Sample records for facilities initiatives recycling

  1. Lithium-Ion Battery Recycling Facilities | Department of Energy

    Office of Environmental Management (EM)

    Recycling Facilities Lithium-Ion Battery Recycling Facilities 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer...

  2. Potential GTCC LLW sealed radiation source recycle initiatives

    SciTech Connect (OSTI)

    Fischer, D

    1992-04-01T23:59:59.000Z

    This report suggests 11 actions that have the potential to facilitate the recycling (reuse or radionuclide) of surplus commercial sealed radiation sources that would otherwise be disposed of as greater-than-Class C low-level radioactive waste. The suggestions serve as a basis for further investigation and discussion between the Department of Energy, Nuclear Regulatory Commission, Agreement States, and the commercial sector. Information is also given that describes sealed sources, how they are used, and problems associated with recycling, including legal concerns. To illustrate the nationwide recycling potential, Appendix A gives the estimated quantity and application information for sealed sources that would qualify for disposal in commercial facilities if not recycle. The report recommends that the Department of Energy initiate the organization of a forum to explore the suggested actions and other recycling possibilities.

  3. A Materials Facilities Initiative -

    E-Print Network [OSTI]

    A Materials Facilities Initiative - FMITS & MPEX D.L. Hillis and ORNL Team Fusion & Materials for Nuclear Systems Division July 10, 2014 #12;2 Materials Facilities Initiative JET ITER FNSF Fusion Reactor Challenges for materials: fluxes and fluence, temperatures 50 x divertor ion fluxes up to 100 x neutron

  4. Unanticipated potential cancer risk near metal recycling facilities

    SciTech Connect (OSTI)

    Raun, Loren, E-mail: raun@rice.edu [Department of Statistics, MS 138, Rice University, P.O. Box 1892, Houston, TX 77251-1892 (United States)] [Department of Statistics, MS 138, Rice University, P.O. Box 1892, Houston, TX 77251-1892 (United States); Pepple, Karl, E-mail: pepple.karl@epa.gov [State and Local Programs Group, Air Quality Policy Division, Office of Air Quality Planning and Standards, Policy, Analysis, and Communications Staff, Mail Drop C404-03, U.S. EPA, Research Triangle Park, NC 27711 (United States)] [State and Local Programs Group, Air Quality Policy Division, Office of Air Quality Planning and Standards, Policy, Analysis, and Communications Staff, Mail Drop C404-03, U.S. EPA, Research Triangle Park, NC 27711 (United States); Hoyt, Daniel, E-mail: hoyt.daniel@epa.gov [Air Surveillance Section, US EPA, Region 6, 6EN-AS, 1445 Ross Avenue, Dallas, TX 75202-2733 (United States)] [Air Surveillance Section, US EPA, Region 6, 6EN-AS, 1445 Ross Avenue, Dallas, TX 75202-2733 (United States); Richner, Donald, E-mail: Donald.Richner@houstontx.gov [Houston Department of Health and Human Services, Bureau of Pollution Control and Prevention, 7411 Park Place Blvd., Houston, TX 77087 (United States)] [Houston Department of Health and Human Services, Bureau of Pollution Control and Prevention, 7411 Park Place Blvd., Houston, TX 77087 (United States); Blanco, Arturo, E-mail: arturo.blanco@houstontx.gov [Pollution Control and Prevention, Environmental Health Division, Houston Department of Health and Human Services, 7411 Park Place Blvd., Houston, TX 77087 (United States)] [Pollution Control and Prevention, Environmental Health Division, Houston Department of Health and Human Services, 7411 Park Place Blvd., Houston, TX 77087 (United States); Li, Jiao, E-mail: jiao.li@rice.edu [Wiess School of Natural Science, Rice University, 6100 Main St., Houston, TX 77005 (United States)] [Wiess School of Natural Science, Rice University, 6100 Main St., Houston, TX 77005 (United States)

    2013-07-15T23:59:59.000Z

    Metal recycling is an important growing industry. Prior to this study, area sources consisting of metal recycling facilities fell in a category of limited regulatory scrutiny because of assumed low levels of annual emissions. Initiating with community complaints of nuisance from smoke, dust and odor, the Houston Department of Health and Human Services (HDHHS) began a monitoring program outside metal recycler facilities and found metal particulates in outdoor ambient air at levels which could pose a carcinogenic human health risk. In a study of five similar metal recycler facilities which used a torch cutting process, air downwind and outside the facility was sampled for eight hours between 6 and 10 times each over 18 months using a mobile laboratory. Ten background locations were also sampled. Iron, manganese, copper, chromium, nickel, lead, cobalt, cadmium and mercury were detected downwind of the metal recyclers at frequencies ranging from 100% of the time for iron to 2% of the time for mercury. Of these metals, chromium, nickel, lead, cobalt, cadmium and mercury were not detected in any sample in the background. Two pairs of samples were analyzed for total chromium and hexavalent chromium to establish a ratio of the fraction of hexavalent chromium in total chromium. This fraction was used to estimate hexavalent chromium at all locations. The carcinogenic risk posed to a residential receptor from metal particulate matter concentrations in the ambient air attributed to the metal recyclers was estimated from each of the five facilities in an effort to rank the importance of this source and inform the need for further investigation. The total risk from these area sources ranged from an increased cancer risk of 1 in 1,000,000 to 6 in 10,000 using the 95th upper confidence limit of the mean of the carcinogenic metal particulate matter concentration, assuming the point of the exposure is the sample location for a residential receptor after accounting for wind direction and the number of shifts that could operate a year. Further study is warranted to better understand the metal air pollution levels in the community and if necessary, to evaluate the feasibility of emission controls and identify operational improvements and best management practices for this industry. This research adds two new aspects to the literature: identification of types and magnitude of metal particulate matter air pollutants associated with a previously unrecognized area source, metal recyclers and their potential risk to health. -- Highlights: • Air monitoring study in response to community complaints found metal contamination. • Metal recyclers found to potentially pose cancer from metal particulates • Chromium, nickel, cobalt and cadmium samples were detected in five metal recyclers. • These metals were not detected in background air samples. • Estimated increased cancer risk ranges from 1 in 1,000,000 to 8 in 10,000.

  5. Initial Low Recycling Improving Confinement and Current Drive in Advanced Tokamak (AT) and Hybrid Scenarios

    E-Print Network [OSTI]

    Initial Low Recycling Improving Confinement and Current Drive in Advanced Tokamak (AT) and Hybrid Scenarios

  6. Expanding Research Horizons: USDA Forest Service Initiative for Developing Recycled Paper Technology

    E-Print Network [OSTI]

    Abubakr, Said

    Forest Service research on recycling is being led by scientists at the Forest Products Laboratory (FPLExpanding Research Horizons: USDA Forest Service Initiative for Developing Recycled Paper Technology Theodore L. Laufenberg, Program Manager Forest Products Conservation and Recycling Said Abubakr

  7. Proliferation resistance assessments during the design phase of a recycling facility as a means of reducing proliferation risks

    SciTech Connect (OSTI)

    Lindell, M.A.; Grape, S.; Haekansson, A.; Jacobsson Svaerd, S. [Department of Physics and Astronomy, Uppsala University: Box 516, SE-75120 Uppsala (Sweden)

    2013-07-01T23:59:59.000Z

    The sustainability criterion for Gen IV nuclear energy systems inherently presumes the availability of efficient fuel recycling capabilities. One area for research on advanced fuel recycling concerns safeguards aspects of this type of facilities. Since a recycling facility may be considered as sensitive from a non-proliferation perspective, it is important to address these issues early in the design process, according to the principle of Safeguards By Design. Presented in this paper is a mode of procedure, where assessments of the proliferation resistance (PR) of a recycling facility for fast reactor fuel have been performed so as to identify the weakest barriers to proliferation of nuclear material. Two supplementing established methodologies have been applied; TOPS (Technological Opportunities to increase Proliferation resistance of nuclear power Systems) and PR-PP (Proliferation Resistance and Physical Protection evaluation methodology). The chosen fuel recycling facility belongs to a small Gen IV lead-cooled fast reactor system that is under study in Sweden. A schematic design of the recycling facility, where actinides are separated using solvent extraction, has been examined. The PR assessment methodologies make it possible to pinpoint areas in which the facility can be improved in order to reduce the risk of diversion. The initial facility design may then be slightly modified and/or safeguards measures may be introduced to reduce the total identified proliferation risk. After each modification of design and/or safeguards implementation, a new PR assessment of the revised system can then be carried out. This way, each modification can be evaluated and new ways to further enhance the proliferation resistance can be identified. This type of iterative procedure may support Safeguards By Design in the planning of new recycling plants and other nuclear facilities. (authors)

  8. RCRA Waste Minimization and Recycling Initiatives at the Health Center (Rev. 12/09)

    E-Print Network [OSTI]

    Kim, Duck O.

    RCRA Waste Minimization and Recycling Initiatives at the Health Center 1/11/08 (Rev. 12/09) PURPOSE, with environmentally-sound recycling as a second and higher priority over treatment and disposal. Section 3002(b feasible; pollution that cannot be prevented should be recycled in an environmentally safe manner, whenever

  9. Facilities Initiatives | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sure you want toworldPowerHome |CookingFAQs FAQsStatisticalFacilities

  10. Celgard US Manufacturing Facilities Initiative for Lithium-ion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Celgard US Manufacturing Facilities Initiative for Lithium-ion Battery Separator Celgard US Manufacturing Facilities Initiative for Lithium-ion...

  11. Optimal facility and equipment specification to support cost-effective recycling

    SciTech Connect (OSTI)

    Redus, K.S. [MACTEC, Inc., Oak Ridge, TN (United States); Yuracko, K.L. [Oak Ridge National Lab., TN (United States)

    1998-06-01T23:59:59.000Z

    The authors demonstrate a project management approach for D and D projects to select those facility areas or equipment systems on which to concentrate resources so that project materials disposition costs are minimized, safety requirements are always met, recycle and reuse goals are achieved, and programmatic or stakeholder concerns are met. The authors examine a facility that contains realistic areas and equipment, and they apply the approach to illustrate the different results that can be obtained depending on the strength or weakness of safety risk requirements, goals for recycle and reuse of materials, and programmatic or stakeholder concerns.

  12. Recycling of electric arc furnace dust: Jorgensen steel facility

    SciTech Connect (OSTI)

    Jackson, T.W.; Chapman, J.S.

    1995-01-01T23:59:59.000Z

    This document is an evaluation of the Ek Glassification(TM) Process to recycle and convert K061-listed waste (Electric Arc Furnace or EAF dust) and other byproducts of the steel-making industry into usable products. The Process holds potential for replacing the need for expensive disposal costs associated with the listed waste with the generation of marketable products. The products include colored glass and glass-ceramics; ceramic glazes, colorants, and fillers; roofing granules and sandblasting grit; and materials for Portland cement production. Field testing of the technology was conducted by the U.S. Environmental Protection Agency (U.S. EPA) in early July of 1991 at the Earle M. Jorgensen Steel Co. (EMJ) plant in Seattle, Washington, and both technical and economic aspects of the technology were examined. TCLP testing of the product determined that leachability characteristics of metals in the product meet treatment standards for K061-listed waste. The Process was also shown to be economically viable, based on capital and operating cost estimates, and profit and revenue forecasts for a 21,000 ton-per-year operation. Although this effort showed that the technology holds promise, regulatory compliance should be evaluated on the basis of the actual hardware configuration and operating procedures along with the leachability of the specific product formulations to be used.

  13. Celgard US Manufacturing Facilities Initiative for Lithium-ion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Initiative for Lithium-ion Battery Separator Celgard US Manufacturing Facilities Initiative for Lithium-ion Battery Separator FY 2012 Annual Progress Report for Energy Storage R&D...

  14. Recycling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements Recently Approved Justification MemorandaRecordsRecovery |Recycling

  15. Recycled Water Reuse Permit Renewal Application for the Central Facilities Area Sewage Treatment Plant

    SciTech Connect (OSTI)

    Mike Lewis

    2014-09-01T23:59:59.000Z

    This renewal application for a Recycled Water Reuse Permit is being submitted in accordance with the Idaho Administrative Procedures Act 58.01.17 “Recycled Water Rules” and the Municipal Wastewater Reuse Permit LA-000141-03 for continuing the operation of the Central Facilities Area Sewage Treatment Plant located at the Idaho National Laboratory. The permit expires March 16, 2015. The permit requires a renewal application to be submitted six months prior to the expiration date of the existing permit. For the Central Facilities Area Sewage Treatment Plant, the renewal application must be submitted by September 16, 2014. The information in this application is consistent with the Idaho Department of Environmental Quality’s Guidance for Reclamation and Reuse of Municipal and Industrial Wastewater and discussions with Idaho Department of Environmental Quality personnel.

  16. Super recycled water: quenching computers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Super recycled water: quenching computers Super recycled water: quenching computers New facility and methods support conserving water and creating recycled products. Using reverse...

  17. Hanford recycling

    SciTech Connect (OSTI)

    Leonard, I.M.

    1996-09-01T23:59:59.000Z

    This paper is a study of the past and present recycling efforts on the Hanford site and options for future improvements in the recycling program. Until 1996, recycling goals were voluntarily set by the waste generators: this year, DOE has imposed goals for all its sites to accomplish by 1999. Hanford is presently meeting the voluntary site goals, but may not be able to meet all the new DOE goals without changes to the program. Most of these new DOE goals are recycling goals: * Reduce the generation of radioactive (low-level) waste from routine operations 50 percent through source reduction and recycling. * Reduce the generation of low-level mixed waste from routine operations 50 percent through source reduction and recycling. * Reduce the generation of hazardous waste from routine operations 50 percent through source reduction and recycling. * Recycle 33 percent of the sanitary waste from all operations. * Increase affirmative procurement of EPA-designated recycled items to 100 percent. The Hanford recycling program has made great strides-there has been a 98 percent increase in the amount of paper recycled since its inception in 1990. Hanford recycles paper, chemicals cardboard, tires, oil, batteries, rags, lead weights, fluorescent tubes, aerosol products, concrete, office furniture, computer software, drums, toner cartridges, and scrap metal. Many other items are recycled or reused by individual groups on a one time basis without a formal contract. Several contracts are closed-loop contracts which involve all parts of the recycle loop. Considerable savings are generated from recycling, and much more is possible with increased attention and improvements to this program. General methods for improving the recycling program to ensure that the new goals can be met are: a Contract and financial changes 0 Tracking database and methods improvements 0 Expanded recycling efforts. Specifically, the Hanford recycling program would be improved by: 0 Establishing one overall DOE recycling contract at the Hanford site and a central group to control the contract. 0 Using a BOA or MTS contract as a way to get proceeds from recycling back to site facilities to provide incentives for recycling. . Upgrading tracking mechanisms to track and recycle construction waste which is presently buried in onsite pits. . Establishing contract performance measures which hold each project accountable for specific waste reduction goals. * Recycling and reusing any material or equipment possible as buildings are dismantled.

  18. Subject: Integrated Safety Analysis: Why It Is Appropriate for Fuel Recycling Facilities Project Number: 689Nuclear Energy Institute (NEI) Letter, 9/10/10

    Broader source: Energy.gov [DOE]

    Enclosed for your review is a Nuclear Energy Institute white paper on the use of Integrated Safety Analysis (ISA) at U.S. Nuclear Regulatory Commission-licensed recycling facilities. This paper is...

  19. Guidance document for multi-facility recycle/reuse/free release of metals from radiological control areas

    SciTech Connect (OSTI)

    Gogol, S.; Starke, T.

    1997-08-15T23:59:59.000Z

    Approximately 15% of the Low Level Waste (LLW) produced at Los Alamos consists of scrap metal equipment and materials. The majority of this material is produced by decommissioning and modification of existing facilities. To address this waste stream, Los Alamos has developed a scrap metal recycling program that is operated by the Environmental Stewardship Office to minimize the amount of LLW metal sent for LLW landfill disposal. Past practice has supported treating all waste metals generated within RCA`s as contaminated. Through the metal recycling project, ESO is encouraging the use of alternatives to LLW disposal. Diverting RSM from waste landfill, disposal protects the environment, reduces the cost of operation, and reduces the cost of maintenance and operation at landfill sites. Waste minimization efforts also results in a twofold economic reward: The RSM has a market value and decontamination reduces the volume and therefore the amount of the radioactive waste to be buried within landfills.

  20. RECYCLING AND GENERAL WASTE MANAGEMENT OPERATIONAL PROCEDURE

    E-Print Network [OSTI]

    Harman, Neal.A.

    RECYCLING AND GENERAL WASTE MANAGEMENT OPERATIONAL PROCEDURE Swansea University Estates Services.6.1/1 Recycling & General Waste Management Department: Estates & Facilities Management Site: Swansea University recycling and waste management facilities in Swansea university To ensure that Waste Management Objectives

  1. Development And Initial Testing Of Off-Gas Recycle Liquid From The WTP Low Activity Waste Vitrification Process - 14333

    SciTech Connect (OSTI)

    McCabe, Daniel J.; Wilmarth, William R.; Nash, Charles A.; Taylor-Pashow, Kathryn M.; Adamson, Duane J.; Crawford, Charles L.; Morse, Megan M.

    2014-01-07T23:59:59.000Z

    The Waste Treatment and Immobilization Plant (WTP) process flow was designed to pre-treat feed from the Hanford tank farms, separate it into a High Level Waste (HLW) and Low Activity Waste (LAW) fraction and vitrify each fraction in separate facilities. Vitrification of the waste generates an aqueous condensate stream from the off-gas processes. This stream originates from two off-gas treatment unit operations, the Submerged Bed Scrubber (SBS) and the Wet Electrospray Precipitator (WESP). Currently, the baseline plan for disposition of the stream from the LAW melter is to recycle it to the Pretreatment facility where it gets evaporated and processed into the LAW melter again. If the Pretreatment facility is not available, the baseline disposition pathway is not viable. Additionally, some components in the stream are volatile at melter temperatures, thereby accumulating to high concentrations in the scrubbed stream. It would be highly beneficial to divert this stream to an alternate disposition path to alleviate the close-coupled operation of the LAW vitrification and Pretreatment facilities, and to improve long-term throughput and efficiency of the WTP system. In order to determine an alternate disposition path for the LAW SBS/WESP Recycle stream, a range of options are being studied. A simulant of the LAW Off-Gas Condensate was developed, based on the projected composition of this stream, and comparison with pilot-scale testing. The primary radionuclide that vaporizes and accumulates in the stream is Tc-99, but small amounts of several other radionuclides are also projected to be present in this stream. The processes being investigated for managing this stream includes evaporation and radionuclide removal via precipitation and adsorption. During evaporation, it is of interest to investigate the formation of insoluble solids to avoid scaling and plugging of equipment. Key parameters for radionuclide removal include identifying effective precipitation or ion adsorption chemicals, solid-liquid separation methods, and achievable decontamination factors. Results of the radionuclide removal testing indicate that the radionuclides, including Tc-99, can be removed with inorganic sorbents and precipitating agents. Evaporation test results indicate that the simulant can be evaporated to fairly high concentration prior to formation of appreciable solids, but corrosion has not yet been examined.

  2. Onsite recycling of electric arc furnace dust: The Jorgensen Steel Facility

    SciTech Connect (OSTI)

    Licis, I.J. [Environmental Protection Agency, Cincinnati, OH (United States); Bermark, R.C. [Washington State Dept. of Ecology, Olympia, WA (United States)

    1995-10-01T23:59:59.000Z

    The steel-making industry produces a large amount of Electric Arc Furnace (EAF) dust as part of normal production. This waste is listed as KO61, defined as {open_quotes}emission control dust/sludge from the primary production of steel in electric arc furnaces{close_quotes} under 40 CFR 261.32. A glass making technology called Ek Glassification{trademark} (hereafter called {open_quotes}the Process{close_quotes}) has been developed by Roger B. Ek and Associates, Inc. (hereafter called {open_quotes}the Developer{close_quotes}) to recycle EAF dust and convert it, along with other byproducts of the steel-making industry, into marketable commodities. This Process was evaluated under the Waste Reduction Innovative Technology Evaluation (WRITE) Program. The project was designed and conducted in cooperation with the Washington State Department of Environmental Quality, the Process Developer and the host test site, the Earle M. Jorgensen (EMJ) Steel Company of Seattle, Washington. Test personnel for EPA were supplied by SAIC Inc., on contract to EPA. The overall objectives of the project were to conduct a pilot scale evaluation of the Process, investigate if toxic metals are leached from the products (such as colored glass and glass-ceramics; ceramic glazes, colorants, and fillers; roofing granules and sand-blasting grit; and materials for Portland cement production). Three glass recipes (Glass I, II, and III) were designed by the developer for potential use at EMJ. The EPA portion was focused on determining the toxic metals concentrations of the Glass II recipe, evaluating the P2 impact of using this Process in comparison to traditional methods of waste treatment and disposal, and assessing the economics of both.

  3. Environmental Management Waste and Recycling Policy

    E-Print Network [OSTI]

    Haase, Markus

    Environmental Management Waste and Recycling Policy October 2006 The University is committed and promoting recycling and the use of recycled materials. We will actively encourage the recycling of office reduction techniques · Provide facilities for recycling on campus · Give guidance and information to staff

  4. Benchmarking survey for recycling.

    SciTech Connect (OSTI)

    Marley, Margie Charlotte; Mizner, Jack Harry

    2005-06-01T23:59:59.000Z

    This report describes the methodology, analysis and conclusions of a comparison survey of recycling programs at ten Department of Energy sites including Sandia National Laboratories/New Mexico (SNL/NM). The goal of the survey was to compare SNL/NM's recycling performance with that of other federal facilities, and to identify activities and programs that could be implemented at SNL/NM to improve recycling performance.

  5. The use of NTA and EDTA for lead phytoextraction from soil from a battery recycling site

    E-Print Network [OSTI]

    Freitas, Eriberto; Nascimento, Clistenes; Silva, Airon

    2009-01-01T23:59:59.000Z

    are lead mining, lead smelting and battery recycling.Areas near Pb recycling facilities may be enriched bysoil with lead. A battery recycling site is a location where

  6. The use of NTA and EDTA for lead phytoextraction from soil from a battery recycling site

    E-Print Network [OSTI]

    Freitas, Eriberto; Nascimento, Clistenes; Silva, Airon

    2009-01-01T23:59:59.000Z

    lead smelting and battery recycling. Areas near Pb recyclingof soil with lead. A battery recycling site is a locationnear an automobile battery recycling facility. The soil was

  7. RESOURCE GUIDE RECYCLING ELECTRONICS

    E-Print Network [OSTI]

    Danforth, Bryan Nicholas

    ://www.thesoftlanding.com/ AVOIDING BISPHENOL-A Eden Organics Beans http://www.edenfoods.com/ CD and DVD recycling httpRESOURCE GUIDE RECYCLING ELECTRONICS Batteries and Accessories Office Depot Cell Phones Any Verizon Plastics Call your local Solid Waste Management Facility eCycling resource (EPA) http

  8. Recycling Energy Yields Super Savings

    Broader source: Energy.gov [DOE]

    One company is actually recycling energy that has already been used to power manufacturing plants, which is helping facilities cut their energy expenses by up to 20 percent.

  9. Single Stream Recycling is coming to UNH campus wide! The Facilities Division along with departmental representatives from the Sustainability Institute,

    E-Print Network [OSTI]

    New Hampshire, University of

    bulbs, crystal *Applesauce jars *Spaghetti sauce jars Plastic bottles, This includes all rigid plastic shopping bags examples include: *Plastic food wrap, potato chip #12;* Soda and juice bottles *Shampoo in the trial. Single stream recycling allows plastics, aluminum, cardboard and paper to be co

  10. USF Physical Plant Recycling Program Updated November 2013

    E-Print Network [OSTI]

    Meyers, Steven D.

    Recyclables (Bulbs, Tires, etc.) 7 tons #12;Recycle Ratio for FY 2012/2013 · Total waste generated: 3419 tonsUSF Physical Plant Recycling Program Updated November 2013 #12;Beginnings · Program initiated · Continuously expanding recycling efforts #12;Paper Recycling · Currently recycling mixed paper Office paper

  11. Responsible recycling

    SciTech Connect (OSTI)

    Pugh, A. (Britannia Refined Metals, Northfleet (United Kingdom))

    1993-05-01T23:59:59.000Z

    The issues that affect the recycling of lead-acid batteries and the challenges that this issue brings to both the lead industry and to the battery manufacturers are covered. Topics include the lead market (its size and structure), the economic constraints on the recycling system, recycling rates for batteries, the technology of recycling, and future considerations.

  12. Waste Management and Recycling in Lab Batteries can be recycled in the VWR stockroom

    E-Print Network [OSTI]

    Cohen, Robert E.

    Waste Management and Recycling in Lab · Batteries can be recycled in the VWR stockroom · Electronic material can be recycled for free by MIT facilities (via SAP web) · Bulk equipment can be disposed be placed in recycling bin ­ Cardboard ­ Please break down and flatten boxes ­ Containers (aluminum, metal

  13. Solvent recycle/recovery

    SciTech Connect (OSTI)

    Paffhausen, M.W.; Smith, D.L.; Ugaki, S.N.

    1990-09-01T23:59:59.000Z

    This report describes Phase I of the Solvent Recycle/Recovery Task of the DOE Chlorinated Solvent Substitution Program for the US Air Force by the Idaho National Engineering Laboratory, EG G Idaho, Inc., through the US Department of Energy, Idaho Operations Office. The purpose of the task is to identify and test recovery and recycling technologies for proposed substitution solvents identified by the Biodegradable Solvent Substitution Program and the Alternative Solvents/Technologies for Paint Stripping Program with the overall objective of minimizing hazardous wastes. A literature search to identify recycle/recovery technologies and initial distillation studies has been conducted. 4 refs.

  14. VISAR Validation Test Series at the Light Initiated High Explosive (LIHE) facility.

    SciTech Connect (OSTI)

    Covert, Timothy Todd

    2007-02-01T23:59:59.000Z

    A velocity interferometer system for any reflector (VISAR) was recently deployed at the light initiated high explosive facility (LIHE) to measure the velocity of an explosively accelerated flyer plate. The velocity data from the flyer plate experiments, using the vendor's fringe constant of 100m/s/fringe, were consistently lower than model predictions. The goal of the VISAR validation test series was to confirm the VISAR system fringe constant. A low velocity gas gun was utilized to impact and accelerate a target at the LIHE facility. VISAR velocity data from the accelerated target was compared against an independent velocity measurement. The data from this test series did in fact reveal the fringe constant was significantly higher than the vendor's specification. The correct fringe constant for the LIHE VISAR system has been determined to be 123 m/s/fringe. The Light Initiated High Explosive (LIHE) facility recently completed a Phase I test series to develop an explosively accelerated flyer plate (X-Flyer). The X-Flyer impulse technique consists of first spraying a thin layer of silver acetylide silver nitrate explosive onto a thin flyer plate. The explosive is then initiated using an intense flash of light. The explosive detonation accelerates the flyer across a small air gap towards the test item. The impact of the flyer with the test item creates a shock pulse and an impulsive load in the test unit. The goal of Phase I of the X-Flyer development series was to validate the technique theory and design process. One of the key parameters that control the shock pulse and impulsive load is the velocity of the flyer at impact. To measure this key parameter, a velocity interferometer system for any reflector (VISAR) was deployed at the LIHE facility. The VISAR system was assembled by Sandia personnel from the Explosive Projects and Diagnostics department. The VISAR was a three leg, push-pull system using a fixed delay cavity. The primary optical components consisted of a delay bar and stand off that holds the air-reference mirror. When this component was ordered 2 years ago, a fringe constant of 100 m/s/fringe for a 532nm laser was specified. The fabrication/assembly vendor went out of business shortly after delivering the component and did not deliver the certification papers with the component. The vendor documentation to verify the fringe constant was not made available to Sandia. VISAR systems were generally not calibrated because the fringe constant could be determined from a known glass index of refraction and length. The VISAR system was deployed at the LIHE facility using the specified 100m/s/fringe. The Phase I X-Flyer development series was completed successfully measuring flyer velocities using the VISAR system. However flyer velocity measurements were on average 18% lower than analytical model predictions. In an effort to resolve the consistently slow velocity data, the VISAR data was under scrutiny. The purpose of the LIHE VISAR validation test series is to verify the velocity data taken with the VISAR system.

  15. RECOMMENDED FRIT COMPOSITION FOR INITIAL SLUDGE BATCH 5 PROCESSING AT THE DEFENSE WASTE PROCESSING FACILITY

    SciTech Connect (OSTI)

    Fox, K; Tommy Edwards, T; David Peeler, D

    2008-06-25T23:59:59.000Z

    The Savannah River National Laboratory (SRNL) Frit Development Team recommends that the Defense Waste Processing Facility (DWPF) utilize Frit 418 for initial processing of high level waste (HLW) Sludge Batch 5 (SB5). The extended SB5 preparation time and need for DWPF feed have necessitated the use of a frit that is already included on the DWPF procurement specification. Frit 418 has been used previously in vitrification of Sludge Batches 3 and 4. Paper study assessments predict that Frit 418 will form an acceptable glass when combined with SB5 over a range of waste loadings (WLs), typically 30-41% based on nominal projected SB5 compositions. Frit 418 has a relatively high degree of robustness with regard to variation in the projected SB5 composition, particularly when the Na{sub 2}O concentration is varied. The acceptability (chemical durability) and model applicability of the Frit 418-SB5 system will be verified experimentally through a variability study, to be documented separately. Frit 418 has not been designed to provide an optimal melt rate with SB5, but is recommended for initial processing of SB5 until experimental testing to optimize a frit composition for melt rate can be completed. Melt rate performance can not be predicted at this time and must be determined experimentally. Note that melt rate testing may either identify an improved frit for SB5 processing (one which produces an acceptable glass at a faster rate than Frit 418) or confirm that Frit 418 is the best option.

  16. Electroless nickel bath recycle. Project accomplishment summary for DOE Technology Transfer Initiative project 93-Y12P-086-C1

    SciTech Connect (OSTI)

    NONE

    1996-03-22T23:59:59.000Z

    The Lockheed Martin Energy Systems plating group has decades of experience in electroless nickel plating. The group conceived of, established the validity of, and patented the ENVIRO-CP process for plating bath rejuvenation, which eliminates the generation of hazardous waste from plating processes. Fidelity Chemical Products Corporation supplies chemicals to and has knowledge of the plating industry. A second partner (CRADA identity protected) conducts production plating. The objective of this Cooperative Research and Development Agreement (CRADA) project was to transfer the ENVIRO-CP process to the plating industry. Energy Systems personnel were to evaluate and modify the general process so that it could be used for a specific plating process, working in concert with the partner. Technical results/accomplishments: the plating solutions and the ENVIRO-CP process were analyzed and modified for direct use in the partner`s plating facility. An engineering flowsheet and pilot plant production-scale equipment were designed. Some pilot-scale equipment was fabricated; the balance will be procured and the system tested when the partner is able to budget for purchase of the remaining equipment.

  17. EVALUATION OF THE IMPACT OF THE DEFENSE WASTE PROCESSING FACILITY (DWPF) LABORATORY GERMANIUM OXIDE USE ON RECYCLE TRANSFERS TO THE H-TANK FARM

    SciTech Connect (OSTI)

    Jantzen, C.; Laurinat, J.

    2011-08-15T23:59:59.000Z

    When processing High Level Waste (HLW) glass, the Defense Waste Processing Facility (DWPF) cannot wait until the melt or waste glass has been made to assess its acceptability, since by then no further changes to the glass composition and acceptability are possible. Therefore, the acceptability decision is made on the upstream feed stream, rather than on the downstream melt or glass product. This strategy is known as 'feed forward statistical process control.' The DWPF depends on chemical analysis of the feed streams from the Sludge Receipt and Adjustment Tank (SRAT) and the Slurry Mix Evaporator (SME) where the frit plus adjusted sludge from the SRAT are mixed. The SME is the last vessel in which any chemical adjustments or frit additions can be made. Once the analyses of the SME product are deemed acceptable, the SME product is transferred to the Melter Feed Tank (MFT) and onto the melter. The SRAT and SME analyses have been analyzed by the DWPF laboratory using a 'Cold Chemical' method but this dissolution did not adequately dissolve all the elemental components. A new dissolution method which fuses the SRAT or SME product with cesium nitrate (CsNO{sub 3}), germanium (IV) oxide (GeO{sub 2}) and cesium carbonate (Cs{sub 2}CO{sub 3}) into a cesium germanate glass at 1050 C in platinum crucibles has been developed. Once the germanium glass is formed in that fusion, it is readily dissolved by concentrated nitric acid (about 1M) to solubilize all the elements in the SRAT and/or SME product for elemental analysis. When the chemical analyses are completed the acidic cesium-germanate solution is transferred from the DWPF analytic laboratory to the Recycle Collection Tank (RCT) where the pH is increased to {approx}12 M to be released back to the tank farm and the 2H evaporator. Therefore, about 2.5 kg/yr of GeO{sub 2}/year will be diluted into 1.4 million gallons of recycle. This 2.5 kg/yr of GeO{sub 2} may increase to 4 kg/yr when improvements are implemented to attain an annual canister production goal of 400 canisters. Since no Waste Acceptance Criteria (WAC) exists for germanium in the Tank Farm, the Effluent Treatment Project, or the Saltstone Production Facility, DWPF has requested an evaluation of the fate of the germanium in the caustic environment of the RCT, the 2H evaporator, and the tank farm. This report evaluates the effect of the addition of germanium to the tank farm based on: (1) the large dilution of Ge in the RCT and tank farm; (2) the solubility of germanium in caustic solutions (pH 12-13); (3) the potential of germanium to precipitate as germanium sodalites in the 2H Evaporator; and (4) the potential of germanium compounds to precipitate in the evaporator feed tank. This study concludes that the impacts of transferring up to 4 kg/yr germanium to the RCT (and subsequently the 2H evaporator feed tank and the 2H evaporator) results in <2 ppm per year (1.834 mg/L) which is the maximum instantaneous concentration expected from DWPF. This concentration is insignificant as most sodium germanates are soluble at the high pH of the feed tank and evaporator solutions. Even if sodium aluminosilicates form in the 2H evaporator, the Ge will likely substitute for some small amount of the Si in these structures and will be insignificant. It is recommended that the DWPF continue with their strategy to add germanium as a laboratory chemical to Attachment 8.2 of the DWPF Waste Compliance Plan (WCP).

  18. An industry response to recycle 2000

    SciTech Connect (OSTI)

    Motl, G.P.; Loiselle, V.

    1996-06-01T23:59:59.000Z

    The US DOE is expected to issue a policy early this year articulating DOE`s position on the recycle of DOE radioactive scrap metal. In anticipation of this `Recycle 2000` initiative, the nuclear industry has formed a new trade association called the Association of Radioactive Metal Recyclers (ARMR). This article describes the Recycle 2000 initiative, provides some background on the ARMR and its membership, and identifies industry views on the actions to be taken and issues to be resolved in Recycle 2000 is to become a reality.

  19. COPPER CABLE RECYCLING TECHNOLOGY

    SciTech Connect (OSTI)

    Chelsea Hubbard

    2001-05-01T23:59:59.000Z

    The United States Department of Energy (DOE) continually seeks safer and more cost-effective technologies for use in deactivation and decommissioning (D&D) of nuclear facilities. The Deactivation and Decommissioning Focus Area (DDFA) of the DOE's Office of Science and Technology (OST) sponsors large-scale demonstration and deployment projects (LSDDPs). At these LSDDPs, developers and vendors of improved or innovative technologies showcase products that are potentially beneficial to the DOE's projects and to others in the D&D community. Benefits sought include decreased health and safety risks to personnel and the environment, increased productivity, and decreased costs of operation. The Idaho National Engineering and Environmental Laboratory (INEEL) generated a list of statements defining specific needs and problems where improved technology could be incorporated into ongoing D&D tasks. One such need is to reduce the volume of waste copper wire and cable generated by D&D. Deactivation and decommissioning activities of nuclear facilities generates hundreds of tons of contaminated copper cable, which are sent to radioactive waste disposal sites. The Copper Cable Recycling Technology separates the clean copper from contaminated insulation and dust materials in these cables. The recovered copper can then be reclaimed and, more importantly, landfill disposal volumes can be reduced. The existing baseline technology for disposing radioactively contaminated cables is to package the cables in wooden storage boxes and dispose of the cables in radioactive waste disposal sites. The Copper Cable Recycling Technology is applicable to facility decommissioning projects at many Department of Energy (DOE) nuclear facilities and commercial nuclear power plants undergoing decommissioning activities. The INEEL Copper Cable Recycling Technology Demonstration investigated the effectiveness and efficiency to recycle 13.5 tons of copper cable. To determine the effectiveness of separating out radioactive contamination, the copper cable was coated with a surrogate contaminant. The demonstration took place at the Bonneville County Technology Center in Idaho Falls, Idaho.

  20. Polybrominated dibenzo-p-dioxins/dibenzofurans and polybrominated diphenyl ethers in soil, vegetation, workshop-floor dust, and electronic shredder residue from an electronic waste recycling facility and in soils from a chemical industrial complex in eastern China

    SciTech Connect (OSTI)

    Jing Ma; Rudolf Addink; Sehun Yun; Jinping Cheng; Wenhua Wang; Kurunthachalam Kannan [Shanghai Jiao Tong University, Shanghai (China). School of Environmental Science and Engineering

    2009-10-01T23:59:59.000Z

    In this study, 11 2,3,7,8-substituted PBDD/Fs and 10 polybrominated diphenyl ether (PBDE) congeners were determined in electronic shredder waste, workshop-floor dust, soil, and leaves (of plants on the grounds of the facility) from a large-scale electronic wastes (e-waste) recycling facility and in surface soil from a chemical-industrial complex (comprising a coke-oven plant, a coal-fired power plant, and a chlor-alkali plant) as well as agricultural areas in eastern China. Total PBDD/F concentrations in environmental samples were in the range of 113-818 pg/g dry wt (dw) for leaves, 392-18,500 pg/g dw for electronic shredder residues, 716-80,0000 pg/g dw for soil samples, and 89,600-14,3000 pg/g dw for workshop-floor dust from the e-waste recycling facility and in a range from nondetect (ND) to 427 pg/g dw in soil from the chemical-industrial complex. The highest mean concentrations of total PBDD/Fs were found in soil samples and workshop-floor dust from the e-waste recycling facility. The dioxin-like toxic equivalent (measured as TEQ) concentrations of PBDD/Fs were greater than the TEQs of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) reported in our previous study for the same set of samples. The concentrations of PBDFs were several orders of magnitude higher than the concentrations of PBDDs in samples from the e-waste facility or from soil from the chemical-industrial complex. A significant correlation was found between the concentrations of {Sigma}PBDD/Fs and {Sigma}PBDEs (r = 0.769, p < 0.01) and between SPBDD/Fs and the previously reported SPCDD/F concentrations (r = 0.805, p < 0.01). The estimated daily human intakes of TEQs contributed by PBDD/Fs via soil/dust ingestion and dermal exposures in e-waste recycling facilities were higher than the intakes of TEQs contributed by PCDD/Fs, calculated in our previous study. 45 refs., 2 figs., 2 tabs.

  1. Extreme Recycling

    E-Print Network [OSTI]

    Hacker, Randi

    2009-01-14T23:59:59.000Z

    Broadcast Transcript: Singing the recycling blues because you have to separate your chipboard from your newspaper, your steel from your aluminum, your #1 from your #2 plastic? Pantywaists! The residents of Kamikatsu, Japan have no fewer than 34...

  2. Impact of increased electric vehicle use on battery recycling infrastructure

    SciTech Connect (OSTI)

    Vimmerstedt, L.; Hammel, C. [National Renewable Energy Lab., Golden, CO (United States); Jungst, R. [Sandia National Labs., Albuquerque, NM (United States)

    1996-12-01T23:59:59.000Z

    State and Federal regulations have been implemented that are intended to encourage more widespread use of low-emission vehicles. These regulations include requirements of the California Air Resources Board (CARB) and regulations pursuant to the Clean Air Act Amendments of 1990 and the Energy Policy Act. If the market share of electric vehicles increases in response to these initiatives, corresponding growth will occur in quantities of spent electric vehicle batteries for disposal. Electric vehicle battery recycling infrastructure must be adequate to support collection, transportation, recovery, and disposal stages of waste battery handling. For some battery types, such as lead-acid, a recycling infrastructure is well established; for others, little exists. This paper examines implications of increasing electric vehicle use for lead recovery infrastructure. Secondary lead recovery facilities can be expected to have adequate capacity to accommodate lead-acid electric vehicle battery recycling. However, they face stringent environmental constraints that may curtail capacity use or new capacity installation. Advanced technologies help address these environmental constraints. For example, this paper describes using backup power to avoid air emissions that could occur if electric utility power outages disable emissions control equipment. This approach has been implemented by GNB Technologies, a major manufacturer and recycler of lead-acid batteries. Secondary lead recovery facilities appear to have adequate capacity to accommodate lead waste from electric vehicles, but growth in that capacity could be constrained by environmental regulations. Advances in lead recovery technologies may alleviate possible environmental constraints on capacity growth.

  3. Recycling`s regulatory burden: A case study -- the Modesto Tire Disposal Project

    SciTech Connect (OSTI)

    Tomeo, E. [UAE Energy Operations Corp., San Ramon, CA (United States)

    1995-12-31T23:59:59.000Z

    The Modesto Tire Disposal Project is a 14 MW electric power generating facility in Westley, CA fueled on whole waste tires. A by-product of the incineration process is a zinc-rich fly ash which contains low concentrations of lead and cadmium. The project`s preferred disposition for the fly ash is recycling through reclamation of its valuable metals. Under California regulation, the fly ash is considered a hazardous waste, and its handling and transportation is severely restricted. Federal regulation doe snot impose such restrictions. The fly ash from the project was recycled for years. However, internal regulatory review and subsequent conference with regulators determined that the environmentally sound transportation practices that had been utilized were not regulatorily compliant. As a result of compliance initiatives, the valuable fly ash had to be disposed of in class 1 landfills for the past year. The return to a recycle option remains elusive. This presentation reviews some of the regulatory hurdles and the economic harm done to the project in order to maintain strict compliance with California hazardous waste regulations.

  4. Waste Estimates for a Future Recycling Plant in the US Based Upon AREVA Operating Experience - 13206

    SciTech Connect (OSTI)

    Foare, Genevieve; Meze, Florian [AREVA E and P, SGN - 1, rue des Herons, 78182 Montigny-le-Bretonneux (France)] [AREVA E and P, SGN - 1, rue des Herons, 78182 Montigny-le-Bretonneux (France); Bader, Sven; McGee, Don; Murray, Paul [AREVA Federal Services LLC, 7207 IBM Drive, Mail Code CLT- 1D, Charlotte NC 28262 (United States)] [AREVA Federal Services LLC, 7207 IBM Drive, Mail Code CLT- 1D, Charlotte NC 28262 (United States); Prud'homme, Pascal [AREVA NC SA - 1, place Jean Millier, 92084 Paris La Defense CEDEX (France)] [AREVA NC SA - 1, place Jean Millier, 92084 Paris La Defense CEDEX (France)

    2013-07-01T23:59:59.000Z

    Estimates of process and secondary wastes produced by a recycling plant built in the U.S., which is composed of a used nuclear fuel (UNF) reprocessing facility and a mixed oxide (MOX) fuel fabrication facility, are performed as part of a U.S. Department of Energy (DOE) sponsored study [1]. In this study, a set of common inputs, assumptions, and constraints were identified to allow for comparison of these wastes between different industrial teams. AREVA produced a model of a reprocessing facility, an associated fuel fabrication facility, and waste treatment facilities to develop the results for this study. These facilities were divided into a number of discrete functional areas for which inlet and outlet flow streams were clearly identified to allow for an accurate determination of the radionuclide balance throughout the facility and the waste streams. AREVA relied primarily on its decades of experience and feedback from its La Hague (reprocessing) and MELOX (MOX fuel fabrication) commercial operating facilities in France to support this assessment. However, to perform these estimates for a U.S. facility with different regulatory requirements and to take advantage of some technological advancements, such as in the potential treatment of off-gases, some deviations from this experience were necessary. A summary of AREVA's approach and results for the recycling of 800 metric tonnes of initial heavy metal (MTIHM) of LWR UNF per year into MOX fuel under the assumptions and constraints identified for this DOE study are presented. (authors)

  5. Request for Information on Photovoltaic Module Recycling

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy SunShot Initiative requests feedback from industry, academia, research laboratories, government agencies, and other stakeholders on issues related to photovoltaic (PV) module recycling technology. SunShot intends to understand the current state of recycling technology and the areas of research that could lead to impactful recycling technologies to support the developing PV industry. The intent of this request for information is to generate discussion related to planning for the end of life of photovoltaic modules and to create a list of high impact research topics in photovoltaics recycling.

  6. PLACEMENT OF OUTDOOR RECYCLING CONTAINERS AROUND UBC CAMPUS

    E-Print Network [OSTI]

    PLACEMENT OF OUTDOOR RECYCLING CONTAINERS AROUND UBC CAMPUS UBC SEEDS Project by Iong, Sin I (Jace RECYCLING CONTAINERS ON UBC CAMPUS by Jace Iong 24 April, 2009 INTRODUCTION This SEEDS (Social, Ecological recycling containers on UBC-Vancouver campus. Initiated by David Smith, the associate director of municipal

  7. Recycling universe

    E-Print Network [OSTI]

    Jaume Garriga; Alexander Vilenkin

    1997-07-26T23:59:59.000Z

    If the effective cosmological constant is non-zero, our observable universe may enter a stage of exponential expansion. In such case, regions of it may tunnel back to the false vacuum of an inflaton scalar field, and inflation with a high expansion rate may resume in those regions. An ``ideal'' eternal observer would then witness an infinite succession of cycles from false vacuum to true, and back. Within each cycle, the entire history of a hot universe would be replayed. If there were several minima of the inflaton potential, our ideal observer would visit each one of these minima with a frequency which depends on the shape of the potential. We generalize the formalism of stochastic inflation to analyze the global structure of the universe when this `recycling' process is taken into account.

  8. Model institutional infrastructures for recycling of photovoltaic modules

    SciTech Connect (OSTI)

    Reaven, S.J.; Moskowitz, P.D.; Fthenakis, V.

    1996-01-01T23:59:59.000Z

    How will photovoltaic modules (PVMS) be recycled at the end of their service lives? This question has technological and institutional components (Reaven, 1994a). The technological aspect concerns the physical means of recycling: what advantages and disadvantages of the several existing and emerging mechanical, thermal, and chemical recycling processes and facilities merit consideration? The institutional dimension refers to the arrangements for recycling: what are the operational and financial roles of the parties with an interest in PVM recycling? These parties include PVM manufacturers, trade organizations; distributors, and retailers; residential, commercial, and utility PVM users; waste collectors, transporters, reclaimers, and reclaimers; and governments.

  9. Regional or global WEEE recycling. Where to go?

    SciTech Connect (OSTI)

    Li, Jinhui, E-mail: jinhui@tsinghua.edu.cn [State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC), School of the Environment, Tsinghua University, Beijing 100084 (China); Lopez N, Brenda N.; Liu, Lili; Zhao, Nana; Yu, Keli; Zheng, Lixia [State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC), School of the Environment, Tsinghua University, Beijing 100084 (China)

    2013-04-15T23:59:59.000Z

    Highlights: ? Source and Destination countries involved in the movement of WEEE have been studied. ? Legislation, facilities and EPR are presented in Source and Destination countries. ? Mostly Destination countries do not have EPR established and have informal facilities. ? Source countries: good technology, EPR established and mostly WEEE regulation enacted. ? Regional WEEE recycling should be under global standards for Sources and Destinations. - Abstract: If we consider Waste Electrical and Electronic Equipment (WEEE) management, we can see the development of different positions in developed and developing countries. This development started with the movement of WEEE from developed countries to the developing countries. However, when the consequences for health and the environment were observed, some developing countries introduced a ban on the import of this kind of waste under the umbrella of the Basel Convention, while some developed countries have been considering a regional or global WEEE recycling approach. This paper explores the current movements between Source and Destination countries, or the importers and exporters, and examines whether it is legal and why illegal traffic is still rife; how global initiatives could support a global WEEE management scheme; the recycling characteristics of the source an destination countries and also to ascertain whether the principle of Extended Producer Responsibility (EPR) has been established between the different stakeholders involved in WEEE management. Ultimately, the Full Extended Producer Responsibility is presented as a possible solution because the compensation of the environmental capacity for WEEE recycling or treatment could be made by the contribution of extra responsibility; and also generating an uniform standard for processing WEEE in an environmentally sound manner could support the regional or international solution of WEEE and also improve the performance of the informal sector.

  10. Scrap uranium recycling via electron beam melting

    SciTech Connect (OSTI)

    McKoon, R.

    1993-11-01T23:59:59.000Z

    A program is underway at the Lawrence Livermore National Laboratory (LLNL) to recycle scrap uranium metal. Currently, much of the material from forging and machining processes is considered radioactive waste and is disposed of by oxidation and encapsulation at significant cost. In the recycling process, uranium and uranium alloys in various forms will be processed by electron beam melting and continuously cast into ingots meeting applicable specifications for virgin material. Existing vacuum processing facilities at LLNL are in compliance with all current federal and state environmental, safety and health regulations for the electron beam melting and vaporization of uranium metal. One of these facilities has been retrofitted with an auxiliary electron beam gun system, water-cooled hearth, crucible and ingot puller to create an electron beam melt furnace. In this furnace, basic process R&D on uranium recycling will be performed with the goal of eventual transfer of this technology to a production facility.

  11. Economic Feasibility of Electrochemical Caustic Recycling at the Hanford Site

    SciTech Connect (OSTI)

    Poloski, Adam P.; Kurath, Dean E.; Holton, Langdon K.; Sevigny, Gary J.; Fountain, Matthew S.

    2009-03-01T23:59:59.000Z

    This report contains a review of potential cost benefits of NaSICON Ceramic membranes for the separation of sodium from Hanford tank waste. The primary application is for caustic recycle to the Waste Treatment and Immobilization Plant (WTP) pretreatment leaching operation. The report includes a description of the waste, the benefits and costs for a caustic-recycle facility, and Monte Carlo results obtained from a model of these costs and benefits. The use of existing cost information has been limited to publicly available sources. This study is intended to be an initial evaluation of the economic feasibility of a caustic recycle facility based on NaSICON technology. The current pretreatment flowsheet indicates that approximately 6,500 metric tons (MT) of Na will be added to the tank waste, primarily for removing Al from the high-level waste (HLW) sludge (Kirkbride et al. 2007). An assessment (Alexander et al. 2004) of the pretreatment flowsheet, equilibrium chemistry, and laboratory results indicates that the quantity of Na required for sludge leaching will increase by 6,000 to 12,000 MT in order to dissolve sufficient Al from the tank-waste sludge material to maintain the number of HLW canisters produced at 9,400 canisters as defined in the Office of River Protection (ORP) System Plan (Certa 2003). This additional Na will significantly increase the volume of LAW glass and extend the processing time of the Waste Treatment and Immobilization Plant (WTP). Future estimates on sodium requirements for caustic leaching are expected to significantly exceed the 12,000-MT value and approach 40,000-MT of total sodium addition for leaching (Gilbert, 2007). The cost benefit for caustic recycling is assumed to consist of four major contributions: 1) the cost savings realized by not producing additional immobilized low-activity waste (ILAW) glass, 2) caustic recycle capital investment, 3) caustic recycle operating and maintenance costs, and 4) research and technology costs needed to deploy the technology. In estimating costs for each of these components, several parameters are used as inputs. Due to uncertainty in assuming a singular value for each of these parameters, a range of possible values is assumed. A Monte Carlo simulation is then performed where the range of these parameters is exercised, and the resulting range of cost benefits is determined.

  12. Recycling Evaluation of Newly Developed Environmentally Benign Pressure Sensitive Adhesive for Postage Applications

    E-Print Network [OSTI]

    Abubakr, Said

    Recycling Evaluation of Newly Developed Environmentally Benign Pressure Sensitive Adhesive stamp products that can be successfully recycled into fine paper products in a typical recycling additional burden on plants that are using recycled fiber. As a result of an initiative by the USPS, a team

  13. Evaluation of the Initial Isothermal Physics Measurements at the Fast Flux Test Facility, a Prototypic Liquid Metal Fast Breeder Reactor

    SciTech Connect (OSTI)

    John D. Bess

    2010-03-01T23:59:59.000Z

    The Fast Flux Test Facility (FFTF) was a 400-MWt, sodium-cooled, low-pressure, high-temperature, fast-neutron flux, nuclear fission reactor plant designed for the irradiation testing of nuclear reactor fuels and materials for the development of liquid metal fast breeder reactors (LMFBRs). The FFTF was fueled with plutonium-uranium mixed oxide (MOX) and reflected by Inconel-600. Westinghouse Hanford Company operated the FFTF as part of the Hanford Engineering Development Laboratory (HEDL) for the U.S. Department of Energy on the Hanford Site near Richland, Washington. Although the FFTF was a testing facility not specifically designed to breed fuel or produce electricity, it did provide valuable information for LMFBR projects and base technology programs in the areas of plant system and component design, component fabrication, prototype testing, and site construction. The major objectives of the FFTF were to provide a strong, disciplined engineering base for the LMFBR program, provide fast flux testing for other U.S. programs, and contribute to the development of a viable self-sustaining competitive U.S. LMFBR industry. During its ten years of operation, the FFTF acted as a national research facility to test advanced nuclear fuels, materials, components, systems, nuclear power plant operating and maintenance procedures, and active and passive reactor safety technologies; it also produced a large number of isotopes for medical and industrial users, generated tritium for the U.S. fusion research program, and participated in cooperative, international research work. Prior to the implementation of the reactor characterization program, a series of isothermal physics measurements were performed; this acceptance testing program consisted of a series of control rod worths, critical rod positions, subcriticality measurements, maximum reactivity addition rates, shutdown margins, excess reactivity, and isothermal temperature coefficient reactivity. The results of these experiments were of particular importance because they provide extensive information which can be directly applied to the design of large LMFBR’s. It should be recognized that the data presented in the initial report were evaluated only to the extent necessary to ensure that adequate data were obtained. Later reports provided further interpretation and detailed comparisons with prediction techniques. The conclusion of the isothermal physics measurements was that the FFTF nuclear characteristics were essentially as designed and all safety requirements were satisfied. From a nuclear point of view, the FFTF was qualified to proceed into power operation mode. The FFTF was completed in 1978 and first achieved criticality on February 9, 1980. Upon completion of the isothermal physics and reactor characterization programs, the FFTF operated for ten years from April 1982 to April 1992. Reactor operations of the FFTF were terminated and the reactor facility was then defueled, deactivated, and placed into cold standby condition. Deactivation of the reactor was put on hold from 1996 to 2000 while the U.S. Department of Energy examined alternative uses for the FFTF but then announced the permanent deactivation of the FFTF in December 2001. Its core support basket was later drilled in May 2005, so as to remove all remaining sodium coolant. On April 17, 2006, the American Nuclear Society designated the FFTF as a “National Nuclear Historic Landmark”.

  14. Scrap tire recycling in Minnesota

    SciTech Connect (OSTI)

    Not Available

    1989-10-01T23:59:59.000Z

    The author discusses the problems associated with scrap tires. For example, surface storing of scrap tires poses a fire hazard and the rainwater trapped in the tire casings is an ideal breeding ground for mosquitoes. Use as a fuel for energy production is unattractive as long as oil retails at its present low price. Past reclamation processes have not met expectations. Legislation alone is not the answer, because scrap tires cannot be regulated out of existence. However, the Minnesota state legislature has come up with an approach that seems to be successful. It has passed the Waste Tire Act, which not only formulates regulations but also provides funding for research and development. Thus, it has established a tire disposal fund for financing construction costs of tire recycling facilities. One of the outcomes was the construction of the St. Louis county Waste Tire Recycling Facility. Through a leasing arrangement with Minneapolis-based Rubber Elastomerics, Inc. (RRE), construction costs financed by the tire disposal fund eventually will be repaid by RRE to the fund. The arrangement is described in detail. By a process also described, RRE produces a product that can be used in thermoset and in thermoplastic compounds. The user can incorporate between 50 percent and 85 percent of the recycled product into a rubber or plastic compound without significantly affecting the physical properties of the compound.

  15. ParadigmParadigm Concrete RecyclingConcrete Recycling

    E-Print Network [OSTI]

    ParadigmParadigm Concrete RecyclingConcrete Recycling #12;Recycled ConcreteRecycled Concrete ·· Whatever steel goes into PCC must comeWhatever steel goes into PCC must come out for recycleout for recycle ·· Aggregates have a big impact on the costAggregates have a big impact on the cost of recyclingof recycling

  16. Authorization Recycling in RBAC Systems

    E-Print Network [OSTI]

    Authorization Recycling in RBAC Systems 1Laboratory for Education and Research in Secure Systems ·motivation ·recycling approach recycling algorithms experimental evaluations summary & future work #12 issued before (precise recycling) #12;6 Laboratory for Education and Research in Secure Systems

  17. Plastic Recycling Toter -ORANGE

    E-Print Network [OSTI]

    Toronto, University of

    microfuge tubes - beakers - flasks - bottles - jars - Plastic disposable pipettes with cotton plugsPlastic Recycling Toter - ORANGE Glass Recycling Toter - TEAL Garbage Yellow sharps container Categories - All Plastic except Styrofoam - rinsed 3 times - may have contained Biohazard level 1 bacteria

  18. European update on recycling

    SciTech Connect (OSTI)

    Birch, S.

    1993-10-01T23:59:59.000Z

    This article discusses the current status of recycling of automobiles in Europe based on a report compiled by Euromotor Reports and also discusses the move toward designing automobiles for disassembly to aid in the recycling process. Plastics and rubber are the emphasis of the report along with copper and aluminum. Problem areas in recycling or dismantling are also discussed.

  19. CHERRY: CHECKPOINTED EARLY RESOURCE RECYCLING

    E-Print Network [OSTI]

    Torrellas, Josep

    : Decouple recycling from retirement #12;Cherry: Checkpointed Early Resource Recycling in Out Slide 4/41 PROPOSAL: EARLY RECYCLING Decouple resource recycling from instruction retirement Recycle1 2 3 CHERRY: CHECKPOINTED EARLY RESOURCE RECYCLING Jos´e F. Mart´inez1 , Jose Renau2 Michael C

  20. Fuel Cycle Options for Optimized Recycling of Nuclear Fuel

    E-Print Network [OSTI]

    Aquien, A.

    The reduction of transuranic inventories of spent nuclear fuel depends upon the deployment of advanced fuels that can be loaded with recycled transuranics (TRU), and the availability of facilities to separate and reprocess ...

  1. Fuel cycle options for optimized recycling of nuclear fuel

    E-Print Network [OSTI]

    Aquien, Alexandre

    2006-01-01T23:59:59.000Z

    The accumulation of transuranic inventories in spent nuclear fuel depends on both deployment of advanced reactors that can be loaded with recycled transuranics (TRU), and on availability of the facilities that separate and ...

  2. Implementation of DOE/NFDI D&D Cost Estimating Tool (POWERtool) for Initiative Facilities at the Savannah River Site

    SciTech Connect (OSTI)

    Austin, W. E.; WSRC; Baker, S. B. III, Cutshall, C. M.; Crouse, J. L.

    2003-02-26T23:59:59.000Z

    The Savannah River Site (SRS) has embarked on an aggressive D&D program to reduce the footprint of excess facilities. Key to the success of this effort is the preparation of accurate cost estimates for decommissioning. SRS traditionally uses ''top-down'' rough order-of-magnitude (ROM) estimating for decommissioning cost estimates. A second cost estimating method (POWERtool) using a ''bottoms-up'' approach has been applied to many of the SRS excess facilities in the T and D-area. This paper describes the use of both estimating methods and compares the estimated costs to actual costs of 5 facilities that were decommissioned in 2002.

  3. Environmental effects of dredging. Documentation of the settle module for ADDAMS: Design of confined disposal facilities for solids retention and initial storage. Technical notes

    SciTech Connect (OSTI)

    Hayes, D.F.; Schroeder, P.R.

    1992-12-01T23:59:59.000Z

    This technical note documents the SETTLE computer program which facilitates the design of a confined disposal facility (CDF) to retain solids, provide initial storage, and meet effluent discharge limitations for suspended solids during a dredged matenal disposal operation. Detailed information can be found in Engineer Manual 1110-2-5027, Confined Dredged Material Disposal. SETTLE is a part of the Automated Dredging and Disposal Alternatives Management System (ADDAMS).

  4. St Andrews Recycling Points Recycling Points are situated locally to

    E-Print Network [OSTI]

    St Andrews, University of

    St Andrews Recycling Points Recycling Points are situated locally to allow you to recycle the following materials: To find your nearest Recycling Point please visit www.fifedirect.org.uk/wasteaware or call the Recycling Helpline on 08451 55 00 22. R&A GOLF CLUB OLD COURSE HOTEL UNIVERSITY NORTH HAUGH

  5. Announcing: All Recycling Reduce your

    E-Print Network [OSTI]

    Papautsky, Ian

    Announcing: All Recycling Go Green! Reduce your contribution to the landfill, by choosing to voluntarily recycle acceptable items in the green All Recycling toters and containers around campus. ONLY THE ITEMS BELOW ARE ACCEPTED FOR ALL RECYCLING Please do not contaminate the recycling containers with trash

  6. Self-protection in dry recycle technologies

    SciTech Connect (OSTI)

    Hannum, W.H.; Wade, D.; Stanford, G.

    1995-12-01T23:59:59.000Z

    In response to the INFCE conclusions, the U.S. undertook development of a new dry fuel cycle. Dry recycle processes have been demonstrated to be feasible. Safeguarding such fuel cycles will be dramatically simpler than the PUREX fuel cycle. At every step of the processes, the materials meet the {open_quotes}spent-fuel standard.{close_quotes} The scale is compatible with collocation of power reactors and their recycle facility, eliminating off-site transportation and storage of plutonium-bearing materials. Material diverted either covertly or overtly would be difficult (relative to material available by other means) to process into weapons feedstock.

  7. TRANSPARENCY RECYCLING PROGRAM PROCEDURES

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    transparencies to be recycled. 2.) SEPARATE the transparencies from ringed binders, plastic or paper folders, envelopes, andor files. 3.) PLACE the transparencies (only) into...

  8. Combustion Byproducts Recycling Consortium

    SciTech Connect (OSTI)

    Paul Ziemkiewicz; Tamara Vandivort; Debra Pflughoeft-Hassett; Y. Paul Chugh; James Hower

    2008-08-31T23:59:59.000Z

    Ashlines: To promote and support the commercially viable and environmentally sound recycling of coal combustion byproducts for productive uses through scientific research, development, and field testing.

  9. Radiation dose assessments to support evaluations of radiological control levels for recycling or reuse of materials and equipment

    SciTech Connect (OSTI)

    Hill, R.L.; Aaberg, R.L.; Baker, D.A.; Kennedy, W.E. Jr.

    1995-07-01T23:59:59.000Z

    Pacific Northwest Laboratory is providing Environmental Protection Support and Assistance to the USDOE, Office of Environmental Guidance. Air, Water, and Radiation Division. As part of this effort, PNL is collecting data and conducting technical evaluations to support DOE analyses of the feasibility of developing radiological control levels for recycling or reuse of metals, concrete, or equipment containing residual radioactive contamination from DOE operations. The radiological control levels will be risk-based, as developed through a radiation exposure scenario and pathway analysis. The analysis will include evaluation of relevant radionuclides, potential mechanisms of exposure, and both health and non-health-related impacts. The main objective of this report is to develop a methodology for establishing radiological control levels for recycle or reuse. This report provides the results of the radiation exposure scenario and pathway analyses for 42 key radionuclides generated during DOE operations that may be contained in metals or equipment considered for either recycling or reuse. The scenarios and information developed by the IAEA. Application of Exemption Principles to the Recycle and Reuse of Materials from Nuclear Facilities, are used as the initial basis for this study. The analyses were performed for both selected worker populations at metal smelters and for the public downwind of a smelter facility. Doses to the public downwind were estimated using the US (EPA) CAP88-PC computer code with generic data on atmospheric dispersion and population density. Potential non-health-related effects of residual activity on electronics and on film were also analyzed.

  10. Cold in-place recycling with bitumen emulsion Animesh Das1

    E-Print Network [OSTI]

    Das, Animesh

    Cold in-place recycling with bitumen emulsion Animesh Das1 Introduction The cold in-place recycling (CIPR) is a process where the existing bituminous pavement is recycled without application of heat breaking (depends on temparture, humidity and wind), the breakdown rolling is initiated with large rubber-tired

  11. Energy implications of glass-container recycling

    SciTech Connect (OSTI)

    Gaines, L.L.; Mintz, M.M. [Argonne National Lab., IL (United States)] [Argonne National Lab., IL (United States)

    1994-03-01T23:59:59.000Z

    This report addresses the question of whether glass-container recycling actually saves energy. Glass-container production in 1991 was 10{sup 7} tons, with cullet making up about 30% of the input to manufacture. Two-thirds of the cullet is postconsumer waste; the remainder is in-house scrap (rejects). Most of the glass recycled is made into new containers. Total primary energy consumption includes direct process-energy use by the industry (adjusted to account for the efficiency of fuel production) plus fuel and raw-material transportation and production energies; the grand total for 1991 is estimated to be about 168 {times} 10{sup 12} Btu. The total primary energy use decreases as the percent of glass recycled rises, but the maximum energy saved is only about 13%. If distance to the landfill is kept fixed and that to the recovery facility multiplied by about eight, to 100 mi, a break-even point is reached, and recycling saves no energy. Previous work has shown that to save energy when using glass bottles, reuse is the clear choice. Recycling of glass does not save much energy or valuable raw material and does not reduce air or water pollution significantly. The most important impacts are the small reduction of waste sent to the landfill and increased production rates at glass plants.

  12. RecycleMania! Improving Waste Reduction and Recycling on

    E-Print Network [OSTI]

    Awtar, Shorya

    RecycleMania! Improving Waste Reduction and Recycling on Campus from Universities to Big Business #12;Contact Information Tracy Artley Recycling Coordinator University of Michigan Tel: 734-763-5539 Email: recycle@umich.edu #12;Agenda Waste Impacts of Large Institutions Unique Challenges Overcoming

  13. Green Initiatives Keep Hanford Site Environmentally Responsible...

    Energy Savers [EERE]

    and increasing recycling on site. "We at MSA are very proud to spearhead the site's green initiatives," said Lori Fritz, MSA's vice president of energy & environmental...

  14. RETHINKING WASTE, RECYCLING, AND HOUSEKEEPING

    E-Print Network [OSTI]

    Howitt, Ivan

    RETHINKING WASTE, RECYCLING, AND HOUSEKEEPING EFFICIENCY.EFFICIENCY. A l GA leaner Green #12 t R li Management Recycling Staff The Office of Waste Reduction & Recycling started in The Office of Waste Reduction & Recycling started in 1990, we have 14 full time staff positions. ·We collect over 40

  15. RECYCLING RATE STUDY Prepared by

    E-Print Network [OSTI]

    Laughlin, Robert B.

    NATIONAL RECYCLING RATE STUDY Prepared by: Smith, Bucklin and Associates, Inc. Market Research and Statistics Division Chicago, Illinois July 2003 PRINTED ON RECYCLED PAPER #12;BCI RECYCLING RATE STUDY TABLE ....................................................................................................1 II. METHODOLOGY A. Total Pounds of Lead Recycled from Batteries

  16. Dual recycling for GEO600

    E-Print Network [OSTI]

    A. Freise

    2003-06-12T23:59:59.000Z

    Dual recycling is the combination of signal recycling and power recycling; both optical techniques improve the shot-noise-limited sensitivity of interferometric gravitational-wave detectors. In addition, signal recycling can reduce the loss of light power due to imperfect interference and allows, in principle, to beat the standard quantum limit. The interferometric gravitational-wave detector GEO600 is the first detector to use signal recycling. We have recently equipped the detector with a signal-recycling mirror with a transmittance of 1%. In this paper, we present details of the detector commissioning and the first locks of the dual- recycled interferometer.

  17. Recycling | Department of Energy

    Energy Savers [EERE]

    Paperclips Supply Stores. Batteries accepted for recycling are: Alkaline, Lithium Ion, Nickel Cadmium (Ni-Cd), Nickel-Iron, and Nickel Metal Hydride (NiMH). Each self service...

  18. Canastota Renewable Energy Facility Project

    SciTech Connect (OSTI)

    Blake, Jillian; Hunt, Allen

    2013-12-13T23:59:59.000Z

    The project was implemented at the Madison County Landfill located in the Town of Lincoln, Madison County, New York. Madison County has owned and operated the solid waste and recycling facilities at the Buyea Road site since 1974. At the onset of the project, the County owned and operated facilities there to include three separate landfills, a residential solid waste disposal and recycled material drop-off facility, a recycling facility and associated administrative, support and environmental control facilities. This putrescible waste undergoes anaerobic decomposition within the waste mass and generates landfill gas, which is approximately 50% methane. In order to recover this gas, the landfill was equipped with gas collection systems on both the east and west sides of Buyea Road which bring the gas to a central point for destruction. In order to derive a beneficial use from the collected landfill gases, the County decided to issue a Request for Proposals (RFP) for the future use of the generated gas.

  19. Taiwan`s experience with municipal waste recycling

    SciTech Connect (OSTI)

    Lee, C.H. [Da-Yeh Univ., Chang-Hwa (Taiwan, Province of China)

    1998-12-31T23:59:59.000Z

    Currently, each person on the average produces 1.15 kg of the municipal waste per day and a total of 9 million metric tons were generated annually in Taiwan. The disposal of such a huge amount of waste presents tremendous challenge for the island due to the scarcity of landfills and incineration facilities available locally. EPA of Taiwan, R.O.C. thus takes an active role in promoting waste recycling to reduce the garbage produced in municipalities. In order to efficiently utilize the government`s human and financial resources used in recycling, started from January 31, 1989, EPA has mandated the producer responsibility recycling program for several designated post-consumer products such as PET, PVC bottles, scrap tires, scrap motor vehicles, etc. Producer responsibility recycling program specifies that the manufacturers, importers and sellers of these designated products have the responsibility to retrieve their products and recycle them properly. Several negative effects have been encountered while the implementation of this producer responsibility recycling program in Taiwan which resulted in a modification of this recycling program recently. This paper presents the encountered experiences on the implementation of municipal waste recycling program in Taiwan.

  20. Recent trends in automobile recycling: An energy and economic assessment

    SciTech Connect (OSTI)

    Curlee, T.R.; Das, S.; Rizy, C.G. [Oak Ridge National Lab., TN (United States); Schexanyder, S.M. [Tennessee Univ., Knoxville, TN (United States). Dept. of Biochemistry

    1994-03-01T23:59:59.000Z

    Recent and anticipated trends in the material composition of domestic and imported automobiles and the increasing cost of landfilling the non-recyclable portion of automobiles (automobile shredder residue or ASR) pose questions about the future of automobile recycling. This report documents the findings of a study sponsored by the US Department of Energy`s Office of Environmental Analysis to examine the impacts of these and other relevant trends on the life-cycle energy consumption of automobiles and on the economic viability of the domestic automobile recycling industry. More specifically, the study (1) reviewed the status of the automobile recycling industry in the United States, including the current technologies used to process scrapped automobiles and the challenges facing the automobile recycling industry; (2) examined the current status and future trends of automobile recycling in Europe and Japan, with the objectives of identifying ``lessons learned`` and pinpointing differences between those areas and the United States; (3) developed estimates of the energy system impacts of the recycling status quo and projections of the probable energy impacts of alternative technical and institutional approaches to recycling; and (4) identified the key policy questions that will determine the future economic viability of automobile shredder facilities in the United States.

  1. Del Norte means north to recycling

    SciTech Connect (OSTI)

    Aquino, J.T.

    1998-06-01T23:59:59.000Z

    Del Norte Regional Recycling and Transfer Station is owned by the city of Oxnard, California and operated by BLT Enterprises, Inc. The Del Norte facility--located in southwestern Ventura County about an hour northwest of Los Angeles--processes polyethylene terephthalate (PET) and high-density polyethylene (HDPE) plastic containers, aluminum, steel, glass, old corrugated containers (OCC), newspapers, computer printout paper, white and colored ledger paper, coated book, supermix paper, telephone books, and old magazines. According to the company, there has been virtually no community opposition to the site. The facility has few neighbors, and those are agricultural. To keep the community relationship strong, the facility`s design and location all but eliminated odor and noise complaints. The building was designed against the prevailing wind pattern, and BLT processes odorous material fast. A misting system installed for dust suppression also can be used with a solution for odor control should the need arise.

  2. Curbside recycling in the presence of alternatives

    E-Print Network [OSTI]

    Beatty, Timothy K.M.; Berck, Peter; Shimshack, Jay P

    2007-01-01T23:59:59.000Z

    WITH MINOR REVISIONS). Curbside Recycling in the Presence ofConservation, Division of Recycling. The views expressed inThese historically high recycling rates have often been

  3. TREATMENT OF GASEOUS EFFLUENTS ISSUED FROM RECYCLING – A REVIEW OF THE CURRENT PRACTICES AND PROSPECTIVE IMPROVEMENTS

    SciTech Connect (OSTI)

    Patricia Paviet-Hartmann; William Kerlin; Steven Bakhtiar

    2010-11-01T23:59:59.000Z

    The objectives of gaseous waste management for the recycling of nuclear used fuel is to reduce by best practical means (ALARA) and below regulatory limits, the quantity of activity discharged to the environment. The industrial PUREX process recovers the fissile material U(VI) and Pu(IV) to re-use them for the fabrication of new fuel elements e.g. recycling plutonium as a Mixed Oxide (MOX) fuel or recycling uranium for new enrichment for Pressurized Water Reactor (PWR). Meanwhile the separation of the waste (activation and fission product) is performed as a function of their pollution in order to store and avoid any potential danger and release towards the biosphere. Raffinate, that remains after the extraction step and which contains mostly all fission products and minor actinides is vitrified, the glass package being stored temporarily at the recycling plant site. Hulls and end pieces coming from PWR recycled fuel are compacted by means of a press leading to a volume reduced to 1/5th of initial volume. An organic waste treatment step will recycle the solvent, mainly tri-butyl phosphate (TBP) and some of its hydrolysis and radiolytic degradation products such as dibutyl phosphate (HDPB) and monobutyl phosphate (H2MBP). Although most scientific and technological development work focused on high level waste streams, a considerable effort is still under way in the area of intermediate and low level waste management. Current industrial practices for the treatment of gaseous effluents focusing essentially on Iodine-129 and Krypton-85 will be reviewed along with the development of novel technologies to extract, condition, and store these fission products. As an example, the current industrial practice is to discharge Kr-85, a radioactive gas, entirely to the atmosphere after dilution, but for the large recycling facilities envisioned in the near future, several techniques such as 1) cryogenic distillation and selective absorption in solvents, 2) adsorption on activated charcoal, 3) selective sorption on chemical modified zeolites, or 4) diffusion through membranes with selective permeability are potential technologies to retain the gas.

  4. A rational minor actinide (MA) recycling concept based on innovative oxide fuel with high AM content

    SciTech Connect (OSTI)

    Tanaka, Kenya; Sato, Isamu; Ishii, Tetsuya; Yoshimochi, Hiroshi; Asaga, Takeo [Japan Atomic Energy Agency, 4002 Narita-cho, O-arai-machi, Higasiibaraki-gun, Ibaraki-ken, 311-1393 (Japan); Kurosaki, Ken [Osaka University, 2-1 Yamadaoka, Suita-shi, Osaka 565-0871 (Japan)

    2007-07-01T23:59:59.000Z

    A rational MA recycle concept based on high Am content fuel has been proposed. A design study of an Am- MOX fabrication plant, which is a key facility for the MA recycle concept, has been done and the facility concept was clarified from the viewpoint of basic process viability. Preliminary cost estimation suggested that the total construction cost of the MA recycle facilities including Am-MOX, Np-MOX and MA recovery could be comparable with that of the large scale LWR-MOX fabrication plant required for plutonium in LWR fuel cycle. (authors)

  5. Wastes associated with recycling spent MOX fuel into fast reactor oxide fuel

    SciTech Connect (OSTI)

    Foare, G.; Meze, F. [AREVA EP, SGN - 1, rue des Herons, 18182 Montigny-le-Bretonneux (France); McGee, D.; Murray, P.; Bader, S. [AREVA Federal Services LLC - 7207 IBM Drive, Charlotte, NC 28262 (United States)

    2013-07-01T23:59:59.000Z

    A study sponsored by the DOE has been performed by AREVA to estimate the process and secondary wastes produced from an 800 MTIHM/yr (initial metric tons heavy metal a year) recycling plant proposed to be built in the U.S. utilizing the COEX process and utilized some DOE defined assumptions and constraints. In this paper, this plant has been analyzed for a recycling campaign that included 89% UO{sub x} and 11% MOX UNF to estimate process and secondary waste quantities produced while manufacturing 28 MTIHM/yr of SFR fuel. AREVA utilized operational data from its backend facilities in France (La Hague and MELOX), and from recent advances in waste treatment technology to estimate the waste quantities. A table lists the volumes and types of the different final wastes for a recycling plant. For instance concerning general fission products the form of the final wastes is vitrified glass and its volume generation rate is 135 l/MTHM, concerning Iodine 129 waste its final form is synthetic rock and its volume generation rate is 0.625 l/MTIHM.

  6. Scrap tire recycling

    SciTech Connect (OSTI)

    Lula, J.W.; Bohnert, G.W.

    1997-03-01T23:59:59.000Z

    As the automobile tire technology has grown and met the need for safer and more durable tires, stronger reinforcement and more chemically resistant rubber compounds have made recycling tires more difficult. In an effort to resolve this problem, techniques and equipment were developed to grind tires into small pieces, and new markets were sought to utilize the crumb rubber product streams from ground tires. Industrial combustion processes were modified to accept scrap tires as fuel. These efforts have been beneficial, steadily increasing the percentage of scrap tires recycled to about 10% in 1985, and reaching 72% in 1995. By the end of 1997, fully 100% of tires generated in the U.S. are expected to be recycled.

  7. Opportunities for the Multi Recycling of Used MOX Fuel in the US - 12122

    SciTech Connect (OSTI)

    Murray, P. [AREVA Federal Services LLC, 4800 Hampden Lane, Bethesda, MD 20814 (United States); Bailly, F.; Bouvier, E.; Gain, T.; Lelievre, F.; Senentz, G.H. [AREVA NC, 33, rue La Fayette, 75 442 Paris Cedex 09 (France); Collins, E. [Oak Ridge National Laboratory, Oak Ridge TN, 37831-6152 (United States)

    2012-07-01T23:59:59.000Z

    Over the last 50 years the US has accumulated an inventory of used nuclear fuel (UNF) in the region of 64,000 metric tons in 2010, and adds an additional 2,200 metric tons each year from the current fleet of 104 Light Water Reactors. This paper considers a fuel cycle option that would be available for a future pilot U.S. recycling plant that could take advantage of the unique opportunities offered by the age and size of the large U.S. UNF inventory. For the purpose of this scenario, recycling of UNF must use the available reactor infrastructure, currently LWR's, and the main product of recycling is considered to be plutonium (Pu), recycled into MOX fuel for use in these reactors. Use of MOX fuels must provide the service (burn-up) expected by the reactor operator, with the required level of safety. To do so, the fissile material concentration (Pu-239, Pu-241) in the MOX must be high enough to maintain criticality, while, in current recycle facilities, the Pu-238 content has to be kept low enough to prevent excessive heat load, neutron emission, and neutron capture during recycle operations. In most countries, used MOX fuel (MOX UNF) is typically stored after one irradiation in an LWR, pending the development of the GEN IV reactors, since it is considered difficult to directly reuse the recycled MOX fuel in LWRs due to the degraded Pu fissile isotopic composition. In the US, it is possible to blend MOX UNF with LEUOx UNF from the large inventory, using the oldest UNF first. Blending at the ratio of about one MOX UNF assembly with 15 LEUOx UNF assemblies, would achieve a fissile plutonium concentration sufficient for reirradiation in new MOX fuel. The Pu-238 yield in the new fuel will be sufficiently low to meet current fuel fabrication standards. Therefore, it should be possible in the context of the US, for discharged MOX fuel to be recycled back into LWR's, using only technologies already industrially deployed worldwide. Building on that possibility, two scenarios are assessed where current US inventory is treated; Pu recycled in LWR MOX fuels, and used MOX fuels themselves are treated in a continuous partitioning-transmutation mode (case 2a) or until the whole current UNF inventory (64,000 MT in 2010) has been treated followed by disposal of the MOX UNF to a geologic repository (case 2b). In the recycling scenario, two cases (2a and 2b) are considered. Benefits achieved are compared with the once through scenario (case 1) where UNF in the current US inventory are disposed directly to a geologic repository. For each scenario, the heat load and radioactivity of the high activity wastes disposed to a geologic repository are calculated and the savings in natural resources quantified, and compared with the once-through fuel cycle. Assuming an initial pilot recycling facility with a capacity of 800 metric tons a year of heavy metal begins operation in 2030, ?8 metric tons per year of Pu is recovered from the LEUOx UNF inventory, and is used to produce fresh MOX fuels. At a later time, additional treatment and recycling capacities are assumed to begin operation, to accommodate blending and recycling of used MOX Pu, up to 2,400 MT/yr treatment capacity to enable processing UNF slightly faster than the rate of generation. Results of this scenario analysis study show the flexibility of the recycling scenarios so that Pu is managed in a way that avoids accumulating used MOX fuels. If at some future date, the decision is made to dispose of the MOX UNF to a geologic repository (case 2b), the scenario is neutral to final repository heat load in comparison to the direct disposal of all UNF (case 1), while diminishing use of natural uranium, enrichment, UNF accumulation, and the volume of HLW. Further recycling of Pu at the end of the scenario (case 2a) would exhibit further benefits. As expected, Pu-241 and Am-241 are the source of long term HLW heat load and Am-241 and Np-237 are the source of long term radiotoxicity. When advanced technology is available, introduction of minor actinide recycling, in addition to Pu recycling, by t

  8. Power recycling for an interferometric gravitational wave

    E-Print Network [OSTI]

    Ejiri, Shinji

    THESIS Power recycling for an interferometric gravitational wave detector Masaki Ando Department . . . . . . . . . . . . . . 48 3.3 Power recycling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 3.3.1 Principle of power recycling . . . . . . . . . . . . . . . . . 50 3.3.2 Recycling cavity

  9. Recycled Unbound Base Pooled Fund Study

    E-Print Network [OSTI]

    Minnesota, University of

    Recycled Unbound Base Pooled Fund Study Tuncer B. Edil Recycled Materials Resource Center Geological Engineering Program University of Wisconsin-Madison #12;·! Recycled Concrete Aggregate (RCA absorption ­! Un-Hydrated cement increases strength and durability ·! Recycled asphalt pavement (RAP

  10. Framework for Building Design Recyclability

    E-Print Network [OSTI]

    Zhang, Fan

    2008-01-01T23:59:59.000Z

    Recycling of building materials is an important aspect of sustainable construction, while sustainable construction is a critical issue to fulfill overall sustainable development. Researchers have proved that building materials recycling...

  11. Recycling Programs | Department of Energy

    Office of Environmental Management (EM)

    Paperclips Supply Stores. Batteries accepted for recycling are: Alkaline, Lithium Ion, Nickel Cadmium (Ni-Cd), Nickel-Iron, and Nickel Metal Hydride (NiMH). Toner Recycling In FY...

  12. PITT RECYCLES! *Please empty cans!

    E-Print Network [OSTI]

    Sibille, Etienne

    PITT RECYCLES! Steel Aluminum Tin cans *Please empty cans! *Please empty containers! *Plastic bags can be recycled at Giant Eagle and Trader Joe's. Look on the bottom or the side of the container NOT Recyclable... Food waste Lunch bags Coffee cups Cellophane Tissues Paper towels Carbon paper Styrofoam Metals

  13. PRTR/309 building nuclear facility preliminary

    SciTech Connect (OSTI)

    Cornwell, B.C.

    1994-12-08T23:59:59.000Z

    The hazard classification of the Plutonium Recycle Test Reactor (PRTR)/309 building as a ``Radiological Facility`` and the office portions as ``Other Industrial Facility`` are documented by this report. This report provides: a synopsis of the history and facility it`s uses; describes major area of the facility; and assesses the radiological conditions for the facility segments. The assessment is conducted using the hazard category threshold values, segmentation methodology, and graded approach guidance of DOE-STD-1027-92.

  14. Published in International Journal of Environment and Pollution, 7(3), 1997, pp. 538-546 THE ECONOMICS OF RECYCLING IN FRANCE

    E-Print Network [OSTI]

    Boyer, Edmond

    -546 THE ECONOMICS OF RECYCLING IN FRANCE: INSTITUTIONAL FRAMEWORK AND TECHNOLOGICAL ADOPTION Christophe Defeuilley allow the optimal application of recycling techniques, combined with waste-to-energy facilities of municipalities. The consequence will be the development of recycling at levels well below the objectives

  15. WINCO Metal Recycle annual report, FY 1993

    SciTech Connect (OSTI)

    Bechtold, T.E. [ed.

    1993-12-01T23:59:59.000Z

    This report is a summary of the first year progress of the WINCO Metal Recycle Program. Efforts were directed towards assessment of radioactive scrap metal inventories, economics and concepts for recycling, technology development, and transfer of technology to the private sector. Seven DOE laboratories worked together to develop a means for characterizing scrap metal. Radioactive scrap metal generation rates were established for several of these laboratories. Initial cost estimates indicate that recycle may be preferable over burial if sufficient decontamination factors can be achieved during melt refining. Radiation levels of resulting ingots must be minimized in order to keep fabrication costs low. Industry has much of the expertise and capability to execute the recycling of radioactive scrap metal. While no single company can sort, melt, refine, roll and fabricate, a combination of two to three can complete this operation. The one process which requires development is in melt refining for removal of radionuclides other than uranium. WINCO is developing this capability in conjunction with academia and industry. This work will continue into FY-94.

  16. Facilities Initiatives | Department of Energy

    Energy Savers [EERE]

    panels over some of the parking spaces. The carport installation includes Level 1 & 2 electric car charging stations, and when not used for charging cars the array provides...

  17. Facilities Initiatives | Department of Energy

    Energy Savers [EERE]

    page available through this link. Note: Emission reduction estimates are measured in MTCO2e, Metric Tonnes (tons) of Carbon Dioxide Equivalent. This is the standard measurement...

  18. FINANCING ELECTRONIC WASTE RECYCLING - Californian Households’ Willingness to Pay Advanced Recycling Fees

    E-Print Network [OSTI]

    Nixon, Hilary; Saphores, Jean-Daniel M

    2007-01-01T23:59:59.000Z

    to pay for curbside recycling; A comparison of payment carefees needed to sustain recycling of covered electronicsbehavior: waste recycling in Hong Kong. Journal of

  19. On achieving the state's household recycling target: A case study of Northern New Jersey, USA

    SciTech Connect (OSTI)

    Otegbeye, M.; Abdel-Malek, L. [Department of Industrial and Management Systems Engineering, New Jersey Institute of Technology, Newark, NJ 07102 (United States); Hsieh, H.N. [Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, NJ 07102 (United States); Meegoda, J.N. [Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, NJ 07102 (United States)], E-mail: meegoda@njit.edu

    2009-02-15T23:59:59.000Z

    In recent times, the State of New Jersey (USA) has been making attempts at promoting recycling as an environmentally friendly means of attaining self-sufficiency at waste disposal, and the state has put in place a 50% recycling target for its municipal solid waste stream. While the environmental benefits of recycling are obvious, a recycling program must be cost effective to ensure its long-term sustainability. In this paper, a linear programming model is developed to examine the current state of recycling in selected counties in Northern New Jersey and assess the needs to achieve the state's recycling goal in these areas. The optimum quantities of waste to be sent to the different waste facilities, which include landfills, incinerators, transfer stations, recycling and composting plants, are determined by the model. The study shows that for these counties, the gap between the current waste practices where the recycling rate stands at 32% and the state's goal can be bridged by more efficient utilization of existing facilities and reasonable investment in expanding those for recycling activities.

  20. Waste tire recycling by pyrolysis

    SciTech Connect (OSTI)

    Not Available

    1992-10-01T23:59:59.000Z

    This project examines the City of New Orleans' waste tire problem. Louisiana State law, as of January 1, 1991, prohibits the knowing disposal of whole waste tires in landfills. Presently, the numerous waste tire stockpiles in New Orleans range in size from tens to hundreds of tires. New Orleans' waste tire problem will continue to increase until legal disposal facilities are made accessible and a waste tire tracking and regulatory system with enforcement provisions is in place. Tires purchased outside of the city of New Orleans may be discarded within the city's limits; therefore, as a practical matter this study analyzes the impact stemming from the entire New Orleans metropolitan area. Pyrolysis mass recovery (PMR), a tire reclamation process which produces gas, oil, carbon black and steel, is the primary focus of this report. The technical, legal and environmental aspects of various alternative technologies are examined. The feasibility of locating a hypothetical PMR operation within the city of New Orleans is analyzed based on the current economic, regulatory, and environmental climate in Louisiana. A thorough analysis of active, abandoned, and proposed Pyrolysis operations (both national and international) was conducted as part of this project. Siting a PMR plant in New Orleans at the present time is technically feasible and could solve the city's waste tire problem. Pending state legislation could improve the city's ability to guarantee a long term supply of waste tires to any large scale tire reclamation or recycling operation, but the local market for PMR end products is undefined.

  1. Manufacturing Demonstration Facilities Workshop Agenda, March...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Manufacturing Demonstration Facility Workshop Critical Materials Workshop Agenda Innovative Manufacturing Initiatives Recognition Day...

  2. Direction of CRT waste glass processing: Electronics recycling industry communication

    SciTech Connect (OSTI)

    Mueller, Julia R., E-mail: mueller.143@osu.edu [Ohio State University, William G. Lowrie Department of Chemical and Biomolecular Engineering, OH (United States) and University of Queensland, School of Chemical Engineering (Australia) and Ohio State University, Materials Science and Engineering, OH (United States); Boehm, Michael W. [University of Queensland, School of Chemical Engineering (Australia); Drummond, Charles [Ohio State University, Materials Science and Engineering, OH (United States)

    2012-08-15T23:59:59.000Z

    Highlights: Black-Right-Pointing-Pointer Given a large flow rate of CRT glass {approx}10% of the panel glass stream will be leaded. Black-Right-Pointing-Pointer The supply of CRT waste glass exceeded demand in 2009. Black-Right-Pointing-Pointer Recyclers should use UV-light to detect lead oxide during the separation process. Black-Right-Pointing-Pointer Recycling market analysis techniques and results are given for CRT glass. Black-Right-Pointing-Pointer Academic initiatives and the necessary expansion of novel product markets are discussed. - Abstract: Cathode Ray Tube, CRT, waste glass recycling has plagued glass manufacturers, electronics recyclers and electronics waste policy makers for decades because the total supply of waste glass exceeds demand, and the formulations of CRT glass are ill suited for most reuse options. The solutions are to separate the undesirable components (e.g. lead oxide) in the waste and create demand for new products. Achieving this is no simple feat, however, as there are many obstacles: limited knowledge of waste glass composition; limited automation in the recycling process; transportation of recycled material; and a weak and underdeveloped market. Thus one of the main goals of this paper is to advise electronic glass recyclers on how to best manage a diverse supply of glass waste and successfully market to end users. Further, this paper offers future directions for academic and industry research. To develop the recommendations offered here, a combination of approaches were used: (1) a thorough study of historic trends in CRT glass chemistry; (2) bulk glass collection and analysis of cullet from a large-scale glass recycler; (3) conversations with industry members and a review of potential applications; and (4) evaluation of the economic viability of specific uses for recycled CRT glass. If academia and industry can solve these problems (for example by creating a database of composition organized by manufacturer and glass source) then the reuse of CRT glass can be increased.

  3. Recycling Best Practices Report August 2011

    E-Print Network [OSTI]

    Kirschner, Denise

    Recycling Best Practices Report August 2011 Elizabeth Fox, Recycling Best Practices Intern Office of Waste Reduction and Recycling University of Michigan Plant Building and Grounds Services #12;Recycling Best Practices Report Office of Waste Reduction and Recycling 1 Executive Summary Due to the high

  4. Waste Toolkit A-Z Battery recycling

    E-Print Network [OSTI]

    Melham, Tom

    Waste Toolkit A-Z Battery recycling How can I recycle batteries? The University Safety Office is responsible for arranging battery recycling for departments (see Contact at bottom of page). Colleges must in normal waste bins or recycling boxes. To recycle batteries, select either option 1 or 2 below: Option 1

  5. Recycling Bin Guide Locations and prices

    E-Print Network [OSTI]

    Kirschner, Denise

    Recycling Bin Guide Locations and prices Metal Bins Deskside Bins with Side Saddle Rubbermaid Bins.58 for auxiliaries. And Non-Public Areas Public Offices Non-Public Recyclables Recyclables RecyclablesTrash Trash Trash #12;New Recycling Bin Guidelines Frequently Asked Questions (as of December 2008) · Why

  6. Zero Waste Program 2011 Recycling Benefits

    E-Print Network [OSTI]

    Delgado, Mauricio

    Rutgers Zero Waste Program 2011 Recycling Benefits Through WM's Recycling Program, our company saved energy and reduced Greenhouse Gases through recycling. Recycling uses less energy, preserves from recycled material than from virgin, raw material. RESOURCE SAVINGS 4203 Metric Tons (MTCO2E

  7. FINANCING ELECTRONIC WASTE RECYCLING - Californian Households’ Willingness to Pay Advanced Recycling Fees

    E-Print Network [OSTI]

    Nixon, Hilary; Saphores, Jean-Daniel M

    2007-01-01T23:59:59.000Z

    A financing system for battery recycling in Switzerland.examines financing for battery recycling in Switzerland. He

  8. Facilities at a Glance Undergraduate Room Type Standard Shared Standard Standard Catered

    E-Print Network [OSTI]

    Burton, Geoffrey R.

    monitor TV +TV Licence VOIP Telephony John Wood Building Freewire Service Recycling facilities Card-operated laundry Insurance included Lift access John Wood Building

  9. Emulsified industrial oils recycling

    SciTech Connect (OSTI)

    Gabris, T.

    1982-04-01T23:59:59.000Z

    The industrial lubricant market has been analyzed with emphasis on current and/or developing recycling and re-refining technologies. This task has been performed for the United States and other industrialized countries, specifically France, West Germany, Italy and Japan. Attention has been focused at emulsion-type fluids regardless of the industrial application involved. It was found that emulsion-type fluids in the United States represent a much higher percentage of the total fluids used than in other industrialized countries. While recycling is an active matter explored by the industry, re-refining is rather a result of other issues than the mere fact that oil can be regenerated from a used industrial emulsion. To extend the longevity of an emulsion is a logical step to keep expenses down by using the emulsion as long as possible. There is, however, another important factor influencing this issue: regulations governing the disposal of such fluids. The ecological question, the respect for nature and the natural balances, is often seen now as everybody's task. Regulations forbid dumping used emulsions in the environment without prior treatment of the water phase and separation of the oil phase. This is a costly procedure, so recycling is attractive since it postpones the problem. It is questionable whether re-refining of these emulsions - as a business - could stand on its own if these emulsions did not have to be taken apart for disposal purposes. Once the emulsion is separated into a water and an oil phase, however, re-refining of the oil does become economical.

  10. Recycled rubber roads

    SciTech Connect (OSTI)

    Not Available

    1989-02-01T23:59:59.000Z

    The paper describes several innovative approaches for recycling old tires in the construction of roads. In one, 18 inches of shredded tire chips (2 X 2 inches) were used on top of 6-8 inches of small stone to construct a road across a sanitary landfill. No compacting or linders were needed. In another application, sidewall mats linked together with steel strapping were used as a sub-base for a road across a swampy area. A third application uses 1/2 inch bits of groundup rubber tires as a replacement for aggregate in an asphalt road base.

  11. Recycling Magnets | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection RadiationRecord-Setting MicroscopyJuneRecycling Magnets July 15, 2013

  12. Flooding and Recycling Authorizations Konstantin (Kosta) Beznosov

    E-Print Network [OSTI]

    Flooding and Recycling Authorizations Konstantin (Kosta) Beznosov Laboratory for Education delivery channels with speculatively pre- computed authorizations and actively recycling them on a just Security Keywords authorization recycling, authorization flooding, access con- trol, authorization, publish

  13. The Economic Benefits of Recycling in Virginia

    E-Print Network [OSTI]

    Lewis, Robert Michael

    The Economic Benefits of Recycling in Virginia Alexander P. Miller Hang T. Nguyen Samantha D, and the recycling contacts from the participating Solid Waste Planning Units discussed in this study. #12;3 Table Determinants of Recycling_______________________________ 12 State Reports

  14. Single Stream Recycling Say Goodbye to Sorting

    E-Print Network [OSTI]

    Awtar, Shorya

    Single Stream Recycling Say Goodbye to Sorting Paper Please email recycle@umich.edu for more Containers Cardboard Please flatten all cardboard before placing into bin! Visit us at www.recycle

  15. RECYCLING: SUPPLY, ECONOMICS, ENVIRONMENT, AND TECHNOLOGY

    E-Print Network [OSTI]

    Abubakr, Said

    RECYCLING: SUPPLY, ECONOMICS, ENVIRONMENT, AND TECHNOLOGY Panel Discussion Roundtable Moderator: S, although higher market values for recyclable will certainly stimulate increased interest in collection in recycling and deinking technologies and process design among North American, European, and Pacific Rim

  16. Removal of the Plutonium Recycle Test Reactor - 13031

    SciTech Connect (OSTI)

    Herzog, C. Brad [CH2M HILL, Inc. (United States)] [CH2M HILL, Inc. (United States); Guercia, Rudolph [US-DOE (United States)] [US-DOE (United States); LaCome, Matt [Meier Engineering Inc (United States)] [Meier Engineering Inc (United States)

    2013-07-01T23:59:59.000Z

    The 309 Facility housed the Plutonium Recycle Test Reactor (PRTR), an operating test reactor in the 300 Area at Hanford, Washington. The reactor first went critical in 1960 and was originally used for experiments under the Hanford Site Plutonium Fuels Utilization Program. The facility was decontaminated and decommissioned in 1988-1989, and the facility was deactivated in 1994. The 309 facility was added to Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) response actions as established in an Interim Record of Decision (IROD) and Action Memorandum (AM). The IROD directs a remedial action for the 309 facility, associated waste sites, associated underground piping and contaminated soils resulting from past unplanned releases. The AM directs a removal action through physical demolition of the facility, including removal of the reactor. Both CERCLA actions are implemented in accordance with U.S. EPA approved Remedial Action Work Plan, and the Remedial Design Report / Remedial Action Report associated with the Hanford 300-FF-2 Operable Unit. The selected method for remedy was to conventionally demolish above grade structures including the easily distinguished containment vessel dome, remove the PRTR and a minimum of 300 mm (12 in) of shielding as a single 560 Ton unit, and conventionally demolish the below grade structure. Initial sample core drilling in the Bio-Shield for radiological surveys showed evidence that the Bio-Shield was of sound structure. Core drills for the separation process of the PRTR from the 309 structure began at the deck level and revealed substantial thermal degradation of at least the top 1.2 m (4LF) of Bio-Shield structure. The degraded structure combined with the original materials used in the Bio-Shield would not allow for a stable structure to be extracted. The water used in the core drilling process proved to erode the sand mixture of the Bio-Shield leaving the steel aggregate to act as ball bearings against the core drill bit. A redesign is being completed to extract the 309 PRTR and entire Bio-Shield structure together as one monolith weighing 1100 Ton by cutting structural concrete supports. In addition, the PRTR has hundreds of contaminated process tubes and pipes that have to be severed to allow for a uniformly flush fit with a lower lifting frame. Thirty-two 50 mm (2 in) core drills must be connected with thirty-two wire saw cuts to allow for lifting columns to be inserted. Then eight primary saw cuts must be completed to severe the PRTR from the 309 Facility. Once the weight of the PRTR is transferred to the lifting frame, then the PRTR may be lifted out of the facility. The critical lift will be executed using four 450 Ton strand jacks mounted on a 9 m (30 LF) tall mobile lifting frame that will allow the PRTR to be transported by eight 600 mm (24 in) Slide Shoes. The PRTR will then be placed on a twenty-four line, double wide, self powered Goldhofer for transfer to the onsite CERCLA Disposal Cell (ERDF Facility), approximately 33 km (20 miles) away. (authors)

  17. Recommendation 221: Recommendation Regarding Recycling of Metals...

    Office of Environmental Management (EM)

    221: Recommendation Regarding Recycling of Metals and Materials Recommendation 221: Recommendation Regarding Recycling of Metals and Materials In addition to the DOE making a final...

  18. Waste tire recycling by pyrolysis

    SciTech Connect (OSTI)

    Not Available

    1992-10-01T23:59:59.000Z

    This project examines the City of New Orleans` waste tire problem. Louisiana State law, as of January 1, 1991, prohibits the knowing disposal of whole waste tires in landfills. Presently, the numerous waste tire stockpiles in New Orleans range in size from tens to hundreds of tires. New Orleans` waste tire problem will continue to increase until legal disposal facilities are made accessible and a waste tire tracking and regulatory system with enforcement provisions is in place. Tires purchased outside of the city of New Orleans may be discarded within the city`s limits; therefore, as a practical matter this study analyzes the impact stemming from the entire New Orleans metropolitan area. Pyrolysis mass recovery (PMR), a tire reclamation process which produces gas, oil, carbon black and steel, is the primary focus of this report. The technical, legal and environmental aspects of various alternative technologies are examined. The feasibility of locating a hypothetical PMR operation within the city of New Orleans is analyzed based on the current economic, regulatory, and environmental climate in Louisiana. A thorough analysis of active, abandoned, and proposed Pyrolysis operations (both national and international) was conducted as part of this project. Siting a PMR plant in New Orleans at the present time is technically feasible and could solve the city`s waste tire problem. Pending state legislation could improve the city`s ability to guarantee a long term supply of waste tires to any large scale tire reclamation or recycling operation, but the local market for PMR end products is undefined.

  19. Recycling effect of Germanium on ECR Ion Source P. Leherissier, C. Baru, C. Canet, M. Dubois, M. Dupuis, J.L. Flambard, G. Gaubert, P. Jardin, N. Lecesne,

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Recycling effect of Germanium on ECR Ion Source P. Leherissier, C. Barué, C. Canet, M. Dubois, M investigated the recycling effect of an SF6 plasma. The initial beam was produced by the classical method of production, the recycling effect and perspectives are described in this paper. #12;2 I. INTRODUCTION At GANIL

  20. Global recycling services for short and long term risk reduction

    SciTech Connect (OSTI)

    Arslan, M.; Grygiel, J.M.; Drevon, C.; Lelievre, F.; Lesage, M.; Vincent, O. [AREVA, 33 rue Lafayette, F-75009 Paris (France)

    2013-07-01T23:59:59.000Z

    New schemes are being developed by AREVA in order to provide global solutions for safe and non-proliferating management of used fuels, thereby significantly contributing to overall risks reduction and sustainable nuclear development. Utilities are thereby provided with a service through which they will be able to send their used fuels and only get returned vitrified and compacted waste, the only waste remaining after reprocessing. This waste is stable, standard and has demonstrated capability for very long term interim storage. They are provided as well with associated facilities and all necessary services for storage in a demonstrated safely manner. Recycled fuels, in particular MOX, would be used either in existing LWRs or in a very limited number of full MOX reactors (like the EPR reactor), located in selected countries, that will recycle MOX so as to downgrade the isotopic quality of the Pu inventories in a significant manner. Reprocessed uranium also can be recycled. These schemes, on top of offering demonstrated operational advantages and a responsible approach, result into optimized economics for all shareholders of the scheme, as part of reactor financing (under Opex or Capex form) will be secured thanks to the value of the recycled flows. It also increases fuel cost predictability as recycled fuel is not subject to market fluctuations as much and allows, in a limited span of time, for clear risk mitigation. (authors)

  1. Combustion Byproducts Recycling Consortium

    SciTech Connect (OSTI)

    Paul Ziemkiewicz; Tamara Vandivort; Debra Pflughoeft-Hassett; Y. Paul Chugh; James Hower

    2008-08-31T23:59:59.000Z

    Each year, over 100 million tons of solid byproducts are produced by coal-burning electric utilities in the United States. Annual production of flue gas desulfurization (FGD) byproducts continues to increase as the result of more stringent sulfur emission restrictions. In addition, stricter limits on NOx emissions mandated by the 1990 Clean Air Act have resulted in utility burner/boiler modifications that frequently yield higher carbon concentrations in fly ash, which restricts the use of the ash as a cement replacement. Controlling ammonia in ash is also of concern. If newer, 'clean coal' combustion and gasification technologies are adopted, their byproducts may also present a management challenge. The objective of the Combustion Byproducts Recycling Consortium (CBRC) is to develop and demonstrate technologies to address issues related to the recycling of byproducts associated with coal combustion processes. A goal of CBRC is that these technologies, by the year 2010, will lead to an overall ash utilization rate from the current 34% to 50% by such measures as increasing the current rate of FGD byproduct use and increasing in the number of uses considered 'allowable' under state regulations. Another issue of interest to the CBRC would be to examine the environmental impact of both byproduct utilization and disposal. No byproduct utilization technology is likely to be adopted by industry unless it is more cost-effective than landfilling. Therefore, it is extremely important that the utility industry provide guidance to the R&D program. Government agencies and private-sector organizations that may be able to utilize these materials in the conduct of their missions should also provide input. The CBRC will serve as an effective vehicle for acquiring and maintaining guidance from these diverse organizations so that the proper balance in the R&D program is achieved.

  2. Combustion Byproducts Recycling Consortium

    SciTech Connect (OSTI)

    Ziemkiewicz, Paul; Vandivort, Tamara; Pflughoeft-Hassett, Debra; Chugh, Y Paul; Hower, James

    2008-08-31T23:59:59.000Z

    Each year, over 100 million tons of solid byproducts are produced by coal-burning electric utilities in the United States. Annual production of flue gas desulfurization (FGD) byproducts continues to increase as the result of more stringent sulfur emission restrictions. In addition, stricter limits on NOx emissions mandated by the 1990 Clean Air Act have resulted in utility burner/boiler modifications that frequently yield higher carbon concentrations in fly ash, which restricts the use of the ash as a cement replacement. Controlling ammonia in ash is also of concern. If newer, “clean coal” combustion and gasification technologies are adopted, their byproducts may also present a management challenge. The objective of the Combustion Byproducts Recycling Consortium (CBRC) is to develop and demonstrate technologies to address issues related to the recycling of byproducts associated with coal combustion processes. A goal of CBRC is that these technologies, by the year 2010, will lead to an overall ash utilization rate from the current 34% to 50% by such measures as increasing the current rate of FGD byproduct use and increasing in the number of uses considered “allowable” under state regulations. Another issue of interest to the CBRC would be to examine the environmental impact of both byproduct utilization and disposal. No byproduct utilization technology is likely to be adopted by industry unless it is more cost-effective than landfilling. Therefore, it is extremely important that the utility industry provide guidance to the R&D program. Government agencies and privatesector organizations that may be able to utilize these materials in the conduct of their missions should also provide input. The CBRC will serve as an effective vehicle for acquiring and maintaining guidance from these diverse organizations so that the proper balance in the R&D program is achieved.

  3. Coal liquefaction with preasphaltene recycle

    DOE Patents [OSTI]

    Weimer, Robert F. (Allentown, PA); Miller, Robert N. (Allentown, PA)

    1986-01-01T23:59:59.000Z

    A coal liquefaction system is disclosed with a novel preasphaltene recycle from a supercritical extraction unit to the slurry mix tank wherein the recycle stream contains at least 90% preasphaltenes (benzene insoluble, pyridine soluble organics) with other residual materials such as unconverted coal and ash. This subject process results in the production of asphaltene materials which can be subjected to hydrotreating to acquire a substitute for No. 6 fuel oil. The preasphaltene-predominant recycle reduces the hydrogen consumption for a process where asphaltene material is being sought.

  4. Recycling and Life Cycle Issues

    SciTech Connect (OSTI)

    Das, Sujit [ORNL

    2010-01-01T23:59:59.000Z

    This chapter addresses recycling and life cycle considerations related to the growing use of lightweight materials in vehicles. The chapter first addresses the benefit of a life cycle perspective in materials choice, and the role that recycling plays in reducing energy inputs and environmental impacts in a vehicle s life cycle. Some limitations of life cycle analysis and results of several vehicle- and fleet-level assessments are drawn from published studies. With emphasis on lightweight materials such as aluminum, magnesium, and polymer composites, the status of the existing recycling infrastructure and technological challenges being faced by the industry also are discussed.

  5. Progress in the development of recycling processes for electric vehicle batteries

    SciTech Connect (OSTI)

    Jungst, R.G.; Clark, R.P.

    1994-08-01T23:59:59.000Z

    Disposition of electric vehicle (EV) batteries after they have reached the end of their useful life is an issue that could impede the widespread acceptance of EVs in the commercial market. This is especially true for advanced battery systems where working recycling processes have not as yet been established. The DOE sponsors an Ad Hoc Electric Vehicle Battery Readiness Working Group to identify barriers to the introduction of commercial EVs and to advise them of specific issues related to battery reclamation/recycling, in-vehicle battery safety, and battery shipping. A Sub-Working Group on the reclamation/recycle topic has been reviewing the status of recycling process development for the principal battery technologies that are candidates for EV use from the near-term to the long-term. Recycling of near-term battery technologies, such as lead-acid and nickel/cadmium, is occurring today and it is believed that sufficient processing capacity can be maintained to keep up with the large number of units that could result from extensive EV use. Reclamation/recycle processes for midterm batteries are partially developed. Good progress has been made in identifying processes to recycle sodium/sulfur batteries at a reasonable cost and pilot scale facilities are being tested or planned. A pre-feasibility cost study on the nickel/metal hydride battery also indicates favorable economics for some of the proposed reclamation processes. Long-term battery technologies, including lithium-polymer and lithium/iron disulfide, are still being designed and developed for EVs, so descriptions for prototype recycling processes are rather general at this point. Due to the long time required to set up new, full-scale recycling facilities, it is important to develop a reclamation/recycling process in parallel with the battery technologies themselves.

  6. RECYCLING PROGRAM TYPE LOCATION ALLOWED NOT ALLOWED

    E-Print Network [OSTI]

    Miami, University of

    RECYCLING PROGRAM TYPE LOCATION ALLOWED NOT ALLOWED Batteries, toner, ink cartridges & cell phones and recycling is an important part of that effort. Below is a guide to on-campus recycling at RSMAS: Visit http://www.rsmas.miami.edu/msgso/ for map of recycling bin locations. NOTE: This is not an exhaustive list. If unauthorized items are found

  7. The College Student's Guide to Recycling,

    E-Print Network [OSTI]

    Kidd, William S. F.

    The College Student's Guide to Recycling, Reduction, and Reuse UNIVERSITY AT ALBANY Phone Albany, NY 12222 Top 7 Recycling and Reuse TipsTop 7 Recycling and Reuse Tips University at Albany Office of Environmental Sustainability 1. Set up separate bins for recyclable materials such as plastics and papers. 2

  8. The Environment Team to Waste & Recycling

    E-Print Network [OSTI]

    St Andrews, University of

    The Environment Team A-Z Guide to Waste & Recycling www.le.ac.uk/environment #12;Welcome ...to the University of Leicester's `A-Z Guide to Waste and Recycling'. Over the last 3 years, the Environment Team has introduced an award- winning recycling scheme across the campus that allows us to recycle paper, plastics

  9. 8. Has recycled ber been used appropriately?

    E-Print Network [OSTI]

    8. Has recycled ber been used appropriately? 8.Recycledfiber Environmental aspects Social aspects appropriate environmental controls been applied? Recycled ber Has recycled fiber been used appropriately? Legality Have the products been legally produced? #12;#12;2.49 Recycling is common to the paper

  10. Recycled Materials Resource Jeffrey S. Melton

    E-Print Network [OSTI]

    Recycled Materials Resource Center Jeffrey S. Melton Outreach Director Recycled Materials Resource Center NCC Meeting, April 9th, 2008 #12;Recycled Materials Resource Center Partner laboratory of FHWA Founded in 1998, renewed in 2007 Dedicated to the appropriate use of recycled materials in the highway

  11. A RECYCLED LAN DSCAPE Richard H. Durrell

    E-Print Network [OSTI]

    Maynard, J. Barry

    A RECYCLED LAN DSCAPE by Richard H. Durrell Department of Geology University of Cincinnati Drafting, May 1977 (R.A. Davis, editor) Reprinted 1982 A recycled landscape "Recycling" is the word of the day the same way, Nature recycles even the very hills and valleys beneath our feet. But, as usual, Nature

  12. Demonstration of Advanced Technologies for Multi-Load Washers in Hospitality and Healthcare – Wastewater Recycling Technology

    SciTech Connect (OSTI)

    Boyd, Brian K.; Parker, Graham B.; Petersen, Joseph M.; Sullivan, Greg; Goetzler, W.; Foley, K. J.; Sutherland, T. A.

    2014-08-14T23:59:59.000Z

    The objective of this demonstration project was to evaluate market-ready retrofit technologies for reducing the energy and water use of multi-load washers in healthcare and hospitality facilities. Specifically, this project evaluated laundry wastewater recycling technology in the hospitality sector and ozone laundry technology in both the healthcare and hospitality sectors. This report documents the demonstration of a wastewater recycling system installed in the Grand Hyatt Seattle.

  13. Welcome new and returning residents! Help us make USC greener by recycling! Your Room Recycling Bin

    E-Print Network [OSTI]

    Almor, Amit

    Welcome new and returning residents! Help us make USC greener by recycling! Your Room Recycling Bin Every room is provided with a recycling bin to make it easy for you to recycle while living in University Housing. Use this bin to collect mixed recyclables in your room and take them to your nearest

  14. Energy Return on Investment from Recycling Nuclear Fuel

    SciTech Connect (OSTI)

    None

    2011-08-17T23:59:59.000Z

    This report presents an evaluation of the Energy Return on Investment (EROI) from recycling an initial batch of 800 t/y of used nuclear fuel (UNF) through a Recycle Center under a number of different fuel cycle scenarios. The study assumed that apart from the original 800 t of UNF only depleted uranium was available as a feed. Therefore for each subsequent scenario only fuel that was derived from the previous fuel cycle scenario was considered. The scenarios represent a good cross section of the options available and the results contained in this paper and associated appendices will allow for other fuel cycle options to be considered.

  15. New approaches to recycling tires

    SciTech Connect (OSTI)

    Spencer, R.

    1991-03-01T23:59:59.000Z

    Steel-belted radial tires are potentially one of the most recyclable products created by modern industry, although the potential has been barely tapped. Discarded tires pile up at an astonishing rate each year - 234 million in the US and 26 million passenger tire equivalents in Canada. They represent a mother lode of raw material waiting for modern day miners to transform them into recycled rubber, steel, fiber and energy. The tremendous increase in use of steel belted radials since the early 1970s has complicated their recyclability compared to the bias ply tire, but it has also accomplished waste reduction by tripling tire service life. Part one of this report describes processes being developed to convert tires to crumb rubber, as well as some potential uses of recycled rubber. Part two, to appear next month, will examine such uses as rubberized athletic tracks and highway asphalt.

  16. Renewable and Recycled Energy Objective

    Broader source: Energy.gov [DOE]

    In March 2007, the North Dakota enacted legislation (H.B. 1506) establishing an ''objective'' that 10% of all retail electricity sold in the state be obtained from renewable energy and recycled...

  17. Test Results From The Idaho National Laboratory 15kW High Temperature Electrolysis Test Facility

    SciTech Connect (OSTI)

    Carl M. Stoots; Keith G. Condie; James E. O'Brien; J. Stephen Herring; Joseph J. Hartvigsen

    2009-07-01T23:59:59.000Z

    A 15kW high temperature electrolysis test facility has been developed at the Idaho National Laboratory under the United States Department of Energy Nuclear Hydrogen Initiative. This facility is intended to study the technology readiness of using high temperature solid oxide cells for large scale nuclear powered hydrogen production. It is designed to address larger-scale issues such as thermal management (feed-stock heating, high temperature gas handling, heat recuperation), multiple-stack hot zone design, multiple-stack electrical configurations, etc. Heat recuperation and hydrogen recycle are incorporated into the design. The facility was operated for 1080 hours and successfully demonstrated the largest scale high temperature solid-oxide-based production of hydrogen to date.

  18. Key recycling in authentication

    E-Print Network [OSTI]

    Christopher Portmann

    2014-09-29T23:59:59.000Z

    In their seminal work on authentication, Wegman and Carter propose that to authenticate multiple messages, it is sufficient to reuse the same hash function as long as each tag is encrypted with a one-time pad. They argue that because the one-time pad is perfectly hiding, the hash function used remains completely unknown to the adversary. Since their proof is not composable, we revisit it using a composable security framework. It turns out that the above argument is insufficient: if the adversary learns whether a corrupted message was accepted or rejected, information about the hash function is leaked, and after a bounded finite amount of rounds it is completely known. We show however that this leak is very small: Wegman and Carter's protocol is still $\\epsilon$-secure, if $\\epsilon$-almost strongly universal$_2$ hash functions are used. This implies that the secret key corresponding to the choice of hash function can be reused in the next round of authentication without any additional error than this $\\epsilon$. We also show that if the players have a mild form of synchronization, namely that the receiver knows when a message should be received, the key can be recycled for any arbitrary task, not only new rounds of authentication.

  19. RDS and Recycling Waste Diversion in Food Prep

    E-Print Network [OSTI]

    Awtar, Shorya

    RDS and Recycling Waste Diversion in Food Prep Setting #12;Why Recycle? Recycling saves resources Recycling one ton of paper saves 17 trees! Recycling saves energy Recycling one aluminum can saves enough energy to power a television for 3 hours! Recycling is easy There are 4 waste categories here at UM

  20. Sustainability attheUniversityofPittsburgh Facilities Management Division

    E-Print Network [OSTI]

    Jiang, Huiqiang

    Sustainability attheUniversityofPittsburgh Facilities Management Division Updated January 2014 #12;SustainabilityattheUniversityofPittsburgh · Sustainable Design and Construction · Energy Conservation · Pollution/Emissions Reduction · Greening of the Campus · Recycling #12;SustainableDesignand Construction Design Standards · FM

  1. Combustion Byproducts Recycling Consortium

    SciTech Connect (OSTI)

    Paul Ziemkiewicz; Tamara Vandivort; Debra Pflughoeft-Hassett; Y. Paul Chugh; James Hower

    2008-08-31T23:59:59.000Z

    The Combustion Byproducts Recycling Consortium (CBRC) program was developed as a focused program to remove and/or minimize the barriers for effective management of over 123 million tons of coal combustion byproducts (CCBs) annually generated in the USA. At the time of launching the CBRC in 1998, about 25% of CCBs were beneficially utilized while the remaining was disposed in on-site or off-site landfills. During the ten (10) year tenure of CBRC (1998-2008), after a critical review, 52 projects were funded nationwide. By region, the East, Midwest, and West had 21, 18, and 13 projects funded, respectively. Almost all projects were cooperative projects involving industry, government, and academia. The CBRC projects, to a large extent, successfully addressed the problems of large-scale utilization of CCBs. A few projects, such as the two Eastern Region projects that addressed the use of fly ash in foundry applications, might be thought of as a somewhat smaller application in comparison to construction and agricultural uses, but as a novel niche use, they set the stage to draw interest that fly ash substitution for Portland cement might not attract. With consideration of the large increase in flue gas desulfurization (FGD) gypsum in response to EPA regulations, agricultural uses of FGD gypsum hold promise for large-scale uses of a product currently directed to the (currently stagnant) home construction market. Outstanding achievements of the program are: (1) The CBRC successfully enhanced professional expertise in the area of CCBs throughout the nation. The enhanced capacity continues to provide technology and information transfer expertise to industry and regulatory agencies. (2) Several technologies were developed that can be used immediately. These include: (a) Use of CCBs for road base and sub-base applications; (b) full-depth, in situ stabilization of gravel roads or highway/pavement construction recycled materials; and (c) fired bricks containing up to 30%-40% F-fly ash. Some developed technologies have similar potential in the longer term. (3) Laboratory studies have been completed that indicate that much higher amounts of fly ash could be added in cement-concrete applications under some circumstances. This could significantly increase use of fly ash in cement-concrete applications. (4) A study of the long-term environmental effects of structural fills in a surface mine in Indiana was completed. This study has provided much sought after data for permitting large-volume management options in both beneficial as well as non-beneficial use settings. (5) The impact of CBRC on CCBs utilization trends is difficult to quantify. However it is fair to say that the CBRC program had a significant positive impact on increased utilization of CCBs in every region of the USA. Today, the overall utilization of CCBs is over 43%. (6) CBRC-developed knowledge base led to a large number of other projects completed with support from other sources of funding. (7) CBRC research has also had a large impact on CCBs management across the globe. Information transfer activities and visitors from leading coal producing countries such as South Africa, Australia, England, India, China, Poland, Czech Republic and Japan are truly noteworthy. (8) Overall, the CBRC has been a truly successful, cooperative research program. It has brought together researchers, industry, government, and regulators to deal with a major problem facing the USA and other coal producing countries in the world.

  2. Identification and Characterization of the Endosomal Recycling Inhibitor Endosidin2

    E-Print Network [OSTI]

    Brown, Michelle

    2011-01-01T23:59:59.000Z

    et al. , 2002). BFA inhibits recycling of proteins to the PMthe dark. By inhibiting endosomal recycling, ES2 increasedof the Endosomal Recycling Inhibitor Endosidin2 A

  3. The economics of cell phone reuse and recycling

    E-Print Network [OSTI]

    Geyer, Roland; Doctori Blass, Vered

    2010-01-01T23:59:59.000Z

    documents. Else Refining & Recycling Ltd. , Shefford 54.and the potential for recycling other small electrical andon material recovery and recycling of end-of-life mobile

  4. Siting and Transportation for Consolidated Used Nuclear Fuel Management Facilities: A Proposed Approach for a Regional Initiative to Begin the Dialogue - 13562

    SciTech Connect (OSTI)

    Thrower, Alex W. [The Thrower Group LLC, Richmond, VA (United States)] [The Thrower Group LLC, Richmond, VA (United States); Janairo, Lisa [Council of State Governments-Midwestern Office, Sheboygan, WI (United States)] [Council of State Governments-Midwestern Office, Sheboygan, WI (United States)

    2013-07-01T23:59:59.000Z

    The Blue Ribbon Commission on America's Nuclear Future (BRC) was formed in January 2010 to conduct a comprehensive review of policies for managing the back end of the nuclear fuel cycle, and to develop a new national strategy. Over two years, the BRC held dozens of meetings and heard from hundreds of Federal, State, Tribal, and local officials, as well as representatives of trade and labor organizations, technical groups, non-governmental organizations, and other stakeholders. The Commission's final report (issued January 26, 2012) offers a strategy to resolve longstanding challenges to responsible management of the United States' nuclear waste legacy. The Commission recommended Congressional action to rewrite parts of the Nuclear Waste Policy Act (NWPA); however, a comprehensive legislative overhaul will likely take years to fully implement. The nature and characteristics of nuclear waste, the activities that generated it, and the past history of federal efforts to manage the waste make it virtually certain that finding workable solutions will be controversial and difficult. As the BRC report suggests, this difficulty can be made insurmountable if top-down, federally-mandated efforts are forced upon unwilling States, Tribes, and local communities. Decades of effort and billions of ratepayer and taxpayer dollars have been spent attempting to site and operate spent fuel storage and disposal facilities in this manner. The experience thus far indicates that voluntary consent and active partnership of States, Tribes, and local governments in siting, designing, and operating such facilities are critical. Some States, Tribes, and local communities have indicated that, given adequate scientific and technical information, along with appropriate incentives, assurances, and authority, they might be willing to consider hosting facilities for consolidated storage and disposal of spent nuclear fuel. The authors propose a new regional approach to identifying and resolving issues related to the selection of a consolidated storage site. The approach would be characterized by informed discussion and deliberation, bringing together stakeholders from government, the non-governmental (NGO) community, industry, and other sectors. Because site selection would result in regional transportation impacts, the development of the transportation system (e.g., route identification, infrastructure improvements) would be integrated into the issue-resolution process. In addition to laying out the necessary steps and associated timeline, the authors address the challenges of building public trust and confidence in the new waste management program, as well as the difficulty of reaching and sustaining broad-based consensus on a decision to host a consolidated storage facility. (authors)

  5. Process to recycle shredder residue

    DOE Patents [OSTI]

    Jody, Bassam J. (Chicago, IL); Daniels, Edward J. (Oak Lawn, IL); Bonsignore, Patrick V. (Channahon, IL)

    2001-01-01T23:59:59.000Z

    A system and process for recycling shredder residue, in which separating any polyurethane foam materials are first separated. Then separate a fines fraction of less than about 1/4 inch leaving a plastics-rich fraction. Thereafter, the plastics rich fraction is sequentially contacted with a series of solvents beginning with one or more of hexane or an alcohol to remove automotive fluids; acetone to remove ABS; one or more of EDC, THF or a ketone having a boiling point of not greater than about 125.degree. C. to remove PVC; and one or more of xylene or toluene to remove polypropylene and polyethylene. The solvents are recovered and recycled.

  6. Recycling and surplus chemical programs

    SciTech Connect (OSTI)

    Harper, T.J.

    1993-05-01T23:59:59.000Z

    In 1988, 45 years of defense production came to a close at the US Department of Energy (DOE) Hanford Site. The mission of the Hanford Site was formally changed to environmental restoration and remediation. Westinghouse Hanford Company (WHC) is the management and operations (M&O) contractor leading the cleanup. Within the framework of future Site cleanup, Hanford recycling and surplus chemical programs are making a viable contribution today to waste minimization, diversion of materials from the waste stream, and setting a standard for future operations. This paper focuses on two successful efforts: paper recycling and surplus chemical sales.

  7. Linear Programming Uses for Recycling and Product Reuse

    E-Print Network [OSTI]

    Nagurney, Anna

    Linear Programming Uses for Recycling and Product Reuse Tara Demeyer Management Science I #12;Outline Introduction Construction Waste Recycling Paper Waste Recycling Printer Component Reuse #12;Reverse Logistics Returns/ Damaged Product Recycling of waste materials Reuse of product components #12

  8. Recycling of used perfluorosulfonic acid membranes

    DOE Patents [OSTI]

    Grot, Stephen (Middletown, DE); Grot, Walther (Chadds Ford, PA)

    2007-08-14T23:59:59.000Z

    A method for recovering and recycling catalyst coated fuel cell membranes includes dissolving the used membranes in water and solvent, heating the dissolved membranes under pressure and separating the components. Active membranes are produced from the recycled materials.

  9. Residential Refrigerator Recycling Ninth Year Retention Study

    E-Print Network [OSTI]

    Residential Refrigerator Recycling Ninth Year Retention Study Study ID Nos. 546B, 563 Prepared RECYCLING PROGRAMS Study ID Nos. 546B and 563 Prepared for Southern California Edison Rosemead, California

  10. Curbside recycling in the presence of alternatives

    E-Print Network [OSTI]

    Beatty, Timothy K.M.; Berck, Peter; Shimshack, Jay P

    2007-01-01T23:59:59.000Z

    December 2006 JEL No. Q53 – Solid Waste and Recycling Q58 –regulates municipal solid waste and recycling with itsmillion tons of municipal solid waste annually, or 1.3 tons

  11. Automobile Recycling Policy: Findings and Recommendations

    E-Print Network [OSTI]

    Field, Frank

    This report focuses on recycling. As an objective neutral party, MIT has compiled a knowledge base that examines the many complex issues relating to re-cycling. Although this report was prepared at the request of the ...

  12. WINDExchange Webinar: Wind Turbine Recycling and Repowering ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    WINDExchange Webinar: Wind Turbine Recycling and Repowering WINDExchange Webinar: Wind Turbine Recycling and Repowering January 21, 2015 3:00PM to 5:00PM EST Add to calendar What...

  13. Recycling issues facing target and RTL materials of inertial fusion designs L. El-Guebaly, P. Wilson, M. Sawan, D. Henderson, A. Varuttamaseni,

    E-Print Network [OSTI]

    radiation environment at the target/RTL fabrication facility. In this study, we estimated the target hohlraum wall and RTL materials, explored the radiological issues of the recycled materials, evaluated and Z-pinch recycling processes. The next section addresses the radiological criteria that have been

  14. Recycling of wasted energy : thermal to electrical energy conversion

    E-Print Network [OSTI]

    Lim, Hyuck

    2011-01-01T23:59:59.000Z

    CALIFORNIA, SAN DIEGO Recycling of Wasted Energy : ThermalOF THE DISSERTATION Recycling of Wasted Energy : Thermal to

  15. Research Report Recycling gone bad: When the option to recycle increases

    E-Print Network [OSTI]

    Loudon, Catherine

    Research Report Recycling gone bad: When the option to recycle increases resource consumption Jesse Abstract In this study, we propose that the ability to recycle may lead to increased resource usage compared to when a recycling option is not available. Supporting this hypothesis, our first experiment

  16. TTUAB PLASTIC & ALUMINUM RECYCLING PROTOCOL 2013 What Plastic Do We Recycle?

    E-Print Network [OSTI]

    Rock, Chris

    TTUAB PLASTIC & ALUMINUM RECYCLING PROTOCOL 2013 What Plastic Do We Recycle? TTUAB has taken on the responsibility of recycling ALL plastics (#1 through #7) by placing a yellow TTUAB Plastic Recycling bin on each and in LH100. Technically, we are only responsible for aforementioned plastics and aluminum. However, any

  17. TTUAB PLASTIC & ALUMINUM RECYCLING PROTOCOL Fall 2012 What Plastic Do We Recycle?

    E-Print Network [OSTI]

    Rock, Chris

    TTUAB PLASTIC & ALUMINUM RECYCLING PROTOCOL ­ Fall 2012 What Plastic Do We Recycle? TTUAB has taken on the responsibility of recycling #1 PET and #2 HDPE plastics by placing a yellow TTUAB Plastic Recycling bin on each. Technically, we are only responsible for aforementioned plastics and aluminum. However, any trash or other

  18. TTUAB PLASTIC RECYCLING PROTOCOL Fall 2011 What Plastic Do We Recycle?

    E-Print Network [OSTI]

    Rock, Chris

    TTUAB PLASTIC RECYCLING PROTOCOL ­ Fall 2011 What Plastic Do We Recycle? TTUAB has taken on the responsibility of recycling #1 PET and #2 HDPE plastics by placing a yellow TTUAB Plastic Recycling bin on each floor. Technically, we are only responsible for aforementioned plastics. However, any trash or other

  19. Where can I recycle it year-round? Item Local Recycling Locations

    E-Print Network [OSTI]

    Escher, Christine

    Where can I recycle it year-round? Item Local Recycling Locations Styrofoam First Alternative Co-op Recycling Center, 1007 SE 3rd St., 541-753-3115 (small fee) Packing Peanuts OSU Surplus, 644 SW 13 th St., 541-737-7347 Commercial shipping stores Film Plastics First Alternative Co-op Recycling Center, 1007

  20. Green Screens: Local Recycling Information Online

    E-Print Network [OSTI]

    Briscoe, Georgia

    1994-01-01T23:59:59.000Z

    tires at Firestone and automobile oil at Grease Monkey." When "Related Issues" is selected from CULINE's Recycling

  1. Proceedings of the waste recycling workshop

    SciTech Connect (OSTI)

    Bailey, R.E.; Thomas, A.F.; Ries, M.A. [eds.] [Ohio State Univ., Columbus, OH (United States)] [eds.; Ohio State Univ., Columbus, OH (United States)

    1993-12-31T23:59:59.000Z

    Recorded are seventeen talks from five sessions at the workshop. FERMCO`s recycling program, state of the art recycling technology, and an integrated demonstration of deactivation, decommissioning and decommissioning are presented in the plenary session. In the concrete session, decontamination and recycling are discussed. In the transite session, regulations are considered along with recycling and decontamination. In the metals session, radioactive scrap metals are emphasized. And in the regulatory considerations and liabilities session, DOE and EPA viewpoints are discussed. (GHH)

  2. Ames Lab 101: Rare-Earth Recycling

    SciTech Connect (OSTI)

    Ryan Ott

    2012-09-05T23:59:59.000Z

    Recycling keeps paper, plastics, and even jeans out of landfills. Could recycling rare-earth magnets do the same? Perhaps, if the recycling process can be improved. Scientists at the U.S. Department of Energy's Ames Laboratory are working to more effectively remove the neodymium, a rare earth, from the mix of other materials in a magnet.

  3. Ames Lab 101: Rare-Earth Recycling

    ScienceCinema (OSTI)

    Ryan Ott

    2013-06-05T23:59:59.000Z

    Recycling keeps paper, plastics, and even jeans out of landfills. Could recycling rare-earth magnets do the same? Perhaps, if the recycling process can be improved. Scientists at the U.S. Department of Energy's Ames Laboratory are working to more effectively remove the neodymium, a rare earth, from the mix of other materials in a magnet.

  4. Recycling at Mooov-In 2011

    E-Print Network [OSTI]

    Julien, Christine

    Cardboard Recycling at Mooov-In 2011 For the second year in a row, Division of Housing and Food Service (DHFS) and Recycling & Sustainability teamed up to divert as much cardboard as possible from area landfills. In addition to the paper, cardboard, aluminum and plastic recycling available in all residence

  5. ENVIRONMENTAL PROTECTION FOR THE AUTOMOBILE RECYCLING INDUSTRY

    E-Print Network [OSTI]

    #12;ENVIRONMENTAL PROTECTION FOR THE AUTOMOBILE RECYCLING INDUSTRY IN BRITISH COLUMBIA Volume 1 Pollution Abatement Office. Funds were also provided by BC Auto Recyclers, the BC Ministry of Environment 224 West Esplanade North Vancouver, B.C. Vm3H7 #12;BEST MANAGEMENT PRACTICES FOR THE AUTO RECYCLING

  6. Material Recycling and Waste Disposal Document Control

    E-Print Network [OSTI]

    Guillas, Serge

    1 Material Recycling and Waste Disposal Procedure Document Control Document Created by 23, treatment, handling, transport and disposal of recyclable materials and residual wastes so as to maximise the opportunity and value for the recyclable materials and to minimise the quantity of residual materials

  7. RECYCLE TO EARN Rishi Bhailal Chandra

    E-Print Network [OSTI]

    Zhou, Yaoqi

    RECYCLE TO EARN Rishi Bhailal Chandra Supply Chain Management, Accounting, Kelley School of Business, IUPUI Recycling is a key aspect of any sustainability effort, one that calls for the participation of the entire campus community. Getting students to recycle is very difficult. Students lack

  8. Rural recycling in southeast Colorado

    SciTech Connect (OSTI)

    Lariviere, R. (Prowers County Development, Inc., Lamar, CO (United States))

    1993-05-01T23:59:59.000Z

    This article describes a recycling effort developed for rural southeast Colorado. The program was inspired and manned by local volunteers and based on a drop-off method used in Europe. The topics of the article include getting started, funding, problems encountered, level of participation, and estimated savings in waste collection and landfilling fees.

  9. Nottingham Trent University Plastic Recycling

    E-Print Network [OSTI]

    Evans, Paul

    5015/03/08 Nottingham Trent University Plastic Recycling Water and fizzy drinks bottles Contaminated plastic (food, fluids, etc.) Oil containers Toxic chemical containers Metal strips or fasteners Carrier bags and bin liners Margarine tubs, wall coverings Yoghurt pots, egg cartons, plastic packaging

  10. Cost effectiveness of recycling: A systems model

    SciTech Connect (OSTI)

    Tonjes, David J., E-mail: david.tonjes@stonybrook.edu [Department of Technology and Society, College of Engineering and Applied Sciences, Stony Brook University, Stony Brook, NY 11794-3560 (United States); Waste Reduction and Management Institute, School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11794-5000 (United States); Center for Bioenergy Research and Development, Advanced Energy Research and Technology Center, Stony Brook University, 1000 Innovation Rd., Stony Brook, NY 11794-6044 (United States); Mallikarjun, Sreekanth, E-mail: sreekanth.mallikarjun@stonybrook.edu [Department of Technology and Society, College of Engineering and Applied Sciences, Stony Brook University, Stony Brook, NY 11794-3560 (United States)

    2013-11-15T23:59:59.000Z

    Highlights: • Curbside collection of recyclables reduces overall system costs over a range of conditions. • When avoided costs for recyclables are large, even high collection costs are supported. • When avoided costs for recyclables are not great, there are reduced opportunities for savings. • For common waste compositions, maximizing curbside recyclables collection always saves money. - Abstract: Financial analytical models of waste management systems have often found that recycling costs exceed direct benefits, and in order to economically justify recycling activities, externalities such as household expenses or environmental impacts must be invoked. Certain more empirically based studies have also found that recycling is more expensive than disposal. Other work, both through models and surveys, have found differently. Here we present an empirical systems model, largely drawn from a suburban Long Island municipality. The model accounts for changes in distribution of effort as recycling tonnages displace disposal tonnages, and the seven different cases examined all show that curbside collection programs that manage up to between 31% and 37% of the waste stream should result in overall system savings. These savings accrue partially because of assumed cost differences in tip fees for recyclables and disposed wastes, and also because recycling can result in a more efficient, cost-effective collection program. These results imply that increases in recycling are justifiable due to cost-savings alone, not on more difficult to measure factors that may not impact program budgets.

  11. Recycling Guide: Reduce, Reuse, Recycle Recycling Information Call 301-496-7990 or visit the NEMS Website at http://www.nems.nih.gov

    E-Print Network [OSTI]

    Baker, Chris I.

    Recycling Guide: Reduce, Reuse, Recycle Recycling Information ­ Call 301-496-7990 or visit the NEMS in COMMINGLED bin Rinse food/beverage containers before recycling No Pyrex or Styrofoam Printer and Copier Toner Cartridges in TONER CARTRIDGE bin Recycle packaging material in appropriate bin NIH charities

  12. Characterization of lead-recycling facility emissions at various workplaces

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    studies on lead smelter emissions deal with the environmental impact of outdoor particles, but only a few and then compared; namely Furnace and Refining PM respectively present in the smelter and at refinery workplaces

  13. Lithium-Ion Battery Recycling Facilities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetterEconomy and EmissionsDepartment ofEnergy310

  14. Recycle of oily refinery wastes

    SciTech Connect (OSTI)

    Bartilucci, M.P.; Karsner, G.G.; Tracy, W.J. III.

    1989-10-17T23:59:59.000Z

    This patent describes a process for recycling of petroleum containing sludge. It comprises segregating waste oil-containing sludges into a relatively high oil content sludge and a relatively high water content sludge; introducing the high oil content sludge into a delayed coking drum under delayed conditions in the presence of a liquid coker hydrocarbon feedstock to form coke; introducing the high water content sludge into a delayed coking drum to quench the coke formed in the coking drum.

  15. Implementation of EU Waste Recycling Regulation in Macedonia: The Challenges of Policy Integration and Normative Change

    E-Print Network [OSTI]

    Ilievska Kremer, Jannika Sjostrand

    2013-01-01T23:59:59.000Z

    No. 34. USAID Plastic Recycling Project. Accessed March Recycling Regulation in Macedoniathe Macedonian waste and recycling regulatory framework with

  16. Data summary of municipal solid waste management alternatives. Volume 7, Appendix E -- Material recovery/material recycling technologies

    SciTech Connect (OSTI)

    none,

    1992-10-01T23:59:59.000Z

    The enthusiasm for and commitment to recycling of municipal solid wastes is based on several intuitive benefits: Conservation of landfill capacity; Conservation of non-renewable natural resources and energy sources; Minimization of the perceived potential environmental impacts of MSW combustion and landfilling; Minimization of disposal costs, both directly and through material resale credits. In this discussion, ``recycling`` refers to materials recovered from the waste stream. It excludes scrap materials that are recovered and reused during industrial manufacturing processes and prompt industrial scrap. Materials recycling is an integral part of several solid waste management options. For example, in the preparation of refuse-derived fuel (RDF), ferrous metals are typically removed from the waste stream both before and after shredding. Similarly, composting facilities, often include processes for recovering inert recyclable materials such as ferrous and nonferrous metals, glass, Plastics, and paper. While these two technologies have as their primary objectives the production of RDF and compost, respectively, the demonstrated recovery of recyclables emphasizes the inherent compatibility of recycling with these MSW management strategies. This appendix discusses several technology options with regard to separating recyclables at the source of generation, the methods available for collecting and transporting these materials to a MRF, the market requirements for post-consumer recycled materials, and the process unit operations. Mixed waste MRFs associated with mass bum plants are also presented.

  17. LANSCE | Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LINAC Outreach Affiliations Visiting LANSCE Facilities Isotope Production Facility Lujan Neutron Scattering Center MaRIE Proton Radiography Ultracold Neutrons Weapons Neutron...

  18. Which Elements Should be Recycled for a Comprehensive Fuel Cycle?

    SciTech Connect (OSTI)

    Steven Piet; Trond Bjornard; Brent Dixon; Dirk Gombert; Robert Hill; Chris Laws; Gretchen Matthern; David Shropshire; Roald Wigeland

    2007-09-01T23:59:59.000Z

    Uranium recovery can reduce the mass of waste and possibly the number of waste packages that require geologic disposal. Separated uranium can be managed with the same method (near-surface burial) as used for the larger quantities of depleted uranium or recycled into new fuel. Recycle of all transuranics reduces long-term environmental burden, reduces heat load to repositories, extracts more energy from the original uranium ore, and may have significant proliferation resistance and physical security advantages. Recovery of short-lived fission products cesium and strontium can allow them to decay to low-level waste in facilities tailored to that need, rather than geologic disposal. This could also reduce the number and cost of waste packages requiring geologic disposal. These savings are offset by costs for separation, recycle, and storage systems. Recovery of technetium-99 and iodine-129 can allow them to be sent to geologic disposal in improved waste forms. Such separation avoids contamination of the other products (uranium) and waste (cesium-strontium) streams with long-lived radioisotopes so the material might be disposed as low-level waste. Transmutation of technetium and iodine is a possible future alternative.

  19. Recycling production designs : the value of coordination and flexibility in aluminum recycling operations

    E-Print Network [OSTI]

    Brommer, Tracey H. (Tracey Helenius)

    2013-01-01T23:59:59.000Z

    The growing motivation for aluminum recycling has prompted interest in recycling alternative and more challenging secondary materials. The nature of these alternative secondary materials necessitates the development of an ...

  20. Recycling Campaign Award Prizes for best project proposal to improve

    E-Print Network [OSTI]

    van der Torre, Leon

    Recycling Campaign Award Prizes for best project proposal to improve waste recycling. Recycling bins contain inappropriate waste that cannot be recycled and thus are not picked up. THE REASON for picking up the waste. 60% of the waste budget. Your task: - To develop a new project to improve recycling

  1. Recycling Campaign Prizes for best project proposal to

    E-Print Network [OSTI]

    van der Torre, Leon

    Recycling Campaign Award Prizes for best project proposal to improve waste recycling The Guide #12;Recycling Campaign Award OIKOS Luxembourg in collaboration with the University of Luxembourg's Cell to participate in the Recycling Campaign Award. The Recycling Campaign Award invites you to work in teams

  2. Questions 1823 There are exactly three recycling centers in Rivertown

    E-Print Network [OSTI]

    Cappello, Peter

    5 Questions 18­23 There are exactly three recycling centers in Rivertown: Center 1, Center 2, and Center 3. Exactly five kinds of material are recycled at these recycling centers: glass, newsprint, plastic, tin, and wood. Each recycling center recycles at least two but no more than three of these kinds

  3. Waste Toolkit A-Z Can I recycle stationery?

    E-Print Network [OSTI]

    Melham, Tom

    Waste Toolkit A-Z Stationery Can I recycle stationery? Yes! You can recycle paper and paper based products such as used note pads, paper and cardboard files in the University Grundon recycling boxes. You can't recycle mixed materials that are made of non- recyclable plastic, such as plastic files

  4. Waste Toolkit A-Z Can I recycle paper cups?

    E-Print Network [OSTI]

    Melham, Tom

    Waste Toolkit A-Z Paper cups Can I recycle paper cups? Yes. Paper cups can be recycled in the Grundon recycling boxes. Do not leave dregs of drink in them, as this will contaminate the recycling box. Although it is good to recycle paper cups, it is more sustainable to use china cups that can be washed

  5. Facility Microgrids

    SciTech Connect (OSTI)

    Ye, Z.; Walling, R.; Miller, N.; Du, P.; Nelson, K.

    2005-05-01T23:59:59.000Z

    Microgrids are receiving a considerable interest from the power industry, partly because their business and technical structure shows promise as a means of taking full advantage of distributed generation. This report investigates three issues associated with facility microgrids: (1) Multiple-distributed generation facility microgrids' unintentional islanding protection, (2) Facility microgrids' response to bulk grid disturbances, and (3) Facility microgrids' intentional islanding.

  6. THE QUEEN'S COLLEGE RECYCLING SCHEME Under the new recycling scheme commencing at the beginning of Hilary Term the following

    E-Print Network [OSTI]

    Capdeboscq, Yves

    THE QUEEN'S COLLEGE RECYCLING SCHEME Under the new recycling scheme commencing at the beginning in all student rooms and offices o one for normal waste o one for co-mingled recycling1 Bins these bins. If any recycling is contaminated it will be `waste' not recycling and it would need to go

  7. The Wheelabrator Falls story: Integrated recycling, highly efficient energy recovery, innovative use of by-products and timing to advance the state-of-the-art in integrated waste management

    SciTech Connect (OSTI)

    Felago, R.T.; Anderson, R.L.; Scanlon, P.J. [Wheelabrator Environmental Systems Inc., Hampton, NH (United States)

    1996-12-31T23:59:59.000Z

    This paper discusses how significant state-of-the-art advancements in recycling, utilization of recycled materials and energy production will cut the template for future projects. A corollary benefit will be the enhancement of the concept of privatization of any plant, waste-to-energy, wastewater or biosolids processing, by providing an understanding of private initiation of the project, and the demonstration of a Company`s commitment through self-financing of the facility. All of these advancements point to the fact that waste-to-energy projects of the future will include some or all of these points from the Wheelabrator Falls Project: innovative on-site recycling; innovative utilization of mixed glass cullet; maximum post-combustion automatic recovery of ferrous metal; state-of-the-art boiler upgrades, including a super-efficient thermal cycle design refinements in the plant; specific innovations at falls; sequencing in the operations of the plant`s quality of operations; and expectations going forward.

  8. Recycling Programs | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sure you wantJoin us for| Department ofRightsSmartManagementRecycling

  9. Bituminous pavement recycling Aravind K. and Animesh Das

    E-Print Network [OSTI]

    Das, Animesh

    Bituminous pavement recycling Aravind K. and Animesh Das Department of Civil Engineering IIT Kanpur Introduction The bituminous pavement rehabilitation alternatives are mainly overlaying, recycling and reconstruction. In the recycling process the material from deteriorated pavement, known as reclaimed asphalt

  10. Recyclability of a layered silicateethermoplastic olefin elastomer nanocomposite

    E-Print Network [OSTI]

    Thompson, Michael

    Recyclability of a layered silicateethermoplastic olefin elastomer nanocomposite M.R. Thompson*, K. Despite the occurrence of degradation in the nanocomposite during recycling, its rheological. All rights reserved. Keywords: Thermo-oxidative degradation; Nanocomposite; Recyclability; Organoclay

  11. Integrated Recycling Test Fuel Fabrication

    SciTech Connect (OSTI)

    R.S. Fielding; K.H. Kim; B. Grover; J. Smith; J. King; K. Wendt; D. Chapman; L. Zirker

    2013-03-01T23:59:59.000Z

    The Integrated Recycling Test is a collaborative irradiation test that will electrochemically recycle used light water reactor fuel into metallic fuel feedstock. The feedstock will be fabricated into a metallic fast reactor type fuel that will be irradiation tested in a drop in capsule test in the Advanced Test Reactor on the Idaho National Laboratory site. This paper will summarize the fuel fabrication activities and design efforts. Casting development will include developing a casting process and system. The closure welding system will be based on the gas tungsten arc burst welding process. The settler/bonder system has been designed to be a simple system which provides heating and controllable impact energy to ensure wetting between the fuel and cladding. The final major pieces of equipment to be designed are the weld and sodium bond inspection system. Both x-radiography and ultrasonic inspection techniques have been examine experimentally and found to be feasible, however the final remote system has not been designed. Conceptual designs for radiography and an ultrasonic system have been made.

  12. Argonne National Laboratory's Recycling Pilot Plant

    SciTech Connect (OSTI)

    Spangenberger, Jeff; Jody, Sam

    2009-01-01T23:59:59.000Z

    Argonne has a Recycling Pilot Plant designed to save the non-metal portions of junked cars. Here, program managers demonstrate how plastic shredder residue can be recycled. (Currently these automotive leftovers are sent to landfills.) For more information, visit Argonne's Transportation Technology R&D Center Web site at http://www.transportation.anl.gov.

  13. PCC Mix Designs Using Recycled Concrete

    E-Print Network [OSTI]

    Minnesota, University of

    PCC Mix Designs Using Recycled Concrete Pavements Mary E. Vancura, Derek Tompkins, & Lev Khazanovich 21st Annual Transportation Research Conference #12;·! Reassessment of recycled concrete aggregate (RCA) use in rigid pavements ·! History of RCA use ·! Characteristics of RCA concrete ·! RCA production

  14. Argonne National Laboratory's Recycling Pilot Plant

    ScienceCinema (OSTI)

    Spangenberger, Jeff; Jody, Sam;

    2013-04-19T23:59:59.000Z

    Argonne has a Recycling Pilot Plant designed to save the non-metal portions of junked cars. Here, program managers demonstrate how plastic shredder residue can be recycled. (Currently these automotive leftovers are sent to landfills.) For more information, visit Argonne's Transportation Technology R&D Center Web site at http://www.transportation.anl.gov.

  15. University of California, Irvine Updated 3.5.13 Help keep batteries and printer cartridges out of the trash by recycling your used batteries at one of the locations

    E-Print Network [OSTI]

    Rose, Michael R.

    of the trash by recycling your used batteries at one of the locations listed below. Used batteries & cartridgesUniversity of California, Irvine Updated 3.5.13 Help keep batteries and printer cartridges out are collected weekly by Facilities Management Recycling Team. Building Location Detail Academy 101 1st Floor 1

  16. FY 2009 Progress Report for Lightweighting Materials - 11. Recycling...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1. Recycling FY 2009 Progress Report for Lightweighting Materials - 11. Recycling The primary Lightweight Materials activity goal is to validate a cost-effective weight reduction...

  17. FY 2008 Progress Report for Lightweighting Materials - 11. Recycling...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1. Recycling FY 2008 Progress Report for Lightweighting Materials - 11. Recycling Lightweighting Materials focuses on the development and validation of advanced materials and...

  18. ash quality recycling: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - TxSpace Summary: the logistics for recycling biochar to fields from which the biomass feedstocks are harvested. The contribution of biochar recycling from mobile pyrolysis...

  19. AISI waste oxide recycling program. Final technical report

    SciTech Connect (OSTI)

    Aukrust, E.; Downing, K.B.; Sarma, B.

    1995-08-01T23:59:59.000Z

    In March 1995 AISI completed a five-year, $60 million collaborative development program on Direct Steelmaking cost-shared by DOE under the Metals Initiative. This program defined an energy-efficient and environmentally-friendly technology to produce hot metal for steelmaking directly from coal and iron ore pellets without incurring the high capital costs and environmental problems associated with traditional coke oven and blast furnace technology. As it becomes necessary to replace present capacity, this new technology will be favored because of reduced capital costs, higher energy efficiency, and lower operating costs. In April 1994, having failed to move forward with a demonstration plant for direct ironmaking, despite substantial efforts by both Stelco and Geneva Steel, an alternative opportunity was sought to commercialize this new technology without waiting until existing ironmaking capacity needed to be replaced. Recycling and resource recovery of steel plant waste oxides was considered an attractive possibility. This led to approval of a ten-month, $8.3 million joint program with DOE on recycling steel plant waste oxides utilizing this new smelting technology. This highly successful trial program was completed in December 1994. The results of the pilot plant work and a feasibility study for a recycling demonstration plant are presented in this final technical report.

  20. Jefferson Lab accelerator upgrade completed: Initial operations...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DOE to begin initial operations of the Continuous Electron Beam Accelerator Facility (CEBAF) as part of its ongoing 338 million upgrade. With the approval of Critical...

  1. Sandia National Laboratories: Safety and Health Go Green Initiative

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Initiative Excellence Award in the 2012 Facilities Environmental, Safety and Health Go Green Initiative On December 19, 2012, in Concentrating Solar Power, Energy, Events,...

  2. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1996-10-24T23:59:59.000Z

    Establishes facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation.

  3. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-11-16T23:59:59.000Z

    Establishes facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation.

  4. Recycling and composting demonstration projects for the Memphis region

    SciTech Connect (OSTI)

    Muller, D. [Memphis and Shelby County Div. of Planning and Development, TN (United States)

    1992-05-01T23:59:59.000Z

    This report documents the development and implementation of the project entitled ``Recycling and Composting Demonstration Projects for the Memphis Region.`` The project was funded by the Energy Task Force of the Urban Consortium for Technology Initiatives. This Project was implemented by the staff of the Special Programs Section of the Memphis and Shelby County Division of Planning and Development. The project began November 1, 1990, and was completed December 31, 1991. The purpose of the project was to evaluate the feasibility of a variety of solid waste disposal alternatives.

  5. Recycling and composting demonstration projects for the Memphis region

    SciTech Connect (OSTI)

    Muller, D. (Memphis and Shelby County Div. of Planning and Development, TN (United States))

    1992-05-01T23:59:59.000Z

    This report documents the development and implementation of the project entitled Recycling and Composting Demonstration Projects for the Memphis Region.'' The project was funded by the Energy Task Force of the Urban Consortium for Technology Initiatives. This Project was implemented by the staff of the Special Programs Section of the Memphis and Shelby County Division of Planning and Development. The project began November 1, 1990, and was completed December 31, 1991. The purpose of the project was to evaluate the feasibility of a variety of solid waste disposal alternatives.

  6. RECYCLING COORDINATOR GRADUATE ASSISTANTSHIP University of Nebraska--Lincoln Landscape Services

    E-Print Network [OSTI]

    Farritor, Shane

    RECYCLING COORDINATOR GRADUATE ASSISTANTSHIP University of Nebraska--Lincoln Landscape Services, implementing and maintaining recycling on campus. Assist in annual recycler's survey; tracking of recycling drop- off program; assist in market research for selected recycled materials; assist in developing

  7. Florida Hydrogen Initiative

    SciTech Connect (OSTI)

    Block, David L

    2013-06-30T23:59:59.000Z

    The Florida Hydrogen Initiative (FHI) was a research, development and demonstration hydrogen and fuel cell program. The FHI program objectives were to develop Florida?s hydrogen and fuel cell infrastructure and to assist DOE in its hydrogen and fuel cell activities The FHI program funded 12 RD&D projects as follows: Hydrogen Refueling Infrastructure and Rental Car Strategies -- L. Lines, Rollins College This project analyzes strategies for Florida's early stage adaptation of hydrogen-powered public transportation. In particular, the report investigates urban and statewide network of refueling stations and the feasibility of establishing a hydrogen rental-car fleet based in Orlando. Methanol Fuel Cell Vehicle Charging Station at Florida Atlantic University ? M. Fuchs, EnerFuel, Inc. The project objectives were to design, and demonstrate a 10 kWnet proton exchange membrane fuel cell stationary power plant operating on methanol, to achieve an electrical energy efficiency of 32% and to demonstrate transient response time of less than 3 milliseconds. Assessment of Public Understanding of the Hydrogen Economy Through Science Center Exhibits, J. Newman, Orlando Science Center The project objective was to design and build an interactive Science Center exhibit called: ?H2Now: the Great Hydrogen Xchange?. On-site Reformation of Diesel Fuel for Hydrogen Fueling Station Applications ? A. Raissi, Florida Solar Energy Center This project developed an on-demand forecourt hydrogen production technology by catalytically converting high-sulfur hydrocarbon fuels to an essentially sulfur-free gas. The removal of sulfur from reformate is critical since most catalysts used for the steam reformation have limited sulfur tolerance. Chemochromic Hydrogen Leak Detectors for Safety Monitoring ? N. Mohajeri and N. Muradov, Florida Solar Energy Center This project developed and demonstrated a cost-effective and highly selective chemochromic (visual) hydrogen leak detector for safety monitoring at any facility engaged in transport, handling and use of hydrogen. Development of High Efficiency Low Cost Electrocatalysts for Hydrogen Production and PEM Fuel Cell Applications ? M. Rodgers, Florida Solar Energy Center The objective of this project was to decrease platinum usage in fuel cells by conducting experiments to improve catalyst activity while lowering platinum loading through pulse electrodeposition. Optimum values of several variables during electrodeposition were selected to achieve the highest electrode performance, which was related to catalyst morphology. Understanding Mechanical and Chemical Durability of Fuel Cell Membrane Electrode Assemblies ? D. Slattery, Florida Solar Energy Center The objective of this project was to increase the knowledge base of the degradation mechanisms for membranes used in proton exchange membrane fuel cells. The results show the addition of ceria (cerium oxide) has given durability improvements by reducing fluoride emissions by an order of magnitude during an accelerated durability test. Production of Low-Cost Hydrogen from Biowaste (HyBrTec?) ? R. Parker, SRT Group, Inc., Miami, FL This project developed a hydrogen bromide (HyBrTec?) process which produces hydrogen bromide from wet-cellulosic waste and co-produces carbon dioxide. Eelectrolysis dissociates hydrogen bromide producing recyclable bromine and hydrogen. A demonstration reactor and electrolysis vessel was designed, built and operated. Development of a Low-Cost and High-Efficiency 500 W Portable PEMFC System ? J. Zheng, Florida State University, H. Chen, Bing Energy, Inc. The objectives of this project were to develop a new catalyst structures comprised of highly conductive buckypaper and Pt catalyst nanoparticles coated on its surface and to demonstrate fuel cell efficiency improvement and durability and cell cost reductions in the buckypaper based electrodes. Development of an Interdisciplinary Hydrogen and Fuel Cell Technology Academic Program ? J. Politano, Florida Institute of Technology, Melbourne, FL This project developed a hydrogen and fuel cel

  8. Issues in recycling galvanized scrap

    SciTech Connect (OSTI)

    Koros, P.J. [LTV Steel Co., Inc., Cleveland, OH (United States); Hellickson, D.A. [General Motors Corp., Detroit, MI (United States); Dudek, F.J. [Argonne National Lab., IL (United States)

    1995-02-10T23:59:59.000Z

    The quality of the steel used for most galvanizing (and tinplate) applications makes scrap derived from their production and use a premier solid charge material for steelmaking. In 1989 the AISI created a Task Force to define the issues and to recommend technologically and economically sound approaches to assure continued, unhindered recyclability of the growing volume of galvanized scrap. The AISI program addressed the treatment of full-sized industrial bales of scrap. The current, on-going MRI (US)--Argonne National Laboratory program is focused on ``loose`` scrap from industrial and post-consumer sources. Results from these programs, issues of scrap management from source to steel melting, the choices for handling zinc in iron and steelmaking and the benefits/costs for removal of zinc (and lead) from scrap prior to melting in BOF and foundry operations are reviewed in this paper.

  9. Heterogeneous Recycling in Fast Reactors

    SciTech Connect (OSTI)

    Forget, Benoit; Pope, Michael; Piet, Steven J.; Driscoll, Michael

    2012-07-30T23:59:59.000Z

    Current sodium fast reactor (SFR) designs have avoided the use of depleted uranium blankets over concerns of creating weapons grade plutonium. While reducing proliferation risks, this restrains the reactor design space considerably. This project will analyze various blanket and transmutation target configurations that could broaden the design space while still addressing the non-proliferation issues. The blanket designs will be assessed based on the transmutation efficiency of key minor actinide (MA) isotopes and also on mitigation of associated proliferation risks. This study will also evaluate SFR core performance under different scenarios in which depleted uranium blankets are modified to include minor actinides with or without moderators (e.g. BeO, MgO, B4C, and hydrides). This will be done in an effort to increase the sustainability of the reactor and increase its power density while still offering a proliferation resistant design with the capability of burning MA waste produced from light water reactors (LWRs). Researchers will also analyze the use of recycled (as opposed to depleted) uranium in the blankets. The various designs will compare MA transmutation efficiency, plutonium breeding characteristics, proliferation risk, shutdown margins and reactivity coefficients with a current reference sodium fast reactor design employing homogeneous recycling. The team will also evaluate the out-of-core accumulation and/or burn-down rates of MAs and plutonium isotopes on a cycle-by-cycle basis. This cycle-by-cycle information will be produced in a format readily usable by the fuel cycle systems analysis code, VISION, for assessment of the sustainability of the deployment scenarios.

  10. Lead-acid battery recycling by the PLACID process: A global approach

    SciTech Connect (OSTI)

    Diaz, G.; Frias, C.; Abrantes, L.M.; Aldaz, A.; Deelen, K. van; Couchinho, R.

    1995-12-31T23:59:59.000Z

    The PLACID process applied to the recycling of spent lead-acid batteries is being developed by a European Consortium within the BRITE-EURAM II Programme. The status of the project entitled ``Lead Recovery from Lead Oxide Secondaries`` is described in this paper. The main laboratory and batch experimental results and the preliminary feasibility study are summarized. The description of the demonstration pilot plant and continuous campaigns program for 1995 are also included. An interesting global approach is proposed, integrating the PLACID process in the existing spent battery recycling pyrometallurgical facilities. This yields important improvements in the overall process. Grids would be easily treated by the conventional pyrometallurgical route, obtaining lead alloys, while battery pastes, slags and fumes would be fed to the PLACID process, obtaining pure electrolytic lead (> 99.99%), ideal for battery paste manufacturing. The implementation of the PLACID process into the existing battery recycling pyrometallurgical facilities is analyzed from technical, environmental and economical viewpoints. Greater overall lead recovery, lower operating costs, reduced waste production, environmentally safer residues and much better lead product quality are the key advantages. The authors draw the following final conclusion: Integration of the PLACID process with conventional pyrometallurgical treatment is a feasible and very attractive alternative route for spent lead-acid battery recycling.

  11. Homeland Security Issues for Facilities

    E-Print Network [OSTI]

    McClure, J. D.; Fisher, D.; Fenter, T.

    2004-01-01T23:59:59.000Z

    more aware of safety, security, and protecting property and people should similar incidents occur in the future. The initial steps in facility protection are identifying potential threats and evaluating the condition of existing building infrastructure...

  12. Code qualification of structural materials for AFCI advanced recycling reactors.

    SciTech Connect (OSTI)

    Natesan, K.; Li, M.; Majumdar, S.; Nanstad, R.K.; Sham, T.-L. (Nuclear Engineering Division); (ORNL)

    2012-05-31T23:59:59.000Z

    This report summarizes the further findings from the assessments of current status and future needs in code qualification and licensing of reference structural materials and new advanced alloys for advanced recycling reactors (ARRs) in support of Advanced Fuel Cycle Initiative (AFCI). The work is a combined effort between Argonne National Laboratory (ANL) and Oak Ridge National Laboratory (ORNL) with ANL as the technical lead, as part of Advanced Structural Materials Program for AFCI Reactor Campaign. The report is the second deliverable in FY08 (M505011401) under the work package 'Advanced Materials Code Qualification'. The overall objective of the Advanced Materials Code Qualification project is to evaluate key requirements for the ASME Code qualification and the Nuclear Regulatory Commission (NRC) approval of structural materials in support of the design and licensing of the ARR. Advanced materials are a critical element in the development of sodium reactor technologies. Enhanced materials performance not only improves safety margins and provides design flexibility, but also is essential for the economics of future advanced sodium reactors. Code qualification and licensing of advanced materials are prominent needs for developing and implementing advanced sodium reactor technologies. Nuclear structural component design in the U.S. must comply with the ASME Boiler and Pressure Vessel Code Section III (Rules for Construction of Nuclear Facility Components) and the NRC grants the operational license. As the ARR will operate at higher temperatures than the current light water reactors (LWRs), the design of elevated-temperature components must comply with ASME Subsection NH (Class 1 Components in Elevated Temperature Service). However, the NRC has not approved the use of Subsection NH for reactor components, and this puts additional burdens on materials qualification of the ARR. In the past licensing review for the Clinch River Breeder Reactor Project (CRBRP) and the Power Reactor Innovative Small Module (PRISM), the NRC/Advisory Committee on Reactor Safeguards (ACRS) raised numerous safety-related issues regarding elevated-temperature structural integrity criteria. Most of these issues remained unresolved today. These critical licensing reviews provide a basis for the evaluation of underlying technical issues for future advanced sodium-cooled reactors. Major materials performance issues and high temperature design methodology issues pertinent to the ARR are addressed in the report. The report is organized as follows: the ARR reference design concepts proposed by the Argonne National Laboratory and four industrial consortia were reviewed first, followed by a summary of the major code qualification and licensing issues for the ARR structural materials. The available database is presented for the ASME Code-qualified structural alloys (e.g. 304, 316 stainless steels, 2.25Cr-1Mo, and mod.9Cr-1Mo), including physical properties, tensile properties, impact properties and fracture toughness, creep, fatigue, creep-fatigue interaction, microstructural stability during long-term thermal aging, material degradation in sodium environments and effects of neutron irradiation for both base metals and weld metals. An assessment of modified versions of Type 316 SS, i.e. Type 316LN and its Japanese version, 316FR, was conducted to provide a perspective for codification of 316LN or 316FR in Subsection NH. Current status and data availability of four new advanced alloys, i.e. NF616, NF616+TMT, NF709, and HT-UPS, are also addressed to identify the R&D needs for their code qualification for ARR applications. For both conventional and new alloys, issues related to high temperature design methodology are described to address the needs for improvements for the ARR design and licensing. Assessments have shown that there are significant data gaps for the full qualification and licensing of the ARR structural materials. Development and evaluation of structural materials require a variety of experimental facilities that have been seriously degraded

  13. Cellubrevin-targeted Fluorescence Uncovers Heterogeneity in the Recycling Endosomes*

    E-Print Network [OSTI]

    Machen, Terry E.

    Cellubrevin-targeted Fluorescence Uncovers Heterogeneity in the Recycling Endosomes* (Received, University of California, Berkeley, California 94720-3200 The pH and trafficking of recycling endosomes have-enriched recycling endosomes (pHCb) and FITC-transferrin to measure the pH of transferrin- enriched recycling

  14. Recycling Realities: ASU's Quest for Zero Solid Waste

    E-Print Network [OSTI]

    Zhang, Junshan

    Recycling Realities: ASU's Quest for Zero Solid Waste Dawn RatcliffePast Recycling Coordinator Alana LevineRecycling Program Manager For the last 16 years, Dawn Ratcliffe has worked and volunteered in the sustainability and animal-advocacy fields. She has organized several Earth Day events, recycling events

  15. Evaluating Water Recycling in California Sachi De Souza

    E-Print Network [OSTI]

    Lund, Jay R.

    i Evaluating Water Recycling in California By Sachi De Souza B.Sc.Hon (Queen's University) 2005 Recycling in California ii ABSTRACT This document describes how to complete an economic analysis, financial analysis, and cost allocation for a water recycling project. Water recycling is gaining importance

  16. Control structure selection for Reactor, Separator and Recycle Process

    E-Print Network [OSTI]

    Skogestad, Sigurd

    Control structure selection for Reactor, Separator and Recycle Process T. Larsson M.S. Govatsmark S to control", for a simple plant with a liquid phase reactor, a distillation column and recycle of unreacted processes is the presence of recycle. Variations of a plant with reaction, separation and mass recycle, see

  17. Recycling asphalt overview of more than 25 years of use

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Recycling asphalt overview of more than 25 years of use in France Y. Brosseaud ­ LCPC hal with ring for recycling ­ Average rate with high proportion : 30 to 50% ­ Used of rejuvenators (soft oil,version1-20May2011 #12;4 Hot recycling asphalt on mixing plant Recycling in place in hot or cold

  18. ReCycle: Pipeline Adaptation to Tolerate Process Variation

    E-Print Network [OSTI]

    Torrellas, Josep

    ReCycle: Pipeline Adaptation to Tolerate Process Variation Abhishek Tiwari, Smruti R. Sarangi, Josep Torrellasg 1 #12;OutlineOutline · MotivationMotivation · ReCycle Idea U i R C l· Using ReCycle · ReCycle System overview · Results 2 #12;MotivationMotivation V i ti k t l th· Variation makes some

  19. RECYCLABILITY CHALLENGES IN "ABUNDANT" MATERIAL-BASED TECHNOLOGIES Annick Anctila

    E-Print Network [OSTI]

    RECYCLABILITY CHALLENGES IN "ABUNDANT" MATERIAL-BASED TECHNOLOGIES Annick Anctila and Fthenakisa of photovoltaic installations grow, greatly displacing traditional power- generation infrastructures, recycling a take-back- or recycling-program ahead of time. Our work explores the potential for material recycling

  20. Waste management news: Newspaper recycling success depends on growth of capacity to Deink newsprint

    SciTech Connect (OSTI)

    Not Available

    1990-06-01T23:59:59.000Z

    Items of interest in the news include: establishment of a council to develop a program for acceptable solutions to scrap tire disposal; a new tires-to-energy plant in Alberta, Canada that will process 1.2 million tires per year as fuel; start-up of a methane recovery facility at three New Jersey landfills; and a pilot program in Illinois developed by Amoco for recycling of motor oil.

  1. Recycled Water Reuse Permit Renewal Application for the Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond

    SciTech Connect (OSTI)

    No Name

    2014-10-01T23:59:59.000Z

    ABSTRACT This renewal application for the Industrial Wastewater Reuse Permit (IWRP) WRU-I-0160-01 at Idaho National Laboratory (INL), Materials and Fuels Complex (MFC) Industrial Waste Ditch (IWD) and Industrial Waste Pond (IWP) is being submitted to the State of Idaho, Department of Environmental Quality (DEQ). This application has been prepared in compliance with the requirements in IDAPA 58.01.17, Recycled Water Rules. Information in this application is consistent with the IDAPA 58.01.17 rules, pre-application meeting, and the Guidance for Reclamation and Reuse of Municipal and Industrial Wastewater (September 2007). This application is being submitted using much of the same information contained in the initial permit application, submitted in 2007, and modification, in 2012. There have been no significant changes to the information and operations covered in the existing IWRP. Summary of the monitoring results and operation activity that has occurred since the issuance of the WRP has been included. MFC has operated the IWP and IWD as regulated wastewater land treatment facilities in compliance with the IDAPA 58.01.17 regulations and the IWRP. Industrial wastewater, consisting primarily of continuous discharges of nonhazardous, nonradioactive, routinely discharged noncontact cooling water and steam condensate, periodic discharges of industrial wastewater from the MFC facility process holdup tanks, and precipitation runoff, are discharged to the IWP and IWD system from various MFC facilities. Wastewater goes to the IWP and IWD with a permitted annual flow of up to 17 million gallons/year. All requirements of the IWRP are being met. The Operations and Maintenance Manual for the Industrial Wastewater System will be updated to include any new requirements.

  2. Length sensing and control of a Michelson interferometer with Power Recycling and Twin Signal Recycling cavities

    E-Print Network [OSTI]

    Christian Gräf; André Thüring; Henning Vahlbruch; Karsten Danzmann; Roman Schnabel

    2012-11-29T23:59:59.000Z

    The techniques of power recycling and signal recycling have proven as key concepts to increase the sensitivity of large-scale gravitational wave detectors by independent resonant enhancement of light power and signal sidebands within the interferometer. Developing the latter concept further, twin signal recycling was proposed as an alternative to conventional detuned signal recycling. Twin signal recycling features the narrow-band sensitivity gain of conventional detuned signal recycling but furthermore facilitates the injection of squeezed states of light, increases the detector sensitivity over a wide frequency band and requires a less complex detection scheme for optimal signal readout. These benefits come at the expense of an additional recycling mirror, thus increasing the number of degrees of freedom in the interferometer which need to be controlled. In this article we describe the development of a length sensing and control scheme and its successful application to a tabletop-scale power recycled Michelson interferometer with twin signal recycling. We were able to lock the interferometer in all relevant longitudinal degrees of freedom, enabling the long-term stable operation of the experiment. We thus laid the foundation for further investigations of this interferometer topology to evaluate its viability for the application in gravitational wave detectors.

  3. FINANCING ELECTRONIC WASTE RECYCLING - Californian Households’ Willingness to Pay Advanced Recycling Fees

    E-Print Network [OSTI]

    Nixon, Hilary; Saphores, Jean-Daniel M

    2007-01-01T23:59:59.000Z

    J. , 1999. Reducing solid waste: Linking recycling to135. EPA, 2005. Municipal Solid Waste in the United States:DC: Office of Solid Waste and Emergency Response.

  4. FINANCING ELECTRONIC WASTE RECYCLING - Californian Households’ Willingness to Pay Advanced Recycling Fees

    E-Print Network [OSTI]

    Nixon, Hilary; Saphores, Jean-Daniel M

    2007-01-01T23:59:59.000Z

    DC: Office of Solid Waste and Emergency Response.of reducing municipal solid waste. Journal of EnvironmentalJ. , 1999. Reducing solid waste: Linking recycling to

  5. FINANCING ELECTRONIC WASTE RECYCLING - Californian Households’ Willingness to Pay Advanced Recycling Fees

    E-Print Network [OSTI]

    Nixon, Hilary; Saphores, Jean-Daniel M

    2007-01-01T23:59:59.000Z

    led to a patchwork of programs and higher costs, particularly for collection, which is a major expense for e-waste recycling (

  6. Evaluation of radioactive scrap metal recycling

    SciTech Connect (OSTI)

    Nieves, L.A.; Chen, S.Y.; Kohout, E.J.; Nabelssi, B.; Tilbrook, R.W.; Wilson, S.E.

    1995-12-01T23:59:59.000Z

    This report evaluates the human health risks and environmental and socio-political impacts of options for recycling radioactive scrap metal (RSM) or disposing of and replacing it. Argonne National Laboratory (ANL) is assisting the US Department of Energy (DOE), Office of Environmental Restoration and Waste Management, Oak Ridge Programs Division, in assessing the implications of RSM management alternatives. This study is intended to support the DOE contribution to a study of metal recycling being conducted by the Task Group on Recycling and Reuse of the Organization for Economic Cooperation and Development. The focus is on evaluating the justification for the practice of recycling RSM, and the case of iron and steel scrap is used as an example in assessing the impacts. To conduct the evaluation, a considerable set of data was compiled and developed. Much of this information is included in this document to provide a source book of information.

  7. WasteTraining Booklet Waste & Recycling Impacts

    E-Print Network [OSTI]

    Saldin, Dilano

    , saves energy, and decreases greenhouse gas emissions. It prevents pollution and slows landfill expansion and truck manufacturing industry. Wages for works in the recycling industry are notably higher as well

  8. Design and Optimization of Photovoltaics Recycling Infrastructure

    SciTech Connect (OSTI)

    Choi, J.K.; Fthenakis, V.

    2010-10-01T23:59:59.000Z

    With the growing production and installation of photovoltaics (PV) around the world constrained by the limited availability of resources, end-of-life management of PV is becoming very important. A few major PV manufacturers currently are operating several PV recycling technologies at the process level. The management of the total recycling infrastructure, including reverse-logistics planning, is being started in Europe. In this paper, we overview the current status of photovoltaics recycling planning and discuss our mathematic modeling of the economic feasibility and the environmental viability of several PV recycling infrastructure scenarios in Germany; our findings suggest the optimum locations of the anticipated PV take-back centers. Short-term 5-10 year planning for PV manufacturing scraps is the focus of this article. Although we discuss the German situation, we expect the generic model will be applicable to any region, such as the whole of Europe and the United States.

  9. Loveland Water and Power- Refrigerator Recycling Program

    Broader source: Energy.gov [DOE]

    Loveland Water and Power is providing an incentive for its customers to recycle their old refrigerators. Interested customers can call the utility to arrange a time to pick up the old refrigerator...

  10. BWR Assembly Optimization for Minor Actinide Recycling

    SciTech Connect (OSTI)

    G. Ivan Maldonado; John M. Christenson; J.P. Renier; T.F. Marcille; J. Casal

    2010-03-22T23:59:59.000Z

    The Primary objective of the proposed project is to apply and extend the latest advancements in LWR fuel management optimization to the design of advanced boiling water reactor (BWR) fuel assemblies specifically for the recycling of minor actinides (MAs).

  11. Agony and ecstasy of tire recycling

    SciTech Connect (OSTI)

    Logsdon, G.

    1990-07-01T23:59:59.000Z

    This article discusses the problem of used tires and the recycling of them. Shredded tires have a multitude of uses-new rubber, road construction, mulch, fuel, in composting and home insulation.

  12. Recycled Materials Resource Center Project No. 27

    E-Print Network [OSTI]

    Zornberg, Jorge G.

    1 Recycled Materials Resource Center Project No. 27: Full Scale Monitoring for Assessment of Exothermal Reactions in Waste Tires Final Report February 2006 by Hailey L. Wappett1 Jorge G. Zornberg2 1....................................................................................................7 Tire Shredding

  13. Renewable, Recycled and Conserved Energy Objective

    Broader source: Energy.gov [DOE]

    In February 2008, South Dakota enacted legislation (HB 1123) establishing an objective that 10% of all retail electricity sales in the state be obtained from renewable and recycled energy by 2015....

  14. Planning for municipal solid waste recycling

    SciTech Connect (OSTI)

    Belnay, G.A.

    1991-01-01T23:59:59.000Z

    This research identifies those community characteristics and program components that have resulted in early, consistent, high levels of recycling participation in New Jersey. Discriminant analysis of socio-economic, demographic, institutional, and motivational factors is used to classify each of the state's 567 minor civil divisions into groups that describe participation levels. Of the four hypotheses advanced to explain the variation of recycling around the state, leadership emerges as the key factor in local program success. Local political and governmental leaders set the municipal recycling agenda, and through their knowledge, programs that fit the unique characteristics of their town are designed and aggressively implemented. Significant savings in the municipality's solid waste disposal budget and the added bonus of State Tonnage Grant Award Revenues are obtained by the urban, well-established, experienced recyclers identified by the analysis and confirmed by the individual case studies discussed.

  15. Solid Waste Reduction, Recovery, and Recycling

    Broader source: Energy.gov [DOE]

    This statute expresses the strong support of the State of Wisconsin for the reduction of the amount of solid waste generated, the reuse, recycling and composting of solid waste, and resource...

  16. Printed on recycled paper. 2013 Cornell Waste

    E-Print Network [OSTI]

    Chen, Tsuhan

    management by focusing University resources and capabilities on this pressing economic, environmental of waste generation and composition, waste reduction, risk management, environmental equity and publicPrinted on recycled paper. 2013 Cornell Waste Management Institute CWMI is a program

  17. Characterization of Transport and Solidification in the Metal Recycling Processes

    SciTech Connect (OSTI)

    M. A. Ebadian; R. C. Xin; Z. F. Dong

    1997-08-06T23:59:59.000Z

    The characterization of the transport and solidification of metal in the melting and casting processes is significant for the optimization of the radioactively contaminated metal recycling and refining processes. . In this research project, the transport process in the melting and solidification of metal was numerically predicted, and the microstructure and radionuclide distribution have been characterized by scanning electron microscope/electron diffractive X-ray (SEWEDX) analysis using cesium chloride (CSC1) as the radionuclide surrogate. In the melting and solidification process, a resistance furnace whose heating and cooling rates are program- controlled in the helium atmosphere was used. The characterization procedures included weighing, melting and solidification, weighing after solidification, sample preparation, and SEM/EDX analysis. This analytical methodology can be used to characterize metal recycling and refining products in order to evaluate the performance of the recycling process. The data obtained provide much valuable information that is necessary for the enhancement of radioactive contaminated metal decontamination and recycling technologies. The numerical method for the prediction of the melting and solidification process can be implemented in the control and monitoring system-of the melting and casting process in radioactive contaminated metal recycling. The use of radionuclide surrogates instead of real radionuclides enables the research to be performed without causing harmfid effects on people or the community. This characterization process has been conducted at the Hemispheric Center for Environmental Technology (HCET) at Florida International University since October 1995. Tests have been conducted on aluminum (Al) and copper (Cu) using cesium chloride (CSCI) as a radionuclide surrogate, and information regarding the radionuclide transfer and distribution in melting and solidification process has been obtained. The numerical simulation of the solidification of molten metal has been very successful for aluminium; however, a stability problem in the simulation of iron/steel solidification poses a challenge. Thus, additional development is needed to simulate the radionuclide transfer and distribution behaviors in the melting and casting processes. This project was initially based on a two-year plan. However, due to technical and financial difficulties, the project ended in FY96. The work which has been accomplished in the first year includes the characterization of radionuclide transfer and distribution in the melting-solidification process and the numerical simulation of metal solidification. The Argon-arc melting method was tested for the melting of copper and steel materials. Five tests were performed to characterize the transfer and distribution of radionuclides in the aluminiurn and copper melting/solidification process using CSC1 as radionuclide surrogates. The numerical simulation of molten aluminium and steel solidification process was performed. Different boundary conditions were applied in the simulations.

  18. EMPTY CHEMICAL BOTTLES RECYCLING PROGRAM Empty Chemical Bottles Recycling includes all glass, plastic and metal bottles and containers that previously

    E-Print Network [OSTI]

    Baker, Chris I.

    EMPTY CHEMICAL BOTTLES RECYCLING PROGRAM Empty Chemical Bottles Recycling includes all glass Disposal Guide. Do not place empty chemical bottles in commingled recycling bins on hallways, trash cans and with a 20 gallons capacity. It is made of high-density polyethylene (HDPE) with 100% post-consumer recycled

  19. New approaches for MOX multi-recycling

    SciTech Connect (OSTI)

    Gain, T.; Bouvier, E.; Grosman, R.; Senentz, G.H.; Lelievre, F.; Bailly, F.; Brueziere, J. [AREVA NC, 1 place Jean Millier, Paris La Defense, 92084 (France); Murray, P. [AREVA Federal Services LLC, 4800 Hampden Lane, Bethesda, MD 20814 (United States)

    2013-07-01T23:59:59.000Z

    Due to its low fissile content after irradiation, Pu from used MOX fuel is considered by some as not recyclable in LWR (Light Water Reactors). The point of this paper is hence to go back to those statements and provide a new analysis based on AREVA extended experience in the fields of fissile and fertile material management and optimized waste management. This is done using the current US fuel inventory as a case study. MOX Multi-recycling in LWRs is a closed cycle scenario where U and Pu management through reprocessing and recycling leads to a significant reduction of the used assemblies to be stored. The recycling of Pu in MOX fuel is moreover a way to maintain the self-protection of the Pu-bearing assemblies. With this scenario, Pu content is also reduced repetitively via a multi-recycling of MOX in LWRs. Simultaneously, {sup 238}Pu content decreases. All along this scenario, HLW (High-Level Radioactive Waste) vitrified canisters are produced and planned for deep geological disposal. Contrary to used fuel, HLW vitrified canisters do not contain proliferation materials. Moreover, the reprocessing of used fuel limits the space needed on current interim storage. With MOX multi-recycling in LWR, Pu isotopy needs to be managed carefully all along the scenario. The early introduction of a limited number of SFRs (Sodium Fast Reactors) can therefore be a real asset for the overall system. A few SFRs would be enough to improve the Pu isotopy from used LWR MOX fuel and provide a Pu-isotopy that could be mixed back with multi-recycled Pu from LWRs, hence increasing the Pu multi-recycling potential in LWRs.

  20. Economic Feasibility of Recycling Photovoltaic Modules

    SciTech Connect (OSTI)

    Choi, J.K.; Fthenakis, V.

    2010-12-01T23:59:59.000Z

    The market for photovoltaic (PV) electricity generation has boomed over the last decade, and its expansion is expected to continue with the development of new technologies. Taking into consideration the usage of valuable resources and the generation of emissions in the life cycle of photovoltaic technologies dictates proactive planning for a sound PV recycling infrastructure to ensure its sustainability. PV is expected to be a 'green' technology, and properly planning for recycling will offer the opportunity to make it a 'double-green' technology - that is, enhancing life cycle environmental quality. In addition, economic feasibility and a sufficient level of value-added opportunity must be ensured, to stimulate a recycling industry. In this article, we survey mathematical models of the infrastructure of recycling processes of other products and identify the challenges for setting up an efficient one for PV. Then we present an operational model for an actual recycling process of a thin-film PV technology. We found that for the case examined with our model, some of the scenarios indicate profitable recycling, whereas in other scenarios it is unprofitable. Scenario SC4, which represents the most favorable scenario by considering the lower bounds of all costs and the upper bound of all revenues, produces a monthly profit of $107,000, whereas the least favorable scenario incurs a monthly loss of $151,000. Our intent is to extend the model as a foundation for developing a framework for building a generalized model for current-PV and future-PV technologies.

  1. Generalized teleportation and entanglement recycling

    E-Print Network [OSTI]

    Sergii Strelchuk; Micha? Horodecki; Jonathan Oppenheim

    2012-12-13T23:59:59.000Z

    We introduce new teleportation protocols which are generalizations of the original teleportation protocols that use the Pauli group [Bennett, et al. Physical Review Letters, 70(13) 1895-1899] and the port-based teleportation protocols, introduced by Hiroshima and Ishizaka [Physical Review Letters, 101(24) 240501], that use the symmetric permutation group. We derive sufficient condition for a set of operations, which in general need not form a group, to give rise to a teleportation protocol and provide examples of such schemes. This generalization leads to protocols with novel properties and is needed to push forward new schemes of computation based on them. Port-based teleportation protocols and our generalizations use a large resource state consisting of N singlets to teleport only a single qubit state reliably. We provide two distinct protocols which recycle the resource state to teleport multiple states with error linearly increasing with their number. The first protocol consists of sequentially teleporting qubit states, and the second teleports them in a bulk.

  2. Hoyte Phifer Facilities Operations

    E-Print Network [OSTI]

    Saidak, Filip

    Cruise Control Use Overdrive Gears Keep Your Engine Properly Tuned Keep Tires Properly Inflated,244 tons landfilled. · 729 tons recycled, reused or composted. Current recycling rate: 37% #12;Office Paper

  3. Fermilab Antiproton Source, Recycler Ring, and Main Injector

    E-Print Network [OSTI]

    Sergei Nagaitsev

    2014-08-04T23:59:59.000Z

    At the end of its operations in 2011, the Fermilab antiproton production complex consisted of a sophisticated target system, three 8-GeV storage rings (namely the Debuncher, the Accumulator and the Recycler), 25 independent multi-GHz stochastic cooling systems, the world's only relativistic electron cooling system and a team of technical experts equal to none. The accelerator complex at Fermilab supported a broad physics program including the Tevatron Collider Run II, neutrino experiments using 8-GeV and 120-GeV proton beams, as well as a test beam facility and other fixed target experiments using 120-GeV primary proton beams. This paper provides a brief description of Fermilab accelerators as they operated at the end of the Collider Run II (2011).

  4. Membrane Purification Cell for Aluminum Recycling

    SciTech Connect (OSTI)

    David DeYoung; James Wiswall; Cong Wang

    2011-11-29T23:59:59.000Z

    Recycling mixed aluminum scrap usually requires adding primary aluminum to the scrap stream as a diluent to reduce the concentration of non-aluminum constituents used in aluminum alloys. Since primary aluminum production requires approximately 10 times more energy than melting scrap, the bulk of the energy and carbon dioxide emissions for recycling are associated with using primary aluminum as a diluent. Eliminating the need for using primary aluminum as a diluent would dramatically reduce energy requirements, decrease carbon dioxide emissions, and increase scrap utilization in recycling. Electrorefining can be used to extract pure aluminum from mixed scrap. Some example applications include producing primary grade aluminum from specific scrap streams such as consumer packaging and mixed alloy saw chips, and recycling multi-alloy products such as brazing sheet. Electrorefining can also be used to extract valuable alloying elements such as Li from Al-Li mixed scrap. This project was aimed at developing an electrorefining process for purifying aluminum to reduce energy consumption and emissions by 75% compared to conventional technology. An electrolytic molten aluminum purification process, utilizing a horizontal membrane cell anode, was designed, constructed, operated and validated. The electrorefining technology could also be used to produce ultra-high purity aluminum for advanced materials applications. The technical objectives for this project were to: - Validate the membrane cell concept with a lab-scale electrorefining cell; - Determine if previously identified voltage increase issue for chloride electrolytes holds for a fluoride-based electrolyte system; - Assess the probability that voltage change issues can be solved; and - Conduct a market and economic analysis to assess commercial feasibility. The process was tested using three different binary alloy compositions (Al-2.0 wt.% Cu, Al-4.7 wt.% Si, Al-0.6 wt.% Fe) and a brazing sheet scrap composition (Al-2.8 wt.% Si-0.7 wt.% Fe-0.8 wt.% Mn),. Purification factors (defined as the initial impurity concentration divided by the final impurity concentration) of greater than 20 were achieved for silicon, iron, copper, and manganese. Cell performance was measured using its current and voltage characteristics and composition analysis of the anode, cathode, and electrolytes. The various cells were autopsied as part of the study. Three electrolyte systems tested were: LiCl-10 wt. % AlCl3, LiCl-10 wt. % AlCl3-5 wt.% AlF3 and LiF-10 wt.% AlF3. An extended four-day run with the LiCl-10 wt.% AlCl3-5 wt.% AlF3 electrolyte system was stable for the entire duration of the experiment, running at energy requirements about one third of the Hoopes and the conventional Hall-Heroult process. Three different anode membranes were investigated with respect to their purification performance and survivability: a woven graphite cloth with 0.05 cm nominal thickness & > 90 % porosity, a drilled rigid membrane with nominal porosity of 33%, and another drilled rigid graphite membrane with increased thickness. The latter rigid drilled graphite was selected as the most promising membrane design. The economic viability of the membrane cell to purify scrap is sensitive to primary & scrap aluminum prices, and the cost of electricity. In particular, it is sensitive to the differential between scrap and primary aluminum price which is highly variable and dependent on the scrap source. In order to be economically viable, any scrap post-processing technology in the U.S. market must have a total operating cost well below the scrap price differential of $0.20-$0.40 per lb to the London Metal Exchange (LME), a margin of 65%-85% of the LME price. The cost to operate the membrane cell is estimated to be < $0.24/lb of purified aluminum. The energy cost is estimated to be $0.05/lb of purified aluminum with the remaining costs being repair and maintenance, electrolyte, labor, taxes and depreciation. The bench-scale work on membrane purification cell process has demonstrated technological advantages and subs

  5. Advanced recycling and research complexes: A second strategic use for installations on the base closure list

    SciTech Connect (OSTI)

    Walter, D.W.; Kuusinen, T.L.; Beck, J.E.

    1993-05-01T23:59:59.000Z

    Obstacles currently facing the solid waste recycling industry are often related to a lack of public and investor confidence, issues of profitability and liability, and insufficient consumer identification with products made from recycled materials. Resolution of these issues may not be possible without major changes in the way the solid waste recycling business is structured. At the same time, we are faced with opportunities which will not likely recur in our lifetimes: access to educated, well trained work forces; and large tracts of land that are contiguous with metropolitan areas and are developed for heavy industry and transportation. Military installations are being converted to civilian use just in time to serve as important a role in our national resource conservation policy. The future of recycling in North America converges with the future of selected bases on the closure list and takes the form of converting these bases into Advanced Recycling and Research Complexes. The premise is simple: use these strategically-located facilities as industrial parks where a broad range of secondary wastes are separated, refined, or converted and made into new products on site. The wastes would include municipal solid waste (MSW), demolition waste, landscape trimmings, used tires, scrap metal, agricultural waste, food processing waste, and other non-hazardous materials. The park would consist of separation and conversion facilities, research and product standards laboratories, and industries that convert the materials into products and fuels. Energy conversion systems using some waste streams as fuel could be located at the park to supplement energy demands of the industrial operations. The strategic co-location of the resource providers and user industries would minimize transportation costs.

  6. Version: Nov 2005 Facility Orientation and Protocols

    E-Print Network [OSTI]

    of Energy FACE Facility at Duke University. This document provides an overview of the FACE Facility) plots. Plots 1-7 contain a central walk-up tower, 16 peripheral towers, and temperature-controlled 8' x initiatives have made use of the towers, sheds, and other unique resources available at the facility. In 2003

  7. Nuclear-fuel-cycle risk assessment: descriptions of representative non-reactor facilities. Sections 1-14

    SciTech Connect (OSTI)

    Schneider, K.J.

    1982-09-01T23:59:59.000Z

    The Fuel Cycle Risk Assessment Program was initiated to provide risk assessment methods for assistance in the regulatory process for nuclear fuel cycle facilities other than reactors. This report, the first from the program, defines and describes fuel cycle elements that are being considered in the program. One type of facility (and in some cases two) is described that is representative of each element of the fuel cycle. The descriptions are based on real industrial-scale facilities that are current state-of-the-art, or on conceptual facilities where none now exist. Each representative fuel cycle facility is assumed to be located on the appropriate one of four hypothetical but representative sites described. The fuel cycles considered are for Light Water Reactors with once-through flow of spent fuel, and with plutonium and uranium recycle. Representative facilities for the following fuel cycle elements are described for uranium (or uranium plus plutonium where appropriate): mining, milling, conversion, enrichment, fuel fabrication, mixed-oxide fuel refabrication, fuel reprocessing, spent fuel storage, high-level waste storage, transuranic waste storage, spent fuel and high-level and transuranic waste disposal, low-level and intermediate-level waste disposal, and transportation. For each representative facility the description includes: mainline process, effluent processing and waste management, facility and hardware description, safety-related information and potential alternative concepts for that fuel cycle element. The emphasis of the descriptive material is on safety-related information. This includes: operating and maintenance requirements, input/output of major materials, identification and inventories of hazardous materials (particularly radioactive materials), unit operations involved, potential accident driving forces, containment and shielding, and degree of hands-on operation.

  8. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-12-22T23:59:59.000Z

    This Order establishes facility and programmatic safety requirements for Department of Energy facilities, which includes nuclear and explosives safety design criteria, fire protection, criticality safety, natural phenomena hazards mitigation, and the System Engineer Program. Cancels DOE O 420.1A. DOE O 420.1B Chg 1 issued 4-19-10.

  9. Closed Loop Recycling of PreservativeClosed Loop Recycling of Preservative Treated WoodTreated Wood

    E-Print Network [OSTI]

    Closed Loop Recycling of PreservativeClosed Loop Recycling of Preservative Treated WoodTreated Wood.2 million cubic meters) of lumber treated with CCA are produced annually in the United States (Micklewright 1998). ·In 1997, for example, some 581.4 million cu. ft. was treated with waterborne preservatives

  10. Electroless nickel recycling via electrodialysis

    SciTech Connect (OSTI)

    Steffani, C.; Meltzer, M.

    1995-04-01T23:59:59.000Z

    Electroless nickel is widely used in the metal finishing industry as a coating. It plates evenly on a variety of surfaces and replicates or enhances the surface finish. It has high hardness and good corrosion resistance and machinability. However, its bath life is limited and it has a tendency to spontaneously plate out on the tank and associated equipment. These problems add to the cost per unit component plated. Also, expensive waste treatment is required before users can dispose of the spent solution. Electroless nickel`s limited bath life is inherent in its chemical make-up. Using hypophosphite as the reducing agent for the nickel ion generates by-products of nickel metal and orthophosphite. When the level of orthophosphite in the solution reaches a high concentration, the reaction slows and finally stops. The bath must be disposed of, and its treatment and replacement costs are high. Metal salts have a tendency to plate out because of the dissolved solids present, and this also makes it necessary to discard the bath. Lawrence Livermore National Laboratory (LLNL) has conducted a study of an electrodialysis process that can reduce both chemical purchases and disposal costs. Electrodialysis employs a membrane, deionized water, and an electromotive potential to separate the orthophosphite and other dissolved solids from the nickel ions. With the aid of the electromotive potential, the dissolved solids migrate across the membrane from the process solution into the water in the recycling unit`s holding cell. This migration lowers the total dissolved solids (TDS) in the process solution and improves plating performance. The dialysis process makes it possible to reuse the bath many times without disposal.

  11. Photo Courtesy of Carlsbad Water Distict Economic Evaluation for Water Recycling

    E-Print Network [OSTI]

    Lund, Jay R.

    -i- Photo Courtesy of Carlsbad Water Distict Economic Evaluation for Water Recycling In Urban Areas........................................................................................................................................... 4 BENEFICIAL USES OF RECYCLED WATER................................................................................................ 5 MOTIVATIONS FOR RECYCLED WATER USE

  12. The importance of cytosolic glutamine synthetase in nitrogen assimilation and recycling

    E-Print Network [OSTI]

    Bernard, S.M.

    2009-01-01T23:59:59.000Z

    nitrogen mobilization and recycling in trees. Photosynthesisloci mapping for nitrogen recycling in rice. Journal ofNitrogen Assimilation and Recycling Stéphanie M. Bernard 1

  13. Recycling of electric-arc-furnace dust

    SciTech Connect (OSTI)

    Sresty, G.C.

    1990-05-01T23:59:59.000Z

    Electric arc furnace (EAF) dust is one of the largest solid waste streams produced by steel mills, and is classified as a waste under the Resource Conservation and Recovery Act (RCRA) by the U.S. Environmental Protection Agency (EPA). Successful recycle of the valuable metals (iron, zinc, and lead) present in the dust will result in resource conservation while simultaneously reducing the disposal problems. Technical feasibility of a novel recycling method based on using hydrogen as the reductant was established under this project through laboratory experiments. Sponge iron produced was low in zinc, cadmium, and lead to permit its recycle, and nontoxic to permit its safe disposal as an alternative to recycling. Zinc oxide was analyzed to contain 50% to 58% zinc by weight, and can be marketed for recovering zinc and lead. A prototype system was designed to process 2.5 tons per day (600 tons/year) of EAF dust, and a preliminary economic analysis was conducted. The cost of processing dust by this recycling method was estimated to be comparable to or lower than existing methods, even at such low capacities.

  14. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2002-05-20T23:59:59.000Z

    To establish facility safety requirements for the Department of Energy, including National Nuclear Security Administration. Cancels DOE O 420.1. Canceled by DOE O 420.1B.

  15. Heisenberg-limited metrology with information recycling

    E-Print Network [OSTI]

    Simon A. Haine; Stuart S. Szigeti; Matthias D. Lang; Carlton M. Caves

    2015-05-01T23:59:59.000Z

    Information recycling has been shown to improve the sensitivity of atom interferometers by exploiting atom-light entanglement. In this paper, we apply information recycling to an interferometer where the input quantum state has been partially transferred from some donor system. We demonstrate that when the quantum state of this donor system is from a particular class of number-correlated Heisenberg-limited states, information recycling yields a Heisenberg-limited phase measurement. Crucially, this result holds irrespective of the fraction of the quantum state transferred to the interferometer input and also for a general class of number-conserving quantum-state-transfer processes, including ones that destroy the first-order phase coherence between the branches of the interferometer. This result could have significant applications in Heisenberg-limited atom interferometry, where the quantum state is transferred from a Heisenberg-limited photon source, and in optical interferometry where the loss can be monitored.

  16. New developments in RTR fuel recycling

    SciTech Connect (OSTI)

    Lelievre, F.; Brueziere, J.; Domingo, X.; Valery, J.F.; Leroy, J.F.; Tribout-Maurizi, A. [AREVA, Tour AREVA, 1 place Jean Millier, 92084 Paris La Defense (France)

    2013-07-01T23:59:59.000Z

    As most utilities in the world, Research and Test Reactors (RTR) operators are currently facing two challenges regarding the fuel, in order to comply with local safety and waste management requirements as well as global non-proliferation obligation: - How to manage used fuel today, and - How fuel design changes that are currently under development will influence used fuel management. AREVA-La-Hague plant has a large experience in used fuel recycling, including traditional RTR fuel (UAl). Based on that experience and deep knowledge of RTR fuel manufacturing, AREVA is currently examining possible options to cope with both challenges. This paper describes the current experience of AREVA-La-Hague in UAl used fuels recycling and its plan to propose recycling for various types of fuels such as U{sub 3}Si{sub 2} fuel or UMo fuel on an industrial scale. (authors)

  17. Nuclear fuel cycle risk assessment: survey and computer compilation of risk-related literature. [Once-through Cycle and Plutonium Recycle

    SciTech Connect (OSTI)

    Yates, K.R.; Schreiber, A.M.; Rudolph, A.W.

    1982-10-01T23:59:59.000Z

    The US Nuclear Regulatory Commission has initiated the Fuel Cycle Risk Assessment Program to provide risk assessment methods for assistance in the regulatory process for nuclear fuel cycle facilities other than reactors. Both the once-through cycle and plutonium recycle are being considered. A previous report generated by this program defines and describes fuel cycle facilities, or elements, considered in the program. This report, the second from the program, describes the survey and computer compilation of fuel cycle risk-related literature. Sources of available information on the design, safety, and risk associated with the defined set of fuel cycle elements were searched and documents obtained were catalogued and characterized with respect to fuel cycle elements and specific risk/safety information. Both US and foreign surveys were conducted. Battelle's computer-based BASIS information management system was used to facilitate the establishment of the literature compilation. A complete listing of the literature compilation and several useful indexes are included. Future updates of the literature compilation will be published periodically. 760 annotated citations are included.

  18. A Membrane Process for Recycling Die Lube from Wastewater Solutions

    SciTech Connect (OSTI)

    Peterson, E.S.; Trudeau, J.; Cleary, B.; Hackett, M.; Greene, W.A.

    2003-04-30T23:59:59.000Z

    An active-surface membrane technology was used to separate a die lube manufacturing wastewater stream consisting of various oils, hydrocarbons, heavy metals, and silicones. The ultrafiltration membranes reduced organics from initial oil and grease contents by 20?25X, carbon oxygen demand (COD) by 1.5 to 2X, and total organic carbon (TOC) by 0.6, while the biological oxygen demand (BOD) remained constant. The active-surface membranes were not fouled as badly as non-active-surface systems and the active-surface membrane flux levels were consistently higher and more stable than those of the non-active-surface membranes tested. Field testing demonstrated that the rotary microfilter can concentrate the die lube, i.e. remove the glycerin component, and produce a die lube suitable for recycling. The recycling system operated for six weeks with only seven cleaning cycles and no mechanical or electrical failures. Test data and quality records indicate that the die casting scrap was reduced from 8.4 to 7.8%. There is no doubt that this test yielded tremendous results. This separation process presents significant opportunities that can be evaluated further.

  19. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-12-22T23:59:59.000Z

    The order establishes facility and programmatic safety requirements for nuclear and explosives safety design criteria, fire protection, criticality safety, natural phenomena hazards (NPH) mitigation, and the System Engineer Program.Chg 1 incorporates the use of DOE-STD-1189-2008, Integration of Safety into the Design Process, mandatory for Hazard Category 1, 2 and 3 nuclear facilities. Cancels DOE O 420.1A.

  20. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2013-06-21T23:59:59.000Z

    DOE-STD-1104 contains the Department's method and criteria for reviewing and approving nuclear facility's documented safety analysis (DSA). This review and approval formally document the basis for DOE, concluding that a facility can be operated safely in a manner that adequately protects workers, the public, and the environment. Therefore, it is appropriate to formally require implementation of the review methodology and criteria contained in DOE-STD-1104.

  1. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-11-20T23:59:59.000Z

    The objective of this Order is to establish facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation. The Order has Change 1 dated 11-16-95, Change 2 dated 10-24-96, and the latest Change 3 dated 11-22-00 incorporated. The latest change satisfies a commitment made to the Defense Nuclear Facilities Safety Board (DNFSB) in response to DNFSB recommendation 97-2, Criticality Safety.

  2. The value of recycling on water conservation.

    SciTech Connect (OSTI)

    Ludi-Herrera, Katlyn D.

    2013-07-01T23:59:59.000Z

    Sandia National Laboratories (SNL) is working to conserve water through recycling. This report will focus on the water conservation that has been accumulated through the recycling of paper, ceiling tiles, compost, and plastic. It will be discussed the use of water in the process of manufacturing these materials and the amount of water that is used. The way that water is conserved will be reviewed. From the stand point of SNL it will be discussed the amount of material that has been accumulated from 2010 to the first two quarters of 2013 and how much water this material has saved.

  3. actinide ma recycling: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the IEA R&D Wind's Topical expert meeting on Material recycling and life cycle analysis (LCA) of wind turbines 283 The Randomness Recycler Approach to Perfect James Allen Fill...

  4. advanced recycle filter: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the IEA R&D Wind's Topical expert meeting on Material recycling and life cycle analysis (LCA) of wind turbines 185 The Randomness Recycler Approach to Perfect James Allen Fill...

  5. automobile catalyst recycling: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the IEA R&D Wind's Topical expert meeting on Material recycling and life cycle analysis (LCA) of wind turbines 260 The Randomness Recycler Approach to Perfect James Allen Fill...

  6. areva nc recycling: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the IEA R&D Wind's Topical expert meeting on Material recycling and life cycle analysis (LCA) of wind turbines 329 The Randomness Recycler Approach to Perfect James Allen Fill...

  7. asphalt recycling agency: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the IEA R&D Wind's Topical expert meeting on Material recycling and life cycle analysis (LCA) of wind turbines 259 The Randomness Recycler Approach to Perfect James Allen Fill...

  8. avoids recycling endosomal: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the IEA R&D Wind's Topical expert meeting on Material recycling and life cycle analysis (LCA) of wind turbines 214 The Randomness Recycler Approach to Perfect James Allen Fill...

  9. as recycling process: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the IEA R&D Wind's Topical expert meeting on Material recycling and life cycle analysis (LCA) of wind turbines 347 The Randomness Recycler Approach to Perfect James Allen Fill...

  10. actinides recycling studies: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the IEA R&D Wind's Topical expert meeting on Material recycling and life cycle analysis (LCA) of wind turbines 197 The Randomness Recycler Approach to Perfect James Allen Fill...

  11. asphalt recycling agents: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the IEA R&D Wind's Topical expert meeting on Material recycling and life cycle analysis (LCA) of wind turbines 235 The Randomness Recycler Approach to Perfect James Allen Fill...

  12. activity recycles hydrogen: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the IEA R&D Wind's Topical expert meeting on Material recycling and life cycle analysis (LCA) of wind turbines 172 The Randomness Recycler Approach to Perfect James Allen Fill...

  13. Breakout Session: Getting in the Loop: PV Hardware Recycling...

    Energy Savers [EERE]

    Getting in the Loop: PV Hardware Recycling and Sustainability Breakout Session: Getting in the Loop: PV Hardware Recycling and Sustainability May 21, 2014 6:30PM to 7:30PM PDT...

  14. Business plan for the Solar Recycle-o-Sort

    E-Print Network [OSTI]

    Kalk, David O. (David Oliver)

    2008-01-01T23:59:59.000Z

    There exists much room for growth in recycling participation with almost 1 in every 4 Americans still not recycling at all. In many communities this fraction is significantly higher, with low awareness of the benefits of ...

  15. A comparison of public policies for lead recycling

    E-Print Network [OSTI]

    Sigman, Hilary

    1992-01-01T23:59:59.000Z

    Policies that encourage recycling may be used to reduce environmental costs from waste disposal when direct restrictions on disposal are difficult to enforce. Four recycling policies have been advanced: (i) taxes on the ...

  16. Study of recycling impurity retention in Alcator C-mod

    E-Print Network [OSTI]

    Chung, Taekyun

    2004-01-01T23:59:59.000Z

    This work was aimed at reproducing experimental results in impurity compression of Ar, as well as the screening of recycling and non-recycling impurities from reaching the core plasma. As part of the study the code was ...

  17. HOUSEHOLD WILLINGNESS TO RECYCLE ELECTRONIC WASTE - An Application to California

    E-Print Network [OSTI]

    Saphores, Jean-Daniel M; Nixon, Hilary; Ogunseitan, Oladele A; Shapiro, Andrew A

    2006-01-01T23:59:59.000Z

    R. , & Schwer, R. (1998). Solid-waste recycling behavior andL. (1999). Reducing solid waste: Linking recycling toDwyer, W.O. (1995). Solid waste recovery: A review of

  18. actinide multi recycling: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Robert B. 38 DOI: 10.1002adem.201400414 Self-Assembled Recyclable Hierarchical Bucky Aerogels** Physics Websites Summary: DOI: 10.1002adem.201400414 Self-Assembled Recyclable...

  19. Job Position Description Job Title: Groundskeeper/Recycler

    E-Print Network [OSTI]

    Moore, Paul A.

    Job Position Description Job Title: Groundskeeper/Recycler A. Main purpose of the job: Perform grounds keeping and recycling duties. B. Primary responsibilities or key duties of the job

  20. Nuclear fuel recycling in 4 minutes | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear fuel recycling in 4 minutes Share Topic Energy Energy sources Nuclear energy Nuclear fuel cycle Reactors...

  1. Research, Commercialization, & Workforce Development in the Polymer/Electronics Recycling Industry

    SciTech Connect (OSTI)

    Carl Irwin; Rakesh Gupta; Richard Turton; GangaRao Hota; Cyril Logar; Tom Ponzurick; Buddy Graham; Walter Alcorn; Jeff Tucker

    2006-02-01T23:59:59.000Z

    The Mid-Atlantic Recycling Center for End-of-Life Electronics (MARCEE) was set up in 1999 in response to a call from Congressman Alan Mollohan, who had a strong interest in this subject. A consortium was put together which included the Polymer Alliance Zone (PAZ) of West Virginia, West Virginia University (WVU), DN American and Ecolibrium. The consortium developed a set of objectives and task plans, which included both the research issues of setting up facilities to demanufacture End-of-Life Electronics (EoLE), the economics of the demanufacturing process, and the infrastructure development necessary for a sustainable recycling industry to be established in West Virginia. This report discusses the work of the MARCEE Project Consortium from November 1999 through March 2005. While the body of the report is distributed in hard-copy form the Appendices are being distributed on CD's.

  2. Reducing the solid waste stream: reuse and recycling at Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Wilson, K. L.

    1997-08-01T23:59:59.000Z

    In Fiscal Year (FY) 1996 Lawrence Livermore National Laboratory (LLNL) increased its solid waste diversion by 365 percent over FY 1992 in five solid waste categories - paper, cardboard, wood, metals, and miscellaneous. (LLNL`s fiscal year is from October 1 to September 30.) LLNL reused/ recycled 6,387 tons of waste, including 340 tons of paper, 455 tons of scrap wood, 1,509 tons of metals, and 3,830 tons of asphalt and concrete (Table1). An additional 63 tons was diverted from landfills by donating excess food, selling toner cartridges for reconditioning, using rechargeable batteries, redirecting surplus equipment to other government agencies and schools, and comporting plant clippings. LLNL also successfully expanded its demonstration program to recycle and reuse construction and demolition debris as part of its facility-wide, comprehensive solid waste reduction programs.

  3. Pesticide Container Recycling "It's Just The Right Thing To Do!"

    E-Print Network [OSTI]

    Jawitz, James W.

    Pesticide Container Recycling "It's Just The Right Thing To Do!" Some of you may recall that when I Container Recycling Programs in counties around the state. Highlands County was one of the first counties to establish a Pesticide Container Recycling Collection Center (which is still in operation). I set up twenty

  4. Recycling Computed Answers in Rewrite Systems for Abduction Fangzhen Lin #

    E-Print Network [OSTI]

    Wu, Dekai

    Recycling Computed Answers in Rewrite Systems for Abduction Fangzhen Lin # http computed answers can be recycled arises. A yes answer could result in sub­ stantial savings of repeated tends to be­ lieve that the answer should be no, since recycling is a form of adding information

  5. Development/Plasticity/Repair Identification of Nicotinic Acetylcholine Receptor Recycling

    E-Print Network [OSTI]

    Alford, Simon

    Development/Plasticity/Repair Identification of Nicotinic Acetylcholine Receptor Recycling and Its, University of Michigan, Ann Arbor, Michigan 48109 In the CNS, receptor recycling is critical for synaptic plasticity; however, the recycling of receptors has never been observed at peripheral synapses. Using a novel

  6. Why Become a Master By encouraging Connecticut residents to recycle

    E-Print Network [OSTI]

    Holsinger, Kent

    Why Become a Master Composter? By encouraging Connecticut residents to recycle organic waste % of a typical household's waste can be recycled right in our own backyards. This significantly reduces Service Matt Freund, Freund's Farm Bob Jacquier, Laurelbrook Farm Connecticut Recycling Coalition

  7. Why Become a Master By encouraging Connecticut residents to recycle

    E-Print Network [OSTI]

    Alpay, S. Pamir

    Why Become a Master Composter? By encouraging Connecticut residents to recycle organic waste % of a typical household's waste can be recycled right in our own backyards. This significantly reduces Service Ken Longo, Manchester Recycling Center Matt Freund, Freund's Farm Bob Jacquier, Laurelbrook Farm

  8. 2014 International and Western States In-Place Recycling Conference

    E-Print Network [OSTI]

    2014 International and Western States In-Place Recycling Conference August 5­7, 2014 Denver and the road to revitalizing in-place recycling technologies. · Join this prestigious forum especially designed/research agencies to discuss the status of in-place recycling. · Experience what we know today for each form of in

  9. Production and recycling of oceanic crust in the early Earth

    E-Print Network [OSTI]

    van Thienen, Peter

    Chapter 6 Production and recycling of oceanic crust in the early Earth Abstract Because in the production and recycling of oceanic crust: (1) Small scale (x · 100km) convection involving the lower crust have been different from those in the present-day Earth. Crustal recycling must however have taken

  10. Archetypes: Durer's Rhino and the Recycling of Images

    E-Print Network [OSTI]

    Boyd, John P.

    Chapter 17 Archetypes: D¨urer's Rhino and the Recycling of Images 17.1 Introduction: Aref's Rule Rule-of-Thumb 5 (Aref's Rule) Never publish the same graph more than once. As we shall below, recycling illustrate when recycling of previously published images is good, and also when and how it can go

  11. Updated 9/23/2010 HOW TO RECYCLE

    E-Print Network [OSTI]

    Clark, John

    Updated 9/23/2010 HOW TO RECYCLE Recycling & Solid Waste Magnuson Health Sciences Center http Peanuts #12;Updated 9/23/2010 · Televisions · 3-Ring Binders · Tip Boxes, Pipette · Tires · Tissue Paper (Room: I-534, Phone: 5-1584) has volunteered to handle the recycling of Styrofoam BLOCKS and BOXES

  12. Progress in Recycling of Retired Cadmium-Telluride Photovoltaic Modules

    E-Print Network [OSTI]

    Progress in Recycling of Retired Cadmium- Telluride Photovoltaic Modules Postdoctoral: Wenming Wang-Talk Program July 21, 2005 #12;Recycling Retired Photovoltaic Modules to Valuable Products, Where Are We.M., Feasibility of Recycling of Cadmium-Telluride Photovoltaics, Presented at 134th TMS Annual Meeting &Exhibition

  13. Locating a Recycling Center: The General Density Case Jannett Highfill

    E-Print Network [OSTI]

    Mou, Libin

    Locating a Recycling Center: The General Density Case Jannett Highfill Department of Economics) 677-3374. #12;2 Locating a Recycling Center: The General Density Case Abstract: The present paper considers a municipality that has a landfill (fixed in location) and plans to optimally locate a "recycling

  14. What materials can I recycle? Material Where Whose

    E-Print Network [OSTI]

    What materials can I recycle? Material Where Whose responsibility Batteries Chatham reception desk Individuals Clay Recycled in the workshop Users of the purchased material Cardboard Designated skip Recycled via swop bins in the studios and outside the fabric store Unwanted items to Grumpy ( Greater

  15. Using OWL Ontologies Selective Waste Sorting and Recycling

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Using OWL Ontologies for Selective Waste Sorting and Recycling Arnab Sinha and Paul Couderc INRIA for better recycling of materials. Our motive for using ontologies is for representing and rea- soning, recyclable materials, N-ary relations 1 Introduction Today Pervasive computing is gradually entering people

  16. Recycled dehydrated lithosphere observed in plume-influenced

    E-Print Network [OSTI]

    Langmuir, Charles H.

    Recycled dehydrated lithosphere observed in plume-influenced mid-ocean-ridge basalt Jacqueline Eaby the deep mantle through the subduction and recycling of hydrated oceanic lithosphere. Here we address the question of recycling of water into the deep mantle by characterizing the volatile contents of different

  17. Bacteriorhodopsin production by cell recycle culture of Halobacterium

    E-Print Network [OSTI]

    Bacteriorhodopsin production by cell recycle culture of Halobacterium halobium Sang Yup Lee*, Ho halobium R1 was cultured with cell recycle in a bioreactor equipped with an external hollow fiber membrane- rhodopsin production. The results obtained from batch and cell recycle culture of H. halobium R1

  18. Waste Toolkit A-Z How can I recycle computers?

    E-Print Network [OSTI]

    Melham, Tom

    Waste Toolkit A-Z Computers How can I recycle computers? The University policy for computer disposal is outlined in detail, here: www.ict.ox.ac.uk/oxford/disposal/index.xml Recycle/reuse 1. Before If the computer can't be reused, it should be recycled by an authorised contractor who will guarantee that all

  19. PET-Recycling Schweiz Naglerwiesenstrasse 4

    E-Print Network [OSTI]

    Krause, Rolf

    PET-Recycling Schweiz Naglerwiesenstrasse 4 8049 Zurigo Telefono: 044 344 10 80 Fax: 044 344 10 99 E-mail: info@prs.ch www.petrecycling.ch #12;Il PET è un materiale riciclabile. Riciclare PET utilizzato il PET. Riconsegna le bottiglie PET, se no mancano altrove! #12;PET ­ più di un semplice materiale

  20. Energy and Environmental Considerations in Recycling

    E-Print Network [OSTI]

    Budker, Dmitry

    Wh electricity saved · Note: aluminum foil & cans are different alloys #12;Steel · "Tin cans" are tin by magnet · Eddy current separators remove aluminum cans · Glass separated by color (clear, brown, amber://www.economist.com/node/9249262. #12;Aluminum · Metals can be recycled indefinitely · Virgin aluminum production is very energy

  1. Cooperative Secondary Authorization Recycling , Matei Ripeanu

    E-Print Network [OSTI]

    failures and network delays. This paper presents the design of our cooperative secondary authorization recy not employ cooperation. 2 #12;Contents 1 Introduction 4 2 Secondary and Approximate Authorization Model (SAAM) 7 3 Cooperative Secondary Authorization Recycling (CSAR) 8 3.1 Design Requirements

  2. Plastic bottles > Remove lids (not recyclable)

    E-Print Network [OSTI]

    Brierley, Andrew

    Plastic bottles Please: > Remove lids (not recyclable) > Empty bottles > Rinse milk bottles, & other bottles if possible > Squash bottles www.st-andrews.ac.uk/estates/environment All types of plastic bottle accepted Clear, opaque and coloured bottles Labels can remain on X No plastic bags X No plastics

  3. Wastewater Recycle- A Sustainable Approach Towards Desalination 

    E-Print Network [OSTI]

    Mittal, A.

    2013-01-01T23:59:59.000Z

    Strictly Confidential WASTEWATER RECYCLE ? A SUSTAINABLE APPROACH TOWARDS DESALINATION Presented at Industrial Energy Technology Conference 35th IETC ? 2013 New Orleans May 22, 2013 Arun Mittal Aquatech International Corporation, USA... Sustainable Solutions Water Source ?Surface ?Ground ?Sea ?Waste Environment ?Preserve Ground / Surface Water Goals of Sustainability ?Maximize Recovery / Efficiency of Process ?Minimize Energy Consumption ?Maximize Reuse ?Minimize Liquid Waste...

  4. Recycling, production and use of reprocessed rubbers

    SciTech Connect (OSTI)

    Klingensmith, B. (Akron Rubber Consulting, OH (United States))

    1991-03-01T23:59:59.000Z

    This article examines the various methods used to produce recycled rubber and to compare their characteristics and application. The topics discussed include reclaiming by chemical digestion, devulcanization by the severing of sulfur bonds, ambient temperature and cryogenically ground rubber, processing and mixing of ground rubber, and properties of reclaimed rubbers by reclamation method.

  5. REGULATIONS ON PHOTOVOLTAIC MODULE DISPOSAL AND RECYCLING.

    SciTech Connect (OSTI)

    FTHENAKIS,V.

    2001-01-29T23:59:59.000Z

    Environmental regulations can have a significant impact on product use, disposal, and recycling. This report summarizes the basic aspects of current federal, state and international regulations which apply to end-of-life photovoltaic (PV) modules and PV manufacturing scrap destined for disposal or recycling. It also discusses proposed regulations for electronics that may set the ground of what is to be expected in this area in the near future. In the US, several states have started programs to support the recycling of electronic equipment, and materials destined for recycling often are excepted from solid waste regulations during the collection, transfer, storage and processing stages. California regulations are described separately because they are different from those of most other states. International agreements on the movement of waste between different countries may pose barriers to cross-border shipments. Currently waste moves freely among country members of the Organization of Economic Cooperation and Development (OECD), and between the US and the four countries with which the US has bilateral agreements. However, it is expected, that the US will adopt the rules of the Basel Convention (an agreement which currently applies to 128 countries but not the US) and that the Convection's waste classification system will influence the current OECD waste-handling system. Some countries adopting the Basel Convention consider end-of-life electronics to be hazardous waste, whereas the OECD countries consider them to be non-hazardous. Also, waste management regulations potentially affecting electronics in Germany and Japan are mentioned in this report.

  6. Transverse instability at the recycler ring

    SciTech Connect (OSTI)

    Ng, K.Y.; /Fermilab

    2004-10-01T23:59:59.000Z

    Sporadic transverse instabilities have been observed at the Fermilab Recycler Ring leading to increase in transverse emittances and beam loss. The driving source of these instabilities has been attributed to the resistive-wall impedance with space-charge playing an important role in suppressing Landau damping. Growth rates of the instabilities are computed. Remaining problems are discussed.

  7. Selective purge for hydrogenation reactor recycle loop

    DOE Patents [OSTI]

    Baker, Richard W. (Palo Alto, CA); Lokhandwala, Kaaeid A. (Union City, CA)

    2001-01-01T23:59:59.000Z

    Processes and apparatus for providing improved contaminant removal and hydrogen recovery in hydrogenation reactors, particularly in refineries and petrochemical plants. The improved contaminant removal is achieved by selective purging, by passing gases in the hydrogenation reactor recycle loop or purge stream across membranes selective in favor of the contaminant over hydrogen.

  8. The Recycling Intentions of Sport Spectators: A Theory of Planned Behavior Approach

    E-Print Network [OSTI]

    McCullough, Brian Patrick

    2012-07-16T23:59:59.000Z

    Sport organizations have a negative impact on the environment but these organizations have begun environmental initiatives to decrease their impact. Introducing recycling programs not only offers visible environmental effort to decrease... (Hirshfeld, Vesilind & Pas, 1992; El-Fadel, Findkakis & Leckie, 1997). As such, some of the largest consumers and producers of municipal waste, corporate America, have been the focus of decreasing their impact on the environment by citizens...

  9. Methodology of recent solid waste stream assessments and summary of current recycling endeavors at Lawrence Livermore National Laboratory (LLNL)

    SciTech Connect (OSTI)

    Wilson, K.

    1996-04-01T23:59:59.000Z

    Solid Waste Stream Assessments determine the components of given waste streams. An evaluation of findings allows components to be targeted for effective source reduction, reuse, or recycling. LLNL assessed 10% of its onsite dumpster locations (25 of 250). Dumpsters were selected based on location and surrounding facility use. Dumpster contents were sorted according to type into containers. The filled containers were weighed and photographed. The information was noted on field tabulation sheets. Dumpster locations, date of sort, sort categories, weight, and cubic yardage were entered into a database for review and tabulation. LLNL sorted approximately 7000 pounds of waste in each of the two assessments. A high incidence of cardboard (uncompacted) was present in most dumpsters. A high incidence of polystyrene was also present at dumpsters serving the LLNL cafeterias. Very little glass or aluminium was found. Enough waste paper was present to indicate that the paper recycling program needed increased employee awareness and a possible expansion. As a result of our assessments, LLNL has expanded its cardboard and paper recycling programs and implemented moving box and pallet reuse programs. LLNL is also studying a possible recycling program for cafeteria polystyrene and possible program expansions for magazine, newsprint, and glass recycling.

  10. CHEMICAL WASTE RECYCLING PROGRAM All types of batteries are collected by Chemical Waste Services (CWS) for recycling. These include

    E-Print Network [OSTI]

    Baker, Chris I.

    CHEMICAL WASTE RECYCLING PROGRAM BATTERIES All types of batteries are collected by Chemical Waste Services (CWS) for recycling. These include alkaline, lithium, rechargeable, coin batteries, lead are shrink wrapped and secured with bands to keep them intact during transportation to a permitted recycling

  11. T. Larsson, S. Skogestad, C.C. Yu Control of reactor, separator with recycle. Control of reactor, separator with recycle.

    E-Print Network [OSTI]

    Skogestad, Sigurd

    T. Larsson, S. Skogestad, C.C. Yu Control of reactor, separator with recycle. Control of reactor, separator with recycle. Liquid phase system gas phase systems methanol synthesis loop T. Larsson S, separator with recycle. Motivation, background and related work ¯ Common feature of many chemical processes

  12. T. Larsson, S. Skogestad, C.C. Yu Control of reactor, separator with recycle. Control of reactor, separator with recycle.

    E-Print Network [OSTI]

    Skogestad, Sigurd

    T. Larsson, S. Skogestad, C.C. Yu Control of reactor, separator with recycle. Control of reactor, separator with recycle. Liquid phase system gas phase systems methanol synthesis loop T. Larsson S, separator with recycle. Motivation, background and related work #15; Common feature of many chemical

  13. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-10-13T23:59:59.000Z

    Establishes facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation. Cancels DOE 5480.7A, DOE 5480.24, DOE 5480.28 and Division 13 of DOE 6430.1A. Canceled by DOE O 420.1A.

  14. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2012-12-04T23:59:59.000Z

    The Order establishes facility and programmatic safety requirements for DOE and NNSA for nuclear safety design criteria, fire protection, criticality safety, natural phenomena hazards (NPH) mitigation, and System Engineer Program. Cancels DOE O 420.1B, DOE G 420.1-2 and DOE G 420.1-3.

  15. atalante facilities abstract: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    s i (s 1 and s 2 are initial 1 ) and transitions (thin Dams, Dennis 19 SASE FEL at the TESLA Facility, Phase 2 The TESLA Test Facility FEL team Physics Websites Summary: SASE FEL...

  16. Feasibility Study of Economics and Performance of Solar Photovoltaics at the Tronox Facility in Savannah, Georgia. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites

    SciTech Connect (OSTI)

    Kiatreungwattana, K.; Geiger, J.; Healey, V.; Mosey, G.

    2013-03-01T23:59:59.000Z

    The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Tronox Facility site in Savannah, Georgia, for a feasibility study of renewable energy production. The National Renewable Energy Laboratory (NREL) provided technical assistance for this project. The purpose of this report is to assess the site for a possible photovoltaic (PV) system installation and estimate the cost, performance, and site impacts of different PV options. In addition, the report recommends financing options that could assist in the implementation of a PV system at the site.

  17. Asset Revitalization Initiative Update by Cynthia Anderson and...

    Office of Environmental Management (EM)

    in sustainability and energy efficiency projects. We are supporting clean energy production facilities www.doe.gov 3 Asset Revitalization Initiative Sustainability...

  18. Energy Department Announces New Mapping Initiative to Advance...

    Office of Environmental Management (EM)

    fossil-fueled facilities continue their essential energy role while reducing carbon pollution," said Energy Secretary Steven Chu. "This initiative can also help identify...

  19. Argonne explains nuclear recycling in 4 minutes

    ScienceCinema (OSTI)

    None

    2013-04-19T23:59:59.000Z

    Currently, when using nuclear energy only about five percent of the uranium used in a fuel rod gets fissioned for energy; after that, the rods are taken out of the reactor and put into permanent storage. There is a way, however, to use almost all of the uranium in a fuel rod. Recycling used nuclear fuel could produce hundreds of years of energy from just the uranium we've already mined, all of it carbon-free. Problems with older technology put a halt to recycling used nuclear fuel in the United States, but new techniques developed by scientists at Argonne National Laboratory address many of those issues. For more information, visit http://www.anl.gov/energy/nuclear-energy.

  20. Argonne explains nuclear recycling in 4 minutes

    SciTech Connect (OSTI)

    None

    2012-01-01T23:59:59.000Z

    Currently, when using nuclear energy only about five percent of the uranium used in a fuel rod gets fissioned for energy; after that, the rods are taken out of the reactor and put into permanent storage. There is a way, however, to use almost all of the uranium in a fuel rod. Recycling used nuclear fuel could produce hundreds of years of energy from just the uranium we've already mined, all of it carbon-free. Problems with older technology put a halt to recycling used nuclear fuel in the United States, but new techniques developed by scientists at Argonne National Laboratory address many of those issues. For more information, visit http://www.anl.gov/energy/nuclear-energy.

  1. Probe for contamination detection in recyclable materials

    DOE Patents [OSTI]

    Taleyarkhan, Rusi

    2003-08-05T23:59:59.000Z

    A neutron detection system for detection of contaminants contained within a bulk material during recycling includes at least one neutron generator for neutron bombardment of the bulk material, and at least one gamma ray detector for detection of gamma rays emitted by contaminants within the bulk material. A structure for analyzing gamma ray data is communicably connected to the gamma ray detector, the structure for analyzing gamma ray data adapted. The identity and concentration of contaminants in a bulk material can also be determined. By scanning the neutron beam, discrete locations within the bulk material having contaminants can be identified. A method for recycling bulk material having unknown levels of contaminants includes the steps of providing at least one neutron generator, at least one gamma ray detector, and structure for analyzing gamma ray data, irradiating the bulk material with neutrons, and then determining the presence of at least one contaminant in the bulk material from gamma rays emitted from the bulk material.

  2. Waste Treatment Technology Process Development Plan For Hanford Waste Treatment Plant Low Activity Waste Recycle

    SciTech Connect (OSTI)

    McCabe, Daniel J.; Wilmarth, William R.; Nash, Charles A.

    2013-08-29T23:59:59.000Z

    The purpose of this Process Development Plan is to summarize the objectives and plans for the technology development activities for an alternative path for disposition of the recycle stream that will be generated in the Hanford Waste Treatment Plant Low Activity Waste (LAW) vitrification facility (LAW Recycle). This plan covers the first phase of the development activities. The baseline plan for disposition of this stream is to recycle it to the WTP Pretreatment Facility, where it will be concentrated by evaporation and returned to the LAW vitrification facility. Because this stream contains components that are volatile at melter temperatures and are also problematic for the glass waste form, they accumulate in the Recycle stream, exacerbating their impact on the number of LAW glass containers. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to acceptable concentrations in the LAW glass, and reducing the halides in the Recycle is a key component of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, this stream does not have a proven disposition path, and resolving this gap becomes vitally important. This task seeks to examine the impact of potential future disposition of this stream in the Hanford tank farms, and to develop a process that will remove radionuclides from this stream and allow its diversion to another disposition path, greatly decreasing the LAW vitrification mission duration and quantity of glass waste. The origin of this LAW Recycle stream will be from the Submerged Bed Scrubber (SBS) and the Wet Electrostatic Precipitator (WESP) from the LAW melter off-gas system. The stream is expected to be a dilute salt solution with near neutral pH, and will likely contain some insoluble solids from melter carryover or precipitates of scrubbed components (e.g. carbonates). The soluble components are mostly sodium and ammonium salts of nitrate, chloride, and fluoride. This stream has not been generated yet, and will not be available until the WTP begins operation, causing uncertainty in its composition, particularly the radionuclide content. This plan will provide an estimate of the likely composition and the basis for it, assess likely treatment technologies, identify potential disposition paths, establish target treatment limits, and recommend the testing needed to show feasibility. Two primary disposition options are proposed for investigation, one is concentration for storage in the tank farms, and the other is treatment prior to disposition in the Effluent Treatment Facility. One of the radionuclides that is volatile and expected to be in high concentration in this LAW Recycle stream is Technetium-99 ({sup 99}Tc), a long-lived radionuclide with a half-life of 210,000 years. Technetium will not be removed from the aqueous waste in the Hanford Waste Treatment and Immobilization Plant (WTP), and will primarily end up immobilized in the LAW glass, which will be disposed in the Integrated Disposal Facility (IDF). Because {sup 99}Tc has a very long half-life and is highly mobile, it is the largest dose contributor to the Performance Assessment (PA) of the IDF. Other radionuclides that are also expected to be in appreciable concentration in the LAW Recycle are {sup 129}I, {sup 90}Sr, {sup 137}Cs, and {sup 241}Am. The concentrations of these radionuclides in this stream will be much lower than in the LAW, but they will still be higher than limits for some of the other disposition pathways currently available. Although the baseline process will recycle this stream to the Pretreatment Facility, if the LAW facility begins operation first, this stream will not have a disposition path internal to WTP. One potential solution is to return the stream to the tank farms where it can be evaporated in the 242-A evaporator, or perhaps deploy an auxiliary evaporator to concentrate it prior to return to the tank farms. In either case, testing is needed to evaluat

  3. Compositional evaluation of asphalt binder recycling agents

    E-Print Network [OSTI]

    Madrid, Richard Charles

    1997-01-01T23:59:59.000Z

    from: Exxon Research and Engineering Company, The National Consortium for Graduate Degrees for Minorities in Engineering and Science, Inc. Fellowship (GEM), and the DOW Technical Fellowship is greatly appreciated. I thank Sophie and Ignacio Madrid... for Recycled Blends . . . . . Asphaltic Materials. . 54 58 63 69 V-2 V-3 V-4 V-5 V-6 V-7 Fina DMO and Exxon Tank Compositions and Viscosities. . . . Blend Compositions and Viscosities...

  4. Recycling of Advanced Batteries for Electric Vehicles

    SciTech Connect (OSTI)

    JUNGST,RUDOLPH G.

    1999-10-06T23:59:59.000Z

    The pace of development and fielding of electric vehicles is briefly described and the principal advanced battery chemistries expected to be used in the EV application are identified as Ni/MH in the near term and Li-ion/Li-polymer in the intermediate to long term. The status of recycling process development is reviewed for each of the two chemistries and future research needs are discussed.

  5. Absorptive Recycle of Distillation Waste Heat

    E-Print Network [OSTI]

    Erickson, D. C.; Lutz, E. J., Jr.

    1982-01-01T23:59:59.000Z

    ABSORPTIVE RECYCLE OF DISTILLATION WASTE HEAT Donald C. Erickson and Edward J. Lutz Jr. Energy Concepts Company Annapolis, Maryland ABSTRACT When the heat source available to a distillation process is at a significantly higher temperature... which conserve 60 to 70%. Also, there are ver sions which incorporate separate low tem perature waste heat streams and thereby conserve over 90% of the required dis tillation energy. The main limitations of the R/AHP are the need for sufficient...

  6. Sandia National Laboratories: Pollution Prevention: Recycling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementingnpitche Home AboutMeeting: ProgramFebruaryJune 26,Recycling Sandia

  7. MSU Recycling recycle.msu.edu 517-355-1723 MARCH 15, 2014 9:00A.M.1:00P.M.

    E-Print Network [OSTI]

    Liu, Taosheng

    MSU Recycling · recycle.msu.edu · 517-355-1723 MARCH 15, 2014 · 9:00A.M.­1:00P.M. RECYCLINGLn Green Way Public Recycling Drop-o Center E-Waste Drop-o MSU Surplus Store & Recycling Center Service Rd Service Rd RecyclingDr NORTH Public Electronics Recycling March 15, 2014 · 9:00A.M.­1:00P.M. MSU Surplus

  8. Overview of reductants utilized in nuclear fuel reprocessing/recycling

    SciTech Connect (OSTI)

    Patricia Paviet-Hartmann; Catherine Riddle; Keri Campbell; Edward Mausolf

    2013-10-01T23:59:59.000Z

    Most of the aqueous processes developed, or under consideration worldwide for the recycling of used nuclear fuel (UNF) utilize the oxido-reduction properties of actinides to separate them from other radionuclides. Generally, after acid dissolution of the UNF, (essentially in nitric acid solution), actinides are separated from the raffinate by liquid-liquid extraction using specific solvents, associated along the process, with a particular reductant that will allow the separation to occur. For example, the industrial PUREX process utilizes hydroxylamine as a plutonium reductant. Hydroxylamine has numerous advantages: not only does it have the proper attributes to reduce Pu(IV) to Pu(III), but it is also a non-metallic chemical that is readily decomposed to innocuous products by heating. However, it has been observed that the presence of high nitric acid concentrations or impurities (such as metal ions) in hydroxylamine solutions increase the likelihood of the initiation of an autocatalytic reaction. Recently there has been some interest in the application of simple hydrophilic hydroxamic ligands such as acetohydroxamic acid (AHA) for the stripping of tetravalent actinides in the UREX process flowsheet. This approach is based on the high coordinating ability of hydroxamic acids with tetravalent actinides (Np and Pu) compared with hexavalent uranium. Thus, the use of AHA offers a route for controlling neptunium and plutonium in the UREX process by complexant based stripping of Np(IV) and Pu(IV) from the TBP solvent phase, while U(VI) ions are not affected by AHA and remain solvated in the TBP phase. In the European GANEX process, AHA is also used to form hydrophilic complexes with actinides and strip them from the organic phase into nitric acid. However, AHA does not decompose completely when treated with nitric acid and hampers nitric acid recycling. In lieu of using AHA in the UREX + process, formohydroxamic acid (FHA), although not commercially available, hold promises as a replacement for AHA. FHA undergoes hydrolysis to formic acid which is volatile, thus allowing the recycling of nitric acid. Unfortunately, FHA powder was not stable in the experiments we ran in our laboratory. In addition, AHA and FHA also decompose to hydroxylamine which may undergo an autocatalytic reaction. Other reductants are available and could be extremely useful for actinides separation. The review presents the current plutonium reductants used in used nuclear fuel reprocessing and will introduce innovative and novel reductants that could become reducers for future research on UNF separation.

  9. Sandia National Laboratories: Excellence Award in the 2012 Facilities...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Testing Excellence Award in the 2012 Facilities Environmental, Safety and Health Go Green Initiative On December 19, 2012, in Concentrating Solar Power, Energy, Events,...

  10. SCB initiator

    DOE Patents [OSTI]

    Bickes Jr., Robert W.; Renlund, Anita M.; Stanton, Philip L.

    1994-11-01T23:59:59.000Z

    A detonator for high explosives initiated by mechanical impact includes a cylindrical barrel, a layer of flyer material mechanically covering the barrel at one end, and a semiconductor bridge ignitor including a pair of electrically conductive pads connected by a semiconductor bridge. The bridge is in operational contact with the layer, whereby ignition of said bridge forces a portion of the layer through the barrel to detonate the explosive. Input means are provided for igniting the semiconductor bridge ignitor.

  11. SCB initiator

    DOE Patents [OSTI]

    Bickes, Jr., Robert W. (Albuquerque, NM); Renlund, Anita M. (Albuquerque, NM); Stanton, Philip L. (Albuquerque, NM)

    1994-01-01T23:59:59.000Z

    A detonator for high explosives initiated by mechanical impact includes a cylindrical barrel, a layer of flyer material mechanically covering the barrel at one end, and a semiconductor bridge ignitor including a pair of electrically conductive pads connected by a semiconductor bridge. The bridge is in operational contact with the layer, whereby ignition of said bridge forces a portion of the layer through the barrel to detonate the explosive. Input means are provided for igniting the semiconductor bridge ignitor.

  12. Officials launch Carbon Fiber Technology Facility, announce

    E-Print Network [OSTI]

    Pennycook, Steve

    to reduce carbon fiber's high cost, Danielson noted: "Many of these new clean energy technologies are withinSCIENCE Officials launch Carbon Fiber Technology Facility, announce new manufacturing initiative and a large crowd of local business and civic leaders came to the Carbon Fiber Technology Facility (CFTF

  13. Spent fuel management in France: Reprocessing, conditioning, recycling

    SciTech Connect (OSTI)

    Giraud, J.P.; Montalembert, J.A. de [COGEMA, Cedex (France)

    1994-12-31T23:59:59.000Z

    The French energy policy has been based for 20 years on the development of nuclear power. The some 75% share of nuclear in the total electricity generation, representing an annual production of 317 TWh requires full fuel cycle control from the head-end to the waste management. This paper presents the RCR concept (Reprocessing, Conditioning, Recycling) with its industrial implementation. The long lasting experience acquired in reprocessing and MOX fuel fabrication leads to a comprehensive industrial organization with minimized impact on the environment and waste generation. Each 900 MWe PWR loaded with MOX fuel avoids piling up 2,500 m{sup 3} per year of mine tailings. By the year 2000, less than 500 m{sup 3} of high-level and long-lived waste will be annually produced at La Hague for the French program. The fuel cycle facilities and the associated MOX loading programs are ramping-up according to schedule. Thus, the RCR concept is a reality as well as a policy adopted in several countries. Last but not least, RCR represents a strong commitment to non-proliferation as it is the way to fully control and master the plutonium inventory.

  14. Los Alamos National Laboratory completes demolition, recycling...

    National Nuclear Security Administration (NNSA)

    structural footprint, modernize its infrastructure, and provide LANL workers with safe, energy-efficient facilities. Between 2010 and 2014, LANL anticipates removing nearly 1...

  15. Mobile Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxide Capture inFacility AMF Information Science

  16. Facility Representatives

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,OfficeEnd ofEvaluations in Covered Facilities | Department of Energy

  17. Facility Representatives

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,OfficeEnd ofEvaluations in Covered Facilities | Department of Energy063-2011

  18. Facility Status

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist. Category UC-lFederalFYRANDOM DRUG TESTING The requirementFacility

  19. Coprocessing of hydrocarbonaceous wastes and residual oil - a novel approach to recycling

    SciTech Connect (OSTI)

    Anderson, N.E. [Kilborn Inc., Toronto (Canada); Berger, D.J. [Canadian Energy Developments Inc., Edmonton (Canada)

    1993-12-31T23:59:59.000Z

    The Plastic and Rubber Recycling (PARR) Process being developed by Kilborn Inc., and Canadian Energy Developments Inc., offers a unique approach to the recovery and recycle of waste hydrocarbonaceous materials as they are simultaneously hydrogenated with low quality residual oil to yield basic petrochemicals and virgin plastic and synthetic rubber compounds. Laboratory scale experiments with used tire rubber crumb, scrap polystyrene and heavy oil residuum as the coprocessing medium gave encouraging results. In excess of 90 percent of the carbonaceous matter was converted to distillate oil product that, upon secondary hydrotreating, could be considered high quality ethylene cracking furnace feedstock or aromatics extraction plant feedstock. This presentation will discuss the technical and economic potential of the PARR Process, the planned technology development program and initial commercialization plans.

  20. An improved high intensity recycling helium-3 beam source

    SciTech Connect (OSTI)

    Hedgeland, H.; Kole, P. R.; Allison, W.; Ellis, J.; Jardine, A. P. [Cavendish Laboratory, JJ Thomson Ave., Cambridge CB3 0HE (United Kingdom)

    2009-07-15T23:59:59.000Z

    We describe an improved high intensity, recycling, supersonic atomic beam source. Changes address several issues previously limiting performance and reliability of the apparatus, including the use of newly available vacuum pumps and modifications to the recycling system. We achieve a source intensity of 2.5x10{sup 19} atoms/s/sr, almost twice that previously achievable during recycling. Current limits on intensity are discussed.

  1. Strategies for recycling CdTe photovoltaic modules

    SciTech Connect (OSTI)

    Eberspacher, C.; Gay, C.F. [UNISUN, Newbury Park, CA. (United States); Moskowitz, P.D. [Brookhaven National Lab., Upton, NY (United States)

    1994-12-31T23:59:59.000Z

    Recycling end-of-life cadmium telluride (CdTe) photovoltaic (PV) modules may enhance the competitive advantage of CdTe PV in the marketplace, but the experiences of industries with comparable Environmental, Health and Safety (EH&S) challenges suggest that collection and recycling costs can impose significant economic burdens. Customer cooperation and pending changes to US Federal law may improve recycling economics.

  2. A Critical Analysis of Technological Innovation and Economic Development in Southern California's Urban Water Reuse And Recycling Industry

    E-Print Network [OSTI]

    Pilip-Florea, Shadrach Jay

    2012-01-01T23:59:59.000Z

    Water Task Force, “Water Recycling 2030: Recommendation’s of2007. Water Funding Recycling Program Strategic Plan. Web.grants_loans/water_recycling/docs/strategicplan2007.pdf

  3. Assessing the benefits of design for recycling for plastics in electronics: A case study of computer enclosures

    E-Print Network [OSTI]

    Masanet, Eric; Horvath, Arpad

    2007-01-01T23:59:59.000Z

    Thermoplastics (A); Recycling (C); Performance indices (H)3. Economic modeling results: recycling base price scenario.4. Economic modeling results: recycling high price scenario.

  4. at the Weizmann Institute We are launching a new cardboard recycling e ort

    E-Print Network [OSTI]

    Shapiro, Ehud

    Cardboard Recycling at the Weizmann Institute We are launching a new cardboard recycling e ort and brought to the Weizmann warehouse for reuse. Damaged boxes will be compressed and recycled by the by the recycling company (Kamam). Why do it? Re-using and recycling saves garbage burial space and frees space

  5. THE OPTIMAL LOCATION OF TWO RECYCLING CENTERS Jannett Highfill, Michael McAsey, Libin Mou1

    E-Print Network [OSTI]

    Mou, Libin

    of the transportation costs from i) households to the recycling centers and ii) recycling centers to the landfill-recyclables are subsequently transported to the landfill. The landfill location and the proportion of waste recycled recycling center is located at the landfill. (R1: General Spatial Economics, H7: Publicly Provided Goods

  6. Initial Proposal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn Other News linkThermal PhenomenaInitial

  7. Municipal Waste Planning, Recycling and Waste Reduction Act ...

    Open Energy Info (EERE)

    Recycling and Waste Reduction Act (Pennsylvania) Policy Category Other Policy Policy Type Environmental Regulations Affected Technologies BiomassBiogas, Coal with CCS,...

  8. Orange and Rockland Utilities (Electric)- Residential Appliance Recycling Program

    Broader source: Energy.gov [DOE]

    Orange and Rockland Utilities provides rebates for residential customers for recycling older, inefficient refrigerators and freezers. All appliances must meet the program requirements listed on the...

  9. U.S. Department of Energy Affirmative Procurement and Recycling...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    are provided below: Commercial Sanitary Tissue Products Industrial wipes for cleaning optics and machine parts must be lint-free, anti- static, and non-abrasive. Recycled content...

  10. Breckinridge Project, initial effort

    SciTech Connect (OSTI)

    none,

    1982-01-01T23:59:59.000Z

    Report IV, Volume 3, provides descriptions, data, and drawings pertaining to H-COAL Recycle Slurry Preparation (Plant 5), H-COAL Recycle Hydrogen Compression (Plant 6), and H-COAL Distillate Separation (Plant 17). H-COAL Recycle Slurry Preparation (Plant 5) receives a slurry stream from H-COAL Primary Separation (Plant 4), and then pumps the slurry through hydrocyclones, producing two slurry streams. One, dilute in solids is recycled back to the reactor. The other, concentrated in solids, is further processed to recover liquid products and is then transferred to Gasification and Purification (Plant 12). H-COAL Recycle Hydrogen Compression (Plant 6) compresses and recycles back to the reactor system hydrogen-rich vapor from H-COAL Primary Separation (Plant 4). This recycling maintains a hydrogen partial pressure and gas flow through the reactor vessel. H-COAL Distillate Separation (Plant 17) processes products from H-COAL Primary Separation (Plant 4) and H-COAL Recycle Slurry Preparation to produce light naphtha for the Gas Plant (Plant 7), middle and heavy distillates for tank farms, and heavy naphtha for Naphtha Hydrotreating and Reforming (Plant 18). The following information is included for each of the three plants: a description of the plant's process design, including the utility balance, heat and material balance (if applicable), and a process flow diagram; an equipment list, including item numbers and descriptions; data sheets and sketches for major plant components; and pertinent engineering drawings. An appendix contains: an overall site plan showing the locations of all plants; and the symbols and legend for the piping and instrument diagrams included in this volume.

  11. Recycle Batteries CSM recycles a variety of battery types including automotive, sealed lead acid, nickel

    E-Print Network [OSTI]

    , nickel cadmium (Nicad), nickel metal hydride, lithium ion, silver button, mercury, magnesium carbon. Recycling rechargeable batteries Rechargeable batteries are often referred to as nickel cadmium, nickel Battery Per Bag Please sort the batteries by battery type, using a separate receptacle for nickel cadmium

  12. 1. Recycle all bottles and cans 2. Recycle all personal electronics

    E-Print Network [OSTI]

    Howitt, Ivan

    as possible ENERGY CONSERVATION 6. Turn off the lights when not in use 7. Turn off your computer when. They provide air filters 24. Use energy efficient light bulbs 25. Buy supplies locally 26. Select efficient reusable grocery bags when shopping 4. Buy things with recycled material in them 5. Reduce waste as much

  13. Progress toward uranium scrap recycling via EBCHR

    SciTech Connect (OSTI)

    McKoon, R.H.

    1994-11-01T23:59:59.000Z

    A 250 kW electron beam cold hearth refining (EBCHR) melt furnace at Lawrence Livermore National Laboratory (LLNL) has been in operation for over a year producing 5.5 in.-diameter ingots of various uranium alloys. Production of in-specification uranium-6%-niobium (U-6Nb) alloy ingots has been demonstrated using virgin feedstock. A vibratory scrap feeder has been installed on the system and the ability to recycle chopped U-6Nb scrap has been established. A preliminary comparison of vacuum arc remelted (VAR) and electron beam (EB) melted product is presented.

  14. How to recycle asbestos containing materials (ACM)

    SciTech Connect (OSTI)

    Jantzen, C.M.

    2000-04-11T23:59:59.000Z

    The current disposal of asbestos containing materials (ACM) in the private sector consists of sealing asbestos wetted with water in plastic for safe transportation and burial in regulated land fills. This disposal methodology requires large disposal volumes especially for asbestos covered pipe and asbestos/fiberglass adhering to metal framework, e.g. filters. This wrap and bury technology precludes recycle of the asbestos, the pipe and/or the metal frameworks. Safe disposal of ACM at U.S. Department of Energy (DOE) sites, likewise, requires large disposal volumes in landfills for non-radioactive ACM and large disposal volumes in radioactive burial grounds for radioactive and suspect contaminated ACM. The availability of regulated disposal sites is rapidly diminishing causing recycle to be a more attractive option. Asbestos adhering to metal (e.g., pipes) can be recycled by safely removing the asbestos from the metal in a patented hot caustic bath which prevents airborne contamination /inhalation of asbestos fibers. The dissolution residue (caustic and asbestos) can be wet slurry fed to a melter and vitrified into a glass or glass-ceramic. Palex glasses, which are commercially manufactured, are shown to be preferred over conventional borosilicate glasses. The Palex glasses are alkali magnesium silicate glasses derived by substituting MgO for B{sub 2}O{sub 3} in borosilicate type glasses. Palex glasses are very tolerant of the high MgO and high CaO content of the fillers used in forming asbestos coverings for pipes and found in boiler lashing, e.g., hydromagnesite (3MgCO{sub 3} Mg(OH){sub 2} 3H{sub 2}O) and plaster of paris, gypsum (CaSO{sub 4}). The high temperate of the vitrification process destroys the asbestos fibers and renders the asbestos non-hazardous, e.g., a glass or glass-ceramic. In this manner the glass or glass-ceramic produced can be recycled, e.g., glassphalt or glasscrete, as can the clean metal pipe or metal framework.

  15. Recycled Energy Development | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to: navigation, searchRay County,Open EnergyRecent contentRecycled

  16. A comprehensive approach to solid waste and recycling at Sandia National Laboratories

    SciTech Connect (OSTI)

    King, G.G.

    1997-10-01T23:59:59.000Z

    The abrupt closure of a nearby, and historically utilized, Kirtland Air Force Base landfill imposed a multitude of solid waste management problems for the Sandia National Laboratories/New Mexico (SNL) research and development facilities operated by Lockheed Martin Company. Due to the close proximity of KAFB, SNL historically used KAFB`s landfill for disposal of solid waste. Under this arrangement SNL paid little or no cost for disposal of its solid waste stream. The disadvantage was that KAFB personnel did not track waste volumes entering the landfill from SNL. On August 1, 1994 this all came to an end. KAFB, without advance notice, closed the sanitary waste and asbestos cells of the landfill. The rapid resolution of unique regulatory issues; the aggressive accomplishment of reviewing options and implementing transport, screening, recycling and disposal procedures; and the construction and operation of a model, on-site Solid Waste Transfer Facility (SWTF) can serve as a case study for servicing DOE solid waste management and recycling needs in a safe, compliant, and timely manor.

  17. Results of the 2013 Recycled Yard Art Contest Hillsborough County Extension Service and the Hillsborough County Fair sponsored the Recycled Yard Art

    E-Print Network [OSTI]

    Watson, Craig A.

    . Results of the 2013 Recycled Yard Art Contest Hillsborough County Extension Service and the Hillsborough County Fair sponsored the Recycled Yard Art Contest which was held at the Hillsborough County residents. Entries were created mostly with recycled or recyclable materials and had to be able to withstand

  18. Nonparametric Bootstrap Recycling Val'erie Ventura, Department of Statistics, Baker Hall 132

    E-Print Network [OSTI]

    Nonparametric Bootstrap Recycling Val'erie Ventura, Department of Statistics, Baker Hall 132 adjustments. The amount of computation involved is usually considerable, and recycling provides a less computer intensive alternative. Recycling consists of using repeatedly the same samples drawn from

  19. NREL Materials Recycling Procedure Purpose To promote environmental sustainability and stewardship, NREL provides the

    E-Print Network [OSTI]

    NREL Materials Recycling Procedure Purpose To promote environmental sustainability and stewardship, NREL provides the infrastructure for workers to incorporate materials recycling in daily operations. This procedure identifies appropriate materials, collection locations, and rules and processes for recycling

  20. Analysis of the cost of recycling compliance for the automobile industry

    E-Print Network [OSTI]

    Dantec, Delphine

    2005-01-01T23:59:59.000Z

    Cars are one of the most recycled commercial products. Currently, approximately 75% of the total vehicle weight is recycled. The EU directives on End-of-life vehicles try to push the recycling process further: it fixed the ...

  1. Recycling Krylov subspaces for CFD applications

    E-Print Network [OSTI]

    Amritkar, Amit; ?wirydowicz, Katarzyna; Tafti, Danesh; Ahuja, Kapil

    2015-01-01T23:59:59.000Z

    The most popular iterative linear solvers in Computational Fluid Dynamics (CFD) calculations are restarted GMRES and BiCGStab. At the beginning of most incompressible flow calculations, the computation time and the number of iterations to converge for the pressure Poisson equation are quite high. In this case, the BiCGStab algorithm, with relatively cheap but non-optimal iterations, may fail to converge for stiff problems. Thus, a more robust algorithm like GMRES, which guarantees monotonic convergence, is preferred. To reduce the large storage requirements of GMRES, a restarted version - GMRES(m) or its variants - is used in CFD applications. However, GMRES(m) can suffer from stagnation or very slow convergence. For this reason, we use the rGCROT method. rGCROT is an algorithm that improves restarted GMRES by recycling a selected subspace of the search space from one restart of GMRES(m) to the next as well as building and recycling this outer vector space from one problem to the next (subsequent time steps i...

  2. A recycling process for dezincing steel scrap

    SciTech Connect (OSTI)

    Dudek, F.J.; Daniels, E.J. (Argonne National Lab., IL (United States)); Morgan, W.A.; Kellner, A.W.; Harrison, J. (Metal Recovery Industries, Inc., Hamilton, ON (Canada))

    1992-01-01T23:59:59.000Z

    In response to the several-fold increase in consumption of galvanized steel in the last decade and the problems associated with refurnacing larger quantities of galvanized steel scrap, a process is being developed to separate and recover the steel and zinc from galvanized ferrous scrap. The zinc is dissolved from the scrap in hot caustic using anodic assistance and is electrowon as dendritic powder. The process is effective for zinc, lead, aluminum, and cadmium removal on loose and baled scrap and on all types of galvanized steel. The process has been pilot tested for batch treatment of 1,000 tons of mostly baled scrap. A pilot plant to continuously treat loose scrap is under construction. Use of degalvanized steel scrap decreases raw materials and environmental compliance costs to steel- and iron-makers, may enable integrated steel producers to recycle furnace dusts to the sinter plant, and may enable EAF production of flat products without use of DRI or pig iron. Recycling the components of galvanized steel scrap saves primary energy, decreases zinc imports, and adds value to the scrap.

  3. A recycling process for dezincing steel scrap

    SciTech Connect (OSTI)

    Dudek, F.J.; Daniels, E.J. [Argonne National Lab., IL (United States); Morgan, W.A.; Kellner, A.W.; Harrison, J. [Metal Recovery Industries, Inc., Hamilton, ON (Canada)

    1992-08-01T23:59:59.000Z

    In response to the several-fold increase in consumption of galvanized steel in the last decade and the problems associated with refurnacing larger quantities of galvanized steel scrap, a process is being developed to separate and recover the steel and zinc from galvanized ferrous scrap. The zinc is dissolved from the scrap in hot caustic using anodic assistance and is electrowon as dendritic powder. The process is effective for zinc, lead, aluminum, and cadmium removal on loose and baled scrap and on all types of galvanized steel. The process has been pilot tested for batch treatment of 1,000 tons of mostly baled scrap. A pilot plant to continuously treat loose scrap is under construction. Use of degalvanized steel scrap decreases raw materials and environmental compliance costs to steel- and iron-makers, may enable integrated steel producers to recycle furnace dusts to the sinter plant, and may enable EAF production of flat products without use of DRI or pig iron. Recycling the components of galvanized steel scrap saves primary energy, decreases zinc imports, and adds value to the scrap.

  4. Environmental, economic, and energy impacts of material recovery facilities. A MITE Program evaluation

    SciTech Connect (OSTI)

    NONE

    1995-10-01T23:59:59.000Z

    This report documents an evaluation of the environmental, economic, and energy impacts of material recovery facilities (MRFs) conducted under the Municipal Solid Waste Innovative Technology Evaluation (MITE) Program. The MITE Program is sponsored by the US Environmental Protection Agency to foster the demonstration and development of innovative technologies for the management of municipal solid waste (MSW). This project was also funded by the National Renewable Energy Laboratory (NREL). Material recovery facilities are increasingly being used as one option for managing a significant portion of municipal solid waste (MSW). The owners and operators of these facilities employ a combination of manual and mechanical techniques to separate and sort the recyclable fraction of MSW and to transport the separated materials to recycling facilities.

  5. Preparation and Properties of Recycled HDPE/Clay Hybrids

    E-Print Network [OSTI]

    Preparation and Properties of Recycled HDPE/Clay Hybrids Yong Lei,1 Qinglin Wu,1 Craig M. Clemons2 on recycled high density poly- ethylene (RHDPE) and organic clay were made by melt com- pounding. The influence of blending method, compatibil- izers, and clay content on clay intercalation and exfoliation

  6. AN EXAMINATION OF WOOD RECYCLING PROVISIONS IN NORTH AMERICAN GREEN

    E-Print Network [OSTI]

    American green building standards, with use of such materials awarded or specified. Construction-consumer materials shall be considered as recycled. In addition to reviewing provisions of various green building! ! ! AN EXAMINATION OF WOOD RECYCLING PROVISIONS IN NORTH AMERICAN GREEN BUILDING PROGRAMS DR. JIM

  7. Catalytic coal liquefaction with treated solvent and SRC recycle

    DOE Patents [OSTI]

    Garg, Diwakar (Macungie, PA); Givens, Edwin N. (Bethlehem, PA); Schweighardt, Frank K. (Allentown, PA)

    1986-01-01T23:59:59.000Z

    A process for the solvent refining of coal to distillable, pentane soluble products using a dephenolated and denitrogenated recycle solvent and a recycled, pentane-insoluble, solvent-refined coal material, which process provides enhanced oil-make in the conversion of coal.

  8. Refrigerator Recycling Evaluation Protocol Doug Bruchs, The Cadmus Group, Inc.

    E-Print Network [OSTI]

    1 Refrigerator Recycling Evaluation Protocol Doug Bruchs, The Cadmus Group, Inc. Refrigerator Description Refrigerator recycling programs are designed to save energy through the removal of old-but- operable refrigerators from service. By offering free pick-up, providing incentives, and disseminating

  9. General Guidelines for Sustainable Purchasing 3R's -Reduce, Reuse, Recycle

    E-Print Network [OSTI]

    Jiang, Huiqiang

    ......................................................... 3R's - Reduce, Reuse, Recycle In order to conserve natural resources and to protect the environment considerations o Made of recycled materials, maximizing post-consumer content. o Remanufactured products, such as laser toner cartridges, tires, furniture, equipment and automotive parts whenever practicable and cost

  10. Catalytic coal liquefaction with treated solvent and SRC recycle

    DOE Patents [OSTI]

    Garg, D.; Givens, E.N.; Schweighardt, F.K.

    1986-12-09T23:59:59.000Z

    A process is described for the solvent refining of coal to distillable, pentane soluble products using a dephenolated and denitrogenated recycle solvent and a recycled, pentane-insoluble, solvent-refined coal material, which process provides enhanced oil-make in the conversion of coal. 2 figs.

  11. Assessing the Security Vulnerabilities of Correctional Facilities

    SciTech Connect (OSTI)

    Morrison, G.S.; Spencer, D.S.

    1998-10-27T23:59:59.000Z

    The National Institute of Justice has tasked their Satellite Facility at Sandia National Laboratories and their Southeast Regional Technology Center in Charleston, South Carolina to devise new procedures and tools for helping correctional facilities to assess their security vulnerabilities. Thus, a team is visiting selected correctional facilities and performing vulnerability assessments. A vulnerability assessment helps to identi~ the easiest paths for inmate escape, for introduction of contraband such as drugs or weapons, for unexpected intrusion fi-om outside of the facility, and for the perpetration of violent acts on other inmates and correctional employees, In addition, the vulnerability assessment helps to quantify the security risks for the facility. From these initial assessments will come better procedures for performing vulnerability assessments in general at other correctional facilities, as well as the development of tools to assist with the performance of such vulnerability assessments.

  12. PFBC HGCU Test Facility

    SciTech Connect (OSTI)

    Not Available

    1993-01-01T23:59:59.000Z

    This is the thirteenth Technical Progress Report submitted to the Department of Energy (DOE) in connection with the cooperative agreement between the DOE and Ohio Power Company for the Tidd PFBC Hot Gas Clean Up Test Facility. This report covers the period of work completed during the Fourth Quarter of CY 1992. The following are highlights of the activities that occurred during this report period: Initial operation of the Advanced Particle Filter (APF) occurred during this quarter. The following table summarizes the operating dates and times. HGCU ash lockhopper valve plugged with ash. Primary cyclone ash pluggage. Problems with the coal water paste. Unit restarted warm 13 hours later. HGCU expansion joint No. 7 leak in internal ply of bellows. Problems encountered during these initial tests included hot spots on the APP, backup cyclone and instrumentation spools, two breakdowns of the backpulse air compressor, pluggage of the APF hopper and ash removal system, failure (breakage) of 21 filter candles, leakage of the inner ply of one (1) expansion joint bellows, and numerous other smaller problems. These operating problems are discussed in detail in a subsequent section of this report. Following shutdown and equipment inspection in December, design modifications were initiated to correct the problems noted above. The system is scheduled to resume operation in March, 1993.

  13. To: Deans, Directors and Department Heads From: Jack K. Colby, Assistant Vice Chancellor for Facilities Operations

    E-Print Network [OSTI]

    in North Carolina landfills. The General Assembly recognizes electronics as recyclable and recovery landfill disposal bans. To ensure compliance, landfill facilities monitor waste streams for contamination. NC State University will be subject to any fines or penalties municipal or private landfill

  14. Overview of the international R&D recycling activities of the nuclear fuel cycle

    SciTech Connect (OSTI)

    Patricia Paviet-Hartmann

    2012-12-01T23:59:59.000Z

    Nuclear power has demonstrated over the last thirty years its capacity to produce base-load electricity at a low, predictable and stable cost due to the very low economic dependence of the price of uranium. However the management of used nuclear fuel (UNF) remains the “Achilles’ heel of this energy source since the storage of UNF is increasing as evidenced by the following number with 2,000 to 2,300 of UNF produced each year by the 104 US nuclear reactor units which equates to a total of 62,000 UNF assemblies stored in dry cask storage and 88,000 stored in pools. Alarmingly, more than half of US commercial reactor sites have filled their pools to capacity and have had to add dry cask storage facilities. Two options adopted by several countries will be discussed. The first one adopted by Europe, Japan and Russia consists of recycling the used nuclear fuel after irradiation in a nuclear reactor. Ninety six percent of uranium and plutonium contained in the spent fuel could be reused to produce electricity and are worth recycling. The separation of uranium and plutonium from the wastes is realized through the industrial PUREX process so that they can be recycled for re-use in a nuclear reactor as a mixed oxide (MOX) fuel. The second option undertaken by Finland, Sweden and the United States implies the direct disposal of UNF into a geologic formation. One has to remind that only 30% of the worldwide UNF are currently recycled, the larger part being stored (90% in pool) waiting for scientific or political decisions. A third option is emerging with a closed fuel cycle which will improve the global sustainability of nuclear energy. This option will not only decrease the volume amount of nuclear waste but also the long-term radiotoxicity of the final waste, as well as improving the long-term safety and the heat-loading of the final repository. At the present time, numerous countries are focusing on the R&D recycling activities of the ultimate waste composed of fission products and minor actinides (americium and curium). Several new chemical extraction processes, such as TRUSPEAK, EXAM, or LUCA processes are pursued worldwide and their approaches will be highlighted.

  15. FEASIBILITY STUDY OF DUPOLY TO RECYCLE DEPLETED URANIUM.

    SciTech Connect (OSTI)

    ADAMS,J.W.; LAGERAAEN,P.R.; KALB,P.D.; RUTENKROGER,S.P.

    1998-02-01T23:59:59.000Z

    DUPoly, depleted uranium (DU) powder microencapsulated in a low-density polyethylene binder, has been demonstrated as an innovative and efficient recycle product, a very durable high density material with significant commercial appeal. DUPoly was successfully prepared using uranium tetrafluoride (UF{sub 4}) ''green salt'' obtained from Fluor Daniel-Fernald, a U.S. Department of Energy reprocessing facility near Cincinnati, Ohio. Samples containing up to 90 wt% UF{sub 4} were produced using a single screw plastics extruder, with sample densities of up to 3.97 {+-} 0.08 g/cm{sup 3} measured. Compressive strength of as-prepared samples (50-90 wt% UF4 ) ranged from 1682 {+-} 116 psi (11.6 {+-} 0.8 MPa) to 3145 {+-} 57 psi (21.7 {+-} 0.4 MPa). Water immersion testing for a period of 90 days produced no visible degradation of the samples. Leach rates were low, ranging from 0.02 % (2.74 x 10{sup {minus}6} gm/gm/d) for 50 wt% UF{sub 4} samples to 0.72 % (7.98 x 10{sup {minus}5} gm/gm/d) for 90 wt% samples. Sample strength was not compromised by water immersion. DUPoly samples containing uranium trioxide (UO{sub 3}), a DU reprocessing byproduct material stockpiled at the Savannah River Site, were gamma irradiated to 1 x 10{sup 9} rad with no visible deterioration. Compressive strength increased significantly, however: up to 200% for samples with 90 wt% UO{sub 3}. Correspondingly, percent deformation (strain) at failure was decreased for all samples. Gamma attenuation data on UO{sub 3} DUPoly samples yielded mass attenuation coefficients greater than those for lead. Neutron removal coefficients were calculated and shown to correlate well with wt% of DU. Unlike gamma attenuation, both hydrogenous and nonhydrogenous materials interact to attenuate neutrons.

  16. Recycling technologies and market opportunities: Proceedings

    SciTech Connect (OSTI)

    Goland, A.N.; Petrakis, L. [eds.

    1993-09-20T23:59:59.000Z

    These proceedings are the result of our collective effort to meet that challenge. They reflect the dedication and commitment of many people in government, academia, the private sector and national laboratories to finding practical solutions to one of the most pressing problems of our time -- how to deal effectively with the growing waste s that is the product of our affluent industrial society. The Conference was successful in providing a clear picture of the scope of the problem and of the great potential that recycling holds for enhancing economic development while at the same time, having a significant positive impact on the waste management problem. That success was due in large measure to the enthusiastic response of our panelists to our invitation to participate and share their expertise with us.

  17. Metallurgical evaluation of recycled stainless steel

    SciTech Connect (OSTI)

    Imrich, K.J.

    1997-01-22T23:59:59.000Z

    Recycled Type 304 stainless steel from both Carolina Metals Inc. (CMI) and Manufacturing Science Corporation (MSC) met all the requirements of ASTM A-240 required by Procurement Specification G-SPP-K-00005 Rev. 4. Mechanical strength and corrosion resistance of the material are adequate for service as burial boxes, overpacks, and drums. Inclusion content of both manufacturer`s material was high, resulting in a corresponding decrease in the corrosion resistance. Therefore, an evaluation of the service conditions should be performed before this material is approved for other applications. These heats of stainless steel are not suitable for fabricating DWPF glass canisters because the inclusion and carbon contents are high. However, MSC has recently installed a vacuum induction furnace capable of producing L grade material with a low inclusion content. Material produced from this furnace should be suitable for canister material if appropriate care is taken during the melting/casting process.

  18. from Isotope Production Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cancer-fighting treatment gets boost from Isotope Production Facility April 13, 2012 Isotope Production Facility produces cancer-fighting actinium 2:32 Isotope cancer treatment...

  19. Fuel Fabrication Facility

    National Nuclear Security Administration (NNSA)

    Construction of the Mixed Oxide Fuel Fabrication Facility Construction of the Mixed Oxide Fuel Fabrication Facility November 2005 May 2007 June 2008 May 2012...

  20. PUREX facility hazards assessment

    SciTech Connect (OSTI)

    Sutton, L.N.

    1994-09-23T23:59:59.000Z

    This report documents the hazards assessment for the Plutonium Uranium Extraction Plant (PUREX) located on the US Department of Energy (DOE) Hanford Site. Operation of PUREX is the responsibility of Westinghouse Hanford Company (WHC). This hazards assessment was conducted to provide the emergency planning technical basis for PUREX. DOE Order 5500.3A requires an emergency planning hazards assessment for each facility that has the potential to reach or exceed the lowest level emergency classification. In October of 1990, WHC was directed to place PUREX in standby. In December of 1992 the DOE Assistant Secretary for Environmental Restoration and Waste Management authorized the termination of PUREX and directed DOE-RL to proceed with shutdown planning and terminal clean out activities. Prior to this action, its mission was to reprocess irradiated fuels for the recovery of uranium and plutonium. The present mission is to establish a passively safe and environmentally secure configuration at the PUREX facility and to preserve that condition for 10 years. The ten year time frame represents the typical duration expended to define, authorize and initiate follow-on decommissioning and decontamination activities.

  1. Multi-Fluid Modeling of Low-Recycling Divertor Regimes

    SciTech Connect (OSTI)

    Smirnov, R. D. [University of California, La Jolla; Pigarov, A. Y. [University of California, La Jolla; Krasheninnikov, S. I. [University of California, La Jolla; Rognlien, T. D. [Lawrence Livermore National Laboratory (LLNL); Soukhanovskii, V. A. [Lawrence Livermore National Laboratory (LLNL); Rensink, M. E. [Lawrence Livermore National Laboratory (LLNL); Maingi, Rajesh [ORNL; Skinner, C. H. [Princeton Plasma Physics Laboratory (PPPL); Stotler, D. P. [Princeton Plasma Physics Laboratory (PPPL); Bell, R. E. [Princeton Plasma Physics Laboratory (PPPL); Kugel, H. W. [Princeton Plasma Physics Laboratory (PPPL)

    2010-01-01T23:59:59.000Z

    The low-recycling regimes of divertor operation in a single-null NSTX magnetic configuration are studied using computer simulations with the edge plasma transport code UEDGE. The edge plasma transport properties pertinent to the low-recycling regimes are demonstrated. These include the flux-limited character of the parallel heat transport and the high plasma temperatures with the flattened profiles in the scrape-off-layer. It is shown that to maintain the balance of particle fluxes at the core interface the deuterium gas puffing rate should increase as the divertor recycling coefficient decreases. The radial profiles of the heat load to the outer divertor plate, the upstream radial plasma profiles, and the effects of the cross-field plasma transport in the low-recycling regimes are discussed. It is also shown that recycling of lithium impurities evaporating from the divertor plate at high surface temperatures can reverse the low-recycling divertor operational regime to the high-recycling one and may cause thermal instability of the divertor plate. (C) 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

  2. Guide to research facilities

    SciTech Connect (OSTI)

    Not Available

    1993-06-01T23:59:59.000Z

    This Guide provides information on facilities at US Department of Energy (DOE) and other government laboratories that focus on research and development of energy efficiency and renewable energy technologies. These laboratories have opened these facilities to outside users within the scientific community to encourage cooperation between the laboratories and the private sector. The Guide features two types of facilities: designated user facilities and other research facilities. Designated user facilities are one-of-a-kind DOE facilities that are staffed by personnel with unparalleled expertise and that contain sophisticated equipment. Other research facilities are facilities at DOE and other government laboratories that provide sophisticated equipment, testing areas, or processes that may not be available at private facilities. Each facility listing includes the name and phone number of someone you can call for more information.

  3. Curbside recycling in the presence of alternatives

    E-Print Network [OSTI]

    Beatty, Timothy K.M.; Berck, Peter; Shimshack, Jay P

    2007-01-01T23:59:59.000Z

    bottles represent approximately 44 percent of PET (polyethylene terephthalate) plastics,plastic beverage containers covered by the Act. Initially, eligible containers included beer, wine coolers, and soda bottles

  4. Cryogenics for the superconducting module test facility

    SciTech Connect (OSTI)

    Klebaner, A.L.; Theilacker, J.C.; /Fermilab

    2006-01-01T23:59:59.000Z

    A group of laboratories and universities, with Fermilab taking the lead, are constructing a superconducting cryomodule test facility (SMTF) in the Meson Detector Building (MDB) area at Fermilab. The facility will be used for testing and validating designs for both pulsed and CW systems. A multi phase approach is taken to construct the facility. For the initial phase of the project, cryogens for a single cavity cryomodule will be supplied from the existing Cryogenic Test Facility (CTF) that houses three Tevatron satellite refrigerators. The cooling capacity available for cryomodule testing at MDB results from the liquefaction capacity of the CTF cryogenic system. A cryogenic distribution system to supply cryogens from CTF to MDB is under construction. This paper describes plans, status and challenges of the initial phase of the SMTF cryogenic system.

  5. Sequence-Dependent Sorting of Recycling Proteins by Actin-Stabilized

    E-Print Network [OSTI]

    Weiner, Orion

    Sequence-Dependent Sorting of Recycling Proteins by Actin-Stabilized Endosomal Microdomains degradation and recycling pathways. How receptors recycle efficiently, in a sequence-dependent manner that is distinct from bulk membrane recycling, is not known. Here, in live cells, we visualize the sorting

  6. Green Labs and EH&S, Nov. 2013 ___________________ Lab Recycling Guide

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    Green Labs and EH&S, Nov. 2013 ___________________ Lab Recycling Guide Non-contaminated, clean lab plastic containers and conical tubes may be recycled. To be accepted, containers must be clean, triple. Recycling bin located: PSB Loading Dock Alcohol cans and metal shipping containers may be recycled

  7. The Recycling Center at UAB opened March 2, 2009! It is located at 620 11th

    E-Print Network [OSTI]

    Bedwell, David M.

    The Recycling Center at UAB opened March 2, 2009! It is located at 620 11th St. South. See map on the next UAB workday. UAB RECYCLING CENTER LAUNCHES DRIVE-THRU DROP-OFF SERVICE UAB RECYCLING CENTER 620 11 Paolone UAB Recycling Coordinator (205) 996-9043 GENERAL INSTRUCTIONS Please bring separated materials

  8. Nonparametric Bootstrap Recycling Val'erie Ventura, Department of Statistics, Baker Hall 132

    E-Print Network [OSTI]

    Nonparametric Bootstrap Recycling Val'erie Ventura, Department of Statistics, Baker Hall 132. The amount of computation involved is usually considerable, and recycling provides a less computer intensive alternative. Recycling consists of using repeatedly the same samples drawn from a recycling distribution G

  9. Recycling rubber wastes. (Latest citations from the Rubber and Plastics Research Association database). Published Search

    SciTech Connect (OSTI)

    NONE

    1995-02-01T23:59:59.000Z

    The bibliography contains citations concerning research and innovations in the recycling of rubber wastes. Recycling methods and equipment, applications of recycled rubber, and energy recovery systems and performance are among the topics discussed. Recycling methods compared and contrasted with various rubber waste disposal techniques are also included. (Contains a minimum of 96 citations and includes a subject term index and title list.)

  10. Recycling rubber wastes. (Latest citations from the rubber and plastics research association database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1994-05-01T23:59:59.000Z

    The bibliography contains citations concerning research and innovations in the recycling of rubber wastes. Recycling methods and equipment, applications of recycled rubber, and energy recovery systems and performance are among the topics discussed. Recycling methods compared and contrasted with various rubber waste disposal techniques are also included. (Contains a minimum of 89 citations and includes a subject term index and title list.)

  11. GLOBAL STABILITY IN CHEMOSTAT-TYPE COMPETITION MODELS WITH NUTRIENT RECYCLING

    E-Print Network [OSTI]

    Ruan, Shigui

    GLOBAL STABILITY IN CHEMOSTAT-TYPE COMPETITION MODELS WITH NUTRIENT RECYCLING SHIGUI RUAN AND XUE- type competition models with nutrient recycling. In the first model the recycling is instantaneous, whereas in the second, the recycling is delayed. They carried out the equilibrium analysis and obtained

  12. Why should I recycle? The average American generates 4.5 pounds of waste daily.

    E-Print Network [OSTI]

    Tsien, Roger Y.

    Why should I recycle? The average American generates 4.5 pounds of waste daily. Instead of throwing paper and containers in the trash,recycle them in single-stream receptacles conveniently located throughout campus.These guidelines will help you recycle more and waste less. What's recyclable? · Mixed

  13. Future Fixed Target Facilities

    SciTech Connect (OSTI)

    Melnitchouk, Wolodymyr

    2009-01-01T23:59:59.000Z

    We review plans for future fixed target lepton- and hadron-scattering facilities, including the 12 GeV upgraded CEBAF accelerator at Jefferson Lab, neutrino beam facilities at Fermilab, and the antiproton PANDA facility at FAIR. We also briefly review recent theoretical developments which will aid in the interpretation of the data expected from these facilities.

  14. The Net Zero Energy Residential Test Facility, located at the National Institute of Standards

    E-Print Network [OSTI]

    Purpose The Net Zero Energy Residential Test Facility, located at the National Institute of measurement science needed to achieve net- zero energy residential homes. The facility will initially be used's Office of Facilities and Property Management. Net-Zero Energy Residential Test Facility Unique

  15. Charlotte Green Supply Chain: Reduce, Reuse, Recycle | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Oare Former New Media Strategist, Office of Public Affairs Three years ago at Sacred Heart grade school in Norfolk, Neb., efforts to recycle were grim. "When I got here, we had...

  16. Vehicle Technologies Office Merit Review 2014: Advanced Battery Recycling

    Broader source: Energy.gov [DOE]

    Presentation given by OnTo Technology LLC at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced battery recycling.

  17. Demolitions Produce Recyclable Materials for Organization Promoting Economic Activity

    Broader source: Energy.gov [DOE]

    Demolitions have helped generate more than 8 million pounds of metal at the Piketon site for recycling, further promoting economic activity in the region thanks to the American Recovery and...

  18. alternative recycled waste: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the IEA R&D Wind's Topical expert meeting on Material recycling and life cycle analysis (LCA) of wind turbines 156 Mary Ann Liebert, Inc., Publishers Alternative Approaches to...

  19. International investigation of electronic waste recycling plant design

    E-Print Network [OSTI]

    Theurer, Jean E

    2010-01-01T23:59:59.000Z

    This thesis investigates the industry of electronic waste recycling industry in three countries: Germany, the United States, and Chile. Despite differences in the legal structure surrounding the industry, there are many ...

  20. A critical analysis of bulk precipitation recycling models

    E-Print Network [OSTI]

    Fitzmaurice, Jean Anne

    2007-01-01T23:59:59.000Z

    Precipitation recycling is the contribution of local land evaporation to the precipitation of a region. The significant local evaporative contribution to rainfall in many continental regions highlights the potential ...

  1. Applications of industrial ecology : manufacturing, recycling, and efficiency

    E-Print Network [OSTI]

    Dahmus, Jeffrey B. (Jeffrey Brian), 1974-

    2007-01-01T23:59:59.000Z

    This work applies concepts from industrial ecology to analyses of manufacturing, recycling, and efficiency. The first part focuses on an environmental analysis of machining, with a specific emphasis on energy consumption. ...

  2. Thermodynamic Database for Rare Earth Elements Recycling Process...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thermodynamic Database for Rare Earth Elements Recycling Process: Energetics of the REE-X Systems (XA;, Mg, Zn, Si, Sn, Mn, Pb, Fe, Co, Ni) Apr 17 2015 11:00 AM - 12:00 PM In-Ho...

  3. Neutronic analysis of a proposed plutonium recycle assembly

    E-Print Network [OSTI]

    Solan, George Michael

    1975-01-01T23:59:59.000Z

    A method for the neutronic analysis of plutonium recycle assemblies has been developed with emphasis on relative power distribution prediction in the boundary area of vastly different spectral regions. Such regions are ...

  4. ZERO WASTE STANFORD WASTE REDUCTION, RECYCLING AND COMPOSTING GUIDELINES

    E-Print Network [OSTI]

    Gerdes, J. Christian

    ZERO WASTE STANFORD WASTE REDUCTION, RECYCLING AND COMPOSTING GUIDELINES PLASTICS, METALS & GLASS pleaseemptyandflatten COMPOSTABLES kitchenandyardwasteonly LANDFILL ONLY ifallelsefails All Plastic Containers Metal Material All Food Paper Plates & Napkins *including pizza & donut boxes Compostable & Biodegradable

  5. Strategies for aluminum recycling : insights from material system optimization

    E-Print Network [OSTI]

    Li, Preston Pui-Chuen

    2005-01-01T23:59:59.000Z

    The dramatic increase in aluminum consumption over the past decades necessitates a societal effort to recycle and reuse these materials to promote true sustainability and energy savings in aluminum production. However, the ...

  6. Considerations in the recycling of urban parking garages

    E-Print Network [OSTI]

    Paul, Michael Johannes

    1981-01-01T23:59:59.000Z

    Because of the decreasing use of private automobiles in city centers and because of usual development pressures, some urban parking garages will become available for replacement or recycling. The choice between replacement ...

  7. Integrated demonstration of molten salt oxidation with salt recycle for mixed waste treatment

    SciTech Connect (OSTI)

    Hsu, P.C.

    1997-11-01T23:59:59.000Z

    Molten Salt Oxidation (MSO) is a thermal, nonflame process that has the inherent capability of completely destroying organic constituents of mixed wastes, hazardous wastes, and energetic materials while retaining inorganic and radioactive constituents in the salt. For this reason, MSO is considered a promising alternative to incineration for the treatment of a variety of organic wastes. Lawrence Livermore National Laboratory (LLNL) has prepared a facility and constructed an integrated pilot-scale MSO treatment system in which tests and demonstrations are performed under carefully controlled (experimental) conditions. The system consists of a MSO processor with dedicated off-gas treatment, a salt recycle system, feed preparation equipment, and equipment for preparing ceramic final waste forms. This integrated system was designed and engineered based on laboratory experience with a smaller engineering-scale reactor unit and extensive laboratory development on salt recycle and final forms preparation. In this paper we present design and engineering details of the system and discuss its capabilities as well as preliminary process demonstration data. A primary purpose of these demonstrations is identification of the most suitable waste streams and waste types for MSO treatment.

  8. Technical specifications for mechanical recycling of agricultural plastic waste

    SciTech Connect (OSTI)

    Briassoulis, D., E-mail: briassou@aua.gr; Hiskakis, M.; Babou, E.

    2013-06-15T23:59:59.000Z

    Highlights: • Technical specifications for agricultural plastic wastes (APWs) recycling proposed. • Specifications are the base for best economical and environmental APW valorisation. • Analysis of APW reveals inherent characteristics and constraints of APW streams. • Thorough survey on mechanical recycling processes and industry as it applies to APW. • Specifications for APW recycling tested, adjusted and verified through pilot trials. - Abstract: Technical specifications appropriate for the recycling of agricultural plastic wastes (APWs), widely accepted by the recycling industry were developed. The specifications establish quality standards to be met by the agricultural plastics producers, users and the agricultural plastic waste management chain. They constitute the base for the best economical and environmental valorisation of the APW. The analysis of the APW streams conducted across Europe in the framework of the European project “LabelAgriWaste” revealed the inherent characteristics of the APW streams and the inherent constraints (technical or economical) of the APW. The APW stream properties related to its recycling potential and measured during pilot trials are presented and a subsequent universally accepted simplified and expanded list of APW recycling technical specifications is proposed and justified. The list includes two sets of specifications, applied to two different quality categories of recyclable APW: one for pellet production process (“Quality I”) and another one for plastic profile production process (“Quality II”). Parameters that are taken into consideration in the specifications include the APW physical characteristics, contamination, composition and degradation. The proposed specifications are focused on polyethylene based APW that represents the vast majority of the APW stream. However, the specifications can be adjusted to cover also APW of different materials (e.g. PP or PVC) that are found in very small quantities in protected cultivations in Europe. The adoption of the proposed specifications could transform this waste stream into a labelled commodity traded freely in the market and will constitute the base for the best economical and environmental valorisation of the APW.

  9. Design and analysis of recycled content sign blanks

    E-Print Network [OSTI]

    Harrison, Ben Frank

    1996-01-01T23:59:59.000Z

    . In response, industries have developed composite materials made of recycled plastic, fiber-reinforced plastics, and alloys made of recycled aluminum. Two predoininantly reclaimed inaterials have been investigated for use as sign substrates. The first... in avoiding costs from tort actions. Aluminuin and wood are the substrates most frequently used for traffic signs. Grades 6061 (heat beatable) and 5052 (non-heat treatable) aluminum alloys are widely used. Currently, grade 3000 aluminum alloys, which...

  10. A comprehensive computing initiative for MFE. Revision 1

    SciTech Connect (OSTI)

    Cohen, R.H.; Crotinger, J.A. [Lawrence Livermore National Lab., CA (United States); Baldwin, D.E. [General Atomics, San Diego, CA (United States)

    1996-03-11T23:59:59.000Z

    The authors propose that a national initiative by launched to develop a comprehensive simulation facility for MFE. The facility would consist of physics codes developed by the national MFE community tightly but flexibly coupled through a programmable shell, enabling effectively simultaneous solution of the models in the various codes. The world ``facility`` is chosen to convey the notion that this is where one would go to conduct numerical experiments, using a full set of modules to describe an entire device, a coupled subset to describe particular aspects of a device, or a combination of the facility`s modules plus the user`s own physics.

  11. Binary and recycled pulsars: 30 years after observational discovery

    E-Print Network [OSTI]

    G S Bisnovatyi-Kogan

    2006-11-13T23:59:59.000Z

    Binary radio pulsars, first discovered by Hulse and Taylor in 1974 [1], are a unique tool for experimentally testing general relativity (GR), whose validity has been confirmed with a precision unavailable in laboratory experiments. In particular, indirect evidence of the existence of gravitational waves has been obtained. Radio pulsars in binary systems (which have come to be known as recycled) have completed the accretion stage, during which neutron star spins reach millisecond periods and their magnetic fields decay 2 to 4 orders of magnitude more weakly than ordinary radio pulsars. Among about a hundred known recycled pulsars, many have turned out to be single neutron stars. The high concentration of single recycled pulsars in globular clusters suggests that close stellar encounters are highly instrumental in the loss of the companion. A system of one recycled pulsar and one 'normal' one discovered in 2004 is the most compact among binaries containing recycled pulsars [2]. Together with the presence of two pulsars in one system, this suggests new prospects for further essential improvements in testing GR. This paper considers theoretical predictions of binary pulsars, their evolutionary formation, and mechanisms by which their companions may be lost. The use of recycled pulsars in testing GR is discussed and their possible relation to the most intriguing objects in the universe, cosmic gamma-ray bursts, is examined.

  12. Improved fluid bed combustor efficiencies through fines recycle

    SciTech Connect (OSTI)

    Rickman, W.S.

    1980-04-01T23:59:59.000Z

    Carbon burnup efficiencies of 99.9% and higher have been attained on a 0.4-MW(t) atmospheric fluid bed combustor with fines recycle. A cyclone and sintered metal filter system separated the fines from the off-gas stream, returning them at 600/sup 0/C (1150/sup 0/F) to the fluid bed. The fines were metered through a unique rotary valve that also served as a pressure boundary between the fluid bed and the fines recycle hopper. Combustor operation was fully automated with a 100-channel process controller and supervisory computer. This high combustion efficiency is especially significant, since the fuel was graphite sized to less than 5 mm (1.3 in.) maximum size. More than 30% of the feed was fine enough to be quickly entrained, placing a substantial burden on the fines recycle system. Detailed modeling techniques were successfully developed to allow prediction of recycle rates and temperatures needed to maintain high combustion efficiency. This model has now been used to analyze coal combustion tests sponsored by Electric Power Research Institute. Surface reaction rate constants were first determined using combustor data taken during cold, low-flow fines recycle tests. These were then used to predict the effect of higher rates of recycle at various temperatures.

  13. Ratchet growth in recycled PBX 9502

    SciTech Connect (OSTI)

    Thompson, Darla Graff [Los Alamos National Laboratory; Brown, Geoff W [Los Alamos National Laboratory; Mang, Joseph T [Los Alamos National Laboratory; Patterson, Brian [Los Alamos National Laboratory; Olinger, Bart [Los Alamos National Laboratory; Deluca, Racci [Los Alamos National Laboratory; Hagelberg, Stephanie [Los Alamos National Laboratory

    2009-01-01T23:59:59.000Z

    PBX 9502 is a plastic-bonded high explosive (PBX) containing 95 weight% TATB (triaminotrinitrobenzene) crystals in a polymer binder. TATB crystals are graphitic in nature, with a sheet-like structure and anisotropic CTE. Although the mechanism is not understood, solid-pressed TATB composites have been observed to undergo irreversible volume change ('ratchet growth') upon thermal cycling . This phenomenon has been studied but many aspects remain elusive and uncharacterized. Engineering or performance changes associated with ratchet growth have often been attributed to changes in density alone. We propose that the density changes which accompany ratchet growth involve a unique form of micro-damage distinguishable from the pore structure associated with low-pressed density. We have performed ratchet growth studies on Recycled PBX 9502 between -54 to 80{sup o}C with density changes of about 1.5%. Specimens of the same density were obtained using a lower pressure in the manufacturing process. Comparative measurements were made using quasi-static uniaxial tension tests, as well as micro x-ray computed tomography and ultra-small angle neutron scattering experiments. Through these measurements we have shown that ratchet grown PBX 9502 has properties quite different from predictions based on density alone. The pore size distribution of ratchet grown specimens is unique and easily distinguished from parts pressed to an equivalent density.

  14. Duality and Recycling Computing in Quantum Computers

    E-Print Network [OSTI]

    Gui Lu Long; Yang Liu

    2007-08-15T23:59:59.000Z

    Quantum computer possesses quantum parallelism and offers great computing power over classical computer \\cite{er1,er2}. As is well-know, a moving quantum object passing through a double-slit exhibits particle wave duality. A quantum computer is static and lacks this duality property. The recently proposed duality computer has exploited this particle wave duality property, and it may offer additional computing power \\cite{r1}. Simply put it, a duality computer is a moving quantum computer passing through a double-slit. A duality computer offers the capability to perform separate operations on the sub-waves coming out of the different slits, in the so-called duality parallelism. Here we show that an $n$-dubit duality computer can be modeled by an $(n+1)$-qubit quantum computer. In a duality mode, computing operations are not necessarily unitary. A $n$-qubit quantum computer can be used as an $n$-bit reversible classical computer and is energy efficient. Our result further enables a $(n+1)$-qubit quantum computer to run classical algorithms in a $O(2^n)$-bit classical computer. The duality mode provides a natural link between classical computing and quantum computing. Here we also propose a recycling computing mode in which a quantum computer will continue to compute until the result is obtained. These two modes provide new tool for algorithm design. A search algorithm for the unsorted database search problem is designed.

  15. Recycle of contaminated scrap metal, comprehensive executive summary. Final report, September 30, 1993--March 31, 1996

    SciTech Connect (OSTI)

    NONE

    1997-06-01T23:59:59.000Z

    R&D activities have demonstrated Catalytic Extraction Processing (CEP) to be a robust, one-step process process that is relatively insensitive to wide variations in waste composition and is applicable to a broad spectrum of DOE wastes. The feed size and composition compatible with CEP have been increased in a short period of time, and additional R&D should lead to the ability to accept a drum (and larger?) size feed of completely uncharacterized waste. Experiments have validated the CPU (Catalytic Processing Unit). Two commercial facilities have been commissioned and are currently processing mixed low level wastes. Expansion of CEP to transuranic and high level wastes should be the next step in the development and deployment of CEP for recycle, reuse, and disposal of materials from DOE decontamination and decommissioning activities.

  16. FSC-Watch: FSC undermines paper recycling, contributes to global warming FSC undermines paper recycling, contributes to global

    E-Print Network [OSTI]

    the May/June 2008 Eco-Journal of the Manitoba Eco-Network, Canada, which we are happy to reproduce pile of collected paper, which can either be burned or landfilled, or shipped to more distant recycling

  17. CRAD, Facility Safety- Nuclear Facility Safety Basis

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) that can be used for assessment of a contractor's Nuclear Facility Safety Basis.

  18. Texas Facilities Commission's Facility Management Strategic Plan

    E-Print Network [OSTI]

    Ramirez, J. A.

    , Texas, November 17 - 19, 2009 Facility Strategic Plan ?High Performance Building Approach ? Envelope ? Load Reduction ? (Re)Design ? Advanced Tactics ?Building Automation ? Sub-metering ? Controls ?Commissioning ? Assessment ? Continuous ?Facility... International Conference for Enhanced Building Operations, Austin, Texas, November 17 - 19, 2009 Commissioning Assessment ?30 buildings ?CC Opportunities ?O&M Improvements ?Energy/Capital Improvement Opportunities ?Quick Payback Implementation ?Levering DM...

  19. Initial operation of the Tidd PFBC HGCU test facility

    SciTech Connect (OSTI)

    Hoffman, J.D.

    1992-01-01T23:59:59.000Z

    The objective of this program is to evaluate the design and obtain operating experience for up to two advanced particle filter (APF) systems through long-term testing on a slip stream at Ohio Power Company's Tidd PFBC Demonstration Plant. Performance and reliability of commercial-scale filter modules will be monitored to aid in an assessment of the readiness and economic viability of this technology for commercial PFBC applications. The engineering, and design of the hot gas piping systems modifications were completed during the summer of 1992, and in September, 1992 reassembly of the pipe sections began at Tidd. The HGCU system will be commissioned with the APF in October, 1992. Present plans are to operate the APF system throughout the rest of the Tidd three-year test program which is scheduled to end in February, 1994.

  20. Initial operation of the Tidd PFBC HGCU test facility

    SciTech Connect (OSTI)

    Hoffman, J.D.

    1992-12-31T23:59:59.000Z

    The objective of this program is to evaluate the design and obtain operating experience for up to two advanced particle filter (APF) systems through long-term testing on a slip stream at Ohio Power Company`s Tidd PFBC Demonstration Plant. Performance and reliability of commercial-scale filter modules will be monitored to aid in an assessment of the readiness and economic viability of this technology for commercial PFBC applications. The engineering, and design of the hot gas piping systems modifications were completed during the summer of 1992, and in September, 1992 reassembly of the pipe sections began at Tidd. The HGCU system will be commissioned with the APF in October, 1992. Present plans are to operate the APF system throughout the rest of the Tidd three-year test program which is scheduled to end in February, 1994.

  1. Celgard US Manufacturing Facilities Initiative for Lithium-ion Battery

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof EnergyAdministration-Desert SouthwestofDepartment ofSeparator |

  2. Celgard US Manufacturing Facilities Initiative for Lithium-ion Battery

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof EnergyAdministration-Desert SouthwestofDepartment ofSeparator |Separator

  3. Celgard US Manufacturing Facilities Initiative for Lithium-ion Battery

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof EnergyAdministration-Desert SouthwestofDepartment ofSeparator

  4. System Design Description and Requirements for Modeling the Off-Gas Systems for Fuel Recycling Facilities

    SciTech Connect (OSTI)

    Daryl R. Haefner; Jack D. Law; Troy J. Tranter

    2010-08-01T23:59:59.000Z

    This document provides descriptions of the off-gases evolved during spent nuclear fuel processing and the systems used to capture the gases of concern. Two reprocessing techniques are discussed, namely aqueous separations and electrochemical (pyrochemical) processing. The unit operations associated with each process are described in enough detail so that computer models to mimic their behavior can be developed. The document also lists the general requirements for the desired computer models.

  5. FUTURE POWER GRID INITIATIVE GridOPTICSTM

    E-Print Network [OSTI]

    of individual software products November 2012 PNNL-SA-90162 Ian Gorton Pacific Northwest National Laboratory (509) 375-3850 ian.gorton@pnnl.gov ABOUT FPGI The Future Power Grid Initiative (FPGI) will deliver next National Laboratory's (PNNL) national electric grid research facility, the FPGI will advance the science

  6. Naval Station Newport Wind Resource Assessment. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites, and The Naval Facilities Engineering Service Center

    SciTech Connect (OSTI)

    Robichaud, R.; Fields, J.; Roberts, J. O.

    2012-02-01T23:59:59.000Z

    The U.S. Environmental Protection Agency (EPA) launched the RE-Powering America's Land initiative to encourage development of renewable energy (RE) on potentially contaminated land and mine sites. EPA is collaborating with the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) to evaluate RE options at Naval Station (NAVSTA) Newport in Newport, Rhode Island where multiple contaminated areas pose a threat to human health and the environment. Designated a superfund site on the National Priorities List in 1989, the base is committed to working toward reducing the its dependency on fossil fuels, decreasing its carbon footprint, and implementing RE projects where feasible. The Naval Facilities Engineering Service Center (NFESC) partnered with NREL in February 2009 to investigate the potential for wind energy generation at a number of Naval and Marine bases on the East Coast. NAVSTA Newport was one of several bases chosen for a detailed, site-specific wind resource investigation. NAVSTA Newport, in conjunction with NREL and NFESC, has been actively engaged in assessing the wind resource through several ongoing efforts. This report focuses on the wind resource assessment, the estimated energy production of wind turbines, and a survey of potential wind turbine options based upon the site-specific wind resource.

  7. Urban Mining: Quality and quantity of recyclable and recoverable material mechanically and physically extractable from residual waste

    SciTech Connect (OSTI)

    Di Maria, Francesco, E-mail: francesco.dimaria@unipg.it; Micale, Caterina; Sordi, Alessio; Cirulli, Giuseppe; Marionni, Moreno

    2013-12-15T23:59:59.000Z

    Highlights: • Material recycling and recovery from residual waste by physical and mechanical process has been investigated. • About 6% of recyclable can be extracted by NIR and 2-3Dimension selector. • Another 2% of construction materials can be extracted by adopting modified soil washing process. • Extracted material quality is quite high even some residual heavy metal have been detected by leaching test. - Abstract: The mechanically sorted dry fraction (MSDF) and Fines (<20 mm) arising from the mechanical biological treatment of residual municipal solid waste (RMSW) contains respectively about 11% w/w each of recyclable and recoverable materials. Processing a large sample of MSDF in an existing full-scale mechanical sorting facility equipped with near infrared and 2-3 dimensional selectors led to the extraction of about 6% w/w of recyclables with respect to the RMSW weight. Maximum selection efficiency was achieved for metals, about 98% w/w, whereas it was lower for Waste Electrical and Electronic Equipment (WEEE), about 2% w/w. After a simulated lab scale soil washing treatment it was possible to extract about 2% w/w of inert exploitable substances recoverable as construction materials, with respect to the amount of RMSW. The passing curve showed that inert materials were mainly sand with a particle size ranging from 0.063 to 2 mm. Leaching tests showed quite low heavy metal concentrations with the exception of the particles retained by the 0.5 mm sieve. A minimum pollutant concentration was in the leachate from the 10 and 20 mm particle size fractions.

  8. Technology Transitions Facilities Database

    Broader source: Energy.gov [DOE]

    The types of R&D facilities at the DOE Laboratories available to the public typically fall into three broad classes depending on the mode of access: Designated User Facilities, Shared R&D...

  9. Global Nuclear Energy Initiative at LBNL | U.S. DOE Office of...

    Office of Science (SC) Website

    Global Nuclear Energy Initiative at LBNL Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of Nuclear Science Applications of...

  10. Recycling readiness of advanced batteries for electric vehicles

    SciTech Connect (OSTI)

    Jungst, R.G.

    1997-09-01T23:59:59.000Z

    Maximizing the reclamation/recycle of electric-vehicle (EV) batteries is considered to be essential for the successful commercialization of this technology. Since the early 1990s, the US Department of Energy has sponsored the ad hoc advanced battery readiness working group to review this and other possible barriers to the widespread use of EVs, such as battery shipping and in-vehicle safety. Regulation is currently the main force for growth in EV numbers and projections for the states that have zero-emission vehicle (ZEV) programs indicate about 200,000 of these vehicles would be offered to the public in 2003 to meet those requirements. The ad hoc Advanced Battery Readiness Working Group has identified a matrix of battery technologies that could see use in EVs and has been tracking the state of readiness of recycling processes for each of them. Lead-acid, nickel/metal hydride, and lithium-ion are the three EV battery technologies proposed by the major automotive manufacturers affected by ZEV requirements. Recycling approaches for the two advanced battery systems on this list are partly defined, but could be modified to recover more value from end-of-life batteries. The processes being used or planned to treat these batteries are reviewed, as well as those being considered for other longer-term technologies in the battery recycling readiness matrix. Development efforts needed to prepare for recycling the batteries from a much larger EV population than exists today are identified.

  11. Site recycling: From Brownfield to football field

    SciTech Connect (OSTI)

    Lee, C.; Haas, W.L. [HDR Engineering Inc., Charlotte, NC (United States)

    1995-07-01T23:59:59.000Z

    The Carolina Panther`s new home, Carolinas Stadium, will be impressive. It will include a 75,000-seat stadium, about 2,000 parking spaces, and a practice facility equipped with three full-sized football fields, all located on 30 acres bordering the central business district of Charlotte, NC. Fans of the NFL expansion team may never know that, until recently, 13 of those 30 acres were a former state Superfund site contaminated by a commercial scrapyard that had operated from the early 1930s to 1983. The salvage of nonferrous metals from lead-acid batteries, copper from transformers and other electrical equipment, and ferrous metal scrap from junk automobiles at the Smith Metal and Iron (SMI) site had left a complex contamination legacy. The soil contained lead, polychlorinated biphenyls (PCBs), lesser amounts of semivolatiles (polyaromatic hydrocarbons, or PAHs), and volatile organic compounds and petroleum hydrocarbons. The site had remained dormant, like many former industrial sites that have come be called {open_quotes}brownfields,{close_quotes} for nearly a decade when in 1993, Charlotte was selected as the future home of the Carolina Panthers, a National Football League expansion team. The city was able to attract the team in part by offering to redevelop the site, a prime location adjacent to the downtown area. An eight-month-long site remediation effort by HDR Engineering Inc. was completed March 31, on schedule for a June 1996 unveiling of the team`s new facility.

  12. National Ignition Facility Title II Design Plan

    SciTech Connect (OSTI)

    Kumpan, S

    1997-03-01T23:59:59.000Z

    This National Ignition Facility (NIF) Title II Design Plan defines the work to be performed by the NIF Project Team between November 1996, when the U.S. Department of Energy (DOE) reviewed Title I design and authorized the initiation of Title H design and specific long-lead procurements, and September 1998, when Title 11 design will be completed.

  13. GROUND-BASED FACILITIES REVIEW CONSULTATIVE DOCUMENT

    E-Print Network [OSTI]

    Crowther, Paul

    has been withdrawal from the AAO and significant reduction in the running costs at ING and JAC the benefits of joining ESO. Initially the UK decided to enter the 8-metre era by joining the Gemini wavebands, and needing both space and ground-based facilities to achieve new science goals. It also stresses

  14. February 2012 Facilities Coordinator's Group Meeting

    E-Print Network [OSTI]

    Mullins, Dyche

    on reliability and repair cost · FM ability to identify on-going funding (potentially $100k per year) · Value to develop next steps · Equipment input needed from Facility Coordinator's if the Environmental Room doesn · Replacement of equipment #12;3 FM Customer Service & Quality Initiative 10 Point Plan February 2012 - updated

  15. National Biomedical Tracer Facility. Project definition study

    SciTech Connect (OSTI)

    Schafer, R.

    1995-02-14T23:59:59.000Z

    We request a $25 million government-guaranteed, interest-free loan to be repaid over a 30-year period for construction and initial operations of a cyclotron-based National Biomedical Tracer Facility (NBTF) in North Central Texas. The NBTF will be co-located with a linear accelerator-based commercial radioisotope production facility, funded by the private sector at approximately $28 million. In addition, research radioisotope production by the NBTF will be coordinated through an association with an existing U.S. nuclear reactor center that will produce research and commercial radioisotopes through neutron reactions. The combined facilities will provide the full range of technology for radioisotope production and research: fast neutrons, thermal neutrons, and particle beams (H{sup -}, H{sup +}, and D{sup +}). The proposed NBTF facility includes an 80 MeV, 1 mA H{sup -} cyclotron that will produce proton-induced (neutron deficient) research isotopes.

  16. SNX17 regulates Notch pathway and pancreas development through the retromer-dependent recycling of Jag1

    E-Print Network [OSTI]

    2012-01-01T23:59:59.000Z

    the retromer-dependent recycling of Jag1. Cell RegenerationWnt secretion by recycling Yin et al. Cell Regenerationthe retromer-dependent recycling of Jag1 Wenguang Yin 1 ,

  17. IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 7, JULY 2008 1 Cooperative Secondary Authorization Recycling

    E-Print Network [OSTI]

    Secondary Authorization Recycling Qiang Wei, Matei Ripeanu, Member, IEEE, and Konstantin Beznosov, Member recycles previously received authorizations and shares them with other application servers to mask authorization recycling system and its evaluation using simulation and prototype implementation. The results

  18. Initial Cladding Condition

    SciTech Connect (OSTI)

    E. Siegmann

    2000-08-22T23:59:59.000Z

    The purpose of this analysis is to describe the condition of commercial Zircaloy clad fuel as it is received at the Yucca Mountain Project (YMP) site. Most commercial nuclear fuel is encased in Zircaloy cladding. This analysis is developed to describe cladding degradation from the expected failure modes. This includes reactor operation impacts including incipient failures, potential degradation after reactor operation during spent fuel storage in pool and dry storage and impacts due to transportation. Degradation modes include cladding creep, and delayed hydride cracking during dry storage and transportation. Mechanical stresses from fuel handling and transportation vibrations are also included. This Analysis and Model Report (AMR) does not address any potential damage to assemblies that might occur at the YMP surface facilities. Ranges and uncertainties have been defined. This analysis will be the initial boundary condition for the analysis of cladding degradation inside the repository. In accordance with AP-2.13Q, ''Technical Product Development Planning'', a work plan (CRWMS M&O 2000c) was developed, issued, and utilized in the preparation of this document. There are constraints, caveats and limitations to this analysis. This cladding degradation analysis is based on commercial Pressurized Water Reactor (PWR) fuel with Zircaloy cladding but is applicable to Boiling Water Reactor (BWR) fuel. Reactor operating experience for both PWRs and BWRs is used to establish fuel reliability from reactor operation. It is limited to fuel exposed to normal operation and anticipated operational occurrences (i.e. events which are anticipated to occur within a reactor lifetime), and not to fuel that has been exposed to severe accidents. Fuel burnup projections have been limited to the current commercial reactor licensing environment with restrictions on fuel enrichment, oxide coating thickness and rod plenum pressures. The information provided in this analysis will be used in evaluating the post-closure performance of the Monitored Geologic Repository (MGR) in relation to waste form degradation.

  19. Auto shredder residue recycling: Mechanical separation and pyrolysis

    SciTech Connect (OSTI)

    Santini, Alessandro [Department of Industrial Chemistry and Materials, University of Bologna, Viale Risorgimento 4, I-40136 Bologna (Italy); Passarini, Fabrizio, E-mail: fabrizio.passarini@unibo.it [Department of Industrial Chemistry and Materials, University of Bologna, Viale Risorgimento 4, I-40136 Bologna (Italy); Vassura, Ivano [Department of Industrial Chemistry and Materials, University of Bologna, Viale Risorgimento 4, I-40136 Bologna (Italy); Serrano, David; Dufour, Javier [Department of Chemical and Energy Technology, ESCET, Universidad Rey Juan Carlos, c/Tulipan s/n, 28933 Mostoles, Madrid (Spain); Instituto IMDEA Energy, c/Tulipan s/n, 28933 Mostoles, Madrid (Spain); Morselli, Luciano [Department of Industrial Chemistry and Materials, University of Bologna, Viale Risorgimento 4, I-40136 Bologna (Italy)

    2012-05-15T23:59:59.000Z

    Highlights: Black-Right-Pointing-Pointer In this work, we exploited mechanical separation and pyrolysis to recycle ASR. Black-Right-Pointing-Pointer Pyrolysis of the floating organic fraction is promising in reaching ELV Directive targets. Black-Right-Pointing-Pointer Zeolite catalyst improve pyrolysis oil and gas yield. - Abstract: sets a goal of 85% material recycling from end-of-life vehicles (ELVs) by the end of 2015. The current ELV recycling rate is around 80%, while the remaining waste is called automotive shredder residue (ASR), or car fluff. In Europe, this is mainly landfilled because it is extremely heterogeneous and often polluted with car fluids. Despite technical difficulties, in the coming years it will be necessary to recover materials from car fluff in order to meet the ELV Directive requirement. This study deals with ASR pretreatment and pyrolysis, and aims to determine whether the ELV material recycling target may be achieved by car fluff mechanical separation followed by pyrolysis with a bench scale reactor. Results show that flotation followed by pyrolysis of the light, organic fraction may be a suitable ASR recycling technique if the oil can be further refined and used as a chemical. Moreover, metals are liberated during thermal cracking and can be easily separated from the pyrolysis char, amounting to roughly 5% in mass. Lastly, pyrolysis can be a good starting point from a 'waste-to-chemicals' perspective, but further research should be done with a focus on oil and gas refining, in order both to make products suitable for the chemical industry and to render the whole recycling process economically feasible.

  20. A cask maintenance facility feasibility study

    SciTech Connect (OSTI)

    Rennich, M.J.; Medley, L.G.; Attaway, C.R.

    1989-01-01T23:59:59.000Z

    The Oak Ridge National Laboratory (ORNL) is developing a transportation system for spent nuclear fuel (SNF) and defense high level waste (HLW) as a part of the Federal Waste Management System (FWMS). In early 1988, a feasibility study was undertaken to design a stand-alone, ''green field'' facility for maintaining the FWMS casks. The feasibility study provided an initial layout facility design, an estimate of the construction cost, and an acquisition schedule for a Cask Maintenance Facility (CMF). The study also helped to define the interfaces between the transportation system and the waste generators, the repository, and a Monitored Retrievable Storage (MRS) facility. The data, design, and estimated costs resulting from the study have been organized for use in the total transportation system decision-making process. Most importantly, the feasibility study also provides a foundation for continuing design and planning efforts. Fleet servicing facility studies, operational studies from current cask system operators, a definition of the CMF system requirements, and the experience of others in the radioactive waste transportation field were used as a basis for the feasibility study. In addition, several cask handling facilities were visited to observe and discuss cask operations to establish the functions and methods of cask maintenance expected to be used in the facility. Finally, a peer review meeting was held at Oak Ridge, Tennessee in August, 1988, in which the assumptions, design, layout, and functions of the CMF were significantly refined. Attendees included representatives from industry, the repository and transportation operations.

  1. Using a contingent valuation approach for improved solid waste management facility: Evidence from Kuala Lumpur, Malaysia

    SciTech Connect (OSTI)

    Afroz, Rafia, E-mail: rafia_afroz@yahoo.com [Department of Economics, Faculty of Economics and Management Science, International Islamic University Malaysia (Malaysia); Masud, Muhammad Mehedi [Department of Economics, Faculty of Economics and Management Science, International Islamic University Malaysia (Malaysia)

    2011-04-15T23:59:59.000Z

    This study employed contingent valuation method to estimate the willingness to pay (WTP) of the households to improve the waste collection system in Kuala Lumpur, Malaysia. The objective of this study is to evaluate how household WTP changes when recycling and waste separation at source is made mandatory. The methodology consisted of asking people directly about their WTP for an additional waste collection service charge to cover the costs of a new waste management project. The new waste management project consisted of two versions: version A (recycling and waste separation is mandatory) and version B (recycling and waste separation is not mandatory). The households declined their WTP for version A when they were asked to separate the waste at source although all the facilities would be given to them for waste separation. The result of this study indicates that the households were not conscious about the benefits of recycling and waste separation. Concerted efforts should be taken to raise environmental consciousness of the households through education and more publicity regarding waste separation, reducing and recycling.

  2. Oxygen-Fired CO{sub 2} Recycle for Application to Direct CO{sub 2} Capture form Coal-Fired Power Plants

    SciTech Connect (OSTI)

    Thomas Gale

    2010-09-26T23:59:59.000Z

    The Southern Research/Southern Company 1 MWth Pilot-Scale Coal-Fired Test Facility was successfully retrofit to fire in either the traditional air-fired mode or with 100% oxygen and recycled flue gas, with a fully integrated feedback and control system, including oxygen and recycled flue gas modulation during startup, transfer, and shutdown, safety and operational interlocks, and data acquisition. A MAXON Staged Oxygen Burner for Oxy-Coal Applications produced a stable flame over a significant range of firing turn-down, staging, and while firing five different U.S. coal types. The MAXON burner design produces lower flame temperatures than for air firing, which will enable (A) Safe operation, (B) Reduction of recycle flow without concern about furnace flame temperatures, and (C) May likely be affective at reducing slagging and fouling in the boiler and super heater at full-scale Power Plants. A CFD model of the Oxy-fired Combustion Research Facility (OCRF) was used to predict the flame geometry and temperatures in the OCRF and make a comparison with the air-fired case. The model predictions were consistent with the experimental data in showing that the MAXON burner fired with oxygen produced lower flame temperatures than the air-fired burner while firing with air.

  3. Small Power Production Facilities (Montana)

    Broader source: Energy.gov [DOE]

    For the purpose of these regulations, a small power production facility is defined as a facility that:...

  4. Remediation and Recycling of Linde FUSRAP Materials

    SciTech Connect (OSTI)

    Coutts, P. W.; Franz, J. P.; Rehmann, M. R.

    2002-02-27T23:59:59.000Z

    During World War II, the Manhattan Engineering District (MED) utilized facilities in the Buffalo, New York area to extract natural uranium from uranium-bearing ores. The Linde property is one of several properties within the Tonawanda, New York Formerly Utilized Sites Remedial Action Program (FUSRAP) site, which includes Linde, Ashland 1, Ashland 2, and Seaway. Union Carbide Corporation's Linde Division was placed under contract with the Manhattan Engineering District (MED) from 1942 to 1946 to extract uranium from seven different ore sources: four African pitchblende ores and three domestic ores. Over the years, erosion and weathering have spread contamination from the residuals handled and disposed of at Linde to adjacent soils. The U.S. Department of Energy (DOE) and the U.S. Environmental Protection Agency (EPA) negotiated a Federal Facilities Agreement (FFA) governing remediation of the Linde property. In Fiscal Year (FY) 1998, Congress transferred cleanup management responsibility for the sites in the FUSRAP program, including the Linde Site, from the DOE to the U.S. Army Corps of Engineers (USACE), with the charge to commence cleanup promptly. All actions by the USACE at the Linde Site are being conducted subject to the administrative, procedural, and regulatory provisions of the Comprehensive Environmental Response Compensation and Liability Act (CERCLA) and the existing FFA. USACE issued a Proposed Plan for the Linde Property in 1999 and a Final Record of Decision (ROD) in 2000. USACE worked with the local community near the Tonawanda site, and after considering public comment, selected the remedy calling for removing soils that exceed the site-specific cleanup standard, and transporting the contaminated material to off-site locations. The selected remedy is protective of human health and the environment, complies with Federal and State requirements, and meets commitments to the community.

  5. Dynamic Systems Analysis Report for Nuclear Fuel Recycle

    SciTech Connect (OSTI)

    Brent Dixon; Sonny Kim; David Shropshire; Steven Piet; Gretchen Matthern; Bill Halsey

    2008-12-01T23:59:59.000Z

    This report examines the time-dependent dynamics of transitioning from the current United States (U.S.) nuclear fuel cycle where used nuclear fuel is disposed in a repository to a closed fuel cycle where the used fuel is recycled and only fission products and waste are disposed. The report is intended to help inform policy developers, decision makers, and program managers of system-level options and constraints as they guide the formulation and implementation of advanced fuel cycle development and demonstration efforts and move toward deployment of nuclear fuel recycling infrastructure.

  6. Recycling of used Ni-MH rechargeable batteries

    SciTech Connect (OSTI)

    Yoshida, T.; Ono, H.; Shirai, R. [Mitsui Mining and Smelting Co., Ltd., Ageo, Saitama (Japan). Corporate R and D Center

    1995-12-31T23:59:59.000Z

    The Ni-MH (nickel metal hydride) rechargeable battery was developed several years ago. Its higher electrochemical capacity and greater safety compared with the Ni-Cd rechargeable battery have resulted in very rapid increase in its production. The Ni-MH rechargeable battery consists of Ni, Co and rare earth metals, so that recycling is important to recover these valuable mineral resources. In this study, a basic recycling process for used Ni-MH rechargeable batteries has been developed, in which the Ni, Co and rare earth elements are recovered through a combination of mechanical processing and hydrometallurgical processing.

  7. Recycling tires. (Latest citations from Pollution Abstracts). Published Search

    SciTech Connect (OSTI)

    NONE

    1995-11-01T23:59:59.000Z

    The bibliography contains citations concerning the technology and economic advantages of scrap tire recycling. The application of crumb rubber in the production of asphalt paving, floor-coverings, high performance composites, and other products is described. The production of fuels from scrap tires is also discussed. Legislation which promotes recycling, and the roles of government and the private sector in developing new markets and expanding existing markets are included.(Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  8. Recycling tires. (Latest citations from Pollution abstracts). Published Search

    SciTech Connect (OSTI)

    Not Available

    1994-01-01T23:59:59.000Z

    The bibliography contains citations concerning the technology and economic advantages of scrap tire recycling. The application of crumb rubber in the production of asphalt paving, floor-coverings, high performance composites, and other products is described. The production of fuels from scrap tires is also discussed. Legislation which promotes recycling, and the roles of government and the private sector in developing new markets and expanding existing markets are included. (Contains a minimum of 76 citations and includes a subject term index and title list.)

  9. Recycling tires. (Latest citations from Pollution abstracts). NewSearch

    SciTech Connect (OSTI)

    Not Available

    1994-11-01T23:59:59.000Z

    The bibliography contains citations concerning the technology and economic advantages of scrap tire recycling. The application of crumb rubber in the production of asphalt paving, floor-coverings, high performance composites, and other products is described. The production of fuels from scrap tires is also discussed. Legislation which promotes recycling, and the roles of government and the private sector in developing new markets and expanding existing markets are included. (Contains a minimum of 83 citations and includes a subject term index and title list.)

  10. Recycling tires. (Latest citations from Pollution Abstracts). Published Search

    SciTech Connect (OSTI)

    NONE

    1996-12-01T23:59:59.000Z

    The bibliography contains citations concerning the technology and economic advantages of scrap tire recycling. The application of crumb rubber in the production of asphalt paving, floor-coverings, high performance composites, and other products is described. The production of fuels from scrap tires is also discussed. Legislation which promotes recycling, and the roles of government and the private sector in developing new markets and expanding existing markets are included.(Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  11. Minnesota recycling directory, 1991. Statewide markets and collection locations

    SciTech Connect (OSTI)

    Cera, D.; Cloutier, C.; Estrem, L.; Halpine, C.; Johnson, K.

    1991-12-31T23:59:59.000Z

    ;Table of Contents: Minnesota Recycling Industries: (Individual Company Listings; Recycling Industries by County; Glass Collection, Processing and End-Use by County; Metal Collection, Processing and End-Use by County; Paper Collection, Processing and End-Use by County; and Plastic Collection, Processing and End-Use by County); Appendices: (Used Auto Parts Dealers by County; Barrel Reconditioners; Spent Lead-Acid Battery Collection and Processing by County; Used Oil Collection Centers by County; Waste Tire Collection, Processing and End-Use by County; Wood Waste Processors; and Regional End-Markets); and Update Form.

  12. Summary of Fermilab's Recycler Electron Cooler Operation and Studies

    SciTech Connect (OSTI)

    Prost, L.R.; Shemyakin, A.; /Fermilab

    2012-05-15T23:59:59.000Z

    Fermilab's Recycler ring was used as a storage ring for accumulation and subsequent manipulations of 8 GeV antiprotons destined for the Tevatron collider. To satisfy these missions, a unique electron cooling system was designed, developed and successfully implemented. The most important features that distinguish the Recycler cooler from other existing electron coolers are its relativistic energy, 4.3 MV combined with 0.1-0.5 A DC beam current, a weak continuous longitudinal magnetic field in the cooling section, 100 G, and lumped focusing elsewhere. With the termination of the Tevatron collider operation, so did the cooler. In this article, we summarize the experience of running this unique machine.

  13. PWR core design, neutronics evaluation and fuel cycle analysis for thorium-uranium breeding recycle

    SciTech Connect (OSTI)

    Bi, G.; Liu, C.; Si, S. [Shanghai Nuclear Engineering Research and Design Inst., No. 29, Hongcao Road, Shanghai, 200233 (China)

    2012-07-01T23:59:59.000Z

    This paper was focused on core design, neutronics evaluation and fuel cycle analysis for Thorium-Uranium Breeding Recycle in current PWRs, without any major change to the fuel lattice and the core internals, but substituting the UOX pellet with Thorium-based pellet. The fuel cycle analysis indicates that Thorium-Uranium Breeding Recycle is technically feasible in current PWRs. A 4-loop, 193-assembly PWR core utilizing 17 x 17 fuel assemblies (FAs) was taken as the model core. Two mixed cores were investigated respectively loaded with mixed reactor grade Plutonium-Thorium (PuThOX) FAs and mixed reactor grade {sup 233}U-Thorium (U{sub 3}ThOX) FAs on the basis of reference full Uranium oxide (UOX) equilibrium-cycle core. The UOX/PuThOX mixed core consists of 121 UOX FAs and 72 PuThOX FAs. The reactor grade {sup 233}U extracted from burnt PuThOX fuel was used to fabrication of U{sub 3}ThOX for starting Thorium-. Uranium breeding recycle. In UOX/U{sub 3}ThOX mixed core, the well designed U{sub 3}ThOX FAs with 1.94 w/o fissile uranium (mainly {sup 233}U) were located on the periphery of core as a blanket region. U{sub 3}ThOX FAs remained in-core for 6 cycles with the discharged burnup achieving 28 GWD/tHM. Compared with initially loading, the fissile material inventory in U{sub 3}ThOX fuel has increased by 7% via 1-year cooling after discharge. 157 UOX fuel assemblies were located in the inner of UOX/U{sub 3}ThOX mixed core refueling with 64 FAs at each cycle. The designed UOX/PuThOX and UOX/U{sub 3}ThOX mixed core satisfied related nuclear design criteria. The full core performance analyses have shown that mixed core with PuThOX loading has similar impacts as MOX on several neutronic characteristic parameters, such as reduced differential boron worth, higher critical boron concentration, more negative moderator temperature coefficient, reduced control rod worth, reduced shutdown margin, etc.; while mixed core with U{sub 3}ThOX loading on the periphery of core has no visible impacts on neutronic characteristics compared with reference full UOX core. The fuel cycle analysis has shown that {sup 233}U mono-recycling with U{sub 3}ThOX fuel could save 13% of natural uranium resource compared with UOX once through fuel cycle, slightly more than that of Plutonium single-recycling with MOX fuel. If {sup 233}U multi-recycling with U{sub 3}ThOX fuel is implemented, more natural uranium resource would be saved. (authors)

  14. Bioanalytical tools for the evaluation of organic micropollutants during sewage treatment, water recycling

    E-Print Network [OSTI]

    Cooper, Robin L.

    Micropollutants Toxicity Water recycling Indirect potable reuse a b s t r a c t A bioanalytical test battery recycling and drinking water generation Miroslava Macova a , Simon Toze b,d , Leonie Hodgers b , Jochen F

  15. Implementation of EU Waste Recycling Regulation in Macedonia: The Challenges of Policy Integration and Normative Change

    E-Print Network [OSTI]

    Ilievska Kremer, Jannika Sjostrand

    2013-01-01T23:59:59.000Z

    general public more about battery recycling. When asked whatbattery campaign. Hence, giving the general public access to recyclingand recycling system to the standards set out in the European acquis. The plastic bottle and battery

  16. Contemporary evolution, allelic recycling, and adaptive radiation of the threespine stickleback

    E-Print Network [OSTI]

    Aguirre, Windsor E.

    Contemporary evolution, allelic recycling, and adaptive radiation of the threespine stickleback within ten generations. Rare freshwater-adapted alleles have been recycled from freshwater to oceanic evolve very slowly led him to study artificial selection, natural selection's component mechanisms (e

  17. S98-1 Recycling Papers and Defining Plagiarism Legislative History

    E-Print Network [OSTI]

    Gleixner, Stacy

    S98-1 Recycling Papers and Defining Plagiarism Legislative History: At its meeting of February 2: "Approved as University Policy." Signed Robert Caret, 2-19-98 Policy Recommendation Recycling Papers

  18. Effects of Biochar Recycling on Switchgrass Growth and Soil and Water Quality in Bioenergy Production Systems

    E-Print Network [OSTI]

    Husmoen, Derek Howard

    2012-07-16T23:59:59.000Z

    the logistics for recycling biochar to fields from which the biomass feedstocks are harvested. The contribution of biochar recycling from mobile pyrolysis systems to ecological services provided by agriculture, including sustained soil, water...

  19. Facility Effluent Monitoring Plan determinations for the 600 Area facilities

    SciTech Connect (OSTI)

    Nickels, J.M.

    1991-08-01T23:59:59.000Z

    This document determines the need for Facility Effluent Monitoring Plans for Westinghouse Hanford Company's 600 Area facilities on the Hanford Site. The Facility Effluent Monitoring Plan determinations were prepared in accordance with A Guide For Preparing Hanford Site Facility Effluent Monitoring Plans (WHC 1991). Five major Westinghouse Hanford Company facilities in the 600 Area were evaluated: the Purge Water Storage Facility, 212-N, -P, and -R Facilities, the 616 Facility, and the 213-J K Storage Vaults. Of the five major facilities evaluated in the 600 Area, none will require preparation of a Facility Effluent Monitoring Plan.

  20. The potential environmental gains from recycling waste plastics: Simulation of transferring recycling and recovery technologies to Shenyang, China

    SciTech Connect (OSTI)

    Chen Xudong, E-mail: chen.xudong@nies.go.jp [Institute of Applied Ecology, Chinese Academy of Sciences, No. 72 Wenhua Road, Shenyang 110016 (China); National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506 (Japan); Graduate School of Environmental Studies, Nagoya University, Furo-cho, Chikusa-ku, Nagoya City 464-8601 (Japan); Xi Fengming [Institute of Applied Ecology, Chinese Academy of Sciences, No. 72 Wenhua Road, Shenyang 110016 (China); Geng Yong, E-mail: gengyong@iae.ac.cn [Institute of Applied Ecology, Chinese Academy of Sciences, No. 72 Wenhua Road, Shenyang 110016 (China); Fujita, Tsuyoshi [National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506 (Japan); Graduate School of Environmental Studies, Nagoya University, Furo-cho, Chikusa-ku, Nagoya City 464-8601 (Japan)

    2011-01-15T23:59:59.000Z

    Research highlights: {yields} Urban symbiosis creates compatibility of industrial development and waste management. {yields} Mechanical technology leads to more CO{sub 2} emission reduction. {yields} Energy recovery technology leads to more fossil fuel saving. {yields} Clean energy makes recycling technologies cleaner. {yields} Demand management is crucial for realizing potential environmental gains of recycling. - Abstract: With the increasing attention on developing a low-carbon economy, it is necessary to seek appropriate ways on reducing greenhouse gas (GHG) emissions through innovative municipal solid waste management (MSWM), such as urban symbiosis. However, quantitative assessments on the environmental benefits of urban symbiosis, especially in developing countries, are limited because only a limited number of planned synergistic activities have been successful and it is difficult to acquire detailed inventory data from private companies. This paper modifies and applies a two-step simulation system and used it to assess the potential environmental benefits, including the reduction of GHG emissions and saving of fossil fuels, by employing various Japanese plastics recycling/energy-recovery technologies in Shenyang, China. The results showed that among various recycling/energy-recovery technologies, the mechanical waste plastics recycling technology, which produces concrete formwork boards (NF boards), has the greatest potential in terms of reducing GHG emissions (1.66 kg CO{sub 2}e/kg plastics), whereas the technology for the production of refuse plastic fuel (RPF) has the greatest potential on saving fossil fuel consumption (0.77 kgce/kg-plastics). Additional benefits can be gained by applying combined technologies that cascade the utilization of waste plastics. Moreover, the development of clean energy in conjunction with the promotion of new waste plastics recycling programs could contribute to additional reductions in GHG emissions and fossil fuel consumption.

  1. A Research Needs Assessment for waste plastics recycling: Volume 2, Project report. Final report

    SciTech Connect (OSTI)

    NONE

    1994-12-01T23:59:59.000Z

    This second volume contains detailed information on a number of specific topics relevant to the recovery/recycling of plastics.

  2. Development of asphalts and pavements using recycled tire rubber. Phase 1: technical feasibility. Final report

    SciTech Connect (OSTI)

    Bullin, J.A.; Davison, R.R.; Glover, C.J. [and others

    1998-01-01T23:59:59.000Z

    This report documents the technical progress made on the development of asphalts and pavements using recycled tire rubber.

  3. Recycling rubber wastes. (Latest citations from the Rubber and Plastics Research Association database). Published Search

    SciTech Connect (OSTI)

    NONE

    1996-04-01T23:59:59.000Z

    The bibliography contains citations concerning research and innovations in the recycling of rubber wastes. Recycling methods and equipment, applications of recycled rubber, and energy recovery systems and performance are among the topics discussed. Recycling methods compared and contrasted with various rubber waste disposal techniques are also included. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  4. Recycling: General studies. (Latest citations from the NTIS Bibliographic database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1994-11-01T23:59:59.000Z

    The bibliography contains citations concerning the processes, techniques, and benefits of recycling. The recycling processes for aluminum, chromium, nickel, cobalt, lead, copper, and precious metals scrap are discussed. Also included are citations on recycling of waste paper fibers and rubber wastes for the production of new products. Recycling in the jewelry, electronics, milling, beverage, automotive, and aircraft industries are considered. (Contains 250 citations and includes a subject term index and title list.)

  5. Recycling: General studies. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect (OSTI)

    NONE

    1995-12-01T23:59:59.000Z

    The bibliography contains citations concerning the processes, techniques, and benefits of recycling. The recycling processes for aluminum, chromium, nickel, cobalt, lead, copper, and precious metals scrap are discussed. Also included are citations on recycling of waste paper fibers and rubber wastes for the production of new products. Recycling in the jewelry, electronics, milling, beverage, automotive, and aircraft industries are considered. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  6. Recycling: General studies. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1993-12-01T23:59:59.000Z

    The bibliography contains citations concerning the processes, techniques, and benefits of recycling. The recycling processes for aluminum, chromium, nickel, cobalt, lead, copper, and precious metals scrap are discussed. Also included are citations on recycling of waste paper fibers and rubber wastes for the production of new products. Recycling in the jewelry, electronics, milling, beverage, automotive, and aircraft industries are considered. (Contains 250 citations and includes a subject term index and title list.)

  7. 7th Annual waste reduction, prevention, recycling and composting symposium proceedings

    SciTech Connect (OSTI)

    NONE

    1996-08-01T23:59:59.000Z

    Technical papers from the Waste Reduction, Prevention, Recycling and Composting Symposium are presented. 21 of the 22 papers were selected for inclusion in the database. The majority of the papers focus on municipal wastes produced by the business sector; however, wastes generated in the residential and industrial sectors are also included. Topics addressed include workplace recycling, scrap tire and used oil recycling, employee education, construction and demolition waste reuse, composting, waste reduction, and market development for recycled products.

  8. Designing Optimal Districts in the Recycling of Electronic Goods with Integer Programming

    E-Print Network [OSTI]

    Bustamante, Fabián E.

    Algorithm Wrap-up #12;New recycling directive WEEE (Waste Electric and Electronic Equipment) of the EC

  9. Resources, Conservation and Recycling 54 (2010) 242249 Contents lists available at ScienceDirect

    E-Print Network [OSTI]

    Lupi, Frank

    2010-01-01T23:59:59.000Z

    Resources, Conservation and Recycling 54 (2010) 242­249 Contents lists available at ScienceDirect Resources, Conservation and Recycling journal homepage: www.elsevier.com/locate/resconrec Factors influencing the rate of recycling: An analysis of Minnesota counties Shaufique F. Sidiquea, , Satish V. Joshib

  10. Resources, Conservation and Recycling 51 (2007) 847869 Modeling obsolete computer stock under regional

    E-Print Network [OSTI]

    Illinois at Chicago, University of

    2007-01-01T23:59:59.000Z

    Resources, Conservation and Recycling 51 (2007) 847­869 Modeling obsolete computer stock under and recycling systems using GIS, and demonstrate the potential economic benefits from diverting electronic buildings. © 2007 Elsevier B.V. All rights reserved. Keywords: Computer recycling; Product inventory

  11. Less Haste, Less Waste: On Recycling and its Limits in Strand Displacement Systems

    E-Print Network [OSTI]

    Condon, Anne

    Less Haste, Less Waste: On Recycling and its Limits in Strand Displacement Systems Anne Condon Columbia, Vancouver, British Columbia, V6T 1Z4 Abstract. We study the potential for molecule recycling in chemical reaction systems and their DNA strand displacement realizations. Recycling happens when a product

  12. Aggregation methods in food chains with nutrient recycling B.W. Kooi a,

    E-Print Network [OSTI]

    Poggiale, Jean-Christophe

    Aggregation methods in food chains with nutrient recycling B.W. Kooi a, *, J.C. Poggiale b , P recycling is taken into account. The food chain is formed by a nutrient and two populations, prey. The excreted material together with death material, detritus, is decomposed and this gives the recycling

  13. Control of Delayed Recycling Systems with Unstable First Order Forward Loop

    E-Print Network [OSTI]

    Boyer, Edmond

    Control of Delayed Recycling Systems with Unstable First Order Forward Loop J. F. M Abstract Unstable time-delay systems and recycling systems are challenging problems for control analysis and design. When an unstable time-delay system has a recycle, its control problem becomes even more difficult

  14. Tax-versus-trading and efficient revenue recycling as issues for greenhouse gas abatement

    E-Print Network [OSTI]

    Pezzey, Jack

    Tax-versus-trading and efficient revenue recycling as issues for greenhouse gas abatement Final://people.anu.edu.au/jack.pezzey (J.C.V. Pezzey) Keywords: emission pricing, tax-versus-trading, uncertainties, revenue recycling, and revenue recycling. Including multiple, independent parties greatly reduces the welfare advantage

  15. Cherry-MP: Correctly Integrating Checkpointed Early Resource Recycling in Chip Multiprocessors

    E-Print Network [OSTI]

    Martínez, José F.

    Cherry-MP: Correctly Integrating Checkpointed Early Resource Recycling in Chip Multiprocessors 14853 USA http://m3.csl.cornell.edu/ ABSTRACT Checkpointed Early Resource Recycling (Cherry by performing aggres- sive resource recycling decoupled from instruction retire- ment, using a checkpoint

  16. Combining Retiming and Recycling to Optimize the Performance of Synchronous Circuits

    E-Print Network [OSTI]

    Carloni, Luca

    Combining Retiming and Recycling to Optimize the Performance of Synchronous Circuits Luca P, CA 94720-1772 Abstract Recycling was recently proposed as a system-level design tech- nique to facilitate the building of complex System-on-Chips (SOC) by assembling pre-designed components. Recycling

  17. Stoichiometry of nutrient recycling by vertebrates in a tropical stream: linking species identity and

    E-Print Network [OSTI]

    Flecker, Alex

    REPORT Stoichiometry of nutrient recycling by vertebrates in a tropical stream: linking species in recycling nutrients, thus providing a mechanism for how animal species identity mediates ecosystem processes) recycled nitrogen (N) and phosphorus (P) in a tropical stream supports stoichiometry theory. Mass

  18. Cherry: Checkpointed Early Resource Recycling in Out-of-order Microprocessors

    E-Print Network [OSTI]

    Martínez, José F.

    Cherry: Checkpointed Early Resource Recycling in Out-of-order Microprocessors£ Jos´e F. Mart of Rochester michael.huang@ece.rochester.edu ABSTRACT This paper presents CHeckpointed Early Resource RecYcling (Cherry), a hybrid mode of execution based on ROB and checkpoint- ing that decouples resource recycling

  19. Blue Laboratory Recycling Bins Thank you for your efforts in greening the NIH!

    E-Print Network [OSTI]

    Baker, Chris I.

    Blue Laboratory Recycling Bins Thank you for your efforts in greening the NIH! Instructions: Please empty the contents of your bin into the larger centralized recycling bins for collection whenever Information: To request a centralized recycling bin or a hamper for large cleanouts, please contact

  20. Resources, Conservation and Recycling 54 (2010) 163170 Contents lists available at ScienceDirect

    E-Print Network [OSTI]

    Lupi, Frank

    2010-01-01T23:59:59.000Z

    Resources, Conservation and Recycling 54 (2010) 163­170 Contents lists available at ScienceDirect Resources, Conservation and Recycling journal homepage: www.elsevier.com/locate/resconrec The effects of behavior and attitudes on drop-off recycling activities Shaufique F. Sidiquea, , Frank Lupib , Satish V

  1. The Covered Device Recycling (Act 108) of 2010 (CDRA) A General Overview

    E-Print Network [OSTI]

    Bushman, Frederic

    The Covered Device Recycling (Act 108) of 2010 (CDRA) A General Overview Electronic products address the manufacture, sales, and end-of-life collection, management and recycling of covered devices to their covered devices. o Must establish and conduct ongoing recycling programs that offer covered device

  2. vol. 171, no. 4 the american naturalist april 2008 Nutrient Recycling Affects Autotroph and

    E-Print Network [OSTI]

    Menge, Duncan

    vol. 171, no. 4 the american naturalist april 2008 Nutrient Recycling Affects Autotroph recycling a potentially im- portant process influencing autotroph stoichiometry. To quantita- tively investigate the relationship between available N and P, auto- troph N : P, and nutrient recycling, we analyze

  3. Weathering Effects on Mechanical Properties of Recycled HDPE Based Plastic Lumber

    E-Print Network [OSTI]

    Weathering Effects on Mechanical Properties of Recycled HDPE Based Plastic Lumber Jennifer K. Lynch recycled plastic lumber (RPL) decking was exposed to the environment for eleven years. The weathering in the construction of the deck were a commingled recycled plastic material referred to as curbside tailings, NJCT

  4. JABSOM EHSO E-WASTE Recycling Program Created: May 13, 2010 Revised: January 6, 2013

    E-Print Network [OSTI]

    Olsen, Stephen L.

    JABSOM EHSO ­ E-WASTE Recycling Program Created: May 13, 2010 ­ Revised: January 6, 2013 Page 1 of 2 UH eWaste Recycling Program at JABSOM Kaka'ako The University of Hawaii has established a long-term, free-of-charge quarterly recycling program of UH electronic waste (eWaste), compliments of APPLE

  5. Control of Delayed Recycling Systems with an Unstable Pole at Forward Path

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Control of Delayed Recycling Systems with an Unstable Pole at Forward Path J. F. Marquez Rubio, B. del Muro Cu´ellar and Olivier Sename Abstract-- Unstable time delay system and recycling system pose a challenge problem in their own. When unstable time delay system have recycle the control problem becomes

  6. Automation of waste recycling using hyperspectral image analysis Artzai Picon1

    E-Print Network [OSTI]

    Whelan, Paul F.

    Automation of waste recycling using hyperspectral image analysis Artzai Picon1 Ovidiu Ghita2 Pedro. In this paper we present a novel methodology to automate the recycling process of non-ferrous metal Waste from that the proposed solution can be used to replace the manual procedure that is currently used in WEEE recycling

  7. ENVIRONMENTALLY BENIGN LINERLESS SELF-ADHESIVE COIL STAMPS: R&D AND RECYCLING STUDIES

    E-Print Network [OSTI]

    Abubakr, Said

    ENVIRONMENTALLY BENIGN LINERLESS SELF-ADHESIVE COIL STAMPS: R&D AND RECYCLING STUDIES Kim K been easy and quick to use, and have offered consistent adhesion. For recyclers, however, these adhesive stamps have caused concern for their paper recycling processes. In addition, there is the issue

  8. Non-parametric Bootstrap Recycling Val erie Ventura, Department of Statistics, Baker Hall 132

    E-Print Network [OSTI]

    Non-parametric Bootstrap Recycling Val#19;erie Ventura, Department of Statistics, Baker Hall 132 adjustments. The amount of computation involved is usually considerable, and recycling provides a less computer intensive alternative. Recycling consists of using repeatedly the same samples drawn from

  9. Solid waste reclamation and recycling: Tires. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect (OSTI)

    NONE

    1996-08-01T23:59:59.000Z

    The bibliography contains citations concerning the development, management, economic analysis, and environmental impacts of reclamation and recycling of scrap tires. The design and evaluation of recycling processes are examined. Recycled products for use in construction materials, embankment fills, fuel supplements, and material substitutions are covered. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  10. Solid waste reclamation and recycling: Tires. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect (OSTI)

    NONE

    1995-09-01T23:59:59.000Z

    The bibliography contains citations concerning the development, management, economic analysis, and environmental impacts of reclamation and recycling of scrap tires. The design and evaluation of recycling processes are examined. Recycled products for use in construction materials, embankment fills, fuel supplements, and material substitutions are covered. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  11. Waste Toolkit A-Z Food waste (recycling on-site)

    E-Print Network [OSTI]

    Melham, Tom

    into compost in 14 days, when mixed with wood chippings (from your grounds/gardens). The waste is heated usingWaste Toolkit A-Z Food waste (recycling on-site) How can I recycle food waste on-site? Recycling food waste on-site is a new concept as the University typically has its waste collected and taken away

  12. What can you recycle at MIT? All Paper in desk side and blue-top bins

    E-Print Network [OSTI]

    Seager, Sara

    What can you recycle at MIT? All Paper in desk side and blue-top bins Bottles, Cans and Containers Paper Computer Monitors / Electronics contact recycling@mit.edu Aluminum cans & foil Glass Bottles All Centers (DMC's) For more information: Working Group Recycling Committee at http

  13. Ancient recycled mantle lithosphere in the Hawaiian plume: OsmiumHafnium isotopic evidence from

    E-Print Network [OSTI]

    Reiners, Peter W.

    Ancient recycled mantle lithosphere in the Hawaiian plume: Osmium­Hafnium isotopic evidence from that recycled (i.e. previously subducted) basaltic oceanic crust (with or without sediments) is part of an ancient (N2 Ga) depleted and recycled mantle lithosphere that is part of the upwelling Hawaiian plume

  14. An Updated Evaluation of ReCycle Abhishek Tiwari and Josep Torrellas

    E-Print Network [OSTI]

    Torrellas, Josep

    An Updated Evaluation of ReCycle Abhishek Tiwari and Josep Torrellas Department of Computer Science stage. ReCycle was proposed in ISCA 2007 as a framework for comprehensively applying cycle time stealing with a period close to the average latency of the stages. This paper duplicates the evaluation of ReCycle

  15. RPM-2: A recyclable porous material with unusual adsorption capability: self assembly via structural transformations

    E-Print Network [OSTI]

    Li, Jing

    RPM-2: A recyclable porous material with unusual adsorption capability: self assembly via, fully recyclable porous material (RPM-2) with a very high sorption capability. Self recent explora- tory study on such a structure, the 3D porous RPM-1 (RPM: Rutgers Recyclable Porous

  16. Material Recycling at Product End-of-Life Jeffrey B. Dahmus and Timothy G. Gutowski

    E-Print Network [OSTI]

    Gutowski, Timothy

    Material Recycling at Product End-of-Life Jeffrey B. Dahmus and Timothy G. Gutowski Department, Massachusetts, USA Abstract--This work focuses on developing a compact representation of the material recycling different ores, the work here provides insight into the relative attractiveness of recycling different

  17. Plasma wall interaction induced oscillations and their effects on the global recycling

    E-Print Network [OSTI]

    Princeton Plasma Physics Laboratory

    1 Plasma wall interaction induced oscillations and their effects on the global recycling from Devices 2007.05.20-22 NIFS #12;2 contents 1. MOTIVATION (ULFE & termination) 2. dynamics of recycling 3 in signals on heat loads, particle recycling, and impurity influx and contents. Frequency ~ 1-2¥10-3 Hz

  18. The Low-Recycling Lithium Boundary and Implications for Plasma Transport

    E-Print Network [OSTI]

    Hammett, Greg

    The Low-Recycling Lithium Boundary and Implications for Plasma Transport Erik Michael Granstedt transport mechanism in high-temperature low-recycling fusion experiments, and in the absence of stabilizing hydrogen and impurity emission in LTX in order to determine the lower bound on recycling that can

  19. PPPL3157 Preprint Date: March 1996, UC421, 423, 426 Investigations of the Tritium Recycling

    E-Print Network [OSTI]

    1 PPPL­3157 ­ Preprint Date: March 1996, UC­421, 423, 426 Investigations of the Tritium Recycling material to be ejected into the plasma. This recycling of plasma fuel, which occurs primarily on the inner influx from the edge. Despite its importance, a full understanding of the factors influencing recycling

  20. PPPL-3157 -Preprint Date: March 1996, UC-421, 423, 426 Investigations of the Tritium Recycling

    E-Print Network [OSTI]

    1 PPPL-3157 - Preprint Date: March 1996, UC-421, 423, 426 Investigations of the Tritium Recycling material to be ejected into the plasma. This recycling of plasma fuel, which occurs primarily on the inner influx from the edge. Despite its importance, a full understanding of the factors influencing recycling