Powered by Deep Web Technologies
Note: This page contains sample records for the topic "facility ag land" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Land and Facility Use Planning  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The Land and Facility Use Planning process provides a way to guide future site development and reuse based on the shared long-term goals and objectives of the Department, site and its stakeholders. Does not cancel other directives.

1996-07-09T23:59:59.000Z

2

AG Land 2 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,SaveWhiskey FlatshydroMultiple2 Jump to: navigation, search Name AG

3

AG Land 3 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 SouthWater Rights,Information Of TheFixedidentification,AFV Developer AG

4

Facile synthesis of novel Ag/AgI/BiOI composites with highly enhanced visible light photocatalytic performances  

SciTech Connect (OSTI)

Novel Ag/AgI/BiOI composites were controllably synthesized via a facile ion-exchange followed by photoreduction strategy by using hierarchical BiOI microflower as substrate. The as-prepared Ag/AgI/BiOI composites were studied by X-ray powder diffractometer (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), Brunauer–Emmett–Teller (BET) surface area analyzer and UV–vis diffuse reflectance spectroscopy (DRS). Under visible light (?>420 nm), Ag/AgI/BiOI displayed highly enhanced photocatalytic activities for degradation of methyl orange (MO) compared to the pure hierarchical BiOI, which was mainly ascribed to the highly efficient separation of electrons and holes through the closely contacted interfaces in the Ag/AgI/BiOI ternary system. - Graphical abstract: Ag/AgI/BiOI displayed excellent photocatalytic activities for methyl orange degradation under visible light, which was mainly ascribed to the highly efficient separation of electrons and holes through Z-scheme pathway. Display Omitted - Highlights: • Novel Ag/AgI/BiOI composites were successfully synthesized. • Ag/AgI/BiOI displayed higher visible light activities than those of pure BiOI and AgI. • ·O{sub 2}{sup ?} and h{sup +}, especially ·O{sub 2}{sup ?}, dominated the photodegradation process of MO. • A Z-scheme pattern was adopted for Ag/AgI/BiOI activity enhancement.

Cao, Jing, E-mail: caojing@mail.ipc.ac.cn [College of Chemistry and Materials Science, Huaibei Normal University, Huaibei 235000, Anhui (China); State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100 (China); Zhao, Yijie; Lin, Haili; Xu, Benyan [College of Chemistry and Materials Science, Huaibei Normal University, Huaibei 235000, Anhui (China); Chen, Shifu, E-mail: chshifu@chnu.edu.cn [College of Chemistry and Materials Science, Huaibei Normal University, Huaibei 235000, Anhui (China)

2013-10-15T23:59:59.000Z

5

Arid Lands Ecology Facility management plan  

SciTech Connect (OSTI)

The Arid Lands Ecology (ALE) facility is a 312-sq-km tract of land that lies on the western side of the Hanford Site in southcentral Washington. The US Atomic Energy Commission officially set aside this land area in 1967 to preserve shrub-steppe habitat and vegetation. The ALE facility is managed by Pacific Northwest Laboratory (PNL) for the US Department of Energy (DOE) for ecological research and education purposes. In 1971, the ALE facility was designated the Rattlesnake Hills Research Natural Area (RNA) as a result of an interagency federal cooperative agreement, and remains the largest RNA in Washington. it is also one of the few remaining large tracts of shrub-steppe vegetation in the state retaining a predominant preeuropean settlement character. This management plan provides policy and implementation methods for management of the ALE facilities consistent with both US Department of Energy Headquarters and the Richland Field Office decision (US Congress 1977) to designate and manage ALE lands as an RNA and as a component of the DOE National Environmental Research Park System.

None

1993-02-01T23:59:59.000Z

6

EA-1927: Conveyance of Land and Facilities at the Paducah Gaseous...  

Broader source: Energy.gov (indexed) [DOE]

27: Conveyance of Land and Facilities at the Paducah Gaseous Diffusion Plant for Economic Development Purposes, Paducah, Kentucky EA-1927: Conveyance of Land and Facilities at the...

7

Acceptance test procedure: RMW Land Disposal Facility Project W-025  

SciTech Connect (OSTI)

This ATP establishes field testing procedures to demonstrate that the electrical/instrumentation system functions as intended by design for the Radioactive Mixed Waste Land Disposal Facility. Procedures are outlined for the field testing of the following: electrical heat trace system; transducers and meter/controllers; pumps; leachate storage tank; and building power and lighting.

Roscha, V. [Westinghouse Hanford Co., Richland, WA (United States)

1994-12-12T23:59:59.000Z

8

Synthesis and Characterization of Ag-or Sb-Doped ZnO Nanorods by a Facile Hydrothermal Route  

E-Print Network [OSTI]

Synthesis and Characterization of Ag- or Sb-Doped ZnO Nanorods by a Facile Hydrothermal Route Oleg Stefan Cel Mare BouleVard, MD-2004 Chisinau, Republic of MoldoVa, AdVanced Materials Processing ZnO nanorods doped with Ag and Sb have been synthesized by a facile hydrothermal technique. Crystal

Kik, Pieter

9

Land and Facility Use Policy | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office0-72.pdfGeorgeDoesn't Happen to HighJosephNOx Traps forLM2 LNGLakeLand and Facility

10

Approaches used for Clearance of Lands from Nuclear Facilities among Several Countries: Evaluation for Regulatory Input  

Broader source: Energy.gov [DOE]

The study entitled, “Approaches used for Clearance of Lands from Nuclear Facilities among Several Countries: Evaluation for Regulatory Input,” focuses on the issue of showing compliance with given...

11

AGS SUPER NEUTRINO BEAM FACILITY ACCELERATOR AND TARGET SYSTEM DESIGN (NEUTRINO WORKING GROUP REPORT-II).  

SciTech Connect (OSTI)

This document describes the design of the accelerator and target systems for the AGS Super Neutrino Beam Facility. Under the direction of the Associate Laboratory Director Tom Kirk, BNL has established a Neutrino Working Group to explore the scientific case and facility requirements for a very long baseline neutrino experiment. Results of a study of the physics merit and detector performance was published in BNL-69395 in October 2002, where it was shown that a wide-band neutrino beam generated by a 1 MW proton beam from the AGS, coupled with a half megaton water Cerenkov detector located deep underground in the former Homestake mine in South Dakota would be able to measure the complete set of neutrino oscillation parameters: (1) precise determination of the oscillation parameters {Delta}m{sub 32}{sup 2} and sin{sup 2} 2{theta}{sub 32}; (2) detection of the oscillation of {nu}{sub {mu}}-{nu}{sub e} and measurement of sin{sup 2} 2{theta}{sub 13}; (3) measurement of {Delta}m{sub 21}{sup 2} sin 2{theta}{sub 12} in a {nu}{sub {mu}} {yields} {nu}{sub e} appearance mode, independent of the value of {theta}{sub 13}; (4) verification of matter enhancement and the sign of {Delta}m{sub 32}{sup 2}; and (5) determination of the CP-violation parameter {delta}{sub CP} in the neutrino sector. This report details the performance requirements and conceptual design of the accelerator and the target systems for the production of a neutrino beam by a 1.0 MW proton beam from the AGS. The major components of this facility include a new 1.2 GeV superconducting linac, ramping the AGS at 2.5 Hz, and the new target station for 1.0 MW beam. It also calls for moderate increase, about 30%, of the AGS intensity per pulse. Special care is taken to account for all sources of proton beam loss plus shielding and collimation of stray beam halo particles to ensure equipment reliability and personal safety. A preliminary cost estimate and schedule for the accelerator upgrade and target system are also included.

DIWAN,M.; MARCIANO,W.; WENG,W.; RAPARIA,D.

2003-04-21T23:59:59.000Z

12

Hanford Federal Facility state of Washington leased land  

SciTech Connect (OSTI)

This report was prepared to provide information concerning past solid and hazardous waste management practices for all leased land at the US DOE Hanford Reservation. This report contains sections including land description; land usage; ground water, air and soil monitoring data; and land uses after 1963. Numerous appendices are included which provide documentation of lease agreements and amendments, environmental assessments, and site surveys.

Not Available

1993-11-01T23:59:59.000Z

13

Sugar Land Facility Lighting and Window Tinting Upgrades  

E-Print Network [OSTI]

Nalco/Exxon Energy Chemicals, L.P. (NEEC) is a global chemical company that creates and produces specialty chemicals for the Petroleum/Chemical industry. Although NEEC has facilities located around the globe, it's Corporate Administration Offices...

Mesenbrink, C.

14

EA-1856: Conveyance of Land and Facilities at the Portsmouth Gaseous Diffusion Plant for Economic Development Purposes, Piketon, Ohio  

Broader source: Energy.gov [DOE]

This EA will evaluate the environmental impacts of conveyance of land and facilities at the Portsmouth Gaseous Diffusion Plant, in Piketon, Ohio, for economic development purposes.

15

Renewable Energy Assessment of Bureau of Reclamation Land and Facilities Using Geographic Information Systems  

SciTech Connect (OSTI)

This report summarizes results of geographic information system screening for solar and wind potential at select Bureau of Reclamation lands in the western United States. The study included both utility-scale and facility-scale potential. This study supplements information in the report titled Renewable Energy Assessment for the Bureau of Reclamation: Final Report.

Heimiller, D.; Haase, S.; Melius, J.

2013-05-01T23:59:59.000Z

16

THE AGS-BASED SUPER NEUTRINO BEAM FACILITY CONCEPTUAL DESIGN REPORT  

SciTech Connect (OSTI)

After more than 40 years of operation, the AGS is still at the heart of the Brookhaven hadron accelerator complex. This system of accelerators presently comprises a 200 MeV linac for the pre-acceleration of high intensity and polarized protons, two Tandem Van der Graaffs for the pre-acceleration of heavy ion beams, a versatile Booster that allows for efficient injection of all three types of beams into the AGS and, most recently, the two RHIC collider rings that produce high luminosity heavy ion and polarized proton collisions. For several years now, the AGS has held the world intensity record with more than 7 x 10{sup 13} protons accelerated in a single pulse. The requirements for the proton beam for the super neutrino beam are summarized and a schematic of the upgraded AGS is shown. Since the present number of protons per fill is already close to the required number, the upgrade is based on increasing the repetition rate and reducing beam losses (to avoid excessive shielding requirements and to maintain activation of the machine components at workable level). It is also important to preserve all the present capabilities of the AGS, in particular its role as injector to RHIC. The AGS Booster was built not only to allow the injection of any species of heavy ion into the AGS but to allow a fourfold increase of the AGS intensity. It is one-quarter the circumference of the AGS with the same aperture. However, the accumulation of four Booster loads in the AGS takes about 0.6 s, and is therefore not well suited for high average beam power operation. To minimize the injection time to about 1 ms, a 1.2 GeV linac will be used instead. This linac consists of the existing warm linac of 200 MeV and a new superconducting linac of 1.0 GeV. The multi-turn H{sup -} injection from a source of 30 mA and 720 {micro}s pulse width is sufficient to accumulate 9 x 10{sup 13} particle per pulse in the AGS[10]. The minimum ramp time of the AGS to full energy is presently 0.5 s; this must be upgraded to 0.2 s to reach the required repetition rate of 2.5 Hz. The required upgrade of the AGS power supply, the rf system, and other rate dependent accelerator issues is discussed. The design of the target/horn configuration is shown. The material selected for the proton target is a Carbon-Carbon composite. It is a 3-dimensional woven material that exhibits extremely low thermal expansion for temperatures up to 1000 C; for higher temperatures it responds like graphite. This property is important for greatly reducing the thermo-elastic stresses induced by the beam, thereby extending the life of the target. The target consists of a 80 cm long cylindrical rod of 12 mm diameter. The target intercepts a 2 mm rms proton beam of 10{sup 14} protons/pulse. The total energy deposited as heat in the target is 7.3 kJ with peak temperature rise of about 280 C. Heat will be removed from the target through forced convection of helium gas across its outside surface. The extracted proton beam uses an existing beamline at the AGS, but is then directed to a target station atop a constructed earthen hill. The target is followed by a downward slopping pion decay channel. This vertical arrangement keeps the target and decay pipe well above the water table in this area. The 11.3 degrees slope aims the neutrino beam at a water Cerenkov neutrino detector to be located in the Homestake mine at Lead, South Dakota. A 3-dimensional view of the beam transport line, target station, and decay tunnel is provided.

WENG,W.T.; DIWAN,M.; RAPARIA,D.

2004-10-08T23:59:59.000Z

17

Low-level radioactive mixed waste land disposal facility -- Permanent disposal  

SciTech Connect (OSTI)

Radioactive mixed waste (RMW) disposal at US Department of Energy (DOE) facilities is subject to the Resource Conservation and Recovery Act of 1976 (RCRA) and the Hazardous and Solid Waste Amendments of 1984 (HSWA). Westinghouse Hanford Company, in Richland, Washington, has completed the design of a radioactive mixed waste land disposal facility, which is based on the best available technology compliant with RCRA. When completed, this facility will provide permanent disposal of solid RMW, after treatment, in accordance with the Land Disposal Restrictions. The facility includes a double clay and geosynthetic liner with a leachate collection system to minimize potential leakage of radioactive or hazardous constituents from the landfill. The two clay liners will be capable of achieving a permeability of less than 1 {times} 10{sup {minus}7} cm/s. The two clay liners, along with the two high density polyethylene (HDPE) liners and the leachate collection and removal system, provide a more than conservative, physical containment of any potential radioactive and/or hazardous contamination.

Erpenbeck, E.G.; Jasen, W.G.

1993-03-01T23:59:59.000Z

18

Volatilization of selected organic compounds from a creosote-waste land-treatment facility. Master's thesis  

SciTech Connect (OSTI)

The purpose of this research was to evaluate the emissions of volatile and semi-volatile compounds which are constituents of a complex creosote waste from laboratory simulations of a land treatment system to assess the potential human exposure to hazardous compounds from this source. In addition, the Thibodeaux-Hwang Air Emission Release Rate (AERR) model was evaluated for its use in predicting emission rates of hazardous constituents of creosote wood preservative waste from land treatment facilities. A group of hazardous volatile and semi-volatile constituents present in the creosote waste was selected for evaluation in this study and included a variety of polynuclear aromatic hydrocarbons (PNA's), phenol, and chlorinated and substituted phenols.

Scott, E.J.

1989-01-01T23:59:59.000Z

19

EA-1927: Conveyance of Land and Facilities at the Paducah Gaseous Diffusion Plant for Economic Development Purposes, Paducah, Kentucky  

Broader source: Energy.gov [DOE]

DOE’s Portsmouth/Paducah Project Office is preparing an EA for a proposal to convey DOE land and facilities at the Paducah Gaseous Diffusion Plant to the Paducah Area Community Reuse Organization and potentially other parties in furtherance of reindustrialization and reuse for economic development purposes.

20

Final report of the decontamination and decommissioning of the exterior land areas at the Grand Junction Projects Office facility  

SciTech Connect (OSTI)

The US Department of Energy (DOE) Grand Junction Projects Office (GJPO) facility occupies approximately 56.4 acres (22.8 hectares) along the Gunnison River near Grand Junction, Colorado. The site was contaminated with uranium ore and mill tailings during uranium-refining activities conducted by the Manhattan Engineer District and during pilot-milling experiments conducted for the US Atomic Energy Commission`s (AEC`s) domestic uranium procurement program. The GJPO facility was the collection and assay point for AEC uranium and vanadium oxide purchases until the early 1970s. The DOE Decontamination and Decommissioning Program sponsored the Grand Junction Projects Office Remedial Action Project (GJPORAP) to remediate the facility lands, site improvements, and the underlying aquifer. The site contractor, Rust Geotech, was the Remedial Action Contractor for GJPORAP. The exterior land areas of the facility assessed as contaminated have been remediated in accordance with identified standards and can be released for unrestricted use. Restoration of the aquifer will be accomplished through the natural flushing action of the aquifer during the next 50 to 80 years. The remediation of the DOE-GJPO facility buildings is ongoing and will be described in a separate report.

Widdop, M.R.

1995-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "facility ag land" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

State waste discharge permit application for the 200 Area Effluent Treatment Facility and the State-Approved Land Disposal Site  

SciTech Connect (OSTI)

Application is being made for a permit pursuant to Chapter 173--216 of the Washington Administrative Code (WAC), to discharge treated waste water and cooling tower blowdown from the 200 Area Effluent Treatment Facility (ETF) to land at the State-Approved Land Disposal Site (SALDS). The ETF is located in the 200 East Area and the SALDS is located north of the 200 West Area. The ETF is an industrial waste water treatment plant that will initially receive waste water from the following two sources, both located in the 200 Area on the Hanford Site: (1) the Liquid Effluent Retention Facility (LERF) and (2) the 242-A Evaporator. The waste water discharged from these two facilities is process condensate (PC), a by-product of the concentration of waste from DSTs that is performed in the 242-A Evaporator. Because the ETF is designed as a flexible treatment system, other aqueous waste streams generated at the Hanford Site may be considered for treatment at the ETF. The origin of the waste currently contained in the DSTs is explained in Section 2.0. An overview of the concentration of these waste in the 242-A Evaporator is provided in Section 3.0. Section 4.0 describes the LERF, a storage facility for process condensate. Attachment A responds to Section B of the permit application and provides an overview of the processes that generated the wastes, storage of the wastes in double-shell tanks (DST), preliminary treatment in the 242-A Evaporator, and storage at the LERF. Attachment B addresses waste water treatment at the ETF (under construction) and the addition of cooling tower blowdown to the treated waste water prior to disposal at SALDS. Attachment C describes treated waste water disposal at the proposed SALDS.

Not Available

1993-08-01T23:59:59.000Z

22

Infrared Land Surface Emissivity in the Vicinity of the ARM SGP Central Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFunInfrared Land Surface Emissivity in the Vicinity of the ARM SGP Central

23

Development of technology for the design of shallow land burial facilities at arid sites  

SciTech Connect (OSTI)

The Los Alamos field research program involving technology development for arid shallow land burial (SLB) sites is described. Field data are presented for an integrated field experiment, which was designed to test individual SLB component experiments related to erosion control, biobarriers, and subsurface capillary and migration barriers. Field tests of biointrusion barriers at waste disposal sites and in experimental plots are reported. The results of a joint DOE/NRC experiment to evaluate leaching and transport of sorbing (Cs, Sr, Li) and nonsorbing (I, Br) solutes in sandy silt backfill are presented for steady-state and unsteady-state flow conditions. A capillary barrier experiment performed in a large caisson (3-m diameter, 6.1 m deep) is described and a year's worth of field data is presented.

Nyhan, J.W.; Abeele, W.V.; Drennon, B.J.; Herrera, W.J.; Lopez, E.A.; Langhorst, G.J.; Stallings, E.A.; Walker, R.D.; Martinez, J.L.

1985-01-01T23:59:59.000Z

24

INDEPENDENT CONFIRMATORY SURVEY REPORT FOR THE REACTOR BUILDING, HOT LABORATORY, PRIMARY PUMP HOUSE, AND LAND AREAS AT THE PLUM BROOK REACTOR FACILITY, SANDUSKY, OHIO  

SciTech Connect (OSTI)

In 1941, the War Department acquired approximately 9,000 acres of land near Sandusky, Ohio and constructed a munitions plant. The Plum Brook Ordnance Works Plant produced munitions, such as TNT, until the end of World War II. Following the war, the land remained idle until the National Advisory Committee for Aeronautics later called the National Aeronautics and Space Administration (NASA) obtained 500 acres to construct a nuclear research reactor designed to study the effects of radiation on materials used in space flight. The research reactor was put into operation in 1961 and was the first of fifteen test facilities eventually built by NASA at the Plum Brook Station. By 1963, NASA had acquired the remaining land at Plum Brook for these additional test facilities

Erika N. Bailey

2011-10-10T23:59:59.000Z

25

Health assessment for Royal Hardage Industrial Hazardous Waste Land Disposal Facility, Criner, Oklahoma, Region 6. CERCLIS No. OKD000400093. Final report  

SciTech Connect (OSTI)

The Royal Hardage Industrial Hazardous Waste Land Disposal Facility (Hardage/Criner) National Priorities List Site is located in Criner, McClain County, Oklahoma. The site is located in an agricultural area. There are volatile organic compounds (VOCs) and several heavy metals present in the groundwater and soil, and VOCs in surface water and sediment. The Record of Decision signed November 1986 selected several remedial actions which included excavation of the primary source material and separation of the wastes for treatment, solids to be disposed of in an on-site landfill that meets Resource Conservation and Recovery Act requirements, organic liquids to be incinerated, and inorganic liquids to be treated by other means as necessary. The site is currently in the remedial-design phase.

Not Available

1988-12-01T23:59:59.000Z

26

AG Land 1 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWende NewSowitec doWinvestFlumeFinal Reportidentification,

27

AG Land 4 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,SaveWhiskey FlatshydroMultiple2 Jump to: navigation, search Name

28

AG Land 6 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,SaveWhiskey FlatshydroMultiple2 Jump to: navigation, search Name

29

AG Land 5 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 SouthWater Rights,Information Of TheFixedidentification,AFV Developer

30

Systaic AG | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty LtdSteen,Ltd Jump to: navigation,Open EnergyFacility | OpenEV JumpSystaic AG

31

Geohydrologic evaluation for the 200 Area Effluent Treatment Facility State-Approved Land Disposal Site: Addendum to WAC 173-240 Engineering Report  

SciTech Connect (OSTI)

This document provides a geohydrologic evaluation for the disposal of liquid effluent from the 200 Area Effluent Treatment Facility (ETF) at the Hanford Site. This work forms an addendum to the engineering report that supports the completion of the ETF.

Ballantyne, N.A.

1993-08-01T23:59:59.000Z

32

Feasibility Study of Economics and Performance of Solar Photovoltaics at the Tronox Facility in Savannah, Georgia. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites  

SciTech Connect (OSTI)

The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Tronox Facility site in Savannah, Georgia, for a feasibility study of renewable energy production. The National Renewable Energy Laboratory (NREL) provided technical assistance for this project. The purpose of this report is to assess the site for a possible photovoltaic (PV) system installation and estimate the cost, performance, and site impacts of different PV options. In addition, the report recommends financing options that could assist in the implementation of a PV system at the site.

Kiatreungwattana, K.; Geiger, J.; Healey, V.; Mosey, G.

2013-03-01T23:59:59.000Z

33

Naval Station Newport Wind Resource Assessment. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites, and The Naval Facilities Engineering Service Center  

SciTech Connect (OSTI)

The U.S. Environmental Protection Agency (EPA) launched the RE-Powering America's Land initiative to encourage development of renewable energy (RE) on potentially contaminated land and mine sites. EPA is collaborating with the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) to evaluate RE options at Naval Station (NAVSTA) Newport in Newport, Rhode Island where multiple contaminated areas pose a threat to human health and the environment. Designated a superfund site on the National Priorities List in 1989, the base is committed to working toward reducing the its dependency on fossil fuels, decreasing its carbon footprint, and implementing RE projects where feasible. The Naval Facilities Engineering Service Center (NFESC) partnered with NREL in February 2009 to investigate the potential for wind energy generation at a number of Naval and Marine bases on the East Coast. NAVSTA Newport was one of several bases chosen for a detailed, site-specific wind resource investigation. NAVSTA Newport, in conjunction with NREL and NFESC, has been actively engaged in assessing the wind resource through several ongoing efforts. This report focuses on the wind resource assessment, the estimated energy production of wind turbines, and a survey of potential wind turbine options based upon the site-specific wind resource.

Robichaud, R.; Fields, J.; Roberts, J. O.

2012-02-01T23:59:59.000Z

34

METAL MEDIA FILTERS, AG-1 SECTION FI  

SciTech Connect (OSTI)

One application of metal media filters is in various nuclear air cleaning processes including applications for protecting workers, the public and the environment from hazardous and radioactive particles. To support this application the development of the ASME AG-1 FI Standard on Metal Media has been under way for more than ten years. Development of the proposed section has required resolving several difficult issues associated with operating conditions (media velocity, pressure drop, etc.), qualification testing, and quality acceptance testing. Performance characteristics of metal media are dramatically different than the glass fiber media with respect to parameters like differential pressures, operating temperatures, media strength, etc. These differences make existing data for a glass fiber media inadequate for qualifying a metal media filter for AG-1. In the past much work has been conducted on metal media filters at facilities such as Lawrence Livermore National Laboratory (LLNL) and Savannah River National Laboratory (SRNL) to qualify the media as High Efficiency Particulate Air (HEPA) Filters. Particle retention testing has been conducted at Oak Ridge Filter Test Facility and at Air Techniques International (ATI) to prove that the metal media meets or exceeds the 99.97% particle retention required for a HEPA Filter. Even with his testing, data was lacking to complete an AG-1 FI Standard on metal media. With funding secured by Mississippi State University (MSU) from National Nuclear Security Administration (NNSA), a research test stand is being designed and fabricated at MSU's Institute for Clean Energy Technology (ICET) Facility to obtain qualification data on metal media. This in turn will support required data needed for the FI Standard. The paper will discuss in detail how the test stand at MSU will obtain the necessary data to complete the FI Standard.

Adamson, D.

2012-05-23T23:59:59.000Z

35

AGS experiments -- 1991, 1992, 1993. Tenth edition  

SciTech Connect (OSTI)

This report contains: (1) FY 1993 AGS schedule as run; (2) FY 1994--95 AGS schedule; (3) AGS experiments {ge} FY 1993 (as of 30 March 1994); (4) AGS beams 1993; (5) AGS experimental area FY 1991 physics program; (6) AGS experimental area FY 1992 physics program; (7) AGS experimental area FY 1993 physics program; (8) AGS experimental area FY 1994 physics program (planned); (9) a listing of experiments by number; (10) two-page summaries of each experiment; (11) listing of publications of AGS experiments; and (12) listing of AGS experiments.

Depken, J.C.

1994-04-01T23:59:59.000Z

36

Definitive design report: Design report project W-025, Radioactive Mixed Waste (RMW) Land Disposal Facility NON-DRAG-OFF. Revision 1, Volume 1 and 2  

SciTech Connect (OSTI)

The purpose of this report is to describe the definitive design of the Radioactive Mixed Waste (RMW) Non-Drag-Off disposal facility, Project W-025. This report presents a n of the major landfill design features and a discussion of how each of the criteria is addressed in the design. The appendices include laboratory test results, design drawings, and individual analyses that were conducted in support of the design. Revision 1 of this document incorporates design changes resulting from an increase in the required operating life of the W-025 landfill from 2 to 20 years. The rationale for these design changes is described in Golder Associates Inc. 1991a. These changes include (1) adding a 1.5-foot-thick layer of compacted admix directory-under the primary FML on the floor of the landfill to mitigate the effects of possible stress cracking in the primary flexible membrane liner (FML), and (2) increasing the operations layer thickness from two to three feet over the entire landfill area, to provide additional protection for the secondary admix layer against mechanical damage and the effects of freezing and desiccation. The design of the W-025 Landfill has also been modified in response to the results of the EPA Method 9090 chemical compatibility testing program (Golder Associates Inc. 1991b and 1991c), which was completed after the original design was prepared. This program consisted of testing geosynthetic materials and soil/bentonite admix with synthetic leachate having the composition expected during the life of the W-025 Landfill., The results of this program indicated that the polyester geotextile originally specified for the landfill might be susceptible to deterioration. On this basis, polypropylene geotextiles were substituted as a more chemically-resistant alternative. In addition, the percentage of bentonite in the admix was increased to provide sufficiently low permeability to the expected leachate.

Roscha, V.

1994-11-29T23:59:59.000Z

37

Commissioning the polarized beam in the AGS  

SciTech Connect (OSTI)

After the successful operation of a high energy polarized proton beam at the Argonne Laboratory Zero Gradient Synchrotron (ZGS) was terminated, plans were made to commission such a beam at the Brookhaven National Laboratory Alternating Gradient Synchrotron (AGS). On February 23, 1984, 2 ..mu..A of polarized H/sup -/ was accelerated through the Linac to 200 MeV with a polarization of about 65%. 1 ..mu..A was injected into the AGS and acceleration attempts began. Several relatively short runs were then made during the next three months. Dedicated commissioning began in early June, and on June 26 the AGS polarized beam reached 13.8 GeV/c to exceed the previous ZGS peak momentum of 12.75 GeV/c. Commissioning continued to the point where 10/sup 10/ polarized protons were accelerated to 16.5 GeV/c with 40% polarization. Then, two experiments had a short polarized proton run. We plan to continue commissioning efforts in the fall of this year to reach higher energy, higher intensity, and higher polarization levels. We present a brief description of the facility and of the methods used for preserving the polarization of the accelerating beam.

Ratner, L.G.; Brown, H.; Chiang, I.H.; Courant, E.; Gardner, C.; Lazarus, D.; Lee, Y.Y.; Makdisi, Y.; Sidhu, S.; Skelly, J.

1985-01-01T23:59:59.000Z

38

Coordination of Federal Transmission Permitting on Federal Lands...  

Office of Environmental Management (EM)

transmission facilities on federal lands. In most instances, the Departments of Agriculture or Interior will be the Lead Agency, since they have jurisdiction over most of the...

39

Energy and land use  

SciTech Connect (OSTI)

This report addresses the land use impacts of past and future energy development and summarizes the major federal and state legislation which influences the potential land use impacts of energy facilities and can thus influence the locations and timing of energy development. In addition, this report describes and presents the data which are used to measure, and in some cases, predict the potential conflicts between energy development and alternative uses of the nation's land resources. The topics section of this report is divided into three parts. The first part describes the myriad of federal, state and local legislation which have a direct or indirect impact upon the use of land for energy development. The second part addresses the potential land use impacts associated with the extraction, conversion and combustion of energy resources, as well as the disposal of wastes generated by these processes. The third part discusses the conflicts that might arise between agriculture and energy development as projected under a number of DOE mid-term (1990) energy supply and demand scenarios.

Not Available

1981-12-01T23:59:59.000Z

40

Atomic oxygen flux determined by mixed-phase Ag/Ag2O deposition...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

oxygen flux determined by mixed-phase AgAg2O deposition. Atomic oxygen flux determined by mixed-phase AgAg2O deposition. Abstract: The flux of atomic oxygen generated in a...

Note: This page contains sample records for the topic "facility ag land" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

AGS Experiments: 1989, 1990, 1991  

SciTech Connect (OSTI)

This report contains: Experimental areas layout; table of beam parameters and fluxes; experiment schedule as run''; proposed 1992 schedule; a listing of experiments by number; two-page summaries of each experiment begin here, also ordered by number; publications of AGS Experiments begin here; and list of AGS Experimenters begins here.

Depken, J.C.

1992-02-01T23:59:59.000Z

42

AGS Experiments: 1989, 1990, 1991  

SciTech Connect (OSTI)

This report contains: Experimental areas layout; table of beam parameters and fluxes; experiment schedule ``as run``; proposed 1992 schedule; a listing of experiments by number; two-page summaries of each experiment begin here, also ordered by number; publications of AGS Experiments begin here; and list of AGS Experimenters begins here.

Depken, J.C.

1992-02-01T23:59:59.000Z

43

HIGH ENERGY PULSED POWER SYSTEM FOR AGS SUPER NEUTRINO FOCUSING HORN.  

SciTech Connect (OSTI)

This paper present a preliminary design of a 300 kA, 2.5 Hz pulsed power system. This system will drive the focusing horn of proposed Brookhaven AGS Neutrino Super Beam Facility for Very Long Baseline Neutrino Oscillation Experiment. The peak output power of the horn pulsed power system will reach Giga-watts, and the upgraded AGS will be capable of delivering 1 MW in beam power.

ZHANG, S.Y.; SANDBERG, J.; WENG, W.-T.

2005-05-16T23:59:59.000Z

44

Colorado and South Carolina: New Wind Test Facilities Open |...  

Energy Savers [EERE]

Act, the new facilities will accelerate the development and deployment of next-generation wind energy technologies for both offshore and land-based applications. Located on a...

45

Facility Microgrids  

SciTech Connect (OSTI)

Microgrids are receiving a considerable interest from the power industry, partly because their business and technical structure shows promise as a means of taking full advantage of distributed generation. This report investigates three issues associated with facility microgrids: (1) Multiple-distributed generation facility microgrids' unintentional islanding protection, (2) Facility microgrids' response to bulk grid disturbances, and (3) Facility microgrids' intentional islanding.

Ye, Z.; Walling, R.; Miller, N.; Du, P.; Nelson, K.

2005-05-01T23:59:59.000Z

46

MATERIAL IRRADIATION STUDIES BNL AGS/BLIP/Hot Cell FACILITY  

E-Print Network [OSTI]

-going + upcoming) Carbon-Carbon composite GRAPHITE (IG-43) Titanium Ti-6Al-4V alloy Toyota "Gum Metal". VASCOMAX AlBeMet Nickel-Plated Aluminum Mechanical property changes Ductility loss Strength loss/gain Fracture toughness Rela tionship 0 100 200 300 400 500 600 700 800 900 1000 1100 0 10 20 30 40 50 (p se u d o ) S T R

McDonald, Kirk

47

Lake County Ag Park Greenhouse Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey, Washington: Energy Resources JumpFlorida: Energy ResourcesPower Jump

48

Siemens AG 2009. All rights reserved. Investitionsmanagement  

E-Print Network [OSTI]

© Siemens AG 2009. All rights reserved. Investitionsmanagement Wie steuert man erfolgreich Investitionen? - Tools eines erfolgreichen, globalen Industrieunternehmens - Michael Sigmund CFO Siemens Investitionsplanung Berlin, 26. November, 2009 #12;Page 2 November 26, 2009 Copyright © Siemens AG 2009. All rights

Manstein, Dietmar J.

49

Siemens AG 2009 Energy Sector  

E-Print Network [OSTI]

der Energieversorgung Intelligente Netze ­ Smart Grid Karl-Josef Kuhn Siemens AG, Corporate Technology pressure on infrastructures Cities are responsible for around 75% of the world's energy consumption Cities directly or indirectly account for 60% of the world's water use An overloaded power grid caused a 3-day

Ulm, Universität

50

AGS experiments, 1988, 1989, 1990  

SciTech Connect (OSTI)

This report contains: experimental areas layout; table of beam parameters and fluxes; experiment schedule as run''; experiment long range schedule; a listing of experiments by number; two-page summaries of each experiment begin here, also ordered by number; publications of AGS experiments; and list of experimenters.

Depken, J.C.

1991-04-01T23:59:59.000Z

51

Facility Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

Establishes facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation.

1996-10-24T23:59:59.000Z

52

Facility Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

Establishes facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation.

1995-11-16T23:59:59.000Z

53

AGS experiments: 1990, 1991, 1992. Ninth edition  

SciTech Connect (OSTI)

This report contains a description of the following: AGS Experimental Area - High Energy Physics FY 1993 and Heavy Ion Physics FY 1993; Table of Beam Parameters and Fluxes; Experiment Schedule ``as run``; Proposed 1993 Schedule; A listing of experiments by number; Two-page summaries of each experiment begin here, also ordered by number; Publications of AGS Experiments; and List of AGS Experimenters.

Depken, J.C.

1993-04-01T23:59:59.000Z

54

EIS-0386: Designation of Energy Corridors on Federal Land in Western States  

Broader source: Energy.gov [DOE]

This EIS analyzes DOE's decision to designatate corridors on Federal land in the eleven Western States for oil, gas and hydrogen pipelines and electricity transmission and distribution facilities.

55

International Facility Management Association Strategic Facility  

Broader source: Energy.gov (indexed) [DOE]

Facility Management Association Strategic Facility Planning: A WhIte PAPer Strategic Facility Planning: A White Paper on Strategic Facility Planning 2009 | International...

56

2001 Wastewater Land Application Site Performance Reports for the Idaho National Engineering and Environmental Laboratory  

SciTech Connect (OSTI)

The 2001 Wastewater Land Application Site Performance Reports for the Idaho National Engineering and Environmental Laboratory describe site conditions for the facilities with State of Idaho Wastewater Land Application Permits. Permit-required monitoring data are summarized, and any permit exceedences or environmental impacts relating to the operation of any of the facilities during the 2001 permit year are discussed. Additionally, any special studies performed at the facilities, which related to the operation of the facility or application of the wastewater, are discussed.

Meachum, T.R.; Lewis, M.G.

2002-02-15T23:59:59.000Z

57

2001 Wastewater Land Application Site Performance Reports for the Idaho National Engineering and Environmental Laboratory  

SciTech Connect (OSTI)

The 2001 Wastewater Land Application Site Performance Reports for the Idaho National Engineering and Environmental Laboratory describe site conditions for the facilities with State of Idaho Wastewater Land Application Permits. Permit-required monitoring data are summarized, and any permit exceedences or environmental impacts relating to the operation of any of the facilities during the 2001 permit year are discussed. Additionally, any special studies performed at the facilities, which related to the operation of the facility or application of the wastewater, are discussed.

Meachum, Teresa Ray; Lewis, Michael George

2002-02-01T23:59:59.000Z

58

DB-Netz AG Offices  

High Performance Buildings Database

Hamm, Germany The new office building for DB Netz AG was designed by the collaborative team of Architrav Architects and the Buildings Physics and Technical Building Services group of the University of Karlsruhe. The team developed an energy efficient building concept for the 64,304 sqft office building, located in Hamm, Germany. The design concept of the building is dominated by architectural solutions for ventilation, cooling and lighting. Use of HVAC and electric lighting is minimized as much as possible.

59

Gorlitz AG | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio: Energy ResourcesGordon, Alabama: Energy Resources JumpGorlitz AG Jump

60

Inergetic AG | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 Throttled (bot load) Error 429IndianaProfessional Jump to:Inergetic AG Jump

Note: This page contains sample records for the topic "facility ag land" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Isovolta AG | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 Throttled (botOpen Energy2005) | Open Energy(Musgrave,EnergySystem,Isovolta AG

62

REON AG | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, search RAPIDColoradosource History View New PagesElectron srl formerlyREON AG

63

Facility Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Order establishes facility and programmatic safety requirements for Department of Energy facilities, which includes nuclear and explosives safety design criteria, fire protection, criticality safety, natural phenomena hazards mitigation, and the System Engineer Program. Cancels DOE O 420.1A. DOE O 420.1B Chg 1 issued 4-19-10.

2005-12-22T23:59:59.000Z

64

Idaho National Laboratory Comprehensive Land Use and Environmental Stewardship Report  

SciTech Connect (OSTI)

Land and facility use planning and decisions at the Idaho National Laboratory (INL) Site are guided by a comprehensive site planning process in accordance with Department of Energy Policy 430.1, 'Land and Facility Use Policy,' that integrates mission, economic, ecologic, social, and cultural factors. The INL Ten-Year Site Plan, prepared in accordance with Department of Energy Order 430.1B, 'Real Property Asset Management,' outlines the vision and strategy to transform INL to deliver world-leading capabilities that will enable the Department of Energy to accomplish its mission. Land use planning is the overarching function within real property asset management that integrates the other functions of acquisition, recapitalization, maintenance, disposition, real property utilization, and long-term stewardship into a coordinated effort to ensure current and future mission needs are met. All land and facility use projects planned at the INL Site are considered through a formal planning process that supports the Ten-Year Site Plan. This Comprehensive Land Use and Environmental Stewardship Report describes that process. The land use planning process identifies the current condition of existing land and facility assets and the scope of constraints across INL and in the surrounding region. Current land use conditions are included in the Comprehensive Land Use and Environmental Stewardship Report and facility assets and scope of constraints are discussed in the Ten-Year Site Plan. This report also presents the past, present, and future uses of land at the INL Site that are considered during the planning process, as well as outlining the future of the INL Site for the 10, 30, and 100-year timeframes.

No name listed on publication

2011-08-01T23:59:59.000Z

65

2002 Wastewater Land Application Site Performance Reports for the Idaho National Engineering and Environmental Laboratory  

SciTech Connect (OSTI)

The 2002 Wastewater Land Application site Performance Reports for the Idaho National Engineering and Environmental Laboratory describe site conditions for the facilities with State of Idaho Wastewater Land Application Permits. Permit-required monitoring data are summarized, and permit exceedences or environmental impacts relating to the operation of the facilities during the 2002 permit year are discussed.

Meachum, T.R.; Lewis, M.G.

2003-02-20T23:59:59.000Z

66

2003 Wastewater Land Application Site Performance Reports for the Idaho National Engineering and Environmental Laboratory  

SciTech Connect (OSTI)

The 2003 Wastewater Land Application Site Performance Reports for the Idaho National Engineering and Environmental Laboratory describe the conditions for the facilities with State of Idaho Wastewater Land Application Permits. Permit-required monitoring data are summarized, and permit exceedences or environmental impacts relating to the operations of the facilities during the 2003 permit year are discussed.

Teresa R. Meachum

2004-02-01T23:59:59.000Z

67

ENRO AG | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump37. It is classified as ASHRAEDuval County,EEnergy(RedirectedEMeterLtdENRO AG

68

Nordex AG | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWende New Energy CoFirst SecondTianjing Shenzhou WindNordex AG

69

Campa AG | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreis aCallahan Divide Wind EnergyEnergyCameroon:Campa AG Jump

70

Meeco AG | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAKGalwayHydrothermalMcFarland isDiscoveries Inc JumpIVMeeco AG

71

Solara AG | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g GrantAtlas (PACA Region - France)SolarHub Jump to:SolarWorld AG

72

Solarpraxis AG | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g GrantAtlas (PACA Region - France)SolarHub JumpUK JumpSolarpraxis AG

73

Solare AG | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty Ltd Jump to:Information SilverSolarStructure Ltd JumpSolarWrightsSolare AG

74

Solarion AG | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty Ltd Jump to:Information SilverSolarStructure LtdSolarSolarion AG Jump to:

75

Conergy AG | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORT Americium/CuriumSunways JVGroupChoice Logo:Conergy AG Place: Hamburg,

76

Fuhrlander AG | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpen EnergyBoard" form. To create a page withFreeFuhrlaenderAG

77

Altus AG | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300Algoil JumpAltergy Systems Place: Folsom,IncAltoona, Iowa: EnergyAltus AG

78

Ag  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment of EnergyAdministrative2|DepartmentDOE | DepartmentAfterDepartmentB

79

Balancing capital and condition : an emerging approach to facility investment strategy  

E-Print Network [OSTI]

Capital facilities - land and buildings - provide a long-standing environment in which public and private enterprise works, communicates, and thrives. Aligning how facilities "fit" with the dynamic demands of enterprise ...

Wooldridge, Stephen C. (Stephen Craig), 1967-

2002-01-01T23:59:59.000Z

80

Facility Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To establish facility safety requirements for the Department of Energy, including National Nuclear Security Administration. Cancels DOE O 420.1. Canceled by DOE O 420.1B.

2002-05-20T23:59:59.000Z

Note: This page contains sample records for the topic "facility ag land" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Facility Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

DOE-STD-1104 contains the Department's method and criteria for reviewing and approving nuclear facility's documented safety analysis (DSA). This review and approval formally document the basis for DOE, concluding that a facility can be operated safely in a manner that adequately protects workers, the public, and the environment. Therefore, it is appropriate to formally require implementation of the review methodology and criteria contained in DOE-STD-1104.

2013-06-21T23:59:59.000Z

82

Facility Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The order establishes facility and programmatic safety requirements for nuclear and explosives safety design criteria, fire protection, criticality safety, natural phenomena hazards (NPH) mitigation, and the System Engineer Program.Chg 1 incorporates the use of DOE-STD-1189-2008, Integration of Safety into the Design Process, mandatory for Hazard Category 1, 2 and 3 nuclear facilities. Cancels DOE O 420.1A.

2005-12-22T23:59:59.000Z

83

Facility Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The objective of this Order is to establish facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation. The Order has Change 1 dated 11-16-95, Change 2 dated 10-24-96, and the latest Change 3 dated 11-22-00 incorporated. The latest change satisfies a commitment made to the Defense Nuclear Facilities Safety Board (DNFSB) in response to DNFSB recommendation 97-2, Criticality Safety.

2000-11-20T23:59:59.000Z

84

Molecular Dynamics Simulation of the AgCl/Electrolyte Interfacial...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Simulation of the AgClElectrolyte Interfacial Capacity. Molecular Dynamics Simulation of the AgClElectrolyte Interfacial Capacity. Abstract: Molecular dynamics simulation of the...

85

Chesapeake Forest Lands (Maryland)  

Broader source: Energy.gov [DOE]

The Chesapeake Forest Lands are most of the former land holdings of the Chesapeake Forest Products Company, which now includes more than 66,000 acres in five lower Eastern Shore counties. These...

86

School Land Board (Texas)  

Broader source: Energy.gov [DOE]

The School Land Board oversees the use of land owned by the state or held in trust for use and benefit by the state or one of its departments, boards, or agencies. The Board is responsible for...

87

Right-of-Way for Carrier Facilities (South Dakota)  

Broader source: Energy.gov [DOE]

This legislation establishes right-of-way for carrier pipelines, as well as restrictions on the width of lands used for pipeline facilities. This legislation also applies to electricity...

88

Antec Solar Energy AG formerly Oekologik Ecovest AG | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCT Biomass Facility Jumpvolcanic region, California | Open

89

Facility Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The Order establishes facility and programmatic safety requirements for DOE and NNSA for nuclear safety design criteria, fire protection, criticality safety, natural phenomena hazards (NPH) mitigation, and System Engineer Program. Cancels DOE O 420.1B, DOE G 420.1-2 and DOE G 420.1-3.

2012-12-04T23:59:59.000Z

90

Facility Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

Establishes facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation. Cancels DOE 5480.7A, DOE 5480.24, DOE 5480.28 and Division 13 of DOE 6430.1A. Canceled by DOE O 420.1A.

1995-10-13T23:59:59.000Z

91

AEE AG | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 SouthWater Rights,Information Of TheFixed Logo:Use LandsADOTAEAEAG Jump

92

High intensity performance of the Brookhaven AGS  

SciTech Connect (OSTI)

Experience and results from recent high intensity proton running periods of the Brookhaven AGS, during which a record intensity for a proton synchrotron of 6.3 x 10{sup 13} protons/pulse was reached, is presented. This high beam intensity allowed for the simultaneous operation of three high precision rare kaon decay experiments. The record beam intensities were achieved after the 1.5 GeV Booster was commissioned and a transition jump system, a powerful transverse damper, and an rf upgrade in the AGS were completed. Recently even higher intensity proton synchrotrons are studied for neutron spallation sources or proton driver for a muon collider. Implications of the experiences from the AGS to these proposals and also possible future upgrades for the AGS are discussed.

Brennan, J.M.; Roser, T.

1996-07-01T23:59:59.000Z

93

Ag Education Student 1234 Education Drive  

E-Print Network [OSTI]

Ag Education Student 1234 Education Drive Fort Collins, CO 80523 educationstudent@gmail.com~970-222-1234 Education Bachelors of Science in Agriculture Education (Teacher Licensure requirements met) Anticipated May

94

Fuzzy Cosets and Quotient Fuzzy AG-subgroups  

E-Print Network [OSTI]

In this paper we extend the concept of fuzzy AG-subgroups. We introduce some results in normal fuzzy AG-subgroups. We define fuzzy cosets and quotient fuzzy AG-subgroups, and prove that the sets of their collection form an AG-subgroup and fuzzy AG-subgroup respectively. We also introduce the fuzzy Lagrange's Theorem of AG-subgroup. It is known that the condition $\\mu(xy)=\\mu(yx)$ holds for all $x,y$ in fuzzy subgroups if $\\mu$ is normal, but in fuzzy AG-subgroup we show that it holds without normality.

Amanullah; Imtiaz Ahmad; Muhammad Shah

2014-03-15T23:59:59.000Z

95

AGS fixed target program with nuclear beams  

SciTech Connect (OSTI)

The recent approval of the beam transfer line from the Tandem Van de Graaf to the AGS signals the advent of a new era of Nuclear and Particle Physics at BNL. High Energy nuclear beams are expected to be available for experiments in 1986. I will discuss the direct link between the Tandems and the AGS. Two other proposed projects, the Relativistic Heavy Ion Collider and the Synchrotron Booster, are discussed in another presentation to this conference.

Foley, K.J.

1984-01-01T23:59:59.000Z

96

2002 Wastewater Land Application Site Performance Reports for the Idaho National Engineering and Environmental Laboratory and Associated Documentation  

SciTech Connect (OSTI)

The 2002 Wastewater Land Application site Performance Reports for the Idaho National Engineering and Environmental Laboratory describe site conditions for the facilities with State of Idaho Wastewater Land Application Permits. Permit-required monitoring data are summarized, and permit exceedences or environmental impacts relating to the operation of the facilities during the 2002 permit year are discussed.

Meachum, Teresa Ray; Michael G. Lewis

2003-02-01T23:59:59.000Z

97

A Spatial Hedonic Analysis of the Effects of Wind Energy Facilities on Surrounding Property Values in the United States  

E-Print Network [OSTI]

of Economic Impacts from Wind Power Development in U.S.A Hedonic Analysis of Wind Power Facilities. Working Paper:A Hedonic Analysis of Wind Power Facilities. Land Economics.

Hoen, Ben

2014-01-01T23:59:59.000Z

98

Penobscot Indian Nation's Strategic Energy Planning Efficiency on tribal Lands  

SciTech Connect (OSTI)

The energy grant provided the resources to evaluate the wind, hydro, biomass, geothermal and solar resource potential on all Penobscot Indian Naiton's Tribal lands. The two objectives address potential renewable energy resources available on tribal lands and energy efficiency measures to be taken after comprehensive energy audits of commercial facilities. Also, a Long Term Strategic Energy Plan was developed along with a plan to reduce high energy costs.

Sockalexis, Mike; Fields, Brenda

2006-11-30T23:59:59.000Z

99

Ag on Si(111) from basic science to application  

SciTech Connect (OSTI)

In our work we revisit Ag and Au adsorbates on Si(111)-7x7, as well as experiment with a ternary system of Pentacene, Ag and Si(111). Of particular interest to us is the Si(111)-({radical}3x{radical}3)R30{degree}–Ag (Ag-Si-{radical}3 hereafter). In this thesis I systematically e plore effects of Ag deposition on the Ag-Si-{radical}3 at different temperatures, film thicknesses and deposition fluxes. The generated insight of the Ag system on the Si(111) is then applied to generate novel methods of nanostructuring and nanowire growth. I then extend our expertise to the Au system on the Ag-Si(111) to gain insight into Au-Si eutectic silicide formation. Finally we explore behavior and growth modes of an organic molecule on the Ag-Si interface.

Belianinov, Aleksey

2012-04-04T23:59:59.000Z

100

Land O'Lakes Shaves Gas Usage through Steam System In-Plant Training  

Broader source: Energy.gov [DOE]

Twelve participants from 6 different facilities learned and practiced energy efficiency assessment skills during the recent in-plant training at a Land O'Lakes dairy plant in Carlisle, Pennsylvania...

Note: This page contains sample records for the topic "facility ag land" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Central Facilities Area Sewage Lagoon Evaluation  

SciTech Connect (OSTI)

The Central Facilities Area (CFA), located in Butte County, Idaho, at the Idaho National Laboratory has an existing wastewater system to collect and treat sanitary wastewater and non-contact cooling water from the facility. The existing treatment facility consists of three cells: Cell #1 has a surface area of 1.7 acres, Cell #2 has a surface area of 10.3 acres, and Cell #3 has a surface area of 0.5 acres. If flows exceed the evaporative capacity of the cells, wastewater is discharged to a 73.5-acre land application site that uses a center-pivot irrigation sprinkler system. As flows at CFA have decreased in recent years, the amount of wastewater discharged to the land application site has decreased from 13.64 million gallons in 2004 to no discharge in 2012 and 2013. In addition to the decreasing need for land application, approximately 7.7 MG of supplemental water was added to the system in 2013 to maintain a water level and prevent the clay soil liners in the cells from drying out and “cracking.” The Idaho National Laboratory is concerned that the sewage lagoons and land application site may be oversized for current and future flows. A further concern is the sustainability of the large volumes of supplemental water that are added to the system according to current operational practices. Therefore, this study was initiated to evaluate the system capacity, operational practices, and potential improvement alternatives, as warranted.

Mark R. Cole

2013-12-01T23:59:59.000Z

102

Production of radioactivity in local soil at AGS fast neutrino beam  

SciTech Connect (OSTI)

Brookhaven National Laboratory (BNL) has recently decided to construct a new neutrino production target station at the Alternating Gradient Synchrotron (AGS). To determine the environmental impact of this addition, a study is being conducted in the vicinity of the old target area to determine the radiological consequences of operating this experimental facility. Typical BNL soil samples were placed at two locations near an operating target: at right angles to the target and behind thick shielding close to the direction of the incident beam. These samples were used to determine radionuclide production and leaching information. A core was taken from beneath the concrete floor of the old target area and a monitoring well was installed down-gradient of the facility. Preliminary results from all areas of the study are presented along with estimates of the potential environmental impact of the old and new facilities. 9 figures.

Gollon, P.J.; Hauptmann, M.G.; McIntyre, K.; Miltenberger, R.; Naidu, J.

1984-01-01T23:59:59.000Z

103

The mutagenic potential of soil and runoff water from land treatment of three hazardous industrial wastes  

E-Print Network [OSTI]

of agricultural chemicals and the performance of hazardous waste land treatment facilities. This study used a bioassay directed chemical analysis protocol to monitor the environmental fate of mutagenic constituents from a simulated land treatment demonstration...THE MUTAGENIC POTENTIAL OF SOIL AND RUNOFF WATER FROM LAND TREATMENT OF THREE HAZARDOUS INDUSTRIAL WASTES A Thesis by PHEBE DAYOL Submitted to the Graduate College of Te xa s ASM Un i ver s i ty in partial fulfillment of the requirement...

Davol, Phebe

1987-01-01T23:59:59.000Z

104

Survey of Critical Wetlands Bureau of Land Management Lands  

E-Print Network [OSTI]

Survey of Critical Wetlands Bureau of Land Management Lands South Park, Park County, Colorado 2003 Delivery Colorado State University #12;Survey of Critical Wetlands Bureau of Land Management Lands South place from unique wetlands to high quality grasslands to the bristlecone pine forests to its alpine

105

Siemens AG, CT, September 2001 CORPORATETECHNOLOGY  

E-Print Network [OSTI]

s © Siemens AG, CT, September 2001 CORPORATETECHNOLOGY Research and Technology at Siemens Transportation Power Information & Communications Health Automation & Control #12;2© Siemens AGResearch and Technology at Siemens CORPORATETECHNOLOGY CT / E 020 a - 02.01 Key Figures for 2000 Amounts in billions

106

Mathus Dejori, Siemens AG Structural learning of Bayesian networks  

E-Print Network [OSTI]

Mathäus Dejori, Siemens AG Structural learning of Bayesian networks Mathäus Dejori mathaeus.dejori.external@mchp.siemens, Siemens AG · Schätzung der unterliegenden zusammengesetzten Wahrscheinlichkeitsdichte aus den Daten;Mathäus Dejori, Siemens AG Graphical model · Combines probablity theory and graph theory · is defined

Popeea, Corneliu - Chair for Foundations of Software Reliability and Theoretical Computer Science

107

PD Dr. Martin Stetter, Siemens AG 1 Das lineare Modell  

E-Print Network [OSTI]

PD Dr. Martin Stetter, Siemens AG 1 Das lineare Modell · Ausgangspunkt: Lineares Perceptron vorgegeben, werden nicht gelernt #12;PD Dr. Martin Stetter, Siemens AG 2 · Geschrieben als Regressionsmodell Regression: Lineares Modell #12;PD Dr. Martin Stetter, Siemens AG 3 · ML-Parameterschätzung des linearen

Popeea, Corneliu - Chair for Foundations of Software Reliability and Theoretical Computer Science

108

PD Dr. Martin Stetter, Siemens AG 1 Optimierungsverfahren  

E-Print Network [OSTI]

PD Dr. Martin Stetter, Siemens AG 1 Optimierungsverfahren · Optimierung konvexer Funktionen: Optimierungsverfahren #12;PD Dr. Martin Stetter, Siemens AG 2 Optimierung konvexer Funktionen · Häufiges Problem bei Stetter, Siemens AG 3 Funktionen einer Variable )(wF · 1D-Gradientenabstieg: Gehe ein kleines Stück

Popeea, Corneliu - Chair for Foundations of Software Reliability and Theoretical Computer Science

109

AGS experiments -- 1996, 1997, 1998, 1999. Fifteenth edition  

SciTech Connect (OSTI)

This report is a compilation of two-page summaries for AGS experiments for FY 1996, FY 1997, FY 1998, FY 1999. The bulk of the experiments are for high energy physics and nuclear physics programs. Also included are the run schedules for the AGS for each of those years and a listing of publications of AGS experiments for 1982--1999.

Lo Presti, P.

1999-03-01T23:59:59.000Z

110

Approaches used for Clearance of Lands from Nuclear Facilities...  

Broader source: Energy.gov (indexed) [DOE]

Authority (SSM) intends to continue working on establishing such clearance levels in Sweden. As a starting point, SSM foresees that levels applied will depend on the features of...

111

Facilities Services Overview & Discussion  

E-Print Network [OSTI]

& Finance Facilities Services Director: Jeff Butler Human Resources Administrative Services Engineering) Environmental Services Morrison (3) Admin Services Evans (1) Human Resources Engineering (4) ·EngineeringFacilities Services Overview & Discussion Jeff Butler Director ­ Facilities Services November 2011

Maxwell, Bruce D.

112

High intensity proton operation at the Brookhaven AGS accelerator complex  

SciTech Connect (OSTI)

With the completion of the AGS rf upgrade, and the implementation of a transition {open_quotes}jump{close_quotes}, all of accelerator systems were in place in 1994 to allow acceleration of the proton intensity available from the AGS Booster injector to AGS extraction energy and delivery to the high energy users. Beam commissioning results with these new systems are presented. Progress in identifying and overcoming other obstacles to higher intensity are given. These include a careful exploration of the stopband strengths present on the AGS injection magnetic porch, and implementation of the AGS single bunch transverse dampers throughout the acceleration cycle.

Ahrens, L.A.; Blaskiewicz, M.; Bleser, E.; Brennan, J.M.; Gardner, C.; Glenn, J.W.; Onillon, E.; Reece, R.K.; Roser, T.; Soukas, A. [and others

1994-08-01T23:59:59.000Z

113

Land-Use Change Data Analysis  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10 DOEWashington,LM-04-XXXX OfficeLand and Facility Use Policy

114

from Isotope Production Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cancer-fighting treatment gets boost from Isotope Production Facility April 13, 2012 Isotope Production Facility produces cancer-fighting actinium 2:32 Isotope cancer treatment...

115

Fuel Fabrication Facility  

National Nuclear Security Administration (NNSA)

Construction of the Mixed Oxide Fuel Fabrication Facility Construction of the Mixed Oxide Fuel Fabrication Facility November 2005 May 2007 June 2008 May 2012...

116

1999 Report on Hanford Site land disposal restriction for mixed waste  

SciTech Connect (OSTI)

This report was submitted to meet the requirements of Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-26-011. This milestone requires the preparation of an annual report that covers characterization, treatment, storage, minimization, and other aspects of managing land-disposal-restricted mixed waste at the Hanford Facility.

BLACK, D.G.

1999-03-25T23:59:59.000Z

117

Temperature dependent effects during Ag deposition on Cu(110)  

SciTech Connect (OSTI)

The composition, structure, and morphology of ultrathin films grown by Ag deposition on Cu(110) were monitored as a function of temperature using low-energy electron diffraction (LEED), Auger electron spectroscopy (AES), and medium energy ion scattering (MEIS). Aligned backscattering measurements with 150 keV He ions indicate that the Ag resides on top of the Cu and there is no significant surface compound formation. Measurements with LEED show that the Ag is initially confined to the substrate troughs. Further deposition forces the Ag out of the troughs and results in a split c(2 {times} 4) LEED pattern, which is characteristic of a distorted Ag(111) monolayer template. As verified by both AES and MEIS measurements, postmonolayer deposition of Ag on Cu(110) at 300K leads to a pronounced 3-dimensional clustering. Ion blocking analysis of the Ag clusters show that the crystallites have a (110)-like growth orientation, implying that the Ag monolayer template undergoes a rearrangement. These data are confirmed by low temperature LEED results in the absence of clusters, which indicate that Ag multilayers grow from a Ag--Cu interface where the Ag is captured in the troughs. Changes observed in the film structure and morphology are consistent with a film growth mechanism that is driven by overlayer strain response to the substrate corrugation. 16 refs., 4 figs.

Taylor, T.N.; Muenchausen, R.E.; Hoffbauer, M.A.; Denier van der Gon, A.W.; van der Veen, J.F. (Los Alamos National Lab., NM (USA); FOM-Instituut voor Atoom-en Molecuulfysica, Amsterdam (Netherlands))

1989-01-01T23:59:59.000Z

118

Land-use Leakage  

SciTech Connect (OSTI)

Leakage occurs whenever actions to mitigate greenhouse gas emissions in one part of the world unleash countervailing forces elsewhere in the world so that reductions in global emissions are less than emissions mitigation in the mitigating region. While many researchers have examined the concept of industrial leakage, land-use policies can also result in leakage. We show that land-use leakage is potentially as large as or larger than industrial leakage. We identify two potential land-use leakage drivers, land-use policies and bioenergy. We distinguish between these two pathways and run numerical experiments for each. We also show that the land-use policy environment exerts a powerful influence on leakage and that under some policy designs leakage can be negative. International “offsets” are a potential mechanism to communicate emissions mitigation beyond the borders of emissions mitigating regions, but in a stabilization regime designed to limit radiative forcing to 3.7 2/m2, this also implies greater emissions mitigation commitments on the part of mitigating regions.

Calvin, Katherine V.; Edmonds, James A.; Clarke, Leon E.; Bond-Lamberty, Benjamin; Kim, Son H.; Wise, Marshall A.; Thomson, Allison M.; Kyle, G. Page

2009-12-01T23:59:59.000Z

119

Guide to research facilities  

SciTech Connect (OSTI)

This Guide provides information on facilities at US Department of Energy (DOE) and other government laboratories that focus on research and development of energy efficiency and renewable energy technologies. These laboratories have opened these facilities to outside users within the scientific community to encourage cooperation between the laboratories and the private sector. The Guide features two types of facilities: designated user facilities and other research facilities. Designated user facilities are one-of-a-kind DOE facilities that are staffed by personnel with unparalleled expertise and that contain sophisticated equipment. Other research facilities are facilities at DOE and other government laboratories that provide sophisticated equipment, testing areas, or processes that may not be available at private facilities. Each facility listing includes the name and phone number of someone you can call for more information.

Not Available

1993-06-01T23:59:59.000Z

120

Future Fixed Target Facilities  

SciTech Connect (OSTI)

We review plans for future fixed target lepton- and hadron-scattering facilities, including the 12 GeV upgraded CEBAF accelerator at Jefferson Lab, neutrino beam facilities at Fermilab, and the antiproton PANDA facility at FAIR. We also briefly review recent theoretical developments which will aid in the interpretation of the data expected from these facilities.

Melnitchouk, Wolodymyr

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "facility ag land" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Title: Canada Land Inventory: Land Capability for Recreation Data Creator /  

E-Print Network [OSTI]

Title: Canada Land Inventory: Land Capability for Recreation Data Creator / Copyright Owner: National Archives of Canada, Visual and Sound Archives Division Publisher: National Archives of Canada, Visual and Sound Archives Division; developed under the auspices of Environment Canada; distributed

122

Title: Canada Land Inventory: Land Capability for Ungulates Data Creator /  

E-Print Network [OSTI]

Title: Canada Land Inventory: Land Capability for Ungulates Data Creator / Copyright Owner: National Archives of Canada, visual and Sound Archives Division Publisher: National Archives of Canada, Visual and Sound Archives Division; developed under the auspices of Environment Canada; distributed

123

Title: Canada Land Inventory: Land Capability for Agriculture Data Creator /  

E-Print Network [OSTI]

Title: Canada Land Inventory: Land Capability for Agriculture Data Creator / Copyright Owner: National Archives of Canada, Visual and Sound Archives Division Publisher: National Archives of Canada, Visual and Sound Archives Division; developed under the auspices of Environment Canada; distributed

124

National Forest Land Scheme  

E-Print Network [OSTI]

and Community Right to Buy. Communities are encouraged to register an interest in the land they wish to buy Ministers to make a late registration of interest. When Forestry Commission Scotland decides to sell, a community organisation could consider the opportunities for working in partnership with Forestry Commission

125

Clearing Debris from Land  

E-Print Network [OSTI]

level. Burial ? Tree debris can be buried, but the cost is high. ? Use a chipping machine to eliminate smaller branches and reduce the amount of burial space needed. Landfill ? You can place tree debris in erosion gullies (where the land is not prac...

McFarland, Mark L.

2005-09-30T23:59:59.000Z

126

2010 Annual Wastewater Reuse Report for the Idaho National Laboratory Site's Central Facilities Area Sewage Treatment Plant  

SciTech Connect (OSTI)

This report describes conditions, as required by the state of Idaho Wastewater Reuse Permit (#LA-000141-03), for the wastewater land application site at Idaho National Laboratory Site’s Central Facilities Area Sewage Treatment Plant from November 1, 2009, through October 31, 2010. The report contains the following information: • Site description • Facility and system description • Permit required monitoring data and loading rates • Status of special compliance conditions • Discussion of the facility’s environmental impacts. During the 2010 permit year, approximately 2.2 million gallons of treated wastewater was land-applied to the irrigation area at Central Facilities Area Sewage Treatment plant.

Mike lewis

2011-02-01T23:59:59.000Z

127

2012 Annual Wastewater Reuse Report for the Idaho National Laboratory Site's Central facilities Area Sewage Treatment Plant  

SciTech Connect (OSTI)

This report describes conditions, as required by the state of Idaho Wastewater Reuse Permit (#LA-000141-03), for the wastewater land application site at Idaho National Laboratory Site’s Central Facilities Area Sewage Treatment Plant from November 1, 2011, through October 31, 2012. The report contains the following information: • Site description • Facility and system description • Permit required monitoring data and loading rates • Status of compliance conditions and activities • Discussion of the facility’s environmental impacts. During the 2012 permit year, no wastewater was land-applied to the irrigation area of the Central Facilities Area Sewage Treatment Plant.

Mike Lewis

2013-02-01T23:59:59.000Z

128

CLM-AG: An Agriculture Module for the Community Land Model version 3.5  

E-Print Network [OSTI]

It is estimated that 40% of all crops grown in the world today are grown using irrigation. As a consequence,

Gueneau, Arthur

129

Double dumbbell shaped AgNi alloy by pulsed electrodeposition  

SciTech Connect (OSTI)

Silver-Nickel is the well-known thermally immiscible system that makes them quite complex for the formation of alloy. This kind of alloy can be attained from electrodeposition method. In the present work, AgNi alloy was synthesized by pulsed electrodeposition in a single bath two electrode system with the use of anodic alumina membrane. The prepared AgNi alloy and pure Ag were characterized with X-ray Diffraction (XRD) for structural confirmation, Scanning Electron Microscopy (SEM) for morphological, and magnetic properties by Vibrating Sample Magnetometer, respectively. The X-ray Diffraction study shows the formation of cubic structure for pure Ag. SEM analysis reveals the double dumbbell morphology for AgNi alloy and spherically agglomeration for pure silver. Hysteresis behaviour from VSM measurement indicates that the AgNi alloy have good ferro-magnetic properties.

Dhanapal, K.; Vasumathi, M.; Santhi, Kalavathy [Materials Science Centre, Department of Nuclear Physics, University of Madras, Guindy Campus, Chennai 600 025 (India); Narayanan, V., E-mail: stephen-arum@hotmail.com; Stephen, A., E-mail: stephen-arum@hotmail.com [Department of Inorganic Chemistry, University of Madras, Guindy Campus, Chennai-600 025 (India)

2014-01-28T23:59:59.000Z

130

ag superlens suitable: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Providing habitat for hosts of various diseases such as malaria Bowen, James D. 25 Siemens AG 2009. All rights reserved. Investitionsmanagement Biology and Medicine Websites...

131

CRAD, Facility Safety- Nuclear Facility Safety Basis  

Broader source: Energy.gov [DOE]

A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) that can be used for assessment of a contractor's Nuclear Facility Safety Basis.

132

Abakus Solar AG | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWende NewSowitecAWS Ocean Energy Ltd Jump to:Abakus Solar AG Jump

133

American Ag Fuels LLC | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWende NewSowitecAWSAgri-EnergyAmbene Jump to:Corp JumpAmda JumpAg

134

East Central Ag Products | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump37. It is classified asThis article is aAg Products Jump to: navigation,

135

Offshore Ostsee Wind AG | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWende New Energy CoFirstNovos Sistemas deOstsee Wind AG Jump to:

136

SolarWorld AG | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g GrantAtlas (PACA Region - France)SolarHub Jump to:SolarWorld AG Jump

137

ABO Wind AG | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 SouthWater Rights,Information Of TheFixed Utilities JumpABEEolicaAG

138

EnerVest AG | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORT Americium/CuriumSunwaysDatangGmbHEletrowind S A JumpNorthEnerVest AG

139

AgPro | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 SouthWaterBrasil JumpAerowatt Energies JumpAgPro Jump to: navigation, search

140

AgRefresh | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 SouthWaterBrasil JumpAerowatt Energies JumpAgPro Jump to: navigation,

Note: This page contains sample records for the topic "facility ag land" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Algatec Solar AG | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 SouthWaterBrasilInformation8.8173434°,AlfasolarAlgatec Solar AG Jump

142

Transverse beam dampers for the Brookhaven AGS  

SciTech Connect (OSTI)

A wide band damper system has been developed for the Brookhaven Alternating Gradient Synchrotron (AGS). The system consists of two sets of PUE pickups, analog and digital processing electronics, four 500 Watt wide band power amplifiers, and two pairs of strip line deflectors. The system is currently used to damp transverse coherent instabilities and injection errors, in both planes, for protons and all species of Heavy Ions. This paper discusses the system design and operation, focusing on the engineering considerations and problems encountered in the actual implementation. Operational data from both protons and Heavy Ion beams is presented.

Smith, G.A.; Roser, T.; Witkover, R.; Wong, V.

1993-11-01T23:59:59.000Z

143

Aggressive landing maneuvers for unmanned aerial vehicles  

E-Print Network [OSTI]

VTOL (Vertical Take Off and Landing) vehicle landing is considered to be a critically difficult task for both land, marine, and urban operations. This thesis describes one possible control approach to enable landing of ...

Bayraktar, Selcuk

2006-01-01T23:59:59.000Z

144

Impacts of increased bioenergy demand on global food markets: an AgMIP economic model intercomparison  

SciTech Connect (OSTI)

Integrated Assessment studies have shown that meeting ambitious greenhouse gas mitigation targets will require substantial amounts of bioenergy as part of the future energy mix. In the course of the Agricultural Model Comparison and Improvement Project (AgMIP), five global agro-economic models were used to analyze a future scenario with global demand for ligno-cellulosic bioenergy rising to about 100 ExaJoule in 2050. From this exercise a tentative conclusion can be drawn that ambitious climate change mitigation need not drive up global food prices much, if the extra land required for bioenergy production is accessible or if the feedstock, e.g. from forests, does not directly compete for agricultural land. Agricultural price effects across models by the year 2050 from high bioenergy demand in an RCP2.6-type scenario appear to be much smaller (+5% average across models) than from direct climate impacts on crop yields in an RCP8.5-type scenario (+25% average across models). However, potential future scarcities of water and nutrients, policy-induced restrictions on agricultural land expansion, as well as potential welfare losses have not been specifically looked at in this exercise.

Lotze-Campen, Hermann; von Lampe, Martin; Kyle, G. Page; Fujimori, Shinichiro; Havlik, Petr; van Meijl, Hans; Hasegawa, Tomoko; Popp, Alexander; Schmitz, Christoph; Tabeau, Andrzej; Valin, Hugo; Willenbockel, Dirk; Wise, Marshall A.

2014-01-01T23:59:59.000Z

145

FACILITY SAFETY (FS)  

Broader source: Energy.gov (indexed) [DOE]

FACILITY SAFETY (FS) OBJECTIVE FS.1 - (Core Requirement 7) Facility safety documentation in support of SN process operations,is in place and has been implemented that describes the...

146

Technology Transitions Facilities Database  

Broader source: Energy.gov [DOE]

The types of R&D facilities at the DOE Laboratories available to the public typically fall into three broad classes depending on the mode of access: Designated User Facilities, Shared R&D...

147

Facility Siting and Layout Optimization Based on Process Safety  

E-Print Network [OSTI]

) that identifies potential layouts by minimizing overall costs. This approach gives the coordinates of each facility in a continuous plane, and estimates for the total length of pipes, the land area, and the selection of safety devices. Finally, the 3D...

Jung, Seungho

2012-02-14T23:59:59.000Z

148

Coal conversion siting on coal mined lands: water quality issues  

SciTech Connect (OSTI)

The siting of new technology coal conversion facilities on land disturbed by coal mining results in both environmental benefits and unique water quality issues. Proximity to mining reduces transportation requirements and restores disrupted land to productive use. Uncertainties may exist, however, in both understanding the existing site environment and assessing the impact of the new technology. Oak Ridge National Laboratory is currently assessing the water-related impacts of proposed coal conversion facilities located in areas disturbed by surface and underground coal mining. Past mining practices, leaving highly permeable and unstable fill, may affect the design and quality of data from monitoring programs. Current mining and dewatering, or past underground mining may alter groundwater or surface water flow patterns or affect solid waste disposal stability. Potential acid-forming material influences the siting of waste disposal areas and the design of grading operations. These and other problems are considered in relation to the uncertainties and potentially unique problems inherent in developing new technologies.

Triegel, E.K.

1980-01-01T23:59:59.000Z

149

Better building: LEEDing new facilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Better building: LEEDing new facilities Better building: LEEDing new facilities We're taking big steps on-site to create energy efficient facilities and improve infrastructure....

150

Ag/AgBr/g-C{sub 3}N{sub 4}: A highly efficient and stable composite photocatalyst for degradation of organic contaminants under visible light  

SciTech Connect (OSTI)

Graphical abstract: Ag/AgBr/g-C{sub 3}N{sub 4} composite photocatalysts displayed excellent photocatalytic activities on the degradation of methyl orange (MO) under visible light. The improved photocatalytic performance and stability of Ag/AgBr/g-C{sub 3}N{sub 4} originated from the synergetic effects of AgBr/g-C{sub 3}N{sub 4} interface and metallic Ag nanoparticles. ·O{sub 2}?, one of the reactive species, was responsible for the photodegradation of MO compared to H+ and ·OH. - Highlights: • Novel Ag/AgBr/g-C{sub 3}N{sub 4} composite photocatalyst was reported. • Ag/AgBr/g-C{sub 3}N{sub 4} had novel energy band combination between AgBr and g-C{sub 3}N{sub 4}. • Synergetic effects of AgBr/g-C{sub 3}N{sub 4} interface and metallic Ag nanoparticles. • Electron trapping role of metallic Ag dominated the stability of Ag/AgBr/g-C{sub 3}N{sub 4}. - Abstract: Novel Ag/AgBr/g-C{sub 3}N{sub 4} composite photocatalysts were constructed via deposition–precipitation method and extensively characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM) and UV–vis diffuse reflectance spectroscopy (DRS). Under visible light (? > 420 nm), Ag/AgBr/g-C{sub 3}N{sub 4} composite photocatalysts displayed much higher photocatalytic activities than those of Ag/AgBr and g-C{sub 3}N{sub 4} for degradation of methyl orange (MO). 50% Ag/AgBr/g-C{sub 3}N{sub 4} presented the best photocatalytic performance, which was mainly attributed to the synergistic effects of AgBr/g-C{sub 3}N{sub 4} interface and the in situ metallic Ag nanoparticles for efficiently separating electron–hole pairs. Furthermore, Ag/AgBr/g-C{sub 3}N{sub 4} remained good photocatalytic activity through 5 times of cycle experiments. Additionally, the radical scavengers experiment indicated that ·O{sub 2}{sup ?} was the main reactive species for the MO degradation under visible light.

Cao, Jing, E-mail: caojing@mail.ipc.ac.cn [College of Chemistry and Materials Science, Huaibei Normal University, Huaibei 235000, Anhui (China); State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100 (China); Zhao, Yijie; Lin, Haili; Xu, Benyan [College of Chemistry and Materials Science, Huaibei Normal University, Huaibei 235000, Anhui (China); Chen, Shifu, E-mail: chshifu@chnu.edu.cn [College of Chemistry and Materials Science, Huaibei Normal University, Huaibei 235000, Anhui (China)

2013-10-15T23:59:59.000Z

151

Oregon Land Conservation and Development Commission | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(UtilityCounty, Michigan: EnergyOpenBarterVirginia.Land or WaterbodyFacility

152

EXCURSION: enterprises in our region "Centrotherm photovoltaics AG"  

E-Print Network [OSTI]

EXCURSION: enterprises in our region "Centrotherm photovoltaics AG" 4th of November 2009 Invitation of a German enterprise called centrotherm photovoltaics AG in Blaubeuren. They are providers of technology and services for the photovoltaics industry. For organizational reasons we ask you to register for this visit

Pfeifer, Holger

153

Complete Phase I Tests As Described in the Multi-lab Test Plan for the Evaluation of CH3I Adsorption on AgZ  

SciTech Connect (OSTI)

Silver-exchanged mordenite (AgZ) has been identified as a potential sorbent for iodine present in the off-gas streams of a used nuclear fuel reprocessing facility. In such a facility, both elemental and organic forms of iodine are released from the dissolver in gaseous form. These species of iodine must be captured with high efficiency for a facility to avoid radioactive iodine release above regulatory limits in the gaseous effluent of the plant. Studies completed at Idaho National Laboratory (INL) examined the adsorption of organic iodine in the form of CH3I by AgZ. Upon breakthrough of the feed gas through the sorbent bed, elemental iodine was observed in the effluent stream, despite the fact that the only source of iodine in the system was the CH3I in the feed gas.1 This behavior does not appear to have been reported previously nor has it been independently confirmed. Thus, as a result of these prior studies, multiple knowledge gaps relating to the adsorption of CH3I by AgZ were identified, and a multi-lab test plan, including Oak Ridge National Laboratory (ORNL), INL, Pacific Northwest National Laboratory (PNNL), and Sandia National Laboratories, was formulated to address each in a systematic way.2 For this report, the scope of work for ORNL was further narrowed to three thin-bed experiments that would characterize CH3I adsorption onto AgZ in the presence of water, NO, and NO2. Completion of these three-thin bed experiments demonstrated that organic iodine in the form of CH3I was adsorbed by reduced silver mordenite (Ag0Z) to a 50% higher loading than that of I2 when adsorbed from a dry air stream. Adsorption curves suggest different adsorption mechanisms for I2 and CH3I. In the presence of NO and NO2 gas, the loading of CH3I onto Ag0Z is suppressed and may be reversible. Further, the presence of NO and NO2 gas appears to oxidize CH3I to I2; this is indicated by an adsorption curve similar to that of I2 on Ag0Z. Finally, the loss of organic iodine loading capacity by Ag0Z in the presence of NOx is unaffected by the addition of water vapor to the gas stream; no marked additional loss in capacity or retention was observed.

Bruffey, S. H. [ORNL; Jubin, R. T. [ORNL

2014-09-30T23:59:59.000Z

154

Evaluating land application effects  

SciTech Connect (OSTI)

The Philadelphia, PA Water Department embarked on a land application program of its treated wastewater sludge in 1977. Initially, liquid sludge averaging from 1-5% solids was applied to approximately 400 acres of corn, soybeans, and sod at rates sufficient to supply crop nitrogen needs. During the 1978 through 1984 growing seasons, crops and soils were monitored for heavy metals (bioavailability of cadmium, copper, nickel, chromium, lead and zinc) and in 1984 for PCB accumulation. This report summarizes results of the monitoring program until 1984.

Sarkis, K. (Philadelphia Water Department, PA (USA))

1987-01-01T23:59:59.000Z

155

Proposed Conveyance of Land  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - SeptemberMicroneedles for4-16HamadaBaO/Al2O3 leanProposalConveyance of Land at the

156

Microwave-assisted solvothermal synthesis of flower-like Ag/AgBr/BiOBr microspheres and their high efficient photocatalytic degradation for p-nitrophenol  

SciTech Connect (OSTI)

Flower-like Ag/AgBr/BiOBr microspheres were successfully fabricated by the approach of microwave-assisted solvothermal and in situ photo-assisted reduction. A reactive ionic liquid 1-hexadecyl-3-methylimidazolium bromide ([C{sub 16}mim]Br) was employed as Br source in the presence of surfactant polyvinylpyrrolidone (PVP). The photocatalytic activity of Ag/AgBr/BiOBr towards the decomposition of p-nitrophenol under visible light irradiation was evaluated. The results indicated that Ag/AgBr/BiOBr showed enhanced photocatalytic activity towards p-nitrophenol, comparing with P25, BiOBr and Ag/AgBr. More than 96% of p-nitrophenol was decomposed in 3.5 h under visible-light irradation. The excellent photocatalytic activity of flower-like Ag/AgBr/BiOBr microspheres can be attributed to the large specific surface area, strong visible-light absorption, suitable energy band structure and surface plasmon resonance effect of Ag nanoparticles. The possible photocatalytic mechanism was proposed based on the active species test and band gap structure analysis. - Graphical abstract: The photocatalytic reaction mechanisms of the as-prepared Ag/AgBr/BiOBr. Display Omitted - Highlights: • Successful synthesis of flower-like Ag/AgBr/BiOBr microspheres. • The Ag/AgBr/BiOBr showed much higher photocatalytic activity towards p-nitrophenol as compared to BiOBr and Ag/AgBr. • The reasons for the excellent photocatalytic activity are the large specific surface area, strong visible-light absorption and surface plasmon resonance effect of Ag nanoparticles. • The O{sub 2}·{sup ?}, Br{sup 0} and photogenerated h{sup +} play key roles in the photocatalytic degradation process.

Li, Tingting, E-mail: tingtingli1983@hotmail.com [Department of Chemistry and Chemical Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Changsha 410082 (China); State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082 (China); Department of Environment and Chemical Engineering, Key Laboratory of Jiangxi Province for Ecological Diagnosis, Remediation and Pollution Control, Nanchang Hangkong University, Nanchang 330063 (China); Luo, Shenglian, E-mail: sllou@hnu.edu.cn [Department of Chemistry and Chemical Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Changsha 410082 (China); State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082 (China); Department of Environment and Chemical Engineering, Key Laboratory of Jiangxi Province for Ecological Diagnosis, Remediation and Pollution Control, Nanchang Hangkong University, Nanchang 330063 (China); Yang, Lixia [Department of Environment and Chemical Engineering, Key Laboratory of Jiangxi Province for Ecological Diagnosis, Remediation and Pollution Control, Nanchang Hangkong University, Nanchang 330063 (China)

2013-10-15T23:59:59.000Z

157

Absentee Landowners Near a Military Installation in Texas: Use, Motivation, and Emotional Tie to their Land  

E-Print Network [OSTI]

.......................................................... 97 Family land. ........................................................................................................................... 98 Leasing land.... ......................................................................................................................... 117 Leasing land. ....................................................................................................................... 118 Hunting on land...

Dankert, Amber 1980-

2012-12-20T23:59:59.000Z

158

E-Print Network 3.0 - ag triangular nanoplates Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

; Materials Science 46 Hydrothermally grown nanostructured WO films and their electrochromic characteristics Summary: and AgAgCl as the reference electrode. The transmittance...

159

Thermoelectric figure of merit of Ag{sub 2}Se with Ag and Se excess  

SciTech Connect (OSTI)

In the temperature range of 100-300 K, the electric ({sigma}) and thermoelectric ({alpha}{sub 0}) properties of Ag{sub 2}Se with an excess of Ag as high as {approx}0.1 at. % and Se as high as {approx}1.0 at. %, respectively, are investigated. From the data on {sigma}, {alpha}{sub 0}, and {chi}{sub tot} (thermal conductivities), the thermoelectric power {alpha}{sub 0}{sup 2}{sigma} and the figure of merit Z are calculated. It is found that {alpha}{sub 0}{sup 2}{sigma} and Z attain the peak values at room temperature and the electron concentration n {approx} 6.5 x 10{sup 18} cm{sup -3}.

Aliev, F. F., E-mail: farzali@physics.ab.az; Jafarov, M. B.; Eminova, V. I. [Azerbaijan National Academy of Sciences, Institute of Physics (Azerbaijan)

2009-08-15T23:59:59.000Z

160

Deuterons and flow: At intermediate AGS energies  

SciTech Connect (OSTI)

A quantitative model, based on hadronic physics and Monte Carlo cascading is applied to heavy ion collisions at BNL-AGS and BEVALAC energies. The model was found to be in excellent agreement with particle spectra where data previously existed, for Si beams, and was able to successfully predict the spectra where data was initially absent, for Au beams. For Si + Au collisions baryon densities of three or four times the normal nuclear matter density ({rho}{sub 0}) are seen in the theory, while for Au + Au collisions, matter at densities up to 10 {rho}{sub 0} is anticipated. The possibility that unusual states of matter may be created in the Au beams and potential signatures for its observation, in particular deuterons and collective flow, are considered.

Kahana, D.E. [State Univ. of New York, Stony Brook, NY (United States); Pang, Y. [Brookhaven National Lab., Upton, NY (United States)]|[Columbia Univ., New York, NY (United States); Kahana, S.H. [Brookhaven National Lab., Upton, NY (United States)

1996-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "facility ag land" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Small Power Production Facilities (Montana)  

Broader source: Energy.gov [DOE]

For the purpose of these regulations, a small power production facility is defined as a facility that:...

162

2011 Annual Wastewater Reuse Report for the Idaho National Laboratory Site’s Central Facilities Area Sewage Treatment Plant  

SciTech Connect (OSTI)

This report describes conditions, as required by the state of Idaho Wastewater Reuse Permit (LA-000141-03), for the wastewater land application site at Idaho National Laboratory Site's Central Facilities Area Sewage Treatment Plant from November 1, 2010, through October 31, 2011. The report contains the following information: (1) Site description; (2) Facility and system description; (3) Permit required monitoring data and loading rates; (4) Status of special compliance conditions and activities; and (5) Discussion of the facility's environmental impacts. During the 2011 permit year, approximately 1.22 million gallons of treated wastewater was land-applied to the irrigation area at Central Facilities Area Sewage Treatment plant.

Michael G. Lewis

2012-02-01T23:59:59.000Z

163

Land Stewardship | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Improvements are implemented with consideration of adjacent land uses, owners, and political entities. Success is defined when measurable parameters are achieved. Scope The team...

164

Title: Canada Land Inventory: Land Capability for Forestry Data Creator /  

E-Print Network [OSTI]

Title: Canada Land Inventory: Land Capability for Forestry Data Creator / Copyright Owner: National Archives of Canada, Visual and Sound Archives Division; Publisher: National Archives of Canada, Visual and Sound Archives Division; developed under the auspices of Environment Canada; distributed by Natural

165

Title: Canada Land Inventory: 1966 Land Use Data Creator /  

E-Print Network [OSTI]

Title: Canada Land Inventory: 1966 Land Use Data Creator / Copyright Owner: National Archives of Canada, Visual and Sound Archives Division Publisher: National Archives of Canada, Visual and Sound Archives Division; developed under the auspices of Environment Canada; distributed by Natural Resources

166

Science and Technology Facility  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

IBRF Project Lessons Learned Report Integrated Biorefinery Research Facility Lessons Learned - Stage I Acquisition through Stage II Construction Completion August 2011 This...

167

Programs & User Facilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research Facility Climate, Ocean, and Sea Ice Modeling (COSIM) Terrestrial Ecosystem and Climate Dynamics Fusion Energy Sciences Magnetic Fusion Experiments Plasma Surface...

168

FACILITY SAFETY (FS)  

Broader source: Energy.gov (indexed) [DOE]

- (Core Requirements 4 and 6) Sufficient numbers of qualified personnel are available to conduct and support operations. Adequate facilities and equipment are available to ensure...

169

ARM Mobile Facilities  

ScienceCinema (OSTI)

This video provides an overview of the ARM Mobile Facilities, two portable climate laboratories that can deploy anywhere in the world for campaigns of at least six months.

Orr, Brad; Coulter, Rich

2014-09-15T23:59:59.000Z

170

Existing Facilities Program  

Broader source: Energy.gov [DOE]

The NYSERDA Existing Facilities program merges the former Peak Load Reduction and Enhanced Commercial and Industrial Performance programs. The new program offers a broad array of different...

171

Idaho National Laboratory Facilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

National Scientific User Facility Center for Advanced Energy Studies Light Water Reactor Sustainability Idaho Regional Optical Network LDRD Next Generation Nuclear Plant Docs...

172

Supercomputing | Facilities | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

facilities, and authorization checks for physical access. An integrated cyber security plan encompasses all aspects of computing. Cyber security plans are risk-based....

173

Facility Survey & Transfer  

Broader source: Energy.gov [DOE]

As DOE facilities become excess, many that are radioactively and/or chemically contaminated will become candidate for transfer to DOE-EM for deactivation and decommissioning.

174

Hot Fuel Examination Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Working with INL Community Outreach Visitor Information Calendar of Events ATR National Scientific User Facility Center for Advanced Energy Studies Light Water Reactor...

175

DOE Designated Facilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Reactor** Lawrence Berkeley National Laboratory Joint Genome Institute - Production Genomics Facility (PGF)** (joint with LLNL, LANL, ORNL and PNNL) Advanced Light Source (ALS)...

176

Final Hanford Comprehensive Land-Use Plan Environmental Impact Statement, Hanford Site, Richland, Washington  

SciTech Connect (OSTI)

This Final ''Hanford Comprehensive Land-Use Plan Environmental Impact Statement'' (HCP EIS) is being used by the Department of Energy (DOE) and its nine cooperating and consulting agencies to develop a comprehensive land-use plan (CLUP) for the Hanford Site. The DOE will use the Final HCP EIS as a basis for a Record of Decision (ROD) on a CLUP for the Hanford Site. While development of the CLUP will be complete with release of the HCP EIS ROD, full implementation of the CLUP is expected to take at least 50 years. Implementation of the CLUP would begin a more detailed planning process for land-use and facility-use decisions at the Hanford Site. The DOE would use the CLUP to screen proposals. Eventually, management of Hanford Site areas would move toward the CLUP land-use goals. This CLUP process could take more than 50 years to fully achieve the land-use goals.

N /A

1999-10-01T23:59:59.000Z

177

Privacy Impact Assessment OFEO Facilities Management System Facilities Center  

E-Print Network [OSTI]

Privacy Impact Assessment OFEO Facilities Management System ­ Facilities Center I. System Identification 1. IT System Name: Facilities Management System - FacilityCenter 2. IT System Sponsor: Office. IT System Manager: Michelle T. Gooch, Facilities Management Systems Manager 5. PIA Author: Michelle T. Gooch

Mathis, Wayne N.

178

ag films grown: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

conduction-band states of NiO 100 thin films grown onto Ag 100 have charac- terized NiO monocrystalline thin films has shown up both onto insulating i.e., MgO, Ref. 21 Marcon,...

179

ag thin films: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

MgO, Ref. 21 Marcon, Marco 2 Multi-level surface enhanced Raman scattering using AgOx thin film Physics Websites Summary: by applying laser-direct writing (LDW) technique on...

180

ag fe ni: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

conduction-band states of NiO 100 thin films grown onto Ag 100 have charac- terized NiO monocrystalline thin films has shown up both onto insulating i.e., MgO, Ref. 21 Marcon,...

Note: This page contains sample records for the topic "facility ag land" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

ag samples show: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

in a low density region sim 30-300 AU from the central binary. Scott J. Kenyon; Daniel Proga; Charles D. Keyes 2001-03-26 29 Ag Communications Communications and Media...

182

Oil and Gas on Public Lands (Texas)  

Broader source: Energy.gov [DOE]

The School Land Board may choose to lease lands for the production of oil and natural gas, on the condition that oil and gas resources are leased together and separate from other minerals. Lands...

183

Facilities Management CAD Standards  

E-Print Network [OSTI]

Facilities Management CAD Standards 2011 #12;Facilities Management CAD Standards Providing: Layering Standards 2.1 Layer Name Format 2.2 Layer Name Modifiers 2.3 Layer Attributes 2.4 Special Layer of PDF and DWG Files APPENDIX A: DAL FM CAD Standard Layers APPENDIX B: DAL FM CAD Special Layers

Brownstone, Rob

184

Cornell University Facilities Services  

E-Print Network [OSTI]

requirements, building code, and sustainability objectives. This plan takes a long- term view, projecting workCornell University Facilities Services Contract Colleges Facilities Fernow and Rice Hall in Fernow, Rice, Bruckner, Bradfield and Plant Science buildings. It includes a surging and phasing plan

Manning, Sturt

185

Argonne Leadership Computing Facility  

E-Print Network [OSTI]

Argonne Leadership Computing Facility Argonne Leadership Computing Facility 2010 ANNUAL REPORT S C I E N C E P O W E R E D B Y S U P E R C O M P U T I N G ANL-11/15 The Argonne Leadership Computing States Government nor any agency thereof, nor UChicago Argonne, LLC, nor any of their employees

Kemner, Ken

186

A Materials Facilities Initiative -  

E-Print Network [OSTI]

A Materials Facilities Initiative - FMITS & MPEX D.L. Hillis and ORNL Team Fusion & Materials for Nuclear Systems Division July 10, 2014 #12;2 Materials Facilities Initiative JET ITER FNSF Fusion Reactor Challenges for materials: fluxes and fluence, temperatures 50 x divertor ion fluxes up to 100 x neutron

187

Nanotechnology User Facility for  

E-Print Network [OSTI]

A National Nanotechnology User Facility for Industry Academia Government #12;The National Institute of Commerce's nanotechnology user facility. The CNST enables innovation by providing rapid access to the tools new measurement and fabrication methods in response to national nanotechnology needs. www

188

Science &Technology Facilities Council  

E-Print Network [OSTI]

and Science & Technology Facilities Council invite you to The ESA Technology Transfer Network SpaceTech2012Science &Technology Facilities Council Innovations Issue 31 October 2012 This issue: 1 STFC International prize for `no needles' breast cancer diagnosis technique 6 CEOI Challenge Workshop ­ Current

189

Emergency Facilities and Equipment  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This volume clarifies requirements of DOE O 151.1 to ensure that emergency facilities and equipment are considered as part of emergency management program and that activities conducted at these emergency facilities are fully integrated. Canceled by DOE G 151.1-4.

1997-08-21T23:59:59.000Z

190

Workshop proceedings: Developing the scientific basis for long-term land management of the Idaho National Engineering and Environmental Laboratory  

SciTech Connect (OSTI)

Responses to a survey on the INEEL Comprehensive Facility and Land Use Plan (US DOE 1996a) indicated the need for additional discussion on environmental resources, disturbance, and land use issues on the Idaho National Engineering and Environmental Laboratory (INEEL). As a result, in September 1997, a workshop evaluated the existing scientific basis and determined future data needs for long-term land management on the INEEL. This INEEL Long-Term Land Management Workshop examined existing data on biotic, abiotic, and heritage resources and how these resources have been impacted by disturbance activities of the INEEL. Information gained from this workshop will help guide land and facility use decisions, identify data gaps, and focus future research efforts. This report summarizes background information on the INEEL and its long-term land use planning efforts, presentations and discussions at the workshop, and the existing data available at the INEEL. In this document, recommendations for future INEEL land use planning, research efforts, and future workshops are presented. The authors emphasize these are not policy statements, but comments and suggestions made by scientists and others participating in the workshop. Several appendices covering land use disturbance, legal drivers, land use assumptions and workshop participant comments, workshop participants and contributors, and the workshop agenda are also included.

Sperber, T.D.; Reynolds, T.D. [eds.] [Environmental Science and Research Foundation, Inc., Idaho Falls, ID (United States); Breckenridge, R.P. [ed.] [Lockheed Martin Idaho Technologies Co., Idaho Falls, ID (United States)

1998-03-01T23:59:59.000Z

191

Silver delafossite nitride, AgTaN{sub 2}?  

SciTech Connect (OSTI)

A new silver nitride, AgTaN{sub 2}, was synthesized from NaTaN{sub 2} by a cation-exchange reaction, using a AgNO{sub 3}-NH{sub 4}NO{sub 3} flux at 175 {sup o}C. Its crystal structure type is delafossite (R3-bar m) with hexagonal lattice parameters of a=3.141(3) A, c=18.81(2) A, in which silver is linearly coordinated to nitrogen. Energy dispersive X-ray analysis and combustion nitrogen/oxygen analysis gave a composition with atomic ratios of Ag:Ta:N:O as 1.0:1.2(1):2.1(1):0.77(4), which is somewhat Ta rich and indicates some oxide formation. The X-ray photoelectron spectroscopy analysis showed a Ta- and O-rich surface and transmission electron microscope observation exhibited aggregates of ca. 4-5 nm-sized particles on the surface, which are probably related to the composition deviation from a AgTaN{sub 2}. The lattice parameters of stoichiometric AgTaN{sub 2} calculated by density functional theory agree with the experimental ones, but the possibility of some oxygen incorporation and/or silver deficiency is not precluded. -- Graphical abstract: A delafossite silver nitride, AgTaN{sub 2}, was synthesized from NaTaN{sub 2} by a cation-exchange reaction using a AgNO{sub 3}-NH{sub 4}NO{sub 3} flux. It contains N-Ag-N linear bonding. Display Omitted

Miura, Akira [Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen (Germany); Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853 (United States); Lowe, Michael; Leonard, Brian M.; Subban, Chinmayee V. [Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853 (United States); Masubuchi, Yuji; Kikkawa, Shinichi [Graduate School of Engineering, Hokkaido University, N13W8, Kita-ku Sapporo 060-8628 (Japan); Dronskowski, Richard [Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen (Germany); Hennig, Richard G. [Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853 (United States); Abruna, Hector D. [Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853 (United States); DiSalvo, Francis J., E-mail: fjd3@cornell.ed [Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853 (United States)

2011-01-15T23:59:59.000Z

192

Land application of sludge  

SciTech Connect (OSTI)

This book is the proceedings of a workshop held in Las Vegas, NV in 1985 entitled Effects of Sewage Sludge Quality and Soil Properties on Plant Uptake of Sludge-Applied Trace Constituents. The workshop was in response to the need to utilize the most current available information in the development of regulations and criteria to safely apply and manage the land application of municipal sewage sludge. The participants were undoubtedly the most knowledgeable of this subject matter, and were divided into five separate but related task groups. The groups addressed the following sludge-related topics: (1) role of soil properties on accumulation of trace element by crops; (2) role of sludge properties on accumulation of trace elements by crops; (3) influence of long-term application on accumulation of trace elements by crops; (4) transfer of trace elements to the food chain, and (5) effects of trace organics in agroecosystems and their risk assessment to humans. The text, therefore, parallels those of the results of the task groups. The five main chapters followed a similar format, i.e., having an introduction section, a comprehensive literature review, discussion of recent and current data, and synthesis of the most relevant information.

Page, A.L.; Logan, T.J.; Ryan, J.A. (eds.)

1987-01-01T23:59:59.000Z

193

Department of Residential Facilities Facilities Student Employment Office  

E-Print Network [OSTI]

Department of Residential Facilities Facilities Student Employment Office 1205E Leonardtown Service Updated 3/09 #12;EMPLOYMENT HISTORY Have you worked for Residential Facilities before? Yes No If so list

Hill, Wendell T.

194

Complete Genome Sequences of Bacillus subtilis subsp. subtilis Laboratory Strains JH642 (AG174) and AG1839  

E-Print Network [OSTI]

The Gram-positive bacterium Bacillus subtilis is widely used for studies of cellular and molecular processes. We announce the complete genomic sequences of strain AG174, our stock of the commonly used strain JH642, and ...

Smith, Janet L.

195

Radioactive Iodine and Krypton Control for Nuclear Fuel Reprocessing Facilities  

SciTech Connect (OSTI)

The removal of volatile radionuclides generated during used nuclear fuel reprocessing in the US is almost certain to be necessary for the licensing of a reprocessing facility in the US. Various control technologies have been developed, tested, or used over the past 50 years for control of volatile radionuclide emissions from used fuel reprocessing plants. The US DOE has sponsored, since 2009, an Off-gas Sigma Team to perform research and development focused on the most pressing volatile radionuclide control and immobilization problems. In this paper, we focus on the control requirements and methodologies for 85Kr and 129I. Numerous candidate technologies have been studied and developed at laboratory and pilot-plant scales in an effort to meet the need for high iodine control efficiency and to advance alternatives to cryogenic separations for krypton control. Several of these show promising results. Iodine decontamination factors as high as 105, iodine loading capacities, and other adsorption parameters including adsorption rates have been demonstrated under some conditions for both silver zeolite (AgZ) and Ag-functionalized aerogel. Sorbents, including an engineered form of AgZ and selected metal organic framework materials (MOFs), have been successfully demonstrated to capture Kr and Xe without the need for separations at cryogenic temperatures.

N. R. Soelberg; J. D. Law; T. G. Garn; M. Greenhalgh; R. T. Jubin; P. Thallapally; D. M. Strachan

2013-08-01T23:59:59.000Z

196

Synthesis and electrocatalytic performance for p-nitrophenol reduction of rod-like Co{sub 3}O{sub 4} and Ag/Co{sub 3}O{sub 4} composites  

SciTech Connect (OSTI)

Graphical abstract: The pure Co{sub 3}O{sub 4} and Ag/Co{sub 3}O{sub 4} composite with 5% Ag all exhibited rod-like morphology, and the microrods were actually composed of nanoparticles with mean size of 35 nm or so. - Highlights: • A facile route was designed to fabricate rod-like Co{sub 3}O{sub 4} and Ag/Co{sub 3}O{sub 4} composite nanomaterials. • Co{sub 3}O{sub 4} and Ag/Co{sub 3}O{sub 4} composite were modified on a GCE directly. • All samples exhibited enhanced catalytic property for p-nitrophenol reduction. - Abstract: Rod-like precursors of Co{sub 3}O{sub 4} and Ag/Co{sub 3}O{sub 4} composites with different Ag contents were synthesized via a co-precipitation method. Co{sub 3}O{sub 4} and Ag/Co{sub 3}O{sub 4} composite samples were fabricated by calcining each precursor at 400 °C for 3 h. The as-prepared samples were characterized by thermogravimetric analysis and differential thermal gravimetric analysis (TGA/DTA), X-ray diffraction (XRD), transmission electron microscopy (TEM), and field emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS), respectively. Co{sub 3}O{sub 4} and Ag/Co{sub 3}O{sub 4} composites were used as electrocatalyst modified on a glassy carbon electrode for p-nitrophenol reduction in basic solution. The results showed that p-nitrophenol could be reduced effectively on the modified electrode. By comparison with a bare glassy carbon electrode, peak current increased markedly with Co{sub 3}O{sub 4} and Ag/Co{sub 3}O{sub 4} samples, and peak potential decreased obviously with Ag/Co{sub 3}O{sub 4} samples. Ag/Co{sub 3}O{sub 4} composites with 4% Ag exhibited the highest electrocatalytic activity for p-nitrophenol reduction.

Pan, Lu, E-mail: panlu1970@163.com [Department of Chemistry and Chemical Engineering, Huainan Normal University, Huainan 232001 (China); Anhui Key Laboratory of Low temperature Co-fired Material, Huainan Normal University, Huainan 232001 (China); Tang, Jing; Wang, Fengwu [Department of Chemistry and Chemical Engineering, Huainan Normal University, Huainan 232001 (China)

2013-07-15T23:59:59.000Z

197

Test Facility Daniil Stolyarov, Accelerator Test Facility User...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Development of the Solid-State Laser System for the Accelerator Test Facility Daniil Stolyarov, Accelerator Test Facility User's Meeting April 3, 2009 Outline Motivation for...

198

EDDY CURRENT EFFECT OF THE BNL-AGS VACUUM CHAMBER ON THE OPTICS OF THE BNL-AGS SYNCHROTRON.  

SciTech Connect (OSTI)

During the acceleration cycle of the AGS synchrotron, eddy currents are generated within the walls of the vacuum chambers of the AGS main magnets. The vacuum chambers have elliptical cross section, are made of inconel material with a wall thickness of 2 mm and are placed within the gap of the combined-function main magnets of the AGS synchrotron. The generation of the eddy currents in the walls of the vacuum chambers, creates various magnetic multipoles, which affect the optics of the AGS machine. In this report these magnetic multipoles are calculated for various time interval starting at the acceleration cycle, where the magnetic field of the main magnet is {approx}0.1 T, and ending before the beam extraction process, where the magnetic field of the main magnet is almost constant at {approx}1.1 T. The calculations show that the magnetic multipoles generated by the eddy-currents affect the optics of the AGS synchrotron during the acceleration cycle and in particular at low magnetic fields of the main magnet. Their effect is too weak to affect the optics of the AGS machine during beam extraction at the nominal energies.

TSOUPAS,N.; AHRENS,L.; BROWN,K.A.; GLENN,J.W.; GARDNER,K.

1999-03-29T23:59:59.000Z

199

Minerals on Public Lands (Texas)  

Broader source: Energy.gov [DOE]

Any tract of land that belongs to the state, including islands, salt and freshwater lakes, bays, inlets, marshes, and reefs owned by the state within tidewater limits, the part of the Gulf of...

200

Delaware Land Protection Act (Delaware)  

Broader source: Energy.gov [DOE]

The Land Protection Act requires the Department of Natural Resources and Environmental Control to work with the Delaware Open Space Council to develop standards and criteria for determining the...

Note: This page contains sample records for the topic "facility ag land" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Carl Zeiss STM AG | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: EnergyBostonFacility | OpenCarboPur TechnologiesGeothermalOpen

202

1996 Hanford site report on land disposal restrictions for mixed waste  

SciTech Connect (OSTI)

This report was submitted to meet the requirements of Hanford Federal Facility Agreement and Consent Order milestone M-26-OIF. This milestone requires the preparation of an annual report that covers characterization, treatment, storage, minimization, and other aspects of land disposal-restricted mixed waste management at the Hanford Site.

Black, D.G.

1996-04-01T23:59:59.000Z

203

Management of a complex cavern storage facility for natural gas  

SciTech Connect (OSTI)

The Epe cavern storage facility operated by Ruhrgas AG has developed into one of the largest gas cavern storage facilities in the world. Currently, there are 32 caverns and 18 more are planned in the future. Working gas volume will increase from approximately 1.5 {times} 10{sup 9} to 2 {times} 10{sup 9} m{sup 3}. The stratified salt deposit containing the caverns has a surface area of approximately 7 km{sup 2} and is 250 m thick at the edge and 400 m thick in the center. Caverns are leached by a company that uses the recovered brine in the chlorine industry. Cavern dimensions are determined before leaching. The behavior of each cavern, as well as the thermodynamic properties of natural gas must be considered in cavern management. The full-length paper presents the components of a complex management system covering the design, construction, and operation of the Epe gas-storage caverns.

NONE

1998-04-01T23:59:59.000Z

204

Photovoltaic Research Facilities  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy (DOE) funds photovoltaic (PV) research and development (R&D) at its national laboratory facilities located throughout the country. To encourage further innovation,...

205

NETL - Fuel Reforming Facilities  

ScienceCinema (OSTI)

Research using NETL's Fuel Reforming Facilities explores catalytic issues inherent in fossil-energy related applications, including catalyst synthesis and characterization, reaction kinetics, catalyst activity and selectivity, catalyst deactivation, and stability.

None

2014-06-27T23:59:59.000Z

206

NEW RENEWABLE FACILITIES PROGRAM  

E-Print Network [OSTI]

's electricity from renewable resources by 2010. The Guidebook outlines eligibility and legal requirementsCALIFORNIA ENERGY COMMISSION ` NEW RENEWABLE FACILITIES PROGRAM GUIDEBOOK March 2007 CEC-300 Executive Director Heather Raitt Technical Director RENEWABLE ENERGY OFFICE CALIFORNIA ENERGY COMMISSION

207

NEW RENEWABLE FACILITIES PROGRAM  

E-Print Network [OSTI]

CALIFORNIA ENERGY COMMISSION NEW RENEWABLE FACILITIES PROGRAM GUIDEBOOK APRIL 2006 CEC-300 Director Heather Raitt Technical Director Renewable Energy Program Drake Johnson Office Manager Renewable Energy Office Valerie Hall Deputy Director Efficiency, Renewables, and Demand Analysis Division #12;These

208

Liquidity facilities and signaling  

E-Print Network [OSTI]

This dissertation studies the role of signaling concerns in discouraging access to liquidity facilities like the IMF contingent credit lines (CCL) and the Discount Window (DW). In Chapter 1, I analyze the introduction of ...

Arregui, Nicolás

2010-01-01T23:59:59.000Z

209

NETL - Fuel Reforming Facilities  

SciTech Connect (OSTI)

Research using NETL's Fuel Reforming Facilities explores catalytic issues inherent in fossil-energy related applications, including catalyst synthesis and characterization, reaction kinetics, catalyst activity and selectivity, catalyst deactivation, and stability.

None

2013-06-12T23:59:59.000Z

210

Cornell University Facilities Services  

E-Print Network [OSTI]

Description: The Large Animal Teaching Complex (LATC) will be a joint facility for the College of Veterinary or increase operating costs of the dairy barn; therefore, the College of Veterinary Medicine has agreed

Manning, Sturt

211

B Plant facility description  

SciTech Connect (OSTI)

Buildings 225B, 272B, 282B, 282BA, and 294B were removed from the B Plant facility description. Minor corrections were made for tank sizes and hazardous and toxic inventories.

Chalk, S.E.

1996-10-04T23:59:59.000Z

212

Facilities Management Department Restructuring  

E-Print Network [OSTI]

­ Zone 2 ­ Mission Bay/East Side: Includes Mission Bay, Mission Center Bldg, Buchanan Dental, Hunters Point, 654 Minnesota, Oyster Point 2. Recommendation that UCSF align all Facility Services and O

Mullins, Dyche

213

Hazardous Waste Facilities Siting (Connecticut)  

Broader source: Energy.gov [DOE]

These regulations describe the siting and permitting process for hazardous waste facilities and reference rules for construction, operation, closure, and post-closure of these facilities.

214

Nuclear Power Generating Facilities (Maine)  

Broader source: Energy.gov [DOE]

The first subchapter of the statute concerning Nuclear Power Generating Facilities provides for direct citizen participation in the decision to construct any nuclear power generating facility in...

215

Pollution Control Facilities (South Carolina)  

Broader source: Energy.gov [DOE]

For the purpose of this legislation, pollution control facilities are defined as any facilities designed for the elimination, mitigation or prevention of air or water pollution, including all...

216

SGP Cloud and Land Surface Interaction Campaign (CLASIC): Measurement Platforms  

SciTech Connect (OSTI)

The Cloud and Land Surface Interaction Campaign (CLASIC) will be conducted from June 8 to June 30, 2007, at the U.S. Department of Energy’s Atmospheric Radiation Measurement (ARM) Climate Research Facility (ACRF) Southern Great Plains (SGP) site. Data will be collected using eight aircraft equipped with a variety of specialized sensors, four specially instrumented surface sites, and two prototype surface radar systems. The architecture of CLASIC includes a high-altitude surveillance aircraft and enhanced vertical thermodynamic and wind profile measurements that will characterize the synoptic scale structure of the clouds and the land surface within the ACRF SGP site. Mesoscale and microscale structures will be sampled with a variety of aircraft, surface, and radar observations. An overview of the measurement platforms that will be used during the CLASIC are described in this report. The coordination of measurements, especially as it relates to aircraft flight plans, will be discussed in the CLASIC Implementation Plan.

MA Miller; R Avissar; LK Berg; SA Edgerton; ML Fischer; TJ Jackson; B. Kustas; PJ Lamb; G McFarquhar; Q Min; B Schmid; MS Torn; DD Tuner

2007-06-01T23:59:59.000Z

217

Plutonium-Uranium Extraction (PUREX) facility preclosure work plan  

SciTech Connect (OSTI)

The dangerous waste permit identification number (WA7890008967)was issued by the U.S. Environmental Protection Agency and the Washington State Department of Ecology. This identification number encompasses a number of treatment, storage, and/or disposal units within the Hanford Facility. One of these treatment, storage, and/or disposal units is the PUREX Facility,currently undergoing a phased closure. The PUREX Facility Preclosure Work Plan submittal differs from closure plans previously submitted by the U.S. Department of Energy, Richland Operations Office to the Washington State Department of Ecology,in that the closure process occurs in three distinct phases as part of the decommissioning process (i.e., transition,surveillance and maintenance, and disposition). Final closure will occur during the disposition phase. This phased decommissioning process is implemented because development of a complete closure plan during the transition phase is impractical and future land use determinations have not been identified. The objective of the transition phase is to place the PUREX Facility in a safe configuration with respect to human health and the environment. Following the transition phase activities, the PUREX Facility will begin the surveillance and maintenance phase of 10 or more years until disposition phase activities commence. The closure plan for the PUREX facility will be prepared during the disposition phase. For purposes of this documentation, the PUREX Facility does not include the PUREX Storage Tunnels. The PUREX Storage Tunnels are an operating storage unit(DOE/RL-94-24).

Bhatia, R.K., Westinghouse Hanford

1996-07-09T23:59:59.000Z

218

Oregon Institute of Technology Snowmelt Low Temperature Geothermal Facility  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(UtilityCounty, Michigan: EnergyOpenBarterVirginia.Land or WaterbodyFacility ||

219

Oregon ORS 469, Energy Facilities | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(UtilityCounty, Michigan: EnergyOpenBarterVirginia.Land orFacilities Jump to:

220

Oregon Trail Mushrooms Industrial Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(UtilityCounty, Michigan: EnergyOpenBarterVirginia.Land orFacilitiesOregonOSU

Note: This page contains sample records for the topic "facility ag land" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Working with SRNL - Our Facilities - Glovebox Facilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste and MaterialsWenjun1 Table 1.14Working WithGlovebox Facilities

222

Brookhaven Facility Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: EnergyBoston Areais a village in Cook County, Illinois. ItBrookhaven Facility

223

Global Climate Change,Global Climate Change, Land Cover Change, andLand Cover Change, and  

E-Print Network [OSTI]

1 Global Climate Change,Global Climate Change, Land Cover Change, andLand Cover Change Changes · Due to ­ Climate Change ­ Land Cover / Land Use Change ­ Interaction of Climate and Land Cover Change · Resolution ­ Space ­ Time Hydro-Climatic Change · Variability vs. Change (Trends) · Point data

224

Report on audit of the US Department of Energy`s identification and disposal of nonessential land  

SciTech Connect (OSTI)

This document presents the results of an audit of four US DOE facilities to determine whether any land holdings are excess to current and anticipated future needs. Facilities audited were the Hanford Site, the Oak Ridge Reservation, the Idaho National Engineering Laboratory, and the Brookhaven Laboratory. Audit findings were that 309,000 acres at the Hanford, Oak Ridge, and Idaho sites were not essential to carrying out current and foreseeable mission requirements. It is recommended that the DOE dispose of the nonessential land holdings, reevaluate requirements for remaining land holdings and dispose of any additional nonessential land, and reevaluate the policy of defining ecosystem management as a valid basis for retaining Department real property. 2 tabs.

NONE

1997-01-01T23:59:59.000Z

225

UNIVERSITY BOULEVARD FAU Research Facility  

E-Print Network [OSTI]

Harriet L.Wilkes Honors College FAU Research Facility Expansion Satellite Utility Plant Chiller Lift

Fernandez, Eduardo

226

Hanford facility contingency plan  

SciTech Connect (OSTI)

The Hanford Facility Contingency Plan, together with each TSD unit- specific contingency plan, meets the WAC 173-303 requirements for a contingency plan. Applicability of this plan to Hanford Facility activities is described in the Hanford Facility RCRA Permit, Dangerous Waste Portion, General Condition II.A. General Condition II.A applies to Part III TSD units, Part V TSD units, and to releases of hazardous substances which threaten human health or the environment. Additional information about the applicability of this document may also be found in the Hanford Facility RCRA Permit Handbook (DOE/RL-96-10). This plan includes descriptions of responses to a nonradiological hazardous substance spill or release at Hanford Facility locations not covered by TSD unit-specific contingency plans or building emergency plans. The term hazardous substances is defined in WAC 173-303-040 as: ``any liquid, solid, gas, or sludge, including any material, substance, product, commodity, or waste, regardless of quantity, that exhibits any of the physical, chemical or biological properties described in WAC 173-303-090 or 173-303-100.`` Whenever the term hazardous substances is used in this document, it will be used in the context of this definition. This plan includes descriptions of responses for spills or releases of hazardous substances occurring at areas between TSD units that may, or may not, threaten human health or the environment.

Sutton, L.N.

1996-07-01T23:59:59.000Z

227

Surface spin flip probability of mesoscopic Ag wires.  

SciTech Connect (OSTI)

Spin relaxation in mesoscopic Ag wires in the diffusive transport regime is studied via nonlocal spin valve and Hanle effect measurements performed on Permalloy/Ag lateral spin valves. The ratio between momentum and spin relaxation times is not constant at low temperatures. This can be explained with the Elliott-Yafet spin relaxation mechanism by considering the momentum surface relaxation time as being temperature dependent. We present a model to separately determine spin flip probabilities for phonon, impurity and surface scattering and find that the spin flip probability is highest for surface scattering.

Mihajlovic, G.; Pearson, J. E.; Bader, S. D.; Hoffmann, A.

2010-06-08T23:59:59.000Z

228

Level Structure of 103Ag at high spins  

E-Print Network [OSTI]

High spin states in $^{103}$Ag were investigated with the Gammasphere array, using the $^{72}$Ge($^{35}$Cl,$2p2n$)$^{103}$Ag reaction at an incident beam energy of 135 MeV. A $\\Delta J$=1 sequence with predominantly magnetic transitions and two nearly-degenerate $\\Delta J=1$ doublet bands have been observed. The dipole band shows a decreasing trend in the $B(M1)$ strength as function of spin, a well established feature of magnetic bands. The nearly-degenerate band structures satisfy the three experimental signatures of chirality in the nuclei; however microscopic calculations are indicative of a magnetic phenomenon

S. Ray; N. S. Pattabiraman; Krishichayan; A. Chakraborty; S. Mukhopadhyay; S. S. Ghugre; S. N. Chintalapudi; A. K. Sinha; U. Garg; S. Zhu; B. Kharraja; D. Almehed

2007-12-07T23:59:59.000Z

229

Pb-free Sn-Ag-Cu ternary eutectic solder  

DOE Patents [OSTI]

A Pb-free solder includes a ternary eutectic composition consisting essentially of about 93.6 weight % Sn-about 4.7 weight % Ag-about 1.7 weight % Cu having a eutectic melting temperature of about 217 C and variants of the ternary composition wherein the relative concentrations of Sn, Ag, and Cu deviate from the ternary eutectic composition to provide a controlled melting temperature range (liquid-solid ``mushy`` zone) relative to the eutectic melting temperature (e.g. up to 15 C above the eutectic melting temperature). 5 figs.

Anderson, I.E.; Yost, F.G.; Smith, J.F.; Miller, C.M.; Terpstra, R.L.

1996-06-18T23:59:59.000Z

230

Fitness facilities, facilities for extracurricular activities and other purposes Facility Location Department in charge  

E-Print Network [OSTI]

Facility Location Department in charge Student Hall (1) Common Facility 1 for Extracurricular Activities (2 tennis courts, Swimming pool (25 m, not officially approved) Rokkodai Area (Tsurukabuto 2 Campus) Martial art training facility, Japanese archery training facility, Playground, 4 tennis courts, Swimming pool

Banbara, Mutsunori

231

RCRA facility stabilization initiative  

SciTech Connect (OSTI)

The RCRA Facility Stabilization Initiative was developed as a means of implementing the Corrective Action Program`s management goals recommended by the RIS for stabilizing actual or imminent releases from solid waste management units that threaten human health and the environment. The overall goal of stabilization is to, as situations warrant, control or abate threats to human health and/or the environment from releases at RCRA facilities, and/or to prevent or minimize the further spread of contamination while long-term remedies are pursued. The Stabilization initiative is a management philosophy and should not be confused with stabilization technologies.

Not Available

1995-02-01T23:59:59.000Z

232

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMayMarch 1, 2012 [Facility

233

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMayMarch 1, 2012 [FacilityMay

234

Facility Data Policy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series toESnet4:Epitaxial ThinFOR IMMEDIATE5Facilities SomeFacilities Glove

235

E-Print Network 3.0 - ag brennelementewerk hanau Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

500 nm Au and 50 nm Ti with a thermal evaporator (LH Leybold AG, Hanau... , Garching, Germany), thermal evaporator (LH Leybold AG, Hanau, Germany and IC4 Plus Inficon...

236

PD Dr. Martin Stetter, Siemens AG 1 Neuronale Verfahren zur Regression  

E-Print Network [OSTI]

PD Dr. Martin Stetter, Siemens AG 1 Neuronale Verfahren zur Regression · Lineares Modell · Vom: Optimierungsverfahren #12;PD Dr. Martin Stetter, Siemens AG 2 Optimierung konvexer Funktionen · Häufiges Problem bei

Popeea, Corneliu - Chair for Foundations of Software Reliability and Theoretical Computer Science

237

SO2-induced stability of Ag-alumina catalysts in the SCR of NO...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SO2-induced stability of Ag-alumina catalysts in the SCR of NO with methane. SO2-induced stability of Ag-alumina catalysts in the SCR of NO with methane. Abstract: We report on a...

238

High-temperature internal oxidation of Ag/1.2at.% Mg and Ag/0.25at.% Mg-0.25at.% Ni.  

SciTech Connect (OSTI)

High-temperature oxygen diffusion and internal oxidation in Ag, Ag/1.2 at.% Mg (Ag-Mg), and Ag/0.25 at.% Mg-0.25 at.% Ni (Ag-Mg-Ni) have been studied, mostly in air and 8% O{sub 2}, at 450-835 C. The focus of the studies was on thermogravimetric analysis, microhardness tests, and optical and electron microscopy observations of grain growth and its inhibition by oxidation. The internal oxidation of both alloys exhibited nearly identical activation energies (0.81 eV for Ag-Mg and 0.83 eV for Ag-Mg-Ni) and rate constants. The maximum O content of both alloys was superstoichiometric (e.g., O/Mg > 1.0) and the maximum O/Mg ratios were higher at lower temperatures than at higher temperatures (e.g., 1.25 at 500 C and 1.05 at 800 C). Diffusion of O in pure Ag was {approx}60 times faster at 825 C and {approx}400 times faster at 500 C than internal oxidation of either of the Ag alloys. Grain growth of both alloys and of the Ag was quantified between 450-800 C and related to internal oxidation.

Balachandran, U.; Goretta, K. C.; McNallan, M. J.; Park, J.-H.; Prorok, B. C.

1999-09-08T23:59:59.000Z

239

Characterization of the antiferromagnetism in Ag(pyz)2(S2O8) with a two-dimensional square lattice of Ag 2+ ions (Ag=silver, Pyz-pyrdzine, S2O8=sulfate)  

SciTech Connect (OSTI)

X-ray powder diffraction and magnetic susceptibility measurements show that Ag(pyz){sub 2}(S{sub 2}O{sub 8}) consists of 2D square nets of Ag{sup 2+} ions resulting from the corner-sharing of axially elongated AgN{sub 4}O{sub 2} octahedra and exhibits characteristic 2D antiferromagnetism. Nevertheless, {mu}{sup +}Sr measurements indicate that Ag(pyz){sub 2}(S{sub 2}O{sub 8}) undergoes 3D magnetic ordering below 7.8(3) K.

Singleton, John [Los Alamos National Laboratory; Mc Donald, R [Los Alamos National Laboratory; Sengupta, P [Los Alamos National Laboratory; Cox, S [Los Alamos National Laboratory; Manson, J [E WASHINGTON U; Southerland, H [E WASHINGTON U; Warter, M [E WASHINGTON U; Stone, K [STATE UNIV OF NY; Stephens, P [STATE UNIV OF NY; Lancaster, T [OXFORD U; Steele, A [OXFORD U; Blundell, S [OXFORD U; Baker, P [OXFORD U; Pratt, F [RUTHERFORD-APPLETON LAB; Lee, C [NCSU; Whangbo, M [NCSU

2009-01-01T23:59:59.000Z

240

Service & Reliability Equipment & Facilities  

E-Print Network [OSTI]

termites E5 Marine applications, panel & block E7 Field Stake tests (FST colonies) E9 Above ground L-joint stake test (Formosan termites & decay), E9 L- joint, E16 (horizontal lap-joint), E18 ground proximity facilities for AWPA test: A9 X-ray, E1 (termites), E10 (soil block), E11 (leaching), E12 metal corrosion

Note: This page contains sample records for the topic "facility ag land" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Graph algorithms experimentation facility  

E-Print Network [OSTI]

DRAWADJMAT 2 ~e ~l 2. ~f ~2 2 ~t ~& [g H 2 O? Z Mwd a P d ed d Aid~a sae R 2-BE& T C dbms Fig. 2. External Algorithm Handler The facility is menu driven and implemented as a client to XAGE. Our implementation follows very closely the functionality...

Sonom, Donald George

1994-01-01T23:59:59.000Z

242

Strategies for Facilities Renewal  

E-Print Network [OSTI]

of steam production is from exothermic chem ical processes. A large gas fired cogeneration unit was completed in 1987 and supplies 90% of the facil ities' electrical needs and 25% of total steam demand (the remaining steam is supplied by process heat...

Good, R. L.

243

FACILITIES INSTRUCTIONS, STANDARDS, & TECHNIQUES  

E-Print Network [OSTI]

to the repair of hydraulic turbine runners and large pump impellers. Reclamation operates and maintains a wideFACILITIES INSTRUCTIONS, STANDARDS, & TECHNIQUES VOLUME 2-5 TURBINE REPAIR Internet Version variety of reaction and impulse turbines as well as axial flow, mixed flow, radial flow pumps and pump

Laughlin, Robert B.

244

Acceleration of heavy ions in the AGS and CBA  

SciTech Connect (OSTI)

A plan has been developed to inject ion beams from the Brookhaven Tandem or a cyclotron added to the Tandem into the AGS. This beam could then be injected into a relativistic heavy ion collider. The availability of many CBA components adds to the attractiveness of this proposal.

Barton, M.Q.

1983-01-01T23:59:59.000Z

245

PD Dr. Martin Stetter, Siemens AG 1 Statistische und neuronale Lernverfahren  

E-Print Network [OSTI]

PD Dr. Martin Stetter, Siemens AG 1 Statistische und neuronale Lernverfahren Martin Stetter SS 2003, Siemens AG 2 Behandelte Themen 0. ,,Motivation": Lernen in Statistik und Biologie 1-Regression 4. Bayes-Belief-Netze Statistische und neuronale Lernverfahren #12;PD Dr. Martin Stetter, Siemens AG

Popeea, Corneliu - Chair for Foundations of Software Reliability and Theoretical Computer Science

246

PD Dr. Martin Stetter, Siemens AG 1 Neuronale Lernverfahren fr Klassifikation  

E-Print Network [OSTI]

PD Dr. Martin Stetter, Siemens AG 1 Neuronale Lernverfahren für Klassifikation · Das Perceptron #12;PD Dr. Martin Stetter, Siemens AG 2 Das Perceptron Klassifikation: Perceptron · Neuronale Struktur- Klassifikationsfehler 1x w )(m x 1)( =m y 0^ =y 1^ +=y 2x #12;PD Dr. Martin Stetter, Siemens AG 3Klassifikation

Popeea, Corneliu - Chair for Foundations of Software Reliability and Theoretical Computer Science

247

PD Dr. Martin Stetter, Siemens AG 1 Lernen von Datenmodellen: Fehlerminimierung und Regularisierung  

E-Print Network [OSTI]

PD Dr. Martin Stetter, Siemens AG 1 Lernen von Datenmodellen: Fehlerminimierung und Regularisierung: Fehlerminimierung #12;PD Dr. Martin Stetter, Siemens AG 2 Maximum-Likelihood und Fehlerminimierung · Likelihood: Fehlerfunktionen #12;PD Dr. Martin Stetter, Siemens AG 3 · Def. Fehlerfunktion: 0))|(,,( wxfyxl yxyyx ,0),,( =lmit

Popeea, Corneliu - Chair for Foundations of Software Reliability and Theoretical Computer Science

248

Siemens AG, CT IC 4, H.-G. Zimmermann1 CORPORATETECHNOLOGY  

E-Print Network [OSTI]

© Siemens AG, CT IC 4, H.-G. Zimmermann1 CORPORATETECHNOLOGY System Identification & Forecasting with Advanced Neural Networks Principles, Techniques, Applications Hans Georg Zimmermann Siemens AG Email : Hans_Georg.Zimmermann@siemens.com © Siemens AG, CT IC 4, H.-G. Zimmermann2 CORPORATETECHNOLOGY . . . . ! " i ii wxw 0 w1 wn xn x1 Distinct

Schmidhuber, Juergen

249

PD Dr. Martin Stetter, Siemens AG 1 Lernen von Datenmodellen: Approximation  

E-Print Network [OSTI]

PD Dr. Martin Stetter, Siemens AG 1 Lernen von Datenmodellen: Approximation · Bayes`sches Schließen: Approximation #12;PD Dr. Martin Stetter, Siemens AG 2 Ziel maschinellen Lernens (=statistische Inferenz) · Man Datenmodellen: Approximation #12;PD Dr. Martin Stetter, Siemens AG 3 Bayes`sches Schließen · Es gilt, die Daten

Popeea, Corneliu - Chair for Foundations of Software Reliability and Theoretical Computer Science

250

PD Dr. Martin Stetter, Siemens AG 1 Statistische und neuronale Lernverfahren  

E-Print Network [OSTI]

PD Dr. Martin Stetter, Siemens AG 1 Statistische und neuronale Lernverfahren Martin Stetter WS 03, Siemens AG 2 Behandelte Themen 0. ,,Motivation": Lernen in Statistik und Biologie 1-Regression 4. Bayes-Belief-Netze Statistische und neuronale Lernverfahren #12;PD Dr. Martin Stetter, Siemens AG

Popeea, Corneliu - Chair for Foundations of Software Reliability and Theoretical Computer Science

251

PD Dr. Martin Stetter, Siemens AG 1 Neuronale Verfahren zur Regression  

E-Print Network [OSTI]

PD Dr. Martin Stetter, Siemens AG 1 Neuronale Verfahren zur Regression · Lineares Modell · Vom-Netze Regression #12;PD Dr. Martin Stetter, Siemens AG 2 Das lineare Modell · Ausgangspunkt: Lineares Perceptron vorgegeben, werden nicht gelernt #12;PD Dr. Martin Stetter, Siemens AG 3 · Geschrieben als Regressionsmodell

Popeea, Corneliu - Chair for Foundations of Software Reliability and Theoretical Computer Science

252

Influence des endiguements et remblais sur l'inondation de la plaine de l'Agly  

E-Print Network [OSTI]

Influence des endiguements et remblais sur l'inondation de la plaine de l'Agly The influence of dikes and embankments on the Agly plain floods par A. Paquier Cemagref Building ofdikes along downstream reach ofAgly River has protected the low plain /rom the more frequent floods, wlĂąch encourages

Boyer, Edmond

253

Pd and Ag metal-silicate partitioning applied to Earth differentiation and core-mantle exchange  

E-Print Network [OSTI]

Pd and Ag metal-silicate partitioning applied to Earth differentiation and core-mantle exchange metallic sulfide and liquid silicate under plausible magma ocean conditions constrains potential core 107 Ag content and the origin of observed Pd and Ag mantle abundances. DPd metallic sulfide / silicate

Mcdonough, William F.

254

Risk management study for the retired Hanford Site facilities: Qualitative risk evaluation for the retired Hanford Site facilities. Volume 3  

SciTech Connect (OSTI)

This document provides a risk evaluation of the 100 and 200 Area retired, surplus facilities on the Hanford Site. Also included are the related data that were compiled by the risk evaluation team during investigations performed on the facilities. Results are the product of a major effort performed in fiscal year 1993 to produce qualitative information that characterizes certain risks associated with these facilities. The retired facilities investigated for this evaluation are located in the 100 and 200 Areas of the 1,450-km{sup 2} (570-mi{sup 2}) Hanford Site. The Hanford Site is a semiarid tract of land in southeastern Washington State. The nearest population center is Richland, Washington, (population 32,000) 30-km (20 mi) southeast of the 200 Area. During walkdown investigations of these facilities, data on real and potential hazards that threatened human health or safety or created potential environmental release issues were identified by the risk evaluation team. Using these findings, the team categorized the identified hazards by facility and evaluated the risk associated with each hazard. The factors contributing to each risk, and the consequence and likelihood of harm associated with each hazard also are included in this evaluation.

Coles, G.A.; Shultz, M.V.; Taylor, W.E.

1993-09-01T23:59:59.000Z

255

2013 Annual Wastewater Reuse Report for the Idaho National Laboratory Site’s Central Facilities Area Sewage Treatment Plant  

SciTech Connect (OSTI)

This report describes conditions, as required by the state of Idaho Wastewater Reuse Permit (#LA-000141-03), for the wastewater land application site at the Idaho National Laboratory Site’s Central Facilities Area Sewage Treatment Plant from November 1, 2012, through October 31, 2013. The report contains, as applicable, the following information: • Site description • Facility and system description • Permit required monitoring data and loading rates • Status of compliance conditions and activities • Discussion of the facility’s environmental impacts. During the 2013 permit year, no wastewater was land-applied to the irrigation area of the Central Facilities Area Sewage Treatment Plant and therefore, no effluent flow volumes or samples were collected from wastewater sampling point WW-014102. However, soil samples were collected in October from soil monitoring unit SU-014101.

Mike Lewis

2014-02-01T23:59:59.000Z

256

Hawaii Department of Land and Natural Resources Office of Conservation...  

Open Energy Info (EERE)

Office of Conservation and Coastal Lands Jump to: navigation, search Name: Hawaii Department of Land and Natural Resources Office of Conservation and Coastal Lands From Open Energy...

257

1 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim wileyonlinelibrary.com Interfacial Nanosphere Lithography toward Ag2SAg  

E-Print Network [OSTI]

-shell Au@Ag2S nanoparticles,[6] hollow-solid Ag2S­Ag nanocomposites,[2,7] porous Ag2S­Ag hybrid nano- tubes. While a variety of physical processes-aided nano- sphere lithography methods have been developed above the tangent-point plane and Ag nano- bowl arrays enclosing the lower part of the MCC template were

Qi, Limin

258

Mapping Savanna Land Change of Belize   

E-Print Network [OSTI]

was assessed using a confusion matrix. The results of the research confirmed the capabilities of Landsat imagery for mapping savannas and their land use. The classification of forest and savanna along with major land use pressures from agriculture...

Wilson, Lauren

2011-11-24T23:59:59.000Z

259

Minerals on School and Public Lands  

Broader source: Energy.gov [DOE]

The Commissioner of School and Public Lands is authorized to lease the mineral interests of such lands for development. Section 5-7 of the SD Codified Laws describes provisions for the leasing of...

260

GEORGE LEA FOUNDER'S SCHOLARSHIP PUBLIC LANDS FOUNDATION  

E-Print Network [OSTI]

1 GEORGE LEA FOUNDER'S SCHOLARSHIP PUBLIC LANDS FOUNDATION P.O. Box 7226 Arlington, VA 22207 Scholarship Application Form This scholarship is being offered by the Public Lands Foundation, a national non

Note: This page contains sample records for the topic "facility ag land" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Sale of Water Resource Land (Maine)  

Broader source: Energy.gov [DOE]

This rule requires an eight month advance notice period whenever a consumer-owned water utility intends to transfer water resource land, defined as any land or real property owned by a water...

262

Marginal, Erodible Land Retirement Policy (Minnesota)  

Broader source: Energy.gov [DOE]

It is state policy to encourage the retirement of marginal, highly erodible land, particularly land adjacent to public waters and drainage systems, from crop production and to reestablish a cover...

263

Coastal Public Lands Management Act (Texas)  

Broader source: Energy.gov [DOE]

The coastal public lands of the state are managed in accordance with the following principles: (a) The natural resources of the surface land, including their aesthetic value and their ability to...

264

Biomass Anaerobic Digestion Facilities and Biomass Gasification Facilities (Indiana)  

Broader source: Energy.gov [DOE]

The Indiana Department of Environmental Management requires permits before the construction or expansion of biomass anaerobic digestion or gasification facilities.

265

Hanford land disposal restrictions plan for mixed wastes  

SciTech Connect (OSTI)

Since the early 1940s, the Hanford Site has been involved in the production and purification of nuclear defense materials. These production activities have resulted in the generation of large quantities of liquid and solid radioactive mixed waste. This waste is subject to regulation under authority of both the Resource Conservation and Recovery Act of 1976 (RCRA) and the Atomic Energy Act. The State of Washington Department of Ecology (Ecology), the US Environmental Protection Agency (EPA), and the US Department of Energy (DOE) have entered into an agreement, the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) to bring Hanford Site Operations into compliance with dangerous waste regulations. The Tri-Party Agreement was amended to require development of the Hanford Land Disposal Restrictions Plan for Mixed Wastes (this plan) to comply with land disposal restrictions requirements for radioactive mixed waste. The Tri-Party Agreement requires, and the this plan provides, the following sections: Waste Characterization Plan, Storage Report, Treatment Report, Treatment Plan, Waste Minimization Plan, a schedule, depicting the events necessary to achieve full compliance with land disposal restriction requirements, and a process for establishing interim milestones. 34 refs., 28 figs., 35 tabs.

Not Available

1990-10-01T23:59:59.000Z

266

Land & Water Conservation Program Conservation Easements  

E-Print Network [OSTI]

Land & Water Conservation Program Conservation Easements: A Step by Step Guide PRELIMINARY STEPS: Step 1: Landowner expresses interest in land conservation. Step 2: Discuss the land with the landowner officially designated as prime. Source: municipal conservation commission or NH DES, Wetlands Bureau.* o Deer

New Hampshire, University of

267

LAND USE AND OWNERSHIP, WILLISTON BASIN  

E-Print Network [OSTI]

Chapter WM LAND USE AND OWNERSHIP, WILLISTON BASIN By T.T. Taber and S.A. Kinney In U.S. Geological........................................WM-1 Map Information for the Williston Basin Land Use And Land Cover Map.........................................................WM-2 Map Information for the Williston Basin Subsurface Ownership map

268

Office of Inspector General report on audit of proposal to acquire land at the Fernald Environmental Management Project  

SciTech Connect (OSTI)

The US Department of Energy (Department) obtained an appraisal and developed a cost estimate to acquire 78 to 100 acres of privately-held land adjoining the Fernald Environmental Management Project (FEMP) as an additional buffer for a waste disposal facility. The objective of this audit was to determine whether the proposed purchase of land was essential to support the site`s mission. The Department obtained an appraisal and developed a cost estimate to acquire the additional land without confirming that av lid need for the land existed. If the land is acquired, the Department could spend between $655,000 and $2.2 million unnecessarily. Additionally, the Department could incur unnecessary maintenance and security costs to maintain the land after acquisition. It was recommended that the Manager, Ohio Field Office, dismiss the proposal to acquire the additional land. Management agreed with the recommendation, stating that the acquisition could not be justified at this time. However, management did not agree with the finding that the Department obtained an appraisal and developed a cost estimate without confirming that a valid need for the land existed. Management stated that the appraisal and cost estimate were principal and necessary to determining whether a need for the land existed. It was concluded that the appraisal and cost estimate should not have been performed because a valid need for the land was never established. Also, it was concluded that it would be inappropriate to reconsider the proposal to acquire the land at a later date if additional funds become available, unless a valid need for the land is first established.

NONE

1997-06-05T23:59:59.000Z

269

Biomass Feedstock National User Facility  

Broader source: Energy.gov [DOE]

Breakout Session 1B—Integration of Supply Chains I: Breaking Down Barriers Biomass Feedstock National User Facility Kevin L. Kenney, Director, Biomass Feedstock National User Facility, Idaho National Laboratory

270

The Caterpillar Coal Gasification Facility  

E-Print Network [OSTI]

This paper is a review of one of America's premier coal gasification installations. The caterpillar coal gasification facility located in York, Pennsylvania is an award winning facility. The plant was recognized as the 'pace setter plant of the year...

Welsh, J.; Coffeen, W. G., III

1983-01-01T23:59:59.000Z

271

Autonomous Landing of MAVs on an Arbitrarily Textured Landing Site using Onboard Monocular Vision  

E-Print Network [OSTI]

Autonomous Landing of MAVs on an Arbitrarily Textured Landing Site using Onboard Monocular Vision a novel solution for micro aerial vehicles (MAVs) to autonomously search for and land on an arbitrary landing site using real- time monocular vision. The autonomous MAV is provided with only one single

Zell, Andreas

272

Facilities evaluation report  

SciTech Connect (OSTI)

The Buried Waste Integrated Demonstration (BWID) is a program of the Department of Energy (DOE) Office of Technology Development whose mission is to evaluate different new and existing technologies and determine how well they address DOE community waste remediation problems. Twenty-three Technical Task Plans (TTPs) have been identified to support this mission during FY-92; 10 of these have identified some support requirements when demonstrations take place. Section 1 of this report describes the tasks supported by BWID, determines if a technical demonstration is proposed, and if so, identifies the support requirements requested by the TTP Principal Investigators. Section 2 of this report is an evaluation identifying facility characteristics of existing Idaho National Engineering Laboratory (INEL) facilities that may be considered for use in BWID technology demonstration activities.

Sloan, P.A.; Edinborough, C.R.

1992-04-01T23:59:59.000Z

273

PUREX facility preclosure work plan  

SciTech Connect (OSTI)

This preclosure work plan presents a description of the PUREX Facility, the history of the waste managed, and addresses transition phase activities that position the PUREX Facility into a safe and environmentally secure configuration. For purposes of this documentation, the PUREX Facility does not include the PUREX Storage Tunnels (DOE/RL-90/24). Information concerning solid waste management units is discussed in the Hanford Facility Dangerous Waste Permit Application, General Information Portion (DOE/RL-91-28, Appendix 2D).

Engelmann, R.H.

1997-04-24T23:59:59.000Z

274

Reed Reactor Facility Annual Report  

SciTech Connect (OSTI)

This is the report of the operations, experiments, modifications, and other aspects of the Reed Reactor Facility for the year.

Frantz, Stephen G.

2000-09-01T23:59:59.000Z

275

Lunch & Learn Facilities &  

E-Print Network [OSTI]

" 3 #12;What are F&A costs? OMB Circular A-21 provides guidance on F&A costs F&A a.k.a. Overhead a #12;F&A Rate Development Process FSU's process must be designed to ensure that Federal sponsors do usage ­ Allocate facilities costs ­ Provide productivity analysis Space survey tool WebSpace ­ On-line

McQuade, D. Tyler

276

ARM - SGP Intermediate Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUC :ProductsSCM Forcing Data DerivedInstrumentsPolarExtended Facility

277

Facilities | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataCombined Heat & PowerEnergy BlogExchangeSummary TableFacilities

278

3S Industries AG Formerly 3S Swiss Solar Systems AG | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWende NewSowitec doWinvestFlume Facility JumpApproach

279

Determine Minimum Silver Flake Addition to GCM for Iodine Loaded AgZ  

SciTech Connect (OSTI)

The minimum amount of silver flake required to prevent loss of I{sub 2} during sintering in air for a SNL Glass Composite Material (GCM) Waste Form containing AgI-MOR (ORNL, 8.7 wt%) was determined to be 1.1 wt% Ag. The final GCM composition prior to sintering was 20 wt% AgI-MOR, 1.1 wt% Ag, and 80 wt% Bi-Si oxide glass. The amount of silver flake needed to suppress iodine loss was determined using thermo gravimetric analysis with mass spectroscopic off-gas analysis. These studies found that the ratio of silver to AgI-MOR required is lower in the presence of the glass than without it. Therefore an additional benefit of the GCM is that it serves to inhibit some iodine loss during processing. Alternatively, heating the AgI-MOR in inert atmosphere instead of air allowed for densified GCM formation without I{sub 2} loss, and no necessity for the addition of Ag. The cause of this behavior is found to be related to the oxidation of the metallic Ag to Ag{sup +} when heated to above ~300{degrees}C in air. Heating rate, iodine loading levels and atmosphere are the important variables that determine AgI migration and results suggest that AgI may be completely incorporated into the mordenite structure by the 550{degrees}C sintering temperature.

Terry J. Garino; Tina M. Nenoff; Mark A. Rodriguez

2014-04-01T23:59:59.000Z

280

CFTF | Carbon Fiber Technology Facility | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

BTRIC CNMS CSMB CFTF Working with CFTF HFIR MDF NTRC OLCF SNS Carbon Fiber Technology Facility Home | User Facilities | CFTF CFTF | Carbon Fiber Technology Facility SHARE Oak...

Note: This page contains sample records for the topic "facility ag land" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

CRAD, Nuclear Facility Construction - Structural Concrete, May...  

Broader source: Energy.gov (indexed) [DOE]

CRAD, Nuclear Facility Construction - Structural Concrete, May 29, 2009 CRAD, Nuclear Facility Construction - Structural Concrete, May 29, 2009 May 29, 2009 Nuclear Facility...

282

ASME AG-1 REQUIREMENT EXEMPTION JUSTIFICATIONS FOR VENTILATION SYSTEMS AT NUCLEAR WASTE STORAGE TANKS AT THE HANFORD SITE  

SciTech Connect (OSTI)

Washington State Department of Health regulations require compliance with the American Society of Mechanical Engineers (ASME) AG-1, ''Code on Nuclear Air and Gas Treatment,'' for all new radioactive air emission units. As a result, these requirements have been applied to systems that ventilate the radioactive waste storage tanks in the tank farm facilities on the U.S. Department of Energy's Hanford Site. ASME AG-1 is applied as a regulatory constraint to waste tank ventilation systems at the Hanford Site, even though the code was not intended for these systems. An assessment was performed to identify which requirements should be exempted for waste tank ventilation systems. The technical justifications for requirement exemptions were prepared and presented to the regulator. The technical justifications were documented so that select requirement exemptions for specific projects and systems can be sought through the regulator's permitting process. This paper presents the rationale for attempting to receive requirement exemption and presents examples of the technical justifications that form the basis for these exemptions.

GUSTAVSON, R.D.

2004-09-03T23:59:59.000Z

283

E-Print Network 3.0 - ag 50wx2 nafion-h Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Page 1 of 5 Chapter 4 Answer Key 20. 42. 12;Page 2 of 5 54. 60. 2 AgNO3 (aq) + CaCl2 (aq) 2 Ag... Cl (s) + Ca(NO3)2 (aq) Ag+ + Cl- AgCl Determine the limiting reactant:...

284

Canyon Facilities - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone6Energy,MUSEUM DISPLAY STATUS4Tours SHARE ToursCanyon Facilities

285

NREL: Photovoltaics Research - Facilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | National NuclearoverAcquisitionEnergy153014TheFacilities NREL's

286

ARM - SGP Extended Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUC :ProductsSCM Forcing Data DerivedInstrumentsPolarExtended Facility SGP Related

287

Accelerator Test Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUCProductstwrmrAre the Effects ofAboutTest Facility Vitaly Yakimenko October 6-7,

288

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcal Documentation(AVIRIS) ProductsAirborneOctober 11, 2011 [Facility News] Final Recovery Act Milestone Complete!

289

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcal Documentation(AVIRIS) ProductsAirborneOctober 11, 2011 [Facility News] Final Recovery Act Milestone

290

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcal Documentation(AVIRIS) ProductsAirborneOctober 11, 2011 [Facility News] Final Recovery Act MilestoneOctober

291

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcal Documentation(AVIRIS) ProductsAirborneOctober 11, 2011 [Facility News] Final Recovery Act

292

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcal Documentation(AVIRIS) ProductsAirborneOctober 11, 2011 [Facility News] Final Recovery ActJanuary 20, 2015

293

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcal Documentation(AVIRIS) ProductsAirborneOctober 11, 2011 [Facility News] Final Recovery ActJanuary 20, 2015June

294

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcal Documentation(AVIRIS) ProductsAirborneOctober 11, 2011 [Facility News] Final Recovery ActJanuary 20,

295

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcal Documentation(AVIRIS) ProductsAirborneOctober 11, 2011 [Facility News] Final Recovery ActJanuary 20,August

296

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcal Documentation(AVIRIS) ProductsAirborneOctober 11, 2011 [Facility News] Final Recovery ActJanuary

297

ARM - Guest Instrument Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcal Documentation(AVIRIS) ProductsAirborneOctober 11, 2011 [FacilityIndiaGVAX News GangesListGreenhouse

298

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010 [DataDatastreamstoms3,4,3, 200828,15, 2005 [Facility

299

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010 [DataDatastreamstoms3,4,3, 200828,15, 2005 [Facility31,

300

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010 [DataDatastreamstoms3,4,3,October 28, 2010 [Facility

Note: This page contains sample records for the topic "facility ag land" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010 [DataDatastreamstoms3,4,3,October 28, 2010 [FacilityUser

302

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010 [DataDatastreamstoms3,4,3,October15, 2005 [Facility

303

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010 [DataDatastreamstoms3,4,3,October15, 2005 [Facility31,

304

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [Facility News] New Instrumentation on

305

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [Facility News] New Instrumentation

306

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [Facility News] New

307

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [Facility News] NewNew Look for

308

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [Facility News] NewNew Look

309

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [Facility News] NewNew Look15, 2004

310

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [Facility News] NewNew Look15,

311

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [Facility News] NewNew Look15,August

312

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [Facility News] NewNew

313

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [Facility News] NewNewAugust 15, 2004

314

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [Facility News] NewNewAugust 15,

315

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [Facility News] NewNewAugust

316

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [Facility News] NewNewAugustHigh Speed

317

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [Facility News] NewNewAugustHigh

318

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [Facility News] NewNewAugustHighArctic

319

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [Facility News]

320

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [Facility News]Disaster Plan Deflects

Note: This page contains sample records for the topic "facility ag land" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [Facility News]Disaster Plan

322

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [Facility News]Disaster PlanFebruary

323

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [Facility News]Disaster PlanFebruary5,

324

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [Facility News]Disaster

325

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [Facility News]Disaster9, 2011

326

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [Facility News]Disaster9, 201125, 2011

327

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [Facility News]Disaster9, 201125,

328

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [Facility News]Disaster9, 201125,May

329

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [Facility News]Disaster9,

330

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [Facility News]Disaster9,Website

331

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [Facility News]Disaster9,WebsiteApril

332

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [Facility

333

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMay 14, 2011 [Education,

334

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMay 14, 2011

335

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMay 14, 2011May 20, 2011

336

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMay 14, 2011May 20, 2011,

337

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMay 14, 2011May 20, 2011,5,

338

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMay 14, 2011May 20,

339

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMay 14, 2011May 20,9, 2011

340

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMay 14, 2011May 20,9, 201110,

Note: This page contains sample records for the topic "facility ag land" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMay 14, 2011May 20,9,

342

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMay 14, 2011May 20,9,23, 2011

343

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMay 14, 2011May 20,9,23,

344

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMay 14, 2011May 20,9,23,31,

345

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMay 14, 2011May

346

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMay 14, 2011MayMilitary

347

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMay 14, 2011MayMilitary30,

348

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMay 14, 2011MayMilitary30,New

349

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMay 14,

350

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMay 14,October 27, 2011

351

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMay 14,October 27, 2011CIMEL

352

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMay 14,October 27,

353

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMay 14,October 27,, 2011

354

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMay 14,October 27,, 20114,

355

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMay 14,October 27,, 20114,22,

356

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMay 14,October 27,,

357

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMay 14,October 27,,22, 2012

358

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMay 14,October 27,,22,

359

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMay 14,October 27,,22,27,

360

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMay 14,October

Note: This page contains sample records for the topic "facility ag land" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMay 14,OctoberSunphotometer

362

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMay

363

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMayMarch 1, 2012

364

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMayMarch 1, 2012Upgrades to

365

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMayMarch 1, 2012Upgrades

366

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMayMarch 1,

367

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMayMarch 1,The Tale of the

368

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMayMarch 1,The Tale of

369

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMayMarch 1,The Tale

370

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMayMarch 1,The TaleEddy

371

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMayMarch 1,The TaleEddyRecord

372

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMayMarch 1,The

373

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMayMarch 1,TheNovember 14,

374

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMayMarch 1,TheNovember 14,5,

375

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMayMarch 1,TheNovember

376

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMayMarch 1,TheNovember6, 2012

377

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMayMarch 1,TheNovember6,

378

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMayMarch 1,TheNovember6,5,

379

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMayMarch 1,TheNovember6,5,May

380

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMayMarch

Note: This page contains sample records for the topic "facility ag land" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMayMarchMay 18, 2012

382

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMayMarchMay 18, 2012October

383

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMayMarchMay 18,

384

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMayMarchMay 18,July 10, 2012

385

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMayMarchMay 18,July 10,

386

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMayMarchMay 18,July 10,14,

387

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMayMarchMay 18,July 10,14,23,

388

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMayMarchMay 18,July

389

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMayMarchMay 18,July4, 2012

390

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMayMarchMay 18,July4, 20127,

391

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMayMarchMay 18,July4,

392

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMayMarchMay 18,July4,October

393

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMayMarchMay

394

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMayMarchMayApril 24, 2013

395

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMayMarchMayApril 24,

396

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMayMarchMayApril 24,2, 2012

397

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMayMarchMayApril 24,2, 20128,

398

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMayMarchMayApril 24,2,

399

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMayMarchMayApril 24,2,October

400

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMayMarchMayApril

Note: This page contains sample records for the topic "facility ag land" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMayMarchMayAprilApril 8, 2013

402

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMayMarchMayAprilApril 8,

403

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMayMarchMayAprilApril 8,17,

404

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMayMarchMayAprilApril

405

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMayMarchMayAprilAprilMay 10,

406

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMayMarchMayAprilAprilMay

407

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMayMarchMayAprilAprilMayApril

408

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004Airborne InstrumentationARM Facility

409

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004AirborneJune 28, 2013 [Facility News]

410

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004AirborneJune 28, 2013 [Facility

411

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004AirborneJune 28, 2013 [FacilityJuly 10,

412

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004AirborneJune 28, 2013 [FacilityJuly

413

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004AirborneJune13, 2014 [Facility News]

414

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004AirborneJune13, 2014 [Facility News]22,

415

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004AirborneJune13, 2014 [Facility

416

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004AirborneJune13, 2014 [FacilityJune 2,

417

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004AirborneJune13, 2014 [FacilityJune

418

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004AirborneJune13, 2014 [FacilityJuneApril

419

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30,June 24, 2009 [Facility News] Mobile

420

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30,June 24, 2009 [Facility News] MobileMarch

Note: This page contains sample records for the topic "facility ag land" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30,June 24, 2009 [Facility News]

422

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30,June 24, 2009 [Facility News]June 15, 2008

423

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30,June 24, 2009 [Facility News]June 15,

424

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30,June 24, 2009 [Facility News]June 15,June

425

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30,June 24, 2009 [Facility News]June

426

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30,June 24, 2009 [Facility News]JuneAugust 6,

427

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30,June 24, 2009 [Facility News]JuneAugust

428

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30,June 24, 2009 [Facility

429

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30,June 24, 2009 [FacilityAugust 31, 2009

430

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30,June 24, 2009 [FacilityAugust 31,

431

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30,June 24, 2009 [FacilityAugust 31,February

432

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30,June 24, 2009 [FacilityAugust

433

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30,June 24, 2009 [FacilityAugust24, 2009

434

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30,June 24, 2009 [FacilityAugust24,

435

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30,June 24, 2009 [FacilityAugust24,New

436

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30,June 24, 2009 [FacilityAugust24,NewJanuary

437

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30,June 24, 2009January 15, 2008 [Facility

438

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30,JuneMay 15, 2006 [Facility News] New

439

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30,JuneMay 15, 2006 [Facility News] NewApril

440

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30,JuneMay 15, 2006 [Facility News]

Note: This page contains sample records for the topic "facility ag land" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30,JuneMay 15, 2006 [Facility News]April 30,

442

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30,JuneMay 15, 2006 [Facility News]April 30,May

443

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30,JuneMay 15, 2006 [Facility News]April

444

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30,JuneMay 15, 2006 [Facility News]AprilMarch

445

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30,JuneMay 15, 2006 [Facility

446

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30,JuneMay 15, 2006 [FacilityIncreased Weather

447

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30,JuneMay 15, 2006 [FacilityIncreased

448

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30,JuneMay 15, 2006 [FacilityIncreased30, 2010

449

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30,JuneMay 15, 2006 [FacilityIncreased30,

450

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30,JuneMay 15, 2006April 30,31, 2010 [Facility

451

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30,JuneMay 15,October 6, 2010 [Facility News]

452

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30,JuneMay 15,October 6, 2010 [Facility

453

Jupiter Laser Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region serviceMission Statement Titan TargetInJupiter Laser Facility The

454

Facilities | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series toESnet4:Epitaxial ThinFOR IMMEDIATE5Facilities Some of the nation's most

455

NREL: Biomass Research - Facilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of Women |hitsAwards andAnalysesData andFacilities

456

User Facilities | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearchScheduledProductionCCEIResearch UpperFacilities at aUSER

457

Sandia National Laboratories: Facilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLS Exhibit at Explora Museum On AprilExploraSandiaFacilities

458

SERAPH facility capabilities  

SciTech Connect (OSTI)

The SERAPH (Solar Energy Research and Applications in Process Heat) facility addresses technical issues concerning solar thermal energy implementation in industry. Work will include computer predictive modeling (refinement and validation), system control and evaluation, and the accumulation of operation and maintenance experience. Procedures will be consistent (to the extent possible) with those of industry. SERAPH has four major components: the solar energy delivery system (SEDS); control and data acquisition (including sequencing and emergency supervision); energy distribution system (EDS); and areas allocated for storage development and load devices.

Castle, J.; Su, W.

1980-06-01T23:59:59.000Z

459

Comparative approaches to siting low-level radioactive waste disposal facilities  

SciTech Connect (OSTI)

This report describes activities in nine States to select site locations for new disposal facilities for low-level radioactive waste. These nine States have completed processes leading to identification of specific site locations for onsite investigations. For each State, the status, legal and regulatory framework, site criteria, and site selection process are described. In most cases, States and compact regions decided to assign responsibility for site selection to agencies of government and to use top-down mapping methods for site selection. The report discusses quantitative and qualitative techniques used in applying top-down screenings, various approaches for delineating units of land for comparison, issues involved in excluding land from further consideration, and different positions taken by the siting organizations in considering public acceptance, land use, and land availability as factors in site selection.

Newberry, W.F.

1994-07-01T23:59:59.000Z

460

EIS-0406: Designation of Energy Corridors on Federal Land in 39 States  

Broader source: Energy.gov [DOE]

DOE has canceled this EIS, which was to evaluate the environmental impacts of the designation, under Section 368(b) of the Energy Policy Act of 2005, of energy corridors on federal lands in 39 nonwestern states. The corridors, which were to be jointly identified by the Secretaries of Agriculture, Commerce, Defense, Energy, and the Interior, might have been used for oil, gas, and hydrogen pipelines and electricity transmission and distribution facilities.

Note: This page contains sample records for the topic "facility ag land" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Morphological and electrochemical characterization of electrodeposited Zn–Ag nanoparticle composite coatings  

SciTech Connect (OSTI)

Silver nanoparticles with an average size of 23 nm were chemically synthesized and used to fabricate Zn–Ag composite coatings. The Zn–Ag composite coatings were generated by electrodeposition method using a simple sulfate plating bath dispersed with 0.5, 1 and 1.5 g/l of Ag nanoparticles. Scanning electron microscopy, X-ray diffraction and texture co-efficient calculations revealed that Ag nanoparticles appreciably influenced the morphology, micro-structure and texture of the deposit. It was also noticed that agglomerates of Ag nanoparticles, in the case of high bath load conditions, produced defects and dislocations on the deposit surface. Ag nanoparticles altered the corrosion resistance property of Zn–Ag composite coatings as observed from Tafel polarization, electrochemical impedance analysis and an immersion test. Reduction in corrosion rate with increased charge transfer resistance was observed for Zn–Ag composite coatings when compared to a pure Zn coating. However, the particle concentration in the plating bath and their agglomeration state directly influenced the surface morphology and the subsequent corrosion behavior of the deposits. - Highlights: • Synthesis of Ag nanoparticles with an average size of 23 nm • Fabrication of Zn/nano Ag composite coating on mild steel • Composite coatings showed better corrosion resistance. • Optimization of particle concentration is necessary.

Punith Kumar, M.K.; Srivastava, Chandan, E-mail: csrivastava@materials.iisc.ernet.in

2013-11-15T23:59:59.000Z

462

Application of a new coordination compound for the preparation of AgI nanoparticles  

SciTech Connect (OSTI)

Graphical abstract: Silver iodide nanoparticles have been sonochemically synthesized by using silver salicylate complex, [Ag(HSal)], as silver precursor. A series of control experiments were carried out to investigate the effects of solvent, surfactant concentration, sonication time and temperature on the morphology of AgI nanostructures. - Highlights: • Silver salicylate as a new precursor was applied to fabricate ?-AgI nanoparticles. • To further decrease the particle size of AgI, SDS was used as surfactant. • The effect of preparation parameters on the particle size of AgI was investigated. - Abstract: AgI nanoparticles have been sonochemically synthesized by using silver salicylate, [Ag(HSal)], as silver precursor. To investigate the effects of solvent, surfactant concentration, sonication time and temperature on the morphology of AgI nanostructures, several experiments were carried out. The products were characterized by SEM, TEM, XRD, TGA/DTA, UV–vis, and FT-IR. Based on the experimental findings in this research, it was found that the size of AgI nanoparticles was dramatically dependent on the silver precursor, sonochemical irradiation, and surfactant concentration. Sodium dodecyl sulfate (SDS) was applied as surfactant. When the concentration of SDS was 0.055 mM, very uniform sphere-like AgI nanoparticles with grain size of about 25–30 nm were obtained. These results indicated that the high concentration of SDS could prevent the aggregation between colloidal nanoparticles due to its steric hindrance effect.

Mohandes, Fatemeh [Department of Inorganic Chemistry, Faculty of Chemistry, University of Kashan, Kashan, P.O. Box 87317-51167, Islamic Republic of Iran (Iran, Islamic Republic of); Salavati-Niasari, Masoud, E-mail: salavati@kashanu.ac.ir [Department of Inorganic Chemistry, Faculty of Chemistry, University of Kashan, Kashan, P.O. Box 87317-51167, Islamic Republic of Iran (Iran, Islamic Republic of); Institute of Nano Science and Nano Technology, University of Kashan, Kashan, P.O. Box 87317-51167, Islamic Republic of Iran (Iran, Islamic Republic of)

2013-10-15T23:59:59.000Z

463

Wind Development on Tribal Lands  

SciTech Connect (OSTI)

Background: The Rosebud Sioux Tribe (RST) is located in south central South Dakota near the Nebraska border. The nearest community of size is Valentine, Nebraska. The RST is a recipient of several Department of Energy grants, written by Distributed Generation Systems, Inc. (Disgen), for the purposes of assessing the feasibility of its wind resource and subsequently to fund the development of the project. Disgen, as the contracting entity to the RST for this project, has completed all the pre-construction activities, with the exception of the power purchase agreement and interconnection agreement, to commence financing and construction of the project. The focus of this financing is to maximize the economic benefits to the RST while achieving commercially reasonable rates of return and fees for the other parties involved. Each of the development activities required and its status is discussed below. Land Resource: The Owl Feather War Bonnet 30 MW Wind Project is located on RST Tribal Trust Land of approximately 680 acres adjacent to the community of St. Francis, South Dakota. The RST Tribal Council has voted on several occasions for the development of this land for wind energy purposes, as has the District of St. Francis. Actual footprint of wind farm will be approx. 50 acres. Wind Resource Assessment: The wind data has been collected from the site since May 1, 2001 and continues to be collected and analyzed. The latest projections indicate a net capacity factor of 42% at a hub height of 80 meters. The data has been collected utilizing an NRG 9300 Data logger System with instrumentation installed at 30, 40 and 65 meters on an existing KINI radio tower. The long-term annual average wind speed at 65-meters above ground level is 18.2 mph (8.1 mps) and 18.7 mph (8.4 mps) at 80-meters agl. The wind resource is excellent and supports project financing.

Ken Haukaas; Dale Osborn; Belvin Pete

2008-01-18T23:59:59.000Z

464

FRACTURING FLUID CHARACTERIZATION FACILITY  

SciTech Connect (OSTI)

Hydraulic fracturing technology has been successfully applied for well stimulation of low and high permeability reservoirs for numerous years. Treatment optimization and improved economics have always been the key to the success and it is more so when the reservoirs under consideration are marginal. Fluids are widely used for the stimulation of wells. The Fracturing Fluid Characterization Facility (FFCF) has been established to provide the accurate prediction of the behavior of complex fracturing fluids under downhole conditions. The primary focus of the facility is to provide valuable insight into the various mechanisms that govern the flow of fracturing fluids and slurries through hydraulically created fractures. During the time between September 30, 1992, and March 31, 2000, the research efforts were devoted to the areas of fluid rheology, proppant transport, proppant flowback, dynamic fluid loss, perforation pressure losses, and frictional pressure losses. In this regard, a unique above-the-ground fracture simulator was designed and constructed at the FFCF, labeled ''The High Pressure Simulator'' (HPS). The FFCF is now available to industry for characterizing and understanding the behavior of complex fluid systems. To better reflect and encompass the broad spectrum of the petroleum industry, the FFCF now operates under a new name of ''The Well Construction Technology Center'' (WCTC). This report documents the summary of the activities performed during 1992-2000 at the FFCF.

Subhash Shah

2000-08-01T23:59:59.000Z

465

PUREX facility hazards assessment  

SciTech Connect (OSTI)

This report documents the hazards assessment for the Plutonium Uranium Extraction Plant (PUREX) located on the US Department of Energy (DOE) Hanford Site. Operation of PUREX is the responsibility of Westinghouse Hanford Company (WHC). This hazards assessment was conducted to provide the emergency planning technical basis for PUREX. DOE Order 5500.3A requires an emergency planning hazards assessment for each facility that has the potential to reach or exceed the lowest level emergency classification. In October of 1990, WHC was directed to place PUREX in standby. In December of 1992 the DOE Assistant Secretary for Environmental Restoration and Waste Management authorized the termination of PUREX and directed DOE-RL to proceed with shutdown planning and terminal clean out activities. Prior to this action, its mission was to reprocess irradiated fuels for the recovery of uranium and plutonium. The present mission is to establish a passively safe and environmentally secure configuration at the PUREX facility and to preserve that condition for 10 years. The ten year time frame represents the typical duration expended to define, authorize and initiate follow-on decommissioning and decontamination activities.

Sutton, L.N.

1994-09-23T23:59:59.000Z

466

Studsvik Processing Facility Update  

SciTech Connect (OSTI)

Studsvik has completed over four years of operation at its Erwin, TN facility. During this time period Studsvik processed over 3.3 million pounds (1.5 million kgs) of radioactive ion exchange bead resin, powdered filter media, and activated carbon, which comprised a cumulative total activity of 18,852.5 Ci (6.98E+08 MBq). To date, the highest radiation level for an incoming resin container has been 395 R/hr (3.95 Sv/h). The Studsvik Processing Facility (SPF) has the capability to safely and efficiently receive and process a wide variety of solid and liquid Low Level Radioactive Waste (LLRW) streams including: Ion Exchange Resins (IER), activated carbon (charcoal), graphite, oils, solvents, and cleaning solutions with contact radiation levels of up to 400 R/hr (4.0 Sv/h). The licensed and heavily shielded SPF can receive and process liquid and solid LLRWs with high water and/or organic content. This paper provides an overview of the last four years of commercial operations processing radioactive LLRW from commercial nuclear power plants. Process improvements and lessons learned will be discussed.

Mason, J. B.; Oliver, T. W.; Hill, G. M.; Davin, P. F.; Ping, M. R.

2003-02-25T23:59:59.000Z

467

A comparison of noxious facilities` impacts for home owners versus renters  

SciTech Connect (OSTI)

The siting of noxious facilities, such as hazardous waste facilities, is often vigorously opposed by local residents, and thus it is now common for local residents to be compensated for the presence of the facility. One technique that has been employed to implicitly value noxious facilities is the intercity hedonic approach, which examines the wage and land rent premia between cities that result from the presence of the facility. However, most of the focus has been on the behavior of home owners as opposed to renters. Since these two groups of residents vary on numerous dimensions such as marital status, age, sex, and personal mobility, it would not be surprising to find different marginal valuations of local site characteristics. The authors use 1980 Census data to derive separate estimates for owners and renters of the implicit value placed on eight different types of noxious facilities. They find that renters and owners differ in their response to noxious facilities, although the differences are not systematic. Furthermore, the differences between owners and renters are not primarily due to differential mobility or socio-demographic factors. Controlling those factors decreases the differences between renters` and owners` implicit valuations of noxious facilities by less than 10%. Unmeasured differences between the two groups, such as tastes, risk aversion, or commitment to the community, must account for the remaining difference in valuations. These findings suggest that policymakers should separately consider the responses of owners and renters when estimating noxious facility impacts.

Clark, D.E. [Marquette Univ., Milwaukee, WI (United States). Dept. of Economics]|[Argonne National Lab., IL (United States); Nieves, L.A. [Argonne National Lab., IL (United States)

1995-01-01T23:59:59.000Z

468

SGP Cloud and Land Surface Interaction Campaign (CLASIC): Science and Implementation Plan  

SciTech Connect (OSTI)

The Cloud and Land Surface Interaction Campaign is a field experiment designed to collect a comprehensive data set that can be used to quantify the interactions that occur between the atmosphere, biosphere, land surface, and subsurface. A particular focus will be on how these interactions modulate the abundance and characteristics of small and medium size cumuliform clouds that are generated by local convection. These interactions are not well understood and are responsible for large uncertainties in global climate models, which are used to forecast future climate states. The campaign will be conducted from June 8 to June 30, 2007, at the U.S. Department of Energy’s Atmospheric Radiation Measurement Climate Research Facility Southern Great Plains site. Data will be collected using eight aircraft equipped with a variety of specialized sensors, four specially instrumented surface sites, and two prototype surface radar systems. The architecture of Cloud and Land Surface Interaction Campaign includes a high-altitude surveillance aircraft and enhanced vertical thermodynamic and wind profile measurements that will characterize the synoptic scale structure of the clouds and the land surface within the Atmospheric Radiation Measurement Climate Research Facility Southern Great Plains site. Mesoscale and microscale structures will be sampled with a variety of aircraft, surface, and radar observations.

MA Miller; R Avissar; LK Berg; SA Edgerton; ML Fischer; T Jackson; B.Kustas; PJ Lamb; GM McFarquhar; Q Min; B Schmid; MS Torn; DD Turner

2007-06-30T23:59:59.000Z

469

Assessing the Feasibility of Renewable Energy Development and Energy Efficiency Deployment on Tribal Lands  

SciTech Connect (OSTI)

The Keweenaw Bay Indian Community (KBIC) is committed to preserving our natural environment and reducing the amount of fossil fuels consumed while developing "green" business manufacturing jobs on tribal lands. The Tribe's Comprehensive Strategic Plan seeks to diversify the Tribal Economy through the creation of alternative energy businesses, such as wind, solar and bio-mass facilities while protecting the waters of Lake Superior, tribal inland lakes and streams. In addition, the Community desired to utilize clean/green energy resources to promote the self-sufficiency of the Tribal Nation. The objective of the study is to preserve our environment and maintain our cultural goals of using the resources of the land wisely. To reduce our consumption of fossil fuels, mercury and carbon dioxide emissions, which harm our water and land; we have decided to evaluate the opportunities of utilizing wind power. Preliminary projections show that we may eliminate pollution from our land in a cost effective manner. This study will evaluate wind capacity and our current energy consumption while projecting the feasibility of converting to wind power for operations at our major facilities. This project will study the feasibility of wind power at two locations for the purpose of reducing the Tribe's reliance upon fossil fuels and creating business opportunities, jobs and revenue for the community.

Nominelli, Gregg R.

2012-12-17T23:59:59.000Z

470

Regulatory facility guide for Ohio  

SciTech Connect (OSTI)

The Regulatory Facility Guide (RFG) has been developed for the DOE and contractor facilities located in the state of Ohio. It provides detailed compilations of international, federal, and state transportation-related regulations applicable to shipments originating at destined to Ohio facilities. This RFG was developed as an additional resource tool for use both by traffic managers who must ensure that transportation operations are in full compliance with all applicable regulatory requirements and by oversight personnel who must verify compliance activities.

Anderson, S.S.; Bock, R.E.; Francis, M.W.; Gove, R.M.; Johnson, P.E.; Kovac, F.M.; Mynatt, J.O. [Oak Ridge National Lab., TN (United States); Rymer, A.C. [Transportation Consulting Services, Knoxville, TN (United States)

1994-02-28T23:59:59.000Z

471

Transparent Conducting Electrodes based on 1D and 2D Ag Nanogratings for Organic Photovoltaics  

E-Print Network [OSTI]

The optical and electrical properties of optically-thin one-dimensional (1D) Ag nanogratings and two-dimensional (2D) Ag nanogrids are studied, and their use as transparent electrodes in organic photovoltaics are explored. A large broadband and polarization-insensitive optical absorption enhancement in the organic light-harvesting layers is theoretically and numerically demonstrated using either single-layer 2D Ag nanogrids or two perpendicular 1D Ag nanogratings, and is attributed to the excitation of surface plasmon resonances and plasmonic cavity modes. Total photon absorption enhancements of 150% and 200% are achieved for the optimized single-layer 2D Ag nanogrids and double (top and bottom) perpendicular 1D Ag nanogratings, respectively.

Zeng, Beibei; Bartoli, Filbert J

2014-01-01T23:59:59.000Z

472

UNIVERSITY-NATIONAL OCEANOGRAPHIC LABORATORY SYSTEM Moss Landing Marine Laboratories 8272 Moss Landing Road, Moss Landing, CA 95039  

E-Print Network [OSTI]

UNOLS vessels and port facilities are required to have approved Vessel Security Plans (VSP) and Facility Security Plans (FSP) that make it necessary to implement TWIC regulations as well. MTSA regulations to be allowed "unescorted access" to secure facilities or vessels with approved security plans. 4. Based

473

Facilities | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Research and Development manages and oversees the operation of an exceptional suite of science, technology and engineering facilities that support and further the national...

474

About the Geocentrifuge Research Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research Facility is being used to improve mathematical models for the movement of fluids and contaminants and long-term performance of engineered caps and barriers used for...

475

Toda Cathode Materials Production Facility  

Broader source: Energy.gov (indexed) [DOE]

Cathode Materials Production Facility 2013 DOE Vehicle Technologies Annual Merit Review May 13-17, 2013 David Han, Yasuhiro Abe Toda America Inc. Project ID: ARRAVT017...

476

Reed Reactor Facility. Final report  

SciTech Connect (OSTI)

This report discusses the operation and maintenance of the Reed Reactor Facility. The Reed reactor is mostly used for education and train purposes.

Frantz, S.G.

1994-12-31T23:59:59.000Z

477

Space & Security Power Systems Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Working with INL Community Outreach Visitor Information Calendar of Events ATR National Scientific User Facility Center for Advanced Energy Studies Light Water Reactor...

478

MDF | Manufacturing Demonstration Facility | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

MDF Working with MDF NTRC OLCF SNS Titanium robotic hand holding sphere fabricated using additive manufacturing Home | User Facilities | MDF MDF | Manufacturing Demonstration...

479

Establishing nuclear facility drill programs  

SciTech Connect (OSTI)

The purpose of DOE Handbook, Establishing Nuclear Facility Drill Programs, is to provide DOE contractor organizations with guidance for development or modification of drill programs that both train on and evaluate facility training and procedures dealing with a variety of abnormal and emergency operating situations likely to occur at a facility. The handbook focuses on conducting drills as part of a training and qualification program (typically within a single facility), and is not intended to included responses of personnel beyond the site boundary, e.g. Local or State Emergency Management, Law Enforcement, etc. Each facility is expected to develop its own facility specific scenarios, and should not limit them to equipment failures but should include personnel injuries and other likely events. A well-developed and consistently administered drill program can effectively provide training and evaluation of facility operating personnel in controlling abnormal and emergency operating situations. To ensure the drills are meeting their intended purpose they should have evaluation criteria for evaluating the knowledge and skills of the facility operating personnel. Training and evaluation of staff skills and knowledge such as component and system interrelationship, reasoning and judgment, team interactions, and communications can be accomplished with drills. The appendices to this Handbook contain both models and additional guidance for establishing drill programs at the Department`s nuclear facilities.

NONE

1996-03-01T23:59:59.000Z

480

Power Systems Development Facility  

SciTech Connect (OSTI)

In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF), located in Wilsonville, Alabama, has routinely demonstrated gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a Transport Gasifier, a hot gas particulate control device, advanced syngas cleanup systems, and high-pressure solids handling systems. This final report summarizes the results of the technology development work conducted at the PSDF through January 31, 2009. Twenty-one major gasification test campaigns were completed, for a total of more than 11,000 hours of gasification operation. This operational experience has led to significant advancements in gasification technologies.

Southern Company Services

2009-01-31T23:59:59.000Z

Note: This page contains sample records for the topic "facility ag land" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Global Biofuels Modeling and Land Use  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Biofuels Modeling and Land Use DOE Bioenergy Technologies Office (BETO) 2015 Project Peer Review Strategic Analysis & Cross-cutting Sustainability March 25 2015 Gbadebo Oladosu...

482

Marginal Lands: Concept, Assessment and Management  

SciTech Connect (OSTI)

Marginal lands have received wide attention for their potential to improve food security and support bioenergy production. However, environmental, ecosystem service, and sustainability concerns have been widely raised over the use of marginal land. Knowledge of the extent, location, and quality of marginal lands as well as their assessment and management are limited and diverse. This paper provides a review of the historical development of marginal concept, its application and assessment. Limitations and priority research needs of marginal land assessment and management were discussed.

Kang, Shujiang [ORNL; Post, Wilfred M [ORNL; West, Tristram O. [Joint Global Change Research Institute, PNNL; Bandaru, Vara Prasad [ORNL; Izaurralde, Dr. R. Cesar [Pacific Northwest National Laboratory (PNNL); Wang, Dali [ORNL; Nichols, Dr Jeff A [ORNL

2013-01-01T23:59:59.000Z

483

Landholders, Residential Land Conversion, and Market Signals  

E-Print Network [OSTI]

465– Margulis: Landholders, Residential Land Conversion, and1983. An Analysis of Residential Developer Location FactorsHow Regulation Affects New Residential Development. New

Margulis, Harry L.

2006-01-01T23:59:59.000Z

484

Albeni Falls land acquisitions.indd  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Idaho The Bonneville Power Administration is working with the Idaho Department of Fish and Game to acquire and manage two parcels of land in northern Idaho to preserve,...

485

Chapter 37 Land Disposal Restrictions (Kentucky)  

Broader source: Energy.gov [DOE]

This administrative regulation establishes requirements for land disposal of hazardous waste. These include- surface impound exemptions, prohibitions on disposal and storage and treatment standards...

486

Sustainable Land Management in Northern Namibia  

E-Print Network [OSTI]

and low water holding capacity (Bolivia) #12;Perspective Similar soil (Kavango) #12;Increased Demand for Food + Energy Production Expansion onto Less Resilient Lands Reduced Production per Unit Area

487

Corrosion behavior of newly developed TiAgFe dental alloys in neutral saline solution  

E-Print Network [OSTI]

Corrosion behavior of newly developed Ti­Ag­Fe dental alloys in neutral saline solution B. B. Zhang, B. L. Wang, L. Li and Y. F. Zheng* The corrosion behavior of Ti­5Ag­xFe alloys (x ¼ 1, 2.5, 5 wt) Ti,Ti­ 5Ag­xFe alloys exhibited higher corrosion potentials, lower current densities, and larger

Zheng, Yufeng

488

Analysis of Hanford-based Options for Sustainable DOE Facilities on the West Coast  

SciTech Connect (OSTI)

Large-scale conventional energy projects result in lower costs of energy (COE). This is true for most renewable energy projects as well. The Office of Science is interested in its facilities meeting the renewable energy mandates set by Congress and the Administration. Those facilities on the west coast include a cluster in the Bay Area of California and at Hanford in central Washington State. Land constraints at the California facilities do not permit large scale projects. The Hanford Reservation has land and solar insolation available for a large scale solar project as well as access to a regional transmission system that can provide power to facilities in California. The premise of this study is that a large-scale solar project at Hanford may be able to provide renewable energy sufficient to meet the needs of select Office of Science facilities on the west coast at a COE that is competitive with costs in California despite the lower solar insolation values at Hanford. The study concludes that although the cost of solar projects continues to decline, estimated costs for a large-scale project at Hanford are still not competitive with avoided power costs for Office of Science facilities on the west coast. Further, although it is possible to transmit power from a solar project at Hanford to California facilities, the costs of doing so add additional costs. Consequently, development of a large- scale solar project at Hanford to meet the renewable goals of Office of Science facilities on the west coast is currently uneconomic. This may change as solar costs decrease and California-based facilities face increasing costs for conventional and renewable energy produced in the state. PNNL should monitor those cost trends.

Warwick, William M.

2012-06-30T23:59:59.000Z

489

Title: Canada Land Inventory: Land Capability for Waterfowl Wildlife Data Creator /  

E-Print Network [OSTI]

Title: Canada Land Inventory: Land Capability for Waterfowl Wildlife Data Creator / Copyright Owner: National Archives of Canada, Visual and Sound Archives Division Publisher: National Archives of Canada, Visual and Sound Archives Division; developed under the auspices of Environment Canada; distributed

490

The impacts of land use-induced land cover change on climate extremes.  

E-Print Network [OSTI]

??Simulations from the CSIRO Mk3L climate model, coupled to the CABLE land surface model, indicate that climate extremes indices are significantly affected by land use-induced… (more)

Avila, Francia Bismonte

2012-01-01T23:59:59.000Z

491

National Ignition Facility system design requirements conventional facilities SDR001  

SciTech Connect (OSTI)

This System Design Requirements (SDR) document specifies the functions to be performed and the minimum design requirements for the National Ignition Facility (NIF) site infrastructure and conventional facilities. These consist of the physical site and buildings necessary to house the laser, target chamber, target preparation areas, optics support and ancillary functions.

Hands, J.

1996-04-09T23:59:59.000Z

492

Nano Research Facility Lab Safety Manual Nano Research Facility  

E-Print Network [OSTI]

1 Nano Research Facility Lab Safety Manual Nano Research Facility: Weining Wang Office: Brauer rules and procedures (a) Accidents and spills for chemicals Not containing Nano-Materials Spills of non for chemicals Containing Nano-Materials In a fume hood small spills of nano-materials in a liquid may

Subramanian, Venkat

493

E-Print Network 3.0 - al cu ag Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Rutgers University Collection: Chemistry 40 A theoretical study of adsorption of carbon monoxide on Ag-ZSM-5 zeolite Siriporn Jungsuttiwong , P.Khongpracha , T. N. Truong ,...

494

Potential-field geophysical programs for VAX 7xx computers; source code (programs A-G)  

SciTech Connect (OSTI)

A U.S. Geological Survey report is presented giving the source code of potential-field geophysical programs (programs A-G) for VAX 7xx computers.

Not Available

1989-01-01T23:59:59.000Z

495

Annales Geophysicae, 23, 16031610, 2005 SRef-ID: 1432-0576/ag/2005-23-1603  

E-Print Network [OSTI]

Annales Geophysicae, 23, 1603­1610, 2005 SRef-ID: 1432-0576/ag/2005-23-1603 © European Geosciences

Paris-Sud XI, Université de

496

E-Print Network 3.0 - ag cu eu Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

surface roughness of the Cu80Ag15Au5 layers was ... Source: Wadley, Haydn - Intelligent Processing of Materials Laboratory & Department of Materials Science and Engineering,...

497

Parcel-Level Land Architecture and Land Surface Temperature in the Phoenix Metropolitan Area  

E-Print Network [OSTI]

Parcel-Level Land Architecture and Land Surface Temperature in the Phoenix Metropolitan Area Xiaoxiao Li1, Yun Ouyang1, Billie Turner II1,2, Sharon Harlan3, Anthony Brazel2 1 School of Sustainability system architecture--composition and configuration of different land-cover classes--on LST in the central

Hall, Sharon J.

498

Interaction effects of climate and land use/land cover change on soil organic carbon sequestration  

E-Print Network [OSTI]

Interaction effects of climate and land use/land cover change on soil organic carbon sequestration carbon sequestration Climate change Soil carbon change Historically, Florida soils stored the largest in Florida (FL) have acted as a sink for carbon (C) over the last 40 years. · Climate interacting with land

Grunwald, Sabine

499

On the high intensity aspects of AGS Booster proton operation  

SciTech Connect (OSTI)

Observations of high intensity effects on the proton performance of the AGS Booster are presented, including present operational limits and correction methods. The transverse emittances, optimum tune working points, damping of coherent transverse oscillations and correction of stopband resonances through third-order are discussed in addition to the observed tune spread due to space charge forces. The initial longitudinal phase space distribution, capture and acceleration parameters and measurements are also given. Operational tools and strategies relevant to the high intensity setup are mentioned.

Reece, R.K.; Ahrens, L.A.; Bleser, E.J.; Brennan, J.M.; Gardner, C.; Glenn, J.W.; Roser, T.; Shoji, Y.; van Asselt, W.; Weng, W.T.

1993-01-01T23:59:59.000Z

500

On the high intensity aspects of AGS Booster proton operation  

SciTech Connect (OSTI)

Observations of high intensity effects on the proton performance of the AGS Booster are presented, including present operational limits and correction methods. The transverse emittances, optimum tune working points, damping of coherent transverse oscillations and correction of stopband resonances through third-order are discussed in addition to the observed tune spread due to space charge forces. The initial longitudinal phase space distribution, capture and acceleration parameters and measurements are also given. Operational tools and strategies relevant to the high intensity setup are mentioned.

Reece, R.K.; Ahrens, L.A.; Bleser, E.J.; Brennan, J.M.; Gardner, C.; Glenn, J.W.; Roser, T.; Shoji, Y.; van Asselt, W.; Weng, W.T.

1993-06-01T23:59:59.000Z