Powered by Deep Web Technologies
Note: This page contains sample records for the topic "facilities initiatives recycling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Major issues associated with DOE commercial recycling initiatives  

SciTech Connect

Major initiatives are underway within DOE to recycle large volumes of scrap material generated during cleanup of the DOE Weapons Complex. These recycling initiatives are driven not only by the desire to conserve natural resources, but also by the recognition that shallow level burial is not a politically acceptable option. The Fernald facility is in the vanguard of a number of major DOE recycling efforts. These early efforts have brought issues to light that can have a major impact on the ability of Fernald and other major DOE sites to expand recycling efforts in the future. Some of these issues are; secondary waste deposition, title to material and radioactive contaminants, mixed waste generated during recycling, special nuclear material possession limits, cost benefit, transportation of waste to processing facilities, release criteria, and uses for beneficially reused products.

Motl, G.P.; Burns, D.D. [Fernald Environmental Restoration Management Corp., Cincinnati, OH (United States); Rast, D.M. [USDOE Fernald Field Office, OH (United States)

1994-07-27T23:59:59.000Z

2

Brickyard Recycling Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Recycling Biomass Facility Recycling Biomass Facility Jump to: navigation, search Name Brickyard Recycling Biomass Facility Facility Brickyard Recycling Sector Biomass Facility Type Landfill Gas Location Vermilion County, Illinois Coordinates 40.122469°, -87.697554° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.122469,"lon":-87.697554,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

3

Potential GTCC LLW sealed radiation source recycle initiatives  

SciTech Connect

This report suggests 11 actions that have the potential to facilitate the recycling (reuse or radionuclide) of surplus commercial sealed radiation sources that would otherwise be disposed of as greater-than-Class C low-level radioactive waste. The suggestions serve as a basis for further investigation and discussion between the Department of Energy, Nuclear Regulatory Commission, Agreement States, and the commercial sector. Information is also given that describes sealed sources, how they are used, and problems associated with recycling, including legal concerns. To illustrate the nationwide recycling potential, Appendix A gives the estimated quantity and application information for sealed sources that would qualify for disposal in commercial facilities if not recycle. The report recommends that the Department of Energy initiate the organization of a forum to explore the suggested actions and other recycling possibilities.

Fischer, D.

1992-04-01T23:59:59.000Z

4

Preconceptual Design Description for Caustic Recycle Facility  

SciTech Connect

The U.S. Department of Energy plans to vitrify both high-level and low-activity waste at the Hanford Site in southeastern Washington State. One aspect of the planning includes a need for a caustic recycle process to separate sodium hydroxide for recycle. Sodium is already a major limitation to the waste-oxide loading in the low-activity waste glass to be vitrified at the Waste Treatment Plant, and additional sodium hydroxide will be added to remove aluminum and to control precipitation in the process equipment. Aluminum is being removed from the high level sludge to reduce the number of high level waste canisters produced. A sodium recycle process would reduce the volume of low-activity waste glass produced and minimize the need to purchase new sodium hydroxide, so there is a renewed interest in investigating sodium recycle. This document describes an electrochemical facility for recycling sodium for the WTP.

Sevigny, Gary J.; Poloski, Adam P.; Fountain, Matthew S.; Kurath, Dean E.

2008-04-12T23:59:59.000Z

5

Facilities Initiatives | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Office of Administration, Office of Logistics and Facility Operations, has several energy saving initiatives in place or in progress at their Headquarters' facilities in the...

6

Facilities Initiatives | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Facilities Facilities Initiatives Facilities Initiatives The Headquarters Office of Administration, Office of Logistics and Facility Operations, has several energy saving initiatives in place or in progress at their Headquarters' facilities in the Forrestal Building in Washington, DC, and Germantown Maryland. Many of these initiatives are part of their Energy Savings Performance Contract (ESPC). ESPCs allow Federal agencies to accomplish energy savings projects without up-front capital costs and without special Congressional appropriations. DOE ESPCs help Federal agencies meet energy efficiency, renewable energy, water conservation, and emissions reduction goals by streamlining contract funding for energy management projects. For more information on ESPCs visit the Federal Energy

7

Potential GTCC LLW sealed radiation source recycle initiatives. National Low-Level Waste Management Program  

SciTech Connect

This report suggests 11 actions that have the potential to facilitate the recycling (reuse or radionuclide) of surplus commercial sealed radiation sources that would otherwise be disposed of as greater-than-Class C low-level radioactive waste. The suggestions serve as a basis for further investigation and discussion between the Department of Energy, Nuclear Regulatory Commission, Agreement States, and the commercial sector. Information is also given that describes sealed sources, how they are used, and problems associated with recycling, including legal concerns. To illustrate the nationwide recycling potential, Appendix A gives the estimated quantity and application information for sealed sources that would qualify for disposal in commercial facilities if not recycle. The report recommends that the Department of Energy initiate the organization of a forum to explore the suggested actions and other recycling possibilities.

Fischer, D.

1992-04-01T23:59:59.000Z

8

Texas facility treats, recycles refinery, petrochemical wastes  

Science Conference Proceedings (OSTI)

A US Gulf Coast environmental services company is treating refinery and petrochemical plant wastes to universal treatment standards (UTS). DuraTherm Inc.`s recycling center uses thermal desorption to treat a variety of refinery wastes and other hazardous materials. The plant is located in San Leon, Tex., near the major Houston/Texas City refining and petrochemical center. DuraTherm`s customers include major US refining companies, plus petrochemical, terminal, pipeline, transportation, and remediation companies. Examples of typical contaminant concentrations and treatment levels for refinery wastes are shown. The paper discusses thermal desorption, the process description and testing.

NONE

1996-09-16T23:59:59.000Z

9

SunShot Initiative: Photovoltaic Research Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Initiative: Photovoltaic Research Facilities on AddThis.com... Concentrating Solar Power Photovoltaics Research & Development Competitive Awards Systems Integration Balance of...

10

LANL's sanitary facility can now recycle up to 300,000 gallons...  

National Nuclear Security Administration (NNSA)

sanitary facility can now recycle up to 300,000 gallons of water daily | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation...

11

LANL's sanitary facility can now recycle up to 300,000 gallons of water  

NLE Websites -- All DOE Office Websites (Extended Search)

sanitary facility can now recycle up to 300,000 gallons of water sanitary facility can now recycle up to 300,000 gallons of water daily | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > LANL's sanitary facility can now recycle up ... LANL's sanitary facility can now recycle up to 300,000 gallons of water daily Posted By Office of Public Affairs

12

LANL's sanitary facility can now recycle up to 300,000 gallons of water  

National Nuclear Security Administration (NNSA)

sanitary facility can now recycle up to 300,000 gallons of water sanitary facility can now recycle up to 300,000 gallons of water daily | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > LANL's sanitary facility can now recycle up ... LANL's sanitary facility can now recycle up to 300,000 gallons of water daily Posted By Office of Public Affairs

13

Integrated Safety Analysis: Why It Is Appropriate for Fuel Recycling Facilities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Integrated Safety Analysis: Why It Is Appropriate for Fuel Recycling Facilities Executive Summary This paper addresses why the use of an Integrated Safety Analysis ("ISA") is appropriate for fuel recycling facilities 1 which would be licensed under new regulations currently being considered by NRC. The use of the ISA for fuel facilities under Part 70 is described and compared to the use of a Probabilistic Risk Assessment ("PRA") for reactor facilities. A basis is provided for concluding that future recycling facilities - which will possess characteristics similar to today's fuel cycle facilities and distinct from reactors - can best be assessed using established qualitative or semi-quantitative ISA techniques to achieve and demonstrate safety in an effective and efficient manner.

14

Integrated Safety Analysis: Why It Is Appropriate for Fuel Recycling...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

by industry for recycling facilities 2 , is a systematic analysis to identify facility and external hazards and their potential for initiating accident sequences, the...

15

Recycling  

NLE Websites -- All DOE Office Websites (Extended Search)

recycling paths for various materials. Aerosol cans Asphalt Batteries Cardboard Concrete Light bulbs Metal Pallets Paper Tires Toner cartridges Vegetation Environmental...

16

Recycle of the treated effluent from the Liquid Effluent Treatment Facility: Engineering study  

SciTech Connect

During normal N Reactor operation there will be low-level radioactive liquid effluent flows discharged to the planned Liquid Effluent Treatment Facility (LETF). The LETF will filter and treat these flows to decrease the radioactive prior to discharging the effluent to the Liquid Waste Disposal Facility (LWDF) soil column. This report examines the feasibility and economics of recycling the treated effluent to the N Reactor for reuse thus eliminating or reducing discharges to the soil. The study concluded that recycling LETF effluent for reuse in the primary coolant system and in the fuel storage basin is technically feasible. However, the high cost to provide recycle water meeting the minimum N reactor chemical requirements and radiological concerns may not be justified due to the limited reactor operating life. The study concluded that inexpensive piping modifications to the Building 107N recirculation system would provide additional flow to alleviate the fuel basin clarity problem during refueling. This change would avoid the disposal of 62.2 million gal of treated water per year to the soil column. 21 refs., 5 figs., 7 tabs.

Shearer, E.A.; Janke, D.S.

1988-04-01T23:59:59.000Z

17

Hanford recycling  

Science Conference Proceedings (OSTI)

This paper is a study of the past and present recycling efforts on the Hanford site and options for future improvements in the recycling program. Until 1996, recycling goals were voluntarily set by the waste generators: this year, DOE has imposed goals for all its sites to accomplish by 1999. Hanford is presently meeting the voluntary site goals, but may not be able to meet all the new DOE goals without changes to the program. Most of these new DOE goals are recycling goals: * Reduce the generation of radioactive (low-level) waste from routine operations 50 percent through source reduction and recycling. * Reduce the generation of low-level mixed waste from routine operations 50 percent through source reduction and recycling. * Reduce the generation of hazardous waste from routine operations 50 percent through source reduction and recycling. * Recycle 33 percent of the sanitary waste from all operations. * Increase affirmative procurement of EPA-designated recycled items to 100 percent. The Hanford recycling program has made great strides-there has been a 98 percent increase in the amount of paper recycled since its inception in 1990. Hanford recycles paper, chemicals cardboard, tires, oil, batteries, rags, lead weights, fluorescent tubes, aerosol products, concrete, office furniture, computer software, drums, toner cartridges, and scrap metal. Many other items are recycled or reused by individual groups on a one time basis without a formal contract. Several contracts are closed-loop contracts which involve all parts of the recycle loop. Considerable savings are generated from recycling, and much more is possible with increased attention and improvements to this program. General methods for improving the recycling program to ensure that the new goals can be met are: a Contract and financial changes 0 Tracking database and methods improvements 0 Expanded recycling efforts. Specifically, the Hanford recycling program would be improved by: 0 Establishing one overall DOE recycling contract at the Hanford site and a central group to control the contract. 0 Using a BOA or MTS contract as a way to get proceeds from recycling back to site facilities to provide incentives for recycling. . Upgrading tracking mechanisms to track and recycle construction waste which is presently buried in onsite pits. . Establishing contract performance measures which hold each project accountable for specific waste reduction goals. * Recycling and reusing any material or equipment possible as buildings are dismantled.

Leonard, I.M.

1996-09-01T23:59:59.000Z

18

Letter from Nuclear Energy Institute regarding Integrated Safety Analysis: Why it is Appropropriate for Fuel Recycling Facilities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

082 l F: 202.533.0166 l rxm@nei.org l www.nei.org 082 l F: 202.533.0166 l rxm@nei.org l www.nei.org Rod McCullum DIRECTOR FUEL CYCLE PROJECTS NUCLEAR GENERATION DIVISION September 10, 2010 Ms. Catherine Haney Director Office of Nuclear Material Safety and Safeguards U.S. Nuclear Regulatory Commission Washington, DC 20555-0001 Subject: Integrated Safety Analysis: Why It Is Appropriate for Fuel Recycling Facilities Project Number: 689 Dear Ms. Haney: Enclosed for your review is a Nuclear Energy Institute white paper on the use of Integrated Safety Analysis (ISA) at U.S. Nuclear Regulatory Commission-licensed recycling facilities. This paper is intended as an information source for the NRC and should serve as a foundation for discussion with industry representatives on the issue.

19

Guidance document for multi-facility recycle/reuse/free release of metals from radiological control areas  

SciTech Connect

Approximately 15% of the Low Level Waste (LLW) produced at Los Alamos consists of scrap metal equipment and materials. The majority of this material is produced by decommissioning and modification of existing facilities. To address this waste stream, Los Alamos has developed a scrap metal recycling program that is operated by the Environmental Stewardship Office to minimize the amount of LLW metal sent for LLW landfill disposal. Past practice has supported treating all waste metals generated within RCA`s as contaminated. Through the metal recycling project, ESO is encouraging the use of alternatives to LLW disposal. Diverting RSM from waste landfill, disposal protects the environment, reduces the cost of operation, and reduces the cost of maintenance and operation at landfill sites. Waste minimization efforts also results in a twofold economic reward: The RSM has a market value and decontamination reduces the volume and therefore the amount of the radioactive waste to be buried within landfills.

Gogol, S.; Starke, T.

1997-08-15T23:59:59.000Z

20

LANL's sanitary facility can now recycle up to 300,000 gallons...  

NLE Websites -- All DOE Office Websites (Extended Search)

Facility (SERF-E) with a ribbon cutting ceremony earlier this month. Each year, LANL produces more than a hundred million gallons of effluent from LANL's sanitary...

Note: This page contains sample records for the topic "facilities initiatives recycling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Mixed Waste Recycling Exemption  

Science Conference Proceedings (OSTI)

As part of an ongoing integrated mixed waste program, EPRI has documented the process for obtaining state approval to apply the Resource Conservation and Recovery Act (RCRA) recycling exemption. This report examines the regulatory basis for the recycling exemption and the strategy for designing and operating a recycling facility to meet that exemption. Specifically addressed is the process of submitting an actual recycling exemption request to an RCRA authorized state and potential roadblocks utilities m...

1998-11-30T23:59:59.000Z

22

Successful Demolition of Historic Cape Canaveral Air Force Station Launch Facilities: Managing the Process to Maximize Recycle Value to Fund Demolition  

SciTech Connect

This paper will present the history of the Atlas 36 and Titan 40 Space Launch Complexes (SLC), the facility assessment process, demolition planning, recycle methodology, and actual facility demolition that resulted in a 40% reduction in baseline cost. These two SLC launched hundreds of payloads into space from Cape Canaveral Air Force Station (AFS), Florida. The Atlas-Centaur family of rockets could lift small- to medium-size satellites designed for communications, weather, or military use, placing them with near pinpoint accuracy into their intended orbits. The larger Titan family was relied upon for heavier lifting needs, including launching military satellites as well as interplanetary probes. But despite their efficiency and cost-effectiveness, the Titan rockets, as well as earlier generation Atlas models, were retired in 2005. Concerns about potential environmental health hazards from PCBs and lead-based paint chipping off the facilities also contributed to the Air Force's decision in 2005 to dismantle and demolish the Atlas and Titan missile-launching systems. Lockheed Martin secured the complex following the final launch, removed equipment and turned over the site to the Air Force for decommissioning and demolition (D and D). AMEC was retained by the Air Force to perform demolition planning and facility D and D in 2004. AMEC began with a review of historical information, interviews with past operations personnel, and 100% facility assessment of over 100 structures. There where numerous support buildings that due to their age contained asbestos containing material (ACM), PCB-impacted material, and universal material that had to be identified and removed prior to demolition. Environmental testing had revealed that the 36B mobile support tower (MST) exceeded the TSCA standard for polychlorinated biphenyls (PCB) paint (<50 ppm), as did the high bay sections of the Titan Vertical Integration Building (VIB). Thus, while most of the steel structures could be completely recycled, about one-third of 36B MST and the affected areas of the VIB were to be consigned to an on-site regulated waste landfill. In all, it is estimated that approximately 10,000,000 kg (11,000 tons) of PCB-coated steel will be land-filled and 23,000,000 kg (25,000 tons) will be recycled. The recycling of the steel and other materials made it possible to do additional demolition by using these funds. Therefore, finding ways to maximize the recycle value of materials became a key factor in the pre-demolition characterization and implementation strategy. This paper will present the following: - Critical elements in demolition planning working at an active launch facility; - Characterization and strategy to maximize steel recycle; - Waste disposition strategy to maximize recycle/reuse and minimize disposal; - Recycle options available at DOD installations that allow for addition funds for demolition; - Innovation in demolition methodologies for large structures - explosive demolition and large-scale dismantlement; - H and S aspects of explosive demolition and large scale dismantlement. In conclusion: The Cape Canaveral AFS Demolition Program has been a great success due to the integration of multiple operations and contractors working together to determine the most cost-effective demolition methods. It is estimated that by extensive pre-planning and working with CCAFS representatives, as well as maximizing the recycle credits of various material, primarily steel, that the government will be able to complete what was base-lined to be a $30 M demolition program for < $20 M. Other factors included a competitive subcontractor environment where they were encouraged with incentives to maximize recycle/reuse of material and creative demolition solutions. Also, by overlapping multiple demolition tasks at multiple facilities allowed for a reduction in field oversight. (authors)

Jones, A.; Hambro, L. [AMEC Earth and Environmental, Inc., Cocoa, FL (United States); Hooper, K. [U.S. Air Force 45th Space Wing, Patrick AFB, Florida (United States)

2008-07-01T23:59:59.000Z

23

THE DESIGN AND CONSTRUCTION OF THE EBR-II INITIAL FUEL LOADING FACILITY  

SciTech Connect

The need for the first core for EBR-11 resulted in the design and construction of the Initial Fuel Loading Facility for this reactor. The plant was built to provide the required initial loading, to train personnel, and to test prototype equipment for the remote reprocessing of fuel materials in the EBR- II Fuel Cycle Facility. The facilities include: remotely manipulated melting, casting, and pin processing equipment, a degreaser, hoods and their atmospheric control system, a gas-purification system, fuelelement-assembly equipment, mold- preparation and balance room, bonding furnaces, a maintenance shop, and a change area. (auth)

Ayer, J.E.; Shuck, A.B.

1961-06-01T23:59:59.000Z

24

Recycling | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Recycling Recycling Recycling In support of the Department's goal of implementing environmental sustainability practices across the complex, all DOE employees and contractors should incorporate the three "R's" of wise resource use as a core principle of their daily activities: reduce, reuse, and recycle. The Department's recycling program at Headquarters earns monetary credits from the GSA which is then credited to the Sheila Jo Watkins Memorial Child Development Centers for tuition assistance and the purchase of furniture and equipment. What Can Be Recycled, And Where What you can recycle Where to recycle White office paper, printed with any color ink. Staples are acceptable but paperclips, binder clips, plastic flags, tabs and colored post-it notes must be removed. Receptacles for white office paper are located in office suites and next to copy machines. Blue collection bins for individual offices may be obtained from the Facilities Management Helpdesk at (202) 586-6100 or by e-mailing:

25

Application of exemption principles to low-level waste disposal and recycle of wastes from nuclear facilities  

Science Conference Proceedings (OSTI)

The International Atomic Energy Agency (IAEA) and other international groups are considering exempting from regulatory control certain radiation sources and practices, initially under the general heading of de minimis. A significant fraction of the wastes from industry, research, medicine, and the nuclear fuel cycle are contaminated to such low levels that the associated risks to health are trivial. IAEA work has been conducted by Advisory Groups to establish principles for exemption, and to apply the principles to various areas of waste management. In the second area, the main objectives have been to illustrate a methodology for developing practical radiological criteria through the application of the IAEA preliminary exemption principles, to establish generic criteria, and to determine the practicability of the preliminary exemption principles. The method used relies on a modeling assessment of the potential radiation exposure pathways and scenarios for individuals and population groups following the unrestricted release of materials. This paper describes the IAEA's assessment methodology and presents the generic results expressed in terms of the limiting activity concentration in municipal waste and in low-activity materials for recycle and reuse. 2 refs., 2 tabs.

Kennedy, W.E. Jr.; Hemming, C.R.; O'Donnell, F.R.; Linsley, G.S.

1988-04-01T23:59:59.000Z

26

Concentrations, profiles, and estimated human exposures for polychlorinated dibenzo-p-dioxins and dibenzofurans from electronic waste recycling facilities and a chemical industrial complex in Eastern China  

SciTech Connect

Electronic shredder waste and dust from e-waste facilities, and leaves and surface soil collected in the vicinity of a large scale e-waste recycling facility in Taizhou, Eastern China, were analyzed for total dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) including 2,3,7,8-substituted congeners. We also determined PCDD/Fs in surface agricultural soils from several provinces in China for comparison with soils from e-waste facilities. Concentrations of total PCDD/Fs were high in all of the matrices analyzed and ranged from 30.9 to 11,400 pg/g for shredder waste, 3460 to 9820 pg/g dry weight for leaves, 2560 to 148,000 pg/g dry weight for workshop-floor dust, and 854 to 10200 pg/g dry weight for soils. We also analyzed surface soils from a chemical industrial complex (a coke-oven plant, a coal-fired power plant, and a chlor-alkali plant) in Shanghai. Concentrations of total PCDD/Fs in surface soil from the chemical industrial complex were lower than the concentrations found in soils from e-waste recycling plants, but higher than the concentrations found in agricultural soils. Agricultural soils from six cities in China contained low levels of total PCDD/Fs. Profiles of dioxin toxic equivalents (TEQs) of 2,3,7,8-PCDD/Fs in soils from e-waste facilities in Taizhou differed from the profiles found in agricultural soils. The estimated daily intakes of TEQs of PCDD/Fs via soil/dust ingestion and dermal exposure were 2 orders of magnitude higher in people at e-waste recycling facilities than in people at the chemical industrial site, implying greater health risk for humans from dioxin exposures at e-waste recycling facilities. The calculated TEQ exposures for e-waste workers from dust and soil ingestion alone were 2-3 orders of magnitude greater than the exposures from soils in reference locations. 37 refs., 1 fig., 2 tabs.

Ma, J.; Kannan, K.; Cheng, J.; Horii, Y.; Wu, Q.; Wang, W. [Shanghai Jiao Tong University, Shanghai (China). School of Environmental Science and Engineering

2008-11-15T23:59:59.000Z

27

Initial hydrogen detonation data from the High-Temperature Combustion Facility  

DOE Green Energy (OSTI)

The Brookhaven National Laboratory High-Temperature Combustion Facility (HTCF) is described and data from initial hydrogen detonation experiments are presented. Initial phase of the inherent detonability experimental program is described. Test gases thus far tested are hydrogen-air mixtures at one atmosphere initial pressure and temperatures 300K-650K. Detonation pressure, wave speed, and detonation cell size were measured. Data were consistent with earlier SSDA (small-scale development apparatus) test results. HTCF results confirm the conclusion from the SSDA program that the gas temperature decreases the cell size and, therefore, increases the sensitivity of mixtures to detonation. Data from the larger HTCF test vessel, however, also demonstrates that the effect of increased scale is to extend the range of detonable mixtures to lower concentration.

Ginsberg, T.; Ciccarelli, G.; Boccio, J. [and others

1994-12-31T23:59:59.000Z

28

Initial Activation and Operation of the Power Conditioning System for the National Ignition Facility  

DOE Green Energy (OSTI)

The NIF Power Conditioning System (PCS) resides in four Capacitor Bays, supplying energy to the Master and Power Amplifiers which reside in the two adjacent laser bays. Each capacitor bay will initially house 48 individual power conditioning modules, shown in Figure 2, with space reserved for expansion to 54 modules. The National Ignition Facility (NIF) Power Conditioning System (PCS) is a modular capacitive energy storage system that will be capable of storing nearly 400 MJ of electrical energy and delivering that energy to the nearly 8000 flashlamps in the NIF laser. The first sixteen modules of the power conditioning system have been built, tested and installed. Activation of the first nine power conditioning modules has been completed and commissioning of the first ''bundle'' of laser beamlines has begun. This paper will provide an overview of the power conditioning system design and describe the status and results of initial testing and activation of the first ''bundle'' of power conditioning modules.

Newton, M A; Kamm, R E; Fulkerson, E S; Hulsey, S D; Lao, N; Parrish, G L; Pendleton, D L; Petersen, D E; Polk, M; Tuck, J M; Ullery, G T; Moore, W B

2003-08-20T23:59:59.000Z

29

Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Environment Feature Stories Public Reading Room: Environmental Documents, Reports LANL Home Phonebook Calendar Video About Operational Excellence Facilities Facilities...

30

Battery Recycling  

Science Conference Proceedings (OSTI)

Jul 31, 2011 ... About this Symposium. Meeting, 2012 TMS Annual Meeting & Exhibition. Symposium, Battery Recycling. Sponsorship, The Minerals, Metals...

31

Recycled roads  

SciTech Connect

This article examines the efforts of various states in the USA to recycle waste materials in highway construction as fill and pavements. The topics of the article include recycling used tires whole, ground, and shredded, cost of recycling, wood fiber chips as fill material in embankments, and mining wastes used to construct embankments and as coarse aggregates in asphalt pavement.

Tarricone, P.

1993-04-01T23:59:59.000Z

32

RECOMMENDED FRIT COMPOSITION FOR INITIAL SLUDGE BATCH 5 PROCESSING AT THE DEFENSE WASTE PROCESSING FACILITY  

SciTech Connect

The Savannah River National Laboratory (SRNL) Frit Development Team recommends that the Defense Waste Processing Facility (DWPF) utilize Frit 418 for initial processing of high level waste (HLW) Sludge Batch 5 (SB5). The extended SB5 preparation time and need for DWPF feed have necessitated the use of a frit that is already included on the DWPF procurement specification. Frit 418 has been used previously in vitrification of Sludge Batches 3 and 4. Paper study assessments predict that Frit 418 will form an acceptable glass when combined with SB5 over a range of waste loadings (WLs), typically 30-41% based on nominal projected SB5 compositions. Frit 418 has a relatively high degree of robustness with regard to variation in the projected SB5 composition, particularly when the Na{sub 2}O concentration is varied. The acceptability (chemical durability) and model applicability of the Frit 418-SB5 system will be verified experimentally through a variability study, to be documented separately. Frit 418 has not been designed to provide an optimal melt rate with SB5, but is recommended for initial processing of SB5 until experimental testing to optimize a frit composition for melt rate can be completed. Melt rate performance can not be predicted at this time and must be determined experimentally. Note that melt rate testing may either identify an improved frit for SB5 processing (one which produces an acceptable glass at a faster rate than Frit 418) or confirm that Frit 418 is the best option.

Fox, K; Tommy Edwards, T; David Peeler, D

2008-06-25T23:59:59.000Z

33

Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Vehicle Recycling Partnership Plastics Separation Pilot Plant Vehicle Recycling Partnership Plastics Separation Pilot Plant Sam Jody and displays recycled plastics Bassam Jody displays plastics recovered from shredder residue by the Argonne separation process and successfully tested for making auto parts. The Challenge of Separating Plastic Waste Separating plastics at high concentrations from waste streams has been a challenge because many conventional separation methods depend on material density or employ organic solvents. Many plastics have overlapping densities and, therefore, could not be separated from each other based on density differences alone. Organic solvents pose environmental risks. Argonne's Froth-flotation Process Argonne has developed a process for separating individual polymers and groups of compatible polymers from various polymer rich waste streams. The

34

What can Recycling in Thermal Reactors Accomplish?  

SciTech Connect

Thermal recycle provides several potential benefits when used as stop-gap, mixed, or backup recycling to recycling in fast reactors. These three roles involve a mixture of thermal and fast recycling; fast reactors are required to some degree at some time. Stop-gap uses thermal reactors only until fast reactors are adequately deployed and until any thermal-recycle-only facilities have met their economic lifetime. Mixed uses thermal and fast reactors symbiotically for an extended period of time. Backup uses thermal reactors only if problems later develop in the fast reactor portion of a recycling system. Thermal recycle can also provide benefits when used as pure thermal recycling, with no intention to use fast reactors. However, long term, the pure thermal recycling approach is inadequate to meet several objectives.

Steven Piet; Gretchen E. Matthern; Jacob J. Jacobson

2007-09-01T23:59:59.000Z

35

Recycling 1  

Science Conference Proceedings (OSTI)

Jun 7, 2012 ... 6xxx Series Alloy Design Considerations Relating to Recycling: Malcolm ... Reuse of Al Dross as an Engineered Product: Chen Dai1; Diran...

36

Recycling Trends  

Science Conference Proceedings (OSTI)

...countries with low energy costs, such as Canada, Venezuela, Brazil, and Australia Recycling will increase in importance. For the United States, and ultimately for the rest of the aluminum-consuming world, recycling and resource recovery will play an increasingly important strategic role in ensuring a...

37

EVALUATION OF THE IMPACT OF THE DEFENSE WASTE PROCESSING FACILITY (DWPF) LABORATORY GERMANIUM OXIDE USE ON RECYCLE TRANSFERS TO THE H-TANK FARM  

SciTech Connect

When processing High Level Waste (HLW) glass, the Defense Waste Processing Facility (DWPF) cannot wait until the melt or waste glass has been made to assess its acceptability, since by then no further changes to the glass composition and acceptability are possible. Therefore, the acceptability decision is made on the upstream feed stream, rather than on the downstream melt or glass product. This strategy is known as 'feed forward statistical process control.' The DWPF depends on chemical analysis of the feed streams from the Sludge Receipt and Adjustment Tank (SRAT) and the Slurry Mix Evaporator (SME) where the frit plus adjusted sludge from the SRAT are mixed. The SME is the last vessel in which any chemical adjustments or frit additions can be made. Once the analyses of the SME product are deemed acceptable, the SME product is transferred to the Melter Feed Tank (MFT) and onto the melter. The SRAT and SME analyses have been analyzed by the DWPF laboratory using a 'Cold Chemical' method but this dissolution did not adequately dissolve all the elemental components. A new dissolution method which fuses the SRAT or SME product with cesium nitrate (CsNO{sub 3}), germanium (IV) oxide (GeO{sub 2}) and cesium carbonate (Cs{sub 2}CO{sub 3}) into a cesium germanate glass at 1050 C in platinum crucibles has been developed. Once the germanium glass is formed in that fusion, it is readily dissolved by concentrated nitric acid (about 1M) to solubilize all the elements in the SRAT and/or SME product for elemental analysis. When the chemical analyses are completed the acidic cesium-germanate solution is transferred from the DWPF analytic laboratory to the Recycle Collection Tank (RCT) where the pH is increased to {approx}12 M to be released back to the tank farm and the 2H evaporator. Therefore, about 2.5 kg/yr of GeO{sub 2}/year will be diluted into 1.4 million gallons of recycle. This 2.5 kg/yr of GeO{sub 2} may increase to 4 kg/yr when improvements are implemented to attain an annual canister production goal of 400 canisters. Since no Waste Acceptance Criteria (WAC) exists for germanium in the Tank Farm, the Effluent Treatment Project, or the Saltstone Production Facility, DWPF has requested an evaluation of the fate of the germanium in the caustic environment of the RCT, the 2H evaporator, and the tank farm. This report evaluates the effect of the addition of germanium to the tank farm based on: (1) the large dilution of Ge in the RCT and tank farm; (2) the solubility of germanium in caustic solutions (pH 12-13); (3) the potential of germanium to precipitate as germanium sodalites in the 2H Evaporator; and (4) the potential of germanium compounds to precipitate in the evaporator feed tank. This study concludes that the impacts of transferring up to 4 kg/yr germanium to the RCT (and subsequently the 2H evaporator feed tank and the 2H evaporator) results in <2 ppm per year (1.834 mg/L) which is the maximum instantaneous concentration expected from DWPF. This concentration is insignificant as most sodium germanates are soluble at the high pH of the feed tank and evaporator solutions. Even if sodium aluminosilicates form in the 2H evaporator, the Ge will likely substitute for some small amount of the Si in these structures and will be insignificant. It is recommended that the DWPF continue with their strategy to add germanium as a laboratory chemical to Attachment 8.2 of the DWPF Waste Compliance Plan (WCP).

Jantzen, C.; Laurinat, J.

2011-08-15T23:59:59.000Z

38

Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Facilities Facilities Facilities LANL's mission is to develop and apply science and technology to ensure the safety, security, and reliability of the U.S. nuclear deterrent; reduce global threats; and solve other emerging national security and energy challenges. Contact Operator Los Alamos National Laboratory (505) 667-5061 Some LANL facilities are available to researchers at other laboratories, universities, and industry. Unique facilities foster experimental science, support LANL's security mission DARHT accelerator DARHT's electron accelerators use large, circular aluminum structures to create magnetic fields that focus and steer a stream of electrons down the length of the accelerator. Tremendous electrical energy is added along the way. When the stream of high-speed electrons exits the accelerator it is

39

Polybrominated dibenzo-p-dioxins/dibenzofurans and polybrominated diphenyl ethers in soil, vegetation, workshop-floor dust, and electronic shredder residue from an electronic waste recycling facility and in soils from a chemical industrial complex in eastern China  

SciTech Connect

In this study, 11 2,3,7,8-substituted PBDD/Fs and 10 polybrominated diphenyl ether (PBDE) congeners were determined in electronic shredder waste, workshop-floor dust, soil, and leaves (of plants on the grounds of the facility) from a large-scale electronic wastes (e-waste) recycling facility and in surface soil from a chemical-industrial complex (comprising a coke-oven plant, a coal-fired power plant, and a chlor-alkali plant) as well as agricultural areas in eastern China. Total PBDD/F concentrations in environmental samples were in the range of 113-818 pg/g dry wt (dw) for leaves, 392-18,500 pg/g dw for electronic shredder residues, 716-80,0000 pg/g dw for soil samples, and 89,600-14,3000 pg/g dw for workshop-floor dust from the e-waste recycling facility and in a range from nondetect (ND) to 427 pg/g dw in soil from the chemical-industrial complex. The highest mean concentrations of total PBDD/Fs were found in soil samples and workshop-floor dust from the e-waste recycling facility. The dioxin-like toxic equivalent (measured as TEQ) concentrations of PBDD/Fs were greater than the TEQs of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) reported in our previous study for the same set of samples. The concentrations of PBDFs were several orders of magnitude higher than the concentrations of PBDDs in samples from the e-waste facility or from soil from the chemical-industrial complex. A significant correlation was found between the concentrations of {Sigma}PBDD/Fs and {Sigma}PBDEs (r = 0.769, p < 0.01) and between SPBDD/Fs and the previously reported SPCDD/F concentrations (r = 0.805, p < 0.01). The estimated daily human intakes of TEQs contributed by PBDD/Fs via soil/dust ingestion and dermal exposures in e-waste recycling facilities were higher than the intakes of TEQs contributed by PCDD/Fs, calculated in our previous study. 45 refs., 2 figs., 2 tabs.

Jing Ma; Rudolf Addink; Sehun Yun; Jinping Cheng; Wenhua Wang; Kurunthachalam Kannan [Shanghai Jiao Tong University, Shanghai (China). School of Environmental Science and Engineering

2009-10-01T23:59:59.000Z

40

Tritium Recycling (Processing) Facility Design  

Science Conference Proceedings (OSTI)

Design, Operation, and Maintenance of Tritium System / Proceedings of the Fifth Topical Meeting on Tritium Technology In Fission, Fusion, and Isotopic Applications Belgirate, Italy May 28-June 3, 1995

Jack Metzler; Thuy Le

Note: This page contains sample records for the topic "facilities initiatives recycling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Chemical decontamination of process equipment using recyclable chelating solvent Phase I. Final report, September 1993--June 1995  

SciTech Connect

The Department of Energy (DOE) is now faced with the task of meeting decontamination and decommissioning obligations at numerous facilities by the year 2019. Due to the tremendous volume of material involved, innovative decontamination technologies are being sought that can reduce the volumes of contaminated waste materials and secondary wastes requiring disposal. With sufficient decontamination, some of the material from DOE facilities could be released as scrap into the commercial sector for recycle, thereby reducing the volume of radioactive waste requiring disposal. Although recycling may initially prove to be more costly than current disposal practices, rapidly increasing disposal costs are expected to make recycling more and more cost effective. Additionally, recycling is now perceived as the ethical choice in a world where the consequences of replacing resources and throwing away reusable materials are impacting the well-being of the environment.

NONE

1995-10-01T23:59:59.000Z

42

Solvent recycle/contaminant reduction testing - Phase I, Task 3. Topical progress report, June 1994--December 1994  

Science Conference Proceedings (OSTI)

The Department of Energy (DOE) is now faced with the task of meeting decontamination and decommissioning obligations at numerous facilities by the year 2019. Due to the tremendous volume of material involved, innovative decontamination technologies are being sought that can reduce the volumes of contaminated waste materials and secondary wastes requiring disposal. With sufficient decontamination, some of the material from DOE facilities could be released as scrap into the commercial sector for recycle, thereby reducing the volume of radioactive waste requiring disposal. Although recycling may initially prove to be more costly than current disposal practices, rapidly increasing disposal costs are expected to make recycling more and more cost effective. Additionally, recycling is now perceived as the ethical choice in a world where the consequences of replacing resources and throwing away reusable materials are impacting the well-being of the environment. This report describes the solvent recyle test program for EDTA/ammonium carbonate solvent.

NONE

1995-07-01T23:59:59.000Z

43

recycled_uranium.cdr  

Office of Legacy Management (LM)

Recycled Uranium and Transuranics: Recycled Uranium and Transuranics: Their Relationship to Weldon Spring Site Remedial Action Project Introduction Historical Perspective On August 8, 1999, Energy Secretary Bill Richardson announced a comprehensive set of actions to address issues raised at the Paducah, Kentucky, Gaseous Diffusion Plant that may have had the potential to affect the health of the workers. One of the issues addressed the need to determine the extent and significance of radioactive fission products and transuranic elements in the uranium feed and waste products throughout the U.S. Department of Energy (DOE) national complex. Subsequently, a DOE agency-wide Recycled Uranium Mass Balance Project (RUMBP) was initiated. For the Weldon Spring Uranium Feed Materials Plant (WSUFMP or later referred to as Weldon Spring),

44

Impact of increased electric vehicle use on battery recycling infrastructure  

DOE Green Energy (OSTI)

State and Federal regulations have been implemented that are intended to encourage more widespread use of low-emission vehicles. These regulations include requirements of the California Air Resources Board (CARB) and regulations pursuant to the Clean Air Act Amendments of 1990 and the Energy Policy Act. If the market share of electric vehicles increases in response to these initiatives, corresponding growth will occur in quantities of spent electric vehicle batteries for disposal. Electric vehicle battery recycling infrastructure must be adequate to support collection, transportation, recovery, and disposal stages of waste battery handling. For some battery types, such as lead-acid, a recycling infrastructure is well established; for others, little exists. This paper examines implications of increasing electric vehicle use for lead recovery infrastructure. Secondary lead recovery facilities can be expected to have adequate capacity to accommodate lead-acid electric vehicle battery recycling. However, they face stringent environmental constraints that may curtail capacity use or new capacity installation. Advanced technologies help address these environmental constraints. For example, this paper describes using backup power to avoid air emissions that could occur if electric utility power outages disable emissions control equipment. This approach has been implemented by GNB Technologies, a major manufacturer and recycler of lead-acid batteries. Secondary lead recovery facilities appear to have adequate capacity to accommodate lead waste from electric vehicles, but growth in that capacity could be constrained by environmental regulations. Advances in lead recovery technologies may alleviate possible environmental constraints on capacity growth.

Vimmerstedt, L.; Hammel, C. [National Renewable Energy Lab., Golden, CO (United States); Jungst, R. [Sandia National Labs., Albuquerque, NM (United States)

1996-12-01T23:59:59.000Z

45

Facility preparations for the initial International Atomic Energy Agency Inpsection of Hanford Site excess material  

Science Conference Proceedings (OSTI)

In September 1993 President Clinton offered to place excess US nuclear materials under IAEA safeguards. In January 1994, the Hanford Site was identified as the second site in the US to be prepared for placement on the eligibility list for LAEA safeguards selection. Planning and preparation started at Hanford in February 1994. The PFP mission is to provide safe storage of Category 1 and 2 special nuclear material (SNM) and laboratory support to the Hanford Site. The mission includes the stabilizing and packaging of SNM for temporary storage sufficient to support the deactivation and cleanup function of the facility. The storage of Category 1 and 2 SNM at this facility indirectly supports national security interests, and safe storage is accomplished in a manner that ensures the health and safety of the public and employees are not compromised. The PFP is located in the approximate center of the Hanford Site inside the 200 West Area. The PFP is within a designated protected area (PA) and is located approximately 10.5 km from the Columbia River and 34 km northwest of the Richland city limits. The, Hanford Site is located in Southeastern Washington and has been associated with plutonium production since the mid 1940s. Excess plutonium oxide has been placed under IAEA safeguards in a phased approach at the PFP`s Plutonium Storage Vault. This paper is an overview and summary of the many tasks required to meet IAEA safeguards requirements.

Johnson, W.C. [USDOE Richland Operations Office, WA (United States); Scott, D.D.; Bartlett, W.D.; Delegard, C.H.; McRae, L.P.; Six, D.E. [Westinghouse Hanford Co., Richland, WA (United States); Amacker, O.P. [Pacific Northwest Lab., Richland, WA (United States)

1995-09-01T23:59:59.000Z

46

Renewable and Recycled Energy Objective (North Dakota) | Open...  

Open Energy Info (EERE)

There are special conditions regarding RECs associated with hydropower facilities. Electricity generation applied to the renewable energy and recycled energy objective, as well...

47

Aluminum Association: Recycling  

Science Conference Proceedings (OSTI)

Jun 30, 2008 ... This webpage provides some historical information on aluminum recycling and describes the processes done by various recyclers: used...

48

Ad Building demolition, recycling completed  

NLE Websites -- All DOE Office Websites (Extended Search)

Ad Building demolition, recycling completed Ad Building demolition, recycling completed Ad Building demolition, recycling completed Demolition of the Administration Building helps Los Alamos meet an NNSA directive to reduce its structural footprint, modernize its infrastructure, and provide workers with safe, energy-efficient facilities. October 11, 2011 Demolition of the administration building Demolition of the Administration Building Contact Steve Sandoval Communications Office (505) 665-9206 Email Project finished under budget, ahead of schedule LOS ALAMOS, New Mexico, October 11, 2011-Los Alamos National Laboratory has completed demolition of its former Administration Building. Demolition of the 316,500-square-foot building that was home to seven Laboratory directors was completed five months ahead of the original schedule and

49

Bayshore Recycling Solar Project | Open Energy Information  

Open Energy Info (EERE)

Bayshore Recycling Solar Project Bayshore Recycling Solar Project Jump to: navigation, search Name Bayshore Recycling Solar Project Facility Bayshore Recycling Solar Project Sector Solar Facility Type Roof-mount Owner EnXco Developer EnXco Location Keasbey, New Jersey Coordinates 40.51667°, -74.30556° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.51667,"lon":-74.30556,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

50

Model institutional infrastructures for recycling of photovoltaic modules  

DOE Green Energy (OSTI)

How will photovoltaic modules (PVMS) be recycled at the end of their service lives? This question has technological and institutional components (Reaven, 1994a). The technological aspect concerns the physical means of recycling: what advantages and disadvantages of the several existing and emerging mechanical, thermal, and chemical recycling processes and facilities merit consideration? The institutional dimension refers to the arrangements for recycling: what are the operational and financial roles of the parties with an interest in PVM recycling? These parties include PVM manufacturers, trade organizations; distributors, and retailers; residential, commercial, and utility PVM users; waste collectors, transporters, reclaimers, and reclaimers; and governments.

Reaven, S.J.; Moskowitz, P.D.; Fthenakis, V.

1996-01-01T23:59:59.000Z

51

TransForum v4n4 - TTRDC Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

R&D Laboratory Engine Research FacilityHeavy-Duty Truck Engine Test Cell High-Performance Computing Research Facility Tribology Laboratory Selective Continuous Recycling of...

52

An initial assessment of three-dimensional polar direct drive capsule asymmetries for implosions at the National Ignition Facility  

Science Conference Proceedings (OSTI)

The National Ignition Facility (NIF) provides a unique opportunity to study implosion physics with nuclear yield. The use of polar direct drive (PDD) [A. M. Cok, R. S. Craxton, and P. W. McKenty, Phys. Plasmas 15, 082705 (2008)] provides a simple platform for the experimental studies without expensive optics upgrades to NIF. To determine the optimum PDD laser pointing geometry on NIF and provide a baseline for validating inertial confinement fusion codes against experiments for symmetric and asymmetric implosions, computer simulations using the 3D radiation-hydrodynamics code hydra[M. M. Marinak, R. E. Tipton, O. L. Landen, T. J. Murphy, P. Amendt, S. W. Haan, S. P. Hatchett, C. J. Keane, R. McEachern, and R. Wallace, Phys. Plasmas 3, 2070 (1996)] were preformed. The upper hemisphere of a DT-filled CH capsule was imploded by 96 NIF beams in a PDD configuration. Asymmetries in both polar and equatorial directions around the capsule were observed, with the former dominating the latter. Analysis of the simulation results indicates that the lack of symmetry in the initial power density profile (during the first 200 ps of the implosion) is a primary cause of late-time asymmetry in the implosion as well as decreased yield. By adjusting the laser pointings, the symmetry and total neutron yield were improved. Simulations with dropped quads (four of the NIF laser system's 192 beamlines) without repointing worsen the overall symmetry by a factor of 10 (with respect to rms radial variation around the capsule) and reduce neutron yield by a factor of 2. Both of these degraded implosion characteristics are restored by azimuthal repointing of the remaining quads.

Krasheninnikova, Natalia S.; Finnegan, Sean M.; Schmitt, Mark J. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

2012-01-15T23:59:59.000Z

53

Economic Feasibility of Electrochemical Caustic Recycling at the Hanford Site  

SciTech Connect

This report contains a review of potential cost benefits of NaSICON Ceramic membranes for the separation of sodium from Hanford tank waste. The primary application is for caustic recycle to the Waste Treatment and Immobilization Plant (WTP) pretreatment leaching operation. The report includes a description of the waste, the benefits and costs for a caustic-recycle facility, and Monte Carlo results obtained from a model of these costs and benefits. The use of existing cost information has been limited to publicly available sources. This study is intended to be an initial evaluation of the economic feasibility of a caustic recycle facility based on NaSICON technology. The current pretreatment flowsheet indicates that approximately 6,500 metric tons (MT) of Na will be added to the tank waste, primarily for removing Al from the high-level waste (HLW) sludge (Kirkbride et al. 2007). An assessment (Alexander et al. 2004) of the pretreatment flowsheet, equilibrium chemistry, and laboratory results indicates that the quantity of Na required for sludge leaching will increase by 6,000 to 12,000 MT in order to dissolve sufficient Al from the tank-waste sludge material to maintain the number of HLW canisters produced at 9,400 canisters as defined in the Office of River Protection (ORP) System Plan (Certa 2003). This additional Na will significantly increase the volume of LAW glass and extend the processing time of the Waste Treatment and Immobilization Plant (WTP). Future estimates on sodium requirements for caustic leaching are expected to significantly exceed the 12,000-MT value and approach 40,000-MT of total sodium addition for leaching (Gilbert, 2007). The cost benefit for caustic recycling is assumed to consist of four major contributions: 1) the cost savings realized by not producing additional immobilized low-activity waste (ILAW) glass, 2) caustic recycle capital investment, 3) caustic recycle operating and maintenance costs, and 4) research and technology costs needed to deploy the technology. In estimating costs for each of these components, several parameters are used as inputs. Due to uncertainty in assuming a singular value for each of these parameters, a range of possible values is assumed. A Monte Carlo simulation is then performed where the range of these parameters is exercised, and the resulting range of cost benefits is determined.

Poloski, Adam P.; Kurath, Dean E.; Holton, Langdon K.; Sevigny, Gary J.; Fountain, Matthew S.

2009-03-01T23:59:59.000Z

54

Objectives, Strategies, and Challenges for the Advanced Fuel Cycle Initiative  

Science Conference Proceedings (OSTI)

This paper will summarize the objectives, strategies, and key chemical separation challenges for the Advanced Fuel Cycle Initiative (AFCI). The major objectives are as follows: Waste management - defer the need for a second geologic repository for a century or more, Proliferation resistance - be more resistant than the existing PUREX separation technology or uranium enrichment, Energy sustainability - turn waste management liabilities into energy source assets to ensure that uranium ore resources do not become a constraint on nuclear power, and Systematic, safe, and economic management of the entire fuel cycle. There are four major strategies for the disposal of civilian spent fuel: Once-through - direct disposal of all discharged nuclear fuel, Limited recycle - recycle transuranic elements once and then direct disposal, Continuous recycle - recycle transuranic elements repeatedly, and Sustained recycle - same as continuous except previously discarded depleted uranium is also recycled. The key chemical separation challenges stem from the fact that the components of spent nuclear fuel vary greatly in their influence on achieving program objectives. Most options separate uranium to reduce the weight and volume of waste and the number and cost of waste packages that require geologic disposal. Separated uranium can also be used as reactor fuel. Most options provide means to recycle transuranic (TRU) elements - plutonium (Pu), neptunium (Np), americium (Am), curium (Cm). Plutonium must be recycled to obtain repository, proliferation, and energy recovery benefits. U.S. non-proliferation policy forbids separation of plutonium by itself; therefore, one or more of the other transuranic elements must be kept with the plutonium; neptunium is considered the easiest option. Recycling neptunium also provides repository benefits. Americium recycling is also required to obtain repository benefits. At the present time, curium recycle provides relatively little benefit; indeed, recycling curium in thermal reactors would significantly increase the hazard (hence cost) of the resulting fuel. Most options separate short-lived fission products cesium and strontium to allow them to decay in separate storage facilities tailored to that need, rather than complicate long-term geologic disposal. This can also reduce the number and cost of waste packages requiring geologic disposal. These savings are balanced by costs for separation and recycle systems. Several long-lived fission products, such as technetium-99 and iodine-129 go to geologic disposal in improved waste forms, recognizing that transmutation of these isotopes would be a slow process; however, the program has not precluded their transmutation as a future alternative.

Steven Piet; Brent Dixon; David Shropshire; Robert Hill; Roald Wigeland; Erich Schneider; J. D. Smith

2005-04-01T23:59:59.000Z

55

Scrap tire recycling in Minnesota  

Science Conference Proceedings (OSTI)

The author discusses the problems associated with scrap tires. For example, surface storing of scrap tires poses a fire hazard and the rainwater trapped in the tire casings is an ideal breeding ground for mosquitoes. Use as a fuel for energy production is unattractive as long as oil retails at its present low price. Past reclamation processes have not met expectations. Legislation alone is not the answer, because scrap tires cannot be regulated out of existence. However, the Minnesota state legislature has come up with an approach that seems to be successful. It has passed the Waste Tire Act, which not only formulates regulations but also provides funding for research and development. Thus, it has established a tire disposal fund for financing construction costs of tire recycling facilities. One of the outcomes was the construction of the St. Louis county Waste Tire Recycling Facility. Through a leasing arrangement with Minneapolis-based Rubber Elastomerics, Inc. (RRE), construction costs financed by the tire disposal fund eventually will be repaid by RRE to the fund. The arrangement is described in detail. By a process also described, RRE produces a product that can be used in thermoset and in thermoplastic compounds. The user can incorporate between 50 percent and 85 percent of the recycled product into a rubber or plastic compound without significantly affecting the physical properties of the compound.

Not Available

1989-10-01T23:59:59.000Z

56

Recycling General Sessions  

Science Conference Proceedings (OSTI)

... and design based on recyclability; life-cycle analysis of materials; properties; and ... Al Recycling Batch Planning in a Constrained Secondary Material Market ... Mullites Bodies Produced From the Kaolin Residue Using Microwave Energy.

57

Federal Recycling Program Printed on recycled paper.  

E-Print Network (OSTI)

#12;Federal Recycling Program Printed on recycled paper. The Forest Health Technology Enterprise. This book was pub- lished by FHTET as part of the technology transfer series. http.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis

Hoddle, Mark S.

58

Battery Recycling - Programmaster.org  

Science Conference Proceedings (OSTI)

The symposium will cover all aspects of battery recycling from legislation, collection, safety issues & transportation regulations and current recycling...

59

FSC-Watch: FSC undermines paper recycling, contributes to global warming FSC undermines paper recycling, contributes to global  

E-Print Network (OSTI)

's Pine Falls operations has helped destroy production of recycled paper. Manitoba is now left with a huge pile of collected paper, which can either be burned or landfilled, or shipped to more distant recycling facilities, all of which will increase greenhouse gas emissions. The pulp and paper industry is one

60

Fuel Cycle Options for Optimized Recycling of Nuclear Fuel  

E-Print Network (OSTI)

The reduction of transuranic inventories of spent nuclear fuel depends upon the deployment of advanced fuels that can be loaded with recycled transuranics (TRU), and the availability of facilities to separate and reprocess ...

Aquien, A.

Note: This page contains sample records for the topic "facilities initiatives recycling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Fuel cycle options for optimized recycling of nuclear fuel  

E-Print Network (OSTI)

The accumulation of transuranic inventories in spent nuclear fuel depends on both deployment of advanced reactors that can be loaded with recycled transuranics (TRU), and on availability of the facilities that separate and ...

Aquien, Alexandre

2006-01-01T23:59:59.000Z

62

Recycling Energy Yields Super Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Recycling Energy Yields Super Savings Recycling Energy Yields Super Savings Recycling Energy Yields Super Savings April 23, 2010 - 4:34pm Addthis Joshua DeLung Recycling has been part of going green for a long time, but one company is going a step further by actually recycling energy that has already been used to power manufacturing plants. How do they do it? Recycled Energy Development implements proven technologies that help capture wasted heat and increase their energy efficiency. Dick Munson, senior vice president for public affairs at RED, says facilities that undertake such projects are generally able to cut their energy expenses by up to 20 percent. West Virginia Alloys, in Alloy, W.Va., is a silicon manufacturing plant that makes materials that end up in products such as solar cells and computer chips. In 2013, with help from

63

Loveland Water and Power - Refrigerator Recycling Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Refrigerator Recycling Program Refrigerator Recycling Program Loveland Water and Power - Refrigerator Recycling Program < Back Eligibility Residential Savings Category Appliances & Electronics Maximum Rebate Limit one rebate per account per year Program Info State Colorado Program Type Utility Rebate Program Rebate Amount Refrigerator and Freezer Recycling: $35 Loveland Water and Power is providing an incentive for its customers to recycle their old refrigerators. Interested customers can call the utility to arrange a time to pick up the old refrigerator. The old refrigerator should be brought outside but remain plugged in so the utility can make it is in working condition. the utility will then take the refrigerator to a recycling facility and issue a $35 bill credit. Other Information

64

Materials - Recycling - Shredder Residue  

NLE Websites -- All DOE Office Websites (Extended Search)

Recovering Materials from Shredder Residue Recovering Materials from Shredder Residue Obsolete automobiles, home appliances and other metal-containing scrap are shredded for the recovery of metals. More than 50% of the material shredded is automobiles. In the United States, shredders generate about 5 million tons of shredder residue every year. Similar amounts are produced in Europe and in the Pacific Rim. Because recycling shredder waste has not been profitable, most of it ends up in landfills; smaller amounts are incinerated. Argonne researchers have developed and tested a process to recover polymers and metals from shredder residue. A 2-ton/hr pilot plant, consisting of a mechanical separation facility and a six-stage wet density/froth flotation plant, was built at Argonne. In the mechanical part of the plant, the shredder waste was separated into five primary components: a polymer fraction (about 45% by weight), a residual metals concentrate (about 10% by weight), a polyurethane foam portion (about 5% by weight), an organic-rich fraction (about 25% by weight) and a metal oxides fraction (about 15% by weight). The polymer fraction was then separated further in the wet density/froth flotation system to recover individual plastic types or compatible families of polymers.

65

Hydrogen recycling: fundamental processes  

DOE Green Energy (OSTI)

The recycling of hydrogen at the interior surfaces of plasma devices is an important and largely uncontrolled process at present. There remain important questions concerning the fundamental processes involved in recycling phenomena and the material dependence of these pocesses. A primary aim of the fundamental studies should be to develop sufficient understanding of the influence of materials properties on hydrogen recycling so that the materials and machine operating conditions can be selected to give maximum control of hydrogen recycling. In addition, realistic models of the wall behavior under recycling conditions need to be developed. Such modeling goes hand-in-hand with both fundamental process studies and in situ measurements, and may provide sufficient overall understanding of the influence of recycling on machine operation to impact design decisions effecting such important processes as impurity control, plasma, fueling, and pulse length.

Picraux, S.T.

1979-01-01T23:59:59.000Z

66

TRANSPARENCY RECYCLING PROGRAM PROCEDURES  

NLE Websites -- All DOE Office Websites (Extended Search)

TRANSPARENCY RECYCLING Don't throw out your used overhead transparencies! RECYCLE them for REUSE. It's Easy! Follow these simple procedures: 1.) COLLECT used transparencies to be recycled. 2.) SEPARATE the transparencies from ringed binders, plastic or paper folders, envelopes, and/or files. 3.) PLACE the transparencies (only) into an intra-laboratory mail envelope. 4.) SEND the envelope to: Terri Schneider, Building 201, 1D-10. Terri will prepare a

67

General Recycling Poster Session  

Science Conference Proceedings (OSTI)

Life Cycle Based Greenhouse Gas Footprints of Metal Production with Recycling .... The disposal of landfill sludge directly not only leads to the heavy metal...

68

Recycling Electronic Waste - Website  

Science Conference Proceedings (OSTI)

Jun 18, 2010 ... Joined: 2/13/2007. Below is a link to a website that has articles on recycling electronic waste. http://www.scientificamerican....ectronic-waste-...

69

Radiation dose assessments to support evaluations of radiological control levels for recycling or reuse of materials and equipment  

Science Conference Proceedings (OSTI)

Pacific Northwest Laboratory is providing Environmental Protection Support and Assistance to the USDOE, Office of Environmental Guidance. Air, Water, and Radiation Division. As part of this effort, PNL is collecting data and conducting technical evaluations to support DOE analyses of the feasibility of developing radiological control levels for recycling or reuse of metals, concrete, or equipment containing residual radioactive contamination from DOE operations. The radiological control levels will be risk-based, as developed through a radiation exposure scenario and pathway analysis. The analysis will include evaluation of relevant radionuclides, potential mechanisms of exposure, and both health and non-health-related impacts. The main objective of this report is to develop a methodology for establishing radiological control levels for recycle or reuse. This report provides the results of the radiation exposure scenario and pathway analyses for 42 key radionuclides generated during DOE operations that may be contained in metals or equipment considered for either recycling or reuse. The scenarios and information developed by the IAEA. Application of Exemption Principles to the Recycle and Reuse of Materials from Nuclear Facilities, are used as the initial basis for this study. The analyses were performed for both selected worker populations at metal smelters and for the public downwind of a smelter facility. Doses to the public downwind were estimated using the US (EPA) CAP88-PC computer code with generic data on atmospheric dispersion and population density. Potential non-health-related effects of residual activity on electronics and on film were also analyzed.

Hill, R.L.; Aaberg, R.L.; Baker, D.A.; Kennedy, W.E. Jr.

1995-07-01T23:59:59.000Z

70

Recycling Programs | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Recycling Recycling Programs Recycling Programs The Office of Administration manages many recycling activities at DOE Headquarters that significantly impact energy and the environment. The Department of Energy Headquarters has instituted several recycling programs, starting with standard, solid waste recycling in 1991, and has expanded to include batteries, toner cartridges, carpeting and cell phones. Follow this link for a detailed listing of the products that DOE Headquarters recycles, and where to recycle them. Waste Recycling In FY 2011, DOE Headquarters recycled 134 tons of waste which earned over $7,200 in GSA credits that were provided to the Sheila Jo Watkins Memorial Child Development Centers. Since the recycling program began in 1991 over 6,800 tons of waste have been recycled earning over $350,000 for the Child

71

Recycle of battery materials  

SciTech Connect

Studies were conducted on the recycling of advanced battery system components for six different battery systems. These include: Nickel/Zinc, Nickel/Iron, Zinc/Chlorine, Zinc/Bromine, Sodium/Sulfur, and Lithium-Aluminum/Iron Sulfide. For each battery system, one or more processes has been developed which would permit recycling of the major or active materials.

Pemsler, J.P.; Spitz, R.A.

1981-01-01T23:59:59.000Z

72

Production of Recycled Lead  

Science Conference Proceedings (OSTI)

...production of lead from recycled and mined (primary) sources for 1980 to 1988. At present, just under half of the total world lead production of 4.3 million metric tons (4.7 million tons) comes from recycling of scrap materials. As indicated in Table 4, there has been very little change in recent...

73

Recycling - Nickel-based superalloys  

Science Conference Proceedings (OSTI)

A business and technology perspective on recycling, partiularly recycling of household waste, metals and plastics. 0, 563, Diana Grady, 7/2/2008 9:55 AM

74

School Recycling Program  

NLE Websites -- All DOE Office Websites (Extended Search)

100% Recyclable 100% Recyclable Presentation Page Project Summary Scenario Student Pages Index of Projects Title of Project/Unit: 100% Recyclable Subject: Social Studies, Science, Healthy, & Communications Grade Level: Middle School (7th Grade) Abstract: The unit begins in the fall and will last about six weeks. Students will rely on working in collaborative groups in order to share information and problem solve. Students will us the Internet and e-mail to communicate with as many other schools as possible across the country. This unit will be part of an interdisciplinary unit to combine: Science: the study of waste, recycling & ecology Social Studies: how communities and groups of people historically handled waste and waste products, how native Americans re-cycled, how we became a 'disposable' society.

75

National Security Initiatives | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Bioinformatics Facilities Events and Conferences Supporting Organizations National Security Home | Science & Discovery | National Security | Initiatives SHARE National...

76

Innovative technologies for recycling contaminated concrete and scrap metal  

SciTech Connect

Decontamination and decommissioning of US DOE`s surplus facilities will generate enormous quantities of concrete and scrap metal. A solicitation was issued, seeking innovative technologies for recycling and reusing these materials. Eight proposals were selected for award. If successfully developed, these technologies will enable DOE to clean its facilities by 2019.

Bossart, S.J. [USDOE Morgantown Energy Technology Center, WV (United States); Moore, J. [USDOE Oak Ridge Operations Office, TN (United States)

1993-09-01T23:59:59.000Z

77

Energy implications of glass-container recycling  

SciTech Connect

This report addresses the question of whether glass-container recycling actually saves energy. Glass-container production in 1991 was 10{sup 7} tons, with cullet making up about 30% of the input to manufacture. Two-thirds of the cullet is postconsumer waste; the remainder is in-house scrap (rejects). Most of the glass recycled is made into new containers. Total primary energy consumption includes direct process-energy use by the industry (adjusted to account for the efficiency of fuel production) plus fuel and raw-material transportation and production energies; the grand total for 1991 is estimated to be about 168 {times} 10{sup 12} Btu. The total primary energy use decreases as the percent of glass recycled rises, but the maximum energy saved is only about 13%. If distance to the landfill is kept fixed and that to the recovery facility multiplied by about eight, to 100 mi, a break-even point is reached, and recycling saves no energy. Previous work has shown that to save energy when using glass bottles, reuse is the clear choice. Recycling of glass does not save much energy or valuable raw material and does not reduce air or water pollution significantly. The most important impacts are the small reduction of waste sent to the landfill and increased production rates at glass plants.

Gaines, L.L.; Mintz, M.M. [Argonne National Lab., IL (United States)

1994-03-01T23:59:59.000Z

78

Canastota Renewable Energy Facility Project  

SciTech Connect

The project was implemented at the Madison County Landfill located in the Town of Lincoln, Madison County, New York. Madison County has owned and operated the solid waste and recycling facilities at the Buyea Road site since 1974. At the onset of the project, the County owned and operated facilities there to include three separate landfills, a residential solid waste disposal and recycled material drop-off facility, a recycling facility and associated administrative, support and environmental control facilities. This putrescible waste undergoes anaerobic decomposition within the waste mass and generates landfill gas, which is approximately 50% methane. In order to recover this gas, the landfill was equipped with gas collection systems on both the east and west sides of Buyea Road which bring the gas to a central point for destruction. In order to derive a beneficial use from the collected landfill gases, the County decided to issue a Request for Proposals (RFP) for the future use of the generated gas.

Blake, Jillian; Hunt, Allen

2013-12-13T23:59:59.000Z

79

Safeguards and nonproliferation aspects of a dry fuel recycling technology  

Science Conference Proceedings (OSTI)

Los Alamos National Laboratory undertook an independent assessment of the proliferation potentials and safeguardability of a dry fuel recycling technology, whereby spent pressurized-water reactor (PWR) fuels are used to fuel canadian deuterium uranium (CANDU) reactors. Objectives of this study included (1) the evaluation of presently available technologies that may be useful to safeguard technology options for dry fuel recycling (2) and identification of near-term and long-term research needs to develop process-specific safeguards requirements. The primary conclusion of this assessment is that like all other fuel cycle alternatives proposed in the past, the dry fuel recycle entails prolfferation risks and that there are no absolute technical fixes to eliminate such risks. This study further concludes that the proliferation risks of dry fuel recycling options are relatively minimal and presently known safeguards systems and technologies can be modified and/or adapted to meet the requirements of safeguarding such fuel recycle facilities.

Pillay, K.K.S.

1993-05-01T23:59:59.000Z

80

RETHINKING WASTE, RECYCLING, AND HOUSEKEEPING  

E-Print Network (OSTI)

RETHINKING WASTE, RECYCLING, AND HOUSEKEEPING EFFICIENCY.EFFICIENCY. A l GA leaner Green #12 t R li Management Recycling Staff The Office of Waste Reduction & Recycling started in The Office of Waste Reduction & Recycling started in 1990, we have 14 full time staff positions. ·We collect over 40

Kelly, Scott David

Note: This page contains sample records for the topic "facilities initiatives recycling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Reclamation of automotive batteries: Assessment of health impacts and recycling technology. Task 1: Assessment of recycling technology. Final report  

SciTech Connect

Approximately ten different candidate EV battery technologies were examined based on their performance and recyclability, and were ranked based on these examinations. The batteries evaluated were lead-acid (all types), nickel-cadmium, nickel-iron, nickel-metal hydride, sodium-sulfur, sodium-nickel chloride, lithium-iron disulfide, lithium-ion, lithium polymer, and zinc (zinc-air and zinc-bromine). Locations of present recycling facilities were identified. Markets for recycled products were assessed: the value of recycled materials were found too unstable to fully support recycling efforts. All these batteries exhibit the characteristic of hazardous waste in California, and are therefore subject to strict regulations (finalization of the new EPA Universal Waste Rule could change this).

Unnasch, S.; Montano, M.; Franklin, P.; Nowell, G.; Martin, C.

1995-03-01T23:59:59.000Z

82

Record of Decision, Tritium Supply and Recycling Programmatic Environmental Impact Statement  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

63877 63877 Tuesday December 12, 1995 Part VII Department of Energy Record of Decision; Tritium Supply and Recycling Programmatic Environmental Impact Statement; Notice 63878 Federal Register / Vol. 60, No. 238 / Tuesday, December 12, 1995 / Notices DEPARTMENT OF ENERGY Record of Decision: Tritium Supply and Recycling Programmatic Environmental Impact Statement AGENCY: Department of Energy. ACTION: Record of Decision: Selection of Tritium Supply Technology and Siting of Tritium Supply and Recycling Facilities. SUMMARY: The Department of Energy (DOE) is issuing this Record of Decision regarding DOE's proposal for Tritium Supply and Recycling Facilities. The Department is making three simultaneous decisions. First, the Department will pursue a dual track on the two most promising tritium supply

83

Recycle plastics into feedstocks  

Science Conference Proceedings (OSTI)

Thermal cracking of mixed-plastics wastes with a fluidized-bed reactor can be a viable and cost-effective means to meet mandatory recycling laws. Strict worldwide environmental statutes require the hydrocarbon processing industry (HPI) to develop and implement product applications and technologies that reuse post-consumer mixed-plastics waste. Recycling or reuse of plastics waste has a broad definition. Recycling entails more than mechanical regranulation and remelting of polymers for film and molding applications. A European consortium of academia and refiners have investigated if it is possible and profitable to thermally crack plastics into feedstocks for refining and petrochemical applications. Development and demonstration of pyrolysis methods show promising possibilities of converting landfill garbage into valuable feedstocks such as ethylene, propylene, BTX, etc. Fluidized-bed reactor technologies offer HPI operators a possible avenue to meet recycling laws, conserve raw materials and yield a profit. The paper describes thermal cracking for feedstocks and pyrolysis of polyolefins.

Kastner, H.; Kaminsky, W. [Univ. of Hamburg (Germany)

1995-05-01T23:59:59.000Z

84

Recycling and Waste Minimization  

NLE Websites -- All DOE Office Websites (Extended Search)

and "Recycling Data by Site." For additional information regarding this page or feedback on its content, please contact: Jane Powers This page was last updated on March 25, 2013...

85

Battery-Recycling Chain  

Science Conference Proceedings (OSTI)

...The battery-recycling chain has changed dramatically over the past ten years. The changes have resulted from environmental regulation, changes in battery-processing technology, changes in battery distribution and sales techniques, changes in lead-smelting...

86

Recycle of radiologically contaminated austenitic stainless steels  

Science Conference Proceedings (OSTI)

The United States Department of Energy owns large quantities of radiologically contaminated austenitic stainless steel which could by recycled for reuse if appropriate release standards were in place. Unfortunately, current policy places the formulation of a release standard for USA industry years, if not decades, away. The Westinghouse Savannah River Company, Idaho National Engineering Laboratory and various university and industrial partners are participating in initiative to recycle previously contaminated austenitic stainless steels into containers for the storage and disposal of radioactive wastes. This paper describes laboratory scale experiments which demonstrated the decontamination and remelt of stainless steel which had been contaminated with radionuclides.

Imrich, K.J.; Leader, D.R.; Iyer, N.C.; Louthan, M.R. Jr.

1995-02-01T23:59:59.000Z

87

Methanation process utilizing split cold gas recycle  

DOE Patents (OSTI)

In the methanation of feed gas comprising carbon monoxide and hydrogen in multiple stages, the feed gas, cold recycle gas and hot product gas is mixed in such proportions that the mixture is at a temperature sufficiently high to avoid carbonyl formation and to initiate the reaction and, so that upon complete reaction of the carbon monoxide and hydrogen, an excessive adiabatic temperature will not be reached. Catalyst damage by high or low temperatures is thereby avoided with a process that utilizes extraordinarily low recycle ratios and a minimum of investment in operating costs.

Tajbl, Daniel G. (Evanston, IL); Lee, Bernard S. (Lincolnwood, IL); Schora, Jr., Frank C. (Palatine, IL); Lam, Henry W. (Rye, NY)

1976-07-06T23:59:59.000Z

88

Recent trends in automobile recycling: An energy and economic assessment  

SciTech Connect

Recent and anticipated trends in the material composition of domestic and imported automobiles and the increasing cost of landfilling the non-recyclable portion of automobiles (automobile shredder residue or ASR) pose questions about the future of automobile recycling. This report documents the findings of a study sponsored by the US Department of Energy`s Office of Environmental Analysis to examine the impacts of these and other relevant trends on the life-cycle energy consumption of automobiles and on the economic viability of the domestic automobile recycling industry. More specifically, the study (1) reviewed the status of the automobile recycling industry in the United States, including the current technologies used to process scrapped automobiles and the challenges facing the automobile recycling industry; (2) examined the current status and future trends of automobile recycling in Europe and Japan, with the objectives of identifying ``lessons learned`` and pinpointing differences between those areas and the United States; (3) developed estimates of the energy system impacts of the recycling status quo and projections of the probable energy impacts of alternative technical and institutional approaches to recycling; and (4) identified the key policy questions that will determine the future economic viability of automobile shredder facilities in the United States.

Curlee, T.R.; Das, S.; Rizy, C.G. [Oak Ridge National Lab., TN (United States); Schexanyder, S.M. [Tennessee Univ., Knoxville, TN (United States). Dept. of Biochemistry

1994-03-01T23:59:59.000Z

89

A rational minor actinide (MA) recycling concept based on innovative oxide fuel with high AM content  

Science Conference Proceedings (OSTI)

A rational MA recycle concept based on high Am content fuel has been proposed. A design study of an Am- MOX fabrication plant, which is a key facility for the MA recycle concept, has been done and the facility concept was clarified from the viewpoint of basic process viability. Preliminary cost estimation suggested that the total construction cost of the MA recycle facilities including Am-MOX, Np-MOX and MA recovery could be comparable with that of the large scale LWR-MOX fabrication plant required for plutonium in LWR fuel cycle. (authors)

Tanaka, Kenya; Sato, Isamu; Ishii, Tetsuya; Yoshimochi, Hiroshi; Asaga, Takeo [Japan Atomic Energy Agency, 4002 Narita-cho, O-arai-machi, Higasiibaraki-gun, Ibaraki-ken, 311-1393 (Japan); Kurosaki, Ken [Osaka University, 2-1 Yamadaoka, Suita-shi, Osaka 565-0871 (Japan)

2007-07-01T23:59:59.000Z

90

TREATMENT OF GASEOUS EFFLUENTS ISSUED FROM RECYCLING A REVIEW OF THE CURRENT PRACTICES AND PROSPECTIVE IMPROVEMENTS  

Science Conference Proceedings (OSTI)

The objectives of gaseous waste management for the recycling of nuclear used fuel is to reduce by best practical means (ALARA) and below regulatory limits, the quantity of activity discharged to the environment. The industrial PUREX process recovers the fissile material U(VI) and Pu(IV) to re-use them for the fabrication of new fuel elements e.g. recycling plutonium as a Mixed Oxide (MOX) fuel or recycling uranium for new enrichment for Pressurized Water Reactor (PWR). Meanwhile the separation of the waste (activation and fission product) is performed as a function of their pollution in order to store and avoid any potential danger and release towards the biosphere. Raffinate, that remains after the extraction step and which contains mostly all fission products and minor actinides is vitrified, the glass package being stored temporarily at the recycling plant site. Hulls and end pieces coming from PWR recycled fuel are compacted by means of a press leading to a volume reduced to 1/5th of initial volume. An organic waste treatment step will recycle the solvent, mainly tri-butyl phosphate (TBP) and some of its hydrolysis and radiolytic degradation products such as dibutyl phosphate (HDPB) and monobutyl phosphate (H2MBP). Although most scientific and technological development work focused on high level waste streams, a considerable effort is still under way in the area of intermediate and low level waste management. Current industrial practices for the treatment of gaseous effluents focusing essentially on Iodine-129 and Krypton-85 will be reviewed along with the development of novel technologies to extract, condition, and store these fission products. As an example, the current industrial practice is to discharge Kr-85, a radioactive gas, entirely to the atmosphere after dilution, but for the large recycling facilities envisioned in the near future, several techniques such as 1) cryogenic distillation and selective absorption in solvents, 2) adsorption on activated charcoal, 3) selective sorption on chemical modified zeolites, or 4) diffusion through membranes with selective permeability are potential technologies to retain the gas.

Patricia Paviet-Hartmann; William Kerlin; Steven Bakhtiar

2010-11-01T23:59:59.000Z

91

Scrap tire recycling  

DOE Green Energy (OSTI)

As the automobile tire technology has grown and met the need for safer and more durable tires, stronger reinforcement and more chemically resistant rubber compounds have made recycling tires more difficult. In an effort to resolve this problem, techniques and equipment were developed to grind tires into small pieces, and new markets were sought to utilize the crumb rubber product streams from ground tires. Industrial combustion processes were modified to accept scrap tires as fuel. These efforts have been beneficial, steadily increasing the percentage of scrap tires recycled to about 10% in 1985, and reaching 72% in 1995. By the end of 1997, fully 100% of tires generated in the U.S. are expected to be recycled.

Lula, J.W.; Bohnert, G.W.

1997-03-01T23:59:59.000Z

92

Recycling Automotive Scrap  

NLE Websites -- All DOE Office Websites (Extended Search)

Today's automobiles contain more plastic and less metal than ever. The metal from junked vehicles is easily recovered for Today's automobiles contain more plastic and less metal than ever. The metal from junked vehicles is easily recovered for reuse, but the remaining materials, called shredder residue, is creating new challenges for the vehicle recycling industry. Argonne National Laboratory is meeting these challenges head-on with innovative, award-winning solutions. With its on-site recycling pilot plant, Argonne is able to test actual materials, benchmark technologies, and demonstrate working

93

Primary Production, Recycling, and Environment - TMS  

Science Conference Proceedings (OSTI)

ARTICLES: Selected Readings on Magnesium Production, Recycling and Environment Links to key papers on magnesium primary production, recycling and...

94

Materials Sustainability: Digital Resource Center -- Recycling ...  

Science Conference Proceedings (OSTI)

Materials Recycling Research and Process Development Many reports by Argonne National Laboratory on recycling materials especially from vehicles.

95

Recycling and Material Price - Programmaster.org  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, 2011 TMS Annual Meeting & Exhibition. Symposium , Recycling General Session. Presentation Title, Recycling and Material Price:...

96

Demolitions Produce Recyclable Materials for Organization Promoting Economic Activity  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

August 15, 2011 August 15, 2011 Demolitions Produce Recyclable Materials for Organization Promoting Economic Activity PIKETON, Ohio - Demolitions have helped generate more than 8 million pounds of metal at the Piketon site for recycling, further promoting economic activity in the region thanks to the American Recovery and Reinvestment Act. Proceeds from recycling that metal through the unique program will add to the more than $2.8 million already generated from recycling more than 5.2 million pounds of material from site demolition efforts. "This metal represents economic opportunity for the surround- ing community, as proceeds from this material will create local jobs, utilize surrounding area facilities and generate money to be reinvested back into the community," said Pete Mingus, who

97

Recycling of Titanium  

Science Conference Proceedings (OSTI)

...as basic raw materials for pigments, paints, paper, and plastic. The titanium ores are the materials of choice to produce white pigmentation in those materials. At this time only 10% of the ores result in metal. Recycling takes place in metal only....

98

Specifications for Recycled Lead  

Science Conference Proceedings (OSTI)

...in lead are antimony, arsenic, bismuth, copper, nickel, silver, tin, and zinc. Recently, selenium and tellurium have been added as important impurities in the United States. Primary-lead companies generally produce the 99.99% Pb grade, whereas recyclers produce the 99.97% Pb grade. The major difference...

99

Recycling and Secondary Recovery  

Science Conference Proceedings (OSTI)

"Applying Ausmelt Technology to Recover Cu, Ni, and Co from Slags" .... " Enhancing Cobalt Recovery from Primary and Secondary Resources" .... " Modifying Alumina Red Mud to Support a Revegetation Cover" (Research .... " Recycling Used Automotive Oil Filters" (Research Summary), K.D. Peaslee, February 1994, pp.

100

Refrigerator recycling and CFCs  

SciTech Connect

Utility-sponsored refrigerator and freezer pick-up programs have removed almost 900,000 inefficient appliances from the North American electric grid to date. While the CFC-12 refrigerant from the discarded appliances is typically removed and recycled, in all but a few programs the CFC-11 in the foam insulation is not. About a quarter-billion pounds of CFC-11 are banked in refrigerator foam in the United States. Release of this ``bank`` of CFC, combined with that from foam insulation used in buildings, will be the largest source of future emissions if preventive measures are not taken. Methods exist to recover the CFC for reuse or to destroy it by incineration. The task of recycling or destroying the CFCs and other materials from millions of refrigerators is a daunting challenge, but one in which utilities can play a leadership role. E Source believes that utilities can profitably serve as the catalyst for public-private partnerships that deliver comprehensive refrigerator recycling. Rather than treating such efforts solely as a DSM resource acquisition, utilities could position these programs as a multifaceted service delivery that offers convenient appliance removal for homeowners, a solid waste minimization service for landfills, a source of recycled materials for industry, and a CFC recovery and/or disposal service in support of the HVAC industry and society`s atmospheric protection goals and laws. Financial mechanisms could be developed through these public-private enterprises to ensure that utilities are compensated for the extra cost of fully recycling refrigerators, including the foam CFC.

Shepard, M.; Hawthorne, W.; Wilson, A.

1994-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "facilities initiatives recycling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

WINCO Metal Recycle annual report, FY 1993  

Science Conference Proceedings (OSTI)

This report is a summary of the first year progress of the WINCO Metal Recycle Program. Efforts were directed towards assessment of radioactive scrap metal inventories, economics and concepts for recycling, technology development, and transfer of technology to the private sector. Seven DOE laboratories worked together to develop a means for characterizing scrap metal. Radioactive scrap metal generation rates were established for several of these laboratories. Initial cost estimates indicate that recycle may be preferable over burial if sufficient decontamination factors can be achieved during melt refining. Radiation levels of resulting ingots must be minimized in order to keep fabrication costs low. Industry has much of the expertise and capability to execute the recycling of radioactive scrap metal. While no single company can sort, melt, refine, roll and fabricate, a combination of two to three can complete this operation. The one process which requires development is in melt refining for removal of radionuclides other than uranium. WINCO is developing this capability in conjunction with academia and industry. This work will continue into FY-94.

Bechtold, T.E. [ed.

1993-12-01T23:59:59.000Z

102

Recycled Thermoplastic Composite Bridge  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Recycled Thermoplastic Composite Recycled Thermoplastic Composite Bridge Philip R. Columbus Office of the Assistant Chief of Staff for Installation Management Headquarters, Department of the Army 180900ZMay2012 1 Philip R. Columbus/571-256-9774/philip.r.columbus.civ@mail.mil/ Overview * The purpose of this project was to demonstrate that a thermoplastic composite I-beam bridge could be constructed to accommodate a M-1 battle tank. * This effort determined the engineering and construction of such a structure was possible and be cost competitive to a wood timber bridge * The materials are virtually maintenance-free and not subject to degradation from moisture, rot, insects and weather. 180900ZMay2012 2 Philip R. Columbus/571-256-9774/philip.r.columbus.civ@mail.mil/ Background

103

Recycled Thermoplastic Composite Bridge  

NLE Websites -- All DOE Office Websites (Extended Search)

Recycled Thermoplastic Composite Recycled Thermoplastic Composite Bridge Philip R. Columbus Office of the Assistant Chief of Staff for Installation Management Headquarters, Department of the Army 180900ZMay2012 1 Philip R. Columbus/571-256-9774/philip.r.columbus.civ@mail.mil/ Overview * The purpose of this project was to demonstrate that a thermoplastic composite I-beam bridge could be constructed to accommodate a M-1 battle tank. * This effort determined the engineering and construction of such a structure was possible and be cost competitive to a wood timber bridge * The materials are virtually maintenance-free and not subject to degradation from moisture, rot, insects and weather. 180900ZMay2012 2 Philip R. Columbus/571-256-9774/philip.r.columbus.civ@mail.mil/ Background

104

Waste tire recycling by pyrolysis  

DOE Green Energy (OSTI)

This project examines the City of New Orleans' waste tire problem. Louisiana State law, as of January 1, 1991, prohibits the knowing disposal of whole waste tires in landfills. Presently, the numerous waste tire stockpiles in New Orleans range in size from tens to hundreds of tires. New Orleans' waste tire problem will continue to increase until legal disposal facilities are made accessible and a waste tire tracking and regulatory system with enforcement provisions is in place. Tires purchased outside of the city of New Orleans may be discarded within the city's limits; therefore, as a practical matter this study analyzes the impact stemming from the entire New Orleans metropolitan area. Pyrolysis mass recovery (PMR), a tire reclamation process which produces gas, oil, carbon black and steel, is the primary focus of this report. The technical, legal and environmental aspects of various alternative technologies are examined. The feasibility of locating a hypothetical PMR operation within the city of New Orleans is analyzed based on the current economic, regulatory, and environmental climate in Louisiana. A thorough analysis of active, abandoned, and proposed Pyrolysis operations (both national and international) was conducted as part of this project. Siting a PMR plant in New Orleans at the present time is technically feasible and could solve the city's waste tire problem. Pending state legislation could improve the city's ability to guarantee a long term supply of waste tires to any large scale tire reclamation or recycling operation, but the local market for PMR end products is undefined.

Not Available

1992-10-01T23:59:59.000Z

105

Direction of CRT waste glass processing: Electronics recycling industry communication  

Science Conference Proceedings (OSTI)

Highlights: Black-Right-Pointing-Pointer Given a large flow rate of CRT glass {approx}10% of the panel glass stream will be leaded. Black-Right-Pointing-Pointer The supply of CRT waste glass exceeded demand in 2009. Black-Right-Pointing-Pointer Recyclers should use UV-light to detect lead oxide during the separation process. Black-Right-Pointing-Pointer Recycling market analysis techniques and results are given for CRT glass. Black-Right-Pointing-Pointer Academic initiatives and the necessary expansion of novel product markets are discussed. - Abstract: Cathode Ray Tube, CRT, waste glass recycling has plagued glass manufacturers, electronics recyclers and electronics waste policy makers for decades because the total supply of waste glass exceeds demand, and the formulations of CRT glass are ill suited for most reuse options. The solutions are to separate the undesirable components (e.g. lead oxide) in the waste and create demand for new products. Achieving this is no simple feat, however, as there are many obstacles: limited knowledge of waste glass composition; limited automation in the recycling process; transportation of recycled material; and a weak and underdeveloped market. Thus one of the main goals of this paper is to advise electronic glass recyclers on how to best manage a diverse supply of glass waste and successfully market to end users. Further, this paper offers future directions for academic and industry research. To develop the recommendations offered here, a combination of approaches were used: (1) a thorough study of historic trends in CRT glass chemistry; (2) bulk glass collection and analysis of cullet from a large-scale glass recycler; (3) conversations with industry members and a review of potential applications; and (4) evaluation of the economic viability of specific uses for recycled CRT glass. If academia and industry can solve these problems (for example by creating a database of composition organized by manufacturer and glass source) then the reuse of CRT glass can be increased.

Mueller, Julia R., E-mail: mueller.143@osu.edu [Ohio State University, William G. Lowrie Department of Chemical and Biomolecular Engineering, OH (United States) and University of Queensland, School of Chemical Engineering (Australia) and Ohio State University, Materials Science and Engineering, OH (United States); Boehm, Michael W. [University of Queensland, School of Chemical Engineering (Australia); Drummond, Charles [Ohio State University, Materials Science and Engineering, OH (United States)

2012-08-15T23:59:59.000Z

106

Recycling Programs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

starting with standard, solid waste recycling in 1991, and has expanded to include batteries, toner cartridges, carpeting and cell phones. Follow this link for a detailed...

107

How Green Is Battery Recycling?  

NLE Websites -- All DOE Office Websites (Extended Search)

Gaines Center for Transportation Research Argonne National Laboratory How Green Is Battery Recycling? 28 th International Battery Seminar and Exhibit Ft. Lauderdale, FL March...

108

Argonne TTRDC - Experts - Vehicle Recycling  

NLE Websites -- All DOE Office Websites (Extended Search)

pollution control, solid waste recycling, greenhouse gases, advanced power systems and heat transfer Greg Krumdick, Electrical Engineer phone: 630252-3952, fax: 630252-1342,...

109

Recycled rubber roads  

SciTech Connect

The paper describes several innovative approaches for recycling old tires in the construction of roads. In one, 18 inches of shredded tire chips (2 X 2 inches) were used on top of 6-8 inches of small stone to construct a road across a sanitary landfill. No compacting or linders were needed. In another application, sidewall mats linked together with steel strapping were used as a sub-base for a road across a swampy area. A third application uses 1/2 inch bits of groundup rubber tires as a replacement for aggregate in an asphalt road base.

Not Available

1989-02-01T23:59:59.000Z

110

Energy Return on Investment - Fuel Recycle  

SciTech Connect

This report provides a methodology and requisite data to assess the potential Energy Return On Investment (EROI) for nuclear fuel cycle alternatives, and applies that methodology to a limited set of used fuel recycle scenarios. This paper is based on a study by Lawrence Livermore National Laboratory and a parallel evaluation by AREVA Federal Services LLC, both of which were sponsored by the DOE Fuel Cycle Technologies (FCT) Program. The focus of the LLNL effort was to develop a methodology that can be used by the FCT program for such analysis that is consistent with the broader energy modeling community, and the focus of the AREVA effort was to bring industrial experience and operational data into the analysis. This cooperative effort successfully combined expertise from the energy modeling community with expertise from the nuclear industry. Energy Return on Investment is one of many figures of merit on which investment in a new energy facility or process may be judged. EROI is the ratio of the energy delivered by a facility divided by the energy used to construct, operate and decommission that facility. While EROI is not the only criterion used to make an investment decision, it has been shown that, in technologically advanced societies, energy supplies must exceed a minimum EROI. Furthermore, technological history shows a trend towards higher EROI energy supplies. EROI calculations have been performed for many components of energy technology: oil wells, wind turbines, photovoltaic modules, biofuels, and nuclear reactors. This report represents the first standalone EROI analysis of nuclear fuel reprocessing (or recycling) facilities.

Halsey, W; Simon, A J; Fratoni, M; Smith, C; Schwab, P; Murray, P

2012-06-06T23:59:59.000Z

111

Recycle Plastic Waste Recommended Action  

E-Print Network (OSTI)

AR No. 5 Recycle Plastic Waste Recommended Action Separate scrap plastic bag waste from solid waste stream and recycle. This can be accomplished by either arranging for no-cost pick-up of loose waste or by selling baled waste material. Assessment Recommendation Summary Recommended Waste Cost Implementation

Tullos, Desiree

112

Materials Sustainability: Digital Resource Center - Global Recycling ...  

Science Conference Proceedings (OSTI)

Jul 1, 2008 ... Global Recycling Network is an electronic information exchange that specializes in the trade of recyclables reclaimed in Municipal Solid Waste...

113

Materials Sustainability: Digital Resource Center - Steel Recycling ...  

Science Conference Proceedings (OSTI)

Jul 3, 2008 ... The Steel Recycling Institute is an industry association that promotes the recycling of steel products. The association website includes pages on...

114

Decontaminating and Melt Recycling Tritium Contaminated Stainless Steel  

SciTech Connect

The Westinghouse Savannah River Company, Idaho National Engineering Laboratory, and several university and industrial partners are evaluating recycling radioactively contaminated stainless steel. The goal of this program is to recycle contaminated stainless steel scrap from US Department of Energy national defense facilities. There is a large quantity of stainless steel at the DOE Savannah River Site from retired heavy water moderated Nuclear material production reactors (for example heat exchangers and process water piping), that will be used in pilot studies of potential recycle processes. These parts are contaminated by fission products, activated species, and tritium generated by neutron irradiation of the primary reactor coolant, which is heavy (deuterated) water. This report reviews current understanding of tritium contamination of stainless steel and previous studies of decontaminating tritium exposed stainless steel. It also outlines stainless steel refining methods, and proposes recommendations based on this review.

Clark, E.A.

1995-04-03T23:59:59.000Z

115

Waste tire recycling by pyrolysis  

DOE Green Energy (OSTI)

This project examines the City of New Orleans` waste tire problem. Louisiana State law, as of January 1, 1991, prohibits the knowing disposal of whole waste tires in landfills. Presently, the numerous waste tire stockpiles in New Orleans range in size from tens to hundreds of tires. New Orleans` waste tire problem will continue to increase until legal disposal facilities are made accessible and a waste tire tracking and regulatory system with enforcement provisions is in place. Tires purchased outside of the city of New Orleans may be discarded within the city`s limits; therefore, as a practical matter this study analyzes the impact stemming from the entire New Orleans metropolitan area. Pyrolysis mass recovery (PMR), a tire reclamation process which produces gas, oil, carbon black and steel, is the primary focus of this report. The technical, legal and environmental aspects of various alternative technologies are examined. The feasibility of locating a hypothetical PMR operation within the city of New Orleans is analyzed based on the current economic, regulatory, and environmental climate in Louisiana. A thorough analysis of active, abandoned, and proposed Pyrolysis operations (both national and international) was conducted as part of this project. Siting a PMR plant in New Orleans at the present time is technically feasible and could solve the city`s waste tire problem. Pending state legislation could improve the city`s ability to guarantee a long term supply of waste tires to any large scale tire reclamation or recycling operation, but the local market for PMR end products is undefined.

Not Available

1992-10-01T23:59:59.000Z

116

Materials - Recycling - Dezincing  

NLE Websites -- All DOE Office Websites (Extended Search)

Dezincing Scrap Steel Dezincing Scrap Steel Electro winning cells for recovery of zinc from de-zincing process solutions. Electro winning cells for recovery of zinc from de-zincing process solutions. Steel is one of the most recycled resources in the U.S.; half of the steel produced is derived from scrap. Since 1980, automobile and appliance manufacturers have increased their use of galvanized steel almost five-fold, with a resulting increase in the amount of galvanized steel scrap returned to steel producers. Dezincing Challenges The steel galvanizing process involves the application of a zinc-coating, which provides corrosion resistance. When galvanized scrap is melted in a steelmaking furnace, the zinc that it contains volatizes. The costs of treating the resulting zinc-laden dust and sludge by-products are

117

Coal liquefaction with preasphaltene recycle  

SciTech Connect

A coal liquefaction system is disclosed with a novel preasphaltene recycle from a supercritical extraction unit to the slurry mix tank wherein the recycle stream contains at least 90% preasphaltenes (benzene insoluble, pyridine soluble organics) with other residual materials such as unconverted coal and ash. This subject process results in the production of asphaltene materials which can be subjected to hydrotreating to acquire a substitute for No. 6 fuel oil. The preasphaltene-predominant recycle reduces the hydrogen consumption for a process where asphaltene material is being sought.

Weimer, Robert F. (Allentown, PA); Miller, Robert N. (Allentown, PA)

1986-01-01T23:59:59.000Z

118

Waste-heat vertical tube foam evaporation for cooling tower blowdown renovation/recycle. Project summary report  

SciTech Connect

A prototype waste-heat vertical tube foam evaporation (WH-VTFE) plant was designed, constructed, and field-tested for reducing power plant cooling tower blowdown to a small residual volume of solids slurried in brine, while producing distilled water for reuse. Facility design was based on previously-developed pilot plant test data. The WH-VTFE facility was constructed for initial parametric testing in upflow/downflow evaporation modes with boiler steam. The field test/demonstration phase was conducted at a power plant site using turbine exhaust steam for the up to 50-fold cooling tower blowdown concentration in a foamy-flow seed-slurried mode of downflow vertical tube evaporation. The VTFE heat transfer coefficient ranged between 5600 to 9000 W/sq m/degree, over 4-fold the level considered as acceptable in another study. Further, a sufficient temperature difference is available within a typical power plant heat rejection system to operate a WH-VTFE when the plant load is above 50% of its design capacity. Scale formed from inadequate brine recycle rates was readily removed by recycling fresh water through the evaporator to restore the high heat transfer performance of the WH-VTFE. It was concluded that WH-VTFE was demonstrated as feasible and commercially viable.

Sephton, H.H.; Someahsaraii, K.

1982-02-01T23:59:59.000Z

119

Plant Networks for Processing Recyclable Materials  

Science Conference Proceedings (OSTI)

We use a modified optimal market area model to examine how links between material recycling and other aspects of operations strategy can shape plant networks for the processing of recyclable materials. We characterize the complementarity of the recyclate ... Keywords: localization, material versatility, minimills, operations strategy, optimal market area, plant networks, recycling

Lieven Demeester, Mei Qi, Luk N. Van Wassenhove

2013-10-01T23:59:59.000Z

120

Applied ecotechnological issues for recycling cars  

Science Conference Proceedings (OSTI)

The paper shows the need for recycling cars. Recycling operation is particularly complicated because after dismantling and split a wide range of material resulting in a proportion different and difficult to separate. There are presented two recycling ... Keywords: end-of-life-vehicle recycling, hammer mill technology, shrreder technology

Gheorghe Amza; Zoia Apostolescu; Mihaiela Iliescu; Zlatko Garac; Sanda Paise; Maria Groza

2011-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "facilities initiatives recycling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Progress in the development of recycling processes for electric vehicle batteries  

SciTech Connect

Disposition of electric vehicle (EV) batteries after they have reached the end of their useful life is an issue that could impede the widespread acceptance of EVs in the commercial market. This is especially true for advanced battery systems where working recycling processes have not as yet been established. The DOE sponsors an Ad Hoc Electric Vehicle Battery Readiness Working Group to identify barriers to the introduction of commercial EVs and to advise them of specific issues related to battery reclamation/recycling, in-vehicle battery safety, and battery shipping. A Sub-Working Group on the reclamation/recycle topic has been reviewing the status of recycling process development for the principal battery technologies that are candidates for EV use from the near-term to the long-term. Recycling of near-term battery technologies, such as lead-acid and nickel/cadmium, is occurring today and it is believed that sufficient processing capacity can be maintained to keep up with the large number of units that could result from extensive EV use. Reclamation/recycle processes for midterm batteries are partially developed. Good progress has been made in identifying processes to recycle sodium/sulfur batteries at a reasonable cost and pilot scale facilities are being tested or planned. A pre-feasibility cost study on the nickel/metal hydride battery also indicates favorable economics for some of the proposed reclamation processes. Long-term battery technologies, including lithium-polymer and lithium/iron disulfide, are still being designed and developed for EVs, so descriptions for prototype recycling processes are rather general at this point. Due to the long time required to set up new, full-scale recycling facilities, it is important to develop a reclamation/recycling process in parallel with the battery technologies themselves.

Jungst, R.G.; Clark, R.P.

1994-08-01T23:59:59.000Z

122

Earth Day Electronics Recycling Collection  

NLE Websites -- All DOE Office Websites (Extended Search)

Earth Day Electronics Recycling Collection The U.S. Department of Energy, Washington, DC in collaboration with UNICOR Federal Prison Industries C E L E B R A T E E A R T H D A Y A...

123

Hail Formation via Microphysical Recycling  

Science Conference Proceedings (OSTI)

It is suggested that alternation of low-density riming and wet growth processes play a role in hailstone formation. Such alternation of growth processes, which has been called microphysical recycling, is envisioned to operate in the following ...

John C. Pflaum

1980-01-01T23:59:59.000Z

124

Services Initiatives | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Services Services Initiatives Services Initiatives The Transportation Team Uses Alternative Fueled Vehicles in HQ Fleet 73% of HQ Fleet is alternative fueled (FY2011). HQ utilizes biodiesel (B20) fueled shuttle buses, a domestic renewable fuel derived from natural oils like soybean oil. Recycled Paper for Copiers and Printers DOE Headquarters purchases a combination of 30% and 100% post-consumer recycled content paper for use in its staffed copy centers, walk-up copiers, and dedicated office printers and copiers. Printing Procurement All documents procured for printing use soy ink instead of petroleum based ink, and use recycled paper. Soy ink is renewable and is very low in Volatile Organic Compounds (VOCs) which evaporate little and cause no air pollution, whereas

125

Energy Return on Investment from Recycling Nuclear Fuel  

SciTech Connect

This report presents an evaluation of the Energy Return on Investment (EROI) from recycling an initial batch of 800 t/y of used nuclear fuel (UNF) through a Recycle Center under a number of different fuel cycle scenarios. The study assumed that apart from the original 800 t of UNF only depleted uranium was available as a feed. Therefore for each subsequent scenario only fuel that was derived from the previous fuel cycle scenario was considered. The scenarios represent a good cross section of the options available and the results contained in this paper and associated appendices will allow for other fuel cycle options to be considered.

2011-08-17T23:59:59.000Z

126

Test Results From The Idaho National Laboratory 15kW High Temperature Electrolysis Test Facility  

DOE Green Energy (OSTI)

A 15kW high temperature electrolysis test facility has been developed at the Idaho National Laboratory under the United States Department of Energy Nuclear Hydrogen Initiative. This facility is intended to study the technology readiness of using high temperature solid oxide cells for large scale nuclear powered hydrogen production. It is designed to address larger-scale issues such as thermal management (feed-stock heating, high temperature gas handling, heat recuperation), multiple-stack hot zone design, multiple-stack electrical configurations, etc. Heat recuperation and hydrogen recycle are incorporated into the design. The facility was operated for 1080 hours and successfully demonstrated the largest scale high temperature solid-oxide-based production of hydrogen to date.

Carl M. Stoots; Keith G. Condie; James E. O'Brien; J. Stephen Herring; Joseph J. Hartvigsen

2009-07-01T23:59:59.000Z

127

Design analysis: understanding e-waste recycling by Generation Y  

Science Conference Proceedings (OSTI)

This paper aims to understand e-waste recycling behavior of Generation Y. It presents a pilot study that explores this generation's e-waste recycling practices, their attitudes towards e-waste recycling, and the barriers to e-waste recycling. The findings ... Keywords: attitude, design, e-waste, recycling, recycling action, recycling behavior

Xiao Zhang; Ron Wakkary

2011-06-01T23:59:59.000Z

128

Recycling came of age in 1994  

SciTech Connect

While metal and glass recycling have a long history, newer recycling efforts for paper and plastic have gone from a nascent business to maturing industry. After five years, sufficient infrastructure exists to support recycling as a full-fledged business. In the late 1980s, recycling was a business trying to get off the ground. Now it is recognized by many cities and states as a means of economic development and job creation. But recycling`s coming of age was not without growing pains. Many recyclers had to hang on while markets were poor and spotty. Gluts of plastic, waste paper, aluminum, and green glass often made it difficult for recyclers to turn a profit. Until early 1994, prices for most commodities were significantly low, and in some cases, these low prices forced recyclers and processors to close their doors, or at least curtail their operations.

Rabasca, L.

1995-04-01T23:59:59.000Z

129

Nuclear Facilities Production Facilities  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration under contract DE-AC04-94AL85000. Sand 2011-4582P. ENERGY U.S. DEPARTMENT OF Gamma Irradiation Facility (GIF) The GIF provides test cells for...

130

Economic analysis of fuel recycle  

SciTech Connect

Economic analysis was performed at KAERI with the assistance of US DOE to compare single reactor fuel cycle costs for a once-through option and a thermal recycle option to operate 1 GWe of a PWR plant for its lifetime. A reference fuel cycle cost was first calculated for each option with best estimated reference input data. Then a sensitivity analysis was performed changing each single value of such fuel cycle component costs as yellow cake price, enrichment charges, spent fuel storage cost, reprocessing cost, spent fuel disposal cost and reprocessing waste disposal cost. Savings due to thermal recycle in requirements of uranium, conversion, and enrichment were examined using formulas suggested by US DOE, while MOX fabrication penalty was accounted for. As a result of the reference fuel cycle cost analysis, it is calculated that the thermal recycle option is marginally more economical than the once-through option. The major factors affecting the comparative costs between thermal recycle and once-through are the costs of reprocessing, spent fuel storage and the difference between spent fuel disposal and reprocessing waste disposal. However, considering the uncertainty in these cost parameters there seems no immediate economic incentive for thermal recycle at the present time.

Juhn, P.E.

1985-01-01T23:59:59.000Z

131

Facility location: distributed approximation  

Science Conference Proceedings (OSTI)

In this paper, we initiate the study of the approximability of the facility location problem in a distributed setting. In particular, we explore a trade-off between the amount of communication and the resulting approximation ratio. We give a distributed ... Keywords: distributed approximation, facility location, linear programming, primal-dual algorithms

Thomas Moscibroda; Rogert Wattenhofer

2005-07-01T23:59:59.000Z

132

Materials - Recycling - ABS and HIPS  

NLE Websites -- All DOE Office Websites (Extended Search)

Separation and Recovery of ABS and HIPS from Mixed Plastics via Froth Flotation Separation and Recovery of ABS and HIPS from Mixed Plastics via Froth Flotation Every day, obsolete appliances, consumer electronics, and cars make their way into landfills. These no-longer-wanted items contain something valuable--plastics that have the potential to be recycled. Although current technologies enable the separation of some plastics, they do not yet offer cost-effective purity and yields. Additionally, these methods do not effectively separate plastics that have the same density. Argonne and Appliance Recycling Centers of America (ARCA) undertook a project to develop a process to effectively separate and recover high-quality acrylonitrile butadiene styrene (ABS)--a plastic used to produce lightweight, tough, rigid products--from the mixed-plastics wastes generated in ARCA's appliance-recycling operation.

133

Materials - Recycling - Polymer Matrix Composites  

NLE Websites -- All DOE Office Websites (Extended Search)

Recycling of Polymer Matrix Composites Recycling of Polymer Matrix Composites Polymer matrix composites Carbon fibers recovered from a epoxy-based polymer matrix composite. Carbon fiber reinforced polymer matrix composites (PMCs) are materials with superior strength-to-weight ratios. Finding increased applications in the aerospace industry, PMCs are now being evaluated for possible use in automobile construction. The material’s high cost, however, along with concerns about whether the PMCs will be recyclable when the vehicles reach the end of their useful lives, are barriers to its widespread use. With funding provided by the U.S. Department of Energy’s Vehicle Technologies Program (formerly called the Office of Advanced Transportation Technologies), Argonne is developing an efficient and cost-effective

134

TITLE: Draft Programmatic Environmental Assessment (PEA) for the Recycle of Scrap Metal Originating From Radiological Areas (DOE/EA-1919) CONTACT: For further information on this PEA, write or email:  

E-Print Network (OSTI)

Abstract: On July 13, 2000, the Secretary of Energy imposed an agency-wide suspension on the unrestricted release of scrap metal originating from radiological areas at U.S. Department of Energy (DOE) facilities for the purpose of recycling. The suspension was imposed in response to public concerns about the potential effects of radioactivity in or on metal recycled from the Departments facilities. Other materials continued to be controlled and cleared for release under the requirements of DOE Order 5400.5, Radiation Protection of the Public and the Environment. Initially, the suspension was to remain in effect until December 31, 2000, while the Department developed and implemented improvements, revised its directives and associated guidance documents applicable to scrap metal releases, and engaged the public in a dialogue regarding DOE radiological release practices through the NEPA process. In 2001, DOE announced its intention to prepare a Programmatic Environmental Impact Statement (PEIS) on the policy alternatives for disposition of metals from its sites. Although the suspension was considered to be a temporary measure, it has been in force since 2000, and the PEIS was not completed primarily because recycling and reuse alternatives were not considered or pursued. In February 2011, in part to implement the improved monitoring and release practices recommended in 2001, DOE replaced DOE Order 5400.5 with DOE Order 458.1, Radiation Protection of the Public and the Environment, which incorporated an

Radiological Areas; Dr. Jane Summerson; Nepa Compliance Officer

2012-01-01T23:59:59.000Z

135

Sustainable Energy Through Recycling Used Nuclear Fuel  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Through Recycling Used Nuclear Fuel M.A. Williamson, A.V. Guelis, J.L. Willit, C. Pereira and A.J. Bakel Argonne National Laboratory Recycle of used nuclear fuel is central...

136

Automobile Recycling Policy: Findings and Recommendations  

E-Print Network (OSTI)

This report focuses on recycling. As an objective neutral party, MIT has compiled a knowledge base that examines the many complex issues relating to re-cycling. Although this report was prepared at the request of the ...

Field, Frank

137

Education: Digital Resource Center - WEB: What is Metals Recycling?  

Science Conference Proceedings (OSTI)

Oct 22, 2007 ... This British Metals Recycling Association (BMRA) website provides details concerning steel, aluminum, and copper recycling including...

138

Proceedings of the waste recycling workshop  

Science Conference Proceedings (OSTI)

Recorded are seventeen talks from five sessions at the workshop. FERMCO`s recycling program, state of the art recycling technology, and an integrated demonstration of deactivation, decommissioning and decommissioning are presented in the plenary session. In the concrete session, decontamination and recycling are discussed. In the transite session, regulations are considered along with recycling and decontamination. In the metals session, radioactive scrap metals are emphasized. And in the regulatory considerations and liabilities session, DOE and EPA viewpoints are discussed. (GHH)

Bailey, R.E.; Thomas, A.F.; Ries, M.A. [eds.] [Ohio State Univ., Columbus, OH (United States)] [eds.; Ohio State Univ., Columbus, OH (United States)

1993-12-31T23:59:59.000Z

139

Metal recycling experience at Los Alamos National Laboratory. Reuse, release, and recycle of metals from radiological control areas``  

Science Conference Proceedings (OSTI)

Approximately 15% of the Low-Level Waste (LLW) produced at Los Alamos consists of scrap metal equipment and materials. The majority of this material is produced by decommissioning and the modification of existing facilities. To reduce this waste stream, Department of Energy Headquarters, EM-77 Office, sponsored the Reuse, Recycle, and Release of Metals from Radiological Control Areas High Return on Investment (ROI) Project to implement recycle, reuse, and release of scrap metal at the laboratory. The goal of this project was to develop cost effective alternatives to LLW disposal of scrap metal and to avoid the disposal of 2,400 m{sup 3} of scrap metal. The ROI for this project was estimated at 948%. The ROI project was funded in March 1996 and is scheduled for completion by October 1997. At completion, a total of 2,400 m{sup 3} of LLW avoidance will have been accomplished and a facility to continue recycling activities will be operational. This paper will present the approach used to develop effective alternatives for scrap metal at Los Alamos and then discuss the tasks identified in the approach in detail. Current scrap metal inventory, waste projections, alternatives to LLW disposal, regulatory guidance, and efforts to institutionalize the alternatives to LLW disposal will be discussed in detail.

Gogol, S.

1997-11-01T23:59:59.000Z

140

Waste Toolkit A-Z Battery recycling  

E-Print Network (OSTI)

Waste Toolkit A-Z Battery recycling How can I recycle batteries? The University Safety Office is responsible for arranging battery recycling for departments (see Contact at bottom of page). Colleges must make their own arrangements through a registered hazardous waste carrier. Batteries must not be put

Melham, Tom

Note: This page contains sample records for the topic "facilities initiatives recycling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Development of international exemption principles for recycle and reuse  

SciTech Connect

The International Atomic Energy Agency (IAEA) has been investigating the possibility of exempting certain radiation sources and practices from regulatory control as an extension of its earlier work in the area of de minimis. Because of the potential value of scrap materials recovered during decommissioning of commercial reactors, and because of national and international efforts to minimize radioactive wastes, exemption criteria for recycle and reuse have gained attention. The IAEA has established basic principles for exemption that limit the radiation dose that individuals or population groups may receive from exempted practices or sources. This paper discusses the recent IAEA Advisory Group's recommendations on principles for radiation practices and sources in the recycling of retired components and materials from nuclear facilities. The background of the Advisory Group's work is discussed, then its methods and preliminary recommendations are summarized. Finally, a similar effort sponsored by the Commission of the European Communities is summarized and compared to the IAEA approach. 8 refs., 3 tabs.

Kennedy, W.E. Jr. (Pacific Northwest Lab., Richland, WA (USA))

1989-09-01T23:59:59.000Z

142

Recycling steel from grinding swarf  

SciTech Connect

Two cleaning processes have been investigated for removing contaminants (cutting oil with phosphorus ester) from high speed steel (HSS) griding swarf. One process uses an aqueous surfactant washing technique, and the second process uses supercritical carbon dioxide (SCCO{sub 2}) extraction. Both technical and preliminary financial analysis are performed to have a better evaluation of these two competing cleaning technologies. Bench scale aqueous washings have shown that the required phosphorus removal is easily obtained, but a sufficient oil removal is more difficult. The experimental results also indicate a strong dependence of the aqueous washing efficiency on the choice of a suitable surfactant. SCCO{sub 2} extraction at 80 C and 340 atm shows that approximately 80% of the oil can be removed from swarf during a 60-minute process to produce a batch of recyclable steel, and that the phosphorus removal also reaches the required level. The cost of processing swarf using either aqueous surfactant washing or SCCO{sub 2} extraction in a 3,000,000 lbs per year plant is analyzed and the market forces impacting the feasibility of recycling on a commercial basis are reviewed. Commercial scale recycling is, in part, dependent upon resolution of regulatory uncertainty on the definition of swarf. States regulating swarf as hazardous provide a significant financial incentive to recycle. In states that regulate swarf as a solid waste, low disposal costs provide a disincentive that must be balanced with the possible hidden, future liabilities of landfill disposal.

Fu, H.; Matthews, M.A.; Warner, L.S. [Univ. of South Carolina, Columbia, SC (United States)

1998-12-31T23:59:59.000Z

143

PITT RECYCLES! *Please empty cans!  

E-Print Network (OSTI)

(e.g. ­ Towers Lobby). White paper Most colored paper Notebook paper Copier paper Paperboard (Cereal printout paper Carbonless NCR paper Paper or manila folders Paper envelopes without windows Adding machine NOT Recyclable... Food waste Lunch bags Coffee cups Cellophane Tissues Paper towels Carbon paper Styrofoam Metals

Sibille, Etienne

144

Research Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

FLEX lab image, windows testing lab, scientist inside a lab, Research Facilities EETD maintains advanced research and test facilities for buildings, energy technologies, air...

145

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

8, 2011 [Facility News, Publications] 8, 2011 [Facility News, Publications] Journal Special Issue Includes Mobile Facility Data from Germany Bookmark and Share The ARM Mobile Facility operated in Heselbach, Germany, as part of the COPS surface network. The ARM Mobile Facility operated in Heselbach, Germany, as part of the COPS surface network. In 2007, the ARM Mobile Facility participated in one of the most ambitious field studies ever conducted in Europe-the Convective and Orographically Induced Precipitation Study (COPS). Now, 21 papers published in a special issue of the Quarterly Journal of the Royal Meteorological Society demonstrate that the data collected during COPS are providing new insight into: the key chemical and physical processes leading to convection initiation and to the modification of precipitation by orography;

146

NETL: News Release - New Recycling Technology to be Tested at Virginia  

NLE Websites -- All DOE Office Websites (Extended Search)

New Recycling Technology to be Tested At Virginia Coal-Fired Power Plant New Recycling Technology to be Tested At Virginia Coal-Fired Power Plant Universal Aggregates Plans to Turn Coal Combustion Waste Into Useful Products KING GEORGE, VA - Each year Mirant's Birchwood Power Facility in King George, VA, pays to have more than 100,000 tons of coal combustion ash disposed of in a municipal landfill. A new Department of Energy project may soon demonstrate that this ash has significantly more value than as the daily cover material for a community's solid waste. - The proposed site of the Universal Aggregates plant next to the Birchwood Power Plant in Virginia - Universal Aggregates will build the "ash-to-aggregate" recycling plant in the outlined area adjacent to Mirant's Birchwood Power Facility. The department recently signed a cooperative agreement with Universal

147

Clean Critical Experiment Benchmarks for Plutonium Recycle in LWRs  

Science Conference Proceedings (OSTI)

Government laboratories and private industry in the U.S. and in other countries have carried out or initiated programs to study and evaluate the technical and economic feasibility of recycling plutonium. The experimental measurements program provides benchmark neutronics data for use in assessing the accuracy of neutronics analysis methods for slightly enriched uranium lattices and for mixed oxide lattices. The lattice pitches were selected to provide configurations that were undermoderated, near optimum...

1978-09-01T23:59:59.000Z

148

Sandia National Laboratories: Pollution Prevention: Recycling  

NLE Websites -- All DOE Office Websites (Extended Search)

Recycling Recycling Sandia goes beyond basic recycling of common papers, plastics, and metals. We divert as many waste streams for recycling as feasible. The list of materials diverted grows every year. We regularly re-evaluate processes for efficiency and improved revenues as well. Revenue received from recycling goes back into the program to fund material streams that currently cost to process, and to improve and expand the waste reduction infrastructure. The state of New Mexico has a target to recycle 35% of its waste by 2018. The Department of Energy has a goal of 50% by 2015. Sandia/New Mexico is contributing toward both of these goals by recycling nearly 71% of its waste in FY12. Sandia/California is doing even better at 78%. compost pile Composting Sandia/New Mexico sends green waste in the form of branches to Kirtland Air

149

Clean Critical Experiment Benchmarks for Plutonium Recycle in LWRs (Foil Activation Studies)  

Science Conference Proceedings (OSTI)

In order to provide benchmark information for testing fuel-cycle analysis methods and nuclear data libraries, EPRI supported a series of critical lattice experiments at Battelle, Pacific Northwest Laboratories' plutonium recycle critical facility. These experiments involved water-moderated uniform uranium oxide and mixed (uranium-plutonium) oxide critical lattices. This volume presents the foil activation data obtained from this experimental program.

1978-09-01T23:59:59.000Z

150

Facility Microgrids  

Science Conference Proceedings (OSTI)

Microgrids are receiving a considerable interest from the power industry, partly because their business and technical structure shows promise as a means of taking full advantage of distributed generation. This report investigates three issues associated with facility microgrids: (1) Multiple-distributed generation facility microgrids' unintentional islanding protection, (2) Facility microgrids' response to bulk grid disturbances, and (3) Facility microgrids' intentional islanding.

Ye, Z.; Walling, R.; Miller, N.; Du, P.; Nelson, K.

2005-05-01T23:59:59.000Z

151

Learning in human-dolphin interactions at zoological facilities  

E-Print Network (OSTI)

stream clean-ups Recycle motor oil Recycle paper, plastic, &stream clean-ups Recycle motor oil Recycle paper, plastic, &

Sweeney, Diane L.

2009-01-01T23:59:59.000Z

152

Safe recycling of used oil  

SciTech Connect

It`s not just recovery of used oil, but how you recover it, that ultimately determines the impact on the environment. No matter what recycling technology is employed, there are environmental/economic factors that come into play. One is the distance to the end user. Sending the used oil to a nearby plant (e.g. a local asphalt manufacturer as opposed to a distant refiner) both reduces hauling costs and the potential for a spill occurring during transport. Management practices of the used oil recycler, pollution control, insurance coverage and environmental compliance record are other factors in evaluating recovery options. Generators need to be careful about who is collecting their used oil, because they can be held liable for mismanagement.

Arner, R. [Northern Virginia Planning District Commission, Cincinnati, OH (United States)

1995-09-01T23:59:59.000Z

153

Slag recycling of irradiated vanadium  

Science Conference Proceedings (OSTI)

An experimental inductoslag apparatus to recycle irradiated vanadium was fabricated and tested. An experimental electroslag apparatus was also used to test possible slags. The testing was carried out with slag materials that were fabricated along with impurity bearing vanadium samples. Results obtained include computer simulated thermochemical calculations and experimentally determined removal efficiencies of the transmutation impurities. Analyses of the samples before and after testing were carried out to determine if the slag did indeed remove the transmutation impurities from the irradiated vanadium.

Gorman, P.K.

1995-04-05T23:59:59.000Z

154

Nuclear Fuel Recycling Position Statement  

E-Print Network (OSTI)

The American Nuclear Society believes that if the world is to provide sufficient energy to meet the demands of a growing population and improved standards of living in the 21 st century, nuclear energy will play a substantial role. Nuclear energy is a proven technology that will be part of the mix of technologies used by future generations due to its enormous energy potential with near-zero emissions of greenhouse gases (see related Position Statement 44). Alternative energy sources by themselves will be insufficient to meet these needs during this period of rapidly increasing energy demand. Nuclear fuel recycling, which involves separating the uranium and plutonium from spent nuclear fuel for reuse in the fabrication of new fuel (see Position Statement 47), has the potential to reclaim most of the unused energy in spent fuel. It is a proven alternative to current U.S. policy of direct disposal of spent fuel in a geological repository, which throws away the fuels remaining energy content. Recycling of nuclear fuel in other countries with proper safeguards and material controls (see related Position Statement 55) under the auspices of the International Atomic Energy Agency (IAEA) has demonstrated the viability of high level waste volume reduction and energy resource conservation. Transitioning to a recycle policy in an era of expanded nuclear deployment will enhance resource utilization, radioactive waste management, and safeguards. Additional research and development 1 are needed to address the issue of cost and to further enhance the safeguards and safety of the various processes that are required. Such research is also needed to secure the U.S. position as a leader in nuclear technology and global nuclear materials stewardship. Therefore, the American Nuclear Society endorses the following: U.S. policy that allows an orderly transition to nuclear fuel recycling in parallel with the development of the high level waste repository, Yucca Mountain, in a manner that would enhance the repositorys efficiency; further research and development of recycle options to ensure a secure and sustainable energy future with reduced proliferation risks.

unknown authors

2007-01-01T23:59:59.000Z

155

INEEL Lead Recycling in a Moratorium Environment  

SciTech Connect

Since 1999, the Idaho National Engineering and Environmental Laboratory (INEEL) Lead Project successfully recycled over 700,000 pounds of excess INEEL lead to the private sector. On February 14, 2000, the Secretary of Energy, Bill Richardson, formalized the January 12, 2000, moratorium on recycling radioactive scrap metal that prevented the unrestricted release of recycled scrap metals to the private sector. This moratorium created significant problems for the INEEL lead recycling program and associated plans; however, through the cooperative efforts of the INEEL and Idaho State University as well as innovative planning and creative thinking the recycling issues were resolved. This collaboration has recycled over 160,000 pounds of excess lead to Idaho State University with a cost savings of over $.5M.

Kooda, K. E.; Galloway, K.; McCray, C. W.; Aitken, D. W.

2003-02-26T23:59:59.000Z

156

Recycling production designs : the value of coordination and flexibility in aluminum recycling operations  

E-Print Network (OSTI)

The growing motivation for aluminum recycling has prompted interest in recycling alternative and more challenging secondary materials. The nature of these alternative secondary materials necessitates the development of an ...

Brommer, Tracey H. (Tracey Helenius)

2013-01-01T23:59:59.000Z

157

Recycling of LiFePO4 Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

8-11, 2011 8-11, 2011 Linda Gaines Center for Transportation Research Argonne National Laboratory Recycling of LiFePO 4 Batteries 7th International Symposium on Inorganic Phosphate Materials Phosphate Materials for Energy Storage We don't want to trade one crisis for another!  Battery material shortages are unlikely - We demonstrated that lithium demand can be met - Recycling mitigates potential scarcity  Life-cycle analysis checks for unforeseen impacts  We need to find something to do with the used materials - Safe - Economical 2 Battery materials could get used multiple times Initial Use Automotive power Secondary Use Utility storage Residential storage Power at remote location Refurbishment Rejuvenate (change electrolyte) Switch out bad module

158

Waste Processing and Recycling: Some Case Studies  

Science Conference Proceedings (OSTI)

Symposium, WASTE RECYCLING IN MINERAL AND METALLURGICAL ... Effect of Electricity Mix and Ore Grade on the Carbon Footprint of Chilean Cathodic...

159

Materials Sustainability: Digital Resource Center - Steel Recycling ...  

Science Conference Proceedings (OSTI)

Jul 3, 2008 ... This video was created by the Steel Manufacturers Association to educate the public on the importance of recycling steel. Shredded cars...

160

Materials Sustainability: Digital Resource Center - Recycling and ...  

Science Conference Proceedings (OSTI)

Jun 25, 2008 ... These proceedings include papers based on presentations prepared for the symposium "Recycling and Waste Processing" at the TMS 2007...

Note: This page contains sample records for the topic "facilities initiatives recycling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Recycling in America: A Reference Handbook  

E-Print Network (OSTI)

and academic libraries, the handbook presents a nontechnicalRecycling in America: A Reference Handbook Patricia Murphy Handbook (Contemporary World Issues

Murphy, Patricia

1994-01-01T23:59:59.000Z

162

Materials Sustainability: Digital Resource Center - Product Recycling  

Science Conference Proceedings (OSTI)

Jul 1, 2008 ... This excerpt from the 2003 Fujitsu Group Sustainability Report provides an overview of the Fujitsu recycling system and describes their...

163

Concrete & Asphalt Recycling into Reusable Products  

NLE Websites -- All DOE Office Websites (Extended Search)

SNLNM Pollution Prevention Concrete & Asphalt Recycling into Reusable Products (SNLNM Pollution Prevention Program) March 18, 2010 Doug Vetter, PE, LEED-AP Sandia is a...

164

Battery Recycling by Hydrometallurgy: Evaluation of Simultaneous ...  

Science Conference Proceedings (OSTI)

Presentation Title, Battery Recycling by Hydrometallurgy: Evaluation of ... of spent batteries using the same process, in order to overcome the high costs and...

165

Howard Waste Recycling Ltd | Open Energy Information  

Open Energy Info (EERE)

Biomass Product London-based project developer and manufacturer of biomass feedstock for energy production. References Howard Waste Recycling Ltd1 LinkedIn Connections...

166

Fourth International Symposium on Recycling of Metals  

Science Conference Proceedings (OSTI)

Combining Lead-Zinc 2000 and Recycling of Metals and Engineered ... Andreas Sigmund, RSR Technologies, Inc. Secondary Copper, Nickel and Cobalt

167

Primary Production, Recycling, and Environment - TMS  

Science Conference Proceedings (OSTI)

Link directory to a variety of general information sources on magnesium production, 0 ... Links to key papers on magnesium primary production, recycling and...

168

Application: Facilities  

Science Conference Proceedings (OSTI)

... Option.. Papavergos, PG; 1991. Halon 1301 Use in Oil and Gas Production Facilities: Alaska's North Slope.. Ulmer, PE; 1991. ...

2011-12-22T23:59:59.000Z

169

Efficient location and allocation strategies for undesirable facilities considering their fundamental properties  

Science Conference Proceedings (OSTI)

The phrase ''not in my backyard'' (NIMBY) refers to the well-known social phenomena in which residents oppose the construction or location of undesirable facilities near their homes. Examples of such facilities include electric transmission lines, recycling ... Keywords: Allocation, Genetic algorithm, Location, NIMBY phenomena, Undesirable facility

Byung Duk Song, James R. Morrison, Young Dae Ko

2013-07-01T23:59:59.000Z

170

HTGR fuel recycle development program. Quarterly progress report for the period ending August 31, 1978  

SciTech Connect

The work reported includes the development of unit processes and equipment for reprocessing of High-Temperature Gas-Cooled Reactor (HTGR) fuel, the design and development of an integrated pilot line to demonstrate the head end of HTGR reprocessing using unirradiated fuel materials, and design work in support of Hot Engineering Tests (HET). Work is also described on tradeoff studies concerning the required design of facilities and equipment for the large-scale recycle of HTGR fuels in order to guide the development activities for HTGR fuel recycle.

1978-09-01T23:59:59.000Z

171

Cost estimate for muddy water palladium production facility at Mound  

SciTech Connect

An economic feasibility study was performed on the ''Muddy Water'' low-chlorine content palladium powder production process developed by Mound. The total capital investment and total operating costs (dollars per gram) were determined for production batch sizes of 1--10 kg in 1-kg increments. The report includes a brief description of the Muddy Water process, the process flow diagram, and material balances for the various production batch sizes. Two types of facilities were evaluated--one for production of new, ''virgin'' palladium powder, and one for recycling existing material. The total capital investment for virgin facilities ranged from $600,000 --$1.3 million for production batch sizes of 1--10 kg, respectively. The range for recycle facilities was $1--$2.3 million. The total operating cost for 100% acceptable powder production in the virgin facilities ranged from $23 per gram for a 1-kg production batch size to $8 per gram for a 10-kg batch size. Similarly for recycle facilities, the total operating cost ranged from $34 per gram to $5 per gram. The total operating cost versus product acceptability (ranging from 50%--100% acceptability) was also evaluated for both virgin and recycle facilities. Because production sizes studied vary widely and because scale-up factors are unknown for batch sizes greater than 1 kg, all costs are ''order-of-magnitude'' estimates. All costs reported are in 1987 dollars.

McAdams, R.K.

1988-11-30T23:59:59.000Z

172

Florida Hydrogen Initiative  

SciTech Connect

The Florida Hydrogen Initiative (FHI) was a research, development and demonstration hydrogen and fuel cell program. The FHI program objectives were to develop Florida?s hydrogen and fuel cell infrastructure and to assist DOE in its hydrogen and fuel cell activities The FHI program funded 12 RD&D projects as follows: Hydrogen Refueling Infrastructure and Rental Car Strategies -- L. Lines, Rollins College This project analyzes strategies for Florida's early stage adaptation of hydrogen-powered public transportation. In particular, the report investigates urban and statewide network of refueling stations and the feasibility of establishing a hydrogen rental-car fleet based in Orlando. Methanol Fuel Cell Vehicle Charging Station at Florida Atlantic University ? M. Fuchs, EnerFuel, Inc. The project objectives were to design, and demonstrate a 10 kWnet proton exchange membrane fuel cell stationary power plant operating on methanol, to achieve an electrical energy efficiency of 32% and to demonstrate transient response time of less than 3 milliseconds. Assessment of Public Understanding of the Hydrogen Economy Through Science Center Exhibits, J. Newman, Orlando Science Center The project objective was to design and build an interactive Science Center exhibit called: ?H2Now: the Great Hydrogen Xchange?. On-site Reformation of Diesel Fuel for Hydrogen Fueling Station Applications ? A. Raissi, Florida Solar Energy Center This project developed an on-demand forecourt hydrogen production technology by catalytically converting high-sulfur hydrocarbon fuels to an essentially sulfur-free gas. The removal of sulfur from reformate is critical since most catalysts used for the steam reformation have limited sulfur tolerance. Chemochromic Hydrogen Leak Detectors for Safety Monitoring ? N. Mohajeri and N. Muradov, Florida Solar Energy Center This project developed and demonstrated a cost-effective and highly selective chemochromic (visual) hydrogen leak detector for safety monitoring at any facility engaged in transport, handling and use of hydrogen. Development of High Efficiency Low Cost Electrocatalysts for Hydrogen Production and PEM Fuel Cell Applications ? M. Rodgers, Florida Solar Energy Center The objective of this project was to decrease platinum usage in fuel cells by conducting experiments to improve catalyst activity while lowering platinum loading through pulse electrodeposition. Optimum values of several variables during electrodeposition were selected to achieve the highest electrode performance, which was related to catalyst morphology. Understanding Mechanical and Chemical Durability of Fuel Cell Membrane Electrode Assemblies ? D. Slattery, Florida Solar Energy Center The objective of this project was to increase the knowledge base of the degradation mechanisms for membranes used in proton exchange membrane fuel cells. The results show the addition of ceria (cerium oxide) has given durability improvements by reducing fluoride emissions by an order of magnitude during an accelerated durability test. Production of Low-Cost Hydrogen from Biowaste (HyBrTec?) ? R. Parker, SRT Group, Inc., Miami, FL This project developed a hydrogen bromide (HyBrTec?) process which produces hydrogen bromide from wet-cellulosic waste and co-produces carbon dioxide. Eelectrolysis dissociates hydrogen bromide producing recyclable bromine and hydrogen. A demonstration reactor and electrolysis vessel was designed, built and operated. Development of a Low-Cost and High-Efficiency 500 W Portable PEMFC System ? J. Zheng, Florida State University, H. Chen, Bing Energy, Inc. The objectives of this project were to develop a new catalyst structures comprised of highly conductive buckypaper and Pt catalyst nanoparticles coated on its surface and to demonstrate fuel cell efficiency improvement and durability and cell cost reductions in the buckypaper based electrodes. Development of an Interdisciplinary Hydrogen and Fuel Cell Technology Academic Program ? J. Politano, Florida Institute of Technology, Melbourne, FL This project developed a hydrogen and fuel cel

Block, David L

2013-06-30T23:59:59.000Z

173

Assessment of potential radiation exposures by uncontrolled recycle or reuse of radioactive scrap metals  

Science Conference Proceedings (OSTI)

With current waste monitoring technology it is reasonable to assume that much of the material designated as low-level waste, generated within nuclear facilities, is in fact uncontaminated. A criterion for uncontrolled disposal of low-level radioactive contaminated waste is that the radiation exposure of the public and of each individual caused by this disposal is so low that radiation protection measures need not be taken. The International Atomic Energy Agency (IAEA) suggests an annual effective dose of 10 {micro}Sv as a limit for the individual radiation dose and derived the initial control levels of residual radioactivity based on the Publication 30 of the International Commission on Radiological Protection (ICRP). In 1990, new recommendations on radiation protection standards were developed by ICRP to take into account new biological information related to the detriment associated with radiation exposure. Adoption of these recommendations necessitated a revision of the Commission's secondary limits contained in Publication 30. This study summarizes the potential radiation exposure from valuable scrap metal considered for uncontrolled recycle by new ICRP recommendations. Potential exposure pathways to people were analyzed and concentrations leading to an individual dose of 10 {micro}Sv/year were calculated for 14 key radionuclides. These potential radiation doses are compared with the results of previous study.

Lee, S.Y.; Lee, K.J.

1999-07-01T23:59:59.000Z

174

Zero Waste Program 2011 Recycling Benefits  

E-Print Network (OSTI)

of the following homes per month: 10,343 286 tons of plastic 95 tons of aluminum 0 KW-Hrs of Electricity from Waste-to-Energy: This provides enough energy to heat and cool at a Waste-to-Energy (WTE) the following homes per month: 10Rutgers Zero Waste Program 2011 Recycling Benefits Through WM's Recycling Program, our company

Delgado, Mauricio

175

Waste Reduction and Recycling Rina Parikh  

E-Print Network (OSTI)

Waste Reduction and Recycling Rina Parikh Jimmy Zimmerman Brooke Evans Lacey Johnston #12;The with ideas to reduce waste. Many students have researched possibilities in exploring other aspects of waste that is accumulating in areas of food service and increasing the number of people who recycle. We

Peterson, Blake R.

176

The Second Symposium on the Recycling of Electronic Wastes  

Science Conference Proceedings (OSTI)

Life cycle and economic analysis for the recycling of E-Wastes. Abstracts Due ... Prospective Scenario of E-Waste Recycling in India Recovery of Copper from...

177

Recycling Magnesium Alloy Housings for Notebook Computers - TMS  

Science Conference Proceedings (OSTI)

Jul 1, 2008 ... This article from Fujitsu Laboratories describes two recycling processes for magnesium alloy housings: one for recycling the excess material...

178

Recycling of wasted energy : thermal to electrical energy conversion  

E-Print Network (OSTI)

SAN DIEGO Recycling of Wasted Energy : Thermal to ElectricalRecycling of Wasted Energy : Thermal to Electrical Energyenergy, geothermal energy, wasted heat from a nuclear

Lim, Hyuck

2011-01-01T23:59:59.000Z

179

The 10 Obstacles to a Successful Battery Recycling Program  

Science Conference Proceedings (OSTI)

Abstract Scope, Battery recycling in North America has reached adolescence. Retailers are demanding ... Role of Recycling in the Life Cycle of Batteries.

180

National Nanotechnology Initiative  

Office of Science (SC) Website

National National Nanotechnology Initiative (NNI) Basic Energy Sciences (BES) BES Home About Research Materials Sciences & Engineering (MSE) Chemical Sciences, Geosciences, and Biosciences (CSGB) Accelerator and Detector Research Research Conduct Policies DOE Energy Innovation Hubs Energy Frontier Research Centers National Nanotechnology Initiative (NNI) Nanomaterials ES&H Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) News & Resources Contact Information Basic Energy Sciences U.S. Department of Energy SC-22/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3081 F: (301) 903-6594 E: sc.bes@science.doe.gov More Information » Research National Nanotechnology Initiative (NNI)

Note: This page contains sample records for the topic "facilities initiatives recycling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

NREL: News Feature - Recycled Natural Gas Pipes Shore Up Green Building  

NLE Websites -- All DOE Office Websites (Extended Search)

Recycled Natural Gas Pipes Shore Up Green Building Recycled Natural Gas Pipes Shore Up Green Building July 17, 2009 Photo of a line of four large metal tubes coming out of the ground in a construction site with blue sky, hills and buildings in the background. Early photos show the first few reclaimed gas pipes being erected at the RSF construction site. Using these recycled pipes will be help the building attain LEED platinum status. Credit: Carl Cox Building a support structure of something, tried, true and tested like "off the shelf" steel is standard practice in building construction. NREL's effort to create the most energy efficient and "green" office building is putting a twist on an old standard. The columns that will carry the weight of floors and walls in the new Research Support Facilities (RSF) are

182

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

April 30, 2013 [Facility News] April 30, 2013 [Facility News] Gearing Up for Science in Amazon Rainforest Bookmark and Share In March 2013, an initial instrument suite began operating near Manacupuru, in the Brazilian state of Amazonas, as part of the GOAMAZON field campaign. In March 2013, an initial instrument suite began operating near Manacupuru, in the Brazilian state of Amazonas, as part of the GOAMAZON field campaign. Preparing for the biggest and most complex deployment of field resources to date, the ARM Mobile Facility operations team from Los Alamos National Laboratory spent three weeks in Brazil in early March tackling a range of protocol and logistics tasks for next year's GOAMAZON field campaign. Between ARM and Brazilian collaborators, about 80 instruments will obtain

183

AISI waste oxide recycling program. Final technical report  

SciTech Connect

In March 1995 AISI completed a five-year, $60 million collaborative development program on Direct Steelmaking cost-shared by DOE under the Metals Initiative. This program defined an energy-efficient and environmentally-friendly technology to produce hot metal for steelmaking directly from coal and iron ore pellets without incurring the high capital costs and environmental problems associated with traditional coke oven and blast furnace technology. As it becomes necessary to replace present capacity, this new technology will be favored because of reduced capital costs, higher energy efficiency, and lower operating costs. In April 1994, having failed to move forward with a demonstration plant for direct ironmaking, despite substantial efforts by both Stelco and Geneva Steel, an alternative opportunity was sought to commercialize this new technology without waiting until existing ironmaking capacity needed to be replaced. Recycling and resource recovery of steel plant waste oxides was considered an attractive possibility. This led to approval of a ten-month, $8.3 million joint program with DOE on recycling steel plant waste oxides utilizing this new smelting technology. This highly successful trial program was completed in December 1994. The results of the pilot plant work and a feasibility study for a recycling demonstration plant are presented in this final technical report.

Aukrust, E.; Downing, K.B.; Sarma, B.

1995-08-01T23:59:59.000Z

184

User Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Lawrence Berkeley National Laboratory's National User Facilities are available for cooperative research with institutions and the private sector worldwide. The Environmental...

185

Mobile Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Facility Facility AMF Information Science Architecture Baseline Instruments AMF1 AMF2 AMF3 Data Operations AMF Fact Sheet Images Contacts AMF Deployments Hyytiälä, Finland, 2014 Manacapuru, Brazil, 2014 Oliktok Point, Alaska, 2013 Los Angeles, California, to Honolulu, Hawaii, 2012 Cape Cod, Massachusetts, 2012 Gan Island, Maldives, 2011 Ganges Valley, India, 2011 Steamboat Springs, Colorado, 2010 Graciosa Island, Azores, 2009-2010 Shouxian, China, 2008 Black Forest, Germany, 2007 Niamey, Niger, 2006 Point Reyes, California, 2005 Mobile Facilities Pictured here in Gan, the second mobile facility is configured in a standard layout. Pictured here in Gan, the second mobile facility is configured in a standard layout. To explore science questions beyond those addressed by ARM's fixed sites at

186

Conceptual Drawing CMRR Facility Past  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Volume 1 Volume 1 Chapters 1 through 10 Appendices A through D To submit questions regarding this CMRR-NF SEIS, or to request a copy, please contact: AVAILABILITY OF THE FINAL SUPPLEMENTAL ENVIRONMENTAL IMPACT STATEMENT FOR THE NUCLEAR FACILITY PORTION OF THE CHEMISTRY AND METALLURGY RESEARCH BUILDING REPLACEMENT PROJECT AT LOS ALAMOS NATIONAL LABORATORY, LOS ALAMOS, NEW MEXICO (CMRR-NF SEIS) Printed with soy ink on recycled paper John Tegtmeier, EIS Document Manager Los Alamos Site Office National Nuclear Security Administration U.S. Department of Energy 3747 West Jemez Road Los Alamos, NM 87544 Telephone: 505-665-0113 Conceptual Drawing CMRR Facility Past Present Future Past Final Supplemental Environmental Impact Statement for the

187

To Recycle or Not to Recycle: That Is the Question - Insights from Life-Cycle Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

MRS BULLETIN MRS BULLETIN * VOLUME 37 * APRIL 2012 * www.mrs.org/bulletin © 2012 Materials Research Society MANUFACTURING * RECYCLING Why recycle? The most commonly stated reason for recycling is to reduce burdens associated with the disposal of our never-ending stream of wastes. Waste disposal potentially causes air and water pollution and is costly; moreover, landfi lls compete with other land uses. In addition, recycling can extend our supply of materials to alleviate scarcity and to moderate rising prices of raw materials. Furthermore, recycling is often more environmentally benign than using virgin raw materials and can reduce energy use and emissions of greenhouse gases and other pollutants. Life-cycle analysis Despite these positive attributes, not all recycling processes

188

Fuzzy Assessment of Material Recyclability and Its Applications  

Science Conference Proceedings (OSTI)

A method to assess material recyclability using fuzzy logic is presented. Recyclability of materials is defined as a function of several variables, called basic indicators, which influence the technology and economics of the recycling processes, policies ... Keywords: Monotonic fuzzy systems, Recyclability

Yannis A. Phillis; Vassilis S. Kouikoglou; Xiaomin Zhu

2009-06-01T23:59:59.000Z

189

Nuclear fuel recycling in 4 minutes | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

fuel recycling in 4 minutes Share Topic Energy Energy sources Nuclear energy Nuclear fuel cycle Reactors...

190

Code qualification of structural materials for AFCI advanced recycling reactors.  

Science Conference Proceedings (OSTI)

This report summarizes the further findings from the assessments of current status and future needs in code qualification and licensing of reference structural materials and new advanced alloys for advanced recycling reactors (ARRs) in support of Advanced Fuel Cycle Initiative (AFCI). The work is a combined effort between Argonne National Laboratory (ANL) and Oak Ridge National Laboratory (ORNL) with ANL as the technical lead, as part of Advanced Structural Materials Program for AFCI Reactor Campaign. The report is the second deliverable in FY08 (M505011401) under the work package 'Advanced Materials Code Qualification'. The overall objective of the Advanced Materials Code Qualification project is to evaluate key requirements for the ASME Code qualification and the Nuclear Regulatory Commission (NRC) approval of structural materials in support of the design and licensing of the ARR. Advanced materials are a critical element in the development of sodium reactor technologies. Enhanced materials performance not only improves safety margins and provides design flexibility, but also is essential for the economics of future advanced sodium reactors. Code qualification and licensing of advanced materials are prominent needs for developing and implementing advanced sodium reactor technologies. Nuclear structural component design in the U.S. must comply with the ASME Boiler and Pressure Vessel Code Section III (Rules for Construction of Nuclear Facility Components) and the NRC grants the operational license. As the ARR will operate at higher temperatures than the current light water reactors (LWRs), the design of elevated-temperature components must comply with ASME Subsection NH (Class 1 Components in Elevated Temperature Service). However, the NRC has not approved the use of Subsection NH for reactor components, and this puts additional burdens on materials qualification of the ARR. In the past licensing review for the Clinch River Breeder Reactor Project (CRBRP) and the Power Reactor Innovative Small Module (PRISM), the NRC/Advisory Committee on Reactor Safeguards (ACRS) raised numerous safety-related issues regarding elevated-temperature structural integrity criteria. Most of these issues remained unresolved today. These critical licensing reviews provide a basis for the evaluation of underlying technical issues for future advanced sodium-cooled reactors. Major materials performance issues and high temperature design methodology issues pertinent to the ARR are addressed in the report. The report is organized as follows: the ARR reference design concepts proposed by the Argonne National Laboratory and four industrial consortia were reviewed first, followed by a summary of the major code qualification and licensing issues for the ARR structural materials. The available database is presented for the ASME Code-qualified structural alloys (e.g. 304, 316 stainless steels, 2.25Cr-1Mo, and mod.9Cr-1Mo), including physical properties, tensile properties, impact properties and fracture toughness, creep, fatigue, creep-fatigue interaction, microstructural stability during long-term thermal aging, material degradation in sodium environments and effects of neutron irradiation for both base metals and weld metals. An assessment of modified versions of Type 316 SS, i.e. Type 316LN and its Japanese version, 316FR, was conducted to provide a perspective for codification of 316LN or 316FR in Subsection NH. Current status and data availability of four new advanced alloys, i.e. NF616, NF616+TMT, NF709, and HT-UPS, are also addressed to identify the R&D needs for their code qualification for ARR applications. For both conventional and new alloys, issues related to high temperature design methodology are described to address the needs for improvements for the ARR design and licensing. Assessments have shown that there are significant data gaps for the full qualification and licensing of the ARR structural materials. Development and evaluation of structural materials require a variety of experimental facilities that have been seriously degraded

Natesan, K.; Li, M.; Majumdar, S.; Nanstad, R.K.; Sham, T.-L. (Nuclear Engineering Division); (ORNL)

2012-05-31T23:59:59.000Z

191

Making of the NSTX Facility  

SciTech Connect

The NSTX (National Spherical Torus Experiment) facility located at Princeton Plasma Physics Laboratory is the newest national fusion science experimental facility for the restructured US Fusion Energy Science Program. The NSTX project was approved in Fy 97 as the first proof-of-principle national fusion facility dedicated to the spherical torus research. On Feb. 15, 1999, the first plasma was achieved 10 weeks ahead of schedule. The project was completed on budget and with an outstanding safety record. This paper gives an overview of the NSTX facility construction and the initial plasma operations.

Ono, M. [Princeton Plasma Physics Laboratory (PPPL); Peng, Yueng Kay Martin [ORNL

1999-01-01T23:59:59.000Z

192

RecycleBank | Open Energy Information  

Open Energy Info (EERE)

RecycleBank RecycleBank Jump to: navigation, search Logo: RecycleBank Name RecycleBank Address 95 Morton Street Place New York, New York Sector Efficiency Number of employees 51-200 Website http://www.recyclebank.com/ Coordinates 40.731373°, -74.008584° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.731373,"lon":-74.008584,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

193

Design and Optimization of Photovoltaics Recycling Infrastructure  

Science Conference Proceedings (OSTI)

With the growing production and installation of photovoltaics (PV) around the world constrained by the limited availability of resources, end-of-life management of PV is becoming very important. A few major PV manufacturers currently are operating several PV recycling technologies at the process level. The management of the total recycling infrastructure, including reverse-logistics planning, is being started in Europe. In this paper, we overview the current status of photovoltaics recycling planning and discuss our mathematic modeling of the economic feasibility and the environmental viability of several PV recycling infrastructure scenarios in Germany; our findings suggest the optimum locations of the anticipated PV take-back centers. Short-term 5-10 year planning for PV manufacturing scraps is the focus of this article. Although we discuss the German situation, we expect the generic model will be applicable to any region, such as the whole of Europe and the United States.

Choi, J.K.; Fthenakis, V.

2010-10-01T23:59:59.000Z

194

LANL exceeds Early Recovery Act recycling goals  

NLE Websites -- All DOE Office Websites (Extended Search)

LANL exceeds Early Recovery Act recycling goals LANL exceeds Early Recovery Act recycling goals LANL exceeds Early Recovery Act recycling goals Lab demolition projects under the American Recovery and Reinvestment Act have recovered more than 136 tons of recyclable metal since work began last year. March 8, 2010 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials.

195

Materials Sustainability: Digital Resource Center - Recycler's World  

Science Conference Proceedings (OSTI)

Jun 30, 2008 ... Recycler's World promotes the trade of scrap materials. Users can post a listing for the type of scrap material they wish to buy or sell. Source:...

196

Materials Sustainability: Digital Resource Center - Recycling ...  

Science Conference Proceedings (OSTI)

Jun 26, 2008 ... This 1997 report provides some basic information on recycling of Al, Be, Ca, Cr, Co, Cu, Ga, Au, In, Fe, steel, Pb, Mg, Mn, Hg, Mo, Ni, Pt-group...

197

Materials Sustainability: Digital Resource Center - Recycling - Metals  

Science Conference Proceedings (OSTI)

Jul 2, 2008 ... This 1997 report provides some basic information on recycling of Al, Be, Ca, Cr, Co, Cu, Ga, Au, In, Fe, steel, Pb, Mg, Mn, Hg, Mo, Ni, Pt-group...

198

Loveland Water & Power- Refrigerator Recycling Program  

Energy.gov (U.S. Department of Energy (DOE))

Loveland Water & Power is providing an incentive for its customers to recycle their old refrigerators. Interested customers can call the utility to arrange a time to pick up the old...

199

BWR Assembly Optimization for Minor Actinide Recycling  

Science Conference Proceedings (OSTI)

The Primary objective of the proposed project is to apply and extend the latest advancements in LWR fuel management optimization to the design of advanced boiling water reactor (BWR) fuel assemblies specifically for the recycling of minor actinides (MAs).

G. Ivan Maldonado; John M. Christenson; J.P. Renier; T.F. Marcille; J. Casal

2010-03-22T23:59:59.000Z

200

Hydrogen recycle modeling in transport codes  

DOE Green Energy (OSTI)

The hydrogen recycling models now used in Tokamak transport codes are reviewed and the method by which realistic recycling models are being added is discussed. Present models use arbitrary recycle coefficients and therefore do not model the actual recycling processes at the wall. A model for the hydrogen concentration in the wall serves two purposes: (1) it allows a better understanding of the density behavior in present gas puff, pellet, and neutral beam heating experiments; and (2) it allows one to extrapolate to long pulse devices such as EBT, ISX-C and reactors where the walls are observed or expected to saturate. Several wall models are presently being studied for inclusion in transport codes.

Howe, H.C.

1979-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "facilities initiatives recycling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Evaluation of radioactive scrap metal recycling  

SciTech Connect

This report evaluates the human health risks and environmental and socio-political impacts of options for recycling radioactive scrap metal (RSM) or disposing of and replacing it. Argonne National Laboratory (ANL) is assisting the US Department of Energy (DOE), Office of Environmental Restoration and Waste Management, Oak Ridge Programs Division, in assessing the implications of RSM management alternatives. This study is intended to support the DOE contribution to a study of metal recycling being conducted by the Task Group on Recycling and Reuse of the Organization for Economic Cooperation and Development. The focus is on evaluating the justification for the practice of recycling RSM, and the case of iron and steel scrap is used as an example in assessing the impacts. To conduct the evaluation, a considerable set of data was compiled and developed. Much of this information is included in this document to provide a source book of information.

Nieves, L.A.; Chen, S.Y.; Kohout, E.J.; Nabelssi, B.; Tilbrook, R.W.; Wilson, S.E.

1995-12-01T23:59:59.000Z

202

Agony and ecstasy of tire recycling  

SciTech Connect

This article discusses the problem of used tires and the recycling of them. Shredded tires have a multitude of uses-new rubber, road construction, mulch, fuel, in composting and home insulation.

Logsdon, G.

1990-07-01T23:59:59.000Z

203

Innovative Vacuum Distillation for Magnesium Recycling  

Science Conference Proceedings (OSTI)

Feb 1, 2001 ... TMS Member price: 10.00. Non-member price: 25.00. TMS Student Member price : 10.00. Product In Stock. Description Magnesium recycling...

204

Asset Revitalization Initiative ARI  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Asset Revitalization Initiative Asset Revitalization Initiative ( ARI ) Mission * Community * Reuse ARI is a DOE-wide effort to advance the beneficial reuse of the agency's unique and diverse mix of assets, including land, facilities, infrastructure, equipment, technologies, natural resources, and highly skilled workforce. ARI promotes an efficient business environment to encourage collaboration between public and private resources. ARI integrates DOE missions with community interests. ARI is... Our Vision By 2020: Operations are conducted in a sustainable manner; facilities and transit are powered by clean energy. Site infrastructure is modern, adaptable, and efficient. Public-private partnerships thrive and are creating new jobs while helping meet future workforce needs. Local communities are connected to the site, and site activities

205

Hazardous chemical waste abatement, reduction, reuse, and recycle  

Science Conference Proceedings (OSTI)

The aim of waste abatement, reduction, reuse, and recycle processes is to minimize the need for waste treatment, storage, and disposal facilities. In many cases, this can be accomplished in a cost-effective manner since the economics of recovery and reuse are often more favorable than the disposal of the waste and purchase of new raw material. Consequently, there is increasing interest in technologies that produce less waste and provide for the recovery of resources from some waste streams. This paper discusses some of these technologies. Waste abatement (the substitution of a new low-waste process or material to reduce waste quantities) is discussed, and four examples are given. Waste reduction or modification (decreasing wastes by housekeeping practices, concentration methods, or simple in-plant treatment) technologies are presented with a focus on metals recovery and waste volume reduction. Waste reuse (direct reuse of a waste as a raw material, either as is, or with minor modification) examples discussed include solvent reuse and the utilization of fly ash in structural materials. Waste recycle and recovery (the recovery of resources from waste streams through the application of reprocessing technologies) is discussed using examples of solvent recovery and drum reclamation.

Rodgers, B.R.

1985-01-01T23:59:59.000Z

206

Economic Feasibility of Recycling Photovoltaic Modules  

Science Conference Proceedings (OSTI)

The market for photovoltaic (PV) electricity generation has boomed over the last decade, and its expansion is expected to continue with the development of new technologies. Taking into consideration the usage of valuable resources and the generation of emissions in the life cycle of photovoltaic technologies dictates proactive planning for a sound PV recycling infrastructure to ensure its sustainability. PV is expected to be a 'green' technology, and properly planning for recycling will offer the opportunity to make it a 'double-green' technology - that is, enhancing life cycle environmental quality. In addition, economic feasibility and a sufficient level of value-added opportunity must be ensured, to stimulate a recycling industry. In this article, we survey mathematical models of the infrastructure of recycling processes of other products and identify the challenges for setting up an efficient one for PV. Then we present an operational model for an actual recycling process of a thin-film PV technology. We found that for the case examined with our model, some of the scenarios indicate profitable recycling, whereas in other scenarios it is unprofitable. Scenario SC4, which represents the most favorable scenario by considering the lower bounds of all costs and the upper bound of all revenues, produces a monthly profit of $107,000, whereas the least favorable scenario incurs a monthly loss of $151,000. Our intent is to extend the model as a foundation for developing a framework for building a generalized model for current-PV and future-PV technologies.

Choi, J.K.; Fthenakis, V.

2010-12-01T23:59:59.000Z

207

Green Initiatives Keep Hanford Site Environmentally Responsible |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Green Initiatives Keep Hanford Site Environmentally Responsible Green Initiatives Keep Hanford Site Environmentally Responsible Green Initiatives Keep Hanford Site Environmentally Responsible May 30, 2013 - 12:00pm Addthis The Hanford site exceeded its goal of reducing fleet vehicles by 15 percent in fiscal year 2012. The overall reduction that year was 25.4 percent. The Hanford site exceeded its goal of reducing fleet vehicles by 15 percent in fiscal year 2012. The overall reduction that year was 25.4 percent. An electric charging station for electric vehicles is located at the Hanford site. An electric charging station for electric vehicles is located at the Hanford site. Lead acid batteries are collected at the Hanford Centralized Consolidation/Recycling Center. Other items recycled at Hanford include aerosol products, aluminum cans and foil, audio tapes, boxes, cell phones, chemicals and computers.

208

Green Initiatives Keep Hanford Site Environmentally Responsible |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Green Initiatives Keep Hanford Site Environmentally Responsible Green Initiatives Keep Hanford Site Environmentally Responsible Green Initiatives Keep Hanford Site Environmentally Responsible May 30, 2013 - 12:00pm Addthis The Hanford site exceeded its goal of reducing fleet vehicles by 15 percent in fiscal year 2012. The overall reduction that year was 25.4 percent. The Hanford site exceeded its goal of reducing fleet vehicles by 15 percent in fiscal year 2012. The overall reduction that year was 25.4 percent. An electric charging station for electric vehicles is located at the Hanford site. An electric charging station for electric vehicles is located at the Hanford site. Lead acid batteries are collected at the Hanford Centralized Consolidation/Recycling Center. Other items recycled at Hanford include aerosol products, aluminum cans and foil, audio tapes, boxes, cell phones, chemicals and computers.

209

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

October 15, 2007 [Facility News] October 15, 2007 [Facility News] ARM Joins National Science Foundation Remote Sensing Collaboration Bookmark and Share In September, the ARM Climate Research Facility became an official member of the National Science Foundation's Center for Collaborative Adaptive Sensing of the Atmosphere, or CASA. Initial discussions for partnering began nearly a year ago. After a series of informative visits and presentations, the decision was made to move forward with membership process. The transfer of interagency funds was completed on September 18, 2007, solidifying the partnership. In the meantime, CASA dedicated a significant effort to support the CLASIC field campaign in June 2007 by providing a network of four scanning X-band radars. CASA is a multi-sector partnership among academia, industry, and government

210

Report: EM Energy Park Initiative  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EM Energy Park Initiative EM Energy Park Initiative September 30, 2009 Submitted by the EMAB Energy Park Initiative Subcommittee Background: The Energy Park Initiative (EPI) aims to convert the Office of Environmental Management's (EM) liabilities - its contaminated sites, facilities, and materials - into reusable assets focused on providing solutions to critical national energy and environmental issues. These assets include the sites' natural resources, infrastructure, institutional controls, and human and economic capital. The EPI is a high priority for EMAB since the initiative is still in the formative planning and implementation phases. The EPI Subcommittee members are Paul Dabbar (lead), James Ajello, Lessie Price, and Robert Thompson. Recommendations:

211

Membrane Purification Cell for Aluminum Recycling  

Science Conference Proceedings (OSTI)

Recycling mixed aluminum scrap usually requires adding primary aluminum to the scrap stream as a diluent to reduce the concentration of non-aluminum constituents used in aluminum alloys. Since primary aluminum production requires approximately 10 times more energy than melting scrap, the bulk of the energy and carbon dioxide emissions for recycling are associated with using primary aluminum as a diluent. Eliminating the need for using primary aluminum as a diluent would dramatically reduce energy requirements, decrease carbon dioxide emissions, and increase scrap utilization in recycling. Electrorefining can be used to extract pure aluminum from mixed scrap. Some example applications include producing primary grade aluminum from specific scrap streams such as consumer packaging and mixed alloy saw chips, and recycling multi-alloy products such as brazing sheet. Electrorefining can also be used to extract valuable alloying elements such as Li from Al-Li mixed scrap. This project was aimed at developing an electrorefining process for purifying aluminum to reduce energy consumption and emissions by 75% compared to conventional technology. An electrolytic molten aluminum purification process, utilizing a horizontal membrane cell anode, was designed, constructed, operated and validated. The electrorefining technology could also be used to produce ultra-high purity aluminum for advanced materials applications. The technical objectives for this project were to: - Validate the membrane cell concept with a lab-scale electrorefining cell; - Determine if previously identified voltage increase issue for chloride electrolytes holds for a fluoride-based electrolyte system; - Assess the probability that voltage change issues can be solved; and - Conduct a market and economic analysis to assess commercial feasibility. The process was tested using three different binary alloy compositions (Al-2.0 wt.% Cu, Al-4.7 wt.% Si, Al-0.6 wt.% Fe) and a brazing sheet scrap composition (Al-2.8 wt.% Si-0.7 wt.% Fe-0.8 wt.% Mn),. Purification factors (defined as the initial impurity concentration divided by the final impurity concentration) of greater than 20 were achieved for silicon, iron, copper, and manganese. Cell performance was measured using its current and voltage characteristics and composition analysis of the anode, cathode, and electrolytes. The various cells were autopsied as part of the study. Three electrolyte systems tested were: LiCl-10 wt. % AlCl3, LiCl-10 wt. % AlCl3-5 wt.% AlF3 and LiF-10 wt.% AlF3. An extended four-day run with the LiCl-10 wt.% AlCl3-5 wt.% AlF3 electrolyte system was stable for the entire duration of the experiment, running at energy requirements about one third of the Hoopes and the conventional Hall-Heroult process. Three different anode membranes were investigated with respect to their purification performance and survivability: a woven graphite cloth with 0.05 cm nominal thickness & > 90 % porosity, a drilled rigid membrane with nominal porosity of 33%, and another drilled rigid graphite membrane with increased thickness. The latter rigid drilled graphite was selected as the most promising membrane design. The economic viability of the membrane cell to purify scrap is sensitive to primary & scrap aluminum prices, and the cost of electricity. In particular, it is sensitive to the differential between scrap and primary aluminum price which is highly variable and dependent on the scrap source. In order to be economically viable, any scrap post-processing technology in the U.S. market must have a total operating cost well below the scrap price differential of $0.20-$0.40 per lb to the London Metal Exchange (LME), a margin of 65%-85% of the LME price. The cost to operate the membrane cell is estimated to be aluminum. The energy cost is estimated to be $0.05/lb of purified aluminum with the remaining costs being repair and maintenance, electrolyte, labor, taxes and depreciation. The bench-scale work on membrane purification cell process has demonstrated technological advantages and subs

David DeYoung; James Wiswall; Cong Wang

2011-11-29T23:59:59.000Z

212

Membrane Purification Cell for Aluminum Recycling  

SciTech Connect

Recycling mixed aluminum scrap usually requires adding primary aluminum to the scrap stream as a diluent to reduce the concentration of non-aluminum constituents used in aluminum alloys. Since primary aluminum production requires approximately 10 times more energy than melting scrap, the bulk of the energy and carbon dioxide emissions for recycling are associated with using primary aluminum as a diluent. Eliminating the need for using primary aluminum as a diluent would dramatically reduce energy requirements, decrease carbon dioxide emissions, and increase scrap utilization in recycling. Electrorefining can be used to extract pure aluminum from mixed scrap. Some example applications include producing primary grade aluminum from specific scrap streams such as consumer packaging and mixed alloy saw chips, and recycling multi-alloy products such as brazing sheet. Electrorefining can also be used to extract valuable alloying elements such as Li from Al-Li mixed scrap. This project was aimed at developing an electrorefining process for purifying aluminum to reduce energy consumption and emissions by 75% compared to conventional technology. An electrolytic molten aluminum purification process, utilizing a horizontal membrane cell anode, was designed, constructed, operated and validated. The electrorefining technology could also be used to produce ultra-high purity aluminum for advanced materials applications. The technical objectives for this project were to: - Validate the membrane cell concept with a lab-scale electrorefining cell; - Determine if previously identified voltage increase issue for chloride electrolytes holds for a fluoride-based electrolyte system; - Assess the probability that voltage change issues can be solved; and - Conduct a market and economic analysis to assess commercial feasibility. The process was tested using three different binary alloy compositions (Al-2.0 wt.% Cu, Al-4.7 wt.% Si, Al-0.6 wt.% Fe) and a brazing sheet scrap composition (Al-2.8 wt.% Si-0.7 wt.% Fe-0.8 wt.% Mn),. Purification factors (defined as the initial impurity concentration divided by the final impurity concentration) of greater than 20 were achieved for silicon, iron, copper, and manganese. Cell performance was measured using its current and voltage characteristics and composition analysis of the anode, cathode, and electrolytes. The various cells were autopsied as part of the study. Three electrolyte systems tested were: LiCl-10 wt. % AlCl3, LiCl-10 wt. % AlCl3-5 wt.% AlF3 and LiF-10 wt.% AlF3. An extended four-day run with the LiCl-10 wt.% AlCl3-5 wt.% AlF3 electrolyte system was stable for the entire duration of the experiment, running at energy requirements about one third of the Hoopes and the conventional Hall-Heroult process. Three different anode membranes were investigated with respect to their purification performance and survivability: a woven graphite cloth with 0.05 cm nominal thickness & > 90 % porosity, a drilled rigid membrane with nominal porosity of 33%, and another drilled rigid graphite membrane with increased thickness. The latter rigid drilled graphite was selected as the most promising membrane design. The economic viability of the membrane cell to purify scrap is sensitive to primary & scrap aluminum prices, and the cost of electricity. In particular, it is sensitive to the differential between scrap and primary aluminum price which is highly variable and dependent on the scrap source. In order to be economically viable, any scrap post-processing technology in the U.S. market must have a total operating cost well below the scrap price differential of $0.20-$0.40 per lb to the London Metal Exchange (LME), a margin of 65%-85% of the LME price. The cost to operate the membrane cell is estimated to be < $0.24/lb of purified aluminum. The energy cost is estimated to be $0.05/lb of purified aluminum with the remaining costs being repair and maintenance, electrolyte, labor, taxes and depreciation. The bench-scale work on membrane purification cell process has demonstrated technological advantages and subs

David DeYoung; James Wiswall; Cong Wang

2011-11-29T23:59:59.000Z

213

Nuclear-fuel-cycle risk assessment: descriptions of representative non-reactor facilities. Sections 1-14  

Science Conference Proceedings (OSTI)

The Fuel Cycle Risk Assessment Program was initiated to provide risk assessment methods for assistance in the regulatory process for nuclear fuel cycle facilities other than reactors. This report, the first from the program, defines and describes fuel cycle elements that are being considered in the program. One type of facility (and in some cases two) is described that is representative of each element of the fuel cycle. The descriptions are based on real industrial-scale facilities that are current state-of-the-art, or on conceptual facilities where none now exist. Each representative fuel cycle facility is assumed to be located on the appropriate one of four hypothetical but representative sites described. The fuel cycles considered are for Light Water Reactors with once-through flow of spent fuel, and with plutonium and uranium recycle. Representative facilities for the following fuel cycle elements are described for uranium (or uranium plus plutonium where appropriate): mining, milling, conversion, enrichment, fuel fabrication, mixed-oxide fuel refabrication, fuel reprocessing, spent fuel storage, high-level waste storage, transuranic waste storage, spent fuel and high-level and transuranic waste disposal, low-level and intermediate-level waste disposal, and transportation. For each representative facility the description includes: mainline process, effluent processing and waste management, facility and hardware description, safety-related information and potential alternative concepts for that fuel cycle element. The emphasis of the descriptive material is on safety-related information. This includes: operating and maintenance requirements, input/output of major materials, identification and inventories of hazardous materials (particularly radioactive materials), unit operations involved, potential accident driving forces, containment and shielding, and degree of hands-on operation.

Schneider, K.J.

1982-09-01T23:59:59.000Z

214

Vehicle Technologies Office: Fact #341: October 11, 2004 Tire Recycling  

NLE Websites -- All DOE Office Websites (Extended Search)

1: October 11, 1: October 11, 2004 Tire Recycling to someone by E-mail Share Vehicle Technologies Office: Fact #341: October 11, 2004 Tire Recycling on Facebook Tweet about Vehicle Technologies Office: Fact #341: October 11, 2004 Tire Recycling on Twitter Bookmark Vehicle Technologies Office: Fact #341: October 11, 2004 Tire Recycling on Google Bookmark Vehicle Technologies Office: Fact #341: October 11, 2004 Tire Recycling on Delicious Rank Vehicle Technologies Office: Fact #341: October 11, 2004 Tire Recycling on Digg Find More places to share Vehicle Technologies Office: Fact #341: October 11, 2004 Tire Recycling on AddThis.com... Fact #341: October 11, 2004 Tire Recycling In 2001, the United States generated 281 million scrap tires. Nearly 78% of those scrap tires were reused, recycled, or recovered; that is a dramatic

215

INEL metal recycle annual report, FY-94  

SciTech Connect

In 1992, the mission of the Idaho Chemical Processing Plant was changed from reprocessing of spent nuclear fuels to development of technologies for conditioning of spent nuclear fuels and other high-level wastes for disposal in a geologic repository. In addition, the Department of Energy (DOE) directed Idaho National Engineering Laboratory (INEL) to develop a program plan addressing the management of radioactive contaminated scrap metal (RSM) within the DOE complex. Based on discussions with the EM-30 organization, the INEL Metal Recycle program plan was developed to address all issues of RSM management. Major options considered for RSM management were engineered interim storage, land disposal as low-level waste, and beneficial reuse/recycle. From its inception, the Metal Recycle program has emphasized avoidance of storage and disposal costs through beneficial reuse of RSM. The Metal Recycle program plan includes three major activities: Site-by-site inventory of RSM resources; validation of technologies for conversion of RSM to usable products; and identification of parties prepared to participate in development of a RSM recycle business.

Bechtold, T.E. [ed.

1994-09-01T23:59:59.000Z

216

Progress in recycling of automobile shredder residue  

DOE Green Energy (OSTI)

At Argonne National Laboratory, we have been developing a potentially economical process to recycle automobile shredder residue (ASR). We identified three potentially marketable materials that can be recovered from ASR and developed technologies to recover and upgrade these materials. We build and tested a field-demonstration plant for recycling polyurethane foam and produced about 2000 lb of recycled foam. Several 300-lb samples were sent for evaluation and were found to be of marketable quality. We are also preparing for a large-scale test in which about 200 tons of ASR-derived fines will be used as a raw material in cement making. A major cement company has evaluated small samples of fines prepared in the laboratory and found that they meet its requirements as a substitute for iron ore or mill scale. We also produced about 50 lb of recycled acrylonitrile butadiene styrene (ABS) from obsolete automobiles and found that it has properties that could be readily upgraded to meet the specifications of the automotive industry. In this paper, we briefly discuss the process as a whole and summarize the results obtained from the field work on foam and fines recycling.

Jody, B.J.; Daniels, E.J.; Pomykala, J.A. Jr.

1996-03-01T23:59:59.000Z

217

2006 NUCLEAR ENERGY RESEARCH INITIATIVE AWARDS  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6 NUCLEAR ENERGY RESEARCH INITIATIVE AWARDS 6 NUCLEAR ENERGY RESEARCH INITIATIVE AWARDS Lead Organization Project Title Collaborators Advanced Fuel Cycle Initiative Massachusetts Institute of Technology The Development and Production of Functionally Graded Composite for Pb-Bi Service Los Alamos National Laboratory Massachusetts Institute of Technology Flexible Conversion Ratio Fast Reactor Systems Evaluation None North Carolina State University Development and Utilization of Mathematical Optimization in Advanced Fuel Cycle Systems Analysis Argonne National Laboratory Purdue University Engineered Materials for Cesium and Strontium Storage None University of California- Berkeley Feasibility of Recycling Plutonium and Minor Actinides in Light Water Reactors Using Hydride Fuel Massachusetts Institute of

218

Strategic planning of recycling drop-off stations and collection network by multiobjective programming  

SciTech Connect

Effective planning of solid-waste recycling programs is a substantial challenge to the current solid-waste management systems in Taiwan. Due to the rapid depletion of landfill space and the continuing delay in construction programs of municipal incinerators, solid-waste management strategies have to be reorganized in light of the success of recycling, recovery, and reuse of secondary materials. One of these efforts is how to effectively allocate recycling drop-off stations of appropriate size and how to design efficient collection-vehicle routing and scheduling programs in the solid waste collection network. This management strategy is particularly important in the privatized system with recycling containers and material recovery facilities (MRFs) owned by one agency. This research seeks multiobjective evaluation of the trade-off between the number and size of drop-off stations, the population covered in the service network, the average walking distance to drop-off stations by the population, and the distance traveled by collection vehicles. It also illustrates the use of the multiobjective nonlinear mixed integer programming model to achieve such goals that are solved by the genetic algorithms (GA) in a geographical information system (GIS) platform. The case study shows the application potential of such a methodology in the city of Kaohsiung in Taiwan.

Chang, N.; Wei, Y.L. (National Cheng-Kung Univ., Tainan (Taiwan, Province of China). Dept. of Environmental Engineering)

1999-08-01T23:59:59.000Z

219

Cost effective analysis of recycled products for use in highway construction. Final report  

SciTech Connect

Over 4.5 billion of non-hazardous wastes are generated in the United States each year. Out of these wastes over 200 million tons of post consumer waste is generated. The disposal of post consumer waste is the responsibility of municipality and society. Four waste materials glass, plastic, rubber tires and paper and paperboard were selected for the detail study. A questionnaire survey was conducted for obtaining input from all state Department of Transportation (DOT) Recyclers and solid waste management facilities in the state of Ohio. Responses received from state DOT stated that they use various recycled materials in highway construction but do not conduct cost-effectiveness analysis of recycle waste materials. The cost of disposal of post consumer waste is increasing, which requires an alternate use for these waste materials. One possible use of these post consumer waste materials is in highway construction. An economic analysis is needed for their cost-effectiveness before using these materials in highway construction. Though these recycled waste materials are expensive compared to virgin material, consideration of the savings in terms of societal cost make these materials cost-effective and attractive to use in highway construction.

Gupta, J.D.

1998-04-01T23:59:59.000Z

220

Recycle/reuse: the right answer  

SciTech Connect

Typically, all costs associated with disposal of hazardous waste are eliminated when the material is sold for reuse/recycling. In the future, out-of-pocket disposal costs can be expected to increase, and the market value of many materials found in wastes should rise as finite cheap virgin material sources are depleted. The recognition that natural resources will become increasingly scarce (perhaps similar to oil) has prompted the major oil companies to acquire major non-ferrous metal companies. In order to determine whether a serious marketing effort for recycling is justifiable, an accurate characterization of the must be made. Innovation in developing new applications is essential unless the material is one that has been traditionally recycled. In the coming years, as both the value of our waste and its dispsal increase, much greater emphasis must be placed on the principle of non-waste technology.

Immerman, R.L.

1981-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "facilities initiatives recycling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Recycled Energy Development | Open Energy Information  

Open Energy Info (EERE)

Recycled Energy Development Recycled Energy Development Jump to: navigation, search Name Recycled Energy Development Place Westmont, Illinois Zip 60559 Product RED acquires industrial utility plants and then builds and installs waste energy capture and combined heat and power systems. Coordinates 40.316095°, -78.956753° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.316095,"lon":-78.956753,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

222

Impacts of EV battery production and recycling  

DOE Green Energy (OSTI)

Electric vehicles batteries use energy and produce environmental residuals when they are produced and recycled. This study estimates, for four selected battery types (sodium-sulfur, nickel-metal hydride, nickel-cadmium, and advanced lead-acid), the impacts of production and recycling of the materials used in electric vehicle batteries. These impacts are compared, with special attention to the locations of the emissions. It is found that the choice among batteries for electric vehicles involves tradeoffs among impacts. Nickel-cadmium and nickel-metal hydride batteries are similar, for example, but energy requirements for the production of cadmium electrodes may be higher than those for metal hydride electrodes, while the latter may be more difficult to recycle.

Gaines, L.; Singh, M. [Argonne National Lab., IL (United States). Energy Systems Div.

1996-06-01T23:59:59.000Z

223

Chemical and mechanical recycling of shredder fluff  

SciTech Connect

Each year, the secondary metals industry recovers about 55--60 million tons of prompt and obsolete scrap which is used in the production of finished steel products. The single largest source of this scrap is the obsolete automobile. The shredder industry recovers about 10--12 million ton/yr of ferrous scrap, most of which is from shredded automobiles. However, for each ton of steel recovered, over 500 lb of fluff are produced. Shredder fluff is comprised of the nonmetallic content of the automobile and other shredded materials, such as refrigerators, dryers, and dishwashers, which are commonly called white goods. The plastics content of shredder fluff is typically about 15--20% by weight and is expected to increase over the next decade due to the significant increase in the use of automotive plastics over the past 10--15 years. At present, shredder fluff is landfilled. The rapidly escalating landfilling cost, along with environmental concerns over the fate of this waste, poses a significant cost and liability to the shredder industry. Research is being carried out to identify and develop recycling technologies that will reduce the volume and the mass of shredder fluff going to landfills and to minimize its cost impact on the recycling of secondary metals. Previous research has focused on exploiting the plastics content of shredder fluff and other hydrocarbons present in fluff for secondary recycling (e.g., production of wood-products substitutes) and for quaternary recycling (e.g., energy generation). Limited work was also conducted on tertiary recycling (e.g., pyrolysis and gasification). Although the previous research has established the technical feasibility of most, if not all, of the alternatives that were examined, none have proven to be cost-effective. This paper describes some research at Argonne National Laboratory (ANL) to develop a process to recycle some of the fluff content, primarily the thermoplastics.

Jody, B.J.; Daniels, E.J.; Bonsignore, P.V.; Shoemaker, E.L.

1992-01-01T23:59:59.000Z

224

Chemical and mechanical recycling of shredder fluff  

SciTech Connect

Each year, the secondary metals industry recovers about 55--60 million tons of prompt and obsolete scrap which is used in the production of finished steel products. The single largest source of this scrap is the obsolete automobile. The shredder industry recovers about 10--12 million ton/yr of ferrous scrap, most of which is from shredded automobiles. However, for each ton of steel recovered, over 500 lb of fluff are produced. Shredder fluff is comprised of the nonmetallic content of the automobile and other shredded materials, such as refrigerators, dryers, and dishwashers, which are commonly called white goods. The plastics content of shredder fluff is typically about 15--20% by weight and is expected to increase over the next decade due to the significant increase in the use of automotive plastics over the past 10--15 years. At present, shredder fluff is landfilled. The rapidly escalating landfilling cost, along with environmental concerns over the fate of this waste, poses a significant cost and liability to the shredder industry. Research is being carried out to identify and develop recycling technologies that will reduce the volume and the mass of shredder fluff going to landfills and to minimize its cost impact on the recycling of secondary metals. Previous research has focused on exploiting the plastics content of shredder fluff and other hydrocarbons present in fluff for secondary recycling (e.g., production of wood-products substitutes) and for quaternary recycling (e.g., energy generation). Limited work was also conducted on tertiary recycling (e.g., pyrolysis and gasification). Although the previous research has established the technical feasibility of most, if not all, of the alternatives that were examined, none have proven to be cost-effective. This paper describes some research at Argonne National Laboratory (ANL) to develop a process to recycle some of the fluff content, primarily the thermoplastics.

Jody, B.J.; Daniels, E.J.; Bonsignore, P.V.; Shoemaker, E.L.

1992-12-01T23:59:59.000Z

225

Recovery, reuse, and recycle of industrial waste  

SciTech Connect

The major goal of this work is to produce a document useful in planning efforts aimed at elimination of industrial wastes through the application of recycle, recovery, and reuse technology. The pollutants considered in this study are basically organic and inorganic by-products from wastewater effluents, solid residue and gaseous emissions from industrial operations. The first section contains chapters on methodology currently available for recovery of industrial and hazardous waste, and developing technology for recycle, reuse and recovery. The second section contains chapters on 5 technical categories, used for recovery namely, sorption, molecular separation, phase transition, chemical modification, and physical dispersion and separation.

Noll, K.E.; Haas, C.N.; Schmidt, C.; Kodukula, P.

1983-11-01T23:59:59.000Z

226

The value of recycling on water conservation.  

SciTech Connect

Sandia National Laboratories (SNL) is working to conserve water through recycling. This report will focus on the water conservation that has been accumulated through the recycling of paper, ceiling tiles, compost, and plastic. It will be discussed the use of water in the process of manufacturing these materials and the amount of water that is used. The way that water is conserved will be reviewed. From the stand point of SNL it will be discussed the amount of material that has been accumulated from 2010 to the first two quarters of 2013 and how much water this material has saved.

Ludi-Herrera, Katlyn D.

2013-07-01T23:59:59.000Z

227

Recycling Carbon Dioxide to Make Plastics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Recycling Carbon Dioxide to Make Plastics Recycling Carbon Dioxide to Make Plastics May 20, 2013 - 1:31pm Addthis Novomers thermoplastic pellets incorporate waste CO2 into a...

228

Study of recycling impurity retention in Alcator C-mod  

E-Print Network (OSTI)

This work was aimed at reproducing experimental results in impurity compression of Ar, as well as the screening of recycling and non-recycling impurities from reaching the core plasma. As part of the study the code was ...

Chung, Taekyun

2004-01-01T23:59:59.000Z

229

A comparison of public policies for lead recycling  

E-Print Network (OSTI)

Policies that encourage recycling may be used to reduce environmental costs from waste disposal when direct restrictions on disposal are difficult to enforce. Four recycling policies have been advanced: (i) taxes on the ...

Sigman, Hilary

1992-01-01T23:59:59.000Z

230

Impact of hybrid and electric vehicles on automobile recycling infrastructure  

Science Conference Proceedings (OSTI)

The recycling infrastructure for end-of-use vehicles in the United States is driven by profitability due to the absence of regulations. Typically, the recycling consists of removing reusable components for resale and shredding and separating remaining ...

Deogratias Kibira; Sanjay Jain

2011-12-01T23:59:59.000Z

231

Nuclear fuel cycle risk assessment: survey and computer compilation of risk-related literature. [Once-through Cycle and Plutonium Recycle  

Science Conference Proceedings (OSTI)

The US Nuclear Regulatory Commission has initiated the Fuel Cycle Risk Assessment Program to provide risk assessment methods for assistance in the regulatory process for nuclear fuel cycle facilities other than reactors. Both the once-through cycle and plutonium recycle are being considered. A previous report generated by this program defines and describes fuel cycle facilities, or elements, considered in the program. This report, the second from the program, describes the survey and computer compilation of fuel cycle risk-related literature. Sources of available information on the design, safety, and risk associated with the defined set of fuel cycle elements were searched and documents obtained were catalogued and characterized with respect to fuel cycle elements and specific risk/safety information. Both US and foreign surveys were conducted. Battelle's computer-based BASIS information management system was used to facilitate the establishment of the literature compilation. A complete listing of the literature compilation and several useful indexes are included. Future updates of the literature compilation will be published periodically. 760 annotated citations are included.

Yates, K.R.; Schreiber, A.M.; Rudolph, A.W.

1982-10-01T23:59:59.000Z

232

Silicon Production, Purification and Recycling for Photovoltaic Cells  

Science Conference Proceedings (OSTI)

About this Symposium. Meeting, 2011 TMS Annual Meeting & Exhibition. Symposium, Silicon Production, Purification and Recycling for Photovoltaic Cells.

233

Fourth International Symposium on Recycling of Metals: Table Top ...  

Science Conference Proceedings (OSTI)

TMS Logo. Fourth International Symposium on Recycling of Metals: Table Top Exhibit. 2000 TMS FALL EXTRACTION AND PROCESS METALLURGY...

234

Fourth International Symposium on Recycling of Metals and ...  

Science Conference Proceedings (OSTI)

Recycling - A Fan of the Can. X B. Steverson ................................................................. ............................................... 923. Development of New Filter for Removal of...

235

Evaluation of Environmental Tradeoffs in Portable Battery Recycling  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, 2011 TMS Annual Meeting & Exhibition. Symposium , Battery Recycling. Presentation Title, Evaluation of Environmental Tradeoffs in...

236

Impacts of the Manufacturing and Recycling Stages on Battery Life ...  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, 2012 TMS Annual Meeting & Exhibition. Symposium , Battery Recycling. Presentation Title, Impacts of the Manufacturing and...

237

Madera Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Madera Biomass Facility Madera Biomass Facility Facility Madera Sector Biomass Owner Community Recycling, Inc. Location Madera, California Coordinates 36.9613356°, -120.0607176° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.9613356,"lon":-120.0607176,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

238

Research, Commercialization, & Workforce Development in the Polymer/Electronics Recycling Industry  

Science Conference Proceedings (OSTI)

The Mid-Atlantic Recycling Center for End-of-Life Electronics (MARCEE) was set up in 1999 in response to a call from Congressman Alan Mollohan, who had a strong interest in this subject. A consortium was put together which included the Polymer Alliance Zone (PAZ) of West Virginia, West Virginia University (WVU), DN American and Ecolibrium. The consortium developed a set of objectives and task plans, which included both the research issues of setting up facilities to demanufacture End-of-Life Electronics (EoLE), the economics of the demanufacturing process, and the infrastructure development necessary for a sustainable recycling industry to be established in West Virginia. This report discusses the work of the MARCEE Project Consortium from November 1999 through March 2005. While the body of the report is distributed in hard-copy form the Appendices are being distributed on CD's.

Carl Irwin; Rakesh Gupta; Richard Turton; GangaRao Hota; Cyril Logar; Tom Ponzurick; Buddy Graham; Walter Alcorn; Jeff Tucker

2006-02-01T23:59:59.000Z

239

Reducing the solid waste stream: reuse and recycling at Lawrence Livermore National Laboratory  

Science Conference Proceedings (OSTI)

In Fiscal Year (FY) 1996 Lawrence Livermore National Laboratory (LLNL) increased its solid waste diversion by 365 percent over FY 1992 in five solid waste categories - paper, cardboard, wood, metals, and miscellaneous. (LLNL`s fiscal year is from October 1 to September 30.) LLNL reused/ recycled 6,387 tons of waste, including 340 tons of paper, 455 tons of scrap wood, 1,509 tons of metals, and 3,830 tons of asphalt and concrete (Table1). An additional 63 tons was diverted from landfills by donating excess food, selling toner cartridges for reconditioning, using rechargeable batteries, redirecting surplus equipment to other government agencies and schools, and comporting plant clippings. LLNL also successfully expanded its demonstration program to recycle and reuse construction and demolition debris as part of its facility-wide, comprehensive solid waste reduction programs.

Wilson, K. L.

1997-08-01T23:59:59.000Z

240

Recovery, recycle and reuse of industrial wastes  

Science Conference Proceedings (OSTI)

This book discusses the elimination of industrial wastes through the application of recycle, recovery and reuse technology. An overview is provided of how various processes can recover potential contaminants for eventual reuse. Chapters include resource recovery from hazardous waste, sorption, molecular separation, phase transition, chemical modifications, physical dispersion and separation.

Noll, K.E.; Haas, C.N.; Schmidt, C.; Kodukula, P.

1985-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "facilities initiatives recycling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

REGULATIONS ON PHOTOVOLTAIC MODULE DISPOSAL AND RECYCLING.  

Science Conference Proceedings (OSTI)

Environmental regulations can have a significant impact on product use, disposal, and recycling. This report summarizes the basic aspects of current federal, state and international regulations which apply to end-of-life photovoltaic (PV) modules and PV manufacturing scrap destined for disposal or recycling. It also discusses proposed regulations for electronics that may set the ground of what is to be expected in this area in the near future. In the US, several states have started programs to support the recycling of electronic equipment, and materials destined for recycling often are excepted from solid waste regulations during the collection, transfer, storage and processing stages. California regulations are described separately because they are different from those of most other states. International agreements on the movement of waste between different countries may pose barriers to cross-border shipments. Currently waste moves freely among country members of the Organization of Economic Cooperation and Development (OECD), and between the US and the four countries with which the US has bilateral agreements. However, it is expected, that the US will adopt the rules of the Basel Convention (an agreement which currently applies to 128 countries but not the US) and that the Convection's waste classification system will influence the current OECD waste-handling system. Some countries adopting the Basel Convention consider end-of-life electronics to be hazardous waste, whereas the OECD countries consider them to be non-hazardous. Also, waste management regulations potentially affecting electronics in Germany and Japan are mentioned in this report.

FTHENAKIS,V.

2001-01-29T23:59:59.000Z

242

Correction magnets for the Fermilab Recycler Ring  

SciTech Connect

In the commissioning of the Fermilab Recycler ring the need for higher order corrector magnets in the regions near beam transfers was discovered. Three types of permanent magnet skew quadrupoles, and two types of permanent magnet sextupoles were designed and built. This paper describes the need for these magnets, the design, assembly, and magnetic measurements.

James T Volk et al.

2003-05-27T23:59:59.000Z

243

Selective purge for hydrogenation reactor recycle loop  

SciTech Connect

Processes and apparatus for providing improved contaminant removal and hydrogen recovery in hydrogenation reactors, particularly in refineries and petrochemical plants. The improved contaminant removal is achieved by selective purging, by passing gases in the hydrogenation reactor recycle loop or purge stream across membranes selective in favor of the contaminant over hydrogen.

Baker, Richard W. (Palo Alto, CA); Lokhandwala, Kaaeid A. (Union City, CA)

2001-01-01T23:59:59.000Z

244

Recycling of Thermoset-Matrix Composites  

Science Conference Proceedings (OSTI)

Table 1   Thermoset composites recycling processes...Ref 14 ) Polyurethane foams, ASR Gas, oil, solid waste Hydrolysis ( Ref 10 , 11 ) Foams, RIM resin, and elastomers Monomers of the input material Fluidized bed combustion ( Ref 14 ) RIM Energy recovery, solid and gaseous wastes Rotary kiln combustion ( Ref 13 ) RIM Energy recovery, solid and gaseous...

245

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

November 3, 2010 [Facility News] November 3, 2010 [Facility News] Arctic Campaign Cut Short; Spring Restart A Possibility Bookmark and Share An unfortunate incident in the early stages of the Arctic Lower Troposphere Observed Structure (ALTOS) field campaign at Oliktok Point on the North Slope of Alaska has resulted in the campaign being terminated. The primary in situ measurement platform for the campaign was a tethered balloon for making ascents through the clouds with instruments that measure cloud microphysical properties, while ground-based instruments simultaneously collect additional data. During one of the balloon's initial flights, its primary and secondary tethers broke. A radio-controlled cut-down device was activated to bring down the balloon, which landed with its instrument

246

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

March 31, 2006 [Facility News] March 31, 2006 [Facility News] New Chief Scientist Leads Annual ARM Science Team Meeting Bookmark and Share Dr. Warren Wiscombe begins his presentation by introducing the members of his "Chief Scientist team"-a new approach for leading the ARM Science Team. Dr. Warren Wiscombe begins his presentation by introducing the members of his "Chief Scientist team"-a new approach for leading the ARM Science Team. With a new Chief Scientist at the helm, just over 300 ARM scientists and ARM infrastructure staff took part in the 16th ARM Science Team meeting held in Albuquerque, New Mexico, on March 27-31, 2006. After an initial day of focused meetings among the ARM Working Groups, Dr. David Thomassen, Acting Associate Director of DOE's Office of Biological and Environmental

247

SGP Central Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Central Facility Central Facility SGP Related Links Facilities and Instruments Central Facility Boundary Facility Extended Facility Intermediate Facility Radiometric Calibration Facility Geographic Information ES&H Guidance Statement Operations Science Field Campaigns Visiting the Site Fact Sheet Images Information for Guest Scientists Contacts SGP Central Facility The ARM Climate Research Facility deploys specialized remote sensing instruments in a fixed location at the site to gather atmospheric data of unprecedented quality, consistency, and completeness. More than 30 instrument clusters have been placed around the site; the central facility; and the boundary, intermediate, and extended facilities. The locations for the instruments were chosen so that the measurements reflect conditions

248

ARM - SGP Central Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Central Facility Central Facility SGP Related Links Facilities and Instruments Central Facility Boundary Facility Extended Facility Intermediate Facility Radiometric Calibration Facility Geographic Information ES&H Guidance Statement Operations Science Field Campaigns Visiting the Site Fact Sheet Images Information for Guest Scientists Contacts SGP Central Facility The ARM Climate Research Facility deploys specialized remote sensing instruments in a fixed location at the site to gather atmospheric data of unprecedented quality, consistency, and completeness. More than 30 instrument clusters have been placed around the site; the central facility; and the boundary, intermediate, and extended facilities. The locations for the instruments were chosen so that the measurements reflect conditions

249

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

31, 2004 Facility News ARM Climate Research Facility Achieves User Milestone Three Months Ahead of Schedule Bookmark and Share Summary of the ARM Climate Research Facility User...

250

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

January 15, 2008 Facility News Future of User Facility Discussed at Fall Workshop As a national user facility, ARM is accessible to scientists around the globe for...

251

Feasibility Study of Economics and Performance of Solar Photovoltaics at the Tronox Facility in Savannah, Georgia. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites  

DOE Green Energy (OSTI)

The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Tronox Facility site in Savannah, Georgia, for a feasibility study of renewable energy production. The National Renewable Energy Laboratory (NREL) provided technical assistance for this project. The purpose of this report is to assess the site for a possible photovoltaic (PV) system installation and estimate the cost, performance, and site impacts of different PV options. In addition, the report recommends financing options that could assist in the implementation of a PV system at the site.

Kiatreungwattana, K.; Geiger, J.; Healey, V.; Mosey, G.

2013-03-01T23:59:59.000Z

252

Solid Waste Reduction, Recovery, and Recycling | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reduction, Recovery, and Recycling Reduction, Recovery, and Recycling Solid Waste Reduction, Recovery, and Recycling < Back Eligibility Investor-Owned Utility Rural Electric Cooperative Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Wisconsin Program Type Environmental Regulations Provider Department of Natural Resources This statute expresses the strong support of the State of Wisconsin for the reduction of the amount of solid waste generated, the reuse, recycling and composting of solid waste, and resource recovery from solid waste. The statute also notes that research, development and innovation in the design, management and operation of solid waste reduction, reuse, recycling,

253

New Choctaw Nation Recycling Center Posts Quick Results | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Choctaw Nation Recycling Center Posts Quick Results New Choctaw Nation Recycling Center Posts Quick Results New Choctaw Nation Recycling Center Posts Quick Results March 8, 2011 - 5:08pm Addthis Albert Bond Project Officer, Golden Field Office What does this mean for me? The Choctaw Nation used approximately $800,000 in Energy Efficiency and Conservation Block Grant funding to build a state-of-the-art recycling center and improve stewardship of the land and environment. "If you build it, they will come" ...to recycle. That line from the 1989 film Field of Dreams is as good a way as any to describe how the Choctaw Nation of Oklahoma's new regional recycling center is being received. The Choctaw Nation used approximately $800,000 in Energy Efficiency and Conservation Block Grant funding to build a state-of-the-art recycling

254

New Choctaw Nation Recycling Center Posts Quick Results | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Choctaw Nation Recycling Center Posts Quick Results Choctaw Nation Recycling Center Posts Quick Results New Choctaw Nation Recycling Center Posts Quick Results March 8, 2011 - 5:08pm Addthis Albert Bond Project Officer, Golden Field Office What does this mean for me? The Choctaw Nation used approximately $800,000 in Energy Efficiency and Conservation Block Grant funding to build a state-of-the-art recycling center and improve stewardship of the land and environment. "If you build it, they will come" ...to recycle. That line from the 1989 film Field of Dreams is as good a way as any to describe how the Choctaw Nation of Oklahoma's new regional recycling center is being received. The Choctaw Nation used approximately $800,000 in Energy Efficiency and Conservation Block Grant funding to build a state-of-the-art recycling

255

Technology Analysis - Battery Recycling and Life Cycle Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

Lithium-Ion Battery Recycling and Life Cycle Analysis Lithium-Ion Battery Recycling and Life Cycle Analysis diagram of the battery recycling life cycle Several types of recycling processes are available, recovering materials usable at different stages of the production cycle- from metallic elements to materials that can be reused directly in new batteries. Recovery closer to final usable form avoids more impact-intensive process steps. Portions courtesy of Umicore, Inc. To identify the potential impacts of the growing market for automotive lithium-ion batteries, Argonne researchers are examining the material demand and recycling issues related to lithium-ion batteries. Research includes: Conducting studies to identify the greenest, most economical recycling processes, Investigating recycling practices to determine how much of which

256

Facility Representative Program: Basic Courses For Facility Representative  

NLE Websites -- All DOE Office Websites (Extended Search)

Training & Qualification Information Training & Qualification Information Qualification Standards DOE Order Self-Study Modules DOE Fundamentals Handbooks Nuclear Safety Basis Self-Study Guide Energy Online Courses Available Link to National Training Center Basic Courses for Facility Representative Qualification Recommended Courses to Expand Facility Representative's Knowledge Base Basic Courses For Facility Rep Qualification (These courses may be beneficial during the initial qualification of Facility Representatives.) Course Title FR FAQS CN Point of Contact Comments Applied Engineering Fundamentals 13 days * See below Mike Schoener 803-641-8166 E-mail Course description at http://ntc.doe.gov course catalog Asbestos Awareness 2 hours 2.1 Federal employees register through the CHRIS system For course details see

257

Control levels for residual contamination in materials considered for recycle and reuse  

Science Conference Proceedings (OSTI)

Pacific Northwest Laboratory (PNL) is collecting data and conducting technical analyses to support joint efforts by the U.S. Department of Energy (DOE), Office of Environmental Guidance, Air, Water and Radiation Division (DOE/EH-232); by the U.S. Environmental Protection Agency (EPA); and by the U.S. Nuclear Regulatory Commission (NRC) to develop radiological control criteria for the recycle and reuse of scrap materials and equipment that contain residual radioactive contamination. The initial radiological control levels are the concentrations in or on materials considered for recycle or reuse that meet the individual (human) or industrial (electronics/film) dose criteria. The analysis identifies relevant radionuclides, potential mechanisms of exposure, and methods to determine possible non-health-related impacts from residual radioactive contamination in materials considered for recycle or reuse. The generic methodology and scenarios described here provide a basic framework for numerically deriving radiological control criteria for recycle or reuse. These will be adequately conservative for most situations.

Hill, R.L.; Aaberg, R.L.; Baker, D.A.; Kennedy, W.E. Jr.

1993-09-01T23:59:59.000Z

258

Research Facilities and Programs  

Science Conference Proceedings (OSTI)

WEB RESOURCES: Magnesium Research Facilities and Programs ... to universities, corporations, and other facilities involved in magnesium research, 0, 1025...

259

Californium Neutron Irradiation Facility  

Science Conference Proceedings (OSTI)

Californium Neutron Irradiation Facility. Summary: ... Cf irradiation facility (Photograph by: Neutron Physics Group). Lead Organizational Unit: pml. Staff: ...

2013-07-23T23:59:59.000Z

260

Mobile Solar Tracker Facility  

Science Conference Proceedings (OSTI)

Mobile Solar Tracker Facility. ... NIST's mobile solar tracking facility is used to characterize the electrical performance of photovoltaic panels. ...

2011-11-15T23:59:59.000Z

Note: This page contains sample records for the topic "facilities initiatives recycling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Facility Representatives  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE-STD-1063-2006 April 2006 Superseding DOE-STD-1063-2000 March 2000 DOE STANDARD FACILITY REPRESENTATIVES U.S. Department of Energy AREA MGMT Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. NOT MEASUREMENT SENSITIVE DOE-STD-1063-2006 ii Available on the Department of Energy Technical Standards Program web site at http://www.eh.doe.gov/techstds/ DOE-STD-1063-2006 iii FOREWORD 1. This Department of Energy standard is approved for use by all DOE Components. 2. The revision to this DOE standard was developed by a working group consisting of headquarters and field participants. Beneficial comments (recommendations, additions, deletions) and any pertinent data that may improve this document should

262

Facility Type!  

Office of Legacy Management (LM)

ITY: ITY: --&L~ ----------- srct-r~ -----------~------~------- if yee, date contacted ------------- cl Facility Type! i I 0 Theoretical Studies Cl Sample 84 Analysis ] Production 1 Diepasal/Storage 'YPE OF CONTRACT .--------------- 1 Prime J Subcontract&- 1 Purchase Order rl i '1 ! Other information (i.e., ---------~---~--~-------- :ontrait/Pirchaee Order # , I C -qXlJ- --~-------~~-------~~~~~~ I I ~~~---~~~~~~~T~~~ FONTRACTING PERIODi IWNERSHIP: ,I 1 AECIMED AECMED GOVT GOUT &NTtiAC+OR GUN-I OWNED ----- LEEE!? M!s LE!Ps2 -LdJG?- ---L .ANDS ILJILDINGS X2UIPilENT IRE OR RAW HA-I-L :INAL PRODUCT IASTE Z. RESIDUE I I kility l pt I ,-- 7- ,+- &!d,, ' IN&"E~:EW AT SITE -' ---------------- , . Control 0 AEC/tlED managed operations

263

Research Facility,  

NLE Websites -- All DOE Office Websites (Extended Search)

Collecting and Delivering the Data Collecting and Delivering the Data As a general condition for use of the ARM Climate Research Facility, users are required to include their data in the ARM Data Archive. All data acquired must be of sufficient quality to be useful and must be documented such that users will be able to clearly understand the meaning and organization of the data. Final, quality-assured data sets are stored in the Data Archive and are freely accessible to the general scientific community. Preliminary data may be shared among field campaign participants during and shortly following the campaign. To facilitate sharing of preliminary data, the ARM Data Archive establishes restricted access capability, limited to participants and data managers.

264

Facility Representatives  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

063-2011 063-2011 February 2011 Superseding DOE-STD-1063-2006 April 2006 DOE STANDARD FACILITY REPRESENTATIVES U.S. Department of Energy AREA MGMT Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. NOT MEASUREMENT SENSITIVE DOE-STD-1063-2011 ii Available on the Department of Energy Technical Standards Program Web site at http://www.hss.doe.gov/nuclearsafety/ns/techstds/ DOE-STD-1063-2011 iii FOREWORD 1. This Department of Energy (DOE) standard is approved for use by all DOE/National Nuclear Security Administration (NNSA) Components. 2. The revision to this DOE standard was developed by a working group consisting of headquarters and field participants. Beneficial comments (recommendations,

265

Facility automation for retail facilities  

Science Conference Proceedings (OSTI)

This article will focus on retail chain stores with areas of 22,000 to 75,000 sq ft, but much of the article will apply to all retail stores independent of size. Typically, a store is serviced by 5 to 15 rooftop HVAC units with a total cooling capacity of 50 to 150 tons, depending on the floor area and geographic location. The interior lighting represents a load of 80 to 300 KW with three lighting levels--retail, stocking, and security or night. Most stores are located in strip centers, and therefore, the parking lot lighting is provided by the landlord, but each store does control and service its own sign lighting. Generally, the total load controlled by an FAS represents 130 to 450 KW with corresponding annual energy costs ranging from $65,000 to $200,000 (natural gas and electricity), depending on the size of the store and the local unit costs of energy. Historical utility data, electrical and mechanical drawings, site surveys, significant analyses of data, and most importantly, discussions with corporate facilities management personnel and store operations personnel provide the source for the development theory and sequence of operation of the design of the facility automation systems for retail stores. The three main goals of an FAS are: reduce utility operating costs, maintain comfort levels during occupied hours, reduce HVAC maintenance costs.

Ameduri, G. (Roth Bros., Inc., Youngstown, OH (United States). Facilities Automation Division)

1994-12-01T23:59:59.000Z

266

Recycling of Li-Ion Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

1 1 Linda Gaines Center for Transportation Research Argonne National Laboratory Recycling of Li-Ion Batteries Illinois Sustainable Technology Center University of Illinois We don't want to trade one crisis for another!  Battery material shortages are unlikely - We demonstrated that lithium demand can be met - Recycling mitigates potential scarcity  Life-cycle analysis checks for unforeseen impacts  We need to find something to do with the used materials - Safe - Economical 2 We answer these questions to address material supply issues  How many electric-drive vehicles will be sold in the US and world-wide?  What kind of batteries might they use? - How much lithium would each battery use?  How much lithium would be needed each year?

267

A Ceramic membrane to Recycle Caustic  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A A Ceramic Membrane to Recycle Caustic in Low-Activity Waste Stream Processing The Office of Waste Processing is sponsoring an R&D project with Ceramatec, Inc. to develop a ceramic membrane capable of separating sodium from the Hanford Low Activity Waste (LAW) stream. The Hanford High-Level Waste (HLW) tanks must be maintained in a caustic environment to inhibit corrosion. Consequently, they contain large quantities of NaOH. Ultimately the HLW will be retrieved, separated into HLW and LAW streams, with both streams being vitrified at the Waste Treatment Plant (WTP). Prior to processing, additional NaOH will be added to the LAW stream to solubilize the alumina, preventing alumina precipitation, but further increasing the NaOH quantity. This project's goal is to separate the sodium from the LAW stream prior to vitrification which will allow the NaOH to be recycled and further

268

Recovery of recyclable materials from shredder residue  

SciTech Connect

Each year, about 11 million tons of metals (ferrous and nonferrous) are recovered in the US from about 10 million discarded automobiles. The recovered metals account for about 75% of the total weight of the discarded vehicles. The balance of the material or shredder residue, which amounts to about 3 million tons annually, is currently landfilled. The residue contains a diversity of potentially recyclable materials, including polyurethane foams, iron oxides, and certain thermoplastics. This paper discusses a process under development at Argonne National Laboratory to separate and recover the recyclable materials from this waste stream. The process consists essentially of two-stages. First, a physical separation is used to recover the foams and the metal oxides, followed by a chemical process to extract certain thermoplastics. Status of the technology is discussed and process economics reviewed.

Jody, B.J.; Daniels, E.J.; Bonsignore, P.V.; Brockmeier, N.F.

1994-01-01T23:59:59.000Z

269

Breckinridge Project, initial effort  

DOE Green Energy (OSTI)

Report IV, Volume 3, provides descriptions, data, and drawings pertaining to H-COAL Recycle Slurry Preparation (Plant 5), H-COAL Recycle Hydrogen Compression (Plant 6), and H-COAL Distillate Separation (Plant 17). H-COAL Recycle Slurry Preparation (Plant 5) receives a slurry stream from H-COAL Primary Separation (Plant 4), and then pumps the slurry through hydrocyclones, producing two slurry streams. One, dilute in solids is recycled back to the reactor. The other, concentrated in solids, is further processed to recover liquid products and is then transferred to Gasification and Purification (Plant 12). H-COAL Recycle Hydrogen Compression (Plant 6) compresses and recycles back to the reactor system hydrogen-rich vapor from H-COAL Primary Separation (Plant 4). This recycling maintains a hydrogen partial pressure and gas flow through the reactor vessel. H-COAL Distillate Separation (Plant 17) processes products from H-COAL Primary Separation (Plant 4) and H-COAL Recycle Slurry Preparation to produce light naphtha for the Gas Plant (Plant 7), middle and heavy distillates for tank farms, and heavy naphtha for Naphtha Hydrotreating and Reforming (Plant 18). The following information is included for each of the three plants: a description of the plant's process design, including the utility balance, heat and material balance (if applicable), and a process flow diagram; an equipment list, including item numbers and descriptions; data sheets and sketches for major plant components; and pertinent engineering drawings. An appendix contains: an overall site plan showing the locations of all plants; and the symbols and legend for the piping and instrument diagrams included in this volume.

None

270

Recycling of Advanced Batteries for Electric Vehicles  

DOE Green Energy (OSTI)

The pace of development and fielding of electric vehicles is briefly described and the principal advanced battery chemistries expected to be used in the EV application are identified as Ni/MH in the near term and Li-ion/Li-polymer in the intermediate to long term. The status of recycling process development is reviewed for each of the two chemistries and future research needs are discussed.

JUNGST,RUDOLPH G.

1999-10-06T23:59:59.000Z

271

WASTE TREATMENT TECHNOLOGY PROCESS DEVELOPMENT PLAN FOR HANFORD WASTE TREATMENT PLANT LOW ACTIVITY WASTE RECYCLE  

SciTech Connect

The purpose of this Process Development Plan is to summarize the objectives and plans for the technology development activities for an alternative path for disposition of the recycle stream that will be generated in the Hanford Waste Treatment Plant Low Activity Waste (LAW) vitrification facility (LAW Recycle). This plan covers the first phase of the development activities. The baseline plan for disposition of this stream is to recycle it to the WTP Pretreatment Facility, where it will be concentrated by evaporation and returned to the LAW vitrification facility. Because this stream contains components that are volatile at melter temperatures and are also problematic for the glass waste form, they accumulate in the Recycle stream, exacerbating their impact on the number of LAW glass containers. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to acceptable concentrations in the LAW glass, and reducing the halides in the Recycle is a key component of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, this stream does not have a proven disposition path, and resolving this gap becomes vitally important. This task seeks to examine the impact of potential future disposition of this stream in the Hanford tank farms, and to develop a process that will remove radionuclides from this stream and allow its diversion to another disposition path, greatly decreasing the LAW vitrification mission duration and quantity of glass waste. The origin of this LAW Recycle stream will be from the Submerged Bed Scrubber (SBS) and the Wet Electrostatic Precipitator (WESP) from the LAW melter off-gas system. The stream is expected to be a dilute salt solution with near neutral pH, and will likely contain some insoluble solids from melter carryover or precipitates of scrubbed components (e.g. carbonates). The soluble components are mostly sodium and ammonium salts of nitrate, chloride, and fluoride. This stream has not been generated yet, and will not be available until the WTP begins operation, causing uncertainty in its composition, particularly the radionuclide content. This plan will provide an estimate of the likely composition and the basis for it, assess likely treatment technologies, identify potential disposition paths, establish target treatment limits, and recommend the testing needed to show feasibility. Two primary disposition options are proposed for investigation, one is concentration for storage in the tank farms, and the other is treatment prior to disposition in the Effluent Treatment Facility. One of the radionuclides that is volatile and expected to be in high concentration in this LAW Recycle stream is Technetium-99 ({sup 99}Tc), a long-lived radionuclide with a half-life of 210,000 years. Technetium will not be removed from the aqueous waste in the Hanford Waste Treatment and Immobilization Plant (WTP), and will primarily end up immobilized in the LAW glass, which will be disposed in the Integrated Disposal Facility (IDF). Because {sup 99}Tc has a very long half-life and is highly mobile, it is the largest dose contributor to the Performance Assessment (PA) of the IDF. Other radionuclides that are also expected to be in appreciable concentration in the LAW Recycle are {sup 129}I, {sup 90}Sr, {sup 137}Cs, and {sup 241}Am. The concentrations of these radionuclides in this stream will be much lower than in the LAW, but they will still be higher than limits for some of the other disposition pathways currently available. Although the baseline process will recycle this stream to the Pretreatment Facility, if the LAW facility begins operation first, this stream will not have a disposition path internal to WTP. One potential solution is to return the stream to the tank farms where it can be evaporated in the 242- A evaporator, or perhaps deploy an auxiliary evaporator to concentrate it prior to return to the tank farms. In either case, testing is needed to evalua

McCabe, Daniel J.; Wilmarth, William R.; Nash, Charles A.

2013-08-29T23:59:59.000Z

272

Absorptive Recycle of Distillation Waste Heat  

E-Print Network (OSTI)

When the heat source available to a distillation process is at a significantly higher temperature than the reboiler temperature, there is unused availability (ability to perform work) in the heat supplied to the reboiler. Similarly, if the reflux condenser operates above ambient temperature, the rejected heat also contains unused availability. By incorporating an absorption heat pump (AHP) into the distillation process, these sources of unused availability can be tapped so as to recycle (and hence, conserve) up to 50% of the required distillation energy. In contrast to compressor driven heat pumps, this savings is accomplished without need for a separate substantial input of mechanical power. A different AHP configuration is used depending on whether the excess availability is in the source heat or reject heat. In the excessive source temperature case, the higher temperature source heat is applied to the AHP, which then supplies the total reboiler requirement and recycles half the reject heat, with the remainder being rejected conventionally. In the excessive reject temperature case, all the reject heat is supplied to a reverse absorption heat pump (HAHP) which recycles half to reboiler temperature while reducing the remainder to ambient temperature.

Erickson, D. C.; Lutz, E. J., Jr.

1982-01-01T23:59:59.000Z

273

Brookhaven Facility Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Brookhaven Facility Biomass Facility Brookhaven Facility Biomass Facility Jump to: navigation, search Name Brookhaven Facility Biomass Facility Facility Brookhaven Facility Sector Biomass Facility Type Landfill Gas Location Suffolk County, New York Coordinates 40.9848784°, -72.6151169° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.9848784,"lon":-72.6151169,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

274

Harrisburg Facility Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Harrisburg Facility Biomass Facility Harrisburg Facility Biomass Facility Jump to: navigation, search Name Harrisburg Facility Biomass Facility Facility Harrisburg Facility Sector Biomass Facility Type Landfill Gas Location Dauphin County, Pennsylvania Coordinates 40.2734277°, -76.7336521° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.2734277,"lon":-76.7336521,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

275

Charlotte Green Supply Chain: Reduce, Reuse, Recycle | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Charlotte Green Supply Chain: Reduce, Reuse, Recycle Charlotte Green Supply Chain: Reduce, Reuse, Recycle Charlotte Green Supply Chain: Reduce, Reuse, Recycle July 30, 2010 - 10:59am Addthis Andy Oare Andy Oare Former New Media Strategist, Office of Public Affairs Three years ago at Sacred Heart grade school in Norfolk, Neb., efforts to recycle were grim. "When I got here, we had no paper recycling program," says Troy Berryman, who is entering his sixth year as principal at Sacred Heart. "A couple years prior, we had a guy park a semi-truck in the parking lot for people to recycle paper." But Berryman says this system did not work out well, as the truck was often locked and papers would be left to blow around in the wind or get wet with rain. Knowing that something must be done, he began to look into the local

276

Validation of the RESRAD-RECYCLE computer code.  

SciTech Connect

The RESRAD-RECYCLE computer code was developed by Argonne National Laboratory under the sponsorship of the U.S. Department of Energy. It was designed to analyze potential radiation exposures resulting from the reuse and recycling of radioactively contaminated scrap metal and equipment. It was one of two codes selected in an international model validation study concerning recycling of radioactively contaminated metals. In the validation study, dose measurements at various stages of melting a spent nuclear fuel rack at Studsvik RadWaste AB, Sweden, were collected and compared with modeling results. The comparison shows that the RESRAD-RECYCLE results agree fairly well with the measurement data. Among the scenarios considered, dose results and measurement data agree within a factor of 6. Discrepancies may be explained by the geometrical limitation of the RESRAD-RECYCLE's external exposure model, the dynamic nature of the recycling activities, and inaccuracy in the input parameter values used in dose calculations.

Cheng, J.-J.; Yu, C.; Williams, W. A.; Murphie, W.

2002-02-01T23:59:59.000Z

277

The Energy Impact of Industrial Recycling and Waste Exchange  

E-Print Network (OSTI)

Recycling and waste exchange, particularly in the industrial sector, has a substantial positive energy impact and one that can often be accomplished at little or no expense. Recycling saves energy because the secondary materials being recycled are "pre-processed", and this requires less manufacturing operations than creating products from virgin materials. Process energy reduction possible by recycling is estimated to be as high is 95% for aluminum and 88% for plastics. Industrial waste exchange is facilitated by having an independent agency to publicize and coordinate materials availability and exchange. The North Carolina Energy Division is a co-sponsor of one such agency, the Southeast Waste Exchange in Charlotte, and has funded workshops on the recycling-energy connection and waste minimization. Although the paper, plastic and glass familiar to residential recyclers are also exchanged at the industrial level, in addition, industrial waste exchange deals extensively with solvents, oils, acids and alkalis and other specialty substances.

Phillips, W. C.

1992-04-01T23:59:59.000Z

278

The US Department of Energy`s facility reuse at the Rocky Flats Environmental Technology Site  

Science Conference Proceedings (OSTI)

This audit was initiated to determine whether the Rocky Flats Environmental Technology Site was maximizing its reuse of excess facilities.

NONE

1998-08-01T23:59:59.000Z

279

Role of Recycling in the Life Cycle of Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

ROLE OF RECYCLING IN THE LIFE CYCLE OF BATTERIES ROLE OF RECYCLING IN THE LIFE CYCLE OF BATTERIES J.L. Sullivan, L. Gaines, and A. Burnham Argonne National Laboratory, Energy Systems Division Keywords: battery, materials, recycling, energy Abstract Over the last few decades, rechargeable battery production has increased substantially. Applications including phones, computers, power tools, power storage, and electric-drive vehicles are either commonplace or will be in the next decade or so. Because advanced rechargeable batteries, like those

280

Strategies for recycling CdTe photovoltaic modules  

DOE Green Energy (OSTI)

Recycling end-of-life cadmium telluride (CdTe) photovoltaic (PV) modules may enhance the competitive advantage of CdTe PV in the marketplace, but the experiences of industries with comparable Environmental, Health and Safety (EH&S) challenges suggest that collection and recycling costs can impose significant economic burdens. Customer cooperation and pending changes to US Federal law may improve recycling economics.

Eberspacher, C.; Gay, C.F. [UNISUN, Newbury Park, CA. (United States); Moskowitz, P.D. [Brookhaven National Lab., Upton, NY (United States)

1994-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "facilities initiatives recycling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Selective Catalytic Reduction Catalyst Recycle and Re-Use Options  

Science Conference Proceedings (OSTI)

Given the widespread implementation of selective catalytic reduction (SCR) technology, there is a great deal of interest in finding viable recycle/re-use routes for spent catalyst as an alternative to landfilling. The current effort has focused on detailed evaluation of several recycle/re-use processes that were identified in previous EPRI studies. These recycle/re-use technologies include mineral filler applications, incorporation into wet-bottom boiler slag, cement kiln co-processing, and use in iron/s...

2010-12-21T23:59:59.000Z

282

Design of Recycle/Reuse Networks with Thermal Effects and Variable Sources  

E-Print Network (OSTI)

Recycle/reuse networks are commonly used in industrial facilities to conserve natural resources, reduce environmental impact, and improve process economics. The design of these networks is a challenging task because of the numerous possibilities of assigning stream (process sources) to units that may potentially employ them (process sinks). Additionally, several fresh streams with different qualities and costs may be used to supplement the recycle of process streams. The selection of the type and flow of these fresh resources is an important step in the design of the recycle/reuse networks. This work introduces systematic approaches to address two new categories in the design of recycle/reuse networks: (a) The incorporation of thermal effects in the network. Two new aspects are introduced: heat of mixing of process sources and temperature constraints imposed on the feed to the process sinks iv (b) Dealing with variation in process sources. Two types of source variability are addressed: flowrate and composition For networks with thermal effects, an assignment optimization formulation is developed. Depending on the functional form of the heat of mixing, the formulation may be a linear or a nonlinear program. The solution of this program provides optimum flowrates of the fresh streams as well as the segregation, mixing, and allocation of the process sources to sinks. For networks with variable sources, a computer code is developed to solve the problem. It is based on discretizing the search space and using the concept of "floating pinch" to insure solution feasibility and optimal targets. Case studies are solved to illustrate the applicability of the new approaches.

Zavala Oseguera, Jose Guadalupe

2009-08-01T23:59:59.000Z

283

A Goldilocks Catalyst: Nanocluster 'just right' for Recycling...  

NLE Websites -- All DOE Office Websites (Extended Search)

Goldilocks Catalyst A Goldilocks Catalyst Nanocluster 'just right' for recycling carbon dioxide February 21, 2011 | Tags: Chemistry, Energy Technologies, Franklin Contact: John...

284

ISASMELT for Recycling of Valuable Elements Contributing to a ...  

Science Conference Proceedings (OSTI)

Metals recycling is essential if we are to build a more sustainable society. ISASMELT Top Submerged Lance (TSL) technology can enable plant operators to...

285

Development of Efficient Recycling System for Steel Alloying ...  

Science Conference Proceedings (OSTI)

ISASMELT for Recycling of Valuable Elements Contributing to a More Sustainable Society Leaching of Uranium and Vanadium from Korean Domestic Ore.

286

PGM Recycling from Catalysts in a Closed Hydrometallurgical Loop ...  

Science Conference Proceedings (OSTI)

ISASMELT for Recycling of Valuable Elements Contributing to a More Sustainable Society Leaching of Uranium and Vanadium from Korean Domestic Ore.

287

European Recycling Platform Experiences from a New Venture  

Science Conference Proceedings (OSTI)

Materialization of Manganese by Selective Precipitation from Used Battery Materials ... The Challenge of Allocation in LCA: The Case of Open-Loop Recycling.

288

Production, Refining and Recycling of Rare Earth Metals  

Science Conference Proceedings (OSTI)

This symposium is targeting on overview of the current state of the art for production, refining and recycling of the rare earth metals. In addition the symposium is...

289

Production, Recovery and Recycling of Rare Earth Metals  

Science Conference Proceedings (OSTI)

This symposium is targeting on overview of the current state of the art for production, recovery and recycling of the rare earth. In addition the symposium is ...

290

Decentralized Decision-making and Protocol Design for Recycled ...  

E-Print Network (OSTI)

Nov 14, 2006 ... Optimization Online. Decentralized Decision-making and Protocol Design for Recycled Material Flows. I-Hsuan Hong (ihong ***at***...

291

Orange and Rockland Utilities (Electric)- Residential Appliance Recycling Program  

Energy.gov (U.S. Department of Energy (DOE))

Orange and Rockland Utilities provides rebates for residential customers for recycling older, inefficient refrigerators and freezers. All appliances must meet the program requirements listed on the...

292

Discussions@TMS - What are the recycling trends between urban ...  

Science Conference Proceedings (OSTI)

Oct 4, 2007 ... Topic Title: What are the recycling trends between urban and rural areas and are there any specific infrastructure needs? Topic Summary:...

293

Section 7.2 Operational Waste Reduction and Recycling: Greening...  

NLE Websites -- All DOE Office Websites (Extended Search)

organizations for reuse or can be recycled, depending on its age and quality. Compost: Organic matter generated from food services and landscaping operations should be...

294

LIGHT METALS 2007 Volume 6: The Material Recycling Industry  

Science Conference Proceedings (OSTI)

Environmental Management of Airborne Metal Emissions in the Recycling Industry [pp. 1173-1190] Karen Hagelstein and John E Heinze. Improved UBC Melting...

295

REWAS 2008: Global Symposium on Recycling, Waste Treatment ...  

Science Conference Proceedings (OSTI)

Oct 20, 2008 ... REWAS 2008: Global Symposium on Recycling, Waste Treatment and ... on the Recovery of Materials and Energy for Resource Efficiency.

296

Promotion of Recycling Business by Combination of a Pre ...  

Science Conference Proceedings (OSTI)

... friendly system for recycling valuable metals in the waste which used to be sent to a landfill. ... Waste Heat Recovery from Industrial Smelting Exhaust Gas...

297

A Comparison of Li-Ion Battery Recycling Options  

NLE Websites -- All DOE Office Websites (Extended Search)

1 A Comparison of Li-Ion Battery Recycling Options Linda Gaines and Jennifer Dunn Center for Transportation Research Argonne National Laboratory SAE World Congress April 2012 PAPER...

298

Lithium-Ion Batteries: Examining Material Demand and Recycling...  

NLE Websites -- All DOE Office Websites (Extended Search)

ISSUES Linda Gaines and Paul Nelson Argonne National Laboratory, Argonne, IL Keywords: battery materials, lithium, recycling Abstract Use of vehicles with electric drive, which...

299

China Recycling Energy Corp CREG | Open Energy Information  

Open Energy Info (EERE)

Energy Corp CREG Jump to: navigation, search Name China Recycling Energy Corp (CREG) Place Reno, Nevada Zip 89511 Product A US-incorporated company that develops recovered energy...

300

2011 Vittorio de Nora Award Winner: Recycling of Contaminated ...  

Science Conference Proceedings (OSTI)

Removal of contaminants such as the coat and organic materials- applied for protection and appearance- are the tail that wags the recycling dog. Successful...

Note: This page contains sample records for the topic "facilities initiatives recycling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Waste Home Appliances Recycling in Some European and ... - TMS  

Science Conference Proceedings (OSTI)

May 1, 2007 ... The recycling of waste home appliances has been an eminent issue globally. In European Communities, the directive on waste electrical and...

302

Webcast Enhancing the Value Proposition Through Metals Recycling  

Science Conference Proceedings (OSTI)

Presenter: Joseph Fiksel, Center for Resilience, The Ohio State University; The ... Understanding and Enhancing Aluminum Can Recycling Rate-a Kentucky...

303

Microbial Fuel Cells for Recycle of Process Water from ...  

Large amounts of water are used in the processing of cellulosic biomass materials, so it is highly desirable to recycle used process water at the end ...

304

Mechanical Recycling of Electronic Wastes for Materials Recovery  

Science Conference Proceedings (OSTI)

Leaching Toxicity of Pb and Ba Containing in Cathode Ray Tube Glasses by SEP -TCLP Mechanical Recycling of Electronic Wastes for Materials Recovery.

305

Prospective Scenario of E-Waste Recycling in India  

Science Conference Proceedings (OSTI)

Leaching Toxicity of Pb and Ba Containing in Cathode Ray Tube Glasses by SEP -TCLP Mechanical Recycling of Electronic Wastes for Materials Recovery.

306

Willingness to Recycle Electronic Waste: Results from a National ...  

Science Conference Proceedings (OSTI)

Leaching Toxicity of Pb and Ba Containing in Cathode Ray Tube Glasses by SEP -TCLP Mechanical Recycling of Electronic Wastes for Materials Recovery.

307

WEEE: Obsolete Mobile Phones Characterization Aiming at Recycling  

Science Conference Proceedings (OSTI)

Leaching Toxicity of Pb and Ba Containing in Cathode Ray Tube Glasses by SEP -TCLP Mechanical Recycling of Electronic Wastes for Materials Recovery.

308

Salt Waste Processing Initiatives  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Patricia Suggs Patricia Suggs Salt Processing Team Lead Assistant Manager for Waste Disposition Project Office of Environmental Management Savannah River Site Salt Waste Processing Initiatives 2 Overview * Current SRS Liquid Waste System status * Opportunity to accelerate salt processing - transformational technologies - Rotary Microfiltration (RMF) and Small Column Ion Exchange (SCIX) - Actinide Removal Process/Modular Caustic Side Solvent Extraction (ARP/MCU) extension with next generation extractant - Salt Waste Processing Facility (SWPF) performance enhancement - Saltstone enhancements * Life-cycle impacts and benefits 3 SRS Liquid Waste Total Volume >37 Million Gallons (Mgal) Total Curies 183 MCi (51% ) 175 MCi (49% ) >358 Million Curies (MCi) Sludge 34.3 Mgal (92% ) 3.0 Mgal (8%)

309

Sandia National Laboratories: Research: Facilities: Technology Deployment  

NLE Websites -- All DOE Office Websites (Extended Search)

Explosive Components Facility Explosive Components Facility The 98,000 square foot Explosive Components Facility (ECF) is a state-of-the-art facility that provides a full-range of chemical, material, and performance analysis capabilities for energetic materials and explosive components: advanced design of energetic devices and subsystems optical ordnance energetic materials testing of explosives and explosive components and subsystems advanced explosives diagnostics reliability analyses failure modes evaluation safety evaluation The ECF has the full-range of capabilities necessary to support the understanding of energetic materials and components: Optical and Semiconductor Bridge (SCB) Initiation Laboratories Characterization Laboratories thermal properties gas analyses powder characterization

310

International Facility Management Association Strategic Facility  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Facility Management Association Facility Management Association Strategic Facility Planning: A WhIte PAPer Strategic Facility Planning: A White Paper on Strategic Facility Planning © 2009 | International Facility Management Association For additional information, contact: 1 e. Greenway Plaza, Suite 1100 houston, tX 77046-0104 USA P: + 1-713-623-4362 F: + 1-713-623-6124 www.ifma.org taBle OF cOntentS PreFace ......................................................... 2 executive Summary .................................... 3 Overview ....................................................... 4 DeFinitiOn OF Strategic Facility Planning within the Overall cOntext OF Facility Planning ................. 5 SPecializeD analySeS ................................ 9 OrganizatiOnal aPPrOacheS tO SFP ... 10 the SFP PrOceSS .......................................

311

Office of Nuclear Facility Basis & Facility Design  

NLE Websites -- All DOE Office Websites (Extended Search)

Office of Nuclear Safety Basis & Facility Design(HS-31) Reports to the Office of Nuclear Safety About Us The Office of Nuclear Safety Basis & Facility Design establishes safety...

312

Microdrill Initiative - Initial Market Evaluation  

SciTech Connect

The U.S. Department of Energy (DOE) is launching a major research and development initiative to create a small, fast, inexpensive and environmentally friendly rig for drilling 5000 feet boreholes to investigate potential oil and gas reservoirs. DOE wishes to get input from petroleum industry operators, service companies and equipment suppliers on the operation and application of this coiled-tubing-based drilling unit. To that end, DOE has asked Spears & Associates, Inc. (SAI) to prepare a special state-of-the-market report and assist during a DOE-sponsored project-scoping workshop in Albuquerque near the end of April 2003. The scope of the project is four-fold: (1) Evaluate the history, status and future of demand for very small bore-hole drilling; (2) Measure the market for coiled tubing drilling and describe the state-of-the-art; (3) Identify companies and individuals who should have an interest in micro drilling and invite them to the DOE workshop; and (4) Participate in 3 concurrent workshop sessions, record and evaluate participant comments and report workshop conclusions.

Spears & Associates, Inc

2003-07-01T23:59:59.000Z

313

Wastewater reuse and recycle in petroleum refineries  

SciTech Connect

The objectives of this study were to identify feasible reuse and recycle techniques that can be successful in reducing wastewater discharge and to estimate their associated costs. Wastewater reduction is a fundamental aspect of the US EPA's proposed regulations for the petroleum refining industry. EPA undertook this study to confirm the cost estimates used in the proposed guidelines, to identify specific technologies, and to accurately assess their costs. Fifteen refineries were chosen to represent the range of refinery characteristics including crude capacity, process employed, and wastewater generation. Significant wastewater reductions were found possible at 12 refineries studied.

Langer, B.S.

1983-05-01T23:59:59.000Z

314

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

than any other quarter on record-961 The U.S. Department of Energy requires national user facilities to report facility use by total visitor days and facility to track actual...

315

Environmental, economic, and energy impacts of material recovery facilities. A MITE Program evaluation  

Science Conference Proceedings (OSTI)

This report documents an evaluation of the environmental, economic, and energy impacts of material recovery facilities (MRFs) conducted under the Municipal Solid Waste Innovative Technology Evaluation (MITE) Program. The MITE Program is sponsored by the US Environmental Protection Agency to foster the demonstration and development of innovative technologies for the management of municipal solid waste (MSW). This project was also funded by the National Renewable Energy Laboratory (NREL). Material recovery facilities are increasingly being used as one option for managing a significant portion of municipal solid waste (MSW). The owners and operators of these facilities employ a combination of manual and mechanical techniques to separate and sort the recyclable fraction of MSW and to transport the separated materials to recycling facilities.

NONE

1995-10-01T23:59:59.000Z

316

Naval Station Newport Wind Resource Assessment. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites, and The Naval Facilities Engineering Service Center  

NLE Websites -- All DOE Office Websites (Extended Search)

Naval Station Newport Naval Station Newport Wind Resource Assessment A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites, and The Naval Facilities Engineering Service Center Robi Robichaud, Jason Fields, and Joseph Owen Roberts Technical Report NREL/TP-6A20-52801 February 2012 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Naval Station Newport

317

Results for the DWPF Slurry Mix Evaporator Condensate Tank, Off Gas Condensate Tank, And Recycle Collection Tank Samples  

Science Conference Proceedings (OSTI)

The Defense Waste Processing Facility, DWPF, currently generates approximately 1.4 million gallons of recycle water per year during Sludge-Only operations. DWPF has minimized condensate generation to 1.4 million gallons by not operating the Steam Atomized Scrubbers, SASs, for the melter off gas system. By not operating the SASs, DWPF has reduced the total volume by approximately 800,000 gallons of condensate per year. Currently, the recycle stream is sent to back to the Tank Farm and processed through the 2H Evaporator system. To alleviate the load on the 2H Evaporator system, an acid evaporator design is being considered as an alternate processing and/or concentration method for the DWPF recycle stream. In order to support this alternate processing option, the DWPF has requested that the chemical and radionuclide compositions of the Off Gas Condensate Tank, OGCT, Slurry Mix Evaporator Condensate Tank, SMECT, Recycle Collection Tank, RCT, and the Decontamination Waste Treatment Tank, DWTT, be determined as a part of the process development work for the acid evaporator design. Samples have been retrieved from the OGCT, RCT, and SMECT and have been sent to the Savannah River National Laboratory, SRNL for this characterization. The DWTT samples have been recently shipped to SRNL. The results for the DWTT samples will be issued at later date.

TERRI, FELLINGER

2004-12-21T23:59:59.000Z

318

Analysis of the cost of recycling compliance for the automobile industry  

E-Print Network (OSTI)

Cars are one of the most recycled commercial products. Currently, approximately 75% of the total vehicle weight is recycled. The EU directives on End-of-life vehicles try to push the recycling process further: it fixed the ...

Dantec, Delphine

2005-01-01T23:59:59.000Z

319

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

Facility News Data Collection from Mobile Facility on Gan Island Suspended Local weather balloon launch volunteers pose with the AMF team on Gan Island after completing their...

320

from Isotope Production Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Cancer-fighting treatment gets boost from Isotope Production Facility April 13, 2012 Isotope Production Facility produces cancer-fighting actinium - 2 - 2:32 Isotope cancer...

Note: This page contains sample records for the topic "facilities initiatives recycling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

approximately 22,500 square kilometers, or the approximate area of a modern climate model grid cell. Centered around the SGP Central Facility, these extended facilities are...

322

Chemistry Dept. Research Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Facilities As a research organization within a National Laboratory, the Chemistry Department operates research facilities that are available to other researchers as...

323

Facility Safeguardability Assessment Report  

National Nuclear Security Administration (NNSA)

of the Facility Safeguardability Analysis (FSA) Process RA Bari SJ Johnson J Hockert R Wigeland EF Wonder MD Zentner August 2012 PNNL- 21698 Overview of the Facility...

324

Facility Safeguardability Assessment Report  

National Nuclear Security Administration (NNSA)

facilities or research facilities that involve previously unused processes or technologies, comparison with previously required safeguard design features may not be...

325

Fuel Fabrication Facility  

National Nuclear Security Administration (NNSA)

Construction of the Mixed Oxide Fuel Fabrication Facility Construction of the Mixed Oxide Fuel Fabrication Facility November 2005 May 2007 June 2008 May 2012...

326

User Facility Agreement Form  

NLE Websites -- All DOE Office Websites (Extended Search)

5. Which Argonne user facility will be hosting you? * Advanced Leadership Computing Facility (ALCF) Advanced Photon Source (APS) Argonne Tandem Linear...

327

NREL: Biomass Research - Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Facilities At NREL's state-of-the-art biomass research facilities, researchers design and optimize processes to convert renewable biomass feedstocks into transportation fuels and...

328

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

May 15, 2008 Facility News National User Facility Organization Meets to Discuss Progress and Ideas In late April, the ARM Technical Director attended an annual meeting of the...

329

Oak Ridge Reservation Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

processed for shipment to the Nevada Test Site or other appropriate disposal facility. Molten Salt Reactor Experiment Facility The Molten Salt Reactor Experiment (MSRE) operated...

330

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

January 15, 2008 Facility News ARM Mobile Facility Completes Field Campaign in Germany Researchers will study severe precipitation events that occurred in August and October...

331

Renewable Energy Facilities Revolving Loan Fund (Delaware) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Facilities Revolving Loan Fund (Delaware) Facilities Revolving Loan Fund (Delaware) Renewable Energy Facilities Revolving Loan Fund (Delaware) < Back Eligibility Commercial Industrial Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Solar Wind Program Info Funding Source U.S. Department of Commerce, Delaware Strategic Fund State Delaware Program Type Loan Program Provider Delaware Economic Development Office Renewable Energy Facilities Revolving Loan Fund provides loans at market to below-market interest rates to businesses that cannot otherwise obtain capital, provided that those businesses will create or retain jobs in industries that promote energy efficiency and/or recycling. The new fund was made possible with a $500,000 grant from the U.S. Department of

332

Facility repowering study  

Science Conference Proceedings (OSTI)

The economic, fuel, and environmental implications of repowering existing nonreheat, oil-fired electrical generating facilities in California with distillate fuels, and was extended by CEC staff to include coal-derived synthetic fuels are evaluated. California's older oil-fired power plants are very inefficient and repowering would significantly reduce the amount of oil burned to produce a unit of electrical energy at these facilities. Repowering would also add new generating capacity without requiring new sites. Specific power plants were categorized according to their potential for repowering. Between the initiation of the contract and the termination date, federal legislation was enacted (Power Plant and Industrial Fuel Use Act (PIFUA)), which effectively prohibits oil-based repowering. In order to make best use of the repowering work, CEC staff supplemented the study with analysis based upon replacing the distillate fuel for combustion turbine utilization with relatively clean-burning fuels derived from coal (i.e., methanol, SNG). This work concluded that 42 units statewide have good potential for repowering and would add greater than 5200 MW of new capacity at approximately $250/kW ($ 1977). For both distillate and synfuels repowering, emissions would decrease over the nonrepowered levels.

Not Available

1980-11-01T23:59:59.000Z

333

Facility Representative Program: 2003 Facility Representative Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

3 Facility Representative Workshop 3 Facility Representative Workshop May 13 - 15, 2003 Las Vegas, NV Facility Rep of the Year Award | Attendees list | Summary Report [PDF] WORKSHOP AGENDA Day 1: Tuesday, May 13, 2003 Theme: Program Successes and Challenges 8:00 a.m. John Evans, Facility Representative Program Manager 8:15 a.m. Welcome Kathleen Carlson Manager, Nevada Site Office 8:30 a.m. Keynote Address Savannah River Site and Facility Reps - A Shared History and Common Future Jeffrey M. Allison Manager, Savannah River Operations Office 9:00 a.m. Videotaped Remarks from the Deputy Secretary Kyle E. McSlarrow, Deputy Secretary of Energy 9:10 a.m. Facility Representative of the Year Presentation Mark B. Whitaker, Jr., Departmental Representative to the Defense Nuclear Facilities Safety Board

334

NREL: Research Facilities - Test and User Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Test and User Facilities Test and User Facilities NREL has test and user facilities available to industry and other organizations for researching, developing, and evaluating renewable energy and energy efficiency technologies. Here you'll find an alphabetical listing and brief descriptions of NREL's test and user facilities. A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z A Advanced Research Turbines At our wind testing facilities, we have turbines available to test new control schemes and equipment for reducing loads on wind turbine components. Learn more about the Advanced Research Turbines on our Wind Research website. Back to Top D Distributed Energy Resources Test Facility This facility was designed to assist the distributed power industry in the

335

Facility Representative Program: 2000 Facility Representative Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

0 Facility Representative Workshop 0 Facility Representative Workshop May 16-18, 2000 Las Vegas, NV Facility Rep of the Year Award | Attendees list | Summary Report [PDF] WORKSHOP AGENDA Tuesday, May 16, 2000 Theme for Day 1: Sustaining the Success of the Facility Representative Program 8:00 a.m. - Opening Remarks - Joe Arango, Facility Representative Program Manager 8:05 a.m. - Welcome - Kenneth Powers, Deputy Manager Nevada Operations Office 8:15 a.m. - Deputy Secretary Remarks - T. J. Glauthier, Deputy Secretary of Energy 8:30 a.m. - Keynote Address - Jerry Lyle, Assistant Manager for Environmental Management, Idaho Operations Office 9:00 a.m. - Facility Representative of the Year Presentation - Mark B. Whitaker, Departmental Representative 9:30 a.m. - Break 9:50 a.m. - Program Results and Goals - Joe Arango, Facility Representative Program Manager

336

5-Megawatt solar-thermal test facility: facility construction-cost analysis  

SciTech Connect

The appropriation analysis, cash flow analysis, monthly cash flow analysis and construction cost estimate are tabulated for the 1 MW And 5 MW test facilities based upon limited initial appropriations, including work sheets for the construction cost estimates. (LEW)

1975-12-08T23:59:59.000Z

337

Catalytic coal liquefaction with treated solvent and SRC recycle  

DOE Patents (OSTI)

A process for the solvent refining of coal to distillable, pentane soluble products using a dephenolated and denitrogenated recycle solvent and a recycled, pentane-insoluble, solvent-refined coal material, which process provides enhanced oil-make in the conversion of coal.

Garg, Diwakar (Macungie, PA); Givens, Edwin N. (Bethlehem, PA); Schweighardt, Frank K. (Allentown, PA)

1986-01-01T23:59:59.000Z

338

Quality Improvement of Recycled Plastic Products Using Mixture Experiment  

Science Conference Proceedings (OSTI)

Recycling plastic has several advantages such as reducing consumption of energy, non-renewable fossil fuels use, and global emissions of carbon dioxide. In this study, the manufacturer would like to improve product quality and decrease cost of the products ... Keywords: recycled plastics, plastic properties, quality, mixture experiment, response surface methodology

Charnnarong Saikaew; Panita Sripaya

2009-12-01T23:59:59.000Z

339

Progress in Recycling of Retired Cadmium-Telluride Photovoltaic Modules  

E-Print Network (OSTI)

Progress in Recycling of Retired Cadmium- Telluride Photovoltaic Modules Postdoctoral: Wenming Wang-Talk Program July 21, 2005 #12;Recycling Retired Photovoltaic Modules to Valuable Products, Where Are We, ppm Cu, ppm Column I Column II H2SO4 Tank CdSO4 Electrolytic Cell Cadmium Metal Cd Solution H2SO4

340

Recycling and Disposal of Spent Selective Catalytic Reduction Catalyst  

Science Conference Proceedings (OSTI)

Selective catalytic reduction (SCR) technology has become widespread within the utility industry as a means of controlling emissions of nitrogen oxides (NOx). The technology uses a solid catalyst that deactivates over time; and thus significant volumes of catalyst will need regeneration, recycle, or disposal. This study examined issues related to spent catalyst recycle and disposal.

2003-11-12T23:59:59.000Z

Note: This page contains sample records for the topic "facilities initiatives recycling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Catalytic coal liquefaction with treated solvent and SRC recycle  

DOE Patents (OSTI)

A process is described for the solvent refining of coal to distillable, pentane soluble products using a dephenolated and denitrogenated recycle solvent and a recycled, pentane-insoluble, solvent-refined coal material, which process provides enhanced oil-make in the conversion of coal. 2 figs.

Garg, D.; Givens, E.N.; Schweighardt, F.K.

1986-12-09T23:59:59.000Z

342

Greenhouse gas emissions, waste and recycling policy Kaylee Acuff  

E-Print Network (OSTI)

Greenhouse gas emissions, waste and recycling policy Kaylee Acuff and Daniel T. Kaffine We thank@mines.edu.) 1 #12;Greenhouse gas emissions, waste and recycling policy Abstract This paper examines least-cost policies for waste reduction, incorporating upstream greenhouse gas externalities associated

343

Guide to research facilities  

SciTech Connect

This Guide provides information on facilities at US Department of Energy (DOE) and other government laboratories that focus on research and development of energy efficiency and renewable energy technologies. These laboratories have opened these facilities to outside users within the scientific community to encourage cooperation between the laboratories and the private sector. The Guide features two types of facilities: designated user facilities and other research facilities. Designated user facilities are one-of-a-kind DOE facilities that are staffed by personnel with unparalleled expertise and that contain sophisticated equipment. Other research facilities are facilities at DOE and other government laboratories that provide sophisticated equipment, testing areas, or processes that may not be available at private facilities. Each facility listing includes the name and phone number of someone you can call for more information.

Not Available

1993-06-01T23:59:59.000Z

344

Approach and issues toward development of risk-based release standards for radioactive scrap metal recycle and reuse  

Science Conference Proceedings (OSTI)

The decontamination and decommissioning of nuclear facilities is expected to generate large amounts of slightly radioactive scrap metal (RSM). It is likely that some of these materials will be suitable for recycling and reuse. The amount of scrap steel from DOE facilities, for instance, is estimated to be more than one million tons (Hertzler 1993). However, under current practice and without the establishment of acceptable recycling standards, the RSM would be disposed of primarily as radioactive low-level waste (LLW). In the United States, no specific standards have been developed for the unrestricted release of bulk contaminated materials. Although standards for unrestricted release of radioactive surface contamination (NRC 1974) have existed for about 20 years, the release of materials is not commonly practiced because of the lack of risk-based justifications. Recent guidance from international bodies (IAEA 1988) has established a basis for deriving risk-based release limits for radioactive materials. It is important, therefore, to evaluate the feasibility of recycling and associated issues necessary for the establishment of risk-based release limits for the radioactive metals.

Chen, S.Y.; Nieves, L.A.; Nabelssi, B.K.; LePoire, D.J.

1994-03-01T23:59:59.000Z

345

Treatment or Recycling End-Of-Life (H)EV Battery Packs  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, 2011 TMS Annual Meeting & Exhibition. Symposium , Battery Recycling. Presentation Title, Treatment or Recycling End-Of-Life...

346

EA-1919: Recycle of Scrap Metals Originating from Radiological Areas |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EA-1919: Recycle of Scrap Metals Originating from Radiological EA-1919: Recycle of Scrap Metals Originating from Radiological Areas EA-1919: Recycle of Scrap Metals Originating from Radiological Areas Summary This Programmatic EA evaluates alternatives for the management of scrap metal originating from DOE radiological control areas, including the proposed action to allow for the recycle of uncontaminated scrap metal that meets the requirements of DOE Order 458.1. (Metals with volumetric radioactive contamination are not included in the scope of this Programmatic EA.) PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD December 28, 2012 EA-1919: Notice of Public Comment Period Extension Recycling of Scrap Metals Originating from Radiological Areas December 12, 2012 EA-1919: Notice of Availability of a Draft Programmatic Environmental

347

Magnetic Divertor for Low Plasma Recycling in Tokamaks Ernesto Mazzucato |  

NLE Websites -- All DOE Office Websites (Extended Search)

Magnetic Divertor for Low Plasma Recycling in Tokamaks Ernesto Mazzucato Magnetic Divertor for Low Plasma Recycling in Tokamaks Ernesto Mazzucato Existing experiments indicate that low recycling of exhausted particles can improve the energy confinement in tokamaks, very likely by preventing the cooling of the plasma edge and thereby causing a reduction in the level of plasma turbulence. This can reduce the size of a tokamak fusion reactor, making the latter a more viable source of energy. The necessary conditions for low recycling can be achieved with the use of a new magnetic divertor, where the exhausted particles are injected through a narrow aperture into a large chamber. Exhausting the particles into a large chamber prevents their return to the plasma, resulting in a reduction in plasma recycling to a level where existing experiments have shown a large enhancement in plasma

348

Facilities/Staff Hydrogen  

Science Conference Proceedings (OSTI)

Thermophysical Properties of Hydrogen. FACILITIES and STAFF. The Thermophysical Properties Division is the Nation's ...

349

Facility Representative Program: 2001 Facility Representative Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Facility Representative Workshop 1 Facility Representative Workshop May 15 - 17, 2001 Las Vegas, NV Facility Rep of the Year Award | Attendees list | Summary Report [PDF] WORKSHOP AGENDA Day 1: Tuesday, May 15, 2001 Theme: Program Successes and Challenges 8:00 a.m. - Logistics Announcements & Opening Remarks - Joe Arango, Facility Representative Program Manager 8:15 a.m. - Welcome - Debbie Monette, Assistant Manager for National Security, Nevada Operations Office 8:30 a.m. - Keynote Address - Ralph Erickson, National Nuclear Security Administration 9:00 a.m.- DOE Facility Representative of the Year Presentation - Mark B. Whitaker, Jr., Departmental Representative to the Defense Nuclear Facilities Safety Board 9:30 a.m. - Break 9:50 a.m. - Program Summary - Joe Arango 10:10 a.m. - Management Panel/Questions and Answers

350

Facility Representative Program: 2010 Facility Representative Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

10 Facility Representative Workshop 10 Facility Representative Workshop May 12 - 13, 2010 Las Vegas, NV Facility Rep of the Year Award | Attendees | Summary Report Workshop Agenda and Presentations Day 1: Wednesday, May 12, 2010 8:00 a.m. Opening Remarks James Heffner, Facility Representative Program Manager Earl Hughes, Safety System Oversight Program Manager Office of Nuclear Safety Policy and Assistance Office of Health, Safety and Security 8:15 a.m. Welcome from the Nevada Site Office John Mallin, Deputy Assistant Manager for Site Operations Nevada Site Office 8:30 a.m. Workshop Keynote Address Todd Lapointe Chief of Nuclear Safety Central Technical Authority Staff 9:15 a.m. Facility Representative and Safety System Oversight Award Ceremony James Heffner, Facility Representative Program Manager

351

Facility Representative Program: 2007 Facility Representative Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

7 Facility Representative Workshop 7 Facility Representative Workshop May 15 - 17, 2007 Las Vegas, NV Facility Rep of the Year Award | Attendees list | Summary Report [PDF] WORKSHOP AGENDA Final Day 1: Tuesday, May 15, 2007 8:00 a.m. Opening Remarks Joanne Lorence, Facility Representative Program Manager 8:15 a.m. Welcome from the Nevada Site Office Gerald Talbot, Manager, Nevada Site Office 8:30 a.m. Videotaped Remarks from the Deputy Secretary The Honorable Clay Sell, Deputy Secretary of Energy 8:45 a.m. Keynote Address - Safety Oversight Perspective and Expectations Glenn Podonsky, Chief Health, Safety and Security Officer, Office of Health, Safety and Security 9:10 a.m. Facility Representative of the Year Presentation Mark B. Whitaker, Jr., Departmental Representative to the Defense Nuclear Facilities Safety Board,

352

Tribal Programs, Special Initiatives, and Cooperative Agreements |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Programs, Special Initiatives, and Cooperative Agreements Programs, Special Initiatives, and Cooperative Agreements Tribal Programs, Special Initiatives, and Cooperative Agreements EM is involved in the cleanup of nuclear waste at nationwide sites and facilities. The waste, a result of the production of nuclear weapons, has affected sovereign Tribal nations located near these facilities. These Tribal nations have been impacted by different types of waste contamination, and their participation in the EM mission is critical. Special Initiatives The Department and the Tribes have engaged in a wide range of issues under established cooperative agreements. The projects initiated by DOE and the Tribes are meeting the Department's two-fold mission of cleaning up America's environmental legacy and addressing environmental concerns for

353

Recycling of Lithium-Ion Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

B. Dunn B. Dunn Center for Transportation Research Argonne National Laboratory Recycling of Lithium-Ion Batteries Plug-In 2013 San Diego, CA October 2, 2013 The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government.

354

Recycling technologies and market opportunities: Proceedings  

SciTech Connect

These proceedings are the result of our collective effort to meet that challenge. They reflect the dedication and commitment of many people in government, academia, the private sector and national laboratories to finding practical solutions to one of the most pressing problems of our time -- how to deal effectively with the growing waste s that is the product of our affluent industrial society. The Conference was successful in providing a clear picture of the scope of the problem and of the great potential that recycling holds for enhancing economic development while at the same time, having a significant positive impact on the waste management problem. That success was due in large measure to the enthusiastic response of our panelists to our invitation to participate and share their expertise with us.

Goland, A.N.; Petrakis, L. [eds.

1993-09-20T23:59:59.000Z

355

CO2 Sequestration and Recycle by Photosynthesis  

DOE Green Energy (OSTI)

Visible light-photocatalysis could provide a cost-effective route to recycle CO2 to useful chemicals or fuels. Research is planned to study the reactivity of adsorbates, their role in the photosynthesis reaction, and their relation to the nature of surface sites during photosynthesis of methanol and hydrocarbons from CO{sub 2}/H{sub 2}O. The year two research focus catalyst screening and IR studies. Key research results show Pd/TiO2 exhibits the highest activity for hydrocarbon synthesis from photocatalytic reactions. The in situ IR could successfully monitor the adsorbate hydrocarbon species on Cu/TiO2. Year III research will focus on developing a better understanding of the key factors which control the catalyst activity.

Steven S.C. Chuang

2004-02-01T23:59:59.000Z

356

THE INTEGRATED EQUIPMENT TEST FACILITY AT OAK RIDGE AS A NONPROLIFERATION TEST LOOP  

Science Conference Proceedings (OSTI)

The apparent renaissance in nuclear power has resulted in a new focus on nonproliferation measures. There is a lot of activity in development of new measurement technologies and methodologies for nonproliferation assessment. A need that is evolving in the United States is for facilities and test loops for demonstration of new technologies. In the late 1970s, the Fuel Recycle Division at Oak Ridge National Laboratory (ORNL) was engaged in advanced reprocessing technology development. As part of the program, the Integrated Equipment Test (IET) facility was constructed as a test bed for advanced technology. The IET was a full-scale demonstration facility, operable on depleted uranium, with a throughput capacity for 0.5 Mt/d. At the front end, the facility had a feed surge vessel, input accountability tank, and feed vessel for the single cycle of solvent extraction. The basic solvent extraction system was configured to use centrifugal contactors for extraction and scrub and a full-size pulsed column for strip. A surge tank received the solvent extraction product solution and fed a continuous operating thermo-syphon-type product evaporator. Product receiving and accountability vessels were available. Feed material could be prepared using a continuous rotary dissolve or by recycling the product with adjustment as new feed. Continuous operations 24/7 could be realized with full chemical recovery and solvent recycle systems in operation. The facility was fully instrumented for process control and operation, and a full solution monitoring application had been implemented for safeguards demonstrations, including actual diversion tests for sensitivity evaluation. A significant effort for online instrument development was a part of the program at the time. The fuel recycle program at Oak Ridge ended in the early 1990s, and the IET facility was mothballed. However, the equipment and systems remain and could be returned to service to support nonproliferation demonstrations. This paper discusses the status of the facility and operations.

Ehinger, Michael H [ORNL

2010-01-01T23:59:59.000Z

357

Facility Representative Program: 2008 Facility Representative...  

NLE Websites -- All DOE Office Websites (Extended Search)

Sherman Chao, LSO Conduct of Operations Improvements at K Basins Dennis Humphreys, RL Molten Salt Reactor Experiment (MSRE) facility lessons learned Charlie Wright, ORO...

358

Facility Representative Program: 2005 Facility Representative...  

NLE Websites -- All DOE Office Websites (Extended Search)

Sharing of Good Practices and Lessons Learned (4) Inadvertent Startup of Electric Centrifuge at the Weapon Evaluation Test Lab Joyce Arviso-Benally, SSO Facility Rep...

359

Facility Representative Program: 2012 Facility Representative...  

NLE Websites -- All DOE Office Websites (Extended Search)

18, 2012 Las Vegas, NV Agenda | Presentations | SSO Annual Award | Pictures | Summary Report 2011 Facility Representative of the Year Award 2011 WINNER: Congratulations to Bradley...

360

Gunite and associated tanks remediation project recycling and waste minimization effort  

SciTech Connect

The Department of Energy`s Environmental Management Program at Oak Ridge National Laboratory has initiated clean up of legacy waste resulting from the Manhattan Project. The gunite and associated tanks project has taken an active pollution prevention role by successfully recycling eight tons of scrap metal, reusing contaminated soil in the Area of Contamination, using existing water (supernate) to aid in sludge transfer, and by minimizing and reusing personal protective equipment (PPE) and on-site equipment as much as possible. Total cost savings for Fiscal Year 1997 activities from these efforts are estimated at $4.2 million dollars.

Van Hoesen, S.D.; Saunders, A.D.

1998-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "facilities initiatives recycling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Recycle of Zirconium from Used Nuclear Fuel Cladding: A Major Element of Waste Reduction  

SciTech Connect

Feasibility tests were initiated to determine if the zirconium in commercial used nuclear fuel (UNF) cladding can be recovered in sufficient purity to permit re-use, and if the recovery process can be operated economically. Initial tests are being performed with unirradiated, non-radioactive samples of various types of Zircaloy materials that are used in UNF cladding to develop the recovery process and determine the degree of purification that can be obtained. Early results indicate that quantitative recovery can be accomplished and product contamination with alloy constituents can be controlled sufficiently to meet purification requirements. Future tests with actual radioactive UNF cladding are planned. The objective of current research is to determine the feasibility of recovery and recycle of zirconium from used fuel cladding wastes. Zircaloy cladding, which contains 98+% of hafnium-free zirconium, is the second largest mass, on average {approx}25 wt %, of the components in used U.S. light-water-reactor fuel assemblies. Therefore, recovery and recycle of the zirconium would enable a large reduction in geologic waste disposal for advanced fuel cycles. Current practice is to compact or grout the cladding waste and store it for subsequent disposal in a geologic repository. This paper describes results of initial tests being performed with unirradiated, non-radioactive samples of various types of Zircaloy materials that are used in UNF cladding to develop the recovery process and determine the degree of purification that can be obtained. Future tests with actual radioactive UNF cladding are planned.

Collins, Emory D [ORNL; DelCul, Guillermo D [ORNL; Terekhov, Dmitri [ORNL; Emmanuel, N. V. [Chemical Vapor Metal Refining, Inc.

2011-01-01T23:59:59.000Z

362

Asset Revitalization Initiative | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Asset Revitalization Initiative Asset Revitalization Initiative The Asset Revitalization Initiative (ARI) focuses on communicating past efforts and lessons learned from DOE’s long history of asset revitalization and focus current and future efforts to improve the efficiency and effectiveness of future land, asset and facility transfer and beneficial reuse. Since the 1950’s, DOE and its predecessor agencies have completed over 200 transfers of approximately 200,000 acres of land, facilities and other assets for beneficial reuse, including excess fire stations, water treatment plants, water production facilities and other land, assets and facilities that local communities are using to support their civic, economic and social needs. DOE has already supported the cleanup and closure of approximately 90 sites that were involved in US nuclear weapons development and many of these sites are in beneficial reuse. Additional departmental efforts to consolidate mission areas, sites and facilities and reduce the overall operational footprint of the DOE complex across the country will make additional land, assets and facilities available for beneficial reuse.

363

Model institutional infrastructures for recycling of photovoltaic modules  

DOE Green Energy (OSTI)

This paper describes model approaches to designing an institutional infrastructure for the recycling of decommissioned photovoltaic modules; more detailed discussion of the information presented in this paper is contained in Reaven et al., (1996)[1]. The alternative approaches are based on experiences in other industries, with other products and materials. In the aluminum, scrap iron, and container glass industries, where recycling is a long-standing, even venerable practice, predominantly private, fully articulated institutional infrastructures exist. Nevertheless, even in these industries, arrangements are constantly evolving in response to regulatory changes, competition, and new technological developments. Institutional infrastructures are less settled for younger large- scale recycling industries that target components of the municipal solid waste (MSW) stream, such as cardboard and newspaper, polyethylene terephthalate (PET) and high-density polyethylene (HDPE) plastics, and textiles. In these industries the economics, markets, and technologies are rapidly changing. Finally, many other industries are developing projects to ensure that their products are recycled (and recyclable) e.g., computers, non-automotive batteries, communications equipment, motor and lubrication oil and oil filters, fluorescent lighting fixtures, automotive plastics and shredder residues, and bulk industrial chemical wastes. The lack of an an adequate recycling infrastructure, attractive end-markets, and clear the economic incentives, can be formidable impediments to a self- sustaining recycling system.

Moscowitz, P.D.; Reaven, J.; Fthenakis, V.M.

1996-07-01T23:59:59.000Z

364

Outlook for recycling large and small batteries in the future  

Science Conference Proceedings (OSTI)

Although there are many kinds and varieties of batteries, batteries can be subdivided into two basic types, large lead-acid batteries and small disposable batteries. Small cells contain different metals depending upon the configuration. These materials include iron, zinc, nickel, cadmium, manganese, mercury, silver, and potassium. Recycling these materials is not economically attractive. Most small batteries are thrown away and constitute a small fraction of municipal solid waste (perhaps 1/10%). There is no effective energy savings or economic incentive for recycling and, with the exception of Ni-Cad batteries, no significant environmental incentive. Any recycle scheme would require a significant reward (probably financial) to the consumer for returning the scrap battery. Without a reward, recovery is unlikely. Large batteries of the lead-acid type are composed of lead, acid, and plastic. There is an established recycle mechanism for lead-acid batteries which works quite well. The regulations written under the Hazardous and Solid Waste Disposal Amendments (1985) favor more recycling efforts by scrap metal operators. The reason for this is that recycled batteries are exempt from EPA regulation. If batteries are not recycled, any generator disposing of 6 or more batteries per month is required to have a special EPA license or premit. Currently, working against this incentive is a decreasing demand and low market price for lead which affects waste battery salvage.

Dodds, J.; Goldsberry, J.

1986-03-01T23:59:59.000Z

365

NREL: Photovoltaics Research - Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Facilities Facilities NREL's world-class research facilities provide the venue for innovative advances in photovoltaic technologies and applications. These facilities within the National Center for Photovoltaics (NCPV) serve both multi-use and dedicated-use functions. We encourage our research colleagues in industry, universities, and other laboratories to pursue opportunities in working with our staff in these facilities. Dedicated-Use Facilities Photo of a red-hot coil glowing inside a round machine. Research within these facilities focuses on targeted areas of interest that require specific tools, techniques, or unique capabilities. Our two main dedicated-use facilities are the following: Outdoor Test Facility (OTF) OTF researchers study and evaluate advanced or emerging PV technologies

366

Municipal Waste Planning, Recycling and Waste Reduction Act (Pennsylvania)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Municipal Waste Planning, Recycling and Waste Reduction Act Municipal Waste Planning, Recycling and Waste Reduction Act (Pennsylvania) Municipal Waste Planning, Recycling and Waste Reduction Act (Pennsylvania) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Pennsylvania Program Type Environmental Regulations

367

Alabama Land Recycling And Economic Redevelopment Act (Alabama) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Land Recycling And Economic Redevelopment Act (Alabama) Land Recycling And Economic Redevelopment Act (Alabama) Alabama Land Recycling And Economic Redevelopment Act (Alabama) < Back Eligibility Commercial Construction Developer Industrial Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Alabama Program Type Environmental Regulations Provider Department of Environmental Management This article establishes a program, to be implemented, maintained, and administered by the Alabama Department of Environmental Management, to encourage the voluntary cleanup and the reuse and redevelopment of environmentally contaminated properties. The article states criteria for applicant participation and property qualification in the voluntary cleanup

368

Iowa Land Recycling and Environmental Remediation Standards Act (Iowa) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Iowa Land Recycling and Environmental Remediation Standards Act Iowa Land Recycling and Environmental Remediation Standards Act (Iowa) Iowa Land Recycling and Environmental Remediation Standards Act (Iowa) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Iowa Program Type Environmental Regulations Provider Iowa Department of Natural Resources

369

Municipal Waste Planning, Recycling and Waste Reduction Act (Pennsylvania)  

Open Energy Info (EERE)

Waste Planning, Recycling and Waste Reduction Act (Pennsylvania) Waste Planning, Recycling and Waste Reduction Act (Pennsylvania) No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Last modified on February 13, 2013. EZFeed Policy Place Pennsylvania Name Municipal Waste Planning, Recycling and Waste Reduction Act (Pennsylvania) Policy Category Other Policy Policy Type Environmental Regulations Affected Technologies Biomass/Biogas, Coal with CCS, Concentrating Solar Power, Energy Storage, Fuel Cells, Geothermal Electric, Hydroelectric, Hydroelectric (Small), Natural Gas, Nuclear, Solar Photovoltaics, Wind energy Active Policy Yes Implementing Sector State/Province Program Administrator Pennsylvania Department of Environmental Protection

370

Facility Representative Program: Facility Representative Program Sponsors  

NLE Websites -- All DOE Office Websites (Extended Search)

Facility Representative Program Sponsors Facility Representative Program Sponsors There are 29 Facility Representative Program Sponsors Office Name Title E-Mail Phone ASO Larry Pendexter ES&H Div Dir (Argonne) larry.pendexter@ch.doe.gov 630-252-1485 BHSO Bob Desmarais Operations Management Division Director desmarai@bnl.gov 631-344-5434 CBFO Glenn Gamlin Facility Representative Supervisor glenn.gamlin@wipp.ws 575-234-8136 CBFO Casey Gadbury Operations Manager casey.gadbury@wipp.ws 575-234-7372 FSO Mark Bollinger Deputy Manager Mark.Bollinger@ch.doe.gov 630-840-8130 FSO John Scott FR Team Lead john.scott@ch.doe.gov 630-840-2250 HS-30 James O'Brien Director, Office of Nuclear Safety James.O'Brien@hq.doe.gov 301-903-1408 HS-32 Earl Hughes Facility Representative Program Manager Earl.Hughes@hq.doe.gov 202-586-0065

371

User Facilities | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

USER PORTAL USER PORTAL BTRICBuilding Technologies Research Integration Center CNMSCenter for Nanophase Materials Sciences CSMBCenter for Structural Molecular Biology CFTFCarbon Fiber Technology Facility HFIRHigh Flux Isotope Reactor MDF Manufacturing Demonstration Facility NTRCNational Transportation Research Center OLCFOak Ridge Leadership Computing Facility SNSSpallation Neutron Source Keeping it fresh at the Spallation Neutron Source Nanophase material sciences' nanotech toolbox Home | User Facilities SHARE ORNL User Facilities ORNL is home to a number of highly sophisticated experimental user facilities that provide unmatched capabilities to the broader scientific community, including a growing user community from universities, industry, and other laboratories research institutions, as well as to ORNL

372

Army Energy Initiatives Task Force  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

UNCLASSIFIED UNCLASSIFIED Army Energy Initiatives Task Force Kathy Ahsing Director, Planning and Development UNCLASSIFIED 2 Perfect Storm UNCLASSIFIED 3 U.S. Army Energy Consumption, 2010 23% 77% 42% 58%  Facilities  Vehicles & Equipment (Tactical and Non-tactical) Sources: Energy Information Agency, 2010 Annual Energy Review; Agency Annual Energy Management Data Reports submitted to DOE's Federal Energy Management Program (Preliminary FY 2010) 32% 68% DoD 80% Army 21% Federal Gov 1% Federal Government United States Department of Defense U.S. = 98,079 Trillion Btu DoD = 889 Trillion Btu Fed Gov = 1,108 Trillion Btu U.S. Army = 189 Trillion Btu FY10 Highlights - $2.5+B Operational Energy Costs - $1.2 B Facility Energy Costs

373

RCRA Waste Minimization and Recycling Initiatives at the Health Center (Rev. 12/09)  

E-Print Network (OSTI)

of a spill. The Office of Research Safety submitted samples of "typical" dental amalgam for TCLP testing. The TCLP test results indicated that amalgam is not a hazardous waste viewed from the RCRA definition

Kim, Duck O.

374

Vehicle Technologies Office: Fact #434: July 24, 2006 Scrap Tire Recycling  

NLE Websites -- All DOE Office Websites (Extended Search)

4: July 24, 2006 4: July 24, 2006 Scrap Tire Recycling to someone by E-mail Share Vehicle Technologies Office: Fact #434: July 24, 2006 Scrap Tire Recycling on Facebook Tweet about Vehicle Technologies Office: Fact #434: July 24, 2006 Scrap Tire Recycling on Twitter Bookmark Vehicle Technologies Office: Fact #434: July 24, 2006 Scrap Tire Recycling on Google Bookmark Vehicle Technologies Office: Fact #434: July 24, 2006 Scrap Tire Recycling on Delicious Rank Vehicle Technologies Office: Fact #434: July 24, 2006 Scrap Tire Recycling on Digg Find More places to share Vehicle Technologies Office: Fact #434: July 24, 2006 Scrap Tire Recycling on AddThis.com... Fact #434: July 24, 2006 Scrap Tire Recycling The recycling of scrap tires has come a long way in the last decade. In 1990, only 11% of the tires that were scrapped were recycled or reused, but

375

Considerations in the recycling of urban parking garages  

E-Print Network (OSTI)

Because of the decreasing use of private automobiles in city centers and because of usual development pressures, some urban parking garages will become available for replacement or recycling. The choice between replacement ...

Paul, Michael Johannes

1981-01-01T23:59:59.000Z

376

Impact of Atmospheric Moisture Storage on Precipitation Recycling  

Science Conference Proceedings (OSTI)

Computations of precipitation recycling using analytical models are generally performed under the assumption of negligible change in moisture storage in the atmospheric column. Because the moisture storage term is nonnegligible at smaller time ...

Francina Dominguez; Praveen Kumar; Xin-Zhong Liang; Mingfang Ting

2006-04-01T23:59:59.000Z

377

Site Recycles Millions of Pounds of Metal | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Recycles Millions of Pounds of Metal Recycles Millions of Pounds of Metal Site Recycles Millions of Pounds of Metal May 30, 2013 - 12:00pm Addthis The Portsmouth site worked with two regional companies and local law enforcement to arrange transportation of 10 massive synchronous condensers as part of an asset recovery effort. The Portsmouth site worked with two regional companies and local law enforcement to arrange transportation of 10 massive synchronous condensers as part of an asset recovery effort. PIKETON, Ohio - The EM program at the Portsmouth site and its contractor, Fluor-B&W Portsmouth, recycled millions of pounds of metal from the demolition of an electrical switchyard that served the former gaseous diffusion plant. The effort at the Portsmouth site diverted more than 4 million pounds of

378

Site Recycles Millions of Pounds of Metal | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Site Recycles Millions of Pounds of Metal Site Recycles Millions of Pounds of Metal Site Recycles Millions of Pounds of Metal May 30, 2013 - 12:00pm Addthis The Portsmouth site worked with two regional companies and local law enforcement to arrange transportation of 10 massive synchronous condensers as part of an asset recovery effort. The Portsmouth site worked with two regional companies and local law enforcement to arrange transportation of 10 massive synchronous condensers as part of an asset recovery effort. PIKETON, Ohio - The EM program at the Portsmouth site and its contractor, Fluor-B&W Portsmouth, recycled millions of pounds of metal from the demolition of an electrical switchyard that served the former gaseous diffusion plant. The effort at the Portsmouth site diverted more than 4 million pounds of

379

Renewable and Recycled Energy Objective | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable and Recycled Energy Objective Renewable and Recycled Energy Objective Renewable and Recycled Energy Objective < Back Eligibility Investor-Owned Utility Municipal Utility Rural Electric Cooperative Savings Category Bioenergy Buying & Making Electricity Water Alternative Fuel Vehicles Hydrogen & Fuel Cells Solar Wind Program Info State North Dakota Program Type Renewables Portfolio Standard Provider North Dakota Public Service Commission In March 2007, the North Dakota enacted legislation (H.B. 1506) establishing an ''objective'' that 10% of all retail electricity sold in the state be obtained from renewable energy and recycled energy by 2015. The objective must be measured by qualifying megawatt-hours (MWh) delivered at retail, or by credits purchased and retired to offset non-qualifying

380

High-grade paper recycling: A program management perspective  

Science Conference Proceedings (OSTI)

Recycling of high-grade paper is one method of reducing the use of natural resources and the amount of waste being emitted into the environment, both in the process of manufacturing and in the disposal of unneeded documents. The Air Force Materiel Command (AFMC) is a significant user of high-grade paper, thus recycling represents a potential saving to society in the form of lessened negative impact on the environment as the result of AFMC operations. The possibility also exists for AFMC to reduce operating costs. The purpose of this study is to explore means of reducing high-grade paper disposal by AFMC, examine program management of high-grade paper recycling by AFMC, and apply effective program management processes to the AFMC high-grade paper recycling program.

Carter, R.L.

1999-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "facilities initiatives recycling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Strategies for aluminum recycling : insights from material system optimization  

E-Print Network (OSTI)

The dramatic increase in aluminum consumption over the past decades necessitates a societal effort to recycle and reuse these materials to promote true sustainability and energy savings in aluminum production. However, the ...

Li, Preston Pui-Chuen

2005-01-01T23:59:59.000Z

382

Applications of industrial ecology : manufacturing, recycling, and efficiency  

E-Print Network (OSTI)

This work applies concepts from industrial ecology to analyses of manufacturing, recycling, and efficiency. The first part focuses on an environmental analysis of machining, with a specific emphasis on energy consumption. ...

Dahmus, Jeffrey B. (Jeffrey Brian), 1974-

2007-01-01T23:59:59.000Z

383

Demolitions Produce Recyclable Materials for Organization Promoting Economic Activity  

Energy.gov (U.S. Department of Energy (DOE))

Demolitions have helped generate more than 8 million pounds of metal at the Piketon site for recycling, further promoting economic activity in the region thanks to the American Recovery and...

384

Precipitation Recycling: Moisture Sources over Europe using ERA-40 Data  

Science Conference Proceedings (OSTI)

Atmospheric moisture within a region is supplied by both local evaporation and advected from external sources. The contribution of local evaporation in a region to the precipitation in the same region is defined as precipitation recycling. ...

B. Bisselink; A. J. Dolman

2008-10-01T23:59:59.000Z

385

Renewable, Recycled and Conserved Energy Objective (South Dakota...  

Open Energy Info (EERE)

(HB 1123) establishing an objective that 10% of all retail electricity sales in the state be obtained from renewable and recycled energy by 2015. In March 2009, this policy was...

386

Use of recycled materials in highway construction. Final report  

SciTech Connect

The major objectives of this study were to examine: (1) the types of recycled materials that are appropriate and feasible as alternative paving materials, such as glass and tires; and (2) the types of recycled materials, such as mixed-plastics and compost, that can be utilized in all types of transportation applications other than pavements. Seven key products are investigated: (1) tires, (2) glass, (3) asphalt concrete, (4) fly ash, (5) compost, (6) mixed plastics, and (7) aluminum sign stock. Performance and cost data for rubber-asphalt pavements is documented for both in-state and nationwide applications. The national experience with the use of waste glass as an additive to asphalt concrete and its use in unbound base materials is also highlighted. Programs for experimental use of recycled materials are outlined. Recommendations for staffing and program changes to deal with recycling issues are also discussed.

Swearingen, D.L.; Jackson, N.C.; Anderson, K.W.

1992-02-01T23:59:59.000Z

387

Material Recovery and Recycling - Not an Option, But a Prerequisite ...  

Science Conference Proceedings (OSTI)

Inorganic materials are non-renewable; one would expect that appropriate design, ... (ii) designing recycling processes that are more energy efficient; (iii) develop ... Fuel Use Reduction and Lower Emissions Using Rugged, Verifiable, In-Situ...

388

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

October 15, 2005 [Facility News] October 15, 2005 [Facility News] Room to Share-New Guest Facility Ready for Users at North Slope of Alaska Bookmark and Share In September, installation was completed on the new Guest Instrument Facility in Barrow to provide additional space and ease crowded conditions. In September, installation was completed on the new Guest Instrument Facility in Barrow to provide additional space and ease crowded conditions. To alleviate crowded conditions at its research facilities on the North Slope of Alaska (NSA) site in Barrow, ARM operations staff recently completed the installation of a new Guest Instrument Facility. Similar to the platform at the Atqasuk site, the facility consists of two insulated shipping containers mounted on pilings, with a mezzanine to accommodate

389

NREL: Wind Research - Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Facilities Facilities Our facilities are designed to meet the wind industry's critical research needs with state-of-the-art design and testing facilities. NREL's unique and highly versatile facilities at the National Wind Technology Center offer research and analysis of wind turbine components and prototypes rated from 400 watts to 3 megawatts. Satellite facilities support the growth of wind energy development across the United States. National Wind Technology Center Facilities Our facilities are contained within a 305-acre area that comprises field test sites, test laboratories, industrial high-bay work areas, machine shops, electronics and instrumentation laboratories, and office areas. In addition, there are hundreds of test articles and supporting components such as turbines, meteorological towers, custom test apparatus, test sheds,

390

FACET User Facility  

NLE Websites -- All DOE Office Websites

AD SLACPortal > Accelerator Research Division > FACET User Facility AD SLACPortal > Accelerator Research Division > FACET User Facility Sign In Launch the Developer Dashboard SLAC National Accelerator Laboratory DOE | Stanford | SLAC | SSRL | LCLS | AD | PPA | Photon Science | PULSE | SIMES FACET User Facility : FACET An Office of Science User Facility Search this site... Search Help (new window) Top Link Bar FACET User Facility FACET Home About FACET FACET Experimental Facilities FACET Users Research at FACET SAREC Expand SAREC FACET FAQs FACET User Facility Quick Launch FACET Users Home FACET Division ARD Home About FACET FACET News FACET Users FACET Experimental Facilities FACET Research Expand FACET Research FACET Images Expand FACET Images SAREC Expand SAREC FACET Project Site (restricted) FACET FAQs FACET Site TOC All Site Content

391

Government Facilities Segment Analysis  

Science Conference Proceedings (OSTI)

Federal, state, and local governments own or lease an estimated 1.2 million buildings and facilities in the United States. These facilities are an important -- and often overlooked -- customer segment for all energy and energy service providers.

1998-12-19T23:59:59.000Z

392

Geothermal component test facility  

DOE Green Energy (OSTI)

A description is given of the East Mesa geothermal facility and the services provided. The facility provides for testing various types of geothermal energy-conversion equipment and materials under field conditions using geothermal fluids from three existing wells. (LBS)

Not Available

1976-04-01T23:59:59.000Z

393

Safety analysis of IFR fuel processing in the Argonne National Laboratory Fuel Cycle Facility  

SciTech Connect

The Integral Fast Reactor (IFR) concept developed by Argonne National Laboratory (ANL) includes on-site processing and recycling of discharged core and blanket fuel materials. The process is being demonstrated in the Fuel Cycle Facility (FCF) at ANL`s Idaho site. This paper describes the safety analyses that were performed in support of the FCF program; the resulting safety analysis report was the vehicle used to secure authorization to operate the facility and carry out the program, which is now under way. This work also provided some insights into safety-related issues of a commercial IFR fuel processing facility. These are also discussed.

Charak, I; Pedersen, D.R. [Argonne National Lab., IL (United States); Forrester, R.J.; Phipps, R.D. [Argonne National Lab., Idaho Falls, ID (United States)

1993-09-01T23:59:59.000Z

394

Supercomputing | Facilities | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Primary Systems Infrastructure High Performance Storage Supercomputing and Computation Home | Science & Discovery | Supercomputing and Computation | Facilities and Capabilities...

395

Idaho Site Nuclear Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Site Nuclear Facilities Idaho Idaho National Laboratorys (INL) Idaho Closure Project (ICP) This page was last updated on May 16...

396

MML Microscopy Facility  

Science Conference Proceedings (OSTI)

The MML Electron Microscopy Facility consists of three transmission electron microscopes (TEM), three scanning electron microscopes (SEM), a ...

2013-06-11T23:59:59.000Z

397

Photon Sciences | Navigation | Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Facilities NSLS About NSLS Accelerator Activity Report Experimental Systems Machine Status & History Operations & Engineering Operating Schedules Ring Parameters NSLS Ops:...

398

Facilities and Instruments  

Science Conference Proceedings (OSTI)

... The EL Facilities listed here are available for cooperative or independent research, typically on a cost reimbursable basis. ...

2013-03-12T23:59:59.000Z

399

Method of recycling lithium borate to lithium borohydride through diborane  

DOE Patents (OSTI)

This invention provides a method for the recycling of lithium borate to lithium borohydride which can be reacted with water to generate hydrogen for utilization as a fuel. The lithium borate by-product of the hydrogen generation reaction is reacted with hydrogen chloride and water to produce boric acid and lithium chloride. The boric acid and lithium chloride are converted to lithium borohydride through a diborane intermediate to complete the recycle scheme.

Filby, Evan E. (Rigby, ID)

1976-01-01T23:59:59.000Z

400

Automobile shredder residue: Process developments for recovery of recyclable constituents  

SciTech Connect

The objectives of this paper are threefold: (1) to briefly outline the structure of the automobile shredder industry as a supplier of ferrous scrap, (2) to review the previous research that has been conducted for recycling automobile shredder residue (ASR), and (3) to present the results and implications of the research being conducted at ANL on the development of a process for the selective recovery and recycling of the thermoplastics content of ASR. 15 refs., 5 figs.

Daniels, E.J.; Jody, B.J.; Bonsignore, P.V.; Shoemaker, E.L.

1990-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "facilities initiatives recycling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Naval Station Newport Wind Resource Assessment. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites, and The Naval Facilities Engineering Service Center  

DOE Green Energy (OSTI)

The U.S. Environmental Protection Agency (EPA) launched the RE-Powering America's Land initiative to encourage development of renewable energy (RE) on potentially contaminated land and mine sites. EPA is collaborating with the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) to evaluate RE options at Naval Station (NAVSTA) Newport in Newport, Rhode Island where multiple contaminated areas pose a threat to human health and the environment. Designated a superfund site on the National Priorities List in 1989, the base is committed to working toward reducing the its dependency on fossil fuels, decreasing its carbon footprint, and implementing RE projects where feasible. The Naval Facilities Engineering Service Center (NFESC) partnered with NREL in February 2009 to investigate the potential for wind energy generation at a number of Naval and Marine bases on the East Coast. NAVSTA Newport was one of several bases chosen for a detailed, site-specific wind resource investigation. NAVSTA Newport, in conjunction with NREL and NFESC, has been actively engaged in assessing the wind resource through several ongoing efforts. This report focuses on the wind resource assessment, the estimated energy production of wind turbines, and a survey of potential wind turbine options based upon the site-specific wind resource.

Robichaud, R.; Fields, J.; Roberts, J. O.

2012-02-01T23:59:59.000Z

402

Integrated demonstration of molten salt oxidation with salt recycle for mixed waste treatment  

Science Conference Proceedings (OSTI)

Molten Salt Oxidation (MSO) is a thermal, nonflame process that has the inherent capability of completely destroying organic constituents of mixed wastes, hazardous wastes, and energetic materials while retaining inorganic and radioactive constituents in the salt. For this reason, MSO is considered a promising alternative to incineration for the treatment of a variety of organic wastes. Lawrence Livermore National Laboratory (LLNL) has prepared a facility and constructed an integrated pilot-scale MSO treatment system in which tests and demonstrations are performed under carefully controlled (experimental) conditions. The system consists of a MSO processor with dedicated off-gas treatment, a salt recycle system, feed preparation equipment, and equipment for preparing ceramic final waste forms. This integrated system was designed and engineered based on laboratory experience with a smaller engineering-scale reactor unit and extensive laboratory development on salt recycle and final forms preparation. In this paper we present design and engineering details of the system and discuss its capabilities as well as preliminary process demonstration data. A primary purpose of these demonstrations is identification of the most suitable waste streams and waste types for MSO treatment.

Hsu, P.C.

1997-11-01T23:59:59.000Z

403

Minimizing Waste from the Oil Industry: Scale Treatment and Scrap Recycling  

SciTech Connect

Naturally occurring radioactive material is technologically concentrated in the piping in systems in the oil and gas industry, especially in the offshore facilities. The activity, mainly Ra-226, in the scales in the systems are often at levels classified as low level radioactive waste (LSA) in the industry. When the components and pipes are descaled for maintenance or recycling purposes, usually by high-pressure water jetting, the LSA scales arising constitute a significant quantity of radioactive waste for disposal. A new process is under development for the treatment of scales, where the radioactive solids are separated from the inactive. This would result in a much smaller fraction to be deposited as radioactive waste. The radioactive part recovered from the scales will be reduced to a stable non-metallic salt and because the volume is significantly smaller then the original material, will minimize the cost for disposal. The pipes, that have been cleaned by high pressure water jetting can either be reused or free released by scrapping and melting for recycling.

Lindberg, M.

2002-02-26T23:59:59.000Z

404

Examination of pulverized waste recycled glass as filter media in slow sand filtration. Final report  

SciTech Connect

The purpose of this study was to investigate the pulverization of waste recycled glass to produce glass sand for slow sand filters. Pulverization experiments were performed using a fail mill pulverizer. The glass sand product from the pulverizer meets the size distribution requirements of ASTM-C-33 without size distribution adjustment. The size distribution must be adjusted to meet the grain size distribution requirements of the Ten States Standards and the USEPA for filter media used in slow sand filters. Pulverized glass that meet slow sand filter media specifications is an effective alternative to silica sand as a filter media for slow sand filtration. Three pilot plant slow sand filters with glass sand filter media were compared to a fourth filter containing silica sand filter media. Over an 8 month period of continuous operation, the performance of the glass sand filter media was as good or better than the silica sands, with removals of 56% to 96% for turbidity; 99.78% to 100.0% for coliform bacteria; 99.995% to 99.997% for giardia cysts; 99.92% and 99.97% for cryptosporidium oocysts. Based on a cost-benefit analysis, converting waste glass into filter media may be economically advantageous for recycling facilities.

Piccirillo, J.B.; Letterman, R.D.

1997-10-01T23:59:59.000Z

405

System Design Description and Requirements for Modeling the Off-Gas Systems for Fuel Recycling Facilities  

Science Conference Proceedings (OSTI)

This document provides descriptions of the off-gases evolved during spent nuclear fuel processing and the systems used to capture the gases of concern. Two reprocessing techniques are discussed, namely aqueous separations and electrochemical (pyrochemical) processing. The unit operations associated with each process are described in enough detail so that computer models to mimic their behavior can be developed. The document also lists the general requirements for the desired computer models.

Daryl R. Haefner; Jack D. Law; Troy J. Tranter

2010-08-01T23:59:59.000Z

406

Design of a Materials Recovery Facility (MRF) For Processing the Recyclable Materials of  

E-Print Network (OSTI)

in soil and water. Pathogenic micro-organisms detected were of the opportunistic type i.e. they are most should include a toe cut-out to account for proper sorter posture. The toe cut-out dimensions should training · Baler training .. · Sorter operations · Quality control · Mobile equipment operations

Columbia University

407

Sustainable recycling of municipal solid waste in developing countries  

SciTech Connect

This research focuses on recycling in developing countries as one form of sustainable municipal solid waste management (MSWM). Twenty-three case studies provided municipal solid waste (MSW) generation and recovery rates and composition for compilation and assessment. The average MSW generation rate was 0.77 kg/person/day, with recovery rates from 5-40%. The waste streams of 19 of these case studies consisted of 0-70% recyclables and 17-80% organics. Qualitative analysis of all 23 case studies identified barriers or incentives to recycling, which resulted in the development of factors influencing recycling of MSW in developing countries. The factors are government policy, government finances, waste characterization, waste collection and segregation, household education, household economics, MSWM (municipal solid waste management) administration, MSWM personnel education, MSWM plan, local recycled-material market, technological and human resources, and land availability. Necessary and beneficial relationships drawn among these factors revealed the collaborative nature of sustainable MSWM. The functionality of the factor relationships greatly influenced the success of sustainable MSWM. A correlation existed between stakeholder involvement and the three dimensions of sustainability: environment, society, and economy. The only factors driven by all three dimensions (waste collection and segregation, MSWM plan, and local recycled-material market) were those requiring the greatest collaboration with other factors.

Troschinetz, Alexis M. [Department of Civil and Environmental Engineering, Sustainable Futures Institute, Michigan Technological University, 1400 Townsend Dr., Houghton, MI 49931 (United States)], E-mail: alexis_troschinetz@yahoo.com; Mihelcic, James R. [Department of Civil and Environmental Engineering, Sustainable Futures Institute, Michigan Technological University, 1400 Townsend Dr., Houghton, MI 49931 (United States)

2009-02-15T23:59:59.000Z

408

Duality and Recycling Computing in Quantum Computers  

E-Print Network (OSTI)

Quantum computer possesses quantum parallelism and offers great computing power over classical computer \\cite{er1,er2}. As is well-know, a moving quantum object passing through a double-slit exhibits particle wave duality. A quantum computer is static and lacks this duality property. The recently proposed duality computer has exploited this particle wave duality property, and it may offer additional computing power \\cite{r1}. Simply put it, a duality computer is a moving quantum computer passing through a double-slit. A duality computer offers the capability to perform separate operations on the sub-waves coming out of the different slits, in the so-called duality parallelism. Here we show that an $n$-dubit duality computer can be modeled by an $(n+1)$-qubit quantum computer. In a duality mode, computing operations are not necessarily unitary. A $n$-qubit quantum computer can be used as an $n$-bit reversible classical computer and is energy efficient. Our result further enables a $(n+1)$-qubit quantum computer to run classical algorithms in a $O(2^n)$-bit classical computer. The duality mode provides a natural link between classical computing and quantum computing. Here we also propose a recycling computing mode in which a quantum computer will continue to compute until the result is obtained. These two modes provide new tool for algorithm design. A search algorithm for the unsorted database search problem is designed.

Gui Lu Long; Yang Liu

2007-08-15T23:59:59.000Z

409

Facility Representative Program: 2004 Facility Representative Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

4 Facility Representative Workshop 4 Facility Representative Workshop May 18 - 20, 2004 Las Vegas, NV Facility Rep of the Year Award | Attendees list | Summary Report [PDF] WORKSHOP AGENDA Final Day 1: Tuesday, May 18, 2004 Theme: Program Successes and Challenges 8:00 a.m. Opening Remarks John Evans, Facility Representative Program Manager 8:15 a.m. Welcome Kathy Carlson, Nevada Site Office Manager 8:30 a.m. Videotaped Remarks from the Deputy Secretary Kyle E. McSlarrow, Deputy Secretary of Energy Deputy Secretary's Remarks 8:40 a.m. Keynote Address - NNSA Evaluation of Columbia Accident Investigation Board Report Brigadier General Ronald J. Haeckel, Principal Assistant Deputy Administrator for Military Applications, NNSA Other Information: NASA’S Columbia Accident Investigation Board Report

410

Facility Representative Program: 2006 Facility Representative Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

6 Facility Representative Workshop 6 Facility Representative Workshop May 16 - 19, 2006 Knoxville, Tennessee Facility Rep of the Year Award | Attendees list | Summary Report [PDF] WORKSHOP AGENDA Final To view Pictures, scroll the mouse over the Picture icon To view Presentations, Picture Slideshows and Video, click on the icon Day 1: Tuesday, May 16, 2006 8:00 a.m. Opening Remarks John Evans, Facility Representative Program Manager 8:15 a.m. Welcome from Oak Ridge Office Gerald Boyd, Manager, Oak Ridge Office 8:25 a.m. Welcome from Y-12 Site Office Theodore Sherry, Manager, Y-12 Site Office 8:35 a.m. Videotaped Remarks from the Deputy Secretary The Honorable Clay Sell, Deputy Secretary of Energy 8:40 a.m. Keynote Address - Safety Oversight at Environmental Management Activities Dr. Inés Triay, Chief Operating Officer, Office of Environmental Management

411

Facility Representative Program: 2000 Facility Representative...  

NLE Websites -- All DOE Office Websites (Extended Search)

- Break 10:00 a.m. - Making Your Observations CountLeading Indicators - Mike Weis, Rocky Flats Field Office 10:45 a.m. - Facility Representative PanelQuestions and Answers (Ben...

412

Biomass Anaerobic Digestion Facilities and Biomass Gasification...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biomass Anaerobic Digestion Facilities and Biomass Gasification Facilities (Indiana) Biomass Anaerobic Digestion Facilities and Biomass Gasification Facilities (Indiana)...

413

Java Metadata Facility  

SciTech Connect

The Java Metadata Facility is introduced by Java Specification Request (JSR) 175 [1], and incorporated into the Java language specification [2] in version 1.5 of the language. The specification allows annotations on Java program elements: classes, interfaces, methods, and fields. Annotations give programmers a uniform way to add metadata to program elements that can be used by code checkers, code generators, or other compile-time or runtime components. Annotations are defined by annotation types. These are defined the same way as interfaces, but with the symbol {at} preceding the interface keyword. There are additional restrictions on defining annotation types: (1) They cannot be generic; (2) They cannot extend other annotation types or interfaces; (3) Methods cannot have any parameters; (4) Methods cannot have type parameters; (5) Methods cannot throw exceptions; and (6) The return type of methods of an annotation type must be a primitive, a String, a Class, an annotation type, or an array, where the type of the array is restricted to one of the four allowed types. See [2] for additional restrictions and syntax. The methods of an annotation type define the elements that may be used to parameterize the annotation in code. Annotation types may have default values for any of its elements. For example, an annotation that specifies a defect report could initialize an element defining the defect outcome submitted. Annotations may also have zero elements. This could be used to indicate serializability for a class (as opposed to the current Serializability interface).

Buttler, D J

2008-03-06T23:59:59.000Z

414

Recycle of contaminated scrap metal, comprehensive executive summary. Final report, September 30, 1993--March 31, 1996  

Science Conference Proceedings (OSTI)

R&D activities have demonstrated Catalytic Extraction Processing (CEP) to be a robust, one-step process process that is relatively insensitive to wide variations in waste composition and is applicable to a broad spectrum of DOE wastes. The feed size and composition compatible with CEP have been increased in a short period of time, and additional R&D should lead to the ability to accept a drum (and larger?) size feed of completely uncharacterized waste. Experiments have validated the CPU (Catalytic Processing Unit). Two commercial facilities have been commissioned and are currently processing mixed low level wastes. Expansion of CEP to transuranic and high level wastes should be the next step in the development and deployment of CEP for recycle, reuse, and disposal of materials from DOE decontamination and decommissioning activities.

NONE

1997-06-01T23:59:59.000Z

415

NREL: Buildings Research - Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Facilities Facilities NREL provides industry, government, and university researchers with access to state-of-the-art and unique equipment for analyzing a wide spectrum of building energy efficiency technologies and innovations. NREL engineers and researchers work closely with industry partners to research and develop advanced technologies. NREL's existing facilities have been used to test and develop many award-winning building technologies and innovations that deliver significant energy savings in buildings, and the new facilities further extend those capabilities. In addition, the NREL campus includes living laboratories, buildings that researchers and other NREL staff use every day. Researchers monitor real-time building performance data in these facilities to study energy use

416

Facility Name Facility Name Facility FacilityType Owner Developer EnergyPurchaser  

Open Energy Info (EERE)

Name Facility Name Facility FacilityType Owner Developer EnergyPurchaser Name Facility Name Facility FacilityType Owner Developer EnergyPurchaser Place GeneratingCapacity NumberOfUnits CommercialOnlineDate WindTurbineManufacturer FacilityStatus Coordinates D Metals D Metals D Metals Definition Small Scale Wind Valley City OH MW Northern Power Systems In Service AB Tehachapi Wind Farm AB Tehachapi Wind Farm AB Tehachapi Definition Commercial Scale Wind Coram Energy AB Energy Southern California Edison Co Tehachapi CA MW Vestas In Service AFCEE MMR Turbines AFCEE MMR Turbines AFCEE MMR Turbines Definition Commercial Scale Wind AFCEE Air Force Center for Engineering and the Environment Distributed generation net metered Camp Edwards Sandwich MA MW GE Energy In Service AG Land AG Land AG Land Definition Community Wind AG Land Energy LLC

417

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

March 22, 2007 [Facility News] March 22, 2007 [Facility News] GEWEX News Features Dust Data from ARM Mobile Facility Deployment Bookmark and Share Data from the recent deployment of the ARM Mobile Facility are featured in the February issue of GEWEX News. Data from the recent deployment of the ARM Mobile Facility are featured in the February issue of GEWEX News. The February 2007 issue (Vol. 17, No. 1) of GEWEX News features early results from special observing periods of the African Monsoon Mutidisciplinary Analysis, including data obtained by the ARM Mobile Facility (AMF). The AMF was stationed in the central Sahel from January through December 2006, with the primary facility at the Niamey airport, and an ancillary site in Banizoumbou. The AMF recorded a major dust storm that passed through the area in March, and combined with simultaneous satellite

418

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

February 16, 2005 [Facility News] February 16, 2005 [Facility News] Mobile Facility Arrives Safe and Sound in Point Reyes Bookmark and Share Image - The ARM Mobile Facility in Point Reyes, California Image - The ARM Mobile Facility in Point Reyes, California Safe and sound at Point Reyes, the ARM Mobile Facility instrumentation is set up on the roof of a shelter until a fence is installed to keep out the curious local cattle. On February 9, the ARM Mobile Facility (AMF) withstood an accident on the way to its deployment location at Point Reyes, California. About an hour from its destination, the truck carrying the two AMF shelters packed with instrumentation and associated equipment swerved to avoid another vehicle and slid off the road and down a steep embankment. Emergency personnel soon

419

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

22, 2011 [Facility News] 22, 2011 [Facility News] Request for Proposals Now Open Bookmark and Share The ARM Climate Research Facility is now accepting applications for use of an ARM mobile facility (AMF), the ARM aerial facility (AAF), and fixed sites. Proposals are welcome from all members of the scientific community for conducting field campaigns and scientific research using the ARM Facility, with availability as follows: AMF2 available December 2013 AMF1 available March 2015 AAF available between June and October 2013 Fixed sites available FY2013 Priority will be given to proposals that make comprehensive use of the ARM facilities and focus on long-term goals of the DOE Office of Biological and Environmental Research. Successful proposals will be supplied all operational and logistical resources (provided at no cost to the principal

420

FUTURE POWER GRID INITIATIVE GridOPTICSTM  

E-Print Network (OSTI)

of individual software products November 2012 PNNL-SA-90162 Ian Gorton Pacific Northwest National Laboratory (509) 375-3850 ian.gorton@pnnl.gov ABOUT FPGI The Future Power Grid Initiative (FPGI) will deliver next National Laboratory's (PNNL) national electric grid research facility, the FPGI will advance the science

Note: This page contains sample records for the topic "facilities initiatives recycling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Materials Sustainability: Digital Resource Center -- Recycling - Steel  

Science Conference Proceedings (OSTI)

Use this area to submit digital resources and/or make comments on the resources posted by others. DO NOT use this area of the site to initiate discussion ...

422

Materials Sustainability: Digital Resource Center -- Recycling ...  

Science Conference Proceedings (OSTI)

Use this area to submit digital resources and/or make comments on the resources posted by others. DO NOT use this area of the site to initiate discussion ...

423

Facility overview for commercial application of selected Rocky Flats facilities  

SciTech Connect

The purpose of this Facility Overview is to support the Rocky Flats Local Impacts Initiative`s Request for Interest, to solicit interest from commercial corporations for utilizing buildings 865 and 883, and the equipment contained within each building, for a commercial venture. In the following sections, this document describes the Rocky Flats Site, the buildings available for lease, the equipment within these buildings, the site services available to a tenant, the human resources available to support operations in buildings 865 and 883, and the environmental condition of the buildings and property. In addition, a brief description is provided of the work performed to date to explore the potential products that might be manufactured in Buildings 865 and 883, and the markets for these products.

NONE

1996-11-01T23:59:59.000Z

424

Department of Energy Announces New Nuclear Initiative | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Nuclear Initiative New Nuclear Initiative Department of Energy Announces New Nuclear Initiative February 6, 2006 - 10:56am Addthis Global Nuclear Energy Partnership to expand safe, clean, reliable, affordable nuclear energy worldwide WASHINGTON, DC - As part of President Bush's Advanced Energy Initiative, Secretary of Energy Samuel W. Bodman announced today a $250 million Fiscal Year (FY) 2007 request to launch the Global Nuclear Energy Partnership (GNEP). This new initiative is a comprehensive strategy to enable the expansion of emissions-free nuclear energy worldwide by demonstrating and deploying new technologies to recycle nuclear fuel, minimize waste, and improve our ability to keep nuclear technologies and materials out of the hands of terrorists. "GNEP brings the promise of virtually limitless energy to emerging

425

Department of Energy Announces New Nuclear Initiative | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of Energy Announces New Nuclear Initiative of Energy Announces New Nuclear Initiative Department of Energy Announces New Nuclear Initiative February 6, 2006 - 10:56am Addthis Global Nuclear Energy Partnership to expand safe, clean, reliable, affordable nuclear energy worldwide WASHINGTON, DC - As part of President Bush's Advanced Energy Initiative, Secretary of Energy Samuel W. Bodman announced today a $250 million Fiscal Year (FY) 2007 request to launch the Global Nuclear Energy Partnership (GNEP). This new initiative is a comprehensive strategy to enable the expansion of emissions-free nuclear energy worldwide by demonstrating and deploying new technologies to recycle nuclear fuel, minimize waste, and improve our ability to keep nuclear technologies and materials out of the hands of terrorists.

426

NREL: Technology Transfer - Research Facilities  

NREL's Solar Energy Research Facility is one of many world-class facilities available to public and private agencies.

427

Quantum Electrical Metrology Division Facilities  

Science Conference Proceedings (OSTI)

Microfabrication Facility Our facilities for fabrication of integrated circuits are essential to nearly all of the work in the Group. ...

2011-10-03T23:59:59.000Z

428

Policies and Procedures - Accessing Facilities  

Science Conference Proceedings (OSTI)

... of Facilities Use Agreements: Description of the facilities use agreements ... Criteria: Guidance for applicants describing essential information about ...

2013-09-24T23:59:59.000Z

429

NETL: Educational Initiatives - Teachers  

NLE Websites -- All DOE Office Websites (Extended Search)

Teachers Educational Initiatives Teachers NETL is a proactive developer and supporter of educational initiatives at all levels. NETL's commitment to education is demonstrated...

430

NREL: News - NREL Launches Initiative to Build Solar Performance...  

NLE Websites -- All DOE Office Websites (Extended Search)

from solar facilities across the country. As part of DOE's SunShot Initiative, the Open Solar Performance and Reliability Clearinghouse (O-SPaRC) will give the private market...

431

National Ignition Facility Title II Design Plan  

Science Conference Proceedings (OSTI)

This National Ignition Facility (NIF) Title II Design Plan defines the work to be performed by the NIF Project Team between November 1996, when the U.S. Department of Energy (DOE) reviewed Title I design and authorized the initiation of Title H design and specific long-lead procurements, and September 1998, when Title 11 design will be completed.

Kumpan, S

1997-03-01T23:59:59.000Z

432

Site and facility transportation services planning documents  

SciTech Connect

The Office of Civilian Radioactive Waste Management (OCRWM) will eventually ship Purchasers' (10 CFR 961.3) spent nuclear fuel from approximately 122 commercial nuclear facilities. The preparation and processing of Site and Facility Specific Transportation Services Planning Documents (SPDs) and Site Specific Servicing Plans (SSSPs) provides a focus for advanced planning and the actual shipping of waste, as well as the overall development of transportation requirements for the waste transportation system. SPDs will be prepared for each of the affected nuclear waste facilities over the next 2 years with initial emphasis on facilities likely to be served during the earliest years of the Federal Waste Management System (FWMS) operations. 3 figs., 1 tab.

Ratledge, J.E. (Oak Ridge National Lab., TN (USA)); Danese, L.; Schmid, S. (Science Applications International Corp., Oak Ridge, TN (USA))

1990-01-01T23:59:59.000Z

433

National Biomedical Tracer Facility. Project definition study  

Science Conference Proceedings (OSTI)

We request a $25 million government-guaranteed, interest-free loan to be repaid over a 30-year period for construction and initial operations of a cyclotron-based National Biomedical Tracer Facility (NBTF) in North Central Texas. The NBTF will be co-located with a linear accelerator-based commercial radioisotope production facility, funded by the private sector at approximately $28 million. In addition, research radioisotope production by the NBTF will be coordinated through an association with an existing U.S. nuclear reactor center that will produce research and commercial radioisotopes through neutron reactions. The combined facilities will provide the full range of technology for radioisotope production and research: fast neutrons, thermal neutrons, and particle beams (H{sup -}, H{sup +}, and D{sup +}). The proposed NBTF facility includes an 80 MeV, 1 mA H{sup -} cyclotron that will produce proton-induced (neutron deficient) research isotopes.

Schafer, R.

1995-02-14T23:59:59.000Z

434

Using a contingent valuation approach for improved solid waste management facility: Evidence from Kuala Lumpur, Malaysia  

Science Conference Proceedings (OSTI)

This study employed contingent valuation method to estimate the willingness to pay (WTP) of the households to improve the waste collection system in Kuala Lumpur, Malaysia. The objective of this study is to evaluate how household WTP changes when recycling and waste separation at source is made mandatory. The methodology consisted of asking people directly about their WTP for an additional waste collection service charge to cover the costs of a new waste management project. The new waste management project consisted of two versions: version A (recycling and waste separation is mandatory) and version B (recycling and waste separation is not mandatory). The households declined their WTP for version A when they were asked to separate the waste at source although all the facilities would be given to them for waste separation. The result of this study indicates that the households were not conscious about the benefits of recycling and waste separation. Concerted efforts should be taken to raise environmental consciousness of the households through education and more publicity regarding waste separation, reducing and recycling.

Afroz, Rafia, E-mail: rafia_afroz@yahoo.com [Department of Economics, Faculty of Economics and Management Science, International Islamic University Malaysia (Malaysia); Masud, Muhammad Mehedi [Department of Economics, Faculty of Economics and Management Science, International Islamic University Malaysia (Malaysia)

2011-04-15T23:59:59.000Z

435

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

8, 2010 [Facility News] 8, 2010 [Facility News] Europeans Keen to Hear About Effects of Dust Using Data from Africa Bookmark and Share In 2006, the ARM Mobile Facility joined the AMMA project to obtain data for scientists to study the impact that airborne Saharan dust has on incoming solar radiation. This photo shows the sun setting through a dusty atmosphere near Niamey, Niger, where the mobile facility was deployed for one year. In 2006, the ARM Mobile Facility joined the AMMA project to obtain data for scientists to study the impact that airborne Saharan dust has on incoming solar radiation. This photo shows the sun setting through a dusty atmosphere near Niamey, Niger, where the mobile facility was deployed for one year. Researcher Xiaohong Liu from Pacific Northwest National Laboratory was

436

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

April 30, 2008 [Facility News] April 30, 2008 [Facility News] Team Scouts Graciosa Island for 2009 Mobile Facility Deployment Site Bookmark and Share A location near the airport on the northern end of Graciosa Island was identified as an excellent location for operating the ARM Mobile Facility. Image source: Luis Miguens A location near the airport on the northern end of Graciosa Island was identified as an excellent location for operating the ARM Mobile Facility. Image source: Luis Miguens Indications from a scouting trip by the ARM Mobile Facility (AMF) science and operations management team are that an excellent site for the 2009 deployment may have been found. From April 8 through April 16, the team traveled to Graciosa Island in the Azores to scout sites for the Clouds, Aerosol, and Precipitation in the Marine Boundary Layer (CAP-MBL) field

437

Integrated Facilities Disposition Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Facilities Facilities Disposition Program Tank Waste Corporate Board Meeting at ORNL Sharon Robinson Dirk Van Hoesen Robert Jubin Brad Patton July 29, 2009 2 Managed by UT-Battelle for the U.S. Department of Energy The Integrated Facility Disposition Program (IFDP) addresses the remaining EM Scope at both ORNL and Y-12 Cost Range: $7 - $14B Schedule: 26 Years 3 Managed by UT-Battelle for the U.S. Department of Energy Scope of work * Treatment and disposition of legacy materials and waste * D&D 327 (1.5 M ft 2 ) excess facilities generating >2 M yd 3 debris * Soil and groundwater remedial actions generating >1 M yd 3 soils * Facilities surveillance and maintenance * Reconfiguration of waste management facilities * Ongoing waste management operations * Project management

438

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

4, 2013 [Facility News] 4, 2013 [Facility News] Work Cut Out for ARM Science Board Bookmark and Share With a new fixed site on the horizon in the Azores, a third ARM Mobile Facility gearing up for action in the Arctic, and more aircraft probes and sensors than scientists can shake a stick at, the ARM Facility continues to expand its considerable suite of assets for conducting climate research. Along with this impressive inventory comes the responsibility to ensure the Facility is supporting the highest-value science possible. Enter the ARM Science Board. This eleven-member group annually reviews complex proposals for use of the ARM mobile and aerial facilities. To maintain excellence and integrity in the review process, each member serves a renewable term of two years, with membership updated annually.

439

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

July 31, 2009 [Facility News] July 31, 2009 [Facility News] President of the Regional Government Speaks at Opening Ceremony for Mobile Facility in the Azores Bookmark and Share Highlighting the opening ceremony for the ARM Mobile Facility on Graciosa Island, Carlos César, President of the Regional Government of the Azores, signs a weather balloon while local media record the event. Photo by Mike Alsop. Highlighting the opening ceremony for the ARM Mobile Facility on Graciosa Island, Carlos César, President of the Regional Government of the Azores, signs a weather balloon while local media record the event. Photo by Mike Alsop. On June 30, officials from the Regional Government of the Azores recognized the deployment of the ARM Mobile Facility on Graciosa Island during an official opening ceremony held at the site. Notable among the participants

440

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

6, 2012 [Facility News] 6, 2012 [Facility News] News Tips from 2012 EGU General Assembly Bookmark and Share The ARM Facility is attending the 2012 European Geophysical Union General Assembly at the Austria Center in Vienna for the first time. The ARM Facility is attending the 2012 European Geophysical Union General Assembly at the Austria Center in Vienna for the first time. VIENNA - The U.S. Department of Energy's Atmospheric Radiation Measurement (ARM) Climate Research Facility is the world's most comprehensive outdoor laboratory and data archive for research related to atmospheric processes that affect Earth's climate. At the European Geophysical Union (EGU) General Assembly 2012 in Vienna, find out how scientists use the ARM Facility to study the interactions between clouds,

Note: This page contains sample records for the topic "facilities initiatives recycling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

BNL | Accelerator Test Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Accelerator Test Facility Accelerator Test Facility Home Core Capabilities Photoinjector S-Band Linac Laser Systems CO2 Laser Nd:Yag Laser Beamlines Beamline Simulation Data Beamline Parameters Beam Diagnostics Detectors Beam Schedule Operations Resources Fact Sheet (.pdf) Image Library Upgrade Proposal (.pdf) Publications ES&H Experiment Start-up ATF Handbook Laser Safety Collider-Accelerator Dept. C-AD ES&H Resources Staff Users' Place Apply for Access ATF photo ATF photo ATF photo ATF photo ATF photo A user facility for advanced accelerator research The Brookhaven Accelerator Test Facility (ATF) is a proposal driven, steering committee reviewed facility that provides users with high-brightness electron- and laser-beams. The ATF pioneered the concept of a user facility for studying complex properties of modern accelerators and

442

WIPP - Public Reading Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Public Reading Facilities/Electronic Reading Facilities The Freedom of Information Act (FOIA) and Electronic FOIA (E-FOIA) require that various specific types of records, as well as various other records, be maintained in public reading facilities. Before you submit a FOIA request, we recommend you contact or visit the appropriate public reading facility to determine if the records you are seeking have already been released. The U.S. Department of Energy (DOE), as well as other related DOE sites, have established home pages on the Internet with links to other web sites. If you determine a specific facility might have records in which you are interested, requests for those records can be made directly to the public reading rooms identified below. Copying of records located in the public reading rooms must be made by the staff of those facilities.

443

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

15, 2005 [Facility News] 15, 2005 [Facility News] Aging, Overworked Computer Network at SGP Gets Overhauled Bookmark and Share This aerial map of instruments deployed at the SGP Central Facility provides an indication of the computer resources needed to manage data at the site, let alone communicate with other ARM sites. This aerial map of instruments deployed at the SGP Central Facility provides an indication of the computer resources needed to manage data at the site, let alone communicate with other ARM sites. Established as the first ARM research facility in 1992, the Southern Great Plains (SGP) site in Oklahoma is the "old man on the block" when it comes to infrastructure. Though significant improvements have been made to facilities and equipment throughout the years, the computer network at the

444

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

April 7, 2011 [Facility News] April 7, 2011 [Facility News] Review Panel States ARM Facility "Without Peer" Bookmark and Share Every three years, DOE Office of Science user facilities undergo a review to evaluate their effectiveness in contributing to their respective science areas. The latest ARM Facility review was conducted in mid-February by a six-member review panel led by Minghua Zhang of Stony Brook University. Notably, in a debriefing following the review, the panel stated that ARM was a "world class facility without peer." The panel convened in Ponca City, Oklahoma, near ARM's Southern Great Plains site to conduct their review. Their first agenda item was an SGP site tour, which provided a realtime example of the scope and expertise of site operations and included a demonstration of the site's newly

445

Recycling readiness of advanced batteries for electric vehicles  

SciTech Connect

Maximizing the reclamation/recycle of electric-vehicle (EV) batteries is considered to be essential for the successful commercialization of this technology. Since the early 1990s, the US Department of Energy has sponsored the ad hoc advanced battery readiness working group to review this and other possible barriers to the widespread use of EVs, such as battery shipping and in-vehicle safety. Regulation is currently the main force for growth in EV numbers and projections for the states that have zero-emission vehicle (ZEV) programs indicate about 200,000 of these vehicles would be offered to the public in 2003 to meet those requirements. The ad hoc Advanced Battery Readiness Working Group has identified a matrix of battery technologies that could see use in EVs and has been tracking the state of readiness of recycling processes for each of them. Lead-acid, nickel/metal hydride, and lithium-ion are the three EV battery technologies proposed by the major automotive manufacturers affected by ZEV requirements. Recycling approaches for the two advanced battery systems on this list are partly defined, but could be modified to recover more value from end-of-life batteries. The processes being used or planned to treat these batteries are reviewed, as well as those being considered for other longer-term technologies in the battery recycling readiness matrix. Development efforts needed to prepare for recycling the batteries from a much larger EV population than exists today are identified.

Jungst, R.G.

1997-09-01T23:59:59.000Z

446

Mound Laboratory's Reclamation and Recycling Program  

SciTech Connect

In keeping with Mound Laboratory's tradition for innovation and forward-looking action, several studies were recently conducted to seek out alternatives to incineration and landfill of all nonradioactive solid waste. Efforts were directed towards reclamation, reuse, and recycling of solid wastes. These efforts resulted in a reclamation and recycling program which is being implemented in three separate phases: 1. Phase I provides for reclamation and recycling of IBM cards, printouts, and white paper. 2. Phase II is designed for reclamation, recycling, or off-site disposal of all wastes generated in buildings and areas where radioactive or explosive wastes are not contained. 3. Phase III provides for reclamation, recycling, or off-site disposal of the remaining wastes not included in Phases I and II. Implementatin would follow successful operation of Phases I and II and would only be implemented after a complete analysis of monitoring and segregation techniques have been established to assure against any possibility of off-site contamination.

Garbe, Yvonne M.

1974-10-01T23:59:59.000Z

447

A cask maintenance facility feasibility study  

SciTech Connect

The Oak Ridge National Laboratory (ORNL) is developing a transportation system for spent nuclear fuel (SNF) and defense high level waste (HLW) as a part of the Federal Waste Management System (FWMS). In early 1988, a feasibility study was undertaken to design a stand-alone, ''green field'' facility for maintaining the FWMS casks. The feasibility study provided an initial layout facility design, an estimate of the construction cost, and an acquisition schedule for a Cask Maintenance Facility (CMF). The study also helped to define the interfaces between the transportation system and the waste generators, the repository, and a Monitored Retrievable Storage (MRS) facility. The data, design, and estimated costs resulting from the study have been organized for use in the total transportation system decision-making process. Most importantly, the feasibility study also provides a foundation for continuing design and planning efforts. Fleet servicing facility studies, operational studies from current cask system operators, a definition of the CMF system requirements, and the experience of others in the radioactive waste transportation field were used as a basis for the feasibility study. In addition, several cask handling facilities were visited to observe and discuss cask operations to establish the functions and methods of cask maintenance expected to be used in the facility. Finally, a peer review meeting was held at Oak Ridge, Tennessee in August, 1988, in which the assumptions, design, layout, and functions of the CMF were significantly refined. Attendees included representatives from industry, the repository and transportation operations.

Rennich, M.J.; Medley, L.G.; Attaway, C.R.

1989-01-01T23:59:59.000Z

448

Risk management activities at the DOE Class A reactor facilities  

Science Conference Proceedings (OSTI)

The probabilistic risk assessment (PRA) and risk management group of the Association for Excellence in Reactor Operation (AERO) develops risk management initiatives and standards to improve operation and increase safety of the DOE Class A reactor facilities. Principal risk management applications that have been implemented at each facility are reviewed. The status of a program to develop guidelines for risk management programs at reactor facilities is presented.

Sharp, D.A. [Westinghouse Savannah River Co., Aiken, SC (United States); Hill, D.J. [Argonne National Lab., IL (United States); Linn, M.A. [Oak Ridge National Lab., TN (United States); Atkinson, S.A. [EG and G Idaho, Inc., Idaho Falls, ID (United States); Hu, J.P. [Brookhaven National Lab., Upton, NY (United States)

1993-12-31T23:59:59.000Z

449

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

November 30, 2008 Facility News Site Operations Centralized Through New Tracking System Bookmark and Share Tracking over 300 instrument systems distributed around the world is a...

450

ARM Climate Research Facility  

NLE Websites -- All DOE Office Websites

banner banner Home | People | Site Index Atmospheric Radiation Measurement Climate Research Facility US Department of Energy About Science Campaigns Sites Instruments Measurements Data News Publications Education Become a User Recovery Act Mission FAQ Outreach Displays History Organization Participants Facility Statistics Forms Contacts Research Themes Research Highlights Journal Articles Collaborations Atmospheric System Research (ASR) ARM Science Team Meetings Propose a Campaign Submitting Proposals: Guidelines Featured Campaigns Campaign Data List of Campaigns Aerial Facility Eastern North Atlantic Mobile Facilities North Slope of Alaska Southern Great Plains Tropical Western Pacific Location Table Contacts Instrument Datastreams Value-Added Products PI Data Products Field Campaign Data Related Data

451

BTRIC - User Facility - ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

whole-building and community integration, improved energy management in buildings and industrial facilities during their operational phase, and market transformations from old...

452

Superalloy Research Facilities  

Science Conference Proceedings (OSTI)

Feb 8, 2007 ... This directory provides a list of links to superalloy research facilities and programs around the world. Two formats of the information are...

453

Wind Manufacturing Facilities  

Energy.gov (U.S. Department of Energy (DOE))

America's wind energy industry supports a growing domestic industrial base. Check out this map to find manufacturing facilities in your state.

454

ARM Climate Research Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

TR-081.2 iii Abstract This report provides a short description of the Atmospheric Radiation Measurement (ARM) Climate Research Facility microwave radiometer (MWR) Retrieval...

455

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

instruments and equipment, as well as local facilities such as hospitals, groceries, and gas stations. Next steps will involve such items as securing access to power from nearby...

456

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

September 30, 2004 Facility News New Instrumentation on Proteus Aircraft Tested This fall, the ARM-Unmanned Aerospace Vehicle Program-specifically, the Proteus aircraft-is...

457

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

15 and 21 will remain intact, along with the Central Facility (C1) near Lamont. Instrumentation at the remaining sites will be consolidated into the new, smaller footprint....

458

Lighting Systems Test Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Measurement equipment with light beam Lighting Systems Test Facilities NOTICE Due to the current lapse of federal funding, Berkeley Lab websites are accessible, but may not be...

459

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

August 2, 2013 Facility News 2014 Funding Opportunity Available for Early Career Scientists The U.S. Department of Energy's Office of Science is now accepting research...

460

User Facilities - Learn More  

NLE Websites -- All DOE Office Websites (Extended Search)

Shared Research Equipment (ShaRE) The Shared Research Equipment (ShaRE) User Facility at the Oak Ridge National Laboratory (ORNL) is one of three Electron Beam...

Note: This page contains sample records for the topic "facilities initiatives recycling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

February 15, 2008 Facility News User Group Provides Recommendations for Data Archive Improvements Routine data from the ARM sites and ARM-sponsored field campaigns are stored in...

462

User Facilities - Learn More  

NLE Websites -- All DOE Office Websites (Extended Search)

Neutron Source Search by Equipment or Process User Portal Quick Links ORNL home User facility contacts ORNL Guest House Open Helpful Travel Information Learn More User...

463

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

October 31, 2008 Facility News Breakthrough User Interface Delivers Statistical Views of Data With its "drill-down" preview feature, the Statistical Browser is the first example...

464

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

Mapping It Up With Google Bookmark and Share "Thumbtacks" help ARM website users identify where the ARM sites are, including the ARM Mobile Facility deployments. "Thumbtacks" help...

465

Facility Survey & Transfer  

Energy.gov (U.S. Department of Energy (DOE))

As DOE facilities become excess, many that are radioactively and/or chemically contaminated will become candidate for transfer to DOE-EM for deactivation and decommissioning.

466

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

features the familiar faces of Professor Polar Bear, Teacher Turtle, and PI Prairie Dog (each representing an ARM Climate Research Facility site), but now provides easier...

467

Facilities for Calibration  

Science Conference Proceedings (OSTI)

... Our state-of-the-art property measurements require extensive calibration facilities of equal quality. Regular calibrations are essential for realistic ...

2014-01-03T23:59:59.000Z

468

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

June 30, 2007 Facility News New Radar Wind Profiler Joins AMF Instrument Suite in Germany The 1290 MHz wind profiler (foreground) joins the eddy correlation system (background)...

469

ARM - SGP Boundary Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

facilities-located at Hillsboro, Kansas; Morris, Oklahoma; Purcelll, Oklahoma and Vici, Oklahoma (north, east, south and west, respectively)-marked the approximate midpoint of...

470

Education and Collection Facility (ECF) Ground Source Heat Pump...  

Open Energy Info (EERE)

and Collection Facility (ECF) addition. In 2007, Denver voters passed a 30 million dollar bond initiative that will cover approximately 57% of the cost of the ECF. A fraction...

471

Global Nuclear Energy Initiative at LBNL | U.S. DOE Office of...  

Office of Science (SC) Website

Global Nuclear Energy Initiative at LBNL Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Spinoff Applications Spinoff Archives SBIRSTTR...

472

CO2 Sequestration and Recycle by Photosynthesis  

Science Conference Proceedings (OSTI)

Visible light-photocatalysis could provide a cost-effective route to recycle CO{sub 2} to useful chemicals or fuels. Research is planned to study the reactivity of adsorbates, their role in the photosynthesis reaction, and their relation to the nature of surface sites during photosynthesis of methanol and hydrocarbons from CO{sub 2}/H{sub 2}O over four types of MCM-41/Al{sub 2}O{sub 3}-supported TiO{sub 2} and CdS catalysts: (1) ion-exchanged metal cations, (2) highly dispersed cations, (3) monolayer sites, and (4) modified monolayer catalysts. TiO{sub 2} was selected since it has exhibited higher activity than other oxide catalysts; CdS was selected for its photocatalytic activity in the visible light region. Al{sub 2}O{sub 3} provides excellent hydrothermal stability. MCM-41 offers high surface area (more than 800 m{sup 2}/g), providing a platform for preparing and depositing a large number of active sites per gram catalyst. The unique structure of these ion exchange cations, highly dispersed cations, and monolayer sites provides an opportunity to tailor their chemical/coordination environments for enhancing visible-light photocatalytic activity and deactivation resistance. The year one research tasks include (1) setting up experimental system, (2) preparing ion-exchanged metal cations, highly dispersed cations, monolayer sites of TiO{sub 2} and CdS, and (3) determination of the dependence of methanol activity/selectivity on the catalyst preparation techniques and their relation to adsorbate reactivity. During the first quarter, we have purchased a Gas Chromatography and all the necessary components for building 3 reactor systems, set up the light source apparatus, and calibrated the light intensity. In addition, monolayer TiO{sub 2}/MCM-41 and TiO{sub 2}/Al{sub 2}O{sub 3} catalyst were prepared. TiO{sub 2}/Al{sub 2}O{sub 3} was found to exhibit high activity for methanol synthesis. Repeated runs was planned to insure the reproducibility of the data.

Steven S.C. Chuang

2003-02-01T23:59:59.000Z

473

'Recycling' Grid Energy with Flywheel Technology | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

'Recycling' Grid Energy with Flywheel Technology 'Recycling' Grid Energy with Flywheel Technology 'Recycling' Grid Energy with Flywheel Technology September 30, 2010 - 5:03pm Addthis Seven-foot tall cylinders equipped with flywheel technology (shown above) will make up Beacon Power’s energy storage plant in Stephentown, N.Y. The company received a $43 million loan guarantee from the Energy Department to build the plant. | Photo courtesy of Beacon Power Corporation Seven-foot tall cylinders equipped with flywheel technology (shown above) will make up Beacon Power's energy storage plant in Stephentown, N.Y. The company received a $43 million loan guarantee from the Energy Department to build the plant. | Photo courtesy of Beacon Power Corporation Stephen Graff Former Writer & editor for Energy Empowers, EERE

474

Recycling Carbon Dioxide to Make Plastics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Recycling Carbon Dioxide to Make Plastics Recycling Carbon Dioxide to Make Plastics Recycling Carbon Dioxide to Make Plastics May 20, 2013 - 1:31pm Addthis Novomer’s thermoplastic pellets incorporate waste CO2 into a variety of consumer products. Novomer's thermoplastic pellets incorporate waste CO2 into a variety of consumer products. Why is this important? By using CO2 that would otherwise be emitted to the atmosphere, the process has the potential to cut greenhouse gas emissions while simultaneously reducing petroleum consumption and producing useful products for American consumers. The world's first successful large-scale production of a polypropylene carbonate (PPC) polymer using waste carbon dioxide (CO2) as a key raw material has resulted from a projected funded in part by the U.S. Department of Energy's Office of Fossil Energy.

475

Radiological control criteria for materials considered for recycle and reuse  

Science Conference Proceedings (OSTI)

Pacific Northwest Laboratory (PNL) is conducting technical analyses to support the US Department of Energy (DOE), Office of Environmental Guidance, Air, Water, and Radiation Division (DOE/EH-232) in developing radiological control criteria for recycling or reuse of metals or equipment containing residual radioactive contamination from DOE operations. The criteria, framed as acceptable concentrations for release of materials for recycling or reuse, are risk-based and were developed through analysis of generic radiation exposure scenarios and pathways. The analysis includes evaluation of relevant radionuclides, potential mechanisms of exposure, and non-health-related impacts of residual radioactivity on electronics and film. The analysis considers 42 key radionuclides that DOE operations are known to generate and that may be contained in recycled or reused metals or equipment. Preliminary results are compared with similar results reported by the International Atomic Energy Agency, by radionuclide grouping.

Kennedy, W.E. Jr.; Hill, R.L.; Aaberg, R.L. [Pacific Northwest Lab., Richland, WA (United States); Wallo, A. III [USDOE Assistant Secretary for Environment, Safety, and Health, Washington, DC (United States). Office of Environmental Guidance

1994-11-01T23:59:59.000Z

476

Polymers go full circle in new plastics recycling process  

Science Conference Proceedings (OSTI)

Recycling waste, especially post-consumer plastic packaging waste, is a growing issue. Pressure to find alternatives to landfilling and conserve resources has prompted governments to limit the amount of material that can be disposed in traditional ways. One approach, chemical recycling of mixed plastics back to the feedstock for virgin plastic products, is receiving increased attention. British-based BP Chemicals, in collaboration with other polymer producers, is pioneering this alternative. The process involves cracking polymers to a hydrocarbon intermediate suitable for feeding to existing petrochemical plants, such as the steam crackers that produce the basic building blocks for plastics. BP's recycled product already can be used with four leading steam-cracking processes.

Lock, J.

1994-08-01T23:59:59.000Z

477

Climate VISION: Private Sector Initiatives: Forest Products  

Office of Scientific and Technical Information (OSTI)

Letters of Intent/Agreements Letters of Intent/Agreements American Forest & Paper Association Logo The American Forest & Paper Association (AF&PA) supports the Climate VISION initiative to address climate change through enhanced research in technology and science, incentives, and voluntary efforts from all sectors of the American economy. The members of AF&PA have undertaken a series of programs through which they are collectively committed to meeting the President's intensity reduction goals. These programs include inventorying and reporting on greenhouse gases, actions to enhance sequestration in managed forests and products, development and implementation of improved technologies, efforts to improve energy efficiency, use of cogeneration and increased use of renewable energy, and recycling. AF&PA expects that these programs will

478

Facility Representative Program: DOE Facility Representatives  

NLE Websites -- All DOE Office Websites (Extended Search)

WIPP PADU PORTS ANL WVDP MOAB SFO LFO LAFO NFO SRFO RL PNSO ORP ID NPO-PX FSO NBL NPO-Y12 ORO OSO SPRU BHSO PSO SR SR NA26 DOE Facility Site Map Please help keep this...

479

Biological Sciences Facility and Computational Sciences Facility  

E-Print Network (OSTI)

on PNNL's campus since 1997. Combined, the two facilities house about 300 staff who support PNNL replacing laboratory and office space PNNL has been using on the south end of the nearby Hanford Site financed the new buildings and is leasing them to Battelle, which operates PNNL for DOE. #12;January 2010

480

Performance of a Treatment Loop for Recycling Spent Rinse Waters  

Science Conference Proceedings (OSTI)

This paper summarizes an evaluation of a treatment loop designed to upgrade the quality of spent rinse waters discharged from 10 wet benches located in the fab at Sandia's Microelectronics Development Laboratory (MDL). The goal of the treatment loop is to make these waters, presently being discharged to the fab's acid waste neutralization (AWN) station, suitable for recycling as feed water back into the fab's ultrapure water (UPW) plant. The MDL typically operates 2 shifts per day, 5 days per week. Without any treatment, the properties of the spent rinse waters now being collected have been shown to be compatible with recycling about 30% (50/168) of the time (weekends primarily, when the fab is idling) which corresponds to about 12% of the present water discharged from the fab to the AWN. The primary goal of adding a treatment loop is to increase the percentage of recyclable water from these 10 wet benches to near 100%, increasing the percentage of total recyclable water to near 40% of the total present fab discharge to the AWN. A second goal is to demonstrate compatibility with recycling this treated spent rinse water to the present R/O product water tank, reducing both the present volume of R/O reject water and the present load on the R/O. The approach taken to demonstrate achieving these goals is to compare all the common metrics of water quality for the treated spent rinse waters with those of the present R/O product water. Showing that the treated rinse water is equal or superior in quality to the water presently stored in the R/O tank by every metric all the time is assumed to be sufficient argument for proceeding with plans to incorporate recycling of these spent rinse waters back into MDL's R/O tank.

DONOVAN,ROBERT PATRICK; TIMON,ROBERT P.; DEBUSK,MICHAEL JOHN; JONES,RONALD V.; ROGERS,DARELL M.

2000-11-15T23:59:59.000Z

Note: This page contains sample records for the topic "facilities initiatives recycling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Auto shredder residue recycling: Mechanical separation and pyrolysis  

Science Conference Proceedings (OSTI)

Highlights: Black-Right-Pointing-Pointer In this work, we exploited mechanical separation and pyrolysis to recycle ASR. Black-Right-Pointing-Pointer Pyrolysis of the floating organic fraction is promising in reaching ELV Directive targets. Black-Right-Pointing-Pointer Zeolite catalyst improve pyrolysis oil and gas yield. - Abstract: sets a goal of 85% material recycling from end-of-life vehicles (ELVs) by the end of 2015. The current ELV recycling rate is around 80%, while the remaining waste is called automotive shredder residue (ASR), or car fluff. In Europe, this is mainly landfilled because it is extremely heterogeneous and often polluted with car fluids. Despite technical difficulties, in the coming years it will be necessary to recover materials from car fluff in order to meet the ELV Directive requirement. This study deals with ASR pretreatment and pyrolysis, and aims to determine whether the ELV material recycling target may be achieved by car fluff mechanical separation followed by pyrolysis with a bench scale reactor. Results show that flotation followed by pyrolysis of the light, organic fraction may be a suitable ASR recycling technique if the oil can be further refined and used as a chemical. Moreover, metals are liberated during thermal cracking and can be easily separated from the pyrolysis char, amounting to roughly 5% in mass. Lastly, pyrolysis can be a good starting point from a 'waste-to-chemicals' perspective, but further research should be done with a focus on oil and gas refining, in order both to make products suitable for the chemical industry and to render the whole recycling process economically feasible.

Santini, Alessandro [Department of Industrial Chemistry and Materials, University of Bologna, Viale Risorgimento 4, I-40136 Bologna (Italy); Passarini, Fabrizio, E-mail: fabrizio.passarini@unibo.it [Department of Industrial Chemistry and Materials, University of Bologna, Viale Risorgimento 4, I-40136 Bologna (Italy); Vassura, Ivano [Department of Industrial Chemistry and Materials, University of Bologna, Viale Risorgimento 4, I-40136 Bologna (Italy); Serrano, David; Dufour, Javier [Department of Chemical and Energy Technology, ESCET, Universidad Rey Juan Carlos, c/Tulipan s/n, 28933 Mostoles, Madrid (Spain); Instituto IMDEA Energy, c/Tulipan s/n, 28933 Mostoles, Madrid (Spain); Morselli, Luciano [Department of Industrial Chemistry and Materials, University of Bologna, Viale Risorgimento 4, I-40136 Bologna (Italy)

2012-05-15T23:59:59.000Z

482

Recycling of Methylaluminoxane (MAO) Cocatalyst in Ethylene Polymerization with Supported Metallocene Catalyst  

E-Print Network (OSTI)

Abstract?The economy of the metallocene catalyst system in olefin polymerization depends more on the cost of methylaluminoxane (MAO) cocatalyst rather than on the catalyst cost since high ratio of cocatalyst to catalyst is required to have sufficient activity. The conditions to minimize the consumption of MAO have been studied for the ethylene polymerization with supported metallocene catalyst. By introducing the prepolymerization step, in which the supported metallocene catalyst is activated at high MAO concentration before polymerization, the MAO could be recovered after the prepolymerization and recycled repeatedly for the subsequent activation with marginal decrease in activity. No extra MAO was needed during the main polymerization. The addition of small amount of MAO or less expensive alkylalumi