Powered by Deep Web Technologies
Note: This page contains sample records for the topic "facility construction project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

PROJECT INITIATION FORM FACILITY SERVICES PLANNING, DESIGN AND CONSTRUCTION  

E-Print Network [OSTI]

PROJECT INITIATION FORM FACILITY SERVICES ­ PLANNING, DESIGN AND CONSTRUCTION 202 Facility Services would like an appointment to discuss the project. Department: College: Requestor's Name: E-mail : Phone: Project Contact: (if other than requestor): E-mail : Phone: B. PROJECT INFORMATION Project Location

Stephens, Jacqueline

2

Voluntary Protection Program Onsite Review, Salt Waste Processing Facility Construction Project- February 2013  

Broader source: Energy.gov [DOE]

Evaluation to determine whether Salt Waste Processing Facility Construction Project is continuing to perform at a level deserving DOE-VPP Star recognition.

3

Project Construction  

Broader source: Energy.gov [DOE]

Integrating renewable energy into Federal new construction or major renovations requires effective structuring of the construction team and project schedule. This overview discusses key construction team considerations for renewable energy as well as timing and expectations for the construction phase. The project construction phase begins after a project is completely designed and the construction documents (100%) have been issued. Construction team skills and experience with renewable energy technologies are crucial during construction, as is how the integration of renewable energy affects the project construction schedule.

4

Manhattan Project buildings and facilities at the Hanford Site: A construction history  

SciTech Connect (OSTI)

This document thoroughly examines the role that the Hanford Engineer Works played in the Manhattan project. The historical aspects of the buildings and facilities are characterized. An in depth look at the facilities, including their functions, methods of fabrication and appearance is given for the 100 AREAS, 200 AREAS, 300 AREAS, 500, 800 and 900 AREAS, 600 AREA, 700 AREA, 1100 AREA and temporary construction structures.

Gerber, M.S.

1993-09-01T23:59:59.000Z

5

Design and construction of the defense waste processing facility project at the Savannah River Plant  

SciTech Connect (OSTI)

The Du Pont Company is building for the Department of Energy a facility to vitrify high-level radioactive waste at the Savannah River Plant (SRP) near Aiken, South Carolina. The Defense Waste Processing Facility (DWPF) will solidify existing and future radioactive wastes by immobilizing the waste in Processing Facility (DWPF) will solidify existing and future radioactives wastes by immobilizing the waste in borosilicate glass contained in stainless steel canisters. The canisters will be sealed, decontaminated and stored, prior to emplacement in a federal repository. At the present time, engineering and design is 90% complete, construction is 25% complete, and radioactive processing in the $870 million facility is expected to begin by late 1989. This paper describes the SRP waste characteristics, the DWPF processing, building and equipment features, and construction progress of the facility.

Baxter, R G

1986-01-01T23:59:59.000Z

6

Technical documentation in support of the project-specific analysis for construction and operation of the National Ignition Facility  

SciTech Connect (OSTI)

This document provides information that supports or supplements the data and impact analyses presented in the National Ignition Facility (NIF) Project-Specific Analysis (PSA). The purposes of NIF are to achieve fusion ignition in the laboratory for the first time with inertial confinement fusion (ICF) technology and to conduct high- energy-density experiments ins support of national security and civilian application. NIF is an important element in the DOE`s science-based SSM Program, a key mission of which is to ensure the reliability of the nation`s enduring stockpile of nuclear weapons. NIF would also advance the knowledge of basic and applied high-energy- density science and bring the nation a large step closer to developing fusion energy for civilian use. The NIF PSA includes evaluations of the potential environmental impacts of constructing and operating the facility at one of five candidate site and for two design options.

Lazaro, M.A.; Vinikour, W. [Argonne National Lab., IL (United States). Environmental Assessment Div.; Allison, T. [Argonne National Lab., IL (United States). Decision and Information Sciences Div.] [and others

1996-09-01T23:59:59.000Z

7

CRAD, Nuclear Facility Construction - Structural Concrete, May...  

Broader source: Energy.gov (indexed) [DOE]

CRAD, Nuclear Facility Construction - Structural Concrete, May 29, 2009 CRAD, Nuclear Facility Construction - Structural Concrete, May 29, 2009 May 29, 2009 Nuclear Facility...

8

Submission of Notice of Termination of Coverage Under the National Pollutant Discharge Elimination System General Permit No. CAS000002 for WDID No. 201C349114, Lawrence Livermore National Laboratory Ignition Facility Construction Project  

SciTech Connect (OSTI)

This is the completed Notice of Termination of Coverage under the General Permit for Storm Water Discharges Associated with Construction Activity. Construction activities at the National Ignition Facility Construction Project at Lawrence Livermore National Laboratory are now complete. The Notice of Termination includes photographs of the completed construction project and a vicinity map.

Brunckhorst, K

2009-04-21T23:59:59.000Z

9

Lessons Learned from the 200 West Pump and Treatment Facility Construction Project at the US DOE Hanford Site - A Leadership for Energy and Environmental Design (LEED) Gold-Certified Facility  

SciTech Connect (OSTI)

CH2M Hill Plateau Remediation Company (CHPRC) designed, constructed, commissioned, and began operation of the largest groundwater pump and treatment facility in the U.S. Department of Energy’s (DOE) nationwide complex. This one-of-a-kind groundwater pump and treatment facility, located at the Hanford Nuclear Reservation Site (Hanford Site) in Washington State, was built to an accelerated schedule with American Recovery and Reinvestment Act (ARRA) funds. There were many contractual, technical, configuration management, quality, safety, and Leadership in Energy and Environmental Design (LEED) challenges associated with the design, procurement, construction, and commissioning of this $95 million, 52,000 ft groundwater pump and treatment facility to meet DOE’s mission objective of treating contaminated groundwater at the Hanford Site with a new facility by June 28, 2012. The project team’s successful integration of the project’s core values and green energy technology throughout design, procurement, construction, and start-up of this complex, first-of-its-kind Bio Process facility resulted in successful achievement of DOE’s mission objective, as well as attainment of LEED GOLD certification, which makes this Bio Process facility the first non-administrative building in the DOE Office of Environmental Management complex to earn such an award.

Dorr, Kent A.; Ostrom, Michael J.; Freeman-Pollard, Jhivaun R.

2013-01-11T23:59:59.000Z

10

CONSTRUCTION ALERT For On going Construction Project  

E-Print Network [OSTI]

CONSTRUCTION ALERT For On going Construction Project TO: Deans, Directors, Chairpersons, Building, August 17, 2011 HOURS OF CONSTRUCTION: 8:30AM to approximately noon ACCESSIBLE ROUTES: Accessible routes shall be maintained. ADVISORY: All persons in the vicinity of this construction project are advised

Dong, Yingfei

11

Lessons Learned from the 200 West Pump and Treatment Facility Construction Project at the US DOE Hanford Site - A Leadership for Energy and Environmental Design (LEED) Gold-Certified Facility - 13113  

SciTech Connect (OSTI)

CH2M Hill Plateau Remediation Company (CHPRC) designed, constructed, commissioned, and began operation of the largest groundwater pump and treatment facility in the U.S. Department of Energy's (DOE) nationwide complex. This one-of-a-kind groundwater pump and treatment facility, located at the Hanford Nuclear Reservation Site (Hanford Site) in Washington State, was built to an accelerated schedule with American Recovery and Reinvestment Act (ARRA) funds. There were many contractual, technical, configuration management, quality, safety, and Leadership in Energy and Environmental Design (LEED) challenges associated with the design, procurement, construction, and commissioning of this $95 million, 52,000 ft groundwater pump and treatment facility to meet DOE's mission objective of treating contaminated groundwater at the Hanford Site with a new facility by June 28, 2012. The project team's successful integration of the project's core values and green energy technology throughout design, procurement, construction, and start-up of this complex, first-of-its-kind Bio Process facility resulted in successful achievement of DOE's mission objective, as well as attainment of LEED GOLD certification (Figure 1), which makes this Bio Process facility the first non-administrative building in the DOE Office of Environmental Management complex to earn such an award. (authors)

Dorr, Kent A.; Freeman-Pollard, Jhivaun R.; Ostrom, Michael J. [CH2M HILL Plateau Remediation Company, P.O. Box 1600, MSIN R4-41, 99352 (United States)] [CH2M HILL Plateau Remediation Company, P.O. Box 1600, MSIN R4-41, 99352 (United States)

2013-07-01T23:59:59.000Z

12

U.S. Environmental Protection Agency Clear Air Act notice of construction for the spent nuclear fuel project - Cold Vaccum Drying Facility, project W-441  

SciTech Connect (OSTI)

This document provides information regarding the source and the estimated quantity of potential airborne radionuclide emissions resulting from the operation of the Cold Vacuum Drying (CVD) Facility. The construction of the CVD Facility is scheduled to commence on or about December 1996, and will be completed when the process begins operation. This document serves as a Notice of Construction (NOC) pursuant to the requirements of 40 Code of Federal Regulations (CFR) 61 for the CVD Facility. About 80 percent of the U.S. Department of Energy`s spent nuclear fuel (SNF) inventory is stored under water in the Hanford Site K Basins. Spent nuclear fuel in the K West Basin is contained in closed canisters, while the SNF in the K East Basin is in open canisters, which allow release of corrosion products to the K East Basin water. Storage of the current inventory in the K Basins was originally intended to be on an as-needed basis to sustain operation of the N Reactor while the Plutonium-Uranium Extraction (PUREX) Plant was refurbished and restarted. The decision in December 1992 to deactivate the PURF-X Plant left approximately 2,100 MT (2,300 tons) of uranium as part of the N Reactor SNF in the K Basins with no means for near-term removal and processing. The CVD Facility will be constructed in the 100 Area northwest of the 190 K West Building, which is in close proximity to the K East and K West Basins (Figures 1 and 08572). The CVD Facility will consist of five processing bays, with four of the bays fully equipped with processing equipment and the fifth bay configured as an open spare bay. The CVD Facility will have a support area consisting of a control room, change rooms, and other functions required to support operations.

Turnbaugh, J.E.

1996-11-25T23:59:59.000Z

13

Lessons Learned From The 200 West Pump And Treatment Facility Construction Project At The US DOE Hanford Site - A Leadership For Energy And Environmental Design (LEED) Gold-Certified Facility  

SciTech Connect (OSTI)

CH2M Hill Plateau Remediation Company (CHPRC) designed, constructed, commissioned, and began operation of the largest groundwater pump and treatment facility in the U.S. Department of Energy's (DOE) nationwide complex. This one-of-a-kind groundwater pump and treatment facility, located at the Hanford Nuclear Reservation Site (Hanford Site) in Washington State, was built in an accelerated manner with American Recovery and Reinvestment Act (ARRA) funds and has attained Leadership in Energy and Environmental Design (LEED) GOLD certification, which makes it the first non-administrative building in the DOE Office of Environmental Management complex to earn such an award. There were many contractual, technical, configuration management, quality, safety, and LEED challenges associated with the design, procurement, construction, and commissioning of this $95 million, 52,000 ft groundwater pump and treatment facility. This paper will present the Project and LEED accomplishments, as well as Lessons Learned by CHPRC when additional ARRA funds were used to accelerate design, procurement, construction, and commissioning of the 200 West Groundwater Pump and Treatment (2W P&T) Facility to meet DOE's mission of treating contaminated groundwater at the Hanford Site with a new facility by June 28, 2012.

Dorr, Kent A. [CH2M HILL Plateau Remediation Company, Richland, WA (United States); Ostrom, Michael J. [CH2M HILL Plateau Remediation Company, Richland, WA (United States); Freeman-Pollard, Jhivaun R. [CH2M HILL Plateau Remediation Company, Richland, WA (United States)

2012-11-14T23:59:59.000Z

14

Nuclear Facility Construction - Structural Concrete, May 29,...  

Broader source: Energy.gov (indexed) [DOE]

Nuclear Facility Construction - Structural Concrete, May 29, 2009 (HSS CRAD 64-15, Rev. 0) Nuclear Facility Construction - Structural Concrete, May 29, 2009 (HSS CRAD 64-15, Rev....

15

Environmental Management Construction Project Review of the Savannah...  

Broader source: Energy.gov (indexed) [DOE]

Evaluations Activity Report for the Shadowing of the Environmental Management Construction Project Review of the Savannah River Site Salt Waste Processing Facility on July...

16

MSU Construction Change Directive Form 109 Page 1 of 1 FACILITIES PLANNING, DESIGN & CONSTRUCTION  

E-Print Network [OSTI]

MSU Construction Change Directive Form 109 Page 1 of 1 FACILITIES PLANNING, DESIGN & CONSTRUCTION: (406) 994-5665 CONSTRUCTION CHANGE DIRECTIVE Project Name: PPA No.: Location: Montana State University, Design & Construction 6th & Grant, Po Box 172760 Bozeman, Mt 59717-2760 Architect

Dyer, Bill

17

State of Washington Department of Health Radioactive air emissions notice of construction phase 1 for spent nuclear fuel project - cold vacuum drying facility, project W-441  

SciTech Connect (OSTI)

This notice of construction (NOC) provides information regarding the source and the estimated annual possession quantity resulting from operation of the Cold Vacuum Drying Facility (CVDF). Additional details on emissions generated by the operation of the CVDF will be discussed again in the Phase 11 NOC. This document serves as a NOC pursuant to the requirements of WAC 246-247-060 for the completion of Phase I NOC, defined as the pouring of concrete for the foundation flooring, construction of external walls, and construction of the building excluding the installation of CVDF process equipment. A Phase 11 NOC will be submitted for approval prior to installing and is defined as the completion of the CVDF, which consisted installation of process equipment, air emissions control, and emission monitoring equipment. About 80 percent of the U.S. Department of Energy`s spent nuclear fuel (SNF) inventory is stored under water in the Hanford Site K Basins. Spent nuclear fuel in the K West Basin is contained in closed canisters while the SNF in the K East Basin is in open canisters, which allow free release of corrosion products to the K East Basin water.

Turnbaugh, J.E.

1996-08-15T23:59:59.000Z

18

Constructibility review process framework for transportation facilities  

E-Print Network [OSTI]

Constructibility is the optimum use of construction knowledge and experience in planning, design, procurement, and field operations in order to achieve overall project objectives ("Constructibility: a primer" 1986). This Thesis presents a framework...

Liman, Majed

1995-01-01T23:59:59.000Z

19

Idaho Waste Vitrification Facilities Project Vitrified Waste Interim Storage Facility  

SciTech Connect (OSTI)

This feasibility study report presents a draft design of the Vitrified Waste Interim Storage Facility (VWISF), which is one of three subprojects of the Idaho Waste Vitrification Facilities (IWVF) project. The primary goal of the IWVF project is to design and construct a treatment process system that will vitrify the sodium-bearing waste (SBW) to a final waste form. The project will consist of three subprojects that include the Waste Collection Tanks Facility, the Waste Vitrification Facility (WVF), and the VWISF. The Waste Collection Tanks Facility will provide for waste collection, feed mixing, and surge storage for SBW and newly generated liquid waste from ongoing operations at the Idaho Nuclear Technology and Engineering Center. The WVF will contain the vitrification process that will mix the waste with glass-forming chemicals or frit and turn the waste into glass. The VWISF will provide a shielded storage facility for the glass until the waste can be disposed at either the Waste Isolation Pilot Plant as mixed transuranic waste or at the future national geological repository as high-level waste glass, pending the outcome of a Waste Incidental to Reprocessing determination, which is currently in progress. A secondary goal is to provide a facility that can be easily modified later to accommodate storage of the vitrified high-level waste calcine. The objective of this study was to determine the feasibility of the VWISF, which would be constructed in compliance with applicable federal, state, and local laws. This project supports the Department of Energy’s Environmental Management missions of safely storing and treating radioactive wastes as well as meeting Federal Facility Compliance commitments made to the State of Idaho.

Bonnema, Bruce Edward

2001-09-01T23:59:59.000Z

20

www.facilities.ufl.edu BUSINESS AFFAIRS PLANNING DESIGN & CONSTRUCTION  

E-Print Network [OSTI]

www.facilities.ufl.edu BUSINESS AFFAIRS PLANNING DESIGN & CONSTRUCTION PDC PROJECT MANAGEMENT GUIDE categories, and to fiscally close the contract. All change orders must be approved by the PDC Assistant Vice-President (AVP) or designee, the PDC Contract Administrator (CA), and the PDC Project Manager. B. Funding

Slatton, Clint

Note: This page contains sample records for the topic "facility construction project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

CRAD, Nuclear Facility Construction - Piping and Pipe Supports...  

Energy Savers [EERE]

Construction - Structural Steel, May 29, 2009 CRAD, Nuclear Facility Construction - Mechanical Equipment - June 26, 2012 Nuclear Facility Construction - Structural Concrete, May...

22

Phased Construction Completion Report for Building K-1401 of the Remaining Facilities Demolition Project at the East Tennessee Technology Park Oak Ridge, Tennessee  

SciTech Connect (OSTI)

This Phased Construction Completion Report documents the demolition of Bldg. K-1401, Maintenance Building, addressed in the Action Memorandum for the Remaining Facilities Demolition Project at East Tennessee Technology Park, Oak Ridge, Tennessee (DOE 2003a) as a Comprehensive Environmental Response, Compensation, and Liability Act of 1980 non-time-critical removal action. The objectives of the removal action (DOE 2003a) - to eliminate the source of potential contamination, to eliminate the threat of potential future releases, and/or to eliminate the threats to the general public and the environment - were met. The end state of this action is for the slab to remain with all penetrations sealed and grouted or backfilled. The basement and pits remain open. There is residual radiological and polychlorinated biphenyl contamination on the slab and basement. A fixative was applied to the area on the pad contaminated with polychlorinated biphenyls. Interim land-use controls will be maintained until final remediation decisions are made under the Zone 2 Record of Decision (DOE 2005a).

Garland S.

2008-03-01T23:59:59.000Z

23

Phased Construction Completion Report for Bldg. K-1401 of the Remaining Facilities Demolition Project at the East Tennessee Technology Park, Oak Ridge, Tennessee  

SciTech Connect (OSTI)

This Phased Construction Completion Report documents the demolition of Bldg. K-1401, Maintenance Building, addressed in the Action Memorandum for the Remaining Facilities Demolition Project at East Tennessee Technology Park, Oak Ridge, Tennessee (DOE 2003a) as a Comprehensive Environmental Response, Compensation, and Liability Act of 1980 non-time-critical removal action. The objectives of the removal action (DOE 2003a) - to eliminate the source of potential contamination, to eliminate the threat of potential future releases, and/or to eliminate the threats to the general public and the environment - were met. The end state of this action is for the slab to remain with all penetrations sealed and grouted or backfilled. The basement and pits remain open. There is residual radiological and polychlorinated biphenyl contamination on the slab and basement. A fixative was applied to the area on the pad contaminated with polychlorinated biphenyls. Interim land-use controls will be maintained until final remediation decisions are made under the Zone 2 Record of Decision (DOE 2005a).

Bechtel Jacobs

2008-10-01T23:59:59.000Z

24

Canastota Renewable Energy Facility Project  

SciTech Connect (OSTI)

The project was implemented at the Madison County Landfill located in the Town of Lincoln, Madison County, New York. Madison County has owned and operated the solid waste and recycling facilities at the Buyea Road site since 1974. At the onset of the project, the County owned and operated facilities there to include three separate landfills, a residential solid waste disposal and recycled material drop-off facility, a recycling facility and associated administrative, support and environmental control facilities. This putrescible waste undergoes anaerobic decomposition within the waste mass and generates landfill gas, which is approximately 50% methane. In order to recover this gas, the landfill was equipped with gas collection systems on both the east and west sides of Buyea Road which bring the gas to a central point for destruction. In order to derive a beneficial use from the collected landfill gases, the County decided to issue a Request for Proposals (RFP) for the future use of the generated gas.

Blake, Jillian; Hunt, Allen

2013-12-13T23:59:59.000Z

25

www.facilities.ufl.edu BUSINESS AFFAIRS PLANNING DESIGN & CONSTRUCTION  

E-Print Network [OSTI]

www.facilities.ufl.edu BUSINESS AFFAIRS PLANNING DESIGN & CONSTRUCTION PDC PROJECT MANAGEMENT GUIDE are available on the PDC website. The PM and CA shall use the PDC pay application checklist as a means to support the Cost of Work. PDC REVISED JANUARY 2014 PAGE 1 OF 3 #12;a)All trade contractors' pay

Slatton, Clint

26

www.facilities.ufl.edu BUSINESS AFFAIRS PLANNING DESIGN & CONSTRUCTION  

E-Print Network [OSTI]

www.facilities.ufl.edu BUSINESS AFFAIRS PLANNING DESIGN & CONSTRUCTION PDC PROJECT MANAGEMENT GUIDE, this practice increases the potential for non-competitive pricing. B. Policy. Unless otherwise authorized by PDC written consent of PDC. The requirement to obtain prior written PDC consent also applies to trade

Slatton, Clint

27

National Ignition Facility project acquisition plan  

SciTech Connect (OSTI)

The purpose of this National Ignition Facility Acquisition Plan is to describe the overall procurement strategy planned for the National Ignition Facility (NIF) Project. The scope of the plan describes the procurement activities and acquisition strategy for the following phases of the NIF Project, each of which receives either plant and capital equipment (PACE) or other project cost (OPC) funds: Title 1 and 2 design and Title 3 engineering (PACE); Optics manufacturing facilitization and pilot production (OPC); Convention facility construction (PACE); Procurement, installation, and acceptance testing of equipment (PACE); and Start-up (OPC). Activities that are part of the base Inertial Confinement Fusion (ICF) Program are not included in this plan. The University of California (UC), operating Lawrence Livermore National Laboratory (LLNL) and Los Alamos National Laboratory, and Lockheed-Martin, which operates Sandia National Laboratory (SNL) and the University of Rochester Laboratory for Laser Energetics (UR-LLE), will conduct the acquisition of needed products and services in support of their assigned responsibilities within the NIF Project structure in accordance with their prime contracts with the Department of Energy (DOE). LLNL, designated as the lead Laboratory, will have responsibility for all procurements required for construction, installation, activation, and startup of the NIF.

Callaghan, R.W.

1996-04-01T23:59:59.000Z

28

Evaluating flexibility in railroad construction projects  

E-Print Network [OSTI]

This thesis aims to valuate flexibilities in a large-scale railroad construction project. In general, a railroad construction project involves a large amount of flexibilities due to its long construction period and conflicts ...

Oh, Choong Ryun, 1972-

2005-01-01T23:59:59.000Z

29

Vitrification facility at the West Valley Demonstration Project  

SciTech Connect (OSTI)

This report is a description of the West Valley Demonstration Project`s vitrification facilities from the establishment of the West Valley, NY site as a federal and state cooperative project to the completion of all activities necessary to begin solidification of radioactive waste into glass by vitrification. Topics discussed in this report include the Project`s background, high-level radioactive waste consolidation, vitrification process and component testing, facilities design and construction, waste/glass recipe development, integrated facility testing, and readiness activities for radioactive waste processing.

DesCamp, V.A.; McMahon, C.L.

1996-07-01T23:59:59.000Z

30

REVISED CONSTRUCTION ALERT For On-going Construction Project  

E-Print Network [OSTI]

REVISED CONSTRUCTION ALERT For On-going Construction Project TO: Deans, Directors, Chairpersons routes are affected by this work. ADVISORY: All persons in the vicinity of this construction project are advised to respect all construction barricades and all posted safety/detour signs. Your patience

31

CONSTRUCTION ALERT Additional Notice to Ongoing Project  

E-Print Network [OSTI]

CONSTRUCTION ALERT Additional Notice to Ongoing Project TO: Deans, Directors, Chairpersons panels on the roof of PBRC. DURATION OF PROJECT: September 20, 2011 HOURS OF CONSTRUCTION: 7:30 a.m. to 4 of this construction project are advised to respect all construction barricades and all posted safety/detour signs

Dong, Yingfei

32

CONSTRUCTION NOTICE SUPPLEMENT For On-going Construction Project  

E-Print Network [OSTI]

CONSTRUCTION NOTICE SUPPLEMENT For On-going Construction Project TO: Deans, Directors, Chairpersons Alarm System UHM 05-537A CONTRACTOR: Biven's Electric, Inc. Dba West Coast Construction SCOPE OF WORK OF CONSTRUCTION FROM 7:30 AM TO 4:30 PM ACCESSIBLE ROUTES: No accessible routes will be affected by this test

33

CONSTRUCTION ALERT Additional Notice to Ongoing Project  

E-Print Network [OSTI]

CONSTRUCTION ALERT Additional Notice to Ongoing Project TO: Deans, Directors, Chairpersons: November 28 to December 1, 2011 HOURS OF CONSTRUCTION: 6:30 a.m. to 9:30 a.m. ACCESSIBLE ROUTES: No accessible routes will be affected. ADVISORY: All persons in the vicinity of this construction project

34

US ITER Project Providing a Facility for  

E-Print Network [OSTI]

US ITER Project Providing a Facility for Burning Plasma Research Ned Sauthoff Project Manager, US to position the US for Burning Plasma Research #12;U.S. ITER / Sauthoff Slide 2 Structure of the Talk... ITER

35

CONSTRUCTION ALERT Additional Notice to Ongoing Project  

E-Print Network [OSTI]

CONSTRUCTION ALERT Additional Notice to Ongoing Project TO: Deans, Directors, Chairpersons to August 19, 2011 HOURS OF CONSTRUCTION: 4:30 p.m. to 8:00 p.m. on August 17 and 18 8:00 a.m. to 4:00 p of this construction project are advised to respect all construction barricades and all posted safety/detour signs

Dong, Yingfei

36

Example Cost Codes for Construction Projects  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This chapter provides an example outline of cost items and their corresponding cost codes that may be used for construction projects.

1997-03-28T23:59:59.000Z

37

Energy Facility Evaluation, Siting, Construction and Operation (New Hampshire)  

Broader source: Energy.gov [DOE]

The statute establishes a procedure for the review, approval, monitoring, and enforcement of compliance in the planning, siting, construction, and operation of energy facilities, including...

38

Offsite Construction Comparative Study of Panelized and Modular Construction for Rio Mesa Facilities  

E-Print Network [OSTI]

Offsite Construction Comparative Study of Panelized and Modular Construction: This research is to evaluate the opportunities of prefabricated construction for remote the logistics of prefab construction on the Rio Mesa site, we hope that this project

Tipple, Brett

39

Tribal Renewable Energy Advanced Course: Facility Scale Project...  

Broader source: Energy.gov (indexed) [DOE]

Facility Scale Project Development Tribal Renewable Energy Advanced Course: Facility Scale Project Development Watch the DOE Office of Indian Energy renewable energy course...

40

Idaho Spent Fuel Facility (ISFF) Project, Appropriate Acquisition...  

Office of Environmental Management (EM)

Idaho Spent Fuel Facility (ISFF) Project, Appropriate Acquisition Strategy Lessons Learned Report, NNSA, Feb 2010 Idaho Spent Fuel Facility (ISFF) Project, Appropriate Acquisition...

Note: This page contains sample records for the topic "facility construction project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Community- and Facility-Scale Tribal Renewable Energy Project...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Community- and Facility-Scale Tribal Renewable Energy Project Development and Finance Workshop Community- and Facility-Scale Tribal Renewable Energy Project Development and Finance...

42

Air Quality: Construction Project Air Permit Requirements  

E-Print Network [OSTI]

Air Quality: Construction Project Air Permit Requirements Department: Chemical and General Safety Program: Air Quality Owner: Program Manager Authority: ES&H Manual, Chapter 30, Air Quality1 All manager or operator must submit the completed form to the air quality program manager before the project

Wechsler, Risa H.

43

NOMINATION FOR THE PROJECT MANAGEMENT INSTITUTE (PMI) PROJECT OF THE YEAR AWARD INTEGRATED DISPOSAL FACILITY (IDF)  

SciTech Connect (OSTI)

CH2M HILL Hanford Group, Inc. (CH2M HILL) is pleased to nominate the Integrated Disposal Facility (IDF) project for the Project Management Institute's consideration as 2007 Project of the Year, Built for the U.S, Department of Energy's (DOE) Office of River Protection (ORP) at the Hanford Site, the IDF is the site's first Resource Conservation and Recovery Act (RCRA)-compliant disposal facility. The IDF is important to DOE's waste management strategy for the site. Effective management of the IDF project contributed to the project's success. The project was carefully managed to meet three Tri-Party Agreement (TPA) milestones. The completed facility fully satisfied the needs and expectations of the client, regulators and stakeholders. Ultimately, the project, initially estimated to require 48 months and $33.9 million to build, was completed four months ahead of schedule and $11.1 million under budget. DOE directed construction of the IDF to provide additional capacity for disposing of low-level radioactive and mixed (i.e., radioactive and hazardous) solid waste. The facility needed to comply with federal and Washington State environmental laws and meet TPA milestones. The facility had to accommodate over one million cubic yards of the waste material, including immobilized low-activity waste packages from the Waste Treatment Plant (WTP), low-level and mixed low-level waste from WTP failed melters, and alternative immobilized low-activity waste forms, such as bulk-vitrified waste. CH2M HILL designed and constructed a disposal facility with a redundant system of containment barriers and a sophisticated leak-detection system. Built on a 168-area, the facility's construction met all regulatory requirements. The facility's containment system actually exceeds the state's environmental requirements for a hazardous waste landfill. Effective management of the IDF construction project required working through highly political and legal issues as well as challenges with permitting, scheduling, costs, stakeholders and technical issues. To meet the customer's needs and deadlines, the project was managed with conscientious discipline and application of sound project management principles in the Project Management Institute's Project Management Body of Knowledge. Several factors contributed to project success. Extensive planning and preparation were conducted, which was instrumental to contract and procurement management. Anticipating issues and risks, CH2M HILL prepared well defined scope and expectations, particularly for safety. To ensure worker safety, the project management team incorporated CH2M HILL's Integrated Safety Management System (ISMS) into the project and included safety requirements in contracting documents and baseline planning. The construction contractor DelHur Industries, Inc. adopted CH2M HILL's safety program to meet the procurement requirement for a comparable ISMS safety program. This project management approach contributed to an excellent safety record for a project with heavy equipment in constant motion and 63,555 man-hours worked. The project manager worked closely with ORP and Ecology to keep them involved in project decisions and head off any stakeholder or regulatory concerns. As issues emerged, the project manager addressed them expeditiously to maintain a rigorous schedule. Subcontractors and project contributors were held to contract commitments for performance of the work scope and requirements for quality, budget and schedule. Another element of project success extended to early and continual involvement of all interested in the project scope. Due to the public sensitivity of constructing a landfill planned for radioactive waste as well as offsite waste, there were many stakeholders and it was important to secure their agreement on scope and time frames. The project had multiple participants involved in quality assurance surveillances, audits and inspections, including the construction contractor, CH2M HILL, ORP, the Washington State Department of Ecology, and independent certified quality assurance an

MCLELLAN, G.W.

2007-02-07T23:59:59.000Z

44

The National Ignition Facility: Status of Construction  

E-Print Network [OSTI]

Bruce Warner Deputy Associate Director, NIF Programs Lawrence Livermore National Laboratory October 11, 2005 #12;NIF-0605-10997 27EIM/cld NIF-0605-10997-L2 27EIM/cld P LLNLLLNL P9266 #12;NIF-0605-10997 27EIM/cld NIF-0605-10997-L28 27EIM/cld P LLNLLLNL National Ignition FacilityNational Ignition Facility P9292 San

45

National Biomedical Tracer Facility. Project definition study  

SciTech Connect (OSTI)

We request a $25 million government-guaranteed, interest-free loan to be repaid over a 30-year period for construction and initial operations of a cyclotron-based National Biomedical Tracer Facility (NBTF) in North Central Texas. The NBTF will be co-located with a linear accelerator-based commercial radioisotope production facility, funded by the private sector at approximately $28 million. In addition, research radioisotope production by the NBTF will be coordinated through an association with an existing U.S. nuclear reactor center that will produce research and commercial radioisotopes through neutron reactions. The combined facilities will provide the full range of technology for radioisotope production and research: fast neutrons, thermal neutrons, and particle beams (H{sup -}, H{sup +}, and D{sup +}). The proposed NBTF facility includes an 80 MeV, 1 mA H{sup -} cyclotron that will produce proton-induced (neutron deficient) research isotopes.

Schafer, R.

1995-02-14T23:59:59.000Z

46

Power Systems Development Facility: Design, Construction, and Commissioning Status  

SciTech Connect (OSTI)

This paper will provide an introduction to the Power Systems Development Facility, a Department of Energy sponsored, engineering scale demonstration of two advanced coal-fired power technologies; and discuss current status of design, construction and commissioning of this facility. 28 viewgraphs, including 2 figs.

Powell, C.A.; Vimalchand; Hendrix, H.L.; Honeycut, P.M.

1996-12-31T23:59:59.000Z

47

Parsons Salt Water Processing Facility Construction Project  

Office of Environmental Management (EM)

onsite. Parsons has contracted its occupational medicine program through the University Health Care System Occupational Health Center located in Augusta, Georgia. The...

48

Contacts for Integrating Renewable Energy into Federal Construction Projects  

Broader source: Energy.gov [DOE]

Contacts to learn more about integrating renewable energy technologies into Federal construction projects.

49

2013 Community- and Facility-Scale Tribal Renewable Energy Project...  

Office of Environmental Management (EM)

2013 Community- and Facility-Scale Tribal Renewable Energy Project Development and Finance Workshop Presentations and Agenda 2013 Community- and Facility-Scale Tribal Renewable...

50

Construction project delay-analysis techniques  

E-Print Network [OSTI]

of this rcscarch bcncfit different parties among the construction industry such as the owners, dcsigncrs, contractors, and lawyers. DEDICATION For my parents, Haya and Mohammad, whose love and support have guided me throughout and carried me at times. Fo&r... OWNER PROJECT 3 AS-BUILT WITHOUT DELAY SCHEDULE APPENDIX D PUBLIC OWNER 3 SNAPSHOT SCHEDULE ON APRIL 21, 1997 . APPENDIX E PUBLIC OWNER 3 SNAPSHOT SCHEDULE ON MAY 10 ", 1997. APPENDIX F PUBLIC OWNER 3 DELAY-ANALYSIS USING ANALYSIS...

Al-Humaidi, Hanouf M

2012-06-07T23:59:59.000Z

51

The surplus facility inventory and assessment project  

SciTech Connect (OSTI)

As a result of the ending of the Cold War, the Department of Energy (DOE) is experiencing a downsizing of the DOE nuclear weapons complex similar to the downsizing and base closures being experienced by the armed forces. Declining budgets across all DOE programs have further contributed to the extent and rate at which DOE`s assets are being declared surplus. The Surplus Facility Inventory and Assessment (SFIA) Project will define the magnitude of risk associated with the DOE surplus, contaminated assets. The results of the SFIA Project will be fundamental to all planning, budgeting, and management associated with the surplus, contaminated inventory.

Weiner, L.A.; Szilagyi, A.P. [DOE, Washington, DC (United States); Rae, L.J.

1994-12-31T23:59:59.000Z

52

Community- and Facility-Scale Tribal Renewable Energy Project...  

Energy Savers [EERE]

Community- and Facility-Scale Tribal Renewable Energy Project Workshop to be Held in September Community- and Facility-Scale Tribal Renewable Energy Project Workshop to be Held in...

53

Proton therapy construction projects in the United States  

SciTech Connect (OSTI)

Proton and heavy-ion radiation therapy has been taking place now for 40 years, at many accelerator laboratories around the world, essentially all of these centers built originally for physics research. The high degree of promise shown for using these particles for treating and curing cancer has stimulated the medical community to look seriously at building dedicated accelerator facilities in a hospital setting, where more rapid progress can be made in clinical research, and development of effective treatments with these beams. In the United States, the first such facility, at the Loma Linda University Medical Center, has been in operation now for two years, and is currently treating a total of 35 to 40 patients per day. Two new projects are being designed at present, one at the Massachusetts General Hospital in Boston, Massachusetts, the second a joint project of the Lawrence Berkeley Laboratory and the University of California at Davis Medical Center in Sacramento, California. This paper will discuss accelerator and beam characteristics relevant to the proton-therapy application, and will present performance and operations characteristics for the Loma Linda facility, as well as details of the plans, process and progress towards construction of the new facilities in Boston and Sacramento.

Alonso, J.R.

1992-11-01T23:59:59.000Z

54

CONSTRUCTION NOTICE SUPPLEMENT Additional Notice to Ongoing Project  

E-Print Network [OSTI]

CONSTRUCTION NOTICE SUPPLEMENT Additional Notice to Ongoing Project TO: Deans, Directors on the roof to June 30, 2011. DURATION OF PROJECT: May 21, 2011 to June 30, 2011 HOURS OF CONSTRUCTION: Monday persons in the vicinity of this construction project are advised to respect all construction barricades

55

National Ignition Facility Project Site Safety Program  

SciTech Connect (OSTI)

This Safety Program for the National Ignition Facility (NIF) presents safety protocols and requirements that management and workers shall follow to assure a safe and healthful work environment during activities performed on the NIF Project site. The NIF Project Site Safety Program (NPSSP) requires that activities at the NIF Project site be performed in accordance with the ''LLNL ES&H Manual'' and the augmented set of controls and processes described in this NIF Project Site Safety Program. Specifically, this document: (1) Defines the fundamental NIF site safety philosophy. (2) Defines the areas covered by this safety program (see Appendix B). (3) Identifies management roles and responsibilities. (4) Defines core safety management processes. (5) Identifies NIF site-specific safety requirements. This NPSSP sets forth the responsibilities, requirements, rules, policies, and regulations for workers involved in work activities performed on the NIF Project site. Workers are required to implement measures to create a universal awareness that promotes safe practice at the work site and will achieve NIF management objectives in preventing accidents and illnesses. ES&H requirements are consistent with the ''LLNL ES&H Manual''. This NPSSP and implementing procedures (e.g., Management Walkabout, special work procedures, etc.,) are a comprehensive safety program that applies to NIF workers on the NIF Project site. The NIF Project site includes the B581/B681 site and support areas shown in Appendix B.

Dun, C

2003-09-30T23:59:59.000Z

56

Hythane project by Hydrogen China Ltd and China Railway Construction...  

Open Energy Info (EERE)

by Hydrogen China Ltd and China Railway Construction Corporation Jump to: navigation, search Name: Hythane project by Hydrogen China Ltd and China Railway Construction Corporation...

57

Construction Project Safety and Health Plan RM  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power Systems EngineeringDepartmentSmart Grid RFI:FresnoM-WG Idaho,Construction Project Safety and

58

Safeguards design strategies: designing and constructing new uranium and plutonium processing facilities in the United States  

SciTech Connect (OSTI)

In the United States, the Department of Energy (DOE) is transforming its outdated and oversized complex of aging nuclear material facilities into a smaller, safer, and more secure National Security Enterprise (NSE). Environmental concerns, worker health and safety risks, material security, reducing the role of nuclear weapons in our national security strategy while maintaining the capability for an effective nuclear deterrence by the United States, are influencing this transformation. As part of the nation's Uranium Center of Excellence (UCE), the Uranium Processing Facility (UPF) at the Y-12 National Security Complex in Oak Ridge, Tennessee, will advance the U.S.'s capability to meet all concerns when processing uranium and is located adjacent to the Highly Enriched Uranium Materials Facility (HEUMF), designed for consolidated storage of enriched uranium. The HEUMF became operational in March 2010, and the UPF is currently entering its final design phase. The designs of both facilities are for meeting anticipated security challenges for the 21st century. For plutonium research, development, and manufacturing, the Chemistry and Metallurgy Research Replacement (CMRR) building at the Los Alamos National Laboratory (LANL) in Los Alamos, New Mexico is now under construction. The first phase of the CMRR Project is the design and construction of a Radiological Laboratory/Utility/Office Building. The second phase consists of the design and construction of the Nuclear Facility (NF). The National Nuclear Security Administration (NNSA) selected these two sites as part of the national plan to consolidate nuclear materials, provide for nuclear deterrence, and nonproliferation mission requirements. This work examines these two projects independent approaches to design requirements, and objectives for safeguards, security, and safety (3S) systems as well as the subsequent construction of these modern processing facilities. Emphasis is on the use of Safeguards-by-Design (SBD), incorporating Systems Engineering (SE) principles for these two projects.

Scherer, Carolynn P [Los Alamos National Laboratory; Long, Jon D [Los Alamos National Laboratory

2010-09-28T23:59:59.000Z

59

National Ignition Facility project acquisition plan revision 1  

SciTech Connect (OSTI)

The purpose of this National Ignition Facility Acquisition Plan is to describe the overall procurement strategy planned for the National Ignition Facility M Project. It was prepared for the NIP Prood Office by the NIF Procurement Manager.

Clobes, A.R.

1996-10-01T23:59:59.000Z

60

New Construction of Distribution Lines, Service Lines, and Appurtenant Facilities in Residential Subdivisions (New York)  

Broader source: Energy.gov [DOE]

Any proposed construction of electricity-related facilities in residential subdivisions, including distribution and service lines and appurtenant facilities, is subject to these regulations, which...

Note: This page contains sample records for the topic "facility construction project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

National Ignition Facility project execution plan  

SciTech Connect (OSTI)

This project execution plan covers: Justification of Mission Need; Project Description; Management Roles and Responsibilities; Project Execution; Method of Accomplishment.

Paisner, J., LLNL

1997-08-01T23:59:59.000Z

62

Application of Nuclear Regulatory Commission Regulation Equivalency to Construction of New Nuclear Facilities  

SciTech Connect (OSTI)

The Spent Nuclear Fuels Project (SNFP) Office of the Department of Energy (DOE), Richland Operations Office, is charged with moving 2.100 metric tons of spent nuclear fuel elements left over from plutonium production into semi-permanent storage at DOE'S Hanford site in Washington state. In anticipation of eventual NRC regulation, the DOE decided to impose NRC requirements on new SNFP facility design and construction, specifically for the Cold Vacuum Drying Facility (CVDF) and the Canister Storage Building (CSB). The SNFP implemented this policy of ''NRC equivalency'' with the goal of achieving a level of nuclear safety equivalent to that of NRC-licensed fuel processing facilities. Appropriate features of the NRC licensing process were adopted. However, the SNFP maintained applicable DOE requirements in tandem with the NRC regulations. Project work is continuing, with the first fuel movement scheduled for November, 2000.

BISHOP, G.E.

1999-06-02T23:59:59.000Z

63

CONSTRUCTION NOTICE SUPPLEMENT Additional Notice to Ongoing Project  

E-Print Network [OSTI]

CONSTRUCTION NOTICE SUPPLEMENT Additional Notice to Ongoing Project TO: Deans, Directors 23, 2011 HOURS OF CONSTRUCTION: Monday to Friday 7:30 a.m. to 4:00 p.m. ACCESSIBLE ROUTES: Accessible routes shall be maintained. ADVISORY: All persons in the vicinity of this construction project

Dong, Yingfei

64

CE 4990 -Construction Scheduling Week 1: Steel Frame Project  

E-Print Network [OSTI]

CE 4990 - Construction Scheduling Week 1: Steel Frame Project Fall 2011 January 13, 2012 Introduction You are a construction manager for a project to build a steel frame for an office building1 of 964 pre-fabricated structural steel members will be used in the construction. The standard bay size

Mukherjee, Amlan

65

CONSTRUCTION NOTICE SUPPLEMENT Additional Notice to Ongoing Project  

E-Print Network [OSTI]

CONSTRUCTION NOTICE SUPPLEMENT Additional Notice to Ongoing Project TO: Deans, Directors. DURATION OF PROJECT: May 31, 2011 to June 21, 2011 HOURS OF CONSTRUCTION: Monday to Friday 7:30 a.m. to 4. The loading area will be closed on May 31, 2011. ADVISORY: All persons in the vicinity of this construction

66

FACILITIES ENGINEER WEST CHICAGO Execute capital projects for manufacturing facilities and utilities systems: scope development, cost  

E-Print Network [OSTI]

facilities and utilities systems: scope development, cost estimation, system design, equipment sizing ENGINEERING: Lead capital project design, development and execution for facility and utility capital Utilities systems (Vacuum, Hydraulics, Waste Water treatment, etc.) o Buildings and grounds, including

Heller, Barbara

67

Detailed Execution Planning for Large Oil and Gas Construction Projects  

E-Print Network [OSTI]

Detailed Execution Planning for Large Oil and Gas Construction Projects Presented by James Lozon, University of Calgary There is currently 55.8 billion dollars worth of large oil and gas construction projects scheduled or underway in the province of Alberta. Recently, large capital oil and gas projects

Calgary, University of

68

Significant Project Flow Chart (for Board Approved Capital Construction Projects 2 million and above)  

E-Print Network [OSTI]

of the project. Construction documents include final detailed drawings, specifications, material lists and all the project will be constructed, schedules work with his subcontractors, and orders materials. BuildingSignificant Project Flow Chart (for Board Approved Capital Construction Projects 2 million

69

Status and specifications of a Project X front-end accelerator test facility at Fermilab  

SciTech Connect (OSTI)

This paper describes the construction and operational status of an accelerator test facility for Project X. The purpose of this facility is for Project X component development activities that benefit from beam tests and any development activities that require 325 MHz or 650 MHz RF power. It presently includes an H- beam line, a 325 MHz superconducting cavity test facility, a 325 MHz (pulsed) RF power source, and a 650 MHz (CW) RF power source. The paper also discusses some specific Project X components that will be tested in the facility. Fermilab's future involves new facilities to advance the intensity frontier. In the early 2000's, the vision was a pulsed, superconducting, 8 GeV linac capable of injecting directly into the Fermilab Main Injector. Prototyping the front-end of such a machine started in 2005 under a program named the High Intensity Neutrino Source (HINS). While the HINS test facility was being constructed, the concept of a new, more versatile accelerator for the intensity frontier, now called Project X, was forming. This accelerator comprises a 3 GeV CW superconducting linac with an associated experimental program, followed by a pulsed 8 GeV superconducting linac to feed the Main Injector synchrotron. The CW Project X design is now the model for Fermilab's future intensity frontier program. Although CW operation is incompatible with the original HINS front-end design, the installation remains useful for development and testing many Project X components.

Steimel, J.; Webber, R.; Madrak, R.; Wildman, D.; Pasquinelli, R.; Evans-Peoples, E.; /Fermilab

2011-03-01T23:59:59.000Z

70

200 Area Deactivation Project Facilities Authorization Envelope Document  

SciTech Connect (OSTI)

Project facilities as required by HNF-PRO-2701, Authorization Envelope and Authorization Agreement. The Authorization Agreements (AA's) do not identify the specific set of environmental safety and health requirements that are applicable to the facility. Therefore, the facility Authorization Envelopes are defined here to identify the applicable requirements. This document identifies the authorization envelopes for the 200 Area Deactivation.

DODD, E.N.

2000-03-28T23:59:59.000Z

71

SNS Experimental Facilities Oak Ridge1 SNS Project Overview  

E-Print Network [OSTI]

SNS Experimental Facilities Oak Ridge1 SNS Project Overview Development of High Powered Target. Riemer, P. Spampinato N. Mokhov, T. McManamy April 2002 #12;SNS Experimental Facilities Oak Ridge2 Facilities Oak Ridge3 SNS Basic Parameters List · Beam power >1 mW · Beam energy ~1 GeV · Pulse rate 60 hertz

McDonald, Kirk

72

Project Level Factors Affecting Quality of Construction Projects.  

E-Print Network [OSTI]

??Quality management is an important topic in today s construction industry as it has become essential for construction companies to focus on increasing quality performance… (more)

Bansal, Ankit

2009-01-01T23:59:59.000Z

73

Construction project scheduling problem with uncertain resource ...  

E-Print Network [OSTI]

... on-going activities. 7 Conclusions and future work .... constrained construction scheduling, Journal of Computing in Civil Engineering, 13(3),. 207-216. [23] Liu ...

2004-06-01T23:59:59.000Z

74

Lead Coolant Test Facility Technical and Functional Requirements, Conceptual Design, Cost and Construction Schedule  

SciTech Connect (OSTI)

This report presents preliminary technical and functional requirements (T&FR), thermal hydraulic design and cost estimate for a lead coolant test facility. The purpose of this small scale facility is to simulate lead coolant fast reactor (LFR) coolant flow in an open lattice geometry core using seven electrical rods and liquid lead or lead-bismuth eutectic. Based on review of current world lead or lead-bismuth test facilities and research need listed in the Generation IV Roadmap, five broad areas of requirements of basis are identified: Develop and Demonstrate Prototype Lead/Lead-Bismuth Liquid Metal Flow Loop Develop and Demonstrate Feasibility of Submerged Heat Exchanger Develop and Demonstrate Open-lattice Flow in Electrically Heated Core Develop and Demonstrate Chemistry Control Demonstrate Safe Operation and Provision for Future Testing. These five broad areas are divided into twenty-one (21) specific requirements ranging from coolant temperature to design lifetime. An overview of project engineering requirements, design requirements, QA and environmental requirements are also presented. The purpose of this T&FRs is to focus the lead fast reactor community domestically on the requirements for the next unique state of the art test facility. The facility thermal hydraulic design is based on the maximum simulated core power using seven electrical heater rods of 420 kW; average linear heat generation rate of 300 W/cm. The core inlet temperature for liquid lead or Pb/Bi eutectic is 420oC. The design includes approximately seventy-five data measurements such as pressure, temperature, and flow rates. The preliminary estimated cost of construction of the facility is $3.7M. It is also estimated that the facility will require two years to be constructed and ready for operation.

Soli T. Khericha

2006-09-01T23:59:59.000Z

75

Advances in technology for the construction of deep-underground facilities  

SciTech Connect (OSTI)

The workshop was organized in order to address technological issues important to decisions regarding the feasibility of strategic options. The objectives of the workshop were to establish the current technological capabilities for deep-underground construction, to project those capabilities through the compressed schedule proposed for construction, and to identify promising directions for timely allocation of existing research and development resources. The earth has been used as a means of protection and safekeeping for many centuries. Recently, the thickness of the earth cover required for this purpose has been extended to the 2,000- to 3,000-ft range in structures contemplated for nuclear-waste disposal, energy storage, and strategic systems. For defensive missile basing, it is now perceived that the magnitude of the threat has increased through better delivery systems, larger payloads, and variable tactics of attack. Thus, depths of 3,000 to 8,000 ft are being considered seriously for such facilities. Moreover, it appears desirable that the facilities be operational (if not totally complete) for defensive purposes within a five-year construction schedule. Deep excavations such as mines are similar in many respects to nearsurface tunnels and caverns for transit, rail, sewer, water, hydroelectric, and highway projects. But the differences that do exist are significant. Major distinctions between shallow and deep construction derive from the stress fields and behavior of earth materials around the openings. Different methodologies are required to accommodate other variations resulting from increased depth, such as elevated temperatures, reduced capability for site exploration, and limited access during project execution. This report addresses these and other questions devoted to geotechnical characterization, design, construction, and excavation equipment.

Not Available

1987-12-31T23:59:59.000Z

76

FACILITIES PLANNING, DESIGN & CONSTRUCTION Sixth Avenue and Grant Street PO Box 172760 Bozeman, Montana 59717-2760  

E-Print Network [OSTI]

, Montana 59717-2760 Phone: (406) 994-5413 · Fax: (406) 994-5665 Acknowledgement of Subcontractors FORM 102 Page 1 of 1 ACKNOWLEDGEMENT OF SUBCONTRACTORS Project Title: PPA NO. Location: Date: Contractor) Acknowledged by: Montana State University Facilities Planning, Design, & Construction (Signature) (Date) #12;

Dyer, Bill

77

Quality Assurance Project Plan for Facility Effluent Monitoring Plan activities  

SciTech Connect (OSTI)

This Quality Assurance Project Plan addresses the quality assurance requirements for the Facility Monitoring Plans of the overall site-wide environmental monitoring plan. This plan specifically applies to the sampling and analysis activities and continuous monitoring performed for all Facility Effluent Monitoring Plan activities conducted by Westinghouse Hanford Company. It is generic in approach and will be implemented in conjunction with the specific requirements of individual Facility Effluent Monitoring Plans. This document is intended to be a basic road map to the Facility Effluent Monitoring Plan documents (i.e., the guidance document for preparing Facility Effluent Monitoring Plans, Facility Effluent Monitoring Plan determinations, management plan, and Facility Effluent Monitoring Plans). The implementing procedures, plans, and instructions are appropriate for the control of effluent monitoring plans requiring compliance with US Department of Energy, US Environmental Protection Agency, state, and local requirements. This Quality Assurance Project Plan contains a matrix of organizational responsibilities, procedural resources from facility or site manuals used in the Facility Effluent Monitoring Plans, and a list of the analytes of interest and analytical methods for each facility preparing a Facility Effluent Monitoring Plan. 44 refs., 1 figs., 2 tabs.

Nickels, J.M.

1991-06-01T23:59:59.000Z

78

Construction safety program for the National Ignition Facility Appendix A: Safety Requirements  

SciTech Connect (OSTI)

These rules apply to all LLNL employees, non-LLNL employees (including contract labor, supplemental labor, vendors, personnel matrixed/assigned from other National Laboratories, participating guests, visitors and students) and construction contractors/subcontractors. The General Safety and Health rules shall be used by management to promote accident prevention through indoctrination, safety and health training and on-the-job application. As a condition for contracts award, all contractors and subcontractors and their employees must certify on Form S & H A-1 that they have read and understand, or have been briefed and understand, the National Ignition Facility OCIP Project General Safety Rules.

Cerruti, S.J.

1997-01-14T23:59:59.000Z

79

Community- and Facility-Scale Tribal Renewable Energy Project...  

Broader source: Energy.gov (indexed) [DOE]

the agenda for the Office of Indian Energy's Community- and Facility-Scale Tribal Renewable Energy Project Development and Finance Workshop, which will be held September 18-20 at...

80

Construction on Pantex High Explosives Pressing Facility Reaches...  

National Nuclear Security Administration (NNSA)

on Pantex High Explosives Pressing Facility Reaches 85% Mark Work on the National Nuclear Security Administration's (NNSA) High Explosives Pressing Facility at its Pantex...

Note: This page contains sample records for the topic "facility construction project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Construction  

Broader source: Energy.gov [DOE]

Learn about the energy-efficient construction projects that are saving businesses and communities money while creating jobs.

82

Example Cost Codes for Construction Projects - DOE Directives...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and their corresponding cost codes that may be used for construction projects. g4301-1chp16.pdf -- PDF Document, 93 KB Writer: John Makepeace Subjects: Administration Management...

83

Overseas projects finance by international institutions for Japanese construction firms  

E-Print Network [OSTI]

This thesis analyzes the relationships between Japanese construction firms, and overseas projects financed by international institutions, such as the World Bank Group, United Nations, ADB, IDB, JBIC, and JICA. Japanese ...

Kojima, Masashi, 1968-

2004-01-01T23:59:59.000Z

84

Project W-441, cold vacuum drying facility design requirements document  

SciTech Connect (OSTI)

This document has been prepared and is being released for Project W-441 to record the design basis for the design of the Cold Vacuum Drying Facility. This document sets forth the physical design criteria, Codes and Standards, and functional requirements that were used in the design of the Cold Vacuum Drying Facility. This document contains section 3, 4, 6, and 9 of the Cold Vacuum Drying Facility Design Requirements Document. The remaining sections will be issued at a later date. The purpose of the Facility is to dry, weld, and inspect the Multi-Canister Overpacks before transport to dry storage.

O`Neill, C.T.

1997-05-08T23:59:59.000Z

85

EIS-0329: Proposed Construction, Operation, Decontamination/Decommissioning of Depleted Uranium Hexafluoride Conversion Facilities  

Broader source: Energy.gov [DOE]

This EIS analyzes DOE's proposal to construct, operate, maintain, and decontaminate and decommission two depleted uranium hexafluoride (DUF 6) conversion facilities, at Portsmouth, Ohio, and Paducah, Kentucky.

86

Using Integrated Project Delivery (IPD) to Resolve the Major Construction Project Delay Causes in Saudi Arabia  

E-Print Network [OSTI]

Integrated Project Delivery (IPD) has gained attention in the United States and Europe as an effective delivery method for construction projects. The aim of this research paper is to determine the major causes of delay in ...

Alkhalid, Khalid Abdullah

2011-12-16T23:59:59.000Z

87

Leadership behaviors of effective project managers in construction project organizations in Texas  

E-Print Network [OSTI]

A study involving twenty-six construction firms, which practice project management in Texas, examined whether thirteen leadership behaviors could be associated with effective project managers. The data indicated that supervisors and subordinates...

Haney, Harvey Joe

1989-01-01T23:59:59.000Z

88

Facilities & Projects | National Nuclear Security Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series toESnet4:Epitaxial ThinFOR IMMEDIATE5 BudgetNateFacilities and&

89

MRAP MONTICELLO PROJECTS FEDERAL FACILITY AGREEMENT REPORT  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$0.C. 20545*. . : '*I_ - I _ FFAJulyPROJECTS81MRAP

90

Argonne National Laboratory-West Former Workers, Construction Worker Screening Projects  

Broader source: Energy.gov [DOE]

Argonne National Laboratory-West Former Construction Workers (now known as Idaho National Laboratory), Construction Worker Screening Projects

91

Spent nuclear fuel project cold vacuum drying facility operations manual  

SciTech Connect (OSTI)

This document provides the Operations Manual for the Cold Vacuum Drying Facility (CVDF). The Manual was developed in conjunction with HNF-SD-SNF-SAR-002, Safety Analysis Report for the Cold Vacuum Drying Facility, Phase 2, Supporting Installation of Processing Systems (Garvin 1998) and, the HNF-SD-SNF-DRD-002, 1997, Cold Vacuum Drying Facility Design Requirements, Rev. 3a. The Operations Manual contains general descriptions of all the process, safety and facility systems in the CVDF, a general CVD operations sequence, and has been developed for the SNFP Operations Organization and shall be updated, expanded, and revised in accordance with future design, construction and startup phases of the CVDF until the CVDF final ORR is approved.

IRWIN, J.J.

1999-05-12T23:59:59.000Z

92

Spent Nuclear Fuel (SNF) Project Cold Vacuum Drying (CVD) Facility Operations Manual  

SciTech Connect (OSTI)

This document provides the Operations Manual for the Cold Vacuum Drying Facility (CVDF). The Manual was developed in conjunction with HNF-SD-SNF-SAR-002, Safety Analysis Report for the Cold Vacuum Drying Facility, Phase 2, Supporting Installation of the Processing Systems (Garvin 1998) and, the HNF-SD-SNF-DRD-002, 1997, Cold Vacuum Drying Facility Design Requirements, Rev. 3a. The Operations Manual contains general descriptions of all the process, safety and facility systems in the CVDF, a general CVD operations sequence, and has been developed for the spent nuclear fuel project (SNFP) Operations Organization and shall be updated, expanded, and revised in accordance with future design, construction and startup phases of the CVDF until the CVDF final ORR is approved.

IRWIN, J.J.

2000-02-03T23:59:59.000Z

93

Application for Permit to Construct Access Driveway Facilities...  

Open Energy Info (EERE)

ROW Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- Permit ApplicationPermit Application: Application for Permit to Construct Access Driveway...

94

EA-1917: Wave Energy Test Facility Project, Newport, OR  

Broader source: Energy.gov [DOE]

This EA will evaluate the potential environmental impacts of a Wave Energy Test Facility that will be located near Newport, Oregon. The testing facility will be located within Oregon territorial waters, near the Hatfield Marine Science Center and close to onshore roads and marine support services. The site will not only allow testing of new wave energy technologies, but will also be used to help study any potential environmental impacts on sediments, invertebrates and fish. The project is being jointly funded by the State of Oregon and DOE.

95

EA-0820: Construction of Mixed Waste Storage RCRA Facilities, Buildings 7668 and 7669, Oak Ridge, Tennessee  

Broader source: Energy.gov [DOE]

This EA evaluates the environmental impacts of a proposal to construct and operate two mixed (both radioactive and hazardous) waste storage facilities (Buildings 7668 and 7669) in accordance with...

96

Strategic Plan for Patient Care and Prevention Facilities – Design & Construction; Engineering Strategic Business Unit  

E-Print Network [OSTI]

The UTMDACC (University of Texas MD Anderson Cancer Center) will realize net savings of $1.6 million in five years by utilizing the PCPF-E SBU (Patient Care and Prevention Facilities – Design & Construction; Engineering Strategic Business Unit...

Wangia, Peter Odongo

2009-07-31T23:59:59.000Z

97

Design, construction and evaluation of a facility for the simulation of fast reactor blankets  

E-Print Network [OSTI]

A facility has been designed and constructed at the MIT Reactor for the experimental investigation of typical LMFBR breeding blankets. A large converter assembly, consisting of a 20-cm-thick layer of graphite followed by ...

Forbes, Ian Alexander

1970-01-01T23:59:59.000Z

98

ENCOAL mild coal gasification project public design and construction report  

SciTech Connect (OSTI)

This Public Design Report describes the 1000 ton per day ENCOAL mild coal gasification demonstration plant now in operation at the Buckskin Mine near Gillette, Wyoming. The objective of the project is to demonstrate that the proprietary Liquids From Coal (LFC) technology can reliably and economically convert low Btu PRB coal into a superior, high-Btu solid fuel (PDF), and an environmentally attractive low-sulfur liquid fuel (CDL). The Project`s plans also call for the production of sufficient quantities of PDF and CDL to permit utility companies to carry out full scale burn tests. While some process as well as mechanical design was done in 1988, the continuous design effort was started in July 1990. Civil construction was started in October 1990; mechanical erection began in May 1991. Virtually all of the planned design work was completed by July 1991. Most major construction was complete by April 1992 followed by plant testing and commissioning. Plant operation began in late May 1992. This report covers both the detailed design and initial construction aspects of the Project.

NONE

1994-12-01T23:59:59.000Z

99

A study of the Naval Construction Force project material supply chain  

E-Print Network [OSTI]

The Naval Construction Force (NCF) performs construction projects in all areas of the world during both peacetime and war. While some of these projects occur in populated areas where project materials are readily available, ...

Stasick, Steven J. (Steven James), 1970-

2004-01-01T23:59:59.000Z

100

Constructing Predictive Estimates for Worker Exposure to Radioactivity During Decommissioning: Analysis of Completed Decommissioning Projects - Master Thesis  

SciTech Connect (OSTI)

An analysis of completed decommissioning projects is used to construct predictive estimates for worker exposure to radioactivity during decommissioning activities. The preferred organizational method for the completed decommissioning project data is to divide the data by type of facility, whether decommissioning was performed on part of the facility or the complete facility, and the level of radiation within the facility prior to decommissioning (low, medium, or high). Additional data analysis shows that there is not a downward trend in worker exposure data over time. Also, the use of a standard estimate for worker exposure to radioactivity may be a best estimate for low complete storage, high partial storage, and medium reactor facilities; a conservative estimate for some low level of facility radiation facilities (reactor complete, research complete, pits/ponds, other), medium partial process facilities, and high complete research facilities; and an underestimate for the remaining facilities. Limited data are available to compare different decommissioning alternatives, so the available data are reported and no conclusions can been drawn. It is recommended that all DOE sites and the NRC use a similar method to document worker hours, worker exposure to radiation (person-rem), and standard industrial accidents, injuries, and deaths for all completed decommissioning activities.

Dettmers, Dana Lee; Eide, Steven Arvid

2002-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "facility construction project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Conceptual design report: Nuclear materials storage facility renovation. Part 1, Design concept. Part 2, Project management  

SciTech Connect (OSTI)

The Nuclear Materials Storage Facility (NMSF) at the Los Alamos National Laboratory (LANL) was a Fiscal Year (FY) 1984 line-item project completed in 1987 that has never been operated because of major design and construction deficiencies. This renovation project, which will correct those deficiencies and allow operation of the facility, is proposed as an FY 97 line item. The mission of the project is to provide centralized intermediate and long-term storage of special nuclear materials (SNM) associated with defined LANL programmatic missions and to establish a centralized SNM shipping and receiving location for Technical Area (TA)-55 at LANL. Based on current projections, existing storage space for SNM at other locations at LANL will be loaded to capacity by approximately 2002. This will adversely affect LANUs ability to meet its mission requirements in the future. The affected missions include LANL`s weapons research, development, and testing (WRD&T) program; special materials recovery; stockpile survelliance/evaluation; advanced fuels and heat sources development and production; and safe, secure storage of existing nuclear materials inventories. The problem is further exacerbated by LANL`s inability to ship any materials offsite because of the lack of receiver sites for mate rial and regulatory issues. Correction of the current deficiencies and enhancement of the facility will provide centralized storage close to a nuclear materials processing facility. The project will enable long-term, cost-effective storage in a secure environment with reduced radiation exposure to workers, and eliminate potential exposures to the public. This document provides Part I - Design Concept which describes the selected solution, and Part II - Project Management which describes the management system organization, the elements that make up the system, and the control and reporting system.

NONE

1995-07-14T23:59:59.000Z

102

Science and Technology Facility  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

IBRF Project Lessons Learned Report Integrated Biorefinery Research Facility Lessons Learned - Stage I Acquisition through Stage II Construction Completion August 2011 This...

103

Rev. 02/15/10 Construction: Any construction project regardless of size that disturbs soil, ground cover, or uses water (including pressure washing) that  

E-Print Network [OSTI]

Rev. 02/15/10 Construction: Any construction project regardless of size that disturbs soil, ground/proposed construction project: EHS Office Use Only Recommendations: ______________________________________________________________________________________ __________________________________________________________________________________________ __________________________________________________________________________________________ ___________________________________________ _____________________ Approval Date Storm Water Management Program The University of Texas at Austin Notification of Construction

104

Construction safety program for the National Ignition Facility, Appendix A  

SciTech Connect (OSTI)

Topics covered in this appendix include: General Rules-Code of Safe Practices; 2. Personal Protective Equipment; Hazardous Material Control; Traffic Control; Fire Prevention; Sanitation and First Aid; Confined Space Safety Requirements; Ladders and Stairways; Scaffolding and Lift Safety; Machinery, Vehicles, and Heavy Equipment; Welding and Cutting-General; Arc Welding; Oxygen/Acetylene Welding and Cutting; Excavation, Trenching, and Shoring; Fall Protection; Steel Erection; Working With Asbestos; Radiation Safety; Hand Tools; Electrical Safety; Nonelectrical Work Performed Near Exposed High-Voltage Power-Distribution Equipment; Lockout/Tagout Requirements; Rigging; A-Cranes; Housekeeping; Material Handling and Storage; Lead; Concrete and Masonry Construction.

Cerruti, S.J.

1997-06-26T23:59:59.000Z

105

Construction and startup experience for Milliken FGD Retrofit Project  

SciTech Connect (OSTI)

Under Round 4 of the U.S. Department of Energy`s Clean Coal Technology program, New York State Electric & Gas Corp. (NYSEG), in partnership with Saarbereg-Stebbins Engineering and Manufacturing Company, has retrofitted a formic acid enhanced forced oxidation wet limestone scrubber on Units 1 & 2 at the Milliken Steam Electric Station. Units 1 & 2 are 1950`s vintage Combustion Engineering tangentially fired pulverized coal units which are rated at nominal 150 MW each and operate in balanced draft mode. The FGD system for Unit 2 was placed into operation in January 1995 and the Unit 1 system in June, 1995. The project incorporates several unique aspects including low pH operation, a ceramic tile-lined cocurrent/countercurrent, split module absorber, a wet stack supported on the roof of the FGD building, and closed loop, zero liquid discharge operation producing commercial grade gypsum, and calcium chloride brine. The project objectives include 98% SO{sub 2} removal efficiency while burning high sulfur coal, the production of marketable byproducts to minimize solid waste disposal, zero wastewater discharge and space-saving design. The paper provides a brief overview of the project design, discusses construction and startup issues and presents early operating results. Process capital cost and economics of this design, procure and construct approach are reviewed relative to competing technologies.

Harvilla, J.; Mahlmeister, M. [New York State Electric and Gas Corp., Binghamton, NY (United States); Buchanan, T.; Jackson, C. [Parsons Power Group, Inc., Reading, PA (United States); Watts, J. [USDOE, Pittsburgh Energy Technology Center, PA (United States)

1996-12-01T23:59:59.000Z

106

Construction of a Post-Irradiated Fuel Examination Shielded Enclosure Facility  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) has committed to provide funding to the Idaho National Laboratory (INL) for new post-irradiation examination (PIE) equipment in support of advanced fuels development. This equipment will allow researchers at the INL to accurately characterize the behavior of experimental test fuels after they are removed from an experimental reactor also located at the INL. The accurate and detailed characterization of the fuel from the reactor, when used in conjunction with computer modeling, will allow DOE to more quickly understand the behavior of the fuel and to guide further development activities consistent with the missions of the INL and DOE. Due to the highly radioactive nature of the specimen samples that will be prepared and analyzed by the PIE equipment, shielded enclosures are required. The shielded cells will be located in the existing Analytical Laboratory (AL) basement (Rooms B-50 and B-51) at the INL Material and Fuels Complex (MFC). AL Rooms B-50 and B-51 will be modified to establish an area where sample containment and shielding will be provided for the analysis of radioactive fuels and materials while providing adequate protection for personnel and the environment. The area is comprised of three separate shielded cells for PIE instrumentation. Each cell contains an atmosphere interface enclosure (AIE) for contamination containment. The shielding will provide a work area consistent with the as-low-as-reasonably-achievable (ALARA) concept, assuming a source term of 10 samples in each of the three shielded areas. Source strength is assumed to be a maximum of 3 Ci at 0.75 MeV gamma for each sample. Each instrument listed below will be installed in an individual shielded enclosure: Shielded electron probe micro-analyzer (EPMA) Focused ion beam instrument (FIB) Micro-scale x-ray diffractometer (MXRD). The project is designed and expected to be built incrementally as funds are allocated. The initial phase will be to fund the construction activities, which will include facility modifications and construction of one shielded enclosure. Follow-up activities will be to construct two additional shielded enclosures to complete the suite of three separate but connected remote operated examination areas. Equipment purchases are to be capital procurement spread out over several years on a funded schedule. This paper discusses safety and operational considerations given during the conceptual design phase of the project. The paper considers such things as project material at risk (MAR), new processes and equipment, potential hazards, and the major modification evaluation process to determine if a preliminary Documented Safety Analysis (PDSA) is required. As part of that process, an evaluation was made of the potential hazards with the new project compared to the existing and historical work and associated hazards in the affected facility.

Michael A. Lehto, Ph.D.; Boyd D. Christensen

2008-05-01T23:59:59.000Z

107

Project management knowledge and skills for green construction: Overcoming  

E-Print Network [OSTI]

for green buildings in the construction industry. In line with this, the Building and Construction Authority

Chaudhuri, Sanjay

108

Mission Need Statement: Idaho Spent Fuel Facility Project  

SciTech Connect (OSTI)

Approval is requested based on the information in this Mission Need Statement for The Department of Energy, Idaho Operations Office (DOE-ID) to develop a project in support of the mission established by the Office of Environmental Management to "complete the safe cleanup of the environmental legacy brought about from five decades of nuclear weapons development and government-sponsored nuclear energy research". DOE-ID requests approval to develop the Idaho Spent Fuel Facility Project that is required to implement the Department of Energy's decision for final disposition of spent nuclear fuel in the Geologic Repository at Yucca Mountain. The capability that is required to prepare Spent Nuclear Fuel for transportation and disposal outside the State of Idaho includes characterization, conditioning, packaging, onsite interim storage, and shipping cask loading to complete shipments by January 1,2035. These capabilities do not currently exist in Idaho.

Barbara Beller

2007-09-01T23:59:59.000Z

109

Hanford's 100-HX Pump and Treat Project - a Successful Blend of Science, Technology, Construction, and Project Management - 12412  

SciTech Connect (OSTI)

CH2M Hill Plateau Remediation Company (CHPRC) recently completed construction and start-up of the $25 million 100-HX Groundwater Pump and Treat Project for the Department of Energy (DOE) at its Hanford Reservation site in Washington State. From the onset, the 100-HX Project Leadership Team was able to successfully blend the science and technology of a state-of-the-art groundwater pump and treat system with the principles, tools, and techniques of traditional industrial-type construction and project management. From the 1940's through most of the 1980's, the United States used the Hanford Site to produce nuclear material for national defense at reactor sites located along the Columbia River. While the reactors were operational, large volumes of river water were treated with sodium dichromate (to inhibit corrosion of the reactor piping) and used as a coolant for the reactors. After a single pass through the reactor and before being discharged back to the river, the coolant water was sent to unlined retention basins to cool and to allow the short-lived radioactive contaminants to decay. As a result of these operations, hexavalent chromium was introduced to the vadose zone, and ultimately into the groundwater aquifer and the adjacent Columbia River. In addition, numerous leaks and spills of concentrated sodium dichromate stock solution over the lifetime of reactor operations led to higher concentrations of chromate in the vadose zone and groundwater in localized areas. As a result, the 100 Area was included in the National Priorities List sites under the Comprehensive Environmental Response Compensation and Liability Act of 1980 (CERCLA). The mission of the 100-HX Project is to significantly reduce the concentration of hexavalent chromium in the groundwater by treating up to 3.8 billion gallons (14,300 mega-liters) of contaminated water over its first nine years of operations. In order to accomplish this mission, groundwater scientists and geologists using sophisticated scientific modeling optimized the 100-HX's approximately 0.7 square mile (181 hecto-meters) extraction and injection well field to support continuous operation of a maximum of 800 gallons (3,028 liters) per minute, 24 hours per day, and 7 days per week. The use of traditional resin technology for the plant's ion exchange system required a change out of the resin every 12 weeks and shipment to an offsite facility 1,500 miles (2,414 kilometers) away for regeneration. Instead, the project leadership pursued newer technology with a disposable resin that could be disposed of on-site and would require less frequent change outs, reducing the project's life cycle costs by more than $16 million. Constructing the facility had its own challenges. The well field location overlapped ecologically sensitive lands where bald eagles and native wildlife use the land for their mating habitat for nearly half of the year. Building locations had to be planned around historically and culturally sensitive areas, and around another contractor's remediation work zones. Also, the size of the well field required a transfer (pumping) facility and installation of more than 60 miles (97 kilometers) of high-density polypropylene pipe, 23 miles (38 kilometers) of power cable, and 28 miles (46 kilometers) of control cable. Along with schedule and budget constraints typical of any fast-track project, the project team dealt with severe resource constraints due to competing projects across the Hanford Site caused by the influx of American Recovery and Reinvestment Act stimulus funding. In addition, the project team itself was stretched between completing another $25 million dollar construction project while designing and constructing this project. In order to save money, the project schedule was compressed by three months from the original baseline schedule. This was made possible by the strong use of project management principles throughout the design, construction, and testing phases, as well as implementation of many lessons learned from a similar construction project. In summary, the 100-HX

Albin, Kenneth A.; Bachand, Marie T.; Biebesheimer, Fred H.; Neshem, Dean O.; Smoot, John L. [CH2M HILL Plateau Remediation Company, Richland, Washington 99352 (United States)

2012-07-01T23:59:59.000Z

110

CONSTRUCTION GUIDE FOR FOOD FACILITIES County of Orange Health Care Agency/Regulatory Health Services/Environmental Health  

E-Print Network [OSTI]

CONSTRUCTION GUIDE FOR FOOD FACILITIES County of Orange Health Care Agency/Regulatory Health-6074 Fax (714) 433-6424 I. INTRODUCTION A. This Construction Guide is available to any person intending to construct or remodel a food facility in Orange County. It is intended to serve as a general overview

de Lijser, Peter

111

Architecture, Engineering and Construction Sustainability Report Major Projects Quarterly Sustainability Report  

E-Print Network [OSTI]

1 Architecture, Engineering and Construction Sustainability Report Major Projects Quarterly Sustainability Report June 2011 Alice Crocker Lloyd Hall Renovation

Kamat, Vineet R.

112

CONSTRUCTION START: Project No. 13-003 Arts Building renovation of the auditorium W120  

E-Print Network [OSTI]

CONSTRUCTION START: Project No. 13-003 Arts Building ­ renovation of the auditorium W120 Please the aforementioned construction project. The work consists to renovate the auditorium W120. The construction and will start the construction operations immediately. All interior interventions within the intended

Shoubridge, Eric

113

New Construction of Distribution Lines, Service Lines, and Appurtenant Facilities in Certain Visually Significant Resources Outside Residential Subdivisions (New York)  

Broader source: Energy.gov [DOE]

Any proposed construction of distribution lines, service lines, and appurtenant facilities to electric utilities located near scenic areas of statewide significance, including Adirondack park...

114

Nuclear Facility Construction- Structural Concrete, May 29, 2009 (HSS CRAD 64-15, Rev. 0)  

Broader source: Energy.gov [DOE]

This Criteria Review and Approach Document (HSS CRAD 64-15) establishes review criteria and lines of inquiry used by the Office of Independent Oversight's Office of Environment, Safety and Health Evaluations to assess the quality of the manufacturing and placement of concrete used in nuclear facility construction at the Department of Energy

115

Mixed Waste Management Facility (MWMF) closure, Savannah River Plant: Clay cap test section construction report  

SciTech Connect (OSTI)

This report contains appendices 3 through 6 for the Clay Cap Test Section Construction Report for the Mixed Waste Management Facility (MWMF) closure at the Savannah River Plant. The Clay Cap Test Program was conducted to evaluate the source, lab. permeability, in-situ permeability, and compaction characteristics, representative of kaolin clays from the Aiken, South Carolina vicinity. (KJD)

Not Available

1988-02-26T23:59:59.000Z

116

Construction and operation of replacement hazardous waste handling facility at Lawrence Berkeley Laboratory. Environmental Assessment  

SciTech Connect (OSTI)

The US Department of Energy (DOE) has prepared an environmental assessment (EA), DOE/EA-0423, for the construction and operation of a replacement hazardous waste handling facility (HWHF) and decontamination of the existing HWHF at Lawrence Berkeley Laboratory (LBL), Berkeley, California. The proposed facility would replace several older buildings and cargo containers currently being used for waste handling activities and consolidate the LBL`s existing waste handling activities in one location. The nature of the waste handling activities and the waste volume and characteristics would not change as a result of construction of the new facility. Based on the analysis in the EA, DOE has determined that the proposed action would not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969, 42 USC. 4321 et seq. Therefore, an environmental impact statement is not required.

Not Available

1992-09-01T23:59:59.000Z

117

Tritium Facilities Modernization and Consolidation Project Process Waste Assessment (Project S-7726)  

SciTech Connect (OSTI)

Under the Tritium Facility Modernization {ampersand} Consolidation (TFM{ampersand}C) Project (S-7726) at the Savannah River Site (SS), all tritium processing operations in Building 232-H, with the exception of extraction and obsolete/abandoned systems, will be reestablished in Building 233-H. These operations include hydrogen isotopic separation, loading and unloading of tritium shipping and storage containers, tritium recovery from zeolite beds, and stripping of nitrogen flush gas to remove tritium prior to stack discharge. The scope of the TFM{ampersand}C Project also provides for a new replacement R&D tritium test manifold in 233-H, upgrading of the 233- H Purge Stripper and 233-H/234-H building HVAC, a new 234-H motor control center equipment building and relocating 232-H Materials Test Facility metallurgical laboratories (met labs), flow tester and life storage program environment chambers to 234-H.

Hsu, R.H. [Westinghouse Savannah River Company, AIKEN, SC (United States); Oji, L.N.

1997-11-14T23:59:59.000Z

118

POST-CONSTRUCTION WILDLIFE MONITORING AT THE ATLANTIC CITY UTILITIES AUTHORITY-JERSEY ATLANTIC WIND POWER FACILITY  

E-Print Network [OSTI]

WIND POWER FACILITY PROJECT STATUS REPORT IV Submitted to: New Jersey Board of Public Utilities New Authority (ACUA) wind power facility. The period covered by this report is 1 January to 31 August 2009

Firestone, Jeremy

119

Project definition study for research facility access and science education  

SciTech Connect (OSTI)

This UTA/SMU project definition study describes critical customer services and research programs which draw upon SSC assets to meet regional needs in two major components: Science Education; Academic/Small Business R and D Facility Access. The location of the SSC in Texas constituted a significant stimulus to R and D activities in Texas, encouraging new initiatives in high energy physics, as well as stimulating other areas of physics and related sciences. An important aspect of maximizing the utility of the investment in the SSC should be to re-allocate SSC assets in ways that maintain that momentum. This study addresses several ways to achieve that end, extending benefits to all of physics, the sciences in general and particularly, to science education.

Rosen, S.P. [Univ. of Texas, Arlington, TX (United States). Coll. of Science; Teplitz, V.L. [Southern Methodist Univ., Dallas, TX (United States). Physics Dept.

1994-10-01T23:59:59.000Z

120

Hot gas cleanup test facility for gasification and pressurized combustion project. Quarterly report, October--December 1995  

SciTech Connect (OSTI)

The objective of this project is to evaluate hot gas particle control technologies using coal-derived gas streams. This will entail the design, construction, installation, and use of a flexible test facility which can operate under realistic gasification and combustion conditions. The conceptual design of the facility was extended to include a within scope, phased expansion of the existing Hot Gas Cleanup Test Facility Cooperative Agreement to also address systems integration issues of hot particulate removal in advanced coal-based power generation systems. This expansion included the consideration of the following modules at the test facility in addition to the original Transport Reactor gas source and Hot Gas Cleanup Units: Carbonizer/pressurized circulating fluidized bed gas source; hot gas cleanup units to mate to all gas streams; combustion gas turbine; and fuel cell and associated gas treatment. This expansion to the Hot Gas Cleanup Test Facility is herein referred to as the Power Systems Development Facility (PSDF). The major emphasis during this reporting period was continuing the detailed design of the facility towards completion and integrating the balance-of-plant processes and particulate control devices (PCDs) into the structural and process designs. Substantial progress in construction activities was achieved during this quarter.

NONE

1996-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "facility construction project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Critical Path Method (CPM) Scheduling, Basic Engineering, and Project Approach for Typical Substation Engineering-Procurement-Construction (EPC) Project  

E-Print Network [OSTI]

This Field Project provides an overview of the typical substation Engineering-Procurement-Construction (EPC) project delivery method, the work breakdown structure, activities and sequences in the Critical Path Method (CPM) schedule, basic substation...

Jamir, Dewan R.

2006-05-19T23:59:59.000Z

122

Report of the ANS Project Feasibility Workshop for a High Flux Isotope Reactor-Center for Neutron Research Facility  

SciTech Connect (OSTI)

The Advanced Neutron Source (ANS) Conceptual Design Report (CDR) and its subsequent updates provided definitive design, cost, and schedule estimates for the entire ANS Project. A recent update to this estimate of the total project cost for this facility was $2.9 billion, as specified in the FY 1996 Congressional data sheet, reflecting a line-item start in FY 1995. In December 1994, ANS management decided to prepare a significantly lower-cost option for a research facility based on ANS which could be considered during FY 1997 budget deliberations if DOE or Congressional planners wished. A cost reduction for ANS of about $1 billion was desired for this new option. It was decided that such a cost reduction could be achieved only by a significant reduction in the ANS research scope and by maximum, cost-effective use of existing High Flux Isotope Reactor (HFIR) and ORNL facilities to minimize the need for new buildings. However, two central missions of the ANS -- neutron scattering research and isotope production-were to be retained. The title selected for this new option was High Flux Isotope Reactor-Center for Neutron Research (HFIR-CNR) because of the project`s maximum use of existing HFIR facilities and retention of selected, central ANS missions. Assuming this shared-facility requirement would necessitate construction work near HFIR, it was specified that HFIR-CNR construction should not disrupt normal operation of HFIR. Additional objectives of the study were that it be highly credible and that any material that might be needed for US Department of Energy (DOE) and Congressional deliberations be produced quickly using minimum project resources. This requirement made it necessary to rely heavily on the ANS design, cost, and schedule baselines. A workshop methodology was selected because assessment of each cost and/or scope-reduction idea required nearly continuous communication among project personnel to ensure that all ramifications of propsed changes.

Peretz, F.J.; Booth, R.S. [comp.

1995-07-01T23:59:59.000Z

123

Comparison of Construction Manager at Risk and Integrated Project Delivery Performance on Healthcare Projects: A Comparative Case Study  

E-Print Network [OSTI]

Comparison of Construction Manager at Risk and Integrated Project Delivery Performance on Healthcare Projects: A Comparative Case Study XXX, XXX, XXX, and XXX XXX XXXX XXXX XXX, XXXX#7;#7; This study provides information and a basic overview..., Integrated Project Delivery, Contracts #7;#7;Introduction For most of the 20th century, construction projects were primarily completed under the Design-Bid-Build (DBB) delivery method. As the building industry and global competition has increased, a demand...

Bilbo, David; Bigelow, Ben F.; Escamilla, Edelmiro; Lockwood, Christa

2014-04-03T23:59:59.000Z

124

THE BLOCK MUSEUM IS OPEN DURING CONSTRUCTION! Arts Circle Drive is closed due to a construction project on Northwestern's  

E-Print Network [OSTI]

THE BLOCK MUSEUM IS OPEN DURING CONSTRUCTION! Arts Circle Drive is closed due to a construction project on Northwestern's south campus. The following information tells you how to reach the Museum during on the northeast side of the garage and take the pedestrian walkway to the Block Museum. The Museum is the glass

Shahriar, Selim

125

Hot Gas Cleanup Test Facility for Gasification and Pressurized Combustion Project. Quarterly report, April--June 1996  

SciTech Connect (OSTI)

The objective of this project is to evaluate hot gas particle control technologies using coal-derived as streams. This will entail the design, construction, installation, and use of a flexible test facility which can operate under realistic gasification and combustion conditions. The major particulate control device issues to be addressed Include the integration of the particulate control devices into coal utilization systems, on-line cleaning, techniques, chemical and thermal degradation of components, fatigue or structural failures, blinding, collection efficiency as a function of particle size, and scale-up of particulate control systems to commercial size. The conceptual design of the facility was extended to include a within scope, phased expansion of the existing, Hot Gas Cleanup Test Facility Cooperative Agreement to also address systems integration issues of hot particulate removal in advanced coal-based power generation systems. This expansion included the consideration of the following modules at the test facility in addition to the original Transport Reactor gas source and Hot Gas Cleanup Units: 1 . Carbonizer/Pressurized Circulating, Fluidized Bed Gas Source; 2. Hot Gas Cleanup Units to mate to all gas streams; 3. Combustion Gas Turbine; 4. Fuel Cell and associated gas treatment. This expansion to the Hot Gas Cleanup Test Facility is herein referred to as the Power Systems Development Facility (PSDF). The major emphasis during, this reporting period was continuing, the detailed design of the FW portion of the facility towards completion and integrating the balance-of-plant processes and particulate control devices (PCDS) into the structural and process designs. Substantial progress in construction activities was achieved during the quarter. Delivery and construction of the process structural steel is complete and the construction of steel for the coal preparation structure is complete.

NONE

1996-12-31T23:59:59.000Z

126

University Facilities Planning & Con-Project Manager; Bahar Armaghani  

E-Print Network [OSTI]

://www.facilities.ufl.edu/ Be sustainable; Do not print, visit us at www.facilities.ufl.edu #12;Sustainable Site No Parking Added; Actually% 100% reclaimed water for irrigation 100% of wastewater treated on site (Campus Wastewater Treatment

Slatton, Clint

127

Mixed and Low-Level Treatment Facility Project  

SciTech Connect (OSTI)

This appendix contains the mixed and low-level waste engineering design files (EDFS) documenting each low-level and mixed waste stream investigated during preengineering studies for Mixed and Low-Level Waste Treatment Facility Project. The EDFs provide background information on mixed and low-level waste generated at the Idaho National Engineering Laboratory. They identify, characterize, and provide treatment strategies for the waste streams. Mixed waste is waste containing both radioactive and hazardous components as defined by the Atomic Energy Act and the Resource Conservation and Recovery Act, respectively. Low-level waste is waste that contains radioactivity and is not classified as high-level waste, transuranic waste, spent nuclear fuel, or 11e(2) byproduct material as defined by DOE 5820.2A. Test specimens of fissionable material irradiated for research and development only, and not for the production of power or plutonium, may be classified as low-level waste, provided the concentration of transuranic is less than 100 nCi/g. This appendix is a tool that clarifies presentation format for the EDFS. The EDFs contain waste stream characterization data and potential treatment strategies that will facilitate system tradeoff studies and conceptual design development. A total of 43 mixed waste and 55 low-level waste EDFs are provided.

Not Available

1992-04-01T23:59:59.000Z

128

Voluntary Protection Program Onsite Review, Waste Treatment Plant Construction Project- June 2010  

Broader source: Energy.gov [DOE]

Evaluation to determine whether Waste Treatment Plant Construction Project is continuing to perform at a level deserving DOE-VPP Star recognition.

129

Office of Inspector General report on audit of renovation and new construction projects at Lawrence Livermore National Laboratory  

SciTech Connect (OSTI)

The Oakland Operations Office (Oakland) is responsible for acquiring facilities needed to satisfy mission needs and to do so at the least cost to the Department of Energy (Department). The objective of the audit was to determine if proposed renovation and new construction projects at the Lawrence Livermore National Laboratory (Livermore) met mission needs while minimizing cost to the Government. In pursuing three projects, estimated to cost over $78 million, Livermore had not demonstrated that it had selected the best alternatives for meeting the Department`s needs while minimizing cost. Livermore was able to pursue these projects because Oakland did not ensure that the laboratory had performed cost and benefit analyses of all alternatives. Further, Oakland did not establish benchmarks to assess the reasonableness of the total costs of designing, constructing, and managing these projects. As a result, it was likely that the Department was spending more than necessary on renovation and new construction projects at Livermore. Although the projects met mission needs, it was recommended that the Manager, Oakland: (1) require Livermore to perform analyses of expected costs and benefits for alternatives; (2) evaluate the adequacy of Livermore`s cost and benefit analyses of alternatives; (3) establish benchmarks based on industry and other government agency cost data to assess the reasonableness of Livermore`s total design, construction, and project management costs; and (4) select the alternative that meets established needs at the least cost to the Government. Oakland agreed with the recommendations and will implement them starting with the Fiscal Year 1999 project submission and validation.

NONE

1997-06-05T23:59:59.000Z

130

PROJECT OVERVIEW Construction Completion, August 2014 Open to Patients, February 2015  

E-Print Network [OSTI]

and cancer patients. PROJECT COST The cost of the first phase of the Mission Bay Hospitals Project is $1PROJECT OVERVIEW Construction Completion, August 2014 Open to Patients, February 2015 www.missionbayhospitals.ucsf.edu PROJECT SUMMARY UCSF is building a 289-bed, integrated hospital complex to serve children, women

Klein, Ophir

131

Design of the Long-term Waste Management Facility for Historic LLRW Port Hope Project - 13322  

SciTech Connect (OSTI)

The Municipality of Port Hope is located on the northern shores of Lake Ontario approximately 100 km east of Toronto, Ontario, Canada. Starting in the 1930's, radium and later uranium processing by Eldorado Gold Mines Limited (subsequently Eldorado Nuclear Limited) (Eldorado) at their refinery in Port Hope resulted in the generation of process residues and wastes that were disposed of indiscriminately throughout the Municipality until about the mid-1950's. These process residues contained radium (Ra- 226), uranium, arsenic and other contaminants. Between 1944 and 1988, Eldorado was a Federal Crown Corporation, and as such, the Canadian Federal Government has assumed responsibility for the clean-up and long-term management of the historic waste produced by Eldorado during this period. The Port Hope Project involves the construction and development of a new long-term waste management facility (LTWMF), and the remediation and transfer of the historic wastes located within the Municipality of Port Hope to the new LTWMF. The new LTWMF will consist of an engineered above-ground containment mound designed to contain and isolate the wastes from the surrounding environment for the next several hundred years. The design of the engineered containment mound consists of a primary and secondary composite base liner system and composite final cover system, made up of both natural materials (e.g., compacted clay, granular materials) and synthetic materials (e.g., geo-synthetic clay liner, geo-membrane, geo-textiles). The engineered containment mound will cover an area of approximately 13 hectares and will contain the estimated 1.2 million cubic metres of waste that will be generated from the remedial activities within Port Hope. The LTWMF will also include infrastructure and support facilities such as access roads, administrative offices, laboratory, equipment and personnel decontamination facilities, waste water treatment plant and other ancillary facilities. Preliminary construction activities for the Port Hope LTWMF commenced in 2012 and are scheduled to continue over the next few years. The first cell of the engineered containment mound is scheduled to be constructed in 2015 with waste placement into the Port Hope LTWMF anticipated over the following seven year period. (authors)

Campbell, Don; Barton, David [Conestoga-Rovers and Associates, 651 Colby Drive, Waterloo, Ontario N2V 1C2 (Canada)] [Conestoga-Rovers and Associates, 651 Colby Drive, Waterloo, Ontario N2V 1C2 (Canada); Case, Glenn [Atomic Energy of Canada Limited, 115 Toronto Road, Port Hope, Ontario L1A 3S4 (Canada)] [Atomic Energy of Canada Limited, 115 Toronto Road, Port Hope, Ontario L1A 3S4 (Canada)

2013-07-01T23:59:59.000Z

132

Project Fact Sheet Project Update  

E-Print Network [OSTI]

Project Fact Sheet Project Update: Project Brief: A state of the art facility, at Hammersmith information visit the Faculty of Medicine web pages http://www1.imperial.ac.uk/medicine/ Construction Project Team: Project Facts & Figures: Budget: ÂŁ60 000 000 Funding Source: SRIF II (Imperial College), GSK, MRC

133

Yakima River Basin Fish Passage Phase II Fish Screen Construction, Project Completion Report.  

SciTech Connect (OSTI)

On December 5, 1980, Congress passed the Pacific Northwest Electric Power Planning and Conservation Act (Public Law 96-501). The Act created the Northwest Power Planning Council (now the Northwest Power and Conservation Council). The Council was charged with the responsibility to prepare a Regional Conservation and Electric Power Plan and to develop a program to protect, mitigate, and enhance fish and wildlife including related spawning grounds and habitat on the Columbia River and its tributaries. The Council adopted its Fish and Wildlife Program on November 15, 1982. Section 800 of the Program addresses measures in the Yakima River Basin. The Yakima measures were intended to help mitigate hydroelectric impacts in the basin and provide off-site mitigation to compensate for fish losses caused by hydroelectric project development and operations throughout the Columbia River Basin. The Bonneville Power Administration (BPA) was designated as a major source of funding for such off-site mitigation measures and was requested to initiate discussions with the appropriate Federal project operators and the Council to determine the most expeditious means for funding and implementing the program. The primary measures proposed for rapid implementation in the Yakima River basin were the installation of fish passage and protective facilities. Sec. 109 of The Hoover Power Plant Act of 1984, authorized the Secretary of the Interior to design, construct, operate, and maintain fish passage facilities within the Yakima River Basin. Under Phase I of the program, improvements to existing fish passage facilities and installation of new fish ladders and fish screens at 16 of the largest existing diversion dams and canals were begun in 1984 and were completed in 1990. The Yakima Phase II fish passage program is an extension of the Phase I program. In 1988, the Yakama Nation (YN) submitted an application to amend Sections 803(b) and 1403(4.5) of the Northwest Power and Conservation Council's Columbia River Basin Fish and Wildlife Program to begin preliminary design on the Phase II fish screen program. Based on citizen and agency endorsement, the Council approved the amendment in 1989. The Council authorized BPA to provide funding for Phase II screens through the Fish and Wildlife Program. BPA then asked the Bureau of Reclamation to provide engineering and design expertise to the Phase II projects.

Hudson, R. Dennis

2008-01-01T23:59:59.000Z

134

Status Review of Wildlife Mitigation, Columbia Basin Hydroelectric Projects, Columbia River Mainstem Facilities, 1984 Final Report.  

SciTech Connect (OSTI)

This report reviews the status of past, present, and proposed future wildlife planning and mitigation programs at existing hydroelectric projects in the Columbia River Basin. The project evaluations will form the basis for determining any needed remedial measures or additional project analysis. Each hydropower facility report is abstracted separately for inclusion in the Energy Data Base.

Howerton, Jack; Hwang, Diana

1984-11-01T23:59:59.000Z

135

EA-1562: Construction and Operation of a Physical Sciences Facility at the Pacific Northwest National Laboratory, Richland, Washington  

Broader source: Energy.gov [DOE]

This EA evaluates the potential environmental impacts of DOE proposed activities associated with constructing and operating a new Physical Sciences Facility (PSF) complex on DOE property located in...

136

Projects at the Component Development and Integration Facility. Quarterly technical progress report, July 1--September 30, 1993  

SciTech Connect (OSTI)

This quarterly technical progress report presents progress on the projects at the Component Development and Integration Facility (CDIF) during the first quarter of FY94. The CDIF is a major US Department of Energy test facility in Butte, Montana, operated by MSE, Inc. Projects in progress include: MHD Proof-of-Concept project; mine waste technology pilot program; plasma projects; resource recovery project; sodium sulfide/ferrous sulfate project; soil washing project; and spray casting project.

Not Available

1993-12-31T23:59:59.000Z

137

Projects at the Component Development and Integration Facility. Quarterly technical progress report, January 1, 1994--March 31, 1994  

SciTech Connect (OSTI)

This quarterly technical progress report presents progress on the projects at the Component Development and Integration Facility (CDIF) during the second quarter of FY94. The CDIF is a major US Department of Energy test facility in Butte, Montana, operated by MSE, Inc. Projects in progress include: Biomass Remediation Project; Heavy Metal-Contaminated Soil Project; MHD Shutdown; Mine Waste Technology Pilot Program; Plasma Projects; Resource Recovery Project; Sodium Sulfide/Ferrous Sulfate Project; and Spray Casting Project.

Not Available

1994-08-01T23:59:59.000Z

138

Application Filing Requirements for Natural Gas Pipeline Construction Projects (Wisconsin)  

Broader source: Energy.gov [DOE]

Any utility proposing to construct a natural gas pipeline requiring a Certificate of Authority (CA) under Wis. Stat. §196.49 must prepare an application for Commission review.  These regulations ...

139

Project Title: Nuclear Astrophysics Data from Radioactive Beam Facilities  

SciTech Connect (OSTI)

The scientific aims of this project have been the evaluation and dissemination of key nuclear reactions in nuclear astrophysics, with a focus on ones to be studied at new radioactive beam facilities worldwide. These aims were maintained during the entire funding period from 2003 - 2006. In the following, a summary of the reactions evaluated during this period is provided. Year 1 (2003-04): {sup 21}Na(p,{gamma}){sup 22}Mg and {sup 18}Ne({alpha},p){sup 21}Na - The importance of the {sup 21}Na(p,{gamma}){sup 22}Mg and the {sup 18}Ne({alpha},p){sup 21}Na reactions in models of exploding stars has been well documented: the first is connected to the production of the radioisotope {sup 22}Na in nova nucleosynthesis, while the second is a key bridge between the Hot-CNO cycles and the rp-process in X-ray bursts. By the end of Summer 2004, our group had updated these reaction rates to include all published data up to September 2004, and cast the reaction rates into standard analytical and tabular formats with the assistance of Oak Ridge National Laboratory's computational infrastructure for reaction rates. Since September 2004, ongoing experiments on these two reactions have been completed, with our group's participation in both: {sup 21}Na(p,{gamma}){sup 22}Mg at the TRIUMF-ISAC laboratory (DRAGON collaboration), and 18Ne({alpha},p){sup 21}Na at Argonne National Laboratory (collaboration with Ernst Rehm, Argonne). The data from the former was subsequently published and included in our evaluation. Publication from the latter still awaits independent confirmation of the experimental results. Year 2 (2004-05): The 25Al(p,{gamma}){sup 26}Si and {sup 13}N(p,{gamma})14O reactions - For Year 2, we worked on evaluations of the {sup 25}Al(p,{gamma}){sup 26}Si and {sup 13}N(p,{gamma}){sup 14}O reactions, in accordance with our proposed deliverables and following similar standard procedures to those used in Year 1. The {sup 25}Al(p,{gamma}){sup 26}Si reaction is a key uncertainty in the understanding the origin of galactic {sup 26}Al, a target radioisotope for gamma ray astronomy; the {sup 13}N(p,{gamma}){sup 14}O reaction in turn is the trigger reaction for the transition into the Hot-CNO cycles in novae and X-ray bursts. A graduate student of mine, who has been supported part-time by this grant, completed the evaluation of the {sup 25}Al(p,{gamma}){sup 26}Si reaction as part of his plans to measure this reaction at TRIUMF for his Ph.D. thesis project. I also hired a part-time undergraduate student for the 2004-05 academic year to assist with the evaluations, including that of the {sup 13}N(p,{gamma}){sup 14}O reaction. Year 3 (2005-06): The {sup 40}Ca({alpha},{gamma}){sup 44}Ti and {sup 26}Al(p,{gamma}){sup 27}Si reactions - This year's progress was closely coupled to new results coming from our collaboration on the DRAGON spectrometer team at TRIUMF. The {sup 40}Ca({alpha},{gamma}){sup 44}Ti and {sup 26}Al(p,{gamma}){sup 27}Si reactions were both measured, and significant modifications to their respective reaction rates were required. Both are required input toward predicting the respective amounts of Titanium-44 and Aluminum-26 produced in our galaxy, in supernovae, massive stars, and nova explosions. The {sup 26}Al(p,{gamma}){sup 27}Si reaction rate was successfully completed. The {sup 40}Ca({alpha},{gamma}){sup 44}Ti reaction in particular served as the Ph.D. thesis for Christian Ouellet, and therefore the evaluation of this rate fell naturally within his thesis project. Christian successfully defended his thesis in 2007 and is now working for me on the McMaster DOE-funded Nuclear Data Project. In light of the recent data from his thesis, Christian is now putting the final touches on this evaluation, and will disseminate it through the Oak Ridge National Laboratory reaction rate database.

Alan A. Chen

2008-03-27T23:59:59.000Z

140

EERC pilot-scale CFBC evaluation facility Project CFB test results  

SciTech Connect (OSTI)

Project CFB was initiated at the University of North Dakota Energy and Environmental Research Center (EERC) in May 1988. Specific goals of the project were to (1) construct a circulating fluidized-bed combustor (CFBC) facility representative of the major boiler vendors' designs with the capability of producing scalable data, (2) develop a database for use in making future evaluations of CFBC technology, and (3) provide a facility for evaluating fuels, free of vendor bias for use in the - energy industry. Five coals were test-burned in the 1-MWth unit: North Dakota and Asian lignites, a Wyoming subbituminous, and Colorado and Pennsylvania bituminous coats. A total of 54 steady-state test periods were conducted, with the key test parameters being the average combustor temperature, excess air, superficial gas velocity, calcium-to-sulfur molar ratio, and the primary air-to-secondary air split. The capture for a coal fired in a CFBC is primarily dependent upon the total alkali-to-sulfur ratio. The required alkali-to ratio for 90% sulfur retention ranged from 1.4 to 4.9, depending upon coal type. While an alkali-to-ratio of 4.9 was required to meet 90% sulfur retention for the Salt Creek coal versus 1.4 for the Asian lignite, the total amount of sorbent addition required is much less for the Salt Creek coal, 4.2 pound sorbent per million Btu coal input, versus 62 pound/million Btu for the Asian lignite. The bituminous coals tested show optimal capture at combustor temperatures of approximately 1550[degree]F, with low-rank coals having optimal sulfur capture approximately 100[degree]F lower.

Mann, M.D.; Hajicek, D.R.; Henderson, A.K.; Moe, T.A.

1992-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "facility construction project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Maintaining Indoor Air Quality During Construction and Renovation Projects  

E-Print Network [OSTI]

and pollutants that can impact the indoor air quality (IAQ) of a building. These contaminants may be transported communication efforts can successfully control pollutant levels, allay concerns, and maintain occupant comfort to nuisance dusts and odors from a construction site unacceptable. Indoor air pollutants are typically complex

Huang, Jianyu

142

Environmental assessment for the construction and operation of waste storage facilities at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky  

SciTech Connect (OSTI)

DOE is proposing to construct and operate 3 waste storage facilities (one 42,000 ft{sup 2} waste storage facility for RCRA waste, one 42,000 ft{sup 2} waste storage facility for toxic waste (TSCA), and one 200,000 ft{sup 2} mixed (hazardous/radioactive) waste storage facility) at Paducah. This environmental assessment compares impacts of this proposed action with those of continuing present practices aof of using alternative locations. It is found that the construction, operation, and ultimate closure of the proposed waste storage facilities would not significantly affect the quality of the human environment within the meaning of NEPA; therefore an environmental impact statement is not required.

NONE

1994-06-01T23:59:59.000Z

143

Development of Facilities Master Plan and Laboratory Renovation Project  

SciTech Connect (OSTI)

Funding from this grant has allowed Morehouse School of Medicine to complete its first professionally developed, comprehensive campus master plan that is in alignment with the recently completed strategic plan. In addition to master planning activities, funds were used for programming and designing research renovations, and also to supplement other research facility upgrades by providing lighting and equipment. The activities funded by this grant will provide the catalyst for substantial improvement in the Schoolâ??s overall facilities for biomedical education and research, and will also provide much of the information needed to conduct a successful campaign to raise funds for proposed buildings and renovations.

Andrea D. Fox

2011-10-03T23:59:59.000Z

144

Director of Facilities College of Computer, Math, & Physical Sciences (CMPS)  

E-Print Network [OSTI]

until joining CMPS as Director of Facilities in 2008. Tom has over 30 years experience in government and electrical building upgrades, residential facilities renovations, and construction projectsDirector of Facilities College of Computer, Math, & Physical Sciences (CMPS) University Maryland

Lipsman, Ronald

145

Acceptance test procedure: RMW Land Disposal Facility Project W-025  

SciTech Connect (OSTI)

This ATP establishes field testing procedures to demonstrate that the electrical/instrumentation system functions as intended by design for the Radioactive Mixed Waste Land Disposal Facility. Procedures are outlined for the field testing of the following: electrical heat trace system; transducers and meter/controllers; pumps; leachate storage tank; and building power and lighting.

Roscha, V. [Westinghouse Hanford Co., Richland, WA (United States)

1994-12-12T23:59:59.000Z

146

Worldwide construction  

SciTech Connect (OSTI)

The paper lists major construction projects in worldwide processing and pipelining, showing capacities, contractors, estimated costs, and time of construction. The lists are divided into refineries, petrochemical plants, sulfur recovery units, gas processing plants, pipelines, and related fuel facilities. This last classification includes cogeneration plants, coal liquefaction and gasification plants, biomass power plants, geothermal power plants, integrated coal gasification combined-cycle power plants, and a coal briquetting plant.

Williamson, M.

1994-10-17T23:59:59.000Z

147

Advanced conceptual design report solid waste retrieval facility, phase I, project W-113  

SciTech Connect (OSTI)

Project W-113 will provide the equipment and facilities necessary to retrieve suspect transuranic (TRU) waste from Trench 04 of the 218W-4C burial ground. As part of the retrieval process, waste drums will be assayed, overpacked, vented, head-gas sampled, and x-rayed prior to shipment to the Phase V storage facility in preparation for receipt at the Waste Receiving and Processing Facility (WRAP). Advanced Conceptual Design (ACD) studies focused on project items warranting further definition prior to Title I design and areas where the potential for cost savings existed. This ACD Report documents the studies performed during FY93 to optimize the equipment and facilities provided in relation to other SWOC facilities and to provide additional design information for Definitive Design.

Smith, K.E.

1994-03-21T23:59:59.000Z

148

Texas A&M AgriLife Research Procedures 51.04.01.A0.01 Minor Construction Projects  

E-Print Network [OSTI]

Texas A&M AgriLife Research Procedures 51.04.01.A0.01 Minor Construction Projects ApprovedLife Research Procedure 51.04.01.A0.01 Minor Construction Projects Page 1 of 8 PROCEDURE STATEMENT Texas A) for the preparation, execution and administration of all minor construction and maintenance projects. PROCEDURES

149

51.04.01.G0.01 Construction Project Procedure Page 1 of 2 STANDARD ADMINISTRATIVE PROCEDURE  

E-Print Network [OSTI]

51.04.01.G0.01 Construction Project Procedure Page 1 of 2 STANDARD ADMINISTRATIVE PROCEDURE 51.04.01.G0.01 Construction Project Procedure Approved September 14, 2000 Revised January 21, 2011 Next ___________________________________________________________________________________ This delegation of authority and procedure pertains to construction projects only and supersedes all existing

150

The effects of the implementation of grey water reuse systems on construction cost and project schedule  

E-Print Network [OSTI]

of the United States due to their effects on construction cost and project schedules. Even though a project could get one or multiple points upon successful implementation of a grey water reuse system and conserving potable water, the following factors may have...

Kaduvinal Varghese, Jeslin

2009-05-15T23:59:59.000Z

151

Supplemental information for a notice of construction for the Fueled Clad Fabrication System, the Radioisotope Power Systems Facility, and the Fuel Assembly Area  

SciTech Connect (OSTI)

This ''Notice of Construction'' has been submitted by the US Department of Energy-Richland Operations Office (P.O. Box 550, Richland, Washington 99352), pursuant to WAC 402-80-070, for three new sources of radionuclide emissions at the Hanford Site in Washington State (Figure 1). The three new sources, the Fueled Clad Fabrication System (FCFS) the Radioisotope Power Systems Facility (RPSF) and the Fuel Assembly Area (FAA) will be located in one facility, the Fuels and materials Examination Facility (FMEF) of the 400 Area. The FMEF was originally designed to provide for post- irradiation examination and fabrication of breeder reactor fuels. These FMEF missions were cancelled before the introduction of any fuel materials or any irradiated material. The current plans are to use the facility to fabricate power supplies to be used in space applications and to produce Fast Flux Test Facility (FFTF) fuel and target assemblies. The FCFS and the RPSF will produce materials and assemblies for application in space. The FAA project will produce FFTF fuel and target assemblies. The FCFS and the RPSF will share the same building, stack, and, in certain cases, the same floor space. Given this relationship, to the extent possible, these systems will be dealt with separately. The FAA is a comparatively independent operation though it will share the FMEF complex.

Not Available

1989-08-01T23:59:59.000Z

152

Application for approval for construction of the Fueled Clad Fabrication System, the Radioisotope Power Systems Facility, and the Fuel Assembly Area  

SciTech Connect (OSTI)

The following ''Application for Approval of Construction'' is being submitted by the US Department of Energy-Richland Operations Office, pursuant to 40 CFR 61.07, for three new sources of airborne radionuclide emissions at the Hanford Site in Washington State. The three new sources, the Fueled Clad Fabrication System (FCFS), the Radioisotope Power Systems Facility (RPSF), and the Fuel Assembly Area (FAA), will be located in one facility, the Fuels and Materials Examination Facility (FMEF) of the 400 Area. The FMEF was originally designed to provide for post-irradiation examination and fabrication of breeder reactor fuels. These FMEF missions were canceled before the introduction of any fuel materials or any irradiated material. The current plans are to use the facility to fabricate power supplies to be used in space applications and to produce Fast Flux Test Facility (FFTF) fuel and target assemblies. The FCFS and the RPSF will produce materials and assemblies for application in space. The FAA project will produce FFTF fuel and target assemblies. The FCFS and the RPSF will share the same building and stack and, in certain cases, the same floor space. Given this relationship, these systems will be dealt with separately to the extent possible. The FAA is a comparatively independent operation though it will share the FMEF complex. 2 refs., 16 figs., 12 tabs.

Not Available

1989-08-01T23:59:59.000Z

153

National Ignition Facility Project Completion and Control System Status  

SciTech Connect (OSTI)

The National Ignition Facility (NIF) is the world's largest and most energetic laser experimental system providing a scientific center to study inertial confinement fusion (ICF) and matter at extreme energy densities and pressures. Completed in 2009, NIF is a stadium-sized facility containing a 1.8-MJ, 500-TW 192-beam ultraviolet laser and target chamber. A cryogenic tritium target system and suite of optical, X-ray and nuclear diagnostics will support experiments in a strategy to achieve fusion ignition starting in 2010. Automatic control of NIF is performed by the large-scale Integrated Computer Control System (ICCS), which is implemented by 2 MSLOC of Java and Ada running on 1300 front-end processors and servers. The ICCS framework uses CORBA distribution for interoperation between heterogeneous languages and computers. Laser setup is guided by a physics model and shots are coordinated by data-driven distributed workflow engines. The NIF information system includes operational tools and a peta-scale repository for provisioning experimental results. This paper discusses results achieved and the effort now underway to conduct full-scale operations and prepare for ignition.

Van Arsdall, P J; Azevedo, S G; Beeler, R G; Bryant, R M; Carey, R W; Demaret, R D; Fisher, J M; Frazier, T M; Lagin, L J; Ludwigsen, A P; Marshall, C D; Mathisen, D G; Reed, R K

2009-10-02T23:59:59.000Z

154

Natural Gas Procurement Challenges for a Project Financed Cogeneration Facility  

E-Print Network [OSTI]

these criteria as inconsistent with UCC project economics and normal procurement practice. A. TERM OF CONTRACT The trend in the industry was strongly moving away from long term fixed price contracts. Natural Gas prices had moved steadily upward through..., by 1986? the problem of long term take or pay contracts in the Industry was overwhelming. Most producers had written some contracts at very low prices that had not expired while consumers were replacing contract written at high prices. However...

Good, R. L.; Calvert, T. B.; Pavlish, B. A.

155

Mixed and low-level waste treatment facility project  

SciTech Connect (OSTI)

The technology information provided in this report is only the first step toward the identification and selection of process systems that may be recommended for a proposed mixed and low-level waste treatment facility. More specific information on each technology will be required to conduct the system and equipment tradeoff studies that will follow these preengineering studies. For example, capacity, maintainability, reliability, cost, applicability to specific waste streams, and technology availability must be further defined. This report does not currently contain all needed information; however, all major technologies considered to be potentially applicable to the treatment of mixed and low-level waste are identified and described herein. Future reports will seek to improve the depth of information on technologies.

Not Available

1992-04-01T23:59:59.000Z

156

Project Hanford management contract quality assurance program implementation plan for nuclear facilities  

SciTech Connect (OSTI)

During transition from the Westinghouse Hanford Company (WHC) Management and Operations (M and O) contract to the Fluor Daniel Hanford (FDH) Management and Integration (M and I) contract, existing WHC policies, procedures, and manuals were reviewed to determine which to adopt on an interim basis. Both WHC-SP-1131,Hanford Quality Assurance Program and Implementation Plan, and WHC-CM-4-2, Quality Assurance Manual, were adopted; however, it was recognized that revisions were required to address the functions and responsibilities of the Project Hanford Management Contract (PHMC). This Quality Assurance Program Implementation Plan for Nuclear Facilities (HNF-SP-1228) supersedes the implementation portion of WHC-SP-1 13 1, Rev. 1. The revised Quality Assurance (QA) Program is documented in the Project Hanford Quality Assurance Program Description (QAPD), HNF-MP-599. That document replaces the QA Program in WHC-SP-1131, Rev. 1. The scope of this document is limited to documenting the nuclear facilities managed by FDH and its Major Subcontractors (MSCS) and the status of the implementation of 10 CFR 830.120, Quality Assurance Requirements, at those facilities. Since the QA Program for the nuclear facilities is now documented in the QAPD, future updates of the information provided in this plan will be by letter. The layout of this plan is similar to that of WHC-SP-1 13 1, Rev. 1. Sections 2.0 and 3.0 provide an overview of the Project Hanford QA Program. A list of Project Hanford nuclear facilities is provided in Section 4.0. Section 5.0 provides the status of facility compliance to 10 CFR 830.120. Sections 6.0, 7.0, and 8.0 provide requested exemptions, status of open items, and references, respectively. The four appendices correspond to the four projects that comprise Project Hanford.

Bibb, E.K.

1997-10-15T23:59:59.000Z

157

THE SPIRAL 2 PROJECT: CONSTRUCTION PROGRESS AND RECENT DEVELOPMENTS ON THE SC LINAC DRIVER  

E-Print Network [OSTI]

V/u. Different Radioactive Isotope Beams (RIB) production methods are foreseen: 1) by fission process (up to 1014, while Spiral 2 uses the Isotope Separation on Line (ISOL) techniques. The GANIL facility (Caen, France project proposes three different methods of production of radioactive beams [2] [3]: 1) fission of Uranium

Boyer, Edmond

158

Novel Muon Beam Facilities for Project X at Fermilab  

SciTech Connect (OSTI)

Innovative muon beam concepts for intensity-frontier experiments such as muon-to-electron conversion are described. Elaborating upon a previous single-beam idea, we have developed a design concept for a system to generate four high quality, low-energy muon beams (two of each sign) from a single beam of protons. As a first step, the production of pions by 1 and 3 GeV protons from the proposed Project X linac at Fermilab is being simulated and compared with the 8-GeV results from the previous study.

Neuffer, D.V.; /Fermilab; Ankenbrandt, C.M.; Abrams, R.; Roberts, T.J.; Yoshikawa, C.Y.; /MUONS Inc., Batavia

2012-05-01T23:59:59.000Z

159

Master EM Project Definition Rating Index - Facility Disposition Definitions  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office0-72.pdfGeorgeDoesn't32 Master EM Project Definition Rating Index - Environmental43

160

MONTICELLO PROJECTS FEDERAL FACILITIES AGREEMENT REPORT Report Period: January 1-  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$0.C. 20545*. . : '*I_ - I _ FFAJulyPROJECTS FEDERAL

Note: This page contains sample records for the topic "facility construction project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Facility stabilization project fiscal year 1997 multi-year work plan (MYWP) for WBS 7.1  

SciTech Connect (OSTI)

This document contains the technical baseline, work breakdown structure, schedule baseline, cost baseline, and execution year for the facility stabilization project.

Cartmell, D.B.

1996-09-01T23:59:59.000Z

162

EIS-0412: Federal Loan Guarantee to Support Construction of the TX Energy LLC, Industrial Gasification Facility near Beaumont, Texas  

Broader source: Energy.gov [DOE]

The Department of Energy is assessing the potential environmental impacts for its proposed action of issuing a Federal loan guarantee to TX Energy, LLC (TXE). TXE submitted an application to DOE under the Federal loan guarantee program pursuant to the Energy Policy Act of 2005 (EPAct 2005) to support construction of the TXE industrial Gasification Facility near Beaumont, Texas.

163

EA-1364: Proposed Construction and Operation of a Biosafety Level 3 Facility at Los Alamos National Laboratory, Los Alamos, NM  

Broader source: Energy.gov [DOE]

This EA evaluates the potential environmental impacts of a proposal to construct an approximately 3,000 square foot, one-story permanent facility which includes two BSL-3 laboratories with adjoining individual mechanical rooms separated by a central support BSL-2 laboratory; clothes-change and shower rooms; and associated office spaces.

164

Review of project definition studies of possible on-site uses of superconducting super collider assets and facilities  

SciTech Connect (OSTI)

This document reports on the results of a peer review and evaluation of studies made of potential uses of assets from the terminated Superconducting Super Collider (SSC) project. These project definition studies focused on nine areas of use of major assets and facilities at the SSC site near Waxahachie, Texas. The studies were undertaken as part of the effort to maximize the value of the investment made in the SSC and were supported by two sets of grants, one to the Texas National Research Laboratory Commission (TNRLC) and the second to various universities and other institutions for studies of ideas raised by a public call for expressions of interest. The Settlement Agreement, recently signed by the Department of Energy (DOE) and TNRLC, provides for a division of SSC property. As part of the goal of maximizing the value of the SSC investment, the findings contained in this report are thus addressed to officials in both the Department and TNRLC. In addition, this review had several other goals: to provide constructive feedback to those doing the studies; to judge the benefits and feasibility (including funding prospects) of the projects studied; and to help worthy projects become reality by matching projects with possible funding sources.

NONE

1994-12-01T23:59:59.000Z

165

Review of project definition studies of possible on-site uses of superconducting super collider assets and facilities. Final report  

SciTech Connect (OSTI)

This document reports on the results of a peer review and evaluation of studies made of potential uses of assets from the terminated Superconducting Super Collider (SSC) project. These project definition studies focused on nine areas of use of major assets and facilities at the SSC site near Waxahachie, Texas. The studies were undertaken as part of the effort to maximize the value of the investment made in the SSC and were supported by two sets of grants, one to the Texas National Research Laboratory Commission (TNRLC) and the second to various universities and other institutions for studies of ideas raised by a public call for expressions of interest. The Settlement Agreement, recently signed by the Department of Energy (DOE) and TNRLC, provides for a division of SSC property. As part of the goal of maximizing the value of the SSC investment, the findings contained in this report are thus addressed to officials in both the Department and TNRLC. In addition, this review had several other goals: to provide constructive feedback to those doing the studies; to judge the benefits and feasibility (including funding prospects) of the projects studied; and to help worthy projects become reality by matching projects with possible funding sources.

NONE

1994-12-01T23:59:59.000Z

166

So Far Unfruitful, Fusion Project Faces a Frugal Congress National Ignition Facility  

E-Print Network [OSTI]

laser at the Lawrence Livermore National Laboratory in California. By WILLIAM J. BROAD September 29 have broad repercussions not only for the big laser, which is based at the Lawrence Livermore National the government have long assailed the laser project, known as the National Ignition Facility, or NIF

167

Alaska Community & Facility Scale Tribal Renewable Energy Project Development and Finance Workshop  

Broader source: Energy.gov [DOE]

Presented by the DOE Office of Indian Energy and Tribal Energy Program, with support from DOE's National Renewable Energy Laboratory, this interactive workshop will walk participants through five steps to help Alaska Native villages and Alaska Native corporations understand the process for and potential pitfalls of developing community- and facility-scale renewable energy projects.

168

Evolution of Safeguards over Time: Past, Present, and Projected Facilities, Material, and Budget  

SciTech Connect (OSTI)

This study examines the past trends and evolution of safeguards over time and projects growth through 2030. The report documents the amount of nuclear material and facilities under safeguards from 1970 until present, along with the corresponding budget. Estimates for the future amount of facilities and material under safeguards are made according to non-nuclear-weapons states’ (NNWS) plans to build more nuclear capacity and sustain current nuclear infrastructure. Since nuclear energy is seen as a clean and economic option for base load electric power, many countries are seeking to either expand their current nuclear infrastructure, or introduce nuclear power. In order to feed new nuclear power plants and sustain existing ones, more nuclear facilities will need to be built, and thus more nuclear material will be introduced into the safeguards system. The projections in this study conclude that a zero real growth scenario for the IAEA safeguards budget will result in large resource gaps in the near future.

Kollar, Lenka; Mathews, Caroline E.

2009-07-01T23:59:59.000Z

169

Executive summaries of reports leading to the construction of the Baca Geothermal Demonstration Project  

SciTech Connect (OSTI)

Executive summaries have been written for 61 reports and compilations of data which in part, have led to the construction of the Baca 50 MW Geothermal Demonstration Project (GDP). The reports and data include environmental research, reservoir and feasibility studies, the project proposal to DOE and the Final Environmental Impact Statement. These executive summaries are intended to give the reader a general overview of each report prior to requesting the report from the GDP Data Manager.

Sherwood, P.B.; Newman, K.L.; Westermeier, J.F.; Giroux, H.D.; Lowe, G.D.; Nienberg, M.W.

1980-05-01T23:59:59.000Z

170

Executive summaries of reports leading to the construction of the Baca Geothermal Demonstration Project  

SciTech Connect (OSTI)

Executive summaries have been written for 61 reports and compilations of data which, in part, have led to the construction of the Baca 50 MW Geothermal Demonstration Project (GDP). The reports and data include environmental research, reservoir and feasibility studies, the project proposal to DOE and the Final Environmental Impact Statement. These executive summaries are intended to give the reader a general overview of each report prior to requesting the report from the GDP Data Manager.

Sherwood, P.B.; Newman, K.L.; Westermeier, J.F.; Giroux, H.D.; Lowe, G.D.; Nienberg, M.W.

1980-05-01T23:59:59.000Z

171

Benchmarking the Remote-Handled Waste Facility at the West Valley Demonstration Project  

SciTech Connect (OSTI)

ABSTRACT Facility decontamination activities at the West Valley Demonstration Project (WVDP), the site of a former commercial nuclear spent fuel reprocessing facility near Buffalo, New York, have resulted in the removal of radioactive waste. Due to high dose and/or high contamination levels of this waste, it needs to be handled remotely for processing and repackaging into transport/disposal-ready containers. An initial conceptual design for a Remote-Handled Waste Facility (RHWF), completed in June 1998, was estimated to cost $55 million and take 11 years to process the waste. Benchmarking the RHWF with other facilities around the world, completed in November 1998, identified unique facility design features and innovative waste pro-cessing methods. Incorporation of the benchmarking effort has led to a smaller yet fully functional, $31 million facility. To distinguish it from the June 1998 version, the revised design is called the Rescoped Remote-Handled Waste Facility (RRHWF) in this topical report. The conceptual design for the RRHWF was completed in June 1999. A design-build contract was approved by the Department of Energy in September 1999.

O. P. Mendiratta; D. K. Ploetz

2000-02-29T23:59:59.000Z

172

EIS-0350-S1: Supplemental Environmental Impact Statement for the Nuclear Facility Portion of the Chemistry and Metallurgy Research Building Replacement Project at Los Alamos National Laboratory, New Mexico  

Broader source: Energy.gov [DOE]

This Supplemental EIS evaluates the completion of the Chemistry and Metallurgy Research Building Replacement (CMRR) Project, which consists of constructing the nuclear facility portion (CMRR-NF) at Los Alamos National Laboratory (LANL). The CMRR Project provides the analytical chemistry and materials characterization capabilities currently or previously performed in the existing Chemistry and Metallurgy Research (CMR) Building. Because of recent detailed site geotechnical investigations, certain aspects of the CMRR-NR project have changed resulting in change to the environmental impacts.

173

UMTRA Project value engineering plan. [Design and construction of stabilized tailings embankments  

SciTech Connect (OSTI)

The objective of value engineering (VE) on the Uranium MILL Tailings Remedial Action (UMTRA) Project is to ensure that remedial action at the UMTRA Project sites is performed to meet the US Environmental Protection Agency (EPA) standards for inactive uranium mill tailings sites at the lowest cost, while maintaining a high quality of work. Through review of designs and consideration of reasonable, less expensive alternatives, VE can be an effective cost reduction tool and a means to improve the design. The UMTRA Project products are the design and construction of stabilized tailings embankments.

Not Available

1990-06-01T23:59:59.000Z

174

Analysis of the Texas A&M University System's Construction Project Delivery Method Performance: CMAR and CSP.  

E-Print Network [OSTI]

??In recent decades, the use of construction manager-at-risk (CMAR) has surged as an innovative construction project delivery method in comparison to traditional competitive bid procurement… (more)

Neidert, Andrew

2012-01-01T23:59:59.000Z

175

RCRA (Resource Conservation and Recovery Act) ground-water monitoring projects for Hanford facilities: Annual Progress Report for 1989  

SciTech Connect (OSTI)

This report describes the progress during 1989 of 16 Hanford Site ground-water monitoring projects covering 25 hazardous waste facilities and 1 nonhazardous waste facility. Each of the projects is being conducted according to federal regulations based on the Resource Conservation and Recovery Act of 1976 and the State of Washington Administrative Code. 40 refs., 75 figs., 6 tabs.

Smith, R.M.; Gorst, W.R. (eds.)

1990-03-01T23:59:59.000Z

176

Draft Environmental Impact Statement for Construction and Operation of a Depleted Uranium Hexafluoride Conversion Facility at the Portsmouth, Ohio, Site  

SciTech Connect (OSTI)

This document is a site-specific environmental impact statement (EIS) for construction and operation of a proposed depleted uranium hexafluoride (DUF{sub 6}) conversion facility at the U.S. Department of Energy (DOE) Portsmouth site in Ohio (Figure S-1). The proposed facility would convert the DUF{sub 6} stored at Portsmouth to a more stable chemical form suitable for use or disposal. The facility would also convert the DUF{sub 6} from the East Tennessee Technology Park (ETTP) site near Oak Ridge, Tennessee. In a Notice of Intent (NOI) published in the Federal Register on September 18, 2001 (Federal Register, Volume 66, page 48123 [66 FR 48123]), DOE announced its intention to prepare a single EIS for a proposal to construct, operate, maintain, and decontaminate and decommission two DUF{sub 6} conversion facilities at Portsmouth, Ohio, and Paducah, Kentucky, in accordance with the National Environmental Policy Act of 1969 (NEPA) (United States Code, Title 42, Section 4321 et seq. [42 USC 4321 et seq.]) and DOE's NEPA implementing procedures (Code of Federal Regulations, Title 10, Part 1021 [10 CFR Part 1021]). Subsequent to award of a contract to Uranium Disposition Services, LLC (hereafter referred to as UDS), Oak Ridge, Tennessee, on August 29, 2002, for design, construction, and operation of DUF{sub 6} conversion facilities at Portsmouth and Paducah, DOE reevaluated its approach to the NEPA process and decided to prepare separate site-specific EISs. This change was announced in a Federal Register Notice of Change in NEPA Compliance Approach published on April 28, 2003 (68 FR 22368); the Notice is included as Attachment B to Appendix C of this EIS. This EIS addresses the potential environmental impacts from the construction, operation, maintenance, and decontamination and decommissioning (D&D) of the proposed conversion facility at three alternative locations within the Portsmouth site; from the transportation of all ETTP cylinders (DUF{sub 6}, low-enriched UF6 [LEU-UF{sub 6}], and empty) to Portsmouth; from the transportation of depleted uranium conversion products to a disposal facility; and from the transportation, sale, use, or disposal of the fluoride-containing conversion products (hydrogen fluoride [HF] or calcium fluoride [CaF{sub 2}]). An option of shipping the ETTP cylinders to Paducah is also considered. In addition, this EIS evaluates a no action alternative, which assumes continued storage of DUF{sub 6} in cylinders at the Portsmouth and ETTP sites. A separate EIS (DOE/EIS-0359) evaluates potential environmental impacts for the proposed Paducah conversion facility.

N /A

2003-11-28T23:59:59.000Z

177

Environmental Assessment for the construction and operation of the Health Physics Site Support Facility on the Savannah River Site  

SciTech Connect (OSTI)

DOE has prepared an environmental assessment for the proposed construction and operation of the Health Physics Site Support Facility on the Savannah River Site. This (new) facility would meet requirements of the site radiological protection program and would ensure site compliance with regulations. It was determined that the proposed action is not a major Federal action significantly affecting the quality of the environment within the meaning of NEPA. Therefore, a finding of no significant impact is made, and no environmental impact statement is needed.

NONE

1995-07-01T23:59:59.000Z

178

Final audit report of remedial action construction at the UMTRA project site Rifle, Colorado. Rev. 1  

SciTech Connect (OSTI)

This final audit report summarizes the assessments performed by the U.S. Department of Energy (DOE) Environmental Restoration Division (ERD) and its Technical Assistance Contractor (TAC) of remedial action compliance with approved plans, specifications, standards, and 40 CFR Part 192 at the Rifle, Colorado, Uranium Mill Tailings Remedial Action (UMTRA) Project site. Remedial action construction was directed by the Remedial Action Contractor (RAC).

NONE

1997-01-01T23:59:59.000Z

179

"New Results from the National Ignition Facility", Dr. John Lindl...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

"New Results from the National Ignition Facility", Dr. John Lindl, Lawrence Livermore National Laboratory Since completion of the NIF construction project in March 2009,...

180

Problem 65 in Section 4.1 (Page 274) Constructing a pipeline Supertankers off-load oil at a docking facility 4 mi offshore. The nearest refinery  

E-Print Network [OSTI]

facility 4 mi offshore. The nearest refinery is 9 mi east of the shore point nearest the docking facility. A pipeline must be constructed connecting the docking facility with the refinery. The pipeline costs $300.42 miles away from the refinery, or equivalently 3.58 miles away from Point A (as the back of the book has

Schilling, Anne

Note: This page contains sample records for the topic "facility construction project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Project C-018H, 242-A Evaporator/PUREX Plant Process Condensate Treatment Facility, functional design criteria. Revision 3  

SciTech Connect (OSTI)

This document provides the Functional Design Criteria (FDC) for Project C-018H, the 242-A Evaporator and Plutonium-Uranium Extraction (PUREX) Plant Condensate Treatment Facility (Also referred to as the 200 Area Effluent Treatment Facility [ETF]). The project will provide the facilities to treat and dispose of the 242-A Evaporator process condensate (PC), the Plutonium-Uranium Extraction (PUREX) Plant process condensate (PDD), and the PUREX Plant ammonia scrubber distillate (ASD).

Sullivan, N.

1995-05-02T23:59:59.000Z

182

SLUDGE TREATMENT PROJECT PHASE 1 SLUDGE STORAGE OPTIONS ASSESSMENT OF T PLANT VERSUS ALTERNATE STORAGE FACILITY  

SciTech Connect (OSTI)

The CH2M HILL Plateau Remediation Company (CHPRC) has recommended to the U.S. Department of Energy (DOE) a two phase approach for removal and storage (Phase 1) and treatment and packaging for offsite shipment (Phase 2) of the sludge currently stored within the 105-K West Basin. This two phased strategy enables early removal of sludge from the 105-K West Basin by 2015, allowing remediation of historical unplanned releases of waste and closure of the 100-K Area. In Phase 1, the sludge currently stored in the Engineered Containers and Settler Tanks within the 105-K West Basin will be transferred into sludge transport and storage containers (STSCs). The STSCs will be transported to an interim storage facility. In Phase 2, sludge will be processed (treated) to meet shipping and disposal requirements and the sludge will be packaged for final disposal at a geologic repository. The purpose of this study is to evaluate two alternatives for interim Phase 1 storage of K Basin sludge. The cost, schedule, and risks for sludge storage at a newly-constructed Alternate Storage Facility (ASF) are compared to those at T Plant, which has been used previously for sludge storage. Based on the results of the assessment, T Plant is recommended for Phase 1 interim storage of sludge. Key elements that support this recommendation are the following: (1) T Plant has a proven process for storing sludge; (2) T Plant storage can be implemented at a lower incremental cost than the ASF; and (3) T Plant storage has a more favorable schedule profile, which provides more float, than the ASF. Underpinning the recommendation of T Plant for sludge storage is the assumption that T Plant has a durable, extended mission independent of the K Basin sludge interim storage mission. If this assumption cannot be validated and the operating costs of T Plant are borne by the Sludge Treatment Project, the conclusions and recommendations of this study would change. The following decision-making strategy, which is dependent on the confidence that DOE has in the long term mission for T Plant, is proposed: (1) If the confidence level in a durable, extended T Plant mission independent of sludge storage is high, then the Sludge Treatment Project (STP) would continue to implement the path forward previously described in the Alternatives Report (HNF-39744). Risks to the sludge project can be minimized through the establishment of an Interface Control Document (ICD) defining agreed upon responsibilities for both the STP and T Plant Operations regarding the transfer and storage of sludge and ensuring that the T Plant upgrade and operational schedule is well integrated with the sludge storage activities. (2) If the confidence level in a durable, extended T Plant mission independent of sludge storage is uncertain, then the ASF conceptual design should be pursued on a parallel path with preparation of T Plant for sludge storage until those uncertainties are resolved. (3) Finally, if the confidence level in a durable, extended T Plant mission independent of sludge storage is low, then the ASF design should be selected to provide independence from the T Plant mission risk.

RUTHERFORD WW; GEUTHER WJ; STRANKMAN MR; CONRAD EA; RHOADARMER DD; BLACK DM; POTTMEYER JA

2009-04-29T23:59:59.000Z

183

Geotechnical characterization of the North Ramp of the Exploratory Studies Facility: Yucca Mountain Site Characterization Project. Volume 1, Data summary  

SciTech Connect (OSTI)

This report presents the results of geological and geotechnical characterization of the Miocene volcanic tuff rocks of the Timber Mountain and Paintbrush groups that the tunnel boring machine will encounter during excavation of the Exploratory Studies Facility (ESF) North Ramp. The is being constructed by the DOE as part of the Yucca Mountain Project site characterization activities. The purpose of these activities is to evaluate the feasibility of locating a potential high-level nuclear waste repository on lands adjacent to the Nevada Test Site, Nye County, Nevada. This report was prepared as part of the Soil and Rock Properties Studies in accordance with the 8.3.1.14.2 Study Plan. This report is volume 1 of the data summary.

Brechtel, C.E.; Lin, Ming; Martin, E. [Agapito Associates, Inc., Grand Junction, CO (United States); Kessel, D.S. [Sandia National Labs., Albuquerque, NM (United States)

1995-05-01T23:59:59.000Z

184

Spent nuclear fuel project cold vacuum drying facility vacuum and purge system design description  

SciTech Connect (OSTI)

This document provides the System Design Description (SDD) for the Cold Vacuum Drying Facility (CVDF) Vacuum and Purge System (VPS) . The SDD was developed in conjunction with HNF-SD-SNF-SAR-O02, Safety Analysis Report for the Cold Vacuum Drying Facility, Phase 2, Supporting Installation of Processing Systems (Garvin 1998), The HNF-SD-SNF-DRD-002, 1998, Cold Vacuum Drying Facility Design Requirements, and the CVDF Design Summary Report. The SDD contains general descriptions of the VPS equipment, the system functions, requirements and interfaces. The SDD provides references for design and fabrication details, operation sequences and maintenance. This SDD has been developed for the SNFP Operations Organization and shall be updated, expanded, and revised in accordance with future design, construction and startup phases of the CVDF until the CVDF final ORR is approved.

IRWIN, J.J.

1998-11-30T23:59:59.000Z

185

Spent nuclear fuel project cold vacuum drying facility process water conditioning system design description  

SciTech Connect (OSTI)

This document provides the System Design Description (SDD) for the Cold Vacuum Drying Facility (CVDF) Process Water Conditioning (PWC) System. The SDD was developed in conjunction with HNF-SD-SNF-SAR-002, Safety Analysis Report for the Cold Vacuum Drying Facility, Phase 2, Supporting Installation of Processing Systems (Garvin 1998), the HNF-SD-SNF-DRD-O02, 1998, Cold Vacuum Drying Facility Design Requirements, and the CVDF Design Summary Report. The SDD contains general descriptions of the PWC equipment, the system functions, requirements and interfaces. The SDD provides references for design and fabrication details, operation sequences and maintenance. This SDD has been developed for the SNFP Operations Organization and shall be updated, expanded, and revised in accordance with future design, construction and startup phases of the CVDF until the CVDF final ORR is approved.

IRWIN, J.J.

1998-11-30T23:59:59.000Z

186

Conceptual Design Report: Nevada Test Site Mixed Waste Disposal Facility Project  

SciTech Connect (OSTI)

Environmental cleanup of contaminated nuclear weapons manufacturing and test sites generates radioactive waste that must be disposed. Site cleanup activities throughout the U.S. Department of Energy (DOE) complex are projected to continue through 2050. Some of this waste is mixed waste (MW), containing both hazardous and radioactive components. In addition, there is a need for MW disposal from other mission activities. The Waste Management Programmatic Environmental Impact Statement Record of Decision designates the Nevada Test Site (NTS) as a regional MW disposal site. The NTS has a facility that is permitted to dispose of onsite- and offsite-generated MW until November 30, 2010. There is not a DOE waste management facility that is currently permitted to dispose of offsite-generated MW after 2010, jeopardizing the DOE environmental cleanup mission and other MW-generating mission-related activities. A mission needs document (CD-0) has been prepared for a newly permitted MW disposal facility at the NTS that would provide the needed capability to support DOE's environmental cleanup mission and other MW-generating mission-related activities. This report presents a conceptual engineering design for a MW facility that is fully compliant with Resource Conservation and Recovery Act (RCRA) and DOE O 435.1, 'Radioactive Waste Management'. The facility, which will be located within the Area 5 Radioactive Waste Management Site (RWMS) at the NTS, will provide an approximately 20,000-cubic yard waste disposal capacity. The facility will be licensed by the Nevada Division of Environmental Protection (NDEP).

NSTec Environmental Management

2009-01-31T23:59:59.000Z

187

Spent Nuclear Fuel Project path forward: nuclear safety equivalency to comparable NRC-licensed facilities  

SciTech Connect (OSTI)

This document includes the Technical requirements which meet the nuclear safety objectives of the NRC regulations for fuel treatment and storage facilities. These include requirements regarding radiation exposure limits, safety analysis, design and construction. This document also includes administrative requirements which meet the objectives of the major elements of the NRC licensing process. These include formally documented design and safety analysis, independent technical review, and oppportunity for public involvement.

Garvin, L.J.

1995-11-01T23:59:59.000Z

188

Draft Environmental Impact Statement for Construction and Operation of a Depleted Uranium Hexafluoride Conversion Facility at the Paducah, Kentucky, Site  

SciTech Connect (OSTI)

This document is a site-specific environmental impact statement (EIS) for construction and operation of a proposed depleted uranium hexafluoride (DUF{sub 6}) conversion facility at the U.S. Department of Energy (DOE) Paducah site in northwestern Kentucky (Figure S-1). The proposed facility would convert the DUF{sub 6} stored at Paducah to a more stable chemical form suitable for use or disposal. In a Notice of Intent (NOI) published in the ''Federal Register'' (FR) on September 18, 2001 (''Federal Register'', Volume 66, page 48123 [66 FR 48123]), DOE announced its intention to prepare a single EIS for a proposal to construct, operate, maintain, and decontaminate and decommission two DUF{sub 6} conversion facilities at Portsmouth, Ohio, and Paducah, Kentucky, in accordance with the National Environmental Policy Act of 1969 (NEPA) (''United States Code'', Title 42, Section 4321 et seq. [42 USC 4321 et seq.]) and DOE's NEPA implementing procedures (''Code of Federal Regulations'', Title 10, Part 1021 [10 CFR Part 1021]). Subsequent to award of a contract to Uranium Disposition Services, LLC (hereafter referred to as UDS), Oak Ridge, Tennessee, on August 29, 2002, for design, construction, and operation of DUF{sub 6} conversion facilities at Portsmouth and Paducah, DOE reevaluated its approach to the NEPA process and decided to prepare separate site-specific EISs. This change was announced in a ''Federal Register'' Notice of Change in NEPA Compliance Approach published on April 28, 2003 (68 FR 22368); the Notice is included as Attachment B to Appendix C of this EIS. This EIS addresses the potential environmental impacts from the construction, operation, maintenance, and decontamination and decommissioning (D&D) of the proposed conversion facility at three alternative locations within the Paducah site; from the transportation of depleted uranium conversion products to a disposal facility; and from the transportation, sale, use, or disposal of the fluoride-containing conversion products (hydrogen fluoride [HF] or calcium fluoride [CaF{sub 2}]). Although not part of the proposed action, an option of shipping all cylinders (DUF{sub 6}, low-enriched UF{sub 6} [LEU-UF{sub 6}], and empty) stored at the East Tennessee Technology Park (ETTP) near Oak Ridge, Tennessee, to Paducah rather than to Portsmouth is also considered. In addition, this EIS evaluates a no action alternative, which assumes continued storage of DUF{sub 6} in cylinders at the Paducah site. A separate EIS (DOE/EIS-0360) evaluates the potential environmental impacts for the proposed Portsmouth conversion facility.

N /A

2003-11-28T23:59:59.000Z

189

Baseline concentrations of radionuclides and heavy metals in soils and vegetation around the DARHT facility: Construction phase (1996)  

SciTech Connect (OSTI)

As part of the Department of Energy`s Mitigation Action Plan for the Dual Axis Radiographic Hydrodynamic Test (DARHT) Facility at Los Alamos National Laboratory (LANL), baseline concentrations of radionuclides ({sup 3}H, {sup 137}Cs, {sup 90}Sr, {sup 238}Pu, {sup 239}Pu, {sup 241}Am, total U), and heavy metals (Ag, As, Ba, Be, Cd, Cr, Cu, Hg, Ni, Pb, Sb, Se and Tl) in soil, sediment, and vegetation (overstory and understory) around the DARHT facility during the construction phase in 1996 were determined. Also, U and Be concentrations in soil samples collected in 1993 from within the proposed DARHT facility area are reported. Most radionuclides in soils, sediments, and vegetation were within current background and/or long-term regional statistical reference levels.

Fresquez, P.R.; Haagenstad, H.T.; Naranjo, L. Jr.

1997-04-01T23:59:59.000Z

190

The project RTPPP (Development of a realtime PPP processing facility) is planned to be a followup project of RAPPP (Innovative Algorithms for Rapid Precise Point Positioning),  

E-Print Network [OSTI]

RTPPP The project RTPPP (Development of a realtime PPP processing facility) is planned to be a followup project of RAPPP (Innovative Algorithms for Rapid Precise Point Positioning), which has RAPPP, the proposed project RTPPP concentrates on the possibilities of the PPP technique within a real

Schuh, Harald

191

The Advanced Neutron Source (ANS) project: A world-class research reactor facility  

SciTech Connect (OSTI)

This paper provides an overview of the Advanced Neutron Source (ANS), a new research facility being designed at Oak Ridge National Laboratory. The facility is based on a 330 MW, heavy-water cooled and reflected reactor as the neutron source, with a thermal neutron flux of about 7.5{times}10{sup 19}m{sup {minus}2}{center_dot}sec{sup {minus}1}. Within the reflector region will be one hot source which will serve 2 hot neutron beam tubes, two cryogenic cold sources serving fourteen cold neutron beam tubes, two very cold beam tubes, and seven thermal neutron beam tubes. In addition there will be ten positions for materials irradiation experiments, five of them instrumented. The paper touches on the project status, safety concerns, cost estimates and scheduling, a description of the site, the reactor, and the arrangements of the facilities.

Thompson, P.B. [Martin Marietta Energy Systems, Inc., Oak Ridge, TN (US); Meek, W.E. [Gilbert/Commonwealth, Inc., Pittsburgh, PA (US)

1993-07-01T23:59:59.000Z

192

Recovery Act: Hydroelectric Facility Improvement Project - Replacement of Current Mechanical Seal System with Rope Packing System  

SciTech Connect (OSTI)

On January 27, 2010 the City of North Little Rock, Arkansas received notification of the awarding of a Department of Energy (DOE) grant totaling $450,000 in funding from the American Recovery and Reinvestment Act (ARRA) under the Project Title: Recovery Act: Hydroelectric Facility Improvement Project – Automated Intake Clearing Equipment and Materials Management. The purpose of the grant was for improvements to be made at the City’s hydroelectric generating facility located on the Arkansas River. Improvements were to be made through the installation of an intake maintenance device (IMD) and the purchase of a large capacity wood grinder. The wood grinder was purchased in order to receive the tree limbs, tree trunks, and other organic debris that collects at the intake of the plant during high flow. The wood grinder eliminates the periodic burning of the waste material that is cleared from the intake and reduces any additional air pollution to the area. The resulting organic mulch has been made available to the public at no charge. Design discussion and planning began immediately and the wood grinder was purchased in July of 2010 and immediately put to work mulching debris that was gathered regularly from the intake of the facility. The mulch is currently available to the public for free. A large majority of the design process was spent in discussion with the Corps of Engineers to obtain approval for drawings, documents, and permits that were required in order to make changes to the structure of the powerhouse. In April of 2011, the City’s Project Engineer, who had overseen the application, resigned and left the City’s employ. A new Systems Mechanical Engineer was hired and tasked with overseeing the project. The transfer of responsibility led to a re-examination of the original assumptions and research upon which the grant proposal was based. At that point, the project went under review and a trip was booked for July 2011 to visit facilities that currently had an IMD installed. This further study of facilities revealed that the implementation of the project as originally described, while proving the benefits described in the original grant application, would likely intensify sand intake. Increased sand intake would lead to an increase in required shutdowns for maintenance and more rapid depreciation of key equipment which would result in a loss of generation capacity. A better solution to the problem, one that continued to meet the criteria for the original grant and ARRA standards, was developed. A supporting day trip was planned to visit other facilities located on the Arkansas River to determine how they were coping with the same strong amounts of sand, silt, and debris. Upon returning from the trip to other Arkansas River facilities it was extremely clear what direction to go in order to most efficiently address the issue of generator capacity and efficiency. Of the plants visited on the Arkansas River, every one of them was running what is called a rope packing shaft sealing system as opposed to mechanical shaft seals, which the facility was running. Rope packing is a time proven sealing method that has been around for centuries. It has proved to perform very well in dirty water situations just like that of the Arkansas River. In April of 2012 a scope change proposal was submitted to the DOE for approval. In August of 2012 the City received word that the change of scope had been approved. Plans were immediately set in motion to begin the conversion from mechanical seals to a packing box at the facility. Contractors arrived on October 1st, 2012 and the project team began unwatering the unit for disassembly. The seal conversion was completed on February 29th, 2013 with start-up of the unit. Further testing and adjusting was done throughout the first two weeks of March.

Stephens, Jessica D.

2013-05-29T23:59:59.000Z

193

The mixed waste management facility. Project baseline revision 1.2  

SciTech Connect (OSTI)

Revision 1.2 to the Project Baseline (PB) for the Mixed Waste Management Facility (MWMF) is in response to DOE directives and verbal guidance to (1) Collocate the Decontamination and Waste Treatment Facility (DWTF) and MWMF into a single complex, integrate certain and overlapping functions as a cost-saving measure; (2) Meet certain fiscal year (FY) new-BA funding objectives ($15.3M in FY95) with lower and roughly balanced funding for out years; (3) Reduce Total Project Cost (TPC) for the MWMF Project; (4) Include costs for all appropriate permitting activities in the project TPC. This baseline revision also incorporates revisions in the technical baseline design for Molten Salt Oxidation (MSO) and Mediated Electrochemical Oxidation (MEO). Changes in the WBS dictionary that are necessary as a result of this rebaseline, as well as minor title changes, at WBS Level 3 or above (DOE control level) are approved as a separate document. For completeness, the WBS dictionary that reflects these changes is contained in Appendix B. The PB, with revisions as described in this document, were also the basis for the FY97 Validation Process, presented to DOE and their reviewers on March 21-22, 1995. Appendix C lists information related to prior revisions to the PB. Several key changes relate to the integration of functions and sharing of facilities between the portion of the DWTF that will house the MWMF and those portions that are used by the Hazardous Waste Management (HWM) Division at LLNL. This collocation has been directed by DOE as a cost-saving measure and has been implemented in a manner that maintains separate operational elements from a safety and permitting viewpoint. Appendix D provides background information on the decision and implications of collocating the two facilities.

Streit, R.D.; Throop, A.L.

1995-04-01T23:59:59.000Z

194

340 Facility Secondary Containment and Leak Detection Project W-302 Functional Design Criteria  

SciTech Connect (OSTI)

This functional design criteria for the upgrade to the 340 radioactive liquid waste storage facility (Project W-302) specifically addresses the secondary containment issues at the current vault facility of the 340 Complex. This vault serves as the terminus for the Radioactive Liquid Waste System (RLWS). Project W-302 is necessary in order to bring this portion of the Complex into full regulatory compliance. The project title, ``340 Facility Secondary Containment and Leak Detection``, illustrates preliminary thoughts of taking corrective action directly upon the existing vault (such as removing the tanks, lining the vault, and replacing tanks). However, based on the conclusion of the engineering study, ``Engineering Study of the 300 Area Process Wastewater Handling System``, WHC-SD-WM-ER-277 (as well as numerous follow-up meetings with cognizant staff), this FDC prescribes a complete replacement of the current tank/vault system. This offers a greater array of tanks, and provides greater operating flexibility and ease of maintenance. This approach also minimizes disruption to RLWS services during ``tie-in``, as compared to the alternative of trying to renovate the old vault. The proposed site is within the current Complex area, and maintains the receipt of RLWS solutions through gravity flow.

Stordeur, R.T.

1995-03-01T23:59:59.000Z

195

COORDINATING HUMAN AND MATERIAL RESOURCES Construction project management is the art of directing and coordinating human and material  

E-Print Network [OSTI]

COORDINATING HUMAN AND MATERIAL RESOURCES Construction project management is the art of directing and coordinating human and material resources throughout the life of a project by using modern management. Today's construction engineers and managers are faced with unprecedented challenges in planning

Simaan, Nabil

196

Cost Comparison of Public Elementary School Construction Costs Based on Project Delivery System in the State of Texas  

E-Print Network [OSTI]

and cost controls. Reinisch and Caguioa (2010) noted that there are several methods for choosing what the construction authority considers the most appropriate project delivery system. Nichols and Feigenbaum (Feigenbaum, 2011; Nichols, 2011) observed... Members, Leslie H. Feigenbaum Head of Department, Joseph P. Horlen December 2011 Major Subject: Construction Management iii ABSTRACT Cost Comparison of Public Elementary School Construction Costs Based on Project Delivery System in the State...

Reinisch, Ashley

2012-02-14T23:59:59.000Z

197

Developing Renewable Energy Projects Larger Than 10 MWs at Federal Facilities (Book)  

SciTech Connect (OSTI)

To accomplish Federal goals for renewable energy, sustainability, and energy security, large-scale renewable energy projects must be developed and constructed on Federal sites at a significant scale with significant private investment. The U.S. Department of Energy's Federal Energy Management Program (FEMP) helps Federal agencies meet these goals and assists agency personnel navigate the complexities of developing such projects and attract the necessary private capital to complete them. This guide is intended to provide a general resource that will begin to develop the Federal employee's awareness and understanding of the project developer's operating environment and the private sector's awareness and understanding of the Federal environment. Because the vast majority of the investment that is required to meet the goals for large-scale renewable energy projects will come from the private sector, this guide has been organized to match Federal processes with typical phases of commercial project development. The main purpose of this guide is to provide a project development framework to allow the Federal Government, private developers, and investors to work in a coordinated fashion on large-scale renewable energy projects. The framework includes key elements that describe a successful, financially attractive large-scale renewable energy project.

Not Available

2013-03-01T23:59:59.000Z

198

Nuclear Rocket Facility Decommissioning Project: Controlled Explosive Demolition of Neutron Activated Shield Wall  

SciTech Connect (OSTI)

Located in Area 25 of the Nevada Test Site (NTS), the Test Cell A (TCA) Facility was used in the early to mid-1960s for the testing of nuclear rocket engines, as part of the Nuclear Rocket Development Program, to further space travel. Nuclear rocket testing resulted in the activation of materials around the reactors and the release of fission products and fuel particles in the immediate area. Identified as Corrective Action Unit 115, the TCA facility was decontaminated and decommissioned (D&D) from December 2004 to July 2005 using the Streamlined Approach for Environmental Restoration (SAFER) process, under the ''Federal Facility Agreement and Consent Order''. The SAFER process allows environmental remediation and facility closure activities (i.e., decommissioning) to occur simultaneously provided technical decisions are made by an experienced decision maker within the site conceptual site model, identified in the Data Quality Objective process. Facility closure involved a seven-step decommissioning strategy. Key lessons learned from the project included: (1) Targeted preliminary investigation activities provided a more solid technical approach, reduced surprises and scope creep, and made the working environment safer for the D&D worker. (2) Early identification of risks and uncertainties provided opportunities for risk management and mitigation planning to address challenges and unanticipated conditions. (3) Team reviews provided an excellent mechanism to consider all aspects of the task, integrated safety into activity performance, increase team unity and ''buy-in'' and promoted innovative and time saving ideas. (4) Development of CED protocols ensured safety and control. (5) The same proven D&D strategy is now being employed on the larger ''sister'' facility, Test Cell C.

Michael R. Kruzic

2007-09-16T23:59:59.000Z

199

EA-0930: Facility Operations at the U.S. DOE Grand Junction Projects Office, Grand Junction, Colorado  

Broader source: Energy.gov [DOE]

This EA evaluates the environmental impacts of the proposal to expand and upgrade the U.S. Department of Energy's Grand Junction Projects Office facilities and operations in Grand Junction, Colorado.

200

EERC pilot-scale CFBC evaluation facility Project CFB test results. Topical report, Task 7.30  

SciTech Connect (OSTI)

Project CFB was initiated at the University of North Dakota Energy and Environmental Research Center (EERC) in May 1988. Specific goals of the project were to (1) construct a circulating fluidized-bed combustor (CFBC) facility representative of the major boiler vendors` designs with the capability of producing scalable data, (2) develop a database for use in making future evaluations of CFBC technology, and (3) provide a facility for evaluating fuels, free of vendor bias for use in the - energy industry. Five coals were test-burned in the 1-MWth unit: North Dakota and Asian lignites, a Wyoming subbituminous, and Colorado and Pennsylvania bituminous coats. A total of 54 steady-state test periods were conducted, with the key test parameters being the average combustor temperature, excess air, superficial gas velocity, calcium-to-sulfur molar ratio, and the primary air-to-secondary air split. The capture for a coal fired in a CFBC is primarily dependent upon the total alkali-to-sulfur ratio. The required alkali-to ratio for 90% sulfur retention ranged from 1.4 to 4.9, depending upon coal type. While an alkali-to-ratio of 4.9 was required to meet 90% sulfur retention for the Salt Creek coal versus 1.4 for the Asian lignite, the total amount of sorbent addition required is much less for the Salt Creek coal, 4.2 pound sorbent per million Btu coal input, versus 62 pound/million Btu for the Asian lignite. The bituminous coals tested show optimal capture at combustor temperatures of approximately 1550{degree}F, with low-rank coals having optimal sulfur capture approximately 100{degree}F lower.

Mann, M.D.; Hajicek, D.R.; Henderson, A.K.; Moe, T.A.

1992-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "facility construction project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Environmental assessment for the A-01 outfall constructed wetlands project at the Savannah River Site  

SciTech Connect (OSTI)

The Department of Energy (DOE) prepared this environmental assessment (EA) to analyze the potential environmental impacts associated with the proposed A-01 outfall constructed wetlands project at the Savannah River site (SRS), located near aiken, South Carolina. The proposed action would include the construction and operation of an artificial wetland to treat effluent from the A-01 outfall located in A Area at SRS. The proposed action would reduce the outfall effluent concentrations in order to meet future outfall limits before these go into effect on October 1, 1999. This document was prepared in compliance with the National Environmental Policy Act (NEPA) of 1969, as amended; the requirements of the Council on Environmental Quality Regulations for Implementing NEPA (40 CFR Parts 1500--1508); and the DOE Regulations for Implementing NEPA (10 CFR Part 1021).

NONE

1998-10-01T23:59:59.000Z

202

Quantum LDPC Codes Constructed from Point-Line Subsets of the Finite Projective Plane  

E-Print Network [OSTI]

Due to their fast decoding algorithms, quantum generalizations of low-density parity check, or LDPC, codes have been investigated as a solution to the problem of decoherence in fragile quantum states. However, the additional twisted inner product requirements of quantum stabilizer codes force four-cycles and eliminate the possibility of randomly generated quantum LDPC codes. Moreover, the classes of quantum LDPC codes discovered thus far generally have unknown or small minimum distance, or a fixed rate. This paper presents several new classes of quantum LDPC codes constructed from finite projective planes. These codes have rates that increase with the block length $n$ and minimum weights proportional to $n^{1/2}$.

Jacob Farinholt

2012-07-03T23:59:59.000Z

203

Project Construction Photos | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 IndustrialIsadore Perlman, 1960 TheOrganizationProcesses andProject Construction

204

FELIX: construction and testing of a facility to study electromagnetic effects for first wall, blanket, and shield systems  

SciTech Connect (OSTI)

An experimental test facility for the study of electromagnetic effects in the FWBS systems of fusion reactors has been constructed over the past 1-1/2 years at Argonne National Laboratory (ANL). In a test volume of 0.76 m/sup 3/ a vertical pulsed 0.5 T dipole field (B < 50 T/s) is perpendicular to a 1 T solenoid field. Power supplies of 2.75 MW and 5.5 MW and a solid state switch rated 13 kV, 13.1 kA (170 MW) control the pulsed magnetic fields. The total stored energy in the coils is 2.13 MJ. The coils are designed for a future upgrade to 4 T or the solenoid and 1 T for the dipole field (a total of 23.7 MJ). This paper describes the design and construction features of the facility. These include the power supplies, the solid state switches, winding and impregnation of large dipole saddle coils, control of the magnetic forces, computer control of FELIX and of experimental data acquisition and analysis, and an initial experimental test setup to analyze the eddy current distribution in a flat disk.

Praeg, W.F.; Turner, L.R.; Biggs, J.A.; Knott, M.J.; Lari, R.J.; McGhee, D.G.; Wehrle, R.B.

1983-01-01T23:59:59.000Z

205

Design and Construction of a Gamma Reaction History Diagnostic for the National Ignition Facility  

SciTech Connect (OSTI)

Gas Cherenkov detectors have been used to convert fusion gammas into photons to achieve gamma reaction history (GRH) measurements. These gas detectors include a converter, pressurized gas volume, relay optics, and a photon detector. A novel design for the National Ignition Facility (NIF) using 90ş Off-Axis Parabolic mirrors efficiently collects signal from fusion gammas with 8-ps time dispersion.1 Fusion gammas are converted to Compton electrons, which generate broadband Cherenkov light (our response is from 250 to 700 nm) in a pressurized gas cell. This light is relayed into a high-speed detector using three parabolic mirrors. The detector optics collect light from a 125-mm-diameter by 600-mm-long interchangeable gas (CO2 or SF6) volume. Because light is collected from source locations throughout the gas volume, the detector is positioned at the stop position rather than at an image position. The stop diameter and its position are independent of the light-generation locations along the gas cell. This design incorporates a fixed time delay that allows the detector to recover from prompt radiation. Optical ray tracings demonstrate how light can be collected from different angled trajectories of the Compton electrons as they traverse the gas volume. A Monte Carlo model of the conversion process from gammas to Cherenkov photons is used to generate photon trajectories. The collection efficiencies for different gamma energies are evaluated. At NIF, a cluster of four channels will allow for increased dynamic range, as well as different gamma energy thresholds. This GRH design is compared to a gas Cherenkov detector that utilizes a Cassegrain reflector now used at the OMEGA laser facility. 1. R. M. Malone, H. W. Herrmann, W. Stoeffl, J. M. Mack, C. S. Young, “Gamma bang time/reaction history diagnostics for the National Ignition Facility using 90ş off-axis parabolic mirrors,” Rev. Sci. Instrum. 79, 10E532 (2008).

R.M. Malone, B.C. Cox, B.C. Frogget, M.I. Kaufman, T.W. Tunnell; H.W. Herrmann, S.C. Evans, J.M. Mack, C.S. Young; W. Stoeffl

2009-06-05T23:59:59.000Z

206

Effects of Family-Related Facotrs on Female Project Managers' Salaries in the Construction Industry in the United States  

E-Print Network [OSTI]

This study explores predictors of female project managers’ salary in the construction industry and analyzes the relationship between salaries and specific variables. Although prior research indicates a relationship does exist between certain...

Bilbo, David; Bigelow, Ben F.; Rybkowski, Zofia; Kamranzadeh, Amineh

2014-07-31T23:59:59.000Z

207

THE PROJECT-X INJECTOR EXPERIMENT: A NOVEL HIGH PERFORMANCE FRONT-END FOR A FUTURE HIGH POWER PROTON FACILITY AT FERMILAB  

SciTech Connect (OSTI)

A multi-MW proton facility, Project X, has been proposed and is currently under development at Fermilab. We are carrying out a program of research and development aimed at integrated systems testing of critical components comprising the front end of Project X. This program, known as the Project X Injector Experiment (PXIE), is being undertaken as a key component of the larger Project X R&D program. The successful completion of this program will validate the concept for the Project X front end, thereby minimizing a primary technical risk element within Project X. PXIE is currently under construction at Fermilab and will be completed over the period FY12-17. PXIE will include an H* ion source, a CW 2.1-MeV RFQ and two superconductive RF (SRF) cryomodules providing up to 25 MeV energy gain at an average beam current of 1 mA (upgradable to 2 mA). Successful systems testing will also demonstrate the viability of novel front end technologies that are expected find applications beyond Project X.

Nagaitsev, S.; et al,

2013-09-25T23:59:59.000Z

208

Annual report for RCRA groundwater monitoring projects at Hanford Site facilities for 1993  

SciTech Connect (OSTI)

This report presents the annual hydrogeologic evaluation of 20 Resource Conservation and Recovery Act of 1976 groundwater monitoring projects and 1 nonhazardous waste facility at the US Department of Energy`s Hanford Site. Most of the projects no longer receive dangerous waste; a few projects continue to receive dangerous waste constituents for treatment, storage, or disposal. The 20 RCRA projects comprise 30 waste management units. Ten of the units are monitored under groundwater quality assessment status because of elevated levels of indicator parameters. The impact of those units on groundwater quality, if any, is being investigated. If dangerous waste or waste constituents have entered groundwater, their concentration, distribution, and rate of migration are evaluated. Groundwater is monitored at the other 20 units to detect contamination, should it occur. This report provides an interpretation of groundwater data collected at the waste management units between October 1992 and September 1993. Recent groundwater quality is also described for the 100, 200, 300, and 600 Areas and for the entire Hanford Site. Widespread contaminants include nitrate, chromium, carbon tetrachloride, tritium, and other radionuclides.

Not Available

1994-02-01T23:59:59.000Z

209

HAZWOPER project documents for demolition of the Waste Evaporator Facility, Building 3506, at Oak Ridge National Laboratory, Oak Ridge, Tennessee  

SciTech Connect (OSTI)

This document, in support of the Waste Evaporator Facility (WEF) demolition project and contains the Project Work Plan and the Project Health and Safety Plan for demolition and partial remediation actions by ATG at the Waste Evaporator Facility, Building 3506. Various activities will be conducted during the course of demolition, and this plan provides details on the work steps involved, the identification of hazards, and the health and safety practices necessary to mitigate these hazards. The objective of this document is to develop an approach for implementing demolition activities at the WEF. This approach is based on prior site characterization information and takes into account all of the known hazards at this facility. The Project Work Plan provides instructions and requirements for identified work steps that will be utilized during the performance of demolition, while the Health and Safety Plan addresses the radiological, hazardous material exposure, and industrial safety concerns that will be encountered.

NONE

1996-03-01T23:59:59.000Z

210

Texas A&M AgriLife Extension Service Procedures 51.04.01.X0.01 Minor Construction Projects  

E-Print Network [OSTI]

Texas A&M AgriLife Extension Service Procedures 51.04.01.X0.01 Minor Construction Projects&M AgriLife Extension Service Procedures | 51.04.01.X0.01 Minor Construction Projects | Page 1 of 8 construction projects. REASON FOR PROCEDURE The procedures contained herein will be used by Texas A&M Agri

211

EIS-0401: NextGen Project, South Dakota  

Broader source: Energy.gov [DOE]

This EIS analyzes WAPA's proposed action for the construction and operation of the proposed NextGen Energy Facility (Project) in South Dakota.

212

Voluntary Protection Program Onsite Review, Parsons Corp., Salt Waste Processing Facility Construction Project – May 2014  

Broader source: Energy.gov [DOE]

Evaluation to determine whether Parsons SWPF is performing at a level deserving DOE-VPP Star recognition

213

Cost Transfers at the Department's Sodium Bearing Waste Treatment Facility Construction Project  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTS AVAILABLEReport 2009 activitiesof Energy As a basis for Audit

214

Facilities Operations, Planning, and Engineering Services  

E-Print Network [OSTI]

Facilities Operations, Planning, and Design Engineering Services Energy Management & Water and In- house Engineering Mechanical Electrical Engineering Data Analysis Construction Services In Conservation Capital Project-Bldg Systems Review Commissioning BSL3/DLAM Engineer Building Systems Engineering

McLaughlin, Richard M.

215

Energy Reduction in Major State Facilities  

Broader source: Energy.gov [DOE]

Louisiana enacted legislation (SB 240) in July 2007 which required energy efficiency measures to be incorporated in the construction and renovation of major facility projects funded by the state....

216

Whole-House Design and Commissioning in the Project Home Again Hot-Humid New Construction Community  

SciTech Connect (OSTI)

BSC has been working with Project Home Again since 2008 and has consulted on the design of around 100 affordable, energy efficient new construction homes for victims of hurricanes Katrina and Rita. This report details the effort on the final two phases of the project: Phases V and VI which resulted in a total of 25 homes constructed in 2011. The goal of this project was to develop and implement an energy efficiency package that will achieve at least 20% whole house source energy savings improvement over the B10 Benchmark.

Kerrigan, P.

2012-09-01T23:59:59.000Z

217

Fuel Fabrication Facility  

National Nuclear Security Administration (NNSA)

Construction of the Mixed Oxide Fuel Fabrication Facility Construction of the Mixed Oxide Fuel Fabrication Facility November 2005 May 2007 June 2008 May 2012...

218

Decontamination and dismantlement of the building 594 waste ion exchange facility at Argonne National Laboratory-East project final report.  

SciTech Connect (OSTI)

The Building 594 D&D Project was directed toward the following goals: Removal of any radioactive and hazardous materials associated with the Waste Ion Exchange Facility; Decontamination of the Waste Ion Exchange Facility to unrestricted use levels; Demolition of Building 594; and Documentation of all project activities affecting quality (i.e., waste packaging, instrument calibration, audit results, and personnel exposure) These goals had been set in order to eliminate the radiological and hazardous safety concerns inherent in the Waste Ion Exchange Facility and to allow, upon completion of the project, unescorted and unmonitored access to the area. The ion exchange system and the resin contained in the system were the primary areas of concern, while the condition of the building which housed the system was of secondary concern. ANL-E health physics technicians characterized the Building 594 Waste Ion Exchange Facility in September 1996. The characterization identified a total of three radionuclides present in the Waste Ion Exchange Facility with a total activity of less than 5 {micro}Ci (175 kBq). The radionuclides of concern were Co{sup 60}, Cs{sup 137}, and Am{sup 241}. The highest dose rates observed during the project were associated with the resin in the exchange vessels. DOE Order 5480.2A establishes the maximum whole body exposure for occupational workers at 5 rem (50 mSv)/yr; the administrative limit at ANL-E is 1 rem/yr (10 mSv/yr).

Wiese, E. C.

1998-11-23T23:59:59.000Z

219

Final audit report of remedial action construction at the UMTRA Project Falls City, Texas, site  

SciTech Connect (OSTI)

This final audit report for the Falls City, Texas, Uranium Mill Tailings Remedial Action Project site summarizes the radiological audits and the quality assurance (QA) in-process surveillances, audits, and final close-out inspection performed by the U.S. Department of Energy (DOE) and Technical Assistance Contractor (TAC). It also summarizes U.S. Nuclear Regulatory Commission (NRC) surveillances. One radiological audit and three radiological surveillances were performed at the Falls City site. These surveillances and audit, which resulted in 31 observations, focused primarily on processing site activities and were performed on the following dates: 3-6 August 1992, 29-30 October 1992, 22-26 March 1993, and 1-3 November 1993. All outstanding radiological issues were closed out at the completion of the construction activities. Six QA in-process surveillances, which resulted in 71 observations, were performed at the Falls City site on the following dates: 22-24 July 1992, 23-25 November 1992, 17-19 May 1993, 16-18 August 1993, 13-15 October 1993, and 2-4 February 1994. All outstanding issues were closed out with the February surveillance on 3 March 1994. The DOE/TAC remedial action close-out inspections of the Falls City site, which resulted in 56 observations, were conducted 9-10 June 1994 and 26 July 1994. The inspections were closed out on 26 January 1995. The NRC performed three on-site construction reviews (OSCR), resulting in seven observations of remedial action construction activities that occurred during site visits. The OSCRs were performed 9 December 1992, 12 May 1993, and 25 October 1993. Since all audit and surveillance observations and recommendations have been closed out, this final audit report segment of the site certification process is complete.

NONE

1995-05-01T23:59:59.000Z

220

Spent Nuclear Fuel (SNF) Project Cold Vacuum Drying (CVD) Facility Operations Manual  

SciTech Connect (OSTI)

The mission of the Spent Nuclear Fuel (SNF) Project Cold Vacuum Drying Facility (CVDF) is to achieve the earliest possible removal of free water from Multi-Canister Overpacks (MCOs). The MCOs contain metallic uranium SNF that have been removed from the 100K Area fuel storage water basins (i.e., the K East and K West Basins) at the US. Department of Energy Hanford Site in Southeastern Washington state. Removal of free water is necessary to halt water-induced corrosion of exposed uranium surfaces and to allow the MCOs and their SNF payloads to be safely transported to the Hanford Site 200 East Area and stored within the SNF Project Canister Storage Building (CSB). The CVDF is located within a few hundred yards of the basins, southwest of the 165KW Power Control Building and the 105KW Reactor Building. The site area required for the facility and vehicle circulation is approximately 2 acres. Access and egress is provided by the main entrance to the 100K inner area using existing roadways. The CVDF will remove free. water from the MCOs to reduce the potential for continued fuel-water corrosion reactions. The cold vacuum drying process involves the draining of bulk water from the MCO and subsequent vacuum drying. The MCO will be evacuated to a pressure of 8 torr or less and backfilled with an inert gas (helium). The MCO will be sealed, leak tested, and then transported to the CSB within a sealed shipping cask. (The MCO remains within the same shipping Cask from the time it enters the basin to receive its SNF payload until it is removed from the Cask by the CSB MCO handling machine.) The CVDF subproject acquired the required process systems, supporting equipment, and facilities. The cold vacuum drying operations result in an MCO containing dried fuel that is prepared for shipment to the CSB by the Cask transportation system. The CVDF subproject also provides equipment to dispose of solid wastes generated by the cold vacuum drying process and transfer process water removed from the MCO back to the K Basins.

IRWIN, J.J.

2000-11-18T23:59:59.000Z

Note: This page contains sample records for the topic "facility construction project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Project W-320, 241-C-106 sluicing: Construction specification W-320-C2  

SciTech Connect (OSTI)

This supporting document has been prepared to make the construction specifications for Project W-320 readily available. Project W-320, Waste Retrieval Sluicing System (WRSS), specification is for procurement, fabrication and installation of equipment at the C Tank Farm, including Operator Station and some equipment just outside the C Tank Farm fence, necessary to support the sluicing operation. Work consists of furnishing labor, equipment, and materials to provide the means to procure materials and equipment, fabricate items, excavate and place concrete, and install equipment, piping, wiring, and structures in accordance with the Contract Documents. Major work elements include: Excavation for process and fire protection piping, electrical conduit trenches, and foundations for small structures; Placement of concrete cover blocks, foundations, and equipment pads; Procurement and installation of double walled piping, electrical conduit, fire and raw water piping, chilled water piping, and electrical cable; Procurement and installation of above-ground ventilation system piping between the (HVAC) Process building and Tank C-106; Core drill existing concrete; Furnish and installation of electrical distribution equipment; Installation of the concrete foundation, and assembly installation of the two Seismic Shutdown Systems with Environmental Enclosures; Fabrication and installation of in-pit pipe jumpers, including related valves, instruments and wiring; and Installation of a vertical submersible pump, horizontal booster pump, and winch assembly into tank access riser pits.

Bailey, J.W.

1998-07-20T23:59:59.000Z

222

Project W-320, 241-C-106 sluicing: Construction specification W-320-C5  

SciTech Connect (OSTI)

This supporting document has been prepared to make the construction specifications for Project W-320 readily available. Project W-320, Waste Retrieval Sluicing System (WRSS), specification is for procurement, fabrication and installation of equipment at the C Tank Farm, including Operator Station and some equipment just outside the C Tank Farm fence, necessary to support the sluicing operation. Work consists of furnishing labor, equipment, and materials to provide the means to procure materials and equipment, fabricate items, excavate and place concrete, and install equipment, piping, wiring, and structures in accordance with the Contract Documents. Major work elements include: Excavation for process and fire protection piping, electrical conduit trenches, and foundations for small structures; Placement of concrete cover blocks, foundations, and equipment pads; Procurement and installation of double walled piping, electrical conduit, fire and raw water piping, chilled water piping, and electrical cable; Procurement and installation of above-ground ventilation system piping between the (HVAC) Process building and Tank C-106; Core drill existing concrete; Furnish and installation of electrical distribution equipment; Installation of the concrete foundation, and assembly installation of the two Seismic Shutdown Systems with Environmental Enclosures; Fabrication and installation of in-pit pipe jumpers, including related valves, instruments and wiring; and Installation of a vertical submersible pump, horizontal booster pump, and winch assembly into tank access riser pits.

Bailey, J.W.

1998-07-20T23:59:59.000Z

223

Project W-320, 241-C-106 sluicing: Construction specification W-320-C7  

SciTech Connect (OSTI)

This supporting document has been prepared to make the construction specifications for Project W-320 readily available. Project W-320, Waste Retrieval Sluicing System (WRSS), specification is for procurement, fabrication and installation of equipment at the C Tank Farm, including Operator Station and some equipment just outside the C Tank Farm fence, necessary to support the sluicing operation. Work consists of furnishing labor, equipment, and materials to provide the means to procure materials and equipment, fabricate items, excavate and place concrete, and install equipment, piping, wiring, and structures in accordance with the Contract Documents. Major work elements include: Excavation for process and fire protection piping, electrical conduit trenches, and foundations for small structures; Placement of concrete cover blocks, foundations, and equipment pads; Procurement and installation of double walled piping, electrical conduit, fire and raw water piping, chilled water piping, and electrical cable; Procurement and installation of above-ground ventilation system piping between the (HVAC) Process building and Tank C-106; Core drill existing concrete; Furnish and installation of electrical distribution equipment; Installation of the concrete foundation, and assembly installation of the two Seismic Shutdown Systems with Environmental Enclosures; Fabrication and installation of in-pit pipe jumpers, including related valves, instruments and wiring; and Installation of a vertical submersible pump, horizontal booster pump, and winch assembly into tank access riser pits.

Bailey, J.W.

1998-07-20T23:59:59.000Z

224

Project W-320, 241-C-106 sluicing: Construction specification W-320-C6  

SciTech Connect (OSTI)

This supporting document has been prepared to make the construction specifications for Project W-320 readily available. Project W-320, Waste Retrieval Sluicing System (WRSS), specification is for procurement, fabrication and installation of equipment at the C Tank Farm, including Operator Station and some equipment just outside the C Tank Farm fence, necessary to support the sluicing operation. Work consists of furnishing labor, equipment, and materials to provide the means to procure materials and equipment, fabricate items, excavate and place concrete, and install equipment, piping, wiring, and structures in accordance with the Contract Documents. Major work elements include: Excavation for process and fire protection piping, electrical conduit trenches, and foundations for small structures; Placement of concrete cover blocks, foundations, and equipment pads; Procurement and installation of double walled piping, electrical conduit, fire and raw water piping, chilled water piping, and electrical cable; Procurement and installation of above-ground ventilation system piping between the (HVAC) Process building and Tank C-106; Core drill existing concrete; Furnish and installation of electrical distribution equipment; Installation of the concrete foundation, and assembly installation of the two Seismic Shutdown Systems with Environmental Enclosures; Fabrication and installation of in-pit pipe jumpers, including related valves, instruments and wiring; and Installation of a vertical submersible pump, horizontal booster pump, and winch assembly into tank access riser pits.

Bailey, J.W.

1998-07-20T23:59:59.000Z

225

Forrest County Geothermal Energy Project  

Broader source: Energy.gov [DOE]

Project objectives: Retrofit two county facilities with high efficiency geothermal equipment (The two projects combined comprise over 200,000 square feet). Design and Construct a demonstration Facility where the public can see the technology and associated savings. Work with established partnerships to further spread the application of geothermal energy in the region.

226

The artistry of construction: an investigation into construction as a creative process and the influence of mobile phones within domestic scale construction projects   

E-Print Network [OSTI]

This Thesis seeks to analyse the influence that mobile phones exert on existing communication and working practices, and on the relationships of participants involved during on-site construction. The complexity of ...

McMeel, Dermott

2009-01-01T23:59:59.000Z

227

Construction and Traffic Analysis of Interstate 15 (Devore II) Concrete Pavement Reconstruction Project  

E-Print Network [OSTI]

10. I-10 Pomona. ” Journal of Construction Engineering andStudy. ” Journal of Construction Engineering and Management,to a UCPRC-RR-2008-05 construction delay only three lanes

Monismith, Carl L.; Kim, C.; Lee, E.B.

2008-01-01T23:59:59.000Z

228

Final report of the decontamination and decommissioning of the exterior land areas at the Grand Junction Projects Office facility  

SciTech Connect (OSTI)

The US Department of Energy (DOE) Grand Junction Projects Office (GJPO) facility occupies approximately 56.4 acres (22.8 hectares) along the Gunnison River near Grand Junction, Colorado. The site was contaminated with uranium ore and mill tailings during uranium-refining activities conducted by the Manhattan Engineer District and during pilot-milling experiments conducted for the US Atomic Energy Commission`s (AEC`s) domestic uranium procurement program. The GJPO facility was the collection and assay point for AEC uranium and vanadium oxide purchases until the early 1970s. The DOE Decontamination and Decommissioning Program sponsored the Grand Junction Projects Office Remedial Action Project (GJPORAP) to remediate the facility lands, site improvements, and the underlying aquifer. The site contractor, Rust Geotech, was the Remedial Action Contractor for GJPORAP. The exterior land areas of the facility assessed as contaminated have been remediated in accordance with identified standards and can be released for unrestricted use. Restoration of the aquifer will be accomplished through the natural flushing action of the aquifer during the next 50 to 80 years. The remediation of the DOE-GJPO facility buildings is ongoing and will be described in a separate report.

Widdop, M.R.

1995-09-01T23:59:59.000Z

229

Constructive Construction  

E-Print Network [OSTI]

1 Brazdil, P. and Gama, J., 1998 Constructive Induction on Continuous Spaces In Liu, H./Motada, H.: Feature Extraction Construction and Selection, A DataMining Perspective. Chapter 18, pages S.289``) Probleme. + at2 at1 ­ H #12; 11 Constructive Induction: ``the application of a set of constructive

Morik, Katharina

230

Waste minimization plan construction and operation of the replacement cross-site transfer system, project W-058  

SciTech Connect (OSTI)

This report addresses the research and development of a waste minimization plan for the construction and operation of Project W-058, Replacement of the Cross-Site Transfer System, on the Hanford Site. The plan is based on Washington Administrative Code (WAC) 173-307, Plans. The waste minimization plan identifies areas where pollution prevention/waste minimization principles can be incorporated into the construction and operation of the cross-site transfer system.

Boucher, T.D.

1996-04-01T23:59:59.000Z

231

Implementation of a Project Management System for Improvement to City, State's Design and Construction Capital Project Delivery  

E-Print Network [OSTI]

management, process improvement suggestions as well as staff supplements necessary for the completion of the backlog. This included the development of standard processes and procedures for the use by the combined City and consultant staff. The initial... combination of full time staff and consultant supplementary staff funded by the project?s individual budgets. In addition to completing the project backlog, this staff has documented the processes and procedures EMGT 835 Field Project 21 Chad Thompson...

Thompson, Chad C.

2007-05-18T23:59:59.000Z

232

Analysis of the Texas A&M University System's Construction Project Delivery Method Performance: CMAR and CSP  

E-Print Network [OSTI]

. In total, the survey represented 108 Washington State Public Works construction projects procured using CMAR with an aggregate volume of $6.6 billion. The research’s survey results showed that 98% of the completed projects met or exceeded quality... of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Approved by: Chair of Committee, Leslie Feigenbaum Committee Members, James Smith Jesse Saginor...

Neidert, Andrew

2012-10-19T23:59:59.000Z

233

Proposed Use of a Constructed Wetland for the Treatment of Metals in the S-04 Outfall of the Defense Waste Processing Facility at the Savannah River Site  

SciTech Connect (OSTI)

The DWPF is part of an integrated waste treatment system at the SRS to treat wastes containing radioactive contaminants. In the early 1980s the DOE recognized that there would be significant safety and cost advantages associated with immobilizing the radioactive waste in a stable solid form. The Defense Waste Processing Facility was designed and constructed to accomplish this task.

Glover, T.

1999-11-23T23:59:59.000Z

234

31 Tannery Road- Ferreira Construction Headquarters  

High Performance Buildings Database

Branchburg, NJ The 31 Tannery project, located in Branchburg, New Jersey, is the corporate headquarters for Ferreira Construction and Ferreira Group. The facility is 42,000 square feet and serves as office space, shop, and living lab. This state-of-the-art facility raises the bar for a commercial high-performance building, with an eye towards energy independence.

235

Interim reclamation report, Basalt Waste Isolation Project Near Surface Test Facility 1990  

SciTech Connect (OSTI)

This report describes the development of the reclamation project for the Hanford Site Near Surface Test Facility (NSTF), its implementation, and preliminary estimates of its success. The goal of the reclamation project is to return disturbed sites as nearly as practicable to their original conditions using native species. Gable Mountain is dominated by two plant communities: a big sagebrush (Artemisia tridentata) -- Sandberg's bluegrass (Poa sandbergii) community and a stiff sagebrush (Artemisia rigida) -- Sandberg's bluegrass community. Disassembly of the site installations began on March 15, 1988, and the site was returned to original contours by December 12, 1988. Two separate revegetation methods were employed at the NSTF to meet differing site constraints. Vegetative cover and density in the revegetation plots were assessed in April 1989 and again in June 1989 and 1990. It is extremely unlikely that the sand pit, borrow pit, box cuts, generator pad area, or ventilation fan area will reach the reclamation objectives set for these areas within the next 50 years without further intervention. These areas currently support few living plants. Vegetation on revegetated native soils appears to be growing as expected. Vegetation growth on the main waterline is well below the objective. To date, no shrubs have grown on the area, growth of native grasses is well below the objective, and much of the area has been covered with the pit run material, which may not support adequate growth. Without further treatments, the areas without the pit run material will likely revert to a nearly pure cheatgrass condition. 44 refs., 13 figs., 7 tabs.

Brandt, C.A.; Rickard, W.H. Jr.; Hefty, M.G.; Cadoret, N.A.

1991-01-01T23:59:59.000Z

236

A Case Study of the Use of BIM and Construction Operations Building Information Exchange (COBie) for Facility Management  

E-Print Network [OSTI]

OF TABLES ..................................................................................................... xi 1. INTRODUCTION ............................................................................................... 1 2. LITERATURE REVIEW... .................................................................................... 5 2.1 Technology in Facility Management .................................................... 5 2.2 Interoperability Problems in Facility Management .............................. 9 2.3 Communication, Co-ordination & Partnering for FM...

Jawadekar, Salil

2012-10-19T23:59:59.000Z

237

Fort Irwin integrated resource assessment. Volume 3: Sitewide Energy Project identification for buildings and facilities  

SciTech Connect (OSTI)

The U.S. Army Forces Command (FORSCOM) has tasked the U.S. Department of Energy (DOE) Federal Energy Management Program (FEMP), supported by the Pacific Northwest Laboratory, to identify, evaluate, and assist in acquiring all cost-effective energy projects at Fort Irwin. This is part of a model program that PNL is designing to support energy-use decisions in the federal sector. This report provides the results of the fossil fuel and electric energy resource opportunity (ERO) assessments performed by PNL at the FORSCOM Fort Irwin facility located near Barstow, California. It is a companion report to Volume 1, Executive Summary, and Volume 2, Baseline Detail. The results of the analyses of EROs are presented in 16 common energy end-use categories (e.g., boilers and furnaces, service hot water, and building lighting). A narrative description of each ERO is provided, along with a table detailing information on the installed cost, energy and dollar savings; impacts on operations and maintenance (O&M); and, when applicable, a discussion of energy supply and demand, energy security, and environmental issues. A description of the evaluation methodologies and technical and cost assumptions is also provided for each ERO. Summary tables present the cost-effectiveness of energy end-use equipment before and after the implementation of each ERO and present the results of the life-cycle cost (LCC) analysis indicating the net present valve (NPV) and savings-to-investment ratio (SIR) of each ERO.

Keller, J.M.; Dittmer, A.L.; Elliott, D.B.; McMordie, K.L.; Richman, E.E.; Stucky, D.J.; Wahlstrom, R.R.; Hadley, D.L.

1995-02-01T23:59:59.000Z

238

IAEA FEC Saint Petersburg, Russia, 13-18 October 2014, O. Motojima The ITER Project Construction Status  

E-Print Network [OSTI]

IAEA FEC Saint Petersburg, Russia, 13-18 October 2014, O. Motojima Slide 1/14 OM14755 The ITER Project Construction Status IAEA FEC 13 to 18 October, 2014 Saint Petersburg, Russia Osamu Motojima President Barroso (11 July 2014) #12;IAEA FEC Saint Petersburg, Russia, 13-18 October 2014, O. Motojima

239

Various Project Management Reports | U.S. DOE Office of Science...  

Office of Science (SC) Website

.pdf file (394KB), July 2004 DOE National Laboratories Improvement Council (NLIC) White Paper on Management of Major Research Facility Construction Projects .pdf file (42KB),...

240

Cold test plan for the Old Hydrofracture Facility tank contents removal project, Oak Ridge National Laboratory, Oak Ridge, Tennessee  

SciTech Connect (OSTI)

This Old Hydrofracture Facility (OHF) Tanks Contents Removal Project Cold Test Plan describes the activities to be conducted during the cold test of the OHF sluicing and pumping system at the Tank Technology Cold Test Facility (TTCTF). The TTCTF is located at the Robotics and Process Systems Complex at the Oak Ridge National Laboratory (ORNL). The cold test will demonstrate performance of the pumping and sluicing system, fine-tune operating instructions, and train the personnel in the actual work to be performed. After completion of the cold test a Technical Memorandum will be prepared documenting completion of the cold test, and the equipment will be relocated to the OHF site.

NONE

1997-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "facility construction project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Central and Eastern United States (CEUS) Seismic Source Characterization (SSC) for Nuclear Facilities Project  

SciTech Connect (OSTI)

This report describes a new seismic source characterization (SSC) model for the Central and Eastern United States (CEUS). It will replace the Seismic Hazard Methodology for the Central and Eastern United States, EPRI Report NP-4726 (July 1986) and the Seismic Hazard Characterization of 69 Nuclear Plant Sites East of the Rocky Mountains, Lawrence Livermore National Laboratory Model, (Bernreuter et al., 1989). The objective of the CEUS SSC Project is to develop a new seismic source model for the CEUS using a Senior Seismic Hazard Analysis Committee (SSHAC) Level 3 assessment process. The goal of the SSHAC process is to represent the center, body, and range of technically defensible interpretations of the available data, models, and methods. Input to a probabilistic seismic hazard analysis (PSHA) consists of both seismic source characterization and ground motion characterization. These two components are used to calculate probabilistic hazard results (or seismic hazard curves) at a particular site. This report provides a new seismic source model. Results and Findings The product of this report is a regional CEUS SSC model. This model includes consideration of an updated database, full assessment and incorporation of uncertainties, and the range of diverse technical interpretations from the larger technical community. The SSC model will be widely applicable to the entire CEUS, so this project uses a ground motion model that includes generic variations to allow for a range of representative site conditions (deep soil, shallow soil, hard rock). Hazard and sensitivity calculations were conducted at seven test sites representative of different CEUS hazard environments. Challenges and Objectives The regional CEUS SSC model will be of value to readers who are involved in PSHA work, and who wish to use an updated SSC model. This model is based on a comprehensive and traceable process, in accordance with SSHAC guidelines in NUREG/CR-6372, Recommendations for Probabilistic Seismic Hazard Analysis: Guidance on Uncertainty and Use of Experts. The model will be used to assess the present-day composite distribution for seismic sources along with their characterization in the CEUS and uncertainty. In addition, this model is in a form suitable for use in PSHA evaluations for regulatory activities, such as Early Site Permit (ESPs) and Combined Operating License Applications (COLAs). Applications, Values, and Use Development of a regional CEUS seismic source model will provide value to those who (1) have submitted an ESP or COLA for Nuclear Regulatory Commission (NRC) review before 2011; (2) will submit an ESP or COLA for NRC review after 2011; (3) must respond to safety issues resulting from NRC Generic Issue 199 (GI-199) for existing plants and (4) will prepare PSHAs to meet design and periodic review requirements for current and future nuclear facilities. This work replaces a previous study performed approximately 25 years ago. Since that study was completed, substantial work has been done to improve the understanding of seismic sources and their characterization in the CEUS. Thus, a new regional SSC model provides a consistent, stable basis for computing PSHA for a future time span. Use of a new SSC model reduces the risk of delays in new plant licensing due to more conservative interpretations in the existing and future literature. Perspective The purpose of this study, jointly sponsored by EPRI, the U.S. Department of Energy (DOE), and the NRC was to develop a new CEUS SSC model. The team assembled to accomplish this purpose was composed of distinguished subject matter experts from industry, government, and academia. The resulting model is unique, and because this project has solicited input from the present-day larger technical community, it is not likely that there will be a need for significant revision for a number of years. See also Sponsors Perspective for more details. The goal of this project was to implement the CEUS SSC work plan for developing a regional CEUS SSC model. The work plan, formulated by the project manager and a

Kevin J. Coppersmith; Lawrence A. Salomone; Chris W. Fuller; Laura L. Glaser; Kathryn L. Hanson; Ross D. Hartleb; William R. Lettis; Scott C. Lindvall; Stephen M. McDuffie; Robin K. McGuire; Gerry L. Stirewalt; Gabriel R. Toro; Robert R. Youngs; David L. Slayter; Serkan B. Bozkurt; Randolph J. Cumbest; Valentina Montaldo Falero; Roseanne C. Perman' Allison M. Shumway; Frank H. Syms; Martitia (Tish) P. Tuttle [Tish

2012-01-31T23:59:59.000Z

242

Geotechnical characterization of the North Ramp of the Exploratory Studies Facility: Yucca Mountain Site Characterization Project. Volume 2, NRG corehole data appendices  

SciTech Connect (OSTI)

This report presents the results of the geological and geotechnical characterization of the Miocene volcanic tuff rocks of the Timber Mountain and Paintbrush groups that the tunnel boring machine will encounter during excavations of the Exploratory Studies Facility (ESF) North Ramp. The information in this report was developed to support the design of the ESF North Ramp. The ESF is being constructed by the DOE as part of the Yucca Mountain Project site characterization activities. The purpose of these activities is to evaluate the potential to locate the national high-level nuclear waste repository on land within and adjacent to the Nevada Test Site (NTS), Nye County, Nevada. This report was prepared as part of the Soil and Rock Properties Studies in accordance with the 8.3.1.14.2 Study Plan to Provide Soil and Rock Properties. This is volume 2 which contains NRG Corehole Data for each of the NRG Holes.

Brechtel, C.E.; Lin, Ming; Martin, E. [Agapito Associates, Inc., Grand Junction, CO (United States); Kessel, D.S. [Sandia National Labs., Albuquerque, NM (United States)

1995-05-01T23:59:59.000Z

243

Dynamic Planning and control Methodology : understanding and managing iterative error and change cycles in large-scale concurrent design and construction projects  

E-Print Network [OSTI]

Construction projects are uncertain and complex in nature. One of the major driving forces that may account for these characteristics is iterative cycles caused by errors and changes. Errors and changes worsen project ...

Lee, Sang Hyun, 1973-

2006-01-01T23:59:59.000Z

244

Structure finance for hybrid infrastructure models : the application of project finance into public-private partnerships for the construction and operation of infrastructure  

E-Print Network [OSTI]

This thesis studies the application of project finance as the most efficient financing method for the construction and operation of infrastructure projects such as motorways, airports, power plants, pipelines, wastewater/sewage ...

Patramanis, Theodoros

2006-01-01T23:59:59.000Z

245

Spent nuclear fuel project cold vacuum drying facility tempered water and tempered water cooling system design description  

SciTech Connect (OSTI)

This document provides the System Design Description (SDD) for the Cold Vacuum Drying Facility (CVDF) Tempered Water (TW) and Tempered Water Cooling (TWC) System . The SDD was developed in conjunction with HNF-SD-SNF-SAR-002, Safety Analysis Report for the Cold Vacuum Drying Facility, Phase 2, Supporting Installation of Processing Systems (Garvin 1998), The HNF-SD-SNF-DRD-O02, 1998, Cold Vacuum Drying Facility Design Requirements, and the CVDF Design Summary Report. The SDD contains general descriptions of the TW and TWC equipment, the system functions, requirements and interfaces. The SDD provides references for design and fabrication details, operation sequences and maintenance. This SOD has been developed for the SNFP Operations Organization and shall be updated, expanded, and revised in accordance with future design, construction and startup phases of the CVDF until the CVDF final ORR is approved.

IRWIN, J.J.

1998-11-30T23:59:59.000Z

246

Status Review of Wildlife Mitigation, Columbia Basin Hydroelectric Projects, Washington Facilities (Intrastate) Final Report.  

SciTech Connect (OSTI)

This report was prepared for BPA in fulfillment of section 1004 (b)(1) of the Pacific Northwest Electric Power Planning and Conservation Act of 1980, to review the status of past, present, and proposed future wildlife planning and mitigation program at existing hydroelectric projects in the Columbia River Basin. The project evaluations will form the basis for determining any needed remedial measures or additional project analysis. Projects addressed are: Merwin Dam; Swift Project; Yale Project; Cowlitz River; Boundary Dam; Box Canyon Dam; Lake Chelan; Condit Project; Enloe Project; Spokane River; Tumwater and Dryden Dam; Yakima; and Naches Project.

Howerton, Jack

1984-11-01T23:59:59.000Z

247

DOE Community-/Facility-Scale Tribal Renewable Energy Project Development and Finance Workshop  

Office of Energy Efficiency and Renewable Energy (EERE)

This interactive workshop will walk participants through five steps to help tribes understand the process for and potential pitfalls of developing community- and facility-scale renewable energy...

248

E-Print Network 3.0 - accelerator facility project Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Summary: radiation facilities for biology and material sciences. Beam physics--study of beams in accelerators... southwest of The University of Chicago, there are several...

249

Facility stabilization project, fiscal year 1998 -- Multi-year workplan (MYWP) for WBS 1.4  

SciTech Connect (OSTI)

The primary Facility Stabilization mission is to provide minimum safe surveillance and maintenance of facilities and deactivate facilities on the Hanford Site, to reduce risks to workers, the public and environment, transition the facilities to a low cost, long term surveillance and maintenance state, and to provide safe and secure storage of special nuclear materials, nuclear materials, and nuclear fuel. Facility Stabilization will protect the health and safety of the public and workers, protect the environment and provide beneficial use of the facilities and other resources. Work will be in accordance with the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement), local, national, international and other agreements, and in compliance with all applicable Federal, state, and local laws. The stakeholders will be active participants in the decision processes including establishing priorities, and in developing a consistent set of rules, regulations, and laws. The work will be leveraged with a view of providing positive, lasting economic impact in the region. Effectiveness, efficiency, and discipline in all mission activities will enable Hanford Site to achieve its mission in a continuous and substantive manner. As the mission for Facility Stabilization has shifted from production to support of environmental restoration, each facility is making a transition to support the Site mission. The mission goals include the following: (1) Achieve deactivation of facilities for transfer to EM-40, using Plutonium Uranium Extraction (PUREX) plant deactivation as a model for future facility deactivation; (2) Manage nuclear materials in a safe and secure condition and where appropriate, in accordance with International Atomic Energy Agency (IAEA) safeguards rules; (3) Treat nuclear materials as necessary, and store onsite in long-term interim safe storage awaiting a final disposition decision by US Department of Energy; (4) Implement nuclear materials disposition directives. In the near term these are anticipated to mostly involve transferring uranium to other locations for beneficial use. Work will be in accordance with the Tri-Party Agreement, and other agreements and in compliance with all applicable Federal, state and local laws. The transition to deactivation will be accomplished through a phased approach, while maintaining the facilities in a safe and compliant configuration. In addition, Facility Stabilization will continue to maintain safe long-term storage facilities for Special Nuclear Material (SNM), Nuclear Material (NM), and Nuclear Fuel (NF). The FSP deactivation strategy aligns with the deactivate facilities mission outlined in Hanford Site SE documentation. Inherent to the FSP strategies are specific Hanford Strategic Plan success indicators such as: reduction of risks to workers, the public and environment; increasing the amount of resources recovered for other uses; reduction/elimination of inventory and materials; and reduction/elimination of costly mortgages.

Floberg, W.C.

1997-09-30T23:59:59.000Z

250

Final audit report of remedial action construction at the UMTRA Project Mexican Hat, Utah -- Monument Valley, Arizona, sites  

SciTech Connect (OSTI)

The final audit report for remedial action at the Mexican Hat, Utah, Monument Valley, Arizona, Uranium Mill Tailings Remedial Action (UMTRA) Project sites consists of a summary of the radiological surveillances/audits, quality assurance (QA) in-process surveillances, and QA remedial action close-out inspections performed by the US Department of Energy (DOE) and the Technical Assistance Contractor (TAC); on-site construction reviews (OSCR) performed by the US Nuclear Regulatory Commission (NRC); and a surveillance performed by the Navajo Nation. This report refers to remedial action activities performed at the Mexican Hat, Utah--Monument Valley, Arizona, Uranium Mill Tailings Remedial Action (UMTRA) Project sites.

NONE

1995-10-01T23:59:59.000Z

251

11.1 REQUESTS FOR REMODELING OR PROJECT/CONSTRUCTION SERVICES Any plans for building remodeling must be approved by the Provost before Capital Planning and  

E-Print Network [OSTI]

for preliminary approval and permission to obtain a conceptual cost estimate from Capital Planning and Construction. Once the cost estimate is completed, the entire request will be sent to the Space Committee must be approved by the Provost before Capital Planning and Construction or Facilities Management can

252

Type B Investigation Board Report on the April 2, 2002, Worker Fall from Shoring/Scaffolding Structure at the Savannah River Site Tritium Extraction Facility Construction Site  

Broader source: Energy.gov [DOE]

On April 2, 2002, a carpenter helping to erect shoring/scaffolding fell about 52” and struck his head. He sustained head injuries requiring hospitalization that exceeded the threshold for a Type B investigation in accordance with Department of Energy (DOE) Order 225.1A, Accident Investigation. The accident occurred at the DOE’s Savannah River Site (SRS) at the Tritium Extraction Facility (TEF) construction site.

253

EIS-0070: Mining, Construction and Operation for a Full-size Module at the Anvil Points Oil Shale Facility, Rifle, Garfield County, Colorado  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy prepared this environmental impact statement to assess the environmental and socioeconomic implications of its proposal to mine 11 million tons of oil shale from the Naval Oil Shale Reserves (NOSR) at Anvil Points, Colorado; to construct an experimental full-size shale retort module on a 365-acre lease tract having a 4700 bbl/day production capacity; and to consider extension, modification or new leasing of the facility.

254

Small-scale hydroelectric power demonstration project: Broad River Electric Cooperative, Inc. , Cherokee Falls Hydroelectric Project: Final technical and construction cost report  

SciTech Connect (OSTI)

The purpose of this report is to fulfill part of the requirement of the US Department of Energy (DOE) Cooperative Agreement Number FC07-80ID12125 of the Small Scale Hydropower Program and is submitted on behalf of the Broad River Electric Cooperative, Inc. of Gaffney, South Carolina. The project was initially studied in 1978 with construction commencing in January, 1984. The primary work elements of the project consisted of the renovation of an existing dam and a new powerhouse. The dam was rehabilitated and flashboards were installed along the top of the structure. The powerhouse was supplied with a single open pit turbine and a new substation was constructed. The project generated power in December of 1985 but has been plagued with numerous problems compounded by a flood in March, 1987 causing extensive damages. The flood of March, 1987 resulted in filing of litigative action by the developers against their project managers and engineers which has yet to reach settlement and will possibly culminate in court sometime during the fall of 1988.

Not Available

1988-06-01T23:59:59.000Z

255

Application Filling Requirements for Transmission Line and Substation Construction Projects (Wisconsin)  

Broader source: Energy.gov [DOE]

This page describes application requirements for all projects that involve the installation of an electricity transmission line or substation that also require either a Certificate of Public...

256

December 2010 FACILITIES & PROPERTY MANAGEMENT  

E-Print Network [OSTI]

and water management and issued our Sustainability Specification for construction projects. The CollegeDecember 2010 FACILITIES & PROPERTY MANAGEMENT CARBON MANAGEMENT AND SUSTAINABILITY ACTIVITIES REPORT 2009/10 #12;Contents Page · Introduction 1 · Carbon and Energy Management 3 · Waste and Recycling

257

Army Regulation 4201 Facilities Engineering  

E-Print Network [OSTI]

and management, mil- itary construction program development and execution, master planning, utilities services of the United States for use by the National Guard; single project-owned or leased civil works facilities as tenants when support is provided by another government agency. In areas outside the United States, Status

US Army Corps of Engineers

258

Facility Effluent Monitoring Plan for the Spent Nuclear Fuel (SNF) Project  

SciTech Connect (OSTI)

A facility effluent monitoring plan is required by the US. Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document was prepared using the specific guidelines identified in Westinghouse Hanford Company (WHC)-EP-0438-1, ''A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans'', and assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan is the third revision to the original annual report. This document is reviewed annually even if there are no operational changes, and it is updated as necessary.

HUNACEK, G.S.

2000-08-01T23:59:59.000Z

259

Worldwide construction  

SciTech Connect (OSTI)

The paper tabulates major construction projects by category and country. The table lists company name and location, project type, added capacity, status of the project, expected completion date, contractor, and additional comments. Projects are classified as refineries, petrochemical plants, sulfur plants, gas processing plants, and pipelines.

NONE

1997-10-13T23:59:59.000Z

260

Worldwide construction  

SciTech Connect (OSTI)

Data are presented on major construction projects listed under the following categories: refineries; petrochemical plants; sulfur removal plants, natural gas processing plants; and pipelines. Listed by country and company under each category is the type of project, added capacity, status of the project, expected completion date, contractor, contract type, and additional project notes.

Radler, M.

1998-10-05T23:59:59.000Z

Note: This page contains sample records for the topic "facility construction project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

DOE-Supported Project Demonstrates Benefits of Constructed Wetlands to Treat Non-Traditional Water Sources  

Broader source: Energy.gov [DOE]

In a pilot-scale test supported by the U.S. Department of Energy Office of Fossil Energy, Clemson University researchers have shown that manmade or "constructed" wetlands can be used to treat non-traditional water sources which could then be used in power plants or for other purposes.

262

Status Review of Wildlife Mitigation at Columbia Basin Hydroelectric Projects, Oregon Facilities, Final Report.  

SciTech Connect (OSTI)

The report presents a review and documentation of existing information on wildlife resources at Columbia River Basin hydroelectric facilities within Oregon. Effects of hydroelectric development and operation; existing agreements; and past, current and proposed wildlife mitigation, enhancement, and protection activities were considered. (ACR)

Bedrossian, Karen L.

1984-08-01T23:59:59.000Z

263

Nuclear Rocket Facility Decommissioning Project: Controlled Explosive Demolition of Neutron-Activated Shield Wall  

SciTech Connect (OSTI)

Located in Area 25 of the Nevada Test Site (NTS), the Test Cell A (TCA) Facility (Figure 1) was used in the early to mid-1960s for testing of nuclear rocket engines, as part of the Nuclear Rocket Development Program, to further space travel. Nuclear rocket testing resulted in the activation of materials around the reactors and the release of fission products and fuel particles. The TCA facility, known as Corrective Action Unit 115, was decontaminated and decommissioned (D&D) from December 2004 to July 2005 using the Streamlined Approach for Environmental Restoration (SAFER) process, under the Federal Facility Agreement and Consent Order. The SAFER process allows environmental remediation and facility closure activities (i.e., decommissioning) to occur simultaneously, provided technical decisions are made by an experienced decision maker within the site conceptual site model. Facility closure involved a seven-step decommissioning strategy. First, preliminary investigation activities were performed, including review of process knowledge documentation, targeted facility radiological and hazardous material surveys, concrete core drilling and analysis, shield wall radiological characterization, and discrete sampling, which proved to be very useful and cost-effective in subsequent decommissioning planning and execution and worker safety. Second, site setup and mobilization of equipment and personnel were completed. Third, early removal of hazardous materials, including asbestos, lead, cadmium, and oil, was performed ensuring worker safety during more invasive demolition activities. Process piping was to be verified void of contents. Electrical systems were de-energized and other systems were rendered free of residual energy. Fourth, areas of high radiological contamination were decontaminated using multiple methods. Contamination levels varied across the facility. Fixed beta/gamma contamination levels ranged up to 2 million disintegrations per minute (dpm)/100 centimeters squared (cm2) beta/gamma. Removable beta/gamma contamination levels seldom exceeded 1,000 dpm/100 cm2, but, in railroad trenches on the reactor pad containing soil on the concrete pad in front of the shield wall, the beta dose rates ranged up to 120 milli-roentgens per hour from radioactivity entrained in the soil. General area dose rates were less than 100 micro-roentgens per hour. Prior to demolition of the reactor shield wall, removable and fixed contaminated surfaces were decontaminated to the best extent possible, using traditional decontamination methods. Fifth, large sections of the remaining structures were demolished by mechanical and open-air controlled explosive demolition (CED). Mechanical demolition methods included the use of conventional demolition equipment for removal of three main buildings, an exhaust stack, and a mobile shed. The 5-foot (ft), 5-inch (in.) thick, neutron-activated reinforced concrete shield was demolished by CED, which had never been performed at the NTS.

Michael R. Kruzic

2008-06-01T23:59:59.000Z

264

An assessment of potential hydrologic and ecologic impacts of constructing mitigation wetlands, Rifle, Colorado, UMTRA project sites  

SciTech Connect (OSTI)

This-assessment examines the consequences and risks that could result from the proposed construction of mitigation wetlands at the New and Old Rifle Uranium Mill Tailings Remedial Action (UMTRA) Project sites near Rifle, Colorado. Remediation of surface contamination at those sites is now under way. Preexisting wetlands at or near the Old and New Rifle sites have been cleaned up, resulting in the loss of 0.7 and 10.5 wetland acres (ac) (0.28 and 4.2 hectares [ha]) respectively. Another 9.9 ac (4.0 ha) of wetlands are in the area of windblown contamination west of the New Rifle site. The US Army Corps of Engineers (USACE) has jurisdiction over the remediated wetlands. Before remedial action began, and before any wetlands were eliminated, the USACE issued a Section 404 Permit that included a mitigation plan for the wetlands to be lost. The mitigation plan calls for 34.2 ac (1 3.8 ha) of wetlands to be constructed at the south end and to the west of the New Rifle site. The mitigation wetlands would be constructed over and in the contaminated alluvial aquifer at the New Rifle site. As a result of the hydrologic characteristics of this aquifer, contaminated ground water would be expected to enter the environment through the proposed wetlands. A preliminary assessment was therefore required to assess any potential ecological risks associated with constructing the mitigation wetlands at the proposed location.

NONE

1995-04-01T23:59:59.000Z

265

EA-1616: National Carbon Research Center Project at Southern Company Services' Power Systems Development Facility near Wilsonville, Alabama  

Broader source: Energy.gov [DOE]

This EA evaluates and updates the potential environmental impacts of DOE’s proposed continued operations of the NCCC Project at the PSDF plant. The NCCC is designed to test and evaluate carbon dioxide (CO2) control technologies for power generation facilities, including CO2 capture solvents and sorbents, mass-transfer devices, lower cost water-gas shift reactors, and scaled-up membrane technologies. Additionally, the NCCC evaluates methods to integrate CO2 capture technologies with other coal-based power plant systems by testing both pre-combustion and post-combustion technologies. The NCCC provides the capability to test these systems under a wide range of fuels, including bituminous and sub-bituminous coals, lignites and biomass/coal mixtures. The goal of the NCCC project is to accelerate the development, optimization, and commercialization of viable CO2 control technologies.

266

Project OPTEX: Field study at a petrochemical facility to assess optical remote sensing and dispersion modeling techniques  

SciTech Connect (OSTI)

The American Petroleum Inst. has conducted a field study at a petrochemical facility for the purpose of (1) testing the ability of optical remote sensing (ORS) techniques to characterize fugitive emissions, and (2) assembling ambient and tracer sampler data for evaluating air dispersion models. The study, referred to as the OPTEX (Operational Petrochemical Tracer Experiment) Project, took place during October 1996 at a Texas petrochemical facility. This paper reports on the design of the field study and summarizes the measurements that were obtained in the field. Several aspects of the field study are described in the paper: the types and locations of the emission releases and tracer gases that were used, the deployment of tracer samplers at various downwind distances, the use of open-path FTIR (OP-FTIR) equipment at the site to quantify tracer gas emissions, special short-term tracer gas emissions designed to test the ability of the ORS systems to detect accidental releases, and the use of a Doppler sodar to evaluate vertical profiles of wind and turbulence upwind and downwind of the facility. The data base for this study, as well as that from an earlier field study that took place at the Duke Forest green field site in North Carolina, will be used for evaluating air dispersion model performance and the ability of ORS measurements to quantify fugitive emissions.

Paien, R.J. [ENSR Corp., Acton, MA (United States); Zwicker, J.O. [Remote Sensing Air, Inc., St. Louis, MO (United States); Feldman, H. [American Petroleum Inst., Washington, DC (United States)

1997-12-31T23:59:59.000Z

267

Spent Nuclear Fuel (SNF) Project Cold Vacuum Drying (CVD) Facility Master Equipment List  

SciTech Connect (OSTI)

This document provides the master equipment list (MEL) for the Cold Vacuum Drying Facility (CVDF). The MEL was prepared to comply with DOE Standard 3024-98, Content of System Design Descriptions. The MEL was developed in conjunction with HNF-SD-SNF-SAR-002, Safety Analysis Report for the Cold Vacuum Drying Facility, Phase 2, Supporting Installation of Processing Systems and the CVDF System Design Descriptions (SDD). The MEL identifies the SSCs and their safety functions, the design criteria, codes and standards, and quality assurance requirements that are required for establishing the safety design basis of the SSCs. The MEL also includes operating parameters, manufacturer information, and references the procurement specifications for the SSCs. This MEL shall be updated, expanded, and revised in accordance with future phases of the CVDF SAR, the SDD's, and CVDF operations.

IRWIN, J.J.

1999-09-21T23:59:59.000Z

268

Management and integration of engineering and construction activities: Lessons learned from the AP1000{sup R} nuclear power plant China project  

SciTech Connect (OSTI)

The lessons learned during the early phase of design engineering and construction activities for the AP1000 China Project can be applied to any project involving multiple disciplines and multiple organizations. Implementation of a first-of-a-kind design to directly support construction activities utilizing resources assigned to design development and design delivery creates challenges with prioritization of activities, successful closure of issues, and communication between site organizations and the home office. To ensure successful implementation, teams were assigned and developed to directly support construction activities including prioritization of activities, site communication and ensuring closure of site emergent issues. By developing these teams, the organization is better suited to meet the demands of the construction schedule while continuing with design evolution of a standard plant and engineering delivery for multiple projects. For a successful project, proper resource utilization and prioritization are key for overcoming obstacles and ensuring success of the engineering organization. (authors)

McCullough, M. C.; Ebeling-Koning, D.; Evans, M. C. [Westinghouse Electric Company LLC, 1000 Westinghouse Drive, Cranberry Township, PA 16066 (United States)

2012-07-01T23:59:59.000Z

269

Cost Estimating for Decommissioning of a Plutonium Facility--Lessons Learned From The Rocky Flats Building 771 Project  

SciTech Connect (OSTI)

The Rocky Flats Closure Site is implementing an aggressive approach in an attempt to complete Site closure by 2006. The replanning effort to meet this goal required that the life-cycle decommissioning effort for the Site and for the major individual facilities be reexamined in detail. As part of the overall effort, the cost estimate for the Building 771 decommissioning project was revised to incorporate both actual cost data from a recently-completed similar project and detailed planning for all activities. This paper provides a brief overview of the replanning process and the original estimate, and then discusses the modifications to that estimate to reflect new data, methods, and planning rigor. It provides the new work breakdown structure and discusses the reasons for the final arrangement chosen. It follows with the process used to assign scope, cost, and schedule elements within the new structure, and development of the new code of accounts. Finally, it describes the project control methodology used to track the project, and provides lessons learned on cost tracking in the decommissioning environment.

Stevens, J. L.; Titus, R.; Sanford, P. C.

2002-02-26T23:59:59.000Z

270

PEGASUS, a European research project on the effects of gas in underground storage facilities for radioactive waste  

SciTech Connect (OSTI)

Whereas the subject of gas generation and possible gas release from radioactive waste repositories has gained in interest on the international scene, the Commission of the European Communities has increased its research efforts on this issue. In particular in the 4th five year R and D program on Management and Storage of Radioactive Waste (1990--1994), a framework has been set up in which research efforts on the subject of gas generation and migration, supported by the CEC, are brought together and coordinated. In this project, called PEGASUS, Project on the Effects of GAS in Underground Storage facilities for radioactive waste, about 20 organizations and research institutes from 7 European countries are involved. The project covers both experimental and theoretical studies of the processes of gas formation and possible gas release from the different waste types, LLW, ILW and HLW, under typical repository conditions in suitable geological formations as clay, salt and granite. In this paper an overview is given of the various studies undertaken in the project as well as some first results presented.

Haijtink, B.; McMenamin, T. [Commission of the European Communities, Brussels (Belgium)

1993-12-31T23:59:59.000Z

271

Worldwide construction  

SciTech Connect (OSTI)

This paper is a compilation of data on major construction projects at refineries, petrochemical plants, sulfur plants, gas processing plants, and pipelines. Tables list country, state or province when applicable, company, type of project, added capacity, status of construction, expected completion date, contractor, and contract type.

Radler, M.

1996-09-30T23:59:59.000Z

272

Supplemental design requirements document, Multifunction Waste Tank Facility, Project W-236A. Revision 1  

SciTech Connect (OSTI)

The Multi-Function Waste Tank Facility (MWTF) consists of four, nominal 1 million gallon, underground double-shell tanks, located in the 200-East area, and two tanks of the same capacity in the 200-West area. MWTF will provide environmentally safe storage capacity for wastes generated during remediation/retrieval activities of existing waste storage tanks. This document delineates in detail the information to be used for effective implementation of the Functional Design Criteria requirements.

Groth, B.D.

1995-01-11T23:59:59.000Z

273

An analysis of accident experience at entrance ramps within construction work zones at long-term freeway reconstruction projects in Texas  

E-Print Network [OSTI]

AN ANALYSIS OF ACCIDENT EXPERIENCE AT ENTRANCE RAMPS WITHIN CONSTRUCTION WORK ZONES AT LONG-TERM FREEWAY RECONSTRUCTION PROJECTS IN TEXAS A Thesis by DAVID BRYAN CASTEEL Submitted to the Office of Graduate Studies of Texas A&M University... in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August 1991 Major Subject: Civil Engineering AN ANALYSIS OF ACCIDENT EXPERIENCE AT ENTRANCE RAMPS WITHIN CONSTRUCTION WORK ZONES AT LONG-TERM FREEWAY RECONSTRUCTION PROJECTS...

Casteel, David Bryan

1991-01-01T23:59:59.000Z

274

LLNL heart valve condition classification project anechoic testing results at the TRANSDEC evaluation facility  

SciTech Connect (OSTI)

This report first briefly outlines the procedures and support/activation fixture developed at LLNL to perform the heart valve tests in an anechoic-like tank at the US Navy Transducer Evaluation Facility (TransDec) located in San Diego, CA. Next they discuss the basic experiments performed and the corresponding experimental plan employed to gather meaningful data systematically. The signal processing required to extract the desired information is briefly developed along with some of the data. Finally, they show the results of the individual runs for each valve, point out any of the meaningful features and summaries.

Candy, J V

1999-10-31T23:59:59.000Z

275

West Valley Demonstration Project Phase I Decommissioning - Facility Disposition Partnering Performance Agreement  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned SmallOf The 2012NuclearBradleyBudgetFurnacesLES'Nuclear Facility Coalition

276

The Radioactive Liquid Waste Treatment Facility Replacement Project at Los Alamos National Laboratory  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyThe Energy DepartmentCategory 2 Nuclear Facility |Radioactive

277

Decommissioning of Active Ventilation Systems in a Nuclear R and D Facility to Prepare for Building Demolition (Whiteshell Laboratories Decommissioning Project, Canada) - 13073  

SciTech Connect (OSTI)

Whiteshell Laboratories (WL) is a nuclear research establishment owned by the Canadian government and operated by Atomic Energy of Canada Limited (AECL) since the early 1960's. WL is currently under a decommissioning license and the mandate is to remediate the nuclear legacy liabilities in a safe and cost effective manner. The WL Project is the first major nuclear decommissioning project in Canada. A major initiative underway is to decommission and demolish the main R and D Laboratory complex. The Building 300 R and D complex was constructed to accommodate laboratories and offices which were mainly used for research and development associated with organic-cooled reactors, nuclear fuel waste management, reactor safety, advanced fuel cycles and other applications of nuclear energy. Building 300 is a three storey structure of approximately 16,000 m{sup 2}. In order to proceed with building demolition, the contaminated systems inside the building have to be characterized, removed, and the waste managed. There is a significant focus on volume reduction of radioactive waste for the WL project. The active ventilation system is one of the significant contaminated systems in Building 300 that requires decommissioning and removal. The active ventilation system was designed to manage hazardous fumes and radioactivity from ventilation devices (e.g., fume hoods, snorkels and glove boxes) and to prevent the escape of airborne hazardous material outside of the laboratory boundary in the event of an upset condition. The system includes over 200 ventilation devices and 32 active exhaust fan units and high efficiency particulate air (HEPA) filters. The strategy to remove the ventilation system was to work from the laboratory end back to the fan/filter system. Each ventilation duct was radiologically characterized. Fogging was used to minimize loose contamination. Sections of the duct were removed by various cutting methods and bagged for temporary storage prior to disposition. Maintenance of building heating, ventilation and air conditioning (HVAC) balancing was critical to ensure proper airflow and worker safety. Approximately 103 m{sup 3} of equipment and materials were recovered or generated by the project. Low level waste accounted for approximately 37.4 m{sup 3}. Where possible, ducting was free released for metal recycling. Contaminated ducts were compacted into B-1000 containers and stored in a Shielded Modular Above-Ground Storage Facility (SMAGS) on the WL site awaiting final disposition. The project is divided into three significant phases, with Phases 1 and 2 completed. Lessons learned during the execution of Phases 1 and 2 have been incorporated into the current ventilation removal. (authors)

Wilcox, Brian; May, Doug; Howlett, Don; Bilinsky, Dennis [Atomic Energy of Canada Limited, Ara Mooradian Way, Pinawa, Manitoba (Canada)] [Atomic Energy of Canada Limited, Ara Mooradian Way, Pinawa, Manitoba (Canada)

2013-07-01T23:59:59.000Z

278

Sacks R. (1998), `Issues in the Development and Implementation of a Building Project Model for an Automated Building System', International Journal of Construction Information Technology, Salford University, Salford  

E-Print Network [OSTI]

designed to support computer-based integration between various construction applications, it is proposed of an Automated, Computer Integrated Building Realization System is to automatically generate all of the information required for the design, planning and execution of a building project. The project model forms

Sacks, Rafael

279

Spent nuclear fuel project cold vacuum drying facility safety equipment list  

SciTech Connect (OSTI)

This document provides the safety equipment list (SEL) for the Cold Vacuum Drying Facility (CVDF). The SEL was prepared in accordance with the procedure for safety structures, systems, and components (SSCs) in HNF-PRO-516, ''Safety Structures, Systems, and Components,'' Revision 0 and HNF-PRO-097, Engineering Design and Evaluation, Revision 0. The SEL was developed in conjunction with HNF-SO-SNF-SAR-O02, Safety Analysis Report for the Cold Vacuum Drying Facility, Phase 2, Supporting Installation of Processing Systems (Garvin 1998). The SEL identifies the SSCs and their safety functions, the design basis accidents for which they are required to perform, the design criteria, codes and standards, and quality assurance requirements that are required for establishing the safety design basis of the SSCs. This SEL has been developed for the CVDF Phase 2 Safety Analysis Report (SAR) and shall be updated, expanded, and revised in accordance with future phases of the CVDF SAR until the CVDF final SAR is approved.

IRWIN, J.J.

1999-02-24T23:59:59.000Z

280

RH-LLW Disposal Facility Project CD-2/3 to Design/Build Proposal Reconciliation Report  

SciTech Connect (OSTI)

A reconciliation plan was developed and implemented to address potential gaps and responses to gaps between the design/build vendor proposals and the Critical Decision-2/3 approval request package for the Remote-Handled Low Level Waste Disposal Facility Project. The plan and results of the plan implementation included development of a reconciliation team comprised of subject matter experts from Battelle Energy Alliance and the Department of Energy Idaho Operations Office, identification of reconciliation questions, reconciliation by the team, identification of unresolved/remaining issues, and identification of follow-up actions and subsequent approvals of responses. The plan addressed the potential for gaps to exist in the following areas: • Department of Energy Order 435.1, “Radioactive Waste Management,” requirements, including the performance assessment, composite analysis, monitoring plan, performance assessment/composite analysis maintenance plan, and closure plan • Environmental assessment supporting the National Environmental Policy Act • Nuclear safety • Safeguards and security • Emplacement operations • Requirements for commissioning • General project implementation. The reconciliation plan and results of the plan implementation are provided in a business-sensitive project file. This report provides the reconciliation plan and non-business sensitive summary responses to identified gaps.

Annette L. Schafer

2012-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "facility construction project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Worldwide construction  

SciTech Connect (OSTI)

Tables list major construction projects for refineries, petrochemical plants, sulfur plants, natural gas processing plants, and gas and oil pipelines. Data are compiled by country, company name, project type, added capacity, status of the project, expected completion date, contractor and contract type. Gas processes include LPG recovery, cryogenic separation, turboexpanders, LNG, liquefaction, desulfurization, NGL recovery, dehydration, hydrogen plants, and fractionators.

Radler, M.

1998-04-13T23:59:59.000Z

282

Mixed and low-level waste treatment facility project. Volume 3, Waste treatment technologies (Draft)  

SciTech Connect (OSTI)

The technology information provided in this report is only the first step toward the identification and selection of process systems that may be recommended for a proposed mixed and low-level waste treatment facility. More specific information on each technology will be required to conduct the system and equipment tradeoff studies that will follow these preengineering studies. For example, capacity, maintainability, reliability, cost, applicability to specific waste streams, and technology availability must be further defined. This report does not currently contain all needed information; however, all major technologies considered to be potentially applicable to the treatment of mixed and low-level waste are identified and described herein. Future reports will seek to improve the depth of information on technologies.

Not Available

1992-04-01T23:59:59.000Z

283

Project W-320, 241-C-106 sluicing: Construction specification W-320-C1  

SciTech Connect (OSTI)

Project W-320, Waste Retrieval Sluicing System (WRSS), specification is for procurement, fabrication and installation of equipment at the C Tank Farm, including Operator Station and some equipment just outside the C Tank Farm fence, necessary to support the sluicing operation. Work consists of furnishing labor, equipment, and materials to provide the means to procure materials and equipment, fabricate items, excavate and place concrete, and install equipment, piping, wiring, and structures in accordance with the Contract Documents. Major work elements include: Excavation for process and fire protection piping, electrical conduit trenches, and foundations for small structures; Placement of concrete cover blocks, foundations, and equipment pads; Procurement and installation of double walled piping, electrical conduit, fire and raw water piping, chilled water piping, and electrical cable; Procurement and installation of above-ground ventilation system piping between the (HVAC) Process building and Tank C-106; Core drill existing concrete; Furnish and installation of electrical distribution equipment; Installation of the concrete foundation, and assembly installation of the two Seismic Shutdown Systems with Environmental Enclosures; Fabrication and installation of in-pit pipe jumpers, including related valves, instruments and wiring; and Installation of a vertical submersible pump, horizontal booster pump, and winch assembly into tank access riser pits.

Bailey, J.W.

1998-07-20T23:59:59.000Z

284

Cryogenics for the superconducting module test facility  

SciTech Connect (OSTI)

A group of laboratories and universities, with Fermilab taking the lead, are constructing a superconducting cryomodule test facility (SMTF) in the Meson Detector Building (MDB) area at Fermilab. The facility will be used for testing and validating designs for both pulsed and CW systems. A multi phase approach is taken to construct the facility. For the initial phase of the project, cryogens for a single cavity cryomodule will be supplied from the existing Cryogenic Test Facility (CTF) that houses three Tevatron satellite refrigerators. The cooling capacity available for cryomodule testing at MDB results from the liquefaction capacity of the CTF cryogenic system. A cryogenic distribution system to supply cryogens from CTF to MDB is under construction. This paper describes plans, status and challenges of the initial phase of the SMTF cryogenic system.

Klebaner, A.L.; Theilacker, J.C.; /Fermilab

2006-01-01T23:59:59.000Z

285

Large-scale Demonstration and Deployment Project for D&D of Fuel Storage Canals and Associated Facilities at INEEL  

SciTech Connect (OSTI)

The Department of Energy (DOE) Office of Science and Technology (OST), Deactivation and Decommissioning Focus Area (DDFA), sponsored a Large Scale Demonstration and Deployment Project (LSDDP) at the Idaho National Engineering and Environmental Laboratory (INEEL) under management of the DOE National Energy Technology Laboratory (NETL). The INEEL LSDDP is one of several LSDDPs sponsored by DOE. The LSDDP process integrates field demonstrations into actual decontamination and decommissioning (D&D) operations by comparing new or improved technologies against existing baseline technologies using a side-by-side comparison. The goals are (a) to identify technologies that are cheaper, safer, faster, and cleaner (produce less waste), and (b) to incorporate those technologies into D&D baseline operations. The INEEL LSDDP reviewed more than 300 technologies, screened 141, and demonstrated 17. These 17 technologies have been deployed a total of 70 times at facilities other than those where the technology was demonstrated, and 10 have become baseline at the INEEL. Fifteen INEEL D&D needs have been modified or removed from the Needs Management System as a direct result of using these new technologies. Conservatively, the ten-year projected cost savings at the INEEL resulting from use of the technologies demonstrated in this INEEL LSDDP exceeds $39 million dollars.

Whitmill, Larry Joseph

2001-12-01T23:59:59.000Z

286

Construction Local engineering.  

E-Print Network [OSTI]

Construction Structures Geotech Local engineering. World-class engineers. World-class results. Constructed Facilities Division tti.tamu.edu #12;Expertise & Equipment ExpErtisE & EquipmEnt Created in 2005. The Texas Transportation Institute's (TTI's) Constructed Facilities Division represents a collaboration

287

Worldwide construction  

SciTech Connect (OSTI)

Listed are major construction projects by processing and pipeline categories. Contractors, estimated completion date and added capacity are provided when available. Major categories are refineries, petrochemical plants, sulfur recovery units, natural gas processing plants, and pipelines.

Radler, M.

1997-04-14T23:59:59.000Z

288

Hazardous Waste Facilities Siting (Connecticut)  

Broader source: Energy.gov [DOE]

These regulations describe the siting and permitting process for hazardous waste facilities and reference rules for construction, operation, closure, and post-closure of these facilities.

289

Nuclear Power Generating Facilities (Maine)  

Broader source: Energy.gov [DOE]

The first subchapter of the statute concerning Nuclear Power Generating Facilities provides for direct citizen participation in the decision to construct any nuclear power generating facility in...

290

CONSTRUCTION The construction management associate of applied science degree  

E-Print Network [OSTI]

CONSTRUCTION MANAGEMENT The construction management associate of applied science degree program meets the growing needs of the construction industry for preparation of entry-level construction and manage all aspects of construction projects including: workers, subcontractors, materials, equipment

Hartman, Chris

291

Worldwide construction  

SciTech Connect (OSTI)

The paper consists of several tables which present data on major construction projects, listing the company and location, added capacity, expected completion date, contractor, and additional project description. Tables are given for refineries, petrochemical plants, sulfur removal and recovery units, gas processing plants, and oil and gas pipelines.

NONE

1995-04-10T23:59:59.000Z

292

Preliminary Project Execution Plan for the Remote-Handled Low-Level Waste Disposal Project  

SciTech Connect (OSTI)

This preliminary project execution plan (PEP) defines U.S. Department of Energy (DOE) project objectives, roles and responsibilities of project participants, project organization, and controls to effectively manage acquisition of capital funds for construction of a proposed remote-handled low-level waste (LLW) disposal facility at the Idaho National Laboratory (INL). The plan addresses the policies, requirements, and critical decision (CD) responsibilities identified in DOE Order 413.3B, 'Program and Project Management for the Acquisition of Capital Assets.' This plan is intended to be a 'living document' that will be periodically updated as the project progresses through the CD process to construction and turnover for operation.

David Duncan

2011-05-01T23:59:59.000Z

293

Mixed and Low-Level Treatment Facility Project. Appendix B, Waste stream engineering files, Part 1, Mixed waste streams  

SciTech Connect (OSTI)

This appendix contains the mixed and low-level waste engineering design files (EDFS) documenting each low-level and mixed waste stream investigated during preengineering studies for Mixed and Low-Level Waste Treatment Facility Project. The EDFs provide background information on mixed and low-level waste generated at the Idaho National Engineering Laboratory. They identify, characterize, and provide treatment strategies for the waste streams. Mixed waste is waste containing both radioactive and hazardous components as defined by the Atomic Energy Act and the Resource Conservation and Recovery Act, respectively. Low-level waste is waste that contains radioactivity and is not classified as high-level waste, transuranic waste, spent nuclear fuel, or 11e(2) byproduct material as defined by DOE 5820.2A. Test specimens of fissionable material irradiated for research and development only, and not for the production of power or plutonium, may be classified as low-level waste, provided the concentration of transuranic is less than 100 nCi/g. This appendix is a tool that clarifies presentation format for the EDFS. The EDFs contain waste stream characterization data and potential treatment strategies that will facilitate system tradeoff studies and conceptual design development. A total of 43 mixed waste and 55 low-level waste EDFs are provided.

Not Available

1992-04-01T23:59:59.000Z

294

Biological assessment of the effects of construction and operation of adepleted uranium hexafluoride conversion facility at the Portsmouth, Ohio,site.  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) Depleted Uranium Hexafluoride (DUF{sub 6}) Management Program evaluated alternatives for managing its inventory of DUF{sub 6} and issued the ''Programmatic Environmental Impact Statement for Alternative Strategies for the Long-Term Management and Use of Depleted Uranium Hexafluoride'' (DUF{sub 6} PEIS) in April 1999 (DOE 1999). The DUF{sub 6} inventory is stored in cylinders at three DOE sites: Paducah, Kentucky; Portsmouth, Ohio; and East Tennessee Technology Park (ETTP), near Oak Ridge, Tennessee. In the Record of Decision for the DUF{sub 6} PEIS, DOE stated its decision to promptly convert the DUF{sub 6} inventory to a more stable chemical form. Subsequently, the U.S. Congress passed, and the President signed, the ''2002 Supplemental Appropriations Act for Further Recovery from and Response to Terrorist Attacks on the United States'' (Public Law No. 107-206). This law stipulated in part that, within 30 days of enactment, DOE must award a contract for the design, construction, and operation of a DUF{sub 6} conversion plant at the Department's Paducah, Kentucky, and Portsmouth, Ohio, sites, and for the shipment of DUF{sub 6} cylinders stored at ETTP to the Portsmouth site for conversion. This biological assessment (BA) has been prepared by DOE, pursuant to the National Environmental Policy Act of 1969 and the Endangered Species Act of 1974, to evaluate potential impacts to federally listed species from the construction and operation of a conversion facility at the DOE Portsmouth site. The Indiana bat is known to occur in the area of the Portsmouth site and may potentially occur on the site during spring or summer. Evaluations of the Portsmouth site indicated that most of the site was found to have poor summer habitat for the Indiana bat because of the small size, isolation, and insufficient maturity of the few woodlands on the site. Potential summer habitat for the Indiana bat was identified outside the developed area bounded by Perimeter Road, within the corridors along Little Beaver Creek, the Northwest Tributary stream, and a wooded area east of the X-100 facility. However, no Indiana bats were collected during surveys of these areas in 1994 and 1996. Locations A, B, and C do not support suitable habitat for the Indiana bat and would be unlikely to be used by Indiana bats. Indiana bat habitat also does not occur at Proposed Areas 1 and 2. Although Locations A and C contain small wooded areas, the small size and lack of suitable maturity of these areas indicate that they would provide poor habitat for Indiana bats. Trees that may be removed during construction would not be expected to be used for summer roosting by Indiana bats. Disturbance of Indiana bats potentially roosting or foraging in the vicinity of the facility during operations would be very unlikely, and any disturbance would be expected to be negligible. On the basis of these considerations, DOE concludes that the proposed action is not likely to adversely affect the Indiana bat. No critical habitat exists for this species in the action area. Although the timber rattlesnake occurs in the vicinity of the Portsmouth site, it has not been observed on the site. In addition, habitat for the timber rattlesnake is not present on the Portsmouth site. Therefore, DOE concludes that the proposed action would not affect the timber rattlesnake.

Van Lonkhuyzen, R.

2005-09-09T23:59:59.000Z

295

Project Fact Sheet Project Brief  

E-Print Network [OSTI]

Project Fact Sheet Project Brief: Construction Project Team: Project Facts & Figures: Budget: ÂŁ500,000 Funding Source: Capital Construction Project Programme: Start on Site: October 2010 End Date : April 2011 Occupation Date: n/a For further information contact Project Manager as listed above or the Imperial College

296

Project Fact Sheet Project Brief  

E-Print Network [OSTI]

Project Fact Sheet Project Brief: This project refurbished half of the 5th and 7th floors on the Faculty of Medicine, please visit: http://www1.imperial.ac.uk/medicine/ Construction Project Team: Project Facts & Figures: Budget: ÂŁ3,500,000 Funding Source: SRIF III Construction Project Programme: Start

297

Architecture Engineering Construction (AEC)  

E-Print Network [OSTI]

Architecture Engineering Construction (AEC) Presented to FM Staff February 25, 2009 Updated March 1, 2010 #12;University of Maryland Baltimore Director Architecture, Engineering and Construction Vacant Administration & Finance Kathleen M. Byington #12;Division of Facilities Management Architecture, Engineering

Weber, David J.

298

Independent Oversight Assessment, Salt Waste Processing Facility...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Salt Waste Processing Facility Project - January 2013 January 2013 Assessment of Nuclear Safety Culture at the Salt Waste Processing Facility Project The U.S. Department...

299

Biological assessment of the effects of construction and operation of a depleted uranium hexafluoride conversion facility at the Paducah, Kentucky, site.  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) Depleted Uranium Hexafluoride (DUF{sub 6}) Management Program evaluated alternatives for managing its inventory of DUF{sub 6} and issued the ''Programmatic Environmental Impact Statement for Alternative Strategies for the Long-Term Management and Use of Depleted Uranium Hexafluoride'' (DUF{sub 6} PEIS) in April 1999 (DOE 1999). The DUF{sub 6} inventory is stored in cylinders at three DOE sites: Paducah, Kentucky; Portsmouth, Ohio; and East Tennessee Technology Park (ETTP), near Oak Ridge, Tennessee. In the Record of Decision for the DUF{sub 6} PEIS, DOE stated its decision to promptly convert the DUF6 inventory to a more stable chemical form. Subsequently, the U.S. Congress passed, and the President signed, the ''2002 Supplemental Appropriations Act for Further Recovery from and Response to Terrorist Attacks on the United States'' (Public Law No. 107-206). This law stipulated in part that, within 30 days of enactment, DOE must award a contract for the design, construction, and operation of a DUF{sub 6} conversion plant at the Department's Paducah, Kentucky, and Portsmouth, Ohio, sites, and for the shipment of DUF{sub 6} cylinders stored at ETTP to the Portsmouth site for conversion. This biological assessment (BA) has been prepared by DOE, pursuant to the National Environmental Policy Act of 1969 (NEPA) and the Endangered Species Act of 1974, to evaluate potential impacts to federally listed species from the construction and operation of a conversion facility at the DOE Paducah site.

Van Lonkhuyzen, R.

2005-09-09T23:59:59.000Z

300

Risk-based Prioritization of Facility Decommissioning and Environmental Restoration Projects in the National Nuclear Legacy Liabilities Program at the Chalk River Laboratory - 13564  

SciTech Connect (OSTI)

Chalk River Laboratory (CRL), located in Ontario Canada, has a large number of remediation projects currently in the Nuclear Legacy Liabilities Program (NLLP), including hundreds of facility decommissioning projects and over one hundred environmental remediation projects, all to be executed over the next 70 years. Atomic Energy of Canada Limited (AECL) utilized WorleyParsons to prioritize the NLLP projects at the CRL through a risk-based prioritization and ranking process, using the WorleyParsons Sequencing Unit Prioritization and Estimating Risk Model (SUPERmodel). The prioritization project made use of the SUPERmodel which has been previously used for other large-scale site prioritization and sequencing of facilities at nuclear laboratories in the United States. The process included development and vetting of risk parameter matrices as well as confirmation/validation of project risks. Detailed sensitivity studies were also conducted to understand the impacts that risk parameter weighting and scoring had on prioritization. The repeatable prioritization process yielded an objective, risk-based and technically defendable process for prioritization that gained concurrence from all stakeholders, including Natural Resources Canada (NRCan) who is responsible for the oversight of the NLLP. (authors)

Nelson, Jerel G.; Kruzic, Michael [WorleyParsons, Mississauga, ON, L4W 4H2 (United States)] [WorleyParsons, Mississauga, ON, L4W 4H2 (United States); Castillo, Carlos [WorleyParsons, Las Vegas, NV 89128 (United States)] [WorleyParsons, Las Vegas, NV 89128 (United States); Pavey, Todd [WorleyParsons, Idaho Falls, ID 83402 (United States)] [WorleyParsons, Idaho Falls, ID 83402 (United States); Alexan, Tamer [WorleyParsons, Burnaby, BC, V5C 6S7 (United States)] [WorleyParsons, Burnaby, BC, V5C 6S7 (United States); Bainbridge, Ian [Atomic Energy Canada Limited, Chalk River Laboratories, Chalk River, ON, K0J1J0 (Canada)] [Atomic Energy Canada Limited, Chalk River Laboratories, Chalk River, ON, K0J1J0 (Canada)

2013-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "facility construction project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Biomass Anaerobic Digestion Facilities and Biomass Gasification Facilities (Indiana)  

Broader source: Energy.gov [DOE]

The Indiana Department of Environmental Management requires permits before the construction or expansion of biomass anaerobic digestion or gasification facilities.

302

Facility Disposition Projects  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPCofConstructionofFY 2011 Report toAnnuAlFaces of the Recovery Act

303

MINERAL FACILITIES MAPPING PROJECT  

E-Print Network [OSTI]

, smelters, etc.) Location Commodity Company information Annual production capacity Collected data wereEarth,2009 #12;SUNGUN COPPER MINE Location: Azarbaijan Province, Iran Commodity: Copper Concentrate

Gilbes, Fernando

304

Roberta Oldenburg, LEED AP Mortenson Construction  

E-Print Network [OSTI]

Roberta Oldenburg, LEED AP Mortenson Construction Integrated Construction Coordinator- Contact and Construction Facility Management Use of New Technology in Construction Sustainable Building: Energy Efficiency: Mitchell Interchange Construction/Zoo Interchange Design, SE Freeways, Wisconsin, Autodesk University - Las

Wisconsin at Madison, University of

305

Nuclear Power 2010 Program Dominion Virginia Power Cooperative Project U.S. Department of Energy Cooperative Agreement DE-FC07-05ID14635 Construction and Operating License Demonstration Project Final Report  

SciTech Connect (OSTI)

This report serves to summarize the major activities completed as part of Virginia Electric and Power Company's North Anna construction and operating license demonstration project with DOE. Project successes, lessons learned, and suggestions for improvement are discussed. Objectives of the North Anna COL project included preparation and submittal of a COLA to the USNRC incorporating ESBWR technology for a third unit a the North Anna Power Station site, support for the NRC review process and mandatory hearing, obtaining NRC approval of the COLA and issuance of a COL, and development of a business case necessary to support a decision on building a new nuclear power plant at the North Anna site.

Eugene S. Grecheck

2010-11-30T23:59:59.000Z

306

DESIGN GUIDELINES FOR FACILITIES CONSTRUCTION  

E-Print Network [OSTI]

(HVAC) DG 230000.20 Materials, Equipment and Methods (HVAC) DG 230913 Instrumentation and Control for HVAC DG 233000 HVAC Air Distribution DIVISION 26 -- ELECTRICAL DG 260000.10 Procedures, Design

Farritor, Shane

307

Volume Project  

E-Print Network [OSTI]

Math 13900. Volume Project. For the following project, you may use any materials. This must be your own original creation. Construct a right pyramid with a base ...

rroames

2010-01-12T23:59:59.000Z

308

Ground-water monitoring compliance projects for Hanford Site facilities: Progress report for the period January 1--March 31, 1988: Volume 1, Text  

SciTech Connect (OSTI)

This report describes the progress of eight Hanford Site ground-water monitoring projects for the period January 1 to March 31, 1988. The facilities represented by the eight projects are the 300 Area Process trenches, 183-H Solar Evaporation Basins, 200 Areas Low-Level Burial Grounds, Nonradioactive Dangerous Waste Landfill, 216-A-36B Crib, 1301-N Liquid Waste Disposal Facility, 1325-N Liquid Waste Disposal Facility, and 1324-N/NA Surface Impoundment and Percolation Ponds. The latter four projects are included in this series of quarterly reports for the first time. This report is the seventh in a series of periodic status reports; the first six cover the period from May 1, 1986, through December 31, 1987 (PNL 1986; 1987a, b, c, d; 1988a). This report satisfies the requirements of Section 17B(3) of the Consent Agreement and Compliance Order issued by the Washington State Department of Ecology (1986a) to the US Department of Energy-Richland Operations Office. 13 refs., 19 figs., 24 tabs.

Not Available

1988-05-01T23:59:59.000Z

309

Final Deactivation Project report on the Alpha Powder Facility, Building 3028, at Oak Ridge National Laboratory, Oak Ridge, Tennessee  

SciTech Connect (OSTI)

This report documents the condition of the Alpha Powder Facility (APF), Building 3028, after completion of deactivation activities. Activities conducted to place the facility in a safe and environmentally sound condition for transfer to the U.S. Department of Energy (DOE) Office of Environmental Restoration (EM-40) program are outlined. A history and profile of the facility prior to commencing deactivation activities and a profile of the building after completion of deactivation activities are provided. Turnover items, such as the post-deactivation surveillance and maintenance (S&M) plan, remaining hazardous materials, radiological controls, safeguards and security, quality assurance, facility operations, and supporting documentation provided for in the DOE Nuclear Materials and Facility Stabilization Program (EM-60) turnover package are discussed.

NONE

1997-04-01T23:59:59.000Z

310

Project Fact Sheet Project Brief  

E-Print Network [OSTI]

Project Fact Sheet Project Brief: In the first phase of the Union Building re.union.ic.ac.uk/marketing/building Construction Project Team: Project Facts & Figures: Budget: ÂŁ1,400,000 Funding Source: Capital Plan and Imperial College Union reserves Construction Project Programme: Start on Site: August 2006 End Date: March

311

EA-1860: Richland Renewable Energy Waste-to-Energy Project, Richland, Wisconsin  

Broader source: Energy.gov [DOE]

DOE is preparing a draft Environmental Assessment to analyze the potential environmental impacts of the proposed construction and operation of a new wastewater treatment facility and the alternative of not implementing this project.

312

Floodplain reconnection and sediment capture at Chorro Flats, San Luis Obispo County: Post-project appraisal one decade after construction  

E-Print Network [OSTI]

A New Perspective. Chapter 4: Fluvial Processes, SedimentTransport & Sediment Deposition, 118-150. Kondolf, G. M. ,as the project nears its sediment capacity, and its ability

O'Reilly, Clare; Pollak, Josh

2008-01-01T23:59:59.000Z

313

EA-1148: Electrometallurgical Treatment Research and Demonstration Project in the Fuel Conditioning Facility at Argonne National Laboratory- West  

Broader source: Energy.gov [DOE]

DOE prepared an EA that evaluated the potential environmental impacts associated with the research and demonstration of electrometallurgical technology for treating Experimental Breeder Reactor-II Spent Nuclear Fuel in the Fuel Conditioning Facility at Argonne National Laboratory-West.

314

Developing Renewable Energy Projects Larger Than 10 MWs at Federal Facilities: Large-Scale Renewable Energy Guide  

Broader source: Energy.gov [DOE]

Guide helps agency personnel navigate the complexities of developing large-scale renewable energy projects and assists them in attracting the necessary private capital to complete these projects. It also serves as a general resource to develop Federal employees' awareness and understanding of a project developer’s operating environment and the private sector’s awareness and understanding of the Federal environment.

315

Utility Lines and Facilities (Montana)  

Broader source: Energy.gov [DOE]

These regulations apply to the construction of utility and power lines and facilities. They address the use of public right-of-ways for such construction, underground power lines, and construction...

316

Uranium Mill Tailings Remedial Action Project (UMTRAP), Slick Rock, Colorado, Revision 1, Volume 4. Calculations, Final design for construction  

SciTech Connect (OSTI)

Volume four contains calculations for: Borrow areas--site evaluation; temporary facilities--material quantities; embankment quantities--excavation and cover materials; Burro Canyon site excavation quantities--rippable and unrippable materials; site restoration--earthwork quantities and seeding; and bid schedule quantities and material balance.

NONE

1995-09-01T23:59:59.000Z

317

Worldwide construction  

SciTech Connect (OSTI)

This paper contains a compilation of data on the major construction projects worldwide. The tables list by country the company name, capacity, contractors, estimated costs, and time of completion for refineries, petrochemical plants, sulfur recovery units, gas processing plants, and crude oil, petroleum products, and gas pipelines.

Not Available

1994-04-11T23:59:59.000Z

318

Enterprise Assessments Review, Hanford K-West Annex Facility...  

Energy Savers [EERE]

Review, Hanford K-West Annex Facility Construction Quality - January 2015 Enterprise Assessments Review, Hanford K-West Annex Facility Construction Quality - January 2015 January,...

319

Technical assistance to Ohio closure sites; Technologies to address leachate from the on-site disposal facility at Fernald Environmental Management Project, Ohio  

SciTech Connect (OSTI)

On August 6-7, 2002, a Technical Assistance Team (''Team'') from the U.S. Department of Energy (DOE) Subsurface Contaminants Focus Area (SCFA) met with Fernald Environmental Management Project (FEMP) personnel in Ohio to assess approaches to remediating uranium-contaminated leachate from the On-Site Disposal Facility (OSDF). The Team was composed of technical experts from national labs, technology centers, and industry and was assembled in response to a request from the FEMP Aquifer Restoration Project. Dave Brettschneider of Fluor Fernald, Inc., requested that a Team of experts be convened to review technologies for the removal of uranium in both brine ion exchange regeneration solution from the Advanced Wastewater Treatment facility and in the leachate from the OSDF. The Team was asked to identify one or more technologies for bench-scale testing as a cost effective alternative to remove uranium so that the brine regeneration solution from the Advanced Waste Water Treatment facility and the leachate from the OSDF can be discharged without further treatment. The Team was also requested to prepare a recommended development and demonstration plan for the alternative technologies. Finally, the Team was asked to make recommendations on the optimal technical solution for field implementation. The Site's expected outcomes for this effort are schedule acceleration, cost reduction, and better long-term stewardship implementation. To facilitate consideration of the most appropriate technologies, the Team was divided into two groups to consider the brine and the leachate separately, since they represent different sources with different constraints on solutions, e.g., short-term versus very long-term and concentrated versus dilute contaminant matrices. This report focuses on the technologies that are most appropriate for the leachate from the OSDF. Upon arriving at FEMP, project personnel asked the Team to concentrate its efforts on evaluating potential technologies and strategies to reduce uranium concentration in the leachate.

Hazen, Terry

2002-08-26T23:59:59.000Z

320

Development of nuclear diagnostics for the National Ignition Facility ,,invited...  

E-Print Network [OSTI]

construction at Lawrence Livermore National Laboratory. The NIF project is now more than 80% complete. Song, R. Tommasini, and B. K. Young Lawrence Livermore National Laboratory, Livermore, California 94550 July 2006; published online 5 October 2006 The National Ignition Facility NIF will provide up to 1.8 MJ

Note: This page contains sample records for the topic "facility construction project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

American Recovery and Reinvestment Act ( ARRA) FEMP Technical Assistance, U.S. General Services Administration - Project 194 U.S. Custom Cargo Inspection Facility, Detroit, MI  

SciTech Connect (OSTI)

This report documents the findings of an on-site audit of the U.S. Customs Cargo Inspection Facility (CIF) in Detroit, Michigan. The federal landlord for this building is the General Services Administration (GSA). The focus of the audit was to identify various no-cost or low-cost energy-efficiency opportunities that, once implemented, would reduce electrical and gas consumption and increase the operational efficiency of the building. This audit also provided an opportunity to identify potential capital cost projects that should be considered in the future to acquire additional energy (electric and gas) and water savings to further increase the operational efficiency of the building.

Arends, J.; Sandusky, William F.

2010-05-31T23:59:59.000Z

322

Case Studies of Potential Facility-Scale and Utility-Scale Non-Hydro Renewable Energy Projects across Reclamation  

SciTech Connect (OSTI)

This report summarizes the results of an assessment and analysis of renewable energy opportunities conducted for the U.S. Department of the Interior, Bureau of Reclamation by the National Renewable Energy Laboratory. Tasks included assessing the suitability for wind and solar on both a utility and facility scale.

Haase, S.; Burman, K.; Dahle, D.; Heimiller, D.; Jimenez, A.; Melius, J.; Stoltenberg, B.; VanGeet, O.

2013-05-01T23:59:59.000Z

323

EA-1990: Ridgenose Solar Energy Interconnection Facility, Mohave County, Arizona  

Broader source: Energy.gov [DOE]

DOE’s Western Area Power Administration (Desert Southwest Region) is preparing an EA that will assess the potential environmental impacts of a proposal to interconnect the planned Ridgenose Solar Energy Project to Western’s transmission system. Western’s actions could include constructing less than a mile of new transmission line from the solar facility to an existing substation, constructing an interconnection substation, and adding, moving, or modifying structures.

324

Uranium Mill Tailings Remedial Action Project (UMTRAP), Slick Rock, Colorado, Revision 1, Volume 3. Calculations, Final design for construction  

SciTech Connect (OSTI)

Volume three contains calculations for: site hydrology--rainfall intensity, duration, and frequency relations; site hydrology-- probable maximum precipitation; erosion protection--rock quality evaluation; erosion protection--embankment top and side slope; erosion protection--embankment toe apron; erosion protection-- gradations and layer thicknesses; Union Carbide site--temporary drainage ditch design; Union Carbide site--retention basin sediment volume; Union Carbide site--retention basin sizing; Burro Canyon site temporary drainage--temporary drainage facilities; and Union Carbide site temporary drainage--water balance.

NONE

1995-09-01T23:59:59.000Z

325

EA-1581: Sand Hills Wind Project, Wyoming  

Broader source: Energy.gov [DOE]

The Bureau of Land Management, with DOE’s Western Area Power Administration as a cooperating agency, was preparing this EA to evaluate the environmental impacts of a proposal to construct, operate, and maintain the Sand Hills Wind Energy Facility on private and federal lands in Albany County, Wyoming. If the proposed action had been implemented, Western would have interconnected the proposed facility to an existing transmission line. This project has been canceled.

326

An introduction to the National Tritium Labeling Facility  

SciTech Connect (OSTI)

The facilities and projects of the National Tritium Labeling Facility are described. 5 refs., 1 fig., 1 tab.

Dorsky, A.M.; Morimoto, H.; Saljoughian, M.; Williams, P.G.; Rapoport, H.

1988-06-01T23:59:59.000Z

327

Utility residential new construction programs: Going beyond the code. A report from the Database on Energy Efficiency Programs (DEEP) Project  

SciTech Connect (OSTI)

Based on an evaluation of 10 residential new construction programs, primarily sponsored by investor-owned utilities in the United States, we find that many of these programs are in dire straits and are in danger of being discontinued because current inclusion of only direct program effects leads to the conclusion that they are not cost-effective. We believe that the cost-effectiveness of residential new construction programs can be improved by: (1) promoting technologies and advanced building design practices that significantly exceed state and federal standards; (2) reducing program marketing costs and developing more effective marketing strategies; (3) recognizing the role of these programs in increasing compliance with existing state building codes; and (4) allowing utilities to obtain an ``energy-savings credit`` from utility regulators for program spillover (market transformation) impacts. Utilities can also leverage their resources in seizing these opportunities by forming strong and trusting partnerships with the building community and with local and state government.

Vine, E.

1995-08-01T23:59:59.000Z

328

The fast-spectrum transmutation experimental facility FASTEF: Main design achievements (Part 1: Core and primary system) within the FP7-CDT collaborative project of the European Commission  

SciTech Connect (OSTI)

MYRRHA (Multi-purpose hybrid Research Reactor for High-tech Applications) is the flexible experimental accelerator-driven system (ADS) in development at SCK CEN in replacement of its material testing reactor BR2. SCK CEN in association with 17 European partners from industry, research centres and academia, responded to the FP7 (Seventh Framework Programme) call from the European Commission to establish a Central Design Team (CDT) for the design of a Fast Spectrum Transmutation Experimental Facility (FASTEF) able to demonstrate efficient transmutation and associated technology through a system working in subcritical and/or critical mode. The project has started on April 01, 2009 for a period of three years. In this paper, we present the latest configuration of the reactor core and primary system. The FASTEF facility has evolved quite a lot since the intermediate reporting done at the ICAPP'10 and ICAPP'11 conferences 1 2. If it remains a small-scale facility, the core power amounts now up to 100 MWth in critical mode. In a companion paper 3, we present the concept of the reactor building and the plant layout. (authors)

De Bruyn, D.; Fernandez, R. [Belgian Nuclear Research Centre (SCK CEN), Boeretang 200, 2400 Mol (Belgium); Mansani, L. [ANSALDO, Corso Perrone 25, 16152 Genova (Italy); Woaye-Hune, A. [AREVA-NP, rue Juliette Recamier 10, 69456 Lyon Cedex 06 (France); Sarotto, M. [ENEA, Via Martiri di Monte Sole 4, 40129 Bologna (Italy); Bubelis, E. [KIT, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)

2012-07-01T23:59:59.000Z

329

Plutonium Consumption Program, CANDU Reactor Project: Feasibility of BNFP Site as MOX Fuel Supply Facility. Final report  

SciTech Connect (OSTI)

An evaluation was made of the technical feasibility, cost, and schedule for converting the existing unused Barnwell Nuclear Fuel Facility (BNFP) into a Mixed Oxide (MOX) CANDU fuel fabrication plant for disposition of excess weapons plutonium. This MOX fuel would be transported to Ontario where it would generate electricity in the Bruce CANDU reactors. Because CANDU MOX fuel operates at lower thermal load than natural uranium fuel, the MOX program can be licensed by AECB within 4.5 years, and actual Pu disposition in the Bruce reactors can begin in 2001. Ontario Hydro will have to be involved in the entire program. Cost is compared between BNFP and FMEF at Hanford for converting to a CANDU MOX facility.

NONE

1995-06-30T23:59:59.000Z

330

Utility Power Plant Construction (Indiana)  

Broader source: Energy.gov [DOE]

This statute requires a certificate of necessity from the Indiana Utility Regulatory Commission for the construction, purchase, or lease of an electricity generation facility by a public utility.

331

Environmental assessment: South microwave communication facilities  

SciTech Connect (OSTI)

Western Area Power Administration (Western) is proposing to construct, operate, and maintain eight microwave repeater stations in southwestern Colorado, southeastern Utah, and northern Arizona, in order to meet the minimum fade criteria established by the Western Systems Coordinating Council (WSCC) for the operation and protection of electric power systems. The proposed microwave facilities would increase the reliability of communication. This environmental assessment (EA) describes the existing environmental conditions and the impacts from construction of the eight microwave communication facilities. The EA was prepared in compliance with the National Environmental Policy Act of 1969, the Council on Environmental Quality Regulations (40 CFR 1500-1508), and the Department of Energy Guidelines (52 FR 47662, December 15, 1987). The proposed project would consist of constructing eight microwave facilities, each of which would include a self-supported lattice tower, an equipment building, a propane tank, distribution lines to provide electric power to the sites, and access roads to the sites. The facilities would be constructed in San Miguel and Montezuma Counties in Colorado, San Juan County, Utah, and Navajo, Apache, Coconino, and Yavapai Counties in Arizona. 20 refs., 2 figs., 2 tabs.

Not Available

1989-06-01T23:59:59.000Z

332

Environmental Assessment : Happy Valley [Substation Project].  

SciTech Connect (OSTI)

The proposed Happy Valley project consists of construction of a new BPA customer service 69-kV substation south of Sequim in Clallam County, Washington. A tie line, to be constructed by the customer as part of this project, will link the new BPA facility to the existing customer's transmission system in the area. This project responds to rapid load growth in the Olympic Peninsula, and will strengthen the existing BPA system and interconnected utility systems. It will reduce transmission losses presently incurred, especially on the BPA system supplying power to the Olympic Peninsula. This report describes the potential environmental impact of the proposed actions. 2 figs., 1 tab.

United States. Bonneville Power Administration.

1982-05-01T23:59:59.000Z

333

Preliminary engineering report waste area grouping 5, Old Hydrofracture Facility Tanks content removal project, Oak Ridge National Laboratory, Oak Ridge, Tennessee  

SciTech Connect (OSTI)

The Superfund Amendments and Reauthorization Act of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) requires a Federal Facilities Agreement (FFA) for federal facilities placed on the National Priorities List. The Oak Ridge Reservation was placed on that list on December 21, 1989, and the agreement was signed in November 1991 by the U.S. Department of Energy (DOE) Oak Ridge Operations Office, the U.S. Environmental Protection Agency (EPA) Region IV, and the Tennessee Department of Environment and Conservation (TDEC). The effective date of the FFA is January 1, 1992. One objective of the FFA is to ensure that liquid low-level waste (LLLW) tanks that are removed from service are evaluated and remediated through the CERCLA process. Five inactive LLLW tanks, designated T-1, T-2, T-3, T-4, and T-9, located at the Old Hydrofracture (OHF) Facility in the Melton Valley area of Oak Ridge National Laboratory (ORNL) have been evaluated and are now entering the remediation phase. As a precursor to final remediation, this project will remove the current liquid and sludge contents of each of the five tanks (System Requirements Document, Appendix A). It was concluded in the Engineering Evaluation/Cost Analysis [EE/CA] for the Old Hydrofracture Facility Tanks (DOE 1996) that sluicing and pumping the contaminated liquid and sludge from the five OHF tanks was the preferred removal action. Evaluation indicated that this alternative meets the removal action objective and can be effective, implementable, and cost-effective. Sluicing and removing the tank contents was selected because this action uses (1) applicable experience, (2) the latest information about technologies and techniques for removing the wastes from the tanks, and (3) activities that are currently acceptable for storage of transuranic (TRU) mixed waste.

NONE

1996-06-01T23:59:59.000Z

334

The New 2nd-Generation SRF R&D Facility at Jefferson Lab: TEDF  

SciTech Connect (OSTI)

The US Department of Energy has funded a near-complete renovation of the SRF-based accelerator research and development facilities at Jefferson Lab. The project to accomplish this, the Technical and Engineering Development Facility (TEDF) Project has completed the first of two phases. An entirely new 3,100 m{sup 2} purpose-built SRF technical work facility has been constructed and was occupied in summer of 2012. All SRF work processes with the exception of cryogenic testing have been relocated into the new building. All cavity fabrication, processing, thermal treatment, chemistry, cleaning, and assembly work is collected conveniently into a new LEED-certified building. An innovatively designed 800 m2 cleanroom/chemroom suite provides long-term flexibility for support of multiple R&D and construction projects as well as continued process evolution. The characteristics of this first 2nd-generation SRF facility are described.

Reece, Charles E.; Reilly, Anthony V.

2012-09-01T23:59:59.000Z

335

UBC Social Ecological Economic Development Studies (SEEDS) Student Report Community Service Learning Egg Carton Storage Facility Project  

E-Print Network [OSTI]

(Second Term) 31 9.0 RISK ASSESSMENT 32 9.1 Construction Risks 32 9.2 Maintenance Risks 33 10.0 CONCLUSION, the research and learning that went into the shed could not possibly have happened. The first person we would

336

Summary and evaluation of existing geological and geophysical data near prospective surface facilities in Midway Valley, Yucca Mountain Project, Nye County, Nevada; Yucca Mountain Site Characterization Project  

SciTech Connect (OSTI)

Midway Valley, located at the eastern base of the Yucca Mountain in southwestern Nevada, is the preferred location of the surface facilities for the potential high-level nuclear waste repository at Yucca Mountain. One goal in siting these surface facilities is to avoid faults that could produce relative displacements in excess of 5 cm in the foundations of the waste-handling buildings. This study reviews existing geologic and geophysical data that can be used to assess the potential for surface fault rupture within Midway Valley. Dominant tectonic features in Midway Valley are north-trending, westward-dipping normal faults along the margins of the valley: the Bow Ridge fault to the west and the Paintbrush Canyon fault to the east. Published estimates of average Quaternary slip rates for these faults are very low but the age of most recent displacement and the amount of displacement per event are largely unknown. Surface mapping and interpretive cross sections, based on limited drillhole and geophysical data, suggest that additional normal faults, including the postulated Midway Valley fault, may exist beneath the Quaternary/Tertiary fill within the valley. Existing data, however, are inadequate to determine the location, recency, and geometry of this faulting. To confidently assess the potential for significant Quaternary faulting in Midway Valley, additional data are needed that define the stratigraphy and structure of the strata beneath the valley, characterize the Quaternary soils and surfaces, and establish the age of faulting. The use of new and improved geophysical techniques, combined with a drilling program, offers the greatest potential for resolving subsurface structure in the valley. Mapping of surficial geologic units and logging of soil pits and trenches within these units must be completed, using accepted state-of-the-art practices supported by multiple quantitative numerical and relative age-dating techniques.

Gibson, J.D. [Sandia National Labs., Albuquerque, NM (United States); Swan, F.H.; Wesling, J.R.; Bullard, T.F.; Perman, R.C.; Angell, M.M.; DiSilvestro, L.A. [Geomatrix Consultants, Inc., San Francisco, CA (United States)

1992-01-01T23:59:59.000Z

337

Finding of no significant impact for the tritium facility modernization and consolidation project at the Savannah River Site  

SciTech Connect (OSTI)

The Department of Energy (DOE) has prepared an environmental assessment (EA) (DOE/EA-1222) for the proposed modernization and consolidation of the existing tritium facilities at the Savannah River Site (SRS), located near Aiken, South Carolina. Based on the analyses in the EA, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act of 1969 (NEPA). Therefore, the preparation of an environmental impact statement (EIS) is not required, and DOE is issueing this Finding of No Significant Impact (FONSI).

NONE

1998-01-01T23:59:59.000Z

338

The Remote Handled Immobilization Low Activity Waste Disposal Facility Environmental Permits & Approval Plan  

SciTech Connect (OSTI)

The purpose of this document is to revise Document HNF-SD-ENV-EE-003, ''Permitting Plan for the Immobilized Low-Activity Waste Project, which was submitted on September 4, 1997. That plan accounted for the interim storage and disposal of Immobilized-Low Activity Waste at the existing Grout Treatment Facility Vaults (Project W-465) and within a newly constructed facility (Project W-520). Project W-520 was to have contained a combination of concrete vaults and trenches. This document supersedes that plan because of two subsequent items: (1) A disposal authorization that was received on October 25, 1999, in a U. S. Department of Energy-Headquarters, memorandum, ''Disposal Authorization Statement for the Department of Energy Hanford site Low-Level Waste Disposal facilities'' and (2) ''Breakthrough Initiative Immobilized Low-Activity Waste (ILAW) Disposal Alternative,'' August 1999, from Lucas Incorporated, Richland, Washington. The direction within the U. S. Department of Energy-Headquarters memorandum was given as follows: ''The DOE Radioactive Waste Management Order requires that a Disposal authorization statement be obtained prior to construction of new low-level waste disposal facility. Field elements with the existing low-level waste disposal facilities shall obtain a disposal authorization statement in accordance with the schedule in the complex-wide Low-Level Waste Management Program Plan. The disposal authorization statement shall be issued based on a review of the facility's performance assessment and composite analysis or appropriate CERCLA documentation. The disposal authorization shall specify the limits and conditions on construction, design, operations, and closure of the low-level waste facility based on these reviews. A disposal authorization statement is a part of the required radioactive waste management basis for a disposal facility. Failure to obtain a disposal authorization statement or record of decision shall result in shutdown of an operational disposal facility or disapproval to initiate construction of a new facility.''

DEFFENBAUGH, M.L.

2000-08-01T23:59:59.000Z

339

Crowder College MARET Center Facility Final Scientific/Technical Report  

SciTech Connect (OSTI)

This project was a research facility construction project and did not include actual research. The new facility will benefit the public by providing training opportunities for students, as well as incubator and laboratory space for entrepreneurs in the areas of alternative and renewable energies. The 9,216 -square-foot Missouri Alternative and Renewable Energy Technology (MARET) Center was completed in late 2011. Classes in the MARET Center began in the spring 2012 semester. Crowder College takes pride in the MARET Center, a focal point of the campus, as the cutting edge in education, applied research and commercial development in the growing field of green technology.

Rand, Amy

2013-08-20T23:59:59.000Z

340

Power Systems Development Facility. First quarterly report, 1997  

SciTech Connect (OSTI)

The objective of this project, herein referred to as the Power Systems Development Facility (PSDF), is to evaluate hot gas particle control technologies using coal derived gas streams. This project entails the design, construction, installation, and use of a flexible test facility which can operate under realistic gasification and combustion conditions. The major particulate control device (PCD) issues to be addressed include the integration of the PCDs into coal utilization systems, on-line cleaning techniques, chemical and thermal degradation of components, fatigue or structural failures, blinding, collection efficiency as a function of particle size, and scale-up of particulate control systems to commercial size.

NONE

1997-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "facility construction project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Radioactive Air Emission Notice of Construction for (NOC) Plutonium Finishing Plant (PFP) Project W-460 Plutonium Stabilization and Handling  

SciTech Connect (OSTI)

The following description and any attachments and references are provided to the Washington State Department of Health (WDOH), Division of Radiation Protection, Air Emissions & Defense Waste Section as a notice of construction (NOC) in accordance with Washington Administrative Code (WAC) 246-247, Radiation Protection-Air Emissions. The WAC 246-247-060, ''Applications, registration, and licensing'', states ''This section describes the information requirements for approval to construct, modify, and operate an emission unit. Any NOC requires the submittal of information listed in Appendix A,'' Appendix A (WAC 246-247-1 IO) lists the requirements that must be addressed. Additionally, the following description, attachments, and references are provided to the U.S. Environmental Protection Agency (EPA) as an NOC, in accordance with Title 40 Code of Federal Regulations (CFR), Part 61, ''National Emission Standards for Hazardous Air Pollutants.'' The information required for submittal to the EPA is specified in 40 CFR 61.07. The potential emissions from this activity are estimated to provide greater than 0.1 millirem year total effective dose equivalent (TEDE) to the hypothetical offsite maximally exposed individual (MEI) and commencement is needed within a short time. Therefore, this application also is intended to provide notification of the anticipated date of initial startup in accordance with the requirement listed in 40 CFR 61.09(a)(1), and it is requested that approval of this application also constitutes EPA acceptance of this initial startup notification. Written notification of the actual date of initial startup, in accordance with the requirement listed in 40 CFR 61.09(a)(2), will be provided later. This NOC covers the activities associated with the construction and operation activities involving stabilization and/or repackaging of plutonium in the 2736-ZB Building. An operations support trailer will be installed in the proximity of the 2736-ZB Building. A new exhaust stack will be built and operated at the 2736-ZB Building to handle the effluents associated with the operation of the stabilization and repackaging process. Figures provided are based on preliminary design.

JANSKY, M.T.

2000-03-01T23:59:59.000Z

342

Radioactive Air Emission Notice of Construction (NOC) for Plutonium Finishing Plant (PFP) Project W-460 Plutonium Stabilization and Handling  

SciTech Connect (OSTI)

The following description and any attachments and references are provided to the Washington State Department of Health (WDOH), Division of Radiation Protection, Air Emissions & Defense Waste Section as a notice of construction (NOC) in accordance with Washington Administrative Code (WAC) 246-247, Radiation Protection-Air Emissions. The WAC 246-247-060, ''Applications, registration, and licensing'', states ''This section describes the information requirements for approval to construct, modify, and operate an emission unit. Any NOC requires the submittal of information listed in Appendix A.'' Additionally, the following description, attachments, and references are provided to the US Environmental Protection Agency (EPA) as an NOC, in accordance with Title 40 Code of Federal Regulations (CFR), Part 61, ''National Emission Standards for Hazardous Air Pollutants''. The information required for submittal to the EPA is specified in 40 CFR 61.07. The potential emissions from this activity are estimated to provide greater than 0.1 millirem year total effective dose equivalent (TEDE) to the hypothetical offsite maximally exposed individual (MEI) and commencement is needed within a short time. Therefore, this application also is intended to provide notification of the anticipated date of initial startup in accordance with the requirement listed in 40 CFR 61.09(a)(1), and it is requested that approval of this application also constitutes EPA acceptance of this initial startup notification. Written notification of the actual date of initial startup, in accordance with the requirement listed in 40 CFR 61.09(a)(2), will be provided later. This NOC covers the activities associated with the construction and operation activities involving stabilization and/or repackaging of plutonium in the 2736-ZB Building. A new exhaust stack will be built and operated at the 2736-ZB Building to handle the effluents associated with the operation of the stabilization and repackaging process. Figures provided are based on preliminary design. For the activities covered under this NOC, the unabated and abated TEDE to the hypothetical MEI is 1.67 E-03 and 8.34 E-01 millirem per year, respectively.

JANSKY, M.T.

2000-05-01T23:59:59.000Z

343

Massachusetts Hazardous Waste Facility Siting Act (Massachusetts)  

Broader source: Energy.gov [DOE]

This Act establishes the means by which developers of proposed hazardous waste facilities will work with the community in which they wish to construct a facility. When the intent to construct,...

344

Installation of a Low Flow Unit at the Abiquiu Hydroelectric Facility  

SciTech Connect (OSTI)

Final Technical Report for the Recovery Act Project for the Installation of a Low Flow Unit at the Abiquiu Hydroelectric Facility. The Abiquiu hydroelectric facility existed with two each 6.9 MW vertical flow Francis turbine-generators. This project installed a new 3.1 MW horizontal flow low flow turbine-generator. The total plant flow range to capture energy and generate power increased from between 250 and 1,300 cfs to between 75 and 1,550 cfs. Fifty full time equivalent (FTE) construction jobs were created for this project - 50% (or 25 FTE) were credited to ARRA funding due to the ARRA 50% project cost match. The Abiquiu facility has increased capacity, increased efficiency and provides for an improved aquatic environment owing to installed dissolved oxygen capabilities during traditional low flow periods in the Rio Chama. A new powerhouse addition was constructed to house the new turbine-generator equipment.

Jack Q. Richardson

2012-06-28T23:59:59.000Z

345

Environmental assessment for the Strategic Petroleum Reserve Big Hill facility storage of commercial crude oil project, Jefferson County, Texas  

SciTech Connect (OSTI)

The Big Hill SPR facility located in Jefferson County, Texas has been a permitted operating crude oil storage site since 1986 with benign environmental impacts. However, Congress has not authorized crude oil purchases for the SPR since 1990, and six storage caverns at Big Hill are underutilized with 70 million barrels of available storage capacity. On February 17, 1999, the Secretary of Energy offered the 70 million barrels of available storage at Big Hill for commercial use. Interested commercial users would enter into storage contracts with DOE, and DOE would receive crude oil in lieu of dollars as rental fees. The site could potentially began to receive commercial oil in May 1999. This Environmental Assessment identified environmental changes that potentially would affect water usage, power usage, and air emissions. However, as the assessment indicates, changes would not occur to a major degree affecting the environment and no long-term short-term, cumulative or irreversible impacts have been identified.

NONE

1999-03-01T23:59:59.000Z

346

Evaluation of nuclear facility decommissioning projects: Summary status report: Three Mile Island Unit 2. Radioactive waste and laundry shipments  

SciTech Connect (OSTI)

This document summarizes information concerning radioactive waste and laundry shipments from the Three Mile Island Nuclear Station Unit 2 to radioactive waste disposal sites and to protective clothing decontamination facilities (laundries) since the loss of coolant accident experienced on March 28, 1979. Data were collected from radioactive shipment records, summarized, and placed in a computerized data information retrieval/manipulation system which permits extraction of specific information. This report covers the period of April 9, 1979 through April 19, 1987. Included in this report are: waste disposal site locations, dose rates, curie content, waste description, container type and number, volumes and weights. This information is presented in two major categories: protective clothing (laundry) and radioactive waste. Each of the waste shipment reports is in chronological order.

Doerge, D. H.; Haffner, D. R.

1988-06-01T23:59:59.000Z

347

MAST Upgrade - Construction Status  

E-Print Network [OSTI]

The Mega Amp Spherical Tokamak (MAST) is the centre piece of the UK fusion research programme. In 2010, a MAST Upgrade programme was initiated with three primary objectives, to contribute to: 1) Testing reactor concepts (in particular exhaust solutions via a flexible divertor allowing Super-X and other extended leg configurations); 2) Adding to the knowledge base for ITER (by addressing important plasma physics questions and developing predictive models to help optimise ITER performance of ITER) and 3) Exploring the feasibility of using a spherical tokamak as the basis for a fusion Component Test Facility. With the project mid-way through its construction phase, progress will be reported on a number of the critical subsystems. This will include manufacture and assembly of the coils, armour and support structures that make up the new divertors, construction of the new set coils that make up the centre column, installation of the new power supplies for powering the divertor coils and enhanced TF coil set, progr...

Milnes, Joe; Dhalla, Fahim; Fishpool, Geoff; Hill, John; Katramados, Ioannis; Martin, Richard; Naylor, Graham; O'Gorman, Tom; Scannell, Rory

2015-01-01T23:59:59.000Z

348

EA-1841: Department of Energy Loan Guarantee for the Taylor Biomass Montgomery Project in the Town of Montgomery, Orange County, New York  

Broader source: Energy.gov [DOE]

Taylor Biomass, LLC (Taylor) submitted an application to DOE for a Federal loan guarantee to support the construction and startup of a biomass gasification-to energy facility at a 95-acre recycling facility in the Town of Montgomery, Orange County, NY. The Project would involve the construction of a Post-Collection Separation Facility, a Gasification System and a Combined Cycle Gas Turbine Power Island.

349

HPI construction boxscore update  

SciTech Connect (OSTI)

Information is given on construction projects in the petroleum industry worldwide. Information includes company name, plant site, project type, capacity, estimated cost, status of the project, licensor, engineering firm, and contractor. Typical projects include: refinery processes, pollution abatement projects, ether production, petrochemical production, natural gas plants, and sulfur recovery. Others include: cogeneration, coal gasification, control/information systems, and lubricant production. The data are sorted by region: USA, Canada, Other Western hemisphere, Europe, Africa, Middle East, Far East, and Australia.

Not Available

1994-06-01T23:59:59.000Z

350

Healy Clean Coal Project  

SciTech Connect (OSTI)

The Healy Clean Coal Project, selected by the U.S. Department of Energy under Round 111 of the Clean Coal Technology Program, has been constructed and is currently in the Phase 111 Demonstration Testing. The project is owned and financed by the Alaska Industrial Development and Export Authority (AIDEA), and is cofunded by the U.S. Department of Energy. Construction was 100% completed in mid-November of 1997, with coal firing trials starting in early 1998. Demonstration testing and reporting of the results will take place in 1998, followed by commercial operation of the facility. The emission levels of nitrogen oxides (NOx), sulfur dioxide (S02), and particulate from this 50-megawatt plant are expected to be significantly lower than current standards.

None

1997-12-31T23:59:59.000Z

351

Evaluation of nuclear facility decommissioning projects. Three Mile Island Unit 2 reactor defueling and disassembly. Summary status report. Volume 3  

SciTech Connect (OSTI)

This document summarizes information relating to the preparations for defueling the Three Mile Island Unit 2 (TMI-2) reactor and disassembly activities being performed concurrently with decontamination of the facility. Data have been collected from activity reports, reactor containment entry records, and other sources and entered in a computerized data sysem which permits extraction/manipulation of specific data which can be used in planning for recovery from a loss of coolant event similar to that experienced at TMI-2 on March 28, 1979. This report contains summaries of man-hours, manpower, and radiation exposures incurred during the period of April 23, 1979 to April 16, 1985, in the completion of activities related to preparation for reactor defueling. Support activities conducted outside of radiation areas are not included within the scope of this report. Computerized reports included in this document are: A chronological summary listing work performed for the period; and summary reports for each major task undertaken in connection with the specific scope of this report. Presented in chronological order for the referenced time period. Manually-assembled table summaries are included for: Labor and exposures by department; and labor and exposures by major activity.

Doerge, D.H.; Miller, R.L.; Scotti, K.S.

1986-05-01T23:59:59.000Z

352

Radioactive air emissions notice of construction for installation and operation of a waste retrieval system and tanks 241-AP-102 and 241-AP-104 project  

SciTech Connect (OSTI)

This document serves as a notice of construction (NOC) pursuant to the requirements of Washington Administrative Code (WAC) 246 247-060, and as a request for approval to modify pursuant to 40 Code of Federal Regulations (CFR) 61 07 for the installation and operation of one waste retrieval system in the 24 1 AP-102 Tank and one waste retrieval system in the 241 AP 104 Tank Pursuant to 40 CFR 61 09 (a)( 1) this application is also intended to provide anticipated initial start up notification Its is requested that EPA approval of this application will also constitute EPA acceptance of the initial start up notification Project W 211 Initial Tank Retrieval Systems (ITRS) is scoped to install a waste retrieval system in the following double-shell tanks 241-AP 102-AP 104 AN 102, AN 103, AN-104, AN 105, AY 102 AZ 102 and SY-102 between now and the year 2011. Because of the extended installation schedules and unknowns about specific activities/designs at each tank, it was decided to submit NOCs as that information became available This NOC covers the installation and operation of a waste retrieval system in tanks 241 AP-102 and 241 AP 104 Generally this includes removal of existing equipment installation of new equipment and construction of new ancillary equipment and buildings Tanks 241 AP 102 and 241 AP 104 will provide waste feed for immobilization into a low activity waste (LAW) product (i.e. glass logs) The total effective dose equivalent (TEDE) to the offsite maximally exposed individual (MEI) from the construction activities is 0 045 millirem per year The unabated TEDE to the offsite ME1 from operation of the mixer pumps is 0 042 millirem per year.

DEXTER, M.L.

1999-11-15T23:59:59.000Z

353

National Ignition Facility Quality Assurance Program Plan. Revision 1  

SciTech Connect (OSTI)

The National Ignition Facility (NIF) is a key constituent of the Department of Energy`s Stockpile Stewardship Program. The NIF will use inertial confinement fusion (ICF) to produce ignition and energy gain in ICF targets, and will perform weapons physics and high-energy- density experiments in support of national security and civilian objectives. The NIF Project is a national facility involving the collaboration of several DOE laboratories and subcontractors, including Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), Sandia National Laboratory (SNL), and the University of Rochester Laboratory for Laser Energetics (UR/LLE). The primary mission of the NIF Project is the construction and start-up operation of laser-based facilities that will demonstrate fusion ignition in the laboratory to provide nuclear-weapons-related physics data, and secondarily, to propagate fusion burn aimed at developing a potential source of civilian energy. To support the accomplishment of this very important mission, the LLNL Laser Directorate created the NIF Project Office to organize and bring about the Project. The NIF Project Office has established this Quality Assurance Program to ensure its success. This issue of the Quality Assurance Program Plan (QAPP) adds the requirements for the conduct of Title 11 design, construction, procurement, and Title III engineering. This QAPP defines and describes the program-the management system-for specifying, achieving, and assuring the quality of all NIF Project work consistent with the policies of the Laboratory and the Laser Directorate.

Wolfe, C.R.; Yatabe, J.

1996-09-01T23:59:59.000Z

354

Construction Begins on First-of-its-Kind Advanced Clean Coal...  

Office of Environmental Management (EM)

Construction Begins on First-of-its-Kind Advanced Clean Coal Electric Generating Facility Construction Begins on First-of-its-Kind Advanced Clean Coal Electric Generating Facility...

355

Summary - Major Risk Factors Integrated Facility Disposition...  

Office of Environmental Management (EM)

& ORNL, Oak Ridge, TN EM Project: Integrated Facility Disposition Project (IFDP) ETR Report Date: August 2008 ETR-15 United States Department of Energy Office of Environmental...

356

High sensitivity double beta decay study of 116-Cd and 100-Mo with the BOREXINO Counting Test Facility (CAMEO project)  

E-Print Network [OSTI]

The unique features (super-low background and large sensitive volume) of the CTF and BOREXINO set ups are used in the CAMEO project for a high sensitivity study of 100-Mo and 116-Cd neutrinoless double beta decay. Pilot measurements with 116-Cd and Monte Carlo simulations show that the sensitivity of the CAMEO experiment (in terms of the half-life limit for neutrinoless double beta decay) is (3-5) 10^24 yr with a 1 kg source of 100-Mo (116-Cd, 82-Se, and 150-Nd) and about 10^26 yr with 65 kg of enriched 116-CdWO_4 crystals placed in the liquid scintillator of the CTF. The last value corresponds to a limit on the neutrino mass of less than 0.06 eV. Similarly with 1000 kg of 116-CdWO_4 crystals located in the BOREXINO apparatus the neutrino mass limit can be pushed down to m_nu<0.02 eV.

G. Bellini; B. Caccianiga; M. Chen; F. A. Danevich; M. G. Giammarchi; V. V. Kobychev; B. N. Kropivyansky; E. Meroni; L. Miramonti; A. S. Nikolayko; L. Oberauer; O. A. Ponkratenko; V. I. Tretyak; S. Yu. Zdesenko; Yu. G. Zdesenko

2000-07-11T23:59:59.000Z

357

Toda Cathode Materials Production Facility  

Broader source: Energy.gov (indexed) [DOE]

Cathode Materials Production Facility 2013 DOE Vehicle Technologies Annual Merit Review May 13-17, 2013 David Han, Yasuhiro Abe Toda America Inc. Project ID: ARRAVT017...

358

Cornell University Facilities Services  

E-Print Network [OSTI]

requirements, building code, and sustainability objectives. This plan takes a long- term view, projecting workCornell University Facilities Services Contract Colleges Facilities Fernow and Rice Hall in Fernow, Rice, Bruckner, Bradfield and Plant Science buildings. It includes a surging and phasing plan

Manning, Sturt

359

Cost of documenting the NISC project.  

SciTech Connect (OSTI)

The project team selected a computer-based approach for the NISC project record management system. The team is convinced that this approach did cut direct costs . The major advantage, that the team believes did help the project, comes in the area of having just one central point for all design and construction information related to the project . The other benefit to the project will come over the thirty-year design life of the project through reduced costs to design changes to the facility . The team estimates that a reasonable saving for the project (including future modifications) will be about $2,OOOK or about 3% of the project construction costs . The cost increase of scanning non-electric documents will decrease for other projects in the future as more project related information is computer generated . Many the subcontractors on the NISC project had not completely converted to computer based systems for there own internal operation during the life of the NISC project. However, as more project related documents are generated in electronic form this type of cost will reduce .

Stutz, R. A. (Roger Alan)

2003-01-01T23:59:59.000Z

360

The STACEE Project  

E-Print Network [OSTI]

The Solar Tower Atmospheric Cherenkov Effect Experiment (STACEE) is a telescope designed to explore the gamma-ray sky between 20 and 250 GeV using the atmospheric Cherenkov technique. STACEE is currently under construction. When completed, it will use 48 large heliostat mirrors at the solar research facility at Sandia National Laboratories (Albuquerque, NM) to reflect Cherenkov light created in gamma-ray air showers to secondary mirrors on a central tower. The secondary mirrors image this light onto photomultiplier tube cameras. This paper provides an overview of the STACEE project, including a description of the experimental site and an outline of the current design for the detector components.

Ong, R A; Ong, Rene A.; Covault, Corbin E.

1997-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "facility construction project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

The STACEE Project  

E-Print Network [OSTI]

The Solar Tower Atmospheric Cherenkov Effect Experiment (STACEE) is a telescope designed to explore the gamma-ray sky between 20 and 250 GeV using the atmospheric Cherenkov technique. STACEE is currently under construction. When completed, it will use 48 large heliostat mirrors at the solar research facility at Sandia National Laboratories (Albuquerque, NM) to reflect Cherenkov light created in gamma-ray air showers to secondary mirrors on a central tower. The secondary mirrors image this light onto photomultiplier tube cameras. This paper provides an overview of the STACEE project, including a description of the experimental site and an outline of the current design for the detector components.

Rene A. Ong; Corbin E. Covault

1997-11-25T23:59:59.000Z

362

Siting algae cultivation facilities for biofuel production in the United States: trade-offs between growth rate, site constructability, water availability, and infrastructure  

SciTech Connect (OSTI)

Locating sites for new algae cultivation facilities is a complex task. The climate must support high growth rates, and cultivation ponds require appropriate land and water resources as well as key utility and transportation infrastructure. We employ our spatiotemporal Biomass Assessment Tool (BAT) to select promising locations based on the open-pond cultivation of Arthrospira sp. and a strain of the order Desmidiales. 64,000 potential sites across the southern United States were evaluated. We progressively apply a range of screening criteria and track their impact on the number of selected sites, geographic location, and biomass productivity. Both strains demonstrate maximum productivity along the Gulf of Mexico coast, with the highest values on the Florida peninsula. In contrast, sites meeting all selection criteria for Arthrospira were located along the southern coast of Texas and for Desmidiales were located in Louisiana and southern Arkansas. Site selection was driven mainly by the lack of oil pipeline access in Florida and elevated groundwater salinity in southern Texas. The requirement for low salinity freshwater (<400 mg L-1) constrained Desmidiales locations; siting flexibility is greater for salt-tolerant species such as Arthrospira. Combined siting factors can result in significant departures from regions of maximum productivity but are within the expected range of site-specific process improvements.

Venteris, Erik R.; McBride, Robert; Coleman, Andre M.; Skaggs, Richard; Wigmosta, Mark S.

2014-02-21T23:59:59.000Z

363

Control Surveys for Underground Construction of the Superconducting Super Collider  

SciTech Connect (OSTI)

Particular care had to be taken in the design and implementation of the geodetic control systems for the Superconducting Super Collider (SSC) due to stringent accuracy requirements, the demanding tunneling schedule, long duration and large size of the construction effort of the project. The surveying requirements and the design and implementation of the surface and underground control scheme for the precise location of facilities which include approximately 120 km of bored tunnel are discussed. The methodology used for the densification of the surface control networks, the technique used for the transfer of horizontal and vertical control into the underground facilities, and the control traverse scheme employed in the tunnels is described.

Greening, W.J.Trevor; Robinson, Gregory L.; /Measurment Science Inc.; Robbins, Jeffrey S.; Ruland, Robert E.; /SLAC

2005-08-16T23:59:59.000Z

364

The Off-Site Plowshare and Vela Uniform Programs: Assessing Potential Environmental Liabilities through an Examination of Proposed Nuclear Projects,High Explosive Experiments, and High Explosive Construction Activities Volume 2 of 3  

SciTech Connect (OSTI)

This document presents the results of nearly six years (2002-2008) of historical research and field studies concerned with evaluating potential environmental liabilities associated with U.S. Atomic Energy Commission projects from the Plowshare and Vela Uniform Programs. The Plowshare Program's primary purpose was to develop peaceful uses for nuclear explosives. The Vela Uniform Program focused on improving the capability of detecting, monitoring and identifying underground nuclear detonations. As a result of the Project Chariot site restoration efforts in the early 1990s, there were concerns that there might be other project locations with potential environmental liabilities. The Desert Research Institute conducted archival research to identify projects, an analysis of project field activities, and completed field studies at locations where substantial fieldwork had been undertaken for the projects. Although the Plowshare and Vela Uniform nuclear projects are well known, the projects that are included in this research are relatively unknown. They are proposed nuclear projects that were not executed, proposed and executed high explosive experiments, and proposed and executed high explosive construction activities off the Nevada Test Site. The research identified 170 Plowshare and Vela Uniform off-site projects and many of these had little or no field activity associated with them. However, there were 27 projects that merited further investigation and field studies were conducted at 15 locations.

Beck Colleen M.,Edwards Susan R.,King Maureen L.

2011-09-01T23:59:59.000Z

365

The Off-Site Plowshare and Vela Uniform Programs: Assessing Potential Environmental Liabilities through an Examination of Proposed Nuclear Projects,High Explosive Experiments, and High Explosive Construction Activities Volume 3 of 3  

SciTech Connect (OSTI)

This document presents the results of nearly six years (2002-2008) of historical research and field studies concerned with evaluating potential environmental liabilities associated with U.S. Atomic Energy Commission projects from the Plowshare and Vela Uniform Programs. The Plowshare Program's primary purpose was to develop peaceful uses for nuclear explosives. The Vela Uniform Program focused on improving the capability of detecting, monitoring and identifying underground nuclear detonations. As a result of the Project Chariot site restoration efforts in the early 1990s, there were concerns that there might be other project locations with potential environmental liabilities. The Desert Research Institute conducted archival research to identify projects, an analysis of project field activities, and completed field studies at locations where substantial fieldwork had been undertaken for the projects. Although the Plowshare and Vela Uniform nuclear projects are well known, the projects that are included in this research are relatively unknown. They are proposed nuclear projects that were not executed, proposed and executed high explosive experiments, and proposed and executed high explosive construction activities off the Nevada Test Site. The research identified 170 Plowshare and Vela Uniform off-site projects and many of these had little or no field activity associated with them. However, there were 27 projects that merited further investigation and field studies were conducted at 15 locations.

Beck Colleen M.,Edwards Susan R.,King Maureen L.

2011-09-01T23:59:59.000Z

366

The Off-Site Plowshare and Vela Uniform Programs: Assessing Potential Environmental Liabilities through an Examination of Proposed Nuclear Projects,High Explosive Experiments, and High Explosive Construction Activities Volume 1 of 3  

SciTech Connect (OSTI)

This document presents the results of nearly six years (2002-2008) of historical research and field studies concerned with evaluating potential environmental liabilities associated with U.S. Atomic Energy Commission projects from the Plowshare and Vela Uniform Programs. The Plowshare Program's primary purpose was to develop peaceful uses for nuclear explosives. The Vela Uniform Program focused on improving the capability of detecting, monitoring and identifying underground nuclear detonations. As a result of the Project Chariot site restoration efforts in the early 1990s, there were concerns that there might be other project locations with potential environmental liabilities. The Desert Research Institute conducted archival research to identify projects, an analysis of project field activities, and completed field studies at locations where substantial fieldwork had been undertaken for the projects. Although the Plowshare and Vela Uniform nuclear projects are well known, the projects that are included in this research are relatively unknown. They are proposed nuclear projects that were not executed, proposed and executed high explosive experiments, and proposed and executed high explosive construction activities off the Nevada Test Site. The research identified 170 Plowshare and Vela Uniform off-site projects and many of these had little or no field activity associated with them. However, there were 27 projects that merited further investigation and field studies were conducted at 15 locations.

Beck Colleen M,Edwards Susan R.,King Maureen L.

2011-09-01T23:59:59.000Z

367

p\\Procedure\\UAVP #9 1 of 11 TITLE DEVELOPMENT OF FACILITY PROGRAM  

E-Print Network [OSTI]

Impact Analysis section of the program Determine cost estimates for extraordinary utilities Review proposed Facilities Program to determine cost estimate for: External telecommunication for which the construction cost exceeds $500,000 (or for projects less then $500,000 which are determined

Fernandez, Eduardo

368

Kaiser Engineers Hanford internal position paper -- Project W-236A, Multi-function Waste Tank Facility -- Peer reviews of selected activities  

SciTech Connect (OSTI)

The purpose of this paper is to develop and document a proposed position on the performance of independent peer reviews on selected design and analysis components of the Title 1 [Preliminary] and Title 2 [Final] design phases of the Multi-Function Waste Tank Facility [MWTF] project. An independent, third-party peer review is defined as a documented critical review of documents, data, designs, design inputs, tests, calculations, or related materials. The peer review should be conducted by persons independent of those who performed the work, but who are technically qualified to perform the original work. The peer review is used to assess the validity of assumptions and functional requirements, to assess the appropriateness and logic of selected methodologies and design inputs, and to verify calculations, analyses and computer software. The peer review can be conducted at the end of the design activity, at specific stages of the design process, or continuously and concurrently with the design activity. This latter method is often referred to as ``Continuous Peer Review.``

Stine, M.D. [Kaiser Engineers Hanford Co., Richland, WA (United States)

1995-01-04T23:59:59.000Z

369

EA-1638: Solyndra, Inc. Photovoltaic Manufacturing Facility in...  

Broader source: Energy.gov (indexed) [DOE]

Environmental Assessment Loan Guarantee to Solyndra, Inc. for Construction of A Photovoltaic Manufacturing Facility and Leasing of an Existing Commercial Facility in Fremont,...

370

Final Environmental Impact Statement to construct and operate a facility to receive, store, and dispose of 11e.(2) byproduct material near Clive, Utah (Docket No. 40-8989)  

SciTech Connect (OSTI)

A Final Environmental Impact Statement (FEIS) related to the licensing of Envirocare of Utah, Inc.`s proposed disposal facility in Tooele county, Utah (Docket No. 40-8989) for byproduct material as defined in Section 11e.(2) of the Atomic Energy Act, as amended, has been prepared by the Office of Nuclear Material Safety and Safeguards. This statement describes and evaluates the purpose of and need for the proposed action, the alternatives considered, and the environmental consequences of the proposed action. The NRC has concluded that the proposed action evaluated under the National Environmental Policy Act of 1969 (NEPA) and 10 CFR Part 51, is to permit the applicant to proceed with the project as described in this Statement.

Not Available

1993-08-01T23:59:59.000Z

371

EIS-0434: Hualapai Valley Solar Interconnection Project, Arizona  

Broader source: Energy.gov [DOE]

Hualapai Valley Solar, LLC, proposes to construct, operate and maintain a 340-megawatt, solar-powered generating facility in Mohave County, near Kingman, Ariz. The proposed project would use concentrating solar-power-trough technology to capture the sun's heat to make steam, which would power a traditional steam turbine generator.

372

EIS-0072: Great Plains Gasification Project, Mercer County, North Dakota  

Broader source: Energy.gov [DOE]

The Office of Fossil Energy prepared this EIS to evaluate the impacts of a project to construct a 125 million cubic feet per day coal gasification facility located in Mercer County, North Dakota. The Office of Fossil Energy adopted three environmental impact evaluation documents prepared by other Federal agencies to develop this EIS.

373

PXIE: Project X Injector Experiment  

SciTech Connect (OSTI)

A multi-MW proton facility, Project X, has been proposed and is currently under development at Fermilab. We are planning a program of research and development aimed at integrated systems testing of critical components comprising the front end of the Project X. This program is being undertaken as a key component of the larger Project X R&D program. The successful completion of this program will validate the concept for the Project X front end, thereby minimizing a primary technical risk element within Project X. Integrated systems testing, known as the Project X Injector Experiment (PXIE), will be accomplished with a new test facility under construction at Fermilab and will be completed over the period FY12-16. PXIE will include an H{sup -} ion source, a CW 2.1-MeV RFQ and two superconductive RF (SRF) cryomodules providing up to 25 MeV energy gain at an average beam current of 1 mA (upgradable to 2 mA). Successful systems testing will also demonstrate the viability of novel front end technologies that are expected find applications beyond Project X.

Ostroumov, P.N.; /Argonne; Holmes, S.D.; Kephart, R.D.; Kerby, J.S.; Lebedev, V.A.; Mishra, C.S.; Nagaitsev, S.; Shemyakin, A.V.; Solyak, N.; Stanek, R.P.; /Fermilab; Li, D.; /LBL, Berkeley

2012-05-01T23:59:59.000Z

374

Falls Creek Hydroelectric Project  

SciTech Connect (OSTI)

This project was for planning and construction of a 700kW hydropower project on the Fall River near Gustavus, Alaska.

Gustavus Electric Company; Richard Levitt; DOE Project Officer - Keith Bennett

2007-06-12T23:59:59.000Z

375

Clean Coal Projects (Virginia)  

Broader source: Energy.gov [DOE]

This legislation directs the Virginia Air Pollution Control Board to facilitate the construction and implementation of clean coal projects by expediting the permitting process for such projects.

376

DTE Energy- Commercial New Construction Energy Efficiency Program  

Broader source: Energy.gov [DOE]

DTE Energy offers rebates for commercial facility new construction. Measures eligible for new construction and remodeling incentives encourage an integrated approach to incorporating energy...

377

The Construction Information Gateway Stephen R Lockley, Construction Informatics, Newcastle University  

E-Print Network [OSTI]

The Construction Information Gateway Stephen R Lockley, Construction Informatics, Newcastle University Robert Amor, Building Research Establishment Affiliations: Keith Montague, Construction Industry.K. construction industry by: improving the quality and efficiency of buildings and building projects by sharing

Amor, Robert

378

The Power Systems Development Facility -- Current status  

SciTech Connect (OSTI)

Southern Company Services, Inc. (SCS) has entered into a cooperative agreement with the US Department of Energy (DOE) to build and operate the Power Systems Development Facility (PSDF), currently under construction in Wilsonville, Alabama, 40 miles southeast of Birmingham. The objectives of the PSDF are to develop advanced coal-fired power generation technologies through testing and evaluation of hot gas cleanup systems and other major components at the pilot scale. The performance of components will be assessed and demonstrated in an integrated mode of operation and at a component size readily scaleable to commercial systems. The facility will initially contain five modules: (1) a transport reactor gasifier and combustor, (2) an advanced pressurized fluidized-bed combustion (APFBC) system, (3) a particulate control module, (4) an advanced burner-gas turbine module, and (5) a fuel cell. The five modules will initially be configured into two separate test trains, the transport reactor train (2 tons/hour of coal feed) and the APFBC train (3 tons/hour of coal feed). In addition to a project description, the project design and construction status, preparations for operations, and project test plans are reported in this paper.

Pinkston, T.E.; Maxwell, J.D.; Leonard, R.F.; Vimalchand, P.

1995-11-01T23:59:59.000Z

379

LESSONS LEARNED - STARTUP AND TRANSITION TO OPERATIONS AT THE 200 WEST PUMP AND TREAT FACILITY  

SciTech Connect (OSTI)

This document lists key Lessons Learned from the Startup Team for the 200 West Pump and Treat Facility Project. The Startup Team on this Project was an integrated, multi-discipline team whose scope was Construction Acceptance Testing (CAT), functional Acceptance Testing Procedures (ATP), and procedure development and implementation. Both maintenance and operations procedures were developed. Included in the operations procedures were the process unit operations. In addition, a training and qualification program was also part of the scope.

FINK DE; BERGQUIST GG; BURKE SP

2012-10-03T23:59:59.000Z

380

Projects & Facilities - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearch Welcome to theNews &UserPrivacyGasPrograms » OPA

Note: This page contains sample records for the topic "facility construction project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Projects | Argonne Leadership Computing Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearch Welcome to theNews &UserPrivacyGasPrograms » OPAProjects

382

Architecture, Engineering and Construction Sustainability Report Biannual Sustainability Report  

E-Print Network [OSTI]

Architecture, Engineering and Construction Sustainability Report i Biannual Sustainability Report Projects $5 Million and Over August 2012 Active Projects

Kamat, Vineet R.

383

Time frames for geothermal project development  

SciTech Connect (OSTI)

Geothermal development can generally be broken down into distinct phases: Exploration and Leasing; Project Development And Feasibility Studies; Well Field Development; Project Finance, Construction and Start-up Operations; and Commercial Operations. Each phase represents different levels of cost and risk and different types of management teams that are needed to assess and manage the project and associated risk. Orderly transitions of management at each major phase are needed. Exploration programs are largely science based, the primary focus of the science based investigations should be to: secure the lease position, and develop sufficient information to identify and characterize an economical geothermal resource. Project development specialists build on the exploration data to: pull together a project design, develop a detailed cost estimate; prepare an environmental assessment; and collect all data needed for project financing. Construction specialist build from the development phase to: develop detailed engineering, procure equipment and materials, schedule and manage the facilities construction programs, and start and test the power plant. Operations specialists take over from construction during start-up and are responsible for sustainable and reliable operations of the resource and power generation equipment over the life of the project.

McClain, David W.

2001-04-17T23:59:59.000Z

384

Categorical Exclusion 4565, Waste Management Construction Support  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

FornI Project Title: Waste Management Construction Support (4565) Program or Program Office: Y -12 Site Office Location: Oak Ridge Tennessee Project Description: This work scope is...

385

EA-1985: Virginia Offshore Wind Technology Advancement Project (VOWTAP), 24 nautical miles offshore of Virginia Beach, Virginia  

Broader source: Energy.gov [DOE]

DOE is proposing to fund Virginia Electric and Power Company's Virginia Offshore Wind Technology Advancement Project (VOWTAP). The proposed VOWTAP project consists of design, construction and operation of a 12 megawatt offshore wind facility located approximately 24 nautical miles off the coast of Virginia Beach, VA on the Outer Continental Shelf.

386

Definitive design report: Design report project W-025, Radioactive Mixed Waste (RMW) Land Disposal Facility NON-DRAG-OFF. Revision 1, Volume 1 and 2  

SciTech Connect (OSTI)

The purpose of this report is to describe the definitive design of the Radioactive Mixed Waste (RMW) Non-Drag-Off disposal facility, Project W-025. This report presents a n of the major landfill design features and a discussion of how each of the criteria is addressed in the design. The appendices include laboratory test results, design drawings, and individual analyses that were conducted in support of the design. Revision 1 of this document incorporates design changes resulting from an increase in the required operating life of the W-025 landfill from 2 to 20 years. The rationale for these design changes is described in Golder Associates Inc. 1991a. These changes include (1) adding a 1.5-foot-thick layer of compacted admix directory-under the primary FML on the floor of the landfill to mitigate the effects of possible stress cracking in the primary flexible membrane liner (FML), and (2) increasing the operations layer thickness from two to three feet over the entire landfill area, to provide additional protection for the secondary admix layer against mechanical damage and the effects of freezing and desiccation. The design of the W-025 Landfill has also been modified in response to the results of the EPA Method 9090 chemical compatibility testing program (Golder Associates Inc. 1991b and 1991c), which was completed after the original design was prepared. This program consisted of testing geosynthetic materials and soil/bentonite admix with synthetic leachate having the composition expected during the life of the W-025 Landfill., The results of this program indicated that the polyester geotextile originally specified for the landfill might be susceptible to deterioration. On this basis, polypropylene geotextiles were substituted as a more chemically-resistant alternative. In addition, the percentage of bentonite in the admix was increased to provide sufficiently low permeability to the expected leachate.

Roscha, V.

1994-11-29T23:59:59.000Z

387

Wastewater Construction and Operation Permits (Iowa)  

Broader source: Energy.gov [DOE]

These regulations describe permit requirements for the construction and operation of facilities treating wastewater, and provide separation distances from other water sources.

388

Power Systems Development Facility. Quarterly report, January--March 1996  

SciTech Connect (OSTI)

The objective of this project is to evaluate hot gas particle control technologies using coal-derived gas streams. This will entail the design, construction, installation, and use of a flexible test facility which can operate under realistic gasification and combustion conditions. The major particular control device issues to be addressed include the integration of the particulate control devices into coal utilization systems, on-line cleaning techniques, chemical and thermal degradation of components, fatigue or structural failures, blinding, collection efficiency as a function of particle size, and scale-up of particulate control systems to commercial size. The conceptual design of the facility was extended to include a within scope, phased expansion of the existing Hot Gas Cleanup Test Facility Cooperative Agreement to also address systems integration issues of hot particulate removal in advanced coal-based power generation systems. This expansion to the Hot Gas Cleanup Test Facility is herein referred to as the Power Systems Development Facility (PSDF). The major emphasis during this reporting period was continuing the detailed design of the Foster Wheeler portion of the facility towards completion and integrating the balance-of-plant processes and particulate control devices (PCDs) into the structural and process designs. Substantial progress in construction activities was achieved during the quarter.

NONE

1996-05-01T23:59:59.000Z

389

The Healy clean coal project: An overview  

SciTech Connect (OSTI)

The Healy Clean Coal Project, selected by the US Department of Energy under Round III of the Clean Coal Technology Program is currently in construction. The project is owned and financed by the Alaska Industrial Development and Export Authority (AIDEA), and is cofunded by the US Department of Energy. Construction is scheduled to be completed in August of 1997, with startup activity concluding in December of 1997. Demonstration, testing and reporting of the results will take place in 1998, followed by commercial operation of the facility. The emission levels of NOx, SO{sub 2} and particulates from this 50 megawatt plant are expected to be significantly lower than current standards. The project status, its participants, a description of the technology to be demonstrated, and the operational and performance goals of this project are presented.

Olson, J.B.; McCrohan, D.V. [Alaska Industrial Development and Export Authority, Anchorage, AK (United States)

1997-12-31T23:59:59.000Z

390

Project Scheduling (3) Corequisite  

E-Print Network [OSTI]

) CMGT 111 Construction Materials & Methods Lab (1) CMGT 460 Project Cost Controls (3) FA SP CMGT 320 FASYMBOLS CMGT 417 Project Scheduling (3) Corequisite Offered FALL Only CMGT 240 Intro) CMGT 475 Construction Project Management (3) MATH 108 College Algebra (4) Construction Elective

Barrash, Warren

391

University of Illinois Facilities & Services &Who We Are  

E-Print Network [OSTI]

, the organization offers facility planning, engineering, mainte- nance, construction, custodial services; parking Construction Division ............................................7 Engineering ServicesUniversity of Illinois Facilities & Services &Who We Are What We Do #12;#12;Jack Dempsey Executive

Shim, Moonsub

392

Flathead Electric Cooperative Facility Geothermal Heat Pump System...  

Broader source: Energy.gov (indexed) [DOE]

Flathead Electric Cooperative Facility Geothermal Heat Pump System Upgrade Flathead Electric Cooperative Facility Geothermal Heat Pump System Upgrade Project Will Take Advantage of...

393

User Facilities | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

User Facilities Dev X-Ray Light Sources Neutron Scattering Facilities Nanoscale Science Research Centers (NSRCs) Projects Accelerator & Detector Research & Development Principal...

394

Assessment of the effectiveness of the advanced programmatic risk analysis and management model (apram) as a decision support tool for construction projects  

E-Print Network [OSTI]

……….........44 3.4 Technical Failure States for Conventional Construction System 1……………...45 3.5 Managerial Failure States for Conventional Construction System 2…………….46 3.6 Technical Failure States for Conventional Construction System 2……………...47 3.7 Managerial....1 Probabilities of Different Failure States versus Investment of Residual Budget (CCS 1)…………………………………………………………………..72 4.2 Probabilities of Different Failure States versus Investment of Residual Budget (CCS 2)…………………………………………………………………..72 4...

Imbeah, William Kweku Ansah

2007-09-17T23:59:59.000Z

395

Facility Microgrids  

SciTech Connect (OSTI)

Microgrids are receiving a considerable interest from the power industry, partly because their business and technical structure shows promise as a means of taking full advantage of distributed generation. This report investigates three issues associated with facility microgrids: (1) Multiple-distributed generation facility microgrids' unintentional islanding protection, (2) Facility microgrids' response to bulk grid disturbances, and (3) Facility microgrids' intentional islanding.

Ye, Z.; Walling, R.; Miller, N.; Du, P.; Nelson, K.

2005-05-01T23:59:59.000Z

396

Livingston Solar Canopy Project The Project  

E-Print Network [OSTI]

,000 high efficiency solar panels on canopy structures over two major surface parking areasLivingston Solar Canopy Project The Project: This project entails the installation of more than 40. In conjunction with the existing 1.4 megawatt solar energy facility on this campus, this project will generate

Delgado, Mauricio

397

KRS Chapter 278: Nuclear Power Facilities (Kentucky)  

Broader source: Energy.gov [DOE]

No construction shall commence on a nuclear power facility in the Commonwealth until the Public Service Commission finds that the United States government, through its authorized agency, has...

398

BUILDING PERFORMANCE ENGINEERING DURING CONSTRUCTION  

E-Print Network [OSTI]

1 BUILDING PERFORMANCE ENGINEERING DURING CONSTRUCTION T. Michael Toole1 and Matthew Hallowell2 of building performance engineering tasks on design-bid-build projects are typically provided by entities building construction projects. Twenty four building performance engineering tasks were required

Toole, T. Michael

399

Power systems development facility. Quarterly report, January 1995--March 1995  

SciTech Connect (OSTI)

The objective of this project is to evaluate hot gas particle control technologies using coal-derived gas streams. This will entail the design, construction, installation, and use of a flexible test facility which can operate under realistic gasification and combustion conditions. The major particulate control device issues to be addressed include the integration of the particulate control devices into coal utilization systems, on-line cleaning techniques, chemical and thermal degradation of components, fatigue or structural failures, blinding, collection efficiency as a function of particle size, and scale-up of particulate control systems to commercial size. The conceptual design of the facility was extended to include a within scope, phased expansion of the existing Hot Gas Cleanup Test Facility Cooperative Agreement to also address systems integration issues of hot particulate removal in advanced coal-based power generation systems. This expansion included the consideration of the following modules at the test facility in addition to the original Transport Reactor gas source and Hot Gas Cleanup Units: (1) Carbonizer/Pressurized Circulating Fluidized Bed Gas Source. (2) Hot Gas Cleanup Units to mate to all gas streams. (3) Combustion Gas Turbine. (4) Fuel Cell and associated gas treatment. This expansion to the Hot Gas Cleanup Test Facility is herein referred to as the Power Systems Development Facility (PSDF). The major emphasis during this reporting period was continuing the detailed design of the facility and integrating the particulate control devices (PCDs) into structural and process designs.

NONE

1995-05-01T23:59:59.000Z

400

Power Systems Development Facility. Quarterly report, July--September 1995  

SciTech Connect (OSTI)

The objective of this project is to evaluate hot gas particle control technologies using coal-derived gas streams. This will entail the design, construction, installation, and use of a flexible test facility which can operate under realistic gasification and combustion conditions. The major particulate control device issues to be addressed include the integration of the particulate control devices into coal utilization systems, on-line cleaning techniques, chemical and thermal degradation of components, fatigue or structural failures, blinding, collection efficiency as a fimction of particle size, and scale-up of particulate control systems to commercial size. The conceptual design of the facility was extended to include a within scope, phased expansion of the existing Hot Gas Cleanup Test Facility Cooperative Agreement to also address systems integration issues of hot particulate removal in advanced coal-based power generation systems. This expansion included the consideration of the following modules at the test facility in addition to the original Transport Reactor gas source and hot gas cleanup units: carbonizer/pressurized circulating fluidized bed gas source; hot gas cleanup units to mate to all gas streams; combustion gas turbine; and fuel cell and associated gas treatment. This expansion to the Hot Gas Cleanup Test Facility is herein referred to as the Power Systems Development Facility (PSDF). The major emphasis during this reporting period was continuing the detailed design of the facility towards completion and integrating the balance-of-plant processes and particulate control devices (PCDS) into the structural and process designs. Substantial progress in construction activities was achieved during the quarter. Delivery and construction of the process structural steel is nearing completion. Nearly all equipment are set in its place and the FW equipment and the PCDs are being set in the structure.

NONE

1995-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "facility construction project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Project Fact Sheet Project Update  

E-Print Network [OSTI]

medical and dental centre; shop and café area for students and vacation accommodation centre. The new & Figures: Budget: £51,074,000 Funding Source: Capital Plan Construction Project Programme: Start on Site

402

Subject: Integrated Safety Analysis: Why It Is Appropriate for Fuel Recycling Facilities Project Number: 689Nuclear Energy Institute (NEI) Letter, 9/10/10  

Broader source: Energy.gov [DOE]

Enclosed for your review is a Nuclear Energy Institute white paper on the use of Integrated Safety Analysis (ISA) at U.S. Nuclear Regulatory Commission-licensed recycling facilities. This paper is...

403

Facility Effluent Monitoring Plan for Pacific Northwest National Laboratory Balance-of-Plant Facilities  

SciTech Connect (OSTI)

The Pacific Northwest National Laboratory (PNNL) operates a number of Research & Development (R&D) facilities for the U.S. Department of Energy (DOE) on the Hanford Site. Facility effluent monitoring plans (FEMPs) have been developed to document the facility effluent monitoring portion of the Environmental Monitoring Plan (DOE 2000) for the Hanford Site. Three of PNNL’s R&D facilities, the 325, 331, and 3720 Buildings, are considered major emission points for radionuclide air sampling, and individual FEMPs were developed for these facilities in the past. In addition, a balance-of-plant (BOP) FEMP was developed for all other DOE-owned, PNNL-operated facilities at the Hanford Site. Recent changes, including shutdown of buildings and transition of PNNL facilities to the Office of Science, have resulted in retiring the 3720 FEMP and combining the 331 FEMP into the BOP FEMP. This version of the BOP FEMP addresses all DOE-owned, PNNL-operated facilities at the Hanford Site, excepting the Radiochemical Processing Laboratory, which has its own FEMP because of the unique nature of the building and operations. Activities in the BOP facilities range from administrative to laboratory and pilot-scale R&D. R&D activities include both radioactive and chemical waste characterization, fluid dynamics research, mechanical property testing, dosimetry research, and molecular sciences. The mission and activities for individual buildings are described in Appendix A. Potential radioactive airborne emissions in the BOP facilities are estimated annually using a building inventory-based approach provided in federal regulations. Sampling at individual BOP facilities is based on a potential-to-emit assessment. Some of these facilities are considered minor emission points and thus are sampled routinely, but not continuously, to confirm the low emission potential. One facility, the 331 Life Sciences Laboratory, has a major emission point and is sampled continuously. Sampling systems are located downstream of control technologies and just before discharge to the atmosphere. The need for monitoring airborne emissions of hazardous chemicals is established in the Hanford Site Air Operating Permit and in notices of construction. Based on the current potential-to-emit, the Hanford Site Air Operating Permit does not contain general monitoring requirements for BOP facilities. However, the permit identifies monitoring requirements for specific projects and buildings. Needs for future monitoring will be established by future permits issued pursuant to the applicable state and federal regulations. A number of liquid-effluent discharge systems serve the BOP facilities: sanitary sewer, process sewer, retention process sewer, and aquaculture system. Only the latter system discharges to the environment; the rest either discharge to treatment plants or to long-term storage. Routine compliance sampling of liquid effluents is only required at the Environmental Molecular Sciences Laboratory. Liquid effluents from other BOP facilities may be sampled or monitored to characterize facility effluents or to investigate discharges of concern. Effluent sampling and monitoring for the BOP facilities depends on the inventories, activities, and environmental permits in place for each facility. A description of routine compliance monitoring for BOP facilities is described in the BOP FEMP.

Ballinger, Marcel Y.; Gervais, Todd L.

2004-11-15T23:59:59.000Z

404

Facility Interface Capability Assessment (FICA) summary report  

SciTech Connect (OSTI)

The Office of Civilian Radioactive Waste Management (OCRWM) is responsible for developing the Civilian Radioactive Waste Management System (CRWMS) to accept spent nuclear fuel from the commercial facilities. In support of the development of the CRWMS, OCRWM sponsored the Facility Interface Capability Assessment (FICA) project. The objective of this project was to assess the capability of each commercial facility to handle various spent nuclear fuel shipping casks. The purpose of this report is to summarize the results of the facility assessments completed within the FICA project. The project was conducted in two phases. During Phase I, the data items required to complete the facility assessments were identified and the data base for the project was created. During Phase II, visits were made to 122 facilities on 76 sites to collect data and information, the data base was updated, and assessments of the cask-handling capabilities at each facility were performed.

Viebrock, J.M.; Mote, N. [Nuclear Assurance Corp., Norcross, GA (United States); Pope, R.B. [ed.] [Oak Ridge National Lab., TN (United States)

1992-05-01T23:59:59.000Z

405

Conceptual Design Report for Remote-Handled Low-Level Waste Disposal Facility  

SciTech Connect (OSTI)

This conceptual design report addresses development of replacement remote-handled low-level waste disposal capability for the Idaho National Laboratory. Current disposal capability at the Radioactive Waste Management Complex is planned until the facility is full or until it must be closed in preparation for final remediation (approximately at the end of Fiscal Year 2017). This conceptual design report includes key project assumptions; design options considered in development of the proposed onsite disposal facility (the highest ranked alternative for providing continued uninterrupted remote-handled low level waste disposal capability); process and facility descriptions; safety and environmental requirements that would apply to the proposed facility; and the proposed cost and schedule for funding, design, construction, and operation of the proposed onsite disposal facility.

Lisa Harvego; David Duncan; Joan Connolly; Margaret Hinman; Charles Marcinkiewicz; Gary Mecham

2010-10-01T23:59:59.000Z

406

Status and Plans for an SRF Accelerator Test Facility at Fermilab  

E-Print Network [OSTI]

A superconducting RF accelerator test facility is currently under construction at Fermilab. The accelerator will consist of an electron gun, 40 MeV injector, beam acceleration section consisting of 3 TTF-type or ILC-type cryomodules, and multiple downstream beam lines for testing diagnostics and performing beam experiments. With 3 cryomodules installed this facility will initially be capable of generating an 810 MeV electron beam with ILC beam intensity. The facility can accommodate up to 6 cryomodules for a total beam energy of 1.5 GeV. This facility will be used to test SRF cryomodules under high intensity beam conditions, RF power equipment, instrumentation, and LLRF and controls systems for future SRF accelerators such as the ILC and Project-X. This paper describes the current status and overall plans for this facility.

Church, M; Nagaitsev, S

2012-01-01T23:59:59.000Z

407

Walla Walla River Fish Passage Operations Project : Annual Progress Report October 2007 - September 2008.  

SciTech Connect (OSTI)

In the late 1990s, the Confederated Tribes of the Umatilla Indian Reservation, Oregon Department of Fish and Wildlife, and Washington Department of Fish and Wildlife, along with many other agencies, began implementing fisheries restoration activities in the Walla Walla Basin. An integral part of these efforts is to alleviate the inadequate fish migration conditions in the basin. Migration concerns are being addressed by removing diversion structures, constructing fish passage facilities, implementing minimum instream flow requirements, and providing trap and haul efforts when needed. The objective of the Walla Walla River Fish Passage Operations Project is to increase the survival of migrating adult and juvenile salmonids in the Walla Walla River basin. The project is responsible for coordinating operation and maintenance of ladders, screen sites, bypasses, trap facilities, and transportation equipment. In addition, the project provides technical input on passage and trapping facility design, operation, and criteria. Operation of the various passage facilities and passage criteria guidelines are outlined in an annual operations plan that the project develops. Beginning in March of 2007, two work elements from the Walla Walla Fish Passage Operations Project were transferred to other projects. The work element Enumeration of Adult Migration at Nursery Bridge Dam is now conducted under the Walla Walla Basin Natural Production Monitoring and Evaluation Project and the work element Provide Transportation Assistance is conducted under the Umatilla Satellite Facilities Operation and Maintenance Project. Details of these activities can be found in those project's respective annual reports.

Bronson, James P.; Duke, Bill; Loffink, Ken

2008-12-30T23:59:59.000Z

408

Optimal Conventional and Semi-Natural Treatments for the Upper Yakima Spring Chinook Salmon Supplementation Project; Treatment Definitions and Descriptions and Biological Specifications for Facility Design, 1995-1999 Final Report.  

SciTech Connect (OSTI)

This report describes the Yakima Fisheries Project facilities (Cle Elum Hatchery and acclimation satellites) which provide the mechanism to conduct state-of-the-art research for addressing questions about spring chinook supplementation strategies. The definition, descriptions, and specifications for the Yakima spring chinook supplementation program permit evaluation of alternative fish culture techniques that should yield improved methods and procedures to produce wild-like fish with higher survival that can be used to rebuild depleted spring chinook stocks of the Columbia River Basin. The definition and description of three experimental treatments, Optimal Conventional (OCT), Semi-Natural (SNT), Limited Semi-Natural (LSNT), and the biological specifications for facilities have been completed for the upper Yakima spring chinook salmon stock of the Yakima Fisheries Project. The task was performed by the Biological Specifications Work Group (BSWG) represented by Yakama Indian Nation, Washington Department of Fish and Wildlife, National Marine Fisheries Service, and Bonneville Power Administration. The control and experimental variables of the experimental treatments (OCT, SNT, and LSNT) are described in sufficient detail to assure that the fish culture facilities will be designed and operated as a production scale laboratory to produce and test supplemented upper Yakima spring chinook salmon. Product specifications of the treatment groups are proposed to serve as the generic templates for developing greater specificity for measurements of product attributes. These product specifications will be used to monitor and evaluate treatment effects, with respect to the biological response variables (post release survival, long-term fitness, reproductive success and ecological interactions).

Hager, Robert C. (Hatchery Operations Consulting); Costello, Ronald J. (Mobrand Biometrics, Inc., Vashon Island, WA)

1999-10-01T23:59:59.000Z

409

HYTEST Phase I Facility Commissioning and Modeling  

SciTech Connect (OSTI)

The purpose of this document is to report the first year accomplishments of two coordinated Laboratory Directed Research and Development (LDRD) projects that utilize a hybrid energy testing laboratory that couples various reactors to investigate system reactance behavior. This work is the first phase of a series of hybrid energy research and testing stations - referred to hereafter as HYTEST facilities – that are planned for construction and operation at the Idaho National Laboratory (INL). A HYTEST Phase I facility was set up and commissioned in Bay 9 of the Bonneville County Technology Center (BCTC). The purpose of this facility is to utilize the hydrogen and oxygen that is produced by the High Temperature Steam Electrolysis test reactors operating in Bay 9 to support the investigation of kinetic phenomena and transient response of integrated reactor components. This facility provides a convenient scale for conducting scoping tests of new reaction concepts, materials performance, new instruments, and real-time data collection and manipulation for advance process controls. An enclosed reactor module was assembled and connected to a new ventilation system equipped with a variable-speed exhaust blower to mitigate hazardous gas exposures, as well as contract with hot surfaces. The module was equipped with a hydrogen gas pump and receiver tank to supply high quality hydrogen to chemical reactors located in the hood.

Lee P. Shunn; Richard D. Boardman; Shane J. Cherry; Craig G. Rieger

2009-09-01T23:59:59.000Z

410

A. Dias and P.G. Ioannou Company and Project Evaluation Model for Privately-Promoted Infrastructure Projects Page 1 of 16  

E-Print Network [OSTI]

that they should not own and/or operate certain types of facilities because of their less effective utilization By Antonio Dias, Jr.,1 A.M. ASCE, and Photios G. Ioannou,2 A.M. ASCE ABSTRACT: The decline in government (Build- Operate-Own) projects where private-sector companies (including construction companies) become

411

EA-1957: Cabin Creek Biomass Facility, Placer County, California  

Broader source: Energy.gov [DOE]

DOE is proposing to provide funding to Placer County, California to construct and operate a two-megawatt wood-to-energy biomass facility at the Eastern Regional Materials Recovery Facility (MRF) and Landfill in unincorporated Placer County. The wood?to?energy biomass facility would use a gasification technology. The fuel supply for the proposed project would be solely woody biomass, derived from a variety of sources including hazardous fuels residuals, forest thinning and harvest residuals, and Wildland Urban Interface sourced waste materials from residential and commercial property defensible space clearing and property management activities. NOTE: After review of a final California Environmental Quality Act Environmental Impact Report, DOE has determined that preparation of an EA is not necessary. The propsed action fits within DOE's categorical exclusion B5.20. Therefore, this EA is cancelled.

412

Facility Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

Establishes facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation.

1996-10-24T23:59:59.000Z

413

Facility Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

Establishes facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation.

1995-11-16T23:59:59.000Z

414

LA-UR-96-3440 Revised 2/11/97 THE ATLAS PROJECT  

E-Print Network [OSTI]

, and S.M. Younger Los Alamos National Laboratory Los Alamos, NM. 87545 Abstract Atlas is a facility being and Management Program2. Atlas will be the first of several new facilities constructed to support this ProgramLA-UR-96-3440 Revised 2/11/97 1 THE ATLAS PROJECT W.M. Parsons, E.O. Ballard, R.R. Bartsch, J

415

300 Area Liquid Effluent Facilities (LEF) Authorization Envelope  

SciTech Connect (OSTI)

The purpose of this document is to establish the facility Authorization Envelope (AE) for the 300 Liquid Effluent Facilities (LEP )Project and identify the requirements related to the maintenance of the AE as Specified in HNF-PRO-2701, Authorization Envelope and Authorization Agreement. The 300 LEF Project consists of two separate facilities operating under one management organization. They are the 310 Facility and the 340 Facility. The AE documents the limits of operations for all 300 LEF Project activities.

WRIGHT, E.J.; STORDEUR, R.T.

2000-04-07T23:59:59.000Z

416

FEMP Helps Federal Facilities Develop Large-Scale Renewable Energy...  

Energy Savers [EERE]

FEMP Helps Federal Facilities Develop Large-Scale Renewable Energy Projects FEMP Helps Federal Facilities Develop Large-Scale Renewable Energy Projects August 21, 2013 - 12:00am...

417

Constructive physics  

E-Print Network [OSTI]

Discussion of the necessity to use the constructive mathematics as the formalism of quantum theory for systems with many particles.

Yuri Ozhigov

2008-05-19T23:59:59.000Z

418

Electrochemical construction  

DOE Patents [OSTI]

An electrochemical cell construction features a novel co-extruded plastic electrode in an interleaved construction with a novel integral separator-spacer. Also featured is a leak and impact resistant construction for preventing the spill of corrosive materials in the event of rupture.

Einstein, Harry (Springfield, NJ); Grimes, Patrick G. (Westfield, NJ)

1983-08-23T23:59:59.000Z

419

International Facility Management Association Strategic Facility  

Broader source: Energy.gov (indexed) [DOE]

Facility Management Association Strategic Facility Planning: A WhIte PAPer Strategic Facility Planning: A White Paper on Strategic Facility Planning 2009 | International...

420

Effectiveness of 4D construction modeling in detecting time-space conflicts of construction sites  

E-Print Network [OSTI]

This research investigated whether 4D construction model effectively helps project participants on construction sites in detecting time-space conflicts in the schedule. Previous researchers on construction space management typically modeled space...

Nigudkar, Narendra Shriniwas

2005-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "facility construction project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Cold vacuum drying facility design requirements  

SciTech Connect (OSTI)

This document provides the detailed design requirements for the Spent Nuclear Fuel Project Cold Vacuum Drying Facility. Process, safety, and quality assurance requirements and interfaces are specified.

IRWIN, J.J.

1999-07-01T23:59:59.000Z

422

The Mixed Waste Management Facility monthly report, December 1994  

SciTech Connect (OSTI)

This report contains cost and planning schedules, and detailed information on project management at the LLNL facility.

Streit, R.

1995-01-01T23:59:59.000Z

423

End points for facility deactivation  

SciTech Connect (OSTI)

DOE`s Office of Nuclear Material and Facility Stabilization mission includes deactivating surplus nuclear facilities. Each deactivation project requires a systematic and explicit specification of the conditions to be established. End Point methods for doing so have been field developed and implemented. These methods have worked well and are being made available throughout the DOE establishment.

Szilagyi, A.P. [Dept. of Energy, Germantown, MD (United States); Negin, C.A. [Oak Technologies, Washington Grove, MD (United States); Stefanski, L.D. [Westinghouse Hanford, Richland, WA (United States)

1996-12-31T23:59:59.000Z

424

Construction and operation of the Howard T. Ricketts Laboratory.  

SciTech Connect (OSTI)

The National Institutes of Health (NIH) has proposed to partially fund the construction of the Howard T. Ricketts (HTR) regional biocontainment laboratory (RBL) by the University of Chicago at the U.S. Department of Energy's (DOE's) Argonne National Laboratory in Argonne, Illinois. The HTR Laboratory (HTRL) would be constructed, owned, and operated by the University of Chicago on land leased to it by DOE. The preferred project site is located north of Eastwood Drive and west of Outer Circle Road and is near the biological sciences building. This environmental assessment addresses the potential environmental effects resulting from construction and operation of the proposed facility. The proposed project involves the construction of a research facility with a footprint up to approximately 44,000 ft{sup 2} (4,088 m{sup 2}). The proposed building would house research laboratories, including Biosafety Level 2 and 3 biocontainment space, animal research facilities, administrative offices, and building support areas. The NIH has identified a need for new facilities to support research on potential bioterrorism agents and emerging and re-emerging infectious diseases, to protect the nation from such threats to public health. This research requires specialized laboratory facilities that are designed, managed, and operated to protect laboratory workers and the surrounding community from accidental exposure to agents. The proposed HTRL would provide needed biocontainment space to researchers and promote the advancement of knowledge in the disciplines of biodefense and emerging and re-emerging infectious diseases. Several alternatives were considered for the location of the proposed facility, as well as a no action alternative. The preferred alternative includes the construction of a research facility, up to 44,000 ft{sup 2} (4,088 m{sup 2}), at Argonne National Laboratory, a secure government location. Potential impacts to natural and cultural resources have been evaluated in this document. The proposed activities would result in the conversion of approximately 4 acres (2 ha) of old field and open woodland for the proposed facility and landscaped areas. Impacts of the proposed project on the following resources would be minor or negligible: human health, socioeconomics, air quality, noise levels, water quality, waste management, land use, the visual environment, cultural resources, soils, terrestrial biota, wetlands or aquatic biota, threatened and endangered species, transportation, utilities and services, and environmental justice. This environmental assessment has been completed to satisfy the requirements of the National Environmental Policy Act of 1969 and has been prepared in accordance with NIH guidelines and in coordination with federal, state, and local agency requirements. On the basis of the results of this assessment, impacts to environmental resources from the proposed project would be minor or negligible, provided that the project is implemented in accordance with the impact avoidance and mitigation measures described herein.

Van Lonkhuyzen, R.; Stull, L.; Butler, J.; Chang, Y.; Allison, T.; O'Rourke, D.

2006-01-01T23:59:59.000Z

425

EA-1876: Pennsylvania State Energy Program’s Conergy Navy Yard Solar Project, Philadelphia, Pennsylvania  

Broader source: Energy.gov [DOE]

Conergy Projects, Inc. (Conergy) proposes to construct and operate a 1.251 megawatt (MW) solar photovoltaic (PV) facility at the former Navy Yard site in south Philadelphia in Pennsylvania’s Philadelphia County to provide up to 1,596 MW hours of electricity per year, feeding directly into the distribution grid.

426

NSTX Upgrade Project Project Execution Plan  

E-Print Network [OSTI]

NSTX Upgrade Project Project Execution Plan 6 PPPL Laboratory Director S.Prager Deputy Director.Gentile Centerstack Dsgn & Fab J. Chrzanowski NSTX Upgrade Project Manager R. Strykowsky Deputy and Construction Manager E. Perry Project Controls S. Langish NSTXCenterstack Manager L. Dudek NSTXNeutral Beam Manager T

Princeton Plasma Physics Laboratory

427

West Valley Demonstration Project Site Environmental Report Calendar Year 2000  

SciTech Connect (OSTI)

The annual site environmental monitoring report for the West Valley Demonstration Project nuclear waste management facility.

NONE

2001-08-31T23:59:59.000Z

428

The Fast-spectrum Transmutation Experimental Facility FASTEF: Main design achievements (part 2: Reactor building design and plant layout) within the FP7-CDT collaborative project of the European Commission  

SciTech Connect (OSTI)

MYRRHA (Multi-purpose hybrid Research Reactor for High-tech Applications) is the flexible experimental accelerator-driven system (ADS) in development at SCK-CEN in replacement of its material testing reactor BR2. SCK-CEN in association with 17 European partners from industry, research centres and academia, responded to the FP7 (Seventh Framework Programme) call from the European Commission to establish a Central Design Team (CDT) for the design of a Fast Spectrum Transmutation Experimental Facility (FASTEF) able to demonstrate efficient transmutation and associated technology through a system working in subcritical and/or critical mode. The project has started on April 01, 2009 for a period of three years. In this paper, we present the latest concept of the reactor building and the plant layout. The FASTEF facility has evolved quite a lot since the intermediate reporting done at the ICAPP'10 and ICAPP'11 conferences 1,2. Many iterations have been performed to take into account the safety requirements. The present configuration enables an easy operation and maintenance of the facility, including the possibility to change large components of the reactor. In a companion paper 3, we present the latest configuration of the reactor core and primary system. (authors)

De Bruyn, D.; Engelen, J. [Belgian Nuclear Research Centre SCK CEN, Boeretang 200, 2400 Mol (Belgium); Ortega, A.; Aguado, M. P. [Empresarios Agrupados A.I.E., Magallanes 3, 28015 Madrid (Spain)

2012-07-01T23:59:59.000Z

429

New Mexico State University campus geothermal demonstration project: an engineering construction design and economic evaluation. Final technical report, February 25, 1980-April 24, 1981  

SciTech Connect (OSTI)

A detailed engineering construction cost estimate and economic evaluation of low temperature geothermal energy application for the New Mexico State University Campus are provided. Included are results from controlled experiments to acquire design data, design calculations and parameters, detailed cost estimates, and a comprehensive cost and benefit analysis. Detailed designs are given for a system using 140 to 145{sup 0}F geothermal water to displace 79 billion Btu per year of natural gas now being burned to generate steam. This savings represents a displacement of 44 to 46 percent of NMSU central plant natural gas consumption, or 32 to 35 percent of total NMSU natural gas consumption. The report forms the basis for the system construction phase with work scheduled to commence in July 1981, and target on-stream data of February 1982.

Cunniff, R.A.; Ferguson, E.; Archey, J.

1981-07-01T23:59:59.000Z

430

CW Room Temperature Re-Buncher for the Project X Front End  

SciTech Connect (OSTI)

At Fermilab there is a plan to construct the Project X Injector Experiment (PXIE) facility - a prototype of the front end of the Project X, a multi-MW proton source based on superconducting linac. The construction and successful operations of this facility will validate the concept for the Project X front end, thereby minimizing the primary technical risk element within the Project. The room temperature front end of the linac contains an ion source, an RFQ accelerator and a Medium Energy Beam Transport (MEBT) section comprising a high bandwidth bunch selective chopper. The MEBT length is about 10 m, so three re-bunching CW cavities are used to support the beam longitudinal dynamics. The paper reports a RF design of the re-bunchers along with preliminary beam dynamic and thermal analysis of the cavities.

Romanov, Gennady; Awida, Mohamed H.; Chen, Meiyu; Gonin, Ivan V.; Kazakov, Sergey; Kostin, Roman; Lebedev, Valeri; Solyak, Nikolay; Yakovlev, Vyacheslav P.; /Fermilab

2012-05-09T23:59:59.000Z

431

Construction Certifications  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Certifications Individual Permit: Construction Certifications Enhanced control measures were designed and installed at 67 Sites in 42 SMAs in 2012. Contact Environmental...

432

Radioactive Waste Management at the New Conversion Facility of 'TVEL'{sup R} Fuel Company - 13474  

SciTech Connect (OSTI)

The project on the new conversion facility construction is being implemented by Joint Stock Company (JSC) 'Siberian Group of Chemical Enterprises' (SGChE) within TVEL{sup R} Fuel Company. The objective is to construct the up-to-date facility ensuring the industrial and environmental safety with the reduced impact on the community and environment in compliance with the Russian new regulatory framework on radioactive waste (RW) management. The history of the SGChE development, as well as the concepts and approaches to RW management implemented by now are shown. The SGChE future image is outlined, together with its objectives and concept on RW management in compliance with the new act 'On radioactive waste management' adopted in Russia in 2011. Possible areas of cooperation with international companies are discussed in the field of RW management with the purpose of deploying the best Russian and world practices on RW management at the new conversion facility. (authors)

Indyk, S.I.; Volodenko, A.V. [JSC 'TVEL', Russia, Moscow, 49 Kashirskoye Shosse, 115409 (Russian Federation)] [JSC 'TVEL', Russia, Moscow, 49 Kashirskoye Shosse, 115409 (Russian Federation); Tvilenev, K.A.; Tinin, V.V.; Fateeva, E.V. [JSC 'Siberian Group of Chemical Enterprises', Russia, Seversk, 1 Kurchatov Street, 636000 (Russian Federation)] [JSC 'Siberian Group of Chemical Enterprises', Russia, Seversk, 1 Kurchatov Street, 636000 (Russian Federation)

2013-07-01T23:59:59.000Z

433

Advanced conceptual design report: T Plant secondary containment and leak detection upgrades. Project W-259  

SciTech Connect (OSTI)

The T Plant facilities in the 200-West Area of the Hanford site were constructed in the early 1940s to produce nuclear materials in support of national defense activities. T Plant includes the 271-T facility, the 221-T facility, and several support facilities (eg, 2706-T), utilities, and tanks/piping systems. T Plant has been recommended as the primary interim decontamination facility for the Hanford site. Project W-259 will provide capital upgrades to the T Plant facilities to comply with Federal and State of Washington environmental regulations for secondary containment and leak detection. This document provides an advanced conceptual design concept that complies with functional requirements for the T Plant Secondary Containment and Leak Detection upgrades.

Hookfin, J.D.

1995-05-12T23:59:59.000Z

434

Power Systems Development Facility. Quarterly report, July 1--September 30, 1996  

SciTech Connect (OSTI)

This quarterly technical progress report summarizes the work completed during the third quarter of a project entitled Hot Gas Cleanup Test Facility for Gasification and Pressurized Combustion. The objective of this project is to evaluate hot gas particle control technologies using coal-derived gas streams. This will entail the design, construction, installation, and use of a flexible test facility which can operate under realistic gasification and combustion conditions. The major particulate control device issues to be addressed include the integration of the particulate control devices into coal utilization systems, on-line cleaning techniques, chemical and thermal degradation of components, fatigue or structural failures, blinding, collection efficiency as a function of particle size, and scale-up of particulate control systems to commercial size. The conceptual design of the facility was extended to include a within scope, phase expansion of the existing Hot Gas Cleanup Test Facility Cooperative Agreement to also address systems integration issues of hot particulate removal in advanced coal-based power generation systems. This expansion included the consideration of the following modules at the test facility in addition to the original Transport Reactor gas source and Hot Gas Cleanup Units: carbonizer/pressurized circulating fluidized bed gas source; hot gas cleanup units to mate to all gas streams; combustion gas turbine; and fuel cell and associated gas treatment. This expansion to the Hot Gas Cleanup Test Facility is herein referred to as the Power Systems Development Facility (PSDF).

NONE

1996-12-31T23:59:59.000Z

435

North Dakota Energy Conversion and Transmission Facility Siting Act (North Dakota)  

Broader source: Energy.gov [DOE]

This chapter aims to ensure that the location, construction, and operation of energy conversion facilities and transmission facilities will produce minimal adverse effects on the environment and...

436

PARTNERING, LEAN CONSTRUCTION AND HEALTH AND SAFETY WORK ON THE CONSTRUCTION SITE: CO-PLAYERS OR  

E-Print Network [OSTI]

PARTNERING, LEAN CONSTRUCTION AND HEALTH AND SAFETY WORK ON THE CONSTRUCTION SITE: CO Research Institute/Aalborg University, Hřrsholm, Denmark (stg@sbi.dk) Each new construction project the construction process and the specific health and safety work on the construction site must therefore also

Hansen, René Rydhof

437

Zachary-Fort Lauderdale pipeline construction and conversion project: final supplement to final environmental impact statement. Docket No. CP74-192  

SciTech Connect (OSTI)

This Final Supplement to the Final Environmental Impact Statement (Final Supplement) evaluates the economic, engineering, and environmental aspects of newly developed alternatives to an abandonment/conversion project proposed by Florida Gas Transmission Company (Florida Gas). It also updates the staff's previous FEIS and studies revisions to the original proposal. Wherever possible, the staff has adopted portions of its previous FEIS in lieu of reprinting portions of that analysis which require no change. 60 references, 8 figures, 35 tables.

None

1980-05-01T23:59:59.000Z

438

Facility Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Order establishes facility and programmatic safety requirements for Department of Energy facilities, which includes nuclear and explosives safety design criteria, fire protection, criticality safety, natural phenomena hazards mitigation, and the System Engineer Program. Cancels DOE O 420.1A. DOE O 420.1B Chg 1 issued 4-19-10.

2005-12-22T23:59:59.000Z

439

Waste Receiving and Processing Facility Module 2A: Advanced Conceptual Design Report. Volume 2  

SciTech Connect (OSTI)

This volume presents the Total Estimated Cost (TEC) for the WRAP (Waste Receiving and Processing) 2A facility. The TEC is $81.9 million, including an overall project contingency of 25% and escalation of 13%, based on a 1997 construction midpoint. (The mission of WRAP 2A is to receive, process, package, certify, and ship for permanent burial at the Hanford site disposal facilities the Category 1 and 3 contact handled low-level radioactive mixed wastes that are currently in retrievable storage, and are forecast to be generated over the next 30 years by Hanford, and waste to be shipped to Hanford site from about 20 DOE sites.)

Not Available

1994-03-01T23:59:59.000Z

440

Resource Conservation and Recovery Act ground-water monitoring projects for Hanford facilities: Progress report for the period October 1 to December 31, 1989  

SciTech Connect (OSTI)

This is Volume 1 of a two-volume document that describes the progress of 15 Hanford Site ground-water monitoring projects for the period October 1 to December 31, 1989. This volume discusses the projects. The work described in this document is conducted by the Pacific Northwest Laboratory under the management of Westinghouse Hanford Company for the US Department of Energy. Concentrations of ground-water constituents are compared to federal drinking water standards throughout this document for reference purposes. All drinking water supplied from the samples aquifer meets regulatory standards for drinking water quality. 51 refs., 35 figs., 86 tabs.

Smith, R.M.; Bates, D.J.; Lundgren, R.E. (eds.)

1990-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "facility construction project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Spent Nuclear Fuel (SNF) Cold Vacuum Drying (CVD) Facility Operations Manual  

SciTech Connect (OSTI)

This document provides the Operations Manual for the Cold Vacuum Drying Facility (CVDF). The Manual was developed in conjunction with HNF-553, Spent Nuclear Fuel Project Final Safety Analysis Report Annex B--Cold Vacuum Drying Facility. The HNF-SD-SNF-DRD-002, 1999, Cold Vacuum Drying Facility Design Requirements, Rev. 4, and the CVDF Final Design Report. The Operations Manual contains general descriptions of all the process, safety and facility systems in the CVDF, a general CVD operations sequence and references to the CVDF System Design Descriptions (SDDs). This manual has been developed for the SNFP Operations Organization and shall be updated, expanded, and revised in accordance with future design, construction and startup phases of the CVDF until the CVDF final ORR is approved.

IRWIN, J.J.

1999-07-02T23:59:59.000Z

442

Solar Energy Research Center Instrumentation Facility  

SciTech Connect (OSTI)

SOLAR ENERGY RESEARCH CENTER INSTRUMENTATION FACILITY The mission of the Solar Energy Research Center (UNC SERC) at the University of North Carolina at Chapel Hill (UNC-CH) is to establish a world leading effort in solar fuels research and to develop the materials and methods needed to fabricate the next generation of solar energy devices. We are addressing the fundamental issues that will drive new strategies for solar energy conversion and the engineering challenges that must be met in order to convert discoveries made in the laboratory into commercially available devices. The development of a photoelectrosynthesis cell (PEC) for solar fuels production faces daunting requirements: (1) Absorb a large fraction of sunlight; (2) Carry out artificial photosynthesis which involves multiple complex reaction steps; (3) Avoid competitive and deleterious side and reverse reactions; (4) Perform 13 million catalytic cycles per year with minimal degradation; (5) Use non-toxic materials; (6) Cost-effectiveness. PEC efficiency is directly determined by the kinetics of each reaction step. The UNC SERC is addressing this challenge by taking a broad interdisciplinary approach in a highly collaborative setting, drawing on expertise across a broad range of disciplines in chemistry, physics and materials science. By taking a systematic approach toward a fundamental understanding of the mechanism of each step, we will be able to gain unique insight and optimize PEC design. Access to cutting-edge spectroscopic tools is critical to this research effort. We have built professionally-staffed facilities equipped with the state-of the-art instrumentation funded by this award. The combination of staff, facilities, and instrumentation specifically tailored for solar fuels research establishes the UNC Solar Energy Research Center Instrumentation Facility as a unique, world-class capability. This congressionally directed project funded the development of two user facilities: TASK 1: SOLAR DEVICE FABRICATION LABORATORY DEVELOPMENT The space allocated for this laboratory was �¢����shell space�¢��� that required an upfit in order to accommodate nano-fabrication equipment in a quasi-clean room environment. This construction project (cost $279,736) met the non-federal cost share requirement of $250,000 for this award. The central element of the fabrication laboratory is a new $400,000+ stand-alone system, funded by other sources, for fabricating and characterizing photovoltaic devices, in a state-of-the-art nanofabrication environment. This congressionally directed project also included the purchase of an energy dispersive x-ray analysis (EDX) detector for a pre-existing transmission electron microscope (TEM). This detector allows elemental analysis and elemental mapping of materials used to fabricate solar energy devices which is a key priority for our research center. TASK 2: SOLAR ENERGY SPECTROSCOPY LABORATORY DEVELOPMENT (INSTRUMENTATION) This laboratory provides access to modern spectroscopy and photolysis instrumentation for characterizing devices, materials and components on time scales ranging from femtoseconds to seconds and for elucidating mechanisms. The goals of this congressionally directed project included the purchase and installation of spectroscopy and photolysis instrumentation that would substantially and meaningfully enhance the capabilities of this laboratory. Some changes were made to the list of equipment proposed in the original budget. These changes did not represent a change in scope, approach or aims of this project. All of the capabilities and experiments represented in the original budget were maintained. The outcome of this Congressionally Directed Project has been the development of world-class fabrication and spectroscopy user facilities for solar fuels research at UNC-CH. This award has provided a significant augmentation of our pre-existing instrumentation capabilities which were funded by earlier UNC SERC projects, including the Energy Frontier

Meyer, Thomas, J.; Papanikolas, John, P.

2011-11-11T23:59:59.000Z

443

Mascoma: Frontier Biorefinery Project  

Broader source: Energy.gov [DOE]

This project involves the construction and operation of a biorefinery that produces ethanol and other co-products from cellulosic materials through advanced consolidated bioprocessing.

444

Final Project Report  

SciTech Connect (OSTI)

This project pursued innovations to improve energy efficiency and indoor environmental quality (IEQ) in commercial and residential buildings. For commercial buildings, the project developed a testbed for “intelligent nested environmental systems technologies (iNEST),” which monitor and control energy flows and IEQ across a cascade of spaces from individuals’ desktops to office suites to floors to whole buildings. An iNEST testbed was constructed at Syracuse University and was used to assess the use of devices such as personal badges and CO2 sensors to study how reduced energy use and improved IEQ could be achieved. For residential buildings, resources were targeted in support of DoE’s Builders Challenge Program and to recruit Syracuse, NY builders. Three homes in Syracuse’s Near Westside neighborhood were also registered under the program by Syracuse University team, with an additional home registered by one of the builders. Findings from the work at the iNEST testbed facility, and results from other related projects were disseminated through Syracuse Center of Excellence in Environmental and Energy Systems (SyracuseCoE) 2008 Annual Symposium, the 9th International Healthy Buildings 2009 Conference & Exhibition, and through SyracuseCoE’s website and eNewsletters to inform the broader community of researchers, designers and builders. These public communication activities helped enhance the understanding of high performance buildings and facilitate further market acceptance.

Bogucz, E A

2010-12-13T23:59:59.000Z

445

EIS-0382: Mesaba Energy Project Itasca County, Minnesota  

Broader source: Energy.gov [DOE]

NOTE: All DOE funding has been expended. This EIS evalutes the environmental impacts of a proposal to construct and demonstrate a commercial utility-scale next-generation Integrated Gasification Combined Cycle (IGCC) electric power generating facility having a capacity of 606 MWe (net). It will incorporate over 1,600 design and operational lessons learned from the successful but smaller-scale 262 MWe (net) Wabash River Coal Gasification Repowering Project, located in Terre Haute, Indiana.

446

Design, Construction and Test of Cryogen-Free HTS Coil Structure  

SciTech Connect (OSTI)

This paper will describe design, construction and test results of a cryo-mechanical structure to study coils made with the second generation High Temperature Superconductor (HTS) for the Facility for Rare Isotope Beams (FRIB). A magnet comprised of HTS coils mounted in a vacuum vessel and conduction-cooled with Gifford-McMahon cycle cryocoolers is used to develop and refine design and construction techniques. The study of these techniques and their effect on operations provides a better understanding of the use of cryogen free magnets in future accelerator projects. A cryogen-free, superconducting HTS magnet possesses certain operational advantages over cryogenically cooled, low temperature superconducting magnets.

Hocker, H.; Anerella, M.; Gupta, R.; Plate, S.; Sampson, W.; Schmalzle, J.; Shiroyanagi, Y.

2011-03-28T23:59:59.000Z

447

Establishment of a facility for intrusive characterization of transuranic waste at the Nevada Test Site  

SciTech Connect (OSTI)

This paper describes design and construction, project management, and testing results associated with the Waste Examination Facility (WEF) recently constructed at the Nevada Test Site (NTS). The WEF and associated systems were designed, procured, and constructed on an extremely tight budget and within a fast track schedule. Part 1 of this paper focuses on design and construction activities, Part 2 discusses project management of WEF design and construction activities, and Part 3 describes the results of the transuranic (TRU) waste examination pilot project conducted at the WEF. In Part 1, the waste examination process is described within the context of Waste Isolation Pilot Plant (WIPP) characterization requirements. Design criteria are described from operational and radiological protection considerations. The WEF engineered systems are described. These systems include isolation barriers using a glove box and secondary containment structure, high efficiency particulate air (HEPA) filtration and ventilation systems, differential pressure monitoring systems, and fire protection systems. In Part 2, the project management techniques used for ensuring that stringent cost/schedule requirements were met are described. The critical attributes of these management systems are described with an emphasis on team work. In Part 3, the results of a pilot project directed at performing intrusive characterization (i.e., examination) of TRU waste at the WEF are described. Project activities included cold and hot operations. Cold operations included operator training, facility systems walk down, and operational procedures validation. Hot operations included working with plutonium contaminated TRU waste and consisted of waste container breaching, waste examination, waste segregation, data collection, and waste repackaging.

Foster, B.D.; Musick, R.G.; Pedalino, J.P.; Cowley, J.L. [Bechtel Nevada Corp., Las Vegas, NV (United States); Karney, C.C. [Dept. of Energy, Las Vegas, NV (United States); Kremer, J.L.

1998-01-01T23:59:59.000Z

448

Environmental report for the Gasification Product Improvement Facility (GPIF)  

SciTech Connect (OSTI)

The Fossil Energy Program has a mission to develop energy systems that utilize national coal resources in power systems with increased efficiency and environmental compatibility. Coal gasification technology is a versatile candidate that meets this goal. This two phased project consists primarily of the design, construction and operation of a 5-foot inside diameter (minimum) fixed-bed gasifier called PyGas{trademark} and supporting infrastructure (Phase I), and an additional follow on phase consisting of the design, construction and operation of a hot fuel gas cleanup unit (Phase II). Issues expected to be successfully overcome by PyGas{trademark} through its application in this test facility include the processing of high-swelling coals, which causes agglomeration in conventional fixed-bed gasifiers. Such coals comprise 87% of all eastern coals. Other issues expected to be eliminated or significantly reduced include: production of ash clinkers, production of ammonia, the presence of significant tars and fines, and the volatilization of alkalinity in the product fuel gas. A second portion of the NEPA report is concerned with the emission of toxic metal compounds by the gasification process improvement facility (GPIF). The GPIF facility will be located on site at the Fort Martin facility of Allegheny Power Company, and the energy produced (steam) will be directly used by Fort Martin to produce electricity. The coal used at the GPIF facility will be the same coal used by the utility. Therefore, the emissions of the GPIF will be put in context of the entire facility. The GPIF assessment will be divided into four sections: Estimation of the toxic metals content of the raw coal; calculation of the emissions from Fort Martin normally; an estimate of the emission from the GPIF; and a comparison of the two flows.

Sadowski, R.S.; Skinner, W.H.; Norris, E.S.; Duck, R.R.; Hass, R.B.; Morgan, M.E.; Helble, J.J.; Johnson, S.A.

1993-01-01T23:59:59.000Z

449

Applicant DOE Award Project Location Project Focus Feasibility...  

Broader source: Energy.gov (indexed) [DOE]

Tribe's acquisition and subsequent operation of the Kerr Hydroelectric project as a wholesale power generation facility. Confederated Tribes of the Colville Reservation 200,000...

450

Suffolk County- LEED Program for County Construction  

Broader source: Energy.gov [DOE]

In 2006, the Suffolk County Legislature enacted Resolution No. 126-2006, creating the Leadership in Energy and Environment Design (LEED) Program for county construction projects. The program...

451

Solid Waste Operations Complex W-113, Detail Design Report (Title II). Volume 4: Project cost estimate  

SciTech Connect (OSTI)

The Solid Waste Retrieval Facility--Phase 1 (Project W113) will provide the infrastructure and the facility required to retrieve from Trench 04, Burial ground 4C, contact handled (CH) drums and boxes at a rate that supports all retrieved TRU waste batching, treatment, storage, and disposal plans. This includes (1) operations related equipment and facilities, viz., a weather enclosure for the trench, retrieval equipment, weighing, venting, obtaining gas samples, overpacking, NDE, NDA, shipment of waste and (2) operations support related facilities, viz., a general office building, a retrieval staff change facility, and infrastructure upgrades such as supply and routing of water, sewer, electrical power, fire protection, roads, and telecommunication. Title I design for the operations related equipment and facilities was performed by Raytheon/BNFL, and that for the operations support related facilities including infrastructure upgrade was performed by KEH. These two scopes were combined into an integrated W113 Title II scope that was performed by Raytheon/BNFL. This volume represents the total estimated costs for the W113 facility. Operating Contractor Management costs have been incorporated as received from WHC. The W113 Facility TEC is $19.7 million. This includes an overall project contingency of 14.4% and escalation of 17.4%. A January 2001 construction contract procurement start date is assumed.

NONE

1995-09-01T23:59:59.000Z

452

Facility Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To establish facility safety requirements for the Department of Energy, including National Nuclear Security Administration. Cancels DOE O 420.1. Canceled by DOE O 420.1B.

2002-05-20T23:59:59.000Z

453

Evaluation of nuclear facility decommissioning projects. Three Mile Island Unit 2. Radioactive waste and laundry shipments. Volume 9. Summary status report  

SciTech Connect (OSTI)

This document summarizes information concerning radioactive waste and laundry shipments from the Three Mile Island Nuclear Station Unit 2 to radioactive waste disposal sites and to protective clothing decontamination facilities (laundries) since the loss of coolant accident experienced on March 28, 1979. Data were collected from radioactive shipment records, summarized, and placed in a computerized data information retrieval/manipulation system which permits extraction of specific information. This report covers the period of April 9, 1979 to May 5, 1985. Included in this report are: waste disposal site locations, dose rates, curie content, waste description, container type and number, volumes and weights. This information is presented in two major categories: protective clothing (laundry) and radioactive waste. Each of the waste shipment reports is in chronological order.

Doerge, D. H.; Miller, R. L.; Scotti, K. S.

1986-05-01T23:59:59.000Z

454

Facility Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

DOE-STD-1104 contains the Department's method and criteria for reviewing and approving nuclear facility's documented safety analysis (DSA). This review and approval formally document the basis for DOE, concluding that a facility can be operated safely in a manner that adequately protects workers, the public, and the environment. Therefore, it is appropriate to formally require implementation of the review methodology and criteria contained in DOE-STD-1104.

2013-06-21T23:59:59.000Z

455

Facility Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The order establishes facility and programmatic safety requirements for nuclear and explosives safety design criteria, fire protection, criticality safety, natural phenomena hazards (NPH) mitigation, and the System Engineer Program.Chg 1 incorporates the use of DOE-STD-1189-2008, Integration of Safety into the Design Process, mandatory for Hazard Category 1, 2 and 3 nuclear facilities. Cancels DOE O 420.1A.

2005-12-22T23:59:59.000Z

456

Facility Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The objective of this Order is to establish facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation. The Order has Change 1 dated 11-16-95, Change 2 dated 10-24-96, and the latest Change 3 dated 11-22-00 incorporated. The latest change satisfies a commitment made to the Defense Nuclear Facilities Safety Board (DNFSB) in response to DNFSB recommendation 97-2, Criticality Safety.

2000-11-20T23:59:59.000Z

457

Energy Efficiency and Sustainable Design in New School Construction  

Broader source: Energy.gov [DOE]

The Ohio School Facilities Commission (OSFC) administers funds appropriated by the Ohio General Assembly for the construction of new schools and renovations of existing schools. In September 2007...

458

Colorado CRS 29-20-108, Location, Construction, or Improvement...  

Open Energy Info (EERE)

Location, Construction, or Improvement of Major Electrical or Natural Gas Facilities Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document-...

459

Construction, Qualification, and Low Rate Production Start-up...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Manufacturing Facility with Capacity to Support 100,000 Electric Drive Vehicles Construction, Qualification, and Low Rate Production Start-up of a DC Bus Capacitor High Volume...

460

Accident Investigation of the June 17, 2012, Construction Accident...  

Energy Savers [EERE]

June 17, 2012, Construction Accident - Structural Steel Collapse at The Over pack Storage Expansion 2 at the Naval Reactors Facility at the Idaho National Laboratory, Idaho Falls,...

Note: This page contains sample records for the topic "facility construction project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Construction Permits and Fees (New Mexico)  

Broader source: Energy.gov [DOE]

Industries that wish to build or modify facilities that emit air pollutants (emissions) into the air must obtain an air quality permit prior to constructing. Thus, these permits are called...

462

Independent Oversight Review, Hanford Site K-West Annex Facility...  

Office of Environmental Management (EM)

Facility - April 2014 April 2014 Review of the Hanford Site K-West Annex Facility Construction Quality The U.S. Department of Energy Office of Enforcement and Oversight...

463

The Chimera Facility at LNS  

SciTech Connect (OSTI)

CHIMERA is a 4{pi} detector for charged particles whose construction at LNS is in progress and is coming at end. The main features, some performances and the status of the project is presented.

Aiello, S.; Cardella, G.; De Filippo, E.; Lanzano, G.; Pagano, A.; Papa, M.; Pirrone, S.; Politi, G. [INFN-Sezione di Catania, Corso Italia 57, 95129 Catania (Italy); Anzalone, A.; Campisi, M. G.; Cavallaro, Sl.; Geraci, E. [INFN-Laboratori Nazionali del Sud, Via S.Sofia 44, 95123 Catania (Italy); Bartolucci, M.; Guazzoni, P.; Manfredi, G.; Zetta, L. [Dipartimento di Fisica dell'Universita and INFN, v. Celoria 16, 20133 Milano (Italy); Giustolisi, F.; Porto, F.; Sperduto, M. L. [INFN-Laboratori Nazionali del Sud, Via S.Sofia 44, 95123 Catania (Italy); Dipartimento di Fisica, Universita di Catania, Corso Italia 57, 95129 Catania (Italy); Iacono-Manno, C. M. [INFN-Laboratori Nazionali del Sud, Via S.Sofia 44, 95123 Catania (Italy); CSFNSM, Corso Italia 57, 95129 Catania (Italy)] (and others)

1999-11-16T23:59:59.000Z

464

The Chimera Facility at LNS  

SciTech Connect (OSTI)

CHIMERA is a 4{pi} detector for charged particles whose construction at LNS is in progress and is coming to an end. The main features, some performances and the status of the project is presented.

S. Aiello; A. Anzalone; M. Bartolucci; M.G. Campisi; G. Cardella; S. Cavallaro; E. De Filippo; E. Geraci; F. Giustolisi; P. Guazzoni; C.M. Iacono-Manno; G. Lanzalone; G. Manfredi; G. Lanzano; S. Lo Nigro; A. Pagano; M. Papa; S. Pirrone; G. Politi; F. Porto; S. Sambataro; M.L. Sperduto; C.M. Sutera; L. Zetta

1999-12-31T23:59:59.000Z

465

PLANS FOR FUTURE MEGAWATT FACILITIES.  

SciTech Connect (OSTI)

Proton accelerators producing beam powers of up to 1 MW are presently either operating or under construction and designs for Multi-Megawatt facilities are being developed. High beam power has applications in the production of high intensity secondary beams of neutrons, muons, kaons and neutrinos as well as in nuclear waste transmutation and accelerator-driven sub-critical reactors. Each of these applications has additional requirements on beam energy and duty cycle. This paper will review how present designs for future Multi-Megawatt facilities meet these requirements and will also review the experience with present high power facilities.

ROSER,T.

2004-10-13T23:59:59.000Z

466

World's Largest Post-Combustion Carbon Capture Project Begins...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

World's Largest Post-Combustion Carbon Capture Project Begins Construction World's Largest Post-Combustion Carbon Capture Project Begins Construction July 15, 2014 - 9:55am Addthis...

467

Wind Energy Facilities and Residential Properties: The Effect of Proximity and View on Sales Prices  

E-Print Network [OSTI]

by exploring the potential impact of wind projects on homethe three potential stigmas surrounding wind facilities.investigated the potential impacts of wind power facilities

Hoen, Ben

2010-01-01T23:59:59.000Z

468

Grande Ronde Endemic Spring Chinook Salmon Supplementation Program : Facility Operation and Maintenance Facilities, Annual Report 2003.  

SciTech Connect (OSTI)

Anadromous salmonid stocks have declined in both the Grande Ronde River Basin (Lower Snake River Compensation Plan (LSRCP) Status Review Symposium 1998) and in the entire Snake River Basin (Nehlsen et al. 1991), many to the point of extinction. The Grande Ronde River Basin historically supported large populations of fall and spring chinook (Oncorhynchus tshawytscha), sockeye (O. nerka), and coho (O. kisutch) salmon and steelhead trout (O. mykiss) (Nehlsen et al. 1991). The decline of chinook salmon and steelhead populations and extirpation of coho and sockeye salmon in the Grande Ronde River Basin was, in part, a result of construction and operation of hydroelectric facilities, over fishing, and loss and degradation of critical spawning and rearing habitat in the Columbia and Snake River basins (Nehlsen et al. 1991). Hatcheries were built in Oregon, Washington and Idaho under the Lower Snake River Compensation Plan (LSRCP) to compensate for losses of anadromous salmonids due to the construction and operation of the lower four Snake River dams. Lookingglass Hatchery (LGH) on Lookingglass Creek, a tributary of the Grande Ronde River, was completed under LSRCP in 1982 and has served as the main incubation and rearing site for chinook salmon programs for Grande Ronde and Imnaha rivers in Oregon. Despite these hatchery programs, natural spring chinook populations continued to decline resulting in the National Marine Fisheries Service (NMFS) listing Snake River spring/summer chinook salmon as ''threatened'' under the federal Endangered Species Act (1973) on 22 April 1992. Continuing poor escapement levels and declining population trends indicated that Grande Ronde River basin spring chinook salmon were in imminent danger of extinction. These continuing trends led fisheries co-managers in the basin to initiate the Grande Ronde Endemic Spring Chinook Salmon Supplementation Program (GRESCSSP) in order to prevent extinction and preserve options for use of endemic fish stocks in future artificial propagation programs. The GRESCSSP was implemented in three Grande Ronde River basin tributaries; the Lostine and upper Grande Ronde rivers and Catherine Creek. The GRESCSSP employs two broodstock strategies utilizing captive and conventional brood sources. The captive brood program began in 1995, with the collection of parr from the three tributary areas. The conventional broodstock component of the program began in 1997 with the collection of natural adults returning to these tributary areas. Although LGH was available as the primary production facility for spring chinook programs in the Grande Ronde Basin, there were never any adult or juvenile satellite facilities developed in the tributary areas that were to be supplemented. An essential part of the GRESCSSP was the construction of adult traps and juvenile acclimation facilities in these tributary areas. Weirs were installed in 1997 for the collection of adult broodstock for the conventional component of the program. Juvenile facilities were built in 2000 for acclimation of the smolts produced by the captive and conventional broodstock programs and as release sites within the natural production areas of their natal streams. The Confederated Tribes of the Umatilla Indian Reservation (CTUIR) operate both the juvenile acclimation and adult trapping facilities located on Catherine Creek and the upper Grande Ronde River under this project. The Nez Perce Tribe (NPT) operate the facilities on the Lostine River under a sister project. Hatcheries were also built in Oregon, Washington and Idaho under the LSRCP to compensate for losses of summer steelhead due to the construction and operation of the lowest four Snake River dams. Despite these harvest-driven hatchery programs, natural summer steelhead populations continued to decline as evidenced by declining counts at Lower Granite Dam since 1995 (Columbia River Data Access in Real Time, DART) and low steelhead redd counts on index streams in the Grande Ronde Basin. Because of low escapement the Snake River summer steelhead were listed as threat

McLean, Michael L.; Seeger, Ryan; Hewitt, Laurie (Confederated Tribes of the Umatilla Indian Reservation, Department of Natural Resources, Pendleton, OR)

2004-01-01T23:59:59.000Z

469

National Ignition Facility subsystem design requirements NIF site improvements SSDR 1.2.1  

SciTech Connect (OSTI)

This Subsystem Design Requirements (SSDR) document establishes the performance, design, and verification requirements associated with the NIF Project Site at Lawrence Livermore National Laboratory (LLNL) at Livermore, California. It identifies generic design conditions for all NIF Project facilities, including siting requirements associated with natural phenomena, and contains specific requirements for furnishing site-related infrastructure utilities and services to the NIF Project conventional facilities and experimental hardware systems. Three candidate sites were identified as potential locations for the NIF Project. However, LLNL has been identified by DOE as the preferred site because of closely related laser experimentation underway at LLNL, the ability to use existing interrelated infrastructure, and other reasons. Selection of a site other than LLNL will entail the acquisition of site improvements and infrastructure additional to those described in this document. This SSDR addresses only the improvements associated with the NIF Project site located at LLNL, including new work and relocation or demolition of existing facilities that interfere with the construction of new facilities. If the Record of Decision for the PEIS on Stockpile Stewardship and Management were to select another site, this SSDR would be revised to reflect the characteristics of the selected site. Other facilities and infrastructure needed to support operation of the NIF, such as those listed below, are existing and available at the LLNL site, and are not included in this SSDR. Office Building. Target Receiving and Inspection. General Assembly Building. Electro- Mechanical Shop. Warehousing and General Storage. Shipping and Receiving. General Stores. Medical Facilities. Cafeteria services. Service Station and Garage. Fire Station. Security and Badging Services.

Kempel, P.; Hands, J.

1996-08-19T23:59:59.000Z

470

Energy-Performance-Based Design-Build Process: Strategies for Procuring High-Performance Buildings on Typical Construction Budgets: Preprint  

SciTech Connect (OSTI)

NREL experienced a significant increase in employees and facilities on our 327-acre main campus in Golden, Colorado over the past five years. To support this growth, researchers developed and demonstrated a new building acquisition method that successfully integrates energy efficiency requirements into the design-build requests for proposals and contracts. We piloted this energy performance based design-build process with our first new construction project in 2008. We have since replicated and evolved the process for large office buildings, a smart grid research laboratory, a supercomputer, a parking structure, and a cafeteria. Each project incorporated aggressive efficiency strategies using contractual energy use requirements in the design-build contracts, all on typical construction budgets. We have found that when energy efficiency is a core project requirement as defined at the beginning of a project, innovative design-build teams can integrate the most cost effective and high performance efficiency strategies on typical construction budgets. When the design-build contract includes measurable energy requirements and is set up to incentivize design-build teams to focus on achieving high performance in actual operations, owners can now expect their facilities to perform. As NREL completed the new construction in 2013, we have documented our best practices in training materials and a how-to guide so that other owners and owner's representatives can replicate our successes and learn from our experiences in attaining market viable, world-class energy performance in the built environment.

Scheib, J.; Pless, S.; Torcellini, P.

2014-08-01T23:59:59.000Z

471

Nuclear Power 2010 Program: Combined Construction and Operating...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Power 2010 Program: Combined Construction and Operating License & Design Certification Demonstration Projects Lessons Learned Report Nuclear Power 2010 Program: Combined...

472

EA-0822: Idaho National Engineering Laboratory Consolidated Transportation Facility, Idaho Falls, Idaho  

Broader source: Energy.gov [DOE]

This EA evaluates the environmental impacts of a proposal to construct and operate a new transportation facility at the Central Facilities Area that would consolidate six existing facilities at the...