Powered by Deep Web Technologies
Note: This page contains sample records for the topic "facilities engineering command" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Southwest Division, Naval Facilities Engineering Command, Demand Side Management Program Implementation  

E-Print Network (OSTI)

This paper covers some of the major aspects of the development and execution of the Southwest Division, Naval Facilities Engineering Command (SOUTHWESTNAVFACENGCOM) Energy and Water Program. The program covers Naval and Marine facilities in 14 western states. It started from zero in 1992 and has grown to a program which has identified and is in the process of implementing energy and water savings projects totaling over $115,000,000.

Gates, G. G.

1997-04-01T23:59:59.000Z

2

institution Naval Facilities Engineering Command Engineering...  

NLE Websites -- All DOE Office Websites (Extended Search)

will investigate whether a BIPV roof system is structurally sound should not leak for years under normal maintenance and repair and can provide large scale on site renewable...

3

Interoperability requirements for a South African joint command and control test facility  

Science Conference Proceedings (OSTI)

The South African National Defence Force is in the process of establishing a Joint Command and Control Test Facility at a National Research Institute. The goal with this facility is to provide an integrated environment for Joint Command and Control doctrine ... Keywords: architectures, interoperability requirements, joint command & control, service-orientated architectures, test facility

Willem H. le Roux

2008-06-01T23:59:59.000Z

4

Facility Engineering | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Facility Engineering Facility Engineering Facility Engineering Facility Engineering (FE) programmatic element efforts within EM encompasses real property asset management across the EM complex as well as the transfers of real property to Community Reuse Organizations and other entities for asset revitalization and/or economic development. In addition, FE coordinates, analyzes, and concurs on EM site submission for infrastructure reporting, such as, in the Integrated Facilities and Infrastructure crosscut and the Ten-Year Site Plans. Working in close conjunction with other DOE programs and sites EM's FE efforts assist in the development and implementation of policies, strategies, and programs to address asset revitalization at DOE sites to promote DOE's national goals for clean energy and energy security.

5

Development of rapidly deployable structures for military applications : a system based approach to command post facilities  

E-Print Network (OSTI)

Today's battlespace is the most dynamic in recorded history. Accompanying other military improvements, Command and Control (C2) technology has also been modernized. In spite of advances in technology, it currently takes ...

Hopping, Jakob A

2006-01-01T23:59:59.000Z

6

Scenes from Argonne's Materials Engineering Research Facility...  

NLE Websites -- All DOE Office Websites (Extended Search)

Share Description B-roll for the Materials Engineering Research Facility Topic Energy Energy usage Energy storage Batteries Lithium-air batteries Lithium-ion batteries Programs...

7

Engineer Memoirs Engineer Construction Command (ENCOM) that was set up under him,  

E-Print Network (OSTI)

on the setting up of the Western Ocean Division with separate engineer districts in Manila, Okinawa, and Guam up in Japan, the invasion there. At that time we were looking forward to completion of Okinawa, you might say, all in the rear, and that was okay. Did the B-29 bases on Okinawa of the other

US Army Corps of Engineers

8

Decontamination & Decommissioning/ Facilities Engineering (D&D/FE) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Decontamination & Decommissioning/ Facilities Engineering (D&D/FE) Decontamination & Decommissioning/ Facilities Engineering (D&D/FE) Decontamination & Decommissioning/ Facilities Engineering (D&D/FE) Decontamination & Decommissioning/ Facilities Engineering (D&D/FE) Decontamination & Decommissioning/ Facilities Engineering (D&D/FE) Decontamination & Decommissioning/ Facilities Engineering (D&D/FE) Decontamination & Decommissioning/ Facilities Engineering (D&D/FE) As the DOE complex sites prepare for closure, a large number of buildings and facilities must be deactivated and decommissioned. These facilities contain many complex systems (e.g. ventilation), miles of contaminated pipelines, glove boxes, and unique processing equipment that require labor intensive deactivation and decommissioning methods. Although

9

NAVAL FACILITIES ENGINEERING COMMAND (Preparing Activity) U.S. ARMY CORPS OF ENGINEERS  

E-Print Network (OSTI)

Any copyrighted material included in this UFC is identified at the point of use. Use of the copyrighted material apart from this UFC must have the permission of the copyright holder.

unknown authors

2010-01-01T23:59:59.000Z

10

Calcine Conversion Facility alternative concepts engineering studies  

SciTech Connect

The purpose of the engineering study reported is to develop conceptual designs for two alternative facilities for the conversion of high level waste calcine to high level glass. The objectives and design bases of the two concepts (CCF/RSSF and CCF/FRP) are described. No recommendation of one concept in preference to the other is given. (LK)

1975-02-01T23:59:59.000Z

11

FACILITIES ENGINEER WEST CHICAGO Execute capital projects for manufacturing facilities and utilities systems: scope development, cost  

E-Print Network (OSTI)

improvements, including all stages of project engineering: scope development, cost estimation, system designFACILITIES ENGINEER ­ WEST CHICAGO OVERVIEW: Execute capital projects for manufacturing facilities and utilities systems: scope development, cost estimation, system design, equipment sizing

Heller, Barbara

12

Argonne Chemical Sciences & Engineering - Facilities - Electrochemical...  

NLE Websites -- All DOE Office Websites (Extended Search)

facility." After fabrication, the prototype cells are then evaluated for performance, battery life and safety in Argonne's state-of-the-art battery testing facilities....

13

CRAD, Engineering - Idaho MF-628 Drum Treatment Facility | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

MF-628 Drum Treatment Facility MF-628 Drum Treatment Facility CRAD, Engineering - Idaho MF-628 Drum Treatment Facility May 2007 A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a May 2007 readiness assessment of the Engineering program at the MF-628 Drum Treatment Facility at the Idaho National Laboratory Advanced Mixed Waste Treatment Project. CRADs provide a recommended approach and the types of information to gather to assess elements of a DOE contractor's programs. CRAD, Engineering - Idaho MF-628 Drum Treatment Facility More Documents & Publications CRAD, Occupational Safety & Health - Idaho MF-628 Drum Treatment Facility

14

Facility Safety Assessment - Nuclear Engineering Division (Argonne...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

15

Computer Facilities - Nuclear Engineering Division (Argonne)  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

16

Steam Generator Tube Integrity Facilities - Nuclear Engineering...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

17

Idaho Nuclear Technology and Engineering Center Tank Farm Facility |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Idaho Nuclear Technology and Engineering Center Tank Farm Facility Idaho Nuclear Technology and Engineering Center Tank Farm Facility Idaho Nuclear Technology and Engineering Center Tank Farm Facility The Secretary of Energy signed Section 3116 of the Ronald W. Reagan National Defense Authorization Act for Fiscal Year 2005 basis of determination for the disposal of grouted residual waste in the tank systems at the Idaho Nuclear Technology and Engineering Center (INTEC) Tank Farm Facility (TFF) on November 19, 2006. Section 3116 of the Ronald W. Reagan National Defense Authorization Act for Fiscal Year 2005 authorizes the Secretary of Energy, in consultation with the Nuclear Regulatory Commission, to reclassify certain waste from reprocessing spent nuclear fuel from high-level waste to low-level waste if it meets the criteria set

18

Argonne Chemical Sciences & Engineering - Facilities - Electrochemical  

NLE Websites -- All DOE Office Websites (Extended Search)

Battery Post-Test Facility Battery Post-Test Facility Ira Bloom Argonne scientist Ira Bloom prepares to open a lithium-ion cell in the Post-Test Facility. Prior to opening the cell, a thermocouple is attached to provide information on its temperature. Nancy Dietz Rago Argonne scientist Nancy Dietz Rago analyzes results in the Post-Test Facility. After a battery sample is characterized in the large glove box, it is transferred without exposure to air to the scanning-electron microscope for detailed, microstructural characterization. Argonne's new Battery Post-Test Facility (PTF) allows the laboratory's renowned researchers to dissect, harvest and analyze battery materials from used and previously tested battery cells in order to identify for developers and manufacturers the exact mechanisms that limit the life of

19

Argonne Chemical Sciences & Engineering - Facilities - Remote Handling  

NLE Websites -- All DOE Office Websites (Extended Search)

Facilities Facilities * Actinide * Analytical Chemistry * Premium Coal Samples * Electrochemical Analysis * Glovebox * Glassblowing Fundamental Interactions Catalysis & Energy Conversion Electrochemical Energy Storage Nuclear & Environmental Processes National Security Institute for Atom-Efficient Chemical Transformations Center for Electrical Energy Storage: Tailored Interfaces Contact Us CSE Intranet Remote Handling Mockup Facility Remote Handling Mockup Facility Radiochemist Art Guelis observes technician Kevin Quigley preparing to cut open a surrogate uranium target. Argonne designed and built a Remote Handling Mockup Facility to let engineers simulate the handling of radioactive materials in a non-radioactive environment. The ability to carry out the details of an

20

Argonne Chemical Sciences & Engineering - Facilities - Actinide...  

NLE Websites -- All DOE Office Websites (Extended Search)

is a vital part of the Chemical Science and Engineering Division's R&D to help close the nuclear fuel cycle. More Multiple Sample Changer September 2009 Contact Lynda Soderholm ls...

Note: This page contains sample records for the topic "facilities engineering command" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Contruction of User Facilities for the Proton Beam Utilization of PEFP (Proton Engineering Frontier Project)  

E-Print Network (OSTI)

Contruction of User Facilities for the Proton Beam Utilization of PEFP (Proton Engineering Frontier Project)

Kim, K R; Lee, H R; Nam, K Y; Park, B S

2003-01-01T23:59:59.000Z

22

R and D needs assessment for the Engineering Test Facility  

SciTech Connect

The Engineering Test Facility (ETF), planned to be the next major US magnetic fusion device, has its mission (1) to provide the capability for moving into the engineering phase of fusion development and (2) to provide a test-bed for reactor components in a fusion environment. The design, construction, and operation of the ETF requires an increasing emphasis on certain key research and development (R and D) programs in magnetic fusion in order to provide the necessary facility design base. This report identifies these needs and discusses the apparent inadequacies of the presently planned US program to meet them, commensurate with the ETF schedule.

Not Available

1980-10-01T23:59:59.000Z

23

Engineering study for the phase 1 privatization facilities electrical power  

Science Conference Proceedings (OSTI)

This engineering study evaluates the availability of electric power from the existing 13.8 kV substation, BPA 115 kV system,and RL 230 kV transmission line; for supporting the Privatization Phase I Facilities. 230 kV system is a preferable alternative.

Singh, G., Westinghouse Hanford

1996-07-18T23:59:59.000Z

24

Facilities Engineering Materials, Equipment, and Relocatable Building Management This regulation--  

E-Print Network (OSTI)

o Consolidates AR 420-83; AR 420-17, chapters 5 and 6 and appendixes E through M; and implements applicable portions of DOD directives, DOD instructions, and DOD regulations. o Adds a requirement for major Army commands (MACOMS) to biennially inspect subordinate supply and equipment operations and relocatable building programs (para 1-9b). o Designates the installation Director of Engineering and Housing as the “assessable unit manager ” (per AR 11-2) for completion of the Internal Management Control Review Checklist applicable to this regulation (para 1-11b). o Directs “open ” warehouses during inventories (para 2-7a). o Requires a yearly inventory of four types of supplies, no inventory of other types, and no periodic inventories (para 2-7b). o Establishes management thresholds for inventory discrepancies (para 2-8b). o Addresses “excess ” management (para 2-15). o Describes “self help ” supply centers (para 2-21). o Delegates decision to lease equipment to DEH (para 3-5b). o Requires that MACOMs appoint an individual to be responsible for Directorate of Engineering and Housing equipment management (para 3-8b). o Allows a cash flow approach to equipment management (rental and depreciation rates) (para 3-8d).Headquarters Department of the Army

unknown authors

1992-01-01T23:59:59.000Z

25

Idaho National Engineering Laboratory Consolidated Transportation Facility. Environmental Assessment  

SciTech Connect

The Department of Energy (DOE) has prepared an environmental assessment (EA), DOE/EA-0822, addressing environmental impacts that could result from siting, construction, and operation of a consolidated transportation facility at the Idaho National Engineering Laboratory (INEL) near Idaho Falls, Idaho. The DOE proposes to construct and operate a new transportation facility at the Central Facilities Area (CFA) at the INEL. The proposed facility would replace outdated facilities and consolidate in one location operations that are conducted at six different locations at the CFA. The proposed facility would be used for vehicle and equipment maintenance and repair, administrative support, bus parking, and bus driver accommodation. Based on the analyses in the EA, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act (NEPA) of 1969, as amended. Therefore, the preparation of an environmental impact statement (EIS) is not required and the Department is issuing this finding of no significant impact.

1993-04-01T23:59:59.000Z

26

Argonne Transportation Technology R&D Center - Engine Research Facility and  

NLE Websites -- All DOE Office Websites (Extended Search)

Engine Research Facility Engine Research Facility GM-Fiat 1.9 liter diesel engine test cell GM-Fiat 1.9 Liter Diesel Engine Test Cell Argonne's Engine Research Facility allows scientists and engineers to study in-cylinder combustion and emissions under realistic operating conditions. The size of engines in the facility range from automobile- to locomotive-sized, as well as stationary electric power production engines. Improving Engine Performance, Emissions Argonne researchers would like to find ways to improve engine performance and reliability, increase fuel efficiency, and reduce harmful exhaust emissions. Argonne's goal is to discover and evaluate new technologies to determine their technical feasibility and commercial viability. In addition, Argonne is conducting research on sustainable renewable fuels

27

getnim Command at NERSC  

NLE Websites -- All DOE Office Websites (Extended Search)

getnim command getnim command getnim - NIM's Command Line Interface This page describes the inquiry-only command called getnim that users can use interactively and in scripts to get their account balances. GETNIM(l) NERSC GETNIM(l) NAME getnim - query the NERSC banking database for remaining allocation, resources and repository information SYNOPSIS getnim [ options ] -Rrname or getnim [ options ] -Rrname { -uuid | -Uuname } or getnim [ options ][ -D ] { -uuid | -Uuname } or getnim [ options ] -Rrname { -l | -L } or getnim [ options ] -Fbatchname PARAMETERS -R to specify the repository name -U to specify the user name -u or specify the user uid -l | -L give the charge info for each user in the reposi-

28

Idaho National Engineering Laboratory Federal Facility Agreement and Consent Order, December 9, 1991  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Engineering Laboratory ("INEL") Federal Facility Agreement and Consent Order, December 9, 1991 Engineering Laboratory ("INEL") Federal Facility Agreement and Consent Order, December 9, 1991 EM Home | Regulatory Compliance | Environmental Compliance Agreements Idaho National Engineering Laboratory ("INEL") Federal Facility Agreement and Consent Order, December 9, 1991 THE UNITED STATES ENVIRONMENTAL PROTECTION AGENCY, REGION 10, THE STATE OF IDAHO, DEPARTMENT OF HEALTH AND WELFARE, AND THE UNITED STATES DEPARTMENT OF ENERGY IN THE MATTER OF: ) FEDERAL FACILITY AGREEMENT ) AND CONSENT ORDER THE U.S. DEPARTMENT OF ENERGY ) IDAHO NATIONAL ENGINEERING ) LABORATORY ("INEL"), ) ) Administrative Docket Number: ) 1088-06-120 Idaho Falls, Idaho ) Table of Contents I. Jurisdiction II. Definitions III. Parties IV. Statement Of Purpose

29

Edison Job Launch Command: aprun  

NLE Websites -- All DOE Office Websites (Extended Search)

Launch Command: aprun Overview You must use the aprun command to launch jobs on the Edison compute nodes. Use it for serial, MPI, OpenMP, UPC, and hybrid MPIOpenMP or hybrid...

30

Architectural and engineering design work for the Nevada Cancer Institute facility  

SciTech Connect

The purpose of this project was to complete the architectural and engineering design, program planning, and other preliminary work necessary to construct the new Nevada Cancer Institute facility. These goals were accomplished with the construction of a new building of approximately 119,000 gross square feet. The facility houses the diagnostic and radio therapeutic treatment laboratories, radiation oncology treatment facility, physician offices, and clinical research areas.

Heather Murren, President

2004-12-31T23:59:59.000Z

31

LLNL Fire Protection Engineering Standard 5.8 Facility Survey Program  

SciTech Connect

This standard describes the LLNL Fire Protection Facility Survey Program. The purpose of this standard is to describe the type of facility surveys required to fulfill the requirements of DOE Order 420.1B, Facility Safety. Nothing in this standard is intended to prevent the development of a FHA using alternative approaches. Alternate approaches, including formatting, will be by exception only, and approved by the Fire Marshal/Fire Protection Engineering Subject Matter Expert in advance of their use.

Sharry, J A

2012-01-04T23:59:59.000Z

32

Commandant United States Coast Guard  

E-Print Network (OSTI)

1. PURPOSE. This Manual prescribes policies and procedures for administering the Coast Guard Records, Forms and Reports Programs as they relate to the lifecycle management of both paper and electronic documents/data. This expanded Manual combines key parameters of Information Management Programs into one document for the convenience of the user. 2. ACTION. Area and district commanders, commanders maintenance and logistics commands, commanding officers of headquarters units, assistant commandants for directorates, Chief Counsel and special staff offices at Headquarters shall ensure compliance with the provisions of this Manual. Internet release authorized.

unknown authors

2004-01-01T23:59:59.000Z

33

Tcl: An Embeddable Command Language  

E-Print Network (OSTI)

Tcl is an interpreter for a tool command language. It consists of a library package that is embedded in tools (such as editors, debuggers, etc.) as the basic command interpreter. Tcl provides (a) a parser for a simple textual command language, (b) a collection of built-in utility commands, and (c) a C interface that tools use to augment the built-in commands with tool-specific commands. Tcl is particularly attractive when integrated with the widget library of a window system: it increases the programmability of the widgets by providing mechanisms for variables, procedures, expressions, etc; it allows users to program both the appearance and the actions of widgets; and it offers a simple but powerful communication mechanism between interactive programs. This paper will appear in the 1990 Winter USENIX Conference Proceedings ############################# The work described here was supported in part by the National Science Foundation under Grant ECS-8351961. Tcl: An Embeddable Command...

John K. Ousterhout

1990-01-01T23:59:59.000Z

34

ARAC: A unique command and control resource  

SciTech Connect

The Atmospheric Release Advisory Capability (ARAC) at Lawrence Livermore National Laboratory (LLNL) is a centralized federal facility designed to provide real-time, world-wide support to military and civilian command and control centers by predicting the impacts of inadvertent or intentional releases of nuclear, biological, or chemical materials into the atmosphere. ARAC is a complete response system consisting of highly trained and experienced personnel, continually updated computer models, redundant data collection systems, and centralized and remote computer systems. With over 20 years of experience responding to domestic and international incidents, strong linkages with the Department of Defense, and the ability to conduct classified operations, ARAC is a unique command and control resource.

Bradley, M.M.; Baskett, R.L.; Ellis, J.S. [and others

1996-04-01T23:59:59.000Z

35

Argonne Chemical Sciences & Engineering - Facilities - Analytical Chemistry  

NLE Websites -- All DOE Office Websites (Extended Search)

Analytical Chemistry Laboratory Analytical Chemistry Laboratory sullivan ACL manager Vivian Sullivan places a plate for alpha spectrometry into the Alpha Analyst instrument. naik Seema Naik prepares an inorganic sample for analysis on the ICP-Optical Emission Spectrometer. lopykinski Susan Lopykinski prepares a sample for mercury analysis on the cold vapor Atomic Absorption instrument. ICP-Mass Spectrometer Analytical Chemist Yifen Tsai prepares a sample for analysis on the high-resolution ICP-Mass Spectrometer. The Analytical Chemistry Laboratory (ACL) provides a broad range of analytical chemistry support services to the scientific and engineering programs at Argonne National Laboratory and specialized analysis for government, academic, and industrial organizations, including other national laboratories and QA/QC programs and audits.

36

A human factors engineering evaluation of the Multi-Function Waste Tank Facility. Final report  

SciTech Connect

This report documents the methods and results of a human factors engineering (HFE) review conducted on the Multi-Function Waste Tank Facility (MWTF), Westinghouse Hanford Company (WHC) Project 236A, to be constructed at the U.S. Department of Energy (DOE) facility at Hanford, Washington. This HFE analysis of the MWTF was initiated by WHC to assess how well the current facility and equipment design satisfies the needs of its operations and maintenance staff and other potential occupants, and to identify areas of the design that could benefit from improving the human interfaces at the facility. Safe and effective operations, including maintenance, is a primary goal for the MWTF. Realization of this goal requires that the MWTF facility, equipment, and operations be designed in a manner that is consistent with the abilities and limitations of its operating personnel. As a consequence, HFE principles should be applied to the MWTF design, construction, its operating procedures, and its training. The HFE review was focused on the 200-West Area facility as the design is further along than that of the 200-East Area. The review captured, to the greatest extent feasible at this stage of design, all aspects of the facility activities and included the major topics generally associated with HFE (e.g., communication, working environment). Lessons learned from the review of the 200 West facility will be extrapolated to the 200-East Area, as well as generalized to the Hanford Site.

Donohoo, D.T. [Pacific Northwest Lab., Richland, WA (United States); Sarver, T.L. [ARES Corp., San Francisco, CA (United States)

1995-06-05T23:59:59.000Z

37

Engineering evaluation/cost analysis for the 233-S Plutonium Concentration Facility  

SciTech Connect

The deactivated 233-S Plutonium Concentration Facility (233-S Facility) is located in the 200 Area. The facility has undergone severe degradation due to exposure to extreme weather conditions. A rapid freeze and thaw cycle occurred at the Hanford Site during February 1996, which caused cracking to occur on portions of the building`s roof. This has resulted in significantly infiltration of water into the facility, which provides a pathway for potential release of radioactive material into the environment (air and/or ground). The weather caused several existing cracks in the concrete portions of the structure to lengthen, increasing the potential for failed confinement of the radioactive material in the building. Differential settlement has also occurred, causing portions of the facility to separate from the main building structure thus creating a potential for release of radioactive material t the environment. An expedited removal action is proposed to ensure that a release from the 233-S Facility does not occur. The US Department of Energy (DOE), Richland Operations Office (RL), in cooperation with the EPA, has prepared this Engineering Evaluation/Cost Analysis (EE/CA) pursuant to CERCLA. Based on the evaluation, RL has determined that hazardous substances in the 233-S Facility may present a potential threat to human health and/or the environment, and that an expedited removal action is warranted. The purpose of the EE/CA is to provide the framework for the evaluation and selection of a technology from a viable set of alternatives for a removal action.

1997-01-01T23:59:59.000Z

38

Systems engineering applied to integrated safety management for high consequence facilities  

SciTech Connect

Integrated Safety Management is a concept that is being actively promoted by the U.S. Department of Energy as a means of assuring safe operation of its facilities. The concept involves the integration of safety precepts into work planning rather than adjusting for safe operations after defining the work activity. The system engineering techniques used to design an integrated safety management system for a high consequence research facility are described. An example is given to show how the concepts evolved with the system design.

Barter, R; Morais, B

1998-11-10T23:59:59.000Z

39

Lawrence Berkeley laboratory neutral-beam engineering test facility power-supply system  

SciTech Connect

The Lawrence Berkeley Laboratory is upgrading the neutral beam source test facility (NBSTF) into a neutral beam engineering test facility (NBETF) with increased capabilities for the development of neutral beam systems. The NBETF will have an accel power supply capable of 170 kV, 70 A, 30 sec pulse length, 10% duty cycle; and the auxiliary power supplies required for the sources. This paper describes the major components, their ratings and capabilities, and the flexibility designed to accomodate the needs of source development.

Lutz, I.C.; Arthur, C.A.; deVries, G.J.; Owren, H.M.

1981-10-01T23:59:59.000Z

40

Summary engineering description of underwater fuel storage facility for foreign research reactor spent nuclear fuel  

SciTech Connect

This document is a summary description for an Underwater Fuel Storage Facility (UFSF) for foreign research reactor (FRR) spent nuclear fuel (SNF). A FRR SNF environmental Impact Statement (EIS) is being prepared and will include both wet and dry storage facilities as storage alternatives. For the UFSF presented in this document, a specific site is not chosen. This facility can be sited at any one of the five locations under consideration in the EIS. These locations are the Idaho National Engineering Laboratory, Savannah River Site, Hanford, Oak Ridge National Laboratory, and Nevada Test Site. Generic facility environmental impacts and emissions are provided in this report. A baseline fuel element is defined in Section 2.2, and the results of a fission product analysis are presented. Requirements for a storage facility have been researched and are summarized in Section 3. Section 4 describes three facility options: (1) the Centralized-UFSF, which would store the entire fuel element quantity in a single facility at a single location, (2) the Regionalized Large-UFSF, which would store 75% of the fuel element quantity in some region of the country, and (3) the Regionalized Small-UFSF, which would store 25% of the fuel element quantity, with the possibility of a number of these facilities in various regions throughout the country. The operational philosophy is presented in Section 5, and Section 6 contains a description of the equipment. Section 7 defines the utilities required for the facility. Cost estimates are discussed in Section 8, and detailed cost estimates are included. Impacts to worker safety, public safety, and the environment are discussed in Section 9. Accidental releases are presented in Section 10. Standard Environmental Impact Forms are included in Section 11.

Dahlke, H.J.; Johnson, D.A.; Rawlins, J.K.; Searle, D.K.; Wachs, G.W.

1994-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "facilities engineering command" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Environment Feature Stories Public Reading Room: Environmental Documents, Reports LANL Home Phonebook Calendar Video About Operational Excellence Facilities Facilities...

42

Batteries - Materials Engineering Facility: Scale-Up R&D Bridges Gap  

NLE Websites -- All DOE Office Websites (Extended Search)

Argonne's Advanced Battery Materials Synthesis and Manufacturing R&D program Argonne's Advanced Battery Materials Synthesis and Manufacturing R&D program Initial discovery amounts of battery materials are small compared to the kilo-scale amounts needed for validation of new battery technologies. Argonne researcher Sabine Gallagher Argonne researcher Sabine Gallagher loads a sample mount of battery cathode materials for X-ray diffraction, an analysis tool for obtaining information on the crystallographic structure and composition of materials. Materials Engineering Research Facility (MERF) Argonne's new Materials Engineering Research Facility (MERF) supports the laboratory's Advanced Battery Materials Synthesis and Manufacturing R&D Program. The MERF is enabling the development of manufacturing processes for producing advanced battery materials in sufficient quantity for

43

Demonstration of Natural Gas Engine Driven Air Compressor Technology at Department of Defense Industrial Facilities  

E-Print Network (OSTI)

Recent downsizing and consolidation of Department of Defense (DOD) facilities provides an opportunity to upgrade remaining facilities with more efficient and less polluting equipment. Use of air compressors by the DOD is widespread and the variety of tools and machinery that operate on compressed air is increasing. The energy cost of operating a natural gas engine-driven air compressor (NGEDAC) is usually lower than the cost of operating an electric-driven air compressor. Initial capital costs are offset by differences in prevailing utility rates, efficiencies of partial load operation, reductions in peak demand, heat recovery, and avoiding the cost of back-up generators. Natural gas, a clean-burning fuel, is abundant and readily available. In an effort to reduce its over-all environmental impact and energy consumption, the U.S. Army plans to apply NGEDAC technology in support of fixed facilities compressed air systems. Site assessment and demonstration results are presented in this paper.

Lin, M.; Aylor, S. W.; Van Ormer, H.

2002-04-01T23:59:59.000Z

44

Pollution prevention opportunity assessments of US Army Corps of Engineers Civil Works Facilities  

DOE Green Energy (OSTI)

This project summary describes three Pollution Prevention Opportunity Assessments conducted at US Army Corps of Engineers Civil Works facilities under the Waste Reduction Evaluations at Federal Sites (WREAFS) Program. The purposes of the WREAFS Program are to identify new technologies and techniques for reducing wastes from industrial processes at Federal sites, and to enhance the implementation of pollution prevention through technology transfer. New techniques and technologies for reducing waste generation are identified through pollution prevention opportunity assessments (PPOA) and may be further evaluated through joint research, development, and demonstration projects. The assessments were conducted using the procedures outlined in EPA`s Facility Pollution Prevention Guide. The assessments had two major phases. The first phase quantified waste generation and management practices. The second phase identified and evaluated the feasibility of opportunities and techniques to eliminate, reduce, or recycle wastes. The facilities studied in the PPOAs were: a navigation lock and dam; a warehouse and a maintenance and repair facility; a hydroelectric power plant; and a flood control dam and reservoir with associated public recreation areas. Other Federal agencies, such as the Bureau of Reclamation and the Tennessee Valley Authority have similar functions and facilities, as do states and the private sector. Thus, the results of the PPOAs described in the three full reports have applicability to a broad audience.

NONE

1995-08-01T23:59:59.000Z

45

Environmental assessment: Closure of the Waste Calcining Facility (CPP-633), Idaho National Engineering Laboratory  

SciTech Connect

The U.S. Department of Energy (DOE) proposes to close the Waste Calcining Facility (WCF). The WCF is a surplus DOE facility located at the Idaho Chemical Processing Plant (ICPP) on the Idaho National Engineering Laboratory (INEL). Six facility components in the WCF have been identified as Resource Conservation and Recovery Ace (RCRA)-units in the INEL RCRA Part A application. The WCF is an interim status facility. Consequently, the proposed WCF closure must comply with Idaho Rules and Standards for Hazardous Waste contained in the Idaho Administrative Procedures Act (IDAPA) Section 16.01.05. These state regulations, in addition to prescribing other requirements, incorporate by reference the federal regulations, found at 40 CFR Part 265, that prescribe the requirements for facilities granted interim status pursuant to the RCRA. The purpose of the proposed action is to reduce the risk of radioactive exposure and release of hazardous constituents and eliminate the need for extensive long-term surveillance and maintenance. DOE has determined that the closure is needed to reduce potential risks to human health and the environment, and to comply with the Idaho Hazardous Waste Management Act (HWMA) requirements.

1996-07-01T23:59:59.000Z

46

Preliminary siting activities for new waste handling facilities at the Idaho National Engineering Laboratory  

SciTech Connect

The Idaho Waste Processing Facility, the Mixed and Low-Level Waste Treatment Facility, and the Mixed and Low-Level Waste Disposal Facility are new waste treatment, storage, and disposal facilities that have been proposed at the Idaho National Engineering Laboratory (INEL). A prime consideration in planning for such facilities is the selection of a site. Since spring of 1992, waste management personnel at the INEL have been involved in activities directed to this end. These activities have resulted in the (a) identification of generic siting criteria, considered applicable to either treatment or disposal facilities for the purpose of preliminary site evaluations and comparisons, (b) selection of six candidate locations for siting,and (c) site-specific characterization of candidate sites relative to selected siting criteria. This report describes the information gathered in the above three categories for the six candidate sites. However, a single, preferred site has not yet been identified. Such a determination requires an overall, composite ranking of the candidate sites, which accounts for the fact that the sites under consideration have different advantages and disadvantages, that no single site is superior to all the others in all the siting criteria, and that the criteria should be assigned different weighing factors depending on whether a site is to host a treatment or a disposal facility. Stakeholder input should now be solicited to help guide the final selection. This input will include (a) siting issues not already identified in the siting, work to date, and (b) relative importances of the individual siting criteria. Final site selection will not be completed until stakeholder input (from the State of Idaho, regulatory agencies, the public, etc.) in the above areas has been obtained and a strategy has been developed to make a composite ranking of all candidate sites that accounts for all the siting criteria.

Taylor, D.D.; Hoskinson, R.L.; Kingsford, C.O.; Ball, L.W.

1994-09-01T23:59:59.000Z

47

Ten commandments revisited: a ten-year perspective on the industrial application of formal methods  

Science Conference Proceedings (OSTI)

Ten years ago, our 1995 paper Ten Commandments of Formal Methods [5] suggested some guidelines to help ensure the success of a formal methods project. It proposed ten important requirements (or "commandments") for formal developers to consider ... Keywords: correctness, formal methods, industrial application, software engineering

Jonathan P. Bowen; Michael G. Hinchey

2005-09-01T23:59:59.000Z

48

Structural Integrity Program for the Calcined Solids Storage Facilities at the Idaho Nuclear Technology and Engineering Center  

SciTech Connect

This report documents the activities of the structural integrity program at the Idaho Nuclear Technology and Engineering Center relevant to the high-level waste Calcined Solids Storage Facilities and associated equipment, as required by DOE M 435.1-1, ''Radioactive Waste Management Manual.'' Based on the evaluation documented in this report, the Calcined Solids Storage Facilities are not leaking and are structurally sound for continued service. Recommendations are provided for continued monitoring of the Calcined Solids Storage Facilities.

Bryant, J.W.; Nenni, J.A.

2003-05-22T23:59:59.000Z

49

SECONDARY WASTE/ETF (EFFLUENT TREATMENT FACILITY) PRELIMINARY PRE-CONCEPTUAL ENGINEERING STUDY  

Science Conference Proceedings (OSTI)

This pre-conceptual engineering study is intended to assist in supporting the critical decision (CD) 0 milestone by providing a basis for the justification of mission need (JMN) for the handling and disposal of liquid effluents. The ETF baseline strategy, to accommodate (WTP) requirements, calls for a solidification treatment unit (STU) to be added to the ETF to provide the needed additional processing capability. This STU is to process the ETF evaporator concentrate into a cement-based waste form. The cementitious waste will be cast into blocks for curing, storage, and disposal. Tis pre-conceptual engineering study explores this baseline strategy, in addition to other potential alternatives, for meeting the ETF future mission needs. Within each reviewed case study, a technical and facility description is outlined, along with a preliminary cost analysis and the associated risks and benefits.

MAY TH; GEHNER PD; STEGEN GARY; HYMAS JAY; PAJUNEN AL; SEXTON RICH; RAMSEY AMY

2009-12-28T23:59:59.000Z

50

Preoperational Subsurface Conditions at the Idaho Nuclear Technology and Engineering Center Service Wastewater Discharge Facility  

SciTech Connect

The Idaho Nuclear Technology and Engineering Center (INTEC) Service Wastewater Discharge Facility replaces the existing percolation ponds as a disposal facility for the INTEC Service Waste Stream. A preferred alternative for helping decrease water content in the subsurface near INTEC, closure of the existing ponds is required by the INTEC Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Record of Decision (ROD) for Waste Area Group 3 Operable Unit 3-13 (DOE-ID 1999a). By August 2002, the replacement facility was constructed approximately 2 miles southwest of INTEC, near the Big Lost River channel. Because groundwater beneath the Idaho National Engineering and Environmental Laboratory (INEEL) is protected under Federal and State of Idaho regulations from degradation due to INEEL activities, preoperational data required by U.S. Department of Energy (DOE) Order 5400.1 were collected. These data include preexisting physical, chemical, and biological conditions that could be affected by the discharge; background levels of radioactive and chemical components; pertinent environmental and ecological parameters; and potential pathways for human exposure or environmental impact. This document presents specific data collected in support of DOE Order 5400.1, including: four quarters of groundwater sampling and analysis of chemical and radiological parameters; general facility description; site specific geology, stratigraphy, soils, and hydrology; perched water discussions; and general regulatory requirements. However, in order to avoid duplication of previous information, the reader is directed to other referenced publications for more detailed information. Documents that are not readily available are compiled in this publication as appendices. These documents include well and borehole completion reports, a perched water evaluation letter report, the draft INEEL Wellhead Protection Program Plan, and the Environmental Checklist.

Ansley, Shannon L.

2002-02-20T23:59:59.000Z

51

Dataplot Commands for Alaska Pipeline Case Study  

Science Conference Proceedings (OSTI)

Dataplot Commands for Alaska Pipeline Case Study. Set Software Options and Get Started, . . Starting Alaska Pipeline Calibration Case Study . . ...

2012-03-31T23:59:59.000Z

52

DOE/EA-1310: Environmental Assessment for Decontamination and Dismantlement of the Advanced Reactivity Measurement Facility and Couples Fast Reactivity Measurements Facility at the Idaho National Engineering and Environmental Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0 0 March 2000 Environmental Assessment for Decontamination and Dismantlement of the Advanced Reactivity Measurement Facility and Coupled Fast Reactivity Measurements Facility at the Idaho National Engineering and Environmental Laboratory DOE/EA-1310 Environmental Assessment for Decontamination and Dismantlement of the Advanced Reactivity Measurement Facility and Coupled Fast Reactivity Measurements Facility at the Idaho National Engineering and Environmental Laboratory Published March 2000 Prepared for the U.S. Department of Energy Idaho Operations Office iii CONTENTS ACRONYMS ............................................................................................................................... v HELPFUL INFORMATION ........................................................................................................

53

DOE/EA-1149; Environmental Assessment: Closure of the Waste Calcining Facility, Idaho Nation Engineering Laboratory (and FONSI)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9 9 July 1996 Environmental Assessment Closure of the Waste Calcining Facility (CPP-633), Idaho National Engineering Laboratory U. S. DEPARTMENT OF ENERGY FINDING OF NO SIGNIFICANT IMPACT FOR THE CLOSURE OF THE WASTE CALCINING FACILITY AT THE IDAHO NATIONAL ENGINEERING LABORATORY Agency: U. S. Department of Energy (DOE) Action: Finding of No Significant Impact SUMMARY: The DOE-Idaho Operations Office has prepared an environmental assessment (EA) to analyze the environmental impacts of closing the Waste Calcining Facility (WCF) at the Idaho National Engineering Laboratory (INEL). The purpose of the action is to reduce the risk of radioactive exposure and release of radioactive and hazardous constituents and eliminate the need for extensive long-term surveillance and maintenance. DOE has determined that the closure is needed to reduce the risks to human

54

Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Facilities Facilities Facilities LANL's mission is to develop and apply science and technology to ensure the safety, security, and reliability of the U.S. nuclear deterrent; reduce global threats; and solve other emerging national security and energy challenges. Contact Operator Los Alamos National Laboratory (505) 667-5061 Some LANL facilities are available to researchers at other laboratories, universities, and industry. Unique facilities foster experimental science, support LANL's security mission DARHT accelerator DARHT's electron accelerators use large, circular aluminum structures to create magnetic fields that focus and steer a stream of electrons down the length of the accelerator. Tremendous electrical energy is added along the way. When the stream of high-speed electrons exits the accelerator it is

55

Draft environmental assessment -- Closure of the Waste Calcining Facility (CPP-633), Idaho National Engineering Laboratory  

SciTech Connect

The DOE-Idaho Operations Office has prepared an environmental assessment (EA) to analyze the environmental impacts of closing the Waste Calcining Facility (WCF) at the Idaho National Engineering Laboratory (INEL). The purpose of the action is to reduce the risk of radioactive exposure and release of radioactive and hazardous constituents and eliminate the need for extensive long-term surveillance and maintenance. DOE has determined that the closure is needed to reduce these risks to human health and the environment and to comply with Resource Conservation and Recovery Act requirements. The WCF closure project is described in the DOE Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Final Environmental Impact Statement (Programmatic EIS). DOE determined in the Programmatic EIS Record of Decision (ROD) that certain actions would be implemented and other actions deferred. The EA examined the potential environmental impacts of the proposed action and evaluated reasonable alternatives, including the no action alternative in accordance with the Council on Environmental Quality Regulations. Based on the analysis in the EA, the action will not have a significant effect on the human environment.

Braun, J.B.; Irving, J.S.; Staley, C.S.; Stanley, N.

1996-04-01T23:59:59.000Z

56

Structural Integrity Program for the Calcined Solids Storage Facilities at the Idaho Nuclear Technology and Engineering Center  

SciTech Connect

This report documents the activities of the structural integrity program at the Idaho Nuclear Technology and Engineering Center relevant to the high-level waste Calcined Solids Storage Facilities and associated equipment, as required by DOE M 435.1-1, ''Radioactive Waste Management Manual.'' Based on the evaluation documented in this report, the Calcined Solids Storage Facilities are not leaking and are structurally sound for continued service. Recommendations are provided for continued monitoring of the Calcined Solids Storage Facilities.

Bryant, J.W.; Nenni, J.A.

2003-05-22T23:59:59.000Z

57

Annual report -- 1992: Environmental surveillance for EG & G Idaho Waste Management Facilities at the Idaho National Engineering Laboratory  

SciTech Connect

This report describes the 1992 environmental surveillance activities of the Environmental Monitoring Unit of EG&G Idaho, Inc., at EG&G Idaho-operated Waste Management facilities at the Idaho National Engineering Laboratory (INEL). The major facilities monitored include the Radioactive Waste Management Complex, the Waste Experimental Reduction Facility, the Mixed Waste Storage Facility, and two surplus facilities. Included are some results of the sampling performed by the Radiological and Environmental Sciences Laboratory and the United States Geological Survey. The primary purposes of monitoring are to evaluate environmental conditions, to provide and interpret data, to ensure compliance with applicable regulations or standards, and to ensure protection of human health and the environment. This report compares 1992 environmental surveillance data with DOE derived concentration guides, and with data from previous years.

Wilhelmsen, R.N.; Wright, K.C.; McBride, D.W.

1993-08-01T23:59:59.000Z

58

Commanding general visits Pantex | National Nuclear Security...  

NLE Websites -- All DOE Office Websites (Extended Search)

Commanding general visits Pantex | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response...

59

Basis for Section 3116 Determination for the Idaho Nuclear Technology and Engineering Center Tank Farm Facility at the Idaho National Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NE-ID-11226 NE-ID-11226 Revision 0 Basis for Section 3116 Determination for the Idaho Nuclear Technology and Engineering Center Tank Farm Facility November 2006 DOE/NE-ID-11226 Revision 0 Basis for Section 3116 Determination for the Idaho Nuclear Technology and Engineering Center Tank Farm Facility November 2006 ii CONTENTS ACRONYMS.............................................................................................................................................. vii 1. INTRODUCTION AND PURPOSE.................................................................................................. 1 2. BACKGROUND................................................................................................................................ 5 2.1 Tank Farm Facility Description.............................................................................................

60

Idaho National Engineering and Environmental Laboratory, Old Waste Calcining Facility, Scoville vicinity, Butte County, Idaho -- Photographs, written historical and descriptive data. Historical American engineering record  

SciTech Connect

This report describes the history of the Old Waste Calcining Facility. It begins with introductory material on the Idaho National Engineering and Environmental Laboratory, the Materials Testing Reactor fuel cycle, and the Idaho Chemical Processing Plant. The report then describes management of the wastes from the processing plant in the following chapters: Converting liquid to solid wastes; Fluidized bed waste calcining process and the Waste Calcining Facility; Waste calcining campaigns; WCF gets a new source of heat; New Waste Calcining Facility; Last campaign; Deactivation and the RCRA cap; Significance/context of the old WCF. Appendices contain a photo key map for HAER photos, a vicinity map and neighborhood of the WCF, detailed description of the calcining process, and chronology of WCF campaigns.

1997-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "facilities engineering command" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

DOE FTCP Supplemental Competencies - Human Factors Engineering Functional Area Qualification Competency Examples for DOE Defense Nuclear Facilities Technical Personnel  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FTCP FTCP SUPPLEMENTAL COMPETENCIES HUMAN FACTORS ENGINEERING FUNCTIONAL AREA QUALIFICATION COMPETENCY EXAMPLES For DOE Defense Nuclear Facilities Technical Personnel APPROVAL The Federal Technical Capability Panel consists of senior U.S. Department of Energy (DOE) managers responsible for overseeing the Federal Technical Capability Program. This Panel is responsible for reviewing and approving qualification standards and competencies for Department-wide application. Approval of this set of competency statements by the Federal Technical Capability Panel is indicated by signature below. ?fuv-~ Karen L. Boardman, Chairperson ~·/Cf I Federal Technical Capability Panel * '2._ 3/19/12 I luman Factors Engineering compc1cncics U.S. DEPARTMENT OF ENERGY

62

Engineering Evaluation/Cost Analysis for Power Burst Facility (PER-620) Final End State and PBF Vessel Disposal  

SciTech Connect

Preparation of this engineering evaluation/cost analysis is consistent with the joint U.S. Department of Energy and U.S. Environmental Protection Agency Policy on Decommissioning of Department of Energy Facilities Under the Comprehensive Environmental Response, Compensation, and Liability Act, (DOE and EPA 1995) which establishes the Comprehensive Environmental, Response, Compensation, and Liability Act non-time critical removal action process as an approach for decommissioning. The scope of this engineering evaluation/cost analysis is to evaluate alternatives and recommend a preferred alternative for the final end state of the PBF and the final disposal location for the PBF vessel.

B. C. Culp

2007-05-01T23:59:59.000Z

63

Reliability Engineering Approach to Probabilistic Proliferation Resistance Analysis of the Example Sodium Fast Reactor Fuel Cycle Facility  

E-Print Network (OSTI)

International Atomic Energy Agency (IAEA) safeguards are one method of proliferation resistance which is applied at most nuclear facilities worldwide. IAEA safeguards act to prevent the diversion of nuclear materials from a facility through the deterrence of detection. However, even with IAEA safeguards present at a facility, the country where the facility is located may still attempt to proliferate nuclear material by exploiting weaknesses in the safeguards system. The IAEA's mission is to detect the diversion of nuclear materials as soon as possible and ideally before it can be weaponized. Modern IAEA safeguards utilize unattended monitoring systems (UMS) to perform nuclear material accountancy and maintain the continuity of knowledge with regards to the position of nuclear material at a facility. This research focuses on evaluating the reliability of unattended monitoring systems and integrating the probabilistic failure of these systems into the comprehensive probabilistic proliferation resistance model of a facility. To accomplish this, this research applies reliability engineering analysis methods to probabilistic proliferation resistance modeling. This approach is demonstrated through the analysis of a safeguards design for the Example Sodium Fast Reactor Fuel Cycle Facility (ESFR FCF). The ESFR FCF UMS were analyzed to demonstrate the analysis and design processes that an analyst or designer would go through when evaluating/designing the proliferation resistance component of a safeguards system. When comparing the mean time to failure (MTTF) for the system without redundancies versus one with redundancies, it is apparent that redundancies are necessary to achieve a design without routine failures. A reliability engineering approach to probabilistic safeguards system analysis and design can be used to reach meaningful conclusions regarding the proliferation resistance of a UMS. The methods developed in this research provide analysts and designers alike a process to follow to evaluate the reliability of a UMS.

Cronholm, Lillian Marie

2011-08-01T23:59:59.000Z

64

Safety System Oversight Assessment of the Los Alamos National Laboratory Weapons Engineering Tritium Facility Tritium Gas Handling System  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Site Visit Report Site Visit Report Safety System Oversight Assessment of the Los Alamos National Laboratory Weapons Engineering Tritium Facility Tritium Gas Handling System INTRODUCTION AND OVERVIEW This report documents the results of the Office of Health, Safety and Security's (HSS) review of a safety system oversight (SSO) assessment of the Los Alamos National Laboratory (LANL) Weapons Engineering Tritium Facility (WETF) tritium gas handling system (TGHS). The assessment evaluated the TGHS's ability to perform as required by safety bases and other applicable requirements. The assessment was sponsored by the U.S. Department of Energy (DOE) Los Alamos Site Office (LASO) and was conducted October 25 - November 5, 2010. LASO was the overall lead organization for the evaluation, which included independent

65

Review of the Los Alamos National Laboratory Weapons Engineering Tritium Facility Tritium Gas Containment Vital Safety System, January 2013  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Independent Oversight Review of the Independent Oversight Review of the Los Alamos National Laboratory Weapons Engineering Tritium Facility Tritium Gas Containment Vital Safety System January 2013 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy Table of Contents 1.0 Purpose............................................................................................................................................. 1 2.0 Background...................................................................................................................................... 1 3.0 Scope................................................................................................................................................ 1

66

STM Stirling Engine-Generator at a Hog Manure Digester Gas Facility  

Science Conference Proceedings (OSTI)

Stirling engines have recently been introduced to the distributed generation market. This report summarizes the results of three projects that used Stirling engine-generators from one manufacturer in applications where they were fueled with digester gas.

2007-08-30T23:59:59.000Z

67

Design and component integration of a T63-A-700 gas turbine engine test facility ; .  

E-Print Network (OSTI)

??A gas turbine engine test cell was developed integrating an Allison T63-A-700 helicopter engine with a superflow water brake dynamometer power absorber. Design specifications were… (more)

Eckerle, Brian P.

1995-01-01T23:59:59.000Z

68

Basic interrupt and command structures and applications  

SciTech Connect

Interrupt and command structures of a real-time system are described through specific examples. References to applications of a real-time system and programing development references are supplied. (auth)

Davies, R.C.

1974-01-01T23:59:59.000Z

69

Facility Energy Decision System (FEDS) Assessment Report for US Army Garrison, Japan - Honshu Installations  

Science Conference Proceedings (OSTI)

This report documents an assessment was performed by a team of engineers from Pacific Northwest National Laboratory (PNNL) under contract to the Installation Management Command (IMCOM) Pacific Region Office (PARO). The effort used the Facility Energy Decision System (FEDS) model to determine how energy is consumed at five U.S. Army Garrison-Japan (USAG-J) installations in the Honshu area, identify the most cost-effective energy retrofit measures, and calculate the potential energy and cost savings.

Kora, Angela R.; Brown, Daryl R.; Dixon, Douglas R.

2010-03-09T23:59:59.000Z

70

ORISE: Incident Command System (ICS) Training  

NLE Websites -- All DOE Office Websites (Extended Search)

Incident Command System (ICS) Training Incident Command System (ICS) Training The Oak Ridge Institute for Science and Education (ORISE) supports the emergency response community by promoting interagency cooperation and developing training that enhances response efforts. An example of such support involves the U.S. Department of Energy (DOE) Office of Emergency Response and its compliance efforts toward the Homeland Security Presidential Directive-5 (HSPD-5), which includes the implementation of National Incident Management System (NIMS)/Incident Command System (ICS) and the National Response Framework (NRF). The ICS, which has been recognized for its training curricula that has exceeded national standards, is an on-scene, all-hazard incident management concept that was originally designed for emergency management agencies, but

71

Idaho National Engineering Laboratory Federal Facility Agreement and Consent Order, December 9, 1991 Summary  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Federal Facility Agreement and Consent Order Federal Facility Agreement and Consent Order State Idaho Agreement Type Federal Facility Agreement Legal Driver(s) CERCLA Scope Summary Ensure that the environmental impacts associated with releases or hazardous substances are thoroughly investigated and that appropriate response action are taken. Parties DOE; US EPA; State of Idaho Date 12/9/1991 SCOPE * Ensure that the environmental impacts associated with releases or hazardous substances are thoroughly investigated and that appropriate response action are taken. * Establish a procedural framework and schedule for developing, prioritizing, implementing, and monitoring appropriate response actions. * Supersede the Consent Order and Compliance Agreement Docket No. 1086-05-16- 3008/3013, executed on July 10, 1987.

72

iTOUGH2 Command Reference  

Science Conference Proceedings (OSTI)

iTOUGH2 is a program for parameter estimation, sensitivity analysis, and uncertainty propagation analysis. It is based on the TOUGH2 simulator for non-isothermal multiphase flow in fractured and porous media. This report contains a detailed description of all iTOUGH2 commands.

Finsterle, Stefan

2002-06-18T23:59:59.000Z

73

Tassel Pipeline Tutorial (Command Line Interface)  

E-Print Network (OSTI)

Tassel Pipeline Tutorial (Command Line Interface) Terry Casstevens Institute for Genomic Diversity, Cornell University May 11, 2011 #12;Tassel Pipeline Basics... · Consists of Modules (i.e. Plugins) · Output from one Module can be Input to another Module. Determined by order specified. run_pipeline

Buckler, Edward S.

74

DOE/EA-1310: Finding of No Significant Impact for the Decontamination and Dismantlement of the Advanced Reactivity Measurement Facility and Couples Fast Reactivity Measurements Facility at the Idaho National Engineering and Environmental Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FINDING OF NO SIGNIFICANT IMPACT FOR THE DECONTAMINATION AND FINDING OF NO SIGNIFICANT IMPACT FOR THE DECONTAMINATION AND DISMANTLEMENT OF THE ADVANCED REACTIVITY MEASUREMENT FACILITY AND COUPLED FAST REACTIVITY MEASUREMENTS FACILITY AT THE IDAHO NATIONAL ENGINEERING AND ENVIRONMENTAL LABORATORY Agency: U. S. Department of Energy (DOE) Action: Finding of No Significant Impact (FONSI) Summary: The DOE prepared a Draft Environmental Assessment (EA) for the proposed "Decontamination and Dismantlement of the Advanced Reactivity Measurement Facility and Coupled Fast Reactivity Measurement Facility at the Idaho National Engineering and Environmental Laboratory" (DOE/EA-1310). The EA was prepared in accordance with the Council on Environmental Quality (CEQ) Regulations for implementing the National Environmental Policy Act (NEPA) (40 CFR 1500-1508), and the

75

Engineering development of selective agglomeration: Task 6, Operation of the Component Development Test Facility  

SciTech Connect

The objective of this report is to summarize the component development and laboratory binder test work at Wilsonville during Task 6. This Task included the construction and startup of the Component Development Test Facility (CDTF), coal procurement, evaluation of unit operation and dewatering performance, laboratory binder tests for diesel and heptane, production characterization, and vendor tests. Data evaluation, interpretation, and analysis are not included in this report, but will be discussed in the Task 7 report.

Not Available

1991-09-01T23:59:59.000Z

76

Interfacing collaboration and command tools for crises management military command and control systems  

Science Conference Proceedings (OSTI)

Available collaboration tools concentrate on uncontrolled information distribution. They represent situational awareness (SA) tools for the cooperating entities, not the required solution for traceable and sophisticated command and control tools ...

Tapio Saarelainen; Jorma Jormakka

2010-01-01T23:59:59.000Z

77

ENGINEERED NEAR SURFACE DISPOSAL FACILITY OF THE INDUSTRIAL COMPLEX FOR SOLID RADWASTE MANAGEMENT AT CHERNOBYL NUCLEAR POWER PLANT  

SciTech Connect

As a part of the turnkey project ''Industrial Complex for Solid Radwaste Management (ICSRM) at the Chernobyl Nuclear Power Plant (ChNPP)'' an Engineered Near Surface Disposal Facility (ENSDF, LOT 3) will be built on the VEKTOR site within the 30 km Exclusion Zone of the ChNPP. This will be performed by RWE NUKEM GmbH, Germany, and it governs the design, licensing support, fabrication, assembly, testing, inspection, delivery, erection, installation and commissioning of the ENSDF. The ENSDF will receive low to intermediate level, short lived, processed/conditioned wastes from the ICSRM Solid Waste Processing Facility (SWPF, LOT 2), the ChNPP Liquid Radwaste Treatment Plant (LRTP) and the ChNPP Interim Storage Facility for RBMK Fuel Assemblies (ISF). The ENSDF has a capacity of 55,000 m{sup 3}. The primary functions of the ENSDF are: to receive, monitor and record waste packages, to load the waste packages into concrete disposal units, to enable capping and closure of the disposal unit s, to allow monitoring following closure. The ENSDF comprises the turnkey installation of a near surface repository in the form of an engineered facility for the final disposal of LILW-SL conditioned in the ICSRM SWPF and other sources of Chernobyl waste. The project has to deal with the challenges of the Chernobyl environment, the fulfillment of both Western and Ukrainian standards, and the installation and coordination of an international project team. It will be shown that proven technologies and processes can be assembled into a unique Management Concept dealing with all the necessary demands and requirements of a turnkey project. The paper emphasizes the proposed concepts for the ENSDF and their integration into existing infrastructure and installations of the VEKTOR site. Further, the paper will consider the integration of Western and Ukrainian Organizations into a cohesive project team and the requirement to guarantee the fulfillment of both Western standards and Ukrainian regulations and licensing requirements. The paper provides information on the output of the Detail Design and will reflect the progress of the design work.

Ziehm, Ronny; Pichurin, Sergey Grigorevich

2003-02-27T23:59:59.000Z

78

Recycle of the treated effluent from the Liquid Effluent Treatment Facility: Engineering study  

SciTech Connect

During normal N Reactor operation there will be low-level radioactive liquid effluent flows discharged to the planned Liquid Effluent Treatment Facility (LETF). The LETF will filter and treat these flows to decrease the radioactive prior to discharging the effluent to the Liquid Waste Disposal Facility (LWDF) soil column. This report examines the feasibility and economics of recycling the treated effluent to the N Reactor for reuse thus eliminating or reducing discharges to the soil. The study concluded that recycling LETF effluent for reuse in the primary coolant system and in the fuel storage basin is technically feasible. However, the high cost to provide recycle water meeting the minimum N reactor chemical requirements and radiological concerns may not be justified due to the limited reactor operating life. The study concluded that inexpensive piping modifications to the Building 107N recirculation system would provide additional flow to alleviate the fuel basin clarity problem during refueling. This change would avoid the disposal of 62.2 million gal of treated water per year to the soil column. 21 refs., 5 figs., 7 tabs.

Shearer, E.A.; Janke, D.S.

1988-04-01T23:59:59.000Z

79

HWMA closure plan for the Waste Calcining Facility at the Idaho National Engineering Laboratory  

SciTech Connect

The Waste Calcining Facility (WCF) calcined and evaporated aqueous wastes generated from the reprocessing of spent nuclear fuel. The calciner operated from 1963 to 1981, primarily processing high level waste from the first cycle of spent fuel extraction. Following the calciner shutdown the evaporator system concentrated high activity aqueous waste from 1983 until 1987. In 1988, US Department of Energy Idaho Operations Office (DOE-ID) requested interim status for the evaporator system, in anticipation of future use of the evaporator system. The evaporator system has not been operated since it received interim status. At the present time, DOE-ID is completing construction on a new evaporator at the New Waste Calcining Facility (NWCF) and the evaporator at the WCF is not needed. The decision to not use the WCF evaporator requires Lockheed Idaho Technologies Company (LITCO) and DOE-ID to close these units. After a detailed evaluation of closure options, LITCO and DOE-ID have determined the safest option is to fill the voids (grout the vessels, cells and waste pile) and close the WCF to meet the requirements applicable to landfills. The WCF will be covered with a concrete cap that will meet the closure standards. In addition, it was decided to apply these closure standards to the calcining system since it is contained within the WCF building. The paper describes the site, waste inventory, closure activities, and post-closure care plans.

1996-05-01T23:59:59.000Z

80

Engineering  

NLE Websites -- All DOE Office Websites (Extended Search)

Engineering Engineering Engineering1354608000000EngineeringSome of these resources are LANL-only and will require Remote Access./No/Questions? 667-5809library@lanl.gov Engineering Some of these resources are LANL-only and will require Remote Access. Key Resources Reference Standards Data Sources Organizations Journals Key Resources Engineering Village Includes Engineering Index (Ei) and Compendex Knovel Handbooks, databases, and eBooks integrated with analytical and search tools IEEE Xplore Full text access to technical literature, standards, and conference proceedings in engineering and technology SPIE Digital Library Full-text papers from SPIE journals and proceedings published since 1998; subject coverage includes optics, photonics, electronic imaging, visual information processing, biomedical optics, lasers, and

Note: This page contains sample records for the topic "facilities engineering command" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Engineering  

NLE Websites -- All DOE Office Websites (Extended Search)

Electrodynamics Bioscience, Biosecurity, Health Chemical Science Earth, Space Sciences Energy Engineering High Energy Density Plasmas, Fluids Information Science, Computing,...

82

Mixed and Low-Level Treatment Facility Project. Appendix B, Waste stream engineering files, Part 1, Mixed waste streams  

SciTech Connect

This appendix contains the mixed and low-level waste engineering design files (EDFS) documenting each low-level and mixed waste stream investigated during preengineering studies for Mixed and Low-Level Waste Treatment Facility Project. The EDFs provide background information on mixed and low-level waste generated at the Idaho National Engineering Laboratory. They identify, characterize, and provide treatment strategies for the waste streams. Mixed waste is waste containing both radioactive and hazardous components as defined by the Atomic Energy Act and the Resource Conservation and Recovery Act, respectively. Low-level waste is waste that contains radioactivity and is not classified as high-level waste, transuranic waste, spent nuclear fuel, or 11e(2) byproduct material as defined by DOE 5820.2A. Test specimens of fissionable material irradiated for research and development only, and not for the production of power or plutonium, may be classified as low-level waste, provided the concentration of transuranic is less than 100 nCi/g. This appendix is a tool that clarifies presentation format for the EDFS. The EDFs contain waste stream characterization data and potential treatment strategies that will facilitate system tradeoff studies and conceptual design development. A total of 43 mixed waste and 55 low-level waste EDFs are provided.

1992-04-01T23:59:59.000Z

83

Photon Sciences | Navigation | Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Facilities NSLS About NSLS Accelerator Activity Report Experimental Systems Machine Status & History Operations & Engineering Operating Schedules Ring Parameters NSLS Ops:...

84

SOLERAS - Solar Controlled Environment Agriculture Project. Final report, Volume 8. Science Applications, Incorporated specifications for engineering field test facility preliminary design  

DOE Green Energy (OSTI)

Specifications are presented for the SCEAS Engineering Test Facility. The specifications are provided for the following elements of the SCEAS: site preparation and construction, mechanical and plumbing, electrical, power conditioning subsystem, display and control panels, control system equipment, water desalination system, and the meteorological station. (BCS)

Not Available

1985-01-01T23:59:59.000Z

85

Mercury removal at Idaho National Engineering and Environmental Laboratory's New Waste Calcining Facility  

SciTech Connect

Technologies were investigated to determine viable processes for removing mercury from the calciner (NWCF) offgas system at the Idaho National Engineering and Environmental Laboratory. Technologies for gas phase and aqueous phase treatment were evaluated. The technologies determined are intended to meet EPA Maximum Achievable Control Technology (MACT) requirements under the Clean Air Act and Resource Conservation and Recovery Act (RCRA). Currently, mercury accumulation in the calciner off-gas scrubbing system is transferred to the tank farm. These transfers lead to accumulation in the liquid heels of the tanks. The principal objective for aqueous phase mercury removal is heel mercury reduction. The system presents a challenge to traditional methods because of the presence of nitrogen oxides in the gas phase and high nitric acid in the aqueous scrubbing solution. Many old and new technologies were evaluated including sorbents and absorption in the gas phase and ion exchange, membranes/sorption, galvanic methods, and UV reduction in the aqueous phase. Process modifications and feed pre-treatment were also evaluated. Various properties of mercury and its compounds were summarized and speciation was predicted based on thermodynamics. Three systems (process modification, NOxidizer combustor, and electrochemical aqueous phase treatment) and additional technology testing were recommended.

S. C. Ashworth

2000-02-27T23:59:59.000Z

86

Mercury Removal at Idaho National Engineering and Environmental Laboratory's New Waste Calcining Facility  

SciTech Connect

Technologies were investigated to determine viable processes for removing mercury from the calciner (NWCF) offgas system at the Idaho National Engineering and Environmental Laboratory. Technologies for gas phase and aqueous phase treatment were evaluated. The technologies determined are intended to meet EPA Maximum Achievable Control Technology (MACT) requirements under the Clean Air Act and Resource Conservation and Recovery Act (RCRA). Currently, mercury accumulation in the calciner off-gas scrubbing system is transferred to the tank farm. These transfers lead to accumulation in the liquid heels of the tanks. The principal objective for aqueous phase mercury removal is heel mercury reduction. The system presents a challenge to traditional methods because of the presence of nitrogen oxides in the gas phase and high nitric acid in the aqueous scrubbing solution. Many old and new technologies were evaluated including sorbents and absorption in the gas phase and ion exchange, membranes/sorption, galvanic methods, and UV reduction in the aqueous phase. Process modifications and feed pre-treatment were also evaluated. Various properties of mercury and its compounds were summarized and speciation was predicted based on thermodynamics. Three systems (process modification, NOxidizer combustor, and electrochemical aqueous phase treatment) and additional technology testing were recommended.

Ashworth, Samuel Clay; Wood, R. A.; Taylor, D. D.; Sieme, D. D.

2000-03-01T23:59:59.000Z

87

24 Command Fire Improvement Action Program Plan  

SciTech Connect

Fluor Hanford (FH) is responsible for providing support to the Department of Energy Richland Operations Office (RL) in the implementation of the Hanford Emergency Preparedness (EP) program. During fiscal year 2000, a number of program improvements were identified from various sources including a major range fire (24 Command Fire). Evaluations of the emergency preparedness program have confirmed that it currently meets all requirements and that performance of personnel involved is good, however the desire to effect continuous improvement resulted in the development of this improvement program plan. This program plan defines the activities that will be performed in order to achieve the desired performance improvements.

GRIFFIN, G.B.

2000-12-01T23:59:59.000Z

88

Engineering  

NLE Websites -- All DOE Office Websites (Extended Search)

Engineering Engineering Lawrence Livermore National Laboratory Home Technologies Core Competencies Showcase Careers Partnerships About Advanced Manufacturing Developing high-performance materials, devices, components, and assemblies enabled by innovative design tools and novel manufacturing techniques Learn more Applied Electromagnetics Supporting the development of electromagnetic systems that are pervasive and paramount to the greater National Security community. Learn more Data Sciences Enabling better decisions through the development and application of state-of-the-art techniques in machine learning, statistics, and decision sciences Learn more Precision Engineering Embracing determinism to guide rigorous design, construction, and metrology of mechatronic systems, instruments, and manufactured components

89

Better define your customers facility requirements by optimizing your customers processes with value engineering before conceptual design  

SciTech Connect

This paper addresses a new value engineering approach successfully being used at the Idaho National Engineering Laboratory (INEL) in the design process of major construction projects. Of particular interest is how value engineers are applying the principles of Total Quality Management (TQM), utilizing value engineering techniques. Discussed are the associated problems with how major construction projects were previously planned, designed, value engineered, and then redesigned. Benefits of applying value engineering techniques early-on in the design process, far ahead of the traditional time for VE execution, is examined. The author provides a pro-con analysis of the benefits of early-on value engineering effort, and uses data gathered from several value engineering studies to support the conclusions of this paper.

Carpenter, R.L. Jr.

1993-11-19T23:59:59.000Z

90

Mixed and Low-Level Waste Treatment Facility Project. Appendix B, Waste stream engineering files: Part 2, Low-level waste streams  

SciTech Connect

Mixed and low-level wastes generated at the Idaho National Engineering Laboratory (INEL) are required to be managed according to applicable State and Federal regulations, and Department of Energy Orders that provide for the protection of human health and the environment. The Mixed and Low-Level Waste Treatment Facility Project was chartered in 1991, by the Department of Energy to provide treatment capability for these mixed and low-level waste streams. The first project task consisted of conducting engineering studies to identify the waste streams, their potential treatment strategies, and the requirements that would be imposed on the waste streams and the facilities used to process them. This report documents those studies so the project can continue with an evaluation of programmatic options, system tradeoff studies, and the conceptual design phase of the project. This report, appendix B, comprises the engineering design files for this project study. The engineering design files document each waste steam, its characteristics, and identified treatment strategies.

1992-04-01T23:59:59.000Z

91

Problem structuring methods in military command and control  

Science Conference Proceedings (OSTI)

In an authorized military hierarchy organization, the procedure of problem solving must be co-ordinated with the tasks of planning, directing, and controlling. In most combat situations, problem solving knowledge is acquired from an expert (commander) ... Keywords: Knowledge management, Knowledge-based system architecture, Military command and control, Problem structuring methods, Soft operational research

Shu-Hsien Liao

2008-10-01T23:59:59.000Z

92

A Hierarchical, Distributed Architecture of Command and Control  

Science Conference Proceedings (OSTI)

Command and control of a joint air campaign are to plan, execute and control operations of a joint air campaign that may be necessary to resolve a crisis and conflict.ďľ ďľ Command and control must quickly respond to changes in a dynamic battlefield ...

Nong Ye

2001-08-01T23:59:59.000Z

93

V-170: Apache Subversion Hook Scripts Arbitrary Command Injection  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0: Apache Subversion Hook Scripts Arbitrary Command Injection 0: Apache Subversion Hook Scripts Arbitrary Command Injection Vulnerability V-170: Apache Subversion Hook Scripts Arbitrary Command Injection Vulnerability June 4, 2013 - 12:17am Addthis PROBLEM: Apache Subversion Hook Scripts Arbitrary Command Injection Vulnerability PLATFORM: Apache Subversion 1.x ABSTRACT: A vulnerability has been reported in Apache Subversion. REFERENCE LINKS: Apache Original Advisory Secunia Advisory SA53727 CVE-2013-2088 IMPACT ASSESSMENT: Medium DISCUSSION: The vulnerability is caused due to an input validation error in the svn-keyword-check.pl hook script while processing filenames and can be exploited to inject and execute arbitrary shell commands via a specially crafted request. Successful exploitation requires that contrib scripts are used on the

94

Commanding lateral acceleration: a natural paradigm for automobile steering  

E-Print Network (OSTI)

This thesis describes a joystick automobile steering phics. controller which allows the driver to command the lateral acceleration of the vehicle directly, as opposed to controlling the front tire angle. The purpose of the controller is to improve joystick steering controls available to handicapped drivers, The controller design uses feedback from a chassis mounted accelerometer to sense actual vehicle lateral acceleration and cause the vehicle to achieve the lateral acceleration commanded by the driver. The thesis explains how a joystick and servo system utilizing the lateral acceleration command concept was analyzed, designed, built, and tested. Subjective and quantitative results are presented which show that a practical system was achieved and that commanding lateral acceleration is a natural way to steer a car. A1l test drivers preferred this system over joystick systems currently available to handicapped drivers which require the driver to command front wheel turn angle.

Kenny, Andrew

1998-01-01T23:59:59.000Z

95

Using the information resource dictionary system command language  

Science Conference Proceedings (OSTI)

This document introduces and provides examples of the Command Language of the draft proposed Information Resource Dictionary System (IRDS). A dictionary maintained by the US Air Force is defined in the IRDS and used as a continuing example throughout the document. The dictionary is populated, manipulated, and reported on using the precise syntax of the Command Language. An appendix to the document provides a complete listing of the creation of the example. Other appendices provide indices of all command appearances and all clause appearances.

Goldfine, A.

1985-04-01T23:59:59.000Z

96

SOLERAS - Solar-Powered Water Desalination Project at Yanbu: CBI Na-Con, Inc. Engineering Test Facility problem assessment and lessons learned  

Science Conference Proceedings (OSTI)

A Solar Energy Water Desalination Engineering Test Facility has been undergoing operation and testing in Yanbu, Saudi Arabia, as part of of the SOLERAS Program. The facility employs a field of point-focus, distributed receiver, solar thermal collectors operating at 388/degree/C (730/degree/F). Thermal energy is collected using a synthetic heat transfer fluid, stored in dual tank molten salt storage, and utilized on demand to generate steam, which provides both mechanical and thermal energy for refrigeration. The refrigeration drives a unique freeze desalination process in which ice is crystallized from concentrated seawater, pumped as a slurry of ice and brine, rinsed of brine in a countercurrent wash column, and melted to produce fresh water. The report presents an executive summary followed by an overview of the facility design and operation. The plant operation, from start-up in December, 1984 through mid-1986, is then briefly summarized. Key problem areas and areas of concern are identified and discussed; in addition to problems encountered, the discussion details problem causes, problem solutions, and in some cases problem avoidance which was accomplished through preventive measures employed during design and/or operation. The problems are grouped into areas corresponding to the facility's main subsystems: energy collection, energy storage, energy delivery, and desalination. 37 refs., 43 figs., 7 tabs.

Not Available

1987-04-01T23:59:59.000Z

97

Savannah River Plant engineering and design history. Volume 4: 300/700 Areas & general services and facilities  

SciTech Connect

The primary function of the 300 Area is the production and preparation of the fuel and target elements required for the 100 Area production reactors. Uranium slugs and lithium-aluminium alloy control and blanket rods are prepared in separate structures. Other facilities include a test pile, a physics assembly laboratory, an office and change house, an electrical substation, and various service facilities such as rail lines, roads, sewers, steam and water distribution lines, etc. The 700 Area contains housing and facilities for plant management, general plant services, and certain technical activities. The technical buildings include the Main Technical Laboratory, the Waste Concentration Building, the Health Physics Headquarters, and the Health Physics Calibration building. Sections of this report describe the following: development of the 300-M Area; selection and description of process; design of main facilities of the 300 Area; development of the 700-A Area; design of the main facilities of the 700 Area; and general services and facilities, including transportation, plant protection, waste disposal and drainage, site work, pilot plants, storage, and furniture and fixtures.

1957-01-01T23:59:59.000Z

98

Fuel cell system logic for differentiating between rapid and normal shutdown commands  

DOE Green Energy (OSTI)

A method of controlling the operation of a fuel cell system wherein each shutdown command for the system is subjected to decision logic which determines whether the command should be a normal shutdown command or rapid shutdown command. If the logic determines that the shutdown command should be a normal shutdown command, then the system is shutdown in a normal step-by-step process in which the hydrogen stream is consumed within the system. If the logic determines that the shutdown command should be a rapid shutdown command, the hydrogen stream is removed from the system either by dumping to atmosphere or routing to storage.

Keskula, Donald H. (Webster, NY); Doan, Tien M. (Columbia, MD); Clingerman, Bruce J. (Palmyra, NY)

2000-01-01T23:59:59.000Z

99

U-157: Ruby Mail Gem Directory Traversal and Shell Command Injection...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

57: Ruby Mail Gem Directory Traversal and Shell Command Injection Vulnerabilities U-157: Ruby Mail Gem Directory Traversal and Shell Command Injection Vulnerabilities April 27,...

100

Command shaping for residual vibration free crane maneuvers  

Science Conference Proceedings (OSTI)

Cranes used in the construction and transportation industries are generally devices with multiple degrees of freedom including variable load-line length, variable jib length (usually via a trolley), and variable boom angles. Point-to-point payload maneuvers using cranes are performed so as not to excite the spherical pendulum modes of their cable and payload assemblies. Typically, these pendulum modes, although time-varying, exhibit low frequencies. Current crane maneuvers are therefore performed slowly contributing to high construction and transportation costs. This investigation details a general method for applying command shaping to various multiple degree of freedom cranes such that the payload moves to a specified point without residual oscillation. A dynamic programming method is used for general command shaping for optimal maneuvers. Computationally, the dynamic programming approach requires order M calculations to arrive at a solution, where M is the number of discretizations of the input commands. This feature is exploited for the crane command shaping problem allowing for rapid calculation of command histories. Fast generation of commands is a necessity for practical use of command shaping for the applications described in this work. These results are compared to near-optimal solutions where the commands are linear combinations of acceleration pulse basis functions. The pulse shape is required due to hardware requirements. The weights on the basis functions are chosen as the solution to a parameter optimization problem solved using a Recursive Quadratic Programming technique. Simulation results and experimental verification for a variable load-line length rotary crane are presented using both design procedures.

Parker, G.G.; Petterson, B.; Dohrmann, C.; Robinett, R.D.

1995-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "facilities engineering command" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Sandia National Laboratories: Research: Facilities: Technology Deployment  

NLE Websites -- All DOE Office Websites (Extended Search)

Engineering Sciences Experimental Facilities (ESEF) Engineering Sciences Experimental Facilities (ESEF) Technology Deployment Centers Advanced Power Sources Laboratory Engineering Sciences Experimental Facilities (ESEF) Trisonic Wind Tunnel Hypersonic Wind Tunnel High Altitude Chamber Explosive Components Facility Ion Beam Laboratory Materials Science and Engineering Center Pulsed Power and Systems Validation Facility Radiation Detection Materials Characterization Laboratory Shock Thermodynamic Applied Research Facility (STAR) Weapon and Force Protection Center Design, Evaluation and Test Technology Facility Research Engineering Sciences Experimental Facilities (ESEF) The ESEF complex contains several independent laboratories for experiments and advanced diagnostics in the fields of thermodynamics, heat transfer,

102

Engineering study - alternatives for SHMS high temperature/moisture gas sample conditioners for the aging waste facility  

SciTech Connect

The Standard Hydrogen Monitoring Systems have been experiencing high temperature/moisture problems with gas samples from the Aging Waste Tanks. These moist hot gas samples have stopped the operation of the SHMS units on tanks AZ-101, AZ-102, and AY-102. This study looks at alternatives for gas sample conditioners for the Aging Waste Facility.

THOMPSON, J.F.

1999-06-02T23:59:59.000Z

103

TransForum v4n4 - TTRDC Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

R&D Laboratory Engine Research FacilityHeavy-Duty Truck Engine Test Cell High-Performance Computing Research Facility Tribology Laboratory Selective Continuous Recycling of...

104

ITOUGH2 command reference. Version 3.1  

Science Conference Proceedings (OSTI)

This report contains a detailed description of all ITOUGH2 commands. It complements the ITOUGH2 User`s Guide and the collection of ITOUGH2 sample problems. ITOUGH2 is a program for parameter estimation, sensitivity analysis, and uncertainty propagation analysis. It is based on the TOUGH2 simulator for non-isothermal multiphase flow in fractured and porous media. Extensive experience in using TOUGH2 is a prerequisite for using ITOUGH2. The preparation of an input file for TOUGH2 or its derivatives is described in separate manuals and is not part of this report. The ITOUGH2 user`s guide summarizes the inverse modeling theory pertaining to ITOUGH2, and describes the program output. Furthermore, information about code architecture and installation are given. In Chapter 2 of this report, a brief summary of inverse modeling theory is given to restate the main concepts implemented in ITOUGH2 and to introduce certain definitions. Chapter 3 introduces the basic concepts of the ITHOUGH2 input language and the main structure of an ITOUGH2 input file. Chapter 4, the main part of this report, provides detailed descriptions of each ITOUGH2 command in alphabetical order. It is complemented by a command index in Appendix B in which the commands are given in logical order. The content of Chapter 4 is also available on-line using command it2help. Chapter 5 describes the usage of the UNIX script files for executing, checking, and terminating ITOUGH2 simulations.

Finsterle, S. [Lawrence Berkeley National Lab., CA (United States). Earth Sciences Div.

1997-04-01T23:59:59.000Z

105

Nortel CallPilot A-Style Command Comparison Card  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Welcome to CallPilot. This card helps you to learn CallPilot by showing you the key differences between Welcome to CallPilot. This card helps you to learn CallPilot by showing you the key differences between CallPilot and your previous messaging system. For example, in CallPilot, you don't need a main menu. When you log in, you are at your first new message right away. To play your messages, compose new messages, or change mailbox settings, you use standard commands that are common to all features. Prompts guide you whenever you pause, and Help is always there when you need it - just press *. For further information, refer to the CallPilot Multimedia Messaging User Guide. Features CallPilot Previous system These keypad diagrams show the frequently used message commands in CallPilot and your previous system. In CallPilot, the following commands are

106

HFIR Experiment Facilities | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Experiment Facilities Experiment Facilities HFIR Experiment Facilities Neutron Scattering Facilities Target Positions Experiment Facilities in the Beryllium Reflector Large Removable Beryllium Facilities Small Removable Beryllium Facilities Control-Rod Access Plug Facilities Small Vertical Experiment Facilities Large Vertical Experiment Facilities Hydraulic Tube Facility Peripheral Target Positions Neutron Activation Analysis (NAA) Laboratory and Pneumatic Tube Facilities Slant Engineering Facilities Gamma Irradiation Facility Quality Assurance Requirements Contact Information Neutron Scattering Facilities The fully instrumented HFIR will eventually include 15 state-of-the-art neutron scattering instruments, seven of which will be designed exclusively for cold neutron experiments, located in a guide hall south of the reactor

107

NREL: Wind Research - Systems Engineering  

NLE Websites -- All DOE Office Websites (Extended Search)

Computer-Aided Engineering Systems Engineering Controls Analysis Testing Utility Grid Integration Assessment Wind Resource Assessment Projects Facilities Research Staff Working...

108

Heavy oil recovery process: Conceptual engineering of a downhole methanator and preliminary estimate of facilities cost for application to North Slope Alaska  

Science Conference Proceedings (OSTI)

The West Sak (Upper Cretaceous) sands, overlaying the Kuparuk field, would rank among the largest known oil fields in the US, but technical difficulties have so far prevented its commercial exploitation. Steam injection is the most successful and the most commonly-used method of heavy oil recovery, but its application to the West Sak presents major problems. Such difficulties may be overcome by using a novel approach, in which steam is generated downhole in a catalytic Methanator, from Syngas made at the surface from endothermic reactions (Table 1). The Methanator effluent, containing steam and soluble gases resulting from exothermic reactions (Table 1), is cyclically injected into the reservoir by means of a horizontal drainhole while hot produced fluids flow form a second drainhole into a central production tubing. The downhole reactor feed and BFW flow downward to two concentric tubings. The large-diameter casing required to house the downhole reactor assembly is filled above it with Arctic Pack mud, or crude oil, to further reduce heat leaks. A quantitative analysis of this production scheme for the West Sak required a preliminary engineering of the downhole and surface facilities and a tentative forecast of well production rates. The results, based on published information on the West Sak, have been used to estimate the cost of these facilities, per daily barrel of oil produced. A preliminary economic analysis and conclusions are presented together with an outline of future work. Economic and regulatory conditions which would make this approach viable are discussed. 28 figs.

Gondouin, M.

1991-10-31T23:59:59.000Z

109

FTCP Human Factors Engineering Supplemental Competencies  

Energy.gov (U.S. Department of Energy (DOE))

Human Factors Engineering Functional Area Qualification Competencies Examples for DOE Defense Nuclear Facilities Technical Personnel

110

Conceptual Engineering Method for Attenuating He Ion Interactions on First Wall Components in the Fusion Test Facility (FTF) Employing a Low-Pressure Noble Gas  

SciTech Connect

It has been shown that post detonation energetic helium ions can drastically reduce the useful life of the (dry) first wall of an IFE reactor due to the accumulation of implanted helium. For the purpose of attenuating energetic helium ions from interacting with first wall components in the Fusion Test Facility (FTF) target chamber, several concepts have been advanced. These include magnetic intervention (MI), deployment of a dynamically moving first wall, use of a sacrificial shroud, designing the target chamber large enough to mitigate the damage caused by He ions on the target chamber wall, and the use of a low pressure noble gas resident in the target chamber during pulse power operations. It is proposed that employing a low-pressure (~ 1 torr equivalent) noble gas in the target chamber will thermalize energetic helium ions prior to interaction with the wall. The principle benefit of this concept is the simplicity of the design and the utilization of (modified) existing technologies for pumping and processing the noble ambient gas. Although the gas load in the system would be increased over other proposed methods, the use of a "gas shield" may provide a cost effective method of greatly extending the first wall of the target chamber. An engineering study has been initiated to investigate conceptual engineering metmethods for implementing a viable gas shield strategy in the FTF.

C.A.Gentile, W.R.Blanchard, T.Kozub, C.Priniski, I.Zatz, S.Obenschain

2009-09-21T23:59:59.000Z

111

Automatic recognition and evaluation of natural language commands  

Science Conference Proceedings (OSTI)

New applications of artificial neural networks are capable of recognition and verification of effects and safety of commands given by the operator of the technological device. In this paper there is a review of the selected issues on estimation of results ...

Maciej Majewski; Wojciech Kacalak

2006-05-01T23:59:59.000Z

112

Functional Facilities Management Energy Management Structure  

E-Print Network (OSTI)

Engineering Sarah Jones Administrative Assistant Gene Husted General Foreman Steam Distribution Jeff Pickering General Foreman Electrical Distribution Utility Engineers Jim Green Assistant Director, Facilities

Gulliver, Robert

113

Jet-engine-based units for cleaning transport media and thawing frozen soil at mining, metallurgical, and transportation facilities  

Science Conference Proceedings (OSTI)

In recent years, it has become much more difficult to deal with the adhesion and freezing of moist overburden or soil during mining and transport operations due to the increase in the volume of the various materials being mined and transported - coal, ore, fluxes, structural materials, etc. The most productive and effective methods to deal with the sticking and freezing of soil and rock are gas dynamic methods. These methods employ high-speed jets of hot gases from jet engines and can be 15-30 times more productive than mechanical methods and machinery. Proceeding on the basis of calculations, completed studies, and field tests, the Gortekhtrans Department of Research Institute for Problems of the Kursk Magnetic Anomaly (NIIKMA) has developed several highly efficient units that employ this technology.

Khechuev, Y.D.

2008-01-15T23:59:59.000Z

114

Mixed and low-level waste treatment project: Appendix C, Health and safety criteria for the mixed and low-level waste treatment facility at the Idaho National Engineering Laboratory  

Science Conference Proceedings (OSTI)

This report contains health and safety information relating to the chemicals that have been identified in the mixed waste streams at the Waste Treatment Facility at the Idaho National Engineering Laboratory. Information is summarized in two summary sections--one for health considerations and one for safety considerations. Detailed health and safety information is presented in material safety data sheets (MSDSs) for each chemical.

Neupauer, R.M.; Thurmond, S.M.

1992-09-01T23:59:59.000Z

115

Mixed and low-level waste treatment project: Appendix C, Health and safety criteria for the mixed and low-level waste treatment facility at the Idaho National Engineering Laboratory. Part 2, Chemical constituents  

Science Conference Proceedings (OSTI)

This report contains health and safety information relating to the chemicals that have been identified in the mixed waste streams at the Waste Treatment Facility at the Idaho National Engineering Laboratory. Information is summarized in two summary sections--one for health considerations and one for safety considerations. Detailed health and safety information is presented in material safety data sheets (MSDSs) for each chemical.

Neupauer, R.M.; Thurmond, S.M.

1992-09-01T23:59:59.000Z

116

Mixed and low-level waste treatment project: Appendix C, Health and safety criteria for the mixed and low-level waste treatment facility at the Idaho National Engineering Laboratory  

SciTech Connect

This report describes health and safety concerns associated with the Mixed and Low-level Waste Treatment Facility at the Idaho National Engineering Laboratory. Various hazards are described such as fire, electrical, explosions, reactivity, temperature, and radiation hazards, as well as the potential for accidental spills, exposure to toxic materials, and other general safety concerns.

Neupauer, R.M.; Thurmond, S.M.

1992-09-01T23:59:59.000Z

117

Mixed and low-level waste treatment project: Appendix C, Health and safety criteria for the mixed and low-level waste treatment facility at the Idaho National Engineering Laboratory. Part 1, Waste streams and treatment technologies  

SciTech Connect

This report describes health and safety concerns associated with the Mixed and Low-level Waste Treatment Facility at the Idaho National Engineering Laboratory. Various hazards are described such as fire, electrical, explosions, reactivity, temperature, and radiation hazards, as well as the potential for accidental spills, exposure to toxic materials, and other general safety concerns.

Neupauer, R.M.; Thurmond, S.M.

1992-09-01T23:59:59.000Z

118

LINX Test Facility at SLAC  

NLE Websites -- All DOE Office Websites (Extended Search)

LINX LINear collider X-ing Linear Collider Interaction Region Engineering Test Facility at SLAC The NLC collaboration is proposing to create the LINX test facility at SLAC to...

119

Summary of Workshop on Modeling and Simulation for ...  

Science Conference Proceedings (OSTI)

... facilities that have existing engineered models and ... Watch commander/ substation ... Data Management, Electro-mechanical, Engineering Analysis ...

2004-01-13T23:59:59.000Z

120

V-075: EMC AlphaStor Command Injection and Format String Flaws...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5: EMC AlphaStor Command Injection and Format String Flaws Let Remote Users Execute Arbitrary Code V-075: EMC AlphaStor Command Injection and Format String Flaws Let Remote Users...

Note: This page contains sample records for the topic "facilities engineering command" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

MEMORANDUM OF AGREEMENT BETWEEN BEADQUARTERS AIR COMBAT COMMAND  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

AGREEMENT AGREEMENT BETWEEN BEADQUARTERS AIR COMBAT COMMAND AND THE DEPARTMENT OF ENERGY TIBE of this merit Is to estabiish the roles and responsibilities between the Head Qwkn Air Combat Conmad, Acquisition Mm-ent Inkgmtion Center, Technoiogy and h h s t m ~ Division, ( A m A M I W K A ) and H~~ Air Combat Command W l r t t i ~ m and Mkion Support, Bnvirdnmatd Division, E n v ~ ~ Quality Branch, HQ ACCIA7VQ, and The Department of Energy in awarding, admiinistering, and providing technical guidance on enviaom~li1 project & mdmi issued a g d t the design-build, restoration and remediation @Dm) mnmas, I 2 1 This qmmmt applies to environmental design build, restoration and mediation construction coninc~ and WOGW task ordm awded by ACC M C / P K A or The Department of E n e w c o n - offim and may be modified by mutual consent of both parties.

122

Compensated gain control circuit for buck regulator command charge circuit  

DOE Patents (OSTI)

A buck regulator command charge circuit includes a compensated-gain control signal for compensating for changes in the component values in order to achieve optimal voltage regulation. The compensated-gain control circuit includes an automatic-gain control circuit for generating a variable-gain control signal. The automatic-gain control circuit is formed of a precision rectifier circuit, a filter network, an error amplifier, and an integrator circuit.

Barrett, David M. (Albuquerque, NM)

1996-01-01T23:59:59.000Z

123

Method for reducing peak phase current and decreasing staring time for an internal combustion engine having an induction machine  

DOE Patents (OSTI)

A method for reducing the starting time and reducing the peak phase currents for an internal combustion engine that is started using an induction machine starter/alternator. The starting time is reduced by pre-fluxing the induction machine and the peak phase currents are reduced by reducing the flux current command after a predetermined period of time has elapsed and concurrent to the application of the torque current command. The method of the present invention also provides a strategy for anticipating the start command for an internal combustion engine and determines a start strategy based on the start command and the operating state of the internal combustion engine.

Amey, David L. (Birmingham, MI); Degner, Michael W. (Farmington Hills, MI)

2002-01-01T23:59:59.000Z

124

Authorized Limits for the Release of a 25 Ton Locomotive, Serial Number 21547, at the Area 25 Engine Maintenance, Assembly, and Disassembly Facility, Nevada Test Site, Nevada  

SciTech Connect

This document contains process knowledge and radiological data and analysis to support approval for release of the 25-ton locomotive, Serial Number 21547, at the Area 25 Engine Maintenance, Assembly, and Disassembly (EMAD) Facility, located on the Nevada Test Site (NTS). The 25-ton locomotive is a small, one-of-a-kind locomotive used to move railcars in support of the Nuclear Engine for Rocket Vehicle Application project. This locomotive was identified as having significant historical value by the Nevada State Railroad Museum in Boulder City, Nevada, where it will be used as a display piece. A substantial effort to characterize the radiological conditions of the locomotive was undertaken by the NTS Management and Operations Contractor, National Security Technologies, LLC (NSTec). During this characterization process, seven small areas on the locomotive had contamination levels that exceeded the NTS release criteria (limits consistent with U.S. Department of Energy [DOE] Order DOE O 5400.5, “Radiation Protection of the Public and the Environment”). The decision was made to perform radiological decontamination of these known accessible impacted areas to further the release process. On February 9, 2010, NSTec personnel completed decontamination of these seven areas to within the NTS release criteria. Although all accessible areas of the locomotive had been successfully decontaminated to within NTS release criteria, it was plausible that inaccessible areas of the locomotive (i.e., those areas on the locomotive where it was not possible to perform radiological surveys) could potentially have contamination above unrestricted release limits. To access the majority of these inaccessible areas, the locomotive would have to be disassembled. A complete disassembly for a full radiological survey could have permanently destroyed parts and would have ruined the historical value of the locomotive. Complete disassembly would also add an unreasonable financial burden for the contractor. A decision was reached between the NTS regulator and NSTec, opting for alternative authorized limits from DOE Headquarters. In doing so, NSTec personnel performed a dose model using the DOE-approved modeling code RESRAD-BUILD v3.5 to evaluate scenarios. The parameters used in the dose model were conservative. NSTec’s Radiological Engineering Calculation, REC-2010-001, “Public Dose Estimate from the EMAD 25 Ton Locomotive,” concluded that the four scenarios evaluated were below the 25-millirem per year limit, the “likely” dose scenarios met the “few millirem in a year” criteria, and that the EMAD 25-ton locomotive met the radiological requirements to be released with residual radioactivity to the public.

Jeremy Gwin and Douglas Frenette

2010-04-08T23:59:59.000Z

125

NREL: Buildings Research - Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Facilities Facilities NREL provides industry, government, and university researchers with access to state-of-the-art and unique equipment for analyzing a wide spectrum of building energy efficiency technologies and innovations. NREL engineers and researchers work closely with industry partners to research and develop advanced technologies. NREL's existing facilities have been used to test and develop many award-winning building technologies and innovations that deliver significant energy savings in buildings, and the new facilities further extend those capabilities. In addition, the NREL campus includes living laboratories, buildings that researchers and other NREL staff use every day. Researchers monitor real-time building performance data in these facilities to study energy use

126

sbc3r15 – SCSI Block Commands – 3  

E-Print Network (OSTI)

Traditional storage devices pre-allocate physical storage for every possible logical block. There is a fixed one-to-one relationship between the physical storage and the logical storage (every logical block is permanently mapped to a physical block). Generally speaking, the physical capacity of the device is always the same as the logical capacity of the device (plus spares if any). The READ CAPACITY command reports the usable number of logical blocks to the application client. Historically, this has been referred to simply as the capacity of the device. These devices are fully provisioned. Thinly provisioned devices also report the capacity in the READ CAPACITY command, but they do not allocate (or map) their physical storage in the same way that fully provisioned devices do. Thinly provisioned devices do not necessarily have a permanent one-to-one relationship between the physical storage and the logical storage. Thinly provisioned devices may report a different capacity (in the READ CAPACITY command), than their actual physical capacity. These devices often report a larger capacity than the actual physical capacity for storing user data. As a result of the lack of a permanent mapping between physical storage and logical storage, the concept of different types of capacity is created. In addition, this creates the concepts of pools of blocks (allocated blocks, mapped blocks, available blocks, etc). This therefore requires the definition of several new terms. The proposed terms are listed in the definitions section in the body of the proposal. 1 of 16This may be represented pictorially as follows:

Available Pool

2008-01-01T23:59:59.000Z

127

ARM - Engineering Work Request & Engineering Work Order Guidelines  

NLE Websites -- All DOE Office Websites (Extended Search)

Work Request & Engineering Work Request & Engineering Work Order Guidelines Page Contents: Introduction Discussion of the ARM Climate Research Facility Engineering Process: The Engineering Change Request (ECR) and the Engineering Change Order (ECO) Operations and Engineering Task Consulting: The Engineering Work Request (EWR) and the Engineering Work Order (EWO) Relationship of the ECR/ECO and EWR/EWO to the Engineering Task Tracking Tool Relationship of the ECR/ECO and EWR/EWO to the Existing Configuration Control Process in the ARM Climate Research Facility(PIF/CAR, PRR, ORR, and BCR) Glossary Frequently Asked Questions (PDF, 173K) Engineering Work Request & Engineering Work Order Guidelines Process Guidelines for the Engineering Change Request/Engineering Change Order and Engineering Work Request/Engineering Work Order

128

Mitch S. Daugherty Nuclear Engineering and Planning Manager  

E-Print Network (OSTI)

. Daugherty also headed the Nuclear Refueling Division, the Nuclear Test Engineering Division, and the NuclearMitch S. Daugherty Nuclear Engineering and Planning Manager Naval Sea Systems Command, Norfolk Naval Shipyard Mitch Daugherty is the Nuclear Engineering and Planning Manager and the senior civilian

129

Argonne Chemical Sciences & Engineering - Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Catalysis & Energy Conversion Electrochemical Energy Storage Nuclear & Environmental Processes National Security Institute for Atom-Efficient Chemical Transformations Center for...

130

Facilities - Nuclear Engineering Division (Argonne)  

NLE Websites -- All DOE Office Websites (Extended Search)

Laboratory (RL) Robotics Lab The Robotics Laboratory (RL) houses various remote manipulator systems, including the Dual Arm Work Platform, to support enhancements to...

131

Experience in Nuclear Criticality Safety - Nuclear Engineering...  

NLE Websites -- All DOE Office Websites (Extended Search)

design and operations of a variety of Argonne facilities and operations: the Alpha-Gamma Hot Cell Facility (AGHCF), Chemical Engineering Division (CMT) separation technology...

132

Facility Name Facility Name Facility FacilityType Owner Developer EnergyPurchaser  

Open Energy Info (EERE)

Name Facility Name Facility FacilityType Owner Developer EnergyPurchaser Name Facility Name Facility FacilityType Owner Developer EnergyPurchaser Place GeneratingCapacity NumberOfUnits CommercialOnlineDate WindTurbineManufacturer FacilityStatus Coordinates D Metals D Metals D Metals Definition Small Scale Wind Valley City OH MW Northern Power Systems In Service AB Tehachapi Wind Farm AB Tehachapi Wind Farm AB Tehachapi Definition Commercial Scale Wind Coram Energy AB Energy Southern California Edison Co Tehachapi CA MW Vestas In Service AFCEE MMR Turbines AFCEE MMR Turbines AFCEE MMR Turbines Definition Commercial Scale Wind AFCEE Air Force Center for Engineering and the Environment Distributed generation net metered Camp Edwards Sandwich MA MW GE Energy In Service AG Land AG Land AG Land Definition Community Wind AG Land Energy LLC

133

V-075: EMC AlphaStor Command Injection and Format String Flaws Let Remote  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5: EMC AlphaStor Command Injection and Format String Flaws Let 5: EMC AlphaStor Command Injection and Format String Flaws Let Remote Users Execute Arbitrary Code V-075: EMC AlphaStor Command Injection and Format String Flaws Let Remote Users Execute Arbitrary Code January 23, 2013 - 12:26am Addthis PROBLEM: EMC AlphaStor Command Injection and Format String Flaws Let Remote Users Execute Arbitrary Code PLATFORM: EMC AlphaStor 4.0 prior to build 800 (All platforms) ABSTRACT: Two vulnerabilities were reported in EMC AlphaStor. REFERENCE LINKS: ESA-2013-008: SecurityTracker Alert ID: 1028020 Secunia Advisory SA51930 CVE-2013-0928 CVE-2013-0929 IMPACT ASSESSMENT: Medium DISCUSSION: A remote user can send a specially crafted DCP run command to inject commands and cause the Device Manager (rrobotd.exe) to execute arbitrary code on the target system [CVE-2013-0928].

134

V-075: EMC AlphaStor Command Injection and Format String Flaws Let Remote  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5: EMC AlphaStor Command Injection and Format String Flaws Let 5: EMC AlphaStor Command Injection and Format String Flaws Let Remote Users Execute Arbitrary Code V-075: EMC AlphaStor Command Injection and Format String Flaws Let Remote Users Execute Arbitrary Code January 23, 2013 - 12:26am Addthis PROBLEM: EMC AlphaStor Command Injection and Format String Flaws Let Remote Users Execute Arbitrary Code PLATFORM: EMC AlphaStor 4.0 prior to build 800 (All platforms) ABSTRACT: Two vulnerabilities were reported in EMC AlphaStor. REFERENCE LINKS: ESA-2013-008: SecurityTracker Alert ID: 1028020 Secunia Advisory SA51930 CVE-2013-0928 CVE-2013-0929 IMPACT ASSESSMENT: Medium DISCUSSION: A remote user can send a specially crafted DCP run command to inject commands and cause the Device Manager (rrobotd.exe) to execute arbitrary code on the target system [CVE-2013-0928].

135

Argonne Transportation Technology R&D Center - Research Facilities - APRF,  

NLE Websites -- All DOE Office Websites (Extended Search)

Transportation Research Facilities Transportation Research Facilities Argonne provides a wide range of facilities and laboratories for conducting cutting-edge transportation research and testing. The facilities offer state-of-the-art equipment and capabilities. APRF Advanced Powertrain Research Facility Battery Post-Test Facility Battery Post-Test Facility Battery testing at the EADL Electrochemical Analysis and Diagnostics Laboratory Engine Research Facility Engine Research Facility Fuel cell research Fuel Cell Test Facility Materials Engineering Research Facility Materials Engineering Research Facility Transportation APS Beamline Transportation Beamline at Argonne's Advanced Photon Source tribology lab Tribology Laboratory TRACC Transportation Research and Analysis Computing Center

136

Commander, Naval Base ATTN: Ms. Cheryl Barnett Building N-26  

Office of Legacy Management (LM)

.J>?j 1.2 1990 .J>?j 1.2 1990 Commander, Naval Base ATTN: Ms. Cheryl Barnett Building N-26 Code N 9 E Norfolk, Virginia 23511-6002 Dear Ms. Barnett: I enjoyed speaking with you on the phone. The Department of Energy (DOE) has established its Formerly Utilized Sites Remedial Action Program (FUSRAP) to identify sites formerly utilized by its predecessor agencies in the early days of the nation's atomic energy program and to determine the potential for these sites to contain radiological contamination, related to DOE's past activities, which may require remedial action. When necessary, radiological surveys of individual sites are performed to provide the data necessary to make this necessary determination. As we discussed, in July 1956, the Atomic Energy Commission (a DOE

137

Commander, Seneca Army Depot Attention: Thomas Stincic, Safety Officer  

Office of Legacy Management (LM)

9 1986 9 1986 Department of Energy Washington, D .C. 20545 . Commander, Seneca Army Depot Attention: Thomas Stincic, Safety Officer Romulus, New York 14541 Dear Mr. Stincic: As you are aware, the Department of Energy is evaluating the radiological condition of sites formerly used by Department predecessors during the early years of nuclear energy development , and a portion of the Seneca Army Depot was identified as one such site. While our preliminary inves-tiga- tions did identify residual radioactive material on the site, it is our understanding that the Department of Army assumed responsibility for this residual radioactivity and has completed remedial action. We have not received a final report of this work and would appreciate receiving a copy

138

NREL: Hydrogen and Fuel Cells Research - Research Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Facilities Scientists, engineers, and analysts develop hydrogen and fuel cell technologies at NREL's extensive research facilities in Golden, Colorado. Fuel Cell...

139

Nuclear Systems Technologies - Nuclear Engineering Division ...  

NLE Websites -- All DOE Office Websites (Extended Search)

Departments involved: Research & Test Reactor | Engineering Development and Applications "Decommissioning of Nuclear Facilities" training courses Argonne Decommissioning Training...

140

Nuclear Facilities Production Facilities  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration under contract DE-AC04-94AL85000. Sand 2011-4582P. ENERGY U.S. DEPARTMENT OF Gamma Irradiation Facility (GIF) The GIF provides test cells for...

Note: This page contains sample records for the topic "facilities engineering command" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Design and evaluation of a command recommendation system for software applications  

Science Conference Proceedings (OSTI)

We examine the use of modern recommender system technology to aid command awareness in complex software applications. We first describe our adaptation of traditional recommender system algorithms to meet the unique requirements presented by the domain ... Keywords: Collaborative filtering, command recommender system

Wei Li; Justin Matejka; Tovi Grossman; Joseph A. Konstan; George Fitzmaurice

2011-06-01T23:59:59.000Z

142

U-218: Cisco Linksys WMB54G TFTP Command Injection Vulnerability |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

18: Cisco Linksys WMB54G TFTP Command Injection Vulnerability 18: Cisco Linksys WMB54G TFTP Command Injection Vulnerability U-218: Cisco Linksys WMB54G TFTP Command Injection Vulnerability July 23, 2012 - 6:49am Addthis PROBLEM: Cisco Linksys WMB54G TFTP Command Injection Vulnerability PLATFORM: Cisco Linksys WMB54G 1.x ABSTRACT: System access from local network reference LINKS: Bugtraq ID: 54615 Original Advisory Secunia Advisory SA49868 Cisco Advisory ID: cisco-sa-20111019-cs IMPACT ASSESSMENT: Medium Discussion: A vulnerability in Cisco Linksys WMB54G was reported, which can be exploited by malicious people to compromise a vulnerable device. The vulnerability is caused due to missing input validation in the TFTP service when running the firmware update functionality and can be exploited to inject and execute arbitrary shell commands. Additionally, it may be

143

U-163: PHP Command Parameter Bug Lets Remote Users Obtain Potentially  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3: PHP Command Parameter Bug Lets Remote Users Obtain 3: PHP Command Parameter Bug Lets Remote Users Obtain Potentially Sensitive Information and Execute Arbitrary Code U-163: PHP Command Parameter Bug Lets Remote Users Obtain Potentially Sensitive Information and Execute Arbitrary Code May 7, 2012 - 7:00am Addthis PROBLEM: PHP Command Parameter Bug Lets Remote Users Obtain Potentially Sensitive Information and Execute Arbitrary Code PLATFORM: Prior to 5.3.12 and 5.4.2 ABSTRACT: A vulnerability was reported in PHP. A remote user can obtain potentially sensitive information. A remote user can execute arbitrary code on the target system. reference LINKS: SecurityTracker Alert ID: 1027022 CVE-2012-1823 CVE-2012-2311 IMPACT ASSESSMENT: High Discussion: A remote user can submit a specially crafted request containing a command

144

Review of Test Facilities for Distributed Energy Resources  

E-Print Network (OSTI)

troughs and a Solar Furnace. Currently, the facility is testing a 10 kW grid-connected Stirling engine

145

Optimal command generation for maneuvering the space station  

E-Print Network (OSTI)

The objective of this research is to obtain near minimum-fuel and minimum-time maneuver commands for large-angle maneuvers for the international space station. Attitude and angular velocity waypoints are generated using the method of differential inclusion. This approach, motivated by the inverse dynamics method, reduces the dimensionality of the discretized problem to be solved. Different types of control schemes are investigated using a combination of Thrusters and Control Moment Gyros. The optimized controls are determined using standard nonlinear optimization methods from the MATLAB program toolboxes. The maneuvers can be completed using considerably less fuel compared to eigen-axis maneuvers currently being implemented for the International Space Station. The differential inclusion method reduces the need for CMG desaturations as compared to a controller similar to the one on board the International Space Station. The near minimum-time results are comparable to eigen-axis maneuvers. The differential inclusion method is flexible and can easily be modified to accommodate the needs of problems with different constraints. The results obtained in this research use approximate models of the space environment and vehicle dynamics; however, the results can easily be used in a higher fidelity optimization.

Bryson, Amy Louise

2001-01-01T23:59:59.000Z

146

Implementation plan for operating alternatives for the Naval Computer and Telecommunications Station cogeneration facility at Naval Air Station North Island, San Diego, California  

SciTech Connect

The goal of the US Department of Energy (DOE) Federal Energy Management Program (FEMP) is to facilitate energy efficiency improvements at federal facilities. This is accomplished by a balanced program of technology development, facility assessment, and use of cost-sharing procurement mechanisms. Technology development focuses upon the tools, software, and procedures used to identify and evaluate energy efficiency technologies and improvements. For facility assessment, FEMP provides metering equipment and trained analysts to federal agencies exhibiting a commitment to improve energy use efficiency. To assist in procurement of energy efficiency measures, FEMP helps federal agencies devise and implement performance contracting and utility demand-side management strategies. Pacific Northwest Laboratory (PNL) supports the FEMP mission of energy systems modernization. Under this charter, the Laboratory and its contractors work with federal facility energy managers to assess and implement energy efficiency improvements at federal facilities nationwide. The SouthWestern Division of the Naval Facilities Engineering Command, in cooperation with FEMP, has tasked PNL with developing a plan for implementing recommended modifications to the Naval Computer and Telecommunications Station (NCTS) cogeneration plant at the Naval Air Station North Island (NASNI) in San Diego. That plan is detailed in this report.

Carroll, D.M.; Parker, S.A.; Stucky, D.J.

1994-04-01T23:59:59.000Z

147

Engineering Technical Letter (ETL) 11-28: Mandatory Review and Update of Record Drawings for Nuclear-Capable Weapons and Munitions Storage and Maintenance Facilities  

E-Print Network (OSTI)

1. Purpose. This ETL provides criteria for munitions and nuclear weapons-capable maintenance and storage facilities (munitions storage areas [MSA] and weapons storage areas [WSA]) which are existing, under design, or under contract, and located in the continental United States (CONUS). It addresses requirements for reviewing and updating record drawings and requirements for as-built drawings for projects under design or under contract. Future project requirements will be addressed in a revision of Air Force instruction (AFI) 32-1065, Grounding Systems. 2. Application: Air Force installations with munitions and nuclear weapons-capable maintenance and storage facilities. The requirements in this ETL are mandatory.

Major Comm; Majcom Electrical Engineers

2011-01-01T23:59:59.000Z

148

Research Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

FLEX lab image, windows testing lab, scientist inside a lab, Research Facilities EETD maintains advanced research and test facilities for buildings, energy technologies, air...

149

Chemical Hygiene Plan for the MRL TEMPO Facility  

E-Print Network (OSTI)

1 Chemical Hygiene Plan for the MRL TEMPO Facility March 22, 2013 Update and Revision Table Commandments of Safety 22 8) Preparing For A New Project 23 9) Chemical Storage 28 10) Lab Coats and Clothing 31 11) Accidents, Eyewashes, First Aid Kits, and Chemical Spill Clean Up Kits 33 12) Emergency

Bigelow, Stephen

150

Chemical Hygiene Plan for the MRL TEMPO Facility  

E-Print Network (OSTI)

1 Chemical Hygiene Plan for the MRL TEMPO Facility September 25, 2009 Update and Revision Table Commandments of Safety 22 8) Preparing For A New Project 23 9) Chemical Storage 27 10) Lab Coats and Clothing 30 11) Accidents, Eyewashes, First Aid Kits, and Chemical Spill Clean Up Kits 32 12) Emergency

Akhmedov, Azer

151

Midtemperature Solar Systems Test Facility predictions for thermal performance based on test data: Custom Engineering trough with glass reflector surface and Sandia-designed receivers  

DOE Green Energy (OSTI)

Thermal performance predictions based on test data are presented for the Custom Engineering trough and Sandia-designed receivers, with glass reflector surface, for three output temperatures at five cities in the United States. Two experimental receivers were tested, one with an antireflective coating on the glass envelope around the receiver tube and one without the antireflective coating.

Harrison, T.D.

1981-05-01T23:59:59.000Z

152

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

More Storage Space, Better Reliability Now at the ARM Data Management More Storage Space, Better Reliability Now at the ARM Data Management Facility Bookmark and Share To support the ever-increasing file storage needs of the ARM Data Management Facility (DMF) and ARM Engineering computers, a Network Appliance (NetApp®) file server with 2.68 terabytes, or 2.95 trillion bytes, of highly-reliable and extremely-fast, usable disk storage joined the DMF servers. The NetApp system performs nearly four times faster than the previous file server and is engineered for a higher degree of reliability-critical improvements needed to maintain uptime for ARM data availability at the DMF. A NetApp server increases ARM storage capacity and keeps the data flowing at the Data Management Facility. A NetApp server increases ARM storage capacity and keeps the data flowing

153

Facility Microgrids  

Science Conference Proceedings (OSTI)

Microgrids are receiving a considerable interest from the power industry, partly because their business and technical structure shows promise as a means of taking full advantage of distributed generation. This report investigates three issues associated with facility microgrids: (1) Multiple-distributed generation facility microgrids' unintentional islanding protection, (2) Facility microgrids' response to bulk grid disturbances, and (3) Facility microgrids' intentional islanding.

Ye, Z.; Walling, R.; Miller, N.; Du, P.; Nelson, K.

2005-05-01T23:59:59.000Z

154

U-157: Ruby Mail Gem Directory Traversal and Shell Command Injection  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

57: Ruby Mail Gem Directory Traversal and Shell Command 57: Ruby Mail Gem Directory Traversal and Shell Command Injection Vulnerabilities U-157: Ruby Mail Gem Directory Traversal and Shell Command Injection Vulnerabilities April 27, 2012 - 7:00am Addthis PROBLEM: Ruby Mail Gem Directory Traversal and Shell Command Injection Vulnerabilities PLATFORM: Mail gem for Ruby 2.x ABSTRACT: Some vulnerabilities have been reported in the Mail gem for Ruby, which can be exploited by malicious people to manipulate certain data and compromise a vulnerable system. Reference Links: Secunia Advisory SA48970 CVE-2012-2139 CVE-2012-2140 IMPACT ASSESSMENT: Medium Discussion: Input passed via the "to" parameter within the file delivery method is not properly verified before being used and can be exploited to modify arbitrary files via directory traversal attacks. Certain input passed to

155

V-227: VMware Workstation and Player vmware-mount Command Flaw Lets Local  

NLE Websites -- All DOE Office Websites (Extended Search)

7: VMware Workstation and Player vmware-mount Command Flaw Lets 7: VMware Workstation and Player vmware-mount Command Flaw Lets Local Users Gain Root Privileges V-227: VMware Workstation and Player vmware-mount Command Flaw Lets Local Users Gain Root Privileges August 26, 2013 - 6:00am Addthis PROBLEM: A vulnerability was reported in VMware Workstation and Player on Debian-based systems PLATFORM: VMware Workstation 8.x, 9.x and Player 4.x, 5.x ABSTRACT: VMware Workstation and Player contain a vulnerability in the handling of the vmware-mount command REFERENCE LINKS: Security Tracker Alert ID 1028948 VMware Security Advisory VMSA-2013-0010 CVE-2013-1662 IMPACT ASSESSMENT: Medium DISCUSSION: A local malicious user may exploit this vulnerability to escalate their privileges to root on the host OS. The issue is present when Workstation or

156

V-054: IBM WebSphere Application Server for z/OS Arbitrary Command  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4: IBM WebSphere Application Server for z/OS Arbitrary Command 4: IBM WebSphere Application Server for z/OS Arbitrary Command Execution Vulnerability V-054: IBM WebSphere Application Server for z/OS Arbitrary Command Execution Vulnerability December 25, 2012 - 12:08am Addthis PROBLEM: IBM WebSphere Application Server for z/OS Arbitrary Command Execution Vulnerability PLATFORM: IBM HTTP Server for z/OS Version 5.3 ABSTRACT: A vulnerability was reported in the IBM HTTP Server component 5.3 in IBM WebSphere Application Server (WAS) for z/OS REFERENCE LINKS: Security vulnerability Reference #:1620945 Xforce: 80684 Secunia Advisory SA51656 CVE-2012-5955 IMPACT ASSESSMENT: High DISCUSSION: A vulnerability has been reported in IBM WebSphere Application Server for z/OS, which can be exploited by malicious people to compromise a vulnerable

157

Photo Release: U.S. Energy Secretary Chu at BP Command Center in Houston |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Release: U.S. Energy Secretary Chu at BP Command Center in Release: U.S. Energy Secretary Chu at BP Command Center in Houston Photo Release: U.S. Energy Secretary Chu at BP Command Center in Houston May 28, 2010 - 12:00am Addthis Washington D.C. --- At the request of President Obama, U.S. Energy Secretary Steven Chu has been helping oversee BP's "top kill" efforts from the BP Command Center in Houston. Below are two photographs from this week. Photo credit: Department of Energy. Secretary Steven Chu and National Laboratory scientists review options over a conference room table. U.S. Energy Secretary Steven Chu and National Laboratory scientists review options for the "top kill" attempt with BP officials. Secretary Steven Chu works on flow and resistance calculations on a conference room table

158

Command in air war : centralized vs. decentralized control of combat airpower  

E-Print Network (OSTI)

This study answers the question, "What has been the impact of the Information Age on the Air Force's doctrinal tenet of "centralized control and decentralized execution?" It traces the evolution of command and control of ...

Kometer, Michael W

2005-01-01T23:59:59.000Z

159

The use of coreference resolution for understanding manipulation commands for the PR2 Robot  

E-Print Network (OSTI)

Natural language interaction can enable us to interface with robots such as the Personal Robot 2 (PR2), without the need for a special training or equipment. Programming such a robot to follow commands is challenging because ...

Simeonov, Dimitar N

2012-01-01T23:59:59.000Z

160

Express and Confirmation AOC Swapping Commands for DMT DSLs (99-118)  

E-Print Network (OSTI)

: Two new bit-swap commands are introduced by this contribution: An Express-Swap command for reliable and very fast implementation of swapping and a Bit-Swap Confirmation command for low-complexity implementation of absolutely reliable swapping. ________________________________________________________________________ NOTICE This contribution has been prepared to assist Standards Committee T1 - Telecommunications. This document is offered to the Committee as a basis for discussion and is not a binding on any of the companies listed as authors. The requirements are subject to change after further study. The authors specifically reserve the right to add to, amend, or withdraw the statements contained herein. 03/06/99 2 T1E1.4/99-118 Express and Confirmation AOC Swapping Commands for DMT DSLs (99-118) L. Hoo, A. Salvekar, C. Aldana, & J.M. Cioffi Information Systems Laboratory Stanford University Stanford, CA 94305 Cioffi@stanford.edu P. Chow & J. Carlo Broadband Access Group ...

Source Hoo Salvekar; Source L. Hoo; L. Hoo; A. Salvekar; A. Salvekar; C. Aldana; C. Aldana; J. M. Cioffi; J. M. Cioffi; P. Chow; P. Chow; J. Carlo; J. Carlo

1999-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "facilities engineering command" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Reading Between the Lines: Learning to Map High-level Instructions to Commands  

E-Print Network (OSTI)

In this paper, we address the task of mapping high-level instructions to commands in an external environment. Processing these instructions is challenging—they posit goals to be achieved without specifying the steps required ...

Branavan, Satchuthanan R.

162

Chemical Engineering | More Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemical and Engineering Materials Clean Energy Nuclear Sciences Computer Science Earth and Atmospheric Sciences Materials Science and Engineering Mathematics Physics More Science Home | Science & Discovery | More Science | Engineering SHARE Engineering Engineering at ORNL is integrated with nearly all of the scientific research areas and user facilities. In particular, ORNL has core capabilities chemical engineering and systems engineering. Chemical engineering moves knowledge gained from fundamental chemical research toward applications. For example, this capability supports the development of fuel reprocessing techniques and enables radioisotope production, isotope separation, and development of isotope applications. This capacity also contributes to advances in energy efficiency, renewable

163

Opportunities for integrating deliberate and time-sensitive joint depolyment planning in USTRANSCOM component commands  

Science Conference Proceedings (OSTI)

The Decision System Research Section of the Oak Ridge National Laboratory (ORNL) is assisting the Deployment Directorate (formerly the Joint Deployment Agency) of the US Transportation Command (USTRANSCOM) in identifying and evaluating opportunities for improving the automation support used in deliberate and time-critical deployment planning. USTRANSCOM, which is a unified command (i.e., personnel are drawn from all services), was created in the fall of 1987 to consolidate the functions of the former Military Transportation Operating Agencies (the Military Airlift Command, the Military Traffic Management Command, and the Military Sealift Command). An important factor justifying creation of USTRANSCOM, was the possibility of combining and improving coordination in deployment planning between the organizations responsible for strategic transportation activities during times of crisis. This report, the second in a series to be produced in the course of the ORNL study, presents three possibilities for integrating deliberate and time-sensitive planning. Two proposals recommended for use by MTMC and MSC build on cooperative planning initiatives already in progress in the two commands. A unique application of relative probabilistic measures is a key element in a proposal for improving MTMC/MAC airlift planning. 35 refs., 1 tab.

Edwards, R.

1988-05-02T23:59:59.000Z

164

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

Annual Quality Improvement Inspections Take Place Annual Quality Improvement Inspections Take Place Bookmark and Share During the SGP site audit conducted in April 2005, a member of the Continuous Quality Improvement Program team is accompanied by a local jackrabbit at the Ringwood Extended Facility. During the SGP site audit conducted in April 2005, a member of the Continuous Quality Improvement Program team is accompanied by a local jackrabbit at the Ringwood Extended Facility. The Continuous Quality Improvement Program (CQIP) implemented by the ARM Program in 1998 requires annual audits and inspection visits to each of the ARM Climate Research Facility Southern Great Plains (SGP) site's 27 field facilities located in Oklahoma and Kansas. A small team of scientists and engineers conduct the inspections each year to evaluate the field

165

PNNL: About PNNL - Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Scientific Facilities Scientific Facilities At PNNL, we offer scientific researchers access to unique equipment housed in state-of-the-art facilities as well as onsite experts to help visiting researchers take advantage of and make best use of the capabilities. You also have the opportunity to collaborate with our world-renowned scientists and engineers who can help you advance your scientific research and publish your results. Take a virtual tour of some of our laboratories. William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) EMSL EMSL is a U.S. Department of Energy (DOE) national user facility currently shared and used by researchers from around the world. Research at EMSL focuses principally on developing a molecular-level understanding of the physical, chemical, and biological processes that underlie the most

166

MAX Fluid Dynamics facility  

NLE Websites -- All DOE Office Websites (Extended Search)

MAX Fluid Dynamics facility MAX Fluid Dynamics facility Capabilities Engineering Experimentation Reactor Safety Testing and Analysis Overview Nuclear Reactor Severe Accident Experiments MAX NSTF SNAKE Aerosol Experiments System Components Laser Applications Robots Applications Other Facilities Other Capabilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr MAX Fluid Dynamics facility Providing high resolution data for development of computational tools that model fluid flow and heat transfer within complex systems such as the core of a nuclear reactor. 1 2 3 4 5 Hot and cold air jets are mixed within a glass tank while laser-based anemometers and a high-speed infrared camera characterize fluid flow and heat transfer behavior. Click on image to view larger size image.

167

Facility effluent monitoring plan for the 327 Facility  

Science Conference Proceedings (OSTI)

The 327 Facility [Post-Irradiation Testing Laboratory] provides office and laboratory space for Pacific Northwest Laboratory (PNL) scientific and engineering staff conducting multidisciplinary research in the areas of post-irradiated fuels and structural materials. The facility is designed to accommodate the use of radioactive and hazardous materials in the conduct of these activities. This report summarizes the airborne emissions and liquid effluents and the results of the Facility Effluent Monitoring Plan (FEMP) determination for the facility. The complete monitoring plan includes characterization of effluent streams, monitoring/sampling design criteria, a description of the monitoring systems and sample analysis, and quality assurance requirements.

NONE

1994-11-01T23:59:59.000Z

168

Converting a commercial electric direct-drive robot to operate from joint torque commands  

SciTech Connect

Many robot control algorithms for high performance in-contact operations including hybrid force/position, stiffness control and impedance control approaches require the command the joint torques. However, most commercially available robots do not provide joint torque command capabilities. The joint command at the user level is typically position or velocity and at the control developer level is voltage, current, or pulse-width, and the torque generated is a nonlinear function of the command and joint position. To enable the application of high performance in-contact control algorithms to commercially available robots, and thereby facilitate technology transfer from the robot control research community to commercial applications, an methodology has been developed to linearize the torque characteristics of electric motor-amplifier combinations. A four degree of freedom Adept 2 robot, having pulse-width modulation amplifiers and both variable reluctance and brushless DC motors, is converted to operate from joint torque commands to demonstrate the methodology. The commercial robot controller is replaced by a VME-based system incorporating special purpose hardware and firmware programmed from experimental data. The performance improvement is experimentally measured and graphically displayed using three-dimensional plots of torque vs command vs position. The average percentage torque deviation over the command and position ranges is reduced from as much as 76% to below 5% for the direct-drive joints 1, 2 and 4 and is cut by one half in the remaining ball-screw driven joint 3. Further, the torque deviation of the direct-drive joints drops below 2.5% if only the upper 90% of the torque range is considered. 23 refs., 20 figs., 2 tabs.

Muir, P.F.

1991-07-01T23:59:59.000Z

169

Facilities Management | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Operations » Facilities Management Operations » Facilities Management Facilities Management INL is a multiprogram, federally funded research and development center (FFRDC) emphasizing applied engineering to provide solutions for use across the DOE complex, as well as regionally, nationally, and world wide. INL is a multiprogram, federally funded research and development center (FFRDC) emphasizing applied engineering to provide solutions for use across the DOE complex, as well as regionally, nationally, and world wide. Overview The Office of Facilities Management manages programs to maintain and deliver nuclear research facilities and capabilities at the Idaho National Laboratory (INL) that are required to help meet the nation's strategic needs in energy and national security. It is part of the Department of

170

CANISTER HANDLING FACILITY DESCRIPTION DOCUMENT  

Science Conference Proceedings (OSTI)

The purpose of this facility description document (FDD) is to establish requirements and associated bases that drive the design of the Canister Handling Facility (CHF), which will allow the design effort to proceed to license application. This FDD will be revised at strategic points as the design matures. This FDD identifies the requirements and describes the facility design, as it currently exists, with emphasis on attributes of the design provided to meet the requirements. This FDD is an engineering tool for design control; accordingly, the primary audience and users are design engineers. This FDD is part of an iterative design process. It leads the design process with regard to the flowdown of upper tier requirements onto the facility. Knowledge of these requirements is essential in performing the design process. The FDD follows the design with regard to the description of the facility. The description provided in this FDD reflects the current results of the design process.

J.F. Beesley

2005-04-21T23:59:59.000Z

171

Application: Facilities  

Science Conference Proceedings (OSTI)

... Option.. Papavergos, PG; 1991. Halon 1301 Use in Oil and Gas Production Facilities: Alaska's North Slope.. Ulmer, PE; 1991. ...

2011-12-22T23:59:59.000Z

172

wind engineering & natural disaster mitigation  

E-Print Network (OSTI)

wind engineering & natural disaster mitigation #12;wind engineering & natural disaster mitigation Investment WindEEE Dome at Advanced Manufacturing Park $31million Insurance Research Lab for Better Homes $8million Advanced Facility for Avian Research $9million #12;wind engineering & natural disaster mitigation

Sinnamon, Gordon J.

173

U.S. Army Engineer Waterways Experiment Station (WES) support to Department of Energy Rocky Flats Facility (DOE RF) saltcrete processing. Progress report, October 1--December 31, 1994  

SciTech Connect

This report summarizes work authorized for technical and scientific support to waste cementation and saltcrete processing operations. During this report period, tasks described in amendment M003 were initiated, some were completed, and an additional task not listed in M003 also was completed at the request of DOE RF. Summaries of task-specific activities are in four enclosures to this progress report. Other activities during this quarter included negotiation and initiation of amendment M004, to extend the period of performance and continue WES assistance to DOE RF. The four enclosures are: continuing support to waste cementation and saltcrete operations at DOE Rocky Flats Facility; review of ``Analyses of saltcrete``; review of Connell, et al ``Saltcrete evaluation`` report dated August 16, 1993; and scoping study of simulated saltcrete.

NONE

1995-01-27T23:59:59.000Z

174

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

December 15, 2007 [Facility News] December 15, 2007 [Facility News] Radar Antenna Replacement Effort Begins at Barrow Bookmark and Share On November 28, 2007, ARM operations and engineering staff braved -15°F weather to install the new radar antenna at Barrow. After lifting the antenna via crane onto the roof of the skydeck, the gloves had to come off to securely fasten all the tiny connecting screws and bolts-brrrrr! On November 28, 2007, ARM operations and engineering staff braved -15°F weather to install the new radar antenna at Barrow. After lifting the antenna via crane onto the roof of the skydeck, the gloves had to come off to securely fasten all the tiny connecting screws and bolts-brrrrr! For estimates of cloud boundaries, there is no better capability than the millimeter wave cloud radar (MMCR). This sophisticated radar is part of the

175

U-074: Microsoft .NET Bugs Let Remote Users Execute Arbitrary Commands,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4: Microsoft .NET Bugs Let Remote Users Execute Arbitrary 4: Microsoft .NET Bugs Let Remote Users Execute Arbitrary Commands, Access User Accounts, and Redirect Users U-074: Microsoft .NET Bugs Let Remote Users Execute Arbitrary Commands, Access User Accounts, and Redirect Users January 4, 2012 - 8:00am Addthis PROBLEM: Microsoft .NET Bugs Let Remote Users Execute Arbitrary Commands, Access User Accounts, and Redirect Users . PLATFORM: Windows XP Service Pack 3 Windows XP Professional x64 Edition Service Pack 2 Windows Server 2003 Service Pack 2 Windows Server 2003 x64 Edition Service Pack 2 Windows Server 2003 with SP2 for Itanium-based Systems Windows Vista Service Pack 2 Windows Vista x64 Edition Service Pack 2 Windows Server 2008 for 32-bit Systems Service Pack 2 Windows Server 2008 for x64-based Systems Service Pack 2

176

The radiological impact of the 2000 Hanford Fire (24-Command Fire)  

E-Print Network (OSTI)

The range fire at the Hanford facility in late June 2000 coupled with the fire at Los Alamos during the same year have raised a number of questions about the potential migration and/or transport of radioactive materials off U.S. nuclear sites into more populated areas. This paper examines the radiological impact of the 24-Command Fire, which occurred on the Hanford Site in late June 2000. Several different approaches are compared against each other to determine the validity of the results. The approaches include physical calculations from collected data as well as estimates from current transport and diffusion software. The analysis begins with the estimation of release. There are sufficient data on the concentrations of radionuclides in the most contaminated areas of the Hanford Site, but very little on the land in between. Once soil concentrations were determined, resuspension factors were applied to estimate releases of material from these areas. A Hanford-specific diffusion and dispersion program, a dose assessment program, and a calculation by hand were used to determine the estimated transport of material to areas populated by the general public. These results are compared against each other as well as the air monitoring results obtained and reported by the United States Environmental Protection Agency and the Washington State Department of Health. Air concentrations from all three methods were used to calculate the associated doses and risks to individuals in these areas. From the analyses, the radiological impact of the fire was determined to be minimal. The ensuing wind events, resuspending particulate matter from the contaminated areas burned during the fire, resulted in a committed effective dose of approximately 10 []Sv (0.01 mrem) from the inhalation of contaminated air. This dose is insignificant when compared to the 360 mrem per year average dose of a member of the general public from indoor and outdoor sources of background radiation. The ingestion pathway was analyzed but found to contribute less than 2 Bq yr?ą for the most important foodstuffs: vegetables and fruits.

Henderson, Ashley David

2001-01-01T23:59:59.000Z

177

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

April 24, 2013 [Education, Facility News] April 24, 2013 [Education, Facility News] A Twist on TwisterTM: ARM Educational Outreach Participates in Community Science Nights Bookmark and Share This week, the U.S. Department of Energy begins its National Science Bowl competition, a nationwide academic competition that tests students' knowledge in all areas of science. Created 22 years ago in 1991, the DOE National Science Bowl strives to encourage students to excel in mathematics and science and to pursue careers in these fields and is an important part of DOE's STEM (science, technology, engineering and math) education efforts today. The ARM Climate Research Facility supports STEM by participating in public science nights and developing climate related lesson plans to share at these events and via the ARM website.

178

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

October 11, 2011 [Facility News] October 11, 2011 [Facility News] Final Recovery Act Milestone Complete! Bookmark and Share To support all the new instruments from the Recovery Act, infrastructure upgrades ranging from power and platforms to communications and data systems required a focused team effort. To support all the new instruments from the Recovery Act, infrastructure upgrades ranging from power and platforms to communications and data systems required a focused team effort. For the past year and a half, ARM scientists, engineers, operations, and data systems staff have been working tirelessly to support the installation and operation of nearly 150 new and upgraded instruments throughout the user facility. In September, ARM received its final three instruments - a radar wind profiler; a micropulse lidar for the Darwin, Australia site; and

179

Facilities | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Office of Defense Science Office of Defense Science Facilities Home > About Us > Our Programs > Defense Programs > Office of Research, Development, Test, and Evaluation > Office of Research and Development > Facilities Facilities Office of Research and Development, Facilities The Office of Research and Development manages and oversees the operation of an exceptional suite of science, technology, and engineering facilities that support and further the national stockpile stewardship agenda. Of varying size, scope and capabilities, the facilities work in a concert to accomplish the following activities: Annual assessment of the stockpile in the face of increasing challenges due to aging or remanufacture, Reduced response times for resolving stockpile issues, Timely and certifiable completion of Life Extension Programs,

180

User Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Lawrence Berkeley National Laboratory's National User Facilities are available for cooperative research with institutions and the private sector worldwide. The Environmental...

Note: This page contains sample records for the topic "facilities engineering command" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Guides: Design/Engineering for Deactivation & Decommissioning  

Energy.gov (U.S. Department of Energy (DOE))

To ensure development of appropriate levels of engineering detail, DOE-EM’s Office of Deactivation and Decommissioning and Facility Engineering (EM-13) has prepared this guidance for  tailoring a D...

182

Idaho National Engineering and Environmental Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Idaho National Engineering and Environmental Laboratory The INEEL is a facility operated for the U.S. Department of Energy Home of Science and Engineering Solutions est Area North...

183

Engines - Spark Ignition Engines  

NLE Websites -- All DOE Office Websites (Extended Search)

Spark Ignition Engines Spark Ignition Engines Thomas Wallner and omni engine Thomas Wallner and the omnivorous engine Background Today the United States import more than 60% of its crude oil and petroleum products. Transportation accounts for a major portion of these imports. Research in this field is focused on reducing the dependency on foreign oil by increasing the engine efficiency on the one hand and blending gasoline with renewable domestic fuels, such as ethanol, on the other. Argonne's Research The main focus of research is on evaluation of advanced combustion concepts and effects of fuel properties on engine efficiency, performance and emissions. The platforms used are a single-cylinder research engine as well as an automotive-size four-cylinder engine with direct fuel injection.

184

Argonne Chemical Sciences & Engineering - Nuclear & Environmental...  

NLE Websites -- All DOE Office Websites (Extended Search)

Isotopes From Low-Enriched Uranium To support this work, Argonne designed and built a Remote Handling Mockup Facility that allows engineers to simulate the handling of...

185

Material Testing - Nuclear Engineering Division (Argonne)  

NLE Websites -- All DOE Office Websites (Extended Search)

Departments involved: Engineering Development and Applications Irradiated Materials Two hot-cell test facilities are used to develop experimental data on the irradiation-assisted...

186

Orientation to pollution prevention for facility design  

Science Conference Proceedings (OSTI)

This material was developed to assist engineers in incorporating pollution prevention into the design of new or modified facilities within the U.S. Department of Energy (DOE). The material demonstrates how the design of a facility can affect the generation of waste throughout a facility`s entire life and it offers guidance on how to prevent the generation of waste during design. Contents include: Orientation to pollution prevention for facility design training course booklet; Pollution prevention design guideline; Orientation to pollution prevention for facility design lesson plan; Training participant survey and pretest; and Training facilitator`s guide and schedule.

Raney, E.A.; Whitehead, J.K.; Encke, D.B. [Westinghouse Hanford Co., Richland, WA (United States); Dorsey, J.A. [Kaiser Engineers Hanford Co., Richland, WA (United States)

1994-01-01T23:59:59.000Z

187

Developed for Trusted Computing Group, www.trustedcomputinggroup.org Subj: SPC-3 Create well known LUN for trusted commands  

E-Print Network (OSTI)

This document presents a proposal to define a well known logical unit to process trusted commands. This feature is intended for use by array controllers and other multi-LUN devices, but may be implemented by single LUN devices as well. This proposal requires use of trusted commands described in related T10 proposal 05-157. Rev. 1: Change name of the well known LUN from “security ” commands to “trusted ” commands. Page 1 of 2Document T10/05-252 rev. 1 Add changes to table 333 in clause 8.1 as follows: (additions are underlined) 8.1 Model for well known logical units Well known logical units are addressed using the well known logical unit addressing method of extended logical unit addressing (see SAM-3). Each well known logical unit has a well known logical unit number (W-LUN) as shown in table 333. Table 333 – Well known logical unit numbers W-LUN Description Reference 0h Reserved 1h REPORT LUNS well known logical unit 8.2 2h ACCESS CONTROLS well known logical unit 8.3 3h REPORT TARGET PAGES well known logical unit 8.4 4h TRUSTED COMMANDS well known logical unit 8.5 5h- FFh Reserved Add new clause 8.5 as follows: 8.5 TRUSTED COMMANDS well known logical unit The TRUSTED COMMANDS well known logical unit shall only process the commands listed in table xx. If a command is received by the TRUSTED COMMANDS well known logical unit that is not listed in table xx, then the command shall be terminated with CHECK CONDITION status, with the sense key set to ILLEGAL REQUEST, and the additional sense code set to INVALID

unknown authors

2005-01-01T23:59:59.000Z

188

Tandem mirror technology demonstration facility  

Science Conference Proceedings (OSTI)

This report describes a facility for generating engineering data on the nuclear technologies needed to build an engineering test reactor (ETR). The facility, based on a tandem mirror operating in the Kelley mode, could be used to produce a high neutron flux (1.4 MW/M/sup 2/) on an 8-m/sup 2/ test area for testing fusion blankets. Runs of more than 100 h, with an average availability of 30%, would produce a fluence of 5 mW/yr/m/sup 2/ and give the necessary experience for successful operation of an ETR.

Not Available

1983-10-01T23:59:59.000Z

189

Mobile Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Facility Facility AMF Information Science Architecture Baseline Instruments AMF1 AMF2 AMF3 Data Operations AMF Fact Sheet Images Contacts AMF Deployments Hyytiälä, Finland, 2014 Manacapuru, Brazil, 2014 Oliktok Point, Alaska, 2013 Los Angeles, California, to Honolulu, Hawaii, 2012 Cape Cod, Massachusetts, 2012 Gan Island, Maldives, 2011 Ganges Valley, India, 2011 Steamboat Springs, Colorado, 2010 Graciosa Island, Azores, 2009-2010 Shouxian, China, 2008 Black Forest, Germany, 2007 Niamey, Niger, 2006 Point Reyes, California, 2005 Mobile Facilities Pictured here in Gan, the second mobile facility is configured in a standard layout. Pictured here in Gan, the second mobile facility is configured in a standard layout. To explore science questions beyond those addressed by ARM's fixed sites at

190

Semantic security analysis of SCADA networks to detect malicious control commands in power grids  

Science Conference Proceedings (OSTI)

In the current generation of SCADA (Supervisory Control And Data Acquisition) systems used in power grids, a sophisticated attacker can exploit system vulnerabilities and use a legitimate maliciously crafted command to cause a wide range of system changes ... Keywords: contingency analysis, intrusion detection system, scada, semantic analysis

Hui Lin, Adam Slagell, Zbigniew Kalbarczyk, Peter W. Sauer, Ravishankar K. Iyer

2013-11-01T23:59:59.000Z

191

Sensing-enabled channels for hard-to-detect command and control of mobile devices  

Science Conference Proceedings (OSTI)

The proliferation of mobile computing devices has enabled immense opportunities for everyday users. At the same time, however, this has opened up new, and perhaps more severe, possibilities for attacks. In this paper, we explore a novel generation of ... Keywords: command & control, covert channel, mobile device sensors, mobile malware, mobile security

Ragib Hasan, Nitesh Saxena, Tzipora Haleviz, Shams Zawoad, Dustin Rinehart

2013-05-01T23:59:59.000Z

192

A Survey of UAS Technologies for Command, Control, and Communication (C3)  

Science Conference Proceedings (OSTI)

The integration of unmanned aircraft systems (UAS) into the National Airspace System (NAS) presents many challenges including airworthiness certification. As an alternative to the time consuming process of modifying the Federal Aviation Regulations (FARs), ... Keywords: Certification, Command, control, and communication (C3), Unmanned aircraft systems (UAS)

Richard S. Stansbury; Manan A. Vyas; Timothy A. Wilson

2009-03-01T23:59:59.000Z

193

CoCoSpot: Clustering and recognizing botnet command and control channels using traffic analysis  

Science Conference Proceedings (OSTI)

We present CoCoSpot, a novel approach to recognize botnet command and control channels solely based on traffic analysis features, namely carrier protocol distinction, message length sequences and encoding differences. Thus, CoCoSpot can deal with obfuscated ... Keywords: Botnet C&C, Botnet detection, Network security, Traffic analysis

Christian J. Dietrich; Christian Rossow; Norbert Pohlmann

2013-02-01T23:59:59.000Z

194

Survey Design Surveys were conducted using an Aero Commander 690A at a speed of 110  

E-Print Network (OSTI)

and exploratory tracklines. (see Rone et al. aerial survey poster) Sonobuoy deployments were incorporated whale detections. After considering limitations encountered during the aerial survey that year (iSurvey Design Surveys were conducted using an Aero Commander 690A at a speed of 110 knots and 1000

195

Curriculum Evolution at Air Command and Staff College in the Post-Cold War Era  

E-Print Network (OSTI)

This qualitative study used a historical research method to eliminate the gap in the historical knowledge of Air Command and Staff College (ACSC) curriculum evolution in the post-Cold War era. This study is the only known analysis of the forces that influenced the ACSC curriculum and the rationale behind curricular change at ACSC in the post-Cold War era from the publication of the Skelton Report to the present. Data for this study were gathered through personal interviews with past and present members of the ACSC faculty and leadership, and review of published and unpublished historical ACSC curriculum documents. Research for this study revealed that the ACSC curriculum was continually in flux during this time period. At no time did the ACSC curriculum remain exactly the same as the previous academic year. The curriculum was responsive to external and internal influences. External influences were the Skelton Report, the Chairman of the Joint Chiefs of Staff, the Department of Defense, the Air University Commander, and world events. Internal influences include the ACSC Commandant and the ACSC faculty. The most significant and radical changes to the ACSC curriculum originated with those individuals or groups of individuals in positions of authority over military education institutions, primarily the Skelton Panel, Chiefs of Staff of the Air Force, and ACSC Commandants. Many minor changes were made to the ACSC curriculum during this time. Significant curricular changes made were not lasting changes. New leadership at times eliminated all or large parts of the curriculum they inherited because of personal preference. The ACSC curriculum is therefore subject to potential cyclical curricular change coinciding with changes in military leadership, which averages every two years. This study concludes that the ACSC curriculum changed often, sometimes significantly, in the post Cold War era. The frequent curricular change frustrated many faculty members and led to periods of turmoil within ACSC. ACSC is not likely to realize a period of curriculum stability until the Air Force places limits on the scope of curricular change its leaders are allowed to make at ACSC without approval and considers assigning professional educators to leadership roles in its Professional Military Education institutions. This study recommends that the Air Force consider placing a system of checks and balances on the ability of ACSC Commandants to reinvent the curriculum and placing professional educators in the positions of Air University Commander and ACSC Commandant in order to slow the rate of curricular change and bring a level of stability to the ACSC curriculum.

Donovan, William Robert

2010-12-01T23:59:59.000Z

196

The Mobil Integrated C{sup 3} (command control and communications) and Security System  

SciTech Connect

The current political and economic situations suggest that significant reductions of nuclear forces outside the US will continue. This implies that in times of crisis the rapid deployment of nuclear weapons into a theater may be required. This paper describes a proposed Mobile Integrated C{sup 3} and Security System (MICSS). The MICSS, together with associated personnel, could satisfy the command and control and security requirements of a deployed nuclear operation. Rapid deployment poses unique nuclear weapon surety difficulties that must be overcome for the operation to be effective and survivable. The MICSS must be portable, reliable, limited in size, and easily emplaced to facilitate movement, reduce the possibility of detection, and minimize manpower requirements. The MICSS will be based on existing technology. Sandia has designed prototype mobile command centers for the military. These command centers are based on an approach that stresses modularity, standards, and the use of an open architecture. Radio, telephone, satellite communications, communication security, and global positioning system equipment has been successfully integrated into the command centers. Sandia is also supporting the development of portable security systems for the military. These systems are rapidly deployable and mission flexible and are capable of intrusion detection, area and alarm display, night assessment, and wireless sensor communications. This paper is organized as follows: Background information about the prototype mobile command centers will be presented first. Background information about portable security systems concepts will then be given. Next, an integrated communications and security system will be presented, and finally, the design and status of a prototype MICSS will be described.

Eras, A.; Brown, R.D.

1993-06-15T23:59:59.000Z

197

Usability Engineering for Complex Interactive Systems Development," Human Systems Integration Symposium 2003, Engineering for Usability  

E-Print Network (OSTI)

process that ensures a high level of effectiveness, efficiency, and safety in complex interactive systems. This paper presents a brief description of usability engineering activities, and discusses our experiences with leading usability engineering activities for three very different types of interactive applications: a responsive workbench-based command and control application called Dragon, a wearable augmented reality application for urban warfare called Battlefield Augmented Reality System (BARS), and a head-mounted hardware device, called Nomad, for dismounted soldiers. For each application, we present our approach to usability engineering, how we tailored the usability

Joseph L. Gabbard; Deborah Hix, Ph.D.; J. Edward; Swan Ii, Ph.D.; Mark A. Livingston, Ph.D.; Tobias H. Höllerer; Simon J. Julier, Ph.D.; Dennis Brown; Yohan Baillot

2003-01-01T23:59:59.000Z

198

The research bench meets industry: New facility scales up production...  

NLE Websites -- All DOE Office Websites (Extended Search)

data in his notebook. Argonne material engineer YoungHo Shin prepares a coin cell battery in a glovebox in the Materials Engineering Research Facility. Once it is prepared,...

199

Review of the Los Alamos National Laoratory Nuclear Facility...  

NLE Websites -- All DOE Office Websites (Extended Search)

CM Configuration Management CMR Chemistry and Metallurgy Research CSE Cognizant System Engineer DNFSB Defense Nuclear Facilities Safety Board DOE U.S. Department of Energy...

200

Environmental Spectroscopy and Biogeochemistry Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

ES&B Overview ES&B Overview Section 2-2-1 Environmental Spectroscopy and Biogeochemistry Facility The Environmental Spectroscopy and Biogeochemistry (ES&B) Facility focuses on environ- mental molecular science and application of the fundamental concepts of physical chemistry to the study of chemical reactions in heterogeneous natural materials, with an emphasis on soil and subsurface systems. The ES&B Facility staff, along with other Pacific Northwest National Laboratory (PNNL) staff, form a multidisciplinary research team with expertise in chemistry, mineral physics, geochemistry, soil chemistry, microbiology, hydrology, and environmental engineering. Capabilities Capabilities are available for materials characterization, aqueous- and solid-phase speciation

Note: This page contains sample records for the topic "facilities engineering command" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Vitali Morozov ALCF Performance Engineering  

E-Print Network (OSTI)

plans to use Mira, the ALCF's new 10-petaflop IBM Blue Gene/Q system, to run diesel engine simulations powerful computers at the Argonne Leadership Computing Facility (ALCF) and Argonne's Laboratory Computing

Kemner, Ken

202

Analysis of operating alternatives for the Naval Computer and Telecommunications Station Cogeneration Facility at Naval Air Station North Island, San Diego, California  

SciTech Connect

The Naval Facilities Engineering Command Southwestern Division commissioned Pacific Northwest Laboratory (PNL), in support of the US Department of Energy (DOE) Federal Energy Management Program (FEMP), to determine the most cost-effective approach to the operation of the cogeneration facility in the Naval Computer and Telecommunications Station (NCTS) at the Naval Air Station North Island (NASNI). Nineteen alternative scenarios were analyzed by PNL on a life-cycle cost basis to determine whether to continue operating the cogeneration facility or convert the plant to emergency-generator status. This report provides the results of the analysis performed by PNL for the 19 alternative scenarios. A narrative description of each scenario is provided, including information on the prime mover, electrical generating efficiency, thermal recovery efficiency, operational labor, and backup energy strategy. Descriptions of the energy and energy cost analysis, operations and maintenance (O&M) costs, emissions and related costs, and implementation costs are also provided for each alternative. A summary table presents the operational cost of each scenario and presents the result of the life-cycle cost analysis.

Parker, S.A.; Carroll, D.M.; McMordie, K.L.; Brown, D.R.; Daellenbach, K.K.; Shankle, S.A.; Stucky, D.J.

1993-12-01T23:59:59.000Z

203

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

July 28, 2011 [Facility News] July 28, 2011 [Facility News] A Giant Lift for Arctic Climate Data Bookmark and Share A newly installed X-band scanning ARM precipitation radar operates from atop the Barrow Arctic Research Center in Alaska. A newly installed X-band scanning ARM precipitation radar operates from atop the Barrow Arctic Research Center in Alaska. Ushering in the first operational precipitation radar on the U.S. Arctic Coast, engineers completed acceptance testing for the new X-band scanning ARM precipitation radar (X-SAPR) on June 21 at its location atop the Barrow Arctic Research Center in Alaska. Data from the radar are transmitted through a wireless connection to the ARM site data system. With the radar up and running, signal returns on June 24 provided an indication of the

204

Dataplot Commands  

Science Conference Proceedings (OSTI)

... OIL.DP, PR-FI Prog to max. oil production (Simplex Method). ... USA.DAT, MP-FI Map coordinates for USA (crude resolu.) (Map). ...

2013-11-01T23:59:59.000Z

205

Command Line  

NLE Websites -- All DOE Office Websites (Extended Search)

Running Prospect Running Prospect We suggest users to run BLAST / PSI-BLAST first before using PROSPECT to make sure whether any homolog for the target exists in PDB. In case a remote homolog found by PSI-BLAST has only alignment for partial sequence and it is not included in the DALI or FSSP list, it is suggested to include them in the template library (see Templates) to verify if it is the true fold or to generate the full alignment. One can do the same thing for a PDB structure having similar function to the target. The programs included as part of the prospect suite are: get_chk_file read_chk prospect_ssp threading prospect sortProspect modellerProspect make_template convertProspect mergeProspect catProspect For the various examples below, we use 'LINUX' as the architecture in the

206

Tcl/Tk = Tool Command Language Tool Kit What is Tcl/Tk  

E-Print Network (OSTI)

CSI605 Tcl/Tk #12;Tcl/Tk · Tcl/Tk = Tool Command Language Tool Kit · What is Tcl/Tk · A shell programming language · Uses of Tcl/Tk · Rapid prototyping · Shippable products · GUI-based products · Multi #12;Online Tcl/Tk Resources · www.tclconsortium.org · Tcl/Tk Consortium · www

Solka, Jeff

207

Un modle de commande pour le contrle des instabilits de combustion  

E-Print Network (OSTI)

Un modèle de commande pour le contrôle des instabilités de combustion Landau Ioan-Doré Bouziani pour l'instabilité de combustion. Ce système est analysé en utilisant la méthode de Krylov'analyse sont comparés avec des tests en simulation. Mots-clésmodélisation, instabilité de combustion, systèmes

Paris-Sud XI, Université de

208

Assessment of Retro-Fit Energy Savings Devices: Power-R-Command 3000  

Science Conference Proceedings (OSTI)

This report describes and documents the energy savings and efficiency, limited power quality, and photometric performance of Eaton Power's Power-R-Command 3000 (PRC 3000) Lighting Controller. This unit contains three individual silicon-control rectifier-based (SCR-based) load management systems. These power electronics-based systems, which can either be bypassed or activated to provide a predetermined amount of energy savings, are controlled by computer through an Eaton interconnect via Eaton programmabl...

2010-07-30T23:59:59.000Z

209

Developed for Trusted Computing Group, www.trustedcomputinggroup.org Subj: SPC-3 Create well known LUN for security commands  

E-Print Network (OSTI)

This document presents a proposal to define a well known logical unit to process security commands. This feature is intended for use by array controllers and other multi-LUN devices, but may be implemented by single LUN devices as well. This proposal requires use of security commands described in related T10 proposal 05-157. Page 1 of 2Document T10/05-252 rev. 0 Add changes to table 333 in clause 8.1 as follows: (additions are underlined) 8.1 Model for well known logical units Well known logical units are addressed using the well known logical unit addressing method of extended logical unit addressing (see SAM-3). Each well known logical unit has a well known logical unit number (W-LUN) as shown in table 333. Table 333 – Well known logical unit numbers W-LUN Description Reference 0h Reserved 1h REPORT LUNS well known logical unit 8.2 2h ACCESS CONTROLS well known logical unit 8.3 3h REPORT TARGET PAGES well known logical unit 8.4 4h SECURITY COMMANDS well known logical unit 8.5 5h- FFh Reserved Add new clause 8.5 as follows: 8.5 SECURITY COMMANDS well known logical unit The SECURITY COMMANDS well known logical unit shall only process the commands listed in table xx. If a command is received by the SECURITY COMMANDS well know logical unit that is not listed in table xx, then the command shall be terminated with CHECK CONDITION status, with the sense key set to ILLEGAL REQUEST, and the additional sense code set to INVALID

unknown authors

2005-01-01T23:59:59.000Z

210

Argonne Chemical Sciences & Engineering - Facilities - Electrochemical  

NLE Websites -- All DOE Office Websites (Extended Search)

Electrochemical Analysis and Diagnostics Laboratory Electrochemical Analysis and Diagnostics Laboratory Panagiotis Prezas Argonne researcher Panagiotis Prezas prepares lithium-ion cells for evaluation. At the EADL, researchers can test everything from a quarter-sized coin cell to an 800-kilogram automotive battery pack. The Electrochemical Analysis and Diagnostics Laboratory (EADL) provides battery and fuel cell developers with reliable, independent, and unbiased performance evaluations of their cells, modules, and battery packs. These evaluations have been performed for the U.S. Department of Energy (DOE), government and industry consortia, and industrial developers to provide insight into the factors that limit the performance and life of advanced battery systems. Such evaluations help battery developers and DOE

211

Argonne Chemical Sciences & Engineering - Facilities - Actinide...  

NLE Websites -- All DOE Office Websites (Extended Search)

Fundamental Interactions Catalysis & Energy Conversion Electrochemical Energy Storage Nuclear & Environmental Processes National Security Institute for Atom-Efficient Chemical...

212

Heat engine and electric motor torque distribution strategy for a hybrid electric vehicle  

DOE Patents (OSTI)

A method is provided for controlling a power train system for a hybrid electric vehicle. The method includes a torque distribution strategy for controlling the engine and the electric motor. The engine and motor commands are determined based upon the accelerator position, the battery state of charge and the amount of engine and motor torque available. The amount of torque requested for the engine is restricted by a limited rate of rise in order to reduce the emissions from the engine. The limited engine torque is supplemented by motor torque in order to meet a torque request determined based upon the accelerator position.

Boberg, Evan S. (Hazel Park, MI); Gebby, Brian P. (Hazel Park, MI)

1999-09-28T23:59:59.000Z

213

CRAD, Engineering - Los Alamos National Laboratory Waste Characterization,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Engineering - Los Alamos National Laboratory Waste Engineering - Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility CRAD, Engineering - Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for an assessment of the Engineering Program portion of an Operational Readiness Review at the Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility. CRADs provide a recommended approach and the types of information to gather to assess elements of a DOE contractor's programs. CRAD, Engineering - Los Alamos National Laboratory Waste Characterization,

214

Facility Representative Program: Basic Courses For Facility Representative  

NLE Websites -- All DOE Office Websites (Extended Search)

Training & Qualification Information Training & Qualification Information Qualification Standards DOE Order Self-Study Modules DOE Fundamentals Handbooks Nuclear Safety Basis Self-Study Guide Energy Online Courses Available Link to National Training Center Basic Courses for Facility Representative Qualification Recommended Courses to Expand Facility Representative's Knowledge Base Basic Courses For Facility Rep Qualification (These courses may be beneficial during the initial qualification of Facility Representatives.) Course Title FR FAQS CN Point of Contact Comments Applied Engineering Fundamentals 13 days * See below Mike Schoener 803-641-8166 E-mail Course description at http://ntc.doe.gov course catalog Asbestos Awareness 2 hours 2.1 Federal employees register through the CHRIS system For course details see

215

NETL: Research Capabilities and Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Capabilities and Facilities Research Capabilities and Facilities Onsite Research Research Capabilities and Facilities Lab Worker As the lead field center for the DOE Office of Fossil Energy's research and development program, NETL has established a strong onsite research program conducted by Federal scientists and engineers. Onsite R&D – managed by NETL's Office of Research and Development – makes important contributions to NETL's mission of implementing a research, development, and demonstration program to resolve the environmental, supply, and reliability constraints of producing and using fossil resources. With its expert research staff and state-of-the-art facilities, NETL has extensive experience in working with the technical issues related to fossil resources. Onsite researchers also participate with NETL's industrial partners to solve problems that become barriers to commercialization of power systems, fuels, and environmental and waste management. Onsite research capabilities are strengthened by collaborations with well-known research universities.

216

Engineering Institute  

NLE Websites -- All DOE Office Websites (Extended Search)

Engineering Institute Engineering Institute Engineering Institute Engineering dynamics that include flight, vibration isolation for precision manufacturing, earthquake engineering, blast loading, signal processing, and experimental model analysis. Contact Leader, LANL Charles Farrar Email Leader, UCSD Michael Todd Email LANL Program Administrator Jutta Kayser (505) 663-5649 Email Collaboration for conducting mission-driven, multidisciplinary engineering research and recruiting, revitalization, and retention of current & future staff The Engineering Institute is a collaboration between LANL and the University of California at San Diego (UCSD) Jacobs School of Engineering, whose mission is to develop a comprehensive approach for conducting mission-driven, multidisciplinary engineering research

217

Options for improving computing and data system support for HQ USTRANSCOM (Headquarters, US Transportation Command) deployment planning  

Science Conference Proceedings (OSTI)

The Decision Systems Research Section of the Oak Ridge National Laboratory (ORNL) is assisting the Deployment Systems Division of the Headquarters, US Transportation Command (HQ USTRANSCOM) with an evaluation of options for improving the computing and data systems support for deliberate and time-critical joint deployment planning. USTRANSCOM, which is a unified command (i.e., personnel are drawn from all the services), was created in the fall of 1987 to consolidate the functions of the former military transportation operating agencies (the Military Airlift Command, the Military Traffic Management Command, and the Military Sealift Command). An important factor in the creation of USTRANSCOM was the possibility of achieving more efficient joint deployment planning through consolidation of the computing and data systems used by the command's strategic mobility planners and operation center personnel. This report, the third in a series to be produced in the course of ORNL studies for USTRANSCOM, presents options for improving automation support for HQ USTRANSCOM deployment planning. The study covered methods for improving data concepts used in deployment databases, recommendations for extending the life of the Joint Deployment system, and alternatives for integrating HQ USTRANSCOM planning support with systems at MAC, MTMC, and MSC. 36 refs.

Not Available

1988-08-01T23:59:59.000Z

218

EA-0822: Idaho National Engineering Laboratory Consolidated Transportation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

22: Idaho National Engineering Laboratory Consolidated 22: Idaho National Engineering Laboratory Consolidated Transportation Facility, Idaho Falls, Idaho EA-0822: Idaho National Engineering Laboratory Consolidated Transportation Facility, Idaho Falls, Idaho SUMMARY This EA evaluates the environmental impacts of a proposal to construct and operate a new transportation facility at the Central Facilities Area that would consolidate six existing facilities at the U.S. Department of Energy's Idaho National Laboratory in Idaho Falls, Idaho. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD April 2, 1993 EA-0822: Finding of No Significant Impact Idaho National Engineering Laboratory Consolidated Transportation Facility April 2, 1993 EA-0822: Final Environmental Assessment Idaho National Engineering Laboratory Consolidated Transportation Facility

219

Engineer Memoirs A: Well, with that we took over the Central Pacific area and command and they  

E-Print Network (OSTI)

came under our control. That meant that Okinawa, which had been under the Central Pacific, was now our operations to take in Okinawa, where fighting was still under way, and ultimately Japan. Knowing the importance of Okinawa, particularly in connection with its use as a base for projected operations against

US Army Corps of Engineers

220

SGP Central Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Central Facility Central Facility SGP Related Links Facilities and Instruments Central Facility Boundary Facility Extended Facility Intermediate Facility Radiometric Calibration Facility Geographic Information ES&H Guidance Statement Operations Science Field Campaigns Visiting the Site Fact Sheet Images Information for Guest Scientists Contacts SGP Central Facility The ARM Climate Research Facility deploys specialized remote sensing instruments in a fixed location at the site to gather atmospheric data of unprecedented quality, consistency, and completeness. More than 30 instrument clusters have been placed around the site; the central facility; and the boundary, intermediate, and extended facilities. The locations for the instruments were chosen so that the measurements reflect conditions

Note: This page contains sample records for the topic "facilities engineering command" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

January 15, 2008 Facility News Future of User Facility Discussed at Fall Workshop As a national user facility, ARM is accessible to scientists around the globe for...

222

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

31, 2004 Facility News ARM Climate Research Facility Achieves User Milestone Three Months Ahead of Schedule Bookmark and Share Summary of the ARM Climate Research Facility User...

223

ARM - SGP Central Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Central Facility Central Facility SGP Related Links Facilities and Instruments Central Facility Boundary Facility Extended Facility Intermediate Facility Radiometric Calibration Facility Geographic Information ES&H Guidance Statement Operations Science Field Campaigns Visiting the Site Fact Sheet Images Information for Guest Scientists Contacts SGP Central Facility The ARM Climate Research Facility deploys specialized remote sensing instruments in a fixed location at the site to gather atmospheric data of unprecedented quality, consistency, and completeness. More than 30 instrument clusters have been placed around the site; the central facility; and the boundary, intermediate, and extended facilities. The locations for the instruments were chosen so that the measurements reflect conditions

224

Are software engineers true engineers?  

Science Conference Proceedings (OSTI)

Software engineering is an often used term to describe the activities, methods, and tools of large scale software development. There is an ongoing discussion whether Software Engineering can be considered as an engineering discipline. In ...

Claus Lewerentz; Heinrich Rust

2000-01-01T23:59:59.000Z

225

The research bench meets industry: New facility scales up production of  

NLE Websites -- All DOE Office Websites (Extended Search)

Video: Scenes from Argonne's Materials Engineering Research Facility Video: Scenes from Argonne's Materials Engineering Research Facility Scenes from Argonne's Materials Engineering Research Facility Experiments can keep researchers on their feet all day long. Process R&D chemist Kris Pupek moves between fume hoods in the Materials Engineering Research Facility's process research and development lab, while lab-mate Trevor Dzwiniel records data in his notebook. Experiments can keep researchers on their feet all day long. Process R&D chemist Kris Pupek moves between fume hoods in the Materials Engineering Research Facility's process research and development lab, while lab-mate Trevor Dzwiniel records data in his notebook. Argonne material engineer YoungHo Shin prepares a coin cell battery in a glovebox in the Materials Engineering Research Facility. Once it is prepared, the battery can be tested to determine the energy output characteristics of a cathode material for lithium-ion batteries.

226

Safety System Engineer and Oversight Programs, March 2006  

NLE Websites -- All DOE Office Websites (Extended Search)

Used in This Report CSE Cognizant System Engineer DNFSB Defense Nuclear Facilities Safety Board DOE U.S. Department of Energy FTCP Federal Technical Capability Panel NNSA...

227

ENERGY STAR Challenge for Industry: Professional Engineers' Guide...  

NLE Websites -- All DOE Office Websites (Extended Search)

Professional Engineers' Guide for Validating Statements of Energy Improvement Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers...

228

EA-0822: Idaho National Engineering Laboratory Consolidated Transporta...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Field Sites Power Marketing Administration Other Agencies You are here Home EA-0822: Idaho National Engineering Laboratory Consolidated Transportation Facility, Idaho Falls,...

229

Facility effluent monitoring plan for the 324 Facility  

SciTech Connect

The 324 Facility [Waste Technology Engineering Laboratory] in the 300 Area primarily supports the research and development of radioactive and nonradioactive waste vitrification technologies, biological waste remediation technologies, spent nuclear fuel studies, waste mixing and transport studies, and tritium development programs. All of the above-mentioned programs deal with, and have the potential to, release hazardous and/or radioactive material. The potential for discharge would primarily result from (1) conducting research activities using the hazardous materials, (2) storing radionuclides and hazardous chemicals, and (3) waste accumulation and storage. This report summarizes the airborne and liquid effluents, and the results of the Facility Effluent Monitoring Plan (FEMP) determination for the facility. The complete monitoring plan includes characterizing effluent streams, monitoring/sampling design criteria, a description of the monitoring systems and sample analysis, and quality assurance requirements.

NONE

1994-11-01T23:59:59.000Z

230

Shockwave Engine: Wave Disk Engine  

Science Conference Proceedings (OSTI)

Broad Funding Opportunity Announcement Project: MSU is developing a new engine for use in hybrid automobiles that could significantly reduce fuel waste and improve engine efficiency. In a traditional internal combustion engine, air and fuel are ignited, creating high-temperature and high-pressure gases which expand rapidly. This expansion of gases forces the engine’s pistons to pump and powers the car. MSU’s engine has no pistons. It uses the combustion of air and fuel to build up pressure within the engine, generating a shockwave that blasts hot gas exhaust into the blades of the engine’s rotors causing them to turn, which generates electricity. MSU’s redesigned engine would be the size of a cooking pot and contain fewer moving parts—reducing the weight of the engine by 30%. It would also enable a vehicle that could use 60% of its fuel for propulsion.

None

2010-01-14T23:59:59.000Z

231

Californium Neutron Irradiation Facility  

Science Conference Proceedings (OSTI)

Californium Neutron Irradiation Facility. Summary: ... Cf irradiation facility (Photograph by: Neutron Physics Group). Lead Organizational Unit: pml. Staff: ...

2013-07-23T23:59:59.000Z

232

Research Facilities and Programs  

Science Conference Proceedings (OSTI)

WEB RESOURCES: Magnesium Research Facilities and Programs ... to universities, corporations, and other facilities involved in magnesium research, 0, 1025 ...

233

Mobile Solar Tracker Facility  

Science Conference Proceedings (OSTI)

Mobile Solar Tracker Facility. ... NIST's mobile solar tracking facility is used to characterize the electrical performance of photovoltaic panels. ...

2011-11-15T23:59:59.000Z

234

Idaho Waste Vitrification Facilities Project Vitrified Waste Interim Storage Facility  

SciTech Connect

This feasibility study report presents a draft design of the Vitrified Waste Interim Storage Facility (VWISF), which is one of three subprojects of the Idaho Waste Vitrification Facilities (IWVF) project. The primary goal of the IWVF project is to design and construct a treatment process system that will vitrify the sodium-bearing waste (SBW) to a final waste form. The project will consist of three subprojects that include the Waste Collection Tanks Facility, the Waste Vitrification Facility (WVF), and the VWISF. The Waste Collection Tanks Facility will provide for waste collection, feed mixing, and surge storage for SBW and newly generated liquid waste from ongoing operations at the Idaho Nuclear Technology and Engineering Center. The WVF will contain the vitrification process that will mix the waste with glass-forming chemicals or frit and turn the waste into glass. The VWISF will provide a shielded storage facility for the glass until the waste can be disposed at either the Waste Isolation Pilot Plant as mixed transuranic waste or at the future national geological repository as high-level waste glass, pending the outcome of a Waste Incidental to Reprocessing determination, which is currently in progress. A secondary goal is to provide a facility that can be easily modified later to accommodate storage of the vitrified high-level waste calcine. The objective of this study was to determine the feasibility of the VWISF, which would be constructed in compliance with applicable federal, state, and local laws. This project supports the Department of Energy’s Environmental Management missions of safely storing and treating radioactive wastes as well as meeting Federal Facility Compliance commitments made to the State of Idaho.

Bonnema, Bruce Edward

2001-09-01T23:59:59.000Z

235

Stirling engines  

Science Conference Proceedings (OSTI)

The Stirling engine was invented by a Scottish clergyman in 1816, but fell into disuse with the coming of the diesel engine. Advances in materials science and the energy crisis have made a hot air engine economically attractive. Explanations are full and understandable. Includes coverage of the underlying thermodynamics and an interesting historical section. Topics include: Introduction to Stirling engine technology, Theoretical concepts--practical realities, Analysis, simulation and design, Practical aspects, Some alternative energy sources, Present research and development, Stirling engine literature.

Reader, G.T.; Hooper

1983-01-01T23:59:59.000Z

236

User Facilities for Industry 101  

NLE Websites -- All DOE Office Websites (Extended Search)

Satellite!Workshop!10!-!User!Facilities!for!Industry!101! Satellite!Workshop!10!-!User!Facilities!for!Industry!101! Organizers:+Andreas+Roelofs+(CNM),+Jyotsana+Lal+(APS),+Katie+Carrado+Gregar+(CNM),+and+Susan+Strasser+ (APS)! ! In! order! to! increase! awareness! of! the! industrial! community! to! Argonne! National! Laboratory! user! facilities,!the!Advanced!Photon!Source!(APS),!the!Center!for!Nanoscale!Materials!(CNM)!and!the!Electron! Microscopy!Center!(EMC)!welcomed!industrial!scientists,!engineers!and!related!professionals!to!a!oneC day! workshop! to! learn! more! about! Argonne's! National! Laboratory! and! the! capabilities/techniques! available! for! their! use.! The! workshop! showcased! several! successful! industrial! user! experiments,! and! explained! the! different! ways! in! which! industrial! scientists! can! work! at! Argonne! or! with! Argonne!

237

Facility Representatives  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

063-2011 063-2011 February 2011 Superseding DOE-STD-1063-2006 April 2006 DOE STANDARD FACILITY REPRESENTATIVES U.S. Department of Energy AREA MGMT Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. NOT MEASUREMENT SENSITIVE DOE-STD-1063-2011 ii Available on the Department of Energy Technical Standards Program Web site at http://www.hss.doe.gov/nuclearsafety/ns/techstds/ DOE-STD-1063-2011 iii FOREWORD 1. This Department of Energy (DOE) standard is approved for use by all DOE/National Nuclear Security Administration (NNSA) Components. 2. The revision to this DOE standard was developed by a working group consisting of headquarters and field participants. Beneficial comments (recommendations,

238

Facility Representatives  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE-STD-1063-2006 April 2006 Superseding DOE-STD-1063-2000 March 2000 DOE STANDARD FACILITY REPRESENTATIVES U.S. Department of Energy AREA MGMT Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. NOT MEASUREMENT SENSITIVE DOE-STD-1063-2006 ii Available on the Department of Energy Technical Standards Program web site at http://www.eh.doe.gov/techstds/ DOE-STD-1063-2006 iii FOREWORD 1. This Department of Energy standard is approved for use by all DOE Components. 2. The revision to this DOE standard was developed by a working group consisting of headquarters and field participants. Beneficial comments (recommendations, additions, deletions) and any pertinent data that may improve this document should

239

Facility Type!  

Office of Legacy Management (LM)

ITY: ITY: --&L~ ----------- srct-r~ -----------~------~------- if yee, date contacted ------------- cl Facility Type! i I 0 Theoretical Studies Cl Sample 84 Analysis ] Production 1 Diepasal/Storage 'YPE OF CONTRACT .--------------- 1 Prime J Subcontract&- 1 Purchase Order rl i '1 ! Other information (i.e., ---------~---~--~-------- :ontrait/Pirchaee Order # , I C -qXlJ- --~-------~~-------~~~~~~ I I ~~~---~~~~~~~T~~~ FONTRACTING PERIODi IWNERSHIP: ,I 1 AECIMED AECMED GOVT GOUT &NTtiAC+OR GUN-I OWNED ----- LEEE!? M!s LE!Ps2 -LdJG?- ---L .ANDS ILJILDINGS X2UIPilENT IRE OR RAW HA-I-L :INAL PRODUCT IASTE Z. RESIDUE I I kility l pt I ,-- 7- ,+- &!d,, ' IN&"E~:EW AT SITE -' ---------------- , . Control 0 AEC/tlED managed operations

240

Research Facility,  

NLE Websites -- All DOE Office Websites (Extended Search)

Collecting and Delivering the Data Collecting and Delivering the Data As a general condition for use of the ARM Climate Research Facility, users are required to include their data in the ARM Data Archive. All data acquired must be of sufficient quality to be useful and must be documented such that users will be able to clearly understand the meaning and organization of the data. Final, quality-assured data sets are stored in the Data Archive and are freely accessible to the general scientific community. Preliminary data may be shared among field campaign participants during and shortly following the campaign. To facilitate sharing of preliminary data, the ARM Data Archive establishes restricted access capability, limited to participants and data managers.

Note: This page contains sample records for the topic "facilities engineering command" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

Southern Great Plains Site Hosts Gathering to Discuss ARM Instrumentation Southern Great Plains Site Hosts Gathering to Discuss ARM Instrumentation Bookmark and Share Field calibration of the rotating shadowband radiometer (RSS) is performed by the RSS instrument mentor (left) and a colleague from SGP operations. Field calibration of the rotating shadowband radiometer (RSS) is performed by the RSS instrument mentor (left) and a colleague from SGP operations. With research facilities around the globe, one of the biggest challenges faced by ARM is communication and consistent application of new information and instrument advances. In early August, about 45 ARM scientists and engineers gathered at the ARM Southern Great Plains site for a three-day interactive meeting to promote information exchange between instrument mentors and site operations personnel. Meeting participants included

242

Fracturing Fluid Characterization Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Documentation Page Documentation Page 1. Report No. DE - FC 21 - 92MC29077 2. 3. Recipient's Accession No. 5. Report Date August 31, 2000 4. Title and Subtitle Fracturing Fluid Characterization Facility 6. 7. Author(s) The University of Oklahoma 8. Performing Organization Rept. No. 10. Project/Task/Work Unit No. 9. Performing Organization Name and Address The University of Oklahoma Sarkeys Energy Center T301 100 E Boyd St Norman, OK 73019 11. Contract (C) or Grant (G) No. DOE:DE FC21 92 MC29077 13. Type of Report & Period Covered Final Report 09 30 92 - 03 31 00 12. Sponsoring Organization Name and Address US Dept of Energy - FETL 3610 Collins Ferry Road Morgantown, WV 26505 14. 15. Supplementary Notes Several technical papers were prepared and presented at various Society of Petroleum Engineers Conferences and US

243

Facility automation for retail facilities  

Science Conference Proceedings (OSTI)

This article will focus on retail chain stores with areas of 22,000 to 75,000 sq ft, but much of the article will apply to all retail stores independent of size. Typically, a store is serviced by 5 to 15 rooftop HVAC units with a total cooling capacity of 50 to 150 tons, depending on the floor area and geographic location. The interior lighting represents a load of 80 to 300 KW with three lighting levels--retail, stocking, and security or night. Most stores are located in strip centers, and therefore, the parking lot lighting is provided by the landlord, but each store does control and service its own sign lighting. Generally, the total load controlled by an FAS represents 130 to 450 KW with corresponding annual energy costs ranging from $65,000 to $200,000 (natural gas and electricity), depending on the size of the store and the local unit costs of energy. Historical utility data, electrical and mechanical drawings, site surveys, significant analyses of data, and most importantly, discussions with corporate facilities management personnel and store operations personnel provide the source for the development theory and sequence of operation of the design of the facility automation systems for retail stores. The three main goals of an FAS are: reduce utility operating costs, maintain comfort levels during occupied hours, reduce HVAC maintenance costs.

Ameduri, G. (Roth Bros., Inc., Youngstown, OH (United States). Facilities Automation Division)

1994-12-01T23:59:59.000Z

244

CRAD, Engineering Design and Safety Basis - December 22, 2009 | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Engineering Design and Safety Basis - December 22, 2009 Engineering Design and Safety Basis - December 22, 2009 CRAD, Engineering Design and Safety Basis - December 22, 2009 December 22, 2009 Engineering Design and Safety Basis Inspection Criteria, Inspection Activities, and Lines of Inquiry (HSS CRAD 64-19, Rev. 0) The engineering design and safety basis inspection will evaluate the effectiveness of programs and processes for the design and safety basis of selected safety structures, systems, and components (SSCs) of a nuclear facility. The nuclear facility may be an existing facility, a major modification to an existing facility, or a new facility under construction. Accordingly, the safety basis for the facility, for example, a documented safety analysis (DSA) or a preliminary documented safety analysis (PDSA),

245

CRAD, Engineering Design and Safety Basis - December 22, 2009 | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Engineering Design and Safety Basis - December 22, 2009 Engineering Design and Safety Basis - December 22, 2009 CRAD, Engineering Design and Safety Basis - December 22, 2009 December 22, 2009 Engineering Design and Safety Basis Inspection Criteria, Inspection Activities, and Lines of Inquiry (HSS CRAD 64-19, Rev. 0) The engineering design and safety basis inspection will evaluate the effectiveness of programs and processes for the design and safety basis of selected safety structures, systems, and components (SSCs) of a nuclear facility. The nuclear facility may be an existing facility, a major modification to an existing facility, or a new facility under construction. Accordingly, the safety basis for the facility, for example, a documented safety analysis (DSA) or a preliminary documented safety analysis (PDSA),

246

Nuclear Facility Operations | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Facility Operations Facility Operations Nuclear Facility Operations INL is a science-based, applied engineering national laboratory dedicated to meeting the nation's environmental, energy, nuclear technology, and national security needs. INL is a science-based, applied engineering national laboratory dedicated to meeting the nation's environmental, energy, nuclear technology, and national security needs. The Idaho Operations Office oversees these contract activities in accordance with DOE directives. INL is a multi-program laboratory In addition to enabling the Office of Nuclear Energy to develop space power systems and advanced fuel cycle and reactor technologies, INL facilities are used by the National Nuclear Security Administration and other DOE offices, together with other Federal agencies such as the Department of

247

Risk analysis of an LPG facility  

SciTech Connect

This paper describes methods used to conduct a safety review of an existing LPG loading, processing, and storage facility. An engineering team conducted a Hazard and Operability study of the plant to identify potential problems. A Probabilistic Risk Assessment was also made on the facility where the probability and consequences of worst case accidents were estimated. Stone and Webster recently completed an analysis of an LPG terminal to determine if there were any engineering, design, or operating deficiencies which could jeopardize the operability of the facility or make operation hazardous. The facility includes a dock for off-loading refrigerated propane and butane, transfer piping from the dock to storage, a heating system, pressurized storage, dehydration, product transfer and loading.

Daley, H.F.; Chapman, P.D.L.

1986-01-01T23:59:59.000Z

248

Optical engineering  

SciTech Connect

The Optical Engineering thrust area at Lawrence Livermore National Laboratory (LLNL) was created in the summer of 1996 with the following main objectives: (1) to foster and stimulate leading edge optical engineering research and efforts key to carrying out LLNL's mission and enabling major new programs; (2) to bring together LLNL's broad spectrum of high level optical engineering expertise to support its programs. Optical engineering has become a pervasive and key discipline, with applications across an extremely wide range of technologies, spanning the initial conception through the engineering refinements to enhance revolutionary application. It overlaps other technologies and LLNL engineering thrust areas.

Saito, T T

1998-01-01T23:59:59.000Z

249

Engineering Annual Summary 1996  

SciTech Connect

Fiscal year 1996 has been a year of significant change for the Lawrence Livermore National Laboratory (LLNL) in general and for Engineering in particular. Among these changes, the Laboratory`s national security mission was better defined, the stockpile stewardship program objectives became crisper, LLNL`s investment in high-performance computing was re-emphasized with the procurement of a $100 million supercomputer for the Laboratory`s Accelerated Strategic Computing Initiative (ASCI) program, two major Laser programs (the National Ignition Facility and Atomic Vapor Laser Isotope Separation) expanded significantly, and DOE`s human genome efforts moved to the next phase of development. In the area of business operations, LLNL`s Cost Cutting Initiative Program (CCIP) was completed and the Laboratory restructured its workforce using a Voluntary Separation Incentive Program (VSIP). Engineering similarly also saw many technical and programmatic successes, as well as changes, starting with completion of its strategic plan, significant consolidation of its facilities, restructuring of its workforce, reduction of its overhead costs, substantial transfers of staff between programs, and finally my personal arrival at Livermore. This report is the first opportunity to capture some of Engineering`s FY96 activities and accomplishments in a succinct fashion, and to relate these to our strategic plan.

Dimolitsas, S.

1997-04-30T23:59:59.000Z

250

Strategy for Developing 10-Year Energy Management Plans at U.S. Army Forces Command Installations.  

SciTech Connect

In order to reach the energy reduction and sustainability goals of the Executive Order 13123, and to minimize overall energy and water costs, the U.S Army Forces Command (FORSCOM), with assistance of PNNL, has embarked on a program to develop comprehensive 10-year Energy Management Plans for each of the 11 major FORSCOM installations. These plans will identify activities and projects critical to the installation's reaching the Executive Order (E.O.) goals as well as help ensure a reliable and secure energy supply. Each FORSCOM installation will be responsible for developing a plan that is closely linked with the installation Master Plan. The Energy Management Plan will cover elements on both the demand side and the supply side, as well as energy/water security assessments and funding/financing resource requirements.

Parker, Graham B. (BATTELLE (PACIFIC NW LAB)); Gillespie, Adrian (U.S. Army Forces Command); Dixon, Douglas R. (BATTELLE (PACIFIC NW LAB)); Brown, Daryl R. (BATTELLE (PACIFIC NW LAB)); Reilly, Raymond W. (BATTELLE (PACIFIC NW LAB)); Warwick, William M. (BATTELLE (PACIFIC NW LAB))

2002-10-01T23:59:59.000Z

251

A shared data environment for the Military Traffic Management Command Directorate of International Traffic  

SciTech Connect

In September 1991, Oak Ridge National Laboratory (ORNL) completed tasking to assist the Military Traffic Management Command Directorate of International Traffic (MTIT) in the analysis of a potential Shared Data Environment (SDE) for MTIT automated cargo traffic systems. This analysis was a preliminary effort with emphasis on documentation of requirements, examination of design alternatives, and identification of specific MTIT systems' data sharing problems. This report records the results of the ORNL analysis. The SDE envisioned by ORNL at this point in the analysis is not merely a repository of information; it is also a system that allows processing of distributed data. To provide high-level access to and control over international cargo processes, ORNL recommends a loosely coupled, replicated database design with high-speed communications among all sites.

Russell, D.L.; Wheeler, V.V. (Tennessee Univ., Knoxville, TN (United States)); Truett, L.F. (Oak Ridge National Lab., TN (United States))

1992-01-01T23:59:59.000Z

252

A shared data environment for the Military Traffic Management Command Directorate of International Traffic  

SciTech Connect

In September 1991, Oak Ridge National Laboratory (ORNL) completed tasking to assist the Military Traffic Management Command Directorate of International Traffic (MTIT) in the analysis of a potential Shared Data Environment (SDE) for MTIT automated cargo traffic systems. This analysis was a preliminary effort with emphasis on documentation of requirements, examination of design alternatives, and identification of specific MTIT systems` data sharing problems. This report records the results of the ORNL analysis. The SDE envisioned by ORNL at this point in the analysis is not merely a repository of information; it is also a system that allows processing of distributed data. To provide high-level access to and control over international cargo processes, ORNL recommends a loosely coupled, replicated database design with high-speed communications among all sites.

Russell, D.L.; Wheeler, V.V. [Tennessee Univ., Knoxville, TN (United States); Truett, L.F. [Oak Ridge National Lab., TN (United States)

1992-01-01T23:59:59.000Z

253

Traffic Management Command, ATTN: MT-INFF, 5611 Columbia Pike, Falls  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

/ 'Vol 52,-No. 212. !/- Tuesday; November 3, -1987 1 Notices.- . / 'Vol 52,-No. 212. !/- Tuesday; November 3, -1987 1 Notices.- . . and responsibility of that company. This is not intented to prevent a carrier from interchanging equipment to allow for the through movement of traffic. Master- leases which do not meet the requirements of a long-term lease or that depend on other documentation and/or subleases to be complete are viewed as trip-leases. DATE: Comments must be received on or before 1 January 1988. ADDRESS: Comments should be addressed to: Headquarters, Military Traffic Management Command, ATTN: MT-INFF, 5611 Columbia Pike, Falls Church, VA 22041-5050. FOR FURTHER INFORMATION CONTACT. Ms. Patricia McCormick, HQMTMC 5611 Columbia Pike, Falls Church, VA 22041- 5050, (202] 756-1887. SUPPLEMENTARY INFORMATION. Master- leases which do not conform to the

254

D&D Engineering & Design Guidance  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Order 413.3A Volume I Prepared By U.S. Department of Energy Office of Environmental Management Office of Deactivation and Decommissioning and Facility Engineering, EM-44 Revision...

255

Harrisburg Facility Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Harrisburg Facility Biomass Facility Harrisburg Facility Biomass Facility Jump to: navigation, search Name Harrisburg Facility Biomass Facility Facility Harrisburg Facility Sector Biomass Facility Type Landfill Gas Location Dauphin County, Pennsylvania Coordinates 40.2734277°, -76.7336521° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.2734277,"lon":-76.7336521,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

256

Brookhaven Facility Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Brookhaven Facility Biomass Facility Brookhaven Facility Biomass Facility Jump to: navigation, search Name Brookhaven Facility Biomass Facility Facility Brookhaven Facility Sector Biomass Facility Type Landfill Gas Location Suffolk County, New York Coordinates 40.9848784°, -72.6151169° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.9848784,"lon":-72.6151169,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

257

Draft Guidance: Response, Remediation, and Recovery Checklist for Chemically Contaminated Facilities  

SciTech Connect

A key part of preparedness in the event of a chemical warfare agent (CWA) or toxic industrial chemical (TIC) release at a large facility, such as an airport or subway, is to develop a concept of operations that allows for an effective incident response and recovery. This document is intended as a component of the concept of operations and will be used in the Emergency Operations Center (EOC) as a decision tool for the Unified Command (UC). The Checklist for Facility Response, Remediation, and Recovery presented in this document is principally focused on the Consequence Management Phase (see Figure 1; LLNL 2007a and 2007b) of a chemical release. Information in this document conforms to the National Response Plan (NRP) (DHS 2004) and the National Incident Management System (NIMS 2004). Under these two guidance documents, personnel responsible for managing chemical response and recovery efforts--that is, the decision-makers--are members of an Incident Command (IC), which is likely to transition to a UC in the event of a CWA or TIC attack. A UC is created when more than one agency has incident jurisdiction or when incidents cross political jurisdictions. The location for primary, tactical-level command and management is referred to as the Incident Command Post (ICP), as described in the NRP. Thus, regardless of whether an IC or a UC is used, the responsible entities are located at an ICP. Agencies work together through designated members of the UC to establish their designated Incident Commanders at a single ICP and to establish a common set of objectives and strategies and a single Incident Action Plan. Initially during the Crisis Management Phase (see Figure 1), the Incident Commander is likely to be the Chief of the fire department that serves the affected facility. As life-safety issues are resolved and the Crisis Management Phase shifts to the Consequence Management Phase, the work of characterization, decontamination, and facility clearance begins. There will likely be a coincident transition in organizational structure as well, and new remediation-focused groups, units, and personnel will be added as remediation needs are anticipated. In most cases, a UC would be formed, if not formed already, to direct the cleanup process jointly and to take ultimate responsibility for all cleanup decisions. The UC would likely include the Transportation Facility Manager or Emergency Operations Manager; representatives from state and local public health, environmental, and emergency management agencies; and Federal agencies, such as the U.S. Environmental Protection Agency.

Raber, E; Mancieri, S; Carlsen, T; Fish, C; Hirabayashi-Dethier, J; Intrepido, A; MacQueen, D; Michalik, R; Richards, J

2007-09-04T23:59:59.000Z

258

Fuel injection system and method of operating the same for an engine  

DOE Patents (OSTI)

A fuel injector is coupled to an engine. The fuel injector includes an injection opening configured to vary in cross-section between a open state and a fully closed state. The fuel injector is configured to provide a plurality of discrete commanded fuel injections into an engine cylinder by modulating the size of the injection opening without completely closing the opening to the fully closed state.

Topinka, Jennifer Ann (Niskayuna, NY); DeLancey, James Peter (Corinth, NY); Primus, Roy James (Niskayuna, NY); Pintgen, Florian Peter (Niskayuna, NY)

2011-02-15T23:59:59.000Z

259

Engines - Compression-Ignition - Locomotive Engines - emissions...  

NLE Websites -- All DOE Office Websites (Extended Search)

Locomotive Engine Research Program Drives Down Train Emissions General Motors Electromotive Division locomotive engine EMD Engine Locomotive engine manufacturers face a unique...

260

Engineering Development & Applications - Nuclear Engineering...  

NLE Websites -- All DOE Office Websites (Extended Search)

Technologies (FCT) Generation IV (Gen IV) Nuclear Energy Program Decontamination and Decommissioning Nuclear Regulatory Research Facilities Environmentally Assisted Cracking...

Note: This page contains sample records for the topic "facilities engineering command" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

International Facility Management Association Strategic Facility  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Facility Management Association Facility Management Association Strategic Facility Planning: A WhIte PAPer Strategic Facility Planning: A White Paper on Strategic Facility Planning © 2009 | International Facility Management Association For additional information, contact: 1 e. Greenway Plaza, Suite 1100 houston, tX 77046-0104 USA P: + 1-713-623-4362 F: + 1-713-623-6124 www.ifma.org taBle OF cOntentS PreFace ......................................................... 2 executive Summary .................................... 3 Overview ....................................................... 4 DeFinitiOn OF Strategic Facility Planning within the Overall cOntext OF Facility Planning ................. 5 SPecializeD analySeS ................................ 9 OrganizatiOnal aPPrOacheS tO SFP ... 10 the SFP PrOceSS .......................................

262

Office of Nuclear Facility Basis & Facility Design  

NLE Websites -- All DOE Office Websites (Extended Search)

Office of Nuclear Safety Basis & Facility Design(HS-31) Reports to the Office of Nuclear Safety About Us The Office of Nuclear Safety Basis & Facility Design establishes safety...

263

AGING FACILITY CRITICALITY SAFETY CALCULATIONS  

Science Conference Proceedings (OSTI)

The purpose of this design calculation is to revise and update the previous criticality calculation for the Aging Facility (documented in BSC 2004a). This design calculation will also demonstrate and ensure that the storage and aging operations to be performed in the Aging Facility meet the criticality safety design criteria in the ''Project Design Criteria Document'' (Doraswamy 2004, Section 4.9.2.2), and the functional nuclear criticality safety requirement described in the ''SNF Aging System Description Document'' (BSC [Bechtel SAIC Company] 2004f, p. 3-12). The scope of this design calculation covers the systems and processes for aging commercial spent nuclear fuel (SNF) and staging Department of Energy (DOE) SNF/High-Level Waste (HLW) prior to its placement in the final waste package (WP) (BSC 2004f, p. 1-1). Aging commercial SNF is a thermal management strategy, while staging DOE SNF/HLW will make loading of WPs more efficient (note that aging DOE SNF/HLW is not needed since these wastes are not expected to exceed the thermal limits form emplacement) (BSC 2004f, p. 1-2). The description of the changes in this revised document is as follows: (1) Include DOE SNF/HLW in addition to commercial SNF per the current ''SNF Aging System Description Document'' (BSC 2004f). (2) Update the evaluation of Category 1 and 2 event sequences for the Aging Facility as identified in the ''Categorization of Event Sequences for License Application'' (BSC 2004c, Section 7). (3) Further evaluate the design and criticality controls required for a storage/aging cask, referred to as MGR Site-specific Cask (MSC), to accommodate commercial fuel outside the content specification in the Certificate of Compliance for the existing NRC-certified storage casks. In addition, evaluate the design required for the MSC that will accommodate DOE SNF/HLW. This design calculation will achieve the objective of providing the criticality safety results to support the preliminary design of the Aging Facility. As the ongoing design evolution remains fluid, the results from this design calculation should be evaluated for applicability to any new or modified design. Consequently, the results presented in this document are limited to the current design. The information contained in this document was developed by Environmental and Nuclear Engineering and is intended for the use of Design and Engineering in its work regarding the various criticality related activities performed in the Aging Facility. Yucca Mountain Project personnel from Environmental and Nuclear Engineering should be consulted before the use of the information for purposes other than those stated herein or use by individuals other than authorized personnel in Design and Engineering.

C.E. Sanders

2004-09-10T23:59:59.000Z

264

Can reduced processing decision support interfaces improve the decision-making of less-experienced incident commanders?  

Science Conference Proceedings (OSTI)

Computer-based decision support systems have been proposed as a tool to improve the decision-making of less-experienced personnel by reducing the information processing demands necessary for decision-making. This study investigated the utility of three ... Keywords: Cognitive load, Decision-making, Experience, Expertise, Fire-fighting, Incident command

Nathan C. Perry; Mark W. Wiggins; Merilyn Childs; Gerard Fogarty

2012-01-01T23:59:59.000Z

265

Developed for Trusted Computing Group, www.trustedcomputinggroup.org Subj: SPC-3 Create well known LUN for trusted commands  

E-Print Network (OSTI)

This document presents a proposal to define a well known logical unit to process trusted commands. This feature is intended for use by array controllers and other multi-LUN devices, but may be implemented by single LUN devices as well. This proposal requires use of trusted commands described in related T10 proposal 05-157. Rev. 1: Change name of the well known LUN from “security ” commands to “trusted ” commands. Rev. 2: Change name of the well known LUN from “trusted ” to “security protocol”. Page 1 of 2Document T10/05-252 rev. 2 Add changes to table 333 in clause 8.1 as follows: (additions are underlined) 8.1 Model for well known logical units Well known logical units are addressed using the well known logical unit addressing method of extended logical unit addressing (see SAM-3). Each well known logical unit has a well known logical unit number (W-LUN) as shown in table 333. Table 333 – Well known logical unit numbers W-LUN Description Reference 0h Reserved

unknown authors

2006-01-01T23:59:59.000Z

266

Adaptive control using neural network for command following of tilt-rotor airplane in 0°-tilt angle mode  

Science Conference Proceedings (OSTI)

This paper deals with an autonomous flight algorithm design problem for the tilt-rotor airplane under development by Korea Aerospace Research Institute for simulation study. The objective of this paper is to design a guidance and control algorithm to ... Keywords: KARI tilt-rotor airplane, adaptive control, approximate modelbased inversion, command following, neural network

Jae Hyoung Im; Cheolkeun Ha

2009-09-01T23:59:59.000Z

267

2-ft Flume Facility | Open Energy Information  

Open Energy Info (EERE)

2-ft Flume Facility 2-ft Flume Facility Jump to: navigation, search Basic Specifications Facility Name 2-ft Flume Facility Overseeing Organization United States Army Corp of Engineers (ERDC) Hydrodynamic Testing Facility Type Flume Length(m) 61.0 Beam(m) 0.6 Depth(m) 1.8 Water Type Freshwater Cost(per day) Contact POC Towing Capabilities Towing Capabilities None Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.6 Maximum Wave Height(m) at Wave Period(s) 10.0 Wave Period Range(s) 10.0 Current Velocity Range(m/s) 0.0 Programmable Wavemaking Yes Simulated Beach No Channel/Tunnel/Flume Channel/Tunnel/Flume Yes Wind Capabilities Wind Capabilities None Control and Data Acquisition Description Automated data acquisition and control system Cameras None

268

Breakwater Research Facility | Open Energy Information  

Open Energy Info (EERE)

Breakwater Research Facility Breakwater Research Facility Jump to: navigation, search Basic Specifications Facility Name Breakwater Research Facility Overseeing Organization United States Army Corp of Engineers (ERDC) Hydrodynamic Testing Facility Type Wave Basin Length(m) 121.9 Beam(m) 55.5 Depth(m) 0.8 Water Type Freshwater Cost(per day) Contact POC Towing Capabilities Towing Capabilities None Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.0 Wave Period Range(s) 0.0 Current Velocity Range(m/s) 0.0 Programmable Wavemaking No Simulated Beach No Channel/Tunnel/Flume Channel/Tunnel/Flume None Wind Capabilities Wind Capabilities None Control and Data Acquisition Description Automated data acquisition and control system Cameras None Available Sensors Flow, Pressure Range(psi), Turbulence, Velocity, Wave Probe

269

Sectional Model Flume Facilities | Open Energy Information  

Open Energy Info (EERE)

Sectional Model Flume Facilities Sectional Model Flume Facilities Jump to: navigation, search Basic Specifications Facility Name Sectional Model Flume Facilities Overseeing Organization United States Army Corp of Engineers (ERDC) Hydrodynamic Testing Facility Type Flume Length(m) 21.3 Beam(m) 1.4 Depth(m) 2.4 Water Type Freshwater Cost(per day) Contact POC Towing Capabilities Towing Capabilities None Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.0 Wave Period Range(s) 0.0 Current Velocity Range(m/s) 0.0 Programmable Wavemaking No Simulated Beach No Channel/Tunnel/Flume Channel/Tunnel/Flume Yes Recirculating No Wind Capabilities Wind Capabilities None Control and Data Acquisition Description Automated data acquisition and control system Cameras None Available Sensors Flow, Pressure Range(psi), Turbulence, Velocity, Wave Probe

270

Coastal Inlet Model Facility | Open Energy Information  

Open Energy Info (EERE)

Inlet Model Facility Inlet Model Facility Jump to: navigation, search Basic Specifications Facility Name Coastal Inlet Model Facility Overseeing Organization United States Army Corp of Engineers (ERDC) Hydrodynamic Testing Facility Type Wave Basin Length(m) 103.6 Beam(m) 48.8 Depth(m) 0.6 Water Type Freshwater Cost(per day) Contact POC Towing Capabilities Towing Capabilities None Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.2 Maximum Wave Height(m) at Wave Period(s) 2.3 Wave Period Range(s) 2.3 Current Velocity Range(m/s) 0.0 Programmable Wavemaking Yes Wave Direction Uni-Directional Simulated Beach No Channel/Tunnel/Flume Channel/Tunnel/Flume None Wind Capabilities Wind Capabilities None Control and Data Acquisition Description Automated data acquisition and control system

271

Flood Fighting Research Facility | Open Energy Information  

Open Energy Info (EERE)

Fighting Research Facility Fighting Research Facility Jump to: navigation, search Basic Specifications Facility Name Flood Fighting Research Facility Overseeing Organization United States Army Corp of Engineers (ERDC) Hydrodynamic Testing Facility Type Wave Basin Length(m) 45.7 Beam(m) 30.5 Depth(m) 1.2 Water Type Freshwater Cost(per day) Contact POC Towing Capabilities Towing Capabilities None Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.0 Wave Period Range(s) 0.0 Current Velocity Range(m/s) 0.0 Programmable Wavemaking No Simulated Beach No Channel/Tunnel/Flume Channel/Tunnel/Flume None Wind Capabilities Wind Capabilities None Control and Data Acquisition Description Automated data acquisition and control system Cameras Yes Number of Color Cameras 1

272

Coastal Harbors Modeling Facility | Open Energy Information  

Open Energy Info (EERE)

Modeling Facility Modeling Facility Jump to: navigation, search Basic Specifications Facility Name Coastal Harbors Modeling Facility Overseeing Organization United States Army Corp of Engineers (ERDC) Hydrodynamic Testing Facility Type Wave Basin Length(m) 121.9 Beam(m) 48.8 Depth(m) 0.5 Water Type Freshwater Cost(per day) Contact POC Towing Capabilities Towing Capabilities None Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.2 Maximum Wave Height(m) at Wave Period(s) 2.3 Wave Period Range(s) 2.3 Current Velocity Range(m/s) 0.0 Programmable Wavemaking Yes Wave Direction Uni-Directional Simulated Beach No Channel/Tunnel/Flume Channel/Tunnel/Flume None Wind Capabilities Wind Capabilities None Control and Data Acquisition Description Automated data acquisition and control system

273

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

than any other quarter on record-961 The U.S. Department of Energy requires national user facilities to report facility use by total visitor days and facility to track actual...

274

The Data Assimilation Research Testbed: A Community Facility  

Science Conference Proceedings (OSTI)

The Data Assimilation Research Testbed (DART) is an open-source community facility for data assimilation education, research, and development. DART's ensemble data assimilation algorithms, careful software engineering, and diagnostic tools allow ...

Jeffrey Anderson; Tim Hoar; Kevin Raeder; Hui Liu; Nancy Collins; Ryan Torn; Avelino Avellano

2009-09-01T23:59:59.000Z

275

Transportation Systems Engineering GRADUATE STUDIES  

E-Print Network (OSTI)

Transportation Systems Engineering GRADUATE STUDIES TRANSPORTATION SYSTEMS are the building blocks and provides for an improved quality of life. However, transportation systems by their very nature also affect the environment through physical construction and operation of transportation facilities, and through the travel

Wang, Yuhang

276

The Operational Mesogamma-Scale Analysis and Forecast System of the U.S. Army Test and Evaluation Command. Part III: Forecasting with Secondary-Applications Models  

Science Conference Proceedings (OSTI)

Output from the Army Test and Evaluation Command’s Four-Dimensional Weather System’s mesoscale model is used to drive secondary-applications models to produce forecasts of quantities of importance for daily decision making at U.S. Army test ...

Robert D. Sharman; Yubao Liu; Rong-Shyang Sheu; Thomas T. Warner; Daran L. Rife; James F. Bowers; Charles A. Clough; Edward E. Ellison

2008-04-01T23:59:59.000Z

277

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

Facility News Data Collection from Mobile Facility on Gan Island Suspended Local weather balloon launch volunteers pose with the AMF team on Gan Island after completing their...

278

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

approximately 22,500 square kilometers, or the approximate area of a modern climate model grid cell. Centered around the SGP Central Facility, these extended facilities are...

279

Chemistry Dept. Research Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Facilities As a research organization within a National Laboratory, the Chemistry Department operates research facilities that are available to other researchers as...

280

from Isotope Production Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Cancer-fighting treatment gets boost from Isotope Production Facility April 13, 2012 Isotope Production Facility produces cancer-fighting actinium - 2 - 2:32 Isotope cancer...

Note: This page contains sample records for the topic "facilities engineering command" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Fuel Fabrication Facility  

National Nuclear Security Administration (NNSA)

Construction of the Mixed Oxide Fuel Fabrication Facility Construction of the Mixed Oxide Fuel Fabrication Facility November 2005 May 2007 June 2008 May 2012...

282

User Facility Agreement Form  

NLE Websites -- All DOE Office Websites (Extended Search)

5. Which Argonne user facility will be hosting you? * Advanced Leadership Computing Facility (ALCF) Advanced Photon Source (APS) Argonne Tandem Linear...

283

NREL: Biomass Research - Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Facilities At NREL's state-of-the-art biomass research facilities, researchers design and optimize processes to convert renewable biomass feedstocks into transportation fuels and...

284

Oak Ridge Reservation Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

processed for shipment to the Nevada Test Site or other appropriate disposal facility. Molten Salt Reactor Experiment Facility The Molten Salt Reactor Experiment (MSRE) operated...

285

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

January 15, 2008 Facility News ARM Mobile Facility Completes Field Campaign in Germany Researchers will study severe precipitation events that occurred in August and October...

286

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

May 15, 2008 Facility News National User Facility Organization Meets to Discuss Progress and Ideas In late April, the ARM Technical Director attended an annual meeting of the...

287

Facility Safeguardability Assessment Report  

National Nuclear Security Administration (NNSA)

of the Facility Safeguardability Analysis (FSA) Process RA Bari SJ Johnson J Hockert R Wigeland EF Wonder MD Zentner August 2012 PNNL- 21698 Overview of the Facility...

288

Facility Safeguardability Assessment Report  

National Nuclear Security Administration (NNSA)

facilities or research facilities that involve previously unused processes or technologies, comparison with previously required safeguard design features may not be...

289

Engines - Spark Ignition Engines - Hydrogen Engines  

NLE Websites -- All DOE Office Websites (Extended Search)

large-scale hydrogen infrastructure by using the well-known and widely used internal combustion engine as the device that transforms the energy stored in hydrogen into motion. The...

290

Facility Representative Program: 2003 Facility Representative Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

3 Facility Representative Workshop 3 Facility Representative Workshop May 13 - 15, 2003 Las Vegas, NV Facility Rep of the Year Award | Attendees list | Summary Report [PDF] WORKSHOP AGENDA Day 1: Tuesday, May 13, 2003 Theme: Program Successes and Challenges 8:00 a.m. John Evans, Facility Representative Program Manager 8:15 a.m. Welcome Kathleen Carlson Manager, Nevada Site Office 8:30 a.m. Keynote Address Savannah River Site and Facility Reps - A Shared History and Common Future Jeffrey M. Allison Manager, Savannah River Operations Office 9:00 a.m. Videotaped Remarks from the Deputy Secretary Kyle E. McSlarrow, Deputy Secretary of Energy 9:10 a.m. Facility Representative of the Year Presentation Mark B. Whitaker, Jr., Departmental Representative to the Defense Nuclear Facilities Safety Board

291

NREL: Research Facilities - Test and User Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Test and User Facilities Test and User Facilities NREL has test and user facilities available to industry and other organizations for researching, developing, and evaluating renewable energy and energy efficiency technologies. Here you'll find an alphabetical listing and brief descriptions of NREL's test and user facilities. A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z A Advanced Research Turbines At our wind testing facilities, we have turbines available to test new control schemes and equipment for reducing loads on wind turbine components. Learn more about the Advanced Research Turbines on our Wind Research website. Back to Top D Distributed Energy Resources Test Facility This facility was designed to assist the distributed power industry in the

292

Facility Representative Program: 2000 Facility Representative Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

0 Facility Representative Workshop 0 Facility Representative Workshop May 16-18, 2000 Las Vegas, NV Facility Rep of the Year Award | Attendees list | Summary Report [PDF] WORKSHOP AGENDA Tuesday, May 16, 2000 Theme for Day 1: Sustaining the Success of the Facility Representative Program 8:00 a.m. - Opening Remarks - Joe Arango, Facility Representative Program Manager 8:05 a.m. - Welcome - Kenneth Powers, Deputy Manager Nevada Operations Office 8:15 a.m. - Deputy Secretary Remarks - T. J. Glauthier, Deputy Secretary of Energy 8:30 a.m. - Keynote Address - Jerry Lyle, Assistant Manager for Environmental Management, Idaho Operations Office 9:00 a.m. - Facility Representative of the Year Presentation - Mark B. Whitaker, Departmental Representative 9:30 a.m. - Break 9:50 a.m. - Program Results and Goals - Joe Arango, Facility Representative Program Manager

293

Southern Company Services Power Systems Development Facility  

E-Print Network (OSTI)

The Power Systems Development Facility (PSDF) located in Wilsonville, Alabama, was established in 1995 to lead the United States ' effort to develop cost-competitive, environmentally acceptable, coal-based power plant technologies. The PSDF includes an engineering scale demonstration of key components of an Integrated Gasification

Roxann Leonard; Robert C. Lambrecht; Pannalal Vimalchand; Ruth Ann Yongue; Senior Engineer

2007-01-01T23:59:59.000Z

294

Guide to research facilities  

SciTech Connect

This Guide provides information on facilities at US Department of Energy (DOE) and other government laboratories that focus on research and development of energy efficiency and renewable energy technologies. These laboratories have opened these facilities to outside users within the scientific community to encourage cooperation between the laboratories and the private sector. The Guide features two types of facilities: designated user facilities and other research facilities. Designated user facilities are one-of-a-kind DOE facilities that are staffed by personnel with unparalleled expertise and that contain sophisticated equipment. Other research facilities are facilities at DOE and other government laboratories that provide sophisticated equipment, testing areas, or processes that may not be available at private facilities. Each facility listing includes the name and phone number of someone you can call for more information.

Not Available

1993-06-01T23:59:59.000Z

295

Secretary Salazar and Secretary Chu to Meet with Scientists and Engineers  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Secretary Salazar and Secretary Chu to Meet with Scientists and Secretary Salazar and Secretary Chu to Meet with Scientists and Engineers at BP Houston Command Center Secretary Salazar and Secretary Chu to Meet with Scientists and Engineers at BP Houston Command Center May 11, 2010 - 12:00am Addthis Report oiled shoreline or request volunteer information: (866)-448-5816 Submit alternative response technology, services or products: (281) 366-551 Submit your vessel for the Vessel of Opportunity Program: (281) 366-5511 Submit a claim for damages: (800) 440-0858 Report oiled wildlife: (866) 557-1401 Deepwater Horizon Incident Joint Information Center Phone: (985) 902-5231 (985) 902-5240 HOUSTON - The U.S. Interior Secretary Ken Salazar and U.S. Energy Secretary Steven Chu are scheduled to meet with scientists and engineers from both

296

User Facility Science Highlights | U.S. DOE Office of Science (SC)  

NLE Websites -- All DOE Office Websites (Extended Search)

User Facility Science User Facility Science Highlights User Facilities ASCR User Facilities BES User Facilities BER User Facilities FES User Facilities HEP User Facilities NP User Facilities User Facilities Frequently Asked Questions User Facility Science Highlights Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 User Facility Science Highlights Print Text Size: A A A Subscribe FeedbackShare Page Filter by Program Or press Esc Key to close. close Select all that apply. Advanced Scientific Computing Research (ASCR) Basic Energy Sciences (BES) [+] Options « BES Chemical Sciences, Geosciences, and Biosciences Division (CSGB) Materials Sciences and Engineering Division (MSE) Scientific User Facilities Division (SUF)

297

Oak Ridge Leadership Computing Facility  

NLE Websites -- All DOE Office Websites

Oak Ridge Leadership Computing Facility Oak Ridge Leadership Computing Facility The OLCF was established at Oak Ridge National Laboratory in 2004 with the mission of standing up a supercomputer 100 times more powerful than the leading systems of the day. Connect with OLCF Facebook Twitter YouTube Vimeo Search OLCF.ORNL.GOV Home About OLCF Overview Leadership Team Groups Org Chart User Council Careers Visitor Information & Tours Contact Us Leadership Science Biological Sciences Chemistry Computer Science Earth Science Engineering Materials Science Physics 2013 INCITE Projects 2013 ALCC Projects Computing Resources Titan Cray XK7 Eos Lens EVEREST Rhea Sith Smoky Data Management Data Analysis Center Projects Adios CCI eSiMon File System Projects IOTA OpenSFS SWTools XGAR User Support Getting Started System User Guides KnowledgeBase

298

Information engineering  

SciTech Connect

The Information Engineering thrust area develops information technology to support the programmatic needs of Lawrence Livermore National Laboratory`s Engineering Directorate. Progress in five programmatic areas are described in separate reports contained herein. These are entitled Three-dimensional Object Creation, Manipulation, and Transport, Zephyr:A Secure Internet-Based Process to Streamline Engineering Procurements, Subcarrier Multiplexing: Optical Network Demonstrations, Parallel Optical Interconnect Technology Demonstration, and Intelligent Automation Architecture.

Hunt, D.N.

1997-02-01T23:59:59.000Z

299

General Engineers  

U.S. Energy Information Administration (EIA) Indexed Site

General Engineers General Engineers The U.S. Energy Information Administration (EIA) within the Department of Energy has forged a world-class information program that stresses quality, teamwork, and employee growth. In support of our program, we offer a variety of profes- sional positions, including the General Engineer, whose work is associated with analytical studies and evaluation projects pertaining to the operations of the energy industry. Responsibilities: General Engineers perform or participate in one or more of the following important functions: * Design modeling systems to represent energy markets and the physical properties of energy industries * Conceive, initiate, monitor and/or conduct planning and evaluation projects and studies of continuing and future

300

Power Systems Development Facility: Design, Construction, and Commissioning Status  

Science Conference Proceedings (OSTI)

This paper will provide an introduction to the Power Systems Development Facility, a Department of Energy sponsored, engineering scale demonstration of two advanced coal-fired power technologies; and discuss current status of design, construction and commissioning of this facility. 28 viewgraphs, including 2 figs.

Powell, C.A.; Vimalchand; Hendrix, H.L.; Honeycut, P.M.

1996-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "facilities engineering command" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Petroleum fuel facilities. design manual 22. Final design criteria  

SciTech Connect

Design criteria are presented for use by qualified engineers in designing liquid fueling and dispensing facilities. Included are basic requirements for the design of piping systems, pumps, heaters, and controls; the design of receiving, dispensing, and storage facilities; ballast treatment and sludge removal; corrosion and fire protection; and environmental requirements.

1982-08-01T23:59:59.000Z

302

Facilities/Staff Hydrogen  

Science Conference Proceedings (OSTI)

Thermophysical Properties of Hydrogen. FACILITIES and STAFF. The Thermophysical Properties Division is the Nation's ...

303

CRAD, Training - Idaho MF-628 Drum Treatment Facility | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Idaho MF-628 Drum Treatment Facility Idaho MF-628 Drum Treatment Facility CRAD, Training - Idaho MF-628 Drum Treatment Facility May 2007 A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a May 2007 readiness assessment of the Training Program at the MF-628 Drum Treatment Facility at the Idaho National Laboratory Advanced Mixed Waste Treatment Project. CRADs provide a recommended approach and the types of information to gather to assess elements of a DOE contractor's programs. CRAD, Training - Idaho MF-628 Drum Treatment Facility More Documents & Publications CRAD, Quality Assurance - Idaho MF-628 Drum Treatment Facility CRAD, Engineering - Idaho MF-628 Drum Treatment Facility

304

CRAD, Management - Idaho MF-628 Drum Treatment Facility | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Idaho MF-628 Drum Treatment Facility Idaho MF-628 Drum Treatment Facility CRAD, Management - Idaho MF-628 Drum Treatment Facility May 2007 A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a May, 2007 readiness assessment of the Management at the MF-628 Drum Treatment Facility at the Idaho National Laboratory, Advanced Mixed Waste Treatment Project. CRADs provide a recommended approach and the types of information to gather to assess elements of a DOE contractor's programs. CRAD, Management - Idaho MF-628 Drum Treatment Facility More Documents & Publications CRAD, Engineering - Idaho MF-628 Drum Treatment Facility CRAD, Occupational Safety & Health - Idaho MF-628 Drum Treatment Facility

305

Update on Engine Combustion Research at Sandia National Laboratories  

DOE Green Energy (OSTI)

The objectives of this paper are to describe the research efforts in diesel engine combustion at Sandia National Laboratories' Combustion Research Facility and to provide recent experimental results. We have four diesel engine experiments supported by the Department of Energy, Office of Heavy Vehicle Technologies: a one-cylinder version of a Cummins heavy-duty engine, a diesel simulation facility, a one-cylinder Caterpillar engine to evaluate combustion of alternative fuels, and a homogeneous-charge, compression ignition (HCCI) engine. Recent experimental results of diesel combustion research will be discussed and a description will be given of our HCCI experimental program and of our HCCI modeling work.

Jay Keller; Gurpreet Singh

2001-05-14T23:59:59.000Z

306

Facility Representative Program: 2010 Facility Representative Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

10 Facility Representative Workshop 10 Facility Representative Workshop May 12 - 13, 2010 Las Vegas, NV Facility Rep of the Year Award | Attendees | Summary Report Workshop Agenda and Presentations Day 1: Wednesday, May 12, 2010 8:00 a.m. Opening Remarks James Heffner, Facility Representative Program Manager Earl Hughes, Safety System Oversight Program Manager Office of Nuclear Safety Policy and Assistance Office of Health, Safety and Security 8:15 a.m. Welcome from the Nevada Site Office John Mallin, Deputy Assistant Manager for Site Operations Nevada Site Office 8:30 a.m. Workshop Keynote Address Todd Lapointe Chief of Nuclear Safety Central Technical Authority Staff 9:15 a.m. Facility Representative and Safety System Oversight Award Ceremony James Heffner, Facility Representative Program Manager

307

Facility Representative Program: 2007 Facility Representative Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

7 Facility Representative Workshop 7 Facility Representative Workshop May 15 - 17, 2007 Las Vegas, NV Facility Rep of the Year Award | Attendees list | Summary Report [PDF] WORKSHOP AGENDA Final Day 1: Tuesday, May 15, 2007 8:00 a.m. Opening Remarks Joanne Lorence, Facility Representative Program Manager 8:15 a.m. Welcome from the Nevada Site Office Gerald Talbot, Manager, Nevada Site Office 8:30 a.m. Videotaped Remarks from the Deputy Secretary The Honorable Clay Sell, Deputy Secretary of Energy 8:45 a.m. Keynote Address - Safety Oversight Perspective and Expectations Glenn Podonsky, Chief Health, Safety and Security Officer, Office of Health, Safety and Security 9:10 a.m. Facility Representative of the Year Presentation Mark B. Whitaker, Jr., Departmental Representative to the Defense Nuclear Facilities Safety Board,

308

Facility Representative Program: 2001 Facility Representative Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Facility Representative Workshop 1 Facility Representative Workshop May 15 - 17, 2001 Las Vegas, NV Facility Rep of the Year Award | Attendees list | Summary Report [PDF] WORKSHOP AGENDA Day 1: Tuesday, May 15, 2001 Theme: Program Successes and Challenges 8:00 a.m. - Logistics Announcements & Opening Remarks - Joe Arango, Facility Representative Program Manager 8:15 a.m. - Welcome - Debbie Monette, Assistant Manager for National Security, Nevada Operations Office 8:30 a.m. - Keynote Address - Ralph Erickson, National Nuclear Security Administration 9:00 a.m.- DOE Facility Representative of the Year Presentation - Mark B. Whitaker, Jr., Departmental Representative to the Defense Nuclear Facilities Safety Board 9:30 a.m. - Break 9:50 a.m. - Program Summary - Joe Arango 10:10 a.m. - Management Panel/Questions and Answers

309

Structural Integrity Program for INTEC Calcined Solids Storage Facilities  

SciTech Connect

This report documents the activities of the structural integrity program at the Idaho Nuclear Technology and Engineering Center relevant to the high-level waste Calcined Solids Storage Facilities and associated equipment, as required by DOE M 435.1-1, 'Radioactive Waste Management Manual'. Based on the evaluation documented in this report, the Calcined Solids Storage Facilities are not leaking and are structurally sound for continued service. Recommendations are provided for continued monitoring of the Calcined Solids Storage Facilities.

Jeffrey Bryant

2008-08-30T23:59:59.000Z

310

Structural Integrity Program for INTEC Calcined Solids Storage Facilities  

Science Conference Proceedings (OSTI)

This report documents the activities of the structural integrity program at the Idaho Nuclear Technology and Engineering Center relevant to the high-level waste Calcined Solids Storage Facilities and associated equipment, as required by DOE M 435.1-1, “Radioactive Waste Management Manual.” Based on the evaluation documented in this report, the Calcined Solids Storage Facilities are not leaking and are structurally sound for continued service. Recommendations are provided for continued monitoring of the Calcined Solids Storage Facilities.

Bryant, Jeffrey Whealdon; Nenni, Joseph A; Timothy S. Yoder

2003-05-01T23:59:59.000Z

311

DEVELOPMENT OF THFEGENERAL ELECTRIC STIRLING ENGINE GAS HEAT PUMP  

E-Print Network (OSTI)

A Tour of the Aerodynamic and Hydraulic Research Infrastructure, Department of Engineering, University of Leicester A. Rona and P. D. Williams, Department of Engineering, University of Leicester, UK The Department of Engineering, University of Leicester, maintains a range of fluid dynamics test facilities. Dr

Oak Ridge National Laboratory

312

Naval Station Newport Wind Resource Assessment. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites, and The Naval Facilities Engineering Service Center  

NLE Websites -- All DOE Office Websites (Extended Search)

Naval Station Newport Naval Station Newport Wind Resource Assessment A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites, and The Naval Facilities Engineering Service Center Robi Robichaud, Jason Fields, and Joseph Owen Roberts Technical Report NREL/TP-6A20-52801 February 2012 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Naval Station Newport

313

Web engineering  

Science Conference Proceedings (OSTI)

Web Engineering is the application of systematic, disciplined and quantifiable approaches to development, operation, and maintenance of Web-based applications. It is both a pro-active approach and a growing collection of theoretical and empirical research ... Keywords: development methodologies, taxonomy of Web applications, web Engineering, web application development, web-based information systems

Yogesh Deshpande; San Murugesan; Athula Ginige; Steve Hansen; Daniel Schwabe; Martin Gaedke; Bebo White

2002-10-01T23:59:59.000Z

314

Facility Representative Program: 2008 Facility Representative...  

NLE Websites -- All DOE Office Websites (Extended Search)

Sherman Chao, LSO Conduct of Operations Improvements at K Basins Dennis Humphreys, RL Molten Salt Reactor Experiment (MSRE) facility lessons learned Charlie Wright, ORO...

315

Facility Representative Program: 2005 Facility Representative...  

NLE Websites -- All DOE Office Websites (Extended Search)

Sharing of Good Practices and Lessons Learned (4) Inadvertent Startup of Electric Centrifuge at the Weapon Evaluation Test Lab Joyce Arviso-Benally, SSO Facility Rep...

316

Facility Representative Program: 2012 Facility Representative...  

NLE Websites -- All DOE Office Websites (Extended Search)

18, 2012 Las Vegas, NV Agenda | Presentations | SSO Annual Award | Pictures | Summary Report 2011 Facility Representative of the Year Award 2011 WINNER: Congratulations to Bradley...

317

The Operational Mesogamma-Scale Analysis and Forecast System of the U.S. Army Test and Evaluation Command. Part II: Interrange Comparison of the Accuracy of Model Analyses and Forecasts  

Science Conference Proceedings (OSTI)

This study builds upon previous efforts to document the performance of the U.S. Army Test and Evaluation Command’s Four-Dimensional Weather Modeling System using conventional metrics. Winds, temperature, and specific humidity were verified for ...

Yubao Liu; Thomas T. Warner; Elford G. Astling; James F. Bowers; Christopher A. Davis; Scott F. Halvorson; Daran L. Rife; Rong-Shyang Sheu; Scott P. Swerdlin; Mei Xu

2008-04-01T23:59:59.000Z

318

CHEMICAL ENGINEERING AND MANUFACTURING CHEMICAL ENGINEERING  

E-Print Network (OSTI)

CHEMICAL ENGINEERING AND MANUFACTURING CHEMICAL ENGINEERING Objective Chemical Engineers of chemicals. This lesson introduces students to one component of chemical engineering: food processing, and a chemical engineer 2. How chemical engineers are involved in food production 3. That chemical engineers need

Provancher, William

319

Radiochemical Engineering Development Center (REDC) | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Science Home | Science & Discovery | Nuclear Science | Facilities and Capabilities SHARE Radiochemical Engineering Development Center May 30, 2013 The Radiochemical Engineering Development Center (REDC) comprises two facilities - Building 7920 and Building 7930. Building 7920 was designed and built as a hot cell facility that also houses glove box laboratories for radiological work, laboratories for nonradiological work, and a chemical make up area. Building 7920 is classified as a Category 2 nuclear facility. The building is a two-level structure containing heavily shielded hot cells, hot cell support areas, laboratories, a high bay area, and an office wing. Building 7930 was designed and built as a hot cell facility with glove box laboratory capabilities for radiological work and chemical makeup

320

Facilities in MML  

Science Conference Proceedings (OSTI)

... Science and Engineering Complex Fluids Energy and Electronics ... Chemical Reference Data Environmental Specimen Banking Organic and ...

2013-01-13T23:59:59.000Z

Note: This page contains sample records for the topic "facilities engineering command" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Design of a Command-Triggered Plasma Opening Switch for Terawatt Applications  

DOE Green Energy (OSTI)

Inductive energy storage systems can have high energy density, lending to smaller, less expensive systems. The crucial element of an inductive energy storage system is the opening switch. This switch must conduct current while energy is stored in an inductor, then open quickly to transfer this energy to a load. Plasma can perform this function. The Plasma Opening Switch (POS) has been studied for more than two decades. Success with the conventional plasma opening switch has been limited. A system designed to significantly improve the performance of vacuum opening switches is described in this paper. The gap cleared of plasma is a rough figure-of-merit for vacuum opening switches. Typical opened gaps of 3 mm are reported for conventional switches. The goal for the system described in this paper is more than 3 cm. To achieve this, the command-triggered POS adds an active opening mechanism, which allows complete separation of conduction and opening. This separation is advantageous because of the widely different time scales of conduction and opening. The detrimental process of magnetic field penetration into the plasma during conduction is less important in this switch. The opening mechanism duration is much shorter than the conduction time, so penetration during opening is insignificant. Opening is accomplished with a fast magnetic field that pushes plasma out of the switch region. Plasma must be removed from the switch region to allow high voltage. This paper describes some processes important during conduction and opening, and show calculations on the trigger requirements. The design of the switch is shown. This system is designed to demonstrate both improved performance and nanosecond output jitter at levels greater than one terawatt. An amplification mechanism is described which reduces the trigger energy. Particle-in-cell simulations of the system are also shown.

SAVAGE,MARK E.; MENDEL,C.W.; SEIDEL,DAVID B.

1999-10-29T23:59:59.000Z

322

Ground test facility for nuclear testing of space reactor subsystems  

SciTech Connect

Two major reactor facilities at the INEL have been identified as easily adaptable for supporting the nuclear testing of the SP-100 reactor subsystem. They are the Engineering Test Reactor (ETR) and the Loss of Fluid Test Reactor (LOFT). In addition, there are machine shops, analytical laboratories, hot cells, and the supporting services (fire protection, safety, security, medical, waste management, etc.) necessary to conducting a nuclear test program. This paper presents the conceptual approach for modifying these reactor facilities for the ground engineering test facility for the SP-100 nuclear subsystem. 4 figs.

Quapp, W.J.; Watts, K.D.

1985-01-01T23:59:59.000Z

323

Precipitation and scaling in dynamic geothermal systems. [Titanium loop facility  

DOE Green Energy (OSTI)

A dynamic loop facility for studying scaling in simulated geothermal brines--under conditions such as will be encountered in engineering scale heat transfer equipment is being constructed. The first phase of the program consists of two principal efforts: (1) modification of an existing 100 gpm titanium loop to provide the engineering scaling test facility and (2) operation of an approximately 1 gph once-through (experimental) system to provide design data for titanium loop modifications to provide experience with scale formation and characterization. This experience is being used in planning the scaling studies to be conducted in the dynamic loop facility. The status of the project is described.

Bohlmann, E.G.; Shor, A.J.; Berlinski, P.

1976-10-01T23:59:59.000Z

324

NEWTON's Engineering References  

NLE Websites -- All DOE Office Websites (Extended Search)

engineering content for K-12 teachers. There are activities, lessons, and curriculum designed to introduce your students to engineering. ENGINEERING.com ENGINEERING.com...

325

NREL: Photovoltaics Research - Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Facilities Facilities NREL's world-class research facilities provide the venue for innovative advances in photovoltaic technologies and applications. These facilities within the National Center for Photovoltaics (NCPV) serve both multi-use and dedicated-use functions. We encourage our research colleagues in industry, universities, and other laboratories to pursue opportunities in working with our staff in these facilities. Dedicated-Use Facilities Photo of a red-hot coil glowing inside a round machine. Research within these facilities focuses on targeted areas of interest that require specific tools, techniques, or unique capabilities. Our two main dedicated-use facilities are the following: Outdoor Test Facility (OTF) OTF researchers study and evaluate advanced or emerging PV technologies

326

PNNL: Research Aircraft Facility (RAF) - FCSD  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Aircraft Facility (RAF) Research Aircraft Facility (RAF) It is in the mixed layer and free troposphere that most chemical reactions, gas-to-particle transformations, cloud processes, and transport of materials occur. The Pacific Northwest National Laboratory operates the U.S. Department of Energy (DOE) Research Aircraft Facility (RAF) performing airborne research in these areas to serve atmospheric scientists at DOE and other federal, state, and industrial entities. The RAF is dedicated to fulfilling important DOE and national goals in understanding atmospheric processes as they relate to the DOE's environmental missions and the global environment. Central to this facility are the PNNL Grumman Gulfstream 159 (G-1) aircraft, its flight crew, science and engineering technical staff,

327

College of Engineering Profile The College of Engineering at Colorado  

E-Print Network (OSTI)

College of Engineering Profile 2007-2008 The College of Engineering at Colorado State has a strong and Biological Engineering Civil and Environmental Engineering Electrical and Computer Engineering Mechanical Programs: Chemical and Biological Engineering Civil Engineering Computer Engineering Electrical Engineering

328

Tank waste remediation system engineering plan  

SciTech Connect

This Engineering Plan describes the engineering process and controls that will be in place to support the Technical Baseline definition and manage its evolution and implementation to the field operations. This plan provides the vision for the engineering required to support the retrieval and disposal mission through Phase 1 and 2, which includes integrated data management of the Technical Baseline. Further, this plan describes the approach for moving from the ``as is`` condition of engineering practice, systems, and facilities to the desired ``to be`` configuration. To make this transition, Tank Waste Remediation System (TWRS) Engineering will become a center of excellence for TWRS which,will perform engineering in the most effective manner to meet the mission. TWRS engineering will process deviations from sitewide systems if necessary to meet the mission most effectively.

Rifaey, S.H.

1998-01-09T23:59:59.000Z

329

Facility Representative Program: Facility Representative Program Sponsors  

NLE Websites -- All DOE Office Websites (Extended Search)

Facility Representative Program Sponsors Facility Representative Program Sponsors There are 29 Facility Representative Program Sponsors Office Name Title E-Mail Phone ASO Larry Pendexter ES&H Div Dir (Argonne) larry.pendexter@ch.doe.gov 630-252-1485 BHSO Bob Desmarais Operations Management Division Director desmarai@bnl.gov 631-344-5434 CBFO Glenn Gamlin Facility Representative Supervisor glenn.gamlin@wipp.ws 575-234-8136 CBFO Casey Gadbury Operations Manager casey.gadbury@wipp.ws 575-234-7372 FSO Mark Bollinger Deputy Manager Mark.Bollinger@ch.doe.gov 630-840-8130 FSO John Scott FR Team Lead john.scott@ch.doe.gov 630-840-2250 HS-30 James O'Brien Director, Office of Nuclear Safety James.O'Brien@hq.doe.gov 301-903-1408 HS-32 Earl Hughes Facility Representative Program Manager Earl.Hughes@hq.doe.gov 202-586-0065

330

User Facilities | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

USER PORTAL USER PORTAL BTRICBuilding Technologies Research Integration Center CNMSCenter for Nanophase Materials Sciences CSMBCenter for Structural Molecular Biology CFTFCarbon Fiber Technology Facility HFIRHigh Flux Isotope Reactor MDF Manufacturing Demonstration Facility NTRCNational Transportation Research Center OLCFOak Ridge Leadership Computing Facility SNSSpallation Neutron Source Keeping it fresh at the Spallation Neutron Source Nanophase material sciences' nanotech toolbox Home | User Facilities SHARE ORNL User Facilities ORNL is home to a number of highly sophisticated experimental user facilities that provide unmatched capabilities to the broader scientific community, including a growing user community from universities, industry, and other laboratories research institutions, as well as to ORNL

331

Harmonic engine  

Science Conference Proceedings (OSTI)

A high efficiency harmonic engine based on a resonantly reciprocating piston expander that extracts work from heat and pressurizes working fluid in a reciprocating piston compressor. The engine preferably includes harmonic oscillator valves capable of oscillating at a resonant frequency for controlling the flow of working fluid into and out of the expander, and also preferably includes a shunt line connecting an expansion chamber of the expander to a buffer chamber of the expander for minimizing pressure variations in the fluidic circuit of the engine. The engine is especially designed to operate with very high temperature input to the expander and very low temperature input to the compressor, to produce very high thermal conversion efficiency.

Bennett, Charles L. (Livermore, CA)

2009-10-20T23:59:59.000Z

332

Engineering Emergence  

Science Conference Proceedings (OSTI)

We explore various definitions and characteristics of emergence, how we might recognise and measure emergence, and how we might engineer emergent systems. We discuss the TUNA ("Theory Underpinning Nanotech Assemblers") project, which is investigating ...

Susan Stepney; Fiona A. C. Polack; Heather R. Turner

2006-08-01T23:59:59.000Z

333

Facility Operations Office, Brookhaven National Laboratory, BNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Facility Operations Office Facility Operations Office Safely supporting the missions of the laboratory... The Facility Operations Office addresses key issues in work planning, maintenance engineering, service-delivery models, and annual facility-work plans. Facility Operations Center: The Facility Operations Center provides computer programs designed to assist in the planning, management and administrative procedures required for an effective maintenance and asset management process. As an information technology tool for managing the maintenance process, a Computerized Maintenance Management System (CMMS) is a mission-essential part of any organization, and a tool for success. Infrastructure Management: IM's goal is to ensure Brookhaven National Laboratory real property assets are planned for, managed, tracked, and upgraded as required in order to meet BNL's current and future programmatic needs. To accomplish this IM performs site and utilities master planning, manages BNL's new project request and prioritization system (3PBP), maintains utilities maps, manages BNL's space and facilities data base, and provides program management for BNL's GPP, Line Item and Operating Funded Project programs.

334

NREL: Wind Research - Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Facilities Facilities Our facilities are designed to meet the wind industry's critical research needs with state-of-the-art design and testing facilities. NREL's unique and highly versatile facilities at the National Wind Technology Center offer research and analysis of wind turbine components and prototypes rated from 400 watts to 3 megawatts. Satellite facilities support the growth of wind energy development across the United States. National Wind Technology Center Facilities Our facilities are contained within a 305-acre area that comprises field test sites, test laboratories, industrial high-bay work areas, machine shops, electronics and instrumentation laboratories, and office areas. In addition, there are hundreds of test articles and supporting components such as turbines, meteorological towers, custom test apparatus, test sheds,

335

FACET User Facility  

NLE Websites -- All DOE Office Websites

AD SLACPortal > Accelerator Research Division > FACET User Facility AD SLACPortal > Accelerator Research Division > FACET User Facility Sign In Launch the Developer Dashboard SLAC National Accelerator Laboratory DOE | Stanford | SLAC | SSRL | LCLS | AD | PPA | Photon Science | PULSE | SIMES FACET User Facility : FACET An Office of Science User Facility Search this site... Search Help (new window) Top Link Bar FACET User Facility FACET Home About FACET FACET Experimental Facilities FACET Users Research at FACET SAREC Expand SAREC FACET FAQs FACET User Facility Quick Launch FACET Users Home FACET Division ARD Home About FACET FACET News FACET Users FACET Experimental Facilities FACET Research Expand FACET Research FACET Images Expand FACET Images SAREC Expand SAREC FACET Project Site (restricted) FACET FAQs FACET Site TOC All Site Content

336

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

October 15, 2005 [Facility News] October 15, 2005 [Facility News] Room to Share-New Guest Facility Ready for Users at North Slope of Alaska Bookmark and Share In September, installation was completed on the new Guest Instrument Facility in Barrow to provide additional space and ease crowded conditions. In September, installation was completed on the new Guest Instrument Facility in Barrow to provide additional space and ease crowded conditions. To alleviate crowded conditions at its research facilities on the North Slope of Alaska (NSA) site in Barrow, ARM operations staff recently completed the installation of a new Guest Instrument Facility. Similar to the platform at the Atqasuk site, the facility consists of two insulated shipping containers mounted on pilings, with a mezzanine to accommodate

337

Government Facilities Segment Analysis  

Science Conference Proceedings (OSTI)

Federal, state, and local governments own or lease an estimated 1.2 million buildings and facilities in the United States. These facilities are an important -- and often overlooked -- customer segment for all energy and energy service providers.

1998-12-19T23:59:59.000Z

338

Geothermal component test facility  

DOE Green Energy (OSTI)

A description is given of the East Mesa geothermal facility and the services provided. The facility provides for testing various types of geothermal energy-conversion equipment and materials under field conditions using geothermal fluids from three existing wells. (LBS)

Not Available

1976-04-01T23:59:59.000Z

339

CRAD, Quality Assurance - Idaho MF-628 Drum Treatment Facility | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Quality Assurance - Idaho MF-628 Drum Treatment Facility Quality Assurance - Idaho MF-628 Drum Treatment Facility CRAD, Quality Assurance - Idaho MF-628 Drum Treatment Facility May 2007 A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a May 2007 readiness assessment of the Quality Assurance Program at the MF-628 Drum Treatment Facility at the Idaho National Laboratory Advanced Mixed Waste Treatment Project. CRADs provide a recommended approach and the types of information to gather to assess elements of a DOE contractor's programs. CRAD, Quality Assurance - Idaho MF-628 Drum Treatment Facility More Documents & Publications CRAD, Engineering - Idaho MF-628 Drum Treatment Facility

340

Sandia National Laboratories: National Solar Thermal Test Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

ECISEnergyRenewable EnergySolar EnergyConcentrating Solar Power ECISEnergyRenewable EnergySolar EnergyConcentrating Solar Power (CSP)National Solar Thermal Test Facility National Solar Thermal Test Facility NSTTF Interactive Tour National Solar Thermal Test Facility (NSTTF) Operated by Sandia National Laboratories for the U.S. Department of Energy (DOE), the National Solar Thermal Test Facility (NSTTF) is the only test facility of this type in the United States. The NSTTF's primary goal is to provide experimental engineering data for the design, construction, and operation of unique components and systems in proposed solar thermal electrical plants planned for large-scale power generation. In addition, the site was built and instrumented to provide test facilities for a variety of solar and nonsolar applications. The facility can provide

Note: This page contains sample records for the topic "facilities engineering command" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

High level waste facilities -- Continuing operation or orderly shutdown  

SciTech Connect

Two options for Environmental Impact Statement No action alternatives describe operation of the radioactive liquid waste facilities at the Idaho Chemical Processing Plant at the Idaho National Engineering and Environmental Laboratory. The first alternative describes continued operation of all facilities as planned and budgeted through 2020. Institutional control for 100 years would follow shutdown of operational facilities. Alternatively, the facilities would be shut down in an orderly fashion without completing planned activities. The facilities and associated operations are described. Remaining sodium bearing liquid waste will be converted to solid calcine in the New Waste Calcining Facility (NWCF) or will be left in the waste tanks. The calcine solids will be stored in the existing Calcine Solids Storage Facilities (CSSF). Regulatory and cost impacts are discussed.

Decker, L.A.

1998-04-01T23:59:59.000Z

342

American Recovery and Reinvestment Act, Federal Energy Management Program, Technical Assistance Project 228 - US Army Installation Management Command - Pacific Region, Honolulu, Hawaii  

SciTech Connect

This report documents the activities of a resource efficiency manager that served the US Army Installation Management Command - Pacific Region during the period November 23, 2009 and August 31, 2010.

Arends, J.; Sandusky, William F.

2010-09-30T23:59:59.000Z

343

Supercomputing | Facilities | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Primary Systems Infrastructure High Performance Storage Supercomputing and Computation Home | Science & Discovery | Supercomputing and Computation | Facilities and Capabilities...

344

MML Microscopy Facility  

Science Conference Proceedings (OSTI)

The MML Electron Microscopy Facility consists of three transmission electron microscopes (TEM), three scanning electron microscopes (SEM), a ...

2013-06-11T23:59:59.000Z

345

Idaho Site Nuclear Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Site Nuclear Facilities Idaho Idaho National Laboratorys (INL) Idaho Closure Project (ICP) This page was last updated on May 16...

346

Facilities and Instruments  

Science Conference Proceedings (OSTI)

... The EL Facilities listed here are available for cooperative or independent research, typically on a cost reimbursable basis. ...

2013-03-12T23:59:59.000Z

347

54.5 MPG and Beyond: Speeding Up Development of Advanced Combustion Engines  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Speeding Up Development of Advanced Combustion Speeding Up Development of Advanced Combustion Engines 54.5 MPG and Beyond: Speeding Up Development of Advanced Combustion Engines December 10, 2012 - 1:00pm Addthis Argonne engineer Steve Ciatti works on an engine in Argonne's Engine Research Facility -- a facility where researchers can study in-cylinder combustion and emissions under realistic operating conditions. | Photo courtesy of Argonne National Laboratory. Argonne engineer Steve Ciatti works on an engine in Argonne's Engine Research Facility -- a facility where researchers can study in-cylinder combustion and emissions under realistic operating conditions. | Photo courtesy of Argonne National Laboratory. Rebecca Matulka Rebecca Matulka Digital Communications Specialist, Office of Public Affairs

348

Criticality safety and facility design considerations  

SciTech Connect

Operations with fissile material introduce the risk of a criticality accident that may be lethal to nearby personnel. In addition, concerns over criticality safety can result in substantial delays and shutdown of facility operations. For these reasons, it is clear that the prevention of a nuclear criticality accident should play a major role in the design of a nuclear facility. The emphasis of this report will be placed on engineering design considerations in the prevention of criticality. The discussion will not include other important aspects, such as the physics of calculating limits nor criticality alarm systems.

Waltz, W.R.

1991-06-01T23:59:59.000Z

349

PHASE II CHARACTERIZATION SURVEY OF THE USNS BRIDGE (T AOE 10), MILITARY SEALIFT FLEET SUPPORT COMMAND, NAVAL STATION, NORFOLK, VIRGINIA DCN 5180-SR-01-0  

SciTech Connect

In March 2011, the USNS Bridge was deployed off northeastern Honshu, Japan with the carrier USS Ronald Reagan to assist with relief efforts after the 2011 T?hoku earthquake and tsunami. During that time, the Bridge was exposed to air-borne radioactive materials leaking from the damaged Fukushima I Nuclear Power Plant. The proximity of the Bridge to the air-borne impacted area resulted in the contamination of the ship’s air-handling systems and the associated components, as well as potential contamination of other ship surfaces due to either direct intake/deposition or inadvertent spread from crew/operational activities. Preliminary surveys in the weeks after the event confirmed low-level contamination within the heating, ventilation, and air conditioning (HVAC) ductwork and systems, and engine and other auxiliary air intake systems. Some partial decontamination was performed at that time. In response to the airborne contamination event, Military Sealift Fleet Support Command (MSFSC) contracted Oak Ridge Associated Universities (ORAU), under provisions of the Oak Ridge Institute for Science and Education (ORISE) contract, to assess the radiological condition of the Bridge. Phase I identified contamination within the CPS filters, ventilation systems, miscellaneous equipment, and other suspect locations that could not accessed at that time (ORAU 2011b). Because the Bridge was underway during the characterization, all the potentially impacted systems/spaces could not be investigated. As a result, MSFSC contracted with ORAU to perform Phase II of the characterization, specifically to survey systems/spaces previously inaccessible. During Phase II of the characterization, the ship was in port to perform routine maintenance operations, allowing access to the previously inaccessible systems/spaces.

NICK A. ALTIC

2012-08-30T23:59:59.000Z

350

Experimental geothermal research facilities study (Phase 0). Volume 1  

DOE Green Energy (OSTI)

The study comprises Phase 0 of a project for Experimental Geothermal Research Facilities. The study focuses on identification of a representative liquid-dominated geothermal reservoir of moderate temperature and salinity, preliminary engineering design of an appropriate energy conversion system, identification of critical technology, and planning for implementation of experimental facilities. The objectives included development of liaison with the industrial sector, to ensure responsiveness to their views in facility requirements and planning, and incorporation of environmental and socioeconomic factors. This Phase 0 report covers problem definition and systems requirements. Facilities will incorporate capability for research in component, system, and materials technology and a nominal 10 MWe experimental, binary cycle, power generating plant.

Not Available

1974-01-01T23:59:59.000Z

351

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

NSA Operations Manager. Mark has a B.S. in environmental engineering from New Mexico Tech and a M.S. and Ph.D. in electrical engineering from the University of New Mexico....

352

Facility Representative Program: 2004 Facility Representative Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

4 Facility Representative Workshop 4 Facility Representative Workshop May 18 - 20, 2004 Las Vegas, NV Facility Rep of the Year Award | Attendees list | Summary Report [PDF] WORKSHOP AGENDA Final Day 1: Tuesday, May 18, 2004 Theme: Program Successes and Challenges 8:00 a.m. Opening Remarks John Evans, Facility Representative Program Manager 8:15 a.m. Welcome Kathy Carlson, Nevada Site Office Manager 8:30 a.m. Videotaped Remarks from the Deputy Secretary Kyle E. McSlarrow, Deputy Secretary of Energy Deputy Secretary's Remarks 8:40 a.m. Keynote Address - NNSA Evaluation of Columbia Accident Investigation Board Report Brigadier General Ronald J. Haeckel, Principal Assistant Deputy Administrator for Military Applications, NNSA Other Information: NASAÂ’S Columbia Accident Investigation Board Report

353

Facility Representative Program: 2006 Facility Representative Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

6 Facility Representative Workshop 6 Facility Representative Workshop May 16 - 19, 2006 Knoxville, Tennessee Facility Rep of the Year Award | Attendees list | Summary Report [PDF] WORKSHOP AGENDA Final To view Pictures, scroll the mouse over the Picture icon To view Presentations, Picture Slideshows and Video, click on the icon Day 1: Tuesday, May 16, 2006 8:00 a.m. Opening Remarks John Evans, Facility Representative Program Manager 8:15 a.m. Welcome from Oak Ridge Office Gerald Boyd, Manager, Oak Ridge Office 8:25 a.m. Welcome from Y-12 Site Office Theodore Sherry, Manager, Y-12 Site Office 8:35 a.m. Videotaped Remarks from the Deputy Secretary The Honorable Clay Sell, Deputy Secretary of Energy 8:40 a.m. Keynote Address - Safety Oversight at Environmental Management Activities Dr. Inés Triay, Chief Operating Officer, Office of Environmental Management

354

Facility Representative Program: 2000 Facility Representative...  

NLE Websites -- All DOE Office Websites (Extended Search)

- Break 10:00 a.m. - Making Your Observations CountLeading Indicators - Mike Weis, Rocky Flats Field Office 10:45 a.m. - Facility Representative PanelQuestions and Answers (Ben...

355

COMPUTER ENGINEERING EECS Department  

E-Print Network (OSTI)

COMPUTER ENGINEERING EECS Department The Electrical Engineering and Computer Science (EECS) Department at WSU offers undergraduate degrees in electrical engineering, computer engineering and computer science. The EECS Department offers Master of Science degrees in computer science, electrical engineering

356

Argonne TTRDC - Feature - Combining Gas and Diesel Engines  

NLE Websites -- All DOE Office Websites (Extended Search)

Combining Gas and Diesel Engines Could Yield the Best of Both Worlds Combining Gas and Diesel Engines Could Yield the Best of Both Worlds by Louise Lerner Steve Ciatti Steve Ciatti in the Engine Research Facility It may be hard to believe, but the beloved gasoline engine that powers more than 200 million cars across America every day didn't get its status because it's the most efficient engine. Diesel engines can be more than twice as efficient, but they spew soot and pollutants into the air. Could researchers at the U.S. Department of Energy's Argonne National Laboratory engineer a union between the two-combining the best of both? Steve Ciatti, a mechanical engineer at Argonne, is heading a team to explore the possibilities of a gasoline-diesel engine. The result, so far, is cleaner than a diesel engine and almost twice as efficient as a typical

357

Biomass Anaerobic Digestion Facilities and Biomass Gasification...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biomass Anaerobic Digestion Facilities and Biomass Gasification Facilities (Indiana) Biomass Anaerobic Digestion Facilities and Biomass Gasification Facilities (Indiana)...

358

Argonne Chemical Sciences & Engineering -Electrochemical Energy Storage -  

NLE Websites -- All DOE Office Websites (Extended Search)

Engineering Engineering * Members * Contact * Publications * Overview EES Home Electrochemical Energy Storage - Engineering Electrochemical Energy Storage Argonne researcher Panagiotis Prezas examines a lithium-ion battery cell at the Battery Test Facility. Capabilities In support of and as part of the applied research and development (R&D) area, the Argonne's Electrochemical Energy Storage department (EES) has established and employs a variety of engineering R&D capabilities. These capabilities include electrode modeling, engineering, & fabrication; electrode/electrolyte interface modeling; cell modeling & engineering; cell, module, and battery design modeling; and cell, module, and battery cost modeling. Additionally, EES is developing new capabilities in the

359

Engineering internship at Brown & Root, Incorporated: a report  

E-Print Network (OSTI)

An engineering intership at Brown & Root, Incorporated was completed over a period slightly in excess of one year. During his internship, the industrial engineer was assigned tasks related to the organization of a manufacturing department and the pursuit and completion of its projects. Many of his contributions were system-related and involved sales, engineering proposals, engineering economy, contract negotiations, employee merit evaluation, design, and general groundwork. He was also assigned to two engineering projects concerning the design and construction of manufacturing facilities. One of the project assignments required international travel to England and Nigeria, and almost all of the assignments involved some aspect of engineering management.

Gannaway, Randall Joe, 1952-

1977-12-01T23:59:59.000Z

360

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

March 22, 2007 [Facility News] March 22, 2007 [Facility News] GEWEX News Features Dust Data from ARM Mobile Facility Deployment Bookmark and Share Data from the recent deployment of the ARM Mobile Facility are featured in the February issue of GEWEX News. Data from the recent deployment of the ARM Mobile Facility are featured in the February issue of GEWEX News. The February 2007 issue (Vol. 17, No. 1) of GEWEX News features early results from special observing periods of the African Monsoon Mutidisciplinary Analysis, including data obtained by the ARM Mobile Facility (AMF). The AMF was stationed in the central Sahel from January through December 2006, with the primary facility at the Niamey airport, and an ancillary site in Banizoumbou. The AMF recorded a major dust storm that passed through the area in March, and combined with simultaneous satellite

Note: This page contains sample records for the topic "facilities engineering command" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

February 16, 2005 [Facility News] February 16, 2005 [Facility News] Mobile Facility Arrives Safe and Sound in Point Reyes Bookmark and Share Image - The ARM Mobile Facility in Point Reyes, California Image - The ARM Mobile Facility in Point Reyes, California Safe and sound at Point Reyes, the ARM Mobile Facility instrumentation is set up on the roof of a shelter until a fence is installed to keep out the curious local cattle. On February 9, the ARM Mobile Facility (AMF) withstood an accident on the way to its deployment location at Point Reyes, California. About an hour from its destination, the truck carrying the two AMF shelters packed with instrumentation and associated equipment swerved to avoid another vehicle and slid off the road and down a steep embankment. Emergency personnel soon

362

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

22, 2011 [Facility News] 22, 2011 [Facility News] Request for Proposals Now Open Bookmark and Share The ARM Climate Research Facility is now accepting applications for use of an ARM mobile facility (AMF), the ARM aerial facility (AAF), and fixed sites. Proposals are welcome from all members of the scientific community for conducting field campaigns and scientific research using the ARM Facility, with availability as follows: AMF2 available December 2013 AMF1 available March 2015 AAF available between June and October 2013 Fixed sites available FY2013 Priority will be given to proposals that make comprehensive use of the ARM facilities and focus on long-term goals of the DOE Office of Biological and Environmental Research. Successful proposals will be supplied all operational and logistical resources (provided at no cost to the principal

363

DOE fundamentals handbook: Engineering symbology, prints, and drawings  

Science Conference Proceedings (OSTI)

The Engineering Symbology, Prints, and Drawings Handbook was developed to assist nuclear facility operating contractors in providing operators, maintenance personnel, and technical staff with the necessary fundamentals training to ensure a basic understanding of engineering prints, their use, and their function. The handbook includes information on engineering fluid drawings and prints; piping and instrument drawings; major symbols and conventions; electronic diagrams and schematics; logic circuits and diagrams; and fabrication, construction, and architectural drawings. This information will provide personnel with a foundation for reading, interpreting, and using the engineering prints and drawings that are associated with various DOE nuclear facility operations and maintenance.

Not Available

1993-01-01T23:59:59.000Z

364

DOE fundamentals handbook: Engineering symbology, prints, and drawings. Volume 1  

Science Conference Proceedings (OSTI)

The Engineering Symbology, Prints, and Drawings Handbook was developed to assist nuclear facility operating contractors in providing operators, maintenance personnel, and technical staff with the necessary fundamentals training to ensure a basic understanding of engineering prints, their use, and their function. The handbook includes information on engineering fluid drawings and prints; piping and instrument drawings; major symbols and conventions; electronic diagrams and schematics; logic circuits and diagrams; and fabrication, construction, and architectural drawings. This information will provide personnel with a foundation for reading, interpreting, and using the engineering prints and drawings that are associated with various DOE nuclear facility operations and maintenance.

Not Available

1993-01-01T23:59:59.000Z

365

DOE fundamentals handbook: Engineering symbology, prints, and drawings. Volume 2  

SciTech Connect

The Engineering Symbology, Prints, and Drawings Handbook was developed to assist nuclear facility operating contractors in providing operators, maintenance personnel, and technical staff with the necessary fundamentals training to ensure a basic understanding of engineering prints, their use, and their function. The handbook includes information on engineering fluid drawings and prints; piping and instrument drawings; major symbols and conventions; electronic diagrams and schematics; logic circuits and diagrams; and fabrication, construction, and architectural drawings. This information will provide personnel with a foundation for reading, interpreting, and using the engineering prints and drawings that are associated with various DOE nuclear facility operations and maintenance.

Not Available

1993-01-01T23:59:59.000Z

366

Safety audit of refrigerated liquefied gas facilities  

SciTech Connect

An Exxon Research and Engineering Co. comprehensive review of engineering practices and application of safety requirements at Exxon's world-wide refrigerated liquefied hydrocarbon gas storage and handling installations, which included a field audit of about 90 tanks at 30 locations, showed that catastrophic tank failure was not a credible event with properly operated and maintained tanks designed, constructed, and tested in accordance with API Standard 620, Design and Construction of Large Welded Low-Pressure Storage Tanks, although supplemental requirements were suggested to further enhance safety. The review also showed that any meaningful safety audit should be comprehensive and must include all facilities with careful attention to detail. The review embraces products of -1 to -167C and included LNG, ethylene, LPG, and LPG olefins. Recent and proposed LNG safety legislation; some field audit results; and recommendations as to design, construction, and operation of LNG and LPG storage facilities, marine terminals, and tankers, are also discussed.

Feely, F.J.; Sommer, E.C.; Marshall, B.T.; Palmer, A.J.

1980-01-01T23:59:59.000Z

367

Rolling Thunder -- Integration of the Solo 161 Stirling engine with the CPG-460 solar concentrator at Ft. Huachuca  

DOE Green Energy (OSTI)

Project Rolling Thunder is a dish/Stirling demonstration project at Ft. Huachuca, a US Army fort in southeastern Arizona (Huachuca means rolling thunder in Apache). It has been supported by the Strategic Environmental Research and Development Program (SERDP), a cooperative program between the Department of Defense (DoD) and the Department of Energy (DOE). As part of a 1992 SERDP project, Cummins Power Generation, Inc. (CPG) installed a CPG 7 kW(c) dish/Stirling system at the Joint Interoperability Test Command (JITC) in Ft. Huachuca, Arizona. The primary objective of the SERDP Dish/Stirling for DoD Applications project was to demonstrate a CPG 7-kW(c) dish/Stirling system at a military facility. Unfortunately, Cummins Engine Company decided to divest its solar operations. As a direct result of Ft. Huachuca`s interest in the Cummins dish/Stirling technology, Sandia explored the possibility of installing a SOLO 161 Stirling power conversion unit (PCU) on the Ft. Huachuca CPG-460. In January 1997, a decision was made to retrofit a SOLO 161 Stirling engine on the CPG-460 at Ft. Huachuca. Project Rolling Thunder. The SOLO 161 Demonstration at Ft. Huachuca has been a challenge. Although, the SOLO 161 PCU has operated nearly flawlessly and the CPG-460 has been, for the most part, a solid and reliable component, integration of the SOLO PCU with the CPG-460 has required significant attention. In this paper, the integration issues and technical approaches of project Rolling Thunder are presented. Lessons of the project are also discussed.

Diver, R.B.; Moss, T.A.; Goldberg, V.; Thomas, G.; Beaudet, A.

1998-09-01T23:59:59.000Z

368

Balance Engineering - Eli Lilly Teaming Profile  

NLE Websites -- All DOE Office Websites (Extended Search)

Industrial SPP / Partner Teaming Profile Industrial SPP / Partner Teaming Profile UService/Product Provider Balance Engineering Inc. 3711 East Carmel Drive Carmel, IN 46033 Business: Consulting Engineering Jack F. Staley President Phone: 317-844-3178 Email: HTUjack@balanceeng.comUT U I ndustrial Partner Eli Lilly and Company Lilly Corporate Center Indianapolis, IN 46285 Business: Pharmaceuticals David S. Drzewiecki Group Leader, Energy & Utilities Phone: 317-433-0336 Email: HTUDrzewiecki_David_S@Lilly.comUT Balance Engineering identifies $3 million in energy savings at Lilly facility Project Scope Balance Engineering conducted a facility energy assessment of the Eli Lilly Clinton Laboratories, a large multi-building pharmaceutical campus. The goals of the assessment were to determine the major uses of

369

Overview of Engine Combustion Research at Sandia National Laboratories  

DOE Green Energy (OSTI)

The objectives of this paper are to describe the ongoing projects in diesel engine combustion research at Sandia National Laboratories' Combustion Research Facility and to detail recent experimental results. The approach we are employing is to assemble experimental hardware that mimic realistic engine geometries while enabling optical access. For example, we are using multi-cylinder engine heads or one-cylinder versions of production heads mated to one-cylinder engine blocks. Optical access is then obtained through a periscope in an exhaust valve, quartz windows in the piston crown, windows in spacer plates just below the head, or quartz cylinder liners. We have three diesel engine experiments supported by the Department of Energy, Office of Heavy Vehicle Technologies: a one-cylinder version of a Cummins heavy-duty engine, a diesel simulation facility, and a one-cylinder Caterpillar engine to evaluate combustion of alternative diesel fuels.

Robert W. Carling; Gurpreet Singh

1999-04-26T23:59:59.000Z

370

NREL: Technology Transfer - Research Facilities  

NREL's Solar Energy Research Facility is one of many world-class facilities available to public and private agencies.

371

Quantum Electrical Metrology Division Facilities  

Science Conference Proceedings (OSTI)

Microfabrication Facility Our facilities for fabrication of integrated circuits are essential to nearly all of the work in the Group. ...

2011-10-03T23:59:59.000Z

372

Policies and Procedures - Accessing Facilities  

Science Conference Proceedings (OSTI)

... of Facilities Use Agreements: Description of the facilities use agreements ... Criteria: Guidance for applicants describing essential information about ...

2013-09-24T23:59:59.000Z

373

Florida Atlantic University College of Engineering & Computer Science  

E-Print Network (OSTI)

· Product Development Project · Solar Water Heater Project · Sustainability Leadership for Engineers · Co · Leading Climate Change Mitigation Strategies · Transportation, Facilities, Energy, Water, Waste, Community

Fernandez, Eduardo

374

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

July 31, 2009 [Facility News] July 31, 2009 [Facility News] President of the Regional Government Speaks at Opening Ceremony for Mobile Facility in the Azores Bookmark and Share Highlighting the opening ceremony for the ARM Mobile Facility on Graciosa Island, Carlos CĂ©sar, President of the Regional Government of the Azores, signs a weather balloon while local media record the event. Photo by Mike Alsop. Highlighting the opening ceremony for the ARM Mobile Facility on Graciosa Island, Carlos CĂ©sar, President of the Regional Government of the Azores, signs a weather balloon while local media record the event. Photo by Mike Alsop. On June 30, officials from the Regional Government of the Azores recognized the deployment of the ARM Mobile Facility on Graciosa Island during an official opening ceremony held at the site. Notable among the participants

375

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

6, 2012 [Facility News] 6, 2012 [Facility News] News Tips from 2012 EGU General Assembly Bookmark and Share The ARM Facility is attending the 2012 European Geophysical Union General Assembly at the Austria Center in Vienna for the first time. The ARM Facility is attending the 2012 European Geophysical Union General Assembly at the Austria Center in Vienna for the first time. VIENNA - The U.S. Department of Energy's Atmospheric Radiation Measurement (ARM) Climate Research Facility is the world's most comprehensive outdoor laboratory and data archive for research related to atmospheric processes that affect Earth's climate. At the European Geophysical Union (EGU) General Assembly 2012 in Vienna, find out how scientists use the ARM Facility to study the interactions between clouds,

376

BNL | Accelerator Test Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Accelerator Test Facility Accelerator Test Facility Home Core Capabilities Photoinjector S-Band Linac Laser Systems CO2 Laser Nd:Yag Laser Beamlines Beamline Simulation Data Beamline Parameters Beam Diagnostics Detectors Beam Schedule Operations Resources Fact Sheet (.pdf) Image Library Upgrade Proposal (.pdf) Publications ES&H Experiment Start-up ATF Handbook Laser Safety Collider-Accelerator Dept. C-AD ES&H Resources Staff Users' Place Apply for Access ATF photo ATF photo ATF photo ATF photo ATF photo A user facility for advanced accelerator research The Brookhaven Accelerator Test Facility (ATF) is a proposal driven, steering committee reviewed facility that provides users with high-brightness electron- and laser-beams. The ATF pioneered the concept of a user facility for studying complex properties of modern accelerators and

377

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

15, 2005 [Facility News] 15, 2005 [Facility News] Aging, Overworked Computer Network at SGP Gets Overhauled Bookmark and Share This aerial map of instruments deployed at the SGP Central Facility provides an indication of the computer resources needed to manage data at the site, let alone communicate with other ARM sites. This aerial map of instruments deployed at the SGP Central Facility provides an indication of the computer resources needed to manage data at the site, let alone communicate with other ARM sites. Established as the first ARM research facility in 1992, the Southern Great Plains (SGP) site in Oklahoma is the "old man on the block" when it comes to infrastructure. Though significant improvements have been made to facilities and equipment throughout the years, the computer network at the

378

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

April 7, 2011 [Facility News] April 7, 2011 [Facility News] Review Panel States ARM Facility "Without Peer" Bookmark and Share Every three years, DOE Office of Science user facilities undergo a review to evaluate their effectiveness in contributing to their respective science areas. The latest ARM Facility review was conducted in mid-February by a six-member review panel led by Minghua Zhang of Stony Brook University. Notably, in a debriefing following the review, the panel stated that ARM was a "world class facility without peer." The panel convened in Ponca City, Oklahoma, near ARM's Southern Great Plains site to conduct their review. Their first agenda item was an SGP site tour, which provided a realtime example of the scope and expertise of site operations and included a demonstration of the site's newly

379

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

8, 2010 [Facility News] 8, 2010 [Facility News] Europeans Keen to Hear About Effects of Dust Using Data from Africa Bookmark and Share In 2006, the ARM Mobile Facility joined the AMMA project to obtain data for scientists to study the impact that airborne Saharan dust has on incoming solar radiation. This photo shows the sun setting through a dusty atmosphere near Niamey, Niger, where the mobile facility was deployed for one year. In 2006, the ARM Mobile Facility joined the AMMA project to obtain data for scientists to study the impact that airborne Saharan dust has on incoming solar radiation. This photo shows the sun setting through a dusty atmosphere near Niamey, Niger, where the mobile facility was deployed for one year. Researcher Xiaohong Liu from Pacific Northwest National Laboratory was

380

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

April 30, 2008 [Facility News] April 30, 2008 [Facility News] Team Scouts Graciosa Island for 2009 Mobile Facility Deployment Site Bookmark and Share A location near the airport on the northern end of Graciosa Island was identified as an excellent location for operating the ARM Mobile Facility. Image source: Luis Miguens A location near the airport on the northern end of Graciosa Island was identified as an excellent location for operating the ARM Mobile Facility. Image source: Luis Miguens Indications from a scouting trip by the ARM Mobile Facility (AMF) science and operations management team are that an excellent site for the 2009 deployment may have been found. From April 8 through April 16, the team traveled to Graciosa Island in the Azores to scout sites for the Clouds, Aerosol, and Precipitation in the Marine Boundary Layer (CAP-MBL) field

Note: This page contains sample records for the topic "facilities engineering command" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Integrated Facilities Disposition Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Facilities Facilities Disposition Program Tank Waste Corporate Board Meeting at ORNL Sharon Robinson Dirk Van Hoesen Robert Jubin Brad Patton July 29, 2009 2 Managed by UT-Battelle for the U.S. Department of Energy The Integrated Facility Disposition Program (IFDP) addresses the remaining EM Scope at both ORNL and Y-12 Cost Range: $7 - $14B Schedule: 26 Years 3 Managed by UT-Battelle for the U.S. Department of Energy Scope of work * Treatment and disposition of legacy materials and waste * D&D 327 (1.5 M ft 2 ) excess facilities generating >2 M yd 3 debris * Soil and groundwater remedial actions generating >1 M yd 3 soils * Facilities surveillance and maintenance * Reconfiguration of waste management facilities * Ongoing waste management operations * Project management

382

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

4, 2013 [Facility News] 4, 2013 [Facility News] Work Cut Out for ARM Science Board Bookmark and Share With a new fixed site on the horizon in the Azores, a third ARM Mobile Facility gearing up for action in the Arctic, and more aircraft probes and sensors than scientists can shake a stick at, the ARM Facility continues to expand its considerable suite of assets for conducting climate research. Along with this impressive inventory comes the responsibility to ensure the Facility is supporting the highest-value science possible. Enter the ARM Science Board. This eleven-member group annually reviews complex proposals for use of the ARM mobile and aerial facilities. To maintain excellence and integrity in the review process, each member serves a renewable term of two years, with membership updated annually.

383

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

8, 2011 [Facility News, Publications] 8, 2011 [Facility News, Publications] Journal Special Issue Includes Mobile Facility Data from Germany Bookmark and Share The ARM Mobile Facility operated in Heselbach, Germany, as part of the COPS surface network. The ARM Mobile Facility operated in Heselbach, Germany, as part of the COPS surface network. In 2007, the ARM Mobile Facility participated in one of the most ambitious field studies ever conducted in Europe-the Convective and Orographically Induced Precipitation Study (COPS). Now, 21 papers published in a special issue of the Quarterly Journal of the Royal Meteorological Society demonstrate that the data collected during COPS are providing new insight into: the key chemical and physical processes leading to convection initiation and to the modification of precipitation by orography;

384

WIPP - Public Reading Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Public Reading Facilities/Electronic Reading Facilities The Freedom of Information Act (FOIA) and Electronic FOIA (E-FOIA) require that various specific types of records, as well as various other records, be maintained in public reading facilities. Before you submit a FOIA request, we recommend you contact or visit the appropriate public reading facility to determine if the records you are seeking have already been released. The U.S. Department of Energy (DOE), as well as other related DOE sites, have established home pages on the Internet with links to other web sites. If you determine a specific facility might have records in which you are interested, requests for those records can be made directly to the public reading rooms identified below. Copying of records located in the public reading rooms must be made by the staff of those facilities.

385

Designation of facility usage categories for Hanford Site facilities  

SciTech Connect

This report summarizes the Hanford Site methodology used to ensure facility compliance with the natural phenomena design criteria set forth in the US Department of Energy Orders and guidance. The current Hanford Site methodology for Usage Category designation is based on an engineered feature's safety function and on the feature's assigned Safety Class. At the Hanford Site, Safety Class assignments are deterministic in nature and are based on teh consequences of failure, without regard to the likelihood of occurrence. The report also proposes a risk-based approach to Usage Category designation, which is being considered for future application at the Hanford Site. To establish a proper Usage Category designation, the safety analysis and engineering design processes must be coupled. This union produces a common understanding of the safety function(s) to be accomplished by the design feature(s) and a sound basis for the assignment of Usage Categories to the appropriate systems, structures, and components. 4 refs., 9 figs., 1 tab.

Woodrich, D.D.; Ellingson, D.R.; Scott, M.A.; Schade, A.R.

1991-10-01T23:59:59.000Z

386

Systematic method for the condition assessment of central heating plants in Air Force Logistics Command. Master's thesis  

Science Conference Proceedings (OSTI)

Air Force Logistics Command (AFLC), facing decreasing funds and aging utility systems, needed a method to objectively rate its central heating plants. Such a rating system would be used to compare heating plants throughout the command to identify potential problem areas and prioritize major repair projects. This thesis used a Delphi questionnaire to gather opinions from heating plant experts in order to identify and prioritize components considered most critical to overall plant operation. In addition, the experts suggested measurements which could be used to evaluate component conditions. By combining expert opinions and reading from technical literature, component model rating schemes were developed for AFLC's steam and high temperature hot water plants. Based on measurements and observations of critical components in the plant, a score between 0 and 100 is assigned to each component (for example, condensate piping, deaerator, etc.), each plant subsystem (distribution system, water treatment system, etc.), and to the plant as a whole. These component model rating schemes and the resultant overall condition index scores will enable AFLC to focus their management attention and allocate needed resources to the plants in greatest need of repair.

Starmack, G.J.

1990-09-01T23:59:59.000Z

387

A modern depleted uranium manufacturing facility  

SciTech Connect

The Specific Manufacturing Capabilities (SMC) Project located at the Idaho National Engineering Laboratory (INEL) and operated by Lockheed Martin Idaho Technologies Co. (LMIT) for the Department of Energy (DOE) manufactures depleted uranium for use in the U.S. Army MIA2 Abrams Heavy Tank Armor Program. Since 1986, SMC has fabricated more than 12 million pounds of depleted uranium (DU) products in a multitude of shapes and sizes with varying metallurgical properties while maintaining security, environmental, health and safety requirements. During initial facility design in the early 1980`s, emphasis on employee safety, radiation control and environmental consciousness was gaining momentum throughout the DOE complex. This fact coupled with security and production requirements forced design efforts to focus on incorporating automation, local containment and computerized material accountability at all work stations. The result was a fully automated production facility engineered to manufacture DU armor packages with virtually no human contact while maintaining security, traceability and quality requirements. This hands off approach to handling depleted uranium resulted in minimal radiation exposures and employee injuries. Construction of the manufacturing facility was complete in early 1986 with the first armor package certified in October 1986. Rolling facility construction was completed in 1987 with the first certified plate produced in the fall of 1988. Since 1988 the rolling and manufacturing facilities have delivered more than 2600 armor packages on schedule with 100% final product quality acceptance. During this period there was an annual average of only 2.2 lost time incidents and a single individual maximum radiation exposure of 150 mrem. SMC is an example of designing and operating a facility that meets regulatory requirements with respect to national security, radiation control and personnel safety while achieving production schedules and product quality.

Zagula, T.A.

1995-07-01T23:59:59.000Z

388

Meta search engine.  

E-Print Network (OSTI)

??Meta search engines allow multiple engine searches to minimize biased information and improve the quality of the results it generates. However, existing meta engine applications… (more)

Chan, Kwok-Pun

2007-01-01T23:59:59.000Z

389

Brookhaven Women Engineers' Network  

NLE Websites -- All DOE Office Websites (Extended Search)

Home | Mission | Other links BWEN Brookhaven Women Engineers' Network BNLlogo Brookhaven Women Engineers' Network Network for professionals in engineering, computing and...

390

ARM Climate Research Facility  

NLE Websites -- All DOE Office Websites

banner banner Home | People | Site Index Atmospheric Radiation Measurement Climate Research Facility US Department of Energy About Science Campaigns Sites Instruments Measurements Data News Publications Education Become a User Recovery Act Mission FAQ Outreach Displays History Organization Participants Facility Statistics Forms Contacts Research Themes Research Highlights Journal Articles Collaborations Atmospheric System Research (ASR) ARM Science Team Meetings Propose a Campaign Submitting Proposals: Guidelines Featured Campaigns Campaign Data List of Campaigns Aerial Facility Eastern North Atlantic Mobile Facilities North Slope of Alaska Southern Great Plains Tropical Western Pacific Location Table Contacts Instrument Datastreams Value-Added Products PI Data Products Field Campaign Data Related Data

391

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

November 30, 2008 Facility News Site Operations Centralized Through New Tracking System Bookmark and Share Tracking over 300 instrument systems distributed around the world is a...

392

Wind Manufacturing Facilities  

Energy.gov (U.S. Department of Energy (DOE))

America's wind energy industry supports a growing domestic industrial base. Check out this map to find manufacturing facilities in your state.

393

ARM Climate Research Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

TR-081.2 iii Abstract This report provides a short description of the Atmospheric Radiation Measurement (ARM) Climate Research Facility microwave radiometer (MWR) Retrieval...

394

BTRIC - User Facility - ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

whole-building and community integration, improved energy management in buildings and industrial facilities during their operational phase, and market transformations from old...

395

Superalloy Research Facilities  

Science Conference Proceedings (OSTI)

Feb 8, 2007 ... This directory provides a list of links to superalloy research facilities and programs around the world. Two formats of the information are ...

396

Lighting Systems Test Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Measurement equipment with light beam Lighting Systems Test Facilities NOTICE Due to the current lapse of federal funding, Berkeley Lab websites are accessible, but may not be...

397

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

Mapping It Up With Google Bookmark and Share "Thumbtacks" help ARM website users identify where the ARM sites are, including the ARM Mobile Facility deployments. "Thumbtacks" help...

398

Facility Survey & Transfer  

Energy.gov (U.S. Department of Energy (DOE))

As DOE facilities become excess, many that are radioactively and/or chemically contaminated will become candidate for transfer to DOE-EM for deactivation and decommissioning.

399

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

features the familiar faces of Professor Polar Bear, Teacher Turtle, and PI Prairie Dog (each representing an ARM Climate Research Facility site), but now provides easier...

400

Facilities for Calibration  

Science Conference Proceedings (OSTI)

... Our state-of-the-art property measurements require extensive calibration facilities of equal quality. Regular calibrations are essential for realistic ...

2014-01-03T23:59:59.000Z

Note: This page contains sample records for the topic "facilities engineering command" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

June 30, 2007 Facility News New Radar Wind Profiler Joins AMF Instrument Suite in Germany The 1290 MHz wind profiler (foreground) joins the eddy correlation system (background)...

402

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

August 2, 2013 Facility News 2014 Funding Opportunity Available for Early Career Scientists The U.S. Department of Energy's Office of Science is now accepting research...

403

User Facilities - Learn More  

NLE Websites -- All DOE Office Websites (Extended Search)

Shared Research Equipment (ShaRE) The Shared Research Equipment (ShaRE) User Facility at the Oak Ridge National Laboratory (ORNL) is one of three Electron Beam...

404

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

February 15, 2008 Facility News User Group Provides Recommendations for Data Archive Improvements Routine data from the ARM sites and ARM-sponsored field campaigns are stored in...

405

User Facilities - Learn More  

NLE Websites -- All DOE Office Websites (Extended Search)

Neutron Source Search by Equipment or Process User Portal Quick Links ORNL home User facility contacts ORNL Guest House Open Helpful Travel Information Learn More User...

406

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

October 31, 2008 Facility News Breakthrough User Interface Delivers Statistical Views of Data With its "drill-down" preview feature, the Statistical Browser is the first example...

407

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

instruments and equipment, as well as local facilities such as hospitals, groceries, and gas stations. Next steps will involve such items as securing access to power from nearby...

408

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

September 30, 2004 Facility News New Instrumentation on Proteus Aircraft Tested This fall, the ARM-Unmanned Aerospace Vehicle Program-specifically, the Proteus aircraft-is...

409

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

15 and 21 will remain intact, along with the Central Facility (C1) near Lamont. Instrumentation at the remaining sites will be consolidated into the new, smaller footprint....

410

ARM - SGP Boundary Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

facilities-located at Hillsboro, Kansas; Morris, Oklahoma; Purcelll, Oklahoma and Vici, Oklahoma (north, east, south and west, respectively)-marked the approximate midpoint of...

411

Calcined solids storage facility closure study  

SciTech Connect

The disposal of radioactive wastes now stored at the Idaho National Engineering and Environmental Laboratory is currently mandated under a {open_quotes}Settlement Agreement{close_quotes} (or {open_quotes}Batt Agreement{close_quotes}) between the Department of Energy and the State of Idaho. Under this agreement, all high-level waste must be treated as necessary to meet the disposal criteria and disposed of or made road ready to ship from the INEEL by 2035. In order to comply with this agreement, all calcined waste produced in the New Waste Calcining Facility and stored in the Calcined Solids Facility must be treated and disposed of by 2035. Several treatment options for the calcined waste have been studied in support of the High-Level Waste Environmental Impact Statement. Two treatment methods studied, referred to as the TRU Waste Separations Options, involve the separation of the high-level waste (calcine) into TRU waste and low-level waste (Class A or Class C). Following treatment, the TRU waste would be sent to the Waste Isolation Pilot Plant (WIPP) for final storage. It has been proposed that the low-level waste be disposed of in the Tank Farm Facility and/or the Calcined Solids Storage Facility following Resource Conservation and Recovery Act closure. In order to use the seven Bin Sets making up the Calcined Solids Storage Facility as a low-level waste landfill, the facility must first be closed to Resource Conservation and Recovery Act (RCRA) standards. This study identifies and discusses two basic methods available to close the Calcined Solids Storage Facility under the RCRA - Risk-Based Clean Closure and Closure to Landfill Standards. In addition to the closure methods, the regulatory requirements and issues associated with turning the Calcined Solids Storage Facility into an NRC low-level waste landfill or filling the bin voids with clean grout are discussed.

Dahlmeir, M.M.; Tuott, L.C.; Spaulding, B.C. [and others

1998-02-01T23:59:59.000Z

412

Argonne TTRDC - Feature - Five Myths About Diesel Engines  

NLE Websites -- All DOE Office Websites (Extended Search)

Five Myths About Diesel Engines Five Myths About Diesel Engines by Louise Lerner Steve Ciatti Steve Ciatti in the Engine Research Facility Diesel engines, long confined to trucks and ships, are garnering more interest for their fuel efficiency and reduced carbon dioxide emissions relative to gasoline engines. Argonne mechanical engineer Steve Ciatti takes a crack at some of the more persistent myths surrounding the technology. Myth #1: Diesel is dirty. "We all have this image of trucks belching out dirty black smoke," Ciatti said. This smoke is particulate matter from diesel exhaust: soot and small amounts of other chemicals produced by the engine. But EPA emissions requirements have significantly tightened, and diesel engines now have to meet the same criteria as gasoline engines. They do

413

Naval Station Newport Wind Resource Assessment. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites, and The Naval Facilities Engineering Service Center  

DOE Green Energy (OSTI)

The U.S. Environmental Protection Agency (EPA) launched the RE-Powering America's Land initiative to encourage development of renewable energy (RE) on potentially contaminated land and mine sites. EPA is collaborating with the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) to evaluate RE options at Naval Station (NAVSTA) Newport in Newport, Rhode Island where multiple contaminated areas pose a threat to human health and the environment. Designated a superfund site on the National Priorities List in 1989, the base is committed to working toward reducing the its dependency on fossil fuels, decreasing its carbon footprint, and implementing RE projects where feasible. The Naval Facilities Engineering Service Center (NFESC) partnered with NREL in February 2009 to investigate the potential for wind energy generation at a number of Naval and Marine bases on the East Coast. NAVSTA Newport was one of several bases chosen for a detailed, site-specific wind resource investigation. NAVSTA Newport, in conjunction with NREL and NFESC, has been actively engaged in assessing the wind resource through several ongoing efforts. This report focuses on the wind resource assessment, the estimated energy production of wind turbines, and a survey of potential wind turbine options based upon the site-specific wind resource.

Robichaud, R.; Fields, J.; Roberts, J. O.

2012-02-01T23:59:59.000Z

414

Human Error in Airway Facilities  

E-Print Network (OSTI)

This report examines human errors in Airway Facilities (AF) with the intent of preventing these errors from being passed on to the new Operations Control Centers. To effectively manage errors, they first have to be identified. Human factors engineers researched human error literature, analyzed human errors recorded in AF databases, and conducted structured interviews with AF representatives. This study enabled them to categorize the types of human errors, identify potential causal factors, and recommend strategies for their mitigation. The results provide preventative measures that designers, developers, and users can take to reduce human error. 17. Key Words Human Error Error Mitigation Operations Control Centers Error Mitigation Strategies 18. Distribution Statement This document is available to the public through the National Technical Information Service, Springfield, Virginia, 22161. 19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 23 22. Price Form DOT F 1700.7 (8-72) Reproduction of completed page authorized iii ACKNOWLEDGMENTS This research was accomplished under the sponsorship of the Office of Chief Scientist for Human Factors, AAR-100. The research team greatly appreciates the support supplied by Beverly Clark of AOP-30 and our subject matter expert, Kermit Grayson of Grayson Consulting. We also wish to extend our thanks to the people interviewed at the facilities who gave their valuable time in helping us to achieve the goals of our project. iv v Table of Contents Page Acknowledgments..........................................................................................................................iii Executive Summary......................................................................................

Vicki Ahlstrom; Vicki Ahlstrom Act; Donald G. Hartman

2001-01-01T23:59:59.000Z

415

Research facility access & science education  

SciTech Connect

As Congress voted to terminate the Superconducting Super Collider (SSC) Laboratory in October of 1993, the Department of Energy was encouraged to maximize the benefits to the nation of approximately $2 billion which had already been expended to date on its evolution. Having been recruited to Texas from other intellectually challenging enclaves around the world, many regional scientists, especially physicists, of course, also began to look for viable ways to preserve some of the potentially short-lived gains made by Texas higher education in anticipation of {open_quotes}the SSC era.{close_quotes} In fact, by November, 1993, approximately 150 physicists and engineers from thirteen Texas universities and the SSC itself, had gathered on the SMU campus to discuss possible re-uses of the SSC assets. Participants at that meeting drew up a petition addressed to the state and federal governments requesting the creation of a joint Texas Facility for Science Education and Research. The idea was to create a facility, open to universities and industry alike, which would preserve the research and development infrastructure and continue the educational mission of the SSC.

Rosen, S.P. [Univ. of Texas, Arlington, TX (United States); Teplitz, V.L. [Southern Methodist Univ., Dallas, TX (United States). Physics Dept.

1994-10-01T23:59:59.000Z

416

Facility Representative Program: DOE Facility Representatives  

NLE Websites -- All DOE Office Websites (Extended Search)

WIPP PADU PORTS ANL WVDP MOAB SFO LFO LAFO NFO SRFO RL PNSO ORP ID NPO-PX FSO NBL NPO-Y12 ORO OSO SPRU BHSO PSO SR SR NA26 DOE Facility Site Map Please help keep this...

417

Biological Sciences Facility and Computational Sciences Facility  

E-Print Network (OSTI)

on PNNL's campus since 1997. Combined, the two facilities house about 300 staff who support PNNL replacing laboratory and office space PNNL has been using on the south end of the nearby Hanford Site financed the new buildings and is leasing them to Battelle, which operates PNNL for DOE. #12;January 2010

418

Engineers Constructors  

Office of Legacy Management (LM)

Engineers Engineers - Constructors ~ /:~ ( ' r,.... I!~\ l.,_",z;(J;' Bechtel National, Inc. Oak Ridge Office Jackson Plaza Tower 800 Oak Ridge Turnpike Oak Ridge. Tennessee Mail Address: P. O. B01l 350. Oak Ridge. TN 37830 bce-. R. Barber C. t1iller E. Wal ker C. Knoke G. Phillips G. Scott L. Blevins K. Harer DOE File No. 030-04G Professional Land Surveying 1404 Second Street Santa Fe, New Mexico 87501 Attn: Mr. Robert Benavides Reference: Purchase Contract l4501-01j04-PC-19 Bayo Canyon Survey Dear Mr. Benavides: The following are clarifications to the referenced contract specification. The need for clarification to the specification arises from the fact that the Bayo Canyon site is transected by a corporate boundary, the Los Alamos County-Santa Fe County line. This condition affects three items in the specification Scope Of Work: Item 1.2.5, the as-built site plan of the Bayo

419

Robotics Test Facility  

Science Conference Proceedings (OSTI)

... 5000 square foot) high bay, holding most of the test methods; ... to help engineers view robot performance remotely and for recording testing events. ...

2013-05-23T23:59:59.000Z

420

ARM Climate Research Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Brookhaven National Laboratory Engineering Work Order-14216 has been approved to create a thermodynamic profile in the same manner as the Merged Sounding (MERGESONDE) VAP. The...

Note: This page contains sample records for the topic "facilities engineering command" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Robotics Laboratory - Nuclear Engineering Division (Argonne)  

NLE Websites -- All DOE Office Websites (Extended Search)

Capabilities > Engineering Capabilities > Engineering Experimentation > Robotics Laboratory Capabilities Engineering Experimentation Reactor Safety Experimentation Aerosol Experiments System Components Laser Applications Robots Applications Other Facilities Other Capabilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Robotics Laboratory The Robotics Laboratory (RL) houses various remote manipulator systems, including the Dual Arm Work Platform, to support enhancements to teleoperation of remote systems for nuclear applications. Bookmark and Share Argonne scientists are using computer simulation and robot task programming tools to enhance the safety and efficiency of telerobotics in applications such as the decontamination and decommissioning (D&D) of nuclear power

422

Aerosol Laboratory - Nuclear Engineering Division (Argonne)  

NLE Websites -- All DOE Office Websites (Extended Search)

Capabilities > Engineering Capabilities > Engineering Experimentation > Aerosol Laboratory Capabilities Engineering Experimentation Reactor Safety Experimentation Aerosol Experiments System Components Laser Applications Robots Applications Other Facilities Other Capabilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Aerosol Laboratory The Aerosol Laboratory (AL) houses equipment to measure and record the physical parameters necessary to characterize the formation and transport of aerosols. Bookmark and Share The Aerosol Laboratory (AL) has extensive analytic and experimental capabilities to characterize the formation and transport of aerosols formed from the condensation of vapors. Computer codes have been developed to

423

Facility location: distributed approximation  

Science Conference Proceedings (OSTI)

In this paper, we initiate the study of the approximability of the facility location problem in a distributed setting. In particular, we explore a trade-off between the amount of communication and the resulting approximation ratio. We give a distributed ... Keywords: distributed approximation, facility location, linear programming, primal-dual algorithms

Thomas Moscibroda; Rogert Wattenhofer

2005-07-01T23:59:59.000Z

424

Lunch & Learn Facilities &  

E-Print Network (OSTI)

reimbursements to the University for costs incurred in support of sponsored projects Sponsor perspective: F&A represent the sponsor's fair share of facilities and administration as it relates to total project costs 7Lunch & Learn Facilities & Administrative (F&A) Costs #12;Today's Agenda What are F&A Costs? How

McQuade, D. Tyler

425

Argonne Leadership Computing Facility  

E-Print Network (OSTI)

on constant Q surface. (Credit: Anurag Gupta/GE Global) www.alcf.anl.gov The Leadership Computing Facility Division operates the Argonne Leadership Computing Facility -- the ALCF -- as part of the U.S. Department.......................................................................................... 63 2010 ALCF Projects ............................................................................ 64

Kemner, Ken

426

Safety analysis report for the Waste Storage Facility. Revision 2  

SciTech Connect

This safety analysis report outlines the safety concerns associated with the Waste Storage Facility located in the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory. The three main objectives of the report are: define and document a safety basis for the Waste Storage Facility activities; demonstrate how the activities will be carried out to adequately protect the workers, public, and environment; and provide a basis for review and acceptance of the identified risk that the managers, operators, and owners will assume.

Bengston, S.J.

1994-05-01T23:59:59.000Z

427

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

30, 2007 [Facility News] 30, 2007 [Facility News] High-Speed Internet Deflects Information Overload Bookmark and Share Covering approximately 143,000 square kilometers in Oklahoma and Kansas, instruments at the various facilities throughout the SGP site generate approximately 27 gigabytes of data every day. Covering approximately 143,000 square kilometers in Oklahoma and Kansas, instruments at the various facilities throughout the SGP site generate approximately 27 gigabytes of data every day. A little more room in the internet link at the ARM Southern Great Plains site is providing needed relief to the crowded lines that keep data flowing from the site. In July 2007, the internet service from the SGP Central Facility was switched to a higher speed (6 megabits) link, increasing the

428

BNL | Research Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Brookhaven's Research Facilities Brookhaven's Research Facilities Tools of Discovery Brookhaven National Lab excels at the design, construction, and operation of large-scale, cutting-edge research facilities-some available nowhere else in the world. Each year, thousands of scientists from laboratories, universities, and industries around the world use these facilities to delve into the basic mysteries of physics, chemistry, biology, materials science, energy, and the environment-and develop innovative applications that arise, sometimes at the intersections of these disciplines. construction Brookhaven Lab is noted for the design, construction and operation of large-scale, cutting-edge research facilities that support thousands of scientists worldwide. RHIC tunnel Relativistic Heavy Ion Collider

429

ARM Aerial Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

govSitesAerial Facility govSitesAerial Facility AAF Information Proposal Process Science (PDF) Baseline Instruments Campaign Instruments Instrumentation Workshop 2008 AAF Fact Sheet G-1 Fact Sheet Images Field Campaigns AAF Campaigns 2007 - UAV Campaigns 1993 - 2006, 2015 Other Aircraft Campaigns 1993 - 2010 AAF Contacts Rickey Petty DOE AAF Program Director Beat Schmid Technical Director ARM Aerial Facility Numerous instrumented aircraft participated in CLASIC, a cross-disciplinary interagency research effort. Numerous instrumented aircraft participated in CLASIC, a cross-disciplinary interagency research effort. As an integral measurement capability of the ARM Climate Research Facility, the ARM Aerial Facility (AAF) provides airborne measurements required to answer science questions proposed by the ARM Science Team and the external

430

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

15, 2010 [Facility News] 15, 2010 [Facility News] Water Vapor Network at SGP Site Goes Offline Bookmark and Share Each of the 24 solar-powered GPS stations streamed data via a wireless network to the SGP Central Facility for data collection and storage. Each of the 24 solar-powered GPS stations streamed data via a wireless network to the SGP Central Facility for data collection and storage. After nearly eleven years, the Single Frequency GPS Water Vapor Network field campaign at the ARM Southern Great Plains (SGP) site came to a close on July 1, 2010. Installed between 1999 and 2000, this network consisted of 24 GPS stations operating within an 8-kilometer radius around the SGP Central Facility near Lamont, Oklahoma. Developed to function as a single instrument, the network simultaneously measured "slant water vapor" in

431

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

30, 2005 [Facility News] 30, 2005 [Facility News] Coastal Clouds Field Campaign Takes Off in July Bookmark and Share The 2-channel NFOV gets careful attention as it joins the suite of instruments collecting data for the ARM Mobile Facility field campaign at Point Reyes National Seashore. The 2-channel NFOV gets careful attention as it joins the suite of instruments collecting data for the ARM Mobile Facility field campaign at Point Reyes National Seashore. Since March 2005, the ARM Mobile Facility (AMF) has been at Point Reyes National Seashore in northern California for the Marine Stratus Radiation, Aerosol, and Drizzle Intensive Operational Period. The goals of this 6-month field campaign are to collect data from cloud/aerosol interactions and to improve understanding of cloud organization that is often associated

432

NSA Barrow Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Barrow Facility Barrow Facility NSA Related Links Facilities and Instruments Barrow Atqasuk ES&H Guidance Statement Operations Science Field Campaigns Visiting the Site Images Information for Guest Scientists Contacts NSA Barrow Facility Location: 71° 19' 23.73" N, 156° 36' 56.70" W Altitude: 8 meters The Barrow facility was dedicated in July 1997 and chosen because the Arctic is particularly sensitive to climate changes. Barrow is located at the northernmost point in the United States, 330 miles north of the Arctic Circle. Also known as the Top of the World, Barrow is Alaska's largest Eskimo village (home to 4,581 people). Tax revenue from the Slope's oil fields pay for services borough wide, and natural gas is used to heat homes and generate electricity in Barrow. Many residents, however, maintain

433

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

25, 2013 [Education, Facility News] 25, 2013 [Education, Facility News] Junior Rangers Enjoy Science Education at ARM Facility on Cape Cod Bookmark and Share Children and adults join in the balloon launch countdown at the ARM Mobile Facility site at Cape Cod National Seashore. Weather balloons are launched at regular intervals four times per day throughout the one-year campaign. Children and adults join in the balloon launch countdown at the ARM Mobile Facility site at Cape Cod National Seashore. Weather balloons are launched at regular intervals four times per day throughout the one-year campaign. School break means vacation, and around Cape Cod, that often means a trip to the seashore. On April 17, families looking for fun and educational outdoor activities spent several hours at Cape Cod National Seashore's

434

ARM - NSA Barrow Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Barrow Facility Barrow Facility NSA Related Links Facilities and Instruments Barrow Atqasuk ES&H Guidance Statement Operations Science Field Campaigns Visiting the Site Images Information for Guest Scientists Contacts NSA Barrow Facility Location: 71° 19' 23.73" N, 156° 36' 56.70" W Altitude: 8 meters The Barrow facility was dedicated in July 1997 and chosen because the Arctic is particularly sensitive to climate changes. Barrow is located at the northernmost point in the United States, 330 miles north of the Arctic Circle. Also known as the Top of the World, Barrow is Alaska's largest Eskimo village (home to 4,581 people). Tax revenue from the Slope's oil fields pay for services borough wide, and natural gas is used to heat homes and generate electricity in Barrow. Many residents, however, maintain

435

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

May 15, 2004 [Facility News] May 15, 2004 [Facility News] Mid-latitude Cirrus Cloud Experiment Underway Bookmark and Share NASA's WB-57F research aircraft can carry an instrument payload up to 6,000 lbs. NASA's WB-57F research aircraft can carry an instrument payload up to 6,000 lbs. In late April, scientific collaborators at the National Aeronautics and Space Administration (NASA) carried out two high-altitude flights over the ARM Climate Research Facility Southern Great Plains (SGP) central facility. The purpose of these flights was to use a new suite of cloud property probes on the WB-57F aircraft to more accurately characterize the properties of mid-latitude cirrus clouds-which are composed solely of ice crystals-than has previously been possible. Eight flights over the SGP central facility were originally planned, but the expected cirrus clouds

436

FACILITY SAFETY (FS)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FACILITY SAFETY (FS) FACILITY SAFETY (FS) OBJECTIVE FS.1 - (Core Requirement 7) Facility safety documentation in support of SN process operations,is in place and has been implemented that describes the safety envelope of the facility. The, safety documentation should characterize the hazards/risks associated with the facility and should, identify preventive and mitigating measures (e.g., systems, procedures, and administrative, controls) that protect workers and the public from those hazards/risks. (Old Core Requirement 4) Criteria 1. A DSA has been prepared by FWENC, approved by DOE, and implemented to reflect the SN process operations in the WPF. (10 CFR 830.200, DOE-STD-3009-94) 2. A configuration control program is in place and functioning such that the DSA is

437

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

, 2009 [Facility News] , 2009 [Facility News] Mobile Facility Begins Marine Cloud Study in the Azores Bookmark and Share Located next to the airport on Graciosa Island, the ARM Mobile Facility's comprehensive and sophisticated instrument suite will obtain atmospheric measurements from the marine boundary layer. Located next to the airport on Graciosa Island, the ARM Mobile Facility's comprehensive and sophisticated instrument suite will obtain atmospheric measurements from the marine boundary layer. Extended deployment will obtain seasonal statistics to improve climate models Today marks the beginning of a 20-month field campaign on Graciosa Island in the Azores to study the seasonal life cycle of marine clouds and how they modulate the global climate system. Sponsored by the U.S. Department

438

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

7, 2009 [Facility News] 7, 2009 [Facility News] Town Hall Meeting at AGU 2009 Fall Meeting Bookmark and Share ARM Climate Research Facility - New Measurement Capabilities for Climate Research Thursday, December 17, 6:15-7:15 pm, Moscone West Room 2002 American Recovery and Reinvestment Act American Recovery and Reinvestment Act Scientists from around the world use data from the ARM Climate Research Facility to study the interactions between clouds, aerosol and radiation. Through the American Recovery and Reinvestment Act of 2009, the DOE Office of Science received $1.2 billion, with $60 million allocated to the ARM Climate Research Facility. With these funds, ARM will purchase and deploy dual-frequency scanning cloud radars to all the ARM sites, enhance several sites with precipitation radars and energy flux measurement capabilities,

439

Engineered Fire Safety Group  

Science Conference Proceedings (OSTI)

Engineered Fire Safety Group. Welcome. ... Employment/Research Opportunities. Contact. Jason Averill, Leader. Engineered Fire Safety Group. ...

2012-06-05T23:59:59.000Z

440

CONDITIONING AND PROTECTION CIRCUITRY FOR EXTERNAL MODULATION OF A PREPROGRAMMED GYROTRON CATHODE VOLTAGE COMMAND WAVEFORM  

Science Conference Proceedings (OSTI)

OAK-B135 The modulating voltages applied to the DIII-D gyrotrons are controlled by reference signals which are synthesized by arbitrary waveform generators.These generators allow ECH operators to pre-program reference waveforms consisting of ramps, flat tops, and various modulation shapes. This capability is independent of the DIII-D central timing and waveform facilities, which provides the ECH operators operational flexibility. The waveform generators include an amplitude modulation input, providing a means to control the pre-programmed waveform externally. This input is being used to allow the DIII-D plasma control system (PCS) to control gyrotron power in response top selected feedback signals. As the PCS control signal could potentially modulate the gyrotrons beyond operational limits or otherwise in a manner leading to recalcitrant rf generation, the control signal is conditioned so that its effect upon the ECH pre-programmed reference waveform is limited by conditions set by the ECH operators. The design of the circuitry which restricts the range over which the PCS control signal may modulate the reference waveform will be discussed. Test and DIII-D experimental results demonstrating the utility and effectiveness of gyrotron power modulated by the PCS will be presented.

PONCE,D; FERRON,J.R; LEGG,R.A

2003-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "facilities engineering command" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Stirling engine research at Argonne National Laboratory  

SciTech Connect

Stirling engine research at Argonne National Laboratory has been focused at (1) development of mathematical models and analytical tools for predicting component and engine performance, and (2) experimental research into fundamental heat transfer and fluid flow phenomena occurring in Stirling cycle devices. A result of the analytical effort has been the formation of a computer library specifically for Stirling engine researchers and developers. The library contains properties of structural materials commonly used, thermophysical properties of several working fluids, correlations for heat transfer calculations and general specifications of mechanical arrangements (including various drive mechanisms) that can be utilized to model a particular engine. The library also contains alternative modules to perform analysis at different levels of sophistication, including design optimization. A reversing flow heat transfer facility is operating at Argonne to provide data at prototypic Stirling engine operating conditions under controlled laboratory conditions. This information is needed to validate analytical models.

Holtz, R.E.; Daley, J.G.; Roach, P.D.

1986-06-01T23:59:59.000Z

442

Cornell University Facilities Services  

E-Print Network (OSTI)

- substation design engineers, protective relay engineers, dispatchers in the control centers etc. AnotherRequirements Specification for and Evaluation of an Automated Substation Monitoring System Mladen for the Automated Analysis Substation System (AASS) implemented at Texas A&M University, aimed at monitoring

Manning, Sturt

443

Calibration Facilities | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Calibration Facilities Calibration Facilities Calibration Facilities Calibration Facilities Calibration Facilities Calibration Facilities Calibration Facilities DOE supports the development, standardization, and maintenance of calibration facilities for environmental radiation sensors. Radiation standards at the facilities are primarily used to calibrate portable surface gamma-ray survey meters and borehole logging instruments used for uranium and other mineral exploration and remedial action measurements. Standards for calibrating borehole fission neutron devices are also available, but are used infrequently. Radiation standards are constructed of concrete with elevated, uniform concentrations of naturally occurring potassium, uranium, and/or thorium. Pad standards have large, flat surfaces suitable for calibration

444

Engines - Spark Ignition Engines - Direct Injection - Omnivorous Engine  

NLE Websites -- All DOE Office Websites (Extended Search)

Direct Injection, Spark-Ignited Engines Direct Injection, Spark-Ignited Engines Omnivorous Engine Omnivorous Engine Setup Omnivorous Engine Setup New engine technology has made possible engines that will operate on a wide variety of fuel inputs, from gasoline to naptha to ethanol to methanol, without driver intervention. Although flexible fuel vehicles have been produced in the millions, their engines have always been optimized for gasoline operation while accepting significant performance and efficiency degradations when using the alternative fuel. This project seeks to combine in-cylinder measurement technology, and advanced controls to optimize spark timing, the quantity and timing of injected fuel, to produce an "omnivorous engine"--one that will be able to run on any liquid spark ignition fuel with optimal efficiency and low

445

METC Combustion Research Facility  

SciTech Connect

The objective of the Morgantown Energy Technology Center (METC) high pressure combustion facility is to provide a mid-scale facility for combustion and cleanup research to support DOE`s advanced gas turbine, pressurized, fluidized-bed combustion, and hot gas cleanup programs. The facility is intended to fill a gap between lab scale facilities typical of universities and large scale combustion/turbine test facilities typical of turbine manufacturers. The facility is now available to industry and university partners through cooperative programs with METC. High pressure combustion research is also important to other DOE programs. Integrated gasification combined cycle (IGCC) systems and second-generation, pressurized, fluidized-bed combustion (PFBC) systems use gas turbines/electric generators as primary power generators. The turbine combustors play an important role in achieving high efficiency and low emissions in these novel systems. These systems use a coal-derived fuel gas as fuel for the turbine combustor. The METC facility is designed to support coal fuel gas-fired combustors as well as the natural gas fired combustor used in the advanced turbine program.

Halow, J.S.; Maloney, D.J.; Richards, G.A.

1993-11-01T23:59:59.000Z

446

RCRA facility assessments  

SciTech Connect

The Hazardous and Solid Waste Amendments of 1984 (HSWA) broadened the authorities of the Resource Conservation and Recovery Act (RCRA) by requiring corrective action for releases of hazardous wastes and hazardous constituents at treatment, storage, and disposal (TSD) facilities. The goal of the corrective action process is to ensure the remediation of hazardous waste and hazardous constituent releases associated with TSD facilities. Under Section 3004(u) of RCRA, operating permits issued to TSD facilities must address corrective actions for all releases of hazardous waste and hazardous constituents from any solid waste management unit (SWMU) regardless of when the waste was placed in such unit. Under RCRA Section 3008(h), the Environmental Protection Agency (EPA) may issue administrative orders to compel corrective action at facilities authorized to operate under RCRA Section 3005(e) (i.e., interim status facilities). The process of implementing the Corrective Action program involves the following, in order of implementation; (1) RCRA Facility Assessment (RFA); (2) RCRA Facility Investigation (RFI); (3) the Corrective Measures Study (CMS); and (4) Corrective Measures Implementation (CMI). The RFA serves to identify and evaluate SWMUs with respect to releases of hazardous wastes and hazardous constituents, and to eliminate from further consideration SWMUs that do not pose a threat to human health or the environment. This Information Brief will discuss issues concerning the RFA process.

NONE

1994-07-01T23:59:59.000Z

447

Department of Residential Facilities Facilities Student Employment Office  

E-Print Network (OSTI)

Department of Residential Facilities Facilities Student Employment Office 1205E Leonardtown Service Updated 3/09 #12;EMPLOYMENT HISTORY Have you worked for Residential Facilities before? Yes No If so list

Milchberg, Howard

448

CHEMICAL ENGINEERING SCHOOL OF ENGINEERING & APPLIED SCIENCE  

E-Print Network (OSTI)

30 CHEMICAL ENGINEERING SCHOOL OF ENGINEERING & APPLIED SCIENCE MIAMI UNIVERSITY 2005-2006 The program leads to the degree, Bachelor of Science in Applied Science, with a major in Chemical Engineering The chemical engineering students learn to apply the concepts of chemistry, biochemistry and biological science

Dollar, Anna

449

Dept. of Mechanical Engineering 1500 Engineering Dr.  

E-Print Network (OSTI)

of Diesel Engine, Exhaust System, Engine Emissions and Aftertreatment Device Models," SAE Paper 2005 Engine, Emissions, and Exhaust Aftertreatment System Level Model to Simulate Diesel Particulate Filter Diesel Engine, Emissions, and Exhaust Aftertreatment System Level Model," SAE 2009-01-1511, SAE

Sheridan, Jennifer

450

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

July 10, 2012 [Facility News] July 10, 2012 [Facility News] Collaborations in Atmospheric Science and Observations Discussed in Germany Bookmark and Share Susanne Crewell (center) is flanked by Jimmy Voyles (left) and Shaocheng Xie (right) during a tour of the Research Center Juelich and the university's JĂĽlich ObservatorY for Cloud Evolution (JOYCE) site. Crewell explained that JOYCE, like ARM facilities, was designed for long-term continuous measurements of cloud, radiation, boundary humidity, and precipitation, using active and passive remote sensing instruments. Susanne Crewell (center) is flanked by Jimmy Voyles (left) and Shaocheng Xie (right) during a tour of the Research Center Juelich and the

451

TRITIUM EXTRACTION FACILITY ALARA  

SciTech Connect

The primary mission of the Tritium Extraction Facility (TEF) is to extract tritium from tritium producing burnable absorber rods (TPBARs) that have been irradiated in a commercial light water reactor and to deliver tritium-containing gas to the Savannah River Site Facility 233-H. The tritium extraction segment provides the capability to deliver three (3) kilograms per year to the nation's nuclear weapons stockpile. The TEF includes processes, equipment and facilities capable of production-scale extraction of tritium while minimizing personnel radiation exposure, environmental releases, and waste generation.

Joye, BROTHERTON

2005-04-19T23:59:59.000Z

452

Supercomputing | Facilities | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Facilities and Capabilities Facilities and Capabilities Primary Systems Infrastructure High Performance Storage Supercomputing and Computation Home | Science & Discovery | Supercomputing and Computation | Facilities and Capabilities | High Performance Storage SHARE High Performance Storage and Archival Systems To meet the needs of ORNL's diverse computational platforms, a shared parallel file system capable of meeting the performance and scalability require-ments of these platforms has been successfully deployed. This shared file system, based on Lustre, Data Direct Networks (DDN), and Infini-Band technologies, is known as Spider and provides centralized access to petascale datasets from all major on-site computational platforms. Delivering more than 240 GB/s of aggregate performance,

453

2-2 Environmental Spectroscopy & Biogeochemistry Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

ES&B Overview ES&B Overview Environmental Spectroscopy & Biogeochemistry Facility The Environmental Spectroscopy & Biogeochemistry (ES&B) Facility focuses on environ- mental molecular science and application of the fundamental concepts of physical chemistry to the study of chemical reactions in heterogeneous natural materials, with an emphasis on soil and subsurface systems. The ES&B Facility staff, along with other Pacific Northwest National Laboratory (PNNL) staff, form a multidisciplinary organization with expertise in chemistry, mineral physics, geochemistry, soil chemistry, microbiology, hydrology, and environmental engineering. Capabilities are available for materials characterization, aqueous-phase and solid-phase speciation and reaction/kinetic measurements, analytical environmental chemistry, molecular

454

Structural Integrity Program for INTEC Calcined Solids Storage Facilities  

SciTech Connect

This report documents the activities of the structural integrity program at the Idaho Nuclear Technology and Engineering Center relevant to the high-level waste Calcined Solids Storage Facilities and associated equipment, as required by DOE M 435.1-1, 'Radioactive Waste Management Manual'. Based on the evaluation documented in this report, the Calcined Solids Storage Facilities are not leaking and are structurally sound for continued service. Recommendations are provided for continued monitoring of the Calcined Solids Storage Facilities.

Jeffrey Bryant

2008-08-30T23:59:59.000Z

455

Guides: Design/Engineering for Deactivation & Decommissioning | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Guides: Design/Engineering for Deactivation & Guides: Design/Engineering for Deactivation & Decommissioning Guides: Design/Engineering for Deactivation & Decommissioning To ensure development of appropriate levels of engineering detail, DOE-EM's Office of Deactivation and Decommissioning and Facility Engineering (EM-13) has prepared this guidance for tailoring a D&D project's engineering/design to meet the objectives of the CD milestones. The enhanced rigor in planning and systematic, forward looking approach to engineering/design recommended in this guidance is intended to ensure that the level of detail in technical planning and technical development, integrated with other project aspects such as safety basis modifications, leads to a high confidence that the engineered system as a whole will function as designed. As the level of

456

Argonne Chemical Sciences & Engineering - News & Highlights - Photo  

NLE Websites -- All DOE Office Websites (Extended Search)

Facilities People Publications Awards News & Highlights Events Site Index Facilities People Publications Awards News & Highlights Events Site Index Search Argonne ... Search Argonne Home >Chemical Sciences & Engineering > Fundamental Interactions Catalysis & Energy Conversion Electrochemical Energy Storage Nuclear & Environmental Processes National Security Institute for Atom-Efficient Chemical Transformations Center for Electrical Energy Storage: Tailored Interfaces Computational Postdoctoral Fellowships Contact Us CSE Intranet Chemical Sciences & Engineering Photo Archives We offer a variety of high resolution images in a number of categories covering research done in the Chemical Sciences & Engineering Division. Simply choose a category below and you'll be taken to a page from which you can download photographs.

457

1.5-ft Wave Flume Facility | Open Energy Information  

Open Energy Info (EERE)

-ft Wave Flume Facility -ft Wave Flume Facility Jump to: navigation, search Basic Specifications Facility Name 1.5-ft Wave Flume Facility Overseeing Organization United States Army Corp of Engineers (ERDC) Hydrodynamic Testing Facility Type Flume Length(m) 45.1 Beam(m) 0.5 Depth(m) 0.9 Water Type Freshwater Cost(per day) Contact POC Towing Capabilities Towing Capabilities None Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.2 Maximum Wave Height(m) at Wave Period(s) 10.0 Wave Period Range(s) 10.0 Current Velocity Range(m/s) 0.0 Programmable Wavemaking Yes Simulated Beach No Channel/Tunnel/Flume Channel/Tunnel/Flume Yes Recirculating No Wind Capabilities Wind Capabilities None Control and Data Acquisition Description Automated data acquisition and control system

458

11-ft Wave Flume Facility | Open Energy Information  

Open Energy Info (EERE)

ft Wave Flume Facility ft Wave Flume Facility Jump to: navigation, search Basic Specifications Facility Name Wave Flume Facility Overseeing Organization United States Army Corp of Engineers (ERDC) Hydrodynamic Testing Facility Type Flume Length(m) 77.4 Beam(m) 3.4 Depth(m) 1.8 Water Type Freshwater Cost(per day) Contact POC Towing Capabilities Towing Capabilities None Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.4 Maximum Wave Height(m) at Wave Period(s) 10.0 Wave Period Range(s) 10.0 Current Velocity Range(m/s) 0.0 Programmable Wavemaking Yes Simulated Beach No Channel/Tunnel/Flume Channel/Tunnel/Flume None Wind Capabilities Wind Capabilities Yes Control and Data Acquisition Description Automated data acquisition and control system Cameras None

459

10-ft Wave Flume Facility | Open Energy Information  

Open Energy Info (EERE)

ft Wave Flume Facility ft Wave Flume Facility Jump to: navigation, search Basic Specifications Facility Name 10-ft Wave Flume Facility Overseeing Organization United States Army Corp of Engineers (ERDC) Hydrodynamic Testing Facility Type Flume Length(m) 63.4 Beam(m) 3.0 Depth(m) 1.5 Water Type Freshwater Cost(per day) Contact POC Towing Capabilities Towing Capabilities None Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.5 Maximum Wave Height(m) at Wave Period(s) 10.0 Wave Period Range(s) 0.0 Current Velocity Range(m/s) 0.0 Programmable Wavemaking Yes Simulated Beach No Channel/Tunnel/Flume Channel/Tunnel/Flume Yes Recirculating No Wind Capabilities Wind Capabilities None Control and Data Acquisition Description Automated data acquisition and control system

460

6-ft Wave Flume Facility | Open Energy Information  

Open Energy Info (EERE)

Wave Flume Facility Wave Flume Facility Jump to: navigation, search Basic Specifications Facility Name 6-ft Wave Flume Facility Overseeing Organization United States Army Corp of Engineers (ERDC) Hydrodynamic Testing Facility Type Flume Length(m) 105.2 Beam(m) 1.8 Depth(m) 1.8 Water Type Freshwater Cost(per day) Contact POC Towing Capabilities Towing Capabilities None Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.4 Maximum Wave Height(m) at Wave Period(s) 10.0 Wave Period Range(s) 10.0 Current Velocity Range(m/s) 0.0 Programmable Wavemaking Yes Simulated Beach No Channel/Tunnel/Flume Channel/Tunnel/Flume Yes Recirculating No Wind Capabilities Wind Capabilities None Control and Data Acquisition Description Automated data acquisition and control system

Note: This page contains sample records for the topic "facilities engineering command" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

December 12, 2003: Operations begin at Glovebox Excavator Method facility |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

12, 2003: Operations begin at Glovebox Excavator Method 12, 2003: Operations begin at Glovebox Excavator Method facility December 12, 2003: Operations begin at Glovebox Excavator Method facility December 12, 2003: Operations begin at Glovebox Excavator Method facility December 12, 2003 The Department's Idaho National Engineering and Environmental Laboratory (INEEL) begins operations at the Glovebox Excavator Method (GEM) facility. The GEM project will demonstrate buried waste retrieval at Pit 9, which contains mixed transuranic waste generated by the Rocky Flats Plant and shipped to INEEL in the late 1960s. At the GEM facility, workers do not come into direct contact with the waste. Workers operate a backhoe with the arm and scoop bucket extended and isolated inside an enclosed excavation area. The contaminated soil and debris will be processed through a

462

Category:Testing Facility Operators | Open Energy Information  

Open Energy Info (EERE)

Facility Operators Facility Operators Jump to: navigation, search This category contains facilities for research on renewable technologies and uses the form Testing Facility Operator. Pages in category "Testing Facility Operators" The following 26 pages are in this category, out of 26 total. A Alden Research Laboratory, Inc B Bucknell University C Colorado State University Hydrodynamics Cornell University Hydrodynamics M Massachusetts Institute of Technology Hydrodynamics O Ohmsett Oregon State University Hydrodynamics P Pennsylvania State University Hydrodynamics S Sandia National Laboratories Hydrodynamics S cont. Stevens Institute of Technology T Texas A&M (Haynes) Texas A&M (OTRC) U United States Army Corp of Engineers (ERDC) United States Geological Survey, HIF United States Geological Survey, LSC

463

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

27, 2009 [Facility News] 27, 2009 [Facility News] Arrival of Recovery Act Funds Sets Wheels In Motion Bookmark and Share So that people can easily recognize the effects of the American Recovery and Reinvestment Act, all projects will be stamped with the Recovery Act logo. So that people can easily recognize the effects of the American Recovery and Reinvestment Act, all projects will be stamped with the Recovery Act logo. Through the American Recovery and Reinvestment Act of 2009 (aka stimulus), the Department of Energy's Office of Science received $1.2 billion. In late May, DOE released approximately $54 million-90 percent-of the $60 million allocated to the ARM Climate Research Facility. During the next 18 months, the ARM Climate Research Facility will purchase and deploy dual-frequency scanning cloud radars to all the ARM sites, enhance several

464

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

28, 2005 [Facility News] 28, 2005 [Facility News] Readiness of New Lidar Evaluated at Southern Great Plains Site Bookmark and Share Aircraft for the Boundary Layer CO2 Intensive Operational Period will fly over the SGP Central Facility using both spirals and racetrack patterns. Data will be collected under a variety of cloud and meteorological conditions. Aircraft for the Boundary Layer CO2 Intensive Operational Period will fly over the SGP Central Facility using both spirals and racetrack patterns. Data will be collected under a variety of cloud and meteorological conditions. As the focus of the Boundary Layer Carbon Dioxide (CO2) Intensive Operational Period (IOP) starting in March, science collaborators at ITT Industries and the National Aeronautics and Space Administration (NASA)

465

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

New Backup Software Improves Processing, Reliability at Data Management New Backup Software Improves Processing, Reliability at Data Management Facility Bookmark and Share Real-time data from all three of the ARM Climate Research Facility sites (North Slope of Alaska, Southern Great Plains, and Tropical Western Pacific) are collected and processed at the ARM Climate Research Facility Data Management Facility (DMF) each day. Processing involves the application of algorithms for performing simple averaging routines, qualitative comparisons, or more complicated experimental calculations. With continual advances in computer technology, keeping up with the volume and pace of incoming data is a daunting challenge. And because the remote sites do not provide backups, reliable backups of these data at the DMF are critical. In addition, significant numbers of value-added datasets are

466

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

Mobile Facility Beta Testing Complete; System Headed to California Seashore Mobile Facility Beta Testing Complete; System Headed to California Seashore Bookmark and Share A key addition to the ARM Climate Research Facility scientific infrastructure is ready to roll...literally. In February, the ARM Mobile Facility (AMF) is being packed up and shipped from Richland, Washington, to the Point Reyes National Seashore north of San Francisco, California. There, it will be reassembled in preparation for its first deployment as part of a 6-month experiment to study the microphysical characteristics of marine stratus clouds, and in particular, marine stratus drizzle processes. Throughout the deployment, the AMF will accommodate aerosol observing equipment for National Oceanic and Atmospheric Administration (NOAA) researchers co-sponsored by ARM and the DOE Aerosol Science Program.

467

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

Review of ARM Infrastructure Completed Review of ARM Infrastructure Completed Bookmark and Share In May, the Department of Energy's Biological and Environmental Research Advisory Committee (BERAC) published findings and recommendations from their assessment of the effectiveness of ARM Climate Research Facility as a national scientific user facility. Based on a review of total user requests, the BERAC concluded that ARM was being effectively used by the broader scientific community, not just the ARM Program. They also stated that cost cutting measures had achieved the desired efficiency goals, but further cuts could impair the Facility's operations. The subcommittee reinforced the importance of the scientific impacts of this facility (including publications), and the value it has had for the international

468

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

March 1, 2012 [Facility News] March 1, 2012 [Facility News] Arctic Storm Samples Show Relationship Between Sea Ice and Precipitation Over Land Bookmark and Share Walter Brower, Barrow site facilities manager for ARM, cleans the sampling surface in preparation for the next snow storm. Visible in the background is the site's automated weather balloon launcher. Walter Brower, Barrow site facilities manager for ARM, cleans the sampling surface in preparation for the next snow storm. Visible in the background is the site's automated weather balloon launcher. As an important component of Earth's climate system, sea ice has a particularly strong influence on the Arctic sea surface temperature, evaporation, and reflectivity, or "albedo." The critical relationship among sea ice, evaporation, and precipitation is linked to a number of

469

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

15, 2007 [Facility News] 15, 2007 [Facility News] Commercial Infrared Sky Imagers Compared Bookmark and Share Three of the four instruments used in the sky imager intercomparison are visible in this photo taken on the Guest Instrument Facility platform at the SGP site. They are the Solmirus All Sky Infrared Visible Analyzer (foreground); Heitronics Nubiscope (top right); and Atmos Cloud Infrared Radiometer-4 (far left). Three of the four instruments used in the sky imager intercomparison are visible in this photo taken on the Guest Instrument Facility platform at the SGP site. They are the Solmirus All Sky Infrared Visible Analyzer (foreground); Heitronics Nubiscope (top right); and Atmos Cloud Infrared Radiometer-4 (far left). Four infrared imaging instruments were installed and operated at the ARM

470

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

1, 2011 [Facility News] 1, 2011 [Facility News] Data from Field Campaign in Black Forest, Germany, are Red Hot Bookmark and Share During COPS, the ARM Mobile Facility operated in Heselbach, Germany, obtaining measurements encompassing the entire life cycle of precipitation. The AMF site also hosted a number of guest instruments for supplemental field campaigns throughout the deployment. During COPS, the ARM Mobile Facility operated in Heselbach, Germany, obtaining measurements encompassing the entire life cycle of precipitation. The AMF site also hosted a number of guest instruments for supplemental field campaigns throughout the deployment. A paper published in a special issue of the Quarterly Journal of the Royal Meteorological Society describing the scientific strategy, field phase, and

471

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

15, 2006 [Facility News] 15, 2006 [Facility News] Radar Wind Profiler Joins ARM Mobile Facility Instrument Suite Bookmark and Share This spring, a 915 MHz radar wind profiler (RWP) was successfully installed at the ARM Mobile Facility (AMF) site in Niamey, Niger, West Africa, for the remainder of the 1-year RADAGAST field campaign which started in January. The RWP will provide information about wind speed, wind direction, and wind shear, and also enable measurements of the turbulence in the lower part of the troposphere. This may be a key variable in determining the vertical distribution of dust in the experimental domain. Gradients in the radar's reflectivity spectrum may also help to provide continuous identification of the depth of the boundary layer in the summer months, when refractive gradients are likely to be maximized by low-level moisture.

472

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

April 30, 2006 [Facility News] April 30, 2006 [Facility News] Disdrometer Joins Tipping Bucket to Improve Precipitation Measurements Bookmark and Share At the SGP site, the disdrometer is installed near the site's main instrument cluster, approximately 50 feet east of the Central Facility. To avoid secondary splash contamination, the disdrometer's sensor cone is surrounded by splash-resistant material. At the SGP site, the disdrometer is installed near the site's main instrument cluster, approximately 50 feet east of the Central Facility. To avoid secondary splash contamination, the disdrometer's sensor cone is surrounded by splash-resistant material. This spring, a pair of new distrometers began collecting data at the ARM Southern Great Plains (SGP) site and the ARM Darwin site in the Tropical

473

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

December 3, 2004 [Facility News] December 3, 2004 [Facility News] First Deployment of ARM Mobile Facility to Occur on California Coast Bookmark and Share Image - Point Reyes Beach Image - Point Reyes Beach Point Reyes National Seashore, on the California coast north of San Francisco, has been identified as the official location for the first deployment of the DOE's Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF). As part of a 6-month field campaign beginning in March 2005 to study the microphysical characteristics of marine stratus and, in particular, marine stratus drizzle processes, the AMF will provide a mature instrument system to help fill information gaps in the existing limited surveys of marine stratus microphysical structure. Marine stratus clouds are known to be susceptible to the byproducts of fossil fuel consumption, a

474

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

9, 2013 [Facility News] 9, 2013 [Facility News] ARM Facility Shares Return on Science Investments Bookmark and Share The Bolger Center-a former U.S. Postal Service training center-hosted the fourth annual ASR Science Team Meeting in March. The Bolger Center-a former U.S. Postal Service training center-hosted the fourth annual ASR Science Team Meeting in March. To quote Ben Franklin, "If a man empties his purse into his head, no man can take it away from him. An investment in knowledge always pays the best interest." ARM Climate Research Facility staff who attended the fourth annual Atmospheric System Research (ASR) Science Team Meeting in April received a healthy dose of interest in March! With over 350 attendees presenting nearly 250 posters, the wealth of atmospheric climate science knowledge

475

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

May 20, 2011 [Facility News] May 20, 2011 [Facility News] From Snow to Sand; Mobile Facility Headed to the Maldives Bookmark and Share AMF2 operations team members pack up the 3-channel microwave radiometer at the STORMVEX valley floor site in Steamboat Springs, Colorado. AMF2 operations team members pack up the 3-channel microwave radiometer at the STORMVEX valley floor site in Steamboat Springs, Colorado. After spending six very snowy months at Steamboat Springs, Colorado, the second ARM Mobile Facility (AMF2) is switching gears and heading to the tropical climes of the Maldives in the Indian Ocean. In mid-April, the Storm Peak Lab Cloud Property Validation Experiment (STORMVEX) came to a close, ending the final chapter of the AMF2's maiden deployment. After packing up the instruments and data systems, the AMF2 team is now preparing

476

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

Satellite Service Conserves Cash Satellite Service Conserves Cash Bookmark and Share In April, operations personnel completed a series of cost-saving data communication changes at the ARM Climate Research Facility Southern Great Plains (SGP) locale. The T-1 telephone lines at the four SGP boundary facilities were replaced with satellite dish technology. This change still allows large data sets to be transferred at acceptable bandwidth but at substantial savings. Inexpensive satellite services now meet data transmission needs at the SGP boundary facilities. Inexpensive satellite services now meet data transmission needs at the SGP boundary facilities. Huge amounts of data are collected daily by SGP site instruments. These data must be transmitted rapidly and reliably from remote measurement

477

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

2, 2012 [Data Announcements, Facility News] 2, 2012 [Data Announcements, Facility News] Toolkit for ARM Radar Data Previewed at Workshop Bookmark and Share This data plot shows the height and north/south displacement of rain relative to the ARM Southern Great Plains site's Central Facility in Oklahoma. This retrieval used information from all three X-band scanning ARM precipitation radars at the SGP site and was performed using tools in the Python-ARM radar toolkit. Click on image to enlarge. This data plot shows the height and north/south displacement of rain relative to the ARM Southern Great Plains site's Central Facility in Oklahoma. This retrieval used information from all three X-band scanning ARM precipitation radars at the SGP site and was performed using tools in the Python-ARM radar toolkit. Click on image to enlarge.

478

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

March 31, 2009 [Facility News] March 31, 2009 [Facility News] New Sensors Installed for Cloud Radar Calibration at North Slope Bookmark and Share Located on the roof of the Guest Instrument Facility at the ARM Barrow site are the PARSIVEL (left) and POSS (right) instruments. Located on the roof of the Guest Instrument Facility at the ARM Barrow site are the PARSIVEL (left) and POSS (right) instruments. Cloud radars at the ARM sites provide important information about cloud properties and continue to evolve in providing climate researchers more complex data. This creates a greater need to know the absolute calibration of the radar reflectivity measurement. However, the large and immobile antenna for the millimeter wavelength cloud radar (MMCR) is impossible to point directly at a calibration target. At the ARM North Slope of Alaska

479

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

May 15, 2006 [Facility News] May 15, 2006 [Facility News] New Micropulse Lidars to Replace Old Ones; Deployments Begin at SGP Bookmark and Share A representative from Sigma Space Corporation demonstrates the operation of the new micropulse lidar to ARM instrument mentors and site operations technicians. A representative from Sigma Space Corporation demonstrates the operation of the new micropulse lidar to ARM instrument mentors and site operations technicians. On May 3, the first of seven new and upgraded micropulse lidars (MPLs) was deployed at the ARM Southern Great Plains (SGP) site's Central Facility. These seven identical systems (including one spare) will replace the existing MPLs deployed at facilities throughout the SGP site and include new polarization capability. The MPLs provide critical backscatter

480

Nuclear Facility Design  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Design Design FUNCTIONAL AREA GOAL: Headquarters and Field organizations and their contractors ensure that nuclear facilities are designed to assure adequate protection for the public, workers, and the environment from nuclear hazards. REQUIREMENTS: ď‚· 10 CFR 830.120 ď‚· 10 CFR 830 subpart B ď‚· DOE O 413.3 ď‚· DOE O 420.1B ď‚· DOE O 414.1C ď‚· DOE O 226.1 ď‚· DOE M 426.1 ď‚· DEAR 970-5404-2 Guidance: ď‚· DOE G 420.1-1 ď‚· Project Management Practices, Integrated Quality ( Rev E, June 2003) ď‚· DOE Implementation Plan for DNSB Recommendation 2004-2 Performance Objective 1: Contractor Program Documentation Contracts between and the contractors who operate nuclear facilities contain adequate requirements concerning the conduct of nuclear facility safety design for nuclear facility capital projects and major modifications and the

Note: This page contains sample records for the topic "facilities engineering command" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

January 15, 2006 [Facility News] January 15, 2006 [Facility News] ARM Mobile Facility Begins Year-Long Deployment in Africa Bookmark and Share Beginning on January 9, the ARM Mobile Facility began officially collecting atmospheric data from a location at the airport in Niamey, Niger, Africa. As part of the RADAGAST field campaign, the A