Powered by Deep Web Technologies
Note: This page contains sample records for the topic "facility code code" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

BGP: Code Saturne | Argonne Leadership Computing Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Documentation Feedback Documentation Feedback Please provide feedback to help guide us as we continue to build documentation for our new computing resource. [Feedback Form] BGP: Code Saturne What is Code_Saturne? Code Saturne is the EDF's general purpose Computational Fluid Dynamics (CFD) software. EDF stands for Électricité de France, one of the world's largest producers of electricity. Obtaining Code_Saturne Code_Saturne is an open source code, freely available for the CFD practitioners and other scientists too. You can download the latest version from the Code_Saturne Official Forum Web Page and you can also follow the Forum with interesting questions about installation problems, general usage, examples, etc. Building Code_Saturne for Blue Gene/P The version currently available on Intrepid is the last official stable

2

Survey of computer codes applicable to waste facility performance evaluations  

SciTech Connect (OSTI)

This study is an effort to review existing information that is useful to develop an integrated model for predicting the performance of a radioactive waste facility. A summary description of 162 computer codes is given. The identified computer programs address the performance of waste packages, waste transport and equilibrium geochemistry, hydrological processes in unsaturated and saturated zones, and general waste facility performance assessment. Some programs also deal with thermal analysis, structural analysis, and special purposes. A number of these computer programs are being used by the US Department of Energy, the US Nuclear Regulatory Commission, and their contractors to analyze various aspects of waste package performance. Fifty-five of these codes were identified as being potentially useful on the analysis of low-level radioactive waste facilities located above the water table. The code summaries include authors, identification data, model types, and pertinent references. 14 refs., 5 tabs.

Alsharif, M.; Pung, D.L.; Rivera, A.L.; Dole, L.R.

1988-01-01T23:59:59.000Z

3

The MAX facility for CFD code validation  

SciTech Connect (OSTI)

ANL has recently completed construction of a fluid dynamics test facility devised to provide validation data for CFD simulation tools used to evaluate various aspects of nuclear power plant design and safety. Experiments with the facility involve mixing air jets within a 1x1x1.7m long glass tank at atmospheric pressure. A particle image velocimetry system measures flow velocity and turbulence quantities within the tank while a high-speed infrared camera records temperatures across the tank lid. The tandem of high fidelity thermal and turbulence data is particularly useful for benchmarking transient heat transfer phenomena such as thermal striping. This paper describes the MAX facility, preliminary data obtained during shakedown tests, and the results of companion CFD calculations employing RANS-based Star-CCM+ and large eddy simulations with Nek 5000. (authors)

Lomperski, S.; Merzari, E.; Obabko, A.; Pointer, W. D.; Fischer, P. [Argonne National Laboratory, Bldg. 206, 9700 S. Cass Ave, Argonne, IL 60439 (United States)

2012-07-01T23:59:59.000Z

4

Harmonizing Above Code Codes  

Broader source: Energy.gov (indexed) [DOE]

Harmonizing "Above Code" Harmonizing "Above Code" Codes Doug Lewin Executive Director, SPEER 6 Regional Energy Efficiency Organizations SPEER Members Texas grid facing an energy crisis * No new generation coming online * Old, inefficient coal-fired plants going offline * ERCOT CEO Trip Doggett said "We are very concerned about the significant drop in the reserve margin...we will be very tight on capacity next summer and have a repeat of this year's emergency procedures and conservation appeals." Higher codes needed to relieve pressure Building Codes are forcing change * 2012 IECC 30% higher than 2006 IECC * IRC, the "weaker code," will mirror IECC in 2012 * City governments advancing local codes with

5

Department Codes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Department Codes Department Codes Code Organization BO Bioscience Department BU Business Development & Analysis Office DI Business Operations NC Center for Functional Nanomaterials CO Chemistry Department AD Collider Accelerator Department PA Community, Education, Government and Public Affairs CC Computational Science Center PM Condensed Matter Physics and Materials Science Department CI Counterintelligence AE Department of Energy DC Directorate - Basic Energy Sciences DK Directorate - CEGPA DE Directorate - Deputy Director for Operations DO Directorate - Director's Office DH Directorate - Environment, Safety and Health DF Directorate - Facilities and Operations DA Directorate - Global and Regional Solutions DB Directorate - Nuclear and Particle Physics DL Directorate - Photon Sciences

6

Data Coding  

Science Journals Connector (OSTI)

Data coding is the classification of data and assignment of arepresentation for that data, or the assignment of aspecific code...

2008-01-01T23:59:59.000Z

7

Code constructions and code families for nonbinary quantum stabilizer code  

E-Print Network [OSTI]

Stabilizer codes form a special class of quantum error correcting codes. Nonbinary quantum stabilizer codes are studied in this thesis. A lot of work on binary quantum stabilizer codes has been done. Nonbinary stabilizer codes have received much...

Ketkar, Avanti Ulhas

2005-11-01T23:59:59.000Z

8

High Performance Reach Codes  

E-Print Network [OSTI]

Jim Edelson New Buildings Institute A Growing Role for Codes and Stretch Codes in Utility Programs Clean Air Through Energy Efficiency November 9, 2011 ESL-KT-11-11-39 CATEE 2011, Dallas, Texas, Nov. 7 ? 9, 2011 New Buildings Institute ESL..., Nov. 7 ? 9, 2011 ?31? Flavors of Codes ? Building Codes Construction Codes Energy Codes Stretch or Reach Energy Codes Above-code programs Green or Sustainability Codes Model Codes ?Existing Building? Codes Outcome-Based Codes ESL-KT-11...

Edelson, J.

2011-01-01T23:59:59.000Z

9

Coded Data  

Science Journals Connector (OSTI)

An individual is given anumber and all that individual's data is encoded under that number so that the individual cannot be recognized. Data are then collated, analyzed and reported on ... the code to the pers...

2008-01-01T23:59:59.000Z

10

Computer code input for thermal hydraulic analysis of Multi-Function Waste Tank Facility Title II design  

SciTech Connect (OSTI)

The input files to the P/Thermal computer code are documented for the thermal hydraulic analysis of the Multi-Function Waste Tank Facility Title II design analysis.

Cramer, E.R.

1994-10-01T23:59:59.000Z

11

Code of Practice Research Degrees  

E-Print Network [OSTI]

........................................................................ 15 Section Ten: FacilitiesCode of Practice For Research Degrees 2014/15 #12;2 Contents Section One: Preface ­ the purpose of the Code........................................................ 3 Section Two: Context

Evans, Paul

12

Codes and Standards Activities  

Broader source: Energy.gov [DOE]

TheFuel Cell Technologies Office works with code development organizations, code officials, industry experts, and national laboratory scientists to draft new model codes and equipment standards...

13

Green Building Codes | Building Energy Codes Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Green Building Codes Green Building Codes Green building codes go beyond minimum code requirements, raising the bar for energy efficiency. They can serve as a proving ground for future standards, and incorporate elements beyond the scope of the model energy codes, such as water and resource efficiency. As regional and national green building codes and programs become more available, they provide jurisdictions with another tool for guiding construction and development in an overall less impactful, more sustainable manner. ICC ASHRAE Beyond Codes International Green Construction Code (IgCC) The International Code Council's (ICC's) International Green Construction code (IgCC) is an overlay code, meaning it is written in a manner to be used with all the other ICC codes. The IgCC contains provisions for site

14

11. CONTRACT ID CODE  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 PAGE 1 OF2 AMENDMENT OF SOLICITATION/MODIFICATION OF CONTRACT PAGES 2. AMENDMENT/MODIFICATION NO. I 3. EFFECTIVE DATE M191 See Block 16C 4. REQUISITION/PURCHASE I 5. PROJECT NO. (If applicable) REQ. NO. 6.ISSUED BY CODE U.S. Department of Energy National Nuclear Security Administration Service Center Property and M&O Contract Support Department P.O. Box 5400 Albuquerque, NM 87185-5400 7. ADMINISTERED BY (If other than Item 6) CODE U.S. Department of Energy National Nuclear Security Administration Manager, Pantex Site Office P.O. Box 30030 Amarillo, TX 79120 8. NAME AND ADDRESS OF CONTRACTOR (No., street, county, state, ZIP Code) Babcock & Wilcox Technical Services Pantex, LLC PO Box 30020 Amarillo, TX 79120 CODE I FACILITY CODE SA. AMENDMENT OF SOLICITATION NO.

15

A computer code to estimate accidental fire and radioactive airborne releases in nuclear fuel cycle facilities: User's manual for FIRIN  

SciTech Connect (OSTI)

This manual describes the technical bases and use of the computer code FIRIN. This code was developed to estimate the source term release of smoke and radioactive particles from potential fires in nuclear fuel cycle facilities. FIRIN is a product of a broader study, Fuel Cycle Accident Analysis, which Pacific Northwest Laboratory conducted for the US Nuclear Regulatory Commission. The technical bases of FIRIN consist of a nonradioactive fire source term model, compartment effects modeling, and radioactive source term models. These three elements interact with each other in the code affecting the course of the fire. This report also serves as a complete FIRIN user's manual. Included are the FIRIN code description with methods/algorithms of calculation and subroutines, code operating instructions with input requirements, and output descriptions. 40 refs., 5 figs., 31 tabs.

Chan, M.K.; Ballinger, M.Y.; Owczarski, P.C.

1989-02-01T23:59:59.000Z

16

Introduction Properties of Expander Codes  

E-Print Network [OSTI]

of Expander Codes Our Results Conclusions Background Basic Definitions LDPC Codes Expander Codes Turbo CodesIntroduction Properties of Expander Codes Our Results Conclusions Expander Codes: Constructions, Haifa 32000, Israel. Vitaly Skachek Expander Codes: Constructions and Bounds #12;Introduction Properties

Skachek, Vitaly

17

DOE Code:  

Broader source: Energy.gov (indexed) [DOE]

we1rbox installatiOn we1rbox installatiOn ____:....;...=.~;;....:..;=-+- DOE Code: - - !- Project Lead: Wes R1esland NEPA COMPLIANCE SURVEY J 3-24-10 1 Date: Project Information 1. Project Overview What are tne enwonmental mpacts? Contractor~~ _ _ _ _ ] 11 The purpose of this project is to prepare a pad for a 90 ton crane to get 1nto positiOn and ng up so we can 1 set our new weir box into position We will widen the existing road around 20 feet at the north end and taper our fill to about5 feet at the south end for a total of about 200 feeL and budd a near level pad for them tong up the crane on We will use the d1rt from the hill irnrnedJateiy north of the work to oe done 2. 3 4 What*s the legal location? What IS the durabon of the prOJed?

18

Usage Codes Observer code Vessel code Trip ID  

E-Print Network [OSTI]

Usage Codes 1 5 2 6 3 7 4 8 Observer code Vessel code Trip ID Permit holder name/address Permit / N MMSI No. Y / N Present? Usage Water capacity (m3): Fuel capacity: m3 / tonnes Other: Other: Kw all that apply & note types of materials for each) Capacity: Usage Incinerator: Net mensuration Y / N

19

Usage Codes Observer code Vessel code Trip ID  

E-Print Network [OSTI]

Usage Codes 1 5 2 6 3 7 4 8 Sonar Observer code Vessel code Trip ID Additional Information KHz: RPM / Other _______________Global Registry ID:MMSI No. Permit expiration (dd-mm- yy): Y / N Present? Usage contact Diver / dive equipment Usage Manufacturer Hull mounted / towed Catch Y / N Other: Y / N Y / NOther

20

Codes 101 | Building Energy Codes Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Codes 101 Codes 101 This course covers basic knowledge of energy codes and standards, the development processes of each, historical timelines, adoption, implementation, and enforcement of energy codes and standards, and voluntary energy efficiency programs. Most sections have links that provide additional details on that section's topic as well as additional resources for more information. Begin Learning! Estimated Length: 1-2 hours CEUs Offered: 1.0 AIA/CES LU (HSW); .10 CEUs towards ICC renewal certification. Course Type: Self-paced, online Building Type: Commercial Residential Focus: Adoption Code Development Compliance Code Version: ASHRAE Standard 90.1 International Energy Conservation Code (IECC) Model Energy Code (MEC) Target Audience: Advocate Architect/Designer Builder

Note: This page contains sample records for the topic "facility code code" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

A comparative study of codes of ethics in health care facilities and energy companies  

Science Journals Connector (OSTI)

Though written corporate codes of ethics have been touted as a panacea for ... compromises their usefulness. An ethnographic study comparing development processes and compliance outcomes in large health care faci...

Isaac D. Montoya; Alan J. Richard

1994-09-01T23:59:59.000Z

22

Building Energy Code | Open Energy Information  

Open Energy Info (EERE)

Code Code Jump to: navigation, search Building energy codes adopted by states (and some local governments) require commercial and/or residential construction to adhere to certain energy standards. While some governmental bodies have developed their own building energy codes, many use existing codes, such as the International Energy Conservation Code (IECC), developed and published by the International Code Council (ICC); or ASHRAE 90.1, developed by the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE). A few local building energy codes require certain commercial facilities to meet green building standards. [1] Building Energy Code Incentives CSV (rows 1 - 85) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active

23

SEE ADDENDUM IS CHECKED CODE 18a. PAYMENT WILL BE MADE BY CODE  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SEE ADDENDUM IS CHECKED CODE 18a. PAYMENT WILL BE MADE BY CODE FACILITY CODE 17b. CHECK IF REMITTANCE IS DIFFERENT AND PUT SUCH ADDRESS IN OFFER OFFEROR 00146 Casper WY 82601 Shale...

24

CENER/NREL Collaboration in Testing Facility and Code Development: Cooperative Research and Development Final Report, CRADA Number CRD-06-207  

SciTech Connect (OSTI)

Under the funds-in CRADA agreement, NREL and CENER will collaborate in the areas of blade and drivetrain testing facility development and code development. The project shall include NREL assisting in the review and instruction necessary to assist in commissioning the new CENER blade test and drivetrain test facilities. In addition, training will be provided by allowing CENER testing staff to observe testing and operating procedures at the NREL blade test and drivetrain test facilities. CENER and NREL will exchange blade and drivetrain facility and equipment design and performance information. The project shall also include exchanging expertise in code development and data to validate numerous computational codes.

Moriarty, P.

2014-11-01T23:59:59.000Z

25

Model Building Energy Code  

Broader source: Energy.gov [DOE]

''Much of the information presented in this summary is drawn from the U.S. Department of Energys (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

26

Building Energy Code  

Broader source: Energy.gov [DOE]

''Note: Much of the information presented in this summary is drawn from the U.S. Department of Energys (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For...

27

Building Energy Code  

Broader source: Energy.gov [DOE]

''Much of the information presented in this summary is drawn from the U.S. Department of Energys (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

28

Coding AuthentiCity  

E-Print Network [OSTI]

This thesis analyzes the impact of form-based codes, focusing on two research questions: (1) What is the underlying motivation for adopting a form-based code? (2) What motivations have the most significant impact on ...

Mercier, Rachel Havens

2008-01-01T23:59:59.000Z

29

Introduction to Algebraic Codes  

E-Print Network [OSTI]

for health care. These self-correcting codes that occur in nature might be better than all of. our coding theory based on algebra or algebraic geometry. It is a myth

30

Sustainable Acquisition Coding System | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Sustainable Acquisition Coding System Sustainable Acquisition Coding System Sustainable Acquisition Coding System Sustainable Acquisition Coding System More Documents &...

31

GENII Code | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

GENII Code GENII Code GENII is a second generation of environmental dosimetry computer code compiled in the Hanford Environmental Dosimetry System (Generation II). GENII provides a...

32

Building Energy Codes | Open Energy Information  

Open Energy Info (EERE)

Codes Codes Jump to: navigation, search Building energy codes adopted by states (and some local governments) require commercial and/or residential construction to adhere to certain energy standards. While some governmental bodies have developed their own building energy codes, many use existing codes, such as the International Energy Conservation Code (IECC), developed and published by the International Code Council (ICC); or ASHRAE 90.1, developed by the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE). A few local building energy codes require certain commercial facilities to meet green building standards. [1] Contents 1 Building Energy Code Incentives 2 References Building Energy Code Incentives CSV (rows 1 - 85) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active

33

Code of Conduct  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Governance » Governance » Ethics, Accountability » Code of Conduct Code of Conduct Helping employees recognize and resolve the ethics and compliance issues that may arise in their daily work. Contact Code of Conduct (505) 667-7506 Code of Conduct LANL is committed to operating in accordance with the highest standards of ethics and compliance and with its core values of service to our nation, ethical conduct and personal accountability, excellence in our work, and mutual respect and teamwork. LANL must demonstrate to customers and the public that the Laboratory is accountable for its actions and that it conducts business in a trustworthy manner. What is LANL's Code of Conduct? Charlie McMillan 1:46 Laboratory Director Charlie McMillan introduces the code LANL's Code of Conduct is designed to help employees recognize and

34

Code Red 2 kills off Code Red 1  

E-Print Network [OSTI]

#12;#12;Code Red 2 kills off Code Red 1 Code Red 2 settles into weekly pattern Nimda enters the ecosystem Code Red 2 dies off as programmed CR 1 returns thanks to bad clocks #12;Code Red 2 dies off as programmed Nimda hums along, slowly cleaned up With its predator gone, Code Red 1 comes back, still

Paxson, Vern

35

Code loops in both parities  

Science Journals Connector (OSTI)

We present equivalent definitions of code loops in any characteristic p?0. The most natural definition is via combinatorial polarization, but we also show how to realize code loops by linear codes and as a class of symplectic conjugacy ... Keywords: Characteristic form, Code loop, Combinatorial polarization, Conjugacy closed loop, Doubly even code, Even code loop, Kronecker product, Moufang loop, Odd code loop, Self-orthogonal code, Small Frattini loop, Symmetric associator, Symplectic loop

Ale Drpal; Petr Vojt?chovsk

2010-06-01T23:59:59.000Z

36

Mechanical code comparator  

DOE Patents [OSTI]

A new class of mechanical code comparators is described which have broad potential for application in safety, surety, and security applications. These devices can be implemented as micro-scale electromechanical systems that isolate a secure or otherwise controlled device until an access code is entered. This access code is converted into a series of mechanical inputs to the mechanical code comparator, which compares the access code to a pre-input combination, entered previously into the mechanical code comparator by an operator at the system security control point. These devices provide extremely high levels of robust security. Being totally mechanical in operation, an access control system properly based on such devices cannot be circumvented by software attack alone.

Peter, Frank J. (Albuquerque, NM); Dalton, Larry J. (Bernalillo, NM); Plummer, David W. (Albuquerque, NM)

2002-01-01T23:59:59.000Z

37

Building Codes Resources  

Broader source: Energy.gov [DOE]

Some commercial and/or residential construction codes mandate certain energy performance requirements for the design, materials, and equipment used in new construction and renovations.

38

" Row: NAICS Codes;" " Column...  

U.S. Energy Information Administration (EIA) Indexed Site

2 Number of Establishments by Usage of General Energy-Saving Technologies, 2010;" " Level: National Data; " " Row: NAICS Codes;" " Column: Usage within General Energy-Saving...

39

" Row: NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

3 Number of Establishments by Usage of Cogeneration Technologies, 2010;" " Level: National Data; " " Row: NAICS Codes;" " Column: Usage within Cogeneration Technologies;" " Unit:...

40

" Row: NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

3 Number of Establishments by Usage of Cogeneration Technologies, 2002; " " Level: National Data; " " Row: NAICS Codes;" " Column: Usage within Cogeneration Technologies;" " Unit:...

Note: This page contains sample records for the topic "facility code code" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Tokamak Systems Code  

SciTech Connect (OSTI)

The FEDC Tokamak Systems Code calculates tokamak performance, cost, and configuration as a function of plasma engineering parameters. This version of the code models experimental tokamaks. It does not currently consider tokamak configurations that generate electrical power or incorporate breeding blankets. The code has a modular (or subroutine) structure to allow independent modeling for each major tokamak component or system. A primary benefit of modularization is that a component module may be updated without disturbing the remainder of the systems code as long as the imput to or output from the module remains unchanged.

Reid, R.L.; Barrett, R.J.; Brown, T.G.; Gorker, G.E.; Hooper, R.J.; Kalsi, S.S.; Metzler, D.H.; Peng, Y.K.M.; Roth, K.E.; Spampinato, P.T.

1985-03-01T23:59:59.000Z

42

" Row: NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

Establishment","Onsite","per Establishment" "Code(a)","Subsector and Industry","(million sq ft)","(counts)","(sq ft)","(counts)","(counts)" ,,"Total United...

43

Codes and Standards  

Broader source: Energy.gov [DOE]

Currently, thirteen U.S. and two international standards development organizations (SDOs) are developing and publishing the majority of the voluntary domestic codes and standards. These...

44

" Row: NAICS Codes;" " ...  

U.S. Energy Information Administration (EIA) Indexed Site

1.3. Number of Establishments by Quantity of Purchased Electricity, Natural Gas, and Steam, 1998;" " Level: National Data; " " Row: NAICS Codes;" " Column: Supplier Sources of...

45

PETSc: Docs: Code Management  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Code Management Code Management Home Download Features Documentation Manual pages and Users Manual Citing PETSc Tutorials Installation SAWs Changes Bug Reporting Code Management FAQ License Linear Solver Table Applications/Publications Miscellaneous External Software Developers Site In this file we list some of the techniques that may be used to increase one's efficiency when developing PETSc application codes. We have learned to use these techniques ourselves, and they have improved our efficiency tremendously. Editing and Compiling The biggest time sink in code development is generally the cycle of EDIT-COMPILE-LINK-RUN. We often see users working in a single window with a cycle such as: Edit a file with emacs. Exit emacs. Run make and see some error messages. Start emacs and try to fix the errors; often starting emacs hides

46

Hydrogen Codes and Standards  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Codes and Standards Codes and Standards James Ohi National Renewable Energy Laboratory 1617 Cole Blvd. Golden, CO 80401 Background The development and promulgation of codes and standards are essential if hydrogen is to become a significant energy carrier and fuel because codes and standards are critical to establishing a market-receptive environment for commercializing hydrogen-based products and systems. The Hydrogen, Fuel Cells, and Infrastructure Technologies Program of the U.S. Department of Energy (DOE) and the National Renewable Energy Laboratory (NREL), with the help of the National Hydrogen Association (NHA) and other key stakeholders, are coordinating a collaborative national effort by government and industry to prepare, review, and promulgate hydrogen codes and standards needed to expedite hydrogen infrastructure development. The

47

Residential Building Code Compliance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

6 6 Residential Building Code Compliance: Recent Findings and Implications Energy use in residential buildings in the U.S. is significant-about 20% of primary energy use. While several approaches reduce energy use such as appliance standards and utility programs, enforcing state building energy codes is one of the most promising. However, one of the challenges is to understand the rate of compliance within the building community. Utility companies typically use these codes as the baseline for providing incentives to builders participating in utility-sponsored residential new construction (RNC) programs. However, because builders may construct homes that fail to meet energy codes, energy use in the actual baseline is higher than would be expected if all buildings complied with the code. Also,

48

Burnup calculations for KIPT accelerator driven subcritical facility using Monte Carlo computer codes-MCB and MCNPX.  

SciTech Connect (OSTI)

Argonne National Laboratory (ANL) of USA and Kharkov Institute of Physics and Technology (KIPT) of Ukraine have been collaborating on the conceptual design development of an electron accelerator driven subcritical (ADS) facility, using the KIPT electron accelerator. The neutron source of the subcritical assembly is generated from the interaction of 100 KW electron beam with a natural uranium target. The electron beam has a uniform spatial distribution and electron energy in the range of 100 to 200 MeV. The main functions of the subcritical assembly are the production of medical isotopes and the support of the Ukraine nuclear power industry. Neutron physics experiments and material structure analyses are planned using this facility. With the 100 KW electron beam power, the total thermal power of the facility is {approx}375 kW including the fission power of {approx}260 kW. The burnup of the fissile materials and the buildup of fission products reduce continuously the reactivity during the operation, which reduces the neutron flux level and consequently the facility performance. To preserve the neutron flux level during the operation, fuel assemblies should be added after long operating periods to compensate for the lost reactivity. This process requires accurate prediction of the fuel burnup, the decay behavior of the fission produces, and the introduced reactivity from adding fresh fuel assemblies. The recent developments of the Monte Carlo computer codes, the high speed capability of the computer processors, and the parallel computation techniques made it possible to perform three-dimensional detailed burnup simulations. A full detailed three-dimensional geometrical model is used for the burnup simulations with continuous energy nuclear data libraries for the transport calculations and 63-multigroup or one group cross sections libraries for the depletion calculations. Monte Carlo Computer code MCNPX and MCB are utilized for this study. MCNPX transports the electrons and the produced neutrons and photons but the current version of MCNPX doesn't support depletion/burnup calculation of the subcritical system with the generated neutron source from the target. MCB can perform neutron transport and burnup calculation for subcritical system using external neutron source, however it cannot perform electron transport calculations. To solve this problem, a hybrid procedure is developed by coupling these two computer codes. The user tally subroutine of MCNPX is developed and utilized to record the information of the each generated neutron from the photonuclear reactions resulted from the electron beam interactions. MCB reads the recorded information of each generated neutron thorough the user source subroutine. In this way, the neutron source generated by electron reactions could be utilized in MCB calculations, without the need for MCB to transport the electrons. Using the source subroutines, MCB could get the external neutron source, which is prepared by MCNPX, and perform depletion calculation for the driven subcritical facility.

Gohar, Y.; Zhong, Z.; Talamo, A.; Nuclear Engineering Division

2009-06-09T23:59:59.000Z

49

Compiling Codes on Hopper  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Compiling Codes Compiling Codes Compiling Codes on Hopper Overview Cray provides a convenient set of wrapper commands that should be used in almost all cases for compiling and linking parallel programs. Invoking the wrappers will automatically link codes with MPI libraries and other Cray system software. All MPI and Cray system include directories are also transparently imported. In addition the wrappers append the compiler's target processor arguments for the hopper compute node processors. NOTE: The intention is that programs are compiled on the login nodes and executed on the compute nodes. Because the compute nodes and login nodes have different operating systems, binaries created for compute nodes may not run on the login node. The wrappers mentioned above guarantee that

50

Code of Ethics  

Science Journals Connector (OSTI)

Acode of ethics clarifies the ethical principles that are followed in aspecific field. In this context we refer to the , formally adopted by the American Public Health Association in 2002. It is the first b...

2008-01-01T23:59:59.000Z

51

ANNOUNCEMENT: ZIP Code Information.  

Science Journals Connector (OSTI)

THE U. S. Post Office Department has announced that the use of ZIP Codes will be mandatory on all domestic addresses for subscriptions and other mailings by 1 January 1967. Accordingly, the American Institute of Physics has established a procedure for obtaining the necessary information. You are requested to follow this procedure exactly.First, do not submit a change of address request consisting merely of the addition of your ZIP Code. Second, if your address changes in any other way, do include the ZIP Code of the new address. Third, and most important, be sure to furnish your ZIP Code in accordance with instructions included with all renewal invoices and renewal orders which have been sent out by the AIP.Failure to conform to this procedure may result in delays.

1965-09-27T23:59:59.000Z

52

Quantum error control codes  

E-Print Network [OSTI]

QUANTUM ERROR CONTROL CODES A Dissertation by SALAH ABDELHAMID AWAD ALY AHMED Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY May 2008 Major... Subject: Computer Science QUANTUM ERROR CONTROL CODES A Dissertation by SALAH ABDELHAMID AWAD ALY AHMED Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY...

Abdelhamid Awad Aly Ahmed, Sala

2008-10-10T23:59:59.000Z

53

Joint design of multi-resolution codes and intra / inter- layer network coding  

E-Print Network [OSTI]

In this thesis, we study the joint design of multi-resolution (MR) coding and network coding. The three step coding process consists of MR source coding, layer coding and multi-stream coding. The source coding considers ...

Wang, Tong, S.M. Massachusetts Institute of Technology

2012-01-01T23:59:59.000Z

54

Maine | Building Energy Codes Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Maine Maine Last updated on 2013-11-04 Commercial Residential Code Change Current Code ASHRAE Standard 90.1-2007 Amendments / Additional State Code Information As of September 28, 2011, municipalities over 4,000 in population were required to enforce the new code if they had a building code in place by August 2008. Municipalities under 4,000 are not required to enforce it unless they wish to do so and have the following options: 1. Adopt and enforce the Maine Uniform Building and Energy Code 2. Adopt and enforce the Maine Uniform Building Code (the building code without energy) 3. Adopt and enforce the Maine Uniform Energy Code (energy code only) 4. Have no code Approved Compliance Tools Can use COMcheck State Specific Research Impacts of ASHRAE 90.1-2007 for Commercial Buildings in the State of Maine (BECP Report, Sept. 2009)

55

Nested Quantum Error Correction Codes  

E-Print Network [OSTI]

The theory of quantum error correction was established more than a decade ago as the primary tool for fighting decoherence in quantum information processing. Although great progress has already been made in this field, limited methods are available in constructing new quantum error correction codes from old codes. Here we exhibit a simple and general method to construct new quantum error correction codes by nesting certain quantum codes together. The problem of finding long quantum error correction codes is reduced to that of searching several short length quantum codes with certain properties. Our method works for all length and all distance codes, and is quite efficient to construct optimal or near optimal codes. Two main known methods in constructing new codes from old codes in quantum error-correction theory, the concatenating and pasting, can be understood in the framework of nested quantum error correction codes.

Zhuo Wang; Kai Sun; Hen Fan; Vlatko Vedral

2009-09-28T23:59:59.000Z

56

Design Code Survey Form | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Design Code Survey Form Design Code Survey Form Design Code Survey Form Survey of Safety Software Used in Design of Structures, Systems, and Components 1. Introduction The Department's Implementation Plan for Software Quality Assurance (SQA) that was developed in response to Defense Nuclear Facilities Safety Board Recommendation 2002-01, Quality Assurance for Safety-Related Software, includes a commitment (4.2.1.5) to conduct a survey of design codes currently in use to determine if any should be included as part of the toolbox codes. Design Code Survey Form September 11, 2003 More Documents & Publications Technical Standards, Safety Analysis Toolbox Codes - November 2003 DOE G 414.1-4, Safety Software Guide for Use with 10 CFR 830 Subpart A, Quality Assurance Requirements, and DOE O 414.1C, Quality Assurance

57

Alabama | Building Energy Codes Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Adoption » Status of State Energy Code Adoption Adoption » Status of State Energy Code Adoption Site Map Printable Version Development Adoption Adoption Process State Technical Assistance Status of State Energy Code Adoption Compliance Regulations Resource Center Alabama Last updated on 2013-05-31 Current News The Alabama Energy and Residential Codes Board adopted the 2009 International Energy Conservation Code (IECC) for Commercial Buildings and the 2009 International Residential Code (IRC) for Residential Construction. The new codes will become effective on October 1, 2012. Commercial Residential Code Change Current Code 2009 IECC Amendments / Additional State Code Information N/A Approved Compliance Tools State Specific Research Impacts of ASHRAE 90.1-2007 for Commercial Buildings in Alabama (BECP Report, Sept. 2009)

58

Washington | Building Energy Codes Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Washington Washington Last updated on 2013-11-05 Current News The Washington State Building Code Council recently completed deliberations on adoption and amendment of the 2012 codes. This includes adoption of the 2012 IECC with state amendments. The new codes became effective July 1, 2013. Commercial Residential Code Change Current Code State Specific Amendments / Additional State Code Information WA 2012 Nonresidential Codes Approved Compliance Tools Nonresidential Energy Code Compliance Tools Approximate Energy Efficiency Equivalent to ASHRAE 90.1-2010 Effective Date 07/01/2013 Adoption Date 02/01/2013 Code Enforcement Mandatory DOE Determination ASHRAE 90.1-2007: Yes ASHRAE 90.1-2010: Yes Washington DOE Determination Letter, May 31, 2013 Washington State Certification of Commercial and Residential Building Energy Codes

59

NAICS Codes Description:  

Broader source: Energy.gov (indexed) [DOE]

Codes Codes Description: Filters: Date Signed only show values between '10/01/2006' and '09/30/2007', Contracting Agency ID show only ('8900'), Contracting Office ID show only ('00001') Contracting Agency ID: 8900, Contracting Office ID: 00001 NAICS Code NAICS Description Actions Action Obligation 541519 OTHER COMPUTER RELATED SERVICES 251 $164,546,671 541611 ADMINISTRATIVE MANAGEMENT AND GENERAL MANAGEMENT CONSULTING SERVICES 236 $52,396,806 514210 DATA PROCESSING SERVICES 195 $28,941,727 531210 OFFICES OF REAL ESTATE AGENTS AND BROKERS 190 $6,460,652 541330 ENGINEERING SERVICES 165 $33,006,079 163 $11,515,387 541690 OTHER SCIENTIFIC AND TECHNICAL CONSULTING SERVICES 92 $40,527,088 531390 OTHER ACTIVITIES RELATED TO REAL ESTATE 79 -$659,654 337214 OFFICE FURNITURE (EXCEPT WOOD) MANUFACTURING 78 $1,651,732

60

Post-test analysis of dryout test 7B' of the W-1 Sodium Loop Safety Facility Experiment with the SABRE-2P code. [LMFBR  

SciTech Connect (OSTI)

An understanding of conditions that may cause sodium boiling and boiling propagation that may lead to dryout and fuel failure is crucial in liquid-metal fast-breeder reactor safety. In this study, the SABRE-2P subchannel analysis code has been used to analyze the ultimate transient of the in-core W-1 Sodium Loop Safety Facility experiment. This code has a 3-D simple nondynamic boiling model which is able to predict the flow instability which caused dryout. In other analyses dryout has been predicted for out-of-core test bundles and so this study provides additional confirmation of the model.

Rose, S.D.; Dearing, J.F.

1981-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "facility code code" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Building Energy Codes Fact Sheet  

Broader source: Energy.gov [DOE]

Building energy codes have been in place for over 20 years. Today's codes are providing energy savings of more than 30% compared to the codes of a decade ago. They're also saving consumers an estimated $5 billion annually as of 2012. Since 1992, building codes have saved about 300 million tons of carbon cumulatively. Read the fact sheet below to learn more about the Building Technologies Office's Building Energy Codes program.

62

Coding for Cooperative Communications  

E-Print Network [OSTI]

develop and design practical coding strategies which perform very close to the infor- mation theoretic limits. The cooperative communication channels we consider are: (a) The Gaussian re- lay channel, (b) the quasi-static fading relay channel, (c... modulation. The CF strategy is implemented with low-density parity-check (LDPC) and irregular repeat- accumulate codes and is found to operate within 0.34 dB of the theoretical limit. For the quasi-static fading relay channel, we assume that no channel...

Uppal, Momin Ayub

2011-10-21T23:59:59.000Z

63

Usage Codes Vessel name  

E-Print Network [OSTI]

Usage Codes 1 5 2 6 3 7 4 8 Vessel name Int'l radio call sign (IRCS) Generator Other: Max hoisting Sonar Power (Kw) KHz: KHz: VMS Usage Y / N GPS: Internal / external KHz: KHz: Ratio Accuracy (m Incinerator: Burned on board: Net sensors Hull mounted / towed Wired / wireless Y / N Y / N Usage Manufacturer

64

Usage Codes Additional Information  

E-Print Network [OSTI]

Usage Codes 1 5 2 6 3 7 4 8 Additional Information Winches (on deck) Electronics RPM: Max hoistingPresent? Usage Model Ratio Accuracy (m) Type: Electric / Hydraulic / Other _________________ KHz: GPS: Internal Other: Y / N Other: Y / N Y / NOther: Hydrophone Burned on board: Net sensors Usage Manufacturer High

65

The Woodland Carbon Code  

E-Print Network [OSTI]

The Woodland Carbon Code While society must continue to make every effort to reduce greenhouse gas a role by removing carbon dioxide from the atmosphere. The potential of woodlands to soak up carbon to help compensate for their carbon emissions. But before investing in such projects, people want to know

66

Nebraska | Building Energy Codes Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nebraska Nebraska Last updated on 2013-11-04 Current News Nebraska Legislature adopted the 2009 IECC/ASHRAE 90.1-2007. The code became effective August 27, 2011. Commercial Residential Code Change Current Code 2009 IECC Amendments / Additional State Code Information Cities and counties may adopt codes that differ from the Nebraska Energy Code; however, state law requires the adopted code to be equivalent to the Nebraska Energy Code. For existing buildings, only those renovations that will cost more than 50 percent of the replacement cost of the building must comply with the code. Approved Compliance Tools Can use COMcheck State Specific Research Impacts of ASHRAE 90.1-2007 for Commercial Buildings in the State of Nebraska (BECP Report, Sept. 2009) Approximate Energy Efficiency Equivalent to 2009 IECC

67

Summary | Building Energy Codes Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Summary Summary The impact of energy codes on our future is apparent. From environmental and resource conservation to national security, energy concerns, and our economic challenges, energy codes will continue to be a key component of a sound public policy. For further information on building energy code adoption, compliance, and enforcement, review the ACE toolkits Adoption Compliance Enforcement Popular Links ACE Learning Series ACE Overview Top 10 Reasons for Energy Codes Development of Energy Codes Adoption of Energy Codes Compliance with Energy Codes Enforcement of Energy Codes Going Beyond Code Summary Acronyms and Abbreviations Toolkit Definitions Adoption Toolkit Compliance Toolkit Enforcement Toolkit Contacts Web Site Policies U.S. Department of Energy USA.gov Last Updated: Thursday, January 31, 2013 - 15:19

68

Florida | Building Energy Codes Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Florida Florida Last updated on 2013-11-18 Current News The triennial code change process is currently underway. Florida expects to be equivalent to ASHRAE 90.1-10 and IECC 2012 by early 2014. Commercial Residential Code Change Current Code State Specific Amendments / Additional State Code Information N/A Approved Compliance Tools Can use State specific EnergyGauge Summit FlaCom State Specific Research Approximate Energy Efficiency Equivalent to ASHRAE 90.1-2007 Effective Date 03/15/2012 Code Enforcement Mandatory DOE Determination ASHRAE 90.1-2007: Yes ASHRAE 90.1-2010: No Florida DOE Determination Letter, May 31, 2013 Florida State Certification of Commercial Building Codes Current Code State Specific Amendments / Additional State Code Information Florida Building Code

69

Building Energy Codes 101: An Introduction | Building Energy Codes Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Codes 101: An Introduction Codes 101: An Introduction In order to provide a basic introduction to the varied and complex issues associated with building energy codes, the U.S. Department of Energy's Building Energy Codes Program, with valued assistance from the International Codes Council and ASHRAE, has prepared Building Energy Codes 101: An Introduction. This guide is designed to speak to a broad audience with an interest in building energy efficiency, including state energy officials, architects, engineers, designers, and members of the public. Publication Date: Wednesday, February 17, 2010 BECP_Building Energy Codes 101_February2010_v00.pdf Document Details Last Name: Britt Initials: M Affiliation: PNNL Document Number: PNNL-70586 Focus: Adoption Code Development Compliance Building Type:

70

Compliance with Energy Codes | Building Energy Codes Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Compliance with Energy Codes Compliance with Energy Codes Energy code compliance must be achieved to realize the considerable benefits inherent in energy codes. BECP supports successful compliance by making no-cost compliance tools, REScheck(tm) and COMcheck(tm), and other resources widely available to everyone. BECP has also developed several resources to help states uniformly assess the rate of compliance with their energy codes for residential and commercial buildings. It is important to note that regardless of the level of enforcement, as a law the building owner/developer is ultimately responsible to comply with the energy code. Compliance will be increased if the adopting agency prepares the building construction community to comply with the energy code and provides resources to code officials to enforce it.

71

Simulation of the loss of the residual heat removal of an integral test facility using computer code Cathare7  

E-Print Network [OSTI]

and significant water entrainment into the surge line in the beginning of the test. It was found that the model of the upward tee junction needs to be refined for the low pressure range. Overall, the code's predictions were in a qualitative agreement...

Troshko, Andrey Arthurovich

1996-01-01T23:59:59.000Z

72

Adaptive code generators for tree coding of speech  

E-Print Network [OSTI]

Tree coding is a promising way of obtaining good performance for medium-to-low rate speech coding. The key part of a tree coder is the code generator which consists of a short-term predictor and a long-term predictor. The best predictor designed...

Dong, Hui

1998-01-01T23:59:59.000Z

73

SIID Tangible CONTROLLED OBJECT CODES: CAPITALIZED OBJECT CODES  

E-Print Network [OSTI]

vehicle 1811 - Motor Vehicle Other 1812 - Aircraft 1813 - Motor Vehicle (Natural Gas conversion -Passengers Cars 1814 - Motor Vehicles - Natural Gas Conversion-other 1820 - Boats 1841- Software > 100kSIID Tangible CONTROLLED OBJECT CODES: CAPITALIZED OBJECT CODES: Capital Objects Codes That Do

Hofmann, Hans A.

74

Methane Hydrates Code Comparison  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Code Comparison Code Comparison Set-up for Problem 7 (Long-term simulations for Mt Elbert and PBU L- Pad "Like" Deposits) As discussed in the phone conference held on 11/9/2007, it is proposed that Problem 7 be made up of three separate cases: Problem 7a will look at a deposit similar to the Mt Elbert site. Problem 7b will be based on the PBU L-Pad site, and Problem 7c will be a down-dip version of the L-Pad site. In all three cases, a standard set of parameters will be used based on those found in Problem 6 (the history matches to the MDT data). The parameters chosen were consensus values based on the experiences of the various groups in attempting to match the MDT data for the C2 formation at Mount Elbert. Given below are the detailed descriptions of the three problems and the proposed

75

Minnesota | Building Energy Codes Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Minnesota Minnesota Last updated on 2013-06-03 Current News The 2009 editions of the International Residential Code (IRC), International Building Code (IBC), and International Fire Code (IFC) will be published soon and the Construction Codes and Licensing Division and the State Fire Marshal Division have been discussing this adoption. Commercial Residential Code Change Current Code ASHRAE Standard 90.1-2004 with Amendments Amendments / Additional State Code Information Commercial Energy Code Approved Compliance Tools Compliance forms can be downloaded from ASHRAE State Specific Research Impacts of ASHRAE 90.1-2007 for Commercial Buildings in the State of Minnesota (BECP Report, Sept. 2009) Approximate Energy Efficiency Less energy efficient than ASHRAE 90.1-2004 Effective Date 06/01/2009

76

News | Building Energy Codes Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

News News A variety of resources and news from BECP, states, and other news sources are available for anyone interested in learning more about building energy codes. This includes newsletters, articles, links and more. To receive BECP News and other updates from the Building Energy Codes Program via email, join our mailing list. Featured Codes News DOE Activities and Methodology for Assessing Compliance With Building Energy Codes RFI Mayors Urge Cities to Strengthen Energy Code AZ Legislature Preserves Local Control of Building Energy Efficiency Codes Washington State Home Builders Lead the Nation in Energy Code Compliance Mississippi Invests in Future Growth With Adoption of Best-in-Class Energy Efficiency Legislation Energy 2030 Report Calls for Stricter Energy Building Codes

77

Michigan | Building Energy Codes Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Michigan Michigan Last updated on 2013-06-03 Commercial Residential Code Change Current Code ASHRAE Standard 90.1-2007 with Amendments Amendments / Additional State Code Information 2009 Commercial MI Uniform Energy Code Rules Approved Compliance Tools Can use COMcheck State Specific Research Impacts of ASHRAE 90.1-2007 for Commercial Buildings in the State of Michigan (BECP Report, Sept. 2009) Approximate Energy Efficiency Equivalent to ASHRAE 90.1-2007 Effective Date 03/09/2011 Adoption Date 11/08/2010 Code Enforcement Mandatory DOE Determination ASHRAE 90.1-2007: No ASHRAE 90.1-2010: No Michigan DOE Determination Letter, May 31, 2013 Current Code 2009 IECC with Amendments Amendments / Additional State Code Information 2009 Residential MI Uniform Energy Code Rules Approved Compliance Tools Can use REScheck

78

Nevada Energy Code for Buildings  

Broader source: Energy.gov [DOE]

''Much of the information presented in this summary is drawn from the U.S. Department of Energys (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

79

Network coding for anonymous broadcast  

E-Print Network [OSTI]

This thesis explores the use of network coding for anonymous broadcast. Network coding, the technique of transmitting or storing mixtures of messages rather than individual messages, can provide anonymity with its mixing ...

Sergeev, Ivan A

2013-01-01T23:59:59.000Z

80

Matlab-Kinect Interface Code  

E-Print Network [OSTI]

This .zip file contains code and installation instructions for acquiring 3d arm movements in Matlab using the Microsoft Kinect 3d camera. The provided code has been validated in 32-bit and 64-bit Matlab with 32-bit and ...

Kowalski, Kevin

2012-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "facility code code" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Georgia | Building Energy Codes Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Georgia Georgia Last updated on 2013-07-18 Commercial Residential Code Change Current Code 2009 IECC with Amendments Amendments / Additional State Code Information GA Amendments Approved Compliance Tools Can use COMcheck Must choose ASHRAE 90.1-2007 as code option. State Specific Research Impacts of ASHRAE 90.1-2007 for Commercial Buildings in the State of Georgia (BECP Report, Sept. 2009) Approximate Energy Efficiency Equivalent to 2009 IECC Effective Date 01/01/2011 Adoption Date 11/03/2010 Code Enforcement Mandatory DOE Determination ASHRAE 90.1-2007: Yes ASHRAE 90.1-2010: No Georgia State Certification of Commercial and Residential Building Codes Extension Request Current Code 2009 IECC with Amendments Amendments / Additional State Code Information GA Amendments Approved Compliance Tools Can use REScheck

82

Robust LT codes with alternating feedback  

Science Journals Connector (OSTI)

In this paper, we propose robust LT codes with alternating feedback (LT-AF codes), which lightly utilize the feedback channel and surpass the performance of existing LT codes with feedback. In LT-AF codes, we consider a loss prone feedback channel for ... Keywords: Erasure channel, Feedback channel, Forward error correction codes, LT codes, Rateless codes

Ali Talari, Nazanin Rahnavard

2014-08-01T23:59:59.000Z

83

What's coming in 2012 codes  

E-Print Network [OSTI]

Administration Why Building Energy Codes Matter Why Building Energy Codes Matter ? Buildings account for 70% of electricity use ? Buildings account for 38% of CO2 emissions (Source: US Green Building Council) Residential Progress Commercial Progress... ? Southeast Energy Efficiency Alliance ? Southwest Energy Efficiency Project Why Building Energy Codes Matter Why Building Energy Codes Matter ? Share of Energy Consumed by Major Sectors of the Economy (2010) Source: U.S. Energy Information...

Lacey, E

2011-01-01T23:59:59.000Z

84

2009 Solar Decathlon Building Code  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

BUILDING CODE Last Updated: September 29, 2008 2009 Solar Decathlon Building Code i September 29, 2008 Contents Section 1. Introduction ............................................................................................................................................................. 1 Section 2. Adopted Codes ........................................................................................................................................................ 1 Section 3. Building Planning and Construction .............................................................................................................. 1 3-1. Fire Protection and Prevention ................................................................................................................................. 1

85

Rotationally invariant multilevel block codes  

E-Print Network [OSTI]

The objective of this thesis is to evaluate the performance of block codes that are designed to be rotationally invariant, in a multilevel coding scheme, over a channel modelled to be white gaussian noise. Also, the use of non-binary codes...

Kulandaivelu, Anita

2012-06-07T23:59:59.000Z

86

MATH 406/806 Introduction to Coding Theory  

E-Print Network [OSTI]

, convolutional codes, turbo codes, expander codes, low-density parity-check (LDPC) codes. References: R.M. Roth

Offin, Dan

87

Southeast Energy Efficiency Alliance's Building Energy Codes...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Southeast Energy Efficiency Alliance's Building Energy Codes Project Southeast Energy Efficiency Alliance's Building Energy Codes Project Building Codes Project for the 2013...

88

Cal. Wat. Code 13376 | Open Energy Information  

Open Energy Info (EERE)

Wat. Code 13376Legal Abstract Cal. Wat. Code 13376, current through August 14, 2014. Published NA Year Signed or Took Effect 2014 Legal Citation Cal. Wat. Code 13376...

89

Development | Building Energy Codes Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Printable Version Printable Version Development Commercial Residential Adoption Compliance Regulations Resource Center Development The U.S. Department of Energy (DOE) supports and participates in the model building energy code development processes administered by the ASHRAE and the International Code Council (ICC). DOE activities include developing and submitting code change proposals, conducting analysis of building energy efficiency and cost savings, and formulating underlying evaluation methodologies. Through participation in model energy code development for both commercial and residential buildings, DOE strives to make cost-effective, energy efficient upgrades to current model codes. DOE also establishes energy efficiency standards for federal buildings and manufactured housing. Further information on this process is defined under

90

Energy Codes at a Glance  

SciTech Connect (OSTI)

Feeling dim from energy code confusion? Read on to give your inspections a charge. The U.S. Department of Energys Building Energy Codes Program addresses hundreds of inquiries from the energy codes community every year. This article offers clarification for topics of confusion submitted to BECP Technical Support of interest to electrical inspectors, focusing on the residential and commercial energy code requirements based on the most recently published 2006 International Energy Conservation Code and ANSI/ASHRAE/IESNA1 Standard 90.1-2004.

Cole, Pamala C.; Richman, Eric E.

2008-09-01T23:59:59.000Z

91

Wyner-Ziv coding based on TCQ and LDPC codes and extensions to multiterminal source coding  

E-Print Network [OSTI]

to approach the Wyner-Ziv distortion limit D??W Z(R), the trellis coded quantization (TCQ) technique is employed to quantize the source X, and irregular LDPC code is used to implement Slepian-Wolf coding of the quantized source input Q(X) given the side...

Yang, Yang

2005-11-01T23:59:59.000Z

92

Pennsylvania | Building Energy Codes Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Pennsylvania Pennsylvania Last updated on 2013-11-05 Commercial Residential Code Change Current Code 2009 IECC Amendments / Additional State Code Information Pennsylvania's current code is the 2009 IECC with reference to ASHRAE 90.1-2007. Approved Compliance Tools Can use COMcheck State Specific Research Impacts of ASHRAE 90.1-2007 for Commercial Buildings in the State of Pennsylvania (BECP Report, Sept. 2009) Approximate Energy Efficiency Equivalent to 2009 IECC Effective Date 12/31/2009 Adoption Date 12/10/2009 Code Enforcement Mandatory DOE Determination ASHRAE 90.1-2007: Yes ASHRAE 90.1-2010: No Pennsylvania DOE Determination Letter, May 31, 2013 Pennsylvania State Certification of Commercial and Residential Building Energy Codes Current Code 2009 IECC Amendments / Additional State Code Information Pennsylvania's current residential code is the 2009 IECC, 2009 IRC, Chapter 11, and/or PA-Alt. Adherence to Pennsylvania's Alternative Residential Energy Provisions 2009 is an acceptable means of demonstrating compliance with the energy conservation code requirements of the Uniform Construction Code.

93

Ohio | Building Energy Codes Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ohio Ohio Last updated on 2013-10-21 Commercial Residential Code Change Current Code 2009 IECC Amendments / Additional State Code Information Ohio's commercial code is the 2009 IECC with a direct reference to ASHRAE 90.1-07. Approved Compliance Tools Can use COMcheck State Specific Research Impacts of ASHRAE 90.1-2007 for Commercial Buildings in the State of Ohio (BECP Report, Sept. 2009) Approximate Energy Efficiency Equivalent to 2009 IECC Effective Date 11/01/2011 Adoption Date 03/07/2011 Code Enforcement Mandatory DOE Determination ASHRAE 90.1-2007: Yes ASHRAE 90.1-2010: No Ohio DOE Determination Letter, May 31, 2013 Ohio State Certification of Commercila and Residential Building Energy Codes Current Code 2009 IECC with Amendments Amendments / Additional State Code Information Effective January 1, 2013 the residential code in Ohio is based on Chapter 11 of the 2009 IRC. It includes the 2009 IECC and state-specific alternative compliance paths. The 2013 Residential Code of Ohio (RCO) contains amendments to allow compliance to be demonstrated in three ways: (1) 2009 IECC; or (2) RCO Sections 1101 through 1104; or RCO Section 1105 ("The Ohio Homebuilder's Association Alternative Energy Code Option").

94

Kentucky | Building Energy Codes Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Kentucky Kentucky Last updated on 2013-08-02 Current News Kentucky moves forward with the 2009 IECC by reference in their updated 2007 Kentucky Building Code. 2009 IECC is effective 3/6/2011 with mandatory compliance beginning 6/1/2011. Kentucky residential code was also updated to the 2009 IECC. The code is effective 7/1/2012 with an enforcement date of 10/1/2012. Commercial Residential Code Change Current Code 2009 IECC with Amendments Amendments / Additional State Code Information Amendments are contained in the latest update to the 2007 Kentucky Building Code. Approved Compliance Tools Can use COMcheck State Specific Research Impacts of ASHRAE 90.1-2007 for Commercial Buildings in the State of Kentucky (BECP Report, Sept. 2009) Approximate Energy Efficiency Equivalent to 2009 IECC

95

Wyoming | Building Energy Codes Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Wyoming Wyoming Last updated on 2013-06-03 Commercial Residential Code Change Current Code None Statewide Amendments / Additional State Code Information The International Conference of Building Officials (ICBO) Uniform Building Code, which is based on the 1989 Model Energy Code (MEC), may be adopted and enforced by local jurisdictions. Approved Compliance Tools Can use COMcheck State Specific Research Impacts of ASHRAE Standard 90.1-2007 for Commercial Buildings in the State of Wyoming (BECP Report, Sept. 2009) Approximate Energy Efficiency Less energy efficient than 2003 IECC Effective Date 08/13/2008 Code Enforcement Voluntary DOE Determination ASHRAE Standard 90.1-2007: No ASHRAE Standard 90.1-2010: No Wyoming DOE Determination Letter, May 31, 2013 Current Code None Statewide

96

Building Energy Codes News | Building Energy Codes Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Building Energy Codes News Building Energy Codes News News Category: National Policy DOE Activities and Methodology for Assessing Compliance With Building Energy Codes RFI Posted: Tuesday, August 6, 2013 On August 6, DOE published an RFI on its methodology for assessing code compliance into the Federal Register. Based on feedback received from the individual state compliance pilot studies in 2011-2012, the RFI seeks input on DOE's methodology and fundamental assumptions from the general public. Read the full article... Source: U.S. Department of Energy Building Energy Codes Program Energy 2030 Report Calls for Stricter Energy Building Codes Posted: Tuesday, February 12, 2013 The Alliance Commission on National Energy Efficiency Policy aims to double US energy productivity by 2030, and one of its many ways to achieve that

97

Top 10 Reasons for Energy Codes | Building Energy Codes Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Top 10 Reasons for Energy Codes Top 10 Reasons for Energy Codes The projected energy savings attributable to energy codes translates into an estimated cumulative savings of 800 million metric tons of carbon dioxide by 2030-that's equivalent to removing 145 million vehicles from our nation's roadways. Here are the top 10 reasons for adopting and implementing energy codes. Today's global energy, economic, and environmental challenges necessitate a U.S. strategy identifying a suite of energy-efficiency-related initiatives that is implemented by the building industry and relevant stakeholders. Energy codes are a core component of that strategy and, in addition, have an impact on other strategies to improve our built environment. Energy Codes... SAVE money and help reduce needless consumption of energy to heat,

98

CBP PHASE I CODE INTEGRATION  

SciTech Connect (OSTI)

The goal of the Cementitious Barriers Partnership (CBP) is to develop a reasonable and credible set of software tools to predict the structural, hydraulic, and chemical performance of cement barriers used in nuclear applications over extended time frames (greater than 100 years for operating facilities and greater than 1000 years for waste management). The simulation tools will be used to evaluate and predict the behavior of cementitious barriers used in near surface engineered waste disposal systems including waste forms, containment structures, entombments, and environmental remediation. These cementitious materials are exposed to dynamic environmental conditions that cause changes in material properties via (i) aging, (ii) chloride attack, (iii) sulfate attack, (iv) carbonation, (v) oxidation, and (vi) primary constituent leaching. A set of state-of-the-art software tools has been selected as a starting point to capture these important aging and degradation phenomena. Integration of existing software developed by the CBP partner organizations was determined to be the quickest method of meeting the CBP goal of providing a computational tool that improves the prediction of the long-term behavior of cementitious materials. These partner codes were selected based on their maturity and ability to address the problems outlined above. The GoldSim Monte Carlo simulation program (GTG 2010a, GTG 2010b) was chosen as the code integration platform (Brown & Flach 2009b). GoldSim (current Version 10.5) is a Windows based graphical object-oriented computer program that provides a flexible environment for model development (Brown & Flach 2009b). The linking of GoldSim to external codes has previously been successfully demonstrated (Eary 2007, Mattie et al. 2007). GoldSim is capable of performing deterministic and probabilistic simulations and of modeling radioactive decay and constituent transport. As part of the CBP project, a general Dynamic Link Library (DLL) interface was developed to link GoldSim with external codes (Smith III et al. 2010). The DLL uses a list of code inputs provided by GoldSim to create an input file for the external application, runs the external code, and returns a list of outputs (read from files created by the external application) back to GoldSim. In this way GoldSim provides: (1) a unified user interface to the applications, (2) the capability of coupling selected codes in a synergistic manner, and (3) the capability of performing probabilistic uncertainty analysis with the codes. GoldSim is made available by the GoldSim Technology Group as a free 'Player' version that allows running but not editing GoldSim models. The player version makes the software readily available to a wider community of users that would wish to use the CBP application but do not have a license for GoldSim.

Smith, F.; Brown, K.; Flach, G.; Sarkar, S.

2011-09-30T23:59:59.000Z

99

Arkansas | Building Energy Codes Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Arkansas Arkansas Last updated on 2013-12-10 Current News ASHRAE 90.1-2007 became the effective commercial code in Arkansas on January 1, 2013. Commercial Residential Code Change Current Code ASHRAE Standard 90.1-2007 with Amendments Amendments / Additional State Code Information Arkansas Supplements and Amendments Approved Compliance Tools Can use COMcheck State Specific Research Impacts of ASHRAE 90.1-2007 for Commercial Buildings in the State of Arkansas Approximate Energy Efficiency Equivalent to ASHRAE 90.1-2007 Effective Date 01/01/2013 Adoption Date 01/13/2012 Code Enforcement Mandatory DOE Determination ASHRAE Standard 90.1-2007: Yes ASHRAE Standard 90.1-2010: No Energy cost savings for Arkansas resulting from the state updating its commercial and residential building energy codes in accordance with federal law are significant, estimated to be on the order of nearly $100 million annually by 2030.

100

Delaware | Building Energy Codes Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Site Map Printable Version Development Adoption Adoption Process State Technical Assistance Status of State Energy Code Adoption Compliance Regulations Resource Center Delaware Last updated on 2013-08-02 Commercial Residential Code Change Current Code 2009 IECC with Amendments Amendments / Additional State Code Information Agriculture structures are excluded. Approved Compliance Tools Can use COMcheck State Specific Research Impacts of ASHRAE 90.1-2007 for Commercial Buildings in the State of Delaware (BECP Report, Sept. 2009) Approximate Energy Efficiency Equivalent to 2009 IECC Effective Date 07/01/2010 Adoption Date 07/29/2009 Code Enforcement Mandatory DOE Determination ASHRAE 90.1-2007: Yes ASHRAE 90.1-2010: No Delaware DOE Determination Letter, May 31, 2013 Delaware State Certification of Commercial and Residential Building Energy Codes

Note: This page contains sample records for the topic "facility code code" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Chapter 28 - Perceptual Audio Coding  

Science Journals Connector (OSTI)

Abstract Audio Coding has proliferated as a mainstream enabling digital technology for all types of applications that provide audio and multimedia to consumers using transmission or storage channels with limited capacity. Since its infancies in the eighties and early nineties, the technology behind low bitrate audio coding has developed rapidly until today. Nonetheless, the technology generations seen to date follow several common themes, including the use of time/frequency-domain processing, redundancy reduction (entropy coding), and irrelevancy removal through the pronounced exploitation of perceptual effects. The latter aspect is of paramount importance to the understanding and the performance of the coding systems and has gained more and more in importance over time. Starting from basic principles, this article provides an overview of methods for low bitrate perceptual audio coding and its evolution over time along with some related coding standards (e.g., mp3) and typical applications.

Jrgen Herre; Sascha Disch

2014-01-01T23:59:59.000Z

102

SEAMOPT - Stirling engine optimization code  

SciTech Connect (OSTI)

Experience is described with use of a fast-running Stirling engine optimization code developed at Argonne intended for public release. Stirling engine modeling is provided by the SEAM1 thermodynamic code. An interface was written to combine SEAM1 with a general optimization code and assess maximum component stress levels. Thus full engine thermodynamic and structural simulation is done during the optimization process. Several examples of the use of this code to optimize the GPU-3 engine are described. In one case efficiency was improved by over 25%.

Heames, T.J.; Daley, J.G.

1984-01-01T23:59:59.000Z

103

BPA Hotline & Codes of Conduct  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hotline & Codes of Conduct Pages default Sign In About | Careers | Contact | Investors | bpa.gov Search News & Us Expand News & Us Projects & Initiatives Expand Projects &...

104

FOUNDATION REVENUE OBJECT CODES LSU Foundation Revenue Object Codes  

E-Print Network [OSTI]

FOUNDATION REVENUE OBJECT CODES 4 page 1 LSU Foundation Revenue Object Codes 0F00 Foundation - Balance Forward 0F01 Foundation - Other Contributions 0F02 Foundation - State of Louisiana 0F03 Foundation - Corporate Contributions 0F04 Foundation - Corporate Match Contributions 0F05 Foundation - Individual

Harms, Kyle E.

105

Bureau of Construction Codes - 2009 Michigan Uniform Energy Code - Commercial  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

These rules take effect March 9, 2011 (By authority conferred on the director of the department of energy, labor, and economic growth by section 4 of 1972 PA 230, MCL 125.1504, and Executive Reorganization Order Nos. 2003-1 and 2008-20, MCL 445.2011 and MCL 445.2025) R 408.31087, R 408.31088, R 408.31089, and R 408.31090 of the Michigan Administrative Code are amended and R 408.31087a is added to the code as follows: PART 10a MICHIGAN UNIFORM ENERGY CODE R 408.31087 Applicable code. Rule 1087. Rules governing the energy efficiency for the design and construction of buildings and structures, not including residential buildings, shall be those contained in the international energy conservation code, 2009 edition, section 501.1 and the ASHRAE

106

Louisiana | Building Energy Codes Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Louisiana Louisiana Last updated on 2013-08-02 Commercial Residential Code Change Current Code ASHRAE Standard 90.1-2007 Amendments / Additional State Code Information N/A Approved Compliance Tools Can use COMcheck State Specific Research Impacts of ASHRAE 90.1-2007 for Commercial Buildings in the State of Louisiana (BECP Report, Sept. 2009) Approximate Energy Efficiency Equivalent to ASHRAE 90.1-2007 Effective Date 07/20/2011 Adoption Date 07/20/2011 Code Enforcement Mandatory DOE Determination ASHRAE 90.1-2007: Yes ASHRAE 90.1-2010: No Louisiana DOE Determination Letter, May 31, 2013 Louisiana State Certification of Commercial and Residential Building Energy Codes Current Code 2006 IRC Amendments / Additional State Code Information Louisiana's current residential code is the 2006 IRC with direct reference to the 2006 IECC. All AC duct insulation is R6 instead of R8 and to include Section R301.2.1.1 of the 2003 edition of the IRC in lieu of Section R301.2.1.1 of the 2006 edition.

107

LFSC - Linac Feedback Simulation Code  

SciTech Connect (OSTI)

The computer program LFSC (Code>) is a numerical tool for simulation beam based feedback in high performance linacs. The code LFSC is based on the earlier version developed by a collective of authors at SLAC (L.Hendrickson, R. McEwen, T. Himel, H. Shoaee, S. Shah, P. Emma, P. Schultz) during 1990-2005. That code was successively used in simulation of SLC, TESLA, CLIC and NLC projects. It can simulate as pulse-to-pulse feedback on timescale corresponding to 5-100 Hz, as slower feedbacks, operating in the 0.1-1 Hz range in the Main Linac and Beam Delivery System. The code LFSC is running under Matlab for MS Windows operating system. It contains about 30,000 lines of source code in more than 260 subroutines. The code uses the LIAR ('Linear Accelerator Research code') for particle tracking under ground motion and technical noise perturbations. It uses the Guinea Pig code to simulate the luminosity performance. A set of input files includes the lattice description (XSIF format), and plane text files with numerical parameters, wake fields, ground motion data etc. The Matlab environment provides a flexible system for graphical output.

Ivanov, Valentin; /Fermilab

2008-05-01T23:59:59.000Z

108

on education Code of Ethics  

E-Print Network [OSTI]

the forum Abroad on education Code of Ethics for Education Abroad #12;The Forum on Education Abroad Code of Ethics for Education Abroad Contents Page Section I Preamble 2 Section II Ethical Principles for Education Abroad 3 Section III Ethical Guidelines: Examples of Ethical Best 6 Practices for Education Abroad

Illinois at Chicago, University of

109

Secure Symmetrical Multilevel Diversity Coding  

E-Print Network [OSTI]

Secure symmetrical multilevel diversity coding (S-SMDC) is a source coding problem, where a total of L - N discrete memoryless sources (S1,...,S_L-N) are to be encoded by a total of L encoders. This thesis considers a natural generalization of SMDC...

Li, Shuo

2012-07-16T23:59:59.000Z

110

Tennessee | Building Energy Codes Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Tennessee Tennessee Last updated on 2013-08-02 Commercial Residential Code Change Current Code 2006 IECC Approved Compliance Tools Can use COMcheck State Specific Research Impacts of ASHRAE 90.1-2007 for Commercial Buildings in the State of Tennessee (BECP Report, Sept. 2009) Approximate Energy Efficiency Equivalent to 2006 IECC Effective Date 07/01/2011 Adoption Date 06/02/2011 Code Enforcement Mandatory DOE Determination ASHRAE 90.1-2007: No ASHRAE 90.1-2010: No Tennessee DOE Determination Letter, May 31, 2013 Tennessee State Certification of Commercial and Residential Building Energy Codes Current Code 2006 IECC Approved Compliance Tools Can use REScheck State Specific Research Impacts of the 2009 IECC for Residential Buildings in the State of Tennessee (BECP Report, Sept. 2009)

111

ALOHA Code | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

ALOHA Code ALOHA Code ALOHA Code Central Registry Toolbox Code Version(s): V5.2.3 Code Owner: National Oceanic and Atmospheric Administration (NOAA) Description: The Arial Locations of Hazardous Atmospheres (ALOHA) is atmospheric dispersion model maintained by the Hazardous Materials Division of National Oceanic and Atmospheric Administration (NOAA). ALOHA is one of three separate, integrated software applications in the Computer-Aided Management of Emergency Operations (CAMEO) suite. While the other two software applications: Cameo is primarily a database application and Marplot is the mapping application. ALOHA is used primarily for the evaluations of the consequences of atmospheric releases of chemical species. In addition to safety analysis applications in the Department of Energy (DOE) Complex, ALOHA is applied

112

Alaska | Building Energy Codes Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Site Map Printable Version Development Adoption Compliance Regulations Resource Center Alaska Last updated on 2013-12-10 Commercial Residential Code Change Current Code None Statewide Amendments / Additional State Code Information N/A Approved Compliance Tools State Specific Research Impacts of ASHRAE 90.1-2007 for Commercial Buildings in the State of Alaska (BECP Report, Sept. 2009) Approximate Energy Efficiency Effective Date Code Enforcement DOE Determination ASHRAE Standard 90.1-2007: No ASHRAE Standard 90.1-2010: No Energy cost savings for Alaska resulting from the state updating its commercial and residential building energy codes in accordance with federal law are significant, estimated to be on the order of nearly $50 million annually by 2030. Alaska DOE Determination Letter, May 31, 2013

113

GENII Code | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

GENII Code GENII Code GENII Code GENII is a second generation of environmental dosimetry computer code compiled in the Hanford Environmental Dosimetry System (Generation II). GENII provides a state-of-the-art, technically peer-reviewed, documented set of programs for calculating radiation dose and risk from radio nuclides released into the environment. The GENII System includes capabilities for calculating radiation doses following postulated chronic and acute releases. Version 2.10 is currently being evaluated for inclusion in the Central Registry. For more information on GENII to: http://radiologicalsciences.pnl.gov/resources/hardware.asp The GENII code-specific guidance report has been issued identifying applicable regimes in accident analysis, default inputs, and special

114

Massachusetts | Building Energy Codes Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Massachusetts Massachusetts Last updated on 2013-11-04 Current News The BBRS voted to adopt the 2012 IECC and ASHRAE 90.1-2010 on July 9, 2013. They will be phased in over an extended concurrency period, and is expected to become the sole effective baseline energy code on July 1, 2014. Commercial Residential Code Change Current Code 2009 IECC with Amendments Amendments / Additional State Code Information 13.0 Energy Conservation- 2009 IECC Approved Compliance Tools State Specific Research Impacts of ASHRAE 90.1-2007 for Commercial Buildings in the State of Massachusetts (BECP Report, Sept. 2009) Approximate Energy Efficiency Equivalent to 2009 IECC Effective Date 07/01/2010 Adoption Date 01/01/2010 Code Enforcement Mandatory DOE Determination ASHRAE 90.1-2007: Yes ASHRAE 90.1-2010: Yes

115

Virginia | Building Energy Codes Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Virginia Virginia Last updated on 2013-11-05 Current News BHCD/DHCD workgroups are currently meeting over the next 12+ months for the 2012 USBC/IECC regulatory process, with an anticipated effective date in early 2014. Commercial Residential Code Change Current Code 2009 IECC Amendments / Additional State Code Information Virginia's current code is the 2009 IECC with reference to ASHRAE 90.1-2007. Approved Compliance Tools Can use COMcheck State Specific Research Impacts of ASHRAE 90.1-2007 for Commercial Buildings in the State of Virginia (BECP Report, Sept. 2009) Approximate Energy Efficiency Equivalent to 2009 IECC Effective Date 03/01/2011 Adoption Date 07/26/2010 Code Enforcement Mandatory DOE Determination ASHRAE 90.1-2007: Yes ASHRAE 90.1-2010: No Virginia DOE Determination Letter, May 31, 2013

116

Performance studies of the parallel VIM code  

SciTech Connect (OSTI)

In this paper, we evaluate the performance of the parallel version of the VIM Monte Carlo code on the IBM SPx at the High Performance Computing Research Facility at Argonne National Laboratory. Three test problems with contrasting computational characteristics were used to assess effects in performance. A statistical method for estimating the inefficiencies due to load imbalance and communication is also introduced.

Shi, B.; Blomquist, R.N. [Argonne National Laboratory, IL (United States)

1996-12-31T23:59:59.000Z

117

Building Technologies Office: Advancing Building Energy Codes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Building Energy Codes Building Energy Codes Printable Version Share this resource Send a link to Building Technologies Office: Advancing Building Energy Codes to someone by E-mail Share Building Technologies Office: Advancing Building Energy Codes on Facebook Tweet about Building Technologies Office: Advancing Building Energy Codes on Twitter Bookmark Building Technologies Office: Advancing Building Energy Codes on Google Bookmark Building Technologies Office: Advancing Building Energy Codes on Delicious Rank Building Technologies Office: Advancing Building Energy Codes on Digg Find More places to share Building Technologies Office: Advancing Building Energy Codes on AddThis.com... Popular Links Success Stories Previous Next Lighten Energy Loads with System Design. Warming Up to Pump Heat.

118

Business Models for Code Compliance | Building Energy Codes Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Compliance Compliance Site Map Printable Version Development Adoption Compliance Basics Compliance Evaluation Software & Web Tools Regulations Resource Center Business Models for Code Compliance The U.S. Department of Energy is coordinating strategies and activities with companies, individuals, and government entities to demonstrate, quantify, and monetize energy code compliance and coordinate deployment at the local, state, and regional levels. Consumer Assurance through Code Compliance Energy efficiency measures in the buildings sector, if properly realized and captured, provide a tremendous opportunity to reduce energy consumption and expenditures. Yet currently there is a lack of assurance that buildings as designed realize the levels of energy efficiency established in the

119

San Francisco Building Code Amendments to the  

E-Print Network [OSTI]

occupancy types regulated by the San Francisco Building Code, including: A, B, E, F, H, I, L, M, R, S, and U1 2010 San Francisco Building Code Amendments to the 2010 California Green Building Standards Code (Omitting amendments to 2010 California Building Code and 2010 California Residential Code which do

120

About Building Energy Codes | Building Energy Codes Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Compliance Compliance Regulations Resource Center About Building Energy Codes U.S. Energy Consumption by Sector (2011) Source: U.S. Energy Information Administration, Annual Energy Review According to the U.S. Energy Information Administration's Electric Power Annual, U.S. residential and commercial buildings account for approximately 41% of all energy consumption and 72% of electricity usage. Building energy codes increase energy efficiency in buildings, resulting in significant cost savings in both the private and public sectors of the U.S. economy. Efficient buildings reduce power demand and have less of an environmental impact. The Purpose of Building Energy Codes Energy codes and standards set minimum efficiency requirements for new and renovated buildings, assuring reductions in energy use and emissions over

Note: This page contains sample records for the topic "facility code code" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Building Energy Codes Survey Tool  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Codes Program Codes Program Building Energy Codes Survey Tool The following surveys are available: No available surveys Please contact ( webmaster@energycode.pnl.gov ) for further assistance. English Albanian Arabic Basque Belarusian Bosnian Bulgarian Catalan Chinese (Simplified) Chinese (Traditional; Hong Kong) Chinese (Traditional; Taiwan) Croatian Czech Danish Dutch Dutch Informal English Estonian Finnish French Galician German German informal Greek Hebrew Hindi Hungarian Icelandic Indonesian Irish Italian Italian (formal) Japanese Korean Latvian Lithuanian Macedonian Malay Maltese Norwegian (Bokmal) Norwegian (Nynorsk) Persian Polish Portuguese Portuguese (Brazilian) Punjabi Romanian Russian Serbian Sinhala Slovak Slovenian Spanish Spanish (Mexico) Swedish Thai Turkish Urdu Vietnamese Welsh

122

DOE Patents Database - Widget Code  

Office of Scientific and Technical Information (OSTI)

Widget Inclusion Code Widget Inclusion Code Download and install the DOepatents widget by copying and pasting its HTML inclusion code.