Powered by Deep Web Technologies
Note: This page contains sample records for the topic "fabricated structural metal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Fabrication of metallic glass structures  

DOE Patents (OSTI)

Amorphous metal powders or ribbons are fabricated into solid shapes of appreciable thickness by the application of compaction energy. The temperature regime wherein the amorphous metal deforms by viscous flow is measured. The metal powders or ribbons are compacted within the temperature regime.

Cline, C.F.

1983-10-20T23:59:59.000Z

2

Method for fabricating an ignitable heterogeneous stratified metal structure  

DOE Patents (OSTI)

A multilayer structure has a selectable, (i) propagating reaction front velocity V, (ii) reaction initiation temperature attained by application of external energy and (iii) amount of energy delivered by a reaction of alternating unreacted layers of the multilayer structure. Because V is selectable and controllable, a variety of different applications for the multilayer structures are possible, including but not limited to their use as ignitors, in joining applications, in fabrication of new materials, as smart materials and in medical applications and devices. The multilayer structure has a period D, and an energy release rate constant K. Two or more alternating unreacted layers are made of different materials and separated by reacted zones. The period D is equal to a sum of the widths of each single alternating reaction layer of a particular material, and also includes a sum of reacted zone widths, t.sub.i, in the period D. The multilayer structure has a selectable propagating reaction front velocity V, where V=K(1/D.sup.n).times.[1-(t.sub.i /D)]and n is about 0.8 to 1.2.

Barbee, Jr., Troy W. (Palo Alto, CA); Weihs, Timothy (Menlo Park, CA)

1996-01-01T23:59:59.000Z

3

Industry Strategic Executive Overview: Highlights of the Fabricated Structural Metal Products Industry  

Science Conference Proceedings (OSTI)

The fabricated structural metals industry (SIC 344) is a dynamic marketplace with a wide variety of energy usages and issues that present several opportunities for energy service providers. The segment has been successful in the last decade beyond all forecasts and the growth is predicted to continue. However, this sector faces a wide variety of issues that range from a rapid drive toward automation to increasingly stringent regulatory and environmental controls that make them an enticing target and natu...

2002-02-06T23:59:59.000Z

4

Use of metallic glasses for fabrication of structures with submicron dimensions  

DOE Patents (OSTI)

Patterned structures of submicron dimension formed of supported or unsupported amorphous metals having submicron feature sizes characterized by etching behavior sufficient to allow delineation of sharp edges and smooth flat flanks, resistance to time-dependent dimensional changes caused by creep, flow, in-diffusion of unwanted impurities, out-diffusion of constituent atoms, void formation, grain growth or phase separation and resistance to phase transformations or compound formation.

Wiley, John D. (Madison, WI); Perepezko, John H. (Madison, WI)

1986-01-01T23:59:59.000Z

5

Process for fabrication of metal oxide films  

DOE Patents (OSTI)

This invention is comprised of a method of fabricating metal oxide films from a plurality of reactants by inducing a reaction by plasma deposition among the reactants. The plasma reaction is effective for consolidating the reactants and producing thin films of metal oxides, e.g. electro-optically active transition metal oxides, at a high deposition rate. The presence of hydrogen during the plasma reaction enhances the deposition rate of the metal oxide. Various types of metal oxide films can be produced.

Tracy, C.E.; Benson, D.; Svensson, S.

1990-07-17T23:59:59.000Z

6

Improvements in fabrication of metallic fuels  

Science Conference Proceedings (OSTI)

Argonne National Laboratory is currently developing a new liquid- metal cooled breeder reactor known as the Integral Fast Reactor (IFR). IFR fuels represent the state-of-the-art in metal-fueled reactor technology. Improvements in the fabrication of metal fuel, to be discussed below, will support the fully remote fuel cycle facility that as an integral part of the IFR concept will be demonstrated at the EBR-II site. 3 refs.

Tracy, D.B.; Henslee, S.P.; Dodds, N.E.; Longua, K.J.

1989-12-01T23:59:59.000Z

7

Fabrication of Metal Foam and its Applications  

Science Conference Proceedings (OSTI)

Mechanical and Physical Properties of Roof Tile Manufacturing from Red Mud ... Structural Engineering of Semiconductor Layered Metal Oxides for Solar ...

8

Fabrication of double split metallic nanorings for Raman sensing  

Science Conference Proceedings (OSTI)

We describe the fabrication and characterisation of arrays of metallic plasmon resonant nanorings, each of which are formed from two semicircles of different radius. We show that using a dual semicircle structure defined by electron beam lithography ... Keywords: Electron beam lithography, Localized surface plasmon

Alison Cleary; Alasdair Clark; Andrew Glidle; Jonathan M. Cooper; David Cumming

2009-04-01T23:59:59.000Z

9

Structure and yarn sensor for fabric  

DOE Patents (OSTI)

A structure and yarn sensor for fabric directly determines pick density in a fabric thereby allowing fabric length and velocity to be calculated from a count of the picks made by the sensor over known time intervals. The structure and yarn sensor is also capable of detecting full length woven defects and fabric. As a result, an inexpensive on-line pick (or course) density measurement can be performed which allows a loom or knitting machine to be adjusted by either manual or automatic means to maintain closer fiber density tolerances. Such a sensor apparatus dramatically reduces fabric production costs and significantly improves fabric consistency and quality for woven or knitted fabric.

Mee, David K. (Knoxville, TN); Allgood, Glenn O. (Powell, TN); Mooney, Larry R. (Knoxville, TN); Duncan, Michael G. (Clinton, TN); Turner, John C. (Clinton, TN); Treece, Dale A. (Knoxville, TN)

1998-01-01T23:59:59.000Z

10

Fabrication of Metal Matrix Composites via Spark Plasma Sintering ...  

Science Conference Proceedings (OSTI)

Presentation Title, Fabrication of Metal Matrix Composites via Spark Plasma Sintering for Nuclear Energy Application. Author(s), Indrajit Charit, Jonathan A.

11

Structure and yarn sensor for fabric  

DOE Patents (OSTI)

A structure and yarn sensor for fabric directly determines pick density in a fabric thereby allowing fabric length and velocity to be calculated from a count of the picks made by the sensor over known time intervals. The structure and yarn sensor is also capable of detecting full length woven defects and fabric. As a result, an inexpensive on-line pick (or course) density measurement can be performed which allows a loom or knitting machine to be adjusted by either manual or automatic means to maintain closer fiber density tolerances. Such a sensor apparatus dramatically reduces fabric production costs and significantly improves fabric consistency and quality for woven or knitted fabric. 13 figs.

Mee, D.K.; Allgood, G.O.; Mooney, L.R.; Duncan, M.G.; Turner, J.C.; Treece, D.A.

1998-10-20T23:59:59.000Z

12

The design and construction of fabric structures  

E-Print Network (OSTI)

In its short history, fabric structures have fascinated architects and engineers alike. Architects appreciate their unusual shapes and forms while engineers delight in their "pure" structural expression. Capable of spanning ...

Fang, Rosemarie

2009-01-01T23:59:59.000Z

13

Laser target fabrication, structure and method for its fabrication  

SciTech Connect

The disclosure is directed to a laser target structure and its method of fabrication. The target structure comprises a target plate containing an orifice across which a pair of crosshairs are affixed. A microsphere is affixed to the crosshairs and enclosed by at least one hollow shell comprising two hemispheres attached together and to the crosshairs so that the microsphere is juxtapositioned at the center of the shell.

Farnum, Eugene H. (Los Alamos, NM); Fries, R. Jay (Los Alamos, NM)

1985-01-01T23:59:59.000Z

14

Fabrication and Preliminary Evaluation of Metal Matrix Microencapsulated Fuels  

SciTech Connect

The metal matrix microencapsulated (M3) fuel concept for light water reactors (LWRs), consisting of coated fuel particles dispersed in a zirconium metal matrix, is introduced. Fabrication of M3 fuels by hot pressing, hot isostatic pressing, or extrusion methodologies has been demonstrated over the temperature range 800-1050 C. Various types of coated fuel particles with outermost layers of pyrocarbon, SiC, ZrC, and TiN have been incorporated into the zirconium metal matrix. Mechanical particle-particle and chemical particle-matrix interactions have been observed during the preliminary characterization of as-fabricated M3 specimens. Irradiation of three M3 rodlets with surrogate coated fuel particles was carried out at mean rod temperature of 400 C to 4.6 dpa in the zirconium metal matrix. Due to absence of texture in the metal matrix no irradiation growth strain (<0.09%) was detected during the post-irradiation examination.

Terrani, Kurt A [ORNL; Kiggans, Jim [ORNL; Snead, Lance Lewis [ORNL

2012-01-01T23:59:59.000Z

15

Method for fabricating beryllium structures  

SciTech Connect

Thin-walled beryllium structures are prepared by plasma spraying a mixture of beryllium powder and about 2500 to 4000 ppm silicon powder onto a suitable substrate, removing the plasma-sprayed body from the substrate and placing it in a sizing die having a coefficient of thermal expansion similar to that of the beryllium, exposing the plasma-sprayed body to a moist atmosphere, outgassing the plasma-sprayed body, and then sintering the plasma-sprayed body in an inert atmosphere to form a dense, low-porosity beryllium structure of the desired thin-wall configuration. The addition of the silicon and the exposure of the plasma-sprayed body to the moist atmosphere greatly facilitate the preparation of the beryllium structure while minimizing the heretofore deleterious problems due to grain growth and grain orientation.

Hovis, Jr., Victor M. (Kingston, TN); Northcutt, Jr., Walter G. (Oak Ridge, TN)

1977-01-01T23:59:59.000Z

16

Method of fabricating a catalytic structure  

SciTech Connect

A precursor to a catalytic structure comprising zinc oxide and copper oxide. The zinc oxide has a sheet-like morphology or a spherical morphology and the copper oxide comprises particles of copper oxide. The copper oxide is reduced to copper, producing the catalytic structure. The catalytic structure is fabricated by a hydrothermal process. A reaction mixture comprising a zinc salt, a copper salt, a hydroxyl ion source, and a structure-directing agent is formed. The reaction mixture is heated under confined volume conditions to produce the precursor. The copper oxide in the precursor is reduced to copper. A method of hydrogenating a carbon oxide using the catalytic structure is also disclosed, as is a system that includes the catalytic structure.

Rollins, Harry W. (Idaho Falls, ID); Petkovic, Lucia M. (Idaho Falls, ID); Ginosar, Daniel M. (Idaho Falls, ID)

2009-09-22T23:59:59.000Z

17

Methods for freeform fabrication of structures  

SciTech Connect

Rapid prototyping methods and apparatuses that produce structures made of continuous-fiber polymer-matrix composites without the use of molds. Instead of using molds, the composite structure is fabricated patch by patch in layers or wraps, using a two- or three-axis stage connected to a rapidly-reconfigurable forming surface, and a robot arm to position the evolving composite structure, which are both programmable devices. Because programmable devices are included, i.e., a robot and a two- or three-axis stage connected to the reconfigurable forming surface, the control program needed to produce a desired shape can be easily modified to automatically generate the desired shape from an electronic model (e.g., using a CAD/CAM system) of the desired (predetermined) shape.

Kaufman, Stephen G. (Albuquerque, NM); Spletzer, Barry L. (Albuquerque, NM)

2000-01-01T23:59:59.000Z

18

Method for fabricating prescribed flaws in the interior of metals  

SciTech Connect

The method for fabricating a metal body having a flaw of predetermined size and shape located therein comprises placing half of the metal powder required to make the metal body in the die of a press and pressing it to create a flat upper surface thereon. A piece of copper foil is cut to the size and shape of the desired interior crack and placed on the upper surface of the powder and centered in position. The remaining powder is then placed in the die to cover the copper foil. The powder is first cold pressed and removed from the press. The powder metal piece is then sintered in a furnace at a temperature above the melting point of the copper and below the melting point of the metal. It is then removed from the furnace, cooled to room temperature, and placed back in the die and pressed further. This procedure results in an interior flaw or crack. Modified forms of the method involve using a press-sinter-press-sinter cycle with the first sinter being below the melting point of the copper and the second sinter being above the melting point of the copper and below the melting point of the metal.

Hsu, David K. (Ames, IA); Thompson, Donald O. (Ames, IA)

1989-03-07T23:59:59.000Z

19

Method of fabricating a honeycomb structure  

DOE Patents (OSTI)

A method of fabricating a monolithic honeycomb structure product involves shaping a first mixture of raw materials and a binder into a green honeycomb, extruding a second mixture of raw materials and a binder into one or more green members that each define an opening extending longitudinally therethrough. The raw materials of the second mixture are compatible with the raw materials of the first mixture. The green honeycomb and member(s) are dried. The binders of the green honeycomb and member(s) are softened at the surfaces that are to be bonded. The green member(s) is inserted into the honeycomb and bonded to the honeycomb to form an assembly thereof, which is then dried and fired to form a unified monolithic honeycomb structure. The insertion is best carried out by mounting a member in the shape of a tube on a mandrel, and inserting the mandrel into the honeycomb opening to bond the tube to the honeycomb. 7 figs.

Holleran, L.M.; Lipp, G.D.

1999-08-03T23:59:59.000Z

20

Method of fabricating a honeycomb structure  

DOE Patents (OSTI)

A method of fabricating a monolithic honeycomb structure product involves shaping a first mixture of raw materials and a binder into a green honeycomb, extruding a second mixture of raw materials and a binder into one or more green members that each define an opening extending longitudinally therethrough. The raw materials of the second mixture are compatible with the raw materials of the first mixture. The green honeycomb and member(s) are dried. The binders of the green honeycomb and member(s) are softened at the surfaces that are to be bonded. The green member(s) is inserted into the honeycomb and bonded to the honeycomb to form an assembly thereof, which is then dried and fired to form a unified monolithic honeycomb structure. The insertion is best carried out by mounting a member in the shape of a tube on a mandrel, and inserting the mandrel into the honeycomb opening to bond the tube to the honeycomb.

Holleran, Louis M. (Big Flats, NY); Lipp, G. Daniel (Fort Collins, CO)

1999-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fabricated structural metal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

SOME EXPERIENCES IN THE WELD FABRICATION OF REFRACTORY METALS  

SciTech Connect

Discussion is given on the welding fabrication of tungsten, molybdenum, niobium, and tantalum. Properties which make the four refractory metals important are tabulatcd along with titanium which is given for comparison. Extensive evaluation was conducted using the gas, tungsten arc welding process employing both manual and machine welding. Design data were obtained exclusively from machine welded sheet materials. Flash welding, resistance spot welding and brazing, electron beam welding, and high frequency resistance welding processes were also applied to molybdenum alloys. The oxidation of molybdenum, tantalum, and niobium in flowing air at 2000 deg F is also given. (P.C.H.)

Thompson, E.G.

1961-02-10T23:59:59.000Z

22

Method for fabricating beryllium-based multilayer structures  

SciTech Connect

Beryllium-based multilayer structures and a process for fabricating beryllium-based multilayer mirrors, useful in the wavelength region greater than the beryllium K-edge (111 .ANG. or 11.1 nm). The process includes alternating sputter deposition of beryllium and a metal, typically from the fifth row of the periodic table, such as niobium (Nb), molybdenum (Mo), ruthenium (Ru), and rhodium (Rh). The process includes not only the method of sputtering the materials, but the industrial hygiene controls for safe handling of beryllium. The mirrors made in accordance with the process may be utilized in soft x-ray and extreme-ultraviolet projection lithography, which requires mirrors of high reflectivity (>60%) for x-rays in the range of 60-140 .ANG. (60-14.0 nm).

Skulina, Kenneth M. (Livermore, CA); Bionta, Richard M. (Livermore, CA); Makowiecki, Daniel M. (Livermore, CA); Alford, Craig S. (Tracy, CA)

2003-02-18T23:59:59.000Z

23

Fabrication of high aspect ratio silicon nanostructure arrays by metal-assisted etching  

E-Print Network (OSTI)

The goal of this research was to explore and understand the mechanisms involved in the fabrication of silicon nanostructures using metal-assisted etching. We developed a method utilizing metal-assisted etching in conjunction ...

Chang, Shih-wei, Ph.D. Massachusetts Institute of Technology

2010-01-01T23:59:59.000Z

24

The design and analysis of tension fabric structures  

E-Print Network (OSTI)

Although tensioned fabric structures are increasingly in demand, since they are comparatively new to the engineering world, there are relatively limited resources available about such structures. This report reviews the ...

Son, Miriam Euni

2007-01-01T23:59:59.000Z

25

A2: Fabrication of Bio-Structures Via Microbubbling  

Science Conference Proceedings (OSTI)

C19: Dissolution Behavior of Cu Under Bump Metallization in Ball Grid Array Structure .... H2: Triboluminescent Smart Sensors for Structural Health Monitoring .

26

Energy Conservation and Waste Reduction in the Metal Fabrication Industry  

E-Print Network (OSTI)

Reductions of energy use and waste generation can help manufacturers to be more profitable and more environmentally acceptable. Industrial Assessment Centers located at universities throughout the United States, funded by the U.S. Department of Energy and the U.S. Environmental Protection Agency, are conducting combined energy and waste assessments for small and medium-size manufacturers. The Industrial Technology and Energy Management (ITEM) division of University City Science Center is field manager for the western region of the Industrial Assessment Center program. These case studies present results from three assessments of manufacturing plants in the metal fabrication industry. Primary processing operations include machining, painting, plating, and assembly. Energy conservation opportunities chiefly involved motor systems, compressed air systems, and heating, ventilating, and air-conditioning systems. Typically, pollution prevention opportunities involved the painting lines. For each of the three plants studied, processes are described; the specific energy conserving and waste-reducing measures are identified; the energy savings and waste reductions are quantified; and financial analyses are presented, including cost savings and paybacks. In addition, actual implementation results reported by the manufacturers are provided.

Kirk, M. C. Jr.; Looby, G. P.

1996-04-01T23:59:59.000Z

27

Fabrication of Bulk Metallic Glass Foams via Severe Plastic ...  

Science Conference Proceedings (OSTI)

Symposium, M. Bulk Metallic Glasses, Nanocrystalline Materials, and ... Application of Metallic Glass for High Performance Si Solar Cell: Oxidation Behavior of ...

28

Bulk Metallic Glass Composites Fabricated within the Supercooled ...  

Science Conference Proceedings (OSTI)

In the present work, lightweight magnesium base Bulk Metallic Glass Composites ... Application of Metallic Glass for High Performance Si Solar Cell: Oxidation ...

29

A Fabrication Technique for Metal Matrix Composites with Shape ...  

Science Conference Proceedings (OSTI)

Abstract Scope, Advanced metal matrix composites reinforced with shape memory ... of Metal Matrix Composites via Spark Plasma Sintering for Nuclear Energy ...

30

Structures and fabrication techniques for solid state ...  

Provided are low-cost, mechanically strong, highly electronically conductive porous substrates and associated structures for solid-state electrochemical devices ...

31

Ge epitaxial refill deposition techniques for fabricating pedestal transistor structures  

Science Conference Proceedings (OSTI)

An etch-epitaxial refill technique is described for the fabrication of integrated high-speed Ge transistor structures having a pedestal configuration. The device areas surrounding 0.1 ohm-cm mesa structures were refilled with Ge having a resistivity ...

V. J. Silvestri; T. B. Light; H. N. Yu; A. Reisman

1972-01-01T23:59:59.000Z

32

Fabrication and testing of nano-optical structures for advanced photonics and quantum information processing applications  

E-Print Network (OSTI)

Interest in the fabrication of nano-optical structures has increased dramatically in recent years, due to advances in lithographic resolution. In particular, metallic nanostructures are of interest because of their ability to concentrate light to well below the diffraction limit. Such structures have many potential applications, including nanoscale photonics, quantum information processing and single molecule detection/imaging. In the case of quantum computing and quantum communication, plasmon-based metal nanostructures offer the promise of scalable devices. This is because the small optical mode volumes of such structures give the large atom-photon coupling needed to interface solid-state quantum bits (qubits) to photons. The main focus of this dissertation is on fabrication and testing of surface plasmon-based metal nanostructures that can be used as optical wires for effciently collecting and directing an isolated atom or molecule's emission. In this work, Ag waveguides having 100nmŁ50nm and 50nmŁ50nm cross sections have been fabricated ranging from 5ąm to 16ąm in length. Different types of coupling structures have also been fabricated to allow in-coupling and out-coupling of free space light into and out of the nanometric waveguides. The design of waveguides and couplers have been accomplished using a commercial finite difference in time domain (FDTD) software. Different nanofabrication techniques and methods have been investigated leading to robust and reliable process conditions suitable for very high aspect ratio fabrication of metal structures. Detailed testing and characterization of the plasmon based metal waveguides and couplers have also been carried out. Test results have revealed effective surface plasmon propagation range. 0.5dB/ąm and 0.07dB/ąm transmission losses have been found for 100nm and 50nm wide waveguides respectively, which correspond to 1/e propagation lengths of 9ąm and 60ąm. Input coupling effciency was found to be 2% and output coupling effciency was found to be 35%. The fabrication and testing results presented provide critical demonstrations to establish the feasibility of nanophotonic integrated circuits, scalable quantum information processing devices, as well as other devices, such as single molecule detectors and imaging systems.

Khan, Mughees Mahmood

2006-12-01T23:59:59.000Z

33

Fabrication of Porous Metals with Directional Pores through ...  

Science Conference Proceedings (OSTI)

Gas-forming compounds such as hydrides were added into the molten metal to ... of Iron Compounds Complex Particles by Pulsed Laser Irradiation in Liquids.

34

CASTING SLIPS FOR FABRICATION OF REFRACTORY METAL WARE  

DOE Patents (OSTI)

A composition is given for slip casting tungsten metal. The composition consists essentially of tungsten metal with an average particle size of 0.9 micron, an organic vehicle such as methyl chloroform, o-xylene, n-butyl acetate, isobutyl acetate, and 1, 1, 2, 2-tetrachlorethane, and a suspending agent such as ethyl cellulose, with the approximate ratio of said vehicle to the tungsten metal being 12 cc of a solution containing from 5 to about 20 grams of said ethyl cellulose in 400 cc of said organic vehicle per 100 grams of metal. (AEC)

Stoddard, S.D.; Nuckolls, D.E.; Cowan, R.E.

1962-09-01T23:59:59.000Z

35

Process for the fabrication of aluminum metallized pyrolytic graphite sputtering targets  

DOE Patents (OSTI)

An improved method for fabricating pyrolytic graphite sputtering targets with superior heat transfer ability, longer life, and maximum energy transmission. Anisotropic pyrolytic graphite is contoured and/or segmented to match the erosion profile of the sputter target and then oriented such that the graphite's high thermal conductivity planes are in maximum contact with a thermally conductive metal backing. The graphite contact surface is metallized, using high rate physical vapor deposition (HRPVD), with an aluminum coating and the thermally conductive metal backing is joined to the metallized graphite target by one of four low-temperature bonding methods; liquid-metal casting, powder metallurgy compaction, eutectic brazing, and laser welding.

Makowiecki, Daniel M. (Livermore, CA); Ramsey, Philip B. (Livermore, CA); Juntz, Robert S. (Hayward, CA)

1995-01-01T23:59:59.000Z

36

Utilizing Metalized Fabrics for Liquid and Rip Detection and Localization  

SciTech Connect

This paper proposes a novel technique for utilizing conductive textiles as a distributed sensor for detecting and localizing liquids (e.g., blood), rips (e.g., bullet holes), and potentially biosignals. The proposed technique is verified through both simulation and experimental measurements. Circuit theory is utilized to depict conductive fabric as a bounded, near-infinite grid of resistors. Solutions to the well-known infinite resistance grid problem are used to confirm the accuracy and validity of this modeling approach. Simulations allow for discontinuities to be placed within the resistor matrix to illustrate the effects of bullet holes within the fabric. A real-time experimental system was developed that uses a multiplexed Wheatstone bridge approach to reconstruct the resistor grid across the conductive fabric and detect liquids and rips. The resistor grid model is validated through a comparison of simulated and experimental results. Results suggest accuracy proportional to the electrode spacing in determining the presence and location of discontinuities in conductive fabric samples. Future work is focused on refining the experimental system to provide more accuracy in detecting and localizing events as well as developing a complete prototype that can be deployed for field testing. Potential applications include intelligent clothing, flexible, lightweight sensing systems, and combat wound detection.

Holland, Stephen [University of Tennessee, Knoxville (UTK); Mahan, Cody [Western Kentucky University; Kuhn, Michael J [ORNL; Rowe, Nathan C [ORNL

2013-01-01T23:59:59.000Z

37

Method of electrode fabrication and an electrode for metal chloride battery  

DOE Patents (OSTI)

A method of fabricating an electrode for use in a metal chloride battery and an electrode are provided. The electrode has relatively larger and more uniform pores than those found in typical electrodes. The fabrication method includes the steps of mixing sodium chloride particles selected from a predetermined size range with metal particles selected from a predetermined size range, and then rigidifying the mixture. The electrode exhibits lower resistivity values of approximately 0.5 [Omega]cm[sup 2] than those resistivity values of approximately 1.0-1.5 [Omega]cm[sup 2] exhibited by currently available electrodes.

Bloom, I.D.; Nelson, P.A.; Vissers, D.R.

1993-03-16T23:59:59.000Z

38

Method of electrode fabrication and an electrode for metal chloride battery  

DOE Patents (OSTI)

A method of fabricating an electrode for use in a metal chloride battery and an electrode are provided. The electrode has relatively larger and more uniform pores than those found in typical electrodes. The fabrication method includes the steps of mixing sodium chloride particles selected from a predetermined size range with metal particles selected from a predetermined size range, and then rigidifying the mixture. The electrode exhibits lower resistivity values of approximately 0.5 {Omega}cm{sup 2} than those resistivity values of approximately 1.0--1.5 {Omega}cm{sup 2} exhibited by currently available electrodes.

Bloom, I.D.; Nelson, P.A.; Vissers, D.R.

1990-10-09T23:59:59.000Z

39

Method of electrode fabrication and an electrode for metal chloride battery  

SciTech Connect

A method of fabricating an electrode for use in a metal chloride battery and an electrode are provided. The electrode has relatively larger and more uniform pores than those found in typical electrodes. The fabrication method includes the steps of mixing sodium chloride particles selected from a predetermined size range with metal particles selected from a predetermined size range, and then rigidifying the mixture. The electrode exhibits lower resistivity values of approximately 0.5 .OMEGA.cm.sup.2 than those resistivity values of approximately 1.0-1.5 .OMEGA.cm.sup.2 exhibited by currently available electrodes.

Bloom, Ira D. (Bolingbrook, IL); Nelson, Paul A. (Wheaton, IL); Vissers, Donald R. (Naperville, IL)

1993-01-01T23:59:59.000Z

40

0-G experiments with advanced ceramic fabric wick structures  

SciTech Connect

Both Air Force and NASA future spacecraft thermal management needs span the temperature range from cryogenic to liquid metals. Many of these needs are changing and not well defined and will remain so until goals, technology, and missions converge. Nevertheless, it is certain that high-temperature (> 800 K) and medium-temperature (about 450 K) radiator systems will have to be developed that offer significant improvements over current designs. This paper discusses experiments performed in the lower temperature regime as part of a comprehensive advanced ceramic fabric (ACF) heat pipe development program. These experiments encompassed wicking tests with various ceramic fabric samples, and heat transfer tests with a 1-m long prototype ACF water heat pipe. A prototype ceramic fabric/titanium water heat pipe has been constructed and tested; it transported up to 60 W of power at about 390 K. Startup and operation both with and against gravity examined. Wick testing was begun to aid in the design and construction of an improved prototype heat pipe, with a 38-{mu}m stainless steel linear covered by a biaxially-braided Nextel (trademark of the 3M Co., St. Paul, Minnesota) sleeve that is approximately 300-{mu}m thick. Wick testing took place in 1-g; limited testing in 0-g was initiated, and results to date suggest that in 0-g, wick performance improves over that in 1-g.

Antoniak, Z.I.; Webb, B.J.; Bates, J.M.; Cooper, M.F.; Pauley, K.A.

1991-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "fabricated structural metal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Fabrication of Pillar-Structured Thermal Neutron Detectors  

SciTech Connect

Pillar detector is an innovative solid state device structure that leverages advanced semiconductor fabrication technology to produce a device for thermal neutron detection. State-of-the-art thermal neutron detectors have shortcomings in achieving simultaneously high efficiency, low operating voltage while maintaining adequate fieldability performance. By using a 3-dimensional silicon PIN diode pillar array filled with isotopic boron 10, ({sup 10}B) a high efficiency device is theoretically possible. The fabricated pillar structures reported in this work are composed of 2 {micro}m diameter silicon pillars with a 4 {micro}m pitch and pillar heights of 6 and 12 {micro}m. The pillar detector with a 12 {micro}m height achieved a thermal neutron detection efficiency of 7.3% at 2V.

Nikolic, R J; Conway, A M; Reinhardt, C E; Graff, R T; Wang, T F; Deo, N; Cheung, C L

2007-11-19T23:59:59.000Z

42

Fabrication of amorphous metal matrix composites by severe plastic deformation  

E-Print Network (OSTI)

Bulk metallic glasses (BMGs) have displayed impressive mechanical properties, but the use and dimensions of material have been limited due to critical cooling rate requirements and low ductility. The application of severe plastic deformation by equal channel angular extrusion (ECAE) for consolidation of bulk amorphous metals (BAM) and amorphous metal matrix composites (AMMC) is investigated in this dissertation. The objectives of this research are a) to better understand processing parameters which promote bonding between particles and b) to determine by what mechanisms the plasticity is enhanced in bulk amorphous metal matrix composites consolidated by ECAE. To accomplish the objectives BAM and AMMCs were produced via ECAE consolidation of Vitreloy 106a (Zr58.5Nb2.8Cu15.6Ni12.8Al10.3-wt%), ARLloy #1 (Hf71.3Cu16.2Ni7.6Ti2.2Al2.6 -wt%), and both of these amorphous alloys blended with crystalline phases of W, Cu and Ni. Novel instrumented extrusions and a host of postprocessing material characterizations were used to evaluate processing conditions and material properties. The results show that ECAE consolidation at temperatures within the supercooled liquid region gives near fully dense (>99%) and well bonded millimeter scale BAM and AMMCs. The mechanical properties of the ECAE processed BMG are comparable to cast material: Ï�f = 1640 MPa, �µf = 2.3%, E = 80 GPa for consolidated Vitreloy 106a as compared to Ï�f = 1800 MPa, �µf = 2.5%, E = 85 GPa for cast Vitreloy 106, and Ï�f = 1660 MPa, �µf = 2.0%, E = 97 GPa for ARLloy #1 as compared to Ï�f = 2150 MPa, �µf oxides and crystalline phase morphology and chemistry. It is demonstrated that the addition of a dispersed crystalline phase to an amorphous matrix by ECAE powder consolidation increases the plasticity of the amorphous matrix by providing locations for generation and/or arrest of adiabatic shear bands. The ability of ECAE to consolidated BAM and AMMCs with improved plasticity opens the possibility of overcoming the size and plasticity limitations of the monolithic bulk metallic glasses.

Mathaudhu, Suveen Nigel

2006-08-01T23:59:59.000Z

43

High performance capacitors using nano-structure multilayer materials fabrication  

DOE Patents (OSTI)

A high performance capacitor fabricated from nano-structure multilayer materials, such as by controlled, reactive sputtering, and having very high energy-density, high specific energy and high voltage breakdown. The multilayer capacitors, for example, may be fabricated in a "notepad" configuration composed of 200-300 alternating layers of conductive and dielectric materials so as to have a thickness of 1 mm, width of 200 mm, and length of 300 mm, with terminals at each end of the layers suitable for brazing, thereby guaranteeing low contact resistance and high durability. The "notepad" capacitors may be stacked in single or multiple rows (series-parallel banks) to increase the voltage and energy density.

Barbee, Jr., Troy W. (Palo Alto, CA); Johnson, Gary W. (Livermore, CA); O' Brien, Dennis W. (Livermore, CA)

1995-01-01T23:59:59.000Z

44

High performance capacitors using nano-structure multilayer materials fabrication  

DOE Patents (OSTI)

A high performance capacitor fabricated from nano-structure multilayer materials, such as by controlled, reactive sputtering, and having very high energy-density, high specific energy and high voltage breakdown. The multilayer capacitors, for example, may be fabricated in a "notepad" configuration composed of 200-300 alternating layers of conductive and dielectric materials so as to have a thickness of 1 mm, width of 200 mm, and length of 300 mm, with terminals at each end of the layers suitable for brazing, thereby guaranteeing low contact resistance and high durability. The "notepad" capacitors may be stacked in single or multiple rows (series-parallel banks) to increase the voltage and energy density.

Barbee, Jr., Troy W. (Palo Alto, CA); Johnson, Gary W. (Livermore, CA); O' Brien, Dennis W. (Livermore, CA)

1996-01-01T23:59:59.000Z

45

High performance capacitors using nano-structure multilayer materials fabrication  

DOE Patents (OSTI)

A high performance capacitor is fabricated from nano-structure multilayer materials, such as by controlled, reactive sputtering, and having very high energy-density, high specific energy and high voltage breakdown. The multilayer capacitors, for example, may be fabricated in a ``notepad`` configuration composed of 200-300 alternating layers of conductive and dielectric materials so as to have a thickness of 1 mm, width of 200 mm, and length of 300 mm, with terminals at each end of the layers suitable for brazing, thereby guaranteeing low contact resistance and high durability. The notepad capacitors may be stacked in single or multiple rows (series-parallel banks) to increase the voltage and energy density. 5 figs.

Barbee, T.W. Jr.; Johnson, G.W.; O`Brien, D.W.

1995-05-09T23:59:59.000Z

46

High performance capacitors using nano-structure multilayer materials fabrication  

DOE Patents (OSTI)

A high performance capacitor is described which is fabricated from nano-structure multilayer materials, such as by controlled, reactive sputtering, and having very high energy-density, high specific energy and high voltage breakdown. The multilayer capacitors, for example, may be fabricated in a ``notepad`` configuration composed of 200--300 alternating layers of conductive and dielectric materials so as to have a thickness of 1 mm, width of 200 mm, and length of 300 mm, with terminals at each end of the layers suitable for brazing, thereby guaranteeing low contact resistance and high durability. The ``notepad`` capacitors may be stacked in single or multiple rows (series-parallel banks) to increase the voltage and energy density. 5 figs.

Barbee, T.W. Jr.; Johnson, G.W.; O`Brien, D.W.

1996-01-23T23:59:59.000Z

47

Method of fabricating a homogeneous wire of inter-metallic alloy  

DOE Patents (OSTI)

A method for fabricating a homogeneous wire of inter-metallic alloy comprising the steps of providing a base-metal wire bundle comprising a metal, an alloy or a combination thereof; working the wire bundle through at least one die to obtain a desired dimension and to form a precursor wire; and, controllably heating the precursor wire such that a portion of the wire will become liquid while simultaneously maintaining its desired shape, whereby substantial homogenization of the wire occurs in the liquid state and additional homogenization occurs in the solid state resulting in a homogenous alloy product.

Ohriner, Evan Keith (Knoxville, TN); Blue, Craig Alan (Knoxville, TN)

2001-01-01T23:59:59.000Z

48

Structures having enhanced biaxial texture and method of fabricating same  

DOE Patents (OSTI)

A biaxially textured article includes a rolled and annealed, biaxially textured substrate of a metal having a face-centered cubic, body-centered cubic, or hexagonal close-packed crystalline structure; and an epitaxial superconductor or other device epitaxially deposited thereon. 11 figs.

Goyal, A.; Budai, J.D.; Kroeger, D.M.; Norton, D.P.; Specht, E.D.; Christen, D.K.

1999-04-27T23:59:59.000Z

49

High temperature ceramic/metal joint structure  

DOE Patents (OSTI)

A high temperature turbine engine includes a hybrid ceramic/metallic rotor member having ceramic/metal joint structure. The disclosed joint is able to endure higher temperatures than previously possible, and aids in controlling heat transfer in the rotor member.

Boyd, Gary L. (Tempe, AZ)

1991-01-01T23:59:59.000Z

50

Fabrication of x-band accelerating structures at Fermilab  

DOE Green Energy (OSTI)

The RF Technology Development group at Fermilab is working together with the NLC and GLC groups at SLAC and KEK on developing technology for room temperature X-band accelerating structures for a future linear collider. We built six 60-cm long, high phase advance, detuned structures (HDS or FXB series). These structures have 150 degrees phase advance per cell, and are intended for high gradient tests. The structures were brazed in a vacuum furnace with a partial pressure of argon, rather than in a hydrogen atmosphere. We have also begun to build 60-cm long, damped and detuned structures (HDDS or FXC/FXD series). We have built 5 FXC and 1 FXD structures. Our goal was to build six structures for the 8-pack test at SLAC by the end of March 2004, as part of the GLC/NLC effort to demonstrate the readiness of room temperature RF technology for a linear collider. This paper describes the RF structure factory infrastructure (clean rooms, vacuum furnaces, vacuum equipment, RF equipment etc.), and the fabrication techniques utilized (the machining of copper cells/couplers, quality control, etching, vacuum brazing, cleanliness requirements etc.) for the production of FXB and FXC/FXD structures.

Tug T Arkan et al.

2004-07-20T23:59:59.000Z

51

Process for the fabrication of aluminum metallized pyrolytic graphite sputtering targets  

DOE Patents (OSTI)

An improved method is disclosed for fabricating pyrolytic graphite sputtering targets with superior heat transfer ability, longer life, and maximum energy transmission. Anisotropic pyrolytic graphite is contoured and/or segmented to match the erosion profile of the sputter target and then oriented such that the graphite`s high thermal conductivity planes are in maximum contact with a thermally conductive metal backing. The graphite contact surface is metallized, using high rate physical vapor deposition (HRPVD), with an aluminum coating and the thermally conductive metal backing is joined to the metallized graphite target by one of four low-temperature bonding methods; liquid-metal casting, powder metallurgy compaction, eutectic brazing, and laser welding. 11 figs.

Makowiecki, D.M.; Ramsey, P.B.; Juntz, R.S.

1995-07-04T23:59:59.000Z

52

Structures And Fabrication Techniques For Solid State Electrochemical Devices  

DOE Patents (OSTI)

Provided are low-cost, mechanically strong, highly electronically conductive porous substrates and associated structures for solid-state electrochemical devices, techniques for forming these structures, and devices incorporating the structures. The invention provides solid state electrochemical device substrates of novel composition and techniques for forming thin electrode/membrane/electrolyte coatings on the novel or more conventional substrates. In particular, in one embodiment the invention provides techniques for co-firing of device substrate (often an electrode) with an electrolyte or membrane layer to form densified electrolyte/membrane films 5 to 20 microns thick. In another embodiment, densified electrolyte/membrane films 5 to 20 microns thick may be formed on a pre-sintered substrate by a constrained sintering process. In some cases, the substrate may be a porous metal, alloy, or non-nickel cermet incorporating one or more of the transition metals Cr, Fe, Cu and Ag, or alloys thereof.

Visco, Steven J. (Berkeley, CA); Jacobson, Craig P. (El Cerrito, CA); DeJonghe, Lutgard C. (Lafayette, CA)

2005-12-27T23:59:59.000Z

53

Structures and fabrication techniques for solid state electrochemical devices  

DOE Patents (OSTI)

Provided are low-cost, mechanically strong, highly electronically conductive porous substrates and associated structures for solid-state electrochemical devices, techniques for forming these structures, and devices incorporating the structures. The invention provides solid state electrochemical device substrates of novel composition and techniques for forming thin electrode/membrane/electrolyte coatings on the novel or more conventional substrates. In particular, in one embodiment the invention provides techniques for co-firing of device substrate (often an electrode) with an electrolyte or membrane layer to form densified electrolyte/membrane films 5 to 20 microns thick. In another embodiment, densified electrolyte/membrane films 5 to 20 microns thick may be formed on a pre-sintered substrate by a constrained sintering process. In some cases, the substrate may be a porous metal, alloy, or non-nickel cermet incorporating one or more of the transition metals Cr, Fe, Cu and Ag, or alloys thereof.

Visco, Steven J. (Berkeley, CA); Jacobson, Craig P. (El Cerrito, CA); DeJonghe, Lutgard C. (Lafayette, CA)

2003-08-12T23:59:59.000Z

54

Nano-Structured Nobel Metal Catalysts  

NLE Websites -- All DOE Office Websites (Extended Search)

Nobel Metal Catalysts Nobel Metal Catalysts for Hydrocarbon Reforming Opportunity Research is active on the patent pending technology, titled "Nano- Structured Nobel Metal Catalysts Based on Hexametallate Architecture for the Reforming of Hydrocarbon Fuels." This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy's National Energy Technology Laboratory. Overview Methods for generating synthesis gas from hydrocarbon feedstocks routinely involve the use of a catalyst-a material that speeds up the reaction, but itself is not consumed-to make this process economically feasible. Sulfur, higher hydrocarbons, and olefins present a major technical challenge since these components can deactivate conventional

55

ARIES-CS COIL STRUCTURE ADVANCED FABRICATION APPROACH  

E-Print Network (OSTI)

: ARIES-CS, advanced fabrication, additive manufacturing Note: Some figures in this paper are in color. A new fabrication technology4,5 was evaluated on ARIES-CS that is called additive manufacturing. Additive manufacturing, a relatively new manufac- turing process, appears to be a better fabrication method

56

Thin-Film Solar Cell Fabricated on a Flexible Metallic Substrate  

SciTech Connect

A thin-film solar cell (10) is provided. The thin-film solar cell (10) comprises a flexible metallic substrate (12) having a first surface and a second surface. A back metal contact layer (16) is deposited on the first surface of the flexible metallic substrate (12). A semiconductor absorber layer (14) is deposited on the back metal contact. A photoactive film deposited on the semiconductor absorber layer (14) forms a heterojunction structure and a grid contact (24) deposited on the heterjunction structure. The flexible metal substrate (12) can be constructed of either aluminium or stainless steel. Furthermore, a method of constructing a solar cell is provided. The method comprises providing an aluminum substrate (12), depositing a semiconductor absorber layer (14) on the aluminum substrate (12), and insulating the aluminum substrate (12) from the semiconductor absorber layer (14) to inhibit reaction between the aluminum substrate (12) and the semiconductor absorber layer (14).

Tuttle, J. R.; Noufi, R.; Hasoon, F. S.

2006-05-30T23:59:59.000Z

57

Waste minimization assessment for a manufacturer of iron castings and fabricated sheet metal parts  

Science Conference Proceedings (OSTI)

The U.S. Environmental Protection Agency (EPA) has funded a pilot project to assist small and medium-size manufacturers who want to minimize their generation of waste but who lack the expertise to do so. Waste Minimization Assessment Centers (WMACs) were established at selected universities and procedures were adapted from the EPA Waste Minimization Opportunity Assessment Manual. That document has been superseded by the Facility Pollution Prevention Guide. The WMAC team at the University of Louisville performed an assessment at a plant that manufactures iron castings and fabricated sheet metal parts. Foundry operations include mixing and mold formation, core making, metal pouring, shakeout, finishing, and painting. Cutting, shaping, and welding are the principal metal fabrication operations. The team`s report, detailing findings and recommendations indicated that paint-related wastes are generated in large quantities, and that significant waste reduction and cost savings could be realized by installing a dry powder coating system or by replacing conventional air spray paint guns with high-volume low-pressure spray guns. This research brief was developed by the principal investigators and EPA`s National Risk Management Research Laboratory, Cincinnati, OH, to announce key findings of an ongoing research project that is fully documented in a separate report of the same title available from University City Science Center.

Fleischman, M.; Harris, J.J.; Handmaker, A.; Looby, G.P.

1995-08-01T23:59:59.000Z

58

J8: Micro Fabrication of Metallic and Oxide Glasses for Terahertz ...  

Science Conference Proceedings (OSTI)

C19: Dissolution Behavior of Cu Under Bump Metallization in Ball Grid Array Structure ... E11: Evolution of the Grain Boundary Character Distribution During Grain ... for High Volume and Fast Turnaround Automated Inline TEM Sample Preparation .... H2: Triboluminescent Smart Sensors for Structural Health Monitoring.

59

Fabrication of nano-structural arrays by channeling pulsed atomic beams through an intensity-modulated  

E-Print Network (OSTI)

Fabrication of nano-structural arrays by channeling pulsed atomic beams through an intensity-dimensional nano-structure arrays by passing a pulsed atomic beam through an intensity-modulated continuous of ``cooling'' along the longitudinal direction. This enables fabrication of vertically heterogeneous nano

Zhu, Xiangdong

60

DEVELOPMENT OF A FABRICATION PROCESS FOR SOL-GEL/METAL HYDRIDE COMPOSITE GRANULES  

DOE Green Energy (OSTI)

An external gelation process was developed to produce spherical granules that contain metal hydride particles in a sol-gel matrix. Dimensionally stable granules containing metal hydrides are needed for applications such as hydrogen separation and hydrogen purification that require columns containing metal hydrides. Gases must readily flow through the metal hydride beds in the columns. Metal hydrides reversibly absorb and desorb hydrogen and hydrogen isotopes. This is accompanied by significant volume changes that cause the metal hydride to break apart or decrepitate. Repeated cycling results in very fine metal hydride particles that are difficult to handle and contain. Fine particles tend to settle and pack making it more difficult to flow gases through a metal hydride bed. Furthermore, the metal hydrides can exert a significant force on the containment vessel as they expand. These problems associated with metal hydrides can be eliminated with the granulation process described in this report. Small agglomerates of metal hydride particles and abietic acid (a pore former) were produced and dispersed in a colloidal silica/water suspension to form the feed slurry. Fumed silica was added to increase the viscosity of the feed slurry which helped to keep the agglomerates in suspension. Drops of the feed slurry were injected into a 27-foot tall column of hot ({approx}70 C), medium viscosity ({approx}3000 centistokes) silicone oil. Water was slowly evaporated from the drops as they settled. The drops gelled and eventually solidified to form spherical granules. This process is referred to as external gelation. Testing was completed to optimize the design of the column, the feed system, the feed slurry composition, and the operating parameters of the column. The critical process parameters can be controlled resulting in a reproducible fabrication technique. The residual silicone oil on the surface of the granules was removed by washing in mineral spirits. The granules were dried in air at 40 C. The granules were heated to 230 C for 30 minutes in argon to remove the remaining water and organic materials. The resulting product was spherical composite granules (100 to 2000 micron diameter) with a porous silica matrix containing small agglomerates of metal hydride particles. Open porosity in the silica matrix allows hydrogen to permeate rapidly through the matrix but the pores are small enough to contain the metal hydride particles. Additional porosity around the metal hydride particles, induced using abietic acid as a pore former, allows the particles to freely expand and contract without fracturing the brittle sol-gel matrix. It was demonstrated that the granules readily absorb and desorb hydrogen while remaining integral and dimensionally stable. Microcracking was observed after the granules were cycled in hydrogen five times. The strength of the granules was improved by coating them with a thin layer of a micro-porous polymer sol-gel that would allow hydrogen to freely pass through the coating but would filter out metal hydride poisons such as water and carbon monoxide. It was demonstrated that if a thin sol-gel coating was applied after the granules were cycled, the coating not only improved the strength of the granules but the coated granules retained their strength after additional hydrogen cycling tests. This additional strength is needed to extend the lifetime of the granules and to survive the compressive load in a large column of granules. Additional hydrogen adsorption tests are planned to evaluate the performance of coated granules after one hundred cycles. Tests will also be performed to determine the effects of metal hydride poisons on the granules. The results of these tests will be documented in a separate report. The process that was developed to form these granules could be scaled to a production process. The process to form granules from a mixture of metal hydride particles and pore former such as abietic acid can be scaled up using commercial granulators. The current laboratory-scale external gelation column produc

Hansen, E; Eric Frickey, E; Leung Heung, L

2004-02-23T23:59:59.000Z

Note: This page contains sample records for the topic "fabricated structural metal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Micromilling of Metal Alloys with Focused Ion Beam-Fabricated Tools  

SciTech Connect

This work combines focused ion beam sputtering and ultra-precision machining as a first step in fabricating microstructure in metals and alloys. Specifically, {approx}25{micro}m diameter micro-end mills are made from cobalt M42 high-speed steel and C2 micrograin tungsten carbide tool blanks by ion beam sputtering. A 20 keV focused gallium beam defines tool cutting edges having radii of curvature < 0.1{micro}m. Micro-end mills having 2, 4 and 5 cutting edges successfully machine small trenches in 6061-T4 aluminum, brass, 4340 steel and polymethyl methacrylate. Machined trench widths are approximately equal to the tool diameters and surface roughnesses (rms) are {approx}150 nm or less. Microtools are robust and operate for more than 6 hours without fracture. Results from ultra-precision machining aluminum at feed rates as high as 50 mm/minute are included.

ADAMS,DAVID P.; VASILE,M.J.; BENAVIDES,GILBERT L.; CAMPBELL,ANN N.

1999-11-05T23:59:59.000Z

62

Fabrication of metal matrix composite by semi-solid powder processing  

SciTech Connect

Various metal matrix composites (MMCs) are widely used in the automotive, aerospace and electrical industries due to their capability and flexibility in improving the mechanical, thermal and electrical properties of a component. However, current manufacturing technologies may suffer from insufficient process stability and reliability and inadequate economic efficiency and may not be able to satisfy the increasing demands placed on MMCs. Semi-solid powder processing (SPP), a technology that combines traditional powder metallurgy and semi-solid forming methods, has potential to produce MMCs with low cost and high efficiency. In this work, the analytical study and experimental investigation of SPP on the fabrication of MMCs were explored. An analytical model was developed to understand the deformation mechanism of the powder compact in the semi-solid state. The densification behavior of the Al6061 and SiC powder mixtures was investigated with different liquid fractions and SiC volume fractions. The limits of SPP were analyzed in terms of reinforcement phase loading and its impact on the composite microstructure. To explore adoption of new materials, carbon nanotube (CNT) was investigated as a reinforcing material in aluminum matrix using SPP. The process was successfully modeled for the mono-phase powder (Al6061) compaction and the density and density distribution were predicted. The deformation mechanism at low and high liquid fractions was discussed. In addition, the compaction behavior of the ceramic-metal powder mixture was understood, and the SiC loading limit was identified by parametric study. For the fabrication of CNT reinforced Al6061 composite, the mechanical alloying of Al6061-CNT powders was first investigated. A mathematical model was developed to predict the CNT length change during the mechanical alloying process. The effects of mechanical alloying time and processing temperature during SPP were studied on the mechanical, microstructural and compositional properties of the Al6061-CNT composites. A shear lag model was applied to predict the mechanical property (hardness) of the composite. This work demonstrated the promising potential of SPP in the fabrication of particle/fiber (nanotube) reinforced MMCs.

Wu, Yufeng [Ames Laboratory

2012-11-28T23:59:59.000Z

63

CORROSION RESISTANCE OF STRUCTURAL AMORPHOUS METAL  

SciTech Connect

Corrosion costs the Department of Defense billions of dollars every year, with an immense quantity of material in various structures undergoing corrosion. For example, in addition to fluid and seawater piping, ballast tanks, and propulsions systems, approximately 345 million square feet of structure aboard naval ships and crafts require costly corrosion control measures. The use of advanced corrosion-resistant materials to prevent the continuous degradation of this massive surface area would be extremely beneficial. The potential advantages of amorphous metals have been recognized for some time [Latanison 1985]. Iron-based corrosion-resistant, amorphous-metal coatings under development may prove important for maritime applications [Farmer et al. 2005]. Such materials could also be used to coat the entire outer surface of containers for the transportation and long-term storage of spent nuclear fuel, or to protect welds and heat affected zones, thereby preventing exposure to environments that might cause stress corrosion cracking [Farmer et al. 1991, 2000a, 2000b]. In the future, it may be possible to substitute such high-performance iron-based materials for more-expensive nickel-based alloys, thereby enabling cost savings in a wide variety of industrial applications. It should be noted that thermal-spray ceramic coatings have also been investigated for such applications [Haslam et al. 2005]. This report focuses on the corrosion resistance of a yttrium-containing amorphous metal, SAM1651. SAM1651 has a glass transition temperature of {approx}584 C, a recrystallization temperature of {approx}653 C, and a melting point of {approx}1121 C. The measured critical cooling rate for SAM1651 is {le} 80 K per second, respectively. The yttrium addition to SAM1651 enhances glass formation, as reported by Guo and Poon [2003]. The corrosion behavior of SAM1651 was compared with nickel-based Alloy 22 in electrochemical polarization measurements performed in several highly concentrated chloride solutions.

Lian, T; Day, S D; Farmer, J C

2006-04-10T23:59:59.000Z

64

JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, VOL. 10, NO. 1, MARCH 2001 107 Fabrication of Metallic Heat Exchangers Using  

E-Print Network (OSTI)

Heat Exchangers Using Sacrificial Polymer Mandrils Francisco Arias, Scott R. J. Oliver, Bing Xu, R metallic heat exchangers having 300­700 m internal channels. The mandrils were prepared using two soft lithographic techniques-replica molding, and microembossing. To fabricate the heat exchangers, the polymeric

Prentiss, Mara

65

Recycling Of Uranium- And Plutonium-Contaminated Metals From Decommissioning Of The Hanau Fuel Fabrication Plant  

SciTech Connect

Decommissioning of a nuclear facility comprises not only actual dismantling but also, above all, management of the resulting residual materials and waste. Siemens Decommissioning Projects (DP) in Hanau has been involved in this task since 1995 when the decision was taken to decommission and dismantle the Hanau Fuel Fabrication Plant. Due to the decommissioning, large amounts of contaminated steel scrap have to be managed. The contamination of this metal scrap can be found almost exclusively in the form of surface contamination. Various decontamination technologies are involved, as there are blasting and wiping. Often these methods are not sufficient to meet the free release limits. In these cases, SIEMENS has decided to melt the scrap at Siempelkamp's melting plant. The plant is licensed according to the German Radiation Protection Ordinance Section 7 (issue of 20.07.2001). The furnace is a medium frequency induction type with a load capacity of 3.2 t and a throughput of 2 t/h for steel melting. For safety reasons, the furnace is widely operated by remote handling. A highly efficient filter system of cyclone, bag filter and HEPA-filter in two lines retains the dust and aerosol activity from the off-gas system. The slag is solidified at the surface of the melt and gripped before pouring the liquid iron into a chill. Since 1989, in total 15,000 t have been molten in the plant, 2,000 t of them having been contaminated steel scrap from the decommissioning of fuel fabrication plants. Decontamination factors could be achieved between 80 and 100 by the high affinity of the uranium to the slag former. The activity is transferred to the slag up to nearly 100 %. Samples taken from metal, slag and dust are analyzed by gamma measurements of the 186 keV line of U235 and the 1001 keV line of Pa234m for U238. All produced ingots showed a remaining activity less than 1 Bq/g and could be released for industrial reuse.

Kluth, T.; Quade, U.; Lederbrink, F. W.

2003-02-26T23:59:59.000Z

66

Recycling Of Uranium- And Plutonium-Contaminated Metals From Decommissioning Of The Hanau Fuel Fabrication Plant  

SciTech Connect

Decommissioning of a nuclear facility comprises not only actual dismantling but also, above all, management of the resulting residual materials and waste. Siemens Decommissioning Projects (DP) in Hanau has been involved in this task since 1995 when the decision was taken to decommission and dismantle the Hanau Fuel Fabrication Plant. Due to the decommissioning, large amounts of contaminated steel scrap have to be managed. The contamination of this metal scrap can be found almost exclusively in the form of surface contamination. Various decontamination technologies are involved, as there are blasting and wiping. Often these methods are not sufficient to meet the free release limits. In these cases, SIEMENS has decided to melt the scrap at Siempelkamp's melting plant. The plant is licensed according to the German Radiation Protection Ordinance Section 7 (issue of 20.07.2001). The furnace is a medium frequency induction type with a load capacity of 3.2 t and a throughput of 2 t/h for steel melting. For safety reasons, the furnace is widely operated by remote handling. A highly efficient filter system of cyclone, bag filter and HEPA-filter in two lines retains the dust and aerosol activity from the off-gas system. The slag is solidified at the surface of the melt and gripped before pouring the liquid iron into a chill. Since 1989, in total 15,000 t have been molten in the plant, 2,000 t of them having been contaminated steel scrap from the decommissioning of fuel fabrication plants. Decontamination factors could be achieved between 80 and 100 by the high affinity of the uranium to the slag former. The activity is transferred to the slag up to nearly 100 %. Samples taken from metal, slag and dust are analyzed by gamma measurements of the 186 keV line of U235 and the 1001 keV line of Pa234m for U238. All produced ingots showed a remaining activity less than 1 Bq/g and could be released for industrial reuse.

Kluth, T.; Quade, U.; Lederbrink, F. W.

2003-02-26T23:59:59.000Z

67

High Aspect Ratio Metallic Structures for Use as Transparent ...  

Metallic structures that can be used as transparent electrodes or to enhance the performance of solar ... more energy efficient ... indium tin oxide ...

68

In Situ Structural Characterization for Metallic Glasses and Nano ...  

Science Conference Proceedings (OSTI)

Presentation Title, In Situ Structural Characterization for Metallic Glasses and Nano-materials under High Pressure via Synchrotron Techniques. Author(s) ...

69

Structures and fabrication techniques for solid state electrochemical devices  

SciTech Connect

Porous substrates and associated structures for solid-state electrochemical devices, such as solid-oxide fuel cells (SOFCs), are low-cost, mechanically strong and highly electronically conductive. Some preferred structures have a thin layer of an electrocatalytically active material (e.g., Ni--YSZ) coating a porous high-strength alloy support (e.g., SS-430) to form a porous SOFC fuel electrode. Electrode/electrolyte structures can be formed by co-firing or constrained sintering processes.

Visco, Steven J. (Berkeley, CA); Jacobson, Craig P. (El Cerrito, CA); DeJonghe, Lutgard C. (Lafayette, CA)

2008-04-01T23:59:59.000Z

70

Structures and fabrication techniques for solid state electrochemical devices  

DOE Patents (OSTI)

Porous substrates and associated structures for solid-state electrochemical devices, such as solid-oxide fuel cells (SOFCs), are low-cost, mechanically strong and highly electronically conductive. Some preferred structures have a thin layer of an electrocatalytically active material (e.g., Ni--YSZ) coating a porous high-strength alloy support (e.g., SS-430) to form a porous SOFC fuel electrode. Electrode/electrolyte structures can be formed by co-firing or constrained sintering processes.

Visco, Steven J.; Jacobson, Craig P.; DeJonghe, Lutgard C.

2012-10-09T23:59:59.000Z

71

Photoluminescence studies from micropillars fabricated on IV-VI multiple quantum-well semiconductor structure  

Science Conference Proceedings (OSTI)

Micropillars were fabricated on multiple quantum-well structure of PbSe/PbSrSe grown on top of BaF"2 substrate in molecular beam epitaxy (MBE). The photoluminescence spectra from the pillar structure, having a diameter of 5@mm and inter-pillar distance ... Keywords: MBE, MQW micropillar, Photoluminescence, SEM

S. Mukherjee; S. Jain; F. Zhao; J. P. Kar; Z. Shi

2007-12-01T23:59:59.000Z

72

Fabrication of Cu-Zr-based Bulk Metallic Glasses by Vertical Twin ...  

Science Conference Proceedings (OSTI)

Symposium, M. Bulk Metallic Glasses, Nanocrystalline Materials, and ... Application of Metallic Glass for High Performance Si Solar Cell: Oxidation Behavior of ...

73

The Use of Additive Manufacturing for Fabrication of Multi-Function Small Satellite Structures  

SciTech Connect

The use of small satellites in constellations is limited only by the growing functionality of smallsats themselves. Additive manufacturing provides exciting new design opportunities for development of multifunction CubeSat structures that integrate such functions as propulsion and thermal control into the satellite structures themselves. Manufacturing of these complex multifunction structures is now possible in lightweight, high strength, materials such as titanium by using existing electron beam melting additive manufacturing processes. However, the use of today's additive manufacturing capabilities is often cost-prohibitive for small companies due to the large capital investments required. To alleviate this impediment the U.S. Department of Energy has established a Manufacturing Demonstration Facility (MDF) at their Oak Ridge National Laboratory (ORNL) in Tennessee that provides industry access to a broad range of energy-efficient additive manufacturing equipment for collaborative use by both small and large organizations. This paper presents a notional CubeSat multifunction design that integrates the propulsion system into a three-unit (3U) CubeSat structure. The full-scale structure has been designed and fabricated at the ORNL MDF. The use of additive manufacturing for spacecraft fabrication is opening up many new possibilities in design and fabrication capabilities for what had previously been impossible structures to fabricate.

Horais, Brian J [ORNL; Love, Lonnie J [ORNL; Dehoff, Ryan R [ORNL

2013-01-01T23:59:59.000Z

74

Mechanical Properties of Thin Film Metallic Glass  

Science Conference Proceedings (OSTI)

Because of these and other properties, thin film metallic-glasses (TFMGs) are a promising structural material for fabricating the next generation of micro- and ...

75

Structure and Function of Microbial Metal-Reduction Proteins  

SciTech Connect

In this project, we proposed (i) identification of metal-reduction genes, (ii) development of new threading techniques and (iii) fold recognition and structure prediction of metal-reduction proteins. However, due to the reduction of the budget, we revised our plan to focus on two specific aims of (i) developing a new threading-based protein structure prediction method, and (ii) developing an expert system for protein structure prediction.

Xu, Ying; Crawford, Oakly H.; Xu, Dong; Larimer, Frank W.; Uberbacher, Edward C.; Zhou, Jizhong

2009-09-02T23:59:59.000Z

76

Process for fabricating device structures for real-time process control of silicon doping  

DOE Patents (OSTI)

Silicon device structures designed to allow measurement of important doping process parameters immediately after the doping step has occurred. The test structures are processed through contact formation using standard semiconductor fabrication techniques. After the contacts have been formed, the structures are covered by an oxide layer and an aluminum layer. The aluminum layer is then patterned to expose the contact pads and selected regions of the silicon to be doped. Doping is then performed, and the whole structure is annealed with a pulsed excimer laser. But laser annealing, unlike standard annealing techniques, does not effect the aluminum contacts because the laser light is reflected by the aluminum. Once the annealing process is complete, the structures can be probed, using standard techniques, to ascertain data about the doping step. Analysis of the data can be used to determine probable yield reductions due to improper execution of the doping step and thus provide real-time feedback during integrated circuit fabrication.

Weiner, Kurt H. (San Jose, CA)

2001-01-01T23:59:59.000Z

77

Fabrication of self-supporting antireflection-structured film by UV-NIL  

Science Conference Proceedings (OSTI)

Ultraviolet nanoimprint lithography (UV-NIL) is a powerful tool for the fabrication of films with antireflection (AR) structures (AR films), which are widely used in flat panel displays, mobile phone displays, solar cell surfaces, optical lenses, and ... Keywords: Glassy carbon, Ion beam irradiation, UV photocurable polymer (resin), Ultraviolet nanoimprint lithography (UV-NIL)

Nurhafizah Binti Abu Talip[A]Yusof, Jun Taniguchi

2013-10-01T23:59:59.000Z

78

Sub micrometer ceramic structures fabricated by molding a polymer-derived ceramic  

Science Conference Proceedings (OSTI)

This paper describes the fabrication of sub micrometer silicon oxycarbide (SiCO) ceramic structures. The method consists in replicating silicon micro/nanostructures in polydimethylsiloxane (PDMS), followed by a micro/nano molding of liquid polymer derived ... Keywords: Micro/nano molding, Micro/nano replication, Polymer derived ceramic

Jonas Grossenbacher; Maurizio R. Gullo; RaphaëL Grandjean; Thomas Kiefer; JüRgen Brugger

2012-09-01T23:59:59.000Z

79

Properties and Characterization of Nano-Structured Metal Oxides ...  

Science Conference Proceedings (OSTI)

The objective of this study was to synthesize numerous metal oxide nano- structures including TiO2, Nb-doped TiO2, SnO2, ZnO, and NiO and deposit these ...

80

Electronic structure, bonding and chemisorption in metallic hydrides  

DOE Green Energy (OSTI)

Problems that can arise during the cycling steps for a hydride storage system usually involve events at surfaces. Chemisorption and reaction processes can be affected by small amounts of contaminants that may act as catalytic poisons. The nature of the poisoning process can vary greatly for the different metals and alloys that form hydrides. A unifying concept is offered, which satisfactorily correlates many of the properties of transition-metal, rare-earth and actinide hydrides. The metallic hydrides can be differentiated on the basis of electronegativity, metallic radius (valence) and electronic structure. For those systems where there are d (transition metals) or f (early actinides) electrons near the Fermi level a broad range of chemical and catalytic behaviors are found, depending on bandwidth and energy. The more electropositive metals (rare-earths, actinides, transition metals with d < 5) tend to strongly chemisorb electrophilic molecules; this is a consequence of the manner in which new bonding states are introduced. More electronegative metals (d >> 5) dissolve hydrogen and form hydrides by an electronically somewhat different process, and as a class tend to adsorb electrophobic molecules. The net charge-transfer in either situation is subtle; however, the small differences are responsible for many of the observed structural, chemical, and catalytic properties in these hydride systems.

Ward, J.W.

1980-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fabricated structural metal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Metal nano-floating gate memory devices fabricated at low temperature  

Science Conference Proceedings (OSTI)

In this communication, we report on the realization of low-temperature processed Electrically Erasable Programmable Read-Only Memory (EEPROM) like device with embedded gold nanoparticles. The realization is based on the fabrication of a V-groove SiGe ... Keywords: Hybrid electronics, Langmuir-Blodgett deposition, Memory, Nanoparticles, SiGe, Wafer bonding

S. Koliopoulou; P. Dimitrakis; D. Goustouridis; P. Normand; C. Pearson; M. C. Petty; H. Radamson; D. Tsoukalas

2006-04-01T23:59:59.000Z

82

Ternary metal-rich sulfide with a layered structure  

DOE Patents (OSTI)

A ternary Nb-Ta-S compound is provided having the atomic formula, Nb.sub.1.72 Ta.sub.3.28 S.sub.2, and exhibiting a layered structure in the sequence S-M3-M2-M1-M2-M3-S wherein S represents sulfur layers and M1, M2, and M3 represent Nb/Ta mixed metal layers. This sequence generates seven sheets stacked along the [001] direction of an approximate body centered cubic crystal structure with relatively weak sulfur-to-sulfur van der Waals type interactions between adjacent sulfur sheets and metal-to-metal bonding within and between adjacent mixed metal sheets.

Franzen, Hugo F. (Ames, IA); Yao, Xiaoqiang (Ames, IA)

1993-08-17T23:59:59.000Z

83

All metal valve structure for gas systems  

DOE Patents (OSTI)

A valve assembly with a resilient metal seat member is disclosed for providing a gas-tight seal in a gas handling system. The valve assembly also includes a valve element for sealing against the valve seat member; and an actuating means for operating the valve element. The valve seat member is a one-piece stainless steel ring having a central valve port and peripheral mounting flange, and an annular corrugation in between. A groove between the first and second ridges serves as a flexure zone during operation of the valve member and thus provides the seating pressure between the inner ridge or valve seat and the valve element. The outer annular ridge has a diameter less than said valve element to limit the seating motion of the valve element, preventing non-elastic deformation of the seat member.

Baker, Ray W. (Hamilton, OH); Pawlak, Donald A. (Centerville, OH); Ramey, Alford J. (Miamisburg, OH)

1984-11-13T23:59:59.000Z

84

Electrospun carbon nanofiber electrodes decorated with palladium metal nanoparticles : fabrication and characterization  

E-Print Network (OSTI)

A new method was investigated to produce a novel oxygen reduction electrode comprised of carbon nanofibers for use in polymer electrolyte membrane (PEM) fuel cells and metal-air batteries. The process involved electrospinning ...

Kurpiewski, John Paul

2005-01-01T23:59:59.000Z

85

Fabrication of carbon nanotube films from alkyne-transition metal complexes  

DOE Patents (OSTI)

A simple method for the production or synthesis of carbon nanotubes as free-standing films or nanotube mats by the thermal decomposition of transition metal complexed alkynes with aryl, alkyl, alkenyl, or alkynyl substituents. In particular, transition metal (e.g. Co, Ni, Fe, Mo) complexes of diarylacetylenes, e.g. diphenylacetylene, and solid mixtures of these complexes with suitable, additional carbon sources are heated in a vessel. More specifically, the heating of the transition metal complex is completed at a temperature between 400-800.degree. C. and more particularly 550-700.degree. C. for between 0.1 to 24 hours and more particularly 0.5-3 hours in a sealed vessel under a partial pressure of argon or helium.

Iyer, Vivekanantan S. (Delft, NL); Vollhardt, K. Peter C. (Oakland, CA)

2007-08-28T23:59:59.000Z

86

Method for fabricating a seal between a ceramic and a metal alloy  

DOE Patents (OSTI)

A method of fabricating a seal between a ceramic and an alloy comprising the steps of prefiring the alloy in an atmosphere with a very low partial pressure of oxygen, firing the assembled alloy and ceramic in air, and gradually cooling the fired assembly to avoid the formation of thermal stress in the ceramic. The method forms a bond between the alloy and the ceramic capable of withstanding the environment of a pressurized water reactor and suitable for use in an electrical conductivity sensitive liquid level transducer.

Kelsey, P.V. Jr.; Siegel, W.T.

1981-07-24T23:59:59.000Z

87

Electronic Structure and Geometries of Small Compound Metal Clusters  

DOE Green Energy (OSTI)

During the tenure of the DOE grant DE-FG05-87EI145316 we have concentrated on equilibrium geometries, stability, and the electronic structure of transition metal-carbon clusters (met-cars), clusters designed to mimic the chemistry of atoms, and reactivity of homo-nuclear metal clusters and ions with various reactant molecules. It is difficult to describe all the research the authors have accomplished as they have published 38 papers. In this report, they outline briefly the salient features of their work on the following topics: (1) Designer Clusters: Building Blocks for a New Class of Solids; (2) Atomic Structure, Stability, and Electronic Properties of Metallo-Carbohedrenes; (3) Reactivity of Metal Clusters with H{sub 2} and NO; and (4) Anomalous Spectroscopy of Li{sub 4} Clusters.

NONE

1999-04-14T23:59:59.000Z

88

Method of manufacturing flexible metallic photonic band gap structures, and structures resulting therefrom  

DOE Patents (OSTI)

A method of manufacturing a flexible metallic photonic band gap structure operable in the infrared region, comprises the steps of spinning on a first layer of dielectric on a GaAs substrate, imidizing this first layer of dielectric, forming a first metal pattern on this first layer of dielectric, spinning on and imidizing a second layer of dielectric, and then removing the GaAs substrate. This method results in a flexible metallic photonic band gap structure operable with various filter characteristics in the infrared region. This method may be used to construct multi-layer flexible metallic photonic band gap structures. Metal grid defects and dielectric separation layer thicknesses are adjusted to control filter parameters.

Gupta, Sandhya (Bloomington, MN); Tuttle, Gary L. (Ames, IA); Sigalas, Mihail (Ames, IA); McCalmont, Jonathan S. (Ames, IA); Ho, Kai-Ming (Ames, IA)

2001-08-14T23:59:59.000Z

89

Ceramic nanostructures and methods of fabrication  

DOE Patents (OSTI)

Structures and methods for the fabrication of ceramic nanostructures. Structures include metal particles, preferably comprising copper, disposed on a ceramic substrate. The structures are heated, preferably in the presence of microwaves, to a temperature that softens the metal particles and preferably forms a pool of molten ceramic under the softened metal particle. A nano-generator is created wherein ceramic material diffuses through the molten particle and forms ceramic nanostructures on a polar site of the metal particle. The nanostructures may comprise silica, alumina, titania, or compounds or mixtures thereof.

Ripley, Edward B. (Knoxville, TN); Seals, Roland D. (Oak Ridge, TN); Morrell, Jonathan S. (Knoxville, TN)

2009-11-24T23:59:59.000Z

90

Cobalt oxide hollow microspheres with micro- and nano-scale composite structure: Fabrication and electrochemical performance  

Science Conference Proceedings (OSTI)

Co{sub 3}O{sub 4} hollow microspheres with micro- and nano-scale composite structure self-assembled by nanosheets were successfully fabricated by the template-free wet-chemical approach. This method is simple, facile and effective. The Co{sub 3}O{sub 4} hollow microspheres with good purity and homogeneous size were well characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform IR (FTIR), thermogravimetric analysis (TGA) and inductively coupled plasma atomic emission spectrometer (ICP). The formation mechanism was deeply studied. The micro- and nano-scale composite structure constructed by the porous nanosheets promotes to improve the electrochemical properties of Co{sub 3}O{sub 4} hollow microspheres. The high discharge capacity of 1048 mAh g{sup -1} indicates it to be the potential application in electrode materials of Li-ion battery. - Graphical Abstract: Co{sub 3}O{sub 4} hollow microspheres self-assembled by nanosheets are successfully fabricated by a template-free wet-chemical approach. The hollow microspheres are in good morphology purity and homogeneous size. Co{sub 3}O{sub 4} hollow microspheres constructed by porous nanosheets show the high discharge capacity of 1048 mAh g{sup -1}, indicating it to be the potential electrode material of Li-ion battery.

Tao Feifei [State Key Laboratory of Coordination Chemistry, Laboratory of Solid State Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093 (China); School of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing 312000 (China); Gao Cuiling [State Key Laboratory of Coordination Chemistry, Laboratory of Solid State Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093 (China); Wen Zhenhai; Wang Qiang; Li Jinghong [Department of Chemistry, Qinghua University, Beijing 100084 (China); Xu Zheng, E-mail: zhengxu@netra.nju.edu.c [State Key Laboratory of Coordination Chemistry, Laboratory of Solid State Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093 (China)

2009-05-15T23:59:59.000Z

91

Metallic and Non-Metallic Materials for the Primary Support Structure  

Science Conference Proceedings (OSTI)

The primary support structure (PSS) is required for mechanical support of reactor module (RM) components and mounting of the RM to the spacecraft. The PSS would provide support and accept all loads associated with dynamic (e. g., launch and maneuvering) or thermally induced loading. Prior to termination of NRPCT involvement in Project Prometheus, the NRPCT Mechanical Systems team developed preliminary finite element models to gain a basic understanding of the behavior of the structure, but optimization of the models, specification of the final design, and materials selection were not completed. The Space Plant Materials team had evaluated several materials for potential use in the primary support structure, namely titanium alloys, beryllium, aluminum alloys and carbon-carbon composites. The feasibility of application of each material system was compared based on mass, stiffness, thermal expansion, and ease of fabrication. Due to insufficient data on environmental factors, such as temperatures and radiation, and limited modeling support, a final materials selection was not made.

RA Wolf; RP Corson

2006-02-21T23:59:59.000Z

92

Interactions of structural defects with metallic impurities in multicrystalline silicon  

DOE Green Energy (OSTI)

Interactions between structural defects and metallic impurities were studied in multicrystalline silicon for solar cells applications. The objective was to gain insight into the relationship between solar cell processing, metallic impurity behavior and the resultant effect on material/device performance. With an intense synchrotron x-ray source, high sensitivity x-ray fluorescence measurements were utilized to determine impurity distributions with a spatial resolution of {approx} 1{micro}m. Diffusion length mapping and final solar cell characteristics gauged material/device performance. The materials were tested in both the as-grown state and after full solar cell processing. Iron and nickel metal impurities were located at structural defects in as-grown material, while after solar cell processing, both impurities were still observed in low performance regions. These results indicate that multicrystalline silicon solar cell performance is directly related to metal impurities which are not completely removed during typical processing treatments. A discussion of possible mechanisms for this incomplete removal is presented.

McHugo, S.A. [Lawrence Berkeley National Lab., CA (US). Advanced Light Source; Hieslmair, H.; Weber, E.R. [Univ. of California, Berkeley, CA (US). Dept. of Materials Science and Mineral Engineering; Rosenblum, M.D.; Kalejs, J.P. [ASE Americas Inc., Billerica, MA (US)

1996-11-01T23:59:59.000Z

93

Method of fabricating metal- and ceramic- matrix composites and functionalized textiles  

Science Conference Proceedings (OSTI)

A method of manufacturing an article comprises providing a first sheet, wetting the first sheet with a liquid precursor to provide a first wet sheet, and irradiating the first wet sheet in a pattern corresponding to a first cross section of the article such that the liquid precursor is at least partially converted to a solid in the first cross section. A second sheet is disposed adjacent to the first sheet. The method further comprises wetting the second sheet with the liquid precursor to provide a second wet sheet, and irradiating the second wet sheet in a pattern corresponding to a second cross section of the article such that the liquid precursor is at least partially converted to a solid in the second cross section. In particular the liquid precursor may be converted to a metal, ceramic, semiconductor, semimetal, or a combination of these materials.

Maxwell, James L. (Jemez Springs, NM); Chavez, Craig A. (Los Alamos, NM); Black, Marcie R. (Lincoln, MA)

2012-04-17T23:59:59.000Z

94

Structural Effects on Trends in the Deposition and Dissolution of Metal-Supported Metal Adstructures  

SciTech Connect

A simple thermodynamic formalism is combined with Density Functional Theory calculations to determine periodic trends in the reversible deposition/dissolution potentials of admetals on a variety of transition metal substrates. For each admetal/substrate combination (81 in total), the deposition/ dissolution potential shift (referenced to the corresponding potential of the admetal in its bulk, elemental form) is calculated for isolated adatoms, for dimers, and for more extended kink structures. Clear periodic trends are found for the potential shifts across the space of different admetals and substrates. In addition, for the significant majority of these admetal/substrate systems, the structural effects are found to be a strong function of the local coordination number of the metal atoms, thereby verifying an important assumption that has been widely used in semiempirical models of deposition and dissolution.

Greeley, Jeffrey P.

2010-08-01T23:59:59.000Z

95

Structural effects on trends in the deposition and dissolution of metal-supported metal adstructures.  

SciTech Connect

A simple thermodynamic formalism is combined with Density Functional Theory calculations to determine periodic trends in the reversible deposition/dissolution potentials of admetals on a variety of transition metal substrates. For each admetal/substrate combination (81 in total), the deposition/dissolution potential shift (referenced to the corresponding potential of the admetal in its bulk, elemental form) is calculated for isolated adatoms, for dimers, and for more extended kink structures. Clear periodic trends are found for the potential shifts across the space of different admetals and substrates. In addition, for the significant majority of these admetal/substrate systems, the structural effects are found to be a strong function of the local coordination number of the metal atoms, thereby verifying an important assumption that has been widely used in semiempirical models of deposition and dissolution.

Greeley, J.; Center for Nanoscale Materials

2010-08-01T23:59:59.000Z

96

Structure Sensitivity of Methanol Electrooxidation on Transition Metals  

DOE Green Energy (OSTI)

We have investigated the structure sensitivity of methanol electrooxidation on eight transition metals (Au, Ag, Cu, Pt, Pd, Ir, Rh, and Ni) using periodic, self-consistent density functional theory (DFTGGA). Using the adsorption energies of 16 intermediates on two different facets of these eight face-centeredcubic transition metals, combined with a simple electrochemical model, we address the differences in the reaction mechanism between the (111) and (100) facets of these metals. We investigate two separate mechanisms for methanol electrooxidation: one going through a CO* intermediate (the indirect pathway) and another that oxidizes methanol directly to CO2 without CO* as an intermediate (the direct pathway). A comparison of our results for the (111) and (100) surfaces explains the origin of methanol electrooxidation’s experimentally-established structure sensitivity on Pt surfaces. For most metals studied, on both the (111) and (100) facets, we predict that the indirect mechanism has a higher onset potential than the direct mechanism. Ni(111), Au(100), and Au(111) are the cases where the direct and indirect mechanisms have the same onset potential. For the direct mechanism, Rh, Ir, and Ni show a lower onset potential on the (111) facet, whereas Pt, Cu, Ag, and Au possess lower onset potential on the (100) facet. Pd(100) and Pd(111) have the same onset potential for the direct mechanism. These results can be rationalized by the stronger binding energy of adsorbates on the (100) facet versus the (111) facet. Using linear scaling relations, we establish reactivity descriptors for the (100) surface similar to those recently developed for the (111) surface; the free energies of adsorbed CO* and OH* can describe methanol electrooxidation trends on various metal surfaces reasonably well.

Ferrin, Peter A.; Mavrikakis, Manos

2009-10-14T23:59:59.000Z

97

Periodic dielectric structure for production of photonic band gap and method for fabricating the same  

DOE Patents (OSTI)

A method is disclosed for fabricating a periodic dielectric structure which exhibits a photonic band gap. Alignment holes are formed in a wafer of dielectric material having a given crystal orientation. A planar layer of elongate rods is then formed in a section of the wafer. The formation of the rods includes the step of selectively removing the dielectric material of the wafer between the rods. The formation of alignment holes and layers of elongate rods and wafers is then repeated to form a plurality of patterned wafers. A stack of patterned wafers is then formed by rotating each successive wafer with respect to the next-previous wafer, and then placing the successive wafer on the stack. This stacking results in a stack of patterned wafers having a four-layer periodicity exhibiting a photonic band gap. 42 figures.

Ozbay, E.; Tuttle, G.; Michel, E.; Ho, K.M.; Biswas, R.; Chan, C.T.; Soukoulis, C.

1995-04-11T23:59:59.000Z

98

Periodic dielectric structure for production of photonic band gap and method for fabricating the same  

DOE Patents (OSTI)

A method for fabricating a periodic dielectric structure which exhibits a photonic band gap. Alignment holes are formed in a wafer of dielectric material having a given crystal orientation. A planar layer of elongate rods is then formed in a section of the wafer. The formation of the rods includes the step of selectively removing the dielectric material of the wafer between the rods. The formation of alignment holes and layers of elongate rods and wafers is then repeated to form a plurality of patterned wafers. A stack of patterned wafers is then formed by rotating each successive wafer with respect to the next-previous wafer, and then placing the successive wafer on the stack. This stacking results in a stack of patterned wafers having a four-layer periodicity exhibiting a photonic band gap.

Ozbay, Ekmel (Ames, IA); Tuttle, Gary (Ames, IA); Michel, Erick (Ames, IA); Ho, Kai-Ming (Ames, IA); Biswas, Rana (Ames, IA); Chan, Che-Ting (Ames, IA); Soukoulis, Costas (Ames, IA)

1995-01-01T23:59:59.000Z

99

Synthesis, Structure, and Metalation of Two New Highly Porous Zirconium Metal?Organic Frameworks  

SciTech Connect

Three new metal-organic frameworks [MOF-525, Zr{sub 6}O{sub 4}(OH){sub 4}(TCPP-H{sub 2}){sub 3}; MOF-535, Zr{sub 6}O{sub 4}(OH){sub 4}(XF){sub 3}; MOF-545, Zr{sub 6}O{sub 8}(H{sub 2}O){sub 8}(TCPP-H{sub 2}){sub 2}, where porphyrin H{sub 4}-TCPP-H{sub 2} = (C{sub 48}H{sub 24}O{sub 8}N{sub 4}) and cruciform H{sub 4}-XF = (C{sub 42}O{sub 8}H{sub 22})] based on two new topologies, ftw and csq, have been synthesized and structurally characterized. MOF-525 and -535 are composed of Zr{sub 6}O{sub 4}(OH){sub 4} cuboctahedral units linked by either porphyrin (MOF-525) or cruciform (MOF-535). Another zirconium-containing unit, Zr{sub 6}O{sub 8}(H{sub 2}O){sub 8}, is linked by porphyrin to give the MOF-545 structure. The structure of MOF-525 was obtained by analysis of powder X-ray diffraction data. The structures of MOF-535 and -545 were resolved from synchrotron single-crystal data. MOF-525, -535, and -545 have Brunauer-Emmett-Teller surface areas of 2620, 1120, and 2260 m{sup 2}/g, respectively. In addition to their large surface areas, both porphyrin-containing MOFs are exceptionally chemically stable, maintaining their structures under aqueous and organic conditions. MOF-525 and -545 were metalated with iron(III) and copper(II) to yield the metalated analogues without losing their high surface area and chemical stability.

Morris, William; Volosskiy, Boris; Demir, Selcuk; Gándara, Felipe; McGrier, Psaras L.; Furukawa, Hiroyasu; Cascio, Duilio; Stoddart, J. Fraser; Yaghi, Omar M. (UCLA); (NWU)

2012-10-24T23:59:59.000Z

100

HIGH TEMPERATURE THERMAL AND STRUCTURAL MATERIAL PROPERTIES FOR METALS USED IN LWR VESSELS  

Science Conference Proceedings (OSTI)

Because of the impact that melt relocation and vessel failure may have on subsequent progression and associated consequences of a Light Water Reactor (LWR) accident, it is important to accurately predict heating and relocation of materials within the reactor vessel, heat transfer to and from the reactor vessel, and the potential for failure of the vessel and structures within it. Accurate predictions of such phenomena require high temperature thermal and structural properties. However, a review of vessel and structural steel material properties used in severe accident analysis codes reveals that the required high temperature material properties are extrapolated with little, if any, data above 1000 K. To reduce uncertainties in predictions relying upon extrapolated high temperature data, Idaho National Laboratory (INL) obtained high data for two metals used in LWR vessels: SA 533 Grade B, Class 1 (SA533B1) low alloy steel, which is used to fabricate most US LWR reactor vessels; and Type 304 Stainless Steel SS304, which is used in LWR vessel piping, penetration tubes, and internal structures. This paper summarizes the new data, and compares it to existing data.

J.L. Rempe; D.L. Knudson; J. E. Daw; J. C. Crepeau

2008-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "fabricated structural metal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

High Aspect Ratio Metallic Structures for Use as Transparent ...  

# Flexible (can be fabricated on flexible substrates) Applications and Industries Solar cell manufacturing; solid state lighting; optical systems.

102

Process for fabrication of cermets  

DOE Patents (OSTI)

Cermet comprising ceramic and metal components and a molten metal infiltration method and process for fabrication thereof. The light weight cermets having improved porosity, strength, durability, toughness, elasticity fabricated from presintered ceramic powder infiltrated with a molten metal or metal alloy. Alumina titanium cermets biocompatible with the human body suitable for bone and joint replacements.

Landingham, Richard L. (Livermore, CA)

2011-02-01T23:59:59.000Z

103

Enhanced photoluminescence from free-standing microstructures fabricated on MBE grown PbSe-PbSrSe MQW structure  

Science Conference Proceedings (OSTI)

Fabrication of microrods from multi-quantum well (MQW) PbSe-PbSrSe structure grown in molecular beam epitaxy (MBE) followed by its morphological as well as optical characterizations are described. Pulsed PL intensity is increased by 64 times per unit ... Keywords: MBE, MQW microrod, MQW microtube, Photoluminescence, SEM

S. Mukherjee; S. Jain; F. Zhao; J. P. Kar; D. Li; Z. Shi

2008-04-01T23:59:59.000Z

104

Materials Design of Advanced Performance Metal Catalysts  

SciTech Connect

The contribution of materials design to the fabrication of advanced metal catalysts is highlighted, with particular emphasis on the construction of relatively complex contact structures surrounding metal nanoparticles. Novel advanced metal catalysts can be synthesized via encapsulation of metal nanoparticles into oxide shells, immobilization of metal oxide core-shell structures on solid supports, post-modification of supported metal nanoparticles by surface coating, and premodification of supports before loading metal nanoparticles. Examples on how these materials structures lead to enhanced catalytic performance are illustrated, and a few future prospects are presented.

Ma, Zhen [ORNL; Dai, Sheng [ORNL

2008-01-01T23:59:59.000Z

105

Staff, Central Fabrication Services, Brookhaven National Laboratory...  

NLE Websites -- All DOE Office Websites (Extended Search)

BNL as well as members of the Fabrication Section prior to their current assignments. Welding and Sheet Metal Supervisor Al Farland became a member of the Central Fabrication...

106

(Electronic structure and reactivities of transition metal clusters)  

DOE Green Energy (OSTI)

The following are reported: theoretical calculations (configuration interaction, relativistic effective core potentials, polyatomics, CASSCF); proposed theoretical studies (clusters of Cu, Ag, Au, Ni, Pt, Pd, Rh, Ir, Os, Ru; transition metal cluster ions; transition metal carbide clusters; bimetallic mixed transition metal clusters); reactivity studies on transition metal clusters (reactivity with H{sub 2}, C{sub 2}H{sub 4}, hydrocarbons; NO and CO chemisorption on surfaces). Computer facilities and codes to be used, are described. 192 refs, 13 figs.

Not Available

1992-01-01T23:59:59.000Z

107

[Electronic structure and reactivities of transition metal clusters  

DOE Green Energy (OSTI)

The following are reported: theoretical calculations (configuration interaction, relativistic effective core potentials, polyatomics, CASSCF); proposed theoretical studies (clusters of Cu, Ag, Au, Ni, Pt, Pd, Rh, Ir, Os, Ru; transition metal cluster ions; transition metal carbide clusters; bimetallic mixed transition metal clusters); reactivity studies on transition metal clusters (reactivity with H{sub 2}, C{sub 2}H{sub 4}, hydrocarbons; NO and CO chemisorption on surfaces). Computer facilities and codes to be used, are described. 192 refs, 13 figs.

Not Available

1992-08-01T23:59:59.000Z

108

Amorphous metal formulations and structured coatings for corrosion and wear resistance  

DOE Patents (OSTI)

A system for coating a surface comprising providing a source of amorphous metal that contains more than 11 elements and applying the amorphous metal that contains more than 11 elements to the surface by a spray. Also a coating comprising a composite material made of amorphous metal that contains more than 11 elements. An apparatus for producing a corrosion-resistant amorphous-metal coating on a structure comprises a deposition chamber, a deposition source in the deposition chamber that produces a deposition spray, the deposition source containing a composite material made of amorphous metal that contains more than 11 elements, and a system that directs the deposition spray onto the structure.

Farmer, Joseph C. (Tracy, CA)

2011-12-13T23:59:59.000Z

109

Fabrication and Optimization of Nano-Structured Composites for Energy Storage  

E-Print Network (OSTI)

May 28, 2009). “Hydrogen Storage. ” Energy Efficiency andEnergy established benchmarks for on-board hydrogen storageof Hydrogen Storage in Metal-Organic Frameworks. ” Energy

Carrington, Kenneth Russell

2009-01-01T23:59:59.000Z

110

Molecular structures on crystalline metallic surfaces - From STM images to molecular electronics  

Science Conference Proceedings (OSTI)

We present results from scanning tunneling microscopy obtained for organic molecules - coronene and different phthalocyanine derivatives - adsorbed on crystalline metallic substrates under UHV conditions. Molecular structures resolved till to submolecular ... Keywords: Molecular electronics, Nanoscale structures, Organic molecules, Scanning tunneling microscopy

M. Hietschold; M. Lackinger; S. Griessl; W. M. Heckl; T. G. Gopakumar; G. W. Flynn

2005-12-01T23:59:59.000Z

111

Structural fabric of the Palisades Monocline: a study of positive inversion, Grand Canyon, Arizona  

E-Print Network (OSTI)

A field study of positive inversion is conducted to describe associated structural fabrics and to infer kinematic development of the Palisades Monocline, Grand Canyon, Arizona. These features are then compared to sand, clay and solid rock models of positive inversion to test model results and improve understanding of inversion processes. The N40W 90 oriented Palisades fault underlying the monocline has experienced northeast-southwest Precambrian extension and subsequent northeastsouthwest Laramide contraction. The magnitude of inversion is estimated to be 25% based on vertical offset across the fault, although this does not account for flexure or horizontal shortening. The preferred N50W 90 joint and vein orientation and N50W 68 NE and SW conjugate normal faults are consistent with the Palisades fault and northeastsouthwest extension. The N45E 90 joint orientation and approximately N40W 28 NE and SW conjugate thrust faults are consistent with northeast-southwest contraction. The deformation is characterized by three domains across the fault zone: 1) the hanging wall, 2) the footwall, and 3) an interior, fault-bounded zone between the hanging wall and footwall. Extensional features are preserved and dominate the hanging wall, contractional features define footwall deformation, and the interior, fault-bounded zone is marked by the co-existence of extensional and contractional features. Extension caused a master normal fault and hanging wall roll-over with distributed joints, veinsand normal faults. During inversion, contraction induced reverse reactivation of existing hanging wall faults, footwall folding and footwall thrust-faulting. Precambrian normal slip along the master normal fault and subsequent Laramide reverse slip along the new footwall bounding fault created an uplifted domain of relatively oldest strata between the hanging wall and footwall. Physical models of co-axial inversion suggest consistent development of the three domains of deformation described at the Palisades fault, however the models often require magnitudes of inversion greater than 50%. Although vertical block motion during horizontal compression is not predicted directly by the Mohr-Coulomb criterion, physical models and analytical solutions (incorporating Mohr- Coulomb criterion) suggest maximum stress trajectories and near vertical failure above high angle basement faults that compare favorably with the Palisades fault zone.

Orofino, James Cory

2006-05-01T23:59:59.000Z

112

Fabrication of band-gap structures in planar nonlinear waveguides for second harmonic generation  

Science Conference Proceedings (OSTI)

The work presented here deals with the design and fabrication of the linear grating on a LiNbO3 planar waveguide to obtain an efficient second harmonic generation operating in Cerenkov configuration. The lithium niobate is a nonlinear material ... Keywords: e-beam lithography, nonlinear optics

V. Foglietti; E. Cianci; D. Pezzetta; C. Sibilia; M. Marangoni; R. Osellame; R. Ramponi

2003-06-01T23:59:59.000Z

113

Design and top-down fabrication of metallic L-shape gap nanoantennas supporting plasmon-polariton modes  

Science Conference Proceedings (OSTI)

In this work the design, fabrication and optical characterization of a polarization-sensitive L-shape nanoantenna device are reported. Such configuration supports plasmon-polariton modes that are combinations of in-phase and out-of-phase single antenna ... Keywords: Annealing, Electron beam lithography, L-shape nanoantenna, Plasmon-polariton modes, Zero-field spot

S. Panaro, A. Toma, R. Proietti Zaccaria, M. Chirumamilla, A. Saeed, L. Razzari, G. Das, C. Liberale, F. De Angelis, E. Di Fabrizio

2013-11-01T23:59:59.000Z

114

Program on Technology Innovation: Weld Metals and Welding Processes for Fabrication of Advanced Light Water Reactor Pressure Vessels  

Science Conference Proceedings (OSTI)

Light water reactors have traditionally been constructed using roll-formed plates for the reactor pressure vessel (RPV) shells, which were assembled via horizontal and vertical seam welds. Weld filler metals often contained significant quantities of copper, other residual elements such as vanadium, and nonmetallic elements such as phosphorous and sulfur. Low-alloy steel weld filler metals of this chemical composition contributed to the degree of neutron radiation-induced embrittlement of vessel ...

2013-06-26T23:59:59.000Z

115

Synthesis of Nano-Structured Metal-Oxides and Deposition via Ink ...  

Science Conference Proceedings (OSTI)

The objective of this study was to synthesize numerous metal oxide nano- structures including TiO2, Nb-doped TiO2, and SnO2 and deposit these materials on ...

116

Thermal, structural, and fabrication aspects of diamond windows for high power synchrotron x-ray beamlines  

SciTech Connect

Recent advances in chemical vapor deposition (CVD) technology have made it possible to produce thin free-standing diamond foils that can be used as the window material in high heat load, synchrotron beamlines. Numerical simulations suggest that these windows can offer an attractive and at times the only altemative to beryllium windows for use in third generation x-ray synchrotron radiation beamlines. Utilization, design, and fabrication aspects of diamond windows for high heat load x-ray beamlines are discussed, as are the microstructure characteristics bearing on diamond`s performance in this role. Analytic and numerical results are also presented to provide a basis for the design and testing of such windows.

Khounsary, A.M. [Argonne National Lab., IL (United States); Phillips, W. [Crystallume, Menlo Park, CA (United States)

1992-12-01T23:59:59.000Z

117

Thermal, structural, and fabrication aspects of diamond windows for high power synchrotron x-ray beamlines  

SciTech Connect

Recent advances in chemical vapor deposition (CVD) technology have made it possible to produce thin free-standing diamond foils that can be used as the window material in high heat load, synchrotron beamlines. Numerical simulations suggest that these windows can offer an attractive and at times the only altemative to beryllium windows for use in third generation x-ray synchrotron radiation beamlines. Utilization, design, and fabrication aspects of diamond windows for high heat load x-ray beamlines are discussed, as are the microstructure characteristics bearing on diamond's performance in this role. Analytic and numerical results are also presented to provide a basis for the design and testing of such windows.

Khounsary, A.M. (Argonne National Lab., IL (United States)); Phillips, W. (Crystallume, Menlo Park, CA (United States))

1992-01-01T23:59:59.000Z

118

Fabrication of nano-structural arrays by channeling pulsed atomic beams through pulsed-laser standing-waves under off-resonant condition  

E-Print Network (OSTI)

Fabrication of nano-structural arrays by channeling pulsed atomic beams through pulsed 1998 We show that it is feasible to produce one- and two-dimensional nano-structure arrays by passing the reduced dimensions are of the order of nanometers (10 9 m . In particular, nano

Zhu, Xiangdong

119

Structural fabric and in-situ stress analyses of the Roosevelt Hot Springs KGRA  

DOE Green Energy (OSTI)

The Roosevelt Hot Springs Known Geothermal Resource Area (KGRA) is a hot-water dominated system in fractured plutonic and metamorphic rock. A principal purpose of this study was to determine the geometry and origin of fractures as an aid to developing a structural model for the reservoir. The results may also be useful for the design of hydrofracture experiments at the Roosevelt KGRA. Three major normal fault trends are present in the Mineral Mountains. North-northeast trending faults, including the Opal Mound Fault, form the center of low electrical resistivity and high heat flow anomalies. Major east-west trending structures such as the Hot Springs Fault form structural boundaries for the geothermal reservoir. A set of northwest trending faults also occurs in the KGRA. Structural analysis was conducted by field mapping of joints, small shear zones, and dikes. Three major styles of fracturing have been identified.

Yusas, M.R.; Bruhn, R.L.

1979-11-01T23:59:59.000Z

120

Fabrication and Optimization of Nano-Structured Composites for Energy Storage.  

E-Print Network (OSTI)

??This dissertation is focused on the development and characterization of a novel class of solid-state nano-structured composites for hydrogen storage based on silica aerogel. It… (more)

Carrington, Kenneth Russell

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fabricated structural metal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Atomic Structural Evolution in Metallic Melts - Programmaster.org  

Science Conference Proceedings (OSTI)

This work will shed light on the understanding of atomic structures and thermal behavior of disordered materials, esp. glass transition, and will trigger more ...

122

Atomic Structure and its Change during Glass Transition of Metallic ...  

Science Conference Proceedings (OSTI)

In addition, we will discuss how the atomic structure evolves during glass transition ... Age Hardening of 7075 Alloy Processed by High-pressure Sliding ( HPS).

123

Design, fabrication and testing of a 15-kW gas-fired liquid-metal evaporator  

SciTech Connect

This paper describes the development and testing of a compact heat- pipe heat exchanger that is designed to transfer thermal energy from hot combustion gases to the heater tubes of a 25-kW{sub e} Stirling engine. In this system, sodium evaporates from a surface that is heated by a stream of hot gases and the liquid metal then condenses on the heater tubes of a Stirling engine where energy is transferred to the engine`s helium working fluid. Recent tests on a prototype unit illustrated that a compact (8 cm {times} 13 cm {times} 16 cm) sodium evaporator can routinely transfer 15-kW{sub t} of energy at an operating vapor temperature of 760{degrees}C. Four of these prototype units will eventually be used to power a 25-kW{sub e} Stirling engine system. Design details and test results from the prototype unit are presented in this paper.

Adkins, D.R.; Rawlinson, K.S.

1992-07-01T23:59:59.000Z

124

Design, fabrication and testing of a 15-kW gas-fired liquid-metal evaporator  

SciTech Connect

This paper describes the development and testing of a compact heat- pipe heat exchanger that is designed to transfer thermal energy from hot combustion gases to the heater tubes of a 25-kW{sub e} Stirling engine. In this system, sodium evaporates from a surface that is heated by a stream of hot gases and the liquid metal then condenses on the heater tubes of a Stirling engine where energy is transferred to the engine's helium working fluid. Recent tests on a prototype unit illustrated that a compact (8 cm {times} 13 cm {times} 16 cm) sodium evaporator can routinely transfer 15-kW{sub t} of energy at an operating vapor temperature of 760{degrees}C. Four of these prototype units will eventually be used to power a 25-kW{sub e} Stirling engine system. Design details and test results from the prototype unit are presented in this paper.

Adkins, D.R.; Rawlinson, K.S.

1992-01-01T23:59:59.000Z

125

Method for fabricating five-level microelectromechanical structures and microelectromechanical transmission formed  

DOE Patents (OSTI)

A process for forming complex microelectromechanical (MEM) devices having five layers or levels of polysilicon, including four structural polysilicon layers wherein mechanical elements can be formed, and an underlying polysilicon layer forming a voltage reference plane. A particular type of MEM device that can be formed with the five-level polysilicon process is a MEM transmission for controlling or interlocking mechanical power transfer between an electrostatic motor and a self-assembling structure (e.g. a hinged pop-up mirror for use with an incident laser beam). The MEM transmission is based on an incomplete gear train and a bridging set of gears that can be moved into place to complete the gear train to enable power transfer. The MEM transmission has particular applications as a safety component for surety, and for this purpose can incorporate a pin-in-maze discriminator responsive to a coded input signal.

Rodgers, M. Steven (Albuquerque, NM); Sniegowski, Jeffry J. (Edgewood, NM); Miller, Samuel L. (Albuquerque, NM); McWhorter, Paul J. (Albuquerque, NM)

2000-01-01T23:59:59.000Z

126

All-metal valve structure for gas systems  

DOE Patents (OSTI)

A valve assembly with a resilient metal seat member is disclosed for providing a gas-tight seal in a gas handling system. The valve assembly also includes a valve element for sealing against the valve seat member; and an actuating means for operating the valve element. The valve seat member is a one-piece stainless steel ring having a central valve port and peripheral mounting flange, and an annular corrugation in between. A groove between the first and second ridges serves as a flexure zone during operation of the valve member and thus provides the seating pressure between the inner ridge or valve seat and the valve element. The outer annular ridge has a diameter less than said valve element to limit the seating motion of the valve element, preventing non-elastic deformation of the seat member.

Baker, R.W.; Pawlak, D.A.; Ramey, A.J.

1982-06-10T23:59:59.000Z

127

Method for rapid fabrication of fiber preforms and structural composite materials  

DOE Patents (OSTI)

A densified carbon matrix carbon fiber composite preform is made by vacuum molding an aqueous slurry of carbon fibers and carbonizable organic powder to form a molded part. The molded part is dried in an oven at 50.degree. C. for 14 hours and hot pressed at 2000 psi at 400.degree. C. for 3 hours. The hot pressed part is carbonized at 650.degree. C. under nitrogen for 3 hours and graphitized at 2400.degree. C. to form a graphitic structure in the matrix of the densified carbon matrix carbon fiber composite preform. The densified preform has a density greater than 1.1 g/cc.

Klett, James W. (Knoxville, TN); Burchell, Timothy D. (Oak Ridge, TN); Bailey, Jeffrey L. (Clinton, TN)

1998-01-01T23:59:59.000Z

128

Method for rapid fabrication of fiber preforms and structural composite materials  

DOE Patents (OSTI)

A densified carbon matrix carbon fiber composite preform is made by vacuum molding an aqueous slurry of carbon fibers and carbonizable organic powder to form a molded part. The molded part is dried in an oven at 50.degree. C. for 14 hours and hot pressed at 2000 psi at 400.degree. C. for 3 hours. The hot pressed part is carbonized at 650.degree. C. under nitrogen for 3 hours and graphite at 2400.degree. C. to form a graphitic structure in the matrix of the densified carbon matrix carbon fiber composite preform. The densified preform has a density greater than 1.1 g/cc.

Klett, James W. (Knoxville, TN); Burchell, Timothy D. (Oak Ridge, TN); Bailey, Jeffrey L. (Clinton, TN)

1999-01-01T23:59:59.000Z

129

Method for rapid fabrication of fiber preforms and structural composite materials  

DOE Patents (OSTI)

A densified carbon matrix carbon fiber composite preform is made by vacuum molding an aqueous slurry of carbon fibers and carbonizable organic powder to form a molded part. The molded part is dried in an oven at 50 C for 14 hours and hot pressed at 2000 psi at 400 C for 3 hours. The hot pressed part is carbonized at 650 C under nitrogen for 3 hours and graphitized at 2400 C to form a graphitic structure in the matrix of the densified carbon matrix carbon fiber composite preform. The densified preform has a density greater than 1.1 g/cc. 12 figs.

Klett, J.W.; Burchell, T.D.; Bailey, J.L.

1999-02-16T23:59:59.000Z

130

Method for rapid fabrication of fiber preforms and structural composite materials  

DOE Patents (OSTI)

A densified carbon matrix carbon fiber composite preform is made by vacuum molding an aqueous slurry of carbon fibers and carbonizable organic powder to form a molded part. The molded part is dried in an oven at 50 C for 14 hours and hot pressed at 2,000 psi at 400 C for 3 hours. The hot pressed part is carbonized at 650 C under nitrogen for 3 hours and graphitized at 2,400 C to form a graphitic structure in the matrix of the densified carbon matrix carbon fiber composite preform. The densified preform has a density greater than 1.1 g/cc. 12 figs.

Klett, J.W.; Burchell, T.D.; Bailey, J.L.

1998-04-28T23:59:59.000Z

131

Large-area metallic photonic lattices for military applications.  

Science Conference Proceedings (OSTI)

In this project we developed photonic crystal modeling capability and fabrication technology that is scaleable to large area. An intelligent optimization code was developed to find the optimal structure for the desired spectral response. In terms of fabrication, an exhaustive survey of fabrication techniques that would meet the large area requirement was reduced to Deep X-ray Lithography (DXRL) and nano-imprint. Using DXRL, we fabricated a gold logpile photonic crystal in the plane. For the nano-imprint technique, we fabricated a cubic array of gold squares. These two examples also represent two classes of metallic photonic crystal topologies, the connected network and cermet arrangement.

Luk, Ting Shan

2007-11-01T23:59:59.000Z

132

Large-area metallic photonic lattices for military applications.  

SciTech Connect

In this project we developed photonic crystal modeling capability and fabrication technology that is scaleable to large area. An intelligent optimization code was developed to find the optimal structure for the desired spectral response. In terms of fabrication, an exhaustive survey of fabrication techniques that would meet the large area requirement was reduced to Deep X-ray Lithography (DXRL) and nano-imprint. Using DXRL, we fabricated a gold logpile photonic crystal in the <100> plane. For the nano-imprint technique, we fabricated a cubic array of gold squares. These two examples also represent two classes of metallic photonic crystal topologies, the connected network and cermet arrangement.

Luk, Ting Shan

2007-11-01T23:59:59.000Z

133

Metal-assisted electroless fabrication of nanoporous p-GaN for increasing the light extraction efficiency of light emitting diodes  

SciTech Connect

We report metal-assisted electroless fabrication of nanoporous p-GaN to improve the light extraction efficiency of GaN-based light emitting diodes (LEDs). Although it has long been believed that p-GaN cannot be etched at room temperature, in this study we find that Ag nanocrystals (NCs) on the p-GaN surface enable effective etching of p-GaN in a mixture of HF and K{sub 2}S{sub 2}O{sub 8} under ultraviolet (UV) irradiation. It is further shown that the roughened GaN/air interface enables strong scattering of photons emitted from the multiple quantum wells (MQWs). The light output power measurements indicate that the nanoporous LEDs obtained after 10 min etching show a 32.7% enhancement in light-output relative to the conventional LEDs at an injection current of 20 mA without significant increase of the operating voltage. In contrast, the samples etched for 20 min show performance degradation when compared with those etched for 10 min, this is attributed to the current crowding effect and increased surface recombination rate.

Wang Ruijun; Liu Duo; Zuo Zhiyuan; Yu Qian; Feng Zhaobin; Xu Xiangang [State Key Laboratory of Crystal Materials, Shandong University, 27 South Shanda Road, Jinan, Shandong 250100 (China)

2012-03-15T23:59:59.000Z

134

Fabrication of inverse micro/nano pyramid structures using soft UV-NIL and wet chemical methods for residual layer removal and Si-etching  

Science Conference Proceedings (OSTI)

In this study we present a novel and simple fabrication method for micro- and nano-scale inverse pyramidal structures by a combination of soft UV-NIL and wet chemical etchings. The unique feature of our method is the absence of a RIE process, which is ... Keywords: Micro/nano inverse pyramids, Nanoimprint, Residual layer etching with wet chemical

J. W. Kim, U. Plachetka, C. Moormann, H. Kurz

2013-10-01T23:59:59.000Z

135

Enhancement of the contrast ratio associated with surface waves in a metal pillar-slit structure  

Science Conference Proceedings (OSTI)

A simple optical structure, termed a pillar-slit structure, is proposed to enhance the contrast ratio of the weak optical signal. The structure consists of a metal slit surrounded by two metal pillars and can be directly incorporated onto optical sensors. The waves excited on the incident surface are modulated by the pillars and then scattered by the slit entrance so as to generate the in-slit surface plasmon polaritons passing through the slit. The transmission power is modified by the surface wave intensity. This structure is capable of suppressing background and enhancing signal light simultaneously. A calculated illustration by the numerical simulation method shows that an increase of the contrast ratio can be exceeded 900 times.

Zhou Yunsong; Zhao Liming [Center of Theoretical Physics, Department of Physics, Capital Normal University, Beijing 100048 (China); Wang Huaiyu [Department of Physics, Tsinghua University, Beijing 100084 (China); Lan Sheng [Laboratory of Photonic Information Technology School for Information and Optoelectronic Science and Engineering Guangzhou, Guangdong 510006 (China)

2011-03-15T23:59:59.000Z

136

Anthraquinone with Tailored Structure for Nonaqueous Metal-Organic Redox Flow Battery  

Science Conference Proceedings (OSTI)

A nonaqueous, hybrid metal-organic redox flow battery based on tailored anthraquinone structure is demonstrated to have an energy efficiency of {approx}82% and a specific discharge energy density similar to aqueous redox flow batteries, which is due to the significantly improved solubility of anthraquinone in supporting electrolytes.

Wang, Wei; Xu, Wu; Cosimbescu, Lelia; Choi, Daiwon; Li, Liyu; Yang, Zhenguo

2012-06-08T23:59:59.000Z

137

Final LDRD report : design and fabrication of advanced device structures for ultra high efficiency solid state lighting.  

SciTech Connect

The goal of this one year LDRD was to improve the overall efficiency of InGaN LEDs by improving the extraction of light from the semiconductor chip. InGaN LEDs are currently the most promising technology for producing high efficiency blue and green semiconductor light emitters. Improving the efficiency of InGaN LEDs will enable a more rapid adoption of semiconductor based lighting. In this LDRD, we proposed to develop photonic structures to improve light extraction from nitride-based light emitting diodes (LEDs). While many advanced device geometries were considered for this work, we focused on the use of a photonic crystal for improved light extraction. Although resonant cavity LEDs and other advanced structures certainly have the potential to improve light extraction, the photonic crystal approach showed the most promise in the early stages of this short program. The photonic crystal (PX)-LED developed here incorporates a two dimensional photonic crystal, or photonic lattice, into a nitride-based LED. The dimensions of the photonic crystal are selected such that there are very few or no optical modes in the plane of the LED ('lateral' modes). This will reduce or eliminate any radiation in the lateral direction so that the majority of the LED radiation will be in vertical modes that escape the semiconductor, which will improve the light-extraction efficiency. PX-LEDs were fabricated using a range of hole diameters and lattice constants and compared to control LEDs without a photonic crystal. The far field patterns from the PX-LEDs were dramatically modified by the presence of the photonic crystal. An increase in LED brightness of 1.75X was observed for light measured into a 40 degree emission cone with a total increase in power of 1.5X for an unencapsulated LED.

Koleske, Daniel David; Bogart, Katherine Huderle Andersen; Shul, Randy John; Wendt, Joel Robert; Crawford, Mary Hagerott; Allerman, Andrew Alan; Fischer, Arthur Joseph

2005-04-01T23:59:59.000Z

138

Beyond the Lone-Pair Model for Structurally Distorted Metal Oxides  

NLE Websites -- All DOE Office Websites (Extended Search)

Beyond the Lone-Pair Model for Structurally Distorted Metal Oxides Print Beyond the Lone-Pair Model for Structurally Distorted Metal Oxides Print "Ferroelectricity," by analogy to ferromagnetism, is defined as the presence of spontaneous electrical polarization in a material, often arising from distortions in the material's crystal structure. In oxides of the metals lead and bismuth, such distortions were for many years attributed to the existence of "lone pair" electrons: pairs of chemically inert, nonbonding valence electrons in hybrid orbitals that leave noticeable voids in the crystal structure. At the ALS, researchers from the U.K., Ireland, and the U.S. have now obtained definitive experimental evidence that this lone-pair model must be revised. High-resolution x-ray photoemission spectroscopy (XPS) and soft x-ray emission spectroscopy (XES) have clarified the subtle electronic origins of the prototypical distortions in these crystal structures. The results have important implications for the tantalizing possibility of spintronic or superconducting devices combining ferroelectric and ferromagnetic properties.

139

Beyond the Lone-Pair Model for Structurally Distorted Metal Oxides  

NLE Websites -- All DOE Office Websites (Extended Search)

Beyond the Lone-Pair Model for Structurally Distorted Metal Oxides Print Beyond the Lone-Pair Model for Structurally Distorted Metal Oxides Print "Ferroelectricity," by analogy to ferromagnetism, is defined as the presence of spontaneous electrical polarization in a material, often arising from distortions in the material's crystal structure. In oxides of the metals lead and bismuth, such distortions were for many years attributed to the existence of "lone pair" electrons: pairs of chemically inert, nonbonding valence electrons in hybrid orbitals that leave noticeable voids in the crystal structure. At the ALS, researchers from the U.K., Ireland, and the U.S. have now obtained definitive experimental evidence that this lone-pair model must be revised. High-resolution x-ray photoemission spectroscopy (XPS) and soft x-ray emission spectroscopy (XES) have clarified the subtle electronic origins of the prototypical distortions in these crystal structures. The results have important implications for the tantalizing possibility of spintronic or superconducting devices combining ferroelectric and ferromagnetic properties.

140

Formation of periodic structures upon laser ablation of metal targets in liquids  

SciTech Connect

Experimental data on the formation of ordered microstructures produced upon ablation of metal targets in liquids irradiated by a copper vapour laser or a pulsed Nd:YAG laser are presented. The structures were obtained on brass, bronze, copper, and tungsten substrates immersed in distilled water or ethanol. As a result of multiple-pulse laser ablation by a scanning beam, ordered microcones with pointed vertexes are formed on the target surface. The structures are separated by deep narrow channels. The structure period was experimentally shown to increase linearly with diameter of the laser spot on the target surface. (interaction of laser radiation with matter)

Kazakevich, Pavel V; Simakin, Aleksandr V; Shafeev, Georgii A [A.M. Prokhorov General Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation)

2005-09-30T23:59:59.000Z

Note: This page contains sample records for the topic "fabricated structural metal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

July 7, 2006 METAL FABRICATIONS  

E-Print Network (OSTI)

.....................................................................................................................8 2.02 Stainless Steel Specification for Zinc Coating (Hot-Dip) on Iron and Steel Hardware A167 Specification for Stainless and Heat-Resisting Chromium-Nickel Steel Plate, Sheet and Strip A276 Specification for Stainless and Heat-Resisting Steel Bars

142

The Making and Mechanical Performance of Metal Powder Injection ...  

Science Conference Proceedings (OSTI)

Symposium, Metal and Polymer Matrix Composites ... Fabrication of Metal Matrix Composites via Spark Plasma Sintering for Nuclear Energy Application.

143

Matched metal die compression molded structural random fiber sheet molding compound flywheel. [Patent application  

DOE Patents (OSTI)

A flywheel is described that is useful for energy storage in a hybrid vehicle automotive power system or in some stationary applications. The flywheel has a body of essentially planar isotropic high strength structural random fiber sheet molding compound (SMC-R). The flywheel may be economically produced by a matched metal die compression molding process. The flywheel makes energy intensive efficient use of a fiber/resin composite while having a shape designed by theory assuming planar isotropy.

Kulkarni, S.V.; Christensen, R.M.; Toland, R.H.

1980-09-24T23:59:59.000Z

144

Matched metal die compression molded structural random fiber sheet molding compound flywheel  

DOE Patents (OSTI)

A flywheel (10) is described that is useful for energy storage in a hybrid vehicle automotive power system or in some stationary applications. The flywheel (10) has a body of essentially planar isotropic high strength structural random fiber sheet molding compound (SMC-R). The flywheel (10) may be economically produced by a matched metal die compression molding process. The flywheel (10) makes energy intensive efficient use of a fiber/resin composite while having a shape designed by theory assuming planar isotropy.

Kulkarni, Satish V. (San Ramon, CA); Christensen, Richard M. (Danville, CA); Toland, Richard H. (West Chester, PA)

1985-01-01T23:59:59.000Z

145

Colloid Science of Metal Nanoparticle Catalysts in 2D and 3D Structures. Challenges of Nucleation, Growth, Composition, Particle Shape, Size Control and their Influence on Activity and Selectivity  

SciTech Connect

Recent breakthroughs in synthesis in nanosciences have achieved control of size and shapes of nanoparticles that are relevant for catalyst design. In this article, we review the advance of synthesis of nanoparticles, fabrication of two and three dimensional model catalyst system, characterization, and studies of activity and selectivity. The ability to synthesize monodispersed platinum and rhodium nanoparticles in the 1-10 nm range permitted us to study the influence of composition, structure, and dynamic properties of monodispersed metal nanoparticle on chemical reactivity and selectivity. We review the importance of size and shape of nanoparticles to determine the reaction selectivity in multi-path reactions. The influence of metal-support interaction has been studied by probing the hot electron flows through the metal-oxide interface in catalytic nanodiodes. Novel designs of nanoparticle catalytic systems are discussed.

Somorjai, Gabor A.; Park, Jeong Y.

2008-02-13T23:59:59.000Z

146

Microlaminate composite structures by low pressure plasma spray deposition  

SciTech Connect

The low pressure plasma spray (LPPS) process has been utilized in the development and fabrication of metal/metal, metal/carbide, and metal/oxide composite structures; including particulate dispersion and both continuous and discontinuous laminates. This report describes the LPPS process and the development of copper/tungsten microlaminate structures utilizing this processing method. Microstructures and mechanical properties of the Cu/W composites are compared to conventionally produced constituent material properties. 4 refs., 6 figs., 2 tabs.

Castro, R.G.; Stanek, P.W.

1988-01-01T23:59:59.000Z

147

Fabrication and characterization of the source grating for visibility improvement of neutron phase imaging with gratings  

SciTech Connect

The fabrication of gratings including metal deposition processes for highly neutron absorbing lines is a critical issue to achieve a good visibility of the grating-based phase imaging system. The source grating for a neutron Talbot-Lau interferometer is an array of Gadolinium (Gd) structures that are generally made by sputtering, photo-lithography, and chemical wet etching. However, it is very challenging to fabricate a Gd structure with sufficient neutron attenuation of approximately more than 20 {mu}m using a conventional metal deposition method because of the slow Gd deposition rate, film stress, high material cost, and so on. In this article, we fabricated the source gratings for neutron Talbot-Lau interferometers by filling the silicon structure with Gadox particles. The new fabrication method allowed us a very stable and efficient way to achieve a much higher Gadox filled structure than a Gd film structure, and is even more suitable for thermal polychromatic neutrons, which are more difficult to stop than cold neutrons. The newly fabricated source gratings were tested at the polychromatic thermal neutron grating interferometer system of HANARO at the Korea Atomic Energy Research Institute, and the visibilities and images from the neutron phase imaging system with the new source gratings were compared with those fabricated by a Gd deposition method.

Kim, Jongyul [Neutron Science Division, Korea Atomic Energy Research Institute, Daejeon 305-353 (Korea, Republic of); Nuclear and Quantum Engineering Department, Korea Advanced Institute of Science and Technology, Daejeon 305-701 (Korea, Republic of); Lee, Kye Hong; Lim, Chang Hwy; Kim, Taejoo [Neutron Science Division, Korea Atomic Energy Research Institute, Daejeon 305-353 (Korea, Republic of); Ahn, Chi Won [Nano Fusion Technology Division, National Nanofab Center, Daejeon 305-701 (Korea, Republic of); Cho, Gyuseong [Nuclear and Quantum Engineering Department, Korea Advanced Institute of Science and Technology, Daejeon 305-701 (Korea, Republic of); Lee, Seung Wook [School of Mechanical Engineering, Pusan National University, Pusan 609-735 (Korea, Republic of)

2013-06-15T23:59:59.000Z

148

Fatigue of Wind Blade Laminates:Fatigue of Wind Blade Laminates: Effects of Resin and Fabric Structure  

E-Print Network (OSTI)

Fatigue of Wind Blade Laminates:Fatigue of Wind Blade Laminates: Effects of Resin and Fabric University MCARE 2012 #12;Outline · Overview of MSU Fatigue Program on Wind Blade MaterialsWind Blade Wind Blade Component Materials Acknowledgements: Sandia National Laboratories/DOE (Joshua Paquette

149

Planarization of metal films for multilevel interconnects  

DOE Patents (OSTI)

In the fabrication of multilevel integrated circuits, each metal layer is anarized by heating to momentarily melt the layer. The layer is melted by sweeping laser pulses of suitable width, typically about 1 microsecond duration, over the layer in small increments. The planarization of each metal layer eliminates irregular and discontinuous conditions between successive layers. The planarization method is particularly applicable to circuits having ground or power planes and allows for multilevel interconnects. Dielectric layers can also be planarized to produce a fully planar multilevel interconnect structure. The method is useful for the fabrication of VLSI circuits, particularly for wafer-scale integration.

Tuckerman, David B. (Livermore, CA)

1989-01-01T23:59:59.000Z

150

Planarization of metal films for multilevel interconnects  

DOE Patents (OSTI)

In the fabrication of multilevel integrated circuits, each metal layer is anarized by heating to momentarily melt the layer. The layer is melted by sweeping laser pulses of suitable width, typically about 1 microsecond duration, over the layer in small increments. The planarization of each metal layer eliminates irregular and discontinuous conditions between successive layers. The planarization method is particularly applicable to circuits having ground or power planes and allows for multilevel interconnects. Dielectric layers can also be planarized to produce a fully planar multilevel interconnect structure. The method is useful for the fabrication of VLSI circuits, particularly for wafer-scale integration.

Tuckerman, David B. (Livermore, CA)

1987-01-01T23:59:59.000Z

151

Generation and Applications of Structure Envelopes for Metal-Organic Frameworks  

E-Print Network (OSTI)

Synthesis of polycrystalline, vs. single-crystalline porous materials, such as metal-organic frameworks (MOFs), is usually beneficial due to shorter synthetic time and higher yields. However, the structural characterization of these materials by X-ray powder diffraction can be complicated. Even more difficult, is to track structural changes of MOFs by in situ experiments. Hence, we designed several successful techniques for the structural investigation of porous MOFs. These methods utilize the Structure Envelope (SE) density maps. SEs are surfaces which describing the pore system with the framework. It was shown that these maps can be easily generated from the structure factors of a few (1 to 10) of the most intense low index reflections. Application of SE in Charge Flipping calculations shortens and simplifies structure determination of MOF materials. This method provides excellent MOF models which can be used as a good starting point for their refinement. However, the most interesting results have been found by using Difference Envelope Density (DED) analysis. DED plots are made by taking the difference between observed and calculated SE densities. This allows us to study guest related issues of MOFs such as, location of guest molecules in the pores, tracking activation of MOFs and gas loading, etc. We also have shown that, DED created from routine powder diffraction patterns might provide very important information about MOF structure itself. In fact DED can be used for study of interpenetration, substituents locations and effects conformational changes in the MOF ligands. Generation and analysis of SEs and DEDs are easy and straightforward. It provides the information needed to explain major deviations in structure-property relationship in MOFs. In our opinion, this method might become one of the important and routine techniques for MOFs structural analysis.

Yakovenko, Andrey A.

2013-05-01T23:59:59.000Z

152

Lithographic fabrication of nanoapertures  

DOE Patents (OSTI)

A new class of silicon-based lithographically defined nanoapertures and processes for their fabrication using conventional silicon microprocessing technology have been invented. The new ability to create and control such structures should significantly extend our ability to design and implement chemically selective devices and processes.

Fleming, James G. (Albuquerque, NM)

2003-01-01T23:59:59.000Z

153

CW RFQ fabrication and engineering  

SciTech Connect

The design and fabrication of a four-vane RFQ to deliver a 100 mA CW proton beam at 6.7 MeV is described. This linac is an Oxygen-Free Electrolytic (OFE) copper structure 8 m in length and was fabricated using hydrogen furnace brazing as the joining technology.

Schrage, D.; Young, L.; Roybal, P. [and others

1998-12-31T23:59:59.000Z

154

Method for large-scale fabrication of atomic-scale structures on material surfaces using surface vacancies  

DOE Patents (OSTI)

A method for forming atomic-scale structures on a surface of a substrate on a large-scale includes creating a predetermined amount of surface vacancies on the surface of the substrate by removing an amount of atoms on the surface of the material corresponding to the predetermined amount of the surface vacancies. Once the surface vacancies have been created, atoms of a desired structure material are deposited on the surface of the substrate to enable the surface vacancies and the atoms of the structure material to interact. The interaction causes the atoms of the structure material to form the atomic-scale structures.

Lim, Chong Wee (Urbana, IL); Ohmori, Kenji (Urbana, IL); Petrov, Ivan Georgiev (Champaign, IL); Greene, Joseph E. (Champaign, IL)

2004-07-13T23:59:59.000Z

155

Innovative forming and fabrication technologies : new opportunities.  

Science Conference Proceedings (OSTI)

The advent of light metal alloys and advanced materials (polymer, composites, etc.) have brought the possibility of achieving important energy reductions into the full life cycle of these materials, especially in transportation applications. 1 These materials have gained acceptance in the aerospace industry but use of light metal alloys needs to gain wider acceptance in other commercial transportation areas. Among the main reasons for the relatively low use of these materials are the lack of manufacturability, insufficient mechanical properties, and increased material costs due to processing inefficiencies. Considering the enormous potential energy savings associated with the use of light metal alloys and advanced materials in transportation, there is a need to identify R&D opportunities in the fields of materials fabrication and forming aimed at developing materials with high specific mechanical properties combined with energy efficient processes and good manufacturability. This report presents a literature review of the most recent developments in the areas of fabrication and metal forming focusing principally on aluminum alloys. In the first section of the document, the different sheet manufacturing technologies including direct chill (DC) casting and rolling, spray forming, spray rolling, thin slab, and strip casting are reviewed. The second section of the document presents recent research on advanced forming processes. The various forming processes reviewed are: superplastic forming, electromagnetic forming, age forming, warm forming, hydroforming, and incremental forming. Optimization of conventional forming processes is also discussed. Potentially interesting light metal alloys for high structural efficiency including aluminum-scandium, aluminum-lithium, magnesium, titanium, and amorphous metal alloys are also reviewed. This section concludes with a discussion on alloy development for manufacturability. The third section of the document reviews the latest developments in fiber-reinforced composite materials. Emerging curing processes are presented along with a discussion on the possible developments in biocomposite materials. The fourth section presents recent developments in the fabrication of bulk nanomaterials and nanoparticles reinforced materials. Advanced joining technologies are presented in the fifth section. Future research is proposed in the last section.

Davis, B.; Hryn, J.; Energy Systems; Kingston Process Metallurgy, Inc.

2008-01-31T23:59:59.000Z

156

Fabrication Technology  

SciTech Connect

The mission of the Fabrication Technology thrust area is to have an adequate base of manufacturing technology, not necessarily resident at Lawrence Livermore National Laboratory (LLNL), to conduct the future business of LLNL. The specific goals continue to be to (1) develop an understanding of fundamental fabrication processes; (2) construct general purpose process models that will have wide applicability; (3) document findings and models in journals; (4) transfer technology to LLNL programs, industry, and colleagues; and (5) develop continuing relationships with the industrial and academic communities to advance the collective understanding of fabrication processes. The strategy to ensure success is changing. For technologies in which they are expert and which will continue to be of future importance to LLNL, they can often attract outside resources both to maintain their expertise by applying it to a specific problem and to help fund further development. A popular vehicle to fund such work is the Cooperative Research and Development Agreement with industry. For technologies needing development because of their future critical importance and in which they are not expert, they use internal funding sources. These latter are the topics of the thrust area. Three FY-92 funded projects are discussed in this section. Each project clearly moves the Fabrication Technology thrust area towards the goals outlined above. They have also continued their membership in the North Carolina State University Precision Engineering Center, a multidisciplinary research and graduate program established to provide the new technologies needed by high-technology institutions in the US. As members, they have access to and use of the results of their research projects, many of which parallel the precision engineering efforts at LLNL.

Blaedel, K.L.

1993-03-01T23:59:59.000Z

157

Multi-resolution Modeling of the Dynamic Loading of Metal Matrix ...  

Science Conference Proceedings (OSTI)

Symposium, Metal and Polymer Matrix Composites ... Fabrication of Metal Matrix Composites via Spark Plasma Sintering for Nuclear Energy Application.

158

Titanium Based Metal-matrix Composites via In-situ Nitridation  

Science Conference Proceedings (OSTI)

Symposium, Metal and Polymer Matrix Composites ... Fabrication of Metal Matrix Composites via Spark Plasma Sintering for Nuclear Energy Application.

159

Characterisation of Al-AC8H/Al2O3p Metal Matrix Composites ...  

Science Conference Proceedings (OSTI)

Symposium, Metal and Polymer Matrix Composites ... Fabrication of Metal Matrix Composites via Spark Plasma Sintering for Nuclear Energy Application.

160

Plasma immersion surface modification with metal ion plasma  

SciTech Connect

We describe here a novel technique for surface modification in which metal plasma is employed and by which various blends of plasma deposition and ion implantation can be obtained. The new technique is a variation of the plasma immersion technique described by Conrad and co-workers. When a substrate is immersed in a metal plasma, the plasma that condenses on the substrate remains there as a film, and when the substrate is then implanted, qualitatively different processes can follow, including' conventional' high energy ion implantation, recoil implantation, ion beam mixing, ion beam assisted deposition, and metallic thin film and multilayer fabrication with or without species mixing. Multiple metal plasma guns can be used with different metal ion species, films can be bonded to the substrate through ion beam mixing at the interface, and multilayer structures can be tailored with graded or abrupt interfaces. We have fabricated several different kinds of modified surface layers in this way. 22 refs., 4 figs.

Brown, I.G.; Yu, K.M. (Lawrence Berkeley Lab., CA (USA)); Godechot, X. (Lawrence Berkeley Lab., CA (USA) Societe Anonyme d'Etudes et Realisations Nucleaires (SODERN), 94 - Limeil-Brevannes (France))

1991-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "fabricated structural metal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Electrical excitation of colloidally synthesized quantum dots in metal oxide structures  

E-Print Network (OSTI)

This thesis develops methods for integrating colloidally synthesized quantum dots (QDs) and metal oxides in optoelectronic devices, presents three distinct light emitting devices (LEDs) with metal oxides surrounding a QD ...

Wood, Vanessa Claire

2010-01-01T23:59:59.000Z

162

Nuclear reactor fuel structure containing uranium alloy wires embedded in a metallic matrix plate  

DOE Patents (OSTI)

A flat or curved plate structure, to be used as fuel in a nuclear reactor, comprises elongated fissionable wires or strips embedded in a metallic continuous non-fissionable matrix plate. The wires or strips are made predominantly of a malleable uranium alloy, such as uranium silicide, uranium gallide or uranium germanide. The matrix plate is made predominantly of aluminum or an aluminum alloy. The wires or strips are located in a single row at the midsurface of the plate, parallel with one another and with the length dimension of the plate. The wires or strips are separated from each other, and from the surface of the plate, by sufficient thicknesses of matrix material, to provide structural integrity and effective fission product retention, under neutron irradiation. This construction makes it safely feasible to provide a high uranium density, so that the uranium enrichment with uranium 235 may be reduced below about 20%, to deter the reprocessing of the uranium for use in nuclear weapons.

Travelli, Armando (Hinsdale, IL)

1988-01-01T23:59:59.000Z

163

Nuclear reactor fuel structure containing uranium alloy wires embedded in a metallic matrix plate  

DOE Patents (OSTI)

A flat or curved plate structure, to be used as fuel in a nuclear reactor, comprises elongated fissionable wires or strips embedded in a metallic continuous non-fissionable matrix plate. The wires or strips are made predominantly of a malleable uranium alloy, such as uranium silicide, uranium gallide or uranium germanide. The matrix plate is made predominantly of aluminum or an aluminum alloy. The wires or strips are located in a single row at the midsurface of the plate, parallel with one another and with the length dimension of the plate. The wires or strips are separated from each other, and from the surface of the plate, by sufficient thicknesses of matrix material, to provide structural integrity and effective fission product retention, under neutron irradiation. This construction makes it safely feasible to provide a high uranium density, so that the uranium enrichment with uranium 235 may be reduced below about 20%, to deter the reprocessing of the uranium for use in nuclear weapons.

Travelli, A.

1985-10-25T23:59:59.000Z

164

Pressure-induced changes in the electronic structure of americium metal  

SciTech Connect

We have conducted electronic-structure calculations for Am metal under pressure to investigate the behavior of the 5f-electron states. Density-functional theory (DFT) does not reproduce the experimental photoemission spectra for the ground-state phase where the 5f electrons are localized, but the theory is expected to be correct when 5f delocalization occurs under pressure. The DFT prediction is that peak structures of the 5f valence band will merge closer to the Fermi level during compression indicating presence of itinerant 5f electrons. Existence of such 5f bands is argued to be a prerequisite for the phase transitions, particularly to the primitive orthorhombic AmIV phase, but does not agree with modern dynamical-mean-field theory (DMFT) results. Our DFT model further suggests insignificant changes of the 5f valence under pressure in agreement with recent resonant x-ray emission spectroscopy, but in contradiction to the DMFT predictions. The influence of pressure on the 5f valency in the actinides is discussed and is shown to depend in a non-trivial fashion on 5f band position and occupation relative to the spd valence bands.

Soderlind, P; Moore, K T; Landa, A; Bradley, J A

2011-02-25T23:59:59.000Z

165

Fabrication Flaw Density and Distribution In Repairs to Reactor Pressure Vessel and Piping Welds  

Science Conference Proceedings (OSTI)

The Pacific Northwest National Laboratory is developing a generalized fabrication flaw distribution for the population of nuclear reactor pressure vessels and for piping welds in U.S. operating reactors. The purpose of the generalized flaw distribution is to predict component-specific flaw densities. The estimates of fabrication flaws are intended for use in fracture mechanics structural integrity assessments. Structural integrity assessments, such as estimating the frequency of loss-of-coolant accidents, are performed by computer codes that require, as input, accurate estimates of flaw densities. Welds from four different reactor pressure vessels and a collection of archived pipes have been studied to develop empirical estimates of fabrication flaw densities. This report describes the fabrication flaw distribution and characterization in the repair weld metal of vessels and piping. This work indicates that large flaws occur in these repairs. These results show that repair flaws are complex in composition and sometimes include cracks on the ends of the repair cavities. Parametric analysis using an exponential fit is performed on the data. The relevance of construction records is established for describing fabrication processes and product forms. An analysis of these records shows there was a significant change in repair frequency over the years when these components were fabricated. A description of repair flaw morphology is provided with a discussion of fracture mechanics significance. Fabrication flaws in repairs are characterized using optimized-access, high-sensitivity nondestructive ultrasonic testing. Flaw characterizations are then validated by other nondestructive evaluation techniques and complemented by destructive testing.

GJ Schuster, FA Simonen, SR Doctor

2008-04-01T23:59:59.000Z

166

Thermoelectric material including a multiple transition metal-doped type I clathrate crystal structure  

DOE Patents (OSTI)

A thermoelectric material includes a multiple transition metal-doped type I clathrate crystal structure having the formula A.sub.8TM.sub.y.sub.1.sup.1TM.sub.y.sub.2.sup.2 . . . TM.sub.y.sub.n.sup.nM.sub.zX.sub.46-y.sub.1.sub.-y.sub.2.sub.- . . . -y.sub.n.sub.-z. In the formula, A is selected from the group consisting of barium, strontium, and europium; X is selected from the group consisting of silicon, germanium, and tin; M is selected from the group consisting of aluminum, gallium, and indium; TM.sup.1, TM.sup.2, and TM.sup.n are independently selected from the group consisting of 3d, 4d, and 5d transition metals; and y.sub.1, y.sub.2, y.sub.n and Z are actual compositions of TM.sup.1, TM.sup.2, TM.sup.n, and M, respectively. The actual compositions are based upon nominal compositions derived from the following equation: z=8q.sub.A-|.DELTA.q.sub.1|y.sub.1-|.DELTA.q.sub.2|y.sub.2- . . . -|.DELTA.q.sub.n|y.sub.n, wherein q.sub.A is a charge state of A, and wherein .DELTA.q.sub.1, .DELTA.q.sub.2, .DELTA.q.sub.n are, respectively, the nominal charge state of the first, second, and n-th TM.

Yang, Jihui (Lakeshore, CA); Shi, Xun (Troy, MI); Bai, Shengqiang (Shanghai, CN); Zhang, Wenqing (Shanghai, CN); Chen, Lidong (Shanghai, CN); Yang, Jiong (Shanghai, CN)

2012-01-17T23:59:59.000Z

167

Electronic and Geometric Structures of Small Gold Metal Particles: Particles Size Effects and the Relationship to Catalytic Activity  

SciTech Connect

The structure of supported gold nano-particles is affected by the size of the particles. Smaller metal particles have decreased gold - gold bond lengths, a higher d electron count, and have a more reactive d band. The influence of support is negligible compared to that of particle size.

Bokhoven, Jeroen A. van [Institute for chemical and Bioengineering, ETH Zurich (Switzerland); Miller, Jeffrey T. [BP Research Center, Naperville, IL 60565-8406 (United States)

2007-02-02T23:59:59.000Z

168

Photon-controlled fabrication of amorphous superlattice structures using ArF (193 nm) excimer laser photolysis  

SciTech Connect

Pulsed ArF (193 nm) excimer laser photolysis of disilane, germane, and disilane-ammonia mixtures has been used to deposit amorphous superlattices containing silicon, germanium, and silicon nitride layers. Transmission electron microscope cross-section views demonstrate that structures having thin (5--25 nm) layers and sharp interlayer boundaries can be deposited at substrate temperatures below the pyrolytic threshold, entirely under laser photolytic control.

Lowndes, D.H.; Geohegan, D.B.; Eres, D.; Pennycook, S.J.; Mashburn, D.N.; Jellison G.E. Jr.

1988-05-30T23:59:59.000Z

169

Central Fabrication Services | Brookhaven National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Central Fabrication Services Central Fabrication Services Home Management Staff Facilities Heavy Machine Shop Welding Shop Sheet Metal Shop Central Cleaning Facility CR X-Ray Facility Inspection Area Services Fabrication Services Group is committed to providing exceptional service to all of its customers. Safety is an integral part of our program and is in the foundation of everything we do. Fabrication Services is a full service proto type shop with production capabilities. Our facilities include machining, wire EDM, water jet cutting, orbital welding, welding, sheet metal, precision measurement, 3D printing, maintenance metal working, cleaning for UHV applications, and our newest addition Computed Radiography. Our capabilities include working on ultra-miniature parts to 20 ton assemblies. Our capability and range of services we provide is largely due

170

Metal Interactions at the Biochar-Water Interface: Energetics and Structure-Sorption Relationships Elucidated by Flow Adsorption Microcalorimetry  

Science Conference Proceedings (OSTI)

Interest in biochars and their role in the biogeochemical cycling of metals have increased in recent years. However, a systematic understanding of the mechanisms involved in biochar-metal interactions and conditions under which a given mechanism is predominant is still needed. We used flow adsorption micro-calorimetry to study structure-sorption relationships between twelve plant-derived biochars and two metals of different ionization potential (Ip). Biochar structure influenced the amount of K+ (Ip = 419 kJ mol-1) or Cd(II) (Ip = 868 kJ mol-17 ) sorption but had no effect on the mechanism of sorption. Irrespective of the biochar, K+ sorption was exothermic, surface-controlled and occurred via an ion-exchange mechanism on negatively- charged sites with molar heats of adsorption (_Hads) of -4 kJ mol-1 on wood versus -8 kJ mol-1 on grass biochars. In contrast, Cd(II) sorption was endothermic and favored surface complexation on uncharged biochar surfaces with _Hads of around +17 kJ mol-1. Cadmium sorption transitioned from surface- to diffusion-controlled on biochars formed at ? 350 oC and _Hads for Cd(II) sorption was the same on grass and wood biochars. We concluded that, in general, metals with lower Ip favor electrostatic interactions with biochars, while metals of higher Ip favor more covalent-like interactions.

Harvey, Omar R.; Herbert, Bruce; Rhue, Roy D.; Kuo, Li-Jung

2011-06-01T23:59:59.000Z

171

Structural and biophysical properties of metal-free pathogenic SOD1 mutants A4V and G93A  

Science Conference Proceedings (OSTI)

Amyotrophic lateral sclerosis (ALS) is a fatal, progressive neurodegenerative disease characterized by the destruction of motor neurons in the spinal cord and brain. A subset of ALS cases are linked to dominant mutations in copper-zinc superoxide dismutase (SOD1). The pathogenic SOD1 variants A4V and G93A have been the foci of multiple studies aimed at understanding the molecular basis for SOD1-linked ALS. The A4V variant is responsible for the majority of familial ALS cases in North America, causing rapidly progressing paralysis once symptoms begin and the G93A SOD1 variant is overexpressed in often studied murine models of the disease. Here we report the three-dimensional structures of metal-free A4V and of metal-bound and metal-free G93A SOD1. In the metal-free structures, the metal-binding loop elements are observed to be severely disordered, suggesting that these variants may share mechanisms of aggregation proposed previously for other pathogenic SOD1 proteins.

Galaleldeen, Ahmad; Strange, Richard W.; Whitson, Lisa J.; Antonyuk, Svetlana V.; Narayana, Narendra; Taylor, Alexander B.; Schuermann, Jonathan P.; Holloway, Stephen P.; Hasnain, S.Samar; Hart, P. John; (Texas-HSC); (Liverpool)

2010-07-19T23:59:59.000Z

172

Fabrication of Aluminum Carbon Nanotube Composites Via High ...  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, 2010 TMS Annual Meeting & Exhibition. Symposium , 2010 Functional and Structural Nanomaterials: Fabrication, Properties, ...

173

Fabrication of 3D Hydrogel Matrices Containing Yeast and Human ...  

Science Conference Proceedings (OSTI)

Fabrication of a Cellulosic Nanocomposite Scaffold with Improved Supermolecular Structure as a Potential Cardiovascular Tissue-Engineered Graft .

174

Structure of a Putative Metal-Chelate Type ABC Transporter: An...  

NLE Websites -- All DOE Office Websites (Extended Search)

Putative Metal-Chelate Type ABC Transporter: An Inward-facing Conformation ATP-binding Cassette (ABC) transporters represent a large family of integral membrane proteins, which are...

175

Ceramic fabrication R D  

DOE Green Energy (OSTI)

This project is separated into three tasks. The first task is a design and modeling effort to be carried out by MSE, Inc. The purpose of this task is to develop and analyze designs for various cohesive ceramic fabrication (CCF) components, including an MHD electrode for strategic defense initiative (SDI) applications and a high stress, low cost, reinforced ceramic component for armor applications. The MHD electrode design is substantially completed. A layered structure composed of molybdenum disilicide graded with quartz glass has been designed and analyzed using finite element methods. The design demonstrates the fabrication capabilities of the CCF process. The high stress, armor application component will be silicon carbide reinforced alumina in thick plates. 2 refs., 4 figs., 1 tab.

Not Available

1990-01-01T23:59:59.000Z

176

Copper-silver-titanium filler metal for direct brazing of structural ceramics  

DOE Patents (OSTI)

A method of joining ceramics and metals to themselves and to one another is described using a brazing filler metal consisting essentially of 35 to 50 atomic percent copper, 15 to 50 atomic percent silver and 10 to 45 atomic percent titanium. This method produces strong joints that can withstand high service temperatures and oxidizing environments.

Moorhead, Arthur J. (Knoxville, TN)

1987-01-01T23:59:59.000Z

177

Slurry-based fabrication of chopped fiberglass composite preforms  

DOE Green Energy (OSTI)

A water-based process for the fabrication of chopped fiberglass preforms is being developed in collaboration with the Automotive Composite Consortium (ACC) and The Budd Company. This slurry process uses hydraulic pressure to form highly compacted fiberglass preforms on contoured, perforated metal screens. The preforms will be used in the development of structural automotive composites. A key objective is to produce preforms having uniform areal density. Computational simulation of variable open area screens, and areal density mapping using a gamma densitometer are discussed.

Moore, G.A.; Johnson, R.W.; Landon, M.D.; Stoots, C.M.; Anderson, J.L.

1995-12-01T23:59:59.000Z

178

Divalent metal nanoparticles  

E-Print Network (OSTI)

Metal nanoparticles hold promise for many scientific and technological applications, such as chemical and biological sensors, vehicles for drug delivery, and subdiffraction limit waveguides. To fabricate such devices, a ...

DeVries, Gretchen Anne

2008-01-01T23:59:59.000Z

179

Intermetallic alloy welding wires and method for fabricating the same  

DOE Patents (OSTI)

Welding wires for welding together intermetallic alloys of nickel aluminides, nickel-iron aluminides, iron aluminides, or titanium aluminides, and preferably including additional alloying constituents are fabricated as two-component, clad structures in which one component contains the primary alloying constituent(s) except for aluminum and the other component contains the aluminum constituent. This two-component approach for fabricating the welding wire overcomes the difficulties associated with mechanically forming welding wires from intermetallic alloys which possess high strength and limited ductilities at elevated temperatures normally employed in conventional metal working processes. The composition of the clad welding wires is readily tailored so that the welding wire composition when melted will form an alloy defined by the weld deposit which substantially corresponds to the composition of the intermetallic alloy being joined. 4 figs.

Santella, M.L.; Sikka, V.K.

1996-06-11T23:59:59.000Z

180

Intermetallic alloy welding wires and method for fabricating the same  

SciTech Connect

Welding wires for welding together intermetallic alloys of nickel aluminides, nickel-iron aluminides, iron aluminides, or titanium aluminides, and preferably including additional alloying constituents are fabricated as two-component, clad structures in which one component contains the primary alloying constituent(s) except for aluminum and the other component contains the aluminum constituent. This two-component approach for fabricating the welding wire overcomes the difficulties associated with mechanically forming welding wires from intermetallic alloys which possess high strength and limited ductilities at elevated temperatures normally employed in conventional metal working processes. The composition of the clad welding wires is readily tailored so that the welding wire composition when melted will form an alloy defined by the weld deposit which substantially corresponds to the composition of the intermetallic alloy being joined.

Santella, Michael L. (Knoxville, TN); Sikka, Vinod K. (Oak Ridge, TN)

1996-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fabricated structural metal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Method of forming a thin unbacked metal foil  

DOE Patents (OSTI)

The present invention relates generally to metal foils and methods of making the same. More particularly, this invention pertains to the fabrication of very thin, unbacked metal foils.

Duchane, D.V.; Barthell, B.L.

1983-02-23T23:59:59.000Z

182

Universal desktop fabrication  

Science Conference Proceedings (OSTI)

Advances in digital design and fabrication technologies are leading toward single fabrication systems capable of producing almost any complete functional object. We are proposing a new paradigm for manufacturing, which we call Universal Desktop Fabrication ...

T. Vilbrandt; E. Malone; H. Lipson; A. Pasko

2008-01-01T23:59:59.000Z

183

Ion exchange behavior among metal trisilicates: probing selectivity, structures, and mechanism  

E-Print Network (OSTI)

One model system for the investigation of selectivity in inorganic ion exchangers is a group of synthetic analogues of the mineral umbite. Hydrothermally synthesized trisilicates with the general form A2BSi3O9.H2O, where A is a monovalent cation, and B = Ti4+, Zr4+, and Sn4+ have been shown to have ion exchange properties. The extended three dimensional framework structure offers the ability to tune the selectivity based on the size of the cavities and channels. The unit cell volume, and therefore the pore size, can be altered by changing the size of the octahedral metal. The substitution of Ge for Si can also increase the pore size. A variety of cations have been exchanged into the trisilicates including alkali and alkaline earths, lanthanides, and actinides. The reason for the selectivity rests in the pocket of framework oxygens which make up the exchange sites. Close examination of the cation environments shows that the ions with the greatest affinity are those that have the closest contacts to the framework oxygens. For example, among alkali cations, zirconium trisilicate demonstrates the greatest affinity for Rb+ and has the most A-O contact distances approaching the sum of their ionic radii. The origins of selectivity also rely upon the valence of the incoming cation. When cations are of similar ionic radius, a cation of higher charge is always preferred over the lower valence. Ion exchange studies in binary solutions of cations of different valence, but similar size (1.0Ĺ ) have proven the selectivity series to be Th4+ > Gd3+ > Ca2+ > Na+. Through structural characterization, kinetic studies, and use of in situ x-ray diffraction techniques the origins of selectivity in these inorganic ion exchangers has been further elucidated. The principles gleaned from these studies can be applied to other inorganic framework materials. The umbite system has the potential to be altered and tailored for specific separation needs. The trisilicate materials presented in this work are representative of the types of advances in inorganic materials research and prove their potential as applicable compounds useful for solving real world problems.

Fewox, Christopher Sean

2008-08-01T23:59:59.000Z

184

Microstructure and Properties of Aluminum Metal Matrix Composite ...  

Science Conference Proceedings (OSTI)

Fabrication of Metal Matrix Composites via Spark Plasma Sintering for Nuclear Energy Application · Hollow Particle Filled Lightweight Composites: Weight ...

185

Refractory Metals Committee  

Science Conference Proceedings (OSTI)

The Refractory Metals Committee is part of the Structural Materials Division. Our Mission: Includes all technical aspects of the science of refractory metals and ...

186

BATT Fabrication Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Scientist working in battery lab BATT Fabrication Laboratory The BATT Fab Lab (Batteries for Advanced Transportation Technologies Fabrication Laboratory) conducts battery cell...

187

Fuel Fabrication Facility  

National Nuclear Security Administration (NNSA)

Construction of the Mixed Oxide Fuel Fabrication Facility Construction of the Mixed Oxide Fuel Fabrication Facility November 2005 May 2007 June 2008 May 2012...

188

Interplay between electronic structure and catalytic activity in transition metal oxide model system  

E-Print Network (OSTI)

The efficiency of many energy storage and conversion technologies, such as hydrogen fuel cells, rechargeable metal-air batteries, and hydrogen production from water splitting, is limited by the slow kinetics of the oxygen ...

Suntivich, Jin

2012-01-01T23:59:59.000Z

189

Surface structures from low energy electron diffraction: Atoms, small molecules and an ordered ice film on metal surfaces  

SciTech Connect

We investigated the surface bonding of various adsorbates (0, S, C{sub 2}H{sub 3} and NO) along with the resulting relaxation of the Pt(111) surface using low energy electron diffiraction (LEED). LEED experiments have been performed on these ordered overlayers along with theoretical structural analysis using automated tensor LEED (ATLEED). The resulting surface structures of these ordered overlayers exhibit similar adsorbate-induced relaxations. In all cases the adsorbate occupies the fcc hollow site and induces an approximately 0.1 A buckling of the metal surface. The three metal atoms directly bonded to the adsorbate are ``pulled`` out of the surface and the metal atom that is not bound to the adsorbate is `pushed`` inward. In order to understand the reliability of such details, we have carried out a comprehensive study of various non-structural parameters used in a LEED computation. We also studied the adsorption of water on the Pt(lll) surface. We ordered an ultra thin ice film on this surface. The film`s surface is found to be the (0001) face of hexagonal ice. This surface is apparently terminated by a full-bilayer, in which the uppermost water molecules have large vibrational amplitudes even at temperatures as low as 90 K. We examined two other metal surfaces besides Pt(111): Ni(111) and Fe(lll). On Ni(111), we have studied the surface under a high coverage of NO. On both Ni(111) and Pt(111) NO molecules occupy the hollow sites and the N-0 bond distances are practically identical. The challenging sample preparation of an Fe(111) surface has been investigated and a successful procedure has been obtained. The small interlayer spacing found on Fe(111) required special treatment in the LEED calculations. A new ATLEED program has been developed to handle this surface.

Materer, N.F.

1995-09-01T23:59:59.000Z

190

Management Staff | Central Fabrication Services | Brookhaven National  

NLE Websites -- All DOE Office Websites (Extended Search)

Management Staff Management Staff Al Farland Al Farland Central Fabrication Services General Supervisor Welding, Sheet Metal, and Maintenance Metal Work Supervisor Al Farland joined the Laboratory in 1978 with over 20 years of experience in the metal fabrication industry. Al worked on the floor before becoming a supervisor and is familiar and responsible for the Central Fabrication Services group. Phone: (631) 344-8462 Fax: (631) 344-7208 Email: farland@bnl.gov Kevin Campbell Kevin Campbell Machine Shop Supervisor Kevin Campbell came to the Laboratory in 2008 as a programmer/planner/estimator and has since been promoted to Machine Shop Supervisor. Kevin is responsible for Machine shop operations. Phone: (631) 344-3498 Fax: (631) 344-7208 Email: kcampbell@bnl.gov Chris Manning Chris Manning

191

Reaction selectivity studies on nanolithographically-fabricated platinum model catalyst arrays  

E-Print Network (OSTI)

Structure of Metallic Catalysts. Academic Press, London,R. Structure of Metallic Catalysts. Academic Press, London,Ethylene on Metallic Catalysts, National Standard Reference

Grunes, Jeffrey Benjamin

2004-01-01T23:59:59.000Z

192

Fabrication of transparent ceramics using nanoparticles  

DOE Patents (OSTI)

A method of fabrication of a transparent ceramic using nanoparticles synthesized via organic acid complexation-combustion includes providing metal salts, dissolving said metal salts to produce an aqueous salt solution, adding an organic chelating agent to produce a complexed-metal sol, heating said complexed-metal sol to produce a gel, drying said gel to produce a powder, combusting said powder to produce nano-particles, calcining said nano-particles to produce oxide nano-particles, forming said oxide nano-particles into a green body, and sintering said green body to produce the transparent ceramic.

Cherepy, Nerine J; Tillotson, Thomas M; Kuntz, Joshua D; Payne, Stephen A

2012-09-18T23:59:59.000Z

193

Follow medical processes in the human body, study safe hydro-gen storage in complex metal structures for car design, follow  

E-Print Network (OSTI)

Follow medical processes in the human body, study safe hydro- gen storage in complex metal structures for car design, follow the phase transition of foodstuff to improve their taste, detect plastic

194

Apparatus and method for fabricating a microbattery  

SciTech Connect

An apparatus and method for fabricating a microbattery that uses silicon as the structural component, packaging component, and semiconductor to reduce the weight, size, and cost of thin film battery technology is described. When combined with advanced semiconductor packaging techniques, such a silicon-based microbattery enables the fabrication of autonomous, highly functional, integrated microsystems having broad applicability.

Shul, Randy J. (Albuquerque, NM); Kravitz, Stanley H. (Albuquerque, NM); Christenson, Todd R. (Albuquerque, NM); Zipperian, Thomas E. (Edgewood, NM); Ingersoll, David (Albuquerque, NM)

2002-01-01T23:59:59.000Z

195

Planarization of metal films for multilevel interconnects by pulsed laser heating  

DOE Patents (OSTI)

In the fabrication of multilevel integrated circuits, each metal layer is planarized by heating to momentarily melt the layer. The layer is melted by sweeping laser pulses of suitable width, typically about 1 microsecond duration, over the layer in small increments. The planarization of each metal layer eliminates irregular and discontinuous conditions between successive layers. The planarization method is particularly applicable to circuits having ground or power planes and allows for multilevel interconnects. Dielectric layers can also be planarized to produce a fully planar multilevel interconnect structure. The method is useful for the fabrication of VLSI circuits, particularly for wafer-scale integration.

Tuckerman, David B. (Livermore, CA)

1987-01-01T23:59:59.000Z

196

Fabrication of toroidal composite pressure vessels. Final report  

DOE Green Energy (OSTI)

A method for fabricating composite pressure vessels having toroidal geometry was evaluated. Eight units were fabricated using fibrous graphite material wrapped over a thin-walled aluminum liner. The material was wrapped using a machine designed for wrapping, the graphite material was impregnated with an epoxy resin that was subsequently thermally cured. The units were fabricated using various winding patterns. They were hydrostatically tested to determine their performance. The method of fabrication was demonstrated. However, the improvement in performance to weight ratio over that obtainable by an all metal vessel probably does not justify the extra cost of fabrication.

Dodge, W.G.; Escalona, A.

1996-11-24T23:59:59.000Z

197

ElectronicFabrication  

NLE Websites -- All DOE Office Websites (Extended Search)

Fabrication Fabrication Manufacturing Technologies Electronic Fabrication provides our cus- tomers solutions for the packaging design, production acceptable prototype fabrica- tion, or deliverable production fabrication. Capabilities * Final electronic product packaging from sketches and verbal instructions * Provide CAD drawing package after project completion if no formal prints are available * Complete system development and fab- rication through concurrent engineering * Concurrent engineering in prototype and production fabrication * Integrate commercial equipment into prototype system design * Implementation and modification of commercial equipment * Packaging of prototype into finalized product assembly Resources * Customer assistance from fabrication, to testing, to complete system installation

198

Metallic Nanocomposites Powders Fabricated through Nanoparticle ...  

Science Conference Proceedings (OSTI)

Ultrasonic processing technique was utilized to distribute and disperse TiCN nanoparticles and Al droplets in the molten salt of eutectic NaCl/KCl.

199

Structure formation upon reactive direct current magnetron sputtering of transition metal oxide films  

Science Conference Proceedings (OSTI)

A comparative study of reactive direct current magnetron sputtering for different transition metal oxides reveals crystalline films at room temperature for group 4 and amorphous films for groups 5 and 6. This observation cannot be explained by the known growth laws and is attributed to the impact of energetic particles, originating from the oxidized target, on the growing film. This scenario is supported by measured target characteristics, the evolution of deposition stress of the films, and the observed backsputtering.

Ngaruiya, J.M.; Kappertz, O.; Mohamed, S.H.; Wuttig, M. [I. Physikalisches Institut der RWTH Aachen, D-52056 Aachen, Germany and Jomo Kenyatta University of Agriculture and Technology, Box 62000 Nairobi (Kenya); I. Physikalisches Institut der RWTH Aachen, D-52056 Aachen (Germany)

2004-08-02T23:59:59.000Z

200

Low-cost metal substrates for films with aligned grain structures  

DOE Green Energy (OSTI)

Polycrystalline metal substrates that possess a significant amount of in-plane and out-of-plane crystallographic texture have recently been developed for high-temperature superconducting film applications. These substrates enable the virtual elimination of large angle grain boundaries in subsequent epitaxial films, having been successfully utilized in various oxide thin film architectures. This paper describes the characteristics of these substrates, and briefly discusses their potential applicability in polycrystalline thin-film photovoltaic applications.

Norton, D.P.; Budai, J.D.; Goyal, A.; Lowndes, D.H.; Kroeger, D.M.; Christen, D.K.; Paranthaman, M.; Specht, E.D.

1996-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "fabricated structural metal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Refractory Metals 2011  

Science Conference Proceedings (OSTI)

Aug 2, 2010 ... TMS Structural Materials Division TMS: Refractory Metals Committee. Organizer( s), Omer Dogan, DOE National Energy Technology Laboratory

202

DESIGN [fabrication] BUILD  

E-Print Network (OSTI)

DESIGN [fabrication] BUILD proposes a new relationship among the architect, homeowner, and fabricator/assembler through the use of parametric software in order to create a truly customizable prefabricated home. This ...

Rader, Nicolas Glen

2006-01-01T23:59:59.000Z

203

Clad metals by roll bonding for SOFC interconnects  

Science Conference Proceedings (OSTI)

Metallic interconnects have been becoming an increasingly interesting topic in the development in intermediate temperature solid oxide fuel cells (SOFC). High temperature oxidation resistant alloys are currently considered as candidate materials. Among these alloys however, different groups of alloys demonstrate different advantages and disadvantages, and few if any can completely satisfy the stringent requirements for the application. To integrate the advantages and avoid the disadvantages of different groups of alloys, clad metal has been proposed for SOFC interconnect applications and interconnect structures. This paper gives a brief overview of the cladding approach and its applications, and discuss the viability of this technology to fabricate the metallic layered-structure interconnects. To examine the feasibility of this approach, the austenitic Ni-base alloy Haynes 230 and the ferritic stainless steel AL 453 were selected as examples and manufactured into a clad metal. Its suitability as an interconnect construction material was investigated.

Chen, L.; Jha, B; Yang, Z Gary; Xia, Gordon; Stevenson, Jeffry W.; Singh, Prabhakar

2006-08-01T23:59:59.000Z

204

Fuel fabrication acceptance report FSV: initial core  

SciTech Connect

The fabrication of the Fort St. Vrain initial core is described. Detailed summaries of the final fuel element metal loadings and other properties are given. Problems that occurred during fabrication and their resolutions have been given special attention, including the results of analyses made prior to their adoption. A final substantiation for the Fort St. Vrain initial core was provided by a full-core, three-dimensional analysis considering control rod insertion and fuel depletion and with explicit representation of the as-built fuel elements. The calculated power distributions from the three dimensional analysis are well within the limits specified for the reference design. During fabrication of the initial core fuel elements, some difficulties with assayed quantities of uranium and thorium were encountered. These difficulties resulted from changes in the fuel rod standards used in assay equipment calibration and in the techniques employed for assaying fuel particles and fuel rods. As a result the apparent values for the average metal loadings for some fuel rods and fuel elements changed. For certain blends some already-assembled fuel elements were outside the tolerances given in the fuel specification. A study was undertaken to make recommendations on the disposition of already-fabricated fuel and adjustments for the remainder of fuel fabrication. This study focused on utilizing, as much as possible, already-fabricated fuel without compromising the performance of the core. A variety of adjustments were considered and used in some instances, but the most successful method was the imposition of a layer location on fuel elements. By use of this additional core assembly requirement, a distribution of high metal load and low metal load fuel elements was obtained that assured that power perturbations would be small and localized and that temperature perturbations would be small and confined to axial layers where temperatures are nominally low. (auth)

Kapernick, R.J.; Nirschl, R.J.

1973-12-01T23:59:59.000Z

205

Structure-property correlations in the design of organic metals and superconductors: An overview  

SciTech Connect

Molecular structure and, more importantly, molecular packing in organic superconducting salts (TMTSF){sub 2}X, {beta}-(BEDT-TTF){sub 2}X and {kappa}-(BEDT-TTF){sub 2}X will be examined in the context of deducing structure-property correlations in these systems. Such an approach has been instrumental in the discovery of superconductivity at 10.4 K in {kappa}-(BEDT-TTF){sub 2}Cu(NCS){sub 2}, and it will continue to serve as an important tool in the rational design of new organic superconductors with even higher superconducting transition temperatures.

Kini, A.M.; Beno, M.A.; Carlson, K.D.; Ferraro, J.R.; Geiser, U.; Schultz, A.J.; Wang, H.H.; Williams, J.M.

1989-01-01T23:59:59.000Z

206

Utilization of Diatoms to Collect Metallic Ions  

Science Conference Proceedings (OSTI)

Fabrication of a Cellulosic Nanocomposite Scaffold with Improved Supermolecular Structure as a Potential Cardiovascular Tissue-Engineered Graft .

207

Update on US High Density Fuel Fabrication Development  

SciTech Connect

Second generation uranium molybdenum fuel has shown excellent in-reactor irradiation performance. This metallic fuel type is capable of being fabricated at much higher loadings than any presently used research reactor fuel. Due to the broad range of fuel types this alloy system encompasses—fuel powder to monolithic foil and binary fuel systems to multiple element additions—significant amounts of research and development have been conducted on the fabrication of these fuels. This paper presents an update of the US RERTR effort to develop fabrication techniques and the fabrication methods used for the RERTR-9A miniplate test.

C.R. Clark; G.A. Moore; J.F. Jue; B.H. Park; N.P. Hallinan; D.M. Wachs; D.E. Burkes

2007-03-01T23:59:59.000Z

208

Fabrication and Testing  

Science Conference Proceedings (OSTI)

Aug 6, 2010 ... Fabrication of Artificial Bone by the Combination of Electrospinning, Extrusion and Slurry Processes: Hiep Nguyen1; Byong-Taek Lee1; ...

209

The quasi-static and dynamic responses of metallic sandwich structures  

E-Print Network (OSTI)

. This thesis will focus on one particular industrial application where energy absorption is important, ship hull design. 3 Chapter 1. Introduction gas storage tank Y-frame core (a) (b) Sandwich roof and side panels Figure 1.3: Examples of sandwich structures... work was sponsored by the Material Innovation Institute (M2i) under the project no. MC2.06261 and by the Fonds Que´be´cois de la Recherche sur la Nature et les Technologies (FQRNT). This dissertation is the result of my own work and includes nothing...

St-Pierre, Luc

2012-06-12T23:59:59.000Z

210

Structure-property relationship of metal-organic frameworks (MOFs) and physisorbed off-gas radionuclides.  

Science Conference Proceedings (OSTI)

We report on the host-guest interactions between metal-organic frameworks (MOFs) with various profiles and highly polarizable molecules (iodine), with emphasis on identifying preferential sorption sites in these systems. Radioactive iodine 129I, along with other volatile radionuclides (3H, 14C, Xe and Kr), represents a relevant component in the off-gas resulted during nuclear fuel reprocessing. Due to its very long half-life, 15.7 x 106 years, and potential health risks in humans, its efficient capture and long-term storage is of great importance. The leading iodine capture technology to date is based on trapping iodine in silver-exchanged mordenite. Our interests are directed towards improving existent capturing technologies, along with developing novel materials and alternative waste forms. Herein we report the first study that systematically monitors iodine loading onto MOFs, an emerging new class of porous solid-state materials. In this context, MOFs are of particular interest as: (i) they serve as ideal high capacity storage media, (ii) they hold potential for the selective adsorption from complex streams, due to their high versatility and tunability. This work highlights studies on both newly developed in our lab, and known highly porous MOFs that all possess distinct characteristics (specific surface area, pore volume, pore size, and dimension of the window access to the pore). The materials were loaded to saturation, where elemental iodine was introduced from solution, as well as from vapor phase. Uptakes in the range of {approx}125-150 wt% I2 sorbed were achieved, indicating that these materials outperform all other solid adsorbents to date in terms of overall capacity. Additionally, the loaded materials can be efficiently encapsulated in stable waste forms, including as low temperature sintering glasses. Ongoing studies are focused on gathering qualitative information with respect to localizing the physisorbed iodine molecules within the frameworks: X-ray single-crystal analyses, in conjunction with high pressure differential pair distribution function (d-PDF) studies aimed to identify preferential sites in the pores, and improve MOFs robustness. Furthermore, durability studies on the iodine loaded MOFs and subsequent waste forms include thermal analyses, SEM/EDS elemental mapping, and leach-durability testing. We anticipate for this in-depth analysis to further aid the design of advanced materials, capable to address major hallmarks: safe capture, stability and durability over extended timeframes.

Nenoff, Tina Maria; Chupas, Peter J. (Argonne National Laboratory); Garino, Terry J.; Rodriguez, Mark Andrew; Chapman, Karena W. (Argonne National Laboratory); Sava, Dorina Florentina

2010-11-01T23:59:59.000Z

211

Biaxial Creep Specimen Fabrication  

Science Conference Proceedings (OSTI)

This report documents the results of the weld development and abbreviated weld qualification efforts performed by Pacific Northwest National Laboratory (PNNL) for refractory metal and superalloy biaxial creep specimens. Biaxial creep specimens were to be assembled, electron beam welded, laser-seal welded, and pressurized at PNNL for both in-pile (JOYO reactor, O-arai, Japan) and out-of-pile creep testing. The objective of this test campaign was to evaluate the creep behavior of primary cladding and structural alloys under consideration for the Prometheus space reactor. PNNL successfully developed electron beam weld parameters for six of these materials prior to the termination of the Naval Reactors program effort to deliver a space reactor for Project Prometheus. These materials were FS-85, ASTAR-811C, T-111, Alloy 617, Haynes 230, and Nirnonic PE16. Early termination of the NR space program precluded the development of laser welding parameters for post-pressurization seal weldments.

JL Bump; RF Luther

2006-02-09T23:59:59.000Z

212

Recent results from the Spacecraft Fabrication and Test MODIL  

SciTech Connect

The Spacecraft Fabrication and Test Manufacturing Operations Development and Integration Laboratory (SF&T MODIL) is working with SDIO program offices and contractors to reduce schedule and budget risks for SDIO systems as they go into production. The concurrent engineering thrust has identified potential high payoff areas. A materials and structures demonstration project has been successfully completed in partial automated closing of matched metal molds for a continuous fiber composite. In addition to excellent accuracy, the parts demonstrated excellent predictability and repeatability of physical properties. The cryocooler thrust successfully demonstrated and inserted precision technologies into a generic cryocooler part. The precision technologies thrust outlined two potentially high payoff areas in precision alignment and miniature rocket thrust measurement. The Producible Technology Working Group (PTWG) efforts identified the need for a test and assembly thrust. Due to funding limitations, continuing efforts are limited to the cryocooler thrust.

Saito, T.T.

1993-04-01T23:59:59.000Z

213

metal-organic compounds Acta Crystallographica Section E Structure Reports Online  

E-Print Network (OSTI)

R factor = 0.022; wR factor = 0.057; data-to-parameter ratio = 13.3. In the title complex, [CoK2(C3H2O4)2(H2O)4]n, the Co atom is located on a position with site symmetry 2/m, the K atom and one water molecule are located on a mirror plane, and the malonate and one water molecule are located on a twofold rotation axis. The K I atom is seven-coordinated by four carboxylate O atoms from four malonate ligands and by three water O atoms, forming a distorted polyhedron. The Co II atom is in an almost octahedral environment formed by four carboxylate O atoms from two malonate ligands and two water O atoms. The structure consists of layers parallel to (201) built up from edge-sharing KO7 and CoO6 polyhedra, which are connected by O—H O hydrogen bonding including water molecules into a three-dimensional network. Related literature

Adama Sy; A Aliou Hamady Barry; B Mohamed Gaye; Abdou Salam Sall A; Ahmed Driss C; Crystal Data

2011-01-01T23:59:59.000Z

214

Selecting the suitable dopants: electronic structures of transition metal and rare earth doped thermoelectric sodium cobaltate  

E-Print Network (OSTI)

Engineered Na0.75CoO2 is considered a prime candidate to achieve high efficiency thermoelectric systems to regenerate electricity from waste heat. In this work, three elements with outmost electronic configurations, (1) an open d shell (Ni), (2) a closed d shell (Zn), and (3) an half fill f shell (Eu) with a maximum unpaired electrons, were selected to outline the dopants' effects on electronic and crystallographic structures of Na0.75CoO2. Systematic ab initio density functional calculations showed that the formation energy of these dopants was found to be lowest when residing on sodium layer and ranked as -1.1 eV, 0.44 eV and 3.44 eV for Eu, Ni and Zn respectively. Furthermore Ni was also found to be stable when substituting Co ion. As these results show great harmony with existing experimental data, they provide new insights into the fundamental principle of dopant selection for manipulating the physical properties in the development of high performance sodium cobaltate based thermoelectric materials.

Assadi, M H N; Yu, A B

2012-01-01T23:59:59.000Z

215

Method of fabricating composite superconducting wire  

DOE Patents (OSTI)

An improvement in the method for preparing composite rods of superconducting alloy and normal metal from which multifilament composite superconducting wire is fabricated by bending longitudinally a strip of normal metal around a rod of superconductor alloy and welding the edges to form the composite rod. After the rods have preferably been provided with a hexagonal cross-sectional shape, a plurality of the rods are stacked into a normal metal extrusion can, sealed and worked to reduce the cross-sectional size and form multifilament wire. Diffusion barriers and high-electrical resistance barriers can easily be introduced into the wire by plating or otherwise coating the faces of the normal metal strip with appropriate materials.

Strauss, Bruce P. (Downers Grove, IL); Reardon, Paul J. (Princeton, NJ); Remsbottom, Robert H. (Middleton, WI)

1977-01-01T23:59:59.000Z

216

Services | Central Fabrication Services | Brookhaven National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Services & Capabilities Services & Capabilities The Central Fabrication Services Division's capabilities range from an Electric Discharge Machining (EDM) capability, to a state of the art cleaning facility, to a large fabricating facility which includes CNC Machining, Automatic Tube Welding, CNC Punch Press capability, and 3-D printing. CNC Auto Feed Saw High Bay Area 3-D Printer Main Shop, Building 479 Maintenance Sheet Metal Area Water Jet Machine X-ray Generating Tube CR X-ray Processor with High Resolution Monitor Low Bay Area in Machine Shop Wire EDM Machine Wire EDM Machine Oil Recycling Facility, Building 495 UHV Cleaning Facility, Building 498 Material Storage and Stock Central Fabrication Services is proud of it's highly proficient technical staff all of which are available, at no cost to the customer, for

217

Fabricating solid carbon porous electrodes from powders  

DOE Patents (OSTI)

Fabrication of conductive solid porous carbon electrodes for use in batteries, double layer capacitors, fuel cells, capacitive dionization, and waste treatment. Electrodes fabricated from low surface area (<50 m.sup.2 /gm) graphite and cokes exhibit excellent reversible lithium intercalation characteristics, making them ideal for use as anodes in high voltage lithium insertion (lithium-ion) batteries. Electrodes having a higher surface area, fabricated from powdered carbon blacks, such as carbon aerogel powder, carbon aerogel microspheres, activated carbons, etc. yield high conductivity carbon compositives with excellent double layer capacity, and can be used in double layer capacitors, or for capacitive deionization and/or waste treatment of liquid streams. By adding metallic catalysts to be high surface area carbons, fuel cell electrodes can be produced.

Kaschmitter, James L. (Pleasanton, CA); Tran, Tri D. (Livermore, CA); Feikert, John H. (Livermore, CA); Mayer, Steven T. (San Leandro, CA)

1997-01-01T23:59:59.000Z

218

Fabricating solid carbon porous electrodes from powders  

DOE Patents (OSTI)

Fabrication is described for conductive solid porous carbon electrodes for use in batteries, double layer capacitors, fuel cells, capacitive deionization, and waste treatment. Electrodes fabricated from low surface area (<50 m{sup 2}/gm) graphite and cokes exhibit excellent reversible lithium intercalation characteristics, making them ideal for use as anodes in high voltage lithium insertion (lithium-ion) batteries. Electrodes having a higher surface area, fabricated from powdered carbon blacks, such as carbon aerogel powder, carbon aerogel microspheres, activated carbons, etc. yield high conductivity carbon composites with excellent double layer capacity, and can be used in double layer capacitors, or for capacitive deionization and/or waste treatment of liquid streams. By adding metallic catalysts to high surface area carbons, fuel cell electrodes can be produced. 1 fig.

Kaschmitter, J.L.; Tran, T.D.; Feikert, J.H.; Mayer, S.T.

1997-06-10T23:59:59.000Z

219

Mercury and other heavy metals influence bacterial community structure in contaminated Tennessee streams  

Science Conference Proceedings (OSTI)

High concentrations of uranium, inorganic mercury [Hg(II)], and methylmercury (MeHg) have been detected in streams located in the Department of Energy reservation in Oak Ridge, TN. To determine the potential effects of the surface water contamination on the microbial community composition, surface stream sediments were collected 7 times during the year, from 5 contaminated locations and 1 control stream. Fifty-nine samples were analyzed for bacterial community composition and geochemistry. Community characterization was based on GS 454 FLX pyrosequencing with 235 Mb of 16S rRNA gene sequence targeting the V4 region. Sorting and filtering of the raw reads resulted in 588,699 high-quality sequences with lengths of >200 bp. The bacterial community consisted of 23 phyla, including Proteobacteria (ranging from 22.9 to 58.5% per sample), Cyanobacteria (0.2 to 32.0%), Acidobacteria (1.6 to 30.6%), Verrucomicrobia (3.4 to 31.0%), and unclassified bacteria. Redundancy analysis indicated no significant differences in the bacterial community structure between midchannel and near-bank samples. Significant correlations were found between the bacterial community and seasonal as well as geochemical factors. Furthermore, several community members within the Proteobacteria group that includes sulfate-reducing bacteria and within the Verrucomicrobia group appeared to be associated positively with Hg and MeHg. This study is the first to indicate an influence of MeHg on the in situ microbial community and suggests possible roles of these bacteria in the Hg/MeHg cycle.

Vishnivetskaya, Tatiana A [ORNL; Mosher, Jennifer J [ORNL; Palumbo, Anthony Vito [ORNL; Yang, Zamin [ORNL; Podar, Mircea [ORNL; Brown, Steven D [ORNL; Brooks, Scott C [ORNL; Gu, Baohua [ORNL; Southworth, George R [ORNL; Drake, Meghan M [ORNL; Brandt, Craig C [ORNL; Elias, Dwayne A [ORNL

2011-01-01T23:59:59.000Z

220

Soft-Lithographical Fabrication of Three-dimensional Photonic Crystals in the Optical Regime  

Science Conference Proceedings (OSTI)

This dissertation describes several projects to realize low-cost and high-quality three-dimensional (3D) microfabrication using non-photolithographic techniques for layer-by-layer photonic crystals. Low-cost, efficient 3D microfabrication is a demanding technique not only for 3D photonic crystals but also for all other scientific areas, since it may create new functionalities beyond the limit of planar structures. However, a novel 3D microfabrication technique for photonic crystals implies the development of a complete set of sub-techniques for basic layer-by-layer stacking, inter-layer alignment, and material conversion. One of the conventional soft lithographic techniques, called microtransfer molding ({mu}TM), was developed by the Whitesides group in 1996. Although {mu}TM technique potentially has a number of advantages to overcome the limit of conventional photolithographic techniques in building up 3D microstructures, it has not been studied intensively after its demonstration. This is mainly because of technical challenges in the nature of layer-by-layer fabrication, such as the demand of very high yield in fabrication. After two years of study on conventional {mu}TM, We have developed an advanced microtransfer molding technique, called two-polymer microtransfer molding (2P-{mu}TM) that shows an extremely high yield in layer-by-layer microfabrication sufficient to produce highly layered microstructures. The use of two different photo-curable prepolymers, a filler and an adhesive, allows for fabrication of layered microstructures without thin films between layers. The capabilities of 2P-{mu}TM are demonstrated by the fabrication of a wide-area 12-layer microstructure with high structural fidelity. Second, we also had to develop an alignment technique. We studied the 1st-order diffracted moire fringes of transparent multilayered structures comprised of irregularly deformed periodic patterns. By a comparison study of the diffracted moire fringe pattern and detailed microscopy of the structure, we show that the diffracted moire fringe can be used as a nondestructive tool to analyze the alignment of multilayered structures. We demonstrate the alignment method for the case of layer-by-layer microstructures using soft lithography. The alignment method yields high contrast of fringes even when the materials being aligned have very weak contrasts. The imaging method of diffracted moire fringes is a versatile visual tool for the microfabrication of transparent deformable microstructures in layer-by-layer fashion. Third, we developed several methods to convert a polymer template to dielectric or metallic structures, for instance, metallic infiltration using electrodeposition, metallic coating using sputter deposition, dielectric infiltration using titania nano-slurry, and dielectric coating using atomic layer deposition of Titania. By several different developed techniques, high quality photonic crystals have been successfully fabricated; however, I will focus on a line of techniques to reach metallic photonic crystals in this dissertation since they are completely characterized at this moment. In addition to the attempts for photonic crystal fabrication, our non-photolithographic technique is applied for other photonic applications such as small optical waveguides whose diameter is comparable to the wavelength of guided light. Although, as guiding medium, polymers have tremendous potential because of their enormous variation in optical, chemical and mechanical properties, their application for optical waveguides is limited in conventional photolithography. By 2P-{mu}TM, we achieve low cost, high yield, high fidelity, and tailorable fabrication of small waveguides. Embedded semiconductor quantum-dots and grating couplers are used for efficient internal and external light source, respectively.

Jae-Hwang Lee

2006-08-09T23:59:59.000Z

Note: This page contains sample records for the topic "fabricated structural metal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Final Technical Report on DE-SC00002460 [Bimetallic or trimetallic materials with structural metal centers based on Mn, Fe or V  

DOE Green Energy (OSTI)

Bimetallic or trimetallic materials with structural metal centers based on Mn, Fe or V were investigated under this project. These metal centers are the focus of this research as they have high earth abundance and have each shown success as cathode materials in lithium batteries. Silver ion, Ag{sup +}, was initially selected as the displacement material as reduction of this center should result in increased conductivity as Ag{sup 0} metal particles are formed in-situ upon electrochemical reduction. The in-situ formation of metal nanoparticles upon electrochemical reduction has been previously noted, and more recently, we have investigated the resulting increase in conductivity. Layered materials as well as materials with tunnel or channel type structures were selected. Layered materials are of interest as they can provide 2-dimensional ion mobility. Tunnel or channel structures are also of interest as they provide a rigid framework that should remain stable over many discharge/charge cycles. We describe some examples of materials we have synthesized that demonstrate promising electrochemistry.

Takeuchi, Esther Sans [Stony Brook University; Takeuchi, Kenneth James [Stony Brook University; Marschilok, Amy Catherine [Stony Brook University

2013-07-26T23:59:59.000Z

222

Method Of Bonding A Metal Connection To An Electrode Including A Core Having A Fiber Or Foam Type Structure For An Electrochemical Cell, An  

DOE Patents (OSTI)

A method of bonding a metal connection to an electrode including a core having a fiber or foam-type structure for an electrochemical cell, in which method at least one metal strip is pressed against one edge of the core and is welded thereto under compression, wherein, at least in line with the region in which said strip is welded to the core, which is referred to as the "main core", a retaining core of a type analogous to that of the main core is disposed prior to the welding.

Loustau, Marie-Therese (Bordeaux, FR); Verhoog, Roelof (Bordeaux, FR); Precigout, Claude (Lormont, FR)

1996-09-24T23:59:59.000Z

223

First-principles calculation of the effect of atomic disorder on the electronic structure of the half-metallic ferromagnet NiMnSb  

Science Conference Proceedings (OSTI)

The electronic structure of the half-metallic ferromagnet NiMnSb with three different types of atomic disorder is calculated using the layer Korringa-Kohn-Rostoker method in conjunction with the coherent potential approximation. Results indicate the presence of minority-spin states at the Fermi energy for degrees of disorder as low as a few percent. The resulting spin polarization below 100{percent} is discussed in the light of experimental difficulties confirming the half-metallic property of NiMnSb thin films directly. {copyright} {ital 1999} {ital The American Physical Society}

Orgassa, D.; Fujiwara, H. [Center for Materials for Information Technolgy (MINT), The University of Alabama, Tuscaloosa, Alabama 35487-0209 (United States); Schulthess, T.C.; Butler, W.H. [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6114 (United States)

1999-11-01T23:59:59.000Z

224

Three Alkali-Metal-Gold-Gallium Systems. Ternary Tunnel Structures and Some Problems with Poorly Ordered Cations  

SciTech Connect

Six new intermetallic compounds have been characterized in the alkali metal (A = Na, Rb, Cs)–gold–gallium systems. Three isostructural compounds with the general composition A0.55Au2Ga2, two others of AAu3Ga2 (A = Rb, Cs), and the related Na13Au41.2Ga30.3 were synthesized via typical high-temperature reactions and their crystal structures determined by single-crystal X-ray diffraction analysis: Na0.56(9)Au2Ga2 (I, I4/mcm, a = 8.718(1) Ĺ, c = 4.857(1) Ĺ, Z = 4), Rb0.56(1)Au2Ga2 (II, I4/mcm, a = 8.950(1) Ĺ, c = 4.829(1) Ĺ, Z = 4), Cs0.54(2)Au2Ga2 (III, I4/mcm, a = 9.077(1) Ĺ, c = 4.815(1) Ĺ, Z = 4), RbAu3Ga2 (IV, Pnma, a = 13.384(3) Ĺ, b = 5.577(1) Ĺ, c = 7.017(1) Ĺ, Z = 4), CsAu3Ga2 (V, Pnma, a = 13.511(3) Ĺ, b = 5.614(2) Ĺ, c = 7.146(1) Ĺ, Z = 4), Na13Au41.2(1)Ga30.3(1) (VI, P6 mmm, a = 19.550(3) Ĺ, c = 8.990(2) Ĺ, Z = 2). The first three compounds (I–III) are isostructural with tetragonal K0.55Au2Ga2 and likewise contain planar eight-member Au/Ga rings that stack along c to generate tunnels and that contain varying degrees of disordered Na–Cs cations. The cation dispositions are much more clearly and reasonably defined by electron density mapping than through least-squares refinements with conventional anisotropic ellipsoids. Orthorhombic AAu3Ga2 (IV, V) are ordered ternary Rb and Cs derivatives of the SrZn5 type structure, demonstrating structural variability within the AAu3Ga2 family. All attempts to prepare an isotypic “NaAu3Ga2” were not successful, but yielded only a similar composition Na13Au41.2Ga30.3 (NaAu3.17Ga2.33) (VI) in a very different structure with two types of cation sites. Crystal orbital Hamilton population (COHP) analysis obtained from tight-binding electronic structure calculations for idealized I–IV via linear muffin-tin-orbital (LMTO) methods emphasized the major contributions of heteroatomic Au–Ga bonding to the structural stability of these compounds. The relative minima (pseudogaps) in the DOS curves for IV correspond well with the valence electron counts of known representatives of this structure type and, thereby, reveal some magic numbers to guide the search for new isotypic compounds. Theoretical calculation of total energies vs volumes obtained by VASP (Vienna Ab initio Simulation Package) calculations for KAu3Ga2 and RbAu3Ga2 suggest a possible transformation from SrZn5- to BaZn5-types at high pressure.

Smetana, Volodymyr; Miller, Gordon J.; Corbett, John D.

2012-06-27T23:59:59.000Z

225

Environmentally Benign Flame Retardant Nanocoatings for Fabric  

E-Print Network (OSTI)

A variety of materials were used to fabricate nanocoatings using layer-by-layer (LbL) assembly to reduce the flammability of cotton fabric. The most effective brominated flame retardants have raised concerns related to their toxicity and environmental impact, which has created a need for alternative flame retardant chemistries and approaches. Polymer nanocomposites typically exhibit reduced mass loss and heat release rates, along with anti-dripping behavior, all of which are believed to be due to the formation of a barrier surface layer. Despite these benefits, the viscosity and modulus of the final polymeric material is often altered, making industrial processing difficult. These challenges inspired the use of LbL assembly to create densely layered nanocomposites in an effort to produce more flame-retardant coatings. Laponite and montmorillonite (MMT) clay were paired with branched poly(ethylenimine) to create thin film assemblies that can be tailored by changing pH and concentration of aqueous deposition mixtures. Both films can be grown linearly as a function of layers deposited, and they contained at least 70 wt percent of clay. When applying these films to cotton fabric, the individual fibers are uniformly coated and the fabric has significant char left after burning. MMT-coated fabric exhibits reduced total heat release, suggesting a protective ceramic surface layer is created. Small molecule, POSS-based LbL thin films were also successfully deposited on cotton fabric. With less than 8 wt percent added to the total fabric weight, more than 12 wt percent char remained after microscale combustion calorimetry. Furthermore, afterglow time was reduced and the fabric weave structure and shape of the individual fibers were highly preserved following vertical flame testing. A silica-like sheath was formed after burning that protected the fibers. Finally, the first intumescent LbL assembly was deposited on cotton fabric. SEM images show significant bubble formation on fibers, coated with a 0.5 wt percent PAAm/1 wt percent PSP coating after burning. In several instances, a direct flame on the fabric was extinguished. The peak HRR and THR of coated fabric has 30 percent and 65 percent reduction, respectively, compared to the uncoated control fabric. These anti-flammable nanocoatings provide a relatively environmentally-friendly alternative for protecting fabrics, such as cotton, and lay the groundwork for rendering many other complex substrates (e.g., foam) flame-retardant without altering their processing and desirable mechanical behavior.

Li, Yu-Chin

2011-05-01T23:59:59.000Z

226

Control rod assembly for liquid metal fast breeder reactors  

SciTech Connect

This standard establishes the requirements for fabrication, testing, and inspection of control rod assemblies for use in liquid metal fast breeder reactors.

1978-09-08T23:59:59.000Z

227

Properties of Energetic Materials Reinforced by Open-Cell Metal ...  

Science Conference Proceedings (OSTI)

Thus the idea of using open-cell metal foams as heat conducting elements seems ... Composites Fabricated by Mechanical Alloying and Vacuum Hot Pressing.

228

Creation of stable nanoconstrictions in metallic thin films via progressive narrowing by focused-ion-beam technique and in situ control of resistance  

Science Conference Proceedings (OSTI)

This work describes the use of focused-ion-beam for the fabrication of metallic nanoconstrictions on a Fe thin film with in situ monitoring of the structure's resistance. With this approach the sequential FIB steps that are used for the gradual narrowing ... Keywords: Conductance quantum G0, FIB patterning, Magnetoresistive thin films, Nanoconstriction

J. Vincenc Obo?a; J. M. de Teresa; R. Córdoba; A. Fernández-Pacheco; M. R. Ibarra

2009-04-01T23:59:59.000Z

229

Heat pipe fabrication  

SciTech Connect

A heat pipe is disclosed which is fabricated with an artery arranged so that the warp and weave of the wire mesh are at about a 45/sup 0/ angle with respect to the axis of the heat pipe.

Leinoff, S.; Edelstein, F.; Combs, W.

1977-01-18T23:59:59.000Z

230

Protective Role of Arapaima Scales: Structure and Mechanical ...  

Science Conference Proceedings (OSTI)

Microbial synthesis and fabrication of palladium nanoparticle catalysts by using the metal ion-reducing bacterium Shewanella algae · Micromechanical ...

231

Nuclear Fabrication Consortium  

SciTech Connect

This report summarizes the activities undertaken by EWI while under contract from the Department of Energy (DOE) � Office of Nuclear Energy (NE) for the management and operation of the Nuclear Fabrication Consortium (NFC). The NFC was established by EWI to independently develop, evaluate, and deploy fabrication approaches and data that support the re-establishment of the U.S. nuclear industry: ensuring that the supply chain will be competitive on a global stage, enabling more cost-effective and reliable nuclear power in a carbon constrained environment. The NFC provided a forum for member original equipment manufactures (OEM), fabricators, manufacturers, and materials suppliers to effectively engage with each other and rebuild the capacity of this supply chain by : � Identifying and removing impediments to the implementation of new construction and fabrication techniques and approaches for nuclear equipment, including system components and nuclear plants. � Providing and facilitating detailed scientific-based studies on new approaches and technologies that will have positive impacts on the cost of building of nuclear plants. � Analyzing and disseminating information about future nuclear fabrication technologies and how they could impact the North American and the International Nuclear Marketplace. � Facilitating dialog and initiate alignment among fabricators, owners, trade associations, and government agencies. � Supporting industry in helping to create a larger qualified nuclear supplier network. � Acting as an unbiased technology resource to evaluate, develop, and demonstrate new manufacturing technologies. � Creating welder and inspector training programs to help enable the necessary workforce for the upcoming construction work. � Serving as a focal point for technology, policy, and politically interested parties to share ideas and concepts associated with fabrication across the nuclear industry. The report the objectives and summaries of the Nuclear Fabrication Consortium projects. Full technical reports for each of the projects have been submitted as well.

Levesque, Stephen

2013-04-05T23:59:59.000Z

232

Fabricated torque shaft  

DOE Patents (OSTI)

A fabricated torque shaft is provided that features a bolt-together design to allow vane schedule revisions with minimal hardware cost. The bolt-together design further facilitates on-site vane schedule revisions with parts that are comparatively small. The fabricated torque shaft also accommodates stage schedules that are different one from another in non-linear inter-relationships as well as non-linear schedules for a particular stage of vanes.

Mashey, Thomas Charles (Anderson, SC)

2002-01-01T23:59:59.000Z

233

Pendant Functional Groups in Metal-Organic Frameworks - Effects on Crystal Structure, Stability, and Gas Sorption Properties  

E-Print Network (OSTI)

The primary goal of this research concerns the synthesis and characterization of metal-organic frameworks (MOFs) grafted with pendant alkyl substituents to enhance stability and gas sorption properties for use in clean-energy related technologies. Initially, the focus of this work was on the synthesis and comparison of two isostructural MOFs built upon octahedral secondary building blocks; one with no alkyl substituents, and its dimethyl-substituted counterpart. The dimethyl-substituents are observed to enhance the stability of the framework, resulting in high Langmuir surface area (4859 m2 g-1) and hydrogen uptake capacity at 77 K and 1 bar (2.6 wt%). In the second section, the length of pendant alkoxy substituents in semi-flexible MOFs was evaluated through the synthesis and characterization of two isostructural MOFs, one with dimethoxy (PCN-38) and one with diethoxy pendant groups (PCN-39). While PCN-38 exhibited moderate surface area and hydrogen uptake capacities, PCN-39 underwent structural change upon activation leading to a redistribution of pore sizes and selective adsorption of hydrogen over larger gases. This structural transformation is believed to originate from optimal space filling of the pendant groups. In the third section, a series of NbO-type MOFs were synthesized with dimethoxy, diethoxy, dipropoxy, and dihexyloxy substituents and the relationship between chain length and framework stability identified. Increasing chain length was observed to increase moisture stability of the MOFs, resulting in a superhydrophobic material in the case of the dihexyloxy derivative. Thermal stability, however, decreased with increasing chain length, as evidenced from in situ synchrotron powder X-ray diffraction measurements (PXRD). This is in contrast to data obtained from thermogravimetric analysis and shows that the standard use of thermogravimetric analysis, which measures combustion temperatures, may not always provide an accurate description of the thermal stability of MOFs. The role of pendant groups in gas adsorption processes was evaluated through identification of side chains and guest species in the pores of MOFs through in situ synchrotron PXRD measurements. In summary, three separate isostructural series of MOFs with various pendant groups have been discussed in this dissertation, with the roles of those pendant groups toward crystal structure, stability, and gas sorption properties analyzed.

Makal, Trevor Arnold

2013-05-01T23:59:59.000Z

234

STRUCTURAL INTERACTIONS OF HYDROGEN WITH BULK AMORPHOUS MICROSTRUCTURES IN METALLIC SYSTEMS UNDERSTANDING THE ROLE OF PARTIAL CRYSTALLINITY ON PERMEATION AND EMBRITTLEMENT  

DOE Green Energy (OSTI)

The development of metallic glasses in bulk form has led to a resurgence of interest into the utilization of these materials for a variety of applications. A potentially exciting application for these bulk metallic glass (BMG) materials is their use as composite membranes to replace high cost Pd/Pd-alloy membranes for enhanced gas separation processes. One of the major drawbacks to the industrial use of Pd/Pd-alloy membranes is that during cycling above and below a critical temperature an irreversible change takes place in the palladium lattice structure which can result in significant damage to the membrane. Furthermore, the cost associated with Pd-based membranes is a potential detractor for their continued use and BMG alloys offer a potentially attractive alternative. Several BMG alloys have been shown to possess high permeation rates, comparable to those measured for pure Pd metal. In addition, high strength and toughness when either in-situ or ex-situ second phase dispersoids are present. Both of these properties, high permeation and high strength/toughness, potentially make these materials attractive for gas separation membranes that could resist hydrogen 'embrittlement'. However, a fundamental understanding of the relationship between partially crystalline 'structure'/devitrification and permeation/embrittlement in these BMG materials is required in order to determine the operating window for separation membranes and provide additional input to the material synthesis community for improved alloy design. This project aims to fill the knowledge gap regarding the impact of crystallization on the permeation properties of metallic glass materials. The objectives of this study are to (i) determine the crystallization behavior in different gas environments of Fe and Zr based commercially available bulk metallic glass and (ii) quantify the effects of partial crystallinity on the hydrogen permeation properties of these metallic glass membranes.

Brinkman, Kyle; Fox, Elise; Korinko, Paul; Adams, Thad

2010-05-10T23:59:59.000Z

235

The Mn effect on magnetic structure of FeMn-B amorphous metals , D.M.C. Nicholson2  

E-Print Network (OSTI)

usually less than 1mm in thickness, because fast cooling rate is (~ 106 °K/sec) required for retaining] for a historical summary on the discovery of bulk amorphous metals.) They have been proposed for a range in transformers and electrical motors. Lately, high Mn content, Fe-based bulk amorphous metals have been

Widom, Michael

236

Use of benthic invertebrate community structure and the sediment quality triad to evaluate metal-contaminated sediment in the upper Clark Fork River, Montana  

SciTech Connect

The upper Clark Fork River, above Flathead River, is contaminated with large amounts of As, Cd, Cu, Pb, Mn, and Zn ores from past mining activities. The contaminated area extends from the Butte and Anaconda area to at least 230 km downstream to Milltown Reservoir. Both the upper Clark Fork River and Milltown Reservoir have been designated as US Environmental Protection Agency Superfund sites because of metal-contaminated bottom sediments. The authors evaluated the impacts of past mining activities on the Clark Fork River ecosystem using benthic invertebrate community assessment, residue chemistry, and toxicity testing. Oligochaeta and Chironomidae generally accounted for over 90% of the benthic invertebrate community in the soft sediment depositional areas. Taxa of Oligochaeta and Chironomidae were predominantly pollution tolerant. Higher numbers of Chironomidae genera were present at stations with higher concentrations of metals in sediment identified as toxic by the amphipod Hyalella azteca in 28-d exposures. Frequency of mouthpart deformities in genera of Chironomidae was low and did not correspond to concentrations of metals in sediment. Total abundance of organisms/m[sup 2] did not correspond to concentrations of metals in the sediment samples. Chemical analyses, laboratory toxicity tests, and benthic community evaluations all provide evidence of metal-induced degradation to aquatic communities in both the reservoir and the river. Using a weight-of-evidence approach--the Sediment Quality Triad--provided good concurrence among measures of benthic community structure, sediment chemistry, and laboratory toxicity.

Canfield, T.J.; Kemble, N.E.; Brumbaugh, W.G.; Dwyer, F.J.; Ingersoll, C.G.; Fairchild, J.F. (National Biological Survey, Columbia, MO (United States). Midwest Science Center)

1994-12-01T23:59:59.000Z

237

All ceramic structure for molten carbonate fuel cell  

DOE Patents (OSTI)

An all-ceramic molten carbonate fuel cell having a composition formed of a multivalent metal oxide or oxygenate such as an alkali metal, transition metal oxygenate. The structure includes an anode and cathode separated by an electronically conductive interconnect. The electrodes and interconnect are compositions ceramic materials. Various combinations of ceramic compositions for the anode, cathode and interconnect are disclosed. The fuel cell exhibits stability in the fuel gas and oxidizing environments. It presents reduced sealing and expansion problems in fabrication and has improved long-term corrosion resistance.

Smith, J.L.; Kucera, E.H.

1991-01-01T23:59:59.000Z

238

Design and Fabrication of Photonic Crystals for Thermal Energy Conservation  

DOE Green Energy (OSTI)

The vision of intelligent and large-area fabrics capable of signal processing, sensing and energy harvesting has made incorporating electronic devices into flexible fibers an active area of research. Fiber-integrated rectifying junctions in the form of photovoltaic cells and light-emitting diodes (LEDs) have been fabricated on optical fiber substrates. However, the length of these fiber devices has been limited by the processing methods and the lack of a sufficiently conductive and transparent electrode. Their cylindrical device geometry is ideal for single device architectures, like photovoltaics and LEDs, but not amenable to building multiple devices into a single fiber. In contrast, the composite preform-to-fiber approach pioneered in our group addresses the key challenges of device density and fiber length simultaneously. It allows one to construct structured fibers composed of metals, insulators and semiconductors and enables the incorporation of many devices into a single fiber capable of performing complex tasks such as of angle of incidence and color detection. However, until now, devices built by the preform-to-fiber approach have demonstrated only ohmic behavior due to the chalcogenide semiconductor's amorphous nature and defect density. From a processing standpoint, non-crystallinity is necessary to ensure that the preform viscosity during thermal drawing is large enough to extend the time-scale of breakup driven by surface tension effects in the fluids to times much longer than that of the actual drawing. The structured preform cross-section is maintained into the microscopic fiber only when this requirement is met. Unfortunately, the same disorder that is integral to the fabrication process is detrimental to the semiconductors' electronic properties, imparting large resistivities and effectively pinning the Fermi level near mid-gap. Indeed, the defect density within the mobility gap of many chalcogenides has been found to be 1018-1019 cm-3 eV-1, resulting in a narrow depletion width and ohmic behavior at metal-semiconductor junctions. In this work we incorporated phase-changing semiconductors, those that may be easily converted between the amorphous and crystalline states, into composite fibers with a goal towards constructing rectifying junctions in fiber.

Professor John Joannopoulos; Professor Yoel Fink

2009-09-17T23:59:59.000Z

239

Multilayer insulation blanket, fabricating apparatus and method  

DOE Patents (OSTI)

An improved multilayer insulation blanket for insulating cryogenic structures operating at very low temperatures is disclosed. An apparatus and method for fabricating the improved blanket are also disclosed. In the improved blanket, each successive layer of insulating material is greater in length and width than the preceding layer so as to accommodate thermal contraction of the layers closest to the cryogenic structure. The fabricating apparatus has a rotatable cylindrical mandrel having an outer surface of fixed radius that is substantially arcuate, preferably convex, in cross-section. The method of fabricating the improved blanket comprises (a) winding a continuous sheet of thermally reflective material around the circumference of the mandrel to form multiple layers, (b) binding the layers along two lines substantially parallel to the edges of the circumference of the mandrel, (c) cutting the layers along a line parallel to the axle of the mandrel, and (d) removing the bound layers from the mandrel. 7 figs.

Gonczy, J.D.; Niemann, R.C.; Boroski, W.N.

1992-09-01T23:59:59.000Z

240

Method of fabricating a multilayer insulation blanket  

DOE Patents (OSTI)

An improved multilayer insulation blanket for insulating cryogenic structures operating at very low temperatures is disclosed. An apparatus and method for fabricating the improved blanket are also disclosed. In the improved blanket, each successive layer of insulating material is greater in length and width than the preceding layer so as to accommodate thermal contraction of the layers closest to the cryogenic structure. The fabricating apparatus has a rotatable cylindrical mandrel having an outer surface of fixed radius that is substantially arcuate, preferably convex, in cross-section. The method of fabricating the improved blanket comprises (a) winding a continuous sheet of thermally reflective material around the circumference of the mandrel to form multiple layers, (b) binding the layers along two lines substantially parallel to the edges of the circumference of the mandrel, (c) cutting the layers along a line parallel to the axle of the mandrel, and (d) removing the bound layers from the mandrel.

Gonczy, J.D.; Niemann, R.C.; Boroski, W.N.

1993-07-06T23:59:59.000Z

Note: This page contains sample records for the topic "fabricated structural metal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Method of fabricating a multilayer insulation blanket  

DOE Patents (OSTI)

An improved multilayer insulation blanket for insulating cryogenic structures operating at very low temperatures is disclosed. An apparatus and method for fabricating the improved blanket are also disclosed. In the improved blanket, each successive layer of insulating material is greater in length and width than the preceding layer so as to accommodate thermal contraction of the layers closest to the cryogenic structure. The fabricating apparatus has a rotatable cylindrical mandrel having an outer surface of fixed radius that is substantially arcuate, preferably convex, in cross-section. The method of fabricating the improved blanket comprises (a) winding a continuous sheet of thermally reflective material around the circumference of the mandrel to form multiple layers, (b) binding the layers along two lines substantially parallel to the edges of the circumference of the mandrel, (c) cutting the layers along a line parallel to the axle of the mandrel, and (d) removing the bound layers from the mandrel.

Gonczy, John D. (Oak Lawn, IL); Niemann, Ralph C. (Downers Grove, IL); Boroski, William N. (Aurora, IL)

1993-01-01T23:59:59.000Z

242

Multilayer insulation blanket, fabricating apparatus and method  

DOE Patents (OSTI)

An improved multilayer insulation blanket for insulating cryogenic structures operating at very low temperatures is disclosed. An apparatus and method for fabricating the improved blanket are also disclosed. In the improved blanket, each successive layer of insulating material is greater in length and width than the preceding layer so as to accommodate thermal contraction of the layers closest to the cryogenic structure. The fabricating apparatus has a rotatable cylindrical mandrel having an outer surface of fixed radius that is substantially arcuate, preferably convex, in cross-section. The method of fabricating the improved blanket comprises (a) winding a continuous sheet of thermally reflective material around the circumference of the mandrel to form multiple layers, (b) binding the layers along two lines substantially parallel to the edges of the circumference of the mandrel, (c) cutting the layers along a line parallel to the axle of the mandrel, and (d) removing the bound layers from the mandrel.

Gonczy, John D. (Oak Lawn, IL); Niemann, Ralph C. (Downers Grove, IL); Boroski, William N. (Aurora, IL)

1992-01-01T23:59:59.000Z

243

Directed light fabrication of rhenium components  

SciTech Connect

Directed Light Fabrication (DLF) is a direct metal deposition process that fuses powder, delivered by gas into the focal zone of a high powered laser beam to form fully dense near-net shaped components. This is accomplished in one step without the use of molds, dies, forming, pressing, sintering or forging equipment. DLF is performed in a high purity inert environment free from the contaminants associated with conventional processing such as oxide and carbon pickup, lubricants, binding agents, cooling or cleaning agents. Applications using rhenium have historically been limited in part by its workability and cost. This study demonstrates the ability to fuse rhenium metal powder, using a DLF machine, into free standing rods and describes the associated parameter study. Microstructural comparisons between DLF deposited rhenium and commercial rhenium sheet product is performed. This research combined with existing DLF technology demonstrates the feasibility of forming complex rhenium, metal shapes directly from powder.

Milewski, J.O.; Thoma, D.J.; Lewis, G.K.

1997-02-01T23:59:59.000Z

244

Damascene TiN-Gd2O3-gate stacks: Gentle fabrication and electrical properties  

Science Conference Proceedings (OSTI)

In this work, we present MOS capacitors and field effect transistors with a crystalline gadolinium oxide (Gd"2O"3) gate dielectric and metal gate electrode (titanium nitride) fabricated in a gentle damascene gate last process. Details of the gate last ... Keywords: Crystalline high-k dielectrics, Damascene metal gate technology, Gadolinium oxide (Gd2O3), Gentle process integration, MOSFET, Metal gate electrode

Ralf Endres; Tillmann Krauss; Frank Wessely; Udo Schwalke

2011-12-01T23:59:59.000Z

245

Atomic Calligraphy: The Direct Writing of Nanoscale Structures using MEMS  

E-Print Network (OSTI)

We present a micro-electromechanical system (MEMS) based method for the resist free patterning of nano-structures. Using a focused ion beam (FIB) to customize larger MEMS machines, we fabricate apertures as small as 50 nm on plates that can be moved with nanometer precision over an area greater than 20x20 {\\mu}m^2. Depositing thermally evaporated gold atoms though the apertures while moving the plate results in the deposition of nanoscale metal patterns. Adding a shutter only microns above the aperture, enables high speed control of not only where but also when atoms are deposited. Using a shutter, different sized apertures can be selectively opened and closed for nano-structure fabrication with features ranging from nano- to micrometers in scale. The ability to evaporate materials with high precision, and thereby fabricate circuits and structures in situ, enables new kinds of experiments based on the interactions of a small number of atoms and eventually even single atoms.

Matthias Imboden; Han Han; Jackson Chang; Flavio Pardo; Cristian A. Bolle; Evan Lowell; David J. Bishop

2013-04-04T23:59:59.000Z

246

Metal Aminoboranes  

Metal aminoboranes of the formula M(NH.sub.2BH.sub.3).sub.n have been synthesized. Metal aminoboranes are hydrogen storage materials. Metal aminoboranes are also precursors for synthesizing other metal aminoboranes. Metal aminoboranes can be ...

247

Printed Circuit Board Metal Powder Filters for Low Electron Temperatures  

E-Print Network (OSTI)

We report the characterisation of printed circuit boards (PCB) metal powder filters and their influence on the effective electron temperature which is as low as 22 mK for a quantum dot in a silicon MOSFET structure in a dilution refrigerator. We investigate the attenuation behaviour (10 MHz- 20 GHz) of filter made of four metal powders with a grain size below 50 um. The room-temperature attenuation of a stainless steel powder filter is more than 80 dB at frequencies above 1.5 GHz. In all metal powder filters the attenuation increases with temperature. Compared to classical powder filters, the design presented here is much less laborious to fabricate and specifically the copper powder PCB-filters deliver an equal or even better performance than their classical counterparts.

Filipp Mueller; Raymond N. Schouten; Matthias Brauns; Tian Gang; Wee Han Lim; Nai Shyan Lai; Andrew S. Dzurak; Wilfred G. van der Wiel; Floris A. Zwanenburg

2013-04-11T23:59:59.000Z

248

Integral Airframe Structures (IAS)---Validated Feasibility Study of Integrally Stiffened Metallic Fuselage Panels for Reducing Manufacturing Costs  

Science Conference Proceedings (OSTI)

The Integral Airframe Structures (IAS) program investigated the feasibility of using "integrally stiffened" construction for commercial transport fuselage structure. The objective of the program was to demonstrate structural performance and weight equal ...

Munroe J.; Wilkins K.; Gruber M.

2000-05-01T23:59:59.000Z

249

Composite electrode/electrolyte structure  

DOE Patents (OSTI)

Provided is an electrode fabricated from highly electronically conductive materials such as metals, metal alloys, or electronically conductive ceramics. The electronic conductivity of the electrode substrate is maximized. Onto this electrode in the green state, a green ionic (e.g., electrolyte) film is deposited and the assembly is co-fired at a temperature suitable to fully densify the film while the substrate retains porosity. Subsequently, a catalytic material is added to the electrode structure by infiltration of a metal salt and subsequent low temperature firing. The invention allows for an electrode with high electronic conductivity and sufficient catalytic activity to achieve high power density in ionic (electrochemical) devices such as fuel cells and electrolytic gas separation systems.

Visco, Steven J. (Berkeley, CA); Jacobson, Craig P. (El Cerrito, CA); DeJonghe, Lutgard C. (Lafayette, CA)

2004-01-27T23:59:59.000Z

250

Novel Way to Characterize Metal-Insulator-Metal Devices via Nanoindentation: Preprint  

DOE Green Energy (OSTI)

Metal-Insulator-Metal (MIM) devices are crucial components for applications ranging from optical rectennas for harvesting sunlight to infrared detectors. To date, the relationship between materials properties and device performance in MIM devices is not fully understood, partly due to the difficulty in making and reproducing reliable devices. One configuration that is popular due to its simplicity and ease of fabrication is the point-contact diode where a metal tip serves as one of the metals in the MIM device. The intrinsic advantage of the point-contact configuration is that it is possible to achieve very small contact areas for the device thereby allowing very high-frequency operation. In this study, precise control over the contact area and penetration depth of an electrically conductive tip into a metal/insulator combination is achieved using a nanoindenter with in-situ electrical contact resistance measurement capabilities. A diamond probe tip, doped (degeneratively) with boron for conductivity, serves as the point contact and second 'metal' (b-Diamond) of the MIM diode. The base layer consists of Nb/Nb2O5 thin films on Si substrates and serves as the first metal /insulator combination of the MIM structure. The current-voltage response of the diodes is measured under a range of conditions to assess the validity and repeatability of the technique. Additionally, we compare the results of this technique to those acquired using a bent-wire approach and find that Nb/Nb2O5/b-Diamond MIM devices show an excellent asymmetry (60-300) and nonlinearity values (~6-9). This technique shows great promise for screening metal-insulator combinations for performance without the uncertainty that stems from a typical bent-wire point-contact.

Periasamy, P.; Packard, C. E.; O?Hayre, R. P.; Berry, J. J.; Parilla, P. A.; Ginley, D. S.

2011-07-01T23:59:59.000Z

251

Structurally-driven metal-insulator transition in Ca{sub 2}Ru{sub 1-x}Cr{sub x}O{sub 4} (0{<=}x<0.14): A single crystal X-ray diffraction study  

Science Conference Proceedings (OSTI)

Correlation between structure and transport properties are investigated in high-quality single-crystals of Ca{sub 2}Ru{sub 1-x}Cr{sub x}O{sub 4} with 013.5% and the system behaves as an insulator. Such a large, sharp metal-insulator transition and tuneable transition temperature may have potential applications in electronic devices. -- Graphical abstract: The metal-insulator transition temperature (T{sub MI}) was drastically reduced by Cr doping, and is closely related to the distortion of structure. Display Omitted Research highlights: {yields} The metal-insulator transition temperature (T{sub MI}) was drastically reduced by doping Cr into Ca{sub 2}RuO{sub 4} single crystal. {yields} Detailed single crystal structural analysis provided important insight into this structurally-driven metal-insulator transition. {yields} Negative Volume Thermal Expansion (NVTE) was observed with increasing temperature.

Qi, T.F., E-mail: tqi2@uky.ed [Center for Advanced Materials, University of Kentucky, Lexington, KY 40506 (United States); Department of Physics and Astronomy, University of Kentucky, Lexington, KY 40506 (United States); Ge, M. [Center for Advanced Materials, University of Kentucky, Lexington, KY 40506 (United States); High Magnetic Field Laboratory, University of Science and Technology of China, Hefei, Anhui 230026 (China); Korneta, O.B. [Center for Advanced Materials, University of Kentucky, Lexington, KY 40506 (United States); Department of Physics and Astronomy, University of Kentucky, Lexington, KY 40506 (United States); Parkin, S. [Center for Advanced Materials, University of Kentucky, Lexington, KY 40506 (United States); Department of Chemistry, University of Kentucky, Lexington, KY 40506 (United States); De Long, L.E.; Cao, G. [Center for Advanced Materials, University of Kentucky, Lexington, KY 40506 (United States); Department of Physics and Astronomy, University of Kentucky, Lexington, KY 40506 (United States)

2011-04-15T23:59:59.000Z

252

Method of fabricating a flow device  

DOE Patents (OSTI)

This invention is a novel method for fabricating leak-tight tubular articles which have an interior flow channel whose contour must conform very closely with design specifications but which are composed of metal which tends to warp if welded. The method comprises designing two longitudinal half-sections of the article, the half-sections being contoured internally to cooperatively form the desired flow passageway. Each half-section is designed with a pair of opposed side flanges extending between the end flanges and integral therewith. The half-sections are positioned with their various flanges in confronting relation and with elongated metal gaskets extending between the confronting flanges for the length of the array. The gaskets are a deformable metal which is fusion-weldable to the end flanges. The mating side flanges are joined mechanically to deform the gaskets and provide a longitudinally sealed assembly. The portions of the end flanges contiguous with the ends of the gaskets then are welded to provide localized end welds which incorporate ends of the gaskets, thus transversely sealing the assembly. This method of fabrication provides leak-tight articles having the desired precisely contoured flow channels, whereas various conventional methods have been found unsatisfactory.

Hale, Robert L. (Kingston, TN)

1978-01-01T23:59:59.000Z

253

Epoxy bond and stop etch fabrication method  

DOE Patents (OSTI)

A class of epoxy bond and stop etch (EBASE) microelectronic fabrication techniques is disclosed. The essence of such techniques is to grow circuit components on top of a stop etch layer grown on a first substrate. The first substrate and a host substrate are then bonded together so that the circuit components are attached to the host substrate by the bonding agent. The first substrate is then removed, e.g., by a chemical or physical etching process to which the stop etch layer is resistant. EBASE fabrication methods allow access to regions of a device structure which are usually blocked by the presence of a substrate, and are of particular utility in the fabrication of ultrafast electronic and optoelectronic devices and circuits.

Simmons, Jerry A. (Sandia Park, NM); Weckwerth, Mark V. (Pleasanton, CA); Baca, Wes E. (Albuquerque, NM)

2000-01-01T23:59:59.000Z

254

Synthesis, structural characterization and magnetic properties of RE{sub 2}MgGe{sub 2} (RE=rare-earth metal)  

SciTech Connect

A series of rare-earth metal-magnesium-germanides RE{sub 2}MgGe{sub 2} (RE=Y, Nd, Sm, Gd-Tm, Lu) has been synthesized by reactions of the corresponding elements at high temperature. Their structures have been established by single-crystal and powder X-ray diffraction and belong to the Mo{sub 2}FeB{sub 2} structure type (space group P4/mbm (No. 127), Z=2; Pearson symbol tP10). Temperature dependent DC magnetization measurements indicate Curie-Weiss paramagnetism in the high-temperature regime for all members of the family, excluding Y{sub 2}MgGe{sub 2}, Sm{sub 2}MgGe{sub 2}, and Lu{sub 2}MgGe{sub 2}. At cryogenic temperatures (ca. 60 K and below), most RE{sub 2}MgGe{sub 2} phases enter into an antiferromagnetic ground-state, except for Er{sub 2}MgGe{sub 2} and Tm{sub 2}MgGe{sub 2}, which do not undergo magnetic ordering down to 5 K. The structural variations as a function of the decreasing size of the rare-earth metals, following the lanthanide contraction, and the changes in the magnetic properties across the series are discussed as well. - Graphical Abstract: The structure of RE{sub 2}MgGe{sub 2} (RE=Y, Nd, Sm, Gd-Tm, Lu) can be best viewed as 2-dimensional slabs of Mg and Ge atoms (anionic sub-lattice), and layers of rare-earth metal atoms (cationic sub-lattice) between them. Within this description, one should consider the Ge-Ge dumbbells (formally Ge{sup 6-}{sub 2}), interconnected with square-planar Mg atom as forming flat [MgGe{sub 2}] layers (z=0), stacked along the c-axis with the layers at z=1/2, made of rare-earth metal cations (formally RE{sup 3+}). Highlights: > RE{sub 2}MgGe{sub 2} (RE=Y, Nd, Sm, Gd-Tm, Lu) are new ternary germanides. > Their structures can be recognized as a 1:1 intergrowth of CsCl- and AlB{sub 2}-like slabs. > Ge atoms are covalently bound into Ge{sub 2} dumbbells. > Most RE{sub 2}MgGe{sub 2} phases are antiferromagnetically ordered at cryogenic temperatures.

Suen, Nian-Tzu; Tobash, Paul H. [Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716 (United States); Bobev, Svilen, E-mail: bobev@udel.edu [Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716 (United States)

2011-11-15T23:59:59.000Z

255

Method of producing catalytic materials for fabricating nanostructures  

DOE Patents (OSTI)

Methods of fabricating nano-catalysts are described. In some embodiments the nano-catalyst is formed from a powder-based substrate material and is some embodiments the nano-catalyst is formed from a solid-based substrate material. In some embodiments the substrate material may include metal, ceramic, or silicon or another metalloid. The nano-catalysts typically have metal nanoparticles disposed adjacent the surface of the substrate material. The methods typically include functionalizing the surface of the substrate material with a chelating agent, such as a chemical having dissociated carboxyl functional groups (--COO), that provides an enhanced affinity for metal ions. The functionalized substrate surface may then be exposed to a chemical solution that contains metal ions. The metal ions are then bound to the substrate material and may then be reduced, such as by a stream of gas that includes hydrogen, to form metal nanoparticles adjacent the surface of the substrate.

Seals, Roland D; Menchhofer, Paul A; Howe, Jane Y; Wang, Wei

2013-02-19T23:59:59.000Z

256

The electronic and magnetic structure of Fe-based bulk amorphous metals: An ab-initio approach  

E-Print Network (OSTI)

1mm in thickness, because fast cooling rates (~ 106 °K/sec) are required for retaining] for a historical summary on Inoue's discovery of bulk amorphous metals.) Johnson's group developed Zr and high permeability can be used as magnetic core materials in transformers and electrical motors

Widom, Michael

257

Indirect Tissue Scaffold Fabrication via Additive Manufacturing and Biomimetic Mineralization.  

E-Print Network (OSTI)

??Unlike traditional stochastic scaffold fabrication techniques, additive manufacturing (AM) can be used to create tissue-specific three-dimensional scaffolds with controlled porosity and pore geometry (meso-structure). However,… (more)

Bernardo, Jesse Raymond

2011-01-01T23:59:59.000Z

258

PML Develops Graphene Fabrication Capability  

Science Conference Proceedings (OSTI)

PML Develops Graphene Fabrication Capability. October 3, 2011. ... That further limits the growth of the graphene, we think. ...

2011-10-06T23:59:59.000Z

259

N2: Fabrication of Uranium Dispersion Targets for Mo-99 Production  

Science Conference Proceedings (OSTI)

Uranium metal powder was fabricated by a centrifugal atomization technique. Uranium content of the dispersion targets was controlled to be 3, 6 and 9 g-U/ cm2 ...

260

Fabrication process for openable microfluidic devices and externally actuated microfluidic switch  

E-Print Network (OSTI)

In this document I discuss the fabrication of metallic, aluminum and aluminum oxide, 3D micro channels, made with standard milling technology, along with two channel closing methods for openable devices: half cured-glued ...

Cartas Ayala, Marco Aurelio

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fabricated structural metal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Anchored nanostructure materials and method of fabrication  

Science Conference Proceedings (OSTI)

Anchored nanostructure materials and methods for their fabrication are described. The anchored nanostructure materials may utilize nano-catalysts that include powder-based or solid-based support materials. The support material may comprise metal, such as NiAl, ceramic, a cermet, or silicon or other metalloid. Typically, nanoparticles are disposed adjacent a surface of the support material. Nanostructures may be formed as anchored to nanoparticles that are adjacent the surface of the support material by heating the nano-catalysts and then exposing the nano-catalysts to an organic vapor. The nanostructures are typically single wall or multi-wall carbon nanotubes.

Seals, Roland D; Menchhofer, Paul A; Howe, Jane Y; Wang, Wei

2012-11-27T23:59:59.000Z

262

Neutronic fuel element fabrication  

SciTech Connect

This disclosure describes a method for metallurgically bonding a complete leak-tight enclosure to a matrix-type fuel element penetrated longitudinally by a multiplicity of coolant channels. Coolant tubes containing solid filler pins are disposed in the coolant channels. A leak-tight metal enclosure is then formed about the entire assembly of fuel matrix, coolant tubes and pins. The completely enclosed and sealed assembly is exposed to a high temperature and pressure gas environment to effect a metallurgical bond between all contacting surfaces therein. The ends of the assembly are then machined away to expose the pin ends which are chemically leached from the coolant tubes to leave the coolant tubes with internal coolant passageways. The invention described herein was made in the course of, or under, a contract with the U.S. Atomic Energy Commission. It relates generally to fuel elements for neutronic reactors and more particularly to a method for providing a leak-tight metal enclosure for a high-performance matrix-type fuel element penetrated longitudinally by a multiplicity of coolant tubes. The planned utilization of nuclear energy in high-performance, compact-propulsion and mobile power-generation systems has necessitated the development of fuel elements capable of operating at high power densities. High power densities in turn require fuel elements having high thermal conductivities and good fuel retention capabilities at high temperatures. A metal clad fuel element containing a ceramic phase of fuel intimately mixed with and bonded to a continuous refractory metal matrix has been found to satisfy the above requirements. Metal coolant tubes penetrate the matrix to afford internal cooling to the fuel element while providing positive fuel retention and containment of fission products generated within the fuel matrix. Metal header plates are bonded to the coolant tubes at each end of the fuel element and a metal cladding or can completes the fuel-matrix enclosure by encompassing the sides of the fuel element between the header plates.

Korton, George (Cincinnati, OH)

2004-02-24T23:59:59.000Z

263

Fabrication of Bulk-Si FinFET using CMOS compatible process  

Science Conference Proceedings (OSTI)

A new CMOS (Complementary Metal Oxide Semiconductor) compatible Bulk-Si FinFETs fabrication process has been proposed. Compared with conventional fabrication processes of SOI (Silicon On Insulator) and Bulk-Si FinFETs, this new approach is of low cost ... Keywords: Bulk, FinFET, Multi-gate

Huajie Zhou; Yi Song; Qiuxia Xu; Yongliang Li; Huaxiang Yin

2012-06-01T23:59:59.000Z

264

Dry etching of a device quality high-k GaxGdyOz gate oxide in CH4/H2-O2 chemistry for the fabrication of III-V MOSFETs  

Science Conference Proceedings (OSTI)

This paper investigates the reactive ion etching of Ga"xGd"yO"z, a device quality high-k gate oxide for the fabrication of III-V metal-oxide-semiconductor field-effect-transistors (MOSFETs) based on high mobility channel device layer structures. The ... Keywords: Compound semiconductor, Dry etching, Ga2O3(Gd2O3) RIE, GaxGdyOz, III-V MOSFET

X. Li; H. Zhou; R. J. W. Hill; C. D. W. Wilkinson; I. G. Thayne

2007-05-01T23:59:59.000Z

265

Adsorption geometry, conformation, and electronic structure of 2H-octaethylporphyrin on Ag(111) and Fe metalation in ultra high vacuum  

SciTech Connect

Due to the growing interest in the ferromagnetic properties of Fe-octaethylporphyrins (Fe-OEP) for applications in spintronics, methods to produce stable Fe-porphyrins with no Cl atoms are highly demanded. Here, we demonstrate the formation of Fe-OEP layers on Ag(111) single crystal by the ultra high vacuum in situ metalation of the free-base 2H-2,3,7,8,12,13,17,18-octaethylporphyrin (2H-OEP) molecules. The metalation proceeds exactly as in the case of 2H-5,10,15,20-tetraphenylporphyrin (2H-TPP) on the same substrate. An extensive surface characterization by means of X-ray photoemission spectroscopy, valence band photoemission, and NEXAFS with synchrotron radiation light provides information on molecular conformation and electronic structure in the monolayer and multilayer cases. We demonstrate that the presence of the ethyl groups affects the tilt of the adsorbed molecules, the conformation of the macrocycle, and the polarization screening in multilayers, but has only a minor effect in the metalation process with respect to 2H-TPP.

Borghetti, Patrizia; Sangaletti, Luigi [I-LAMP and Department of Mathematics and Physics, Universita Cattolica del Sacro Cuore, Brescia (Italy); Santo, Giovanni Di; Castellarin-Cudia, Carla; Goldoni, Andrea [ST-INSTM micro- and nano-carbon lab., Elettra - Sincrotrone Trieste S.C.p.A., s.s.14 Km. 163.5, 34149 Trieste (Italy); Fanetti, Mattia [ST-INSTM micro- and nano-carbon lab., Elettra - Sincrotrone Trieste S.C.p.A., s.s.14 Km. 163.5, 34149 Trieste (Italy); Istituto Officina dei Materiali-CNR, Laboratorio TASC, s.s. 14 km 163.5, 34149 Trieste (Italy); Magnano, Elena; Bondino, Federica [Istituto Officina dei Materiali-CNR, Laboratorio TASC, s.s. 14 km 163.5, 34149 Trieste (Italy)

2013-04-14T23:59:59.000Z

266

Liquid metal thermal electric converter  

DOE Patents (OSTI)

A liquid metal thermal electric converter which converts heat energy to electrical energy. The design of the liquid metal thermal electric converter incorporates a unique configuration which directs the metal fluid pressure to the outside of the tube which results in the structural loads in the tube to be compressive. A liquid metal thermal electric converter refluxing boiler with series connection of tubes and a multiple cell liquid metal thermal electric converter are also provided.

Abbin, Joseph P. (Albuquerque, NM); Andraka, Charles E. (Albuquerque, NM); Lukens, Laurance L. (Albuquerque, NM); Moreno, James B. (Albuquerque, NM)

1989-01-01T23:59:59.000Z

267

Modeling plasma surface modification of textile fabrics using artificial neural networks  

Science Conference Proceedings (OSTI)

In this paper, a neural network approach is used to understand the effects of fabric features and plasma processing parameters on fabric surface wetting properties. In this approach, fourteen features characterizing woven structures and two plasma parameters ... Keywords: Artificial neural networks, Atmospheric air-plasma, Fuzzy logic based selection criterion, Modeling, Surface wetting properties, Woven fabrics

Radhia Abd Jelil, Xianyi Zeng, Ludovic Koehl, Anne Perwuelz

2013-09-01T23:59:59.000Z

268

Strengthening porous metal skeletons by metal deposition from a nanoparticle dispersion  

E-Print Network (OSTI)

The accuracy of solid freeform fabrication processes such as three-dimensional printing (3DP) and selective laser sintering (SLS) must be improved for them to achieve wide application in direct production of metal parts. ...

Crane, Nathan B., 1974-

2005-01-01T23:59:59.000Z

269

Fabrication of dual porosity electrode structure  

DOE Patents (OSTI)

A substantially entirely fibrous ceramic is described which may have dual porosity of both micro and macro pores. Total porosity may be 60-75% by volume. A method of spraying a slurry perpendicularly to an ambient stream of air is disclosed along with a method of removing binders without altering the fiber morphology. Adding fine ceramic particulates to the green ceramic fibers enhances the sintering characteristics of the fibers. 3 figures.

Smith, J.L.; Kucera, E.H.

1991-02-12T23:59:59.000Z

270

Porous Structure Fabrication and Thermomechanical Processing  

Science Conference Proceedings (OSTI)

Mar 7, 2013 ... In this paper, electrodeposition has been explored as a low energy alternative to conventional, high temperature infiltration techniques for ...

271

2010 Functional and Structural Nanomaterials: Fabrication ...  

Science Conference Proceedings (OSTI)

Geometry Dependence of the Strain-driven Self-rolling of Semiconductor Nanotubes · Gold Nano-Engineered Mercury Sensor for Alumina Refineries.

272

Fabrication of dual porosity electrode structure  

DOE Patents (OSTI)

A substantially entirely fibrous ceramic which may have dual porosity of both micro and macro pores. Total porosity may be 60-75% by volume. A method of spraying a slurry perpendicularly to an ambient stream of air is disclosed along with a method of removing binders without altering the fiber morphology. Adding fine ceramic particulates to the green ceramic fibers enhances the sintering characteristics of the fibers.

Smith, James L. (Lemont, IL); Kucera, Eugenia H. (Downers Grove, IL)

1991-01-01T23:59:59.000Z

273

Nano-fabricated superconducting radio-frequency composites, method for producing nano-fabricated superconducting rf composites  

DOE Patents (OSTI)

Superconducting rf is limited by a wide range of failure mechanisms inherent in the typical manufacture methods. This invention provides a method for fabricating superconducting rf structures comprising coating the structures with single atomic-layer thick films of alternating chemical composition. Also provided is a cavity defining the invented laminate structure.

Norem, James H.; Pellin, Michael J.

2013-06-11T23:59:59.000Z

274

Assembly of biological building blocks for nano- and micro-fabrication of materials  

E-Print Network (OSTI)

Experimental studies were performed to fabricate various material structures using genetically engineered M13 bacteriophage. This virus template showed superior controls of material syntheses from nanoscale to microscale. ...

Chiang, Chung-Yi

2008-01-01T23:59:59.000Z

275

Fabrication and Characterization of Polycrystalline CuInSe 2 Thin ...  

Science Conference Proceedings (OSTI)

Symposium, Thin Film Structures for Energy Efficient Systems. Presentation Title, Fabrication and Characterization of Polycrystalline CuInSe2 Thin Film by ...

276

Ceramic fabrication R D  

DOE Green Energy (OSTI)

This project is separated into three tasks. The first task is a design and modeling effort to be carried out by MSE, Inc. The purpose of this task is to develop and analyze designs for various cohesive ceramic fabrication (CCF) components. This quarter, the advanced molybdenum disicilide MHD electrode design was essentially completed. Final refinements will be made after molybdenum disilicide processing results are available and the final layer compositions are established. Work involving whisker incorporation was initiated on the high stress component. It is unlikely that whiskers will become low cost, so particulate reinforcement will be pursued. Modeling work will resume once a suitable aluminum oxide/silicon carbide composition is selected that can be fired to acceptable densities by pressureless sintering. Task 2, subcontracted to Applied Technology Laboratories (ATL), is principally directed at establishing a property data base for monolithic and laminated alumina fabricated using the CCF process. This quarter, ATL demonstrated that the CCF process does not compromise the flexure strength of alumina. Task 3, subcontracted to Ceramics Binder Systems, Inc., focused on CCF silicon carbide particulate reinforced alumina and on the development of processing procedures for nonoxide molybdenum disilicide. Preliminary results indicate that achieving high densities in silicon carbide particulate reinforced aluminum oxide will be difficult. Molybdenum disilicide results are encouraging, and it is clear that the CCF process will work with this nonoxide material. 3 refs., 18 figs., 4 tabs.

Not Available

1990-01-01T23:59:59.000Z

277

Advanced Safeguards Approaches for New TRU Fuel Fabrication Facilities  

Science Conference Proceedings (OSTI)

This second report in a series of three reviews possible safeguards approaches for the new transuranic (TRU) fuel fabrication processes to be deployed at AFCF – specifically, the ceramic TRU (MOX) fuel fabrication line and the metallic (pyroprocessing) line. The most common TRU fuel has been fuel composed of mixed plutonium and uranium dioxide, referred to as “MOX”. However, under the Advanced Fuel Cycle projects custom-made fuels with higher contents of neptunium, americium, and curium may also be produced to evaluate if these “minor actinides” can be effectively burned and transmuted through irradiation in the ABR. A third and final report in this series will evaluate and review the advanced safeguards approach options for the ABR. In reviewing and developing the advanced safeguards approach for the new TRU fuel fabrication processes envisioned for AFCF, the existing international (IAEA) safeguards approach at the Plutonium Fuel Production Facility (PFPF) and the conceptual approach planned for the new J-MOX facility in Japan have been considered as a starting point of reference. The pyro-metallurgical reprocessing and fuel fabrication process at EBR-II near Idaho Falls also provided insight for safeguarding the additional metallic pyroprocessing fuel fabrication line planned for AFCF.

Durst, Philip C.; Ehinger, Michael H.; Boyer, Brian; Therios, Ike; Bean, Robert; Dougan, A.; Tolk, K.

2007-12-15T23:59:59.000Z

278

Structure and stability of Co(II)-complexes formed by wild-type and metal-ligand substitution mutants of T4 gene 32 protein  

E-Print Network (OSTI)

Phage T4 gene 32 protein (gp32) is a zinc metalloprotein that binds cooperatively and preferentially to single-stranded nucleic acids and functions as a replication and recombination accessory protein. We have previously shown that the ZN(II) coordination by gp32 employs a metal ligand donor set unrelated to any known zinc-finger motif thus far described and is derived from the His64-XI2-Cys77-Xg-Cys87-X2-CYS90 sequence in the ssDNA-binding core domain of the molecule. Crystallographic studies reveal that His64 and Cys77 are derived from two independent p-strands and are relatively more buried from solvent than are Cys87 and Cys9O, which combine to nucleate an (X-helix. In an effort to understand the origin of the stability of the metal complex, we have employed an anaerobic optical spectroscopic, competitive metal binding assay to determine the coordination geometry and association constants (Ka) for the binding of CO(II) to wild-type gp32 and a series of zinc ligand substitution mutants. We find that all non-native metal complexes retain tetrahedral coordination geometry but are greatly destabilized in a manner essentially independent of whether a new protein-derived coordination bond is forfned (e.g., in H64C gp32) or not. Quantitative Co(H) binding isotherms for the His64 mutants reveal that these gp32s form a dimeric CYS4 tetrathiolate intermediate complex of differing affinities at limiting [Co]f; each then rearranges at high [Co]f to form a monomolecular site of the expected geometry and Ka=IXIO4 M-1. C87S and C90A gp32s, in contrast, form a single complex at all [Co]f, consistent with CYS2-His-H20 tetrahedral geometry of Ka=1-2xlo5 M-1. The susceptibility of all mutant metal sites to oxidation by 02 is far greater than the wild-type protein; none appear to be functional ssDNA binding proteins. These studies reveal that the local protein structure greatly limits accommodation of an altered complex in a ligand-specific manner. The implications of this work for de novo design of zinc complexes in proteins will be discussed.

Guo, Juqian

1996-01-01T23:59:59.000Z

279

Metal Aminoboranes  

NLE Websites -- All DOE Office Websites (Extended Search)

Metal Aminoboranes Metal Aminoboranes Metal Aminoboranes Metal aminoboranes of the formula M(NH.sub.2BH.sub.3).sub.n have been synthesized. June 25, 2013 Metal Aminoboranes Metal aminoboranes of the formula M(NH.sub.2BH.sub.3).sub.n have been synthesized. Available for thumbnail of Feynman Center (505) 665-9090 Email Metal Aminoboranes Metal aminoboranes of the formula M(NH.sub.2BH.sub.3).sub.n have been synthesized. Metal aminoboranes are hydrogen storage materials. Metal aminoboranes are also precursors for synthesizing other metal aminoboranes. Metal aminoboranes can be dehydrogenated to form hydrogen and a reaction product. The reaction product can react with hydrogen to form a hydrogen storage material. Metal aminoboranes can be included in a kit. U.S. Patent No.: 7,713,506 (DOE S-112,798)

280

Formation of {open_quotes}metal wool{close_quotes} structures and dynamics of catalytic etching of platinum surfaces during ammonia oxidation  

SciTech Connect

Reconstruction of a clean surface of a platinum catalyst and a platinum surface covered with gold during ammonia oxidation was studied by SEM observations. It was found that the process of catalytic etching had two sequential stages in which different crystal structures with different rates of growth formed on the surface. The first stage was the formation of parallel facets, and the second stage was the formation of individual microcrystals with perfect crystal faces. It was also found that the second state had a threshold character, beginning after some delay from the start of the reaction. A structure resembling metal wool and consisting of interlaced platinum filaments was found to form on the surface of gold-covered platinum catalysts. Characteristic features of this structure`s development are reported. The growth of filaments is attributed to the vapor-liquid-solid mechanism of whisker growth. On the basis of the observed platinum whisker formation and behavior during ammonia oxidation, a mechanism of catalyst surface reconstruction that explains observed characteristic features of the process of catalytic etching is proposed. 25 refs., 8 figs.

Lyubovsky, M.R.; Barelko, V.V. [Institute of Chemical Physics in Chernogolovka, Moscow (Russian Federation)] [Institute of Chemical Physics in Chernogolovka, Moscow (Russian Federation)

1994-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "fabricated structural metal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

AFIP-6 Fabrication Summary Report  

SciTech Connect

The AFIP-6 (ATR Full-size plate In center flux trap Position) experiment was designed to evaluate the performance of monolithic fuels at a scale prototypic of research reactor fuel plates. Two qualified fueled plates were fabricated for the AFIP-6 experiment; to be irradiated in the INL Advanced Test Reactor (ATR). This report provides details of the fuel fabrication efforts, including material selection, fabrication processes, and fuel plate qualification.

Glenn A. Moore; M. Craig Marshall

2011-09-01T23:59:59.000Z

282

Metals and Ceramics Division. Annual progress report, ending June 30, 1980  

SciTech Connect

Research is reported concerning: (1) engineering materials, including materials compatibility, mechanical properties, nondestructive testing, pressure vessel technology, and welding and brazing; (2) fuels and processes consisting of ceramic technology, fuel cycle technology, fuels evaluation, fuel fabrication and metals processing; and (3) materials science which includes, ceramic studies, physical metallurgy properties, radiation effects and microstructural analysis, metastable and superconducting materials, structure and properties of surfaces, theroretical research and x-ray research and applications. Highlights of the work of the metallographic group and the current state of the High-Temperature Materials Laboratory (HTML) and the Materials and Structures Technology Management Center (MSTMC) are presented. (FS)

Not Available

1980-09-01T23:59:59.000Z

283

Chemical and structural investigations of the incorporation of metal manganese into ruthenium thin films for use as copper diffusion barrier layers  

Science Conference Proceedings (OSTI)

The incorporation of manganese into a 3 nm ruthenium thin-film is presented as a potential mechanism to improve its performance as a copper diffusion barrier. Manganese ({approx}1 nm) was deposited on an atomic layer deposited Ru film, and the Mn/Ru/SiO{sub 2} structure was subsequently thermally annealed. X-ray photoelectron spectroscopy studies reveal the chemical interaction of Mn with the SiO{sub 2} substrate to form manganese-silicate (MnSiO{sub 3}), implying the migration of the metal through the Ru film. Electron energy loss spectroscopy line profile measurements of the intensity of the Mn signal across the Ru film confirm the presence of Mn at the Ru/SiO{sub 2} interface.

McCoy, A. P.; Casey, P.; Bogan, J.; Hughes, G. [School of Physical Sciences, Dublin City University, Dublin 9 (Ireland); Lozano, J. G.; Nellist, P. D. [Department of Materials, University of Oxford, Oxford OX1 3PH (United Kingdom)

2012-12-03T23:59:59.000Z

284

Fabrication of commercial-scale fiber-reinforced hot-gas filters by chemical vapor deposition  

SciTech Connect

Goal was to fabricate a filter for removing particulates from hot gases; principal applications would be in advanced utility processes such as pressurized fluidized bed combustion or coal gasification combined cycle systems. Filters were made in two steps: make a ceramic fiber preform and coat it with SiC by chemical vapor infiltration (CVD). The most promising construction was felt/filament wound. Light, tough ceramic composite filters can be made; reinforcement by continuous fibers is needed to avoid brittleness. Direct metal to filter contact does not damage the top which simplifies installation. However, much of the filter surface of felt/filament wound structures is closed over by the CVD coating, and the surface is rough and subject to delamination. Recommendations are given for improving the filters.

White, L.R. [Minnesota Mining and Mfg. Co., St. Paul, MN (United States). New Products Dept.

1992-11-01T23:59:59.000Z

285

Effect of Ce composition on the structural and electronic characteristics of some metal hydride electrodes: A XANES and EXAFS investigation  

DOE Green Energy (OSTI)

Substitution of the B component in the prototype AB{sub 5} type (LaNi{sub 5}) metal hydride alloys have resulted in their increased acceptance as anodes for rechargeable alkaline batteries. Recently substitution of the A component (La) for imparting properties such as increased corrosion resistance has received attention. This investigation deals with the role of Ce as a substituent for the La and its effect in terms of corrosion resistance. The alloys chosen have the general composition of La{sub x}Ce{sub 1-x}B{sub 5} (x = 1, 0.8, 0.5 and 0.25) where B is Ni{sub 3.55}CO{sub 0.75}Mn{sub 0.4}Al{sub 0.3} together with alloys containing the mischmetal (Mm) as the A component (both synthetic and commercial). Electrochemical cycling results show that Ce lowers the capacity loss in the alloys and that this effect is not a simple function of the extent of lattice expansion during hydriding as was previously suggested. Correlation of the electrochemical and XAS results show that capacity loss is directly related to the extent of Ni corrosion. Effect of Ce substitution seems to result in a stable Ce oxide hydroxide coating which imparts the corrosion resistance.

Mukerjee, S.; McBreen, J.; Reilly, J.J.; Johnson, J.R.; Adzic, G. [Brookhaven National Lab., Upton, NY (United States); Kumar, M.P.S.; Zhang, W.; Srinivasan, S. [Texas A and M Univ., College Station, TX (United States). Center for Electrochemical Systems and Hydrogen Research

1994-12-31T23:59:59.000Z

286

Method for producing fabrication material for constructing micrometer-scaled machines, fabrication material for micrometer-scaled machines  

DOE Patents (OSTI)

A method for producing fabrication material for use in the construction of nanometer-scaled machines is provided whereby similar protein molecules are isolated and manipulated at predetermined residue positions so as to facilitate noncovalent interaction, but without compromising the folding configuration or native structure of the original protein biomodules. A fabrication material is also provided consisting of biomodules systematically constructed and arranged at specific solution parameters.

Stevens, F.J.

1995-12-31T23:59:59.000Z

287

Metal-organic coordination architectures of azole heterocycle ligands bearing acetic acid groups: Synthesis, structure and magnetic properties  

SciTech Connect

Four new coordination complexes with azole heterocycle ligands bearing acetic acid groups, [Co(L{sup 1}){sub 2}]{sub n} (1), [CuL{sup 1}N{sub 3}]{sub n} (2), [Cu(L{sup 2}){sub 2}.0.5C{sub 2}H{sub 5}OH.H{sub 2}O]{sub n} (3) and [Co(L{sup 2}){sub 2}]{sub n} (4) (here, HL{sup 1}=1H-imidazole-1-yl-acetic acid, HL{sup 2}=1H-benzimidazole-1-yl-acetic acid) have been synthesized and structurally characterized. Single-crystal structure analysis shows that 3 and 4 are 2D complexes with 4{sup 4}-sql topologies, while another 2D complex 1 has a (4{sup 3}){sub 2}(4{sup 6})-kgd topology. And 2 is a 3D complex composed dinuclear mu{sub 1,1}-bridging azido Cu{sup II} entities with distorted rutile topology. The magnetic properties of 1 and 2 have been studied. - Graphical Abstract: The synthesis, crystal structure, and magnetic properties of the new coordination complexes with azole heterocycle ligands bearing acetic acid groups are reported.

Hu Bowen; Zhao Jiongpeng; Yang Qian; Hu Tongliang; Du Wenping [Department of Chemistry, Nankai University, Tianjin 300071 (China); Bu Xianhe, E-mail: buxh@nankai.edu.c [Department of Chemistry, Nankai University, Tianjin 300071 (China)

2009-10-15T23:59:59.000Z

288

Dynamic response of Cu4Zr54 metallic glass to high strain rate shock loading: plasticity, spall and atomic-level structures  

SciTech Connect

We investigate dynamic response of Cu{sub 46}Zr{sub 54} metallic glass under adiabatic planar shock wave loading (one-dimensional strain) wjth molecular dynamics simulations, including Hugoniot (shock) states, shock-induced plasticity and spallation. The Hugoniot states are obtained up to 60 CPa along with the von Mises shear flow strengths, and the dynamic spall strength, at different strain rates and temperatures. The spall strengths likely represent the limiting values achievable in experiments such as laser ablation. For the steady shock states, a clear elastic-plastic transition is identified (e.g., in the shock velocity-particle velocity curve), and the shear strength shows strain-softening. However, the elastic-plastic transition across the shock front displays transient stress overshoot (hardening) above the Hugoniot elastic limit followed by a relatively sluggish relaxation to the steady shock state, and the plastic shock front steepens with increasing shock strength. The local von Mises shear strain analysis is used to characterize local deformation, and the Voronoi tessellation analysis, the corresponding short-range structures at various stages of shock, release, tension and spallation. The plasticity in this glass is manifested as localized shear transformation zones and of local structure rather than thermal origin, and void nucleation occurs preferentially at the highly shear-deformed regions. The Voronoi and shear strain analyses show that the atoms with different local structures are of different shear resistances that lead to shear localization (e.g., the atoms indexed with (0,0,12,0) are most shear-resistant, and those with (0,2,8,1) are highly prone to shear flow). The dynamic changes in local structures are consistent with the observed deformation dynamics.

Luo, Shengnian [Los Alamos National Laboratory; Arman, Bedri [Los Alamos National Laboratory; Germann, Timothy C [Los Alamos National Laboratory; Cagin, Tahir [TEXAS A& M UNIV

2009-01-01T23:59:59.000Z

289

Application of lanthanide induced shifts for the determination of solution structures of metal ion-extractant complexes  

SciTech Connect

An analysis of the induced shifts in the nuclear magnetic resonance (NMR) spectra of extractants complexed to paramagnetic lanthanide ions has been performed. The complexes of a number of monofunctional and bifunctional extractants have been examined and assigned solution structures by minimizing the differences between the observed shifts and those calculated using a computer analysis in which the potential configurations of the complexes were generated. Complexes of monofunctional extractants were calculated to have coordination geometries quite similar to those observed in related compounds by crystallographic techniques. For the bifunctional extractants, differentiation between monodentate and bidentate coordination seems possible. 23 references, 2 figures, 7 tables.

Kalina, D.G.

1984-01-01T23:59:59.000Z

290

Synthesis of bulk metallic glass foam by powder extrusion with a fugitive second phase  

Science Conference Proceedings (OSTI)

Bulk metallic glass foams with 12 mm in diameter and 30 mm in length having a density of 4.62 g/cm{sup 3} (approximately 58.3% of theoretical) were fabricated by extruding a powder mixture comprised of 60 vol % Ni{sub 59}Zr{sub 20}Ti{sub 16}Si{sub 2}Sn{sub 3} metallic glass blended with 40 vol % brass followed by dissolution of the fugitive brass in an aqueous HNO{sub 3} solution. The final structure consists of continuously connected, high aspect ratio metallic glass struts surrounded by {approx}40 vol % of homogeneously distributed ellipsoid-shaped pores having nominal diameters between 10 and 50 {mu}m.

Lee, Min Ha; Sordelet, Daniel J. [Materials and Engineering Physics Program, Ames Laboratory, Iowa State University, Ames, Iowa 50011 (United States)

2006-07-10T23:59:59.000Z

291

Fabrication methods for low impedance lithium polymer electrodes  

DOE Patents (OSTI)

A process is described for fabricating an electrolyte-electrode composite suitable for high energy alkali metal battery that includes mixing composite electrode materials with excess liquid, such as ethylene carbonate or propylene carbonate, to produce an initial formulation, and forming a shaped electrode therefrom. The excess liquid is then removed from the electrode to compact the electrode composite which can be further compacted by compression. The resulting electrode exhibits at least a 75% lower resistance.

Chern, T.S.; MacFadden, K.O.; Johnson, S.L.

1997-12-16T23:59:59.000Z

292

Fabrication methods for low impedance lithium polymer electrodes  

DOE Patents (OSTI)

A process for fabricating an electrolyte-electrode composite suitable for high energy alkali metal battery that includes mixing composite electrode materials with excess liquid, such as ethylene carbonate or propylene carbonate, to produce an initial formulation, and forming a shaped electrode therefrom. The excess liquid is then removed from the electrode to compact the electrode composite which can be further compacted by compression. The resulting electrode exhibits at least a 75% lower resistance.

Chern, Terry Song-Hsing (Midlothian, VA); MacFadden, Kenneth Orville (Highland, MD); Johnson, Steven Lloyd (Arbutus, MD)

1997-01-01T23:59:59.000Z

293

Updating of ASME Nuclear Code Case N-201 to Accommodate the Needs of Metallic Core Support Structures for High Temperature Gas Cooled Reactors Currently in Development  

Science Conference Proceedings (OSTI)

On September 29, 2005, ASME Standards Technology, LLC (ASME ST-LLC) executed a multi-year, cooperative agreement with the United States DOE for the Generation IV Reactor Materials project. The project's objective is to update and expand appropriate materials, construction, and design codes for application in future Generation IV nuclear reactor systems that operate at elevated temperatures. Task 4 was embarked upon in recognition of the large quantity of ongoing reactor designs utilizing high temperature technology. Since Code Case N-201 had not seen a significant revision (except for a minor revision in September, 2006 to change the SA-336 forging reference for 304SS and 316SS to SA-965 in Tables 1.2(a) and 1.2(b), and some minor editorial changes) since December 1994, identifying recommended updates to support the current high temperature Core Support Structure (CSS) designs and potential new designs was important. As anticipated, the Task 4 effort identified a number of Code Case N-201 issues. Items requiring further consideration range from addressing apparent inconsistencies in definitions and certain material properties between CC-N-201 and Subsection NH, to inclusion of additional materials to provide the designer more flexibility of design. Task 4 developed a design parameter survey that requested input from the CSS designers of ongoing high temperature gas cooled reactor metallic core support designs. The responses to the survey provided Task 4 valuable input to identify the design operating parameters and future needs of the CSS designers. Types of materials, metal temperature, time of exposure, design pressure, design life, and fluence levels were included in the Task 4 survey responses. The results of the survey are included in this report. This research proves that additional work must be done to update Code Case N-201. Task 4 activities provide the framework for the Code Case N-201 update and future work to provide input on materials. Candidate materials such as Type 321 and Type 347 austenitic stainless steels, Modified 9Cr-1Mo steel for core support structure construction, and Alloy 718 for Threaded Structural Fasteners were among the recommended materials for inclusion in the Code Case. This Task 4 Report identifies the need to address design life beyond 3 x 105 hours, especially in consideration of 60-year design life. A proposed update to the latest Code Case N-201 revision (i.e., Code Case N-201-5) including the items resolved in this report is included as Appendix A.

Mit Basol; John F. Kielb; John F. MuHooly; Kobus Smit

2007-05-02T23:59:59.000Z

294

Metallic carbon materials  

DOE Patents (OSTI)

Novel metallic forms of planar carbon are described, as well as methods of designing and making them. Nonhexagonal arrangements of carbon are introduced into a graphite carbon network essentially without destroying the planar structure. Specifically a form of carbon comprising primarily pentagons and heptagons, and having a large density of states at the Fermi level is described. Other arrangements of pentagons and heptagons that include some hexagons, and structures incorporating squares and octagons are additionally disclosed. Reducing the bond angle symmetry associated with a hexagonal arrangement of carbons increases the likelihood that the carbon material will have a metallic electron structure.

Cohen, Marvin Lou (Berkeley, CA); Crespi, Vincent Henry (Darien, IL); Louie, Steven Gwon Sheng (Berkeley, CA); Zettl, Alexander Karlwalter (Kensington, CA)

1999-01-01T23:59:59.000Z

295

WeldingFabr&MetalForm  

NLE Websites -- All DOE Office Websites (Extended Search)

Welding, Welding, Fabrication, and Metal Forming Manufacturing Technologies The department consists of three trades: weld- ing; fabrication and assembly; and precision metal forming. These interrelated groups use similar equipment and rely on each other's skills. One stop will get you the service of three reliable trades. The team manufactures and assembles proto- type hardware and has the in-house capability of producing hardware with sizes ranging from thumbnail to rail-car. Expertise includes aircraft quality sheet metal construction, certified weld- ing, and assembly. The staff has experience managing a variety of activities: design modifi- cation assistance; in-house fabrication; and project management and can work with your engineers to transform sketches and ideas into working prototypes.

296

Facilities, Central Fabrication Services, Brookhaven National...  

NLE Websites -- All DOE Office Websites (Extended Search)

Central Fabrication Services Division's capabilities range from a large Electron Beam Welding facility, to a state of the art cleaning facility, to a large fabricating facility...

297

Near room temperature lithographically processed metal-oxide transistors  

E-Print Network (OSTI)

A fully lithographic process at near-room-temperature was developed for the purpose of fabricating transistors based on metal-oxide channel materials. The combination of indium tin oxide (ITO) as the source/drain electrodes, ...

Tang, Hui, M. Eng. Massachusetts Institute of Technology

2008-01-01T23:59:59.000Z

298

Digital materials for digital fabrication  

E-Print Network (OSTI)

This thesis introduces digital materials by analogy with digital computation and digital communications. Traditional fabrication techniques include pick-and-place, roll-to-roll, molding, patterning and more. Current research ...

Popescu, George A

2007-01-01T23:59:59.000Z

299

Fabrication of Metal-Supported Micro-SOFC  

Science Conference Proceedings (OSTI)

Pd-Based Membrane Reactor for Simultaneous CO2 Sequestration and Hydrogen Production from Syngas Produced from IGCC · Search and Study of a Solid ...

300

Fabrication of Emissible Metallic Layer-by-Layer Photonic ...  

Iowa State University and Ames Laboratory researchers have developed a method for increasing the efficiency of conventional incandescent light bulbs.

Note: This page contains sample records for the topic "fabricated structural metal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Fabrication of Dimensionally-Correct Sheet Metal Components ...  

Science Conference Proceedings (OSTI)

A process is demonstrated wherein components can be made in a single step using a variant of rubber pad forming augmented with an electromagnetic ...

302

Fabrication and characterization of porous metal emitters for electrospray applications  

E-Print Network (OSTI)

Electrospray thrusters provide small, precise thrust with high power efficiencies and variable specific impulses from less than 1000s to over 4000s. The miniaturization and clustering of many emitters together is essential ...

Legge, Robert S., Jr

2008-01-01T23:59:59.000Z

303

Development of metal etch mask by single layer lift-off for silicon nitride photonic crystals  

Science Conference Proceedings (OSTI)

We present a method for fabrication of nanoscale patterns in silicon nitride (SiN) using a hard chrome mask formed by metal liftoff with a negative ebeam resists (maN-2401). This approach enables fabrication of a robust etch mask without the need for ... Keywords: Metal liftoff, Nanofabrication, Nanophotonics, Photonic crystals (PC), Silicon nitride (SiN)

Kang-mook Lim; Shilpi Gupta; Chad Ropp; Edo Waks

2011-06-01T23:59:59.000Z

304

Metastability And Crystal Structure of The Bialkali Complex Metal Hydride NaK(BH4)2  

DOE Green Energy (OSTI)

A new bialkali borohydride, NaK(BH{sub 4}){sub 2}, was synthesized by mechanical milling of NaBH4 and KBH4 in a 1:1 ratio. The synthesis was conducted based on a prediction from a computational screening of hydrogen storage materials suggesting the potential stability of NaK(BH{sub 4}){sub 2}. The new phase was characterized using X-ray diffraction, Raman scattering and magic angle spinning (MAS) nuclear magnetic resonance (NMR). The Raman measurements indicated B-H vibrations of the (BH{sub 4}){sup -} anion, while magnetic resonance chemical shifts in {sup 23}Na, and {sup 39}K MAS NMR spectra showed new chemical environments for Na and K resulting from the formation of the new bialkali phase. X-ray diffraction spectra indicated a new crystal structure with rhombohedral symmetry, most likely in the space group R3, distinct from the starting materials NaBH{sub 4}, and KBH{sub 4}. Although in-situ XRD measurements indicated the material to be metastable, decomposing to the starting materials NaBH{sub 4} and KBH{sub 4}, the successful synthesis of NaK(BH{sub 4}){sub 2} demonstrates the ability of computational screening to predict candidates for hydrogen storage materials.

Seballos, L; Zhang, J Z; Ronnebro, E; Herberg, J L; Majzoub, E H

2008-05-19T23:59:59.000Z

305

Surface Patterning Effects on Wear and Friction in Metal-Polymer ...  

Science Conference Proceedings (OSTI)

Fabrication of a Cellulosic Nanocomposite Scaffold with Improved Supermolecular Structure as a Potential Cardiovascular Tissue-Engineered Graft

306

Inert electrode containing metal oxides, copper and noble metal  

DOE Patents (OSTI)

A cermet composite material is made by treating at an elevated temperature a mixture comprising a compound of iron and a compound of at least one other metal, together with an alloy or mixture of copper and a noble metal. The alloy or mixture preferably comprises particles having an interior portion containing more copper than noble metal and an exterior portion containing more noble metal than copper. The noble metal is preferably silver. The cermet composite material preferably includes alloy phase portions and a ceramic phase portion. At least part of the ceramic phase portion preferably has a spinel structure.

Ray, Siba P. (Murrysville, PA); Woods, Robert W. (New Kensington, PA); Dawless, Robert K. (Monroeville, PA); Hosler, Robert B. (Sarver, PA)

2000-01-01T23:59:59.000Z

307

Inert electrode containing metal oxides, copper and noble metal  

DOE Patents (OSTI)

A cermet composite material is made by treating at an elevated temperature a mixture comprising a compound of iron and a compound of at least one other metal, together with an alloy or mixture of copper and a noble metal. The alloy or mixture preferably comprises particles having an interior portion containing more copper than noble metal and an exterior portion containing more noble metal than copper. The noble metal is preferably silver. The cermet composite material preferably includes alloy phase portions and a ceramic phase portion. At least part of the ceramic phase portion preferably has a spinel structure.

Ray, Siba P. (Murrysville, PA); Woods, Robert W. (New Kensington, PA); Dawless, Robert K. (Monroeville, PA); Hosler, Robert B. (Sarver, PA)

2001-01-01T23:59:59.000Z

308

Light Metals  

Science Conference Proceedings (OSTI)

Alternative processes; Anode design and operation; Cell fundamentals and ... Hot-rolling technologies; Deformation of materials; Primary metal production.

309

Enforcement Letter, Diversified Metal Products, Inc - October 28, 2004 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Diversified Metal Products, Inc - October 28, Diversified Metal Products, Inc - October 28, 2004 Enforcement Letter, Diversified Metal Products, Inc - October 28, 2004 October 28, 2004 Issued to Diversified Metal Products, Inc. related to Transportainer Fabrication Deficiencies for the Waste Isolation Pilot Plant This letter addresses deficiencies associated with the fabrication of four transportainers delivered under contract to Washington TRU Solutions LLC (WTS) in support of their Characterization and Repackaging Modular Unit development. The Department of Energy's (DOE) Office of Price-Anderson Enforcement (OE) has reviewed your performance in delivering these transportainers and is concerned with the quality assurance aspects of your work activities in fabricating the transportainers. Enforcement Letter, Diversified Metal Products, Inc - October 28, 2004

310

Enforcement Letter, Diversified Metal Products, Inc - October 28, 2004 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Diversified Metal Products, Inc - October 28, Diversified Metal Products, Inc - October 28, 2004 Enforcement Letter, Diversified Metal Products, Inc - October 28, 2004 October 28, 2004 Issued to Diversified Metal Products, Inc. related to Transportainer Fabrication Deficiencies for the Waste Isolation Pilot Plant This letter addresses deficiencies associated with the fabrication of four transportainers delivered under contract to Washington TRU Solutions LLC (WTS) in support of their Characterization and Repackaging Modular Unit development. The Department of Energy's (DOE) Office of Price-Anderson Enforcement (OE) has reviewed your performance in delivering these transportainers and is concerned with the quality assurance aspects of your work activities in fabricating the transportainers. Enforcement Letter, Diversified Metal Products, Inc - October 28, 2004

311

Fabrication of a Kevlar liner assembly  

Science Conference Proceedings (OSTI)

Several liner assemblies were fabricated with Kevlar 49 and epoxy using various wet layup and prepreg processes. A production process, using prepreg material, was developed for fabricating the liner and a wet layup molding process was used to fabricate the Kevlar hat-shaped tunnels. Fabrication of the tunnels using Kevlar prepreg with an autoclave curving process was evaluated.

Schloman, A.H.

1980-07-01T23:59:59.000Z

312

Application of Neutron-Absorbing Structural-Amorphous metal (SAM) Coatings for Spent Nuclear Fuel (SNF) Container to Enhance Criticality Safety Controls  

E-Print Network (OSTI)

Metal Coatings for Spent Nuclear Fuel (SNF) Containers: UseCoatings for Spent Nuclear Fuel (SNF) Container to Enhance2006 ABSTRACT Spent nuclear fuel contains fissionable

2006-01-01T23:59:59.000Z

313

High cycle life, cobalt free, AB{5} metal hydride electrodes [Revised 11/10/98  

SciTech Connect

Cobalt-free La(Ni,Sn)5+x alloys have been identified as low cost, corrosion resistant electrodes for nickel-metal-hydride batteries. The structure of theses alloys are similar to non-stoichiometric La(Ni,Cu)5+x compounds; i.e., they retain the P6/mmm space group while Ni dumbbells occupy La sites. Electrodes fabricated from some of these novel alloys have capacities and cycle lives equivalent to those made from commercial, battery grade, AB5 alloys with cobalt.

Vogt, Tom; Reilly, J.J.; Johnson, J.R.; Adzic, G.D.; Ticianelli, E.A.; Mukerjee, S.; McBreen, J.

1998-11-10T23:59:59.000Z

314

Sacrificial template method of fabricating a nanotube  

DOE Patents (OSTI)

Methods of fabricating uniform nanotubes are described in which nanotubes were synthesized as sheaths over nanowire templates, such as using a chemical vapor deposition process. For example, single-crystalline zinc oxide (ZnO) nanowires are utilized as templates over which gallium nitride (GaN) is epitaxially grown. The ZnO templates are then removed, such as by thermal reduction and evaporation. The completed single-crystalline GaN nanotubes preferably have inner diameters ranging from 30 nm to 200 nm, and wall thicknesses between 5 and 50 nm. Transmission electron microscopy studies show that the resultant nanotubes are single-crystalline with a wurtzite structure, and are oriented along the <001> direction. The present invention exemplifies single-crystalline nanotubes of materials with a non-layered crystal structure. Similar "epitaxial-casting" approaches could be used to produce arrays and single-crystalline nanotubes of other solid materials and semiconductors. Furthermore, the fabrication of multi-sheath nanotubes are described as well as nanotubes having multiple longitudinal segments.

Yang, Peidong (Berkeley, CA); He, Rongrui (Berkeley, CA); Goldberger, Joshua (Berkeley, CA); Fan, Rong (El Cerrito, CA); Wu, Yi-Ying (Albany, CA); Li, Deyu (Albany, CA); Majumdar, Arun (Orinda, CA)

2007-05-01T23:59:59.000Z

315

Development and fabrication of solar-collector SMC reflector assemblies  

SciTech Connect

This project produced a parabolic trough solar collector array consisting of four each 2 x 6 m reflector modules. Each module required a structural torque tube on which were mounted six 1 x 2 m molded sheet molding compound (SMC)/glass panels. The project reported here established the fabrication, assembly, and inspection procedures for production of SMC reflector panels and assemblies.

Kirsch, P.A.

1982-12-01T23:59:59.000Z

316

Advanced Metallic Structure for Aircrafts  

Science Conference Proceedings (OSTI)

A General Study of Commercially Pure Ti Subjected To Equal Channel Angular ... Facile Synthesis of Carbon Encapsulated Iron Nanoparticles from Cellulose by ...

317

Development of Metal-Organic Framework Thin Films and Membranes for Low-Energy Gas Separation  

E-Print Network (OSTI)

Metal-organic frameworks (MOFs) are hybrid organic-inorganic micro- or mesoporous materials that exhibit regular crystalline lattices with rigid pore structures. Chemical functionalization of the organic linkers in the structures of MOFs affords facile control over pore size and physical properties, making MOFs attractive materials for application in gas-separating membranes. A wealth of reports exist discussing the synthesis of MOF structures, however relatively few reports exist discussing MOF membranes. This disparity owes to challenges associated with fabricating films of hybrid materials, including poor substrate-film interactions, moisture sensitivity, and thermal instability. Since even nanometer scale cracks and defects can affect the performance of a membrane for gas separation, these challenges are particularly acute for MOF membranes. The focus of this work is the development of novel methods for MOF film and membrane fabrication with a view to overcoming these challenges. The MOF film production methods discussed herein include in situ synthesis using ligand-modified or metal-modified supports and rapid thermal deposition (RTD).

McCarthy, Michael

2011-05-01T23:59:59.000Z

318

Nanostructured metal foams: synthesis and applications  

DOE Green Energy (OSTI)

Fabrication of monolithic metallic nanoporous materials is difficult using conventional methodology. Here they report a relatively simple method of synthesizing monolithic, ultralow density, nanostructured metal foams utilizing self-propagating combustion synthesis of novel metal complexes containing high nitrogen energetic ligands. Nanostructured metal foams are formed in a post flame-front dynamic assembly with densities as low as 0.011 g/cc and surface areas as high as 270 m{sup 2}/g. They have produced metal foams via this method of titanium, iron, cobalt, nickel, zirconium, copper, palladium, silver, hafnium, platinum and gold. Microstructural features vary as a function of composition and process parameters. Applications for the metal foams are discussed including hydrogen absorption in palladium foams. A model for the sorption kinetics of hydrogen in the foams is presented.

Luther, Erik P [Los Alamos National Laboratory; Tappan, Bryce [Los Alamos National Laboratory; Mueller, Alex [Los Alamos National Laboratory; Mihaila, Bogdan [Los Alamos National Laboratory; Volz, Heather [Los Alamos National Laboratory; Cardenas, Andreas [Los Alamos National Laboratory; Papin, Pallas [Los Alamos National Laboratory; Veauthier, Jackie [Los Alamos National Laboratory; Stan, Marius [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

319

The rise of personal fabrication  

Science Conference Proceedings (OSTI)

In recent years we have been witnessing the first stages of a democratization of manufacturing, a trend that promises to revolutionize the means of design, production and distribution of material goods and give rise to a new class of creators and producers. ... Keywords: democratizing creativity, democratizing innovation, digital fabrication, distributed production, do-it-yourself

Catarina Mota

2011-11-01T23:59:59.000Z

320

Precious Metals  

Science Conference Proceedings (OSTI)

"Advances in the Extractive Metallurgy of Selected Rare and Precious Metals" ( 1991 Review of Extractive Metallurgy), J.E. Hoffmann, April 1991, pp. 18-23.

Note: This page contains sample records for the topic "fabricated structural metal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Metal hydride fuel storage and method thereof  

DOE Patents (OSTI)

Disclosed herein is a metal hydride fuel storage cartridge having integrated resistive heaters that can be used in conjunction with fuel cells such as MEMS-based fuel cells. The cartridge is fabricated using micromachining methods and thin/thick film materials synthesis techniques.

Morse, Jeffrey D. (Martinez, CA); Jankowski, Alan F. (Livermore, CA); Yu, Conrad (Antioch, CA)

2006-10-17T23:59:59.000Z

322

Nanostructured metal-polyaniline composites  

DOE Patents (OSTI)

Metal-polyaniline (PANI) composites are provided together with a process of preparing such composites by an electrodeless process. The metal of the composite can have nanoscale structural features and the composites can be used in applications such as catalysis for hydrogenation reactions and for analytical detection methods employing SERS.

Wang, Hsing-Lin (Los Alamos, NM); Li, Wenguang (Elgin, IL); Bailey, James A. (Los Alamos, NM); Gao, Yuan (Brewer, ME)

2010-08-31T23:59:59.000Z

323

Structure  

NLE Websites -- All DOE Office Websites (Extended Search)

Structure Structure functions 1 NOTE: THE FIGURES IN THIS SECTION ARE INTENDED TO SHOW THE REPRESENTATIVE DATA. THEY ARE NOT MEANT TO BE COMPLETE COMPILATIONS OF ALL THE WORLD'S RELIABLE DATA. Q 2 (GeV 2 ) F 2 (x,Q 2 ) * 2 i x H1 ZEUS BCDMS E665 NMC SLAC 10 -3 10 -2 10 -1 1 10 10 2 10 3 10 4 10 5 10 6 10 7 10 8 10 9 10 -1 1 10 10 2 10 3 10 4 10 5 10 6 Figure 16.6: The proton structure function F p 2 measured in electromagnetic scattering of positrons on protons (collider experiments ZEUS and H1), in the kinematic domain of the HERA data, for x > 0.00006 (cf. Fig. 16.9 for data at smaller x and Q 2 ), and for electrons (SLAC) and muons (BCDMS, E665, NMC) on a fixed target. Statistical and systematic errors added in quadrature are shown. The data are plotted as a function of Q 2 in bins of fixed x. Some points have been slightly offset in Q 2 for clarity. The ZEUS binning in x is used in this plot; all other data are rebinned to the x values of

324

Fabrication of Pd/Pd-Alloy Films by Surfactant Induced Electroless Plating for Hydrogen Separation from Advanced Coal Gasification Processes  

SciTech Connect

Dense Pd, Pd-Cu and Pd-Ag composite membranes on microporous stainless steel substrate (MPSS) were fabricated by a novel electroless plating (EP) process. In the conventional Pd-EP process, the oxidation-reduction reactions between Pd-complex and hydrazine result in an evolution of NH{sub 3} and N{sub 2} gas bubbles. When adhered to the substrate surface and in the pores, these gas bubbles hinder uniform Pd-film deposition which results in dendrite growth leading to poor film formation. This problem was addressed by introducing cationic surfactant in the electroless plating process known as surfactant induced electroless plating (SIEP). The unique features of this innovation provide control of Pd-deposition rate, and Pd-grain size distribution. The surfactant molecules play an important role in the EP process by tailoring grain size and the process of agglomeration by removing tiny gas bubbles through adsorption at the gas-liquid interface. As a result surfactant can tailor a nanocrystalline Pd, Cu and Ag deposition in the film resulting in reduced membrane film thickness. Also, it produces a uniform, agglomerated film structure. The Pd-Cu and Pd-Ag membranes on MPSS support were fabricated by sequential deposition using SIEP method. The pre- and post-annealing characterizations of these membranes (Pd, Pd-Cu and Pd-Ag on MPSS substrate) were carried out by SEM, EDX, XRD, and AFM studies. The SEM images show significant improvement of the membrane surface morphology, in terms of metal grain structures and grain agglomeration compared to the membranes fabricated by conventional EP process. The SEM images and helium gas-tightness studies indicate that dense and thinner films of Pd, Pd-Cu and Pd-Ag membranes can be produced with shorter deposition time using surfactant. H{sub 2} Flux through the membranes fabricated by SIEP shows large improvement compared to those by CEP with comparable permselectivity. Pd-MPSS composite membrane was subjected to test for long term performance and thermal cycling (573 - 723 - 573 K) at 15 psi pressure drop for 1200 hours. Pd membranes showed excellent hydrogen permeability and thermal stability during the operational period. Under thermal cycling (573 K - 873 K - 573 K), Pd-Cu-MPSS membrane was stable and retained hydrogen permeation characteristics for over three months of operation. From this limited study, we conclude that SIEP is viable method for fabrication of defect-free, robust Pd-alloy membranes for high-temperature H{sub 2}-separation applications.

Ilias, Shamsuddin; Kumar, Dhananjay

2012-07-31T23:59:59.000Z

325

Targets and processes for fabricating same  

DOE Patents (OSTI)

In particular embodiments, the present disclosure provides targets including a metal layer and defining a hollow inner surface. The hollow inner surface has an internal apex. The distance between at least two opposing points of the internal apex is less than about 15 .mu.m. In particular examples, the distance is less than about 1 .mu.m. Particular implementations of the targets are free standing. The targets have a number of disclosed shaped, including cones, pyramids, hemispheres, and capped structures. The present disclosure also provides arrays of such targets. Also provided are methods of forming targets, such as the disclosed targets, using lithographic techniques, such as photolithographic techniques. In particular examples, a target mold is formed from a silicon wafer and then one or more sides of the mold are coated with a target material, such as one or more metals.

Cowan, Thomas (Dresden, DE); Malekos, Steven (Reno, NV); Korgan, Grant (Reno, NV); Adams, Jesse (Reno, NV); Sentoku, Yasuhiko (Reno, NV); Le Galloudec, Nathalie (Reno, NV); Fuchs, Julien (Paris, FR)

2012-07-24T23:59:59.000Z

326

Nature-Inspired Hybrid Structural Materials for Bone Repair  

Science Conference Proceedings (OSTI)

Fabrication of a Cellulosic Nanocomposite Scaffold with Improved Supermolecular Structure as a Potential Cardiovascular Tissue-Engineered Graft .

327

Mechanical Properties and Laminate Structure of Arapaimas Gigas ...  

Science Conference Proceedings (OSTI)

Fabrication of a Cellulosic Nanocomposite Scaffold with Improved Supermolecular Structure as a Potential Cardiovascular Tissue-Engineered Graft .

328

4.212 Design Fabrication, Spring 2003  

E-Print Network (OSTI)

Design Fabrication is an introductory course in the field of advanced computing, prototyping and building fabrication. The class is focused on the relationship between design, various forms of computer modeling both explicit ...

Sass, Lawrence

329

Digital fabrication in the architectural design process  

E-Print Network (OSTI)

Digital fabrication is affecting the architectural design process due to the increasingly important role it has in the fabrication of architectural models. Many design professionals, professors, and students have experienced ...

Seely, Jennifer C. K., 1975-

2004-01-01T23:59:59.000Z

330

PREPARATION OF METAL POWDER COMPACTS PRIOR TO PRESSING  

DOE Patents (OSTI)

A method of fabricating uranium by a powder metallurgical technique is described. It consists in introducing powdered uranium hydride into a receptacle shaped to coincide with the coatour of the die cavity and heating the hydride so that it decomposes to uranium metal. The metal particles cohere in the shapw of the receptacle and thereafter the prefurmed metal powder is pressed and sintered to obtain a dense compact.

Mansfield, H.

1958-08-26T23:59:59.000Z

331

Plastic Deformation and Creep of Microcellular Metals  

Science Conference Proceedings (OSTI)

K. K. Chawla's Seminal Contributions to the Field of Metal Matrix Composites · Structural Health Monitoring of Wind Turbine Blades · Studies of Nanocrystalline  ...

332

Dealloyed Nanoporous Metals for Energy Storage  

Science Conference Proceedings (OSTI)

Dealloyed Nanoporous Metals for Energy Storage · Design of Light Weight Structure for Wind Turbine Tower by Using Nano-Materials · Development of Highly ...

333

Ninth target fabrication specialists` meeting: Proceedings  

Science Conference Proceedings (OSTI)

This report contains a collection of viewgraphs and short papers on target fabrication for inertial confinement purposes.

Not Available

1993-12-31T23:59:59.000Z

334

Fabrication and Characterization of Reticulated, Porous Mesh ...  

Science Conference Proceedings (OSTI)

Feb 1, 2010 ... Fabrication and Characterization of Reticulated, Porous Mesh Arrays and Foams for Aerospace Applications by Additive Manufacturing Using ...

335

Water Filtration Device and Method of Fabrication  

Disclosure Number 200501522 Technology Summary This invention relates to a regenerable water filtration device and the method for fabricating this ...

336

Piezoelectric Fiber Fabrication for Magnetoelectric Sensors  

Science Conference Proceedings (OSTI)

Optical Properties of Bifeo3: Polar Oxides for Fundamental Science and Solar Energy Applications · Piezoelectric Fiber Fabrication for Magnetoelectric Sensors

337

Microoptical System And Fabrication Method Therefor  

DOE Patents (OSTI)

Microoptical systems with clear aperture of about one millimeter or less are fabricated from a layer of photoresist using a lithographic process to define the optical elements. A deep X-ray source is typically used to expose the photoresist. Exposure and development of the photoresist layer can produce planar, cylindrical, and radially symmetric micro-scale optical elements, comprising lenses, mirrors, apertures, diffractive elements, and prisms, monolithically formed on a common substrate with the mutual optical alignment required to provide the desired system functionality. Optical alignment can be controlled to better than one micron accuracy. Appropriate combinations of structure and materials enable optical designs that include corrections for chromatic and other optical aberrations. The developed photoresist can be used as the basis for a molding operation to produce microoptical systems made of a range of optical materials. Finally, very complex microoptical systems can be made with as few as three lithographic exposures.

Sweatt, William C. (Albuquerque, NM); Christenson, Todd R. (Albuquerque, NM)

2005-03-15T23:59:59.000Z

338

Double-shell inertial confinement fusion target fabrication  

SciTech Connect

First generation hemishells, from which spherical shells are constructed, were fabricated by micromachining coated mandrels and by molding. The remachining of coated mandrels are described in detail. Techniques were developed for coating the microsized mandrels with polymeric and metallic materials by methods including conformal coating, vapor deposition, plasma polymerization and thermoforming. Micropositioning equipment and bonding techniques have also been developed to assemble the hemishells about a fuel pellet maintaining a spherical concentricity of better than 2 ..mu..m and voids in the hemishell bonding line of a few hundred angstroms or less.

Hatcher, C.W.; Lorensen, L.E.; Weinstein, B.W.

1980-08-26T23:59:59.000Z

339

Method of fabricating silicon carbide coatings on graphite surfaces  

DOE Patents (OSTI)

The vacuum plasma spray process produces well-bonded, dense, stress-free coatings for a variety of materials on a wide range of substrates. The process is used in many industries to provide for the excellent wear, corrosion resistance, and high temperature behavior of the fabricated coatings. In this application, silicon metal is deposited on graphite. This invention discloses the optimum processing parameters for as-sprayed coating qualities. The method also discloses the effect of thermal cycling on silicon samples in an inert helium atmosphere at about 1600.degree.C. which transforms the coating to silicon carbide.

Varacalle, Jr., Dominic J. (Idaho Falls, ID); Herman, Herbert (Port Jefferson, NY); Burchell, Timothy D. (Oak Ridge, TN)

1994-01-01T23:59:59.000Z

340

Felt-metal-wick heat-pipe solar receiver  

DOE Green Energy (OSTI)

Reflux heat-pipe receivers have been identified as a desirable interface to couple a Stirling-cycle engine with a parabolic dish solar concentrator. The reflux receiver provides power nearly isothermally to the engine heater heads while decoupling the heater head design from the solar absorber surface design. The independent design of the receiver and engine heater head leads to higher system efficiency. Heat pipe reflux receivers have been demonstrated at approximately 65 kW{sub t} power throughput. Several 25 to 30-kW{sub e} Stirling-cycle engines are under development, and will soon be incorporated in commercial dish-Stirling systems. These engines will require reflux receivers with power throughput limits reaching 90-kW{sub t}. The extension of heat pipe technology from 60 kW{sub t} to 100 kW{sub t} is not trivial. Current heat pipe wick technology is pushed to its limits. It is necessary to develop and test advanced wick structure technologies to perform this task. Sandia has developed and begun testing a Bekaert Corporation felt metal wick structure fabricated by Porous Metal Products Inc. This wick is about 95% porous, and has liquid permeability a factor of 2 to 8 times higher than conventional technologies for a given maximum pore radius. The wick has been successfully demonstrated in a bench-scale heat pipe, and a full-scale on-sun receiver has been fabricated. This report details the wick design, characterization and installation into a heat pipe receiver, and the results of the bench-scale tests are presented. The wick performance is modeled, and the model results are compared to test results.

Andraka, C.E.; Adkins, D.R.; Moss, T.A. [Sandia National Labs., Albuquerque, NM (United States); Cole, H.M. [Porous Metal Products, Jacksboro, TX (United States); Andreas, N.H. [Bekaert Corp., Marietta, GA (United States)

1994-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "fabricated structural metal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Windows Server AppFabric provides  

E-Print Network (OSTI)

Windows Server AppFabric provides benefits in three key areas: Faster Web Apps Windows Server App that works with current ASP.Net applications. Simplified Composite Apps Windows Server AppFabric simplifies (benefits often associated with the cloud) with the help of Windows Server AppFabric. These, and countless

Narasayya, Vivek

342

Behaviour of Metal Matrix Syntactic Foams in Compression  

Science Conference Proceedings (OSTI)

Symposium, Characterization of Metal Matrix Composite Materials ... They have the potential to serve as lightweight structures as energy absorbers against ...

343

Fabricability  

Science Conference Proceedings (OSTI)

Table 5 Typical applications for castings and general rating of castability, machinability, and weldability...2, good; 3, fair; 4, very poor; 5, difficult. Source: Ref 7...

344

Process development for the fabrication of light emitting vacuum field emission triodes  

E-Print Network (OSTI)

In order to be widely accepted by industry, the field of vacuum microelectronics is in need of a highly manufacturable and integrable device. A vacuum diode meeting these requirements has been developed at Texas A&M University by Weichold, et al. Legg has extended the diode structure by designing a vacuum triode. This work deals with development of a process for fabricating the triode structure using current microelectronic processing techniques. Subsequently, triodes are fabricated for testing. Light emitting diodes and triodes are also fabricated to address the feasibility of their application to flat panel displays.

Williams, Roger T.

1994-01-01T23:59:59.000Z

345

Reference Alloy Waste Form Fabrication and Initiation of Reducing Atmosphere and Reductive Additives Study on Alloy Waste Form Fabrication  

Science Conference Proceedings (OSTI)

This report describes the fabrication of two reference alloy waste forms, RAW-1(Re) and RAW-(Tc) using an optimized loading and heating method. The composition of the alloy materials was based on a generalized formulation to process various proposed feed streams resulting from the processing of used fuel. Waste elements are introduced into molten steel during alloy fabrication and, upon solidification, become incorporated into durable iron-based intermetallic phases of the alloy waste form. The first alloy ingot contained surrogate (non-radioactive), transition-metal fission products with rhenium acting as a surrogate for technetium. The second alloy ingot contained the same components as the first ingot, but included radioactive Tc-99 instead of rhenium. Understanding technetium behavior in the waste form is of particular importance due the longevity of Tc-99 and its mobility in the biosphere in the oxide form. RAW-1(Re) and RAW-1(Tc) are currently being used as test specimens in the comprehensive testing program investigating the corrosion and radionuclide release mechanisms of the representative alloy waste form. Also described in this report is the experimental plan to study the effects of reducing atmospheres and reducing additives to the alloy material during fabrication in an attempt to maximize the oxide content of waste streams that can be accommodated in the alloy waste form. Activities described in the experimental plan will be performed in FY12. The first aspect of the experimental plan is to study oxide formation on the alloy by introducing O2 impurities in the melt cover gas or from added oxide impurities in the feed materials. Reducing atmospheres will then be introduced to the melt cover gas in an attempt to minimize oxide formation during alloy fabrication. The second phase of the experimental plan is to investigate melting parameters associated with alloy fabrication to allow the separation of slag and alloy components of the melt.

S.M. Frank; T.P. O'Holleran; P.A. Hahn

2011-09-01T23:59:59.000Z

346

NREL: Technology Transfer - Fabric-Covered Blades Could Make Wind Turbines  

NLE Websites -- All DOE Office Websites (Extended Search)

Fabric-Covered Blades Could Make Wind Turbines Cheaper and More Efficient Fabric-Covered Blades Could Make Wind Turbines Cheaper and More Efficient A photo of a crew of workers watching as a wind blade is hauled up to a turbine for assembly. A new fabric-wrapped wind blade could eventually replace the traditional fiberglass blade, providing for lighter turbine components that could be built and assembled on site. January 2, 2013 A new design that calls for wrapping architectural fabric around metal wind turbine blades-instead of the traditional fiberglass-could be the latest revolution in dramatically reducing the cost of wind-produced power. That's the focus of a new project that partners NREL with General Electric (GE) and Virginia Polytechnic Institute & State University. Together, they are rethinking the way wind blades are designed,

347

Functional Metal Phosphonates  

E-Print Network (OSTI)

The primary goal of the work described in this dissertation was the incorporation of functionality into metal phosphonates. This was done in one of several ways. The first involved using phosphonate ligands that had covalently attached organic functional groups. In some cases, these ligands undergo reactions during the solvothermal syntheses which can impart new chemical reactivity. Another method used to introduce functionality was to partially or completely substitute metal atoms within phosphonate clusters to create materials which may have interesting magnetic properties. By controlling the way these clusters pack in the solids, their magnetic properties may be able to be augmented. The final method used to impart functionality to metal phosphonates was the incorporation of N-donor and bulky aryl groups into the phosphonate ligands. These influences caused structural variations which exposed potentially active sites within the materials, including both Lewis acidic and basic sites, as well as Bronsted acid sites. The first strategy was employed in the design of tetravalent metal phosphonates which have covalently incorporated bipyridine moieties. The materials are porous so that the bipyridine sites can chelate Pd atoms from solution, which can then be reduced to stable nanoparticles trapped within the phosphonate matrix. This approach was also used in the synthesis of surface-functionalized divalent metal phosphonates which exhibit interesting amine uptake properties. Solvent and cation substitution effects were used to control the packing and connectivity of phosphonate-based clusters. The selective substitution of metal atoms within the clusters may lead to interesting magnetic materials. In other work, N-donor and bulky phosphonates were used to influence the structure of several SnII phosphonates, which resulted in the discovery of a new layered structure type. The effect of the Sn-N interaction on the structures is investigated, and found to have significant effects on the structural units formed and how they pack in the solid state. The work presented herein represents only a small fraction of the rich chemistry of metal phosphonates. Creative researchers will continue to push boundaries and find new and interesting applications for phosphonate-based materials.

Perry, Houston Phillipp

2011-12-01T23:59:59.000Z

348

Carbon nanotubes grown on bulk materials and methods for fabrication  

DOE Patents (OSTI)

Disclosed are structures formed as bulk support media having carbon nanotubes formed therewith. The bulk support media may comprise fibers or particles and the fibers or particles may be formed from such materials as quartz, carbon, or activated carbon. Metal catalyst species are formed adjacent the surfaces of the bulk support material, and carbon nanotubes are grown adjacent the surfaces of the metal catalyst species. Methods employ metal salt solutions that may comprise iron salts such as iron chloride, aluminum salts such as aluminum chloride, or nickel salts such as nickel chloride. Carbon nanotubes may be separated from the carbon-based bulk support media and the metal catalyst species by using concentrated acids to oxidize the carbon-based bulk support media and the metal catalyst species.

Menchhofer, Paul A. (Clinton, TN); Montgomery, Frederick C. (Oak Ridge, TN); Baker, Frederick S. (Oak Ridge, TN)

2011-11-08T23:59:59.000Z

349

Fabrication of Nano-Pattern Libraries and their Applications in Mode-Selective SERS  

E-Print Network (OSTI)

Patterned arrays of metallic nanostructures are commonly used in photonics, electronics, as well as functional materials and biotechnology because of their unique electronic and optical properties. Although great effort has been devoted to the development of nano-patterning techniques in the past decades, there are still existing challenges for nano-fabrication to achieve fine resolution and complex features over macroscopic areas in a reasonable time period. Herein, we devise two versatile patterning strategies, namely indentation colloidal lithography (ICL) and oblique colloidal lithography (OCL), for the stepwise patterning of planar substrates with numerous complex and unique designs. Those strategies combine colloidal self-assembly, imprint molding in conjunction with capillary force lithography and reactive ion etching, all of which are simple and straightforward. Hexagonal arrays of symmetric and nonconcentric gold features are fabricated on glass substrates with highly controllable geometric parameters. The width, size and asymmetry of each surface structure could be tuned down to the ~10 nm level while the scale of the patterned area could exceed 1 cm^(2). Moreover, our technique also leads to the ability to develop an enormous variety of patterns through stepwise amplification of feature types. In particular, some of the features are fabricated for the first time, including target-triangle, hexagram, hexagram-dot and triangle-dot. Distinctive surface plasmon resonance (SPR) properties, such as higher order surface plasmon modes and Fano resonances are both observed from our patterns, which would be highly desired forthe study of plasmonic coupling. In addition, we have demonstrated a surface orientation dependent Raman selectivity on two nano-structures for the first time. Molecular vibrations with opposite symmetries can be selectively enhanced on different substrates. As a demonstration, this property is applied to the odd-even effect of n-alkanethiol self-assembly monolayers (SAMs) on the gold surface. The alternative alternation of the intensity ratios of two vibration pairs have been shown by surface enhanced Raman spectroscopy (SERS) as a function of the number of carbon atoms. The results obtained exhibit high sensitivity and excellent agreement with previous publications.

Zhao, Zhi

2013-08-01T23:59:59.000Z

350

Near-Net Shape Fabrication Using Low-Cost Titanium Alloy Powders  

SciTech Connect

The use of titanium in commercial aircraft production has risen steadily over the last half century. The aerospace industry currently accounts for 58% of the domestic titanium market. The Kroll process, which has been used for over 50 years to produce titanium metal from its mineral form, consumes large quantities of energy. And, methods used to convert the titanium sponge output of the Kroll process into useful mill products also require significant energy resources. These traditional approaches result in product forms that are very expensive, have long lead times of up to a year or more, and require costly operations to fabricate finished parts. Given the increasing role of titanium in commercial aircraft, new titanium technologies are needed to create a more sustainable manufacturing strategy that consumes less energy, requires less material, and significantly reduces material and fabrication costs. A number of emerging processes are under development which could lead to a breakthrough in extraction technology. Several of these processes produce titanium alloy powder as a product. The availability of low-cost titanium powders may in turn enable a more efficient approach to the manufacture of titanium components using powder metallurgical processing. The objective of this project was to define energy-efficient strategies for manufacturing large-scale titanium structures using these low-cost powders as the starting material. Strategies include approaches to powder consolidation to achieve fully dense mill products, and joining technologies such as friction and laser welding to combine those mill products into near net shape (NNS) preforms for machining. The near net shape approach reduces material and machining requirements providing for improved affordability of titanium structures. Energy and cost modeling was used to define those approaches that offer the largest energy savings together with the economic benefits needed to drive implementation. Technical feasibility studies were performed to identify the most viable approaches to NNS preform fabrication using basic powder metallurgy mill product forms as the building blocks and advanced joining techniques including fusion and solid state joining to assemble these building blocks into efficient machining performs.

Dr. David M. Bowden; Dr. William H. Peter

2012-03-31T23:59:59.000Z

351

Direct probe of Mott-Hubbard to charge-transfer insulator transition and electronic structure evolution in transition-metal systems  

DOE Green Energy (OSTI)

We report the most direct experimental verification of Mott-Hubbard and charge-transfer insulators through x-ray emission spectroscopy in transition-metal (TM) fluorides. The p-d hybridization features in the spectra allow a straightforward energy alignment of the anion-2p and metal-3d valence states, which visually shows the difference between the two types of insulators. Furthermore, in parallel with the theoretical Zaanen-Sawatzky-Allen diagram, a complete experimental systematics of the 3d Coulomb interaction and the 2p-3d charge-transfer energy is reported and could serve as a universal experimental trend for other TM systems including oxides.

Olalde-Velasco, P; Jimenez-Mier, J; Denlinger, JD; Hussain, Z; Yang, WL

2011-07-11T23:59:59.000Z

352

Nanolithographic Fabrication and Heterogeneous Reaction Studies of Two-Dimensional Platinum Model Catalyst Systems  

E-Print Network (OSTI)

and truly tune the catalyst to the reaction. References 1.Gavriilidis, A. Varma, Catalyst Design, Cambridge UniversityStructure of Metallic Catalysts, Academic Press, London,

Contreras, A.M.

2006-01-01T23:59:59.000Z

353

Advances in metallic nuclear fuel  

Science Conference Proceedings (OSTI)

Metallic nuclear fuels have generated renewed interest for advanced liquid metal reactors (LMRs) due to their physical properties, ease of fabrication, irradiation behavior, and simple reprocessing. Irradiation performance for both steady-state and transient operations is excellent. Ongoing irradiation tests in Argonne-West's Idaho-based Experimental Breeder Reactor II (EBR-II) have surpassed 100,000 MWd/T burnup and are on their way to a lifetime burnup of 150,000 MWd/T or greater. Metallic fuel also has a unique neutronic characteristic that enables benign reactor responses to loss-of-flow without scram and loss-of-heat-sink without scram accident conditions. This inherent safety potential of metallic fuel was demonstrated in EBR-II just one year ago. Safety tests performed in the reactor have also demonstrated that there is ample margin to fuel element cladding failure under transient overpower conditions. These metallic fuel attributes are key ingredients of the integral fast reactor (IFR) concept being developed at Argonne National Laboratory.

Seidel, B.R.; Walters, L.C.; Chang, Y.I.

1987-04-01T23:59:59.000Z

354

Energy Systems Fabrication Laboratory (Fact Sheet), NREL (National...  

NLE Websites -- All DOE Office Websites (Extended Search)

Fabrication Laboratory The Energy Systems Fabrication Laboratory at NREL's Energy Systems Integration Facility (ESIF) manufactures components for fuel cells and...

355

The Physics of Language: The Fabric Metaphors - CECM  

E-Print Network (OSTI)

Dec 24, 2003 ... The Physics of Language: The Fabric Metaphors. ... Next: Quine's Fabric Up: The Physics of Language: Previous: Conclusion ...

356

Design and Fabrication of Nanochannel Devices  

E-Print Network (OSTI)

Nanochannel devices have been explored over the years with wide applications in bio/chemical analysis. With a dimension comparable to many bio-samples, such as proteins, viruses and DNA, nanochannels can be used as a platform to manipulate and detect such analytes with unique advantages. As a prerequisite to the development of nanochannel devices, various nanofabrication techniques have been investigated by many researchers for decades. In this dissertation, three different fabrication approaches for nanochannels are discussed, including a novel scanning coaxial electrospinning process, a heat-induced stretching approach and a standard contact photolithography process. The scanning coaxial electrospinning process is established based on conventional electrospinning process. A coaxial jet, with the motor oil as the core and spin-on-glass-coating/PVP solution as the shell, is deposited on the rotating collector as oriented coaxial nanofibers. These nanofibers are then annealed to eliminate the core material and form the hollow interior. Silica nanochannels with an inner diameter as small as 15 nm were obtained. The heat-induced stretching approach includes using commercially available fused silica tubings to create nanochannels by thermal deforming. This method and the electrospinning technique both focus on fabricate one-dimensional nanochannels with a circular opening. Fluorescent dye was used as a testing sample for single molecule detection and electrokinetic analysis in the resultant nanochannels. Another nanochannel device described in this dissertation has a deep-shallow step structure. It was fabricated by standard contact lithography, followed by etching and bonding. This device was applied as a powerful detection platform for surface-enhanced Raman spectroscopy (SERS). The experiment results proved that it is able to highly improve the sensitivity and efficiency of SERS. The SERS enhancement factor obtained from the device is 108. Moreover, the molecule enrichment effect of this device provides an extra 105 enhancement. The detection can be efficiently finished within minutes after simply loading the mixture of analytes solution and gold nanoparticles in the device. The sample consumption is in micro-liter range. Potential applications in diagnostics, prognositics and water pollutants detection could be achieved using this device.

Wang, Miao

2009-08-01T23:59:59.000Z

357

Method to fabricate high performance tubular solid oxide fuel cells  

DOE Patents (OSTI)

In accordance with the present disclosure, a method for fabricating a solid oxide fuel cell is described. The method includes forming an asymmetric porous ceramic tube by using a phase inversion process. The method further includes forming an asymmetric porous ceramic layer on a surface of the asymmetric porous ceramic tube by using a phase inversion process. The tube is co-sintered to form a structure having a first porous layer, a second porous layer, and a dense layer positioned therebetween.

Chen, Fanglin; Yang, Chenghao; Jin, Chao

2013-06-18T23:59:59.000Z

358

Methods and devices for fabricating and assembling printable semiconductor elements  

DOE Patents (OSTI)

The invention provides methods and devices for fabricating printable semiconductor elements and assembling printable semiconductor elements onto substrate surfaces. Methods, devices and device components of the present invention are capable of generating a wide range of flexible electronic and optoelectronic devices and arrays of devices on substrates comprising polymeric materials. The present invention also provides stretchable semiconductor structures and stretchable electronic devices capable of good performance in stretched configurations.

Nuzzo, Ralph G. (Champaign, IL); Rogers, John A. (Champaign, IL); Menard, Etienne (Urbana, IL); Lee, Keon Jae (Savoy, IL); Khang, Dahl-Young (Urbana, IL); Sun, Yugang (Champaign, IL); Meitl, Matthew (Champaign, IL); Zhu, Zhengtao (Urbana, IL)

2009-11-24T23:59:59.000Z

359

Methods and devices for fabricating and assembling printable semiconductor elements  

DOE Patents (OSTI)

The invention provides methods and devices for fabricating printable semiconductor elements and assembling printable semiconductor elements onto substrate surfaces. Methods, devices and device components of the present invention are capable of generating a wide range of flexible electronic and optoelectronic devices and arrays of devices on substrates comprising polymeric materials. The present invention also provides stretchable semiconductor structures and stretchable electronic devices capable of good performance in stretched configurations.

Nuzzo, Ralph G; Rogers, John A; Menard, Etienne; Lee, Keon Jae; Khang, Dahl-Young; Sun, Yugang; Meitl, Matthew; Zhu, Zhengtao

2013-05-14T23:59:59.000Z

360

Methods and devices for fabricating and assembling printable semiconductor elements  

DOE Patents (OSTI)

The invention provides methods and devices for fabricating printable semiconductor elements and assembling printable semiconductor elements onto substrate surfaces. Methods, devices and device components of the present invention are capable of generating a wide range of flexible electronic and optoelectronic devices and arrays of devices on substrates comprising polymeric materials. The present invention also provides stretchable semiconductor structures and stretchable electronic devices capable of good performance in stretched configurations.

Nuzzo, Ralph G. (Champaign, IL); Rogers, John A. (Champaign, IL); Menard, Etienne (Durham, NC); Lee, Keon Jae (Daejeon, KR); Khang, Dahl-Young (Urbana, IL); Sun, Yugang (Champaign, IL); Meitl, Matthew (Raleigh, NC); Zhu, Zhengtao (Urbana, IL)

2011-07-19T23:59:59.000Z

Note: This page contains sample records for the topic "fabricated structural metal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Fabrication techniques for 3D metamaterials in the mid-infrared.  

Science Conference Proceedings (OSTI)

The authors have developed two versions of a flexible fabrication technique known as membrane projection lithography that can produce nearly arbitrary patterns in '212 D' and fully three-dimensional (3D) structures. The authors have applied this new technique to the fabrication of split ring resonator-based metamaterials in the midinfrared. The technique utilizes electron beam lithography for resolution, pattern design flexibility, and alignment. The resulting structures are nearly three orders of magnitude smaller than equivalent microwave structures that were first used to demonstrate a negative index material. The fully 3D structures are highly isotropic and exhibit both electrically and magnetically excited resonances for incident transverse electromagnetic waves.

Ellis, A. Robert; Sinclair, Michael B.; Brener, Igal; Wendt, Joel Robert; Burckel, David Bruce; Ten Eyck, Gregory A.

2010-05-01T23:59:59.000Z

362

Magnetically driven three-dimensional manipulation and inductive heating of magnetic-dispersion containing metal alloys  

E-Print Network (OSTI)

Fundamental to the development of three-dimensional microelectronic fabrication is a material that enables vertical geometries. Here we show low-melting-point metal alloys containing iron dispersions that can be remotely ...

Calabro, Joshua D.

363

A Low Temperature Fully Lithographic Process For Metal–Oxide Field-Effect Transistors  

E-Print Network (OSTI)

We report a low temperature ( ~ 100à °C) lithographic method for fabricating hybrid metal oxide/organic field-effect transistors (FETs) that combine a zinc-indium-oxide (ZIO) semiconductor channel and organic, parylene, ...

Sodini, Charles G.

364

Design and fabrication of SGS plutonium standards  

Science Conference Proceedings (OSTI)

This paper describes our experience of fabricating four sets of plutonium segmented gamma scanner (SGS) can standards. The fabrication involves careful planning, meticulous execution in weighing the plutonium oxide while minimizing contamination, chemical analyses by three different national laboratories to get accurate and independent plutonium concentrations, vertical scanning to assure mixing of the plutonium and the diluent, and finally the nondestructive verification measurement. By following these steps, we successfully fabricated 4 sets or 20 SGS can standards. 4 refs., 5 figs., 3 tabs.

Hsue, S.T.; Simmonds, S.M.; Longmire, V.L.; Long, S.M.

1991-01-01T23:59:59.000Z

365

Propagation of surface hybrid modes on metallic cylindrical nanoshells  

SciTech Connect

Propagation of surface hybrid modes on a system consisting of metal-air-metal cylinder has been investigated theoretically. The effect of increasing the interwall spacing between two metals on plasmon dispersion relation is shown. The dispersion relation can lead to a simple equation for m = 0. Calculations show that the plasmon energy of this structure depends on the interwall spacing between two metals.

Bahari, Ali; Amraie, Elhame [Department of Physics, Lorestan University, Lorestan (Iran, Islamic Republic of)

2012-11-15T23:59:59.000Z

366

Fabricating Dielecric Ceramic Films on Copper Foils  

Industries Electronics Fabricating Dielectric Ceramic Films on Copper Foils (IN-09-006) Ceramic film capacitors built on a copper foil being tested on ...

367

Fabrication and Characterization of Organic Solar Cells  

E-Print Network (OSTI)

UNIVERSITY OF CALIFORNIA RIVERSIDE Fabrication andChairperson University of California, Riverside To my wifeEngineering University of California, Riverside, December

Yengel, Emre

2010-01-01T23:59:59.000Z

368

CONTAINER MATERIALS, FABRICATION AND ROBUSTNESS  

SciTech Connect

The multi-barrier 3013 container used to package plutonium-bearing materials is robust and thereby highly resistant to identified degradation modes that might cause failure. The only viable degradation mechanisms identified by a panel of technical experts were pressurization within and corrosion of the containers. Evaluations of the container materials and the fabrication processes and resulting residual stresses suggest that the multi-layered containers will mitigate the potential for degradation of the outer container and prevent the release of the container contents to the environment. Additionally, the ongoing surveillance programs and laboratory studies should detect any incipient degradation of containers in the 3013 storage inventory before an outer container is compromised.

Dunn, K.; Louthan, M.; Rawls, G.; Sindelar, R.; Zapp, P.; Mcclard, J.

2009-11-10T23:59:59.000Z

369

Thermostat Metals  

Science Conference Proceedings (OSTI)

...A thermostat metal is a composite material (usually in the form of sheet or strip) that consists of two or more materials bonded together, of which one can be a nonmetal. Because the materials bonded together to form the composite differ in

370

METAL COMPOSITIONS  

DOE Patents (OSTI)

Alloys of uranium which are strong, hard, and machinable are presented, These alloys of uranium contain bctween 0.1 to 5.0% by weight of at least one noble metal such as rhodium, palladium, and gold. The alloys may be heat treated to obtain a product with iniproved tensile and compression strengths,

Seybolt, A.U.

1959-02-01T23:59:59.000Z

371

Structural and magnetic properties of transition metal substituted BaFe{sub 2}As{sub 2} compounds studied by x-ray and neutron scattering  

Science Conference Proceedings (OSTI)

The purpose of my dissertation is to understand the structural and magnetic properties of the newly discovered FeAs-based superconductors and the interconnection between superconductivity, antiferromagnetism, and structure. X-ray and neutron scattering techniques are powerful tools to directly observe the structure and magnetism in this system. I used both xray and neutron scattering techniques on di#11;erent transition substituted BaFe2As2 compounds in order to investigate the substitution dependence of structural and magnetic transitions and try to understand the connections between them.

Kim, Min Gyu [Ames Laboratory

2012-08-28T23:59:59.000Z

372

Fabrication and characterization of GaN junction field effect transistors  

SciTech Connect

Junction field effect transistors (JFET) were fabricated on a GaN epitaxial structure grown by metal organic chemical vapor deposition. The DC and microwave characteristics, as well as the high temperature performance of the devices were studied. These devices exhibited excellent pinch-off and a breakdown voltage that agreed with theoretical predictions. An extrinsic transconductance (g{sub m}) of 48 mS/mm was obtained with a maximum drain current (I{sub D}) of 270 mA/mm. The microwave measurement showed an f{sub T} of 6 GHz and an f{sub max} of 12 GHz. Both the I{sub D} and the g{sub m} were found to decrease with increasing temperature, possibly due to lower electron mobility at elevated temperatures. These JFETs exhibited a significant current reduction after a high drain bias was applied, which was attributed to a partially depleted channel caused by trapped electrons in the semi-insulating GaN buffer layer.

Zhang, L.; Lester, L.F.; Baca, A.G.; Shul, R.J.; Chang, P.C.; Willison, C.L.; Mishra, U.K.; Denbaars, S.P.; Zolper, J.C.

2000-01-11T23:59:59.000Z

373

AlGaN/GaN high electron mobility transistors based on InGaN/GaN multi-quantum-well structures with photo-chemical vapor deposition of SiO2 dielectrics  

Science Conference Proceedings (OSTI)

AlGaN/GaN metal-oxide-semiconductor high electron mobility transistor (MOS-HEMT) based on InGaN/GaN multi-quantum-well (MQW) structure has been fabricated with SiO"2 dielectric deposited via photo-chemical vapor deposition (PHCVD) using a deuterium lamp ... Keywords: GaN, HEMT, MQW, Photo-chemical vapor deposition, SiO 2

Kai-Hsuan Lee; Ping-Chuan Chang; Shoou-Jinn Chang

2013-04-01T23:59:59.000Z

374

Silicon-nitride and metal composite  

SciTech Connect

A composite and a method for bonding the composite. The composite includes a ceramic portion of silicon nitride, a refractory metal portion and a layer of MoSi.sub.2 indirectly bonding the composite together. The method includes contacting the layer of MoSi.sub.2 with a surface of the silicon nitride and with a surface of the metal; heating the layer to a temperature below 1400.degree. C.; and, simultaneously with the heating, compressing the layer such that the contacting is with a pressure of at least 30 MPa. This composite overcomes useful life problems in the fabrication of parts for a helical expander for use in power generation.

Landingham, Richard L. (Livermore, CA); Huffsmith, Sarah A. (Urbana, IL)

1981-01-01T23:59:59.000Z

375

Shadowgram: a case study for social fabrication through interactive fabrication in public spaces  

Science Conference Proceedings (OSTI)

This paper describes a case study of Shadowgram as an application of interactive fabrication in public spaces to realize a creative communication environment based on an interactive installation, which generates sticker cutouts of the silhouettes of ... Keywords: creative catalyst, fablab, interactive fabrication, social fabrication

Hideaki Ogawa; Martina Mara; Christopher Lindinger; Matthew Gardiner; Roland Haring; David Stolarsky; Emiko Ogawa; Horst Hörtner

2012-02-01T23:59:59.000Z

376

WINCO Metal Recycle annual report, FY 1993  

Science Conference Proceedings (OSTI)

This report is a summary of the first year progress of the WINCO Metal Recycle Program. Efforts were directed towards assessment of radioactive scrap metal inventories, economics and concepts for recycling, technology development, and transfer of technology to the private sector. Seven DOE laboratories worked together to develop a means for characterizing scrap metal. Radioactive scrap metal generation rates were established for several of these laboratories. Initial cost estimates indicate that recycle may be preferable over burial if sufficient decontamination factors can be achieved during melt refining. Radiation levels of resulting ingots must be minimized in order to keep fabrication costs low. Industry has much of the expertise and capability to execute the recycling of radioactive scrap metal. While no single company can sort, melt, refine, roll and fabricate, a combination of two to three can complete this operation. The one process which requires development is in melt refining for removal of radionuclides other than uranium. WINCO is developing this capability in conjunction with academia and industry. This work will continue into FY-94.

Bechtold, T.E. [ed.

1993-12-01T23:59:59.000Z

377

MBE Growth of Ferromagnetic Metal/Compound Semiconductor Heterostructures for Spintronics  

SciTech Connect

Electrical transport and spin-dependent transport across ferromagnet/semiconductor contacts is crucial in the realization of spintronic devices. Interfacial reactions, the formation of non-magnetic interlayers, and conductivity mismatch have been attributed to low spin injection efficiency. MBE has been used to grow epitaxial ferromagnetic metal/GA(1-x)AL(x)As heterostructures with the aim of controlling the interfacial structural, electronic, and magnetic properties. In situ, STM, XPS, RHEED and LEED, and ex situ XRD, RBS, TEM, magnetotransport, and magnetic characterization have been used to develop ferromagnetic elemental and metallic compound/compound semiconductor tunneling contacts for spin injection. The efficiency of the spin polarized current injected from the ferromagnetic contact has been determined by measuring the electroluminescence polarization of the light emitted from/GA(1-x)AL(x)As light-emitting diodes as a function of applied magnetic field and temperature. Interfacial reactions during MBE growth and post-growth anneal, as well as the semiconductor device band structure, were found to have a dramatic influence on the measured spin injection, including sign reversal. Lateral spin-transport devices with epitaxial ferromagnetic metal source and drain tunnel barrier contacts have been fabricated with the demonstration of electrical detection and the bias dependence of spin-polarized electron injection and accumulation at the contacts. This talk emphasizes the progress and achievements in the epitaxial growth of a number of ferromagnetic compounds/III-V semiconductor heterostructures and the progress towards spintronic devices.

Palmstrom, Chris [University of California, Santa Barbara

2009-07-01T23:59:59.000Z

378

A prototype network embedded in textile fabric  

Science Conference Proceedings (OSTI)

A digital network between active components or "buttons" atop an e-textile fabric must handle the inexact placement of wires in the fabric both for signal distribution and for power distribution. We approach the problem of signal distribution by making ...

Kenneth Mackenzie; Eric Hudson; Drew Maule; Sundaresan Jayaraman; Sungmee Park

2001-11-01T23:59:59.000Z

379

Evaluating accessibility in fabrication tools for children  

Science Conference Proceedings (OSTI)

In recent years, several new threads of research have found their way into the Interaction Design and Children community. Two of these threads-designing for children with special needs, and designing fabrication activities for children-have been especially ... Keywords: assistive technology, digital fabrication, do-it-yourself, making pedagogy for children, rapid prototyping

Ben Leduc-Mills, Jaymes Dec, John Schimmel

2013-06-01T23:59:59.000Z

380

Fuel Fabrication Capability Research and Development Plan  

SciTech Connect

The purpose of this document is to provide a comprehensive review of the mission of the Fuel Fabrication Capability (FFC) within the Global Threat Reduction Initiative (GTRI) Convert Program, along with research and development (R&D) needs that have been identified as necessary to ensuring mission success. The design and fabrication of successful nuclear fuels must be closely linked endeavors.

Senor, David J.; Burkes, Douglas

2013-06-28T23:59:59.000Z

Note: This page contains sample records for the topic "fabricated structural metal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Model NbTi Helical Solenoid Fabrication and Test Results  

Science Conference Proceedings (OSTI)

A program to develop model magnets for a helical cooling channel is under way at Fermilab. In the first steps of a planned sequence of magnets, two four-coil helical solenoid models with 300 mm aperture have been fabricated and tested. These two models, HSM01 and HSM02, used insulated NbTi Rutherford cable wound onto stainless steel rings with spliceless transitions between coils. Strip heaters were included for quench protection of each coil, and the coils were epoxy-impregnated after winding inside the support structures. Based on the results of the first model the second model was made using a cable with optimized cross-section, improved winding and epoxy-impregnation procedures, enhanced ground insulation, and included heat exchange tubing for a test of conduction cooling. We report on the results and lessons learned from fabrication and tests of these two models.

Andreev, N.; Barzi, E.; Chlachidze, G.; Evbota, D.; Kashikhin, V.S.; Kashikhin, V.V.; Lamm, M.J.; Makarov, A.; Novitski, I.; Orris, D.F.; Tartaglia, M.A.; /Fermilab

2011-09-01T23:59:59.000Z

382

Energy Conservation in Metals  

Science Conference Proceedings (OSTI)

About this Symposium. Meeting, 2010 TMS Annual Meeting & Exhibition. Symposium, Energy Conservation in Metals. Sponsorship, The Minerals, Metals and ...

383

3D ultrasound imaging for prosthesis fabrication and diagnostic imaging  

SciTech Connect

The fabrication of a prosthetic socket for a below-the-knee amputee requires knowledge of the underlying bone structure in order to provide pressure relief for sensitive areas and support for load bearing areas. The goal is to enable the residual limb to bear pressure with greater ease and utility. Conventional methods of prosthesis fabrication are based on limited knowledge about the patient`s underlying bone structure. A 3D ultrasound imaging system was developed at Sandia National Laboratories. The imaging system provides information about the location of the bones in the residual limb along with the shape of the skin surface. Computer assisted design (CAD) software can use this data to design prosthetic sockets for amputees. Ultrasound was selected as the imaging modality. A computer model was developed to analyze the effect of the various scanning parameters and to assist in the design of the overall system. The 3D ultrasound imaging system combines off-the-shelf technology for image capturing, custom hardware, and control and image processing software to generate two types of image data -- volumetric and planar. Both volumetric and planar images reveal definition of skin and bone geometry with planar images providing details on muscle fascial planes, muscle/fat interfaces, and blood vessel definition. The 3D ultrasound imaging system was tested on 9 unilateral below-the- knee amputees. Image data was acquired from both the sound limb and the residual limb. The imaging system was operated in both volumetric and planar formats. An x-ray CT (Computed Tomography) scan was performed on each amputee for comparison. Results of the test indicate beneficial use of ultrasound to generate databases for fabrication of prostheses at a lower cost and with better initial fit as compared to manually fabricated prostheses.

Morimoto, A.K.; Bow, W.J.; Strong, D.S. [and others

1995-06-01T23:59:59.000Z

384

Method of fabricating a scalable nanoporous membrane filter  

SciTech Connect

A method of fabricating a nanoporous membrane filter having a uniform array of nanopores etch-formed in a thin film structure (e.g. (100)-oriented single crystal silicon) having a predetermined thickness, by (a) using interferometric lithography to create an etch pattern comprising a plurality array of unit patterns having a predetermined width/diameter, (b) using the etch pattern to etch frustum-shaped cavities or pits in the thin film structure such that the dimension of the frustum floors of the cavities are substantially equal to a desired pore size based on the predetermined thickness of the thin film structure and the predetermined width/diameter of the unit patterns, and (c) removing the frustum floors at a boundary plane of the thin film structure to expose, open, and thereby create the nanopores substantially having the desired pore size.

Tringe, Joseph W; Balhorn, Rodney L; Zaidi, Saleem

2013-08-20T23:59:59.000Z

385

Fabrication of an optical component  

DOE Patents (OSTI)

A method for forming optical parts used in laser optical systems such as high energy lasers, high average power lasers, semiconductor capital equipment and medical devices. The optical parts will not damage during the operation of high power lasers in the ultra-violet light range. A blank is first ground using a fixed abrasive grinding method to remove the subsurface damage formed during the fabrication of the blank. The next step grinds and polishes the edges and forms bevels to reduce the amount of fused-glass contaminants in the subsequent steps. A loose abrasive grind removes the subsurface damage formed during the fixed abrasive or "blanchard" removal process. After repolishing the bevels and performing an optional fluoride etch, the surface of the blank is polished using a zirconia slurry. Any subsurface damage formed during the loose abrasive grind will be removed during this zirconia polish. A post polish etch may be performed to remove any redeposited contaminants. Another method uses a ceria polishing step to remove the subsurface damage formed during the loose abrasive grind. However, any residual ceria may interfere with the optical properties of the finished part. Therefore, the ceria and other contaminants are removed by performing either a zirconia polish after the ceria polish or a post ceria polish etch.

Nichols, Michael A. (Livermore, CA); Aikens, David M. (Pleasanton, CA); Camp, David W. (Oakland, CA); Thomas, Ian M. (Livermore, CA); Kiikka, Craig (Livermore, CA); Sheehan, Lynn M. (Livermore, CA); Kozlowski, Mark R. (Livermore, CA)

2000-01-01T23:59:59.000Z

386

A New Concept for the Fabrication of Hydrogen Selective Silica Membranes  

NLE Websites -- All DOE Office Websites (Extended Search)

New CoNCept for the fAbriCAtioN of New CoNCept for the fAbriCAtioN of hydrogeN SeleCtive SiliCA MeMbrANeS Background As stated in the National Research Council report on Novel Approaches to Carbon Management, a novel membrane is needed that can achieve the separation of carbon dioxide (CO 2 ) and hydrogen (H 2 ) at a high temperature and pressure. Extensive efforts over the last several decades have explored high temperature H 2 -selective membranes made of silicon dioxide (SiO 2 ) and other oxides, palladium (Pd) and other metals or alloys and, more recently, various zeolites and non-aluminosilicate molecular sieves. Although promising separation results have been reported for many of them, these technologies, they all suffer from high production costs for membrane fabrication and from long term stability problems. This project revisits

387

Steel-SiC Metal Matrix Composite Development  

SciTech Connect

The goal of this project is to develop a method for fabricating SiC-reinforced high-strength steel. We are developing a metal-matrix composite (MMC) in which SiC fibers are be embedded within a metal matrix of steel, with adequate interfacial bonding to deliver the full benefit of the tensile strength of the SiC fibers in the composite.

Smith, Don D.

2005-07-17T23:59:59.000Z

388

Methods of fabricating applique circuits  

DOE Patents (OSTI)

Applique circuits suitable for advanced packaging applications are introduced. These structures are particularly suited for the simple integration of large amounts (many nanoFarads) of capacitance into conventional integrated circuit and multichip packaging technology. In operation, applique circuits are bonded to the integrated circuit or other appropriate structure at the point where the capacitance is required, thereby minimizing the effects of parasitic coupling. An immediate application is to problems of noise reduction and control in modern high-frequency circuitry.

Dimos, Duane B. (Albuquerque, NM); Garino, Terry J. (Albuquerque, NM)

1999-09-14T23:59:59.000Z

389

Near quantitative agreement of model free DFT- MD predictions with XAFS observations of the hydration structure of highly charged transition metal ions  

Science Conference Proceedings (OSTI)

DFT-MD simulations (PBE96 and PBE0) with MD-XAFS scattering calculations (FEFF9) show near quantitative agreement with new and existing XAFS measurements for a comprehensive series of transition metal ions which interact with their hydration shells via complex mechanisms (high spin, covalency, charge transfer, etc.). This work was supported by the U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences. Pacific Northwest National Laboratory (PNNL) is operated for the U.S. DOE by Battelle. A portion of the research was performed using EMSL, a national scientific user facility sponsored by the U.S. DOE's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory.

Fulton, John L.; Bylaska, Eric J.; Bogatko, Stuart A.; Balasubramanian, Mahalingam; Cauet, Emilie L.; Schenter, Gregory K.; Weare, John H.

2012-09-20T23:59:59.000Z

390

Near net shape processing for solar thermal propulsion hardware using directed light fabrication  

DOE Green Energy (OSTI)

Directed light fabrication (DLF) is a direct metal deposition process that fuses gas delivered powder, in the focal zone of a high powered laser beam to form fully fused near net shaped components. The near net shape processing of rhenium, tungsten, iridium and other high temperature materials may offer significant cost savings compared with conventional processing. This paper describes a 3D parametric solid model, integrated with a manufacturing model, and creating a control field which runs on the DLF machine directly depositing a fully dense, solid metal, near net shaped, nozzle component. Examples of DLF deposited rhenium, iridium and tantalum, from previous work, show a continuously solidified microstructure in rod and tube shapes. Entrapped porosity indicates the required direction for continued process development. These combined results demonstrate the potential for a new method to fabricate complex near net shaped components using materials of interest to the space and aerospace industries.

Milewski, J.O. [Los Alamos National Lab., NM (United States). Materials Science and Technology Div.; Fonseca, J.C.; Lewis, G.K. [SyntheMet Corp., Los Alamos, NM (United States)

1998-12-01T23:59:59.000Z

391

Gel-sphere-pac reactor fuel fabrication and its application to a variety of fuels  

SciTech Connect

The gel-sphere-pac fuel fabrication option was evaluated for its possible application to commercial scale fuel fabrication for 19 fuel element designs that use oxide fuel in metal clad rods. The dry gel spheres are prepared at the reprocessing plant and are then calcined, sintered, inspected, and loaded into fuel rods and packed by low-energy vibration. A fuel smear density of 83 to 88% theoretical can be obtained. All fuel fabrication process steps were defined and evaluated from fuel receiving to finished fuel element shipping. The evaluation also covers the feasibility of the process, the current status of technology, estimates of the required time and cost to develop the technology to commercial status, and the safety and licensability of commercial scale plants. The primary evaluation was for a Light-Water Reactor fuel element containing (U,Pu)O/sub 2/ fuel. The other 18 fuel element types - 3 for Light-Water Reactors, 1 for a Heavy-Water Reactor, 1 for a Gas-Cooled Fast Reactor, 7 for Liquid-Metal-Cooled Fast Breeder Reactors, and 3 pairs for Light-Water Prebreeder and Breeder Reactors - were compared with the Light-Water Reactor. The gel-sphere-pac option was found applicable to 17 of the 19 element types; the characteristics of a commercial scale plant were defined for these for making cost estimates for such plants. The evaluation clearly shows the gel-sphere-pac process to be a viable fuel fabrication option. Estimates indicate a significant potential fabrication cost advantage for the gel-sphere-pac process if a remotely operated and remotely maintained fuel fabrication plant is required.

Olsen, A.R.; Judkins, R.R. (comps.)

1979-12-01T23:59:59.000Z

392

DOE Science Showcase - Rare Earth Metal Research from DOE Databases |  

Office of Scientific and Technical Information (OSTI)

Rare Earth Metal Research from DOE Databases Rare Earth Metal Research from DOE Databases Information Bridge Energy Citations Database Highlighted documents of Rare Earth Metal research in DOE databases Information Bridge - Corrosion-resistant metal surfaces DOE R&D Project Summaries - Structural and magnetic studies on heavy rare earth metals at high pressures using designer diamonds Energy Citations Database - Intermultiplet transitions in rare-earth metals DOE Green Energy - LaNi.sub.5 is-based metal hydride electrode in Ni-MH rechargeable cells Science.gov - H.R.4866 - Rare Earths Supply-Chain Technology and Resources Transformation Act of 2010 WorldWideScience.org - China produces most of the world's rare earth metals DOepatents - Recycling of rare earth metals from rare earth-transition metal alloy scrap by liquid metal extraction

393

Design & Fabrication of a High-Voltage Photovoltaic Cell  

DOE Green Energy (OSTI)

Silicon photovoltaic (PV) cells are alternative energy sources that are important in sustainable power generation. Currently, applications of PV cells are limited by the low output voltage and somewhat low efficiency of such devices. In light of this fact, this project investigates the possibility of fabricating high-voltage PV cells on float-zone silicon wafers having output voltages ranging from 50 V to 2000 V. Three designs with different geometries of diffusion layers were simulated and compared in terms of metal coverage, recombination, built-in potential, and conduction current density. One design was then chosen and optimized to be implemented in the final device design. The results of the simulation serve as a feasibility test for the design concept and provide supportive evidence of the effectiveness of silicon PV cells as high-voltage power supplies.

Felder, Jennifer; /North Carolina State U. /SLAC

2012-09-05T23:59:59.000Z

394

Microchannel crossflow fluid heat exchanger and method for its fabrication  

DOE Patents (OSTI)

A microchannel crossflow fluid heat exchanger and a method for its fabrication are disclosed. The heat exchanger is formed from a stack of thin metal sheets which are bonded together. The stack consists of alternating slotted and unslotted sheets. Each of the slotted sheets includes multiple parallel slots which form fluid flow channels when sandwiched between the unslotted sheets. Successive slotted sheets in the stack are rotated ninety degrees with respect to one another so as to form two sets of orthogonally extending fluid flow channels which are arranged in a crossflow configuration. The heat exchanger has a high surface to volume ratio, a small dead volume, a high heat transfer coefficient, and is suitable for use with fluids under high pressures. The heat exchanger has particular application in a Stirling engine that utilizes a liquid as the working substance.

Swift, Gregory W. (Los Alamos, NM); Migliori, Albert (Santa Fe, NM); Wheatley, John C. (Los Alamos, NM)

1985-01-01T23:59:59.000Z

395

Expanded microchannel heat exchanger: design, fabrication and preliminary experimental test  

E-Print Network (OSTI)

This paper first reviews non-traditional heat exchanger geometry, laser welding, practical issues with microchannel heat exchangers, and high effectiveness heat exchangers. Existing microchannel heat exchangers have low material costs, but high manufacturing costs. This paper presents a new expanded microchannel heat exchanger design and accompanying continuous manufacturing technique for potential low-cost production. Polymer heat exchangers have the potential for high effectiveness. The paper discusses one possible joining method - a new type of laser welding named "forward conduction welding," used to fabricate the prototype. The expanded heat exchanger has the potential to have counter-flow, cross-flow, or parallel-flow configurations, be used for all types of fluids, and be made of polymers, metals, or polymer-ceramic precursors. The cost and ineffectiveness reduction may be an order of magnitude or more, saving a large fraction of primary energy. The measured effectiveness of the prototype with 28 micro...

Denkenberger, David C; Pearce, Joshua M; Zhai, John; 10.1177/0957650912442781

2012-01-01T23:59:59.000Z

396

Microchannel crossflow fluid heat exchanger and method for its fabrication  

DOE Patents (OSTI)

A microchannel crossflow fluid heat exchanger and a method for its fabrication are disclosed. The heat exchanger is formed from a stack of thin metal sheets which are bonded together. The stack consists of alternating slotted and unslotted sheets. Each of the slotted sheets includes multiple parallel slots which form fluid flow channels when sandwiched between the unslotted sheets. Successive slotted sheets in the stack are rotated ninety degrees with respect to one another so as to form two sets of orthogonally extending fluid flow channels which are arranged in a crossflow configuration. The heat exchanger has a high surface to volume ratio, a small dead volume, a high heat transfer coefficient, and is suitable for use with fluids under high pressures. The heat exchanger has particular application in a Stirling engine that utilizes a liquid as the working substance.

Swift, G.W.; Migliori, A.; Wheatley, J.C.

1982-08-31T23:59:59.000Z

397

Microchannel crossflow fluid heat exchanger and method for its fabrication  

DOE Patents (OSTI)

A microchannel crossflow fluid heat exchanger and a method for its fabrication are disclosed. The heat exchanger is formed from a stack of thin metal sheets which are bonded together. The stack consists of alternating slotted and unslotted sheets. Each of the slotted sheets includes multiple parallel slots which form fluid flow channels when sandwiched between the unslotted sheets. Successive slotted sheets in the stack are rotated ninety degrees with respect to one another so as to form two sets of orthogonally extending fluid flow channels which are arranged in a crossflow configuration. The heat exchanger has a high surface to volume ratio, a small dead volume, a high heat transfer coefficient, and is suitable for use with fluids under high pressures. The heat exchanger has particular application in a Stirling engine that utilizes a liquid as the working substance. 9 figs.

Swift, G.W.; Migliori, A.; Wheatley, J.C.

1985-05-14T23:59:59.000Z

398

Fabrication of solid oxide fuel cell by electrochemical vapor deposition  

DOE Patents (OSTI)

In a high temperature solid oxide fuel cell (SOFC), the deposition of an impervious high density thin layer of electrically conductive interconnector material, such as magnesium doped lanthanum chromite, and of an electrolyte material, such as yttria stabilized zirconia, onto a porous support/air electrode substrate surface is carried out at high temperatures (approximately 1100.degree.-1300.degree. C.) by a process of electrochemical vapor deposition. In this process, the mixed chlorides of the specific metals involved react in the gaseous state with water vapor resulting in the deposit of an impervious thin oxide layer on the support tube/air electrode substrate of between 20-50 microns in thickness. An internal heater, such as a heat pipe, is placed within the support tube/air electrode substrate and induces a uniform temperature profile therein so as to afford precise and uniform oxide deposition kinetics in an arrangement which is particularly adapted for large scale, commercial fabrication of SOFCs.

Brian, Riley (Willimantic, CT); Szreders, Bernard E. (Oakdale, CT)

1989-01-01T23:59:59.000Z

399

Fabrication of solid oxide fuel cell by electrochemical vapor deposition  

DOE Patents (OSTI)

In a high temperature solid oxide fuel cell (SOFC), the deposition of an impervious high density thin layer of electrically conductive interconnector material, such as magnesium doped lanthanum chromite, and of an electrolyte material, such as yttria stabilized zirconia, onto a porous support/air electrode substrate surface is carried out at high temperatures (/approximately/1100/degree/ /minus/ 1300/degree/C) by a process of electrochemical vapor deposition. In this process, the mixed chlorides of the specific metals involved react in the gaseous state with water vapor resulting in the deposit of an impervious thin oxide layer on the support tube/air electrode substrate of between 20--50 microns in thickness. An internal heater, such as a heat pipe, is placed within the support tube/air electrode substrate and induces a uniform temperature profile therein so as to afford precise and uniform oxide deposition kinetics in an arrangement which is particularly adapted for large scale, commercial fabrication of SOFCs.

Riley, B.; Szreders, B.E.

1988-04-26T23:59:59.000Z

400

World Conference on Fabric and Home Care Montreux 2010  

Science Conference Proceedings (OSTI)

Archive of the 2010 World Conference on Fabric and Home Care. World Conference on Fabric and Home Care Montreux 2010 Montreux , Switzerland World Conference on Fabric and Home Care: Montreux 2010 ...

Note: This page contains sample records for the topic "fabricated structural metal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Combustible structural composites and methods of forming combustible structural composites  

DOE Patents (OSTI)

Combustible structural composites and methods of forming same are disclosed. In an embodiment, a combustible structural composite includes combustible material comprising a fuel metal and a metal oxide. The fuel metal is present in the combustible material at a weight ratio from 1:9 to 1:1 of the fuel metal to the metal oxide. The fuel metal and the metal oxide are capable of exothermically reacting upon application of energy at or above a threshold value to support self-sustaining combustion of the combustible material within the combustible structural composite. Structural-reinforcing fibers are present in the composite at a weight ratio from 1:20 to 10:1 of the structural-reinforcing fibers to the combustible material. Other embodiments and aspects are disclosed.

Daniels, Michael A. (Idaho Falls, ID); Heaps, Ronald J. (Idaho Falls, ID); Steffler, Eric D (Idaho Falls, ID); Swank, William D. (Idaho Falls, ID)

2011-08-30T23:59:59.000Z

402

Mechanochemical processing for metals and metal alloys  

DOE Patents (OSTI)

A set of processes for preparing metal powders, including metal alloy powders, by ambient temperature reduction of a reducible metal compound by a reactive metal or metal hydride through mechanochemical processing. The reduction process includes milling reactants to induce and complete the reduction reaction. The preferred reducing agents include magnesium and calcium hydride powders. A process of pre-milling magnesium as a reducing agent to increase the activity of the magnesium has been established as one part of the invention.

Froes, Francis H. (Moscow, ID); Eranezhuth, Baburaj G. (Moscow, ID); Prisbrey, Keith (Moscow, ID)

2001-01-01T23:59:59.000Z

403

Liquid metal cooled nuclear reactor plant system  

DOE Patents (OSTI)

A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting for fuel decay during reactor shutdown, or heat produced during a mishap. The reactor system is enhanced with sealing means for excluding external air from contact with the liquid metal coolant leaking from the reactor vessel during an accident. The invention also includes a silo structure which resists attack by leaking liquid metal coolant, and an added unique cooling means.

Hunsbedt, Anstein (Los Gatos, CA); Boardman, Charles E. (Saratoga, CA)

1993-01-01T23:59:59.000Z

404

Fabrication of zircon for disposition of weapons plutonium  

SciTech Connect

This is the final report of a one-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). In an effort to address the problems of long term storage and nuclear waste minimization, zircon has been proposed as a host medium for plutonium and other actinides recovered from dismantled nuclear weapons. The objective of this work is to investigate the feasibility of large scale fabrication of Pu-bearing zircon. Since PuO{sub 2} is thermodynamically less stable than ZrO{sub 2}, it is expected that the process parameters determined for synthesizing ZrSiO{sub 4} (zircon) would be applicable to those for PuSiO{sub 4} (Pu-zircon). Furthermore, since the foremost concern in plutonium processing is the potential for contamination release, this work emphasizes the development of process parameters, using zircon first, to anticipate potential material problems in the containment system for reaction mixtures during processing. Stoichiometric mixtures of ZrO{sub 2} and SiO{sub 2}, in hundred-gram batches, have been subjected to hot isostatic pressing (HIP) at temperatures near 1,500 C and pressures approximately 10,000 psi. The product materials have been analyzed by x-ray powder diffraction, and are found to consist of zircon after approximately two hours of reaction time. From this work, it is clear that the fabrication of large quantities of Pu-zircon is feasible. The most notable result of this work is evidence for the existence of container problems. This result, in turn, suggests potential solutions to these problems. Experiments with the quartz inner container, the glass sealant, a sacrificial metal barrier, and a metal outer container are being investigated to mitigate these potential hazards.

Kim, K.C.; Huang, J.Y.; Serrano, P.L. [and others

1997-07-01T23:59:59.000Z

405

Enforcement Letter, Parsons Technology Development & Fabrication Complex -  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Parsons Technology Development & Fabrication Parsons Technology Development & Fabrication Complex - April 13, 2010 Enforcement Letter, Parsons Technology Development & Fabrication Complex - April 13, 2010 April 13, 2010 Enforcement Letter issued to Parsons Technology Development & Fabrication Complex related to Deficiencies in the Fabrication of Safety Significant Embed Plates at the Salt Waste Processing Facility at the Savannah River Site This letter refers to the Office of Health, Safety and Security's Office of Enforcement's investigation into the facts and circumstances associated with quality assurance deficiencies in the fabrication of safety significant embed plates. These embed plates were fabricated by Parsons Technology Development and Fabrication Complex (PTDFC) a supplier to

406

Fabrication of Solid Electrolyte Dendrites for Solid Oxide Fuel Cell ...  

Science Conference Proceedings (OSTI)

Fabrication of Solid Electrolyte Dendrites for Solid Oxide Fuel Cell Miniaturizations · Fabrication of TiN Nanoparticle Dispersed Si3N4 Ceramics by Wet Jet ...

407

PRESSURE VESSEL FABRICATION USING T-1 STEEL  

SciTech Connect

The fabrication of pressure vessels using C-l steel is described. The welding, welding electrodes, explosionbulge test, and impact and fatigue properties for the pressure vessel are given. (W.L.H.)

Franco-Ferreira, E.A.

1957-11-14T23:59:59.000Z

408

Fabrics Capable of Capacitive Energy Storage  

Science Conference Proceedings (OSTI)

Flexible and lightweight fabric supercapacitors were seamlessly integrated into "smart" garments as an energy source. The electrochemical behavior of porous carbons applied with a traditional printmaking technique (screen printing) onto woven cotton ...

Kristy Jost; Carlos Perez; John McDonough; Volker Presser; Genevieve Dion; Yury Gogotsi

2011-06-01T23:59:59.000Z

409

Moisture Transport for Reaction Enhancement in Fabrics  

E-Print Network (OSTI)

The role of water in protective fabrics is critical to comfort and material performance. Excessive perspiration in clothing causes discomfort, and bound water can adversely affect the ability of carbon to adsorb chemicals. ...

Gibson, Phillip

410

Sandia Silicon Fabrication Recapitalization project underway...  

National Nuclear Security Administration (NNSA)

NA-00.1, Dale Hetherington, Sandia National Laboratories, Bill Wechsler, NA-00-SN. Sandia Silicon Fabrication Recapitalization project underway Posted on August 26, 2013 at 2:00 pm...

411

Raw fabric hardware implementation and characterization  

E-Print Network (OSTI)

The Raw architecture is scalable, improving performance not by pushing the limits of clock frequency, but by spreading computation across numerous simple, replicated tiles. The first Raw processors fabricated have 16 RISC ...

Sun, Albert (Albert G.)

2006-01-01T23:59:59.000Z

412

Nanocrystal structures  

SciTech Connect

A structure including a grating and a semiconductor nanocrystal layer on the grating, can be a laser. The semiconductor nanocrystal layer can include a plurality of semiconductor nanocrystals including a Group II-VI compound, the nanocrystals being distributed in a metal oxide matrix. The grating can have a periodicity from 200 nm to 500 nm.

Eisler, Hans J. (Stoneham, MA); Sundar, Vikram C. (Stoneham, MA); Walsh, Michael E. (Everett, MA); Klimov, Victor I. (Los Alamos, NM); Bawendi, Moungi G. (Cambridge, MA); Smith, Henry I. (Sudbury, MA)

2008-12-30T23:59:59.000Z

413

Carbon nanotube collimator fabrication and application  

DOE Patents (OSTI)

Apparatus, methods, systems and devices for fabricating individual CNT collimators. Micron size fiber coated CNT samples are synthesized with chemical vapor deposition method and then the individual CNT collimators are fabricated with focused ion beam technique. Unfocused electron beams are successfully propagated through the CNT collimators. The CNT nano-collimators are used for applications including single ion implantation and in high-energy physics, and allow rapid, reliable testing of the transmission of CNT arrays for transport of molecules.

Chow, Lee (Orlando, FL); Chai, Guangyu (Orlando, FL); Schenkel, Thomas (San Francisco, CA)

2010-07-06T23:59:59.000Z

414

Characterization of candidate DOE sites for fabricating MOX fuel for lead assemblies  

Science Conference Proceedings (OSTI)

The Office of Fissile Materials Disposition (MD) of the Department of Energy (DOE) is directing the program to disposition US surplus weapons-usable plutonium. For the reactor option for disposition of this surplus plutonium, MD is seeking to contract with a consortium, which would include a mixed-oxide (MOX) fuel fabricator and a commercial US reactor operator, to fabricate and burn MOX fuel in existing commercial nuclear reactors. This option would entail establishing a MOX fuel fabrication facility under the direction of the consortium on an existing DOE site. Because of the lead time required to establish a MOX fuel fabrication facility and the need to qualify the MOX fuel for use in a commercial reactor, MD is considering the early fabrication of lead assemblies (LAs) in existing DOE facilities under the technical direction of the consortium. The LA facility would be expected to produce a minimum of 1 metric ton heavy metal per year and must be operational by June 2003. DOE operations offices were asked to identify candidate sites and facilities to be evaluated for suitability to fabricate MOX fuel LAs. Savannah River Site, Argonne National Laboratory-West, Hanford, Lawrence Livermore National Laboratory, and Los Alamos National Laboratory were identified as final candidates to host the LA project. A Site Evaluation Team (SET) worked with each site to develop viable plans for the LA project. SET then characterized the suitability of each of the five plans for fabricating MOX LAs using 28 attributes and documented the characterization to aid DOE and the consortium in selecting the site for the LA project. SET concluded that each option has relative advantages and disadvantages in comparison with other options; however, each could meet the requirements of the LA project as outlined by MD and SET.

Holdaway, R.F.; Miller, J.W.; Sease, J.D.; Moses, R.J.; O`Connor, D.G. [Oak Ridge National Lab., TN (United States); Carrell, R.D. [Technical Resources International, Inc., Richland, WA (United States); Jaeger, C.D. [Sandia National Labs., Albuquerque, NM (United States); Thompson, M.L.; Strasser, A.A. [Delta-21 Resources, Inc., Oak Ridge, TN (United States)

1998-03-01T23:59:59.000Z

415

Extracting metals directly from metal oxides  

DOE Patents (OSTI)

A method of extracting metals directly from metal oxides by exposing the oxide to a supercritical fluid solvent containing a chelating agent is described. Preferably, the metal is an actinide or a lanthanide. More preferably, the metal is uranium, thorium or plutonium. The chelating agent forms chelates that are soluble in the supercritical fluid, thereby allowing direct removal of the metal from the metal oxide. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is selected from the group consisting of .beta.-diketones, halogenated .beta.-diketones, phosphinic acids, halogenated phosphinic acids, carboxylic acids, halogenated carboxylic acids, and mixtures thereof. In especially preferred embodiments, at least one of the chelating agents is fluorinated. The method provides an environmentally benign process for removing metals from metal oxides without using acids or biologically harmful solvents. The chelate and supercritical fluid can be regenerated, and the metal recovered, to provide an economic, efficient process.

Wai, Chien M. (Moscow, ID); Smart, Neil G. (Moscow, ID); Phelps, Cindy (Moscow, ID)

1997-01-01T23:59:59.000Z

416

Extracting metals directly from metal oxides  

DOE Patents (OSTI)

A method of extracting metals directly from metal oxides by exposing the oxide to a supercritical fluid solvent containing a chelating agent is described. Preferably, the metal is an actinide or a lanthanide. More preferably, the metal is uranium, thorium or plutonium. The chelating agent forms chelates that are soluble in the supercritical fluid, thereby allowing direct removal of the metal from the metal oxide. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is selected from the group consisting of {beta}-diketones, halogenated {beta}-diketones, phosphinic acids, halogenated phosphinic acids, carboxylic acids, halogenated carboxylic acids, and mixtures thereof. In especially preferred embodiments, at least one of the chelating agents is fluorinated. The method provides an environmentally benign process for removing metals from metal oxides without using acids or biologically harmful solvents. The chelate and supercritical fluid can be regenerated, and the metal recovered, to provide an economic, efficient process. 4 figs.

Wai, C.M.; Smart, N.G.; Phelps, C.

1997-02-25T23:59:59.000Z

417

Fabrication, structure and mechanical properties of indium nanopillars  

E-Print Network (OSTI)

been constructed with indium oxide (In2O3)nanowires [18].and Cho [20], the native indium oxide thickness is 5nm atin nature. The native indium oxide represents 40% of the

Lee, Gyuhyon

2010-01-01T23:59:59.000Z

418

Collapsing and Failure Modes on Cellular Structures Fabricated by ...  

Science Conference Proceedings (OSTI)

Symposium, Advanced Materials, Processes and Applications for Additive Manufacturing ... Lubricants in Deposition and Machining of Wire and Arc Additive ...

419

High temperature thermal properties for metals used in LWR vessels  

Science Conference Proceedings (OSTI)

Because of the impact that melt relocation and vessel failure has on subsequent progression and associated consequences of an Light Water Reactor (LWR) accident, it is important to accurately predict the heatup and relocation of materials within the reactor vessel and heat transfer to and from the reactor vessel. Accurate predictions of such heat transfer phenomena require high temperature thermal properties. However, a review of vessel and structural steel material properties in severe accident analysis codes reveals that the required high temperature material properties are extrapolated, with little if any, data above 700 şC. To reduce uncertainties in predictions relying upon this extrapolated high temperature data, INL obtained data using laser-flash thermal diffusivity techniques for two metals used in LWR vessels: SA533B1 carbon steel, which is used to fabricate most US LWR reactor vessels; and SS304, which is used in LWR vessel piping, penetration tubes, and internal structures. This paper summarizes the new data, compares it to existing data in the literature, and provides recommended correlations for thermal properties based on this data.

Joy L. Rempe

2008-01-01T23:59:59.000Z

420

Formation of metal nanoparticles by short-distance sputter deposition in a reactive ion etching chamber  

Science Conference Proceedings (OSTI)

A new method is reported to form metal nanoparticles by sputter deposition inside a reactive ion etching chamber with a very short target-substrate distance. The distribution and morphology of nanoparticles are found to be affected by the distance, the ion concentration, and the sputtering time. Densely distributed nanoparticles of various compositions were fabricated on the substrates that were kept at a distance of 130 mum or smaller from the target. When the distance was increased to 510 mum, island structures were formed, indicating the tendency to form continuous thin film with longer distance. The observed trend for nanoparticle formation is opposite to the previously reported mechanism for the formation of nanoparticles by sputtering. A new mechanism based on the seeding effect of the substrate is proposed to interpret the experimental results.

Nie Min; Meng, Dennis Desheng [Department of Mechanical Engineering and Engineering Mechanics, Michigan Technological University, Houghton, Michigan 49931 (United States); Sun Kai [Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109 (United States)

2009-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "fabricated structural metal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

PRODUCTION OF URANIUM METAL BY CARBON REDUCTION  

DOE Patents (OSTI)

The preparation of uranium metal by the carbon reduction of an oxide of uranium is described. In a preferred embodiment of the invention a charge composed of carbon and uranium oxide is heated to a solid mass after which it is further heated under vacuum to a temperature of about 2000 deg C to produce a fused uranium metal. Slowly ccoling the fused mass produces a dendritic structure of uranium carbide in uranium metal. Reacting the solidified charge with deionized water hydrolyzes the uranium carbide to finely divide uranium dioxide which can be separated from the coarser uranium metal by ordinary filtration methods.

Holden, R.B.; Powers, R.M.; Blaber, O.J.

1959-09-22T23:59:59.000Z

422

M. Bulk Metallic Glasses, Nanocrystalline Materials, and Ultrafine ...  

Science Conference Proceedings (OSTI)

Age Hardening of 7075 Alloy Processed by High-pressure Sliding (HPS) ... Atomic Structure and its Change during Glass Transition of Metallic Glasses.

423

Deformation, Damage, and Fracture of Light Metals and Alloys  

Science Conference Proceedings (OSTI)

The three most highly used light metals and alloys are magnesium, aluminum, and titanium alloys. These alloys are widely utilized to manufacture structural ...

424

Concepts for fabrication of inertial fusion energy targets  

SciTech Connect

Future inertial fusion energy (IFE) power plants will have a Target Fabrication Facility (TFF) that must produce approximately 500,000 targets per day. To achieve a relatively low cost of electricity, the cost to produce these targets will need to be less than approximately $0.25 per target. In this paper the status on the development of concepts for a TFF to produce targets for a heavy ion fusion (HIF) reactor, such as HYLIFE II, and a laser direct drive fusion reactor such as Sombrero, is discussed. The baseline target that is produced in the HIF TFF is similar to the close-coupled indirect drive target designed by Callahan-Miller and Tabak at Lawrence Livermore Laboratory. This target consists of a cryogenic hohlraum that is made of a metal case and a variety of metal foams and metal-doped organic foams. The target contains a DT-filled CH capsule. The baseline direct drive target is the design developed by Bodner and coworkers at Naval Research Laboratory. HIF targets can be filled with DT before or after assembly of the capsule into the hohlraum. Assembly of targets before filling allows assembly operations to be done at room temperature, but tritium inventories are much larger due to the large volume that the hohlraum occupies in the fill system. Assembly of targets cold after filling allows substantial reduction in tritium inventory, but this requires assembly of targets at cryogenic temperature. A model being developed to evaluate the tritium inventories associated with each of the assembly and fill options indicates that filling targets before assembling the capsule into the hohlraum, filling at temperatures as high as possible, and reducing dead-volumes in the fill system as much as possible offers the potential to reduce tritium inventories to acceptable levels. Use of enhanced DT ice layering techniques, such as infrared layering can reduce tritium inventories significantly by reducing the layering time and therefore the number of capsules being layered. Current processes for fabrication of ICF capsules can most likely be easily scaled up to produce capsules at rates needed for an IFE plant.

Nobile, A. (Arthur), Jr.; Hoffer, J. K. (James K.); Gobby, P. L. (Peter L.); Steckle, W. P. (Warren P.), Jr.; Goodin, D. T. (Daniel T.); Besenbruch, G. E. (Gottfried E.); Schultz, K. R. (Kenneth R.)

2001-01-01T23:59:59.000Z

425

Process for Fabrication of Efficient Solar Cells - Energy ...  

Ames Laboratory researchers have developed a process for fabrication of solar cells with increased efficiency.

426

Nuclear waste package fabricated from concrete  

Science Conference Proceedings (OSTI)

After the United States enacted the Nuclear Waste Policy Act in 1983, the Department of Energy must design, site, build and operate permanent geologic repositories for high-level nuclear waste. The Department of Energy has recently selected three sites, one being the Hanford Site in the state of Washington. At this particular site, the repository will be located in basalt at a depth of approximately 3000 feet deep. The main concern of this site, is contamination of the groundwater by release of radionuclides from the waste package. The waste package basically has three components: the containment barrier (metal or concrete container, in this study concrete will be considered), the waste form, and other materials (such as packing material, emplacement hole liners, etc.). The containment barriers are the primary waste container structural materials and are intended to provide containment of the nuclear waste up to a thousand years after emplacement. After the containment barriers are breached by groundwater, the packing material (expanding sodium bentonite clay) is expected to provide the primary control of release of radionuclide into the immediate repository environment. The loading conditions on the concrete container (from emplacement to approximately 1000 years), will be twofold; (1) internal heat of the high-level waste which could be up to 400/sup 0/C; (2) external hydrostatic pressure up to 1300 psi after the seepage of groundwater has occurred in the emplacement tunnel. A suggested container is a hollow plain concrete cylinder with both ends capped. 7 refs.

Pfeiffer, P.A.; Kennedy, J.M.

1987-03-01T23:59:59.000Z

427

Metallic Glass II  

Science Conference Proceedings (OSTI)

Aug 8, 2013 ... Application of Metallic Glass for High Performance Si Solar Cell: ... of the metallic glasses during heating is dependent on the thermal stability of ...

428

Light Metals 2010  

Science Conference Proceedings (OSTI)

Feb 1, 2010 ... Softcover book: Light Metals 2008 Volume 2: Aluminum Reduction. Hardcover book and CD-ROM: Light Metals 2009 ...

429

Bulk Metallic Glasses IX  

Science Conference Proceedings (OSTI)

... of elements to form metallic-glass alloys] have resulted in the required cooling rate ... Bauschinger Effect in Metallic Glass Nanowires under Cyclic Loading.

430

Bulk Metallic Glasses XI  

Science Conference Proceedings (OSTI)

Jul 15, 2013 ... A Bulk Metallic Glass with Record-breaking Damage Tolerance ... Oxidation on the Surface Characteristics of Zr-based Bulk Metallic Glasses.

431

Principal Metals Online  

Science Conference Proceedings (OSTI)

Topic Title: WEB RESOURCE: Principal Metals Online Topic Summary: Principal Metals inventory database. Created On: 2/9/2007 5:41 AM, Topic View:.

432

Microbial Synthesis and Fabrication of Palladium Nanoparticle ...  

Science Conference Proceedings (OSTI)

The initial concentrations of soluble metal and formate in the precursor solution strongly influenced the particle size and the dispersity of biomass-supported ...

433

Trending: Metal Oxo Bonds  

NLE Websites -- All DOE Office Websites (Extended Search)

Trending: Metal Oxo Bonds Trending: Metal Oxo Bonds Trending: Metal Oxo Bonds Print Wednesday, 29 May 2013 00:00 Metal oxides are important for scientific and technical applications in a variety of disciplines, including materials science, chemistry, and biology. Highly covalent metal-oxygen multiple bonds (metal oxos) are the building blocks of metal oxides and have a bearing on the oxide's desirable chemical, magnetic, electronic, and thermal properties. The lack of a more sophisticated grasp of bonding in metal oxides constitutes a roadblock to innovation in a wide variety of important emergent technologies, including industrial catalysis, biomimetic transformations, and artificial photosynthesis. To address this problem, a research team from four national laboratories, three Department of Energy synchrotron user facilities, and the University of Washington has applied spectroscopic and computational analyses to a number of metal oxides, quantifying trends in metal oxo bonding for groups of metals across the periodic table.

434

MITG test assembly design and fabrication  

DOE Green Energy (OSTI)

The design, analysis, and evaluation of the Modular Isotopic Thermoelectric Generator (MITG), described in an earlier paper, led to a program to build and test prototypical, modules of that generator. Each test module duplicates the thermoelectric converters, thermal insulation, housing and radiator fins of a typical generator slice, and simulates its isotope heat source module by means of an electrical heater encased in a prototypical graphite box. Once the approx. 20-watt MITG module has been developed, it can be assembled in appropriate number to form a generator design yielding the desired power output. The present paper describes the design and fabrication of the MITG test assembly, which confirmed the fabricability of the multicouples and interleaved multifoil insulation called for by the design. Test plans, procedures, instrumentation, results, and post-test analyses, as well as revised designs, fabrication procedures, and performance estimates, are described in subsequent papers in these proceedings.

Schock, A.

1983-01-01T23:59:59.000Z

435

Template-based Ferromagnetic Nanowires and Nanotubes: Fabrication and Characterization  

E-Print Network (OSTI)

his dissertation describes experimental studies of the structures and properties, and their correlations in ferromagnetic nanowires and nanotubes fabricated using porous templates. Ferromagnetic Ni and Fe nanowires with diameters 30 ~ 250 nm were electroplated into the pores of anodic aluminum oxide membranes. The effects of nanowire diameter on structural and magnetic properties were investigated. The microstructures of these nanowires were studied using X-ray diffraction and selected-area electron diffraction measurements. The magnetic properties of the nanowires were investigated using magnetic hysteresis measurements and magnetic force microscopy. Additionally, ferromagnetic Ni-P nanotubes were fabricated using an electroless chemical deposition method. Structure and composition analyses were conducted using X-ray diffraction and energy-dispersive spectroscopy. The magnetic properties of the nanotube arrays and the electronic properties of individual nanotubes were studied. Hysteresis measurements revealed that the 250-nm diameter Ni nanowires had a poor squareness in their hysteresis loops, indicating the existence of multi-domain states. In comparison, the squareness in the hysteresis loops of 60-nm and 30-nm Ni nanowires was much improved, suggesting the existence of single domain states in these smaller diameter nanowires. Magnetic force microscopy measurements confirmed the magnetic domain structures suggested by magnetic hysteresis measurements. Similar investigations of Fe nanowires with diameters of 250 nm and 60 nm found that they all have multidomain magnetic structures. This is expected based on their material properties and polycrystalline structures. Furthermore, magnetic structures of Y-branches and multi-wire clusters were also studied using magnetic force microscopy. The as-prepared Ni-P nanotubes had an amorphous structure. Following a heat treatment, however, a structural phase transformation from the amorphous phase to a crystalline phase was observed using X-ray diffraction measurements. The tetragonal crystalline phase of Ni3P and the face-centered-cubic phase of Ni were confirmed via simulations by the GSAS software. The high Ni3P content accounts for the semiconducting behavior and a low magnetic anisotropy observed in the Ni-P nanotubes.

Wei, Zhiyuan

2013-05-01T23:59:59.000Z

436

METAL MEDIA FILTERS, AG-1 SECTION FI  

Science Conference Proceedings (OSTI)

One application of metal media filters is in various nuclear air cleaning processes including applications for protecting workers, the public and the environment from hazardous and radioactive particles. To support this application the development of the ASME AG-1 FI Standard on Metal Media has been under way for more than ten years. Development of the proposed section has required resolving several difficult issues associated with operating conditions (media velocity, pressure drop, etc.), qualification testing, and quality acceptance testing. Performance characteristics of metal media are dramatically different than the glass fiber media with respect to parameters like differential pressures, operating temperatures, media strength, etc. These differences make existing data for a glass fiber media inadequate for qualifying a metal media filter for AG-1. In the past much work has been conducted on metal media filters at facilities such as Lawrence Livermore National Laboratory (LLNL) and Savannah River National Laboratory (SRNL) to qualify the media as High Efficiency Particulate Air (HEPA) Filters. Particle retention testing has been conducted at Oak Ridge Filter Test Facility and at Air Techniques International (ATI) to prove that the metal media meets or exceeds the 99.97% particle retention required for a HEPA Filter. Even with his testing, data was lacking to complete an AG-1 FI Standard on metal media. With funding secured by Mississippi State University (MSU) from National Nuclear Security Administration (NNSA), a research test stand is being designed and fabricated at MSU's Institute for Clean Energy Technology (ICET) Facility to obtain qualification data on metal media. This in turn will support required data needed for the FI Standard. The paper will discuss in detail how the test stand at MSU will obtain the necessary data to complete the FI Standard.

Adamson, D.

2012-05-23T23:59:59.000Z

437

Method and apparatus for atomization and spraying of molten metals  

DOE Patents (OSTI)

A method and device for dispersing molten metal into fine particulate spray, the method comprises applying an electric current through the molten metal and simultaneously applying a magnetic field to the molten metal in a plane perpendicular to the electric current, whereby the molten metal is caused to form into droplets at an angle perpendicular to both the electric current and the magnetic field. The device comprises a structure for providing a molten metal, appropriately arranged electrodes for applying an electric current through the molten metal, and a magnet for providing a magnetic field in a plane perpendicular to the electric current.

Hobson, David O. (Oak Ridge, TN); Alexeff, Igor (Oak Ridge, TN); Sikka, Vinod K. (Clinton, TN)

1990-01-01T23:59:59.000Z

438

Method and apparatus for atomization and spraying of molten metals  

DOE Patents (OSTI)

A method and device for dispersing molten metal into fine particulate spray, the method comprises applying an electric current through the molten metal and simultaneously applying a magnetic field to the molten metal in a plane perpendicular to the electric current, whereby the molten metal is caused to form into droplets at an angle perpendicular to both the electric current and the magnetic field. The device comprises a structure for providing a molten metal, appropriately arranged electrodes for applying an electric current through the molten metal, and a magnet for providing a magnetic field in a plane perpendicular to the electric current. 11 figs.

Hobson, D.O.; Alexeff, I.; Sikka, V.K.

1988-07-19T23:59:59.000Z

439

Energy-beam-driven rapid fabrication system  

DOE Patents (OSTI)

An energy beam driven rapid fabrication system, in which an energy beam strikes a growth surface to form a molten puddle thereon. Feed powder is then injected into the molten puddle from a converging flow of feed powder. A portion of the feed powder becomes incorporated into the molten puddle, forcing some of the puddle contents to freeze on the growth surface, thereby adding an additional layer of material. By scanning the energy beam and the converging flow of feed powder across the growth surface, complex three-dimensional shapes can be formed, ready or nearly ready for use. Nearly any class of material can be fabricated using this system.

Keicher, David M. (Albuquerque, NM); Atwood, Clinton L. (Albuquerque, NM); Greene, Donald L. (Corrales, NM); Griffith, Michelle L. (Albuquerque, NM); Harwell, Lane D. (Albuquerque, NM); Jeantette, Francisco P. (Albuquerque, NM); Romero, Joseph A. (Albuquerque, NM); Schanwald, Lee P. (Albuquerque, NM); Schmale, David T. (Albuquerque, NM)

2002-01-01T23:59:59.000Z

440

Hard vs. Soft: The Central Question of Pre-Fabricated Silicon Jonathan Rose  

E-Print Network (OSTI)

Hard vs. Soft: The Central Question of Pre-Fabricated Silicon Jonathan Rose The Edward S. Rogers Sr also help to make it happen. We will focus on the central question in FPGA architecture: what hard to support these hard structures. An interesting specific case that will be addressed is whether processors

Rose, Jonathan

Note: This page contains sample records for the topic "fabricated structural metal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Nano-compact disks with 400 Gbit/in2 storage density fabricated  

E-Print Network (OSTI)

Nano-compact disks with 400 Gbit/in2 storage density fabricated using nanoimprint lithography and read with proximal probe Peter R. Kraussa) and Stephen Y. Choub) NanoStructure Laboratory, Department for publication 30 September 1997 Nano-compact disks Nano-CDs with 400 Gbit/in2 topographical bit density nearly

442

Self?aligned high electron mobility transistor gate fabrication using focused ion beams  

Science Conference Proceedings (OSTI)

A new gate fabrication technique has been developed based on focused ion beam exposure and reactive ion etching of a polymethylmethacrylate (PMMA)/Ge/PMMA multilevel resist structure. The focused ion beam exposes the thin PMMA imaging layer that is transferred directly to the germanium layer using reactive ion etching (RIE). The underlying resist is etched first in oxygen at high pressure

G. M. Atkinson; R. L. Kubena; L. E. Larson; L. D. Nguyen; F. P. Stratton; L. M. Jelloian; M. V. Le; H. McNulty

1991-01-01T23:59:59.000Z

443

Synthesis and Characterization of Porous Metal Phosphonates  

E-Print Network (OSTI)

This dissertation focuses on the challenge of developing porous metal arylphosphonates with both high crystallinity and functional porosity by using different synthetic approaches. Metal phosphonates are an extensive class of materials based upon extended inorganic-organic architectures such as chains, layers and three-dimensional networks. Metal phosphonates generally favor extended inorganic architectures leading to pillared materials with no porosity. We found that the use of template molecules, type of ligand and choice of metal ions could be used to deviate from the pillared structure. Many of these structures had interesting properties that were explored. The results can be divided into three areas: We developed non-pillared monovalent metal phosphonates by investigating both the role of water and template molecules in the solvothermal synthesis. The role of water in solvothermal reactions was found to have a profound influence on the structure of monovalent metal phosphonates and the structures could be tailored from zero/one-dimensional to two-dimensional. Non-pillared structures could be synthesized by using template molecules. For a zinc phosphonate, we converted a layered structure into a three-dimensional framework by using small template molecules in the solvothermal reaction. The compound exhibited reversible dehydration behavior. The change in the framework structure and guest positions was monitored during this process. Two different ligands were used in the development of porous aluminum phosphonates. One series exhibited reversible dehydration behavior, which had a dramatic influence on permanent porosity of the material. The stability of the dehydrated phase is a result of the geometry of the aluminum atom, which in some cases has coordinatively unsaturated metal sites. The second series was developed with ion exchange applications in mind therefore the pore environment was tailored to favor ion exchange processes. The most important aspect is that these compounds exhibit high selectivity for Th^(4+) ions. In total 28 new compounds were prepared, and their utility and structures clarified.

Kinnibrugh, Tiffany Lewis

2013-08-01T23:59:59.000Z

444

Fabrication and In Vitro Deployment of a Laser-Activated Shape Memory Polymer Vascular Stent  

Science Conference Proceedings (OSTI)

Vascular stents are small tubular scaffolds used in the treatment of arterial stenosis (narrowing of the vessel). Most vascular stents are metallic and are deployed either by balloon expansion or by self-expansion. A shape memory polymer (SMP) stent may enhance flexibility, compliance, and drug elution compared to its current metallic counterparts. The purpose of this study was to describe the fabrication of a laser-activated SMP stent and demonstrate photothermal expansion of the stent in an in vitro artery model. A novel SMP stent was fabricated from thermoplastic polyurethane. A solid SMP tube formed by dip coating a stainless steel pin was laser-etched to create the mesh pattern of the finished stent. The stent was crimped over a fiber-optic cylindrical light diffuser coupled to an infrared diode laser. Photothermal actuation of the stent was performed in a water-filled mock artery. At a physiological flow rate, the stent did not fully expand at the maximum laser power (8.6 W) due to convective cooling. However, under zero flow, simulating the technique of endovascular flow occlusion, complete laser actuation was achieved in the mock artery at a laser power of {approx}8 W. We have shown the design and fabrication of an SMP stent and a means of light delivery for photothermal actuation. Though further studies are required to optimize the device and assess thermal tissue damage, photothermal actuation of the SMP stent was demonstrated.

Baer, G M; Small IV, W; Wilson, T S; Benett, W J; Matthews, D L; Hartman, J; Maitland, D J

2007-04-25T23:59:59.000Z

445

Reaction-Forming Method for Producing Near Net-Shape Refractory Metal Carbides  

DOE Patents (OSTI)

A method for reaction forming refractory metal carbides. The method involves the fabrication of a glassy carbon preform by casting an organic, resin-based liquid mixture into a mold and subsequently heat treating it in two steps, which cures and pyrolizes the resin resulting in a porous carbon preform. By varying the amounts of the constituents in the organic, resin-based liquid mixture, control over the density of the carbon preform is obtained. Control of the density and microstructure of the carbon preform allows for determination of the microstructure and properties of the refractory metal carbide material produced. The glassy carbon preform is placed on a bed of refractory metal or refractory metal--silicon alloy. The pieces are heated above the melting point of the metal or alloy. The molten metal wicks inside the porous carbon preform and reacts, forming the refractory metal carbide or refractory metal carbide plus a minor secondary phase.

Palmisiano, Marc N.; Jakubenas, Kevin J.; Baranwal, Rita

2004-07-20T23:59:59.000Z

446

Precious Metals Conversion Information  

Science Conference Proceedings (OSTI)

Precious Metals Conversion Information. The Office of Weights and Measures (OWM) has prepared a Conversion Factors ...

2012-11-21T23:59:59.000Z

447

Corrosion of valve metals  

DOE Green Energy (OSTI)

A general survey related to the corrosion of valve metals or film-forming metals. The way these metals corrode with some general examples is described. Valve metals form relatively perfect oxide films with little breakdown or leakage when anodized. (FS)

Draley, J.E.

1976-01-01T23:59:59.000Z

448

METAL PRODUCTION AND CASTING  

DOE Patents (OSTI)

This patent covers a method and apparatus for collecting the molten metal produced by high temperature metal salt reduction. It consists essentially of subjecting the reaction vessel to centrifugal force in order to force the liberatcd molten metal into a coherent molten mass, and allowing it to solidify there. The apparatus is particularly suitable for use with small quantities of rare metals.

Magel, T.T.

1958-03-01T23:59:59.000Z

449

Ceramic to metal seal  

DOE Patents (OSTI)

Providing a high strength, hermetic ceramic to metal seal by essentially heating a wire-like metal gasket and a ceramic member, which have been chemically cleaned, while simultaneously deforming from about 50 to 95 percent the metal gasket against the ceramic member at a temperature of about 30 to 75 percent of the melting temperature of the metal gasket.

Snow, Gary S. (Albuquerque, NM); Wilcox, Paul D. (Albuquerque, NM)

1976-01-01T23:59:59.000Z

450

Trending: Metal Oxo Bonds  

NLE Websites -- All DOE Office Websites (Extended Search)

Trending: Metal Oxo Bonds Print Trending: Metal Oxo Bonds Print Metal oxides are important for scientific and technical applications in a variety of disciplines, including materials science, chemistry, and biology. Highly covalent metal-oxygen multiple bonds (metal oxos) are the building blocks of metal oxides and have a bearing on the oxide's desirable chemical, magnetic, electronic, and thermal properties. The lack of a more sophisticated grasp of bonding in metal oxides constitutes a roadblock to innovation in a wide variety of important emergent technologies, including industrial catalysis, biomimetic transformations, and artificial photosynthesis. To address this problem, a research team from four national laboratories, three Department of Energy synchrotron user facilities, and the University of Washington has applied spectroscopic and computational analyses to a number of metal oxides, quantifying trends in metal oxo bonding for groups of metals across the periodic table.

451

Trending: Metal Oxo Bonds  

NLE Websites -- All DOE Office Websites (Extended Search)

Trending: Metal Oxo Bonds Print Trending: Metal Oxo Bonds Print Metal oxides are important for scientific and technical applications in a variety of disciplines, including materials science, chemistry, and biology. Highly covalent metal-oxygen multiple bonds (metal oxos) are the building blocks of metal oxides and have a bearing on the oxide's desirable chemical, magnetic, electronic, and thermal properties. The lack of a more sophisticated grasp of bonding in metal oxides constitutes a roadblock to innovation in a wide variety of important emergent technologies, including industrial catalysis, biomimetic transformations, and artificial photosynthesis. To address this problem, a research team from four national laboratories, three Department of Energy synchrotron user facilities, and the University of Washington has applied spectroscopic and computational analyses to a number of metal oxides, quantifying trends in metal oxo bonding for groups of metals across the periodic table.

452

Trending: Metal Oxo Bonds  

NLE Websites -- All DOE Office Websites (Extended Search)

Trending: Metal Oxo Bonds Print Trending: Metal Oxo Bonds Print Metal oxides are important for scientific and technical applications in a variety of disciplines, including materials science, chemistry, and biology. Highly covalent metal-oxygen multiple bonds (metal oxos) are the building blocks of metal oxides and have a bearing on the oxide's desirable chemical, magnetic, electronic, and thermal properties. The lack of a more sophisticated grasp of bonding in metal oxides constitutes a roadblock to innovation in a wide variety of important emergent technologies, including industrial catalysis, biomimetic transformations, and artificial photosynthesis. To address this problem, a research team from four national laboratories, three Department of Energy synchrotron user facilities, and the University of Washington has applied spectroscopic and computational analyses to a number of metal oxides, quantifying trends in metal oxo bonding for groups of metals across the periodic table.

453

Trending: Metal Oxo Bonds  

NLE Websites -- All DOE Office Websites (Extended Search)

Trending: Metal Oxo Bonds Print Trending: Metal Oxo Bonds Print Metal oxides are important for scientific and technical applications in a variety of disciplines, including materials science, chemistry, and biology. Highly covalent metal-oxygen multiple bonds (metal oxos) are the building blocks of metal oxides and have a bearing on the oxide's desirable chemical, magnetic, electronic, and thermal properties. The lack of a more sophisticated grasp of bonding in metal oxides constitutes a roadblock to innovation in a wide variety of important emergent technologies, including industrial catalysis, biomimetic transformations, and artificial photosynthesis. To address this problem, a research team from four national laboratories, three Department of Energy synchrotron user facilities, and the University of Washington has applied spectroscopic and computational analyses to a number of metal oxides, quantifying trends in metal oxo bonding for groups of metals across the periodic table.

454

Stabilization of Electrocatalytic Metal Nanoparticles at Metal-Metal Oxide-Graphene Triple Junction Points  

DOE Green Energy (OSTI)

Carbon-supported metal catalysts are widely used in heterogeneous catalysis and electrocatalysis. In this paper, we report a novel method to deposit metal catalysts and metal oxide nanoparticles on two-dimensional graphene sheets to improve the catalytic performance and stability of the catalyst materials. The new synthesis method allows indium tin oxide (ITO) nanocrystals to be directly grown on functionalized graphene sheets forming the ITO-graphene hybrids. Pt nanoparticles are then deposited to form a special triple-junction structure (Pt-ITO-graphene). Both experimental study and periodic density functional theory calculations show that the supported Pt nanoparticles are stable at Pt-ITO-graphene triple junction points. The new catalyst materials were tested for oxygen reduction for potential applications in polymer electrolyte membrane fuel cells, and they exhibited greatly enhanced stability and activity. The reasons for the high stability and activity of Pt-ITO-graphene are analyzed.

Kou, Rong; Shao, Yuyan; Mei, Donghai; Nie, Zimin; Wang, Donghai; Wang, Chong M.; Viswanathan, Vilayanur V.; Park, Seh K.; Aksay, Ilhan A.; Lin, Yuehe; Wang, Yong; Liu, Jun

2011-03-02T23:59:59.000Z

455

Apparatus for efficient sidewall containment of molten metal with horizontal alternating magnetic fields utilizing low reluctance rims  

DOE Patents (OSTI)

A method and apparatus for casting sheets of metal from molten metal. The apparatus includes a containment structure having an open side, a horizontal alternating magnetic field generating structure and rollers including low reluctance rim structures. The magnetic field and the rollers help contain the molten metal from leaking out of the containment structure.

Praeg, Walter F. (Palos Park, IL)

1999-01-01T23:59:59.000Z

456

Method of fabrication of anchored nanostructure materials  

SciTech Connect

Methods for fabricating anchored nanostructure materials are described. The methods include heating a nano-catalyst under a protective atmosphere to a temperature ranging from about 450.degree. C. to about 1500.degree. C. and contacting the heated nano-catalysts with an organic vapor to affix carbon nanostructures to the nano-catalysts and form the anchored nanostructure material.

Seals, Roland D; Menchhofer, Paul A; Howe, Jane Y; Wang, Wei

2013-11-26T23:59:59.000Z

457

Fabricating translucent materials using continuous pigment mixtures  

Science Conference Proceedings (OSTI)

We present a method for practical physical reproduction and design of homogeneous materials with desired subsurface scattering. Our process uses a collection of different pigments that can be suspended in a clear base material. Our goal is to determine ... Keywords: fabrication, material design, subsurface scattering

Marios Papas; Christian Regg; Wojciech Jarosz; Bernd Bickel; Philip Jackson; Wojciech Matusik; Steve Marschner; Markus Gross

2013-07-01T23:59:59.000Z

458

Flexible piezoelectric cantilevers fabricated on polyimide substrate  

Science Conference Proceedings (OSTI)

In this work we present for the first time the fabrication and the characterization of flexible micro cantilevers based on Aluminum Nitride (AlN) as piezoelectric active layer and polyimide as elastic substrate. The AlN thin film, embedded into two layers ... Keywords: AlN, Cantilevers, Flexible, Piezoelectric transduction, Polyimide

S. Petroni; G. Maruccio; F. Guido; M. Amato; A. Campa; A. Passaseo; M. T. Todaro; M. De Vittorio

2012-10-01T23:59:59.000Z

459

Three dimensional silicon photonic crystals fabricated by two photon phase mask lithography.  

SciTech Connect

We describe the fabrication of silicon three dimensional photonic crystals using polymer templates defined by a single step, two-photon exposure through a layer of photopolymer with relief molded on its surface. The resulting crystals exhibit high structural quality over large areas, displaying geometries consistent with calculation. Spectroscopic measurements of transmission and reflection through the silicon and polymer structures reveal excellent optical properties, approaching properties predicted by simulations that assume ideal layouts.

Wiltzius, P. (University of Illinois, Urbana-Champaign, Illinois); Braun, P. V. (University of Illinois, Urbana-Champaign, Illinois); Liao, H. (University of Illinois, Urbana-Champaign, Illinois); Brzezinski, A. (University of Illinois, Urbana-Champaign, Illinois); Chen, Y. C. (University of Illinois, Urbana-Champaign, Illinois); Nelson, E. (University of Illinois, Urbana-Champaign, Illinois); Shir, D. (University of Illinois, Urbana-Champaign, Illinois); Rogers, J. A. (University of Illinois, Urbana-Champaign, Illinois); Bogart, Katherine Huderle Andersen

2008-08-01T23:59:59.000Z

460

Creating bulk nanocrystalline metal.  

Science Conference Proceedings (OSTI)

Nanocrystalline and nanostructured materials offer unique microstructure-dependent properties that are superior to coarse-grained materials. These materials have been shown to have very high hardness, strength, and wear resistance. However, most current methods of producing nanostructured materials in weapons-relevant materials create powdered metal that must be consolidated into bulk form to be useful. Conventional consolidation methods are not appropriate due to the need to maintain the nanocrystalline structure. This research investigated new ways of creating nanocrystalline material, new methods of consolidating nanocrystalline material, and an analysis of these different methods of creation and consolidation to evaluate their applicability to mesoscale weapons applications where part features are often under 100 {micro}m wide and the material's microstructure must be very small to give homogeneous properties across the feature.

Fredenburg, D. Anthony (Georgia Institute of Technology, Atlanta, GA); Saldana, Christopher J. (Purdue University, West Lafayette, IN); Gill, David D.; Hall, Aaron Christopher; Roemer, Timothy John (Ktech Corporation, Albuquerque, NM); Vogler, Tracy John; Yang, Pin

2008-10-01T23:59:59.000Z