Sample records for facility ag land

  1. Land and Facility Use Planning

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1996-07-09T23:59:59.000Z

    The Land and Facility Use Planning process provides a way to guide future site development and reuse based on the shared long-term goals and objectives of the Department, site and its stakeholders. Does not cancel other directives.

  2. AG Land 5 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1 WindtheEnergySulfonate asAEE Solaridentification,3 Jump to:AG

  3. AG Land 2 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindey Wind6:00-06:00 U.S.ratios in CenozoicACALADAAG Land 2

  4. AG Land 4 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindey Wind6:00-06:00 U.S.ratios in CenozoicACALADAAG Land 24

  5. AG Land 6 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindey Wind6:00-06:00 U.S.ratios in CenozoicACALADAAG Land 246

  6. Facile synthesis of novel Ag/AgI/BiOI composites with highly enhanced visible light photocatalytic performances

    SciTech Connect (OSTI)

    Cao, Jing, E-mail: caojing@mail.ipc.ac.cn [College of Chemistry and Materials Science, Huaibei Normal University, Huaibei 235000, Anhui (China); State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100 (China); Zhao, Yijie; Lin, Haili; Xu, Benyan [College of Chemistry and Materials Science, Huaibei Normal University, Huaibei 235000, Anhui (China); Chen, Shifu, E-mail: chshifu@chnu.edu.cn [College of Chemistry and Materials Science, Huaibei Normal University, Huaibei 235000, Anhui (China)

    2013-10-15T23:59:59.000Z

    Novel Ag/AgI/BiOI composites were controllably synthesized via a facile ion-exchange followed by photoreduction strategy by using hierarchical BiOI microflower as substrate. The as-prepared Ag/AgI/BiOI composites were studied by X-ray powder diffractometer (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), Brunauer–Emmett–Teller (BET) surface area analyzer and UV–vis diffuse reflectance spectroscopy (DRS). Under visible light (?>420 nm), Ag/AgI/BiOI displayed highly enhanced photocatalytic activities for degradation of methyl orange (MO) compared to the pure hierarchical BiOI, which was mainly ascribed to the highly efficient separation of electrons and holes through the closely contacted interfaces in the Ag/AgI/BiOI ternary system. - Graphical abstract: Ag/AgI/BiOI displayed excellent photocatalytic activities for methyl orange degradation under visible light, which was mainly ascribed to the highly efficient separation of electrons and holes through Z-scheme pathway. Display Omitted - Highlights: • Novel Ag/AgI/BiOI composites were successfully synthesized. • Ag/AgI/BiOI displayed higher visible light activities than those of pure BiOI and AgI. • ·O{sub 2}{sup ?} and h{sup +}, especially ·O{sub 2}{sup ?}, dominated the photodegradation process of MO. • A Z-scheme pattern was adopted for Ag/AgI/BiOI activity enhancement.

  7. Arid Lands Ecology Facility management plan

    SciTech Connect (OSTI)

    None

    1993-02-01T23:59:59.000Z

    The Arid Lands Ecology (ALE) facility is a 312-sq-km tract of land that lies on the western side of the Hanford Site in southcentral Washington. The US Atomic Energy Commission officially set aside this land area in 1967 to preserve shrub-steppe habitat and vegetation. The ALE facility is managed by Pacific Northwest Laboratory (PNL) for the US Department of Energy (DOE) for ecological research and education purposes. In 1971, the ALE facility was designated the Rattlesnake Hills Research Natural Area (RNA) as a result of an interagency federal cooperative agreement, and remains the largest RNA in Washington. it is also one of the few remaining large tracts of shrub-steppe vegetation in the state retaining a predominant preeuropean settlement character. This management plan provides policy and implementation methods for management of the ALE facilities consistent with both US Department of Energy Headquarters and the Richland Field Office decision (US Congress 1977) to designate and manage ALE lands as an RNA and as a component of the DOE National Environmental Research Park System.

  8. Acceptance test procedure: RMW Land Disposal Facility Project W-025

    SciTech Connect (OSTI)

    Roscha, V. [Westinghouse Hanford Co., Richland, WA (United States)

    1994-12-12T23:59:59.000Z

    This ATP establishes field testing procedures to demonstrate that the electrical/instrumentation system functions as intended by design for the Radioactive Mixed Waste Land Disposal Facility. Procedures are outlined for the field testing of the following: electrical heat trace system; transducers and meter/controllers; pumps; leachate storage tank; and building power and lighting.

  9. Title 43 CFR 429 Use of Bureau of Reclamation Land, Facilities...

    Open Energy Info (EERE)

    OpenEI Reference LibraryAdd to library Legal Document- Federal RegulationFederal Regulation: Title 43 CFR 429 Use of Bureau of Reclamation Land, Facilities, and...

  10. Approaches used for Clearance of Lands from Nuclear Facilities among Several Countries: Evaluation for Regulatory Input

    Broader source: Energy.gov [DOE]

    The study entitled, “Approaches used for Clearance of Lands from Nuclear Facilities among Several Countries: Evaluation for Regulatory Input,” focuses on the issue of showing compliance with given...

  11. AGS SUPER NEUTRINO BEAM FACILITY ACCELERATOR AND TARGET SYSTEM DESIGN (NEUTRINO WORKING GROUP REPORT-II).

    SciTech Connect (OSTI)

    DIWAN,M.; MARCIANO,W.; WENG,W.; RAPARIA,D.

    2003-04-21T23:59:59.000Z

    This document describes the design of the accelerator and target systems for the AGS Super Neutrino Beam Facility. Under the direction of the Associate Laboratory Director Tom Kirk, BNL has established a Neutrino Working Group to explore the scientific case and facility requirements for a very long baseline neutrino experiment. Results of a study of the physics merit and detector performance was published in BNL-69395 in October 2002, where it was shown that a wide-band neutrino beam generated by a 1 MW proton beam from the AGS, coupled with a half megaton water Cerenkov detector located deep underground in the former Homestake mine in South Dakota would be able to measure the complete set of neutrino oscillation parameters: (1) precise determination of the oscillation parameters {Delta}m{sub 32}{sup 2} and sin{sup 2} 2{theta}{sub 32}; (2) detection of the oscillation of {nu}{sub {mu}}-{nu}{sub e} and measurement of sin{sup 2} 2{theta}{sub 13}; (3) measurement of {Delta}m{sub 21}{sup 2} sin 2{theta}{sub 12} in a {nu}{sub {mu}} {yields} {nu}{sub e} appearance mode, independent of the value of {theta}{sub 13}; (4) verification of matter enhancement and the sign of {Delta}m{sub 32}{sup 2}; and (5) determination of the CP-violation parameter {delta}{sub CP} in the neutrino sector. This report details the performance requirements and conceptual design of the accelerator and the target systems for the production of a neutrino beam by a 1.0 MW proton beam from the AGS. The major components of this facility include a new 1.2 GeV superconducting linac, ramping the AGS at 2.5 Hz, and the new target station for 1.0 MW beam. It also calls for moderate increase, about 30%, of the AGS intensity per pulse. Special care is taken to account for all sources of proton beam loss plus shielding and collimation of stray beam halo particles to ensure equipment reliability and personal safety. A preliminary cost estimate and schedule for the accelerator upgrade and target system are also included.

  12. EA-1927: Conveyance of Land and Facilities at the Paducah Gaseous...

    Broader source: Energy.gov (indexed) [DOE]

    Office is preparing an EA for a proposal to convey DOE land and facilities at the Paducah Gaseous Diffusion Plant, to the Paducah Area Community Reuse Organization and potentially...

  13. Sugar Land Facility Lighting and Window Tinting Upgrades

    E-Print Network [OSTI]

    Mesenbrink, C.

    Nalco/Exxon Energy Chemicals, L.P. (NEEC) is a global chemical company that creates and produces specialty chemicals for the Petroleum/Chemical industry. Although NEEC has facilities located around the globe, it's Corporate Administration Offices...

  14. EA-1856: Conveyance of Land and Facilities at the Portsmouth Gaseous Diffusion Plant for Economic Development Purposes, Piketon, Ohio

    Broader source: Energy.gov [DOE]

    This EA will evaluate the environmental impacts of conveyance of land and facilities at the Portsmouth Gaseous Diffusion Plant, in Piketon, Ohio, for economic development purposes.

  15. Land and Facility Use Policy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report:40PM toLEDControl Concept |Energy MicroGrid |Land

  16. Renewable Energy Assessment of Bureau of Reclamation Land and Facilities Using Geographic Information Systems

    SciTech Connect (OSTI)

    Heimiller, D.; Haase, S.; Melius, J.

    2013-05-01T23:59:59.000Z

    This report summarizes results of geographic information system screening for solar and wind potential at select Bureau of Reclamation lands in the western United States. The study included both utility-scale and facility-scale potential. This study supplements information in the report titled Renewable Energy Assessment for the Bureau of Reclamation: Final Report.

  17. THE AGS-BASED SUPER NEUTRINO BEAM FACILITY CONCEPTUAL DESIGN REPORT

    SciTech Connect (OSTI)

    WENG,W.T.; DIWAN,M.; RAPARIA,D.

    2004-10-08T23:59:59.000Z

    After more than 40 years of operation, the AGS is still at the heart of the Brookhaven hadron accelerator complex. This system of accelerators presently comprises a 200 MeV linac for the pre-acceleration of high intensity and polarized protons, two Tandem Van der Graaffs for the pre-acceleration of heavy ion beams, a versatile Booster that allows for efficient injection of all three types of beams into the AGS and, most recently, the two RHIC collider rings that produce high luminosity heavy ion and polarized proton collisions. For several years now, the AGS has held the world intensity record with more than 7 x 10{sup 13} protons accelerated in a single pulse. The requirements for the proton beam for the super neutrino beam are summarized and a schematic of the upgraded AGS is shown. Since the present number of protons per fill is already close to the required number, the upgrade is based on increasing the repetition rate and reducing beam losses (to avoid excessive shielding requirements and to maintain activation of the machine components at workable level). It is also important to preserve all the present capabilities of the AGS, in particular its role as injector to RHIC. The AGS Booster was built not only to allow the injection of any species of heavy ion into the AGS but to allow a fourfold increase of the AGS intensity. It is one-quarter the circumference of the AGS with the same aperture. However, the accumulation of four Booster loads in the AGS takes about 0.6 s, and is therefore not well suited for high average beam power operation. To minimize the injection time to about 1 ms, a 1.2 GeV linac will be used instead. This linac consists of the existing warm linac of 200 MeV and a new superconducting linac of 1.0 GeV. The multi-turn H{sup -} injection from a source of 30 mA and 720 {micro}s pulse width is sufficient to accumulate 9 x 10{sup 13} particle per pulse in the AGS[10]. The minimum ramp time of the AGS to full energy is presently 0.5 s; this must be upgraded to 0.2 s to reach the required repetition rate of 2.5 Hz. The required upgrade of the AGS power supply, the rf system, and other rate dependent accelerator issues is discussed. The design of the target/horn configuration is shown. The material selected for the proton target is a Carbon-Carbon composite. It is a 3-dimensional woven material that exhibits extremely low thermal expansion for temperatures up to 1000 C; for higher temperatures it responds like graphite. This property is important for greatly reducing the thermo-elastic stresses induced by the beam, thereby extending the life of the target. The target consists of a 80 cm long cylindrical rod of 12 mm diameter. The target intercepts a 2 mm rms proton beam of 10{sup 14} protons/pulse. The total energy deposited as heat in the target is 7.3 kJ with peak temperature rise of about 280 C. Heat will be removed from the target through forced convection of helium gas across its outside surface. The extracted proton beam uses an existing beamline at the AGS, but is then directed to a target station atop a constructed earthen hill. The target is followed by a downward slopping pion decay channel. This vertical arrangement keeps the target and decay pipe well above the water table in this area. The 11.3 degrees slope aims the neutrino beam at a water Cerenkov neutrino detector to be located in the Homestake mine at Lead, South Dakota. A 3-dimensional view of the beam transport line, target station, and decay tunnel is provided.

  18. Low-level radioactive mixed waste land disposal facility -- Permanent disposal

    SciTech Connect (OSTI)

    Erpenbeck, E.G.; Jasen, W.G.

    1993-03-01T23:59:59.000Z

    Radioactive mixed waste (RMW) disposal at US Department of Energy (DOE) facilities is subject to the Resource Conservation and Recovery Act of 1976 (RCRA) and the Hazardous and Solid Waste Amendments of 1984 (HSWA). Westinghouse Hanford Company, in Richland, Washington, has completed the design of a radioactive mixed waste land disposal facility, which is based on the best available technology compliant with RCRA. When completed, this facility will provide permanent disposal of solid RMW, after treatment, in accordance with the Land Disposal Restrictions. The facility includes a double clay and geosynthetic liner with a leachate collection system to minimize potential leakage of radioactive or hazardous constituents from the landfill. The two clay liners will be capable of achieving a permeability of less than 1 {times} 10{sup {minus}7} cm/s. The two clay liners, along with the two high density polyethylene (HDPE) liners and the leachate collection and removal system, provide a more than conservative, physical containment of any potential radioactive and/or hazardous contamination.

  19. Final report of the decontamination and decommissioning of the exterior land areas at the Grand Junction Projects Office facility

    SciTech Connect (OSTI)

    Widdop, M.R.

    1995-09-01T23:59:59.000Z

    The US Department of Energy (DOE) Grand Junction Projects Office (GJPO) facility occupies approximately 56.4 acres (22.8 hectares) along the Gunnison River near Grand Junction, Colorado. The site was contaminated with uranium ore and mill tailings during uranium-refining activities conducted by the Manhattan Engineer District and during pilot-milling experiments conducted for the US Atomic Energy Commission`s (AEC`s) domestic uranium procurement program. The GJPO facility was the collection and assay point for AEC uranium and vanadium oxide purchases until the early 1970s. The DOE Decontamination and Decommissioning Program sponsored the Grand Junction Projects Office Remedial Action Project (GJPORAP) to remediate the facility lands, site improvements, and the underlying aquifer. The site contractor, Rust Geotech, was the Remedial Action Contractor for GJPORAP. The exterior land areas of the facility assessed as contaminated have been remediated in accordance with identified standards and can be released for unrestricted use. Restoration of the aquifer will be accomplished through the natural flushing action of the aquifer during the next 50 to 80 years. The remediation of the DOE-GJPO facility buildings is ongoing and will be described in a separate report.

  20. State waste discharge permit application for the 200 Area Effluent Treatment Facility and the State-Approved Land Disposal Site

    SciTech Connect (OSTI)

    Not Available

    1993-08-01T23:59:59.000Z

    Application is being made for a permit pursuant to Chapter 173--216 of the Washington Administrative Code (WAC), to discharge treated waste water and cooling tower blowdown from the 200 Area Effluent Treatment Facility (ETF) to land at the State-Approved Land Disposal Site (SALDS). The ETF is located in the 200 East Area and the SALDS is located north of the 200 West Area. The ETF is an industrial waste water treatment plant that will initially receive waste water from the following two sources, both located in the 200 Area on the Hanford Site: (1) the Liquid Effluent Retention Facility (LERF) and (2) the 242-A Evaporator. The waste water discharged from these two facilities is process condensate (PC), a by-product of the concentration of waste from DSTs that is performed in the 242-A Evaporator. Because the ETF is designed as a flexible treatment system, other aqueous waste streams generated at the Hanford Site may be considered for treatment at the ETF. The origin of the waste currently contained in the DSTs is explained in Section 2.0. An overview of the concentration of these waste in the 242-A Evaporator is provided in Section 3.0. Section 4.0 describes the LERF, a storage facility for process condensate. Attachment A responds to Section B of the permit application and provides an overview of the processes that generated the wastes, storage of the wastes in double-shell tanks (DST), preliminary treatment in the 242-A Evaporator, and storage at the LERF. Attachment B addresses waste water treatment at the ETF (under construction) and the addition of cooling tower blowdown to the treated waste water prior to disposal at SALDS. Attachment C describes treated waste water disposal at the proposed SALDS.

  1. Infrared Land Surface Emissivity in the Vicinity of the ARM SGP Central Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn Other News link toInfluence ofQuickdegreeInfrared Land

  2. INDEPENDENT CONFIRMATORY SURVEY REPORT FOR THE REACTOR BUILDING, HOT LABORATORY, PRIMARY PUMP HOUSE, AND LAND AREAS AT THE PLUM BROOK REACTOR FACILITY, SANDUSKY, OHIO

    SciTech Connect (OSTI)

    Erika N. Bailey

    2011-10-10T23:59:59.000Z

    In 1941, the War Department acquired approximately 9,000 acres of land near Sandusky, Ohio and constructed a munitions plant. The Plum Brook Ordnance Works Plant produced munitions, such as TNT, until the end of World War II. Following the war, the land remained idle until the National Advisory Committee for Aeronautics later called the National Aeronautics and Space Administration (NASA) obtained 500 acres to construct a nuclear research reactor designed to study the effects of radiation on materials used in space flight. The research reactor was put into operation in 1961 and was the first of fifteen test facilities eventually built by NASA at the Plum Brook Station. By 1963, NASA had acquired the remaining land at Plum Brook for these additional test facilities

  3. Health assessment for Royal Hardage Industrial Hazardous Waste Land Disposal Facility, Criner, Oklahoma, Region 6. CERCLIS No. OKD000400093. Final report

    SciTech Connect (OSTI)

    Not Available

    1988-12-01T23:59:59.000Z

    The Royal Hardage Industrial Hazardous Waste Land Disposal Facility (Hardage/Criner) National Priorities List Site is located in Criner, McClain County, Oklahoma. The site is located in an agricultural area. There are volatile organic compounds (VOCs) and several heavy metals present in the groundwater and soil, and VOCs in surface water and sediment. The Record of Decision signed November 1986 selected several remedial actions which included excavation of the primary source material and separation of the wastes for treatment, solids to be disposed of in an on-site landfill that meets Resource Conservation and Recovery Act requirements, organic liquids to be incinerated, and inorganic liquids to be treated by other means as necessary. The site is currently in the remedial-design phase.

  4. AG Land 1 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDITCaliforniaWeifangwiki Home Jweers's APTAPFinalidentification,

  5. AG Land 3 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1 WindtheEnergySulfonate asAEE Solaridentification,3 Jump to:

  6. ENRO AG | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE FacilityDimondale,South, NewDyer County,ECO2Ltd Place: Nr. Horsham,ENRENRO AG

  7. Feasibility Study of Economics and Performance of Solar Photovoltaics at the Tronox Facility in Savannah, Georgia. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites

    SciTech Connect (OSTI)

    Kiatreungwattana, K.; Geiger, J.; Healey, V.; Mosey, G.

    2013-03-01T23:59:59.000Z

    The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Tronox Facility site in Savannah, Georgia, for a feasibility study of renewable energy production. The National Renewable Energy Laboratory (NREL) provided technical assistance for this project. The purpose of this report is to assess the site for a possible photovoltaic (PV) system installation and estimate the cost, performance, and site impacts of different PV options. In addition, the report recommends financing options that could assist in the implementation of a PV system at the site.

  8. Geohydrologic evaluation for the 200 Area Effluent Treatment Facility State-Approved Land Disposal Site: Addendum to WAC 173-240 Engineering Report

    SciTech Connect (OSTI)

    Ballantyne, N.A.

    1993-08-01T23:59:59.000Z

    This document provides a geohydrologic evaluation for the disposal of liquid effluent from the 200 Area Effluent Treatment Facility (ETF) at the Hanford Site. This work forms an addendum to the engineering report that supports the completion of the ETF.

  9. Naval Station Newport Wind Resource Assessment. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites, and The Naval Facilities Engineering Service Center

    SciTech Connect (OSTI)

    Robichaud, R.; Fields, J.; Roberts, J. O.

    2012-02-01T23:59:59.000Z

    The U.S. Environmental Protection Agency (EPA) launched the RE-Powering America's Land initiative to encourage development of renewable energy (RE) on potentially contaminated land and mine sites. EPA is collaborating with the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) to evaluate RE options at Naval Station (NAVSTA) Newport in Newport, Rhode Island where multiple contaminated areas pose a threat to human health and the environment. Designated a superfund site on the National Priorities List in 1989, the base is committed to working toward reducing the its dependency on fossil fuels, decreasing its carbon footprint, and implementing RE projects where feasible. The Naval Facilities Engineering Service Center (NFESC) partnered with NREL in February 2009 to investigate the potential for wind energy generation at a number of Naval and Marine bases on the East Coast. NAVSTA Newport was one of several bases chosen for a detailed, site-specific wind resource investigation. NAVSTA Newport, in conjunction with NREL and NFESC, has been actively engaged in assessing the wind resource through several ongoing efforts. This report focuses on the wind resource assessment, the estimated energy production of wind turbines, and a survey of potential wind turbine options based upon the site-specific wind resource.

  10. arnhem land northern: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1,476 24.7 Total Land 5,972 100.0 Note: Campus areas include land leased by Rutgers. Source: Office of Facilities and Capital Planning Office Garfunkel, Eric 105...

  11. METAL MEDIA FILTERS, AG-1 SECTION FI

    SciTech Connect (OSTI)

    Adamson, D.

    2012-05-23T23:59:59.000Z

    One application of metal media filters is in various nuclear air cleaning processes including applications for protecting workers, the public and the environment from hazardous and radioactive particles. To support this application the development of the ASME AG-1 FI Standard on Metal Media has been under way for more than ten years. Development of the proposed section has required resolving several difficult issues associated with operating conditions (media velocity, pressure drop, etc.), qualification testing, and quality acceptance testing. Performance characteristics of metal media are dramatically different than the glass fiber media with respect to parameters like differential pressures, operating temperatures, media strength, etc. These differences make existing data for a glass fiber media inadequate for qualifying a metal media filter for AG-1. In the past much work has been conducted on metal media filters at facilities such as Lawrence Livermore National Laboratory (LLNL) and Savannah River National Laboratory (SRNL) to qualify the media as High Efficiency Particulate Air (HEPA) Filters. Particle retention testing has been conducted at Oak Ridge Filter Test Facility and at Air Techniques International (ATI) to prove that the metal media meets or exceeds the 99.97% particle retention required for a HEPA Filter. Even with his testing, data was lacking to complete an AG-1 FI Standard on metal media. With funding secured by Mississippi State University (MSU) from National Nuclear Security Administration (NNSA), a research test stand is being designed and fabricated at MSU's Institute for Clean Energy Technology (ICET) Facility to obtain qualification data on metal media. This in turn will support required data needed for the FI Standard. The paper will discuss in detail how the test stand at MSU will obtain the necessary data to complete the FI Standard.

  12. AGS experiments -- 1995, 1996 and 1997

    SciTech Connect (OSTI)

    Depken, J.C.; Presti, P.L.

    1997-12-01T23:59:59.000Z

    This report contains (1) FY 1995 AGS schedule as run; (2) FY 1996 AGS schedule as run; (3) FY 1997 AGS schedule as run; (4) FY 1998--1999 AGS schedule (proposed); (5) AGS beams 1997; (6) AGS experimental area FY 1995 physics program; (7) AGS experimental area FY 1996 physics program; (8) AGS experimental area FY 1997 physics program; (9) AGS experimental area FY 1998--1999 physics program (proposed); (10) a listing of experiments by number; (11) two-page summaries of each experiment, in order by number; and (12) listing of publications of AGS experiments.

  13. AGS experiments -- 1991, 1992, 1993. Tenth edition

    SciTech Connect (OSTI)

    Depken, J.C.

    1994-04-01T23:59:59.000Z

    This report contains: (1) FY 1993 AGS schedule as run; (2) FY 1994--95 AGS schedule; (3) AGS experiments {ge} FY 1993 (as of 30 March 1994); (4) AGS beams 1993; (5) AGS experimental area FY 1991 physics program; (6) AGS experimental area FY 1992 physics program; (7) AGS experimental area FY 1993 physics program; (8) AGS experimental area FY 1994 physics program (planned); (9) a listing of experiments by number; (10) two-page summaries of each experiment; (11) listing of publications of AGS experiments; and (12) listing of AGS experiments.

  14. Coordination of Federal Transmission Permitting on Federal Lands...

    Office of Environmental Management (EM)

    transmission facilities on federal lands. In most instances, the Departments of Agriculture or Interior will be the Lead Agency, since they have jurisdiction over most of the...

  15. Energy and land use

    SciTech Connect (OSTI)

    Not Available

    1981-12-01T23:59:59.000Z

    This report addresses the land use impacts of past and future energy development and summarizes the major federal and state legislation which influences the potential land use impacts of energy facilities and can thus influence the locations and timing of energy development. In addition, this report describes and presents the data which are used to measure, and in some cases, predict the potential conflicts between energy development and alternative uses of the nation's land resources. The topics section of this report is divided into three parts. The first part describes the myriad of federal, state and local legislation which have a direct or indirect impact upon the use of land for energy development. The second part addresses the potential land use impacts associated with the extraction, conversion and combustion of energy resources, as well as the disposal of wastes generated by these processes. The third part discusses the conflicts that might arise between agriculture and energy development as projected under a number of DOE mid-term (1990) energy supply and demand scenarios.

  16. Definitive design report: Design report project W-025, Radioactive Mixed Waste (RMW) Land Disposal Facility NON-DRAG-OFF. Revision 1, Volume 1 and 2

    SciTech Connect (OSTI)

    Roscha, V.

    1994-11-29T23:59:59.000Z

    The purpose of this report is to describe the definitive design of the Radioactive Mixed Waste (RMW) Non-Drag-Off disposal facility, Project W-025. This report presents a n of the major landfill design features and a discussion of how each of the criteria is addressed in the design. The appendices include laboratory test results, design drawings, and individual analyses that were conducted in support of the design. Revision 1 of this document incorporates design changes resulting from an increase in the required operating life of the W-025 landfill from 2 to 20 years. The rationale for these design changes is described in Golder Associates Inc. 1991a. These changes include (1) adding a 1.5-foot-thick layer of compacted admix directory-under the primary FML on the floor of the landfill to mitigate the effects of possible stress cracking in the primary flexible membrane liner (FML), and (2) increasing the operations layer thickness from two to three feet over the entire landfill area, to provide additional protection for the secondary admix layer against mechanical damage and the effects of freezing and desiccation. The design of the W-025 Landfill has also been modified in response to the results of the EPA Method 9090 chemical compatibility testing program (Golder Associates Inc. 1991b and 1991c), which was completed after the original design was prepared. This program consisted of testing geosynthetic materials and soil/bentonite admix with synthetic leachate having the composition expected during the life of the W-025 Landfill., The results of this program indicated that the polyester geotextile originally specified for the landfill might be susceptible to deterioration. On this basis, polypropylene geotextiles were substituted as a more chemically-resistant alternative. In addition, the percentage of bentonite in the admix was increased to provide sufficiently low permeability to the expected leachate.

  17. Atomic oxygen flux determined by mixed-phase Ag/Ag2O deposition...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    oxygen flux determined by mixed-phase AgAg2O deposition. Atomic oxygen flux determined by mixed-phase AgAg2O deposition. Abstract: The flux of atomic oxygen generated in a...

  18. AgFoodTradeAgFoodTrade New Issues in Agricultural,New Issues in Agricultural,

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    AgFoodTradeAgFoodTrade New Issues in Agricultural,New Issues in Agricultural, Food & Bioenergy TradeFood & Bioenergy Trade AgFoodTradeAgFoodTrade New Issues in Agricultural,New Issues in Agricultural, Food & Bioenergy TradeFood & Bioenergy Trade AgFoodTradeAgFoodTrade New Issues in Agricultural

  19. AgExcellence AgLink Fall/Winter 2005

    E-Print Network [OSTI]

    Maxwell, Bruce D.

    Operations Technology Master of Science: Agricultural Education Baccalaureate: Biotechnology Options: Animal Doctor of Philosophy: Animal and Range Science Land Resources and Environmental Sciences Baccalaureate: Environmental Sciences Options: Environmental Biology Soil and Water Science Land Resource Sciences Options

  20. HIGH ENERGY PULSED POWER SYSTEM FOR AGS SUPER NEUTRINO FOCUSING HORN.

    SciTech Connect (OSTI)

    ZHANG, S.Y.; SANDBERG, J.; WENG, W.-T.

    2005-05-16T23:59:59.000Z

    This paper present a preliminary design of a 300 kA, 2.5 Hz pulsed power system. This system will drive the focusing horn of proposed Brookhaven AGS Neutrino Super Beam Facility for Very Long Baseline Neutrino Oscillation Experiment. The peak output power of the horn pulsed power system will reach Giga-watts, and the upgraded AGS will be capable of delivering 1 MW in beam power.

  1. New Wind Test Facilities Open in Colorado and South Carolina...

    Office of Environmental Management (EM)

    Act, the new facilities will accelerate the development and deployment of next-generation wind energy technologies for both offshore and land-based applications. Located on a...

  2. Spin dynamics simulations at AGS

    SciTech Connect (OSTI)

    Huang, H.; MacKay, W.W.; Meot, F.; Roser, T.

    2010-05-23T23:59:59.000Z

    To preserve proton polarization through acceleration, it is important to have a correct model of the process. It has been known that with the insertion of the two helical partial Siberian snakes in the Alternating Gradient Synchrotron (AGS), the MAD model of AGS can not deal with a field map with offset orbit. The stepwise ray-tracing code Zgoubi provides a tool to represent the real electromagnetic fields in the modeling of the optics and spin dynamics for the AGS. Numerical experiments of resonance crossing, including spin dynamics in presence of the snakes and Q-jump, have been performed in AGS lattice models, using Zgoubi. This contribution reports on various results so obtained.

  3. LANSCE | Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LINAC Outreach Affiliations Visiting LANSCE Facilities Isotope Production Facility Lujan Neutron Scattering Center MaRIE Proton Radiography Ultracold Neutrons Weapons Neutron...

  4. Umwelt Management AG UMaAG | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlin BaxinUmwelt Management AG UMaAG Jump to: navigation, search Name:

  5. Facility Microgrids

    SciTech Connect (OSTI)

    Ye, Z.; Walling, R.; Miller, N.; Du, P.; Nelson, K.

    2005-05-01T23:59:59.000Z

    Microgrids are receiving a considerable interest from the power industry, partly because their business and technical structure shows promise as a means of taking full advantage of distributed generation. This report investigates three issues associated with facility microgrids: (1) Multiple-distributed generation facility microgrids' unintentional islanding protection, (2) Facility microgrids' response to bulk grid disturbances, and (3) Facility microgrids' intentional islanding.

  6. Land Use and Land Cover Change

    SciTech Connect (OSTI)

    Brown, Daniel; Polsky, Colin; Bolstad, Paul V.; Brody, Samuel D.; Hulse, David; Kroh, Roger; Loveland, Thomas; Thomson, Allison M.

    2014-05-01T23:59:59.000Z

    A contribution to the 3rd National Climate Assessment report, discussing the following key messages: 1. Choices about land-use and land-cover patterns have affected and will continue to affect how vulnerable or resilient human communities and ecosystems are to the effects of climate change. 2. Land-use and land-cover changes affect local, regional, and global climate processes. 3. Individuals, organizations, and governments have the capacity to make land-use decisions to adapt to the effects of climate change. 4. Choices about land use and land management provide a means of reducing atmospheric greenhouse gas levels.

  7. Lake County Ag Park Greenhouse Low Temperature Geothermal Facility | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to: navigation,working-groups <LackawannaLagoBenton,(Redirected fromEnergy

  8. Ristma AG | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form HistoryRistma AG Jump to: navigation, search Name: Ristma AG Place:

  9. Gorlitz AG | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG Contracting Jump to:Echo,GEFLakes,GoliadGordon, Alabama:Gorlitz AG

  10. Sunways AG | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with formSoutheastern ILSunseeker Energy Holding AG JumpSunways AG Jump to:

  11. Siemens AG 2009. All rights reserved. Investitionsmanagement

    E-Print Network [OSTI]

    Manstein, Dietmar J.

    © Siemens AG 2009. All rights reserved. Investitionsmanagement Wie steuert man erfolgreich Investitionen? - Tools eines erfolgreichen, globalen Industrieunternehmens - Michael Sigmund CFO Siemens Investitionsplanung Berlin, 26. November, 2009 #12;Page 2 November 26, 2009 Copyright © Siemens AG 2009. All rights

  12. EIS-0386: Designation of Energy Corridors on Federal Land in Western States

    Broader source: Energy.gov [DOE]

    This EIS analyzes DOE's decision to designatate corridors on Federal land in the eleven Western States for oil, gas and hydrogen pipelines and electricity transmission and distribution facilities.

  13. Siemens AG 2009 Energy Sector

    E-Print Network [OSTI]

    Ulm, Universität

    der Energieversorgung Intelligente Netze ­ Smart Grid Karl-Josef Kuhn Siemens AG, Corporate Technology pressure on infrastructures Cities are responsible for around 75% of the world's energy consumption Cities directly or indirectly account for 60% of the world's water use An overloaded power grid caused a 3-day

  14. AG-325 (11/12) Texas A&M AgriLife

    E-Print Network [OSTI]

    AG-325 (11/12) Texas A&M AgriLife Administrative Services ­ Inventory/Property Texas AgriLife Research Building Record Texas A&M University ­ Office of Facilities Coordination Building Number: Building ­ Lightweight Metal Walls 8 ­ Glass (Greenhouse) Location Codes: A1 ­ Main Campus A3 ­ Airport Area B1 ­ West

  15. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1996-10-24T23:59:59.000Z

    Establishes facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation.

  16. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-11-16T23:59:59.000Z

    Establishes facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation.

  17. 2001 Wastewater Land Application Site Performance Reports for the Idaho National Engineering and Environmental Laboratory

    SciTech Connect (OSTI)

    Meachum, T.R.; Lewis, M.G.

    2002-02-15T23:59:59.000Z

    The 2001 Wastewater Land Application Site Performance Reports for the Idaho National Engineering and Environmental Laboratory describe site conditions for the facilities with State of Idaho Wastewater Land Application Permits. Permit-required monitoring data are summarized, and any permit exceedences or environmental impacts relating to the operation of any of the facilities during the 2001 permit year are discussed. Additionally, any special studies performed at the facilities, which related to the operation of the facility or application of the wastewater, are discussed.

  18. 2001 Wastewater Land Application Site Performance Reports for the Idaho National Engineering and Environmental Laboratory

    SciTech Connect (OSTI)

    Meachum, Teresa Ray; Lewis, Michael George

    2002-02-01T23:59:59.000Z

    The 2001 Wastewater Land Application Site Performance Reports for the Idaho National Engineering and Environmental Laboratory describe site conditions for the facilities with State of Idaho Wastewater Land Application Permits. Permit-required monitoring data are summarized, and any permit exceedences or environmental impacts relating to the operation of any of the facilities during the 2001 permit year are discussed. Additionally, any special studies performed at the facilities, which related to the operation of the facility or application of the wastewater, are discussed.

  19. Results from the E917 experiment at the AGS

    E-Print Network [OSTI]

    Birger B. Back; for the E917 collaboration

    1999-04-08T23:59:59.000Z

    Collisions of Au+Au have been studied at beam kinetic energies of 6, 8, and 10.8 GeV/nucleon at the AGS facility at Brookhaven National Laboratory. Particles emitted from the collisions were momentum analyzed and identified in a magnetic spectrometer system. Measurements were made at spectrometer angles in the range 14deg - 59deg. m_t spectra of protons from central collisions were analyzed to derive integrated rapidity distributions and inverse slope as a function of rapidity. The results are compared with a thermal model and it is concluded that there is either substantial transparency or longitudinal expansion at all three beam energies.

  20. Primitive Land Plants 37 PRIMITIVE LAND PLANTS

    E-Print Network [OSTI]

    Koptur, Suzanne

    Primitive Land Plants 37 PRIMITIVE LAND PLANTS These are the plants that were present soon after land was colonized, over 400 mil- lion years ago. A few plants living today are closely related to those ancient plants, and we often call them "living fossils". Two major lineages of plants evolved

  1. DB-Netz AG Offices

    High Performance Buildings Database

    Hamm, Germany The new office building for DB Netz AG was designed by the collaborative team of Architrav Architects and the Buildings Physics and Technical Building Services group of the University of Karlsruhe. The team developed an energy efficient building concept for the 64,304 sqft office building, located in Hamm, Germany. The design concept of the building is dominated by architectural solutions for ventilation, cooling and lighting. Use of HVAC and electric lighting is minimized as much as possible.

  2. Idaho National Laboratory Comprehensive Land Use and Environmental Stewardship Report

    SciTech Connect (OSTI)

    No name listed on publication

    2011-08-01T23:59:59.000Z

    Land and facility use planning and decisions at the Idaho National Laboratory (INL) Site are guided by a comprehensive site planning process in accordance with Department of Energy Policy 430.1, 'Land and Facility Use Policy,' that integrates mission, economic, ecologic, social, and cultural factors. The INL Ten-Year Site Plan, prepared in accordance with Department of Energy Order 430.1B, 'Real Property Asset Management,' outlines the vision and strategy to transform INL to deliver world-leading capabilities that will enable the Department of Energy to accomplish its mission. Land use planning is the overarching function within real property asset management that integrates the other functions of acquisition, recapitalization, maintenance, disposition, real property utilization, and long-term stewardship into a coordinated effort to ensure current and future mission needs are met. All land and facility use projects planned at the INL Site are considered through a formal planning process that supports the Ten-Year Site Plan. This Comprehensive Land Use and Environmental Stewardship Report describes that process. The land use planning process identifies the current condition of existing land and facility assets and the scope of constraints across INL and in the surrounding region. Current land use conditions are included in the Comprehensive Land Use and Environmental Stewardship Report and facility assets and scope of constraints are discussed in the Ten-Year Site Plan. This report also presents the past, present, and future uses of land at the INL Site that are considered during the planning process, as well as outlining the future of the INL Site for the 10, 30, and 100-year timeframes.

  3. 2002 Wastewater Land Application Site Performance Reports for the Idaho National Engineering and Environmental Laboratory

    SciTech Connect (OSTI)

    Meachum, T.R.; Lewis, M.G.

    2003-02-20T23:59:59.000Z

    The 2002 Wastewater Land Application site Performance Reports for the Idaho National Engineering and Environmental Laboratory describe site conditions for the facilities with State of Idaho Wastewater Land Application Permits. Permit-required monitoring data are summarized, and permit exceedences or environmental impacts relating to the operation of the facilities during the 2002 permit year are discussed.

  4. 2003 Wastewater Land Application Site Performance Reports for the Idaho National Engineering and Environmental Laboratory

    SciTech Connect (OSTI)

    Teresa R. Meachum

    2004-02-01T23:59:59.000Z

    The 2003 Wastewater Land Application Site Performance Reports for the Idaho National Engineering and Environmental Laboratory describe the conditions for the facilities with State of Idaho Wastewater Land Application Permits. Permit-required monitoring data are summarized, and permit exceedences or environmental impacts relating to the operations of the facilities during the 2003 permit year are discussed.

  5. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-12-22T23:59:59.000Z

    This Order establishes facility and programmatic safety requirements for Department of Energy facilities, which includes nuclear and explosives safety design criteria, fire protection, criticality safety, natural phenomena hazards mitigation, and the System Engineer Program. Cancels DOE O 420.1A. DOE O 420.1B Chg 1 issued 4-19-10.

  6. Flow Phenomena at AGS Energies

    E-Print Network [OSTI]

    J. P. Wessels

    1997-04-07T23:59:59.000Z

    In this talk some of the latest data on directed sideward, elliptic, radial, and longitudinal flow at AGS energies will be reviewed. A method to identify the reaction plane event by event and the measurement of its resolution will be discussed. The distributions of global observables (transverse energy E_T and charged particle multiplicity N_c), as well as those of identified particles will be shown. Finally, the data will be put in context with measurements at other beam energies. These systematics will then be discussed in terms of possible signatures of the QCD phase transition.

  7. Sinosol AG | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk, New York:SiG Solar GmbHKentucky:Sinosol AG Jump to: navigation,

  8. Interstrom AG | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDIT REPORTEnergyFarmsPower Co Ltd JumpInformationInterstrom AG Jump

  9. Nordex AG | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDIT REPORTEnergyFarmsPowerKaitian Windpower Jump to:NordEnergieNordex AG

  10. VWind AG | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDITCalifornia Sector:Shreniksource HistoryUnlimitedVWind AG Jump to:

  11. ABIDAS AG | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1 WindtheEnergySulfonate as aAAB AsiaABEEolica Jump to:ABIDAS AG

  12. AEE AG | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1 WindtheEnergySulfonate as aAABWasteEnergyPolysiliconAG Place:

  13. ASP AG | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1AMEE Jump to: navigation, search40 -Solar GmbHASP AG Jump to:

  14. Isovolta AG | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtelInterias Solar Energy JumpIremNot2007)Isovolta AG Jump to: navigation,

  15. Cowatec AG | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationinConcentratingEnergyCoosaPage Edit with formCowatec AG Jump to:

  16. Inergetic AG | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty,Jump7Open Energy InformationProfessionalInergetic AG

  17. Alteno AG | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDIT REPORT Americium/CuriumAgua Caliente SolarAlteno AG Jump to:

  18. Fuhrlander AG | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDIT REPORTEnergyFarms A S JumpWindfarm HoldingsFreeFuhrlander AG Place:

  19. Odersun AG | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLuOpenNorth AmericaNorthwestOakdaleOdersun AG Jump to: navigation,

  20. Petrotec AG | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroupPerfectenergy International Limited JumpPetbow CogenerationPetrotec AG

  1. Solarcomplex AG | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk, NewSingapore Jump to:VoltaicSolarProSolarWorks NJSolarcomplex AG

  2. Loremo AG | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |Jilin ZhongdiantouLichuanInformationLoremo AG Jump to: navigation,

  3. Solarsquare AG | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form HistoryRistmaSinosteelSolar EnergySolaria FairwaySolarsquare AG Jump

  4. Solarstocc AG | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form HistoryRistmaSinosteelSolar EnergySolaria FairwaySolarsquare AG

  5. Solarwatt AG | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form HistoryRistmaSinosteelSolar EnergySolariaSolarwatt AG Jump to:

  6. Solea AG | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form HistoryRistmaSinosteelSolar EnergySolariaSolarwatt AG

  7. Altus AG | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat Place: Wayne,EnergyInfrastructureAltira Group LLCAltus AG Jump

  8. Tse AG | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlin Baxin HydropowerTrinity Thermal Systems JumpTrue Electric LLCTse AG

  9. Welivit AG | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlin BaxinUmweltVillageGraph HomeWaranaWaterEnergyWeeklyWelivit AG Jump

  10. REON AG | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformationeNevada <REC Solar (Colorado)srlREON AG

  11. Balancing capital and condition : an emerging approach to facility investment strategy

    E-Print Network [OSTI]

    Wooldridge, Stephen C. (Stephen Craig), 1967-

    2002-01-01T23:59:59.000Z

    Capital facilities - land and buildings - provide a long-standing environment in which public and private enterprise works, communicates, and thrives. Aligning how facilities "fit" with the dynamic demands of enterprise ...

  12. Ag

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (c) The term ''atomic energy'' means all forms of energy released in the course of nuclear fission or nuclear transformation. (d) The term ''atomic weapon'' means any device...

  13. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2002-05-20T23:59:59.000Z

    To establish facility safety requirements for the Department of Energy, including National Nuclear Security Administration. Cancels DOE O 420.1. Canceled by DOE O 420.1B.

  14. School Land Board (Texas)

    Broader source: Energy.gov [DOE]

    The School Land Board oversees the use of land owned by the state or held in trust for use and benefit by the state or one of its departments, boards, or agencies. The Board is responsible for...

  15. Chesapeake Forest Lands (Maryland)

    Broader source: Energy.gov [DOE]

    The Chesapeake Forest Lands are most of the former land holdings of the Chesapeake Forest Products Company, which now includes more than 66,000 acres in five lower Eastern Shore counties. These...

  16. Land Reclamation Act (Missouri)

    Broader source: Energy.gov [DOE]

    It is the policy of the state to balance surface mining interests with the conservation of natural resources and land preservation. This Act authorizes the Land Reclamation Commission of the...

  17. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-12-22T23:59:59.000Z

    The order establishes facility and programmatic safety requirements for nuclear and explosives safety design criteria, fire protection, criticality safety, natural phenomena hazards (NPH) mitigation, and the System Engineer Program.Chg 1 incorporates the use of DOE-STD-1189-2008, Integration of Safety into the Design Process, mandatory for Hazard Category 1, 2 and 3 nuclear facilities. Cancels DOE O 420.1A.

  18. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2013-06-21T23:59:59.000Z

    DOE-STD-1104 contains the Department's method and criteria for reviewing and approving nuclear facility's documented safety analysis (DSA). This review and approval formally document the basis for DOE, concluding that a facility can be operated safely in a manner that adequately protects workers, the public, and the environment. Therefore, it is appropriate to formally require implementation of the review methodology and criteria contained in DOE-STD-1104.

  19. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-11-20T23:59:59.000Z

    The objective of this Order is to establish facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation. The Order has Change 1 dated 11-16-95, Change 2 dated 10-24-96, and the latest Change 3 dated 11-22-00 incorporated. The latest change satisfies a commitment made to the Defense Nuclear Facilities Safety Board (DNFSB) in response to DNFSB recommendation 97-2, Criticality Safety.

  20. Survey of Critical Wetlands Bureau of Land Management Lands

    E-Print Network [OSTI]

    Survey of Critical Wetlands Bureau of Land Management Lands South Park, Park County, Colorado 2003 Delivery Colorado State University #12;Survey of Critical Wetlands Bureau of Land Management Lands South

  1. Molecular Dynamics Simulation of the AgCl/Electrolyte Interfacial...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Simulation of the AgClElectrolyte Interfacial Capacity. Molecular Dynamics Simulation of the AgClElectrolyte Interfacial Capacity. Abstract: Molecular dynamics simulation of the...

  2. Right-of-Way for Carrier Facilities (South Dakota)

    Broader source: Energy.gov [DOE]

    This legislation establishes right-of-way for carrier pipelines, as well as restrictions on the width of lands used for pipeline facilities. This legislation also applies to electricity...

  3. 2002 Wastewater Land Application Site Performance Reports for the Idaho National Engineering and Environmental Laboratory and Associated Documentation

    SciTech Connect (OSTI)

    Meachum, Teresa Ray; Michael G. Lewis

    2003-02-01T23:59:59.000Z

    The 2002 Wastewater Land Application site Performance Reports for the Idaho National Engineering and Environmental Laboratory describe site conditions for the facilities with State of Idaho Wastewater Land Application Permits. Permit-required monitoring data are summarized, and permit exceedences or environmental impacts relating to the operation of the facilities during the 2002 permit year are discussed.

  4. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-10-13T23:59:59.000Z

    Establishes facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation. Cancels DOE 5480.7A, DOE 5480.24, DOE 5480.28 and Division 13 of DOE 6430.1A. Canceled by DOE O 420.1A.

  5. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2012-12-04T23:59:59.000Z

    The Order establishes facility and programmatic safety requirements for DOE and NNSA for nuclear safety design criteria, fire protection, criticality safety, natural phenomena hazards (NPH) mitigation, and System Engineer Program. Cancels DOE O 420.1B, DOE G 420.1-2 and DOE G 420.1-3.

  6. Ag Education Student 1234 Education Drive

    E-Print Network [OSTI]

    Ag Education Student 1234 Education Drive Fort Collins, CO 80523 educationstudent@gmail.com~970-222-1234 Education Bachelors of Science in Agriculture Education (Teacher Licensure requirements met) Anticipated May

  7. High intensity performance of the Brookhaven AGS

    SciTech Connect (OSTI)

    Brennan, J.M.; Roser, T.

    1996-07-01T23:59:59.000Z

    Experience and results from recent high intensity proton running periods of the Brookhaven AGS, during which a record intensity for a proton synchrotron of 6.3 x 10{sup 13} protons/pulse was reached, is presented. This high beam intensity allowed for the simultaneous operation of three high precision rare kaon decay experiments. The record beam intensities were achieved after the 1.5 GeV Booster was commissioned and a transition jump system, a powerful transverse damper, and an rf upgrade in the AGS were completed. Recently even higher intensity proton synchrotrons are studied for neutron spallation sources or proton driver for a muon collider. Implications of the experiences from the AGS to these proposals and also possible future upgrades for the AGS are discussed.

  8. AGS fixed target program with nuclear beams

    SciTech Connect (OSTI)

    Foley, K.J.

    1984-01-01T23:59:59.000Z

    The recent approval of the beam transfer line from the Tandem Van de Graaf to the AGS signals the advent of a new era of Nuclear and Particle Physics at BNL. High Energy nuclear beams are expected to be available for experiments in 1986. I will discuss the direct link between the Tandems and the AGS. Two other proposed projects, the Relativistic Heavy Ion Collider and the Synchrotron Booster, are discussed in another presentation to this conference.

  9. Penobscot Indian Nation's Strategic Energy Planning Efficiency on tribal Lands

    SciTech Connect (OSTI)

    Sockalexis, Mike; Fields, Brenda

    2006-11-30T23:59:59.000Z

    The energy grant provided the resources to evaluate the wind, hydro, biomass, geothermal and solar resource potential on all Penobscot Indian Naiton's Tribal lands. The two objectives address potential renewable energy resources available on tribal lands and energy efficiency measures to be taken after comprehensive energy audits of commercial facilities. Also, a Long Term Strategic Energy Plan was developed along with a plan to reduce high energy costs.

  10. Hierarchical Marginal Land Assessment for Land Use Planning

    SciTech Connect (OSTI)

    Kang, Shujiang [ORNL; Post, Wilfred M [ORNL; Wang, Dali [ORNL; Nichols, Dr Jeff A [ORNL; Bandaru, Vara Prasad [ORNL

    2013-01-01T23:59:59.000Z

    Marginal land provides an alternative potential for food and bioenergy production in the face of limited land resources; however, effective assessment of marginal lands is not well addressed. Concerns over environmental risks, ecosystem services and sustainability for marginal land have been widely raised. The objective of this study was to develop a hierarchical marginal land assessment framework for land use planning and management. We first identified major land functions linking production, environment, ecosystem services and economics, and then classified land resources into four categories of marginal land using suitability and limitations associated with major management goals, including physically marginal land, biologically marginal land, environmental-ecological marginal land, and economically marginal land. We tested this assessment framework in south-western Michigan, USA. Our results indicated that this marginal land assessment framework can be potentially feasible on land use planning for food and bioenergy production, and balancing multiple goals of land use management. We also compared our results with marginal land assessment from the Conservation Reserve Program (CRP) and land capability classes (LCC) that are used in the US. The hierarchical assessment framework has advantages of quantitatively reflecting land functions and multiple concerns. This provides a foundation upon which focused studies can be identified in order to improve the assessment framework by quantifying high-resolution land functions associated with environment and ecosystem services as well as their criteria are needed to improve the assessment framework.

  11. Infrared transmissive, hollow plastic waveguides with inner AgAgI coatings

    E-Print Network [OSTI]

    A. Harrington Hollow polycarbonate waveguides with thin-film coatings of Ag­AgI were fabricated and at the same time maintain good flexibility we have chosen to use polycarbonate tubing with bore sizes ranging from 500 to 2000 m. Polycarbonate tubing is quite flexible in the bore sizes up to 6000 m

  12. Ag on Si(111) from basic science to application

    SciTech Connect (OSTI)

    Belianinov, Aleksey

    2012-04-04T23:59:59.000Z

    In our work we revisit Ag and Au adsorbates on Si(111)-7x7, as well as experiment with a ternary system of Pentacene, Ag and Si(111). Of particular interest to us is the Si(111)-({radical}3x{radical}3)R30{degree}–Ag (Ag-Si-{radical}3 hereafter). In this thesis I systematically e plore effects of Ag deposition on the Ag-Si-{radical}3 at different temperatures, film thicknesses and deposition fluxes. The generated insight of the Ag system on the Si(111) is then applied to generate novel methods of nanostructuring and nanowire growth. I then extend our expertise to the Au system on the Ag-Si(111) to gain insight into Au-Si eutectic silicide formation. Finally we explore behavior and growth modes of an organic molecule on the Ag-Si interface.

  13. Land O'Lakes Shaves Gas Usage through Steam System In-Plant Training

    Broader source: Energy.gov [DOE]

    Twelve participants from 6 different facilities learned and practiced energy efficiency assessment skills during the recent in-plant training at a Land O'Lakes dairy plant in Carlisle, Pennsylvania...

  14. Mobile Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxide Capture inFacility AMF Information Science

  15. Facility Representatives

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,OfficeEnd ofEvaluations in Covered Facilities | Department of Energy

  16. Facility Representatives

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,OfficeEnd ofEvaluations in Covered Facilities | Department of Energy063-2011

  17. Facility Status

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist. Category UC-lFederalFYRANDOM DRUG TESTING The requirementFacility

  18. Spin coating of Ag nanoparticles: Effect of reduction

    SciTech Connect (OSTI)

    Ansari, A. A., E-mail: sdsartale@physics.unipune.ac.in; Sartale, S. D., E-mail: sdsartale@physics.unipune.ac.in [Thin Films and Nanomaterials Laboratory, Department of Physics, University of Pune, Pune - 411007 (India)

    2014-04-24T23:59:59.000Z

    A surfactant free method for the growth of Ag nanoparticles on glass substrate by spin coating of Ag ions solution followed by chemical reduction in aqueous hydrazine hydrate (HyH) solution has been presented. Appearance of surface plasmon resonance confirms the formation of Ag nanoparticles. Morphology and absorbance spectra of Ag nanoparticles films are used to examine effect of hydrazine concentration on the growth of Ag nanoparticles. SEM images show uniformly distributed Ag nanoparticles. Rate constant was found to be dependent on HyH concentration as a consequence influence particle size.

  19. Central Facilities Area Sewage Lagoon Evaluation

    SciTech Connect (OSTI)

    Mark R. Cole

    2013-12-01T23:59:59.000Z

    The Central Facilities Area (CFA), located in Butte County, Idaho, at the Idaho National Laboratory has an existing wastewater system to collect and treat sanitary wastewater and non-contact cooling water from the facility. The existing treatment facility consists of three cells: Cell #1 has a surface area of 1.7 acres, Cell #2 has a surface area of 10.3 acres, and Cell #3 has a surface area of 0.5 acres. If flows exceed the evaporative capacity of the cells, wastewater is discharged to a 73.5-acre land application site that uses a center-pivot irrigation sprinkler system. As flows at CFA have decreased in recent years, the amount of wastewater discharged to the land application site has decreased from 13.64 million gallons in 2004 to no discharge in 2012 and 2013. In addition to the decreasing need for land application, approximately 7.7 MG of supplemental water was added to the system in 2013 to maintain a water level and prevent the clay soil liners in the cells from drying out and “cracking.” The Idaho National Laboratory is concerned that the sewage lagoons and land application site may be oversized for current and future flows. A further concern is the sustainability of the large volumes of supplemental water that are added to the system according to current operational practices. Therefore, this study was initiated to evaluate the system capacity, operational practices, and potential improvement alternatives, as warranted.

  20. AgPro | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1AMEE JumpAeroWind Inc.Information AfluenteAg FuelsAgPro

  1. Getec AG Contracting | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG Contracting Jump to: navigation, search Name: Getec AG Contracting

  2. Umweltschutz UBP AG | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlin BaxinUmwelt Management AG UMaAG Jump to: navigation,

  3. The mutagenic potential of soil and runoff water from land treatment of three hazardous industrial wastes

    E-Print Network [OSTI]

    Davol, Phebe

    1987-01-01T23:59:59.000Z

    of agricultural chemicals and the performance of hazardous waste land treatment facilities. This study used a bioassay directed chemical analysis protocol to monitor the environmental fate of mutagenic constituents from a simulated land treatment demonstration...THE MUTAGENIC POTENTIAL OF SOIL AND RUNOFF WATER FROM LAND TREATMENT OF THREE HAZARDOUS INDUSTRIAL WASTES A Thesis by PHEBE DAYOL Submitted to the Graduate College of Te xa s ASM Un i ver s i ty in partial fulfillment of the requirement...

  4. A novel polythreading Ag(I) coordination polymer with bluephotolumine...

    Office of Scientific and Technical Information (OSTI)

    polymer with blue photoluminescence Re-direct Destination: One new compound, Ag(p-bix)sub 3Ag(Hbtc)sub 22Hsub 2O (Hsub 3btc1,2,4-benzenetricarboxylate,...

  5. Ag@AgHPW as a plasmonic catalyst for visible-light photocatalytic degradation of environmentally harmful organic pollutants

    SciTech Connect (OSTI)

    Zhou, Wenhui; Cao, Minhua, E-mail: caomh@bit.edu.cn; Li, Na; Su, Shuangyue; Zhao, Xinyu; Wang, Jiangqiang; Li, Xianghua; Hu, Changwen

    2013-06-01T23:59:59.000Z

    Graphical abstract: Ag@Ag{sub x}H{sub 3?x}PW12O40 (Ag@AgHPW) nanoparticles (NPs), a new visible-light driven plasmonic photocatalyst, are prepared by a green photoreduction strategy without the addition of any surfactant, which show a high activity and stability for the degradation of methyl blue (MB) under visible light irradiation. - Highlights: • A new visible-light driven photocatalyst Ag@Ag{sub x}H{sub 3?x}PW{sub 12}O{sub 40} was designed. • The photocatalyst shows a high activity for the degradation of methyl blue. • The high activity can be ascribed to the synergy of photoexcited AgHPW and Ag. - Abstract: Ag@Ag{sub x}H{sub 3?x}PW{sub 12}O{sub 40} (Ag@AgHPW) nanoparticles (NPs), a new visible-light driven plasmonic photocatalyst, are prepared by a green photoreduction strategy without the addition of any surfactant. They show strong absorption in the visible region because of the localized surface plasmon resonance (LSPR) of Ag NPs. This plasmonic photocatalyst shows a high activity and stability for the degradation of methyl blue (MB) under visible light irradiation, which could be attributed to the highly synergy of photoexcited Ag{sub x}H{sub 3?x}PW{sub 12}O{sub 40} (AgHPW) and plasmon-excited Ag NPs and the confinement effects at interfaces between polyoxometalates (POMs) and silver. POM anions have redox ability and high photocatalytic activity, whereas Ag NPs could effectively accelerate the separation of electrons and holes, both of which contribute to their high activity.

  6. The BNL AGS accelerator complex status and future plans

    SciTech Connect (OSTI)

    Tanaka, Mitsuyoshi [AGS Department, Brookhaven National Laboratory, Upton, New York 11973 (United States)

    1997-05-20T23:59:59.000Z

    This paper describes the present performance and capability of the BNL AGS accelerator complex and possible future intensity upgrade plans. In 1995, the AGS reached its design upgrade goal of 6.0{center_dot}10{sup 13} ppp with the Booster. The AGS with a new fast extracted beam (FEB) system is able to perform single bunch multiple extraction at 30 Hz per AGS cycle for the g-2 experiment and for RHIC injection.

  7. The BNL AGS accelerator complex status and future plans

    SciTech Connect (OSTI)

    Tanaka, M. [AGS Department, Brookhaven National Laboratory, Upton, New York11973 (United States)

    1997-05-01T23:59:59.000Z

    This paper describes the present performance and capability of the BNL AGS accelerator complex and possible future intensity upgrade plans. In 1995, the AGS reached its design upgrade goal of 6.0{center_dot}10{sup 13}ppp with the Booster. The AGS with a new fast extracted beam (FEB) system is able to perform single bunch multiple extraction at 30 Hz per AGS cycle for the g-2 experiment and for RHIC injection. {copyright} {ital 1997 American Institute of Physics.}

  8. The BNL AGS accelerator complex status and future plans

    SciTech Connect (OSTI)

    Tanaka, Mitsuyoshi

    1997-05-01T23:59:59.000Z

    This paper describes the present performance and capability of the BNL AGS accelerator complex and possible future intensity upgrade plans. In 1995, the AGS reached its design upgrade goal of 6.0 x 10(exp 13) ppp with the Booster. The AGS with a new fast extracted beam (FEB) system is able to perform single bunch multiple extraction at 30 Hz per AGS cycle for the g-2 experiment and for RHIC injection.

  9. Siemens AG, CT, September 2001 CORPORATETECHNOLOGY

    E-Print Network [OSTI]

    s © Siemens AG, CT, September 2001 CORPORATETECHNOLOGY Research and Technology at Siemens Transportation Power Information & Communications Health Automation & Control #12;2© Siemens AGResearch and Technology at Siemens CORPORATETECHNOLOGY CT / E 020 a - 02.01 Key Figures for 2000 Amounts in billions

  10. Depolarizing 'beat' resonances in the Brookhaven AGS

    SciTech Connect (OSTI)

    Terwilliger, K.M.; Courant, E.D.; Krisch, A.D.; Ratner, L.D.

    1985-10-01T23:59:59.000Z

    While accelerating polarized protons in the Brookhaven AGS we found a variant of the standard imperfection and intrinsic depolarizing resonances which has some of the properties of both types. Imperfection resonances occur at G..gamma.. = k, when the number of spin precessions per revolution, G gamma, equals a harmonic of the depolarizing field, k. Intrinsic resonances occur at G..gamma.. = nP + or - ..nu.. /SUB Z/ , when the AGS gradient periodicities, nP, modulate free vertical betatron oscillations to create the sum and difference frequencies. The variant resonance is a beat between nP and an imperfection driven betatron oscillation of periodicity k'. These occur at G..gamma.. = nP + or - k', and are strongest when the driven betatron oscillation is largest. The effect was most dramatic at the strong G..gamma.. = 27 resonance. Since ..nu.. /SUB Z/ = 8.8 for the AGS, and there is a major nP = 36 AGS periodicity, a strong beat resonance should exist at G gamma = 36-9 = 27. Applying a 27 /SUP th/ harmonic correction directly was unsuccessful, but a 9 /SUP th/ harmonic correction removed the depolarization.

  11. Mathus Dejori, Siemens AG Structural learning of Bayesian networks

    E-Print Network [OSTI]

    Popeea, Corneliu - Chair for Foundations of Software Reliability and Theoretical Computer Science

    Mathäus Dejori, Siemens AG Structural learning of Bayesian networks Mathäus Dejori mathaeus.dejori.external@mchp.siemens, Siemens AG · Schätzung der unterliegenden zusammengesetzten Wahrscheinlichkeitsdichte aus den Daten;Mathäus Dejori, Siemens AG Graphical model · Combines probablity theory and graph theory · is defined

  12. PD Dr. Martin Stetter, Siemens AG 1 Das lineare Modell

    E-Print Network [OSTI]

    Popeea, Corneliu - Chair for Foundations of Software Reliability and Theoretical Computer Science

    PD Dr. Martin Stetter, Siemens AG 1 Das lineare Modell · Ausgangspunkt: Lineares Perceptron vorgegeben, werden nicht gelernt #12;PD Dr. Martin Stetter, Siemens AG 2 · Geschrieben als Regressionsmodell Regression: Lineares Modell #12;PD Dr. Martin Stetter, Siemens AG 3 · ML-Parameterschätzung des linearen

  13. PD Dr. Martin Stetter, Siemens AG 1 Optimierungsverfahren

    E-Print Network [OSTI]

    Popeea, Corneliu - Chair for Foundations of Software Reliability and Theoretical Computer Science

    PD Dr. Martin Stetter, Siemens AG 1 Optimierungsverfahren · Optimierung konvexer Funktionen: Optimierungsverfahren #12;PD Dr. Martin Stetter, Siemens AG 2 Optimierung konvexer Funktionen · Häufiges Problem bei Stetter, Siemens AG 3 Funktionen einer Variable )(wF · 1D-Gradientenabstieg: Gehe ein kleines Stück

  14. AGS experiments -- 1996, 1997, 1998, 1999. Fifteenth edition

    SciTech Connect (OSTI)

    Lo Presti, P.

    1999-03-01T23:59:59.000Z

    This report is a compilation of two-page summaries for AGS experiments for FY 1996, FY 1997, FY 1998, FY 1999. The bulk of the experiments are for high energy physics and nuclear physics programs. Also included are the run schedules for the AGS for each of those years and a listing of publications of AGS experiments for 1982--1999.

  15. H.R.S. 205 - Land Use | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG| Open EnergyGuntersville ElectricControlon State - Land Use Jump to:

  16. 1999 Report on Hanford Site land disposal restriction for mixed waste

    SciTech Connect (OSTI)

    BLACK, D.G.

    1999-03-25T23:59:59.000Z

    This report was submitted to meet the requirements of Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-26-011. This milestone requires the preparation of an annual report that covers characterization, treatment, storage, minimization, and other aspects of managing land-disposal-restricted mixed waste at the Hanford Facility.

  17. Land-use Leakage

    SciTech Connect (OSTI)

    Calvin, Katherine V.; Edmonds, James A.; Clarke, Leon E.; Bond-Lamberty, Benjamin; Kim, Son H.; Wise, Marshall A.; Thomson, Allison M.; Kyle, G. Page

    2009-12-01T23:59:59.000Z

    Leakage occurs whenever actions to mitigate greenhouse gas emissions in one part of the world unleash countervailing forces elsewhere in the world so that reductions in global emissions are less than emissions mitigation in the mitigating region. While many researchers have examined the concept of industrial leakage, land-use policies can also result in leakage. We show that land-use leakage is potentially as large as or larger than industrial leakage. We identify two potential land-use leakage drivers, land-use policies and bioenergy. We distinguish between these two pathways and run numerical experiments for each. We also show that the land-use policy environment exerts a powerful influence on leakage and that under some policy designs leakage can be negative. International “offsets” are a potential mechanism to communicate emissions mitigation beyond the borders of emissions mitigating regions, but in a stabilization regime designed to limit radiative forcing to 3.7 2/m2, this also implies greater emissions mitigation commitments on the part of mitigating regions.

  18. Temperature dependent effects during Ag deposition on Cu(110)

    SciTech Connect (OSTI)

    Taylor, T.N.; Muenchausen, R.E.; Hoffbauer, M.A.; Denier van der Gon, A.W.; van der Veen, J.F. (Los Alamos National Lab., NM (USA); FOM-Instituut voor Atoom-en Molecuulfysica, Amsterdam (Netherlands))

    1989-01-01T23:59:59.000Z

    The composition, structure, and morphology of ultrathin films grown by Ag deposition on Cu(110) were monitored as a function of temperature using low-energy electron diffraction (LEED), Auger electron spectroscopy (AES), and medium energy ion scattering (MEIS). Aligned backscattering measurements with 150 keV He ions indicate that the Ag resides on top of the Cu and there is no significant surface compound formation. Measurements with LEED show that the Ag is initially confined to the substrate troughs. Further deposition forces the Ag out of the troughs and results in a split c(2 {times} 4) LEED pattern, which is characteristic of a distorted Ag(111) monolayer template. As verified by both AES and MEIS measurements, postmonolayer deposition of Ag on Cu(110) at 300K leads to a pronounced 3-dimensional clustering. Ion blocking analysis of the Ag clusters show that the crystallites have a (110)-like growth orientation, implying that the Ag monolayer template undergoes a rearrangement. These data are confirmed by low temperature LEED results in the absence of clusters, which indicate that Ag multilayers grow from a Ag--Cu interface where the Ag is captured in the troughs. Changes observed in the film structure and morphology are consistent with a film growth mechanism that is driven by overlayer strain response to the substrate corrugation. 16 refs., 4 figs.

  19. Deutsche Solar AG formerly Bayer Solar GmbH | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE Facility DatabaseMichigan: EnergyKansas:Detroit Beach,South Dakota:EnergyAG

  20. from Isotope Production Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cancer-fighting treatment gets boost from Isotope Production Facility April 13, 2012 Isotope Production Facility produces cancer-fighting actinium 2:32 Isotope cancer treatment...

  1. Fuel Fabrication Facility

    National Nuclear Security Administration (NNSA)

    Construction of the Mixed Oxide Fuel Fabrication Facility Construction of the Mixed Oxide Fuel Fabrication Facility November 2005 May 2007 June 2008 May 2012...

  2. Lands & Community

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your Home asLCLSLaboratoryRowland to receiveLand ManagementLands

  3. Guide to research facilities

    SciTech Connect (OSTI)

    Not Available

    1993-06-01T23:59:59.000Z

    This Guide provides information on facilities at US Department of Energy (DOE) and other government laboratories that focus on research and development of energy efficiency and renewable energy technologies. These laboratories have opened these facilities to outside users within the scientific community to encourage cooperation between the laboratories and the private sector. The Guide features two types of facilities: designated user facilities and other research facilities. Designated user facilities are one-of-a-kind DOE facilities that are staffed by personnel with unparalleled expertise and that contain sophisticated equipment. Other research facilities are facilities at DOE and other government laboratories that provide sophisticated equipment, testing areas, or processes that may not be available at private facilities. Each facility listing includes the name and phone number of someone you can call for more information.

  4. Title: Canada Land Inventory: Land Capability for Recreation Data Creator /

    E-Print Network [OSTI]

    Title: Canada Land Inventory: Land Capability for Recreation Data Creator / Copyright Owner: National Archives of Canada, Visual and Sound Archives Division Publisher: National Archives of Canada, Visual and Sound Archives Division; developed under the auspices of Environment Canada; distributed

  5. Title: Canada Land Inventory: Land Capability for Ungulates Data Creator /

    E-Print Network [OSTI]

    Title: Canada Land Inventory: Land Capability for Ungulates Data Creator / Copyright Owner: National Archives of Canada, visual and Sound Archives Division Publisher: National Archives of Canada, Visual and Sound Archives Division; developed under the auspices of Environment Canada; distributed

  6. Title: Canada Land Inventory: Land Capability for Agriculture Data Creator /

    E-Print Network [OSTI]

    Title: Canada Land Inventory: Land Capability for Agriculture Data Creator / Copyright Owner: National Archives of Canada, Visual and Sound Archives Division Publisher: National Archives of Canada, Visual and Sound Archives Division; developed under the auspices of Environment Canada; distributed

  7. National Forest Land Scheme

    E-Print Network [OSTI]

    and Community Right to Buy. Communities are encouraged to register an interest in the land they wish to buy Ministers to make a late registration of interest. When Forestry Commission Scotland decides to sell, a community organisation could consider the opportunities for working in partnership with Forestry Commission

  8. 2010 Annual Wastewater Reuse Report for the Idaho National Laboratory Site's Central Facilities Area Sewage Treatment Plant

    SciTech Connect (OSTI)

    Mike lewis

    2011-02-01T23:59:59.000Z

    This report describes conditions, as required by the state of Idaho Wastewater Reuse Permit (#LA-000141-03), for the wastewater land application site at Idaho National Laboratory Site’s Central Facilities Area Sewage Treatment Plant from November 1, 2009, through October 31, 2010. The report contains the following information: • Site description • Facility and system description • Permit required monitoring data and loading rates • Status of special compliance conditions • Discussion of the facility’s environmental impacts. During the 2010 permit year, approximately 2.2 million gallons of treated wastewater was land-applied to the irrigation area at Central Facilities Area Sewage Treatment plant.

  9. 2012 Annual Wastewater Reuse Report for the Idaho National Laboratory Site's Central facilities Area Sewage Treatment Plant

    SciTech Connect (OSTI)

    Mike Lewis

    2013-02-01T23:59:59.000Z

    This report describes conditions, as required by the state of Idaho Wastewater Reuse Permit (#LA-000141-03), for the wastewater land application site at Idaho National Laboratory Site’s Central Facilities Area Sewage Treatment Plant from November 1, 2011, through October 31, 2012. The report contains the following information: • Site description • Facility and system description • Permit required monitoring data and loading rates • Status of compliance conditions and activities • Discussion of the facility’s environmental impacts. During the 2012 permit year, no wastewater was land-applied to the irrigation area of the Central Facilities Area Sewage Treatment Plant.

  10. County Land Preservation and Use Commissions (Iowa)

    Broader source: Energy.gov [DOE]

    This ordinance creates Land Preservation and Use Commissions in each county to provide for the orderly use and development of land, to protect agricultural land from nonagricultural development,...

  11. Future Fixed Target Facilities

    SciTech Connect (OSTI)

    Melnitchouk, Wolodymyr

    2009-01-01T23:59:59.000Z

    We review plans for future fixed target lepton- and hadron-scattering facilities, including the 12 GeV upgraded CEBAF accelerator at Jefferson Lab, neutrino beam facilities at Fermilab, and the antiproton PANDA facility at FAIR. We also briefly review recent theoretical developments which will aid in the interpretation of the data expected from these facilities.

  12. CLM-AG: An Agriculture Module for the Community Land Model version 3.5

    E-Print Network [OSTI]

    Gueneau, Arthur

    It is estimated that 40% of all crops grown in the world today are grown using irrigation. As a consequence,

  13. Double dumbbell shaped AgNi alloy by pulsed electrodeposition

    SciTech Connect (OSTI)

    Dhanapal, K.; Vasumathi, M.; Santhi, Kalavathy [Materials Science Centre, Department of Nuclear Physics, University of Madras, Guindy Campus, Chennai 600 025 (India); Narayanan, V., E-mail: stephen-arum@hotmail.com; Stephen, A., E-mail: stephen-arum@hotmail.com [Department of Inorganic Chemistry, University of Madras, Guindy Campus, Chennai-600 025 (India)

    2014-01-28T23:59:59.000Z

    Silver-Nickel is the well-known thermally immiscible system that makes them quite complex for the formation of alloy. This kind of alloy can be attained from electrodeposition method. In the present work, AgNi alloy was synthesized by pulsed electrodeposition in a single bath two electrode system with the use of anodic alumina membrane. The prepared AgNi alloy and pure Ag were characterized with X-ray Diffraction (XRD) for structural confirmation, Scanning Electron Microscopy (SEM) for morphological, and magnetic properties by Vibrating Sample Magnetometer, respectively. The X-ray Diffraction study shows the formation of cubic structure for pure Ag. SEM analysis reveals the double dumbbell morphology for AgNi alloy and spherically agglomeration for pure silver. Hysteresis behaviour from VSM measurement indicates that the AgNi alloy have good ferro-magnetic properties.

  14. Aggressive landing maneuvers for unmanned aerial vehicles

    E-Print Network [OSTI]

    Bayraktar, Selcuk

    2006-01-01T23:59:59.000Z

    VTOL (Vertical Take Off and Landing) vehicle landing is considered to be a critically difficult task for both land, marine, and urban operations. This thesis describes one possible control approach to enable landing of ...

  15. AgriculturAl lAnd ApplicAtion of Biosolids in VirginiA: regulAtions

    E-Print Network [OSTI]

    Liskiewicz, Maciej

    AgriculturAl lAnd ApplicAtion of Biosolids in VirginiA: regulAtions Introduction As required.1-164.5 of the Code of Virginia), which regulate the agricultural use of biosolids in Virginia, were developed to owners of wastewater treatment facilities that land apply their own biosolids. Local governments may

  16. System analysis of shallow land burial. Volume 2: technical background. Technical report, 26 November 1979-23 January 1981

    SciTech Connect (OSTI)

    Lester, D.; Buckley, D.; Donelson, S.; Dura, V.; Hecht, M.

    1981-03-01T23:59:59.000Z

    This is volume two of a three volume set detailing the activities and results of the System Analysis of Shallow Land Burial Project. Activities under four project tasks are described: Task 1 - Identify Potential Radionuclide Release Pathways, Task 2 - Systems Model for Shallow Land Burial of Low-Level Waste, Task 3 - Sensitivity and Optimization Study and Task 4 - Reference Facility Dose Assessment.

  17. ag superlens suitable: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Providing habitat for hosts of various diseases such as malaria Bowen, James D. 25 Siemens AG 2009. All rights reserved. Investitionsmanagement Biology and Medicine Websites...

  18. anlagenbau ag o-1140: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of this phenomenon have concentrated on ion Nordlund, Kai 103 Panasonic Electric Works Europe AG panasonic-electric-works.com CCELERATIONSENSORS,IGHTSENSORS0RESSURESENSORS)NFOR...

  19. ag brennelementewerk hanau: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of this phenomenon have concentrated on ion Nordlund, Kai 104 Panasonic Electric Works Europe AG panasonic-electric-works.com CCELERATIONSENSORS,IGHTSENSORS0RESSURESENSORS)NFOR...

  20. Impacts of increased bioenergy demand on global food markets: an AgMIP economic model intercomparison

    SciTech Connect (OSTI)

    Lotze-Campen, Hermann; von Lampe, Martin; Kyle, G. Page; Fujimori, Shinichiro; Havlik, Petr; van Meijl, Hans; Hasegawa, Tomoko; Popp, Alexander; Schmitz, Christoph; Tabeau, Andrzej; Valin, Hugo; Willenbockel, Dirk; Wise, Marshall A.

    2014-01-01T23:59:59.000Z

    Integrated Assessment studies have shown that meeting ambitious greenhouse gas mitigation targets will require substantial amounts of bioenergy as part of the future energy mix. In the course of the Agricultural Model Comparison and Improvement Project (AgMIP), five global agro-economic models were used to analyze a future scenario with global demand for ligno-cellulosic bioenergy rising to about 100 ExaJoule in 2050. From this exercise a tentative conclusion can be drawn that ambitious climate change mitigation need not drive up global food prices much, if the extra land required for bioenergy production is accessible or if the feedstock, e.g. from forests, does not directly compete for agricultural land. Agricultural price effects across models by the year 2050 from high bioenergy demand in an RCP2.6-type scenario appear to be much smaller (+5% average across models) than from direct climate impacts on crop yields in an RCP8.5-type scenario (+25% average across models). However, potential future scarcities of water and nutrients, policy-induced restrictions on agricultural land expansion, as well as potential welfare losses have not been specifically looked at in this exercise.

  1. Modelling of the AGS using Zgoubi - Status

    SciTech Connect (OSTI)

    Meot F.; Ahrens, L.; Dutheil, Y.; Glenn, J.; Huang, H.; Roser, T.; Schoefer, V.; Tsoupas, N.

    2012-05-20T23:59:59.000Z

    This paper summarizes the progress achieved so far, and discusses various outcomes, regarding the development of a model of the Alternating Gradient Synchrotron at the RHIC collider. The model, based on stepwise ray-tracing methods, includes beam and polarization dynamics. This is an on-going work, and a follow-on of code developments and particle and spin dynamics simulations that have been subject to earlier publications at IPAC and PAC [1, 2, 3]. A companion paper [4] gives additional informations, regarding the use of the measured magnetic field maps of the AGS main magnets.

  2. EOP Biodiesel AG | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A Potential MicrohydroDistrict ofDongjinDynetek42EOP Biodiesel AG Jump to:

  3. Energie AG Oberoesterreich | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A PotentialJump to:Emminol Jump to:Energ tica CamposEnergie AG

  4. City Solar AG | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here.TelluricPower InternationalChuichu,CimaCiris EnergyBocaAG Place: Bad

  5. Seeger Engineering AG | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd JumpInformationScotts Corners, NewSeeger Engineering AG Jump to:

  6. MVV Energie AG | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDIT REPORTEnergyFarmsPower CoLongxing Wind PowerMCFMVV Energie AG Jump

  7. Offshore Ostsee Wind AG | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDIT REPORTEnergyFarmsPowerKaitianOstsee Wind AG Jump to: navigation,

  8. Ag Fuels Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1AMEE JumpAeroWind Inc.Information AfluenteAg Fuels Ltd

  9. AgRefresh | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1AMEE JumpAeroWind Inc.Information AfluenteAg

  10. SMA Technologie AG | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form HistoryRistma AG Jump to:Energy InformationSSITASK EnergySMA

  11. Huber and Suhner AG | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel Jump to:Pennsylvania:County,Ohio: Energy ResourcesHuberand Suhner AG

  12. Denker Wulf AG | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A Potential Microhydro SiteDayton Power &Denker Wulf AG Jump to:

  13. SolarWorld AG | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎SolarCity Corp Jump to: navigation, searchSolarWorld AG

  14. Centrosolar Group AG | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation inOpenadd: China DatangCentral ElCentralCentrosolar Group AG Jump

  15. EnerVest AG | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDIT REPORTEnergy OffshoreDeveloper -Neo Jump to:EnerVest AG Jump to:

  16. Edisun Power AG | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazel Crest, Illinois:Edinburgh University aka Wave PowerEdisun Power AG Jump

  17. KoRenta AG | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |Jilin Zhongdiantou New EnergyKenosistecKilaraKoRenta AG Jump to:

  18. Komax Holding AG | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |Jilin Zhongdiantou New EnergyKenosistecKilaraKoRenta AGKomax Holding AG

  19. SolarTec AG | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form HistoryRistmaSinosteelSolar Energy sroWiki PageSolarPacesSolarTec AG

  20. Sunseeker Energy Holding AG | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with formSoutheastern ILSunseeker Energy Holding AG Jump to: navigation, search

  1. Cross Capital AG | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.pngRoofs and Heat Islands2007)Criterion JumpHills WindAG Jump

  2. Bos ten AG | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass ConversionsSouthby 2022Illinois:InformationInformationBos ten AG

  3. Roth Rau AG | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to:Roscommon County, Michigan: EnergyRosendaleRossie,Roswell,Rau AG

  4. TriWo AG | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga, Indiana (UtilityTri-State Electric Member Corp Jump to:TriWo AG Jump

  5. In Trust AG | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup | OpenHunan Runhua New EnergyIT PowerImagine Energy IncIn Trust AG Jump

  6. Coal conversion siting on coal mined lands: water quality issues

    SciTech Connect (OSTI)

    Triegel, E.K.

    1980-01-01T23:59:59.000Z

    The siting of new technology coal conversion facilities on land disturbed by coal mining results in both environmental benefits and unique water quality issues. Proximity to mining reduces transportation requirements and restores disrupted land to productive use. Uncertainties may exist, however, in both understanding the existing site environment and assessing the impact of the new technology. Oak Ridge National Laboratory is currently assessing the water-related impacts of proposed coal conversion facilities located in areas disturbed by surface and underground coal mining. Past mining practices, leaving highly permeable and unstable fill, may affect the design and quality of data from monitoring programs. Current mining and dewatering, or past underground mining may alter groundwater or surface water flow patterns or affect solid waste disposal stability. Potential acid-forming material influences the siting of waste disposal areas and the design of grading operations. These and other problems are considered in relation to the uncertainties and potentially unique problems inherent in developing new technologies.

  7. CRAD, Facility Safety- Nuclear Facility Safety Basis

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) that can be used for assessment of a contractor's Nuclear Facility Safety Basis.

  8. Texas Facilities Commission's Facility Management Strategic Plan

    E-Print Network [OSTI]

    Ramirez, J. A.

    , Texas, November 17 - 19, 2009 Facility Strategic Plan ?High Performance Building Approach ? Envelope ? Load Reduction ? (Re)Design ? Advanced Tactics ?Building Automation ? Sub-metering ? Controls ?Commissioning ? Assessment ? Continuous ?Facility... International Conference for Enhanced Building Operations, Austin, Texas, November 17 - 19, 2009 Commissioning Assessment ?30 buildings ?CC Opportunities ?O&M Improvements ?Energy/Capital Improvement Opportunities ?Quick Payback Implementation ?Levering DM...

  9. Ag/AgBr/g-C{sub 3}N{sub 4}: A highly efficient and stable composite photocatalyst for degradation of organic contaminants under visible light

    SciTech Connect (OSTI)

    Cao, Jing, E-mail: caojing@mail.ipc.ac.cn [College of Chemistry and Materials Science, Huaibei Normal University, Huaibei 235000, Anhui (China); State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100 (China); Zhao, Yijie; Lin, Haili; Xu, Benyan [College of Chemistry and Materials Science, Huaibei Normal University, Huaibei 235000, Anhui (China); Chen, Shifu, E-mail: chshifu@chnu.edu.cn [College of Chemistry and Materials Science, Huaibei Normal University, Huaibei 235000, Anhui (China)

    2013-10-15T23:59:59.000Z

    Graphical abstract: Ag/AgBr/g-C{sub 3}N{sub 4} composite photocatalysts displayed excellent photocatalytic activities on the degradation of methyl orange (MO) under visible light. The improved photocatalytic performance and stability of Ag/AgBr/g-C{sub 3}N{sub 4} originated from the synergetic effects of AgBr/g-C{sub 3}N{sub 4} interface and metallic Ag nanoparticles. ·O{sub 2}?, one of the reactive species, was responsible for the photodegradation of MO compared to H+ and ·OH. - Highlights: • Novel Ag/AgBr/g-C{sub 3}N{sub 4} composite photocatalyst was reported. • Ag/AgBr/g-C{sub 3}N{sub 4} had novel energy band combination between AgBr and g-C{sub 3}N{sub 4}. • Synergetic effects of AgBr/g-C{sub 3}N{sub 4} interface and metallic Ag nanoparticles. • Electron trapping role of metallic Ag dominated the stability of Ag/AgBr/g-C{sub 3}N{sub 4}. - Abstract: Novel Ag/AgBr/g-C{sub 3}N{sub 4} composite photocatalysts were constructed via deposition–precipitation method and extensively characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM) and UV–vis diffuse reflectance spectroscopy (DRS). Under visible light (? > 420 nm), Ag/AgBr/g-C{sub 3}N{sub 4} composite photocatalysts displayed much higher photocatalytic activities than those of Ag/AgBr and g-C{sub 3}N{sub 4} for degradation of methyl orange (MO). 50% Ag/AgBr/g-C{sub 3}N{sub 4} presented the best photocatalytic performance, which was mainly attributed to the synergistic effects of AgBr/g-C{sub 3}N{sub 4} interface and the in situ metallic Ag nanoparticles for efficiently separating electron–hole pairs. Furthermore, Ag/AgBr/g-C{sub 3}N{sub 4} remained good photocatalytic activity through 5 times of cycle experiments. Additionally, the radical scavengers experiment indicated that ·O{sub 2}{sup ?} was the main reactive species for the MO degradation under visible light.

  10. Technology Transitions Facilities Database

    Broader source: Energy.gov [DOE]

    The types of R&D facilities at the DOE Laboratories available to the public typically fall into three broad classes depending on the mode of access: Designated User Facilities, Shared R&D...

  11. EXCURSION: enterprises in our region "Centrotherm photovoltaics AG"

    E-Print Network [OSTI]

    Pfeifer, Holger

    EXCURSION: enterprises in our region "Centrotherm photovoltaics AG" 4th of November 2009 Invitation of a German enterprise called centrotherm photovoltaics AG in Blaubeuren. They are providers of technology and services for the photovoltaics industry. For organizational reasons we ask you to register for this visit

  12. Complete Phase I Tests As Described in the Multi-lab Test Plan for the Evaluation of CH3I Adsorption on AgZ

    SciTech Connect (OSTI)

    Bruffey, S. H. [ORNL; Jubin, R. T. [ORNL

    2014-09-30T23:59:59.000Z

    Silver-exchanged mordenite (AgZ) has been identified as a potential sorbent for iodine present in the off-gas streams of a used nuclear fuel reprocessing facility. In such a facility, both elemental and organic forms of iodine are released from the dissolver in gaseous form. These species of iodine must be captured with high efficiency for a facility to avoid radioactive iodine release above regulatory limits in the gaseous effluent of the plant. Studies completed at Idaho National Laboratory (INL) examined the adsorption of organic iodine in the form of CH3I by AgZ. Upon breakthrough of the feed gas through the sorbent bed, elemental iodine was observed in the effluent stream, despite the fact that the only source of iodine in the system was the CH3I in the feed gas.1 This behavior does not appear to have been reported previously nor has it been independently confirmed. Thus, as a result of these prior studies, multiple knowledge gaps relating to the adsorption of CH3I by AgZ were identified, and a multi-lab test plan, including Oak Ridge National Laboratory (ORNL), INL, Pacific Northwest National Laboratory (PNNL), and Sandia National Laboratories, was formulated to address each in a systematic way.2 For this report, the scope of work for ORNL was further narrowed to three thin-bed experiments that would characterize CH3I adsorption onto AgZ in the presence of water, NO, and NO2. Completion of these three-thin bed experiments demonstrated that organic iodine in the form of CH3I was adsorbed by reduced silver mordenite (Ag0Z) to a 50% higher loading than that of I2 when adsorbed from a dry air stream. Adsorption curves suggest different adsorption mechanisms for I2 and CH3I. In the presence of NO and NO2 gas, the loading of CH3I onto Ag0Z is suppressed and may be reversible. Further, the presence of NO and NO2 gas appears to oxidize CH3I to I2; this is indicated by an adsorption curve similar to that of I2 on Ag0Z. Finally, the loss of organic iodine loading capacity by Ag0Z in the presence of NOx is unaffected by the addition of water vapor to the gas stream; no marked additional loss in capacity or retention was observed.

  13. Policy message Access to land and land rights,

    E-Print Network [OSTI]

    Richner, Heinz

    agriculture can reduce land deg- radation, support agricultural development, and mitigate rural poverty conservation tech- niques by producing food, fodder, fibre, or fuel. · Sustainable farming practices produce

  14. Land Management - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your Home asLCLSLaboratoryRowland to receiveLand Management About

  15. Microwave-assisted solvothermal synthesis of flower-like Ag/AgBr/BiOBr microspheres and their high efficient photocatalytic degradation for p-nitrophenol

    SciTech Connect (OSTI)

    Li, Tingting, E-mail: tingtingli1983@hotmail.com [Department of Chemistry and Chemical Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Changsha 410082 (China); State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082 (China); Department of Environment and Chemical Engineering, Key Laboratory of Jiangxi Province for Ecological Diagnosis, Remediation and Pollution Control, Nanchang Hangkong University, Nanchang 330063 (China); Luo, Shenglian, E-mail: sllou@hnu.edu.cn [Department of Chemistry and Chemical Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Changsha 410082 (China); State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082 (China); Department of Environment and Chemical Engineering, Key Laboratory of Jiangxi Province for Ecological Diagnosis, Remediation and Pollution Control, Nanchang Hangkong University, Nanchang 330063 (China); Yang, Lixia [Department of Environment and Chemical Engineering, Key Laboratory of Jiangxi Province for Ecological Diagnosis, Remediation and Pollution Control, Nanchang Hangkong University, Nanchang 330063 (China)

    2013-10-15T23:59:59.000Z

    Flower-like Ag/AgBr/BiOBr microspheres were successfully fabricated by the approach of microwave-assisted solvothermal and in situ photo-assisted reduction. A reactive ionic liquid 1-hexadecyl-3-methylimidazolium bromide ([C{sub 16}mim]Br) was employed as Br source in the presence of surfactant polyvinylpyrrolidone (PVP). The photocatalytic activity of Ag/AgBr/BiOBr towards the decomposition of p-nitrophenol under visible light irradiation was evaluated. The results indicated that Ag/AgBr/BiOBr showed enhanced photocatalytic activity towards p-nitrophenol, comparing with P25, BiOBr and Ag/AgBr. More than 96% of p-nitrophenol was decomposed in 3.5 h under visible-light irradation. The excellent photocatalytic activity of flower-like Ag/AgBr/BiOBr microspheres can be attributed to the large specific surface area, strong visible-light absorption, suitable energy band structure and surface plasmon resonance effect of Ag nanoparticles. The possible photocatalytic mechanism was proposed based on the active species test and band gap structure analysis. - Graphical abstract: The photocatalytic reaction mechanisms of the as-prepared Ag/AgBr/BiOBr. Display Omitted - Highlights: • Successful synthesis of flower-like Ag/AgBr/BiOBr microspheres. • The Ag/AgBr/BiOBr showed much higher photocatalytic activity towards p-nitrophenol as compared to BiOBr and Ag/AgBr. • The reasons for the excellent photocatalytic activity are the large specific surface area, strong visible-light absorption and surface plasmon resonance effect of Ag nanoparticles. • The O{sub 2}·{sup ?}, Br{sup 0} and photogenerated h{sup +} play key roles in the photocatalytic degradation process.

  16. Ag{sub 3}PO{sub 4}/ZnO: An efficient visible-light-sensitized composite with its application in photocatalytic degradation of Rhodamine B

    SciTech Connect (OSTI)

    Liu, Wei [School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189 (China) [School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189 (China); School of Chemistry and Material Science, Huaibei Normal University, Huaibei 235000 (China); Wang, Mingliang, E-mail: wangmlchem@263.net [School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189 (China)] [School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189 (China); Xu, Chunxiang [State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096 (China)] [State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096 (China); Chen, Shifu, E-mail: chshifu@chnu.edu.cn [School of Chemistry and Material Science, Huaibei Normal University, Huaibei 235000 (China)] [School of Chemistry and Material Science, Huaibei Normal University, Huaibei 235000 (China); Fu, Xianliang [School of Chemistry and Material Science, Huaibei Normal University, Huaibei 235000 (China)] [School of Chemistry and Material Science, Huaibei Normal University, Huaibei 235000 (China)

    2013-01-15T23:59:59.000Z

    Graphical abstract: The free OH radicals generated in the VB of ZnO play the primary role in the visible-light photocatalytic degradation of RhB in Ag{sub 3}PO{sub 4}/ZnO system. The accumulated electrons in the CB of Ag{sub 3}PO{sub 4} can be transferred to O{sub 2} adsorbed on the surface of the composite semiconductors and H{sub 2}O{sub 2} yields. H{sub 2}O{sub 2} reacts with electrons in succession to produce active ·OH to some extent. Display Omitted Highlights: ? Efficient visible-light-sensitized Ag{sub 3}PO{sub 4}/ZnO composites were successfully prepared. ? Effect of Ag{sub 3}PO{sub 4} content on the catalytic activity of Ag{sub 3}PO{sub 4}/ZnO is studied in detail. ? Rate constant of RhB degradation over Ag{sub 3}PO{sub 4}(3.0 wt.%)/ZnO is 3 times that of Ag{sub 3}PO{sub 4}. ? The active species in RhB degradation are examined by adding a series of scavengers. ? Visible light degradation mechanism of RhB over Ag{sub 3}PO{sub 4}/ZnO is systematically studied. -- Abstract: The efficient visible-light-sensitized Ag{sub 3}PO{sub 4}/ZnO composites with various weight percents of Ag{sub 3}PO{sub 4} were prepared by a facile ball milling method. The photocatalysts were characterized by XRD, DRS, SEM, EDS, XPS, and BET specific area. The ·OH radicals produced during the photocatalytic reaction was detected by the TA–PL technique. The photocatalytic property of Ag{sub 3}PO{sub 4}/ZnO was evaluated by photocatalytic degradation of Rhodamine B under visible light irradiation. Significantly, the results revealed that the photocatalytic activity of the composites was much higher than that of pure Ag{sub 3}PO{sub 4} and ZnO. The rate constant of RhB degradation over Ag{sub 3}PO{sub 4}(3.0 wt.%)/ZnO is 3 times that of single-phase Ag{sub 3}PO{sub 4}. The optimal percentage of Ag{sub 3}PO{sub 4} in the composite is 3.0 wt.%. It is proposed that the ·OH radicals produced in the valence band of ZnO play the leading role in the photocatalytic degradation of Rhodamine B by Ag{sub 3}PO{sub 4}/ZnO systems under visible light irradiation.

  17. Quantification of latent travel demand on new urban facilities in the state of Texas

    E-Print Network [OSTI]

    Henk, Russell H

    1989-01-01T23:59:59.000Z

    transportation facility was opened for use. The comparison of the photographs allowed for any changes in land use to be easily recognized. 15 Preliminar Anal sis of Variables Identification of Latent Travel Oemand The first step in this analysis of latent... facilities (3). Therefore, this highway characteristic was also included as a possible latent demand indicator. Detailed Anal sis of Variables In order to examine their relationships with latent travel demand on new urban transportation facilities...

  18. Harrisburg Facility Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG| OpenInformation Handbook forHansungHarneyHarrah,County,Harrisburg

  19. 2011 Annual Wastewater Reuse Report for the Idaho National Laboratory Site’s Central Facilities Area Sewage Treatment Plant

    SciTech Connect (OSTI)

    Michael G. Lewis

    2012-02-01T23:59:59.000Z

    This report describes conditions, as required by the state of Idaho Wastewater Reuse Permit (LA-000141-03), for the wastewater land application site at Idaho National Laboratory Site's Central Facilities Area Sewage Treatment Plant from November 1, 2010, through October 31, 2011. The report contains the following information: (1) Site description; (2) Facility and system description; (3) Permit required monitoring data and loading rates; (4) Status of special compliance conditions and activities; and (5) Discussion of the facility's environmental impacts. During the 2011 permit year, approximately 1.22 million gallons of treated wastewater was land-applied to the irrigation area at Central Facilities Area Sewage Treatment plant.

  20. Title: Canada Land Inventory: Land Capability for Forestry Data Creator /

    E-Print Network [OSTI]

    Title: Canada Land Inventory: Land Capability for Forestry Data Creator / Copyright Owner: National Archives of Canada, Visual and Sound Archives Division; Publisher: National Archives of Canada, Visual and Sound Archives Division; developed under the auspices of Environment Canada; distributed by Natural

  1. Title: Canada Land Inventory: 1966 Land Use Data Creator /

    E-Print Network [OSTI]

    Title: Canada Land Inventory: 1966 Land Use Data Creator / Copyright Owner: National Archives of Canada, Visual and Sound Archives Division Publisher: National Archives of Canada, Visual and Sound Archives Division; developed under the auspices of Environment Canada; distributed by Natural Resources

  2. Small Power Production Facilities (Montana)

    Broader source: Energy.gov [DOE]

    For the purpose of these regulations, a small power production facility is defined as a facility that:...

  3. Land-Use Requirements for Solar Power Plants in the United States

    SciTech Connect (OSTI)

    Ong, S.; Campbell, C.; Denholm, P.; Margolis, R.; Heath, G.

    2013-06-01T23:59:59.000Z

    This report provides data and analysis of the land use associated with utility-scale ground-mounted solar facilities, defined as installations greater than 1 MW. We begin by discussing standard land-use metrics as established in the life-cycle assessment literature and then discuss their applicability to solar power plants. We present total and direct land-use results for various solar technologies and system configurations, on both a capacity and an electricity-generation basis. The total area corresponds to all land enclosed by the site boundary. The direct area comprises land directly occupied by solar arrays, access roads, substations, service buildings, and other infrastructure. As of the third quarter of 2012, the solar projects we analyze represent 72% of installed and under-construction utility-scale PV and CSP capacity in the United States.

  4. Final Hanford Comprehensive Land-Use Plan Environmental Impact Statement, Hanford Site, Richland, Washington

    SciTech Connect (OSTI)

    N /A

    1999-10-01T23:59:59.000Z

    This Final ''Hanford Comprehensive Land-Use Plan Environmental Impact Statement'' (HCP EIS) is being used by the Department of Energy (DOE) and its nine cooperating and consulting agencies to develop a comprehensive land-use plan (CLUP) for the Hanford Site. The DOE will use the Final HCP EIS as a basis for a Record of Decision (ROD) on a CLUP for the Hanford Site. While development of the CLUP will be complete with release of the HCP EIS ROD, full implementation of the CLUP is expected to take at least 50 years. Implementation of the CLUP would begin a more detailed planning process for land-use and facility-use decisions at the Hanford Site. The DOE would use the CLUP to screen proposals. Eventually, management of Hanford Site areas would move toward the CLUP land-use goals. This CLUP process could take more than 50 years to fully achieve the land-use goals.

  5. Facility Effluent Monitoring Plan determinations for the 600 Area facilities

    SciTech Connect (OSTI)

    Nickels, J.M.

    1991-08-01T23:59:59.000Z

    This document determines the need for Facility Effluent Monitoring Plans for Westinghouse Hanford Company's 600 Area facilities on the Hanford Site. The Facility Effluent Monitoring Plan determinations were prepared in accordance with A Guide For Preparing Hanford Site Facility Effluent Monitoring Plans (WHC 1991). Five major Westinghouse Hanford Company facilities in the 600 Area were evaluated: the Purge Water Storage Facility, 212-N, -P, and -R Facilities, the 616 Facility, and the 213-J K Storage Vaults. Of the five major facilities evaluated in the 600 Area, none will require preparation of a Facility Effluent Monitoring Plan.

  6. Bus Rapid Transit Impacts on Land Uses and Land Values in Seoul, Korea

    E-Print Network [OSTI]

    Cervero, Robert; Kang, Chang Deok

    2009-01-01T23:59:59.000Z

    an ambitious campaign of land reclamation, taking valuablehub of Seoul’s ambitious land reclamation and redevelopment

  7. Photoreduction at a Distance: Facile, Nonlocal Photoreduction of Ag Ions in Solution by

    E-Print Network [OSTI]

    Meinhart, Carl

    nanoparticles (AuNPs) subsequently deposited onto the functionalized slide out of a gold colloid solution-mercaptoben- zoic acid (MBA) as a SERS probe for monitoring the silver nanoparticle growth kinetics. Scanning, California 93106 ABSTRACT Surface-immobilized, densely packed gold nanoparticles in contact with aqueous

  8. Workshop proceedings: Developing the scientific basis for long-term land management of the Idaho National Engineering and Environmental Laboratory

    SciTech Connect (OSTI)

    Sperber, T.D.; Reynolds, T.D. [eds.] [Environmental Science and Research Foundation, Inc., Idaho Falls, ID (United States); Breckenridge, R.P. [ed.] [Lockheed Martin Idaho Technologies Co., Idaho Falls, ID (United States)

    1998-03-01T23:59:59.000Z

    Responses to a survey on the INEEL Comprehensive Facility and Land Use Plan (US DOE 1996a) indicated the need for additional discussion on environmental resources, disturbance, and land use issues on the Idaho National Engineering and Environmental Laboratory (INEEL). As a result, in September 1997, a workshop evaluated the existing scientific basis and determined future data needs for long-term land management on the INEEL. This INEEL Long-Term Land Management Workshop examined existing data on biotic, abiotic, and heritage resources and how these resources have been impacted by disturbance activities of the INEEL. Information gained from this workshop will help guide land and facility use decisions, identify data gaps, and focus future research efforts. This report summarizes background information on the INEEL and its long-term land use planning efforts, presentations and discussions at the workshop, and the existing data available at the INEEL. In this document, recommendations for future INEEL land use planning, research efforts, and future workshops are presented. The authors emphasize these are not policy statements, but comments and suggestions made by scientists and others participating in the workshop. Several appendices covering land use disturbance, legal drivers, land use assumptions and workshop participant comments, workshop participants and contributors, and the workshop agenda are also included.

  9. Oil and Gas on Public Lands (Texas)

    Broader source: Energy.gov [DOE]

    The School Land Board may choose to lease lands for the production of oil and natural gas, on the condition that oil and gas resources are leased together and separate from other minerals. Lands...

  10. ARM Mobile Facilities

    ScienceCinema (OSTI)

    Orr, Brad; Coulter, Rich

    2014-09-15T23:59:59.000Z

    This video provides an overview of the ARM Mobile Facilities, two portable climate laboratories that can deploy anywhere in the world for campaigns of at least six months.

  11. DOE Designated Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reactor** Lawrence Berkeley National Laboratory Joint Genome Institute - Production Genomics Facility (PGF)** (joint with LLNL, LANL, ORNL and PNNL) Advanced Light Source (ALS)...

  12. Accelerator Test Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Test Facility Vitaly Yakimenko October 6-7, 2010 ATF User meeting DOE HE, S. Vigdor, ALD - (Contact) T. Ludlam Chair, Physics Department V. Yakimenko Director ATF, Accelerator...

  13. ACCELERATOR TEST FACILITY

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LABORATORY PHYSICS DEPARTMENT Effective: 04012004 Page 1 of 2 Subject: Accelerator Test Facility - Linear Accelerator General Systems Guide Prepared by: Michael Zarcone...

  14. Carbon Fiber Technology Facility

    Broader source: Energy.gov (indexed) [DOE]

    The Carbon Fiber Technology Facility is relevant in proving the scale- up of low-cost carbon fiber precursor materials and advanced manufacturing technologies * Significant...

  15. Science and Technology Facility

    Broader source: Energy.gov (indexed) [DOE]

    IBRF Project Lessons Learned Report Integrated Biorefinery Research Facility Lessons Learned - Stage I Acquisition through Stage II Construction Completion August 2011 This...

  16. Programs & User Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Facility Climate, Ocean, and Sea Ice Modeling (COSIM) Terrestrial Ecosystem and Climate Dynamics Fusion Energy Sciences Magnetic Fusion Experiments Plasma Surface...

  17. Facilities | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Some of the nation's most powerful and sophisticated facilities for energy research Argonne National Laboratory is home to some of the nation's most powerful and sophisticated...

  18. Existing Facilities Program

    Broader source: Energy.gov [DOE]

    The NYSERDA Existing Facilities program merges the former Peak Load Reduction and Enhanced Commercial and Industrial Performance programs. The new program offers a broad array of different...

  19. Facility Survey & Transfer

    Broader source: Energy.gov [DOE]

    As DOE facilities become excess, many that are radioactively and/or chemically contaminated will become candidate for transfer to DOE-EM for deactivation and decommissioning.

  20. Sandia National Laboratories: Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    InstituteSandia Photovoltaic Systems Symposium On April 15, 2014, in Concentrating Solar Power, Distribution Grid Integration, Energy, Facilities, Grid Integration, News,...

  1. ag samples show: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in a low density region sim 30-300 AU from the central binary. Scott J. Kenyon; Daniel Proga; Charles D. Keyes 2001-03-26 29 Ag Communications Communications and Media...

  2. AG3 srl (spin off universitario) Anno di costituzione: 2011

    E-Print Network [OSTI]

    Sproston, Jeremy

    geologia, della geofisica e della geotermia. AG3 vuole dare una risposta alle nuove esigenze energetiche, nelle georisorse, nella geochimica, nella la geofisica, nel remote sensing, nella perforazione del

  3. Polarized proton acceleration at the BNL AGS, 1988

    SciTech Connect (OSTI)

    Ahrens, L.

    1988-01-01T23:59:59.000Z

    The present status of the polarized proton acceleration at the Brookhaven AGS is described. Some details regarding the tune-up and performance during the December 1987-January 1988 physics run are given. 2 refs., 4 figs.

  4. ag films grown: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    conduction-band states of NiO 100 thin films grown onto Ag 100 have charac- terized NiO monocrystalline thin films has shown up both onto insulating i.e., MgO, Ref. 21 Marcon,...

  5. ag thin films: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MgO, Ref. 21 Marcon, Marco 2 Multi-level surface enhanced Raman scattering using AgOx thin film Physics Websites Summary: by applying laser-direct writing (LDW) technique on...

  6. ag fe ni: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    conduction-band states of NiO 100 thin films grown onto Ag 100 have charac- terized NiO monocrystalline thin films has shown up both onto insulating i.e., MgO, Ref. 21 Marcon,...

  7. Guadalupe Power Plant Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG| Open Energy Information 2000)2004)PevafersaPlant Biomass Facility

  8. Commissioning of the new AGS MMPS transformers

    SciTech Connect (OSTI)

    Bajon,E.; Badea, V. S.; Bannon, M.; Bonati, R.; Marneris, I. M.; Porqueddu, r.; Roser, T.; Sandberg, J.; Savatteri, S.

    2009-05-04T23:59:59.000Z

    The Brookhaven AGS Main Magnet Power Supply (MMPS) is a thyristor control supply rated at 5500 Amps. +/-9000 Volts. The peak magnet power is 50 MWatts. The power supply is fed from a motor/generator manufactured by Siemens. During rectify and invert operation the P Bank power supplies are used. During the flattops the F Bank power supplies are used. The P Bank power supplies are fed from two 23 MVA transformers and the F Bank power supplies are fed from two 5.3 MYA transformers. The fundamental frequency of the F Bank power supplies is 1440 Hz, however the fundamental frequency of the P banks was 720 Hz. It was very important to reduce the ripple during rectify to improve polarized proton operations. For this reason and also because the original transformers were 45 years old we replaced these transformers with new ones and we made the fundamental frequency of both P and F banks 1440 Hz. This paper will highlight the major hurdles that were involved during the installation of the new transformers. It will present waveforms while running at different power levels up to 6MW full load. It will show the transition from the F-Bank power supplies to the P-Banks and also show the improvements in ripple made on the P-Bank power supplies.

  9. Silver delafossite nitride, AgTaN{sub 2}?

    SciTech Connect (OSTI)

    Miura, Akira [Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen (Germany); Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853 (United States); Lowe, Michael; Leonard, Brian M.; Subban, Chinmayee V. [Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853 (United States); Masubuchi, Yuji; Kikkawa, Shinichi [Graduate School of Engineering, Hokkaido University, N13W8, Kita-ku Sapporo 060-8628 (Japan); Dronskowski, Richard [Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen (Germany); Hennig, Richard G. [Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853 (United States); Abruna, Hector D. [Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853 (United States); DiSalvo, Francis J., E-mail: fjd3@cornell.ed [Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853 (United States)

    2011-01-15T23:59:59.000Z

    A new silver nitride, AgTaN{sub 2}, was synthesized from NaTaN{sub 2} by a cation-exchange reaction, using a AgNO{sub 3}-NH{sub 4}NO{sub 3} flux at 175 {sup o}C. Its crystal structure type is delafossite (R3-bar m) with hexagonal lattice parameters of a=3.141(3) A, c=18.81(2) A, in which silver is linearly coordinated to nitrogen. Energy dispersive X-ray analysis and combustion nitrogen/oxygen analysis gave a composition with atomic ratios of Ag:Ta:N:O as 1.0:1.2(1):2.1(1):0.77(4), which is somewhat Ta rich and indicates some oxide formation. The X-ray photoelectron spectroscopy analysis showed a Ta- and O-rich surface and transmission electron microscope observation exhibited aggregates of ca. 4-5 nm-sized particles on the surface, which are probably related to the composition deviation from a AgTaN{sub 2}. The lattice parameters of stoichiometric AgTaN{sub 2} calculated by density functional theory agree with the experimental ones, but the possibility of some oxygen incorporation and/or silver deficiency is not precluded. -- Graphical abstract: A delafossite silver nitride, AgTaN{sub 2}, was synthesized from NaTaN{sub 2} by a cation-exchange reaction using a AgNO{sub 3}-NH{sub 4}NO{sub 3} flux. It contains N-Ag-N linear bonding. Display Omitted

  10. MINERAL FACILITIES MAPPING PROJECT

    E-Print Network [OSTI]

    Gilbes, Fernando

    MINERAL FACILITIES MAPPING PROJECT Yadira Soto-Viruet Supervisor: David Menzie, Yolanda Fong-Sam Minerals Information Team (MIT) USGS Summer Internship 2009 U.S. Department of the Interior U.S. Geological Minerals Information Team (MIT): Annually reports on the minerals facilities of more than 180 countries

  11. A Materials Facilities Initiative -

    E-Print Network [OSTI]

    A Materials Facilities Initiative - FMITS & MPEX D.L. Hillis and ORNL Team Fusion & Materials for Nuclear Systems Division July 10, 2014 #12;2 Materials Facilities Initiative JET ITER FNSF Fusion Reactor Challenges for materials: fluxes and fluence, temperatures 50 x divertor ion fluxes up to 100 x neutron

  12. Geophysical InversionFacility

    E-Print Network [OSTI]

    Oldenburg, Douglas W.

    UBC Geophysical InversionFacility Modelling and Inversion of EMI data collected over magnetic soils of EMI data acquired at sites with magnetic soils · Geophysical Proveouts · Geonics EM63 Data · First model parameters: · Location · Orientation · Polarizabilities 4 #12;UBC Geophysical Inversion Facility

  13. Argonne Leadership Computing Facility

    E-Print Network [OSTI]

    Kemner, Ken

    Argonne Leadership Computing Facility Argonne Leadership Computing Facility 2010 ANNUAL REPORT S C I E N C E P O W E R E D B Y S U P E R C O M P U T I N G ANL-11/15 The Argonne Leadership Computing States Government nor any agency thereof, nor UChicago Argonne, LLC, nor any of their employees

  14. Emergency Facilities and Equipment

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-08-21T23:59:59.000Z

    This volume clarifies requirements of DOE O 151.1 to ensure that emergency facilities and equipment are considered as part of emergency management program and that activities conducted at these emergency facilities are fully integrated. Canceled by DOE G 151.1-4.

  15. Nanotechnology User Facility for

    E-Print Network [OSTI]

    A National Nanotechnology User Facility for Industry Academia Government #12;The National Institute of Commerce's nanotechnology user facility. The CNST enables innovation by providing rapid access to the tools new measurement and fabrication methods in response to national nanotechnology needs. www

  16. 1996 Hanford site report on land disposal restrictions for mixed waste

    SciTech Connect (OSTI)

    Black, D.G.

    1996-04-01T23:59:59.000Z

    This report was submitted to meet the requirements of Hanford Federal Facility Agreement and Consent Order milestone M-26-OIF. This milestone requires the preparation of an annual report that covers characterization, treatment, storage, minimization, and other aspects of land disposal-restricted mixed waste management at the Hanford Site.

  17. Synthesis and electrocatalytic performance for p-nitrophenol reduction of rod-like Co{sub 3}O{sub 4} and Ag/Co{sub 3}O{sub 4} composites

    SciTech Connect (OSTI)

    Pan, Lu, E-mail: panlu1970@163.com [Department of Chemistry and Chemical Engineering, Huainan Normal University, Huainan 232001 (China); Anhui Key Laboratory of Low temperature Co-fired Material, Huainan Normal University, Huainan 232001 (China); Tang, Jing; Wang, Fengwu [Department of Chemistry and Chemical Engineering, Huainan Normal University, Huainan 232001 (China)

    2013-07-15T23:59:59.000Z

    Graphical abstract: The pure Co{sub 3}O{sub 4} and Ag/Co{sub 3}O{sub 4} composite with 5% Ag all exhibited rod-like morphology, and the microrods were actually composed of nanoparticles with mean size of 35 nm or so. - Highlights: • A facile route was designed to fabricate rod-like Co{sub 3}O{sub 4} and Ag/Co{sub 3}O{sub 4} composite nanomaterials. • Co{sub 3}O{sub 4} and Ag/Co{sub 3}O{sub 4} composite were modified on a GCE directly. • All samples exhibited enhanced catalytic property for p-nitrophenol reduction. - Abstract: Rod-like precursors of Co{sub 3}O{sub 4} and Ag/Co{sub 3}O{sub 4} composites with different Ag contents were synthesized via a co-precipitation method. Co{sub 3}O{sub 4} and Ag/Co{sub 3}O{sub 4} composite samples were fabricated by calcining each precursor at 400 °C for 3 h. The as-prepared samples were characterized by thermogravimetric analysis and differential thermal gravimetric analysis (TGA/DTA), X-ray diffraction (XRD), transmission electron microscopy (TEM), and field emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS), respectively. Co{sub 3}O{sub 4} and Ag/Co{sub 3}O{sub 4} composites were used as electrocatalyst modified on a glassy carbon electrode for p-nitrophenol reduction in basic solution. The results showed that p-nitrophenol could be reduced effectively on the modified electrode. By comparison with a bare glassy carbon electrode, peak current increased markedly with Co{sub 3}O{sub 4} and Ag/Co{sub 3}O{sub 4} samples, and peak potential decreased obviously with Ag/Co{sub 3}O{sub 4} samples. Ag/Co{sub 3}O{sub 4} composites with 4% Ag exhibited the highest electrocatalytic activity for p-nitrophenol reduction.

  18. Minerals on Public Lands (Texas)

    Broader source: Energy.gov [DOE]

    Any tract of land that belongs to the state, including islands, salt and freshwater lakes, bays, inlets, marshes, and reefs owned by the state within tidewater limits, the part of the Gulf of...

  19. Delaware Land Protection Act (Delaware)

    Broader source: Energy.gov [DOE]

    The Land Protection Act requires the Department of Natural Resources and Environmental Control to work with the Delaware Open Space Council to develop standards and criteria for determining the...

  20. Riparian Rights: State Land (Indiana)

    Broader source: Energy.gov [DOE]

    The state reserves the power to sell, transfer, and convey, as provided by law, rights-of-way in public land for several purposes, including pipelines, gas pipelines, water pipelines, sewer lines,...

  1. EDDY CURRENT EFFECT OF THE BNL-AGS VACUUM CHAMBER ON THE OPTICS OF THE BNL-AGS SYNCHROTRON.

    SciTech Connect (OSTI)

    TSOUPAS,N.; AHRENS,L.; BROWN,K.A.; GLENN,J.W.; GARDNER,K.

    1999-03-29T23:59:59.000Z

    During the acceleration cycle of the AGS synchrotron, eddy currents are generated within the walls of the vacuum chambers of the AGS main magnets. The vacuum chambers have elliptical cross section, are made of inconel material with a wall thickness of 2 mm and are placed within the gap of the combined-function main magnets of the AGS synchrotron. The generation of the eddy currents in the walls of the vacuum chambers, creates various magnetic multipoles, which affect the optics of the AGS machine. In this report these magnetic multipoles are calculated for various time interval starting at the acceleration cycle, where the magnetic field of the main magnet is {approx}0.1 T, and ending before the beam extraction process, where the magnetic field of the main magnet is almost constant at {approx}1.1 T. The calculations show that the magnetic multipoles generated by the eddy-currents affect the optics of the AGS synchrotron during the acceleration cycle and in particular at low magnetic fields of the main magnet. Their effect is too weak to affect the optics of the AGS machine during beam extraction at the nominal energies.

  2. ECB ENVIRO Berlin AG | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE FacilityDimondale,South, NewDyer County, Tennessee:MoliMitigation

  3. ENRO Geothermie AG | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE FacilityDimondale,South, NewDyer County,ECO2Ltd Place: Nr.

  4. East Central Ag Products | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE FacilityDimondale,South,Earlsboro,Canton, Ohio: Energy Resources JumpEast

  5. UPGRADING THE AGS TO 1 MW PROTON BEAM POWER M.J. Brennan, I. Marneris, T. Roser, A.G. Ruggiero, D. Trbojevic, S.Y. Zhang

    E-Print Network [OSTI]

    McDonald, Kirk

    to RHIC. The AGS Booster was built to allow the injection of any species of heavy ion into the AGS. Trbojevic, S.Y. Zhang Brookhaven National Laboratory, UPTON, NY 11973, USA Worked performed under the auspices of the U.S.D.O.E. Abstract The Brookhaven Alternating Gradient Synchrotron (AGS) is a strong

  6. STAR Facility Tritium Accountancy

    SciTech Connect (OSTI)

    R. J. Pawelko; J. P. Sharpe; B. J. Denny

    2007-09-01T23:59:59.000Z

    The Safety and Tritium Applied Research (STAR) facility has been established to provide a laboratory infrastructure for the fusion community to study tritium science associated with the development of safe fusion energy and other technologies. STAR is a radiological facility with an administrative total tritium inventory limit of 1.5g (14,429 Ci) [1]. Research studies with moderate tritium quantities and various radionuclides are performed in STAR. Successful operation of the STAR facility requires the ability to receive, inventory, store, dispense tritium to experiments, and to dispose of tritiated waste while accurately monitoring the tritium inventory in the facility. This paper describes tritium accountancy in the STAR facility. A primary accountancy instrument is the tritium Storage and Assay System (SAS): a system designed to receive, assay, store, and dispense tritium to experiments. Presented are the methods used to calibrate and operate the SAS. Accountancy processes utilizing the Tritium Cleanup System (TCS), and the Stack Tritium Monitoring System (STMS) are also discussed. Also presented are the equations used to quantify the amount of tritium being received into the facility, transferred to experiments, and removed from the facility. Finally, the STAR tritium accountability database is discussed.

  7. STAR facility tritium accountancy

    SciTech Connect (OSTI)

    Pawelko, R. J.; Sharpe, J. P.; Denny, B. J. [Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415 (United States)

    2008-07-15T23:59:59.000Z

    The Safety and Tritium Applied Research (STAR) facility has been established to provide a laboratory infrastructure for the fusion community to study tritium science associated with the development of safe fusion energy and other technologies. STAR is a radiological facility with an administrative total tritium inventory limit of 1.5 g (14,429 Ci) [1]. Research studies with moderate tritium quantities and various radionuclides are performed in STAR. Successful operation of the STAR facility requires the ability to receive, inventory, store, dispense tritium to experiments, and to dispose of tritiated waste while accurately monitoring the tritium inventory in the facility. This paper describes tritium accountancy in the STAR facility. A primary accountancy instrument is the tritium Storage and Assay System (SAS): a system designed to receive, assay, store, and dispense tritium to experiments. Presented are the methods used to calibrate and operate the SAS. Accountancy processes utilizing the Tritium Cleanup System (TCS), and the Stack Tritium Monitoring System (STMS) are also discussed. Also presented are the equations used to quantify the amount of tritium being received into the facility, transferred to experiments, and removed from the facility. Finally, the STAR tritium accountability database is discussed. (authors)

  8. DOE/NNSA Facility Management Contracts Facility Owner Contractor

    Broader source: Energy.gov (indexed) [DOE]

    NNSA Facility Management Contracts Facility Owner Contractor Award Date End Date OptionsAward Term Ultimate Potential Expiration Date Contract FY Competed Parent Companies LLC...

  9. Test Facility Daniil Stolyarov, Accelerator Test Facility User...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Development of the Solid-State Laser System for the Accelerator Test Facility Daniil Stolyarov, Accelerator Test Facility User's Meeting April 3, 2009 Outline Motivation for...

  10. SGP Cloud and Land Surface Interaction Campaign (CLASIC): Measurement Platforms

    SciTech Connect (OSTI)

    MA Miller; R Avissar; LK Berg; SA Edgerton; ML Fischer; TJ Jackson; B. Kustas; PJ Lamb; G McFarquhar; Q Min; B Schmid; MS Torn; DD Tuner

    2007-06-01T23:59:59.000Z

    The Cloud and Land Surface Interaction Campaign (CLASIC) will be conducted from June 8 to June 30, 2007, at the U.S. Department of Energy’s Atmospheric Radiation Measurement (ARM) Climate Research Facility (ACRF) Southern Great Plains (SGP) site. Data will be collected using eight aircraft equipped with a variety of specialized sensors, four specially instrumented surface sites, and two prototype surface radar systems. The architecture of CLASIC includes a high-altitude surveillance aircraft and enhanced vertical thermodynamic and wind profile measurements that will characterize the synoptic scale structure of the clouds and the land surface within the ACRF SGP site. Mesoscale and microscale structures will be sampled with a variety of aircraft, surface, and radar observations. An overview of the measurement platforms that will be used during the CLASIC are described in this report. The coordination of measurements, especially as it relates to aircraft flight plans, will be discussed in the CLASIC Implementation Plan.

  11. Sandia Energy - About the Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Facility About the FacilityTara Camacho-Lopez2015-05-11T19:38:37+00:00 Test-Bed Wind Turbines Allow Facility Flexibility While Providing Reliable Data in Many Regimes SWiFT...

  12. Management of a complex cavern storage facility for natural gas

    SciTech Connect (OSTI)

    NONE

    1998-04-01T23:59:59.000Z

    The Epe cavern storage facility operated by Ruhrgas AG has developed into one of the largest gas cavern storage facilities in the world. Currently, there are 32 caverns and 18 more are planned in the future. Working gas volume will increase from approximately 1.5 {times} 10{sup 9} to 2 {times} 10{sup 9} m{sup 3}. The stratified salt deposit containing the caverns has a surface area of approximately 7 km{sup 2} and is 250 m thick at the edge and 400 m thick in the center. Caverns are leached by a company that uses the recovered brine in the chlorine industry. Cavern dimensions are determined before leaching. The behavior of each cavern, as well as the thermodynamic properties of natural gas must be considered in cavern management. The full-length paper presents the components of a complex management system covering the design, construction, and operation of the Epe gas-storage caverns.

  13. Contaminated land and groundwater management at Sellafield, a large operational site with significant legacy and contaminated land challenges

    SciTech Connect (OSTI)

    Reeve, Phil; Eilbeck, Katherine [British Nuclear Group Sellafield Ltd (United Kingdom)

    2007-07-01T23:59:59.000Z

    Sellafield is a former Royal Ordnance Factory used since the 1940's for the production and reprocessing of fissile materials. Leaks and spills from these plants and their associated waste facilities has led to radioactive contaminated ground legacy of up to 20 million m{sup 3}. Consideration of land contamination at Sellafield began in 1976, following discovery of a major leak from a waste storage silo. Over the past three decades there has been a programme of environmental monitoring and several phases of characterization. The latest phase of characterization is a pounds 10 million contract to develop second generation conceptual and numeric models. The Site Licence Company that operates the site has been subject to structural changes due to reorganizations within the British nuclear industry. There has also been a change in emphasis to place an increased importance on accelerated decommissioning. To address these challenges a new contaminated land team and contaminated land and groundwater management plan have been established. Setting and measuring performance against challenging objectives is important. The management plan has to be cognizant of the long timescales (ca. 80 years) for final remediation. Data review, collation, acquisition, analysis, and storage is critical for success. It is equally important to seize opportunities for early environmental gains. It is possible to accelerate the development and delivery of a contaminated land and groundwater management plan by using international experts. (authors)

  14. Facility effluent monitoring plan determinations for the 300 Area facilities

    SciTech Connect (OSTI)

    Nickels, J.M.

    1991-08-01T23:59:59.000Z

    Facility Effluent Monitoring Plan determinations were conducted for the Westinghouse Hanford Company 300 Area facilities on the Hanford Site. These determinations have been prepared in accordance with A Guide For Preparing Hanford Site Facility Effluent Monitoring Plans. Sixteen Westinghouse Hanford Company facilities in the 300 Area were evaluated: 303 (A, B, C, E, F, G, J and K), 303 M, 306 E, 308, 309, 313, 333, 334 A, and the 340 Waste Handling Facility. The 303, 306, 313, 333, and 334 facilities Facility Effluent Monitoring Plan determinations were prepared by Columbia Energy and Environmental Services of Richland, Washington. The 340 Central Waste Complex determination was prepared by Bovay Northwest, Incorporated. The 308 and 309 facility determinations were prepared by Westinghouse Handford Company. Of the 16 facilities evaluated, 3 will require preparation of a Facility effluent Monitoring Plan: the 313 N Fuels Fabrication Support Building, 333 N Fuels fabrication Building, and the 340 Waste Handling Facility. 26 refs., 5 figs., 10 tabs.

  15. Report on audit of the US Department of Energy`s identification and disposal of nonessential land

    SciTech Connect (OSTI)

    NONE

    1997-01-01T23:59:59.000Z

    This document presents the results of an audit of four US DOE facilities to determine whether any land holdings are excess to current and anticipated future needs. Facilities audited were the Hanford Site, the Oak Ridge Reservation, the Idaho National Engineering Laboratory, and the Brookhaven Laboratory. Audit findings were that 309,000 acres at the Hanford, Oak Ridge, and Idaho sites were not essential to carrying out current and foreseeable mission requirements. It is recommended that the DOE dispose of the nonessential land holdings, reevaluate requirements for remaining land holdings and dispose of any additional nonessential land, and reevaluate the policy of defining ecosystem management as a valid basis for retaining Department real property. 2 tabs.

  16. Global Climate Change,Global Climate Change, Land Cover Change, andLand Cover Change, and

    E-Print Network [OSTI]

    1 Global Climate Change,Global Climate Change, Land Cover Change, andLand Cover Change Changes · Due to ­ Climate Change ­ Land Cover / Land Use Change ­ Interaction of Climate and Land Cover Change · Resolution ­ Space ­ Time Hydro-Climatic Change · Variability vs. Change (Trends) · Point data

  17. Nuclear Power Generating Facilities (Maine)

    Broader source: Energy.gov [DOE]

    The first subchapter of the statute concerning Nuclear Power Generating Facilities provides for direct citizen participation in the decision to construct any nuclear power generating facility in...

  18. Pollution Control Facilities (South Carolina)

    Broader source: Energy.gov [DOE]

    For the purpose of this legislation, pollution control facilities are defined as any facilities designed for the elimination, mitigation or prevention of air or water pollution, including all...

  19. LANL | Physics | Trident Laser Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Discovery science at Trident Laser Facility Several important discoveries and first observations have been made at the Trident Laser Facility, a unique three-beam neodymium-glass...

  20. Hazardous Waste Facilities Siting (Connecticut)

    Broader source: Energy.gov [DOE]

    These regulations describe the siting and permitting process for hazardous waste facilities and reference rules for construction, operation, closure, and post-closure of these facilities.

  1. Sandia National Laboratories: SWIFT Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SWIFT Facility Characterizing Scaled Wind Farm Technology Facility Inflow On April 1, 2014, in Energy, News, News & Events, Partnership, Renewable Energy, Wind Energy The Scaled...

  2. User Facilities | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    User Facilities Advanced Photon Source Argonne Leadership Computing Facility Argonne Tandem Linear Accelerator System Center for Nanoscale Materials Transportation Research and...

  3. Cornell University Facilities Services

    E-Print Network [OSTI]

    Manning, Sturt

    Description: The Large Animal Teaching Complex (LATC) will be a joint facility for the College of Veterinary or increase operating costs of the dairy barn; therefore, the College of Veterinary Medicine has agreed

  4. Photovoltaic Research Facilities

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) funds photovoltaic (PV) research and development (R&D) at its national laboratory facilities located throughout the country. To encourage further innovation,...

  5. NEW RENEWABLE FACILITIES PROGRAM

    E-Print Network [OSTI]

    's electricity from renewable resources by 2010. The Guidebook outlines eligibility and legal requirementsCALIFORNIA ENERGY COMMISSION ` NEW RENEWABLE FACILITIES PROGRAM GUIDEBOOK March 2007 CEC-300 Executive Director Heather Raitt Technical Director RENEWABLE ENERGY OFFICE CALIFORNIA ENERGY COMMISSION

  6. NETL - Fuel Reforming Facilities

    SciTech Connect (OSTI)

    None

    2013-06-12T23:59:59.000Z

    Research using NETL's Fuel Reforming Facilities explores catalytic issues inherent in fossil-energy related applications, including catalyst synthesis and characterization, reaction kinetics, catalyst activity and selectivity, catalyst deactivation, and stability.

  7. NETL - Fuel Reforming Facilities

    ScienceCinema (OSTI)

    None

    2014-06-27T23:59:59.000Z

    Research using NETL's Fuel Reforming Facilities explores catalytic issues inherent in fossil-energy related applications, including catalyst synthesis and characterization, reaction kinetics, catalyst activity and selectivity, catalyst deactivation, and stability.

  8. Liquidity facilities and signaling

    E-Print Network [OSTI]

    Arregui, Nicolás

    2010-01-01T23:59:59.000Z

    This dissertation studies the role of signaling concerns in discouraging access to liquidity facilities like the IMF contingent credit lines (CCL) and the Discount Window (DW). In Chapter 1, I analyze the introduction of ...

  9. Facilities Management Department Restructuring

    E-Print Network [OSTI]

    Mullins, Dyche

    ­ Zone 2 ­ Mission Bay/East Side: Includes Mission Bay, Mission Center Bldg, Buchanan Dental, Hunters Point, 654 Minnesota, Oyster Point 2. Recommendation that UCSF align all Facility Services and O

  10. Sandia National Laboratories: Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Renewable Energy, SWIFT, Wind Energy One of the primary roles of Sandia's Scaled Wind Farm Technology (SWiFT) facility will be to conduct detailed experiments on turbine wakes...

  11. Progress and status of the AGS Booster project

    SciTech Connect (OSTI)

    Weng, W.T. (Brookhaven National Lab., Upton, NY (USA))

    1989-01-01T23:59:59.000Z

    New physics opportunities, such as: rare K-decay, neutrino and heavy ion physics demand that a rapid-cycling high vacuum and high intensity Booster be built for the AGS at Brookhaven National Laboratory. The circumference of the Booster ring is one-quarter that of the AGS. Three modes of operation for various particles are envisioned. For unpolarized protons, four Booster pulses would be injected at a 7.5 Hz repetition rate within a 400 ms flat bottom of the AGS, enabling the present 1.5 {times} 10{sup 13} ppp to be increased to 6 {times} 10{sup 13} ppp. The protons would be accelerated to 1.5 GeV although the bending capability provided for heavy ions would eventually allow protons to be accelerated to 2.5 GeV. For heavy ions the rep rates is about 1 Hz and only one pulse would be injected into the AGS. For polarized protons 20 or so pulses can be stored in the Booster ring before injecting them into the AGS. Provisions for mixed modes of operation into a super cycle has been provided for future needs. In this paper, the lattice design and magnet characteristics will be briefly reviewed and major design issues will be discussed and design choices explained. Finally, the construction status and schedule will be presented. 9 refs., 3 figs.

  12. Strategies for Facilities Renewal

    E-Print Network [OSTI]

    Good, R. L.

    psig * Plant or Service Air 90 psig * Starting Air for gas engines 220 psig * Instrument Air 80 psig * 02 - process * N2 high purity 4. Water production systems and distribution * Potable water (remote rural site) * Fire water (not treated) * Cooling... sewers 6. Fuel systems * Mixed fuel (both by-product and purchased methane) * Pipeline natural gas * Fuel oil 7. Maintenance and office facilities * Various maintenance/construction shops, stores, offices * Office facilities for technical...

  13. Mound facility physical characterization

    SciTech Connect (OSTI)

    Tonne, W.R.; Alexander, B.M.; Cage, M.R.; Hase, E.H.; Schmidt, M.J.; Schneider, J.E.; Slusher, W.; Todd, J.E.

    1993-12-01T23:59:59.000Z

    The purpose of this report is to provide a baseline physical characterization of Mound`s facilities as of September 1993. The baseline characterizations are to be used in the development of long-term future use strategy development for the Mound site. This document describes the current missions and alternative future use scenarios for each building. Current mission descriptions cover facility capabilities, physical resources required to support operations, current safety envelope and current status of facilities. Future use scenarios identify potential alternative future uses, facility modifications required for likely use, facility modifications of other uses, changes to safety envelope for the likely use, cleanup criteria for each future use scenario, and disposition of surplus equipment. This Introductory Chapter includes an Executive Summary that contains narrative on the Functional Unit Material Condition, Current Facility Status, Listing of Buildings, Space Plans, Summary of Maintenance Program and Repair Backlog, Environmental Restoration, and Decontamination and Decommissioning Programs. Under Section B, Site Description, is a brief listing of the Site PS Development, as well as Current Utility Sources. Section C contains Site Assumptions. A Maintenance Program Overview, as well as Current Deficiencies, is contained within the Maintenance Program Chapter.

  14. Evidence for hybrid surface metallic band in (4?×?4) silicene on Ag(111)

    SciTech Connect (OSTI)

    Tsoutsou, D., E-mail: dtsoutsou@ims.demokritos.gr; Xenogiannopoulou, E.; Golias, E.; Tsipas, P.; Dimoulas, A. [National Center for Scientific Research “Demokritos,” 15310 Athens (Greece)] [National Center for Scientific Research “Demokritos,” 15310 Athens (Greece)

    2013-12-02T23:59:59.000Z

    The electronic band structure of monolayer (4?×?4) silicene on Ag(111) is imaged by angle resolved photoelectron spectroscopy. A dominant hybrid surface metallic band is observed to be located near the bulk Ag sp-band which is also faintly visible. The two-dimensional character of the hybrid band has been distinguished against the bulk character of the Ag(111) sp-band by means of photon energy dependence experiments. The surface band exhibits a steep linear dispersion around the K{sup ¯}{sub Ag} point and has a saddle point near the M{sup ¯}{sub Ag} point of Ag(111) resembling the ?-band dispersion in graphene.

  15. Hawaii Land Study Bureau's Land Classification Finder | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG|Information OpenEI Reference LibraryAddHawaiiOpen

  16. THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY The Radiological Research Accelerator Facility

    E-Print Network [OSTI]

    THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY 71 The Radiological Research Accelerator Facility the irradiated cells. Both the microbeam and the track segment facilities continue to be utilized in various investigations of this phenomenon. The single- particle microbeam facility provides precise control of the number

  17. THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY The Radiological Research Accelerator Facility

    E-Print Network [OSTI]

    THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY 1 The Radiological Research Accelerator Facility for Radiological Research (CRR). Using the mi- crobeam facility, 10% of the cells were irradiated through particle beam as well as the first fo- cused microbeam in the new microbeam facility. · Another significant

  18. Facility Location with Hierarchical Facility Costs Zoya Svitkina #

    E-Print Network [OSTI]

    Tardos, Ã?va

    Facility Location with Hierarchical Facility Costs Zoya Svitkina # â?? Eva Tardos + Abstract We consider the facility location problem with hierarchi­ cal facility costs, and give a (4 installation costs. Shmoys, Swamy and Levi [13] gave an approxi­ mation algorithm for a two­level version

  19. High intensity proton acceleration at the Brookhaven AGS -- An update

    SciTech Connect (OSTI)

    Ahrens, L.; Alessi, J.; Blaskiewicz, M. [Brookhaven National Lab., Upton, NY (United States). AGS Dept.] [and others

    1997-07-01T23:59:59.000Z

    The AGS accelerator complex is into its third year of 60+ {times} 10{sup 12} (teraproton = Tp) per cycle operation. The hardware making up the complex as configured in 1997 is briefly mentioned. The present level of accelerator performance is discussed. This includes beam transfer efficiencies at each step in the acceleration process, i.e. losses; which are a serious issue at this intensity level. Progress made in understanding beam behavior at the Linac-to-Booster (LtB) injection, at the Booster-to-AGS (BtA) transfer as well as across the 450 ms AGS accumulation porch is presented. The state of transition crossing, with the gamma-tr jump is described. Coherent effects including those driven by space charge are important at all of these steps.

  20. NREL: Energy Systems Integration Facility - Facility Design

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency Visit | NationalWebmaster ToStaffCapabilities TheFacility

  1. Radiation Effects Facility - Facilities - Cyclotron Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeedingTechnicalPurchase, Delivery, andSmartRadiation Effects Facility

  2. Analysis of resonance-driving imperfections in the AGS Booster

    SciTech Connect (OSTI)

    Gardner, C.; Shoji, Y.; Danby, G.; Glenn, J.W.; Jackson, G.J.; Soukas, A.; van Asselt, W.; Whalen, C.

    1994-08-01T23:59:59.000Z

    At the design intensity of 1.5 {times} 10{sup 13} ppp, the space charge tune shift in the AGS Booster at injection has been estimated to be about 0.35. The beam tunes are therefore spread over many lower order resonance lines and the associated stopbands must be corrected in order to minimize the amplitude growth due to resonance excitation. This requires proper compensation of the resonance-driving harmonics which result from random magnetic field errors. The observation and correction of second and third order resonance stopbands in the AGS Booster is reviewed, and an analysis of magnetic field imperfections based on the required corrections is given.

  3. Observation and correction of resonance stopbands in the AGS Booster

    SciTech Connect (OSTI)

    Gardner, C.; Shoji, Y.; Ahrens, L.; Glenn, J.W.; Lee, Y.Y.; Roser, T.; Soukas, A.; van Asselt, W.; Weng, W.T.

    1993-06-01T23:59:59.000Z

    At the design intensity of 1.5 {times} 10{sup 13} ppp, the space charge tune shift in the AGS Booster at injection has been estimated to be about 0.35. Therefore, the beam is spread over may lower order resonance lines and the stopbands have to be corrected to minimize the amplitude growth by proper compensation of the driving harmonics resulting from random errors. The observation and correction of second and third order resonance stopbands in the AGS Booster, and the establishment of a favorable operating point at high intensity are discussed.

  4. AGS to RHIC transfer line: Design and commissioning

    SciTech Connect (OSTI)

    MacKay, W.W; Ahrens, L.; Bennan, M.; Brown, K. [and others

    1996-09-01T23:59:59.000Z

    In the fall of 1995, we successfully completed a major milestone in the RHIC (Relativistic Heavy Ion Collider) project: the first beam test of the AGS (Alternating Gradient Synchrotron) to RHIC (ATR) transfer line. The ATR serves as a test bed for the new RHIC control system. This transfer line is highly instrumented, with several types of instrumentation for characterizing the extracted beam from AGS and for matching the beam into RHIC. We describe the design and performance of ATR with gold ions with an eye to reaching the design criteria for RHIC operation, both in beam quality and controls.

  5. Surface spin flip probability of mesoscopic Ag wires.

    SciTech Connect (OSTI)

    Mihajlovic, G.; Pearson, J. E.; Bader, S. D.; Hoffmann, A.

    2010-06-08T23:59:59.000Z

    Spin relaxation in mesoscopic Ag wires in the diffusive transport regime is studied via nonlocal spin valve and Hanle effect measurements performed on Permalloy/Ag lateral spin valves. The ratio between momentum and spin relaxation times is not constant at low temperatures. This can be explained with the Elliott-Yafet spin relaxation mechanism by considering the momentum surface relaxation time as being temperature dependent. We present a model to separately determine spin flip probabilities for phonon, impurity and surface scattering and find that the spin flip probability is highest for surface scattering.

  6. Level Structure of 103Ag at high spins

    E-Print Network [OSTI]

    S. Ray; N. S. Pattabiraman; Krishichayan; A. Chakraborty; S. Mukhopadhyay; S. S. Ghugre; S. N. Chintalapudi; A. K. Sinha; U. Garg; S. Zhu; B. Kharraja; D. Almehed

    2007-12-07T23:59:59.000Z

    High spin states in $^{103}$Ag were investigated with the Gammasphere array, using the $^{72}$Ge($^{35}$Cl,$2p2n$)$^{103}$Ag reaction at an incident beam energy of 135 MeV. A $\\Delta J$=1 sequence with predominantly magnetic transitions and two nearly-degenerate $\\Delta J=1$ doublet bands have been observed. The dipole band shows a decreasing trend in the $B(M1)$ strength as function of spin, a well established feature of magnetic bands. The nearly-degenerate band structures satisfy the three experimental signatures of chirality in the nuclei; however microscopic calculations are indicative of a magnetic phenomenon

  7. Pb-free Sn-Ag-Cu ternary eutectic solder

    DOE Patents [OSTI]

    Anderson, I.E.; Yost, F.G.; Smith, J.F.; Miller, C.M.; Terpstra, R.L.

    1996-06-18T23:59:59.000Z

    A Pb-free solder includes a ternary eutectic composition consisting essentially of about 93.6 weight % Sn-about 4.7 weight % Ag-about 1.7 weight % Cu having a eutectic melting temperature of about 217 C and variants of the ternary composition wherein the relative concentrations of Sn, Ag, and Cu deviate from the ternary eutectic composition to provide a controlled melting temperature range (liquid-solid ``mushy`` zone) relative to the eutectic melting temperature (e.g. up to 15 C above the eutectic melting temperature). 5 figs.

  8. AgFe Management Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1AMEE JumpAeroWind Inc.Information AfluenteAg Fuels LtdAgFe

  9. Schnell Z ndstrahlmotoren AG Co KG | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form HistoryRistma AG Jump638324°,Schnell Z ndstrahlmotoren AG Co KG Jump

  10. UNIVERSITY BOULEVARD FAU Research Facility

    E-Print Network [OSTI]

    Fernandez, Eduardo

    Harriet L.Wilkes Honors College FAU Research Facility Expansion Satellite Utility Plant Chiller Lift

  11. An evaluation of the neutron radiography facility at the Nuclear Science Center for dynamic imaging of two-phase hydrogenous fluids

    E-Print Network [OSTI]

    Carlisle, Bruce Scott

    1994-01-01T23:59:59.000Z

    AN EVAI. UATION OF THE NEUTRON RADIOGRAPHY FACILITY AT THE NUCLEAR SCIENCF- CENTER FOR DYNAMIC IMAGING OF TWO-PHASE HYDROGENOUS FLUIDS A Thesis By BRUCE SCOTT CARLlSLE Submitted to the Office of Graduate Studies of Texas Ag-M University... in partiat fulfillment of the requirements for the degree of MASTER OF SCPENCF. August 1994 Major Subject: Nuclear Engineering AN EVALUATION OF THE NEUTRON RADIOGRAPHY FACILITY AT THE NUCLEAR SCIENCE CENTFR FOR THE DYNAMIC IMAGING OF TWO...

  12. PD Dr. Martin Stetter, Siemens AG 1 Neuronale Verfahren zur Regression

    E-Print Network [OSTI]

    Popeea, Corneliu - Chair for Foundations of Software Reliability and Theoretical Computer Science

    PD Dr. Martin Stetter, Siemens AG 1 Neuronale Verfahren zur Regression · Lineares Modell · Vom: Optimierungsverfahren #12;PD Dr. Martin Stetter, Siemens AG 2 Optimierung konvexer Funktionen · Häufiges Problem bei

  13. The Synthesis of Ag-Doped Mesoporous TiO2 . | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    TiO2 . The Synthesis of Ag-Doped Mesoporous TiO2 . Abstract: Ag-doped mesoporous titanium oxide was prepared using non-ionic surfactants and easily handled titanium...

  14. High-temperature internal oxidation of Ag/1.2at.% Mg and Ag/0.25at.% Mg-0.25at.% Ni.

    SciTech Connect (OSTI)

    Balachandran, U.; Goretta, K. C.; McNallan, M. J.; Park, J.-H.; Prorok, B. C.

    1999-09-08T23:59:59.000Z

    High-temperature oxygen diffusion and internal oxidation in Ag, Ag/1.2 at.% Mg (Ag-Mg), and Ag/0.25 at.% Mg-0.25 at.% Ni (Ag-Mg-Ni) have been studied, mostly in air and 8% O{sub 2}, at 450-835 C. The focus of the studies was on thermogravimetric analysis, microhardness tests, and optical and electron microscopy observations of grain growth and its inhibition by oxidation. The internal oxidation of both alloys exhibited nearly identical activation energies (0.81 eV for Ag-Mg and 0.83 eV for Ag-Mg-Ni) and rate constants. The maximum O content of both alloys was superstoichiometric (e.g., O/Mg > 1.0) and the maximum O/Mg ratios were higher at lower temperatures than at higher temperatures (e.g., 1.25 at 500 C and 1.05 at 800 C). Diffusion of O in pure Ag was {approx}60 times faster at 825 C and {approx}400 times faster at 500 C than internal oxidation of either of the Ag alloys. Grain growth of both alloys and of the Ag was quantified between 450-800 C and related to internal oxidation.

  15. 2011LandesBioscience. Donotdistribute.

    E-Print Network [OSTI]

    /November/December 2011; © 2011 Landes Bioscience MethODs & techNicaL aDvaNces MethODs & techNicaL a of the GFP- or YFP-expressing balancers has specific advantages, but all share a common draw- back a Tubby1 (Tb1 ) dominant transgene. Flies heterozygous for these FM7a and CyO derivatives exhibit

  16. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006 [Facility News]SPARTICUSJune31, 2005 [Facility

  17. Facilities | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic Plan| Department of.pdf6-OPAMDepartment6 FY 2007FY 2014Facilities Facilities

  18. Facility Disposition Projects

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic Plan| Department of.pdf6-OPAMDepartment6 FY 2007FY 2014Facilities Facilities

  19. Facility Data Policy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental Assessments (EA)Budget » FY 2014Facilities FusionFacility Data Policy

  20. Characterization of the antiferromagnetism in Ag(pyz)2(S2O8) with a two-dimensional square lattice of Ag 2+ ions (Ag=silver, Pyz-pyrdzine, S2O8=sulfate)

    SciTech Connect (OSTI)

    Singleton, John [Los Alamos National Laboratory; Mc Donald, R [Los Alamos National Laboratory; Sengupta, P [Los Alamos National Laboratory; Cox, S [Los Alamos National Laboratory; Manson, J [E WASHINGTON U; Southerland, H [E WASHINGTON U; Warter, M [E WASHINGTON U; Stone, K [STATE UNIV OF NY; Stephens, P [STATE UNIV OF NY; Lancaster, T [OXFORD U; Steele, A [OXFORD U; Blundell, S [OXFORD U; Baker, P [OXFORD U; Pratt, F [RUTHERFORD-APPLETON LAB; Lee, C [NCSU; Whangbo, M [NCSU

    2009-01-01T23:59:59.000Z

    X-ray powder diffraction and magnetic susceptibility measurements show that Ag(pyz){sub 2}(S{sub 2}O{sub 8}) consists of 2D square nets of Ag{sup 2+} ions resulting from the corner-sharing of axially elongated AgN{sub 4}O{sub 2} octahedra and exhibits characteristic 2D antiferromagnetism. Nevertheless, {mu}{sup +}Sr measurements indicate that Ag(pyz){sub 2}(S{sub 2}O{sub 8}) undergoes 3D magnetic ordering below 7.8(3) K.

  1. 2013 Annual Wastewater Reuse Report for the Idaho National Laboratory Site’s Central Facilities Area Sewage Treatment Plant

    SciTech Connect (OSTI)

    Mike Lewis

    2014-02-01T23:59:59.000Z

    This report describes conditions, as required by the state of Idaho Wastewater Reuse Permit (#LA-000141-03), for the wastewater land application site at the Idaho National Laboratory Site’s Central Facilities Area Sewage Treatment Plant from November 1, 2012, through October 31, 2013. The report contains, as applicable, the following information: • Site description • Facility and system description • Permit required monitoring data and loading rates • Status of compliance conditions and activities • Discussion of the facility’s environmental impacts. During the 2013 permit year, no wastewater was land-applied to the irrigation area of the Central Facilities Area Sewage Treatment Plant and therefore, no effluent flow volumes or samples were collected from wastewater sampling point WW-014102. However, soil samples were collected in October from soil monitoring unit SU-014101.

  2. Beam Energy Evolution of HBT Systematics at the AGS

    E-Print Network [OSTI]

    M. A. Lisa; E895 Collaboration

    2000-02-13T23:59:59.000Z

    We present preliminary results of the first pion interferometry (HBT) excitation function at intermediate AGS energies. The beam energy evolution of the correlations' dependence on mT, centrality, and emission angle with respect to the reaction plane are discussed. Comparisons with predictions of the RQMD cascade model are made.

  3. Acceleration of heavy ions in the AGS and CBA

    SciTech Connect (OSTI)

    Barton, M.Q.

    1983-01-01T23:59:59.000Z

    A plan has been developed to inject ion beams from the Brookhaven Tandem or a cyclotron added to the Tandem into the AGS. This beam could then be injected into a relativistic heavy ion collider. The availability of many CBA components adds to the attractiveness of this proposal.

  4. Outcomes/Impacts Our Ag Agent established a monitoring system

    E-Print Network [OSTI]

    Florida, University of

    Outcomes/Impacts · Our Ag Agent established a monitoring system and educational outreach to area farms to track and manage an emerging insect threat to county berry crops. · As a result of County preservation, nutrition and wellness as well as energy and housing and specific programs to meet the needs

  5. ImpactsofLarge Dams:agLobaL

    E-Print Network [OSTI]

    Chaudhuri, Sanjay

    #12;ImpactsofLarge Dams:agLobaL assessment Editors Cecilia Tortajada, Dogan Altinbilek, Asit K of the most controversial issues of the water sector in recent years has been the impacts of large dams and environmental costs of large dams far exceed their benefits, and that the era of construction of large dams

  6. AGS Experiment E951 An R&D Program for Targetry and Capture

    E-Print Network [OSTI]

    McDonald, Kirk

    a Argonne National Laboratory, Argonne, IL 60439 b Brookhaven National Laboratory, Upton, NY 11973 c CERN CERN LANSCE Collider AGS Booster PS PSR Proton Energy (GeV) 16­24 24 8 24 0.8 p/bunch 5 \\Theta 10 13 1951 ffl Proposal P951 submitted to BNL AGS Division Sept. 1998. ffl Presented to the AGS/RHIC PAC

  7. PD Dr. Martin Stetter, Siemens AG 1 Statistische und neuronale Lernverfahren

    E-Print Network [OSTI]

    Popeea, Corneliu - Chair for Foundations of Software Reliability and Theoretical Computer Science

    PD Dr. Martin Stetter, Siemens AG 1 Statistische und neuronale Lernverfahren Martin Stetter SS 2003, Siemens AG 2 Behandelte Themen 0. ,,Motivation": Lernen in Statistik und Biologie 1-Regression 4. Bayes-Belief-Netze Statistische und neuronale Lernverfahren #12;PD Dr. Martin Stetter, Siemens AG

  8. PD Dr. Martin Stetter, Siemens AG 1 Neuronale Lernverfahren fr Klassifikation

    E-Print Network [OSTI]

    Popeea, Corneliu - Chair for Foundations of Software Reliability and Theoretical Computer Science

    PD Dr. Martin Stetter, Siemens AG 1 Neuronale Lernverfahren für Klassifikation · Das Perceptron #12;PD Dr. Martin Stetter, Siemens AG 2 Das Perceptron Klassifikation: Perceptron · Neuronale Struktur- Klassifikationsfehler 1x w )(m x 1)( =m y 0^ =y 1^ +=y 2x #12;PD Dr. Martin Stetter, Siemens AG 3Klassifikation

  9. PD Dr. Martin Stetter, Siemens AG 1 Lernen von Datenmodellen: Fehlerminimierung und Regularisierung

    E-Print Network [OSTI]

    Popeea, Corneliu - Chair for Foundations of Software Reliability and Theoretical Computer Science

    PD Dr. Martin Stetter, Siemens AG 1 Lernen von Datenmodellen: Fehlerminimierung und Regularisierung: Fehlerminimierung #12;PD Dr. Martin Stetter, Siemens AG 2 Maximum-Likelihood und Fehlerminimierung · Likelihood: Fehlerfunktionen #12;PD Dr. Martin Stetter, Siemens AG 3 · Def. Fehlerfunktion: 0))|(,,( wxfyxl yxyyx ,0),,( =lmit

  10. Siemens AG, CT IC 4, H.-G. Zimmermann1 CORPORATETECHNOLOGY

    E-Print Network [OSTI]

    Schmidhuber, Juergen

    © Siemens AG, CT IC 4, H.-G. Zimmermann1 CORPORATETECHNOLOGY System Identification & Forecasting with Advanced Neural Networks Principles, Techniques, Applications Hans Georg Zimmermann Siemens AG Email : Hans_Georg.Zimmermann@siemens.com © Siemens AG, CT IC 4, H.-G. Zimmermann2 CORPORATETECHNOLOGY . . . . ! " i ii wxw 0 w1 wn xn x1 Distinct

  11. PD Dr. Martin Stetter, Siemens AG 1 Lernen von Datenmodellen: Approximation

    E-Print Network [OSTI]

    Popeea, Corneliu - Chair for Foundations of Software Reliability and Theoretical Computer Science

    PD Dr. Martin Stetter, Siemens AG 1 Lernen von Datenmodellen: Approximation · Bayes`sches Schließen: Approximation #12;PD Dr. Martin Stetter, Siemens AG 2 Ziel maschinellen Lernens (=statistische Inferenz) · Man Datenmodellen: Approximation #12;PD Dr. Martin Stetter, Siemens AG 3 Bayes`sches Schließen · Es gilt, die Daten

  12. PD Dr. Martin Stetter, Siemens AG 1 Statistische und neuronale Lernverfahren

    E-Print Network [OSTI]

    Popeea, Corneliu - Chair for Foundations of Software Reliability and Theoretical Computer Science

    PD Dr. Martin Stetter, Siemens AG 1 Statistische und neuronale Lernverfahren Martin Stetter WS 03, Siemens AG 2 Behandelte Themen 0. ,,Motivation": Lernen in Statistik und Biologie 1-Regression 4. Bayes-Belief-Netze Statistische und neuronale Lernverfahren #12;PD Dr. Martin Stetter, Siemens AG

  13. PD Dr. Martin Stetter, Siemens AG 1 Neuronale Verfahren zur Regression

    E-Print Network [OSTI]

    Popeea, Corneliu - Chair for Foundations of Software Reliability and Theoretical Computer Science

    PD Dr. Martin Stetter, Siemens AG 1 Neuronale Verfahren zur Regression · Lineares Modell · Vom-Netze Regression #12;PD Dr. Martin Stetter, Siemens AG 2 Das lineare Modell · Ausgangspunkt: Lineares Perceptron vorgegeben, werden nicht gelernt #12;PD Dr. Martin Stetter, Siemens AG 3 · Geschrieben als Regressionsmodell

  14. Pd and Ag metal-silicate partitioning applied to Earth differentiation and core-mantle exchange

    E-Print Network [OSTI]

    Mcdonough, William F.

    Pd and Ag metal-silicate partitioning applied to Earth differentiation and core-mantle exchange metallic sulfide and liquid silicate under plausible magma ocean conditions constrains potential core 107 Ag content and the origin of observed Pd and Ag mantle abundances. DPd metallic sulfide / silicate

  15. Influence des endiguements et remblais sur l'inondation de la plaine de l'Agly

    E-Print Network [OSTI]

    Boyer, Edmond

    Influence des endiguements et remblais sur l'inondation de la plaine de l'Agly The influence of dikes and embankments on the Agly plain floods par A. Paquier Cemagref Building ofdikes along downstream reach ofAgly River has protected the low plain /rom the more frequent floods, wlùch encourages

  16. Minerals on School and Public Lands

    Broader source: Energy.gov [DOE]

    The Commissioner of School and Public Lands is authorized to lease the mineral interests of such lands for development. Section 5-7 of the SD Codified Laws describes provisions for the leasing of...

  17. Marginal, Erodible Land Retirement Policy (Minnesota)

    Broader source: Energy.gov [DOE]

    It is state policy to encourage the retirement of marginal, highly erodible land, particularly land adjacent to public waters and drainage systems, from crop production and to reestablish a cover...

  18. Mapping Savanna Land Change of Belize 

    E-Print Network [OSTI]

    Wilson, Lauren

    2011-11-24T23:59:59.000Z

    was assessed using a confusion matrix. The results of the research confirmed the capabilities of Landsat imagery for mapping savannas and their land use. The classification of forest and savanna along with major land use pressures from agriculture...

  19. Addressing land-based discrimination in

    E-Print Network [OSTI]

    Richner, Heinz

    , feudalism was based on ownership of land, the dominant mode of production. Political power was dominated by absolute kings and feudal overlords. Wealth and position in society was derived from the land ownership

  20. Coastal Public Lands Management Act (Texas)

    Broader source: Energy.gov [DOE]

    The coastal public lands of the state are managed in accordance with the following principles: (a) The natural resources of the surface land, including their aesthetic value and their ability to...

  1. Risk management study for the retired Hanford Site facilities: Qualitative risk evaluation for the retired Hanford Site facilities. Volume 3

    SciTech Connect (OSTI)

    Coles, G.A.; Shultz, M.V.; Taylor, W.E.

    1993-09-01T23:59:59.000Z

    This document provides a risk evaluation of the 100 and 200 Area retired, surplus facilities on the Hanford Site. Also included are the related data that were compiled by the risk evaluation team during investigations performed on the facilities. Results are the product of a major effort performed in fiscal year 1993 to produce qualitative information that characterizes certain risks associated with these facilities. The retired facilities investigated for this evaluation are located in the 100 and 200 Areas of the 1,450-km{sup 2} (570-mi{sup 2}) Hanford Site. The Hanford Site is a semiarid tract of land in southeastern Washington State. The nearest population center is Richland, Washington, (population 32,000) 30-km (20 mi) southeast of the 200 Area. During walkdown investigations of these facilities, data on real and potential hazards that threatened human health or safety or created potential environmental release issues were identified by the risk evaluation team. Using these findings, the team categorized the identified hazards by facility and evaluated the risk associated with each hazard. The factors contributing to each risk, and the consequence and likelihood of harm associated with each hazard also are included in this evaluation.

  2. Hanford land disposal restrictions plan for mixed wastes

    SciTech Connect (OSTI)

    Not Available

    1990-10-01T23:59:59.000Z

    Since the early 1940s, the Hanford Site has been involved in the production and purification of nuclear defense materials. These production activities have resulted in the generation of large quantities of liquid and solid radioactive mixed waste. This waste is subject to regulation under authority of both the Resource Conservation and Recovery Act of 1976 (RCRA) and the Atomic Energy Act. The State of Washington Department of Ecology (Ecology), the US Environmental Protection Agency (EPA), and the US Department of Energy (DOE) have entered into an agreement, the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) to bring Hanford Site Operations into compliance with dangerous waste regulations. The Tri-Party Agreement was amended to require development of the Hanford Land Disposal Restrictions Plan for Mixed Wastes (this plan) to comply with land disposal restrictions requirements for radioactive mixed waste. The Tri-Party Agreement requires, and the this plan provides, the following sections: Waste Characterization Plan, Storage Report, Treatment Report, Treatment Plan, Waste Minimization Plan, a schedule, depicting the events necessary to achieve full compliance with land disposal restriction requirements, and a process for establishing interim milestones. 34 refs., 28 figs., 35 tabs.

  3. Office of Inspector General report on audit of proposal to acquire land at the Fernald Environmental Management Project

    SciTech Connect (OSTI)

    NONE

    1997-06-05T23:59:59.000Z

    The US Department of Energy (Department) obtained an appraisal and developed a cost estimate to acquire 78 to 100 acres of privately-held land adjoining the Fernald Environmental Management Project (FEMP) as an additional buffer for a waste disposal facility. The objective of this audit was to determine whether the proposed purchase of land was essential to support the site`s mission. The Department obtained an appraisal and developed a cost estimate to acquire the additional land without confirming that av lid need for the land existed. If the land is acquired, the Department could spend between $655,000 and $2.2 million unnecessarily. Additionally, the Department could incur unnecessary maintenance and security costs to maintain the land after acquisition. It was recommended that the Manager, Ohio Field Office, dismiss the proposal to acquire the additional land. Management agreed with the recommendation, stating that the acquisition could not be justified at this time. However, management did not agree with the finding that the Department obtained an appraisal and developed a cost estimate without confirming that a valid need for the land existed. Management stated that the appraisal and cost estimate were principal and necessary to determining whether a need for the land existed. It was concluded that the appraisal and cost estimate should not have been performed because a valid need for the land was never established. Also, it was concluded that it would be inappropriate to reconsider the proposal to acquire the land at a later date if additional funds become available, unless a valid need for the land is first established.

  4. FACILITIES INSTRUCTIONS, STANDARDS, & TECHNIQUES

    E-Print Network [OSTI]

    Laughlin, Robert B.

    to the repair of hydraulic turbine runners and large pump impellers. Reclamation operates and maintains a wideFACILITIES INSTRUCTIONS, STANDARDS, & TECHNIQUES VOLUME 2-5 TURBINE REPAIR Internet Version variety of reaction and impulse turbines as well as axial flow, mixed flow, radial flow pumps and pump

  5. Facilities Management Field Services

    E-Print Network [OSTI]

    Hickman, Mark

    Facilities Management Field Services FieldStationsAnnualReport2006 #12;Cover Photo by Dr Mark Jermy coast #12; Introduction A very wet Steve Weaver emerges from the river. Ah, field work! The Government broadband, at least there is now an alternative to the telephone line. Electrical power spikes (and outages

  6. Graph algorithms experimentation facility

    E-Print Network [OSTI]

    Sonom, Donald George

    1994-01-01T23:59:59.000Z

    DRAWADJMAT 2 ~e ~l 2. ~f ~2 2 ~t ~& [g H 2 O? Z Mwd a P d ed d Aid~a sae R 2-BE& T C dbms Fig. 2. External Algorithm Handler The facility is menu driven and implemented as a client to XAGE. Our implementation follows very closely the functionality...

  7. NEW RENEWABLE FACILITIES PROGRAM

    E-Print Network [OSTI]

    for and receive production incentives, referred to as supplemental energy payments (SEPs), from the New RenewableCALIFORNIA ENERGY COMMISSION NEW RENEWABLE FACILITIES PROGRAM GUIDEBOOK APRIL 2006 CEC-300 Director Heather Raitt Technical Director Renewable Energy Program Drake Johnson Office Manager Renewable

  8. Modification ofregional groundwater regimes by land reclamation

    E-Print Network [OSTI]

    Jiao, Jiu Jimmy

    Modification ofregional groundwater regimes by land reclamation Jiu Jimmy Jiao Department ofEarth Sciences, The University ofHong Kong, P. R. China Abstract JJ.Jiao Land reclamation has played;Bouchardetal., 1998;Schofield etal., 1992). While reclamation provides valuable land, it also creates various

  9. Nano Research Facility Lab Safety Manual Nano Research Facility

    E-Print Network [OSTI]

    Subramanian, Venkat

    1 Nano Research Facility Lab Safety Manual Nano Research Facility: Weining Wang Office: Brauer---chemical, biological, or radiological. Notify the lab manager, Dr. Yujie Xiong at 5-4530. Eye Contact: Promptly flush

  10. Renewable Energy and Environmental Sustainability Using Biomass from Dairy and Beef Animal Production Facilities

    E-Print Network [OSTI]

    Mukhtar, Saqib

    Production Facilities The Texas Panhandle is regarded as the "Cattle Feeding Capital of the World", producingRenewable Energy and Environmental Sustainability Using Biomass from Dairy and Beef Animal basis. Heretofore, it has been used extensively for irrigated and dry land crop production, and in some

  11. Biomass Anaerobic Digestion Facilities and Biomass Gasification Facilities (Indiana)

    Broader source: Energy.gov [DOE]

    The Indiana Department of Environmental Management requires permits before the construction or expansion of biomass anaerobic digestion or gasification facilities.

  12. Land Tenure (to the End of the Ptolemaic Period)

    E-Print Network [OSTI]

    Katary, Sally

    2012-01-01T23:59:59.000Z

    for highly successful land reclamation in the Fayum,successful large-scale land reclamation (Kehoe 2010: 316).

  13. Characterization and device performance of (AgCu)(InGa)Se2 absorber layers

    SciTech Connect (OSTI)

    Hanket, Gregory; Boyle, Jonathan H.; Shafarman, William N.

    2009-06-08T23:59:59.000Z

    The study of (AgCu)(InGa)Se2 absorber layers is of interest in that Ag-chalcopyrites exhibit both wider bandgaps and lower melting points than their Cu counterparts. (AgCu)(InGa)Se2 absorber layers were deposited over the composition range 0 < Ag/(Ag+Cu) < 1 and 0.3 < Ga/(In+Ga) < 1.0 using a variety of elemental co-evaporation processes. Films were found to be singlephase over the entire composition range, in contrast to prior studies. Devices with Ga content 0.3 < Ga/(In+Ga) <0.5 tolerated Ag incorporation up to Ag/(Ag+Cu) = 0.5 without appreciable performance loss. Ag-containing films with Ga/(In+Ga) = 0.8 showed improved device characteristics over Cu-only control samples, in particular a 30-40% increase in short-circuit current. An absorber layer with composition Ag/(Ag+Cu) = 0.75 and Ga/(In+Ga) = 0.8 yielded a device with VOC = 890 mV, JSC = 20.5mA/cm2, fill factor = 71.3%, and ? = 13.0%.

  14. Determine Minimum Silver Flake Addition to GCM for Iodine Loaded AgZ

    SciTech Connect (OSTI)

    Garino, Terry J.; Nenoff, Tina M.; Rodriguez, Mark A.

    2014-04-01T23:59:59.000Z

    The minimum amount of silver flake required to prevent loss of I{sub 2} during sintering in air for a SNL Glass Composite Material (GCM) Waste Form containing AgI-MOR (ORNL, 8.7 wt%) was determined to be 1.1 wt% Ag. The final GCM composition prior to sintering was 20 wt% AgI-MOR, 1.1 wt% Ag, and 80 wt% Bi-Si oxide glass. The amount of silver flake needed to suppress iodine loss was determined using thermo gravimetric analysis with mass spectroscopic off-gas analysis. These studies found that the ratio of silver to AgI-MOR required is lower in the presence of the glass than without it. Therefore an additional benefit of the GCM is that it serves to inhibit some iodine loss during processing. Alternatively, heating the AgI-MOR in inert atmosphere instead of air allowed for densified GCM formation without I{sub 2} loss, and no necessity for the addition of Ag. The cause of this behavior is found to be related to the oxidation of the metallic Ag to Ag{sup +} when heated to above ~300{degrees}C in air. Heating rate, iodine loading levels and atmosphere are the important variables that determine AgI migration and results suggest that AgI may be completely incorporated into the mordenite structure by the 550{degrees}C sintering temperature.

  15. The Caterpillar Coal Gasification Facility 

    E-Print Network [OSTI]

    Welsh, J.; Coffeen, W. G., III

    1983-01-01T23:59:59.000Z

    This paper is a review of one of America's premier coal gasification installations. The caterpillar coal gasification facility located in York, Pennsylvania is an award winning facility. The plant was recognized as the 'pace setter plant of the year...

  16. Facilities Automation and Energy Management

    E-Print Network [OSTI]

    Jen, D. P.

    1983-01-01T23:59:59.000Z

    Computerized facilities automation and energy management systems can be used to maintain high levels of facilities operations efficiencies. The monitoring capabilities provides the current equipment and process status, and the analysis...

  17. Biomass Feedstock National User Facility

    Broader source: Energy.gov [DOE]

    Breakout Session 1B—Integration of Supply Chains I: Breaking Down Barriers Biomass Feedstock National User Facility Kevin L. Kenney, Director, Biomass Feedstock National User Facility, Idaho National Laboratory

  18. Reed Reactor Facility Annual Report

    SciTech Connect (OSTI)

    Frantz, Stephen G.

    2000-09-01T23:59:59.000Z

    This is the report of the operations, experiments, modifications, and other aspects of the Reed Reactor Facility for the year.

  19. CFTF | Carbon Fiber Technology Facility | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BTRIC CNMS CSMB CFTF Working with CFTF HFIR MDF NTRC OLCF SNS Carbon Fiber Technology Facility Home | User Facilities | CFTF CFTF | Carbon Fiber Technology Facility SHARE Oak...

  20. CRAD, Nuclear Facility Construction - Structural Concrete, May...

    Broader source: Energy.gov (indexed) [DOE]

    CRAD, Nuclear Facility Construction - Structural Concrete, May 29, 2009 CRAD, Nuclear Facility Construction - Structural Concrete, May 29, 2009 May 29, 2009 Nuclear Facility...

  1. THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY

    E-Print Network [OSTI]

    175 THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY #12;176 #12;177 THE RADIOLOGICAL RESEARCH the microbeam and the track-segment facilities have been utilized in various investigations. Table 1 lists-segment facility. Samples are treated with graded doses of radical scavengers to observe changes in the cluster

  2. Environmental Assessment for the Health Protection Instrument Calibration Facility at the Savannah River Site

    SciTech Connect (OSTI)

    Not Available

    1993-08-01T23:59:59.000Z

    The purpose of this Environmental Assessment (EA) is to review the possible environmental consequences associated with the construction and operation of a Health Protection Instrument Calibration Facility on the Savannah River Site (SRS). The proposed replacement calibration facility would be located in B Area of SRS and would replace an inadequate existing facility currently located within A Area of SRS (Building 736-A). The new facility would provide laboratories, offices, test equipment and the support space necessary for the SRS Radiation Monitoring Instrument Calibration Program to comply with DOE Orders 5480.4 (Environmental Protection, Safety and Health Protection Standards) and 5480.11 (Radiation Protection for Occupational Workers). The proposed facility would serve as the central site source for the evaluation, selection, inspection, testing, calibration, and maintenance of all SRS radiation monitoring instrumentation. The proposed facility would be constructed on a currently undeveloped portion in B Area of SRS. The exact plot associated with the proposed action is a 1.2 hectare (3 acre) tract of land located on the west side of SRS Road No. 2. The proposed facility would lie approximately 4.4 km (2.75 mi) from the nearest SRS site boundary. The proposed facility would also lie within the confines of the existing B Area, and SRS safeguards and security systems. Archaeological, ecological, and land use reviews have been conducted in connection with the use of this proposed plot of land, and a detailed discussion of these reviews is contained herein. Socioeconomic, operational, and accident analyses were also examined in relation to the proposed project and the findings from these reviews are also contained in this EA.

  3. ag pd tizrv: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of the problems encountered in vacuum systems of modern particle accelerators for high energy physics and for synchrotron radiation facilities. ... Chiggiato, P 2005-01-01 11...

  4. Injection and acceleration of Au31+ in the BNL AGS.

    SciTech Connect (OSTI)

    Fischer,W.; Ahrens, L.; Brown, K.; Gardner, C.; Glenn, W.; Huang, H.; Mapes, M.; Smart, L.; Thieberger, P.; Tsoupas, N.; Zhang, S.Y.; Zeno, K.; Omet, C.; Spiller, P.

    2008-06-23T23:59:59.000Z

    Injection and acceleration of ions in a lower charge state reduces space charge effects, and, if further elcctron stripping is needed, may allow elimination of a stripping stage and the associated beam losses. The former is of interest to the accelerators in the GSI FAIR complex, the latter for BNL RHIC collider operation at energies lower than the current injection energy. Lower charge state ions, however, have a higher likelihood of electron stripping which can lead to dynamic pressures rises and subsequent beam losses. We report on experiments in the AGS where Au{sup 31+} ions were injected and accelerated instead of the normally used Au{sup 77+} ions. Beam intensities and the average pressure in the AGS ring are recorded, and compared with calculations for dynamic pressures and beam losses. The experimental results will be used to benchmark the StrahlSim dynamic vacuum code and will be incorporated in the GSI FAIR SIS100 design.

  5. Acceleration of polarized protons in the Brookhaven AGS

    SciTech Connect (OSTI)

    Terwilliger, K.M.; Crabb, D.G.; Krisch, A.D.

    1981-01-01T23:59:59.000Z

    A multi-laboratory-university collaborative project involving Argonne, Brookhaven, Michigan, Rice and Yale is underway to accelerate polarized protons at the AGS. The success of the now turned off 12 GeV/c ZGS polarized beam and the design studies for the AGS made us confident of the feasibility of achieving a polarization of about 60% at 26 GeV/c with an intensity 10/sup 11/ to 10/sup 12/ protons/pulse. Such a beam would be a potential source of polarized protons for ISABELLE. This report gives a brief discussion of the overall project and describes the tests of a prototype of the fast pulsed ferrite quadrupole magnets which will jump the intrinsic depolarizing resonances.

  6. Stewardship of public school land by the General Land Office

    E-Print Network [OSTI]

    Zechiel, Tod Peter

    1987-01-01T23:59:59.000Z

    (a V. Nrelnh Nnl da (L Nr(PN Huis I. Veil Ill(en S. Hncnf th hraa( 4 hn Ihpr. i ha Ner(n J. (Irasr ~ Veiler N. Irene Caryn @riot( S. ladler laali ~ N. Seal Nalrnvl lie J. R Ie Saa Nrrcn J Mf((ay Satan 1. Srpp ~ (luhorttlls liar ll ~ 9(5/bh... AND CHARACTERISTICS OF THE RANGELAND The Area Under Stewardshi p Climate of the Trans-Pecos Vegetational Associations of the Trans-Pecos Uses of the Range Resources OPERATIONS OF THE ALPINE FIELD OFFICE Responsibi 1ities Assisting the Land Management Division...

  7. EIS-0406: Designation of Energy Corridors on Federal Land in 39 States

    Broader source: Energy.gov [DOE]

    DOE has canceled this EIS, which was to evaluate the environmental impacts of the designation, under Section 368(b) of the Energy Policy Act of 2005, of energy corridors on federal lands in 39 nonwestern states. The corridors, which were to be jointly identified by the Secretaries of Agriculture, Commerce, Defense, Energy, and the Interior, might have been used for oil, gas, and hydrogen pipelines and electricity transmission and distribution facilities.

  8. Comparative approaches to siting low-level radioactive waste disposal facilities

    SciTech Connect (OSTI)

    Newberry, W.F.

    1994-07-01T23:59:59.000Z

    This report describes activities in nine States to select site locations for new disposal facilities for low-level radioactive waste. These nine States have completed processes leading to identification of specific site locations for onsite investigations. For each State, the status, legal and regulatory framework, site criteria, and site selection process are described. In most cases, States and compact regions decided to assign responsibility for site selection to agencies of government and to use top-down mapping methods for site selection. The report discusses quantitative and qualitative techniques used in applying top-down screenings, various approaches for delineating units of land for comparison, issues involved in excluding land from further consideration, and different positions taken by the siting organizations in considering public acceptance, land use, and land availability as factors in site selection.

  9. Assessing the Feasibility of Renewable Energy Development and Energy Efficiency Deployment on Tribal Lands

    SciTech Connect (OSTI)

    Nominelli, Gregg R.

    2012-12-17T23:59:59.000Z

    The Keweenaw Bay Indian Community (KBIC) is committed to preserving our natural environment and reducing the amount of fossil fuels consumed while developing "green" business manufacturing jobs on tribal lands. The Tribe's Comprehensive Strategic Plan seeks to diversify the Tribal Economy through the creation of alternative energy businesses, such as wind, solar and bio-mass facilities while protecting the waters of Lake Superior, tribal inland lakes and streams. In addition, the Community desired to utilize clean/green energy resources to promote the self-sufficiency of the Tribal Nation. The objective of the study is to preserve our environment and maintain our cultural goals of using the resources of the land wisely. To reduce our consumption of fossil fuels, mercury and carbon dioxide emissions, which harm our water and land; we have decided to evaluate the opportunities of utilizing wind power. Preliminary projections show that we may eliminate pollution from our land in a cost effective manner. This study will evaluate wind capacity and our current energy consumption while projecting the feasibility of converting to wind power for operations at our major facilities. This project will study the feasibility of wind power at two locations for the purpose of reducing the Tribe's reliance upon fossil fuels and creating business opportunities, jobs and revenue for the community.

  10. Morphological and electrochemical characterization of electrodeposited Zn–Ag nanoparticle composite coatings

    SciTech Connect (OSTI)

    Punith Kumar, M.K.; Srivastava, Chandan, E-mail: csrivastava@materials.iisc.ernet.in

    2013-11-15T23:59:59.000Z

    Silver nanoparticles with an average size of 23 nm were chemically synthesized and used to fabricate Zn–Ag composite coatings. The Zn–Ag composite coatings were generated by electrodeposition method using a simple sulfate plating bath dispersed with 0.5, 1 and 1.5 g/l of Ag nanoparticles. Scanning electron microscopy, X-ray diffraction and texture co-efficient calculations revealed that Ag nanoparticles appreciably influenced the morphology, micro-structure and texture of the deposit. It was also noticed that agglomerates of Ag nanoparticles, in the case of high bath load conditions, produced defects and dislocations on the deposit surface. Ag nanoparticles altered the corrosion resistance property of Zn–Ag composite coatings as observed from Tafel polarization, electrochemical impedance analysis and an immersion test. Reduction in corrosion rate with increased charge transfer resistance was observed for Zn–Ag composite coatings when compared to a pure Zn coating. However, the particle concentration in the plating bath and their agglomeration state directly influenced the surface morphology and the subsequent corrosion behavior of the deposits. - Highlights: • Synthesis of Ag nanoparticles with an average size of 23 nm • Fabrication of Zn/nano Ag composite coating on mild steel • Composite coatings showed better corrosion resistance. • Optimization of particle concentration is necessary.

  11. Wind Development on Tribal Lands

    SciTech Connect (OSTI)

    Ken Haukaas; Dale Osborn; Belvin Pete

    2008-01-18T23:59:59.000Z

    Background: The Rosebud Sioux Tribe (RST) is located in south central South Dakota near the Nebraska border. The nearest community of size is Valentine, Nebraska. The RST is a recipient of several Department of Energy grants, written by Distributed Generation Systems, Inc. (Disgen), for the purposes of assessing the feasibility of its wind resource and subsequently to fund the development of the project. Disgen, as the contracting entity to the RST for this project, has completed all the pre-construction activities, with the exception of the power purchase agreement and interconnection agreement, to commence financing and construction of the project. The focus of this financing is to maximize the economic benefits to the RST while achieving commercially reasonable rates of return and fees for the other parties involved. Each of the development activities required and its status is discussed below. Land Resource: The Owl Feather War Bonnet 30 MW Wind Project is located on RST Tribal Trust Land of approximately 680 acres adjacent to the community of St. Francis, South Dakota. The RST Tribal Council has voted on several occasions for the development of this land for wind energy purposes, as has the District of St. Francis. Actual footprint of wind farm will be approx. 50 acres. Wind Resource Assessment: The wind data has been collected from the site since May 1, 2001 and continues to be collected and analyzed. The latest projections indicate a net capacity factor of 42% at a hub height of 80 meters. The data has been collected utilizing an NRG 9300 Data logger System with instrumentation installed at 30, 40 and 65 meters on an existing KINI radio tower. The long-term annual average wind speed at 65-meters above ground level is 18.2 mph (8.1 mps) and 18.7 mph (8.4 mps) at 80-meters agl. The wind resource is excellent and supports project financing.

  12. Field Calibration Facilities for Environmental Measurement of...

    Broader source: Energy.gov (indexed) [DOE]

    the facilities. Field Calibration Facilities for Environmental Measurement of Radium, Thorium, and Potassium (October 2013) More Documents & Publications Calibration Model...

  13. Materials Engineering Research Facility | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Engineering Research Facility Argonne's new Materials Engineering Research Facility (MERF) supports the laboratory's Advanced Battery Materials Synthesis and...

  14. Waste Characterization, Reduction, and Repackaging Facility ...

    Office of Environmental Management (EM)

    Waste Characterization, Reduction, and Repackaging Facility (WCRRF) Waste Characterization Glovebox Operations Waste Characterization, Reduction, and Repackaging Facility (WCRRF)...

  15. SERAPH facility capabilities

    SciTech Connect (OSTI)

    Castle, J.; Su, W.

    1980-06-01T23:59:59.000Z

    The SERAPH (Solar Energy Research and Applications in Process Heat) facility addresses technical issues concerning solar thermal energy implementation in industry. Work will include computer predictive modeling (refinement and validation), system control and evaluation, and the accumulation of operation and maintenance experience. Procedures will be consistent (to the extent possible) with those of industry. SERAPH has four major components: the solar energy delivery system (SEDS); control and data acquisition (including sequencing and emergency supervision); energy distribution system (EDS); and areas allocated for storage development and load devices.

  16. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006Datastreamstwrcam40m DocumentationJanuary 9, 2009 [Events, Feature Stories and8, 2015 [Facility News] Flynn,

  17. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006Datastreamstwrcam40m DocumentationJanuary 9, 2009 [Events, Feature Stories and8, 2015 [Facility News]

  18. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006Datastreamstwrcam40m DocumentationJanuary 9, 2009 [Events, Feature Stories and8, 2015 [Facility News]June 15,

  19. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006Datastreamstwrcam40m DocumentationJanuary 9, 2009 [Events, Feature Stories and8, 2015 [Facility News]June

  20. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006Datastreamstwrcam40m DocumentationJanuary 9, 2009 [Events, Feature Stories and8, 2015 [Facility

  1. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006Datastreamstwrcam40m DocumentationJanuary 9, 2009 [Events, Feature Stories and8, 2015 [FacilitySeptember 30,

  2. NREL: Photovoltaics Research - Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency Visit |Infrastructure TheSolar1855Facilities NREL's

  3. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006 [Facility News]SPARTICUSJune 30, 2010ARM31,

  4. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006 [Facility News]SPARTICUSJune 30, 2010ARM31,5,

  5. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006 [Facility News]SPARTICUSJune 30,

  6. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006 [Facility News]SPARTICUSJune 30,YouTube©

  7. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006 [Facility News]SPARTICUSJune 30,YouTube©Aide

  8. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006 [Facility News]SPARTICUSJune

  9. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006 [Facility News]SPARTICUSJune31, 2005

  10. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006 [Facility News]SPARTICUSJune31, 2005November

  11. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006 [Facility News]SPARTICUSJune31, 2005November8,

  12. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006 [Facility News]SPARTICUSJune31,

  13. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006 [Facility News]SPARTICUSJune31,15, 2005

  14. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006 [Facility News]SPARTICUSJune31,15,

  15. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006 [Facility News]SPARTICUSJune31,15,October 15,

  16. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006 [Facility News]SPARTICUSJune31,15,October

  17. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006 [Facility

  18. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006 [FacilityMission Under Control: Scientists

  19. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006 [FacilityMission Under Control: Scientists20,

  20. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006 [FacilityMission Under Control:

  1. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006 [FacilityMission Under Control:From Coastal

  2. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006 [FacilityMission Under Control:From

  3. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006 [FacilityMission Under Control:FromAugust 31,

  4. ARM - SGP Central Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadap Documentation TDMADAP :ProductsVaisala CL51InstrumentsCentral Facility SGP Related Links

  5. ARM - SGP Extended Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadap Documentation TDMADAP :ProductsVaisala CL51InstrumentsCentral Facility SGP RelatedExtended

  6. ARM - SGP Intermediate Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadap Documentation TDMADAP :ProductsVaisala CL51InstrumentsCentral Facility SGPIntermediate

  7. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWP Related Links Facilities andPastWritten Records5 ARM Climate

  8. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWP Related Links Facilities andPastWritten Records5 ARM Climate3 ARM

  9. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWP Related Links Facilities andPastWritten Records5 ARM Climate3 ARM

  10. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWP Related Links Facilities andPastWritten Records5 ARM Climate3

  11. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWP Related Links Facilities andPastWritten Records5 ARM Climate38

  12. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWP Related Links Facilities andPastWritten Records5 ARM Climate383

  13. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWP Related Links Facilities andPastWritten Records5 ARM

  14. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWP Related Links Facilities andPastWritten Records5 ARMIngest Status

  15. WIPP - Public Reading Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening aTurbulenceUtilizeRural Public Reading Facilities/Electronic

  16. User Facilities | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch >Internship Program TheSite Map SiteResearchMichiganAboutFacilities at

  17. NREL: Biomass Research - Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifNREL NRELChemical and Catalyst ScienceFacilities At

  18. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM Education TeamARMMarch 15, 2005 [Facility News]

  19. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM Education TeamARMMarch 15, 2005 [Facility News]28,

  20. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM Education TeamARMMarch 15, 2005 [Facility News]28,One

  1. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM Education TeamARMMarch 15, 2005 [Facility

  2. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM Education TeamARMMarch 15, 2005 [FacilityNew

  3. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM Education TeamARMMarch 15, 2005 [FacilityNewMobile

  4. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM Education TeamARMMarch 15, 2005 [FacilityNewMobile15,

  5. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM Education TeamARMMarch 15, 200515, 2004 [Facility

  6. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM Education TeamARMMarch 15, 200515, 2004 [FacilityNew

  7. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM Education TeamARMMarch 15,15, 2004 [Facility News]

  8. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM Education TeamARMMarch 15,15, 2004 [Facility

  9. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM Education TeamARMMarch 15,15, 2004 [FacilityAugust

  10. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM Education TeamARMMarch1, 2011 [Facility News] Data

  11. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM Education TeamARMMarch1, 2011 [Facility News] Data23,

  12. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM Education TeamARMMarch1, 2011 [Facility News]

  13. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM Education TeamARMMarch1, 2011 [Facility News]31, 2004

  14. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM Education TeamARMMarch1, 2011 [Facility News]31,

  15. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM Education TeamARMMarch1, 2011 [Facility

  16. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM Education TeamARMMarch1, 2011 [Facility30, 2004

  17. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM Education TeamARMMarch1, 2011 [Facility30, 2004New

  18. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM Education TeamARMMarch1, 2011 [Facility30,

  19. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM Education TeamARMMarch1, 2011 [Facility30,October 27,

  20. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM Education TeamARMMarch1, 2011 [Facility30,October

  1. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM Education TeamARMMarch1, 2011 [Facility30,OctoberNew

  2. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM Education TeamARMMarch1, 2011 [Facility30,OctoberNew,

  3. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM Education TeamARMMarch1, 201122, 2011 [Facility News]

  4. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM Education TeamARMMarch1, 201122, 2011 [Facility

  5. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM Education TeamARMMarch1, 201122, 2011 [Facility22,

  6. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM Education TeamARMMarch1, 201122, 2011 [Facility22,14,

  7. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM Education TeamARMMarch1,October 16, 2007 [Facility

  8. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM Education TeamARMMarch1,October 16,13, 2012 [Facility

  9. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM Education TeamARMMarch1,OctoberAprilStaging Facility

  10. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM EducationAugust 3, 2007 [Facility News] Beat Schmid

  11. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM EducationAugust 3, 2007 [Facility News] Beat

  12. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM EducationAugust 3, 2007 [Facility News] Beat30, 2008

  13. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM EducationAugust 3, 2007 [Facility News] Beat30,

  14. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM EducationAugust 3, 2007 [Facility News]

  15. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM EducationAugust 3, 2007 [Facility News]June 28, 2013

  16. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM EducationAugust 3, 2007 [Facility News]June 28,

  17. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM EducationAugust 3, 2007 [Facility News]June 28,July

  18. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM EducationAugust 3, 2007 [Facility News]June

  19. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM EducationAugust 3, 2007 [Facility News]JuneDecember

  20. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM EducationAugust 3, 2007 [Facility

  1. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM EducationAugust 3, 2007 [FacilityApril 30, 2008

  2. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM EducationAugust 3, 2007 [FacilityApril 30, 200815,

  3. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM EducationAugust 3, 2007 [FacilityApril 30, 200815,31,

  4. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM EducationAugust 3, 2007 [FacilityApril 30,

  5. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM EducationAugust 3, 2007 [FacilityApril 30,Farewell to

  6. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM EducationAugust 3, 2007 [FacilityApril 30,Farewell

  7. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM EducationAugust 3, 2007 [FacilityApril 30,Farewell15,

  8. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM EducationAugust 3, 2007 [FacilityApril

  9. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM EducationAugust 3, 2007 [FacilityAprilApril 30, 2008

  10. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM EducationAugust 3, 2007 [FacilityAprilApril 30,

  11. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM EducationAugust 3, 2007 [FacilityAprilApril

  12. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM EducationAugust 3, 2007 [FacilityAprilAprilFebruary

  13. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM EducationAugust 3, 2007April 15, 2008 [Facility News]

  14. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM EducationAugust 3, 2007April 15, 2008 [Facility

  15. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM EducationAugust 3, 2007April 15, 2008 [FacilityJune

  16. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM EducationAugust 3, 2007April 15,23, 2007 [Facility

  17. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM EducationAugust 3, 2007April 15,23, 2007 [Facility21,

  18. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM EducationAugust 3, 2007April 15,23,, 2009 [Facility

  19. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM EducationAugust 3, 2007April 15,23,, 2009 [Facility5,

  20. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM EducationAugust 3,January 11, 2007 [Facility News]

  1. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM EducationAugust 3,January 11, 2007 [Facility

  2. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM EducationAugust 3,January 11, 2007 [Facility3, 2015

  3. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM EducationAugust 3,January 11, 2007 [Facility3,

  4. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM EducationAugust 3,January 11, 2007 [Facility3,3, 2015

  5. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM EducationAugust 3,January 11, 2007 [Facility3,3,

  6. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM EducationAugust 3,January 11, 2007 [Facility3,3,April

  7. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM EducationAugust 3,JanuarySeptember 30, 2009 [Facility

  8. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM EducationAugustMultifilterAugust 31, 2008 [Facility

  9. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006 [Facility News] New NSA Site Manager Named;

  10. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006 [Facility News] New NSA Site Manager

  11. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006 [Facility News] New NSA Site ManagerFebruary

  12. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006 [Facility News] New NSA Site

  13. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006 [Facility News] New NSA SiteSeptember 15, 2008

  14. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006 [Facility News] New NSA SiteSeptember 15,

  15. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006 [Facility News] New NSA SiteSeptember 15,7,

  16. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006 [Facility News] New NSA SiteSeptember

  17. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006 [Facility News] New NSA SiteSeptemberDiffuse

  18. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006 [Facility News] New NSA

  19. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006 [Facility News] New NSAMapping It Up With

  20. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006 [Facility News] New NSAMapping It Up With15,

  1. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006 [Facility News] New NSAMapping It Up

  2. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006 [Facility News] New NSAMapping It Up15, 2006

  3. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006 [Facility News] New NSAMapping It Up15,

  4. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006 [Facility News] New NSAMapping It Up15,New

  5. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006 [Facility News] New NSAMapping It

  6. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006 [Facility News] New NSAMapping ItJanuary 15,

  7. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006 [Facility News] New NSAMapping ItJanuary

  8. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006 [Facility News] New NSAMapping

  9. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006 [Facility News] New NSAMapping31, 2006

  10. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006 [Facility News] New NSAMapping31,

  11. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006 [Facility News] New NSAMapping31,Preparations

  12. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006 [Facility News] New

  13. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006 [Facility News] NewInfrared Sky Imager Takes a

  14. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006 [Facility News] NewInfrared Sky Imager Takes

  15. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006 [Facility News] NewInfrared Sky Imager

  16. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006 [Facility News] NewInfrared Sky ImagerFebruary

  17. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006 [Facility News] NewInfrared Sky

  18. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006 [Facility News] NewInfrared SkyMay 31, 2006

  19. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006 [Facility News] NewInfrared SkyMay 31,

  20. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006 [Facility News] NewInfrared SkyMay 31,31, 2006