent facilities. In addition, services for water, electricity, and steam are provided. This Safety Analysis Report (SAR) documents an analysis of the H-Area Outside Facilities and is one of a series of documents for the Separations Area as specified in the SR Implementation Plan for DOE order 5481.1A. The primary purpose of the analysis was to demonstrate that the facility can be operated without undue risk to onsite or offsite populations, to the environment, and to operating personnel. In this report, risks are defined as the expected frequencies of accidents, multiplied by the resulting radiological consequences in person-rem. Following the summary description of facility and operations is the site evaluation including the unique features of the H-Area Outside Facilities. The facility and process design are described in Chapter 3.0 and a description of operations and their impact is given in Chapter 4.0. The accident analysis in Chapter 5.0 is followed by a list of safety related structures and systems (Chapter 6.0) and a description of the Quality Assurance program (Chapter 7.0). The accident analysis in this report focuses on estimating the risk from accidents as a result of operation of the facilities. The operations were evaluated on the basis of three considerations: potential radiological hazards, potential chemical toxicity hazards, and potential conditions uniquely different from normal industrial practice.

Not Available

1993-01-01T23:59:59.000Z

264

October 24, 2003, Criteria and Guidelines For the Assessment of Safety System Software and Firmware at Defense Nuclear Facilities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3.1 3.1 Revision 3 October 24, 2003 U. S. Department of Energy Criteria and Guidelines For the Assessment of Safety System Software and Firmware at Defense Nuclear Facilities October 24, 2003 CRAD - 4.2.3.1 Revision 3 October 24, 2003 i TABLE OF CONTENTS ACRONYMS...................................................................................................................................ii GLOSSARY ...................................................................................................................................iii 1.0 INTRODUCTION .....................................................................................................................1 2.0 BACKGROUND .......................................................................................................................2

265

SRS - Programs - H Area Nuclear Materials Disposition  

NLE Websites -- All DOE Office Websites (Extended Search)

H Area Nuclear Materials Disposition H Area Nuclear Materials Disposition The primary mission of the H-Canyon Complex is to dissolve, purify and blend-down surplus highly enriched uranium (HEU) and aluminum-clad foreign and domestic research reactor fuel to produce a low enriched uranium (LEU) solution suitable for conversion to commercial reactor fuel. A secondary mission for H-Canyon is to dissolve excess plutonium (Pu) not suitable for MOX and transfer it for vitrification in the Defense Waste Processing Facility at SRS. H Canyon was constructed in the early 1950s and began operations in 1955. The building is called a canyon because of its long rectangular shape and two continuous trenches that contains the process vessels. It is approximately 1,000 feet long with several levels to accommodate the various stages of material stabilization, including control rooms to monitor overall equipment and operating processes, equipment and piping gallery for solution transport, storage, and disposition, and unique overhead bridge cranes to support overall process operations. All work is remotely controlled, and employees are further protected from radiation by thick concrete walls.

266

Dismantlement and Disposition | National Nuclear Security Administrati...  

National Nuclear Security Administration (NNSA)

Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Dismantlement and Disposition Home > Our Mission > Managing the Stockpile > Dismantlement and Disposition Dismantlement...

267

Consent Order, Uranium Disposition Services, LLC - NCO-2010-01 | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Uranium Disposition Services, LLC - NCO-2010-01 Uranium Disposition Services, LLC - NCO-2010-01 Consent Order, Uranium Disposition Services, LLC - NCO-2010-01 March 26, 2010 Consent Order issued to Uranium Disposition Services, LLC related to Construction Deficiencies at the DUF6 Conversion Buildings at the Portsmouth and Paducah Gaseous Diffusion Plants The Office of Health, Safety and Security's Office of Enforcement has completed its investigation into the facts and circumstances associated with construction deficiencies at the DUF6 Conversion Buildings located at the Portsmouth and Paducah Gaseous Diffusion Plants. The investigation reports, dated January 22, 2009, and April 23, 2009, were provided to Uranium Disposition Services, LLC (DDS), and addressed specific areas of potential noncompliance with DOE nuclear safety requirements established in

268

DOE-STD-101-92; Compilation of Nuclear Safety Criteria Potential Application to DOE Nonreactor Facilities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

-1O1-92 -1O1-92 DE92 011016 COMPILATION OF NUCLEAR SAFETY CRITERIA POTENTIAL APPLICATION TO DOE NONREACTOR FACILITIES Published: March 1992 U.S. Department of Energy Office of Nuclear Energy Office of Nuclear Safety Policy and Standards Washington,DC 20585 This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from the Office of Scientific and Technical Informa- tion, P.O. Box 62, Oak Ridge, TN 37831; prices available from (423) 576-8401. Available to the public from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Rd., Springfield, VA 22161. Order No. DE92011016 DOE-STD-101-92 CONTENTS FOREWORD 1. INTRODUCTION 1.1 Purpose 1.2 Sources of Criteria and Format 1.3 Safety Analysis Report Criteria

269

.Dear Secretary Bodman: In its response to the Defense Nuclear Facilities Safety Board's (Board)  

E-Print Network (OSTI)

of Energy (DOE) committed to revitalizing Integrated Safety Management (ISM) with "a set of actions the Department will pursue to re-confirm that ISM will be the foundation of the Department's safety management approach and to address identified weaknesses in implementation. " The enclosed technical report, DNFSB/TECH-36, Integrated Safety Management: The Foundation for an Effective Safety Culture, provides an assessment of the strengths and weaknesses of the current state of ISM implementation at the National Nuclear Security Administration's (NNSA) production plants and laboratories. ISM was established 10 years ago as a new approach to integrating work and safety. The concept was adopted by DOE to enhance safety awareness, upgrade formality of operations, and improve safety performance. However, the potential for this practical safety system to achieve operational excellence and instill a sustainable safety culture has not been fully realized. From the broadest perspective, requirements and mechanisms to implement ISM are established, but implementation of safety management systems varies from site to site. This report examines the current status of the effectiveness of ISM systems at the seven NNSA weapons sites, summarizes

Joseph F. Bader; John E Mansfield; The Honorable; Samuel W. Bodman; Oversight Of Complex; High-hazard Organizations; The Department; A J. Eggenberger; Ms Patty Wagner

2006-01-01T23:59:59.000Z

270

Health and safety plan for characterization sampling of ETR and MTR facilities  

SciTech Connect

This health and safety plan establishes the procedures and requirements that will be used to minimize health and safety risks to persons performing Engineering Test Reactor and Materials Test Reactor characterization sampling activities, as required by the Occupational Safety and Health Administration standard, 29 CFR 1910.120. It contains information about the hazards involved in performing the tasks, and the specific actions and equipment that will be used to protect persons working at the site.

Baxter, D.E.

1994-10-01T23:59:59.000Z

271

Prepared by: Facilities and Environmental Health & Safety Divisions June 17, 2011  

E-Print Network (OSTI)

state. The LOTOAuthorized Employee must test potential energy sources using appropriately rated of Energy (DOE), LBNL requires all construction subcontractors to comply with the DOE Worker Safety ­ Industrial Hygiene Chapter 5 ­ Occupational Safety Chapter 6 ­ Safe Work Authorization Chapter 8

Knowles, David William

272

Criticality safety aspects of decontamination and decommissioning at defense nuclear facilities  

SciTech Connect

Defense nuclear facilities have operated for forty years with a well-defined mission to produce weapons components for the nation. With the end of the cold war, the facilities` missions have changed to one of decontamination and decommissioning. Off-normal operations and use of new procedures, such as will exist during these activities, have often been among the causal factors in previous criticality accidents at process facilities. This paper explores the similarities in causal factors in previous criticality accidents to the conditions existing in current defense nuclear facilities undergoing the transition to decontamination and decommissioning. Practices to reduce the risk to workers, the public, and the environment are recommended.

Croucher, D.W.

1994-02-01T23:59:59.000Z

273

Upgrades to meet LANL SF, 121-2011, hazardous waste facility permit requirements  

Science Conference Proceedings (OSTI)

Members of San IIdefonso have requested information from LANL regarding implementation of the revision to LANL's Hazardous Waste Facility Permit (the RCRA Permit). On January 26, 2011, LANL staff from the Waste Disposition Project and the Environmental Protection Division will provide a status update to Pueblo members at the offices of the San IIdefonso Department of Environmental and Cultural Preservation. The Waste Disposition Project presentation will focus on upgrades and improvements to LANL waste management facilities at TA-50 and TA-54. The New Mexico Environment Department issued LANL's revised Hazardous Waste Facility permit on November 30, 2010 with a 30-day implementation period. The Waste Disposition Project manages and operates four of LANL's permitted facilities; the Waste Characterization, Reduction and Repackaging Facility (WCRRF) at TA-SO, and Area G, Area L and the Radioassay and Nondestructive Testing facility (RANT) at TA-54. By implementing a combination of permanent corrective action activities and shorter-term compensatory measures, WDP was able to achieve functional compliance on December 30, 2010 with new Permit requirements at each of our facilities. One component of WOP's mission at LANL is centralized management and disposition of the Laboratory's hazardous and mixed waste. To support this mission objective, WOP has undertaken a project to upgrade our facilities and equipment to achieve fully compliant and efficient waste management operations. Upgrades to processes, equipment and facilities are being designed to provide defense-in-depth beyond the minimum, regulatory requirements where worker safety and protection of the public and the environment are concerned. Upgrades and improvements to enduring waste management facilities and operations are being designed so as not to conflict with future closure activities at Material Disposal Area G and Material Disposal Area L.

French, Sean B [Los Alamos National Laboratory; Johns - Hughes, Kathryn W [Los Alamos National Laboratory

2011-01-21T23:59:59.000Z

274

Safe, Cost Effective Management of Inactive Facilities at the Savannah River Site  

SciTech Connect

The Savannah River Site is part of the U.S. Department of Energy complex. It was constructed during the early 1950s to produce basic materials (such as plutonium-239 and tritium) used in the production of nuclear weapons. The 310-square-mile site is located in South Carolina, about 12 miles south of Aiken, South Carolina, and about 15 miles southeast of Augusta, Georgia. Savannah River Site (SRS) has approximately 200 facilities identified as inactive. These facilities range in size and complexity from large nuclear reactors to small storage buildings. These facilities are located throughout the site including three reactor areas, the heavy water plant area, the manufacturing area, and other research and support areas. Unlike DOE Closure Sites such as Hanford and Rocky Flats, SRS is a Project Completion Site with continuing missions. As facilities complete their defined mission, they are shutdown and transferred from operations to the facility disposition program. At the SRS, Facilities Decontamination and Decommissioning (FDD) personnel manage the disposition phase of a inactive facility's life cycle in a manner that minimizes life cycle cost without compromising (1) the health or safety of workers and the public or (2) the quality of the environment. The disposition phase begins upon completion of operations shutdown and extends through establishing the final end-state. FDD has developed innovative programs to manage their responsibilities within a constrained budget.

Austin, W. E.; Yannitell, D. M.; Freeman, D. W.

2002-02-25T23:59:59.000Z

275

Unallocated Off-Specification Highly Enriched Uranium: Recommendations for Disposition  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy (DOE) has made significant progress with regard to disposition planning for 174 metric tons (MTU) of surplus Highly Enriched Uranium (HEU). Approximately 55 MTU of this 174 MTU are ''offspec'' HEU. (''Off-spec'' signifies that the isotopic or chemical content of the material does not meet the American Society for Testing and Materials standards for commercial nuclear reactor fuel.) Approximately 33 of the 55 MTU have been allocated to off-spec commercial reactor fuel per an Interagency Agreement between DOE and the Tennessee Valley Authority (1). To determine disposition plans for the remaining {approx}22 MTU, the DOE National Nuclear Security Administration (NNSA) Office of Fissile Materials Disposition (OFMD) and the DOE Office of Environmental Management (EM) co-sponsored this technical study. This paper represents a synopsis of the formal technical report (NNSA/NN-0014). The {approx} 22 MTU of off-spec HEU inventory in this study were divided into two main groupings: one grouping with plutonium (Pu) contamination and one grouping without plutonium. This study identified and evaluated 26 potential paths for the disposition of this HEU using proven decision analysis tools. This selection process resulted in recommended and alternative disposition paths for each group of HEU. The evaluation and selection of these paths considered criteria such as technical maturity, programmatic issues, cost, schedule, and environment, safety and health compliance. The primary recommendations from the analysis are comprised of 7 different disposition paths. The study recommendations will serve as a technical basis for subsequent programmatic decisions as disposition of this HEU moves into the implementation phase.

Bridges, D. N.; Boeke, S. G.; Tousley, D. R.; Bickford, W.; Goergen, C.; Williams, W.; Hassler, M.; Nelson, T.; Keck, R.; Arbital, J.

2002-02-27T23:59:59.000Z

276

Guidance for the design and management of a maintenance plan to assure safety and improve the predictability of a DOE nuclear irradiation facility. Final report  

SciTech Connect

A program is recommended for planning the maintenance of DOE nuclear facilities that will help safety and enhance availability throughout a facility`s life cycle. While investigating the requirements for maintenance activities, a major difference was identified between the strategy suitable for a conventional power reactor and one for a research reactor facility: the latter should provide a high degree of predicted availability (referred to hereafter as ``predictability``) to its users, whereas the former should maximize total energy production. These differing operating goals necessitate different maintenance strategies. A strategy for scheduling research reactor facility operation and shutdown for maintenance must balance safety, reliability,and predicted availability. The approach developed here is based on three major elements: (1) a probabilistic risk analysis of the balance between assured reliability and predictability (presented in Appendix C), (2) an assessment of the safety and operational impact of maintenance activities applied to various components of the facility, and (3) a data base of historical and operational information on the performance and requirements for maintenance of various components. These factors are integrated into a set of guidelines for designing a new highly maintainable facility, for preparing flexible schedules for improved maintenance of existing facilities, and for anticipating the maintenance required to extend the life of an aging facility. Although tailored to research reactor facilities, the methodology has broader applicability and may therefore be used to improved the maintenance of power reactors, particularly in anticipation of peak load demands.

Booth, R.S.; Kryter, R.C.; Shepard, R.L.; Smith, O.L. [Oak Ridge National Lab., TN (United States); Upadhyaya, B.R. [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Nuclear Engineering; Rowan, W.J.

1994-10-01T23:59:59.000Z

277

disposition. prices | OpenEI  

Open Energy Info (EERE)

disposition. prices disposition. prices Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is Table 15, and contains only the reference case. The dataset uses gigawatts. The data is broken down into production, net imports, consumption by sector and price. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO coal coal supply disposition. prices EIA Data application/vnd.ms-excel icon AEO2011: Coal Supply, Disposition, and Prices- Reference Case (xls, 91.7 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually Time Period 2008-2035 License License Open Data Commons Public Domain Dedication and Licence (PDDL)

278

PROJECT STRATEGY FOR THE REMEDIATION AND DISPOSITION OF LEGACY TRANSURANIC WASTE AT THE SAVANNAH RIVER SITE, South Carolina, USA  

Science Conference Proceedings (OSTI)

This paper discusses the Savannah River Site Accelerated Transuranic (TRU) Waste Project that was initiated in April of 2009 to accelerate the disposition of remaining legacy transuranic waste at the site. An overview of the project execution strategy that was implemented is discussed along with the lessons learned, challenges and improvements to date associated with waste characterization, facility modifications, startup planning, and remediation activities. The legacy waste was generated from approximately 1970 through 1990 and originated both on site as well as at multiple US Department of Energy sites. Approximately two thirds of the waste was previously dispositioned from 2006 to 2008, with the remaining one third being the more hazardous waste due to its activity (curie content) and the plutonium isotope Pu-238 quantities in the waste. The project strategy is a phased approach beginning with the lower activity waste in existing facilities while upgrades are made to support remediation of the higher activity waste. Five waste remediation process lines will be used to support the full remediation efforts which involve receipt of the legacy waste container, removal of prohibited items, venting of containers, and resizing of contents to fit into current approved waste shipping containers. Modifications have been minimized to the extent possible to meet the accelerated goals and involve limited upgrades to address life safety requirements, radiological containment needs, and handling equipment for the larger waste containers. Upgrades are also in progress for implementation of the TRUPACT III for the shipment of Standard Large Boxes to the Waste Isolation Pilot Plant, the US TRU waste repository. The use of this larger shipping container is necessary for approximately 20% of the waste by volume due to limited size reduction capability. To date, approximately 25% of the waste has been dispositioned, and several improvements have been made to the overall processing plan as well as facility processing rates. These lessons learned, challenges, and improvements will be discussed to aid other sites in their efforts to conduct similar activities.

Rodriguez, M.

2010-12-17T23:59:59.000Z

279

Approach to developing a ground-motion design basis for facilities important to safety at Yucca Mountain  

SciTech Connect

The Department of Energy has proposed a methodology for developing a ground-motion design basis for prospective facilities at Yucca Mountain that are important to safety. The methodology utilizes a quasi-deterministic construct that is designed to provide a conservative, robust, and reproducible estimate of ground motion that has a one-in-ten chance of occurring during the preclosure period. This estimate is intended to define a ground-motion level for which the seismic design would ensure minimal disruption to operations; engineering analyses to ensure safe performance in the unlikely event that the design basis is exceeded are a part of the proposed methodology. 8 refs.

King, J.L.

1990-04-01T23:59:59.000Z

280

Criticality Safety Evaluation Report for the Cold Vacuum Drying (CVD) Facilities Process Water Handling System  

SciTech Connect

This report addresses the criticality concerns associated with process water handling in the Cold Vacuum Drying Facility. The controls and limitations on equipment design and operations to control potential criticality occurrences are identified.

KESSLER, S.F.

2000-08-10T23:59:59.000Z

Note: This page contains sample records for the topic "facility disposition safety" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Fuel-cycle facilities: preliminary safety and environmental information document. Volume VII  

Science Conference Proceedings (OSTI)

Information is presented concerning the mining and milling of uranium and thorium; uranium hexafluoride conversion; enrichment; fuel fabrication; reprocessing; storage options; waste disposal options; transportation; heavy-water-production facilities; and international fuel service centers.

Not Available

1980-01-01T23:59:59.000Z

282

REQUEST FOR RECORDS DISPOSITION AUTHORITY | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

REQUEST FOR RECORDS DISPOSITION AUTHORITY REQUEST FOR RECORDS DISPOSITION AUTHORITY U. S. Atomic Energy Commision REQUEST FOR RECORDS DISPOSITION AUTHORITY More Documents &...

283

Request For Records Disposition Authority | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oil and Gas Division Request For Records Disposition Authority More Documents & Publications REQUEST FOR RECORDS DISPOSITION AUTHORITY Request For Records Disposition Autnority...

284

Request For Records Disposition Authority | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Disposition Authority Request For Records Disposition Authority Naval Petroleum and Oil Shale Reserves Request For Records Disposition Authority More Documents & Publications...

285

EIS-0229: Storage and Disposition of Weapons-Usable Fissile Materials |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

29: Storage and Disposition of Weapons-Usable Fissile 29: Storage and Disposition of Weapons-Usable Fissile Materials EIS-0229: Storage and Disposition of Weapons-Usable Fissile Materials Summary The EIS will evaluate the reasonable alternatives and potential environmental impacts for the proposed siting, construction, and operation of three types of facilities for plutonium disposition. Public Comment Opportunities None available at this time. Documents Available For Download September 5, 2007 EIS-0229: Supplement Analysis (September 2007) Storage of Surplus Plutonium Materials at the Savannah River Site November 14, 2003 EIS-0229: Record of Decision (November 2003) Storage and Disposition of Weapons-Usable Fissile Materials November 7, 2003 EIS-0229-SA-03: Supplement Analysis Fabrication of Mixed Oxide Fuel Lead Assemblies in Europe

286

Evaluation of a Radiation Worker Safety Training Program at a nuclear facility  

SciTech Connect

A radiation safety course was evaluated using the Kirkpatrick criteria of training evaluation as a guide. Thirty-nine employees were given the two-day training course and were compared with 15 employees in a control group who did not receive the training. Cognitive results show an immediate gain in knowledge, and substantial retention at 6 months. Implications of the results are discussed in terms of applications to current radiation safety training was well as follow-on training research and development requirements.

Lindsey, J.E.

1993-05-01T23:59:59.000Z

287

Site & Facility Restoration | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Restoration Restoration Site & Facility Restoration Deactivation & Decommissioning (D&D) Deactivation and Decommissioning (D&D) is the process of taking an active/excess/abandoned facility to a final disposition end state. Because of residual radioactivity, other hazardous constituents, and the physical condition of EM's facilities, D&D presents unique hazards that must be addressed from a safety, programmatic, environmental, and technological standpoint. Read more Soil & Groundwater Remediation The U.S. Department of Energy (DOE) manages the largest groundwater and soil remediation effort in the world. The inventory at the DOE sites includes 6.5 trillion liters of contaminated groundwater, an amount equal to about four times the daily U.S. water consumption, and 40 million cubic

288

NRC comprehensive records disposition schedule  

SciTech Connect

Title 44 United States Code, Public Printing and Documents,'' regulations cited in the General Services Administration's (GSA) Federal Information Resources Management Regulations'' (FIRMR), Part 201-9, Creation, Maintenance, and Use of Records,'' and regulation issued by the National Archives and Records Administration (NARA) in 36 CFR Chapter XII, Subchapter B, Records Management,'' require each agency to prepare and issue a comprehensive records disposition schedule that contains the NARA approved records disposition schedules for records unique to the agency and contains the NARA's General Records Schedules for records common to several or all agencies. The approved records disposition schedules specify the appropriate duration of retention and the final disposition for records created or maintained by the NRC. NUREG-0910, Rev. 2, contains NRC's Comprehensive Records Disposition Schedule,'' and the original authorized approved citation numbers issued by NARA. Rev. 2 totally reorganizes the records schedules from a functional arrangement to an arrangement by the host office. A subject index and a conversion table have also been developed for the NRC schedules to allow staff to identify the new schedule numbers easily and to improve their ability to locate applicable schedules.

Not Available

1992-03-01T23:59:59.000Z

289

Waste Receiving and Processing (WRAP) Facility Final Safety Analysis Report (FSAR)  

Science Conference Proceedings (OSTI)

The Waste Receiving and Processing Facility (WRAP), 2336W Building, on the Hanford Site is designed to receive, confirm, repackage, certify, treat, store, and ship contact-handled transuranic and low-level radioactive waste from past and present U.S. Department of Energy activities. The WRAP facility is comprised of three buildings: 2336W, the main processing facility (also referred to generically as WRAP); 2740W, an administrative support building; and 2620W, a maintenance support building. The support buildings are subject to the normal hazards associated with industrial buildings (no radiological materials are handled) and are not part of this analysis except as they are impacted by operations in the processing building, 2336W. WRAP is designed to provide safer, more efficient methods of handling the waste than currently exist on the Hanford Site and contributes to the achievement of as low as reasonably achievable goals for Hanford Site waste management.

TOMASZEWSKI, T.A.

2000-04-25T23:59:59.000Z

290

REQUEST FOR RECORDS DISPOSITION AUTHORITY  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

LEAVE BLANK (NARA use only) LEAVE BLANK (NARA use only) JOB NUMBER To: NATIONAL ARCHIVES & RECORDS ADMINISTRATION 8601 ADELPHI ROAD, COLLEGE PARK, MD 20740-6001 Date Received 1. FROM (Agency or establishment) NOTIFICATION TO AGENCY In accordance with the provisions of 44 U.S.C 3303a, the disposition request, including amendments is approved except for items that may be marked "disposition not approved" or "withdrawn" in column 10. 2. MAJOR SUB DIVISION 3. MINOR SUBDIVISION 4. NAME OF PERSON WITH WHOM TO CONFER 5. TELEPHONE DATE ARCHIVIST OF THE UNITED STATES 6. AGENCY CERTIFICATION I hereby certify that I am authorized to act for this agency in matters pertaining to the disposition of its records and that the records proposed for disposal on the attached______page(s) are not needed now for the business of this agency or will not be

291

Review of Documented Safety Analysis Development for the Hanford Site Waste Treatment and Immobilization Plant (LBL Facilities), April 23, 2013 (HSS CRAD 45-58, Rev. 0)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

U.S. Department of U.S. Department of Energy Subject: Review of Documented Safety Analysis Development for the Hanford Site Waste Treatment and Immob ilization Plant (LBL Facilities) - C riteria and Review Approach D oc um~ HS: HSS CRAD 45-58 Rev: 0 Eff. Date: April 23, 2013 Office of Safety and Emergency Management Evaluations Acting Di rec or, Office of Safety and Emergency Nltanagement Evaluations Date: Apri l 23 , 20 13 Criteria and Review Approach Document ~~ trd,James Low Date: April 23 , 20 13 1.0 PURPOSE Within the Office of H.ealth, Safety and Security (HSS), the Office of Enforcement and Overs ight, Office of Safety and Emergency Management Evaluations (HS-45) miss io n is to assess the effectiveness of the environment, safety, health, and emergency management systems and practices used by line and

292

Review of Nuclear Criticality Safety Requirements Implementation for Hanford Tank Farms Facility  

SciTech Connect

In November 1999, the Deputy Secretary of the Department of Energy directed a series of actions to strengthen the Department's ongoing nuclear criticality safety programs. A Review Plan describing lines of inquiry for assessing contractor programs was included. The Office of River Protection completed their assessment of the Tank Farm Contractor program in May 2000. This document supports that assessment by providing a compliance statement for each line of inquiry.

DEFIGH PRICE, C.

2000-08-09T23:59:59.000Z

293

Mixed and low-level waste treatment project: Appendix C, Health and safety criteria for the mixed and low-level waste treatment facility at the Idaho National Engineering Laboratory  

Science Conference Proceedings (OSTI)

This report contains health and safety information relating to the chemicals that have been identified in the mixed waste streams at the Waste Treatment Facility at the Idaho National Engineering Laboratory. Information is summarized in two summary sections--one for health considerations and one for safety considerations. Detailed health and safety information is presented in material safety data sheets (MSDSs) for each chemical.

Neupauer, R.M.; Thurmond, S.M.

1992-09-01T23:59:59.000Z

294

Mixed and low-level waste treatment project: Appendix C, Health and safety criteria for the mixed and low-level waste treatment facility at the Idaho National Engineering Laboratory. Part 2, Chemical constituents  

Science Conference Proceedings (OSTI)

This report contains health and safety information relating to the chemicals that have been identified in the mixed waste streams at the Waste Treatment Facility at the Idaho National Engineering Laboratory. Information is summarized in two summary sections--one for health considerations and one for safety considerations. Detailed health and safety information is presented in material safety data sheets (MSDSs) for each chemical.

Neupauer, R.M.; Thurmond, S.M.

1992-09-01T23:59:59.000Z

295

DOE Order Self Study Modules - DOE-STD-3009-94, Preparation Guide for U.S. Department of Energy Nonreactor Nuclear Facilities Documented Safety Analyses  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3009-94 3009-94 PREPARATION GUIDE FOR U.S. DEPARTMENT OF ENERGY NONREACTOR NUCLEAR FACILITY DOCUMENTED SAFETY ANALYSES DOE-STD-3009-94 Familiar Level June 2011 1 DOE-STD-3009-94 PREPARATION GUIDE FOR U.S. DEPARTMENT OF ENERGY NONREACTOR NUCLEAR FACILITY DOCUMENTED SAFETY ANALYSES FAMILIAR LEVEL _______________________________________________________________________________ OBJECTIVES Given the familiar level of this module and the resources listed below, you will be able to answer the following questions: 1. What are five general requirements for contractors who are responsible for a hazard category 1, 2, or 3 nuclear facility, as related to establishing a safety basis? 2. What actions must a contractor take when it is made aware of a potential inadequacy of

296

IX disposition project, project management plan  

SciTech Connect

This subproject management plan defines the roles, responsibilities, and actions required for the execution of the IX Disposition Project.

WILLIAMS, N.H.

1999-05-11T23:59:59.000Z

297

Disposition Schedule: Human Radiation Experiments | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Schedule: Human Radiation Experiments Disposition Schedule: Human Radiation Experiments This database contains information on records collections related to human radiation...

298

Material Removal and Disposition | National Nuclear Security...  

National Nuclear Security Administration (NNSA)

Removal and Disposition | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response...

299

EPRI Report on Solid Material Disposition: Evaluation to Assess Industry Impact  

Science Conference Proceedings (OSTI)

In March 2005, the NRC staff requested Commission approval for publication of a proposed rule in the Federal Register to amend 10CFR Part 20 to include criteria for controlling the disposition of solid materials. This report provides an initial analysis of whether or not methods of solid material assessment, currently practiced at nuclear power facilities, would be sufficient to meet the disposition limits in the proposed rule.

2005-12-01T23:59:59.000Z

300

RECORDS DISPOSITION AUTHORIZATION STATE AGENCIES  

E-Print Network (OSTI)

RECORDS DISPOSITION AUTHORIZATION ­ STATE AGENCIES Form RC-108 (Revised 07/2011) STATE, CT 06106 www.cslib.org/publicrecords AUTHORITY: State agencies in the Executive branch and certain or Transfer Agreement), and retain pursuant to S1-390. STATE AGENCY: DIVISION / UNIT: ADDRESS (for return

Oliver, Douglas L.

Note: This page contains sample records for the topic "facility disposition safety" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Assessment of nuclear safety and nuclear criticality potential in the Defense Waste Processing Facility. Revision 1  

SciTech Connect

The S-Area Defense Waste Processing Facility (DWPF) will initially process Batch 1 sludge in the sludge-only processing mode, with simulated non-radioactive Precipitate Hydrolysis, Aqueous (PHA) product, without the risk of nuclear criticality. The dilute concentration of fissile material in the sludge combined with excess of neutron absorbers during normal operations make criticality throughout the whole process incredible. Subsequent batches of the DWPF involving radioactive precipitate slurry and PHA will require additional analysis. Any abnormal or upset process operations, which are not considered in this report and could potentially separate fissile material, must be individually evaluated. Scheduled maintenance operation procedures are not considered to be abnormal.

Ha, B.C.

1993-07-20T23:59:59.000Z

302

Chemical Safety Vulnerability Working Group report. Volume 3  

SciTech Connect

The Chemical Safety Vulnerability (CSV) Working Group was established to identify adverse conditions involving hazardous chemicals at DOE facilities that might result in fires or explosions, release of hazardous chemicals to the environment, or exposure of workers or the public to chemicals. A CSV Review was conducted in 148 facilities at 29 sites. Eight generic vulnerabilities were documented related to: abandoned chemicals and chemical residuals; past chemical spills and ground releases; characterization of legacy chemicals and wastes; disposition of legacy chemicals; storage facilities and conditions; condition of facilities and support systems; unanalyzed and unaddressed hazards; and inventory control and tracking. Weaknesses in five programmatic areas were also identified related to: management commitment and planning; chemical safety management programs; aging facilities that continue to operate; nonoperating facilities awaiting deactivation; and resource allocations. Volume 3 consists of eleven appendices containing the following: Field verification reports for Idaho National Engineering Lab., Rocky Flats Plant, Brookhaven National Lab., Los Alamos National Lab., and Sandia National Laboratories (NM); Mini-visits to small DOE sites; Working Group meeting, June 7--8, 1994; Commendable practices; Related chemical safety initiatives at DOE; Regulatory framework and industry initiatives related to chemical safety; and Chemical inventory data from field self-evaluation reports.

Not Available

1994-09-01T23:59:59.000Z

303

Fissile Materials Disposition | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Fissile Materials Disposition | National Nuclear Security Administration Fissile Materials Disposition | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Fissile Materials Disposition Home > About Us > Our Programs > Nonproliferation > Fissile Materials Disposition Fissile Materials Disposition Since the end of the Cold War, significant quantities of plutonium and

304

Calculational framework for safety analyses of non-reactor nuclear facilities  

DOE Green Energy (OSTI)

A calculational framework for the consequences analysis of non-reactor nuclear facilities is presented. The analysis framework starts with accident scenarios which are developed through a traditional hazard analysis and continues with a probabilistic framework for the consequences analysis. The framework encourages the use of response continua derived from engineering judgment and traditional deterministic engineering analyses. The general approach consists of dividing the overall problem into a series of interrelated analysis cells and then devising Markov chain like probability transition matrices for each of the cells. An advantage of this division of the problem is that intermediate output (as probability state vectors) are generated at each calculational interface. The series of analyses when combined yield risk analysis output. The analysis approach is illustrated through application to two non-reactor nuclear analyses: the Ulysses Space Mission, and a hydrogen burn in the Hanford waste storage tanks.

Coleman, J.R.

1994-06-01T23:59:59.000Z

305

Development of a pilot safety information document (PSID) for the replacement of radioactive liquid waste treatment facility at Los Alamos National Laboratory  

E-Print Network (OSTI)

Based on recent decisions made by Los Alamos National Laboratory concerning the development of site-wide National Environmental Policy Act documents, an effort was undertaken to develop a Pilot Safety Information Document (PSID) for the replacement Radioactive Liquid Waste Treatment Facility. The PSID documents risk analysis for the proposed facility and some of the alternatives, accident analysis, radioactive and hazardous material doses to off-site individuals, and the cumulative safety risk from adjacent facilities. In addition, this study also compared two methods for calculating the consequences of a radioactive spill. The methods compared were the Superfund model and the release fraction model. It was determined that the release fraction model gives a more realistic estimate of the doses incurred as the result of an accident, and that the Superfund model should be used for estimating the dose before and during the remediation effort. The cumulative safety risk was determined by calculating the exceedance probability if the individual dose from four geographically related facilities. The risk for cancer fatalities was determined to be within the DOE's Nuclear Safety Policy Goals.

Selvage, Ronald Derek

1995-01-01T23:59:59.000Z

306

Hanford Site waste tank farm facilities design reconstitution program plan  

SciTech Connect

Throughout the commercial nuclear industry the lack of design reconstitution programs prior to the mid 1980`s has resulted in inadequate documentation to support operating facilities configuration changes or safety evaluations. As a result, many utilities have completed or have ongoing design reconstitution programs and have discovered that without sufficient pre-planning their program can be potentially very expensive and may result in end-products inconsistent with the facility needs or expectations. A design reconstitution program plan is developed here for the Hanford waste tank farms facility as a consequence of the DOE Standard on operational configuration management. This design reconstitution plan provides for the recovery or regeneration of design requirements and basis, the compilation of Design Information Summaries, and a methodology to disposition items open for regeneration that were discovered during the development of Design Information Summaries. Implementation of this plan will culminate in an end-product of about 30 Design Information Summary documents. These documents will be developed to identify tank farms facility design requirements and design bases and thereby capture the technical baselines of the facility. This plan identifies the methodology necessary to systematically recover documents that are sources of design input information, and to evaluate and disposition open items or regeneration items discovered during the development of the Design Information Summaries or during the verification and validation processes. These development activities will be governed and implemented by three procedures and a guide that are to be developed as an outgrowth of this plan.

Vollert, F.R.

1994-09-06T23:59:59.000Z

307

West Valley Demonstration Project Phase I Decommissioning - Facility  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Project Phase I Decommissioning - Project Phase I Decommissioning - Facility Disposition Partnering Performance Agreement West Valley Demonstration Project Phase I Decommissioning - Facility Disposition Partnering Performance Agreement The Department of Energy, West Valley Demonstration Project (DOE-WVDP) and CH2M Hill B&W West Valley (CHBWV) are committed to continuous improvement and will utilize principles of the DOE Environmental Management (DOE-EM) Partnering Policy to create and foster a team environment to successfully complete the West Valley Demonstration Project (WVDP) Phase I Decommissioning - Faciltiy Disposition. West Valley Demonstration Project Phase I Decommissioning - Facility Disposition Partnering Performance Agreement More Documents & Publications CX-009527: Categorical Exclusion Determination

308

Office of Nuclear Safety  

NLE Websites -- All DOE Office Websites (Extended Search)

Office of Nuclear Safety (HS-30) Office of Nuclear Safety (HS-30) Office of Nuclear Safety Home » Directives » Nuclear and Facility Safety Policy Rules » Nuclear Safety Workshops Technical Standards Program » Search » Approved Standards » Recently Approved » RevCom for TSP » Monthly Status Reports » Archive » Feedback DOE Nuclear Safety Research & Development Program Office of Nuclear Safety Basis & Facility Design (HS-31) Office of Nuclear Safety Basis & Facility Design - About Us » Nuclear Policy Technical Positions/Interpretations » Risk Assessment Working Group » Criticality Safety » DOE O 420.1C Facility Safety » Beyond Design Basis Events Office of Nuclear Facility Safety Programs (HS-32) Office of Nuclear Facility Safety Programs - About Us

309

Savannah River Site Waste Disposition Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Terrel J. Spears Terrel J. Spears Assistant Manager Waste Disposition Project DOE Savannah River Operations Office Savannah River Site Savannah River Site Waste Disposition Project Waste Disposition Project 2 Waste Disposition Project - Mission Radioactive Liquid Waste - Tank Waste Stabilization and Disposition - Disposition 36 million gallons of radioactive liquid waste - Close 49 underground storage tanks in which the waste now resides 3 36.7 Million 33.7 Mgal (92%) 3.0 Mgal (8%) Saltcake Sludge Salt Supernate Volume Curies 397 Million Curies (MCi) 212 MCi (54%) 185 MCi (46%) Gallons (Mgal) 36.5 Million 33.5 Mgal (92%) 3.0 Mgal (8%) Liquid Waste Background Liquid Waste Background * 2 tanks closed * 49 tanks remaining to close - aging, carbon steel - 27 compliant, 22 non-compliant - 12 have known leak sites

310

Uranium Downblending and Disposition Project Technology Readiness...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Centers Field Sites Power Marketing Administration Other Agencies You are here Home Uranium Downblending and Disposition Project Technology Readiness Assessment Uranium...

311

Uranium Downblending and Disposition Project Technology Readiness...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Simulated Operational Environment Environment that uses a range of waste simulants for testing of a virtual prototype. iv 233 Uranium Downblending and Disposition Project...

312

Request For Records Disposition Authority: Strategic Petroleum...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Authority: Strategic Petroleum Reserve Project Management Office Request For Records Disposition Authority: Strategic Petroleum Reserve Project Management Office Paper case files...

313

Fissile Materials Disposition | National Nuclear Security Administrati...  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Disposition Since the end of the Cold War, significant quantities of plutonium and highly enriched uranium have become surplus to the defense needs of both the...

314

Weapons Dismantlement and Disposition NNSS Capabilities  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy (DOE) has tasked the WDD working group to disposition the large inventory of legacy classified weapon components scattered across the complex.

Pat Arnold

2011-12-01T23:59:59.000Z

315

EM Waste and Materials Disposition & Transportation | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and disposal alternatives in the 2 commercial sector Review current policies and directives Provide needed oversight EM Waste and Materials Disposition & Transportation More...

316

Personal Property Disposition - Community Reuse Organizations...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Disposition of Excess Personal Property BACKGROUND AND PURPOSE CROs have been operating asset conversion and personal property transfer programs since shortly after the passage of...

317

Nuclear Safety Workshops  

NLE Websites -- All DOE Office Websites (Extended Search)

Directives Nuclear and Facility Safety Policy Rules Nuclear Safety Workshops Technical Standards Program Search Approved Standards Recently Approved RevCom...

318

Supplement to the Surplus Plutonium Disposition Draft Environmental Impact Statement  

Science Conference Proceedings (OSTI)

On May 22, 1997, DOE published a Notice of Intent in the Federal Register (62 Federal Register 28009) announcing its decision to prepare an environmental impact statement (EIS) that would tier from the analysis and decisions reached in connection with the ''Storage and Disposition of Weapons-Usable Fissile Materials Final Programmatic EIS (Storage and Disposition PEIS)''. ''The Surplus Plutonium Disposition Draft Environmental Impact Statement'' (SPD Draft EIS) (DOWEIS-0283-D) was prepared in accordance with NEPA and issued in July 1998. It identified the potential environmental impacts of reasonable alternatives for the proposed siting, construction, and operation of three facilities for plutonium disposition. These three facilities would accomplish pit disassembly and conversion, immobilization, and MOX fuel fabrication. For the alternatives that included MOX fuel fabrication, the draft also described the potential environmental impacts of using from three to eight commercial nuclear reactors to irradiate MOX fuel. The potential impacts were based on a generic reactor analysis that used actual reactor data and a range of potential site conditions. In May 1998, DCE initiated a procurement process to obtain MOX fuel fabrication and reactor irradiation services. The request for proposals defined limited activities that may be performed prior to issuance of the SPD EIS Record of Decision (ROD) including non-site-specific work associated with the development of the initial design for the MOX fuel fabrication facility, and plans (paper studies) for outreach, long lead-time procurements, regulatory management, facility quality assurance, safeguards, security, fuel qualification, and deactivation. No construction on the proposed MOX facility would begin before an SPD EIS ROD is issued. In March 1999, DOE awarded a contract to Duke Engineering & Services; COGEMA, Inc.; and Stone & Webster (known as DCS) to provide the requested services. The procurement process included the environmental review specified in DOE's NEPA regulations in 10 CFR 1021.216. The six reactors selected are Catawba Nuclear Station Units 1 and 2 in South Carolina McGuire Nuclear Station Units 1 and 2 in North Carolina, and North Anna Power Station Units 1 and 2 in Virginia. The Supplement describes the potential environmental impacts of using MOX fuel in these six specific reactors named in the DCS proposal as well as other program changes made since the SPD Draft EIS was published.

N /A

1999-05-14T23:59:59.000Z

319

Safety Basis Requirements for Nonnuclear Facilities at Lawrence Livermore National Laboratory Site-Specific Work Smart Standard Revision 3 December 2006  

SciTech Connect

This standard establishes requirements that, when coupled with Lawrence Livermore National Laboratory's (LLNL's) Integrated Safety Management System (ISMS) methods and other Work Smart Standards for assuring worker safety, assure that the impacts of nonnuclear operations authorized in LLNL facilities are well understood and controlled in a manner that protects the health of workers, the public, and the environment. All LLNL facilities shall be classified based on potential for adverse impact of operations to the health of co-located (i.e., nearby) workers and the public in accordance with this standard, Title 10 Code of Federal Regulations (10 CFR) 830, Subpart B, and Department of Energy Order (DOE O) 420.2A.

Beach, D; Brereton, S; Failor, R; Hildum, J; Ingram, C; Spagnolo, S; van Warmerdam, C

2007-06-07T23:59:59.000Z

320

REQUEST FOR RECORDS DISPOSITION AUTHORITY  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1nstrlrcrlons on reverts) 1nstrlrcrlons on reverts) ' 0 NATIONAL ARCMVES and RECORDS AD~~INISTRAT~ON (NIR) WASHINGTON, DC 20408 1. FROM (Agency or estabi~shment) Department of Energy Washington, DC 20585 . '2. MAJOR SUBDIVISION fn lccordance w i l h the provirions o f 4 4 DOE~NEVADA OPERATIONS OFFICE U.S.C. 3 3 0 3 r the disposition r e q u c ~ t , including rmtndments, i s approvtd n c t p l 3. MINOR SUBOlVlStON lor ilemr that mky be mrrkcd 'dir wition not approved' o r withdmwn' in c&mn lo. '4. NAME O F PERSON WITH WHOM TO CONFER 5. TELEPHONE Mary Ann Wallace -301 903 4353 6. AGENCY CERTIFICATION I hereby certify that I am authorized to a d for this to th#disposit-ion of its records and that the records roposed for disposal on the P now needed for the business of this agency or wil not be needed after the concurrence f

Note: This page contains sample records for the topic "facility disposition safety" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

REQUEST FOR RECORDS DISPOSITION AUTHORITY  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

m m - REQUEST FOR RECORDS DISPOSITION AUTHORITY (See Instructions on reverse) GENERAL SERVICES ADMINISTRATION N A T I O N A L ARCHIVES AND RECORDS SERVICE, WASHINGTON, DC 20408 1. F R O M ( A g e n c y o r e s t a b l i s h m e n t ) jepartment of Energy 2. MAJOR S U B D I V I S I O N Oak Ridse Operations Office 3. M I N O R S U B D I V I S I O N 4 . N A M E O F PERSON W I T H W H O M T O C O N F E R ( 5 . T E L E P H O N E E X T . L E A V E B L A N K - JOB N O . d/-d33P PO- ZJ - - - - p p D A T E R E C E I V E D p - NOTIFICATION TO AGENCY In accordance with the provisions of 44 U.S.C. 3303a the disposal request, including amendments, is approved except for items that may be marked "disposition not approved" or "withdrawn" in column 10. If no records are proposed for disposal, the signature of the Archivist is not required. - DATE ARCHIVIST

322

October 24, 2003, Assessment Criteria and Guidelines for Determining the Adequacy of Software Used in the Safety Analysis and Design of Defense Nuclear Facilities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4.1 4.1 Revision 3 October 24, 2003 U. S. Department of Energy Assessment Criteria and Guidelines for Determining the Adequacy of Software Used in the Safety Analysis and Design of Defense Nuclear Facilities October 24, 2003 CRAD - 4.2.4.1 Revision 3 October 24, 2003 ii TABLE OF CONTENTS ACRONYMS ..................................................................................................................................iii GLOSSARY ...................................................................................................................................iv 1.0 INTRODUCTION ...............................................................................................................1 2.0 BACKGROUND .................................................................................................................2

323

Evaluation of Calcine Disposition Path Forward  

SciTech Connect

This document describes an evaluation of the baseline and two alternative disposition paths for the final disposition of the calcine wastes stored at the Idaho Nuclear Technology and Engineering Center at the Idaho National Engineering and Environmental Laboratory. The pathways are evaluated against a prescribed set of criteria and a recommendation is made for the path forward.

Birrer, S.A.; Heiser, M.B.

2003-02-26T23:59:59.000Z

324

Evaluation of Calcine Disposition - Path Forward  

SciTech Connect

This document describes an evaluation of the baseline and two alternative disposition paths for the final disposition of the calcine wastes stored at the Idaho Nuclear Technology and Engineering Center at the Idaho National Engineering and Environmental Laboratory. The pathways are evaluated against a prescribed set of criteria and a recommendation is made for the path forward.

Steve Birrer

2003-02-01T23:59:59.000Z

325

REQUEST FOR RECORDS DISPOSITION AUTHORITY | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

This disposition requests describe records of the History Division under the Office Executive Secretariat at the Department of Energy Headquarters REQUEST FOR RECORDS DISPOSITION...

326

U.S. and Russia Sign Plutonium Disposition Agreement | National...  

National Nuclear Security Administration (NNSA)

Agreement U.S. and Russia Sign Plutonium Disposition Agreement September 01, 2000 Washington, DC U.S. and Russia Sign Plutonium Disposition Agreement After two years of...

327

EM Makes Significant Progress on Dispositioning Transuranic Waste...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Makes Significant Progress on Dispositioning Transuranic Waste at Idaho Site EM Makes Significant Progress on Dispositioning Transuranic Waste at Idaho Site December 24, 2013 -...

328

Request For Records Disposition Authority | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Authority Request For Records Disposition Authority Office of Naval Petroleum and Shale Oil Reserves Request For Records Disposition Authority More Documents & Publications...

329

Request For Records Disposition Authority | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Naval Petroleum and Oil Shale Reserves Request For Records Disposition Authority More Documents & Publications Request For Records Disposition Authority Request For Records...

330

PROCEDURE FOR PREPARING RECORDS INVENTORY AND DISPOSITION SCHEDULES...  

NLE Websites -- All DOE Office Websites (Extended Search)

PREPARING RECORDS INVENTORY AND DISPOSITION SCHEDULES (RIDS) PROCEDURE FOR PREPARING RECORDS INVENTORY AND DISPOSITION SCHEDULES (RIDS) This document lists the procedures for...

331

Request For Records Disposition Authority-Nuclear Weapons | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

For Records Disposition Authority-Nuclear Weapons Request For Records Disposition Authority-Nuclear Weapons This document identifies the nuclear weapon records generated by the...

332

Topic Index to the DOE Administrative Records Disposition Schedules...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Topic Index to the DOE Administrative Records Disposition Schedules Topic Index to the DOE Administrative Records Disposition Schedules Topic Index to the DOE Administrative...

333

FACILITY SAFETY (FS)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

protection program has been established and implemented. (10 CFR 830.204(b)(5); 10 CFR 835; DOE O 5400.5; DOE N 441.3) 2. The radiological protection organization is...

334

Nuclear Materials Disposition | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Materials Disposition Nuclear Materials Disposition Nuclear Materials Disposition Nuclear Materials Disposition In fulfilling its mission, EM frequently manages and completes disposition of surplus nuclear materials and spent nuclear fuel. These are not waste. They are nuclear materials no longer needed for national security or other purposes, including spent nuclear fuel, special nuclear materials (as defined by the Atomic Energy Act) and other Nuclear Materials. Spent Nuclear Fuel Spent nuclear fuel (SNF) is fuel that has been withdrawn from a nuclear reactor following irradiation, the constituent elements of which have not been separated by reprocessing. SNF may include: (1) intact, non-defective fuel assemblies or fuel rods; (2) failed fuel assemblies or fuel rods; (3) segments of fuel rods or pieces of fuel derived from spent fuel rods; and

335

I REQUEST FOR RECORDS DISPOSITION AUTHORITY  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

REQUEST FOR RECORDS DISPOSITION AUTHORITY REQUEST FOR RECORDS DISPOSITION AUTHORITY LEAVE BL ...A (NARA use only1 JOB NUMBER TO: NATIONAL ARCHIVES & RECORDS ADMINISTRATION In accordance with the provisions of 44 U.S.C. 3303a, the Office of the Chief Information Officer disposition request, including amendments, is approved except for items that may be marked "disposition not approved" or "withdrawn" in column 10. Records Management Division N1-434-02-2 Date received 860 1 ADELPHI ROAD COLLEGE PARK, MD 20740-600 1 1. FROM (Agency or establishment) Department of Energy , ( / I 4 30 -A&&& NOTIFICATION TO AGENCY 6. AGENCY CERTIFICATION I hereby certify that I am authorized to act for this agency in matters pertaining to the disposition of its records and that the

336

Disposition of Unirradiated Sodium Bonded EBR-II Driver Fuel Elements and HEU Scrap: Work Performed for FY 2007  

SciTech Connect

Specific surplus high enriched uranium (HEU) materials at the Idaho National Laboratory (INL) Materials and Fuels Complex (MFC) will be transferred to a designated off-site receiving facility. The DOE High Enriched Uranium Disposition Program Office (HDPO) will determine which materials, if any, will be prepared and transferred to an off-site facility for processing and eventual fabrication of fuel for nuclear reactors. These surplus HEU materials include approximately 7200 kg unirradiated sodium-bonded EBR-II driver fuel elements, and nearly 800 kg of HEU casting scrap from the process which formed various sodium-bonded fuels (including the EBR-II driver elements). Before the driver fuel can be packaged for shipment, the fuel elements will require removal of the sodium bond. The HEU scrap will also require repackaging in preparation for off-site transport. Preliminary work on this task was authorized by BWXT Y-12 on Nov 6, 2006 and performed in three areas: Facility Modifications Safety Documentation Project Management

Karen A Moore

2007-04-01T23:59:59.000Z

337

Used Fuel Disposition Campaign Disposal  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Campaign Disposal Research and Development Roadmap Prepared for U.S. Department of Energy Used Fuel Disposition Campaign September 2012 FCR&D-USED-2011-000065 REV 1 DISCLAIMER This information was prepared as an account of work sponsored by an agency of the U.S. Government. Neither the U.S. Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness, of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. References herein to any specific commercial product, process, or service by trade name, trade mark, manufacturer, or

338

H. UNREVIEWED SAFETY QUESTIONS  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

all safety basis documents submitted to DOE and (2) preparation of a safety evaluation report concerning the safety basis for a facility. 2. DOE will maintain a public list on the...

339

Chemical Safety Vulnerability Working Group report. Volume 2  

SciTech Connect

The Chemical Safety Vulnerability (CSV) Working Group was established to identify adverse conditions involving hazardous chemicals at DOE facilities that might result in fires or explosions, release of hazardous chemicals to the environment, or exposure of workers or the public to chemicals. A CSV Review was conducted in 148 facilities at 29 sites. Eight generic vulnerabilities were documented related to: abandoned chemicals and chemical residuals; past chemical spills and ground releases; characterization of legacy chemicals and wastes; disposition of legacy chemicals; storage facilities and conditions; condition of facilities and support systems; unanalyzed and unaddressed hazards; and inventory control and tracking. Weaknesses in five programmatic areas were also identified related to: management commitment and planning; chemical safety management programs; aging facilities that continue to operate; nonoperating facilities awaiting deactivation; and resource allocations. Volume 2 consists of seven appendices containing the following: Tasking memorandums; Project plan for the CSV Review; Field verification guide for the CSV Review; Field verification report, Lawrence Livermore National Lab.; Field verification report, Oak Ridge Reservation; Field verification report, Savannah River Site; and the Field verification report, Hanford Site.

Not Available

1994-09-01T23:59:59.000Z

340

DOE/EM Criticality Safety Needs Assessment  

SciTech Connect

The issue of nuclear criticality safety (NCS) in Department of Energy Environmental Management (DOE/EM) fissionable material operations presents challenges because of the large quantities of material present in the facilities and equipment that are committed to storage and/or material conditioning and dispositioning processes. Given the uncertainty associated with the material and conditions for many DOE/EM fissionable material operations, ensuring safety while maintaining operational efficiency requires the application of the most-effective criticality safety practices. In turn, more-efficient implementation of these practices can be achieved if the best NCS technologies are utilized. In 2002, DOE/EM-1 commissioned a survey of criticality safety technical needs at the major EM sites. These needs were documented in the report Analysis of Nuclear Criticality Safety Technology Supporting the Environmental Management Program, issued May 2002. Subsequent to this study, EM safety management personnel made a commitment to applying the best and latest criticality safety technology, as described by the DOE Nuclear Criticality Safety Program (NCSP). Over the past 7 years, this commitment has enabled the transfer of several new technologies to EM operations. In 2008, it was decided to broaden the basis of the EM NCS needs assessment to include not only current needs for technologies but also NCS operational areas with potential for improvements in controls, analysis, and regulations. A series of NCS workshops has been conducted over the past years, and needs have been identified and addressed by EM staff and contractor personnel. These workshops were organized and conducted by the EM Criticality Safety Program Manager with administrative and technical support by staff at Oak Ridge National Laboratory (ORNL). This report records the progress made in identifying the needs, determining the approaches for addressing these needs, and assimilating new NCS technologies into EM fissionable material operations. In addition, the report includes projections of future EM needs and associted recommendations.

Westfall, Robert Michael [ORNL; Hopper, Calvin Mitchell [ORNL

2011-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "facility disposition safety" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Waste Disposition Update by Christine Gelles  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Waste Disposition Update Waste Disposition Update Christine Gelles Associate Deputy Assistant Secretary for Waste Management (EM-30) EM SSAB Chairs Meeting Washington, DC 2 October 2012 www.em.doe.gov 2 o Waste Stream Highlights o DOE Transportation Update o Greater Than Class C (GTCC) Low Level Waste Environmental Impact Statement o Blue Ribbon Commission on America's Nuclear Future o Nuclear Regulatory Commission's LLW Regulatory Initiatives Discussion Topics www.em.doe.gov 3 Waste Stream Highlights www.em.doe.gov 4 o Within current budget outlook, it is especially critical that EM ensures safe, reliable and cost effective disposition paths exist. o The program's refocused organization and the detailed

342

Status and Effectiveness of DOE Efforts to Learn from Internal and External Operating Experience in Accordance with Commitment #20 of the DOE Implementation Plan for Defense Nuclear Facilities Safety Board Recommendation 2004-1  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Safety and Security Safety and Security Report to the Secretary on the Status and Effectiveness of DOE Efforts to Learn from Internal and External Operating Experience in Accordance with Commitment #20 of the DOE Implementation Plan for Defense Nuclear Facilities Safety Board Recommendation 2004-1 February 2011 Office of Health, Safety and Security U.S. Department of Energy Office of Health, Safety and Security HSS Table of Contents 1.0 Introduction ......................................................................................................................... 1 2.0 Department-wide Action Plan for the Columbia Accident and Davis-Besse Event ........... 3 3.0 Comprehensive Operating Experience Program ................................................................. 5

343

Status and Effectiveness of DOE Efforts to Learn from Internal and External Operating Experience in Accordance with Commitment #20 of the DOE Implementation Plan for Defense Nuclear Facilities Safety Board Recommendation 2004-1  

NLE Websites -- All DOE Office Websites (Extended Search)

Safety and Security Safety and Security Report to the Secretary on the Status and Effectiveness of DOE Efforts to Learn from Internal and External Operating Experience in Accordance with Commitment #20 of the DOE Implementation Plan for Defense Nuclear Facilities Safety Board Recommendation 2004-1 February 2011 Office of Health, Safety and Security U.S. Department of Energy Office of Health, Safety and Security HSS Table of Contents 1.0 Introduction ......................................................................................................................... 1 2.0 Department-wide Action Plan for the Columbia Accident and Davis-Besse Event ........... 3 3.0 Comprehensive Operating Experience Program ................................................................. 5

344

EIS-0283: Surplus Plutonium Disposition Environmental Impact Statement  

Energy.gov (U.S. Department of Energy (DOE))

This EIS analyzes the potential environmental impacts associated with alternatives for the disposition of surplus plutonium.

345

Management response plan for the Chemical Safety Vulnerability Working Group report. Volume 1  

SciTech Connect

The Chemical Safety Vulnerability (CSV) Working Group was established to identify adverse conditions involving hazardous chemicals at DOE facilities that might result in fires or explosions, release of hazardous chemicals to the environment, or exposure of workers or the public to chemicals. A CSV Review was conducted in 146 facilities at 29 sites. Eight generic vulnerabilities were documented related to: abandoned chemicals and chemical residuals; past chemical spills and ground releases; characterization of legacy chemicals and wastes; disposition of legacy chemicals; storage facilities and conditions; condition of facilities and support systems; unanalyzed and unaddressed hazards; and inventory control and tracking. Weaknesses in five programmatic areas were also identified related to: management commitment and planning; chemical safety management programs; aging facilities that continue to operate; nonoperating facilities awaiting deactivation; and resource allocations. Volume 1 contains a discussion of the chemical safety improvements planned or already underway at DOE sites to correct facility or site-specific vulnerabilities. The main part of the report is a discussion of each of the programmatic deficiencies; a description of the tasks to be accomplished; the specific actions to be taken; and the organizational responsibilities for implementation.

Not Available

1994-09-01T23:59:59.000Z

346

Mixed and low-level waste treatment project: Appendix C, Health and safety criteria for the mixed and low-level waste treatment facility at the Idaho National Engineering Laboratory  

SciTech Connect

This report describes health and safety concerns associated with the Mixed and Low-level Waste Treatment Facility at the Idaho National Engineering Laboratory. Various hazards are described such as fire, electrical, explosions, reactivity, temperature, and radiation hazards, as well as the potential for accidental spills, exposure to toxic materials, and other general safety concerns.

Neupauer, R.M.; Thurmond, S.M.

1992-09-01T23:59:59.000Z

347

Mixed and low-level waste treatment project: Appendix C, Health and safety criteria for the mixed and low-level waste treatment facility at the Idaho National Engineering Laboratory. Part 1, Waste streams and treatment technologies  

SciTech Connect

This report describes health and safety concerns associated with the Mixed and Low-level Waste Treatment Facility at the Idaho National Engineering Laboratory. Various hazards are described such as fire, electrical, explosions, reactivity, temperature, and radiation hazards, as well as the potential for accidental spills, exposure to toxic materials, and other general safety concerns.

Neupauer, R.M.; Thurmond, S.M.

1992-09-01T23:59:59.000Z

348

Feasibility study for a transportation operations system cask maintenance facility  

SciTech Connect

The US Department of Energy (DOE), Office of Civilian Radioactive Waste Management (OCRWM) is responsible for the development of a waste management program for the disposition of spent nuclear fuel (SNF) and high-level waste (HLW). The program will include a transportation system for moving the nuclear waste from the sources to a geologic repository for permanent disposal. Specially designed casks will be used to safely transport the waste. The cask systems must be operated within limits imposed by DOE, the Nuclear Regulatory Commission (NRC), and the Department of Transportation (DOT). A dedicated facility for inspecting, testing, and maintaining the cask systems was recommended by the General Accounting Office (in 1979) as the best means of assuring their operational effectiveness and safety, as well as regulatory compliance. In November of 1987, OCRWM requested a feasibility study be made of a Cask Maintenance Facility (CMF) that would perform the required functions. 46 refs., 16 figs., 13 tabs.

Rennich, M.J.; Medley, L.G.; Attaway, C.R.

1991-01-01T23:59:59.000Z

349

Barriers and Issues Related to Achieving Final Disposition of Depleted Uranium  

Science Conference Proceedings (OSTI)

Approximately 750,000 metric tons (MT) of surplus depleted uranium (DU) in various chemical forms are stored at several Department of Energy (DOE) sites throughout the United States. Most of the DU is in the form of DU hexafluoride (DUF6) that resulted from uranium enrichment operations over the last several decades. DOE plans to convert the DUF6 to ''a more stable form'' that could be any one or combination of DU tetrafluoride (DUF4 or green salt), DU oxide (DUO3, DUO2, or DU3O8), or metal depending on the final disposition chosen for any given quantity. Barriers to final disposition of this material have existed historically and some continue today. Currently, the barriers are more related to finding uses for this material versus disposing as waste. Even though actions are beginning to convert the DUF6, ''final'' disposition of the converted material has yet to be decided. Unless beneficial uses can be implemented, DOE plans to dispose of this material as waste. This expresses the main barrier to DU disposition; DOE's strategy is to dispose unless uses can be found while the strategy should be only dispose as a last resort and make every effort to find uses. To date, only minimal research programs are underway to attempt to develop non-fuel uses for this material. Other issues requiring resolution before these inventories can reach final disposition (uses or disposal) include characterization, disposal of large quantities, storage (current and future), and treatment options. Until final disposition is accomplished, these inventories must be managed in a safe and environmentally sound manner; however, this is becoming more difficult as materials and facilities age. The most noteworthy final disposition technical issues include the development of reuse and treatment options.

Gillas, D. L.; Chambers, B. K.

2002-02-26T23:59:59.000Z

350

EIS-0283-S1: Supplement to the Surplus Plutonium Disposition Environmental  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3-S1: Supplement to the Surplus Plutonium Disposition 3-S1: Supplement to the Surplus Plutonium Disposition Environmental Impact Statement EIS-0283-S1: Supplement to the Surplus Plutonium Disposition Environmental Impact Statement SUMMARY The Supplement evaluates the potential environmental impacts of using MOX fuel in these six specific reactors named in the DCS proposal as well as other program changes made since the SPD Draft EIS was published. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD November 5, 1999 EIS-0236-S1: DOE Notice of Availability of the Draft Environmental Impact Statement National Ignition Facility Draft Environmental Impact Statement to the Stockpile Stewardship and Management November 5, 1999 EIS-0236-S1: Notice of Availability for the Draft Supplemental Programmatic

351

The Environmental Agency's Assessment of the Post-Closure Safety Case for the BNFL DRIGG Low Level Radioactive Waste Disposal Facility  

SciTech Connect

The Environment Agency is responsible, in England and Wales, for authorization of radioactive waste disposal under the Radioactive Substances Act 1993. British Nuclear Fuels plc (BNFL) is currently authorized by the Environment Agency to dispose of solid low level radioactive waste at its site at Drigg, near Sellafield, NW England. As part of a planned review of this authorization, the Environment Agency is currently undertaking an assessment of BNFL's Post-Closure Safety Case Development Programme for the Drigg disposal facility. This paper presents an outline of the review methodology developed and implemented by the Environment Agency specifically for the planned review of BNFL's Post-Closure Safety Case. The paper also provides an overview of the Environment Agency's progress in its on-going assessment programme.

Streatfield, I. J.; Duerden, S. L.; Yearsley, R. A.

2002-02-26T23:59:59.000Z

352

REQUEST FOR RECORDS DISPOSITION AUTHORITY  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Instructions on reverse) Instructions on reverse) LEAVE BLANK - GENERAL SERVICES ADMINISTRATION NATIONAL ARCHIVES AND RECORDS SERVICE, WASHINGTON, DC 20408 I . F R O M (Agency or ertabluhmentJ D A T E RECEIVED NOTIF~CATION TO AGENCY Department of Energy 2. MAJ0.R S U B D I V I S I O N I 4 . N A M E O F PERSON W I T H W H O M T O CONFER 15. TELEPHONE E X T . \OATS l A R C H l V l S T O F T H E U N I T E D STATES In accordance with the provisions of 44 U.S.C. 3303 the dispoal request. including amendmentr, is approved . 3. M I N O R S U B D I V I S I O N except for items that may be marked "disposition not approved" or "withdrawn" in column 10. If no records are proposed for disposal, the signature of the Archivist is not required. I hereby certify that I am authorized to act for this agency in matters pertaining to the disposal of the agency's records;

353

Facility Representative Program: 2010 Facility Representative Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

10 Facility Representative Workshop 10 Facility Representative Workshop May 12 - 13, 2010 Las Vegas, NV Facility Rep of the Year Award | Attendees | Summary Report Workshop Agenda and Presentations Day 1: Wednesday, May 12, 2010 8:00 a.m. Opening Remarks James Heffner, Facility Representative Program Manager Earl Hughes, Safety System Oversight Program Manager Office of Nuclear Safety Policy and Assistance Office of Health, Safety and Security 8:15 a.m. Welcome from the Nevada Site Office John Mallin, Deputy Assistant Manager for Site Operations Nevada Site Office 8:30 a.m. Workshop Keynote Address Todd Lapointe Chief of Nuclear Safety Central Technical Authority Staff 9:15 a.m. Facility Representative and Safety System Oversight Award Ceremony James Heffner, Facility Representative Program Manager

354

SI Safety Information  

NLE Websites -- All DOE Office Websites (Extended Search)

Information Information Policies and Procedures Radiation Safety Device List (full version)(compressed version) APS QA APS Safety Page DOE Orders DOE Order 420.2 (11/08/95) DOE Order 420.2A (01/08/01) Accelerator Safety Implementation Guide for DOE Order 420.2 DOE Order 420.2B (07/23/04) Expires (07/23/08) (html) (pdf) Accelerator Facility Safety Implementation Guide for DOE O 420.2B (html) (pdf) Safety of Accelerator Facilities (02/18/05) Accelerator Facility Safety Implementation Guide for DOE O 420.2B (pdf) Safety of Accelerator Facilities (7/1/05) ESH Manual Guidance 5480.25 Guidance for an Accelerator Facility Safety Program 5480.25 Guidance (09/01/93) Bases & Rationale for Guidance for an Accelerator Facitlity Safety Program (October 1994) NCRP Report No. 88 "Radiation Alarms and Access Control Systems" (1987) ISBN

355

Nuclear Safety Research and Development (NSR&D) Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety (HS-30) Office of Nuclear Safety Home Directives Nuclear and Facility Safety Policy Rules Nuclear Safety Workshops Technical Standards Program Search ...

356

Criticality safety evaluation report for the cold vacuum drying facility's process water handling system  

SciTech Connect

This report addresses the criticality concerns associated with process water handling in the Cold Vacuum Drying Facility. The controls and limitations on equipment design and operations to control potential criticality occurrences are identified.

NELSON, J.V.

1999-05-12T23:59:59.000Z

357

Management response plan for the Chemical Safety Vulnerability Working Group report. Volume 2  

SciTech Connect

The Chemical Safety Vulnerability (CSV) Working Group was established to identify adverse conditions involving hazardous chemicals at DOE facilities that might result in fires or explosions, release of hazardous chemicals to the environment, or exposure of workers or the public to chemicals. A CSV Review was conducted in 146 facilities at 29 sites. Eight generic vulnerabilities were documented related to: abandoned chemicals and chemical residuals; past chemical spills and ground releases; characterization of legacy chemicals and wastes; disposition of legacy chemicals; storage facilities and conditions; condition of facilities and support systems; unanalyzed and unaddressed hazards; and inventory control and tracking. Weaknesses in five programmatic areas were also identified related to: management commitment and planning; chemical safety management programs; aging facilities that continue to operate; nonoperating facilities awaiting deactivation; and resource allocations. To address the facility-specific and site-specific vulnerabilities, responsible DOE and site-contractor line organizations have developed initial site response plans. These plans, presented as Volume 2 of this Management Response Plan, describe the actions needed to mitigate or eliminate the facility- and site-specific vulnerabilities identified by the CSV Working Group field verification teams. Initial site response plans are described for: Brookhaven National Lab., Hanford Site, Idaho National Engineering Lab., Lawrence Livermore National Lab., Los Alamos National Lab., Oak Ridge Reservation, Rocky Flats Plant, Sandia National Laboratories, and Savannah River Site.

Not Available

1994-09-01T23:59:59.000Z

358

Generic safety documentation model  

SciTech Connect

This document is intended to be a resource for preparers of safety documentation for Sandia National Laboratories, New Mexico facilities. It provides standardized discussions of some topics that are generic to most, if not all, Sandia/NM facilities safety documents. The material provides a ``core`` upon which to develop facility-specific safety documentation. The use of the information in this document will reduce the cost of safety document preparation and improve consistency of information.

Mahn, J.A.

1994-04-01T23:59:59.000Z

359

Pre-title I safety evaluation for the retrieval operations of transuranic waste drums in the Solid Waste Disposal Facility. Revision 2  

SciTech Connect

Phase I of the Transuranic (TRU) Waste Facility Line Item Project includes the retrieval and safe storage of the pad drums that are stored on TRU pads 2-6 in the Solid Waste Disposal Facility (SWDF). Drums containing TRU waste were placed on these pads as early as 1974. The pads, once filled, were mounded with soil. The retrieval activities will include the excavation of the soil, retrieval of the pad drums, placing the drums in overpacks (if necessary) and venting and purging the retrieved drums. Once the drums have been vented and purged, they will be transported to other pads within the SWDF or in a designated area until they are eventually treated as necessary for ultimate shipment to the Waste Isolation Pilot Plant in Carlsbad, New Mexico. This safety evaluation provides a bounding assessment of the radiological risk involved with the drum retrieval activities to the maximally exposed offsite individual and the co-located worker. The results of the analysis indicate that the risk to the maximally exposed offsite individual and the co-located worker using maximum frequencies and maximum consequences are within the acceptance criteria defined in WSRC Procedural Manual 9Q. The purpose of this evaluation is to demonstrate the incremental risk from the SWDF due to the retrieval activities for use as design input only. As design information becomes available, this evaluation can be revised to satisfy the safety analysis requirements of DOE Orders 4700 and 5480.23.

Rabin, M.S.

1992-08-01T23:59:59.000Z

360

NRC comprehensive records disposition schedule. Revision 2  

SciTech Connect

Title 44 United States Code, ``Public Printing and Documents,`` regulations cited in the General Services Administration`s (GSA) ``Federal Information Resources Management Regulations`` (FIRMR), Part 201-9, ``Creation, Maintenance, and Use of Records,`` and regulation issued by the National Archives and Records Administration (NARA) in 36 CFR Chapter XII, Subchapter B, ``Records Management,`` require each agency to prepare and issue a comprehensive records disposition schedule that contains the NARA approved records disposition schedules for records unique to the agency and contains the NARA`s General Records Schedules for records common to several or all agencies. The approved records disposition schedules specify the appropriate duration of retention and the final disposition for records created or maintained by the NRC. NUREG-0910, Rev. 2, contains ``NRC`s Comprehensive Records Disposition Schedule,`` and the original authorized approved citation numbers issued by NARA. Rev. 2 totally reorganizes the records schedules from a functional arrangement to an arrangement by the host office. A subject index and a conversion table have also been developed for the NRC schedules to allow staff to identify the new schedule numbers easily and to improve their ability to locate applicable schedules.

Not Available

1992-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "facility disposition safety" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

NRC comprehensive records disposition schedule. Revision 3  

Science Conference Proceedings (OSTI)

Title 44 US Code, ``Public Printing and Documents,`` regulations issued by the General Service Administration (GSA) in 41 CFR Chapter 101, Subchapter B, ``Management and Use of Information and Records,`` and regulations issued by the National Archives and Records Administration (NARA) in 36 CFR Chapter 12, Subchapter B, ``Records Management,`` require each agency to prepare and issue a comprehensive records disposition schedule that contains the NARA approved records disposition schedules for records unique to the agency and contains the NARA`s General Records Schedules for records common to several or all agencies. The approved records disposition schedules specify the appropriate duration of retention and the final disposition for records created or maintained by the NRC. NUREG-0910, Rev. 3, contains ``NRC`s Comprehensive Records Disposition Schedule,`` and the original authorized approved citation numbers issued by NARA. Rev. 3 incorporates NARA approved changes and additions to the NRC schedules that have been implemented since the last revision dated March, 1992, reflects recent organizational changes implemented at the NRC, and includes the latest version of NARA`s General Records Schedule (dated August 1995).

NONE

1998-02-01T23:59:59.000Z

362

DISPOSITION OF THE DEPARTMENT'SEXCESS FACILITIES, IG-0550 | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ranging from temporary trailer-type buildings and office space to state-of-the-art nuclear reactors and laboratories. As the Department's mission has evolved, many of these...

363

Safety Communications  

NLE Websites -- All DOE Office Websites (Extended Search)

Communications Communications New Staff & Guests Safety Topics ISM Plan Safety Communications Questions about safety and environmental compliance should first be directed to your supervisor or work lead. The Life Sciences Division Safety Coordinator Scott Taylor at setaylor@lbl.gov , 486-6133 (office), or (925) 899-4355 (cell); and Facilities Manager Peter Marietta at PMarietta@lbl.gov, 486-6031 (office), or 967-6596 (cell), are also sources of information. Your work group has a representative to the Division Environment, Health, & Safety Committee. This representative can provide safety guidance and offer a conduit for you to pass on your concerns or ideas. A list of current representatives is provided below. Additional safety information can be obtained on-line from the Berkeley Lab

364

Plutonium Disposition Program | National Nuclear Security Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

Home > Media Room > Fact Sheets > Plutonium Disposition Program Home > Media Room > Fact Sheets > Plutonium Disposition Program Fact Sheet Plutonium Disposition Program Jun 26, 2013 SUPPORTING NUCLEAR NONPROLIFERATION Weapon-grade plutonium and highly enriched uranium (HEU) are the critical ingredients for making a nuclear weapon. With the end of the Cold War, hundreds of tons of these materials were determined to be surplus to U.S. and Russian defense needs. Denying access to plutonium and HEU is the best way to prevent nuclear proliferation to rogue states and terrorist organizations. The most certain method to prevent these materials from falling into the wrong hands is to dispose of them. During the April 2010 Nuclear Security Summit, Secretary of State Hillary Rodham Clinton and Russian Foreign Minister Sergey Lavrov signed a protocol

365

Facility Representative Program: 2007 Facility Representative Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

7 Facility Representative Workshop 7 Facility Representative Workshop May 15 - 17, 2007 Las Vegas, NV Facility Rep of the Year Award | Attendees list | Summary Report [PDF] WORKSHOP AGENDA Final Day 1: Tuesday, May 15, 2007 8:00 a.m. Opening Remarks Joanne Lorence, Facility Representative Program Manager 8:15 a.m. Welcome from the Nevada Site Office Gerald Talbot, Manager, Nevada Site Office 8:30 a.m. Videotaped Remarks from the Deputy Secretary The Honorable Clay Sell, Deputy Secretary of Energy 8:45 a.m. Keynote Address - Safety Oversight Perspective and Expectations Glenn Podonsky, Chief Health, Safety and Security Officer, Office of Health, Safety and Security 9:10 a.m. Facility Representative of the Year Presentation Mark B. Whitaker, Jr., Departmental Representative to the Defense Nuclear Facilities Safety Board,

366

Surplus Highly Enriched Uranium Disposition Program plan  

SciTech Connect

The purpose of this document is to provide upper level guidance for the program that will downblend surplus highly enriched uranium for use as commercial nuclear reactor fuel or low-level radioactive waste. The intent of this document is to outline the overall mission and program objectives. The document is also intended to provide a general basis for integration of disposition efforts among all applicable sites. This plan provides background information, establishes the scope of disposition activities, provides an approach to the mission and objectives, identifies programmatic assumptions, defines major roles, provides summary level schedules and milestones, and addresses budget requirements.

1996-10-01T23:59:59.000Z

367

Supply and Disposition of Crude Oil and Petroleum Products  

U.S. Energy Information Administration (EIA)

Supply Disposition Ending Stocks; Field Production Renewable Fuels & Oxygenate Plant New Production Refinery & Blender Net Production Imports Net Receipts

368

Supply and Disposition of Crude Oil and Petroleum Products  

U.S. Energy Information Administration (EIA)

Supply Disposition Ending Stocks; Field Production Renewable Fuels & Oxygenate Plant Net Production Refinery & Blender Net Production Imports Net Receipts

369

U.S. and Russia Sign Plutonium Disposition Agreement | National...  

NLE Websites -- All DOE Office Websites (Extended Search)

Plutonium Disposition Agreement | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response...

370

Supply and Disposition of Crude Oil and Petroleum Products  

U.S. Energy Information Administration (EIA)

Supply Disposition Ending Stocks; Field Production Renewable Fuels & Oxygenate Plant New Production Refinery & Blender Net Production Imports ...

371

Office of Fissile Materials Disposition | National Nuclear Security...  

NLE Websites -- All DOE Office Websites (Extended Search)

Fissile Materials Disposition | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response...

372

Storage and Disposition of Weapons-Usable Fissile Materials  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

86 86 Federal Register / Vol. 63, No. 156 / Thursday, August 13, 1998 / Notices 1 SRS has been identified by DOE as the preferred site for the immobilization disposition facility. responsibilities are to (1) evaluate the standards of accreditation applied to applicant foreign medical schools; and (2) determine the comparability of those standards to standards for accreditation applied to United States medical schools. For Further Information Contact: Bonnie LeBold, Executive Director, National Committee on Foreign Medical Education and Accreditation, 7th and D Streets, S.W., Room 3082, ROB #3, Washington, D.C. 20202-7563. Telephone: (202) 260-3636. Beginning September 28, 1998, you may call to obtain the identity of the countries whose standards are to be evaluated during this

373

Interim Report on the Disposition of Solid Material: Comparative Review of Three Published Clearance Guides  

Science Conference Proceedings (OSTI)

As part of the rulemaking process, the U.S. Nuclear Regulatory Commission (NRC) is currently evaluating alternative approaches to control the disposition of solid material at nuclear facilities. The proposed rule would likely incorporate a dose-based criterion. While the NRC has been developing the scope and details of a rule, various national and international organizations have reported dose-based activity concentration levels that utilities may apply to clearance. This document evaluates and discusses...

2004-11-15T23:59:59.000Z

374

ANL-W MOX fuel lead assemblies data report for the surplus plutonium disposition environmental impact statement  

SciTech Connect

The purpose of this document is to support the US Department of Energy (DOE) Fissile Materials Disposition Program`s preparation of the draft surplus plutonium disposition environmental impact statement (EIS). This is one of several responses to data call requests for background information on activities associated with the operation of the lead assembly (LA) mixed-oxide (MOX) fuel fabrication facility. The DOE Office of fissile Materials Disposition (DOE-MD) has developed a dual-path strategy for disposition of surplus weapons-grade plutonium. One of the paths is to disposition surplus plutonium through irradiation of MOX fuel in commercial nuclear reactors. MOX fuel consists of plutonium and uranium oxides (PuO{sub 2} and UO{sub 2}), typically containing 95% or more UO{sub 2}. DOE-MD requested that the DOE Site Operations Offices nominate DOE sites that meet established minimum requirements that could produce MOX LAs. The paper describes the following: Site map and the LA facility; process descriptions; resource needs; employment requirements; wastes, emissions, and exposures; accident analysis; transportation; qualitative decontamination and decommissioning; post-irradiation examination; LA fuel bundle fabrication; LA EIS data report assumptions; and LA EIS data report supplement.

O`Connor, D.G.; Fisher, S.E.; Holdaway, R. [and others

1997-08-01T23:59:59.000Z

375

Criticality Safety Evaluation Report CSER-96-019 for Spent Nuclear Fuel (SNF) Processing and Storage Facilities Multi Canister Overpack (MCO)  

Science Conference Proceedings (OSTI)

This criticality evaluation is for Spent N Reactor fuel unloaded from the existing canisters in both KE and KW Basins, and loaded into multiple canister overpack (MCO) containers with specially built baskets containing a maximum of either 54 Mark IV or 48 Mark IA fuel assemblies. The criticality evaluations include loading baskets into the cask-MCO, operation at the Cold Vacuum Drying Facility,a nd storage in the Canister Storage Building. Many conservatisms have been built into this analysis, the primary one being the selection of the K{sub eff} = 0.95 criticality safety limit. This revision incorporates the analyses for the sampling/weld station in the Canister Storage Building and additional analysis of the MCO during the draining at CVDF. Additional discussion of the scrap basket model was added to show why the addition of copper divider plates was not included in the models.

KESSLER, S.F.

1999-10-20T23:59:59.000Z

376

DOE-STD-3007-93 CN-1; DOE Standard Guidelines For Preparing Criticality Safety Evaluations at Department of Energy Non-Reactor Nuclear Facilities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7-93 7-93 November 1993 CHANGE NOTICE NO. 1 September 1998 DOE STANDARD GUIDELINES FOR PREPARING CRITICALITY SAFETY EVALUATIONS AT DEPARTMENT OF ENERGY NON-REACTOR NUCLEAR FACILITIES U.S. Department of Energy AREA SAFT Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from the Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831; (423) 576-8401. Available to the public from the U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161; (703) 605-6000. Order No. DE98003918 Change Notice No. 1 DOE-STD-3007-93 September 1998

377

Environmental, Health and Safety Assessment: ATS 7H Program (Phase 3R) Test Activities at the GE Power Systems Gas Turbine Manufacturing Facility, Greenville, SC  

Science Conference Proceedings (OSTI)

International Technology Corporation (IT) was contracted by General Electric Company (GE) to assist in the preparation of an Environmental, Health and Safety (HI&3) assessment of the implementation of Phase 3R of the Advanced Turbine System (ATS) 7H program at the GE Gas Turbines facility located in Greenville, South Carolina. The assessment was prepared in accordance with GE's contractual agreement with the U.S. Department of Energy (GE/DOE Cooperative Agreement DE-FC21-95MC3 1176) and supports compliance with the requirements of the National Environmental Policy Act of 1970. This report provides a summary of the EH&S review and includes the following: General description of current site operations and EH&S status, Description of proposed ATS 7H-related activities and discussion of the resulting environmental, health, safety and other impacts to the site and surrounding area. Listing of permits and/or licenses required to comply with federal, state and local regulations for proposed 7H-related activities. Assessment of adequacy of current and required permits, licenses, programs and/or plans.

None

1998-11-17T23:59:59.000Z

378

Facility stabilization project, fiscal year 1998 -- Multi-year workplan (MYWP) for WBS 1.4  

SciTech Connect

The primary Facility Stabilization mission is to provide minimum safe surveillance and maintenance of facilities and deactivate facilities on the Hanford Site, to reduce risks to workers, the public and environment, transition the facilities to a low cost, long term surveillance and maintenance state, and to provide safe and secure storage of special nuclear materials, nuclear materials, and nuclear fuel. Facility Stabilization will protect the health and safety of the public and workers, protect the environment and provide beneficial use of the facilities and other resources. Work will be in accordance with the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement), local, national, international and other agreements, and in compliance with all applicable Federal, state, and local laws. The stakeholders will be active participants in the decision processes including establishing priorities, and in developing a consistent set of rules, regulations, and laws. The work will be leveraged with a view of providing positive, lasting economic impact in the region. Effectiveness, efficiency, and discipline in all mission activities will enable Hanford Site to achieve its mission in a continuous and substantive manner. As the mission for Facility Stabilization has shifted from production to support of environmental restoration, each facility is making a transition to support the Site mission. The mission goals include the following: (1) Achieve deactivation of facilities for transfer to EM-40, using Plutonium Uranium Extraction (PUREX) plant deactivation as a model for future facility deactivation; (2) Manage nuclear materials in a safe and secure condition and where appropriate, in accordance with International Atomic Energy Agency (IAEA) safeguards rules; (3) Treat nuclear materials as necessary, and store onsite in long-term interim safe storage awaiting a final disposition decision by US Department of Energy; (4) Implement nuclear materials disposition directives. In the near term these are anticipated to mostly involve transferring uranium to other locations for beneficial use. Work will be in accordance with the Tri-Party Agreement, and other agreements and in compliance with all applicable Federal, state and local laws. The transition to deactivation will be accomplished through a phased approach, while maintaining the facilities in a safe and compliant configuration. In addition, Facility Stabilization will continue to maintain safe long-term storage facilities for Special Nuclear Material (SNM), Nuclear Material (NM), and Nuclear Fuel (NF). The FSP deactivation strategy aligns with the deactivate facilities mission outlined in Hanford Site SE documentation. Inherent to the FSP strategies are specific Hanford Strategic Plan success indicators such as: reduction of risks to workers, the public and environment; increasing the amount of resources recovered for other uses; reduction/elimination of inventory and materials; and reduction/elimination of costly mortgages.

Floberg, W.C.

1997-09-30T23:59:59.000Z

379

Quarterly report on Defense Nuclear Facilities Safety Board Recommendation 90-7 for the period ending June 30, 1993  

Science Conference Proceedings (OSTI)

This is the ninth quarterly report on the progress of activities that address safety issues associated with Hanford Site high-level radioactive waste tanks containing ferrocyanide compounds. Milestones completed this quarter include (1) a report on the credibility of hot spots and a recommendation on infrared scans; (2) a document discussing the strength and limitations of proposed moisture monitoring technologies; (3) limited calibration of the neutron probe in simulant-filled drums; (4) a report interpreting data from auger surface samples of ferrocyanide tank 241-BY-104; (5) a document on the effect of possible catalyst, initiator, and diluents on ferrocyanide reactivity; (6) a report on small scale sensitivity tests of ferrocyanide flowsheet simulants; and (7) preparation and shipment of T Plant simulants for calorimetric and dryout tests.

Cash, R.J.; Dukelow, G.T.; Forbes, C.J.; Meacham, J.E.

1993-10-01T23:59:59.000Z

380

324 Facility special-case waste assessment in support of 324 closure (TPA milestone M-89-05)  

SciTech Connect

Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement Milestone M-89-05, requires US Department of Energy, Richland Operations Office to complete a 324 Facility Special-Case Waste Assessment in Support of 324 Closure. This document, HNF-1270, has been prepared with the intent of meeting this regulatory commitment. Alternatives for the special-case wastes located in the 324 Building were defined and analyzed. Based on the criteria of safety, environmental, complexity of interfaces, risk, cost, schedule, and long-term operability and maintainability, the best alternative was chosen. Waste packaging and transportation options are also included in the recommendations. The waste disposition recommendations for the B-Cell dispersibles/tank heels and High-Level Vault packaged residuals are to direct them to the Plutonium Uranium Extraction Facility (PUREX) Number 2 storage tunnel.

Hobart, R.L.

1998-06-25T23:59:59.000Z

Note: This page contains sample records for the topic "facility disposition safety" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Facilities Condition and Hazards Assessment for Materials and Fuel Complex Facilities MFC-799, 799A, and 770C  

Science Conference Proceedings (OSTI)

The Materials & Fuel Complex (MFC) facilities 799 Sodium Processing Facility (a single building consisting of two areas: the Sodium Process Area (SPA) and the Carbonate Process Area (CPA), 799A Caustic Storage Area, and 770C Nuclear Calibration Laboratory have been declared excess to future Department of Energy mission requirements. Transfer of these facilities from Nuclear Energy to Environmental Management, and an associated schedule for doing so, have been agreed upon by the two offices. The prerequisites for this transfer to occur are the removal of nonexcess materials and chemical inventory, deinventory of the calibration source in MFC-770C, and the rerouting and/or isolation of utility and service systems. This report provides a description of the current physical condition and any hazards (material, chemical, nuclear or occupational) that may be associated with past operations of these facilities. This information will document conditions at time of transfer of the facilities from Nuclear Energy to Environmental Management and serve as the basis for disposition planning. The process used in obtaining this information included document searches, interviews and facility walk-downs. A copy of the facility walk-down checklist is included in this report as Appendix A. MFC-799/799A/770C are all structurally sound and associated hazardous or potentially hazardous conditions are well defined and well understood. All installed equipment items (tanks, filters, etc.) used to process hazardous materials remain in place and appear to have maintained their integrity. There is no evidence of leakage and all openings are properly sealed or closed off and connections are sound. The pits appear clean with no evidence of cracking or deterioration that could lead to migration of contamination. Based upon the available information/documentation reviewed and the overall conditions observed during the facilities walk-down, it is concluded that these facilities may be disposed of at minimal risk to human health, safety or the environment.

Gary Mecham; Don Konoyer

2009-11-01T23:59:59.000Z

382

Study of plutonium disposition using the GE Advanced Boiling Water Reactor (ABWR)  

SciTech Connect

The end of the cold war and the resulting dismantlement of nuclear weapons has resulted in the need for the U.S. to disposition 50 to 100 metric tons of excess of plutonium in parallel with a similar program in Russia. A number of studies, including the recently released National Academy of Sciences (NAS) study, have recommended conversion of plutonium into spent nuclear fuel with its high radiation barrier as the best means of providing long-term diversion resistance to this material. The NAS study {open_quotes}Management and Disposition of Excess Weapons Plutonium{close_quotes} identified light water reactor spent fuel as the most readily achievable and proven form for the disposition of excess weapons plutonium. The study also stressed the need for a U.S. disposition program which would enhance the prospects for a timely reciprocal program agreement with Russia. This summary provides the key findings of a GE study where plutonium is converted into Mixed Oxide (MOX) fuel and a 1350 MWe GE Advanced Boiling Water Reactor (ABWR) is utilized to convert the plutonium to spent fuel. The ABWR represents the integration of over 30 years of experience gained worldwide in the design, construction and operation of BWRs. It incorporates advanced features to enhance reliability and safety, minimize waste and reduce worker exposure. For example, the core is never uncovered nor is any operator action required for 72 hours after any design basis accident. Phase 1 of this study was documented in a GE report dated May 13, 1993. DOE`s Phase 1 evaluations cited the ABWR as a proven technical approach for the disposition of plutonium. This Phase 2 study addresses specific areas which the DOE authorized as appropriate for more in-depth evaluations. A separate report addresses the findings relative to the use of existing BWRs to achieve the same goal.

NONE

1994-04-30T23:59:59.000Z

383

Nuclear Safety Regulatory Framework  

NLE Websites -- All DOE Office Websites (Extended Search)

Department of Energy Department of Energy Nuclear Safety Regulatory Framework DOE's Nuclear Safety Enabling Legislation Regulatory Enforcement & Oversight Regulatory Governance Atomic Energy Act 1946 Atomic Energy Act 1954 Energy Reorganization Act 1974 DOE Act 1977 Authority and responsibility to regulate nuclear safety at DOE facilities 10 CFR 830 10 CFR 835 10 CFR 820 Regulatory Implementation Nuclear Safety Radiological Safety Procedural Rules ISMS-QA; Operating Experience; Metrics and Analysis Cross Cutting DOE Directives & Manuals DOE Standards Central Technical Authorities (CTA) Office of Health, Safety, and Security (HSS) Line Management SSO/ FAC Reps 48 CFR 970 48 CFR 952 Federal Acquisition Regulations External Oversight *Defense Nuclear Facility

384

ARM - ARM Safety Policy  

NLE Websites -- All DOE Office Websites (Extended Search)

Safety Policy Safety Policy About Become a User Recovery Act Mission FAQ Outreach Displays History Organization Participants Facility Statistics Forms Contacts Facility Documents ARM Management Plan (PDF, 335KB) Field Campaign Guidelines (PDF, 1.1MB) ARM Climate Research Facility Expansion Workshop (PDF, 1.46MB) Facility Activities ARM and the Recovery Act Contributions to International Polar Year Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send ARM Safety Policy The ARM Climate Research Facility safety policy states that all activities for which the ARM Climate Research Facility has primary responsibility will be conducted in such a manner that all reasonable precautions are taken to protect the health and safety of employees and the general public. All

385

Used fuel disposition research and development roadmap - FY10 status.  

SciTech Connect

Since 1987 the U.S. has focused research and development activities relevant to the disposal of commercial used nuclear fuel and U.S. Department of Energy (DOE) owned spent nuclear fuel and high level waste on the proposed repository at Yucca Mountain, Nevada. At the same time, the U.S. successfully deployed a deep geologic disposal facility for defense-related transuranic waste in bedded salt at the Waste Isolation Pilot Plant. In 2009 the DOE established the Used Fuel Disposition Campaign (UFDC) within the Office of Nuclear Energy. The Mission of the UFDC is to identify alternatives and conduct scientific research and technology development to enable storage, transportation and disposal of used nuclear fuel and wastes generated by existing and future nuclear fuel cycles. The U.S. national laboratories have participated on these programs and has conducted research and development related to these issues to a limited extent. However, a comprehensive research and development (R&D) program investigating a variety of geologic media has not been a part of the U.S. waste management program since the mid 1980s. Such a comprehensive R&D program is being developed in the UFDC with a goal of meeting the UFDC Grand Challenge to provide a sound technical basis for absolute confidence in the safety and security of long-term storage, transportation, and disposal of used nuclear fuel and wastes from the nuclear energy enterprise. The DOE has decided to no longer pursue the development of a repository at Yucca Mountain, Nevada. Since a repository site will ultimately have to be selected, sited, characterized, designed, and licensed, other disposal options must now be considered. In addition to the unsaturated volcanic tuff evaluated at Yucca Mountain, several different geologic media are under investigation internationally and preliminary assessments indicate that disposal of used nuclear fuel and high level waste in these media is feasible. Considerable progress has been made in the U.S. and other nations in understanding disposal concepts in different geologic media, but gaps in knowledge still exist. A principal aspect of concern to the UFDC as it considers the broad issues of siting a repository in different geologic media are the marked differences in the regulatory bases for assessing suitability and safety of a repository between the U.S. and other nations. Because the probability based - risked informed nature of the current U.S. regulations for high-level radioactive waste and spent nuclear fuel is sufficiently different from other regulations, information gained in previous studies, while useful, likely need to be supplemented to enable more convincing communication with the public, better defense of the numerical models, and stronger safety cases. Thus, it was recognized when the UFDC was established that there were readily identified disposal-related R&D opportunities to address knowledge gaps. An effort to document these research opportunities was a key component of Fiscal Year (FY) 2010 engineered system, natural system, and system-level modeling activities for a range of disposal environments. A principal contribution to identifying these gaps was a workshop held to gather perspectives from experts both within and external to the UFDC regarding R&D opportunities. In the planning for FY2010 it was expected that these activities would culminate with a UFDC research and development roadmap that would identify the knowledge gaps, discuss the R&D needed to fill these gaps, and prioritize the proposed R&D over both the near- and long-term. A number of knowledge gaps and needed R&D were identified and are discussed in this report. However, these preliminary R&D topics have not been evaluated in detail nor have they been prioritized to support future planning efforts. This will be completed in FY11 and the final UFDC Research and Development Roadmap will be completed. This report discusses proposed R&D topics in three areas related to repository siting, design, and performance: natural systems

Nutt, W. M. (Nuclear Engineering Division)

2010-10-01T23:59:59.000Z

386

Disposition of Surplus Highly Enriched Uranium  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

. . ------- .--- --. ---- DOE/EIS-0240 I United States Department of Energy I For Further Information Contact: U.S. Department of Energy Otice of Fissile Materials Disposition, 1000 Independence Ave., SW, Washington, D.C. 20585 1 I ---- I I . I I I I This report has been reproduced directly from the best available copy. Available to DOE and DOE contractors from the Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831; telephone (423) 576-8401 for prices. Available to the public from the National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22161. Copies of this document are available (while supplies last) upon written request to: I Office of Fissile Materials Disposition, MD-4 Forrestal Building United States Department of Energy 1000 Independence Avenue, SW Washington, DC 20585 , @ Printed with soy ink on recycled paper. -_. - COVERS~ET

387

Disposition of Surplus Highly Enriched Uranium  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EIS-0240-S EIS-0240-S For Further Information Contact: U.S. Departmel>t of Energy Office of Fissile Materials Disposition, 1000 Independence Ave., SW, Washington, D.C. 20585 . This report has been reproduced directly from the best available copy. Available to DOE and DOE contractors from the Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831; telephone (423) 576-8401 for prices, Available to the public from the National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22161. Copies of this document are available (while supplies last) upon written request to: Office of Fissile Materials Disposition, MD-4 Forrestal Building United States Department of Energy 1000 Independence Avenue, SW Washington, DC 20585 @ Printed with soy ink on recycled paper. .__- -. @ .: Depafimmt of Energy . i i~t " Wastin@on, DC 20585 June 1996 Dear hterested

388

Disposition of Surplus Highly Enriched Uranium  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

@ @ Printed with soy ink on recycled paper. ,, ,, This report has been reproduced directly from the best available copy. Available to DOE and DOE contractors horn the Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831; telephone (423) 576-8401 for prices, Available to the public from the National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22161. Copies of this document are available (while supplies last) upon written request to: Office of Fissile Materials Disposition, MD-4 ' Forrestal Building United States Department of Energy 1000 Independence Avenue, SW Washington, DC 20585 Department of Energy Washington, DC 20585 June 1996 Dear hterested Party: The Disposition of Surplus Highly Enriched Uranium Final Environmental Impact Statemnt is enclosed for your information. This document has been prepared in accordance

389

DOE: Assessment Criteria and Guidelines for Determining the Adequacy of Software Used in the Safety Analysis and Design of Defense Nuclear Facilities, 10j/24/03  

Energy.gov (U.S. Department of Energy (DOE))

This document contains software quality assurance (SQA) assessment criteria and guidelines for assessing the safety software currently in use in the safety analysis and design of structures,...

390

LLNL MOX fuel lead assemblies data report for the surplus plutonium disposition environmental impact statement  

SciTech Connect

The purpose of this document is to support the US Department of Energy (DOE) Fissile Materials Disposition Program`s preparation of the draft surplus plutonium disposition environmental impact statement. This is one of several responses to data call requests for background information on activities associated with the operation of the lead assembly (LA) mixed-oxide (MOX) fuel fabrication facility. The DOE Office of Fissile Materials Disposition (DOE-MD) has developed a dual-path strategy for disposition of surplus weapons-grade plutonium. One of the paths is to disposition surplus plutonium through irradiation of MOX fuel in commercial nuclear reactors. MOX fuel consists of plutonium and uranium oxides (PuO{sub 2} and UO{sub 2}), typically containing 95% or more UO{sub 2}. DOE-MD requested that the DOE Site Operations Offices nominate DOE sites that meet established minimum requirements that could produce MOX LAs. LLNL has proposed an LA MOX fuel fabrication approach that would be done entirely inside an S and S Category 1 area. This includes receipt and storage of PuO{sub 2} powder, fabrication of MOX fuel pellets, assembly of fuel rods and bundles, and shipping of the packaged fuel to a commercial reactor site. Support activities will take place within a Category 1 area. Building 332 will be used to receive and store the bulk PuO{sub 2} powder, fabricate MOX fuel pellets, and assemble fuel rods. Building 334 will be used to assemble, store, and ship fuel bundles. Only minor modifications would be required of Building 332. Uncontaminated glove boxes would need to be removed, petition walls would need to be removed, and minor modifications to the ventilation system would be required.

O`Connor, D.G.; Fisher, S.E.; Holdaway, R. [and others

1998-08-01T23:59:59.000Z

391

EIS-0283DS Supplement to the Surplus Plutonium Disposition Draft Environmental Impact Statement, April 1999  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sheet Sheet Responsible Agency: United States Department of Energy (DOE) Title: Supplement to the Surplus Plutonium Disposition Draft Environmental Impact Statement (Supplement) (DOE/EIS-0283-DS) Locations of Candidate Sites: Idaho, North Carolina, South Carolina, Texas, Virginia, and Washington Contacts: For further information on the Supplement contact: For further information on the DOE National Environmental Policy Act (NEPA) process contact: Mr. G. Bert Stevenson, NEPA Compliance Officer Office of Fissile Materials Disposition U.S. Department of Energy P.O. Box 23786 Washington, DC 20026-3786 Voice: (202) 586-5368 Ms. Carol Borgstrom, Director Office of NEPA Policy and Assistance Office of Environment, Safety and Health U.S. Department of Energy 1000 Independence Ave., SW

392

DOE/EIS-0283; Surplus Plutonium Disposition Final Environmental Impact Statement (11/1999)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4 of 5 4 of 5 Final Environmental Impact Statement November 1999 Comment Response Document Volume III - Part A Cover Sheet Responsible Agency: United States Department of Energy (DOE) Title: Surplus Plutonium Disposition Final Environmental Impact Statement (SPD EIS) (DOE/EIS-0283) Locations of Candidate Sites: California, Idaho, New Mexico, North Carolina, South Carolina, Tennessee, Texas, Virginia, and Washington Contacts: For further information on the SPD Final EIS contact: For information on the DOE National Environmental Policy Act (NEPA) process contact: Mr. G. Bert Stevenson, NEPA Compliance Officer Ms. Carol Borgstrom, Director Office of Fissile Materials Disposition Office of NEPA Policy and Assistance U.S. Department of Energy Office of Environment, Safety and Health

393

DOE/EIS-0283; Surplus Plutonium Disposition Final Environmental Impact Statement (11/1999)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5 of 5 5 of 5 Final Environmental Impact Statement November 1999 Comment Response Document Volume III - Part B Cover Sheet Responsible Agency: United States Department of Energy (DOE) Title: Surplus Plutonium Disposition Final Environmental Impact Statement (SPD EIS) (DOE/EIS-0283) Locations of Candidate Sites: California, Idaho, New Mexico, North Carolina, South Carolina, Tennessee, Texas, Virginia, and Washington Contacts: For further information on the SPD Final EIS contact: For information on the DOE National Environmental Policy Act (NEPA) process contact: Mr. G. Bert Stevenson, NEPA Compliance Officer Ms. Carol Borgstrom, Director Office of Fissile Materials Disposition Office of NEPA Policy and Assistance U.S. Department of Energy Office of Environment, Safety and Health

394

Pantex Facility 10-Year Natural Phenomena Flood Hazard Analysis  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Planning (cont.) What's Next FDC-1 Facilities (500 yr Storm) * Critical Mission SSCs * Essential Safety Facilities * Essential Security Facilities Conceptual Study * Mitigation...

395

PROGRESS IN REDUCING THE NUCLEAR THREAT: UNITED STATES PLUTONIUM CONSOLIDATION AND DISPOSITION  

SciTech Connect

Following the end of the Cold War, the United States identified 61.5 metric tons (MT) of plutonium and larger quantities of enriched uranium that are permanently excess to use in nuclear weapons programs. The Department of Energy (DOE) also began shutting down, stabilizing, and removing inventories from production facilities that were no longer needed to support weapons programs and non-weapons activities. The storage of 'Category I' nuclear materials at Rocky Flats, Sandia National Laboratories, and several smaller sites has been terminated to reduce costs and safeguards risks. De-inventory continues at the Hanford site and the Lawrence Livermore National Laboratory. Consolidation of inventories works in concert with the permanent disposition of excess inventories, including several tonnes of plutonium that have already been disposed to waste repositories and the preparation for transfers to the planned Mixed Oxide (MOX) Fuel Fabrication Facility (for the bulk of the excess plutonium) and alternative disposition methods for material that cannot be used readily in the MOX fuel cycle. This report describes status of plutonium consolidation and disposition activities and their impacts on continuing operations, particularly at the Savannah River Site.

Allender, J.; Koenig, R.; Davies, S.

2009-06-01T23:59:59.000Z

396

Documented Safety Analysis  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Documented Safety Analysis Documented Safety Analysis FUNCTIONAL AREA GOAL: A document that provides an adequate description of the hazards of a facility during its design, construction, operation, and eventual cleanup and the basis to prescribe operating and engineering controls through Technical Safety Requirements (TSR) or Administrative Controls (AC). REQUIREMENTS:  10 CFR 830.204, Nuclear Safety Rule  DOE-STD-1027-92, Hazard Categorization, 1992.  DOE-STD-1104-96, Change Notice 1, Review and Approval of Nuclear Facility Safety Basis Documents (documented Safety Analyses and Technical Safety Requirements), dated May 2002.  DOE-STD-3009-2002, Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses, Change Notice No. 2, April 2002.

397

Technical Safety Requirements  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Safety Requirements Safety Requirements FUNCTIONAL AREA GOAL: Contractor has developed, maintained, and received DOE Field Office Approval for the necessary operating conditions of a facility. The facility has also maintained an inventory of safety class and safety significant systems and components. REQUIREMENTS:  10 CFR 830.205, Nuclear Safety Rule.  DOE-STD-3009-2002, Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses.  DOE-STD-1186-2004, Specific Administrative Controls. Guidance:  DOE G 423.1-1, Implementation Guide for Use in Developing Technical Safety Requirements.  NSTP 2003-1, Use of Administrative Controls for Specific Safety Functions. Performance Objective 1: Contractor Program Documentation

398

Argonne Chemical Sciences & Engineering - Facilities - Electrochemical...  

NLE Websites -- All DOE Office Websites (Extended Search)

facility." After fabrication, the prototype cells are then evaluated for performance, battery life and safety in Argonne's state-of-the-art battery testing facilities....

399

Portugal Egypt Figure 2. Natural gas supply and disposition in the United States, 2012  

U.S. Energy Information Administration (EIA) Indexed Site

Portugal Egypt Figure 2. Natural gas supply and disposition in the United States, 2012 (trillion cubic feet) Natural Gas Plant Liquids Production Gross Withdrawals From Gas and Oil Wells Nonhydrocarbon Gases Removed Vented/Flared Reservoir Repressuring Production Dry Gas Imports Canada Trinidad/Tobago Natural Gas Storage Facilities Exports Japan Canada Mexico Additions Withdrawals Gas Industry Use Residential Commercial Industrial Vehicle Fuel Electric Power 29.5 0.8 0.2 3.3 2.963 0.112 0.620 0.971 0.014 24.1 1.3 2.9 2.8 2.5 2.9 7.2 0.03 9.1 0.003 Sources: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition"; Form EIA-895, "Annual Quantity and

400

Disposition and transportation of surplus radioactive low specific activity nitric acid. Volume 1, Environmental Assessment  

Science Conference Proceedings (OSTI)

DOE is deactivating the PUREX plant at Hanford; this will involve the disposition of about 692,000 liters (183,000 gallons) of surplus nitric acid contaminated with low levels of U and other radionuclides. The nitric acid, designated as low specific activity, is stored in 4 storage tanks at PUREX. Five principal alternatives were evaluated: transfer for reuse (sale to BNF plc), no action, continued storage in Hanford upgraded or new facility, consolidation of DOE surplus acid, and processing the LSA nitric acid as waste. The transfer to BNF plc is the preferred alternative. From the analysis, it is concluded that the proposed disposition and transportation of the acid does not constitute a major federal action significantly affecting the quality of the human environment within the meaning of NEPA; therefore an environmental impact statement is not required.

NONE

1995-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "facility disposition safety" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Update of the Used Fuel Disposition Campaign Implementation Plan |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Update of the Used Fuel Disposition Campaign Implementation Plan Update of the Used Fuel Disposition Campaign Implementation Plan Update of the Used Fuel Disposition Campaign Implementation Plan The Used Fuel Disposition Campaign will identify alternatives and conduct scientific research and technology development to enable storage, transportation, and disposal of used nuclear fuel and wastes generated by existing and future nuclear fuel cycles. This Campaign Implementation Plan provides summary level detail describing how the Used Fuel Disposition Campaign supports achievement of the overarching Fuel Cycle Research and Development Program mission and objectives. Activities will be sufficiently flexible to accommodate any of the potential fuel cycle options for used fuel management. Update of the Used Fuel Disposition Campaign Implementation Plan

402

Waste and Materials Disposition Information | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Waste and Materials Disposition Waste and Materials Disposition Information Waste and Materials Disposition Information Waste and Materials Disposition Information As the Office of Environmental Management (EM) fulfills its mission, waste and materials disposition plays a vital role in the cleanup of radioactive waste and the environmental legacy of nuclear weapons production and nuclear energy research. Disposal of waste frequently falls on the critical path of cleanup projects. Significant planning resources are spent to identify alternatives and find a path that is cost-effective and in the best interest of the Federal government. In many instances, waste disposition, (processing, treatment and disposal) is part of cleanup agreements and is of interest to stakeholders and requires the oversight of regulators.

403

RECORDS DISPOSITION SCHEDULE: Year 2000 Project Records | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Year 2000 Project Records RECORDS DISPOSITION SCHEDULE: Year 2000 Project Records Year 2000 (Y2K) Project records have been created to document the effort of the Department...

404

DOE Chooses Idaho Treatment Group, LLC to Disposition Waste at...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Chooses Idaho Treatment Group, LLC to Disposition Waste at the Advanced Mixed Waste Treatment Project: Contract will continue cleanup and waste operations at the Idaho Site DOE...

405

Request For Records Disposition Authority: Strategic Petroleum Reserve  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Request For Records Disposition Authority: Strategic Petroleum Request For Records Disposition Authority: Strategic Petroleum Reserve Project Management Office Request For Records Disposition Authority: Strategic Petroleum Reserve Project Management Office Paper case files pertaining to environmental permit applications, permits and related correspondence as well as NEPA correspondence within of the Strategic Petroleum Reserve Project Management Office (SPRPMO) Request For Records Disposition Authority: Strategic Petroleum Reserve Project Management Office More Documents & Publications 2012 Annual Planning Summary for Fossil Energy, National Energy Technology Laboratory, RMOTC, and Strategic Petroleum Reserve Field Office CX-002673: Categorical Exclusion Determination CX-009794: Categorical Exclusion Determination

406

A Model Ceramic System for Plutonium Disposition - Programmaster ...  

Science Conference Proceedings (OSTI)

As-Cast Microstructures in Alloys of U, Pu, and Zr with Minor Actinides (Np, Am) ... Irradiation Effects in Ceramics for Inert Matrix Fuel and Plutonium Disposition.

407

REQUEST FOR RECORDS DISPOSITION AUTHORITY | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Crude Oil REQUEST FOR RECORDS DISPOSITION AUTHORITY More Documents & Publications Oil Overcharge Refund Cases 2003 Oil Overcharge Refund Cases 1996 Oil Overcharge Refund Cases 1999...

408

Used Fuel Disposition Campaign Disposal Research and Development...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

the Used Fuel Disposition Campaign (UFDC) to conduct the research and development (R&D) activities related to storage, transportation and disposal of used nuclear fuel (UNF)...

409

EIA Data: 2011 United States Coal Supply, Disposition, and Price...  

Open Energy Info (EERE)

Search Share this page on Facebook icon Twitter icon EIA Data: 2011 United States Coal Supply, Disposition, and Price Dataset Summary Description This dataset is the 2011...

410

REQUEST FOR RECORDS DISPOSITION AUTHORITY | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Power Plant Docket Records REQUEST FOR RECORDS DISPOSITION AUTHORITY More Documents & Publications PIA - Savannah River Remediation Accreditation Boundary (SRR AB) REQUEST...

411

Disposition Record Request: Oil Import Appeals Board | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Record Request: Oil Import Appeals Board Disposition Record Request: Oil Import Appeals Board OIAB Case Files. Records consist of company requests for relief from hardship imposed...

412

AEO2011: Total Energy Supply, Disposition, and Price Summary...  

Open Energy Info (EERE)

Total Energy Supply, Disposition, and Price Summary This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report...

413

DRAFT EM SSAB Chairs Meeting Waste Disposition Strategies...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EM HQ Updates Waste Disposition Overview Christine Gelles Associate Deputy Assistant Secretary for Waste Management Office of Environmental Management EM SSAB Chairs Meeting 5...

414

Joel Case Calcine Disposition Project Federal Project Director  

Results in large life-cycle cost savings through final disposition. 6 6 Basic Hot Isostatic Pressing Process ... nuclear fuel in 1964.

415

AEO2011: Coal Supply, Disposition, and Prices This dataset comes...  

Open Energy Info (EERE)

Supply, Disposition, and Prices This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is...

416

Used Fuel Disposition Campaign Phase I Ring Compression Testing...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Phase I Ring Compression Testing of High Burnup Cladding Used Fuel Disposition Campaign Phase I Ring Compression Testing of High Burnup Cladding The purpose of ring compression...

417

Additional public meeting on plutonium disposition on September...  

NLE Websites -- All DOE Office Websites (Extended Search)

produce an oxide form of plutonium suitable for disposition and the use of mixed oxide (MOX) fuel fabricated from surplus plutonium in domestic commercial nuclear power reactors...

418

ICPP Special Fuels Canning and Characterization Facility  

SciTech Connect

This report examines the functional mission of a Special Fuels Canning and Characterization Facility (SFCCF) for the Idaho Chemical Processing Plant (ICPP) and presents justification for its implementation as part of Westinghouse Idaho Nuclear Co., Inc. (WINCO) long-range plans. The SFCCF would be built as the first phase of an overall facility for dispositioning special fuels. Issues related to feasibility, cost, and preconceptual design criteria are also discussed in this report. A preconceptual facility layout based on existing information was developed to enhance the preconceptual design criteria and support a rough order-of-magnitude cost estimate for the construction of the SFCCF. The US Department of Energy (DOE) is the landlord of a large quantity of spent nuclear fuel and related materials. A significant quantity of this inventory, approximately 730,000 kg total fuel mass, is labeled as ``special fuel`` because no specific processing technique and/or facility to disposition this material is available in the NMP complex. The dispositioning of this fuel is especially complex because of the variety of fuel types. Of these special fuels, approximately 90 %wt are stored at the INEL. Timely dispositioning of the fuels would avoid expenditures of funds for a second generation of storage facilities at the INEL and other DOE facilities and would demonstrate to the public that solutions to nuclear fuel dispositioning exist and that a plan is being executed. The SFCCF is required to characterize, verify the storage can contents, and, if necessary, recan the special fuels to help assure safe, interim storage (i.e. fission product containment and criticality control) until the special fuels processing facility is operating.

Sire, D.L.; Bendixsen, C.L.; Armstrong, E.F.; Henry, R.N.; Frandsen, G.B.

1992-04-01T23:59:59.000Z

419

CRITICALITY SAFETY (CS)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Objective CS.1 - A criticality safety program is established, sufficient numbers of qualified personnel are provided, and adequate facilities and equipment are available to ensure criticality safety support services are adequate for safe operations. (Core Requirements 1, 2, and 6) Criteria * Functions, assignments, responsibilities, and reporting relationships are clearly defined, understood, and effectively implemented. * Operations support personnel for the criticality safety area are adequately staffed and trained. Approach Record Review: Review the documentation that establishes the Criticality Safety Requirements (CSRs) for appropriateness and completeness. Review for adequacy and completion the criticality safety personnel training records that indicate training on facility procedures and systems under

420

Safety Basis Criteria & Review Approach Documents | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Safety Basis Criteria & Review Approach Documents Safety Basis Criteria & Review Approach Documents Safety Basis Criteria & Review Approach Documents Documents Available for Download CRAD, Safety Basis - Idaho MF-628 Drum Treatment Facility CRAD, Safety Basis - Idaho Accelerated Retrieval Project Phase II CRAD, Safety Basis - Los Alamos National Laboratory TA 55 SST Facility CRAD, Safety Basis - Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility CRAD, Safety Basis - Oak Ridge National Laboratory High Flux Isotope Reactor CRAD, Safety Basis - Oak Ridge National Laboratory High Flux Isotope Reactor Contractor ORR CRAD, Safety Basis - Oak Ridge National Laboratory TRU ALPHA LLWT Project CRAD, Safety Basis - Y-12 Enriched Uranium Operations Oxide Conversion Facility

Note: This page contains sample records for the topic "facility disposition safety" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Lawrence Livermore National Laborotory Safety Basis Assessment...  

NLE Websites -- All DOE Office Websites (Extended Search)

of the safety basis for LLNL nuclear facilities. It describes the method for categorizing nuclear facilities and summarizes the resulting requirements for the contents of the DSA....

422

EM Waste and Materials Disposition & Transportation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

On Closure Success On Closure Success 1 EM Waste and Materials Disposition & Transportation National Transportation Stakeholders Forum Chicago, Illinois May 26, 2010 Frank Marcinowski Acting Chief Technical Officer and Deputy Assistant Secretary for Technical and Regulatory Support Office of Environmental Management DOE's Radioactive Waste Management Priorities * Continue to manage waste inventories in a safe and compliant manner * Address high risk waste in a cost- ff ti effective manner * Maintain and optimize current disposal capability for future generations * Develop future disposal capacity in a complex environment * Promote the development of treatment and disposal alternatives in the 2 and disposal alternatives in the

423

Summary report of the screening process to determine reasonable alternatives for long-term storage and disposition of weapons-usable fissile materials  

SciTech Connect

Significant quantities of weapons-usable fissile materials (primarily plutonium and highly enriched uranium) have become surplus to national defense needs both in the US and Russia. These stocks of fissile materials pose significant dangers to national and international security. The dangers exist not only in the potential proliferation of nuclear weapons but also in the potential for environmental, safety and health consequences if surplus fissile materials are not properly managed. As announced in the Notice of Intent (NOI) to prepare a Programmatic Environmental Impact Statement (PEIS), the Department of Energy is currently conducting an evaluation process for disposition of surplus weapons-usable fissile materials determined surplus to National Security needs, and long-term storage of national security and programmatic inventories, and surplus weapons-usable fissile materials that are not able to go directly from interim storage to disposition. An extensive set of long-term storage and disposition options was compiled. Five broad long-term storage options were identified; thirty-seven options were considered for plutonium disposition; nine options were considered for HEU disposition; and eight options were identified for Uranium-233 disposition. Section 2 discusses the criteria used in the screening process. Section 3 describes the options considered, and Section 4 provides a detailed summary discussions of the screening results.

NONE

1995-03-29T23:59:59.000Z

424

Plutonium disposition study phase 1b final report  

Science Conference Proceedings (OSTI)

This report provides the results of the Westinghouse activities performed as part of the Plutonium Disposition Study Phase 1b. These activities, which took place from May 16, 1993 to September 15, 1993, build upon the work completed in Phase 1a, which concluded on May 15, 1993. In Phase 1a, three Plutonium Disposal Reactor (PDR) options were developed for the disposal of excess weapons grade plutonium from returned and dismantled nuclear weapons. This report documents the results of several tasks that were performed to further knowledge in specific areas leading up to Phase 2 of the PDR Study. The Westinghouse activities for Phase 1b are summarized as follows: (1) resolved technical issues concerning reactor physics including equilibrium cycle calculations, use of gadolinium, moderator temperature coefficient, and others as documented in Section 2.0; (2) analyzed large Westinghouse commercial plants for plutonium disposal; (3) reactor safety issues including the steam line break were resolved, and are included in Section 2.0; (4) several tasks related to the PDR Fuel Cycle were examined; (5) cost and deployment options were examined to determine optimal configuration for both plutonium disposal and tritium production; (6) response to questions from DOE and National Academy of Scientists (NAS) reviewers concerning the PDR Phase 1a report are included in Appendix A.

NONE

1993-09-15T23:59:59.000Z

425

Bases, Assumptions, and Results of the Flowsheet Calculations for the Decision Phase Salt Disposition Alternatives  

SciTech Connect

The High Level Waste (HLW) Salt Disposition Systems Engineering Team was formed on March 13, 1998, and chartered to identify options, evaluate alternatives, and recommend a selected alternative(s) for processing HLW salt to a permitted wasteform. This requirement arises because the existing In-Tank Precipitation process at the Savannah River Site, as currently configured, cannot simultaneously meet the HLW production and Authorization Basis safety requirements. This engineering study was performed in four phases. This document provides the technical bases, assumptions, and results of this engineering study.

Dimenna, R.A.; Jacobs, R.A.; Taylor, G.A.; Durate, O.E.; Paul, P.K.; Elder, H.H.; Pike, J.A.; Fowler, J.R.; Rutland, P.L.; Gregory, M.V.; Smith III, F.G.; Hang, T.; Subosits, S.G.; Campbell, S.G.

2001-03-26T23:59:59.000Z

426

Microsoft PowerPoint - FY09_11 Disposition Plan_090804  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to 2011 FIMS Disposition to 2011 FIMS Disposition Plan Phil Dalby, P.E., LEED AP Facilities Engineer Office of Engineering and Construction Management U. S. Department of Energy August 4, 2009 2 FY 2009 to FY 2011 Disposition Plan RPV # Of Assets GSF RPV # Of Assets Gross Sq Feet FY 02 N/A N/A N/A $322,545,118 379 1,533,715 - $2,914,059 $322,545,118 FY 03 N/A N/A N/A $313,800,817 420 1,140,524 - $2,166,996 $636,345,935 FY 04 N/A N/A N/A $678,724,838 536 2,878,328 - $5,468,823 $1,315,070,773 FY 05 $1,029,311,442 473 4,111,764 $1,047,538,247 488 4,101,396 102% $7,792,652 $2,362,609,020 FY 06 $788,456,532 270 1,773,232 $1,352,580,138 625 2,800,679 172% $5,321,290 $3,715,189,158 FY 07 $550,347,778 208 1,414,961 $595,332,143 243 1,568,969 108% $2,981,041 $4,310,521,301 FY 08 $312,272,791 114 782,388 $1,029,579,616 219 1,418,007 330%

427

Office of Independent Oversight's Office of Environment, Safety and Health Evaluations Activity Report for the Visit at the LANL CMRR Project Facility Construction Site, November 1-5, 2010  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Office of Independent Oversight's Office of Environment, Safety and Health Office of Independent Oversight's Office of Environment, Safety and Health Evaluations Activity Report for the Visit at the LANL CMRR Project Facility Construction Site, November 1-5, 2010 The U. S. Department of Energy (DOE) Office of Independent Oversight, within the Office of Health, Safety and Security (HSS), conducted an orientation visit on November 1-5, 2010, at the Chemical and Metallurgy Research Replacement (CMRR) project site at the Department of Energy Los Alamos National Laboratory (LANL). The purpose of the visit was to determine ways in which HSS would be able to carry out its independent oversight responsibilities with respect to this project in a method that encourages integration with DOE-LANL. The orientation visit was conducted by the HSS LANL Site Lead and an HSS contractor.

428

EIS-0327: Disposition of Scrap Metals Programmatic EIS | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

27: Disposition of Scrap Metals Programmatic EIS 27: Disposition of Scrap Metals Programmatic EIS EIS-0327: Disposition of Scrap Metals Programmatic EIS Summary This EIS will evaluate the environmental impacts of policy alternatives for the disposition of scrap metals (primarily carbon steel and stainless steel) that may have residual surface radioactivity. DOE is cancelling this EIS. Public Comment Opportunities No public comment opportunities available at this time. Documents Available for Download December 19, 2011 EA-1919: Notice of Revision to Clearance Policy Recycle of Scrap Metals Originating from Radiological Areas (December 2011) July 12, 2001 EIS-0327: Notice of Intent to Prepare a Programmatic Environmental Impact Statement and Announcement of Public Scoping Meetings Disposition of Scrap Metals

429

Used Fuel Disposition Campaign Preliminary Quality Assurance Implementation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Used Fuel Disposition Campaign Preliminary Quality Assurance Used Fuel Disposition Campaign Preliminary Quality Assurance Implementation Plan Used Fuel Disposition Campaign Preliminary Quality Assurance Implementation Plan The primary objective of this report is to determine whether the existing Fuel Cycle Technologies (FCT) Quality Assurance Program Document (QAPD) is sufficient for work to be performed in the Used Fuel Disposition Campaign (UFDC), and where the existing QAPD is not sufficient, supply recommendations for changes to the QAPD to accommodate the UFDC. The FCT QAPD provides a sound and useable foundation for the implementation of QA for UFDC R&D activities, including the application of QA in a graded approach. Used Fuel Disposition Campaign Preliminary Quality Assurance Implementation Plan More Documents & Publications

430

EIS-0283-S2: Surplus Plutonium Disposition Supplemental Environmental  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3-S2: Surplus Plutonium Disposition Supplemental 3-S2: Surplus Plutonium Disposition Supplemental Environmental Impact Statement EIS-0283-S2: Surplus Plutonium Disposition Supplemental Environmental Impact Statement Summary This EIS analyzes the potential environmental impacts associated with changes to the surplus plutonium disposition program, including changes to the inventory of surplus plutonium and proposed new alternatives. The original EIS is available here. For more information, see: www.nnsa.energy.gov/nepa/spdsupplementaleis Public Comment Opportunities None available at this time. Documents Available for Download April 25, 2013 EIS-0283-S2: Interim Action Determination Surplus Plutonium Disposition Supplemental Environmental Impact Statement (K-Area Materials Storage (KAMS) Area Expansion at the Savannah River Site)

431

Disposition of nuclear waste using subcritical accelerator-driven systems  

Science Conference Proceedings (OSTI)

Studies have shown that the repository long-term radiological risk is from the long-lived transuranics and the fission products Tc-99 and I-129, thermal loading concerns arise mainly form the short-lived fission products Sr-90 and Cs-137. In relation to the disposition of nuclear waste, ATW is expected to accomplish the following: (1) destroy over 99.9% of the actinides; (2) destroy over 99.9% of the Tc and I; (3) separate Sr and Cs (short half-life isotopes); (4) separate uranium; (5) produce electricity. In the ATW concept, spent fuel would be shipped to a ATW site where the plutonium, other transuranics and selected long-lived fission products would be destroyed by fission or transmutation in their only pass through the facility. This approach contrasts with the present-day reprocessing practices in Europe and Japan, during which high purity plutonium is produced and used in the fabrication of fresh mixed-oxide fuel (MOX) that is shipped off-site for use in light water reactors.

Venneri, F.; Li, N.; Williamson, M.; Houts, M.; Lawrence, G.

1998-12-01T23:59:59.000Z

432

Capturing Process Knowledge for Facility Deactivation and Decommissioning  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tech Assistance Tech Assistance Savannah River National Laboratory- Assess Adequacy of Process Knowledge for D&D Guidance for Determining Adequacy of Process Knowledge Page 1 of 2 Savannah River National Laboratory South Carolina Capturing Process Knowledge for Facility Deactivation and Decommissioning Challenge The Office of Environmental Management (EM) is responsible for the disposition of a vast number of facilities at numerous sites around the country which have been declared excess to current mission needs. When such excess facilities are scheduled for deactivation and decommissioning (D&D), among the tasks the responsible project team is faced with include the evaluation and planning for the removal, characterization, and disposition of all legacy

433

Electrical safety guidelines  

SciTech Connect

The Electrical Safety Guidelines prescribes the DOE safety standards for DOE field offices or facilities involved in the use of electrical energy. It has been prepared to provide a uniform set of electrical safety standards and guidance for DOE installations in order to affect a reduction or elimination of risks associated with the use of electrical energy. The objectives of these guidelines are to enhance electrical safety awareness and mitigate electrical hazards to employees, the public, and the environment.

Not Available

1993-09-01T23:59:59.000Z

434

DOE handbook electrical safety  

SciTech Connect

Electrical Safety Handbook presents the Department of Energy (DOE) safety standards for DOE field offices or facilities involved in the use of electrical energy. It has been prepared to provide a uniform set of electrical safety guidance and information for DOE installations to effect a reduction or elimination of risks associated with the use of electrical energy. The objectives of this handbook are to enhance electrical safety awareness and mitigate electrical hazards to employees, the public, and the environment.

NONE

1998-01-01T23:59:59.000Z

435

Facility Representative Program: 2003 Facility Representative Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

3 Facility Representative Workshop 3 Facility Representative Workshop May 13 - 15, 2003 Las Vegas, NV Facility Rep of the Year Award | Attendees list | Summary Report [PDF] WORKSHOP AGENDA Day 1: Tuesday, May 13, 2003 Theme: Program Successes and Challenges 8:00 a.m. John Evans, Facility Representative Program Manager 8:15 a.m. Welcome Kathleen Carlson Manager, Nevada Site Office 8:30 a.m. Keynote Address Savannah River Site and Facility Reps - A Shared History and Common Future Jeffrey M. Allison Manager, Savannah River Operations Office 9:00 a.m. Videotaped Remarks from the Deputy Secretary Kyle E. McSlarrow, Deputy Secretary of Energy 9:10 a.m. Facility Representative of the Year Presentation Mark B. Whitaker, Jr., Departmental Representative to the Defense Nuclear Facilities Safety Board

436

Draft Surplus Plutonium Disposition Supplemental Environmental...  

National Nuclear Security Administration (NNSA)

River Operations Office, Aiken, South Carolina, June 26. DOENNSA (U.S. Department of EnergyNational Nuclear Safety Administration), 2008, Supplement Analysis for the Final...

437

High Purity Germanium Gamma-PHA Assay of Uranium Storage Pigs for 321-M Facility  

Science Conference Proceedings (OSTI)

The Analytical Development Section of SRTC was requested by the Facilities Disposition Division (FDD) to determine the holdup of enriched uranium in the 321-M facility as part of an overall deactivation project of the facility. The 321-M facility was used to fabricate enriched uranium fuel assemblies, lithium-aluminum target tubes, neptunium assemblies, and miscellaneous components for the production reactors. The facility also includes the 324-M storage building and the passageway connecting it to 321-M. The results of the holdup assays are essential for determining compliance with the Solid Waste's Waste Acceptance Criteria, Material Control and Accountability, and to meet criticality safety controls. This report describes and documents the use of a portable HPGe detector and EG and G Dart system that contains a high voltage power supply, signal processing electronics, a personal computer with Gamma-Vision software, and space to store and manipulate multiple 4096-channel g-ray spectra to assay for 235U content in 268 uranium shipping and storage pigs. This report includes a description of three efficiency calibration configurations and also the results of the assay. A description of the quality control checks is included as well.

Dewberry, R.A.

2001-09-18T23:59:59.000Z

438

Weapons-grade plutonium dispositioning. Volume 2: Comparison of plutonium disposition options  

Science Conference Proceedings (OSTI)

The Secretary of Energy requested the National Academy of Sciences (NAS) Committee on International Security and Arms Control to evaluate disposition options for weapons-grade plutonium. The Idaho National Engineering Laboratory (INEL) offered to assist the NAS in this evaluation by investigating the technical aspects of the disposition options and their capability for achieving plutonium annihilation levels greater than 90%. This report was prepared for the NAS to document the gathered information and results from the requested option evaluations. Evaluations were performed for 12 plutonium disposition options involving five reactor and one accelerator-based systems. Each option was evaluated in four technical areas: (1) fuel status, (2) reactor or accelerator-based system status, (3) waste-processing status, and (4) waste disposal status. Based on these evaluations, each concept was rated on its operational capability and time to deployment. A third rating category of option costs could not be performed because of the unavailability of adequate information from the concept sponsors. The four options achieving the highest rating, in alphabetical order, are the Advanced Light Water Reactor with plutonium-based ternary fuel, the Advanced Liquid Metal Reactor with plutonium-based fuel, the Advanced Liquid Metal Reactor with uranium-plutonium-based fuel, and the Modular High Temperature Gas-Cooled Reactor with plutonium-based fuel. Of these four options, the Advanced Light Water Reactor and the Modular High Temperature Gas-Cooled Reactor do not propose reprocessing of their irradiated fuel. Time constraints and lack of detailed information did not allow for any further ratings among these four options. The INEL recommends these four options be investigated further to determine the optimum reactor design for plutonium disposition.

Brownson, D.A.; Hanson, D.J.; Blackman, H.S. [and others

1993-06-01T23:59:59.000Z

439

HEQUEST FOR Rt43RDS DISPOSITION AUTHORITY  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

- - HEQUEST FOR Rt43RDS DISPOSITION AUTHORITY (See ~nstructions on reverse) / GENERAL SERVICES ADMINISTRATION NATIONAL ARCHIVES AND RECORDS SERVICE, WASHINGTON, D C 20408 1 . F R O M (Agency orestablishment) U.S. Department of Energy 2 . MAJOR SUBDIVISION Oak Ridge Operations Office 3. M I N O R SUBDIVISION I hereby certify that I am authorized to act for this agency in matters pertaining to the disposal of the agency's records; that the records proposed for disposal in this Request of 4 page(s) are not now needed for the business of this agency or will not be needed after the retention periods specified; and that written concurrence from the General Accounting Office, if required under the provisions of Title 8 of the GAO Manual for Guidance of Federal Agencies, is

440

REQUEST FOR RECORDS DISPOSITION AUTHORITY S  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

S S e e Instructions o n reverse) NATIONAL ARCHIVES and RECORDS ADMINISTRATION (NIR) WASHINGTON. DC 20408 , - - 1. FROM (Agency or establishment) Department of Energy 2. MAJOR SUBDIVISION Assistant Secretary For Fossil Energy (FE-1) I 3. MINOR SUBDIVISION Office of Naval Petroleum and Shale Oil 4 . NAME OF PERSON WITH WHOM TO CON I 1 Jerry Hinkle (FE 47) 1(202)586-43 80 I I / 6. AGENCY CERTIFICATION I NOTIFICATION TO AGENCY i I In accordance with the provisions of 44 U.S.C. 3303a the disposition request, including amendments, is ap roved except for items that may be marke! "dis osition not approved" or "withdrawn" in c o L n 10. I hereby certify that I am authorized to act for this agency in yatters pertaining to of its records and that the records roposed for disposal on the attached

Note: This page contains sample records for the topic "facility disposition safety" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Disposition options for {sup 233}U  

SciTech Connect

The United States is implementing a program to dispose of excess nuclear-weapons-usable materials--including {sup 233}U. A series of studies have identified multiple {sup 233}U disposition options, and these options are described herein. Most of the options involve adding depleted uranium containing {sup 238}U to the {sup 233}U. Converting the {sup 233}U into a mixture of <12 wt % {sup 233}U in {sup 238}U converts the weapons-usable {sup 233}U into nonweapons-usable {sup 233}U. For {sup 233}U that is considered waste, further isotopic dilution to <0.66 wt % {sup 233}U in {sup 238}U minimizes potential long-term repository criticality concerns and in many cases minimizes final waste volumes.

Forsberg, C.W.; Icenhour, A.S.; Krichinsky, A.M.

1998-04-27T23:59:59.000Z

442

Neutron Assay System for Confinement Vessel Disposition  

Science Conference Proceedings (OSTI)

Los Alamos National Laboratory has a number of spherical confinement vessels (CVs) remaining from tests involving nuclear materials. These vessels have an inner diameter of 6 feet with 1-inch thick steel walls. The goal of the Confinement Vessel Disposition (CVD) project is to remove debris and reduce contamination inside the CVs. The Confinement Vessel Assay System (CVAS) was developed to measure the amount of special nuclear material (SNM) in CVs before and after cleanout. Prior to cleanout, the system will be used to perform a verification measurement of each vessel. After cleanout, the system will be used to perform safeguards-quality assays of {le}100-g {sup 239}Pu equivalent in a vessel for safeguards termination. The CVAS has been tested and calibrated in preparation for verification and safeguards measurements.

Frame, Katherine C. [Los Alamos National Laboratory; Bourne, Mark M. [Los Alamos National Laboratory; Crooks, William J. [Los Alamos National Laboratory; Evans, Louise [Los Alamos National Laboratory; Mayo, Douglas R. [Los Alamos National Laboratory; Miko, David K. [Los Alamos National Laboratory; Salazar, William R. [Los Alamos National Laboratory; Stange, Sy [Los Alamos National Laboratory; Valdez, Jose I. [Los Alamos National Laboratory; Vigil, Georgiana M. [Los Alamos National Laboratory

2012-07-13T23:59:59.000Z

443

The ultimate disposition of depleted uranium  

SciTech Connect

Significant amounts of the depleted uranium (DU) created by past uranium enrichment activities have been sold, disposed of commercially, or utilized by defense programs. In recent years, however, the demand for DU has become quite small compared to quantities available, and within the US Department of Energy (DOE) there is concern for any risks and/or cost liabilities that might be associated with the ever-growing inventory of this material. As a result, Martin Marietta Energy Systems, Inc. (Energy Systems), was asked to review options and to develop a comprehensive plan for inventory management and the ultimate disposition of DU accumulated at the gaseous diffusion plants (GDPs). An Energy Systems task team, under the chairmanship of T. R. Lemons, was formed in late 1989 to provide advice and guidance for this task. This report reviews options and recommends actions and objectives in the management of working inventories of partially depleted feed (PDF) materials and for the ultimate disposition of fully depleted uranium (FDU). Actions that should be considered are as follows. (1) Inspect UF{sub 6} cylinders on a semiannual basis. (2) Upgrade cylinder maintenance and storage yards. (3) Convert FDU to U{sub 3}O{sub 8} for long-term storage or disposal. This will include provisions for partial recovery of costs to offset those associated with DU inventory management and the ultimate disposal of FDU. Another recommendation is to drop the term tails'' in favor of depleted uranium'' or DU'' because the tails'' label implies that it is waste.'' 13 refs.

Not Available

1990-12-01T23:59:59.000Z

444

DOE: Criteria and Guidelines For the Assessment of Safety System Software and Firmware at Defense Nuclear Facilities, 10/24/03, rev. 3  

Energy.gov (U.S. Department of Energy (DOE))

This document contains software qualification assessment criteria and guidelines for assessing the safety system software used for instrumentation and controls (I&C) at Department of Energy ...

445

A Little Here, A Little There, A Fairly Big Problem Everywhere: Small Quantity Site Transuranic Waste Disposition Alternatives  

Science Conference Proceedings (OSTI)

Small quantities of transuranic (TRU) waste represent a significant challenge to the waste disposition and facility closure plans of several sites in the Department of Energy (DOE) complex. This paper presents the results of a series of evaluations, using a systems engineering approach, to identify the preferred alternative for dispositioning TRU waste from small quantity sites (SQSs). The TRU waste disposition alternatives evaluation used semi-quantitative data provided by the SQSs, potential receiving sites, and the Waste Isolation Pilot Plant (WIPP) to select and recommend candidate sites for waste receipt, interim storage, processing, and preparation for final disposition of contact-handled (CH) and remote-handled (RH) TRU waste. The evaluations of only four of these SQSs resulted in potential savings to the taxpayer of $33 million to $81 million, depending on whether mobile systems could be used to characterize, package, and certify the waste or whether each site would be required to perform this work. Small quantity shipping sites included in the evaluation included the Battelle Columbus Laboratory (BCL), University of Missouri Research Reactor (MURR), Energy Technology Engineering Center (ETEC), and Mound. Candidate receiving sites included the Idaho National Engineering and Environmental Laboratory (INEEL), the Savannah River Site (SRS), Los Alamos National Laboratory (LANL), Oak Ridge (OR), and Hanford. At least 14 additional DOE sites having TRU waste may be able to save significant money if cost savings are similar to the four evaluated thus far.

Luke, Dale Elden; Parker, Douglas Wayne; Moss, J.; Monk, Thomas Hugh; Fritz, Lori Lee; Daugherty, B.; Hladek, K.; Kosiewicx, S.

2000-03-01T23:59:59.000Z

446

A little here, a little there, a fairly big problem everywhere: Small quantity site transuranic waste disposition alternatives  

Science Conference Proceedings (OSTI)

Small quantities of transuranic (TRU) waste represent a significant challenge to the waste disposition and facility closure plans of several sites in the Department of Energy (DOE) complex. This paper presents the results of a series of evaluations, using a systems engineering approach, to identify the preferred alternative for dispositioning TRU waste from small quantity sites (SQSs). The TRU waste disposition alternatives evaluation used semi-quantitative data provided by the SQSs, potential receiving sites, and the Waste Isolation Pilot Plant (WIPP) to select and recommend candidate sites for waste receipt, interim storage, processing, and preparation for final disposition of contact-handled (CH) and remote-handled (RH) TRU waste. The evaluations of only four of these SQSs resulted in potential savings to the taxpayer of $33 million to $81 million, depending on whether mobile systems could be used to characterize, package, and certify the waste or whether each site would be required to perform this work. Small quantity shipping sites included in the evaluation included the Battelle Columbus Laboratory (BCL), University of Missouri Research Reactor (MURR), Energy Technology Engineering Center (ETEC), and Mound Laboratory. Candidate receiving sites included the Idaho National Engineering and Environmental Laboratory (INEEL), the Savannah River Site (SRS), Los Alamos National Laboratory (LANL), Oak Ridge (OR), and Hanford. At least 14 additional DOE sites having TRU waste may be able to save significant money if cost savings are similar to the four evaluated thus far.

D. Luke; D. Parker; J. Moss; T. Monk (INEEL); L. Fritz (DOE-ID); B. Daugherty (SRS); K. Hladek (WM Federal Services Hanford); S. Kosiewicx (LANL)

2000-02-27T23:59:59.000Z

447

EM Opens New Waste Repackaging Facility at Laboratory | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Opens New Waste Repackaging Facility at Laboratory Opens New Waste Repackaging Facility at Laboratory EM Opens New Waste Repackaging Facility at Laboratory March 7, 2013 - 12:00pm Addthis A view of the new facility where transuranic waste will be repackaged at Los Alamos National Laboratory. A view of the new facility where transuranic waste will be repackaged at Los Alamos National Laboratory. EM Deputy Assistant Secretary for Waste Management Frank Marcinowski, left, talks with LANL’s Oversized Container Disposition Project Manager Mike Romero while on a tour of the 375 box line facility in late February. EM Deputy Assistant Secretary for Waste Management Frank Marcinowski, left, talks with LANL's Oversized Container Disposition Project Manager Mike Romero while on a tour of the 375 box line facility in late February.

448

Seismic Safety Guide  

SciTech Connect

This guide provides managers with practical guidelines for administering a comprehensive earthquake safety program. The Guide is comprehensive with respect to earthquakes in that it covers the most important aspects of natural hazards, site planning, evaluation and rehabilitation of existing buildings, design of new facilities, operational safety, emergency planning, special considerations related to shielding blocks, non-structural elements, lifelines, fire protection and emergency