National Library of Energy BETA

Sample records for fabricated structural metal

  1. Fabrication of metallic glass structures

    DOE Patents [OSTI]

    Cline, C.F.

    1983-10-20

    Amorphous metal powders or ribbons are fabricated into solid shapes of appreciable thickness by the application of compaction energy. The temperature regime wherein the amorphous metal deforms by viscous flow is measured. The metal powders or ribbons are compacted within the temperature regime.

  2. Method for fabricating an ignitable heterogeneous stratified metal structure

    DOE Patents [OSTI]

    Barbee, Jr., Troy W.; Weihs, Timothy

    1996-01-01

    A multilayer structure has a selectable, (i) propagating reaction front velocity V, (ii) reaction initiation temperature attained by application of external energy and (iii) amount of energy delivered by a reaction of alternating unreacted layers of the multilayer structure. Because V is selectable and controllable, a variety of different applications for the multilayer structures are possible, including but not limited to their use as ignitors, in joining applications, in fabrication of new materials, as smart materials and in medical applications and devices. The multilayer structure has a period D, and an energy release rate constant K. Two or more alternating unreacted layers are made of different materials and separated by reacted zones. The period D is equal to a sum of the widths of each single alternating reaction layer of a particular material, and also includes a sum of reacted zone widths, t.sub.i, in the period D. The multilayer structure has a selectable propagating reaction front velocity V, where V=K(1/D.sup.n).times.[1-(t.sub.i /D)]and n is about 0.8 to 1.2.

  3. Method for fabricating an ignitable heterogeneous stratified metal structure

    DOE Patents [OSTI]

    Barbee, T.W. Jr.; Weihs, T.

    1996-08-20

    A multilayer structure has a selectable: (1) propagating reaction front velocity V; (2) reaction initiation temperature attained by application of external energy; and (3) amount of energy delivered by a reaction of alternating unreacted layers of the multilayer structure. Because V is selectable and controllable, a variety of different applications for the multilayer structures are possible, including but not limited to their use as igniters, in joining applications, in fabrication of new materials, as smart materials and in medical applications and devices. The multilayer structure has a period D, and an energy release rate constant K. Two or more alternating unreacted layers are made of different materials and separated by reacted zones. The period D is equal to a sum of the widths of each single alternating reaction layer of a particular material, and also includes a sum of reacted zone widths, t{sub i}, in the period D. The multilayer structure has a selectable propagating reaction front velocity V, where V=K(1/D{sup n}){times}[1-(t{sub i}/D)] and n is about 0.8 to 1.2. 8 figs.

  4. MECS 2006- Fabricated Metals

    Broader source: Energy.gov [DOE]

    Manufacturing Energy and Carbon Footprint for Fabricated Metals (NAICS 332) Sector with Total Energy Input, October 2012 (MECS 2006)

  5. Quantum confinement effect in cheese like silicon nano structure fabricated by metal induced etching

    SciTech Connect (OSTI)

    Saxena, Shailendra K. Sahu, Gayatri; Sagdeo, Pankaj R.; Kumar, Rajesh

    2015-08-28

    Quantum confinement effect has been studied in cheese like silicon nano-structures (Ch-SiNS) fabricated by metal induced chemical etching using different etching times. Scanning electron microscopy is used for the morphological study of these Ch-SiNS. A visible photoluminescence (PL) emission is observed from the samples under UV excitation at room temperature due to quantum confinement effect. The average size of Silicon Nanostructures (SiNS) present in the samples has been estimated by bond polarizability model using Raman Spectroscopy from the red-shift observed from SiNSs as compared to its bulk counterpart. The sizes of SiNS present in the samples decreases as etching time increase from 45 to 75 mintunes.

  6. Fabrication of metal shells

    SciTech Connect (OSTI)

    O'Holleran, T.P.; Henderson, T.M.; Downs, R.L.; Nolen, R.L.

    1980-01-01

    Small hollow metal spheres are needed as targets for particle-beam fusion experiments and as the inner fuel container for multi-shell targets. For the multishell application, shells fabricated of materials with high atomic numbers, e.g., gold, are of particular interest because they may effectively reduce preheating of the fuel. Because the shells must also contain the fuel mixture (deuterium and tritium) at high pressures, high strength materials, e.g., iron, are also of considerable interest. With the objective of proof of principle we have investigated several techniques of fabricating shells of metal or materials containing large fractions of high atomic number elements. These techniques, our experimental results and their evaluation are presented.

  7. Composite metal foil and ceramic fabric materials

    DOE Patents [OSTI]

    Webb, Brent J.; Antoniak, Zen I.; Prater, John T.; DeSteese, John G.

    1992-01-01

    The invention comprises new materials useful in a wide variety of terrestrial and space applications. In one aspect, the invention comprises a flexible cloth-like material comprising a layer of flexible woven ceramic fabric bonded with a layer of metallic foil. In another aspect, the invention includes a flexible fluid impermeable barrier comprising a flexible woven ceramic fabric layer having metal wire woven therein. A metallic foil layer is incontinuously welded to the woven metal wire. In yet another aspect, the invention includes a material comprising a layer of flexible woven ceramic fabric bonded with a layer of an organic polymer. In still another aspect, the invention includes a rigid fabric structure comprising a flexible woven ceramic fabric and a resinous support material which has been hardened as the direct result of exposure to ultraviolet light. Inventive methods for producing such material are also disclosed.

  8. Composite metal foil and ceramic fabric materials

    DOE Patents [OSTI]

    Webb, B.J.; Antoniak, Z.I.; Prater, J.T.; DeSteese, J.G.

    1992-03-24

    The invention comprises new materials useful in a wide variety of terrestrial and space applications. In one aspect, the invention comprises a flexible cloth-like material comprising a layer of flexible woven ceramic fabric bonded with a layer of metallic foil. In another aspect, the invention includes a flexible fluid impermeable barrier comprising a flexible woven ceramic fabric layer having metal wire woven therein. A metallic foil layer is incontinuously welded to the woven metal wire. In yet another aspect, the invention includes a material comprising a layer of flexible woven ceramic fabric bonded with a layer of an organic polymer. In still another aspect, the invention includes a rigid fabric structure comprising a flexible woven ceramic fabric and a resinous support material which has been hardened as the direct result of exposure to ultraviolet light. Inventive methods for producing such material are also disclosed. 11 figs.

  9. Use of metallic glasses for fabrication of structures with submicron dimensions

    DOE Patents [OSTI]

    Wiley, John D.; Perepezko, John H.

    1986-01-01

    Patterned structures of submicron dimension formed of supported or unsupported amorphous metals having submicron feature sizes characterized by etching behavior sufficient to allow delineation of sharp edges and smooth flat flanks, resistance to time-dependent dimensional changes caused by creep, flow, in-diffusion of unwanted impurities, out-diffusion of constituent atoms, void formation, grain growth or phase separation and resistance to phase transformations or compound formation.

  10. Fabricated Metals (2010 MECS) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fabricated Metals (2010 MECS) Fabricated Metals (2010 MECS) Manufacturing Energy and Carbon Footprint for Fabricated Metals Sector (NAICS 332) Energy use data source: 2010 EIA MECS (with adjustments) Footprint Last Revised: February 2014 View footprints for other sectors here. Manufacturing Energy and Carbon Footprint Fabricated Metals (124.58 KB) More Documents & Publications MECS 2006 - Fabricated Metals Cement (2010 MECS) Glass and Glass Products (2010 MECS) Manufacturing Energy Sankey

  11. Method and apparatus for fabricating a composite structure consisting of a filamentary material in a metal matrix

    DOE Patents [OSTI]

    Banker, J.G.; Anderson, R.C.

    1975-10-21

    A method and apparatus are provided for preparing a composite structure consisting of filamentary material within a metal matrix. The method is practiced by the steps of confining the metal for forming the matrix in a first chamber, heating the confined metal to a temperature adequate to effect melting thereof, introducing a stream of inert gas into the chamber for pressurizing the atmosphere in the chamber to a pressure greater than atmospheric pressure, confining the filamentary material in a second chamber, heating the confined filamentary material to a temperature less than the melting temperature of the metal, evacuating the second chamber to provide an atmosphere therein at a pressure, placing the second chamber in registry with the first chamber to provide for the forced flow of the molten metal into the second chamber to effect infiltration of the filamentary material with the molten metal, and thereafter cooling the metal infiltrated-filamentary material to form said composite structure.

  12. Graphitized hollow carbon spheres and yolk-structured carbon spheres fabricated by metal-catalyst-free chemical vapor deposition

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Li, Xufan; Chi, Miaofang; Mahurin, Shannon Mark; Liu, Rui; Chuang, Yen -Jun; Dai, Sheng; Pan, Zhengwei

    2016-01-18

    Hard-sphere-templating method has been widely used to synthesize hollow carbon spheres (HCSs), in which the spheres were firstly coated with a carbon precursor, followed by carbonization and core removal. The obtained HCSs are generally amorphous or weakly graphitized (with the help of graphitization catalysts). In this work, we report on the fabrication of graphitized HCSs and yolk–shell Au@HCS nanostructures using a modified templating method, in which smooth, uniform graphene layers were grown on SiO2 spheres or Au@SiO2 nanoparticles via metal-catalyst-free chemical vapor deposition (CVD) of methane. Furthermore, our work not only provides a new method to fabricate high-quality, graphitized HCSsmore » but also demonstrates a reliable approach to grow quality graphene on oxide surfaces using CVD without the presence of metal catalysts.« less

  13. Method of electrode fabrication and an electrode for metal chloride...

    Office of Scientific and Technical Information (OSTI)

    Method of electrode fabrication and an electrode for metal chloride battery Title: Method of electrode fabrication and an electrode for metal chloride battery A method of ...

  14. Fabrication of metallic microstructures by micromolding nanoparticles

    DOE Patents [OSTI]

    Morales, Alfredo M.; Winter, Michael R.; Domeier, Linda A.; Allan, Shawn M.; Skala, Dawn M.

    2002-01-01

    A method is provided for fabricating metallic microstructures, i.e., microcomponents of micron or submicron dimensions. A molding composition is prepared containing an optional binder and nanometer size (1 to 1000 nm in diameter) metallic particles. A mold, such as a lithographically patterned mold, preferably a LIGA or a negative photoresist mold, is filled with the molding composition and compressed. The resulting microstructures are then removed from the mold and the resulting metallic microstructures so provided are then sintered.

  15. Fabrication and characterization of metal-semiconductor-metal nanorod using template synthesis

    SciTech Connect (OSTI)

    Kim, Kyohyeok; Kwon, Namyong; Hong, Junki; Chung, Ilsub

    2009-07-15

    The authors attempted to fabricate and characterize one dimensional metal-semiconductor-metal (MSM) nanorod using a template. Cadmium selenide (CdSe) and polypyrrole (Ppy) were chosen as n-type and p-type semiconductor materials, respectively, whereas Au was chosen as a metal electrode. The fabrication of the nanorod was achieved by ''template synthesis'' method using polycarbonate membrane. The structure of the fabricated nanorod was analyzed using scanning electron microscopy and energy dispersive spectroscopy. In addition, the electrical properties of MSM nanorods were characterized using scanning probe microscopy (Seiko Instruments, SPA 300 HV) by probing with a conductive cantilever. I-V characteristics as a function of the temperature give the activation energy, as well as the barrier height of a metal-semiconductor contact, which is useful to understand the conduction mechanism of MSM nanorods.

  16. Simulations of optical sensors fabricated from metallic rods couplers

    SciTech Connect (OSTI)

    Singh, M. R.; Balakrishanan, Shankar

    2014-03-31

    We have developed the optical sensing mechanism of photonic couplers fabricated from the periodically arranged metallic rods. The metallic rod lattice is embedded between two dielectric material waveguides. This structure is called metallic coupler. Using the transfer matrix method, expressions for the reflection and transmission coefficients of electromagnetic wave propagating in waveguides have been obtained. We found that for certain energies, the electromagnetic wave is totally reflected from the coupler. Similarly, for a certain energy range the light is totally transmitted. It has also been found that by changing the periodicity of the metallic rods, the transmitted energy can be reflected. The periodicity of the metallic lattice can be modified by applying an external stress or pressure. In other words, the system can be used as stress and pressure sensors. The present findings can be used to make new types photonic sensors.

  17. Waste container fabrication from recycled DOE metal

    SciTech Connect (OSTI)

    Motl, G.P.; Burns, D.D.

    1994-02-15

    The Department of Energy (DOE) has more than 2.5 million tons of radioactive scrap metal (RSM) that is either in inventory or expected to be generated over the next 25 years as major facilities within the weapons complex are decommissioned. Much of this material cannot be surface decontaminated. In an attempt to conserve natural resources and to avoid burial of this material at DOE disposal sites, options are now being explored to {open_quotes}beneficially reuse{close_quotes} this material in applications where small amounts of radioactivity are not a detriment. One example is where RSM is currently being beneficially used to fabricate shield blocks for use in DOE medium energy physics programs. This paper describes other initiatives now underway within DOE to utilize RSM to fabricate other products, such as radioactive waste shipping, storage and disposal containers.

  18. Structure and yarn sensor for fabric

    DOE Patents [OSTI]

    Mee, David K.; Allgood, Glenn O.; Mooney, Larry R.; Duncan, Michael G.; Turner, John C.; Treece, Dale A.

    1998-01-01

    A structure and yarn sensor for fabric directly determines pick density in a fabric thereby allowing fabric length and velocity to be calculated from a count of the picks made by the sensor over known time intervals. The structure and yarn sensor is also capable of detecting full length woven defects and fabric. As a result, an inexpensive on-line pick (or course) density measurement can be performed which allows a loom or knitting machine to be adjusted by either manual or automatic means to maintain closer fiber density tolerances. Such a sensor apparatus dramatically reduces fabric production costs and significantly improves fabric consistency and quality for woven or knitted fabric.

  19. Structure and yarn sensor for fabric

    DOE Patents [OSTI]

    Mee, D.K.; Allgood, G.O.; Mooney, L.R.; Duncan, M.G.; Turner, J.C.; Treece, D.A.

    1998-10-20

    A structure and yarn sensor for fabric directly determines pick density in a fabric thereby allowing fabric length and velocity to be calculated from a count of the picks made by the sensor over known time intervals. The structure and yarn sensor is also capable of detecting full length woven defects and fabric. As a result, an inexpensive on-line pick (or course) density measurement can be performed which allows a loom or knitting machine to be adjusted by either manual or automatic means to maintain closer fiber density tolerances. Such a sensor apparatus dramatically reduces fabric production costs and significantly improves fabric consistency and quality for woven or knitted fabric. 13 figs.

  20. Laser target fabrication, structure and method for its fabrication

    DOE Patents [OSTI]

    Farnum, Eugene H.; Fries, R. Jay

    1985-01-01

    The disclosure is directed to a laser target structure and its method of fabrication. The target structure comprises a target plate containing an orifice across which a pair of crosshairs are affixed. A microsphere is affixed to the crosshairs and enclosed by at least one hollow shell comprising two hemispheres attached together and to the crosshairs so that the microsphere is juxtapositioned at the center of the shell.

  1. Design Fabrication and Characterization of Metal Micromachined...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for operation at 3 THz have been designed and fabricated using thick gold micromachining. ... Assuming perfectly smooth ideal gold, the calculated loss at 3 THz is 10 dBm. However, ...

  2. Method of fabricating conductive electrodes on the front and backside of a thin film structure

    DOE Patents [OSTI]

    Tabada, Phillipe J.; Tabada, legal representative, Melody; Pannu, Satinderpall S.

    2011-05-22

    A method of fabricating a thin film device having conductive front and backside electrodes or contacts. Top-side cavities are first formed on a first dielectric layer, followed by the deposition of a metal layer on the first dielectric layer to fill the cavities. Defined metal structures are etched from the metal layer to include the cavity-filled metal, followed by depositing a second dielectric layer over the metal structures. Additional levels of defined metal structures may be formed in a similar manner with vias connecting metal structures between levels. After a final dielectric layer is deposited, a top surface of a metal structure of an uppermost metal layer is exposed through the final dielectric layer to form a front-side electrode, and a bottom surface of a cavity-filled portion of a metal structure of a lowermost metal layer is also exposed through the first dielectric layer to form a back-side electrode.

  3. Method for fabricating beryllium structures

    DOE Patents [OSTI]

    Hovis, Jr., Victor M.; Northcutt, Jr., Walter G.

    1977-01-01

    Thin-walled beryllium structures are prepared by plasma spraying a mixture of beryllium powder and about 2500 to 4000 ppm silicon powder onto a suitable substrate, removing the plasma-sprayed body from the substrate and placing it in a sizing die having a coefficient of thermal expansion similar to that of the beryllium, exposing the plasma-sprayed body to a moist atmosphere, outgassing the plasma-sprayed body, and then sintering the plasma-sprayed body in an inert atmosphere to form a dense, low-porosity beryllium structure of the desired thin-wall configuration. The addition of the silicon and the exposure of the plasma-sprayed body to the moist atmosphere greatly facilitate the preparation of the beryllium structure while minimizing the heretofore deleterious problems due to grain growth and grain orientation.

  4. Low resistance barrier layer for isolating, adhering, and passivating copper metal in semiconductor fabrication

    DOE Patents [OSTI]

    Weihs, Timothy P.; Barbee, Jr., Troy W.

    2002-01-01

    Cubic or metastable cubic refractory metal carbides act as barrier layers to isolate, adhere, and passivate copper in semiconductor fabrication. One or more barrier layers of the metal carbide are deposited in conjunction with copper metallizations to form a multilayer characterized by a cubic crystal structure with a strong (100) texture. Suitable barrier layer materials include refractory transition metal carbides such as vanadium carbide (VC), niobium carbide (NbC), tantalum carbide (TaC), chromium carbide (Cr.sub.3 C.sub.2), tungsten carbide (WC), and molybdenum carbide (MoC).

  5. Highly efficient and controllable method to fabricate ultrafine metallic nanostructures

    SciTech Connect (OSTI)

    Cai, Hongbing; Zhang, Kun; Pan, Nan E-mail: xpwang@ustc.edu.cn; Luo, Yi; Wang, Xiaoping E-mail: xpwang@ustc.edu.cn; Yu, Xinxin; Tian, Yangchao

    2015-11-15

    We report a highly efficient, controllable and scalable method to fabricate various ultrafine metallic nanostructures in this paper. The method starts with the negative poly-methyl-methacrylate (PMMA) resist pattern with line-width superior to 20 nm, which is obtained from overexposing of the conventionally positive PMMA under a low energy electron beam. The pattern is further shrunk to sub-10 nm line-width through reactive ion etching. Using the patter as a mask, we can fabricate various ultrafine metallic nanostructures with the line-width even less than 10 nm. This ion tailored mask lithography (ITML) method enriches the top-down fabrication strategy and provides potential opportunity for studying quantum effects in a variety of materials.

  6. Tubular hydrogen permeable metal foil membrane and method of fabrication

    DOE Patents [OSTI]

    Paglieri, Stephen N.; Birdsell, Stephen A.; Barbero, Robert S.; Snow, Ronny C.; Smith, Frank M.

    2006-04-04

    A tubular hydrogen permeable metal membrane and fabrication process comprises obtaining a metal alloy foil having two surfaces, coating the surfaces with a metal or metal alloy catalytic layer to produce a hydrogen permeable metal membrane, sizing the membrane into a sheet with two long edges, wrapping the membrane around an elongated expandable rod with the two long edges aligned and overlapping to facilitate welding of the two together, placing the foil wrapped rod into a surrounding fixture housing with the two aligned and overlapping foil edges accessible through an elongated aperture in the surrounding fixture housing, expanding the elongated expandable rod within the surrounding fixture housing to tighten the foil about the expanded rod, welding the two long overlapping foil edges to one another generating a tubular membrane, and removing the tubular membrane from within the surrounding fixture housing and the expandable rod from with the tubular membrane.

  7. Method of fabricating a catalytic structure

    DOE Patents [OSTI]

    Rollins, Harry W.; Petkovic, Lucia M.; Ginosar, Daniel M.

    2009-09-22

    A precursor to a catalytic structure comprising zinc oxide and copper oxide. The zinc oxide has a sheet-like morphology or a spherical morphology and the copper oxide comprises particles of copper oxide. The copper oxide is reduced to copper, producing the catalytic structure. The catalytic structure is fabricated by a hydrothermal process. A reaction mixture comprising a zinc salt, a copper salt, a hydroxyl ion source, and a structure-directing agent is formed. The reaction mixture is heated under confined volume conditions to produce the precursor. The copper oxide in the precursor is reduced to copper. A method of hydrogenating a carbon oxide using the catalytic structure is also disclosed, as is a system that includes the catalytic structure.

  8. Electronic structure of metallic glasses

    SciTech Connect (OSTI)

    Oelhafen, P.; Lapka, R.; Gubler, U.; Krieg, J.; DasGupta, A.; Guentherodt, H.J.; Mizoguchi, T.; Hague, C.; Kuebler, J.; Nagel, S.R.

    1981-01-01

    This paper is organized in six sections and deals with (1) the glassy transition metal alloys, their d-band structure, the d-band shifts on alloying and their relation to the alloy heat of formation (..delta..H) and the glass forming ability, (2) the glass to crystal phase transition viewed by valence band spectroscopy, (3) band structure calculations, (4) metallic glasses prepared by laser glazing, (5) glassy normal metal alloys, and (6) glassy hydrides.

  9. Methods for freeform fabrication of structures

    DOE Patents [OSTI]

    Kaufman, Stephen G.; Spletzer, Barry L.

    2000-01-01

    Rapid prototyping methods and apparatuses that produce structures made of continuous-fiber polymer-matrix composites without the use of molds. Instead of using molds, the composite structure is fabricated patch by patch in layers or wraps, using a two- or three-axis stage connected to a rapidly-reconfigurable forming surface, and a robot arm to position the evolving composite structure, which are both programmable devices. Because programmable devices are included, i.e., a robot and a two- or three-axis stage connected to the reconfigurable forming surface, the control program needed to produce a desired shape can be easily modified to automatically generate the desired shape from an electronic model (e.g., using a CAD/CAM system) of the desired (predetermined) shape.

  10. Method for fabricating prescribed flaws in the interior of metals

    DOE Patents [OSTI]

    Hsu, David K.; Thompson, Donald O.

    1989-03-07

    The method for fabricating a metal body having a flaw of predetermined size and shape located therein comprises placing half of the metal powder required to make the metal body in the die of a press and pressing it to create a flat upper surface thereon. A piece of copper foil is cut to the size and shape of the desired interior crack and placed on the upper surface of the powder and centered in position. The remaining powder is then placed in the die to cover the copper foil. The powder is first cold pressed and removed from the press. The powder metal piece is then sintered in a furnace at a temperature above the melting point of the copper and below the melting point of the metal. It is then removed from the furnace, cooled to room temperature, and placed back in the die and pressed further. This procedure results in an interior flaw or crack. Modified forms of the method involve using a press-sinter-press-sinter cycle with the first sinter being below the melting point of the copper and the second sinter being above the melting point of the copper and below the melting point of the metal.

  11. Method of fabricating a honeycomb structure

    DOE Patents [OSTI]

    Holleran, Louis M.; Lipp, G. Daniel

    1999-01-01

    A method of fabricating a monolithic honeycomb structure product involves shaping a first mixture of raw materials and a binder into a green honeycomb, extruding a second mixture of raw materials and a binder into one or more green members that each define an opening extending longitudinally therethrough. The raw materials of the second mixture are compatible with the raw materials of the first mixture. The green honeycomb and member(s) are dried. The binders of the green honeycomb and member(s) are softened at the surfaces that are to be bonded. The green member(s) is inserted into the honeycomb and bonded to the honeycomb to form an assembly thereof, which is then dried and fired to form a unified monolithic honeycomb structure. The insertion is best carried out by mounting a member in the shape of a tube on a mandrel, and inserting the mandrel into the honeycomb opening to bond the tube to the honeycomb.

  12. Method of fabricating a honeycomb structure

    DOE Patents [OSTI]

    Holleran, L.M.; Lipp, G.D.

    1999-08-03

    A method of fabricating a monolithic honeycomb structure product involves shaping a first mixture of raw materials and a binder into a green honeycomb, extruding a second mixture of raw materials and a binder into one or more green members that each define an opening extending longitudinally therethrough. The raw materials of the second mixture are compatible with the raw materials of the first mixture. The green honeycomb and member(s) are dried. The binders of the green honeycomb and member(s) are softened at the surfaces that are to be bonded. The green member(s) is inserted into the honeycomb and bonded to the honeycomb to form an assembly thereof, which is then dried and fired to form a unified monolithic honeycomb structure. The insertion is best carried out by mounting a member in the shape of a tube on a mandrel, and inserting the mandrel into the honeycomb opening to bond the tube to the honeycomb. 7 figs.

  13. Properties of near-net shape metallic components made by the directed light fabrication process

    SciTech Connect (OSTI)

    Lewis, G.K.; Milewski, J.O.; Thoma, D.B.; Nemec, R.B.

    1997-10-01

    Directed Light Fabrication (DLF) is a process invented at Los Alamos National Laboratory that can be used to fuse any metal powder directly to a fully dense, near-net shape component with full structural integrity. A solid model design of a desired component is first developed on a computer work station. A motion path, produced from the solid model definition, is translated to actual machine commands through a post-processor, specific to the deposition equipment. The DLF process uses a multi-axis positioning system to move the laser focal zone over the part cross section defined by the part boundaries and desired layer thickness. Metal powders, delivered in an argon stream, enter the focal zone where they melt and continuously form a molten pool of material that moves with the laser focal spot. Position and movement of the spot is controlled through the post-processor. Successive cross-sectional layers are added by advancing the spot one layer thickness beyond the previous layer until the entire part is deposited. The system has 4 powder feeders attached for co-deposition of multiple materials to create alloys at the focal zone or form dissimilar metal joint combinations by changing powder composition from one material to another. Parts produced by the DLF process vary in complexity from simple bulk solid forms to detailed components fabricated from difficult to process metals and alloys. Parts have been deposited at rates up to 33 cm{sup 3}/hr with 12 cm{sup 3}/hr more typical. Feasibility of processing any metal ranging in melting point from aluminium to tungsten has been demonstrated. Mechanical properties for bulk DLF deposits of three alloy powders were measured for this study. Ti-6Al-4V and 316 stainless steel powders were fabricated into rectangular bar, and Inconel 690 powder was fabricated into a solid cylinder.

  14. Corrosion resistance of transmission structures fabricated from weathering steel

    SciTech Connect (OSTI)

    Goodwin, E.J. ); Pohlman, J.C.

    1993-01-01

    Introduced to utilities in the late 1960's, weathering steel' appeared to offer a way to reduce structure weight and maintenance of lattice towers through the application of bare, high strength steel that had natural corrosion resistance. Weathering steel found wide application in lattice and tubular transmission structures. Through its service life, however, the weathering steel showed evidence of continuing corrosion rather than the expected protection from corrosion. A consortium of utilities was formed to investigate the impact on structure reliability of the continuing corrosion of the steel beyond initial expectations. Through the completion of field surveys and laboratory tests, projected lifetime corrosion rates, structural integrity and potential sealer/penetrant systems were evaluated. The investigation has shown that existing lattice and tubular structures fabricated from weathering steel will provide continued reliable service with minimal maintenance programs. Weathering Steel remains practical for new lattice and tubular structures provided steps are taken during the design process to minimize the retention and collection of moisture between and around metal contact surfaces and during the operation of the line to minimize vegetation encroachment around structures.

  15. Method for fabricating beryllium-based multilayer structures

    DOE Patents [OSTI]

    Skulina, Kenneth M.; Bionta, Richard M.; Makowiecki, Daniel M.; Alford, Craig S.

    2003-02-18

    Beryllium-based multilayer structures and a process for fabricating beryllium-based multilayer mirrors, useful in the wavelength region greater than the beryllium K-edge (111 .ANG. or 11.1 nm). The process includes alternating sputter deposition of beryllium and a metal, typically from the fifth row of the periodic table, such as niobium (Nb), molybdenum (Mo), ruthenium (Ru), and rhodium (Rh). The process includes not only the method of sputtering the materials, but the industrial hygiene controls for safe handling of beryllium. The mirrors made in accordance with the process may be utilized in soft x-ray and extreme-ultraviolet projection lithography, which requires mirrors of high reflectivity (>60%) for x-rays in the range of 60-140 .ANG. (60-14.0 nm).

  16. Fabrication and Characterization of Graded Impedance Gas Gun Impactors from Tape Cast Metal Powders

    SciTech Connect (OSTI)

    Martin, L P; Nguyen, J H

    2005-11-21

    Fabrication of compositionally graded structures for use as light-gas gun impactors has been demonstrated using a tape casting technique. Mixtures of metal powders in the Mg-Cu system were cast into a series of tapes with uniform compositions ranging from 100% Mg to 100% Cu. The individual compositions were fabricated into monolithic pellets for characterization by laminating multiple layers together, thermally removing the organics, and hot-pressing to near-full density. The pellets were characterized by optical and scanning electron microscopy, X-ray diffraction, and measurement of density and sound wave velocity. The density and acoustic impedance were observed to vary monotonically (and nearly linearly) with composition. Graded structures were fabricated by stacking layers of different compositions in a sequence calculated to yield a desired acoustic impedance profile. The measured physical properties of the graded structures compare favorably with those predicted from the monolithic-pellet characteristics. Fabrication of graded impactors by this technique is of significant interest for providing improved control of the pressure profile in gas gun experiments.

  17. Metallic Fast Reactor Fuel Fabrication for Global Nuclear Energy Partnership

    SciTech Connect (OSTI)

    Douglas E. Burkes; Randall S. Fielding; Douglas L. Porter

    2009-07-01

    Fast reactors are once again being considered for nuclear power generation, in addition to transmutation of long-lived fission products resident in spent nuclear fuels. This re-consideration follows with intense developmental programs for both fuel and reactor design. One of the two leading candidates for next generation fast reactor fuel is metal alloys, resulting primarily from the successes achieved in the 1960s to early 1990s with both the experimental breeding reactor-II and the fast flux test facility. The goal of the current program is to develop and qualify a nuclear fuel system that performs all of the functions of a conventional, fast-spectrum nuclear fuel while destroying recycled actinides, thereby closing the nuclear fuel cycle. In order to meet this goal, the program must develop efficient and safe fuel fabrication processes designed for remote operation. This paper provides an overview of advanced casting processes investigated in the past, and the development of a gaseous diffusion calculation that demonstrates how straightforward process parameter modification can mitigate the loss of volatile minor actinides in the metal alloy melt.

  18. Methods and devices for fabricating three-dimensional nanoscale structures

    DOE Patents [OSTI]

    Rogers, John A.; Jeon, Seokwoo; Park, Jangung

    2010-04-27

    The present invention provides methods and devices for fabricating 3D structures and patterns of 3D structures on substrate surfaces, including symmetrical and asymmetrical patterns of 3D structures. Methods of the present invention provide a means of fabricating 3D structures having accurately selected physical dimensions, including lateral and vertical dimensions ranging from 10s of nanometers to 1000s of nanometers. In one aspect, methods are provided using a mask element comprising a conformable, elastomeric phase mask capable of establishing conformal contact with a radiation sensitive material undergoing photoprocessing. In another aspect, the temporal and/or spatial coherence of electromagnetic radiation using for photoprocessing is selected to fabricate complex structures having nanoscale features that do not extend entirely through the thickness of the structure fabricated.

  19. The fabrication of millimeter-wavelength accelerating structures

    SciTech Connect (OSTI)

    Chou, P.J.; Bowden, G.B.; Copeland, M.R.

    1996-11-01

    There is a growing interest in the development of high gradient ({ge} 1 GeV/m) accelerating structures. The need for high gradient acceleration based on current microwave technology requires the structures to be operated in the millimeter wavelength. Fabrication of accelerating structures at millimeter scale with sub-micron tolerances poses great challenges. The accelerating structures impose strict requirements on surface smoothness and finish to suppress field emission and multipactor effects. Various fabrication techniques based on conventional machining and micromachining have been evaluated and tested. These will be discussed and measurement results presented.

  20. Process for fabricating a microelectromechanical structure

    DOE Patents [OSTI]

    Sniegowski, Jeffry J.; Krygowski, Thomas W.; Mani, Seethambal S.; Habermehl, Scott D.; Hetherington, Dale L.; Stevens, James E.; Resnick, Paul J.; Volk, Steven R.

    2004-10-26

    A process is disclosed for forming a microelectromechanical (MEM) structure on a substrate having from 5 to 6 or more layers of deposited and patterned polysilicon. The process is based on determining a radius of curvature of the substrate which is bowed due to accumulated stress in the layers of polysilicon and a sacrificial material used to buildup the MEM structure, and then providing one or more stress-compensation layers on a backside of the substrate to flatten the substrate and allow further processing.

  1. Three-dimensional stacked structured ASIC devices and methods of fabrication thereof

    DOE Patents [OSTI]

    Shinde, Subhash L.; Teifel, John; Flores, Richard S.; Jarecki Jr., Robert L.; Bauer, Todd

    2015-11-19

    A 3D stacked sASIC is provided that includes a plurality of 2D reconfigurable structured structured ASIC (sASIC) levels interconnected through hard-wired arrays of 3D vias. The 2D sASIC levels may contain logic, memory, analog functions, and device input/output pad circuitry. During fabrication, these 2D sASIC levels are stacked on top of each other and fused together with 3D metal vias. Such 3D vias may be fabricated as through-silicon vias (TSVs). They may connect to the back-side of the 2D sASIC level, or they may be connected to top metal pads on the front-side of the 2D sASIC level.

  2. CASTING SLIPS FOR FABRICATION OF REFRACTORY METAL WARE

    DOE Patents [OSTI]

    Stoddard, S.D.; Nuckolls, D.E.; Cowan, R.E.

    1962-09-01

    A composition is given for slip casting tungsten metal. The composition consists essentially of tungsten metal with an average particle size of 0.9 micron, an organic vehicle such as methyl chloroform, o-xylene, n-butyl acetate, isobutyl acetate, and 1, 1, 2, 2-tetrachlorethane, and a suspending agent such as ethyl cellulose, with the approximate ratio of said vehicle to the tungsten metal being 12 cc of a solution containing from 5 to about 20 grams of said ethyl cellulose in 400 cc of said organic vehicle per 100 grams of metal. (AEC)

  3. Process for the fabrication of aluminum metallized pyrolytic graphite sputtering targets

    DOE Patents [OSTI]

    Makowiecki, Daniel M.; Ramsey, Philip B.; Juntz, Robert S.

    1995-01-01

    An improved method for fabricating pyrolytic graphite sputtering targets with superior heat transfer ability, longer life, and maximum energy transmission. Anisotropic pyrolytic graphite is contoured and/or segmented to match the erosion profile of the sputter target and then oriented such that the graphite's high thermal conductivity planes are in maximum contact with a thermally conductive metal backing. The graphite contact surface is metallized, using high rate physical vapor deposition (HRPVD), with an aluminum coating and the thermally conductive metal backing is joined to the metallized graphite target by one of four low-temperature bonding methods; liquid-metal casting, powder metallurgy compaction, eutectic brazing, and laser welding.

  4. Utilizing Metalized Fabrics for Liquid and Rip Detection and Localization

    SciTech Connect (OSTI)

    Holland, Stephen; Mahan, Cody; Kuhn, Michael J; Rowe, Nathan C

    2013-01-01

    This paper proposes a novel technique for utilizing conductive textiles as a distributed sensor for detecting and localizing liquids (e.g., blood), rips (e.g., bullet holes), and potentially biosignals. The proposed technique is verified through both simulation and experimental measurements. Circuit theory is utilized to depict conductive fabric as a bounded, near-infinite grid of resistors. Solutions to the well-known infinite resistance grid problem are used to confirm the accuracy and validity of this modeling approach. Simulations allow for discontinuities to be placed within the resistor matrix to illustrate the effects of bullet holes within the fabric. A real-time experimental system was developed that uses a multiplexed Wheatstone bridge approach to reconstruct the resistor grid across the conductive fabric and detect liquids and rips. The resistor grid model is validated through a comparison of simulated and experimental results. Results suggest accuracy proportional to the electrode spacing in determining the presence and location of discontinuities in conductive fabric samples. Future work is focused on refining the experimental system to provide more accuracy in detecting and localizing events as well as developing a complete prototype that can be deployed for field testing. Potential applications include intelligent clothing, flexible, lightweight sensing systems, and combat wound detection.

  5. Freeform fabrication of polymer-matrix composite structures

    SciTech Connect (OSTI)

    Kaufman, S.G.; Spletzer, B.L.; Guess, T.L.

    1997-05-01

    The authors have developed, prototyped, and demonstrated the feasibility of a novel robotic technique for rapid fabrication of composite structures. Its chief innovation is that, unlike all other available fabrication methods, it does not require a mold. Instead, the structure is built patch by patch, using a rapidly reconfigurable forming surface, and a robot to position the evolving part. Both of these components are programmable, so only the control software needs to be changed to produce a new shape. Hence it should be possible to automatically program the system to produce a shape directly from an electronic model of it. It is therefore likely that the method will enable faster and less expensive fabrication of composites.

  6. Solid materials for removing metals and fabrication method

    DOE Patents [OSTI]

    Coronado, Paul R.; Reynolds, John G.; Coleman, Sabre J.

    2004-10-19

    Solid materials have been developed to remove contaminating metals and organic compounds from aqueous media. The contaminants are removed by passing the aqueous phase through the solid materials which can be in molded, granular, or powder form. The solid materials adsorb the metals and the organics leaving a purified aqueous stream. The materials are sol-gel and or sol-gel and granulated activated carbon (GAC) mixtures. The species-specific adsorption occurs through specific chemical modifications of the solids tailored towards the contaminant(s). The contaminated solid materials can then be disposed of or the contaminant can be removed and the solids recycled.

  7. Method of electrode fabrication and an electrode for metal chloride battery

    DOE Patents [OSTI]

    Bloom, I.D.; Nelson, P.A.; Vissers, D.R.

    1993-03-16

    A method of fabricating an electrode for use in a metal chloride battery and an electrode are provided. The electrode has relatively larger and more uniform pores than those found in typical electrodes. The fabrication method includes the steps of mixing sodium chloride particles selected from a predetermined size range with metal particles selected from a predetermined size range, and then rigidifying the mixture. The electrode exhibits lower resistivity values of approximately 0.5 [Omega]cm[sup 2] than those resistivity values of approximately 1.0-1.5 [Omega]cm[sup 2] exhibited by currently available electrodes.

  8. Method of electrode fabrication and an electrode for metal chloride battery

    DOE Patents [OSTI]

    Bloom, Ira D.; Nelson, Paul A.; Vissers, Donald R.

    1993-01-01

    A method of fabricating an electrode for use in a metal chloride battery and an electrode are provided. The electrode has relatively larger and more uniform pores than those found in typical electrodes. The fabrication method includes the steps of mixing sodium chloride particles selected from a predetermined size range with metal particles selected from a predetermined size range, and then rigidifying the mixture. The electrode exhibits lower resistivity values of approximately 0.5 .OMEGA.cm.sup.2 than those resistivity values of approximately 1.0-1.5 .OMEGA.cm.sup.2 exhibited by currently available electrodes.

  9. Fabrication of Emissible Metallic Layer-by-Layer Photonic Crystals...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    polymer is coated on the first polymer. A substrate or a multi-layer polymer structure is placed on the filled mold and the resulting structure is exposed to UV light (i.e., is UV...

  10. Characterization of an aluminum alloy hemispherical shell fabricated via direct metal laser melting

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Holesinger, T. G.; Carpenter, J. S.; Lienert, T. J.; Patterson, B. M.; Papin, P. A.; Swenson, H.; Cordes, N. L.

    2016-01-11

    The ability of additive manufacturing to directly fabricate complex shapes provides characterization challenges for part qualification. The orientation of the microstructures produced by these processes will change relative to the surface normal of a complex part. In this work, the microscopy and x-ray tomography of an AlSi10Mg alloy hemispherical shell fabricated using powder bed metal additive manufacturing are used to illustrate some of these challenges. The shell was manufactured using an EOS M280 system in combination with EOS-specified powder and process parameters. The layer-by-layer process of building the shell with the powder bed additive manufacturing approach results in a position-dependentmore » microstructure that continuously changes its orientation relative to the shell surface normal. X-ray tomography was utilized to examine the position-dependent size and distribution of porosity and surface roughness in the 98.6% dense part. Optical and electron microscopy were used to identify global and local position-dependent structures, grain morphologies, chemistry, and precipitate sizes and distributions. The rapid solidification processes within the fusion zone (FZ) after the laser transit results in a small dendrite size. Cell spacings taken from the structure in the middle of the FZ were used with published relationships to estimate a cooling rate of ~9 × 105 K/s. Uniformly-distributed, nanoscale Si precipitates were found within the primary α-Al grains. A thin, distinct boundary layer containing larger α-Al grains and extended regions of the nanocrystalline divorced eutectic material surrounds the FZ. Moreover, subtle differences in the composition between the latter layer and the interior of the FZ were noted with scanning transmission electron microscopy (STEM) spectral imaging.« less

  11. High temperature ceramic/metal joint structure

    DOE Patents [OSTI]

    Boyd, Gary L.

    1991-01-01

    A high temperature turbine engine includes a hybrid ceramic/metallic rotor member having ceramic/metal joint structure. The disclosed joint is able to endure higher temperatures than previously possible, and aids in controlling heat transfer in the rotor member.

  12. Method for fabricating high aspect ratio structures in perovskite material

    DOE Patents [OSTI]

    Karapetrov, Goran T.; Kwok, Wai-Kwong; Crabtree, George W.; Iavarone, Maria

    2003-10-28

    A method of fabricating high aspect ratio ceramic structures in which a selected portion of perovskite or perovskite-like crystalline material is exposed to a high energy ion beam for a time sufficient to cause the crystalline material contacted by the ion beam to have substantially parallel columnar defects. Then selected portions of the material having substantially parallel columnar defects are etched leaving material with and without substantially parallel columnar defects in a predetermined shape having high aspect ratios of not less than 2 to 1. Etching is accomplished by optical or PMMA lithography. There is also disclosed a structure of a ceramic which is superconducting at a temperature in the range of from about 10.degree. K. to about 90.degree. K. with substantially parallel columnar defects in which the smallest lateral dimension of the structure is less than about 5 microns, and the thickness of the structure is greater than 2 times the smallest lateral dimension of the structure.

  13. Structural rejuvenation in bulk metallic glasses

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tong, Yang; Iwashita, T.; Dmowski, Wojciech; Bei, Hongbin; Yokoyama, Y.; Egami, Takeshi

    2015-01-05

    Using high-energy X-ray diffraction we study structural changes in bulk metallic glasses after uniaxial compressive homogeneous deformation at temperatures slightly below the glass transition. We observe that deformation results in structural disordering corresponding to an increase in the fictive, or effective, temperature. However, the structural disordering saturates after yielding. Lastly, examination of the experimental structure and molecular dynamics simulation suggests that local changes in the atomic connectivity network are the main driving force of the structural rejuvenation.

  14. Method of fabricating a homogeneous wire of inter-metallic alloy

    DOE Patents [OSTI]

    Ohriner, Evan Keith (Knoxville, TN); Blue, Craig Alan (Knoxville, TN)

    2001-01-01

    A method for fabricating a homogeneous wire of inter-metallic alloy comprising the steps of providing a base-metal wire bundle comprising a metal, an alloy or a combination thereof; working the wire bundle through at least one die to obtain a desired dimension and to form a precursor wire; and, controllably heating the precursor wire such that a portion of the wire will become liquid while simultaneously maintaining its desired shape, whereby substantial homogenization of the wire occurs in the liquid state and additional homogenization occurs in the solid state resulting in a homogenous alloy product.

  15. Structures having enhanced biaxial texture and method of fabricating same

    DOE Patents [OSTI]

    Goyal, A.; Budai, J.D.; Kroeger, D.M.; Norton, D.P.; Specht, E.D.; Christen, D.K.

    1998-04-21

    A biaxially textured article includes a rolled and annealed, biaxially textured substrate of a metal having a face-centered cubic, body-centered cubic, or hexagonal close-packed crystalline structure; and an epitaxial superconductor or other device epitaxially deposited thereon. 11 figs.

  16. Structures having enhanced biaxial texture and method of fabricating same

    DOE Patents [OSTI]

    Goyal, A.; Budai, J.D.; Kroeger, D.M.; Norton, D.P.; Specht, E.D.; Christen, D.K.

    1998-04-14

    A biaxially textured article includes a rolled and annealed, biaxially textured substrate of a metal having a face-centered cubic, body-centered cubic, or hexagonal close-packed crystalline structure; and an epitaxial superconductor or other device epitaxially deposited thereon. 11 figs.

  17. Structures having enhanced biaxial texture and method of fabricating same

    DOE Patents [OSTI]

    Goyal, A.; Budai, J.D.; Kroeger, D.M.; Norton, D.P.; Specht, E.D.; Christen, D.K.

    1999-04-27

    A biaxially textured article includes a rolled and annealed, biaxially textured substrate of a metal having a face-centered cubic, body-centered cubic, or hexagonal close-packed crystalline structure; and an epitaxial superconductor or other device epitaxially deposited thereon. 11 figs.

  18. Structures having enhanced biaxial texture and method of fabricating same

    DOE Patents [OSTI]

    Goyal, Amit; Budai, John D.; Kroeger, Donald M.; Norton, David P.; Specht, Eliot D.; Christen, David K.

    1998-01-01

    A biaxially textured article includes a rolled and annealed, biaxially textured substrate of a metal having a face-centered cubic, body-centered cubic, or hexagonal close-packed crystalline structure; and an epitaxial superconductor or other device epitaxially deposited thereon.

  19. Structures having enhanced biaxial texture and method of fabricating same

    DOE Patents [OSTI]

    Goyal, Amit; Budai, John D.; Kroeger, Donald M.; Norton, David P.; Specht, Eliot D.; Christen, David K.

    1999-01-01

    A biaxially textured article includes a rolled and annealed, biaxially textured substrate of a metal having a face-centered cubic, body-centered cubic, or hexagonal close-packed crystalline structure; and an epitaxial superconductor or other device epitaxially deposited thereon.

  20. High performance capacitors using nano-structure multilayer materials fabrication

    DOE Patents [OSTI]

    Barbee, T.W. Jr.; Johnson, G.W.; O`Brien, D.W.

    1996-01-23

    A high performance capacitor is described which is fabricated from nano-structure multilayer materials, such as by controlled, reactive sputtering, and having very high energy-density, high specific energy and high voltage breakdown. The multilayer capacitors, for example, may be fabricated in a ``notepad`` configuration composed of 200--300 alternating layers of conductive and dielectric materials so as to have a thickness of 1 mm, width of 200 mm, and length of 300 mm, with terminals at each end of the layers suitable for brazing, thereby guaranteeing low contact resistance and high durability. The ``notepad`` capacitors may be stacked in single or multiple rows (series-parallel banks) to increase the voltage and energy density. 5 figs.

  1. High performance capacitors using nano-structure multilayer materials fabrication

    DOE Patents [OSTI]

    Barbee, Jr., Troy W.; Johnson, Gary W.; O'Brien, Dennis W.

    1996-01-01

    A high performance capacitor fabricated from nano-structure multilayer materials, such as by controlled, reactive sputtering, and having very high energy-density, high specific energy and high voltage breakdown. The multilayer capacitors, for example, may be fabricated in a "notepad" configuration composed of 200-300 alternating layers of conductive and dielectric materials so as to have a thickness of 1 mm, width of 200 mm, and length of 300 mm, with terminals at each end of the layers suitable for brazing, thereby guaranteeing low contact resistance and high durability. The "notepad" capacitors may be stacked in single or multiple rows (series-parallel banks) to increase the voltage and energy density.

  2. High performance capacitors using nano-structure multilayer materials fabrication

    DOE Patents [OSTI]

    Barbee, T.W. Jr.; Johnson, G.W.; O`Brien, D.W.

    1995-05-09

    A high performance capacitor is fabricated from nano-structure multilayer materials, such as by controlled, reactive sputtering, and having very high energy-density, high specific energy and high voltage breakdown. The multilayer capacitors, for example, may be fabricated in a ``notepad`` configuration composed of 200-300 alternating layers of conductive and dielectric materials so as to have a thickness of 1 mm, width of 200 mm, and length of 300 mm, with terminals at each end of the layers suitable for brazing, thereby guaranteeing low contact resistance and high durability. The notepad capacitors may be stacked in single or multiple rows (series-parallel banks) to increase the voltage and energy density. 5 figs.

  3. High performance capacitors using nano-structure multilayer materials fabrication

    DOE Patents [OSTI]

    Barbee, Jr., Troy W.; Johnson, Gary W.; O'Brien, Dennis W.

    1995-01-01

    A high performance capacitor fabricated from nano-structure multilayer materials, such as by controlled, reactive sputtering, and having very high energy-density, high specific energy and high voltage breakdown. The multilayer capacitors, for example, may be fabricated in a "notepad" configuration composed of 200-300 alternating layers of conductive and dielectric materials so as to have a thickness of 1 mm, width of 200 mm, and length of 300 mm, with terminals at each end of the layers suitable for brazing, thereby guaranteeing low contact resistance and high durability. The "notepad" capacitors may be stacked in single or multiple rows (series-parallel banks) to increase the voltage and energy density.

  4. Process for the fabrication of aluminum metallized pyrolytic graphite sputtering targets

    DOE Patents [OSTI]

    Makowiecki, D.M.; Ramsey, P.B.; Juntz, R.S.

    1995-07-04

    An improved method is disclosed for fabricating pyrolytic graphite sputtering targets with superior heat transfer ability, longer life, and maximum energy transmission. Anisotropic pyrolytic graphite is contoured and/or segmented to match the erosion profile of the sputter target and then oriented such that the graphite`s high thermal conductivity planes are in maximum contact with a thermally conductive metal backing. The graphite contact surface is metallized, using high rate physical vapor deposition (HRPVD), with an aluminum coating and the thermally conductive metal backing is joined to the metallized graphite target by one of four low-temperature bonding methods; liquid-metal casting, powder metallurgy compaction, eutectic brazing, and laser welding. 11 figs.

  5. Structures and fabrication techniques for solid state electrochemical devices

    DOE Patents [OSTI]

    Visco, Steven J.; Jacobson, Craig P.; DeJonghe, Lutgard C.

    2006-10-10

    Low-cost, mechanically strong, highly electronically conductive porous substrates and associated structures for solid-state electrochemical devices, techniques for forming these structures, and devices incorporating the structures provide solid state electrochemical device substrates of novel composition and techniques for forming thin electrode/membrane/electrolyte coatings on the novel or more conventional substrates. In particular, in one aspect the invention provides techniques for co-firing of device substrate (often an electrode) with an electrolyte or membrane layer to form densified electrolyte/membrane films 5 to 20 microns thick. In another aspect, densified electrolyte/membrane films 5 to 20 microns thick may be formed on a pre-sintered substrate by a constrained sintering process. In some cases, the substrate may be a porous metal, alloy, or non-nickel cermet incorporating one or more of the transition metals Cr, Fe and Cu, or alloys thereof.

  6. Structures And Fabrication Techniques For Solid State Electrochemical Devices

    DOE Patents [OSTI]

    Visco, Steven J.; Jacobson, Craig P.; DeJonghe, Lutgard C.

    2005-12-27

    Provided are low-cost, mechanically strong, highly electronically conductive porous substrates and associated structures for solid-state electrochemical devices, techniques for forming these structures, and devices incorporating the structures. The invention provides solid state electrochemical device substrates of novel composition and techniques for forming thin electrode/membrane/electrolyte coatings on the novel or more conventional substrates. In particular, in one embodiment the invention provides techniques for co-firing of device substrate (often an electrode) with an electrolyte or membrane layer to form densified electrolyte/membrane films 5 to 20 microns thick. In another embodiment, densified electrolyte/membrane films 5 to 20 microns thick may be formed on a pre-sintered substrate by a constrained sintering process. In some cases, the substrate may be a porous metal, alloy, or non-nickel cermet incorporating one or more of the transition metals Cr, Fe, Cu and Ag, or alloys thereof.

  7. Structures and fabrication techniques for solid state electrochemical devices

    DOE Patents [OSTI]

    Visco, Steven J.; Jacobson, Craig P.; DeJonghe, Lutgard C.

    2003-08-12

    Provided are low-cost, mechanically strong, highly electronically conductive porous substrates and associated structures for solid-state electrochemical devices, techniques for forming these structures, and devices incorporating the structures. The invention provides solid state electrochemical device substrates of novel composition and techniques for forming thin electrode/membrane/electrolyte coatings on the novel or more conventional substrates. In particular, in one embodiment the invention provides techniques for co-firing of device substrate (often an electrode) with an electrolyte or membrane layer to form densified electrolyte/membrane films 5 to 20 microns thick. In another embodiment, densified electrolyte/membrane films 5 to 20 microns thick may be formed on a pre-sintered substrate by a constrained sintering process. In some cases, the substrate may be a porous metal, alloy, or non-nickel cermet incorporating one or more of the transition metals Cr, Fe, Cu and Ag, or alloys thereof.

  8. Micrometer-scale fabrication of complex three dimensional lattice + basis structures in silicon

    SciTech Connect (OSTI)

    Burckel, D. Bruce; Resnick, Paul J.; Finnegan, Patrick S.; Sinclair, Michael B.; Davids, Paul S.

    2015-01-01

    A complementary metal oxide semiconductor (CMOS) compatible version of membrane projection lithography (MPL) for fabrication of micrometer-scale three-dimensional structures is presented. The approach uses all inorganic materials and standard CMOS processing equipment. In a single layer, MPL is capable of creating all 5 2D-Bravais lattices. Furthermore, standard semiconductor processing steps can be used in a layer-by-layer approach to create fully three dimensional structures with any of the 14 3D-Bravais lattices. The unit cell basis is determined by the projection of the membrane pattern, with many degrees of freedom for defining functional inclusions. Here we demonstrate several unique structural motifs, and characterize 2D arrays of unit cells with split ring resonators in a silicon matrix. The structures exhibit strong polarization dependent resonances and, for properly oriented split ring resonators (SRRs), coupling to the magnetic field of a normally incident transverse electromagnetic wave, a response unique to 3D inclusions.

  9. Studies on metal-dielectric plasmonic structures.

    SciTech Connect (OSTI)

    Chettiar, Uday K.; Liu, Zhengtong; Thoreson, Mark D.; Shalaev, Vladimir M.; Drachev, Vladimir P.; Pack, Michael Vern; Kildishev, Alexander V.; Nyga, Piotr

    2010-01-01

    The interaction of light with nanostructured metal leads to a number of fascinating phenomena, including plasmon oscillations that can be harnessed for a variety of cutting-edge applications. Plasmon oscillation modes are the collective oscillation of free electrons in metals under incident light. Previously, surface plasmon modes have been used for communication, sensing, nonlinear optics and novel physics studies. In this report, we describe the scientific research completed on metal-dielectric plasmonic films accomplished during a multi-year Purdue Excellence in Science and Engineering Graduate Fellowship sponsored by Sandia National Laboratories. A variety of plasmonic structures, from random 2D metal-dielectric films to 3D composite metal-dielectric films, have been studied in this research for applications such as surface-enhanced Raman sensing, tunable superlenses with resolutions beyond the diffraction limit, enhanced molecular absorption, infrared obscurants, and other real-world applications.

  10. A U. S. Perspective on Fast Reactor Fuel Fabrication Technology and Experience Part I: Metal Fuels and Assembly Design

    SciTech Connect (OSTI)

    Douglas E. Burkes; Randall S. Fielding; Douglas L. Porter; Douglas C. Crawford; Mitchell K. Meyer

    2009-06-01

    This paper is Part I of a review focusing on the United States experience with metallic fast reactor fuel fabrication and assembly design for the Experimental Breeder Reactor-II and the Fast Flux Test Facility, and it also refers to the impact of development in other nations. Experience with metal fuel fabrication in the United States is extensive, including over 60 years of research conducted by the government, national laboratories, industry, and academia. This experience has culminated into a foundation of research and resulted in significant improvements to the technologies employed to fabricate metallic fast reactor fuel. This part of the review documents the current state of fuel fabrication technologies for metallic fuels, some of the challenges faced by previous researchers, and how these were overcome. Knowledge gained from reviewing previous investigations will aid both researchers and policy makers in forming future decisions relating to nuclear fuel fabrication technologies.

  11. t matrix of metallic wire structures

    SciTech Connect (OSTI)

    Zhan, T. R. Chui, S. T.

    2014-04-14

    To study the electromagnetic resonance and scattering properties of complex structures of which metallic wire structures are constituents within multiple scattering theory, the t matrix of individual structures is needed. We have recently developed a rigorous and numerically efficient equivalent circuit theory in which retardation effects are taken into account for metallic wire structures. Here, we show how the t matrix can be calculated analytically within this theory. We illustrate our method with the example of split ring resonators. The density of states and cross sections for scattering and absorption are calculated, which are shown to be remarkably enhanced at resonant frequencies. The t matrix serves as the basic building block to evaluate the interaction of wire structures within the framework of multiple scattering theory. This will open the door to efficient design and optimization of assembly of wire structures.

  12. Designing of Metallic Photonic Structures and Applications

    SciTech Connect (OSTI)

    Yong-Sung Kim

    2006-08-09

    In this thesis our main interest has been to investigate metallic photonic crystal and its applications. We explained how to solve a periodic photonic structure with transfer matrix method and when and how to use modal expansion method. Two different coating methods were introduced, modifying a photonic structure's intrinsic optical properties and rigorous calculation results are presented. Two applications of metallic photonic structures are introduced. For thermal emitter, we showed how to design and find optimal structure. For conversion efficiency increasing filter, we calculated its efficiency and the way to design it. We presented the relation between emitting light spectrum and absorption and showed the material and structural dependency of the absorption spectrum. By choosing a proper base material and structural parameters, we can design a selective emitter at a certain region we are interested in. We have developed a theoretical model to analyze a blackbody filament enclosed by a metallic mesh which can increase the efficiency of converting a blackbody radiation to visible light. With this model we found that a square lattice metallic mesh enclosing a filament might increase the efficiency of incandescent lighting sources. Filling fraction and thickness dependency were examined and presented. Combining these two parameters is essential to achieve the maximum output result.

  13. Novel electrochemical method of fast and reproducible fabrication of metallic nanoelectrodes

    SciTech Connect (OSTI)

    Silva, E. L. Silva, R. F.; Oliveira, F. J.; Zheludkevich, M.

    2014-09-15

    A novel electrochemical wire etching method of fabrication of ultrasharp nanoelectrodes is reported. Tungsten wires can be sharpened to less than 10 nm tip radius in a reproducible manner in less than 1 min by using controllable hydrodynamic electrolyte flow combined with optimized electrochemical etching parameters. The method relies on the variations of the electric field at the surface of a metal wire, while the electrolyte solution is in motion, rather than on the ionic gradient generated in a static solution.

  14. Process Of Bonding A Metal Brush Structure To A Planar Surface Of A Metal Substrate

    DOE Patents [OSTI]

    Slattery, Kevin T.; Driemeyer, Daniel E.; Wille; Gerald W.

    1999-11-02

    Process for bonding a metal brush structure to a planar surface of a metal substrate in which an array of metal rods are retained and immobilized at their tips by a common retention layer formed of metal, and the brush structure is then joined to a planar surface of a metal substrate via the retention layer.

  15. Synthesis, Structure, and Metalation of Two New Highly Porous...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Synthesis, Structure, and Metalation of Two New Highly Porous Zirconium Metal-Organic Frameworks Previous Next List William Morris, Boris Volosskiy, Selcuk Demir, Felipe Gndara,...

  16. Thin-Film Solar Cell Fabricated on a Flexible Metallic Substrate

    DOE Patents [OSTI]

    Tuttle, J. R.; Noufi, R.; Hasoon, F. S.

    2006-05-30

    A thin-film solar cell (10) is provided. The thin-film solar cell (10) comprises a flexible metallic substrate (12) having a first surface and a second surface. A back metal contact layer (16) is deposited on the first surface of the flexible metallic substrate (12). A semiconductor absorber layer (14) is deposited on the back metal contact. A photoactive film deposited on the semiconductor absorber layer (14) forms a heterojunction structure and a grid contact (24) deposited on the heterjunction structure. The flexible metal substrate (12) can be constructed of either aluminium or stainless steel. Furthermore, a method of constructing a solar cell is provided. The method comprises providing an aluminum substrate (12), depositing a semiconductor absorber layer (14) on the aluminum substrate (12), and insulating the aluminum substrate (12) from the semiconductor absorber layer (14) to inhibit reaction between the aluminum substrate (12) and the semiconductor absorber layer (14).

  17. Thin-film solar cell fabricated on a flexible metallic substrate

    DOE Patents [OSTI]

    Tuttle, John R.; Noufi, Rommel; Hasoon, Falah S.

    2006-05-30

    A thin-film solar cell (10) is provided. The thin-film solar cell (10) comprises a flexible metallic substrate (12) having a first surface and a second surface. A back metal contact layer (16) is deposited on the first surface of the flexible metallic substrate (12). A semiconductor absorber layer (14) is deposited on the back metal contact. A photoactive film deposited on the semiconductor absorber layer (14) forms a heterojunction structure and a grid contact (24) deposited on the heterjunction structure. The flexible metal substrate (12) can be constructed of either aluminium or stainless steel. Furthermore, a method of constructing a solar cell is provided. The method comprises providing an aluminum substrate (12), depositing a semiconductor absorber layer (14) on the aluminum substrate (12), and insulating the aluminum substrate (12) from the semiconductor absorber layer (14) to inhibit reaction between the aluminum substrate (12) and the semiconductor absorber layer (14).

  18. Fabrication and characterization of organic solar cells using metal complex of phthalocyanines

    SciTech Connect (OSTI)

    Kida, Tomoyasu Suzuki, Atsushi Akiyama, Tsuyoshi Oku, Takeo

    2015-02-27

    Fabrication and characterization of organic solar cells using shuttle-cock-type phthalocyanines were carried out. Photovoltaic properties of the solar cells with inverted structures were investigated by current density-voltage characteristics. Effects of phase transition between H and J aggregates on the photovoltaic and optical properties were investigated. The photovoltaic mechanisms, energy levels and band gap of active layers were discussed.

  19. Waste minimization assessment for a manufacturer of iron castings and fabricated sheet metal parts

    SciTech Connect (OSTI)

    Fleischman, M.; Harris, J.J.; Handmaker, A.; Looby, G.P.

    1995-08-01

    The U.S. Environmental Protection Agency (EPA) has funded a pilot project to assist small and medium-size manufacturers who want to minimize their generation of waste but who lack the expertise to do so. Waste Minimization Assessment Centers (WMACs) were established at selected universities and procedures were adapted from the EPA Waste Minimization Opportunity Assessment Manual. That document has been superseded by the Facility Pollution Prevention Guide. The WMAC team at the University of Louisville performed an assessment at a plant that manufactures iron castings and fabricated sheet metal parts. Foundry operations include mixing and mold formation, core making, metal pouring, shakeout, finishing, and painting. Cutting, shaping, and welding are the principal metal fabrication operations. The team`s report, detailing findings and recommendations indicated that paint-related wastes are generated in large quantities, and that significant waste reduction and cost savings could be realized by installing a dry powder coating system or by replacing conventional air spray paint guns with high-volume low-pressure spray guns. This research brief was developed by the principal investigators and EPA`s National Risk Management Research Laboratory, Cincinnati, OH, to announce key findings of an ongoing research project that is fully documented in a separate report of the same title available from University City Science Center.

  20. Metal-induced charge transfer, structural distortion, and orbital...

    Office of Scientific and Technical Information (OSTI)

    Metal-induced charge transfer, structural distortion, and orbital order in SrTiO3 thin films Prev Next Title: Metal-induced charge transfer, structural distortion, and ...

  1. Structure and Function of Microbial Metal-Reduction Proteins (Other) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Other: Structure and Function of Microbial Metal-Reduction Proteins Citation Details In-Document Search Title: Structure and Function of Microbial Metal-Reduction Proteins In this project, we proposed (i) identification of metal-reduction genes, (ii) development of new threading techniques and (iii) fold recognition and structure prediction of metal-reduction proteins. However, due to the reduction of the budget, we revised our plan to focus on two specific aims of (i)

  2. Micrometer-scale fabrication of complex three dimensional lattice + basis structures in silicon

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Burckel, D. Bruce; Resnick, Paul J.; Finnegan, Patrick S.; Sinclair, Michael B.; Davids, Paul S.

    2015-01-01

    A complementary metal oxide semiconductor (CMOS) compatible version of membrane projection lithography (MPL) for fabrication of micrometer-scale three-dimensional structures is presented. The approach uses all inorganic materials and standard CMOS processing equipment. In a single layer, MPL is capable of creating all 5 2D-Bravais lattices. Furthermore, standard semiconductor processing steps can be used in a layer-by-layer approach to create fully three dimensional structures with any of the 14 3D-Bravais lattices. The unit cell basis is determined by the projection of the membrane pattern, with many degrees of freedom for defining functional inclusions. Here we demonstrate several unique structural motifs, andmorecharacterize 2D arrays of unit cells with split ring resonators in a silicon matrix. The structures exhibit strong polarization dependent resonances and, for properly oriented split ring resonators (SRRs), coupling to the magnetic field of a normally incident transverse electromagnetic wave, a response unique to 3D inclusions.less

  3. A method for making dendritic metal nanostructures using a surfactant structure template, a metal salt, and electron donor species.

    DOE Patents [OSTI]

    Shelnutt, John A.; Song, Yujiang; Pereira, Eulalia F.; Medforth, Craig J.

    2008-05-20

    A method for making dendritic metal nanostructures using a surfactant structure template, a metal salt, and electron donor species.

  4. Structural Flexibility and Alloying in Ultrathin Transition-Metal Chalcogenide Nanowires

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lin, Junhao; Zhang, Yuyang; Zhou, Wu; Pantelides, Sokrates T.

    2016-01-18

    Metallic transition-metal chalcogenide (TMC) nanowires are an important building block for 2D electronics that may be fabricated within semiconducting transition-metal dichalcogenide (TMDC) monolayers. Tuning the geometric structure and electronic properties of such nanowires is a promising way to pattern diverse functional channels for wiring multiple units inside a 2D electronic circuit. Nevertheless, few experimental investigations have been reported exploring the structural and compositional tunability of these nanowires, due to difficulties in manipulating the structure and chemical composition of an individual nanowire. Here, using a combination of scanning transmission electron microscopy (STEM) and density functional theory (DFT), we report that TMCmore » nanowires have substantial intrinsic structural flexibility and their chemical composition can be manipulated.« less

  5. Fabrication of metal matrix composite by semi-solid powder processing

    SciTech Connect (OSTI)

    Wu, Yufeng

    2012-11-28

    Various metal matrix composites (MMCs) are widely used in the automotive, aerospace and electrical industries due to their capability and flexibility in improving the mechanical, thermal and electrical properties of a component. However, current manufacturing technologies may suffer from insufficient process stability and reliability and inadequate economic efficiency and may not be able to satisfy the increasing demands placed on MMCs. Semi-solid powder processing (SPP), a technology that combines traditional powder metallurgy and semi-solid forming methods, has potential to produce MMCs with low cost and high efficiency. In this work, the analytical study and experimental investigation of SPP on the fabrication of MMCs were explored. An analytical model was developed to understand the deformation mechanism of the powder compact in the semi-solid state. The densification behavior of the Al6061 and SiC powder mixtures was investigated with different liquid fractions and SiC volume fractions. The limits of SPP were analyzed in terms of reinforcement phase loading and its impact on the composite microstructure. To explore adoption of new materials, carbon nanotube (CNT) was investigated as a reinforcing material in aluminum matrix using SPP. The process was successfully modeled for the mono-phase powder (Al6061) compaction and the density and density distribution were predicted. The deformation mechanism at low and high liquid fractions was discussed. In addition, the compaction behavior of the ceramic-metal powder mixture was understood, and the SiC loading limit was identified by parametric study. For the fabrication of CNT reinforced Al6061 composite, the mechanical alloying of Al6061-CNT powders was first investigated. A mathematical model was developed to predict the CNT length change during the mechanical alloying process. The effects of mechanical alloying time and processing temperature during SPP were studied on the mechanical, microstructural and

  6. Structure-Assisted Functional Anchor Implantation in Robust Metal...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Structure-Assisted Functional Anchor Implantation in Robust Metal-Organic Frameworks with ... functionality was performed to the functionalized framework via a click reaction. ...

  7. Structural and property studies on metal-organic compounds with...

    Office of Scientific and Technical Information (OSTI)

    with 3-D supramolecular network Citation Details In-Document Search Title: Structural and property studies on metal-organic compounds with 3-D supramolecular network Two ...

  8. Recycling Of Uranium- And Plutonium-Contaminated Metals From Decommissioning Of The Hanau Fuel Fabrication Plant

    SciTech Connect (OSTI)

    Kluth, T.; Quade, U.; Lederbrink, F. W.

    2003-02-26

    Decommissioning of a nuclear facility comprises not only actual dismantling but also, above all, management of the resulting residual materials and waste. Siemens Decommissioning Projects (DP) in Hanau has been involved in this task since 1995 when the decision was taken to decommission and dismantle the Hanau Fuel Fabrication Plant. Due to the decommissioning, large amounts of contaminated steel scrap have to be managed. The contamination of this metal scrap can be found almost exclusively in the form of surface contamination. Various decontamination technologies are involved, as there are blasting and wiping. Often these methods are not sufficient to meet the free release limits. In these cases, SIEMENS has decided to melt the scrap at Siempelkamp's melting plant. The plant is licensed according to the German Radiation Protection Ordinance Section 7 (issue of 20.07.2001). The furnace is a medium frequency induction type with a load capacity of 3.2 t and a throughput of 2 t/h for steel melting. For safety reasons, the furnace is widely operated by remote handling. A highly efficient filter system of cyclone, bag filter and HEPA-filter in two lines retains the dust and aerosol activity from the off-gas system. The slag is solidified at the surface of the melt and gripped before pouring the liquid iron into a chill. Since 1989, in total 15,000 t have been molten in the plant, 2,000 t of them having been contaminated steel scrap from the decommissioning of fuel fabrication plants. Decontamination factors could be achieved between 80 and 100 by the high affinity of the uranium to the slag former. The activity is transferred to the slag up to nearly 100 %. Samples taken from metal, slag and dust are analyzed by gamma measurements of the 186 keV line of U235 and the 1001 keV line of Pa234m for U238. All produced ingots showed a remaining activity less than 1 Bq/g and could be released for industrial reuse.

  9. Structures and fabrication techniques for solid state electrochemical devices

    DOE Patents [OSTI]

    Visco, Steven J.; Jacobson, Craig P.; DeJonghe, Lutgard C.

    2008-04-01

    Porous substrates and associated structures for solid-state electrochemical devices, such as solid-oxide fuel cells (SOFCs), are low-cost, mechanically strong and highly electronically conductive. Some preferred structures have a thin layer of an electrocatalytically active material (e.g., Ni--YSZ) coating a porous high-strength alloy support (e.g., SS-430) to form a porous SOFC fuel electrode. Electrode/electrolyte structures can be formed by co-firing or constrained sintering processes.

  10. Structures and fabrication techniques for solid state electrochemical devices

    DOE Patents [OSTI]

    Visco, Steven J.; Jacobson, Craig P.; DeJonghe, Lutgard C.

    2012-10-09

    Porous substrates and associated structures for solid-state electrochemical devices, such as solid-oxide fuel cells (SOFCs), are low-cost, mechanically strong and highly electronically conductive. Some preferred structures have a thin layer of an electrocatalytically active material (e.g., Ni--YSZ) coating a porous high-strength alloy support (e.g., SS-430) to form a porous SOFC fuel electrode. Electrode/electrolyte structures can be formed by co-firing or constrained sintering processes.

  11. Metal finishing and vacuum processes groups, Materials Fabrication Division progress report, March-May 1984

    SciTech Connect (OSTI)

    Dini, J.W.; Romo, J.G.; Jones, L.M.

    1984-07-11

    Progress is reported in fabrication and coating activities being conducted for the weapons program, nuclear test program, nuclear design program, magnetic fusion program, and miscellaneous applications. (DLC)

  12. Fabrication of small-scale structures with non-planar features

    SciTech Connect (OSTI)

    Burckel, David B.; Ten Eyck, Gregory A.

    2015-11-19

    The fabrication of small-scale structures is disclosed. A unit-cell of a small-scale structure with non-planar features is fabricated by forming a membrane on a suitable material. A pattern is formed in the membrane and a portion of the substrate underneath the membrane is removed to form a cavity. Resonators are then directionally deposited on the wall or sides of the cavity. The cavity may be rotated during deposition to form closed-loop resonators. The resonators may be non-planar. The unit-cells can be formed in a layer that includes an array of unit-cells.

  13. Thin films of metal oxides on metal single crystals: Structure and growth by scanning tunneling microscopy

    SciTech Connect (OSTI)

    Galloway, H.C.

    1995-12-01

    Detailed studies of the growth and structure of thin films of metal oxides grown on metal single crystal surfaces using Scanning Tunneling Microscopy (STM) are presented. The oxide overlayer systems studied are iron oxide and titanium oxide on the Pt(III) surface. The complexity of the metal oxides and large lattice mismatches often lead to surface structures with large unit cells. These are particularly suited to a local real space technique such as scanning tunneling microscopy. In particular, the symmetry that is directly observed with the STM elucidates the relationship of the oxide overlayers to the substrate as well as distinguishing, the structures of different oxides.

  14. Evaluation of metallized paint coatings for composite spacecraft structures

    SciTech Connect (OSTI)

    Brzuskiewicz, J.E. )

    1990-04-01

    Thermal control coatings are needed to minimize temperature excursions of composite spacecraft structures in low earth orbit. Coatings prepared with combinations of metal flake and metal oxide pigments were prepared to obtain a range of solar absorptance and emittance properties. These coatings were subjected to screening tests to characterize their ultraviolet stability, atomic oxygen resistance and outgassing properties.

  15. Probing the surface structure of divalent transition metals using...

    Office of Scientific and Technical Information (OSTI)

    Title: Probing the surface structure of divalent transition metals using surface specific solid-state NMR spectroscopy Authors: Mason, H E ; Harley, S J ; Maxwell, R S ; Carroll, S ...

  16. Structure and Function of Microbial Metal-Reduction Proteins

    Office of Scientific and Technical Information (OSTI)

    "Structure and Function of Microbial Metal-Reduction Proteins" PI: Ying Xu Co-PI: Oakley H. Crawford Dong Xu Frank W Larimer Edward C. Uberbacher Jizhong Zhou Descriptionabstract: ...

  17. Fabrication of moth-eye structures on silicon by direct six-beam laser interference lithography

    SciTech Connect (OSTI)

    Xu, Jia; Zhang, Ziang; Weng, Zhankun; Wang, Zuobin Wang, Dapeng

    2014-05-28

    This paper presents a new method for the generation of cross-scale laser interference patterns and the fabrication of moth-eye structures on silicon. In the method, moth-eye structures were produced on a surface of silicon wafer using direct six-beam laser interference lithography to improve the antireflection performance of the material surface. The periodic dot arrays of the moth-eye structures were formed due to the ablation of the irradiance distribution of interference patterns on the wafer surface. The shape, size, and distribution of the moth-eye structures can be adjusted by controlling the wavelength, incidence angles, and exposure doses in a direct six-beam laser interference lithography setup. The theoretical and experimental results have shown that direct six-beam laser interference lithography can provide a way to fabricate cross-scale moth-eye structures for antireflection applications.

  18. Process for fabricating device structures for real-time process control of silicon doping

    DOE Patents [OSTI]

    Weiner, Kurt H.

    2001-01-01

    Silicon device structures designed to allow measurement of important doping process parameters immediately after the doping step has occurred. The test structures are processed through contact formation using standard semiconductor fabrication techniques. After the contacts have been formed, the structures are covered by an oxide layer and an aluminum layer. The aluminum layer is then patterned to expose the contact pads and selected regions of the silicon to be doped. Doping is then performed, and the whole structure is annealed with a pulsed excimer laser. But laser annealing, unlike standard annealing techniques, does not effect the aluminum contacts because the laser light is reflected by the aluminum. Once the annealing process is complete, the structures can be probed, using standard techniques, to ascertain data about the doping step. Analysis of the data can be used to determine probable yield reductions due to improper execution of the doping step and thus provide real-time feedback during integrated circuit fabrication.

  19. High Aspect Ratio Metallic Structures for Use as Transparent Electrodes -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Innovation Portal Photovoltaic Solar Photovoltaic Advanced Materials Advanced Materials Find More Like This Return to Search High Aspect Ratio Metallic Structures for Use as Transparent Electrodes Ames Laboratory Contact AMES About This Technology Technology Marketing SummaryMetallic structures that can be used as transparent electrodes or to enhance the performance of solar cells or LEDs.DescriptionEfforts to develop new energy sources and more energy efficient devices has lead to

  20. Use of chemical-mechanical polishing for fabricating photonic bandgap structures

    DOE Patents [OSTI]

    Fleming, James G.; Lin, Shawn-Yu; Hetherington, Dale L.; Smith, Bradley K.

    1999-01-01

    A method is disclosed for fabricating a two- or three-dimensional photonic bandgap structure (also termed a photonic crystal, photonic lattice, or photonic dielectric structure). The method uses microelectronic integrated circuit (IC) processes to fabricate the photonic bandgap structure directly upon a silicon substrate. One or more layers of arrayed elements used to form the structure are deposited and patterned, with chemical-mechanical polishing being used to planarize each layer for uniformity and a precise vertical tolerancing of the layer. The use of chemical-mechanical planarization allows the photonic bandgap structure to be formed over a large area with a layer uniformity of about two-percent. Air-gap photonic bandgap structures can also be formed by removing a spacer material separating the arrayed elements by selective etching. The method is useful for fabricating photonic bandgap structures including Fabry-Perot resonators and optical filters for use at wavelengths in the range of about 0.2-20 .mu.m.

  1. Improved Structure and Fabrication of Large, High-Power KHPS Rotors - Final Scientific/Technical Report

    SciTech Connect (OSTI)

    Corren, Dean; Colby, Jonathan; Adonizio, Mary Ann

    2013-01-29

    Verdant Power, Inc, working in partnership with the National Renewable Energy Laboratory (NREL), Sandia National Laboratories (SNL), and the University of Minnesota St. Anthony Falls Laboratory (SAFL), among other partners, used evolving Computational Fluid Dynamics (CFD) and Finite Element Analysis (FEA) models and techniques to improve the structure and fabrication of large, high-power composite Kinetic Hydropower System (KHPS) rotor blades. The objectives of the project were to: design; analyze; develop for manufacture and fabricate; and thoroughly test, in the lab and at full scale in the water, the improved KHPS rotor blade.

  2. Oxidized film structure and method of making epitaxial metal oxide structure

    DOE Patents [OSTI]

    Gan, Shupan [Richland, WA; Liang, Yong [Richland, WA

    2003-02-25

    A stable oxidized structure and an improved method of making such a structure, including an improved method of making an interfacial template for growing a crystalline metal oxide structure, are disclosed. The improved method comprises the steps of providing a substrate with a clean surface and depositing a metal on the surface at a high temperature under a vacuum to form a metal-substrate compound layer on the surface with a thickness of less than one monolayer. The compound layer is then oxidized by exposing the compound layer to essentially oxygen at a low partial pressure and low temperature. The method may further comprise the step of annealing the surface while under a vacuum to further stabilize the oxidized film structure. A crystalline metal oxide structure may be subsequently epitaxially grown by using the oxidized film structure as an interfacial template and depositing on the interfacial template at least one layer of a crystalline metal oxide.

  3. Method and apparatus for diamond wire cutting of metal structures

    DOE Patents [OSTI]

    Parsells, Robert; Gettelfinger, Geoff; Perry, Erik; Rule, Keith

    2005-04-19

    A method and apparatus for diamond wire cutting of metal structures, such as nuclear reactor vessels, is provided. A diamond wire saw having a plurality of diamond beads with beveled or chamfered edges is provided for sawing into the walls of the metal structure. The diamond wire is guided by a plurality of support structures allowing for a multitude of different cuts. The diamond wire is cleaned and cooled by CO.sub.2 during the cutting process to prevent breakage of the wire and provide efficient cutting. Concrete can be provided within the metal structure to enhance cutting efficiency and reduce airborne contaminants. The invention can be remotely controlled to reduce exposure of workers to radioactivity and other hazards.

  4. All metal valve structure for gas systems

    DOE Patents [OSTI]

    Baker, Ray W.; Pawlak, Donald A.; Ramey, Alford J.

    1984-11-13

    A valve assembly with a resilient metal seat member is disclosed for providing a gas-tight seal in a gas handling system. The valve assembly also includes a valve element for sealing against the valve seat member; and an actuating means for operating the valve element. The valve seat member is a one-piece stainless steel ring having a central valve port and peripheral mounting flange, and an annular corrugation in between. A groove between the first and second ridges serves as a flexure zone during operation of the valve member and thus provides the seating pressure between the inner ridge or valve seat and the valve element. The outer annular ridge has a diameter less than said valve element to limit the seating motion of the valve element, preventing non-elastic deformation of the seat member.

  5. Ternary metal-rich sulfide with a layered structure

    DOE Patents [OSTI]

    Franzen, Hugo F.; Yao, Xiaoqiang

    1993-08-17

    A ternary Nb-Ta-S compound is provided having the atomic formula, Nb.sub.1.72 Ta.sub.3.28 S.sub.2, and exhibiting a layered structure in the sequence S-M3-M2-M1-M2-M3-S wherein S represents sulfur layers and M1, M2, and M3 represent Nb/Ta mixed metal layers. This sequence generates seven sheets stacked along the [001] direction of an approximate body centered cubic crystal structure with relatively weak sulfur-to-sulfur van der Waals type interactions between adjacent sulfur sheets and metal-to-metal bonding within and between adjacent mixed metal sheets.

  6. Inherent structure length in metallic glasses: Simplicity behind complexity

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wu, Yuan; Wang, Hui; Cheng, Yongqiang; Liu, Xiongjun; Hui, Xidong; Nieh, Taigang; Wang, Yandong; Lu, Zhaoping

    2015-08-06

    One of the central themes in materials science is the structure-property relationship. In conventional crystalline metals, their mechanical behaviour is often dictated by well-defined structural defects such as dislocations, impurities, and twins. However, the structure-property relationship in amorphous alloys is far from being understood, due to great difficulties in characterizing and describing the disordered atomic-level structure. Here, we report a universal, yet simple, correlation between the macroscopic mechanical properties (i.e., yield strength and shear modulus) and a unique characteristic structural length in metallic glasses (MGs). Lastly, our analysis indicates that this characteristic length can incorporate effects of both the inter-atomicmore » distance and valence electron density in MGs, and result in the observed universal correlation. The current findings shed lights on the basic understanding of mechanical properties of MGs from their disordered atomic structures.« less

  7. Inherent structure length in metallic glasses: Simplicity behind complexity

    SciTech Connect (OSTI)

    Wu, Yuan; Wang, Hui; Cheng, Yongqiang; Liu, Xiongjun; Hui, Xidong; Nieh, Taigang; Wang, Yandong; Lu, Zhaoping

    2015-08-06

    One of the central themes in materials science is the structure-property relationship. In conventional crystalline metals, their mechanical behaviour is often dictated by well-defined structural defects such as dislocations, impurities, and twins. However, the structure-property relationship in amorphous alloys is far from being understood, due to great difficulties in characterizing and describing the disordered atomic-level structure. Here, we report a universal, yet simple, correlation between the macroscopic mechanical properties (i.e., yield strength and shear modulus) and a unique characteristic structural length in metallic glasses (MGs). Lastly, our analysis indicates that this characteristic length can incorporate effects of both the inter-atomic distance and valence electron density in MGs, and result in the observed universal correlation. The current findings shed lights on the basic understanding of mechanical properties of MGs from their disordered atomic structures.

  8. Design and fabrication of a traveling-wave muffin-tin accelerating structure at 90 GHz

    SciTech Connect (OSTI)

    Chou, P.J.; Bowden, G.B.; Copeland, M.R.; Menegat, A.; Siemann, R.H.; Henke, H.

    1997-05-01

    A prototype of a muffin-tin accelerating structure operating at 32 times the SLAC frequency (2.856 GHz) was built for research in high gradient acceleration. A traveling-wave design with single input and output feeds was chosen for the prototype which was fabricated by wire electrodischarge machining. Features of the mechanical design for the prototype are described. Design improvements are presented including considerations of cooling and vacuum.

  9. Atomic and electronic structure of Ni-Nb metallic glasses

    SciTech Connect (OSTI)

    Yuan, C. C.; Yang, Y.-F. Xi, X. K.

    2013-12-07

    Solid state {sup 93}Nb nuclear magnetic resonance spectroscopy has been employed to investigate the atomic and electronic structures in Ni-Nb based metallic glass (MG) model system. {sup 93}Nb nuclear magnetic resonance (NMR) isotropic metallic shift of Ni{sub 60}Nb{sub 35}Sn{sub 5} has been found to be ∼100 ppm lower than that of Ni{sub 60}Nb{sub 35}Zr{sub 5} MG, which is correlated with their intrinsic fracture toughness. The evolution of {sup 93}Nb NMR isotropic metallic shifts upon alloying is clearly an electronic origin, as revealed by both local hyperfine fields analysis and first-principle computations. This preliminary result indicates that, in addition to geometrical considerations, atomic form factors should be taken into a description of atomic structures for better understanding the mechanical behaviors of MGs.

  10. Method of using sacrificial materials for fabricating internal cavities in laminated dielectric structures

    DOE Patents [OSTI]

    Peterson, Kenneth A.

    2009-02-24

    A method of using sacrificial materials for fabricating internal cavities and channels in laminated dielectric structures, which can be used as dielectric substrates and package mounts for microelectronic and microfluidic devices. A sacrificial mandrel is placed in-between two or more sheets of a deformable dielectric material (e.g., unfired LTCC glass/ceramic dielectric), wherein the sacrificial mandrel is not inserted into a cutout made in any of the sheets. The stack of sheets is laminated together, which deforms the sheet or sheets around the sacrificial mandrel. After lamination, the mandrel is removed, (e.g., during LTCC burnout), thereby creating a hollow internal cavity in the monolithic ceramic structure.

  11. Physical understanding of electron mobility in asymmetrically strained InGaAs-on-insulator metal-oxide-semiconductor field-effect transistors fabricated by lateral strain relaxation

    SciTech Connect (OSTI)

    Kim, SangHyeon E-mail: sh-kim@kist.re.kr; Yokoyama, Masafumi; Ikku, Yuki; Nakane, Ryosho; Takenaka, Mitsuru; Takagi, Shinichi; Ichikawa, Osamu; Osada, Takenori; Hata, Masahiko

    2014-03-17

    In this paper, we fabricated asymmetrically tensile-strained In{sub 0.53}Ga{sub 0.47}As-on-insulator (-OI) metal-oxide-semiconductor field-effect transistors (MOSFETs) using a lateral strain relaxation technique. A stripe-like line structure, fabricated in biaxially strained In{sub 0.53}Ga{sub 0.47}As-OI can lead to the lateral strain relaxation and asymmetric strain configuration in In{sub 0.53}Ga{sub 0.47}As-OI with the channel width of 100 nm. We have found that the effective mobility (μ{sub eff}) enhancement in In{sub 0.53}Ga{sub 0.47}As-OI MOSFETs with uniaxial-like asymmetric strain becomes smaller than that in In{sub 0.53}Ga{sub 0.47}As-OI MOSFETs with biaxial strain. We have clarified from a systematic analysis between the strain values and the μ{sub eff} characteristics that this mobility behavior can be understood by the change of the energy level of the conduction band minimum due to the lateral strain relaxation.

  12. Fabrication of carbon nanotube films from alkyne-transition metal complexes

    DOE Patents [OSTI]

    Iyer, Vivekanantan S. (Delft, NL); Vollhardt, K. Peter C. (Oakland, CA)

    2007-08-28

    A simple method for the production or synthesis of carbon nanotubes as free-standing films or nanotube mats by the thermal decomposition of transition metal complexed alkynes with aryl, alkyl, alkenyl, or alkynyl substituents. In particular, transition metal (e.g. Co, Ni, Fe, Mo) complexes of diarylacetylenes, e.g. diphenylacetylene, and solid mixtures of these complexes with suitable, additional carbon sources are heated in a vessel. More specifically, the heating of the transition metal complex is completed at a temperature between 400-800.degree. C. and more particularly 550-700.degree. C. for between 0.1 to 24 hours and more particularly 0.5-3 hours in a sealed vessel under a partial pressure of argon or helium.

  13. Structure of overheated metal clusters: MD simulation study

    SciTech Connect (OSTI)

    Vorontsov, Alexander

    2015-08-17

    The structure of overheated metal clusters appeared in condensation process was studied by computer simulation techniques. It was found that clusters with size larger than several tens of atoms have three layers: core part, intermediate dense packing layer and a gas- like shell with low density. The change of the size and structure of these layers with the variation of internal energy and the size of cluster is discussed.

  14. Method of manufacturing flexible metallic photonic band gap structures, and structures resulting therefrom

    DOE Patents [OSTI]

    Gupta, Sandhya; Tuttle, Gary L.; Sigalas, Mihail; McCalmont, Jonathan S.; Ho, Kai-Ming

    2001-08-14

    A method of manufacturing a flexible metallic photonic band gap structure operable in the infrared region, comprises the steps of spinning on a first layer of dielectric on a GaAs substrate, imidizing this first layer of dielectric, forming a first metal pattern on this first layer of dielectric, spinning on and imidizing a second layer of dielectric, and then removing the GaAs substrate. This method results in a flexible metallic photonic band gap structure operable with various filter characteristics in the infrared region. This method may be used to construct multi-layer flexible metallic photonic band gap structures. Metal grid defects and dielectric separation layer thicknesses are adjusted to control filter parameters.

  15. Fabrication of Transparent Capacitive Structure by Self-Assembled Thin Films

    SciTech Connect (OSTI)

    Zhang, Q.; Shing, Y. J.; Hua, Feng; Saraf, Laxmikant V.; Matson, Dean W.

    2008-06-01

    An approach to fabricating transparent electronic devices by using nanomaterial and nanofabrication is presented in this paper. A see-through capacitor is constructed from selfassembled silica nanoparticle layers that are stacked on the transparent substrate. The electrodes are made of indium tin oxide. Unlike the traditional processes used to fabricate such devices, the self-assembly approach enables one to synthesize the thin film layers at lower temperature and cost, and with a broader availability of nanomaterials. The vertical dimension of the selfassembled thin films can be precisely controlled, as well as the molecular order in the thin film layers. The shape of the capacitor is generated by planar micropatterning. The quartz crystal demonstrates the steady growth of the silica nanoparticle multilayer. In addition, because the nanomaterial synthesis and the device fabrication steps are separate, the device is not affected by the harsh conditions required for the material synthesis. A clear pattern is allowed over a large area on the substrate. The prepared capacitive structure has an optical transparency higher than 92% over the visible spectrum. The capacitive impedance is measured at different frequencies and fit the theoretical results. As one of the fundamental components, this type of capacitive structure can serve in the transparent circuits, interactive media and sensors, as well as being applicable to other transparent devices.

  16. Fabrication method for cores of structural sandwich materials including star shaped core cells

    DOE Patents [OSTI]

    Christensen, R.M.

    1997-07-15

    A method for fabricating structural sandwich materials having a core pattern which utilizes star and non-star shaped cells is disclosed. The sheets of material are bonded together or a single folded sheet is used, and bonded or welded at specific locations, into a flat configuration, and are then mechanically pulled or expanded normal to the plane of the sheets which expand to form the cells. This method can be utilized to fabricate other geometric cell arrangements than the star/non-star shaped cells. Four sheets of material (either a pair of bonded sheets or a single folded sheet) are bonded so as to define an area therebetween, which forms the star shaped cell when expanded. 3 figs.

  17. Fabrication method for cores of structural sandwich materials including star shaped core cells

    DOE Patents [OSTI]

    Christensen, Richard M.

    1997-01-01

    A method for fabricating structural sandwich materials having a core pattern which utilizes star and non-star shaped cells. The sheets of material are bonded together or a single folded sheet is used, and bonded or welded at specific locations, into a flat configuration, and are then mechanically pulled or expanded normal to the plane of the sheets which expand to form the cells. This method can be utilized to fabricate other geometric cell arrangements than the star/non-star shaped cells. Four sheets of material (either a pair of bonded sheets or a single folded sheet) are bonded so as to define an area therebetween, which forms the star shaped cell when expanded.

  18. Method for fabricating a seal between a ceramic and a metal alloy

    DOE Patents [OSTI]

    Kelsey, P.V. Jr.; Siegel, W.T.

    1983-08-16

    A method of fabricating a seal between a ceramic and an alloy comprising the steps of prefiring the alloy in an atmosphere with a very low partial pressure of oxygen, firing the assembled alloy and ceramic in air, and gradually cooling the fired assembly to avoid the formation of thermal stress in the ceramic. The method forms a bond between the alloy and the ceramic capable of withstanding the environment of a pressurized water reactor and suitable for use in an electrical conductivity sensitive liquid level transducer.

  19. Method for fabricating a seal between a ceramic and a metal alloy

    DOE Patents [OSTI]

    Kelsey, Jr., Paul V.; Siegel, William T.

    1983-01-01

    A method of fabricating a seal between a ceramic and an alloy comprising the steps of prefiring the alloy in an atmosphere with a very low partial pressure of oxygen, firing the assembled alloy and ceramic in air, and gradually cooling the fired assembly to avoid the formation of thermal stress in the ceramic. The method forms a bond between the alloy and the ceramic capable of withstanding the environment of a pressurized water reactor and suitable for use in an electrical conductivity sensitive liquid level transducer.

  20. A novel fabrication technique for thin metallic vacuum chambers with low eddy current losses

    SciTech Connect (OSTI)

    Kouptsidis, J.; Banthau, R.; Hartwig, H.

    1985-10-01

    Eddy current problems in synchrotrons have been avoided until now by using costly and thick ceramic vacuum chambers which reduce the free magnet aperture. These disadvantages are eliminated by a novel fabrication technique developed for the chambers of the new 9 GeV electron synchrotron DESY II operating with 12.5 Hz repetion rate. The elliptical chambers 80x40 mm are made from .3 mm thick stainless steel tubes reinforced by thin ribs. The ribs are brazed on the tubes by a high temperature Ni-base brazing alloy. The linear eddy current losses are 60 W/m and increase the chamber temperature to only 50/sup 0/C. The available beam aperture is now 93% of the magnet gap. A still higher repetion rate up to 100 Hz can be achieved by reducing the wall thickness to .1 mm and using tubes made from a Ti-alloy having higher resistivity than stainless steel.

  1. Control of cerium oxidation state through metal complex secondary structures

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Levin, Jessica R.; Dorfner, Walter L.; Carroll, Patrick J.; Schelter, Eric J.

    2015-08-11

    A series of alkali metal cerium diphenylhydrazido complexes, Mx(py)y[Ce(PhNNPh)4], M = Li, Na, and K, x = 4 (Li and Na) or 5 (K), and y = 4 (Li), 8 (Na), or 7 (K), were synthesized to probe how a secondary coordination sphere would modulate electronic structures at a cerium cation. The resulting electronic structures of the heterobimetallic cerium diphenylhydrazido complexes were found to be strongly dependent on the identity of the alkali metal cations. When M = Li+ or Na+, the cerium(III) starting material was oxidized with concomitant reduction of 1,2-diphenylhydrazine to aniline. Reduction of 1,2-diphenylhydrazine was not observedmore » when M = K+, and the complex remained in the cerium(III) oxidation state. Oxidation of the cerium(III) diphenylhydrazido complex to the Ce(IV) diphenylhydrazido one was achieved through a simple cation exchange reaction of the alkali metals. As a result, UV-Vis spectroscopy, FTIR spectroscopy, electrochemistry, magnetic susceptibility, and DFT studies were used to probe the oxidation state and the electronic changes that occurred at the metal centre.« less

  2. In situ structural characterization of metal catalysts and materials using

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    XAFS spectroscopy in combination with complementary techniques. | Stanford Synchrotron Radiation Lightsource In situ structural characterization of metal catalysts and materials using XAFS spectroscopy in combination with complementary techniques. Wednesday, October 17, 2012 - 1:00pm SSRL Bldg. 137, Room 322 The availability of third generation light sources has greatly enhanced the opportunities for invesigating chemical change in real time.1 This presentation describes studies carried out

  3. High Aspect Ratio Metallic Structures for Use as Transparent Electrodes -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Innovation Portal Solar Photovoltaic Solar Photovoltaic Find More Like This Return to Search High Aspect Ratio Metallic Structures for Use as Transparent Electrodes Ames Laboratory Contact AMES About This Technology Technology Marketing Summary Polymer-based photovoltaic devices have received intense interest in recent years because of their potential to provide low-cost solar energy conversion, flexibility, manufacturability, and light weight. However, the efficiency of organic solar

  4. Method of fabricating metal- and ceramic- matrix composites and functionalized textiles

    DOE Patents [OSTI]

    Maxwell, James L.; Chavez, Craig A.; Black, Marcie R.

    2012-04-17

    A method of manufacturing an article comprises providing a first sheet, wetting the first sheet with a liquid precursor to provide a first wet sheet, and irradiating the first wet sheet in a pattern corresponding to a first cross section of the article such that the liquid precursor is at least partially converted to a solid in the first cross section. A second sheet is disposed adjacent to the first sheet. The method further comprises wetting the second sheet with the liquid precursor to provide a second wet sheet, and irradiating the second wet sheet in a pattern corresponding to a second cross section of the article such that the liquid precursor is at least partially converted to a solid in the second cross section. In particular the liquid precursor may be converted to a metal, ceramic, semiconductor, semimetal, or a combination of these materials.

  5. Ceramic nanostructures and methods of fabrication

    SciTech Connect (OSTI)

    Ripley, Edward B.; Seals, Roland D.; Morrell, Jonathan S.

    2009-11-24

    Structures and methods for the fabrication of ceramic nanostructures. Structures include metal particles, preferably comprising copper, disposed on a ceramic substrate. The structures are heated, preferably in the presence of microwaves, to a temperature that softens the metal particles and preferably forms a pool of molten ceramic under the softened metal particle. A nano-generator is created wherein ceramic material diffuses through the molten particle and forms ceramic nanostructures on a polar site of the metal particle. The nanostructures may comprise silica, alumina, titania, or compounds or mixtures thereof.

  6. Method for preparing metallated filament-wound structures

    DOE Patents [OSTI]

    Peterson, George R.

    1979-01-01

    Metallated graphite filament-wound structures are prepared by coating a continuous multi-filament carbon yarn with a metal carbide, impregnating the carbide coated yarn with a polymerizable carbon precursor, winding the resulting filament about a mandrel, partially curing the impregnation in air, subjecting the wound composite to heat and pressure to cure the carbon precursor, and thereafter heating the composite in a sizing die at a pressure loading of at least 1000 psi for graphitizing the carbonaceous material in the composite. The carbide in the composite coalesces into rod-like shapes which are disposed in an end-to-end relationship parallel with the filaments to provide resistance to erosion in abrasive laden atmospheres.

  7. Toughened and corrosion- and wear-resistant composite structures and fabrication methods thereof

    SciTech Connect (OSTI)

    Seals, Roland D; Ripley, Edward B; Hallman, Russell L

    2014-04-08

    Composite structures having a reinforced material interjoined with a substrate and methods of creating a composite material interjoined with a substrate. In some embodiments the composite structure may be a line or a spot or formed by reinforced material interjoined with the substrate. The methods typically include disposing a precursor material comprising titanium diboride and/or titanium monoboride on at least a portion of the substrate and heating the precursor material and the at least a portion of the substrate in the presence of an oxidation preventative until at least a portion of the precursor material forms reinforced material interjoined with the substrate. The precursor material may be disposed on the substrate as a sheet or a tape or a slurry or a paste. Localized surface heating may be used to heat the precursor material. The reinforced material typically comprises a titanium boron compound, such as titanium monoboride, and preferably comprises .beta.-titanium. The substrate is typically titanium-bearing, iron-bearing, or aluminum-bearing. A welding rod is provided as an embodiment. The welding rod includes a metal electrode and a precursor material is disposed adjacent at least a portion of the metal electrode. A material for use in forming a composite structure is provided. The material typically includes a precursor material that includes one or more materials selected from the following group: titanium diboride and titanium monoboride. The material also typically includes a flux.

  8. Structural Basis for Metallic-Like Conductivity in Microbial Nanowires

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Malvankar, Nikhil S.; Vargas, Madeline; Nevin, Kelly; Tremblay, Pier-Luc; Evans-Lutterodt, Kenneth; Nykypanchuk, Dmytro; Martz, Eric; Tuominen, Mark T.; Lovley, Derek R.

    2015-03-03

    Direct measurement of multiple physical properties of Geobacter sulfurreducens pili have demonstrated that they possess metallic-like conductivity, but several studies have suggested that metallic-like conductivity is unlikely based on the structures of the G. sulfurreducens pilus predicted from homology models. In order to further evaluate this discrepancy, pili were examined with synchrotron X-ray microdiffraction and rocking-curve X-ray diffraction. Both techniques revealed a periodic 3.2-Å spacing in conductive, wild-type G. sulfurreducens pili that was missing in the nonconductive pili of strain Aro5, which lack key aromatic acids required for conductivity. The intensity of the 3.2-Å peak increased 100-fold when the pHmore » was shifted from 10.5 to 2, corresponding with a previously reported 100-fold increase in pilus conductivity with this pH change. These results suggest a clear structure-function correlation for metallic-like conductivity that can be attributed to overlapping π-orbitals of aromatic amino acids. A homology model of the G. sulfurreducens pilus was constructed with a Pseudomonas aeruginosa pilus model as a template as an alternative to previous models, which were based on a Neisseria gonorrhoeae pilus structure. This alternative model predicted that aromatic amino acids in G. sulfurreducens pili are packed within 3 to 4 Å, consistent with the experimental results. Thus, the predictions of homology modeling are highly sensitive to assumptions inherent in the model construction. Finally, the experimental results reported here further support the concept that the pili of G. sulfurreducens represent a novel class of electronically functional proteins in which aromatic amino acids promote long-distance electron transport.« less

  9. Periodic dielectric structure for production of photonic band gap and method for fabricating the same

    DOE Patents [OSTI]

    Ozbay, Ekmel; Tuttle, Gary; Michel, Erick; Ho, Kai-Ming; Biswas, Rana; Chan, Che-Ting; Soukoulis, Costas

    1995-01-01

    A method for fabricating a periodic dielectric structure which exhibits a photonic band gap. Alignment holes are formed in a wafer of dielectric material having a given crystal orientation. A planar layer of elongate rods is then formed in a section of the wafer. The formation of the rods includes the step of selectively removing the dielectric material of the wafer between the rods. The formation of alignment holes and layers of elongate rods and wafers is then repeated to form a plurality of patterned wafers. A stack of patterned wafers is then formed by rotating each successive wafer with respect to the next-previous wafer, and then placing the successive wafer on the stack. This stacking results in a stack of patterned wafers having a four-layer periodicity exhibiting a photonic band gap.

  10. Periodic dielectric structure for production of photonic band gap and method for fabricating the same

    DOE Patents [OSTI]

    Ozbay, E.; Tuttle, G.; Michel, E.; Ho, K.M.; Biswas, R.; Chan, C.T.; Soukoulis, C.

    1995-04-11

    A method is disclosed for fabricating a periodic dielectric structure which exhibits a photonic band gap. Alignment holes are formed in a wafer of dielectric material having a given crystal orientation. A planar layer of elongate rods is then formed in a section of the wafer. The formation of the rods includes the step of selectively removing the dielectric material of the wafer between the rods. The formation of alignment holes and layers of elongate rods and wafers is then repeated to form a plurality of patterned wafers. A stack of patterned wafers is then formed by rotating each successive wafer with respect to the next-previous wafer, and then placing the successive wafer on the stack. This stacking results in a stack of patterned wafers having a four-layer periodicity exhibiting a photonic band gap. 42 figures.

  11. Process for fabrication of cermets

    DOE Patents [OSTI]

    Landingham, Richard L.

    2011-02-01

    Cermet comprising ceramic and metal components and a molten metal infiltration method and process for fabrication thereof. The light weight cermets having improved porosity, strength, durability, toughness, elasticity fabricated from presintered ceramic powder infiltrated with a molten metal or metal alloy. Alumina titanium cermets biocompatible with the human body suitable for bone and joint replacements.

  12. Effect of realistic metal electronic structure on the lower limit of contact resistivity of epitaxial metal-semiconductor contacts

    SciTech Connect (OSTI)

    Hegde, Ganesh Chris Bowen, R.

    2014-08-04

    The effect of realistic metal electronic structure on the lower limit of resistivity in [100] oriented n-Si is investigated using full band Density Functional Theory and Semi-Empirical Tight Binding calculations. It is shown that the ideal metal assumption may fail in some situations and, consequently, underestimate the lower limit of contact resistivity in n-Si by at least an order of magnitude at high doping concentrations. The mismatch in transverse momentum space in the metal and the semiconductor, the so-called valley filtering effect, is shown to be sensitive to the details of the transverse boundary conditions for the unit cells used. The results emphasize the need for explicit inclusion of the metal atomic and electronic structure in the atomistic modeling of transport across metal-semiconductor contacts.

  13. Embrittlement Problems of Metal Structures of Nuclear Power Plants

    SciTech Connect (OSTI)

    Tabakova, Bojana; Yankova, Ina.; Petrov, Peter

    2006-07-01

    This paper reports result of the reconstitution of the Cv-type specimens from reactor pressure vessel steel with electron beam welding. Weldability of pressure vessel steel by electron beam welding was investigated in accordance EN ISO 13919-1 standard. There were made investigations of structural changes of metal in welds and heat affected zones to determine influence of welding thermal cycle.(microstructural analysis and microhardness testing of the welds) The welds were inspected using nondestructive testing techniques to determine the quality of the joints. Establishing the optimal reconstitution parameters of electron beam welding process Charpy impact tests show good agreement between original and electron beam reconstituted specimens. The temperature of ductile to brittle transition has been studied. (authors)

  14. Accurate Band-Structure Calculations for the 3d Transition Metal Oxides

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    has developed a method to calculate accurate band structures and bandgap energies for 3d transition metal oxides using an augmented GW formalism. Significance and Impact This approach provides a computationally viable route for high-throughput prediction of band structures and optical properties in transition metal compounds. Accurate Band-Structure Calculations for the 3d Transition Metal Oxides S. Lany, Phys. Rev. B 87, 085112 (2013). Density of states (DOS) and absorption spectrum, shown for

  15. Beyond the Lone-Pair Model for Structurally Distorted Metal Oxides

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Beyond the Lone-Pair Model for Structurally Distorted Metal Oxides Beyond the Lone-Pair Model for Structurally Distorted Metal Oxides Print Wednesday, 28 February 2007 00:00 "Ferroelectricity," by analogy to ferromagnetism, is defined as the presence of spontaneous electrical polarization in a material, often arising from distortions in the material's crystal structure. In oxides of the metals lead and bismuth, such distortions were for many years attributed to the existence of

  16. (Electronic structure and reactivities of transition metal clusters)

    SciTech Connect (OSTI)

    Not Available

    1992-01-01

    The following are reported: theoretical calculations (configuration interaction, relativistic effective core potentials, polyatomics, CASSCF); proposed theoretical studies (clusters of Cu, Ag, Au, Ni, Pt, Pd, Rh, Ir, Os, Ru; transition metal cluster ions; transition metal carbide clusters; bimetallic mixed transition metal clusters); reactivity studies on transition metal clusters (reactivity with H{sub 2}, C{sub 2}H{sub 4}, hydrocarbons; NO and CO chemisorption on surfaces). Computer facilities and codes to be used, are described. 192 refs, 13 figs.

  17. Amorphous metal formulations and structured coatings for corrosion and wear resistance

    DOE Patents [OSTI]

    Farmer, Joseph C.

    2014-07-15

    A system for coating a surface comprising providing a source of amorphous metal that contains more than 11 elements and applying the amorphous metal that contains more than 11 elements to the surface by a spray. Also a coating comprising a composite material made of amorphous metal that contains more than 11 elements. An apparatus for producing a corrosion-resistant amorphous-metal coating on a structure comprises a deposition chamber, a deposition source in the deposition chamber that produces a deposition spray, the deposition source containing a composite material made of amorphous metal that contains more than 11 elements, and a system that directs the deposition spray onto the structure.

  18. Amorphous metal formulations and structured coatings for corrosion and wear resistance

    DOE Patents [OSTI]

    Farmer, Joseph C.

    2011-12-13

    A system for coating a surface comprising providing a source of amorphous metal that contains more than 11 elements and applying the amorphous metal that contains more than 11 elements to the surface by a spray. Also a coating comprising a composite material made of amorphous metal that contains more than 11 elements. An apparatus for producing a corrosion-resistant amorphous-metal coating on a structure comprises a deposition chamber, a deposition source in the deposition chamber that produces a deposition spray, the deposition source containing a composite material made of amorphous metal that contains more than 11 elements, and a system that directs the deposition spray onto the structure.

  19. Design and Fabrication of a Supporting Structure for 3.6m Long Nb3Sn Racetrack Coils

    SciTech Connect (OSTI)

    Ambrosio, G.; Anerella, M.; Barzi, E.; Caspi, Shlomo; Cheng, Daniel; Dietderich, Daniel; Gourlay, Steve; Hafalia, A. Ray; Hannaford, Charles; Lietzke, Alan; Nobrega, A.R.; Sabbi, GianLuca; Schmalzle, J.; Wanderer, R. J; Zlobin, A.V.; Ferracin, P.

    2007-06-01

    As part of the LHC Accelerator Research Program (LARP), three US national laboratories (BNL, FNAL, and LBNL) are currently engaged in the development of superconducting magnets for the LHC Interaction Regions (IR) beyond the current design. As a first step towards the development of long Nb{sub 3}Sn quadrupole magnets, a 3.6 m long structure, based on the LBNL Subscale Common-Coil Magnet design, will be fabricated, assembled, and tested with aluminum-plate 'dummy coils'. The structure features an aluminum shell pre-tensioned over iron yokes using pressurized bladders and locking keys (bladder and key technology). Pre-load homogeneity and mechanical responses are monitored with pressure sensitive films and strain gauges mounted on the aluminum shell and the dummy coils. The details of the design and fabrication are presented and discussed, and the expected mechanical behavior is analyzed with finite element models.

  20. Structure and Function of Microbial Metal-Reduction Proteins...

    Office of Scientific and Technical Information (OSTI)

    Function of Microbial Metal-Reduction Proteins Xu, Ying; Crawford, Oakly H.; Xu, Dong; Larimer, Frank W.; Uberbacher, Edward C.; Zhou, Jizhong 97 MATHEMATICS AND COMPUTING; 59...

  1. Method of fabrication of electrodes and electrolytes

    DOE Patents [OSTI]

    Jankowski, Alan F.; Morse, Jeffrey D.

    2004-01-06

    Fuel cell stacks contain an electrolyte layer surrounded on top and bottom by an electrode layer. Porous electrodes are prepared which enable fuel and oxidant to easily flow to the respective electrode-electrolyte interface without the need for high temperatures or pressures to assist the flow. Rigid, inert microspheres in combination with thin-film metal deposition techniques are used to fabricate porous anodes, cathodes, and electrolytes. Microshperes contained in a liquid are randomly dispersed onto a host structure and dried such that the microsperes remain in position. A thin-film deposition technique is subsequently employed to deposit a metal layer onto the microsperes. After such metal layer deposition, the microspheres are removed leaving voids, i.e. pores, in the metal layer, thus forming a porous electrode. Successive repetitions of the fabrication process result in the formation of a continuous fuel cell stack. Such stacks may produce power outputs ranging from about 0.1 Watt to about 50 Watts.

  2. Nano-structured noble metal catalysts based on hexametallate architecture for the reforming of hydrocarbon fuels

    DOE Patents [OSTI]

    Gardner, Todd H.

    2015-09-15

    Nano-structured noble metal catalysts based on hexametallate lattices, of a spinel block type, and which are resistant to carbon deposition and metal sulfide formation are provided. The catalysts are designed for the reforming of hydrocarbon fuels to synthesis gas. The hexametallate lattices are doped with noble metals (Au, Pt, Rh, Ru) which are atomically dispersed as isolated sites throughout the lattice and take the place of hexametallate metal ions such as Cr, Ga, In, and/or Nb. Mirror cations in the crystal lattice are selected from alkali metals, alkaline earth metals, and the lanthanide metals, so as to reduce the acidity of the catalyst crystal lattice and enhance the desorption of carbon deposit forming moieties such as aromatics. The catalysts can be used at temperatures as high as 1000.degree. C. and pressures up to 30 atmospheres. A method for producing these catalysts and applications of their use also is provided.

  3. Dispersed metal cluster catalysts by design. Synthesis, characterization, structure, and performance

    SciTech Connect (OSTI)

    Arslan, Ilke; Dixon, David A.; Gates, Bruce C.; Katz, Alexander

    2015-09-30

    To understand the class of metal cluster catalysts better and to lay a foundation for the prediction of properties leading to improved catalysts, we have synthesized metal catalysts with well-defined structures and varied the cluster structures and compositions systematically—including the ligands bonded to the metals. These ligands include supports and bulky organics that are being tuned to control both the electron transfer to or from the metal and the accessibility of reactants to influence catalytic properties. We have developed novel syntheses to prepare these well-defined catalysts with atomic-scale control the environment by choice and placement of ligands and applied state-of-the art spectroscopic, microscopic, and computational methods to determine their structures, reactivities, and catalytic properties. The ligands range from nearly flat MgO surfaces to enveloping zeolites to bulky calixarenes to provide controlled coverages of the metal clusters, while also enforcing unprecedented degrees of coordinative unsaturation at the metal site—thereby facilitating bonding and catalysis events at exposed metal atoms. With this wide range of ligand properties and our arsenal of characterization tools, we worked to achieve a deep, fundamental understanding of how to synthesize robust supported and ligand-modified metal clusters with controlled catalytic properties, thereby bridging the gap between active site structure and function in unsupported and supported metal catalysts. We used methods of organometallic and inorganic chemistry combined with surface chemistry for the precise synthesis of metal clusters and nanoparticles, characterizing them at various stages of preparation and under various conditions (including catalytic reaction conditions) and determining their structures and reactivities and how their catalytic properties depend on their compositions and structures. Key characterization methods included IR, NMR, and EXAFS spectroscopies to identify

  4. Fabrication of nanofibrous A- or B-sites substituted LaCoO{sub 3} perovskites with macroscopic structures and their catalytic applications

    SciTech Connect (OSTI)

    Wu, Qiang; Zhao, Li; Wu, Meixia; Yao, Weifeng; Qi, Meixue; Shi, Xiaoyan

    2014-03-01

    Graphical abstract: Fabrication of nanofibrous La{sub 1?x}Ce{sub x}CoO{sub 3} (x = 0.05, 0.1, 0.2) and LaMn{sub x}Co{sub 1?x}O{sub 3} (x = 0.2, 0.5, 0.8) perovskite-type oxides with macroscopic structures can be successfully achieved by using carbon nanofibers (CNFs) as templates. Furthermore, their application for the combustion of carbon black (CB), which is a model of particulate matter exhausted from diesel engines, was demonstrated. - Highlights: Nanofibrous perovskites with macroscopic shapes were successfully obtained. CNFs template method used here is facile, effective and reproducible. This method might be applicable to other novel material fabrication. The obtained materials show superior catalytic activity in soot combustion. - Abstract: Fabrication of nanofibrous La{sub 1?x}Ce{sub x}CoO{sub 3} (x = 0.05, 0.1, 0.2) and LaMn{sub x}Co{sub 1?x}O{sub 3} (x = 0.2, 0.5, 0.8) perovskite-type oxides with macroscopic structures can be successfully achieved by using carbon nanofibers (CNFs) as templates. Field emission scanning electron microscopy (FE-SEM), coupled with X-ray diffraction (XRD) analysis confirmed the template effect and formation of the perovskite-type oxides on the macroscopic substrate. It turned out that this facile method can ensure the desired single-phase perovskite-type oxides formation by controlling the corresponding metal ratio during the preparation procedure. In addition, the immobilized nanofibrous La{sub 1?x}Ce{sub x}CoO{sub 3} (x = 0.05) and LaMn{sub x}Co{sub 1?x}O{sub 3} (x = 0.5) perovskite-type oxides can greatly decrease the combustion temperature of nanosized carbon black particles, which has the high potential application prospects in the treatment of diesel soot particles.

  5. Oxidation resistant filler metals for direct brazing of structural ceramics

    DOE Patents [OSTI]

    Moorhead, Arthur J.

    1986-01-01

    A method of joining ceramics and metals to themselves and to one another is described using essentially pure trinickel aluminide and trinickel aluminide containing small amounts of carbon. This method produces strong joints that can withstand high service temperatures and oxidizing environments.

  6. Beyond the Lone-Pair Model for Structurally Distorted Metal Oxides

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Beyond the Lone-Pair Model for Structurally Distorted Metal Oxides Print "Ferroelectricity," by analogy to ferromagnetism, is defined as the presence of spontaneous electrical polarization in a material, often arising from distortions in the material's crystal structure. In oxides of the metals lead and bismuth, such distortions were for many years attributed to the existence of "lone pair" electrons: pairs of chemically inert, nonbonding valence electrons in hybrid orbitals

  7. Beyond the Lone-Pair Model for Structurally Distorted Metal Oxides

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Beyond the Lone-Pair Model for Structurally Distorted Metal Oxides Print "Ferroelectricity," by analogy to ferromagnetism, is defined as the presence of spontaneous electrical polarization in a material, often arising from distortions in the material's crystal structure. In oxides of the metals lead and bismuth, such distortions were for many years attributed to the existence of "lone pair" electrons: pairs of chemically inert, nonbonding valence electrons in hybrid orbitals

  8. Linking structure to fragility in bulk metallic glass-forming liquids

    SciTech Connect (OSTI)

    Wei, Shuai E-mail: m.stolpe@mx.uni-saarland.de; Stolpe, Moritz E-mail: m.stolpe@mx.uni-saarland.de; Gross, Oliver; Gallino, Isabella; Hembree, William; Busch, Ralf; Evenson, Zach; Bednarcik, Jozef; Kruzic, Jamie J.

    2015-05-04

    Using in-situ synchrotron X-ray scattering, we show that the structural evolution of various bulk metallic glass-forming liquids can be quantitatively connected to their viscosity behavior in the supercooled liquid near T{sub g}. The structural signature of fragility is identified as the temperature dependence of local dilatation on distinct key atomic length scales. A more fragile behavior results from a more pronounced thermally induced dilatation of the structure on a length scale of about 3 to 4 atomic diameters, coupled with shallower temperature dependence of structural changes in the nearest neighbor environment. These findings shed light on the structural origin of viscous slowdown during undercooling of bulk metallic glass-forming liquids and demonstrate the promise of predicting the properties of bulk metallic glasses from the atomic scale structure.

  9. Buffer architecture for biaxially textured structures and method of fabricating same

    DOE Patents [OSTI]

    Norton, David P.; Park, Chan; Goyal, Amit

    2004-04-06

    The invention relates to an article with an improved buffer layer architecture comprising a substrate having a metal surface, and an epitaxial buffer layer on the surface of the substrate. The epitaxial buffer layer comprises at least one of the group consisting of ZrO.sub.2, HfO.sub.2, and compounds having at least one of Ca and a rare earth element stabilizing cubic phases of ZrO.sub.2 and/or HfO.sub.2. The article can also include a superconducting layer deposited on the epitaxial buffer layer. The article can also include an epitaxial capping layer between the epitaxial buffer layer and the superconducting layer. A method for preparing an epitaxial article comprises providing a substrate with a metal surface, depositing on the metal surface an epitaxial buffer layer comprising at least one material selected from the group consisting of ZrO.sub.2, HfO.sub.2, and compounds having at least one of Ca and a rare earth element stabilizing cubic phases of at least one of ZrO.sub.2 and HfO.sub.2. The epitaxial layer depositing step occurs in a vacuum with a background pressure of no more than 1.times.10.sup.-5 Torr. The method can further comprise depositing a superconducting layer on the epitaxial layer, and depositing an epitaxial capping layer between the epitaxial buffer layer and the superconducting layer.

  10. Report on Development of Concepts for the Advanced Casting System in Support of the Deployment of a Remotely Operable Research Scale Fuel Fabrication Facility for Metal Fuel

    SciTech Connect (OSTI)

    Ken Marsden

    2007-03-01

    Demonstration of recycle processes with low transuranic losses is key to the successful implementation of the Global Nuclear Energy Partnership strategy to manage spent fuel. It is probable that these recycle processes will include remote fuel fabrication. This report outlines the strategy to develop and implement a remote metal fuel casting process with minimal transuranic losses. The approach includes a bench-scale casting system to develop materials, methods, and perform tests with transuranics, and an engineering-scale casting system to demonstrate scalability and remote operability. These systems will be built as flexible test beds allowing exploration of multiple fuel casting approaches. The final component of the remote fuel fabrication demonstration culminates in the installation of an advanced casting system in a hot cell to provide integrated remote operation experience with low transuranic loss. Design efforts and technology planning have begun for the bench-scale casting system, and this will become operational in fiscal year 2008, assuming appropriate funding. Installation of the engineering-scale system will follow in late fiscal year 2008, and utilize materials and process knowledge gained in the bench-scale system. Assuming appropriate funding, the advanced casting system will be installed in a remote hot cell at the end of fiscal year 2009.

  11. Fabrication of superconducting metal-oxide textiles by heating impregnated polymeric material in a weakly oxidizing atmosphere

    SciTech Connect (OSTI)

    Van den Sype, J.S.

    1993-07-13

    A process is described for producing crystalline fibers, textiles or shapes comprised of YBa[sub 2]Cu[sub 3]O[sub 7[minus]x] where x varies from about 0 to about 0.4, said process comprising: (a) impregnating a preformed organic polymeric material with three metal compounds to provide metal elements in said material in substantially the atomic ratio occurring in said YBa[sub 2]Cu[sub 3]O[sub 7[minus]x]; (b) heating said impregnated material in a weakly oxidizing atmosphere containing from about 0.05% to about 2% oxygen by volume to a temperature sufficiently high to at least partially pyrolize and oxidize said organic material and at least partially oxidize said metal compounds substantially without ignition of said organic material and without formation of a molten phase or reaching a decomposition temperature of said YBa[sub 2]Cu[sub 3]O[sub 7[minus]x]; and (c) cooling the resulting material in at least a moderately oxidizing atmosphere to room temperature so as to obtain said fibers, textiles or shapes.

  12. Structural modifications due to interface chemistry at metal-nitride interfaces

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yadav, S. K.; Shao, S.; Wang, J.; Liu, X. -Y.

    2015-11-27

    Based on accurate first principles density functional theory (DFT) calculations, an unusual phenomenon of interfacial structural modifications, due to the interface chemistry influence is identified at two metal-nitride interfaces with strong metal-nitrogen affinity, Al/TiN {111} and Al/VN {111} interfaces. It is shown that at such interfaces, a faulted stacking structure is energetically preferred on the Al side of the interface. And both intrinsic and extrinsic stacking fault energies in the vicinity Al layers are negligibly small. However, such phenomenon does not occur in Pt/TiN and Pt/VN interfaces because of the weak Pt-N affinity. As a result, corresponding to structural energiesmore » of metal-nitride interfaces, the linear elasticity analysis predicts characteristics of interfacial misfit dislocations at metal-nitride interfaces.« less

  13. Structural modifications due to interface chemistry at metal-nitride interfaces

    SciTech Connect (OSTI)

    Yadav, S. K.; Shao, S.; Wang, J.; Liu, X. -Y.

    2015-11-27

    Based on accurate first principles density functional theory (DFT) calculations, an unusual phenomenon of interfacial structural modifications, due to the interface chemistry influence is identified at two metal-nitride interfaces with strong metal-nitrogen affinity, Al/TiN {111} and Al/VN {111} interfaces. It is shown that at such interfaces, a faulted stacking structure is energetically preferred on the Al side of the interface. And both intrinsic and extrinsic stacking fault energies in the vicinity Al layers are negligibly small. However, such phenomenon does not occur in Pt/TiN and Pt/VN interfaces because of the weak Pt-N affinity. As a result, corresponding to structural energies of metal-nitride interfaces, the linear elasticity analysis predicts characteristics of interfacial misfit dislocations at metal-nitride interfaces.

  14. Fabrication and characterization of inverted organic solar cells using shuttle cock-type metal phthalocyanine and PCBM:P3HT

    SciTech Connect (OSTI)

    Suzuki, Atsushi Furukawa, Ryo Akiyama, Tsuyoshi Oku, Takeo

    2015-02-27

    Inverted organic solar cells using shuttle cock-type phthalocyanine, semiconducting polymer and fullerenes were fabricated and characterized. Photovoltaic and optical properties of the solar cells with inverted structures were investigated by optical absorption, current density-voltage characteristics. The photovoltaic properties of the tandem organic solar cell using titanyl phthalocyanine, vanadyl phthalocyanine, poly(3-hexylthiophene) (P3HT) and [6, 6]-phenyl C{sub 61}-butyric acid methyl ester (PCBM) were improved. Effect of annealing and solvent treatment on surface morphologies of the active layer was investigated. The photovoltaic mechanisms, energy levels and band gap of active layers were discussed for improvement of the photovoltaic performance.

  15. All-metal valve structure for gas systems

    DOE Patents [OSTI]

    Baker, R.W.; Pawlak, D.A.; Ramey, A.J.

    1982-06-10

    A valve assembly with a resilient metal seat member is disclosed for providing a gas-tight seal in a gas handling system. The valve assembly also includes a valve element for sealing against the valve seat member; and an actuating means for operating the valve element. The valve seat member is a one-piece stainless steel ring having a central valve port and peripheral mounting flange, and an annular corrugation in between. A groove between the first and second ridges serves as a flexure zone during operation of the valve member and thus provides the seating pressure between the inner ridge or valve seat and the valve element. The outer annular ridge has a diameter less than said valve element to limit the seating motion of the valve element, preventing non-elastic deformation of the seat member.

  16. The structure-directed effect of Al-based metal–organic frameworks on fabrication of alumina by thermal treatment

    SciTech Connect (OSTI)

    Liu, Dandan; Dai, Fangna; Tang, Zhe; Liu, Yunqi; Liu, Chenguang

    2015-05-15

    Highlights: • We use Al-MOFs as precursor in the fabrication process of mesoporous alumina by thermal treatment. • The obtained mesoporous alumina has dual pore system and five-fold aluminum. • The aluminum building units in the precursor show structure-directed effect on the formation of alumina. - Abstract: In this work, the block-shaped Al-based metal–organic frameworks (Al-MOFs) MIL-53 have been synthesized by hydrothermal method. To detect the correlation between the structure of Al-MOFs and the formation of alumina, the ligands are eliminated by thermal treatment. MIL-53 and the calcination products were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM), transmission electron microscopy (TEM), nitrogen adsorption–desorption and solid-state {sup 27}Al nuclear magnetic resonance ({sup 27}Al NMR). It was found that after calcination, the block-shaped Al-MOFs precursor turns into high-crystallinity mesoporous alumina nanosheets, and the thermal treatment product γ-alumina possesses a dual pore system and a large surface area (146 m{sup 2}/g), with five-fold aluminum. During the thermal treatment process, the structure of MIL-53 and its secondary building units have structure-directed effect in the formation of alumina.

  17. Associations between iron oxyhydroxide nanoparticle growth and metal adsorption/structural incorporation

    SciTech Connect (OSTI)

    Kim, C.S.; Lentini, C.J.; Waychunas, G.A.

    2008-09-15

    The interaction of metal ions and oxyanions with nanoscale mineral phases has not yet been extensively studied despite the increased recognition of their prevalence in natural systems as a significant component of geomedia. A combination of macroscopic uptake studies to investigate the adsorption behavior of As(V), Cu(II), Hg(II), and Zn(II) onto nanoparticulate goethite ({alpha}-FeOOH) as a function of aging time at elevated temperature (75 C) and synchrotron-based X-ray studies to track changes in both the sorption mode and the rate of nanoparticle growth reveal the effects that uptake has on particle growth. Metal(loid) species which sorb quickly to the iron oxyhydroxide particles (As(V), Cu(II)) appear to passivate the particle surface, impeding the growth of the nanoparticles with progressive aging; in contrast, species that sorb more slowly (Hg(II), Zn(II)) have considerably less impact on particle growth. Progressive changes in the speciation of these particular metals with time suggest shifts in the mode of metal uptake with time, possibly indicating structural incorporation of the metal(loid) into the nanoparticle; this is supported by the continued increase in uptake concomitant with particle growth, implying that metal species may transform from surface-sorbed species to more structurally incorporated forms. This type of incorporation would have implications for the long-term fate and mobility of metals in contaminated regions, and affect the strategy for potential remediation/modeling efforts.

  18. Novel concepts in weld metal science: Role of gradients and composite structure

    SciTech Connect (OSTI)

    Matlock, D.K.; Olson, D.L.

    1991-12-01

    The effects of compositional and microstructural gradients on weld metal properties are being investigated. Crack propagation is solidified alloy structures is being characterized as to solidification orientation and the profile of the compositional variations. The effects of compositional gradients, are considered based on a thermodynamic analysis, referred to as the Cahn-Hillard analysis, which describes the degree to which a local surface energy is modified by the presence of a compositional gradient. The analysis predicts that both ductile and brittle fracture mechanisms are enhanced by the presence of a composition gradient. Special techniques to produce laboratory samples with microstructures which simulate the composition and microstructure gradients in solidified weld metal are used, along with appropriate mathematical models, to evaluate the properties of the composite weld metals. The composite modeling techniques are being applied to describe the effects of compositional and microstructural gradients on weld metal properties in Ni-Cu alloys. The development of metal matrix composition weld deposits on austenitic stainless steels has been studied. The particulate metal matrix composites were produced with ceramic or refractory metal powder filled cored wire, which was gas tungsten arc and gas metal arc welded.

  19. Structural Dimensions, Fabrication, Materials, and Operational History for Types I and II Waste Tanks

    SciTech Connect (OSTI)

    Wiersma, B.J.

    2000-08-16

    Radioactive waste is confined in 48 underground storage tanks at the Savannah River Site. The waste will eventually be processed and transferred to other site facilities for stabilization. Based on waste removal and processing schedules, many of the tanks, including those with flaws and/or defects, will be required to be in service for another 15 to 20 years. Until the waste is removed from storage, transferred, and processed, the materials and structures of the tanks must maintain a confinement function by providing a leak-tight barrier to the environment and by maintaining acceptable structural stability during design basis event which include loading from both normal service and abnormal conditions.

  20. Rare-Earth Transition-Metal Intermetallics: Structure-bonding-Property Relationships

    SciTech Connect (OSTI)

    Mi-Kyung Han

    2006-05-01

    Our explorations of rare-earth, transition metal intermetallics have resulted in the synthesis and characterization, and electronic structure investigation, as well as understanding the structure-bonding-property relationships. Our work has presented the following results: (1) Understanding the relationship between compositions and properties in LaFe{sub 13-x}Si{sub x} system: A detailed structural and theoretical investigation provided the understanding of the role of a third element on stabilizing the structure and controlling the transformation of cubic NaZn{sub 13}-type structures to the tetragonal derivative, as well as the relationship between the structures and properties. (2) Synthesis of new ternary rare-earth iron silicides RE{sub 2-x}Fe{sub 4}Si{sub 14-y} and proposed superstructure: This compound offers complex structural challenges such as fractional occupancies and their ordering in superstructure. (3) Electronic structure calculation of FeSi{sub 2}: This shows that the metal-semiconductor phase transition depends on the structure. The mechanism of band gap opening is described in terms of bonding and structural distortion. This result shows that the electronic structure calculations are an essential tool for understanding the relationship between structure and chemical bonding in these compounds. (4) Synthesis of new ternary rare-earth Zinc aluminides Tb{sub 3}Zn{sub 3.6}Al{sub 7.4}: Partially ordered structure of Tb{sub 3}Zn{sub 3.6}Al{sub 7.4} compound provides new insights into the formation, composition and structure of rare-earth transition-metal intermetallics. Electronic structure calculations attribute the observed composition to optimizing metal-metal bonding in the electronegative (Zn, Al) framework, while the specific ordering is strongly influenced by specific orbital interactions. (5) Synthesis of new structure type of Zn{sub 39}(Cr{sub x}Al{sub 1-x}){sub 81}: These layered structures are similar to icosahedral Mn-Al quasicrystalline

  1. Rare-earth transition-metal intermetallics: Structure-bonding-property relationships

    SciTech Connect (OSTI)

    Han, M.K.

    2006-05-06

    The explorations of rare-earth, transition metal intermetallics have resulted in the synthesis and characterization, and electronic structure investigation, as well as understanding the structure-bonding property relationships. The work has presented the following results: (1) Understanding the relationship between compositions and properties in LaFe{sub 13-x}Si{sub x} system: A detailed structural and theoretical investigation provided the understanding of the role of a third element on stabilizing the structure and controlling the transformation of cubic NaZn{sub 13}-type structures to the tetragonal derivative, as well as the relationship between the structures and properties. (2) Synthesis of new ternary rare-earth iron silicides Re{sub 2-x}Fe{sub 4}Si{sub 14-y} and proposed superstructure: This compound offers complex structural challenges such as fractional occupancies and their ordering in superstructure. (3) Electronic structure calculation of FeSi{sub 2}: This shows that the metal-semiconductor phase transition depends on the structure. The mechanism of band gap opening is described in terms of bonding and structural distortion. This result shows that the electronic structure calculations are an essential tool for understanding the relationship between structure and chemical bonding in these compounds. (4) Synthesis of new ternary rare-earth Zinc aluminides Tb{sub 3}Zn{sub 3.6}Al{sub 7.4}: Partially ordered structure of Tb{sub 3}Zn{sub 3.6}Al{sub 7.4} compound provides new insights into the formation, composition and structure of rare-earth transition-metal intermetallics. Electronic structure calculations attribute the observed composition to optimizing metal-metal bonding in the electronegative (Zn, Al) framework, while the specific ordering is strongly influenced by specific orbital interactions. (5) Synthesis of new structure type of Zn{sub 39}(Cr{sub x}Al{sub 1-x}){sub 81}: These layered structures are similar to icosahedral Mn-Al quasicrystalline

  2. Fabrication and characterization of nanostructured Fe{sub 3}S{sub 4}, an isostructural compound of half-metallic Fe{sub 3}O{sub 4}

    SciTech Connect (OSTI)

    Li, Peng; Xia, Chuan; Zhang, Qiang; Alshareef, Husam N.; Zhang, Xi-xiang; Guo, Zaibing; Cui, Wenyao; Bai, Haili

    2015-06-14

    High-purity, well-crystallized spinel Fe{sub 3}S{sub 4} nanoplatelets were synthesized by the hydrothermal method, and the saturation magnetic moment of Fe{sub 3}S{sub 4} was measured at 1.83 μ{sub B}/f.u. The temperature-dependent resistivity of Fe{sub 3}S{sub 4} was metallic-like for T < 180 K: room-temperature resistivity was measured at 7.711 × 10{sup 3 }μΩ cm. The anomalous Hall conductivity of Fe{sub 3}S{sub 4} decreased with increasing longitudinal conductivity, in sharp contrast with the accepted theory of the anomalous Hall effect in a dirty-metal regime. Furthermore, negligible spin-dependent magnetoresistance was observed. Band structure calculations confirmed our experimental observations that Fe{sub 3}S{sub 4} is a metal and not a half metal as expected.

  3. Method for fabricating five-level microelectromechanical structures and microelectromechanical transmission formed

    DOE Patents [OSTI]

    Rodgers, M. Steven; Sniegowski, Jeffry J.; Miller, Samuel L.; McWhorter, Paul J.

    2000-01-01

    A process for forming complex microelectromechanical (MEM) devices having five layers or levels of polysilicon, including four structural polysilicon layers wherein mechanical elements can be formed, and an underlying polysilicon layer forming a voltage reference plane. A particular type of MEM device that can be formed with the five-level polysilicon process is a MEM transmission for controlling or interlocking mechanical power transfer between an electrostatic motor and a self-assembling structure (e.g. a hinged pop-up mirror for use with an incident laser beam). The MEM transmission is based on an incomplete gear train and a bridging set of gears that can be moved into place to complete the gear train to enable power transfer. The MEM transmission has particular applications as a safety component for surety, and for this purpose can incorporate a pin-in-maze discriminator responsive to a coded input signal.

  4. Environmental effects on the structure of metal ion-DOTA complexes: An ab initio study of radiopharmaceutical metals.

    SciTech Connect (OSTI)

    Lau, E Y; Lightstone, F C; Colvin, M E

    2006-02-10

    Quantum mechanical calculations were performed to study the differences between the important radiopharmaceutical metals yttrium (Y) and indium (In) bound by DOTA and modified DOTA molecules. Energies were calculated at the MP2/6-31+G(d)//HF/6-31G(d) levels, using effective core potentials on the Y and In ions. Although the minimum energy structures obtained are similar for both metal ion-DOTA complexes, changes in coordination and local environment significantly affect the geometries and energies of these complexes. Coordination by a single water molecule causes a change in the coordination number and a change in the position of the metal ion in In-DOTA; but, Y-DOTA is hardly affected by water coordination. When one of the DOTA carboxylates is replaced by an amide, the coordination energy for the amide arm shows a large variation between the Y and In ions. Optimizations including water and guandinium moieties to approximate the effects of antibody binding indicate a large energy cost for the DOTA-chelated In to adopt the ideal conformation for antibody binding.

  5. Structured copolymers and their use as absorbents, gels and carriers of metal ions

    DOE Patents [OSTI]

    Hedstrand, David M.; Helmer, Bradley J.; Tomalia, Donald A.

    1996-01-01

    Dense star polymers or dendrimers having a highly branched interior structure capable of associating or chelating with metal ions are modified by capping with a hydrophobic group capable of providing a hydrophobic outer shell. The modified dendrimers are useful for dispersing metal ions in a non-aqueous polymer matrix. Also dense star polymers or dendrimers having a highly branched hydrophilic interior structure are modified by capping with a hydrophobic group capable of providing a hydrophobic outer shell, which modified polymers are useful as gels and surfactants.

  6. Structured copolymers and their use as absorbents, gels and carriers of metal ions

    DOE Patents [OSTI]

    Hedstrand, D.M.; Helmer, B.J.; Tomalia, D.A.

    1996-10-01

    Dense star polymers or dendrimers having a highly branched interior structure capable of associating or chelating with metal ions are modified by capping with a hydrophobic group capable of providing a hydrophobic outer shell. The modified dendrimers are useful for dispersing metal ions in a non-aqueous polymer matrix. Also dense star polymers or dendrimers having a highly branched hydrophilic interior structure are modified by capping with a hydrophobic group capable of providing a hydrophobic outer shell, which modified polymers are useful as gels and surfactants.

  7. Method for rapid fabrication of fiber preforms and structural composite materials

    DOE Patents [OSTI]

    Klett, J.W.; Burchell, T.D.; Bailey, J.L.

    1998-04-28

    A densified carbon matrix carbon fiber composite preform is made by vacuum molding an aqueous slurry of carbon fibers and carbonizable organic powder to form a molded part. The molded part is dried in an oven at 50 C for 14 hours and hot pressed at 2,000 psi at 400 C for 3 hours. The hot pressed part is carbonized at 650 C under nitrogen for 3 hours and graphitized at 2,400 C to form a graphitic structure in the matrix of the densified carbon matrix carbon fiber composite preform. The densified preform has a density greater than 1.1 g/cc. 12 figs.

  8. Method for rapid fabrication of fiber preforms and structural composite materials

    DOE Patents [OSTI]

    Klett, James W. (Knoxville, TN); Burchell, Timothy D. (Oak Ridge, TN); Bailey, Jeffrey L. (Clinton, TN)

    1998-01-01

    A densified carbon matrix carbon fiber composite preform is made by vacuum molding an aqueous slurry of carbon fibers and carbonizable organic powder to form a molded part. The molded part is dried in an oven at 50.degree. C. for 14 hours and hot pressed at 2000 psi at 400.degree. C. for 3 hours. The hot pressed part is carbonized at 650.degree. C. under nitrogen for 3 hours and graphitized at 2400.degree. C. to form a graphitic structure in the matrix of the densified carbon matrix carbon fiber composite preform. The densified preform has a density greater than 1.1 g/cc.

  9. Method for rapid fabrication of fiber preforms and structural composite materials

    DOE Patents [OSTI]

    Klett, James W. (Knoxville, TN); Burchell, Timothy D. (Oak Ridge, TN); Bailey, Jeffrey L. (Clinton, TN)

    1999-01-01

    A densified carbon matrix carbon fiber composite preform is made by vacuum molding an aqueous slurry of carbon fibers and carbonizable organic powder to form a molded part. The molded part is dried in an oven at 50.degree. C. for 14 hours and hot pressed at 2000 psi at 400.degree. C. for 3 hours. The hot pressed part is carbonized at 650.degree. C. under nitrogen for 3 hours and graphite at 2400.degree. C. to form a graphitic structure in the matrix of the densified carbon matrix carbon fiber composite preform. The densified preform has a density greater than 1.1 g/cc.

  10. Method for rapid fabrication of fiber preforms and structural composite materials

    DOE Patents [OSTI]

    Klett, J.W.; Burchell, T.D.; Bailey, J.L.

    1999-02-16

    A densified carbon matrix carbon fiber composite preform is made by vacuum molding an aqueous slurry of carbon fibers and carbonizable organic powder to form a molded part. The molded part is dried in an oven at 50 C for 14 hours and hot pressed at 2000 psi at 400 C for 3 hours. The hot pressed part is carbonized at 650 C under nitrogen for 3 hours and graphitized at 2400 C to form a graphitic structure in the matrix of the densified carbon matrix carbon fiber composite preform. The densified preform has a density greater than 1.1 g/cc. 12 figs.

  11. Facile synthesis of one-dimensional peapod-like Sb@C submicron-structures

    SciTech Connect (OSTI)

    Luo, W; Lorger, S; Wang, B; Bommier, C; Ji, XL

    2014-01-01

    We demonstrate a novel synthetic route to fabricate a one-dimensional peapod-like Sb@C structure with disperse Sb submicron-particles encapsulated in carbon submicron-tubes. The synthetic route may well serve as a general methodology for fabricating carbon/metallic fine structures by thermally reducing their carbon-coated metal oxide composites.

  12. Porous electrode apparatus for electrodeposition of detailed metal structures or microelectronic interconnections

    DOE Patents [OSTI]

    Griffiths, Stewart K.; Nilson, Robert H.; Hruby, Jill M.

    2002-01-01

    An apparatus and procedure for performing microfabrication of detailed metal structures by electroforming metal deposits within small cavities. Two primary areas of application are: the LIGA process which manufactures complex three-dimensional metal parts and the damascene process used for electroplating line and via interconnections of microelectronic devices. A porous electrode held in contact or in close proximity with a plating substrate or mold top to ensure one-dimensional and uniform current flow into all mold cavities is used. Electrolyte is pumped over the exposed surface of the porous electrode to ensure uniform ion concentrations at this external surface. The porous electrode prevents electrolyte circulation within individual mold cavities, avoiding preferential enhancement of ion transport in cavities having favorable geometries. Both current flow and ion transport are one-dimensional and identical in all mold cavities, so all metal deposits grow at the same rate eliminating nonuniformities of the prior art.

  13. Dendritic metal nanostructures

    DOE Patents [OSTI]

    Shelnutt, John A.; Song, Yujiang; Pereira, Eulalia F.; Medforth, Craig J.

    2010-08-31

    Dendritic metal nanostructures made using a surfactant structure template, a metal salt, and electron donor species.

  14. Anthraquinone with Tailored Structure for Nonaqueous Metal-Organic Redox Flow Battery

    SciTech Connect (OSTI)

    Wang, Wei; Xu, Wu; Cosimbescu, Lelia; Choi, Daiwon; Li, Liyu; Yang, Zhenguo

    2012-06-08

    A nonaqueous, hybrid metal-organic redox flow battery based on tailored anthraquinone structure is demonstrated to have an energy efficiency of {approx}82% and a specific discharge energy density similar to aqueous redox flow batteries, which is due to the significantly improved solubility of anthraquinone in supporting electrolytes.

  15. Spinel-structured metal oxide on a substrate and method of making same by molecular beam epitaxy

    DOE Patents [OSTI]

    Chambers, Scott A.

    2006-02-21

    A method of making a spinel-structured metal oxide on a substrate by molecular beam epitaxy, comprising the step of supplying activated oxygen, a first metal atom flux, and at least one other metal atom flux to the surface of the substrate, wherein the metal atom fluxes are individually controlled at the substrate so as to grow the spinel-structured metal oxide on the substrate and the metal oxide is substantially in a thermodynamically stable state during the growth of the metal oxide. A particular embodiment of the present invention encompasses a method of making a spinel-structured binary ferrite, including Co ferrite, without the need of a post-growth anneal to obtain the desired equilibrium state.

  16. Directed light fabrication

    SciTech Connect (OSTI)

    Lewis, G.K.; Nemec, R.; Milewski, J.; Thoma, D.J.; Cremers, D.; Barbe, M.

    1994-09-01

    Directed Light Fabrication (DLF) is a rapid prototyping process being developed at Los Alamos National Laboratory to fabricate metal components. This is done by fusing gas delivered metal powder particles in the focal zone of a laser beam that is, programmed to move along or across the part cross section. Fully dense metal is built up a layer at a time to form the desired part represented by a 3 dimensional solid model from CAD software. Machine ``tool paths`` are created from the solid model that command the movement and processing parameters specific to the DLF process so that the part can be built one layer at a time. The result is a fully dense, near net shape metal part that solidifies under rapid solidification conditions.

  17. Large-area metallic photonic lattices for military applications.

    SciTech Connect (OSTI)

    Luk, Ting Shan

    2007-11-01

    In this project we developed photonic crystal modeling capability and fabrication technology that is scaleable to large area. An intelligent optimization code was developed to find the optimal structure for the desired spectral response. In terms of fabrication, an exhaustive survey of fabrication techniques that would meet the large area requirement was reduced to Deep X-ray Lithography (DXRL) and nano-imprint. Using DXRL, we fabricated a gold logpile photonic crystal in the <100> plane. For the nano-imprint technique, we fabricated a cubic array of gold squares. These two examples also represent two classes of metallic photonic crystal topologies, the connected network and cermet arrangement.

  18. Structures and stability of metal-doped GenM (n = 9, 10) clusters

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Qin, Wei; Lu, Wen-Cai; Xia, Lin-Hua; Zhao, Li-Zhen; Zang, Qing-Jun; Wang, C. Z.; Ho, K. M.

    2015-06-26

    The lowest-energy structures of neutral and cationic Ge nM (n = 9, 10; M = Si, Li, Mg, Al, Fe, Mn, Pb, Au, Ag, Yb, Pm and Dy) clusters were studied by genetic algorithm (GA) and first-principles calculations. The calculation results show that doping of the metal atoms and Si into Ge9 and Ge10 clusters is energetically favorable. Most of the metal-doped Ge cluster structures can be viewed as adding or substituting metal atom on the surface of the corresponding ground-state Gen clusters. However, the neutral and cationic FeGe9,10,MnGe9,10 and Ge10Al are cage-like with the metal atom encapsulated inside. Suchmore » cage-like transition metal doped Gen clusters are shown to have higher adsorption energy and thermal stability. Our calculation results suggest that Ge9,10Fe and Ge9Si would be used as building blocks in cluster-assembled nanomaterials because of their high stabilities.« less

  19. Electronic structure and conductivity of nanocomposite metal (Au,Ag,Cu,Mo)-containing amorphous carbon films

    SciTech Connect (OSTI)

    Endrino, Jose L.; Horwat, David; Gago, Raul; Andersson, Joakim; Liu, Y.S.; Guo, Jinghua; Anders, Andre

    2008-05-14

    In this work, we study the influence of the incorporation of different metals (Me = Au, Ag, Cu, Mo) on the electronic structure of amorphous carbon (a-C:Me) films. The films were produced at room temperature using a novel pulsed dual-cathode arc deposition technique. Compositional analysis was performed with secondary neutral mass spectroscopy whereas X-ray diffraction was used to identify the formation of metal nanoclusters in the carbon matrix. The metal content incorporated in the nanocomposite films induces a drastic increase in the conductivity, in parallel with a decrease in the band gap corrected from Urbach energy. The electronic structure as a function of the Me content has been monitored by x-ray absorption near edge structure (XANES) at the C K-edge. XANES showed that the C host matrix has a dominant graphitic character and that it is not affected significantly by the incorporation of metal impurities, except for the case of Mo, where the modifications in the lineshape spectra indicated the formation of a carbide phase. Subtle modifications of the spectral lineshape are discussed in terms of nanocomposite formation.

  20. Synthesis and structural, magnetic, thermal, and transport properties of several transition metal oxides and aresnides

    SciTech Connect (OSTI)

    Das, Supriyo

    2010-05-16

    Oxide compounds containing the transition metal vanadium (V) have attracted a lot of attention in the field of condensed matter physics owing to their exhibition of interesting properties including metal-insulator transitons, structural transitions, ferromagnetic and antiferromagnetic orderings, and heavy fermion behavior. Binary vanadium oxides V{sub n}O{sub 2n-1} where 2 {le} n {le} 9 have triclinic structures and exhibit metal-insulator and antiferromagnetic transitions. The only exception is V{sub 7}O{sub 13} which remains metallic down to 4 K. The ternary vanadium oxide LiV{sub 2}O{sub 4} has the normal spinel structure, is metallic, does not undergo magnetic ordering and exhibits heavy fermion behavior below 10 K. CaV{sub 2}O{sub 4} has an orthorhombic structure with the vanadium spins forming zigzag chains and has been suggested to be a model system to study the gapless chiral phase. These provide great motivation for further investigation of some known vanadium compounds as well as to explore new vanadium compounds in search of new physics. This thesis consists, in part, of experimental studies involving sample preparation and magnetic, transport, thermal, and x-ray measurements on some strongly correlated eletron systems containing the transition metal vanadium. The compounds studied are LiV{sub 2}O{sub 4}, YV{sub 4}O{sub 8}, and YbV{sub 4}O{sub 8}. The recent discovery of superconductivity in RFeAsO{sub 1-x}F{sub x} (R = La, Ce, Pr, Gd, Tb, Dy, Sm, and Nd), and AFe{sub 2}As{sub 2} (A = Ba, Sr, Ca, and Eu) doped with K, Na, or Cs at the A site with relatively high T{sub c} has sparked tremendous activities in the condensed matter physics community and a renewed interest in the area of superconductivity as occurred following the discovery of the layered cuprate high T{sub c} superconductors in 1986. To discover more superconductors with hopefully higher T{sub c}'s, it is extremely important to investigate compounds having crystal structures related to the

  1. Pressure induced metallization with absence of structural transition in layered molybdenum diselenide

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhao, Zhao; Zhang, Haijun; Yuan, Hongtao; Wang, Shibing; Lin, Yu; Zeng, Qiaoshi; Xu, Gang; Liu, Zhenxian; Solanki, G. K.; Patel, K. D.; et al

    2015-06-19

    Layered transition-metal dichalcogenides have emerged as exciting material systems with atomically thin geometries and unique electronic properties. Pressure is a powerful tool for continuously tuning their crystal and electronic structures away from the pristine states. Here, we systematically investigated the pressurized behavior of MoSe2 up to ~60 GPa using multiple experimental techniques and ab-initio calculations. MoSe2 evolves from an anisotropic two-dimensional layered network to a three-dimensional structure without a structural transition, which is a complete contrast to MoS2. The role of the chalcogenide anions in stabilizing different layered patterns is underscored by our layer sliding calculations. MoSe2 possesses highly tunablemore » transport properties under pressure, determined by the gradual narrowing of its band-gap followed by metallization. The continuous tuning of its electronic structure and band-gap in the range of visible light to infrared suggest possible energy-variable optoelectronics applications in pressurized transition-metal dichalcogenides.« less

  2. Structure and magnetism of epitaxial rare-earth-transition-metal films

    SciTech Connect (OSTI)

    Fullerton, E.E.; Sowers, C.H.; Pearson, J.P.; Bader, S.D.

    1996-10-01

    Growth of epitaxial transition-metal superlattices; has proven essential in elucidating the role of crystal orientation and structure on magnetic properties such as giant magnetoresistance, interlayer coupling, and magnetic surface anisotropies. Extending these studies to the growth of epitaxial rare earth-transition metal (RE-TM) films and superlattices promises to play an equally important role in exploring and optimizing the properties of hard magnets. For instance, Skomski and Coey predict that a giant energy product (120 MG Oe) is possible in multilayer structures consisting of aligned hard-magnet layers exchanged coupled with soft-phase layers with high magnetization. Epitaxy provides one route to synthesizing such exchange-hardened magnets on controlled length scales. Epitaxial growth also allows the magnetic properties to be tailored by controlling the crystal orientation and the anisotropies of the magnetic layers and holds the possibility of stabilizing metastable phases. This paper describes the epitaxy and magnetic properties for several alloys.

  3. Structure and constitution of glass and steel compound in glass-metal composite

    SciTech Connect (OSTI)

    Lyubimova, Olga N.; Morkovin, Andrey V.; Dryuk, Sergey A.; Nikiforov, Pavel A.

    2014-11-14

    The research using methods of optical and scanning electronic microscopy was conducted and it discovered common factors on structures and diffusing zone forming after welding glass C49-1 and steel Ct3sp in technological process of creating new glass-metal composite. Different technological modes of steel surface preliminary oxidation welded with and without glass were investigated. The time of welding was varied from minimum encountering time to the time of stabilizing width of diffusion zone.

  4. Matched metal die compression molded structural random fiber sheet molding compound flywheel

    DOE Patents [OSTI]

    Kulkarni, Satish V.; Christensen, Richard M.; Toland, Richard H.

    1985-01-01

    A flywheel (10) is described that is useful for energy storage in a hybrid vehicle automotive power system or in some stationary applications. The flywheel (10) has a body of essentially planar isotropic high strength structural random fiber sheet molding compound (SMC-R). The flywheel (10) may be economically produced by a matched metal die compression molding process. The flywheel (10) makes energy intensive efficient use of a fiber/resin composite while having a shape designed by theory assuming planar isotropy.

  5. Matched metal die compression molded structural random fiber sheet molding compound flywheel. [Patent application

    DOE Patents [OSTI]

    Kulkarni, S.V.; Christensen, R.M.; Toland, R.H.

    1980-09-24

    A flywheel is described that is useful for energy storage in a hybrid vehicle automotive power system or in some stationary applications. The flywheel has a body of essentially planar isotropic high strength structural random fiber sheet molding compound (SMC-R). The flywheel may be economically produced by a matched metal die compression molding process. The flywheel makes energy intensive efficient use of a fiber/resin composite while having a shape designed by theory assuming planar isotropy.

  6. Temperature threshold for nanorod structuring of metal and oxide films grown by glancing angle deposition

    SciTech Connect (OSTI)

    Deniz, Derya; Lad, Robert J.

    2011-01-15

    Thin films of tin (Sn), aluminum (Al), gold (Au), ruthenium (Ru), tungsten (W), ruthenium dioxide (RuO{sub 2}), tin dioxide (SnO{sub 2}), and tungsten trioxide (WO{sub 3}) were grown by glancing angle deposition (GLAD) to determine the nanostructuring temperature threshold, {Theta}{sub T}, above which adatom surface diffusion becomes large enough such that nanorod morphology is no longer formed during growth. The threshold was found to be lower in metals compared to oxides. Films were grown using both dc and pulsed dc magnetron sputtering with continuous substrate rotation over the temperature range from 291 to 866 K. Film morphologies, structures, and compositions were characterized by high resolution scanning electron microscopy, x-ray diffraction, and x-ray photoelectron spectroscopy. Films were also grown in a conventional configuration for comparison. For elemental metals, nanorod structuring occurs for films with melting points higher than that of Al (933 K) when grown at room temperature with a rotation rate of {approx}5 rpm, corresponding to a value of {Theta}{sub T}{approx_equal}0.33{+-}0.01. For the oxide films, a value of {Theta}{sub T}{approx_equal}0.5 was found, above which GLAD nanorod structuring does not occur. The existence of a nanostructuring temperature threshold in both metal and oxide GLAD films can be attributed to greater adatom mobilities as temperature is increased resulting in nonkinetically limited film nucleation and growth processes.

  7. Structural evolution in Ti-Cu-Ni metallic glasses during heating

    SciTech Connect (OSTI)

    Gargarella, P.; Pauly, S.; Stoica, M.; Khn, U.; Vaughan, G.; Afonso, C. R. M.; Eckert, J.

    2015-01-01

    The structural evolution of Ti{sub 50}Cu{sub 43}Ni{sub 7} and Ti{sub 55}Cu{sub 35}Ni{sub 10} metallic glasses during heating was investigated by in-situ synchrotron X-ray diffraction. The width of the most intense diffraction maximum of the glassy phase decreases slightly during relaxation below the glass transition temperature. Significant structural changes only occur above the glass transition manifesting in a change in the respective peak positions. At even higher temperatures, nanocrystals of the shape memory B2-Ti(Cu,Ni) phase precipitate, and their small size hampers the occurrence of a martensitic transformation.

  8. High detection efficiency micro-structured solid-state neutron detector with extremely low leakage current fabricated with continuous p-n junction

    SciTech Connect (OSTI)

    Huang, Kuan-Chih; Lu, James J.-Q.; Bhat, Ishwara B.; Dahal, Rajendra; Department of Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180-3522 ; Danon, Yaron

    2013-04-15

    We report the continuous p-n junction formation in honeycomb structured Si diode by in situ boron deposition and diffusion process using low pressure chemical vapor deposition for solid-state thermal neutron detection applications. Optimized diffusion temperature of 800 Degree-Sign C was obtained by current density-voltage characteristics for fabricated p{sup +}-n diodes. A very low leakage current density of {approx}2 Multiplication-Sign 10{sup -8} A/cm{sup 2} at -1 V was measured for enriched boron filled honeycomb structured neutron detector with a continuous p{sup +}-n junction. The neutron detection efficiency for a Maxwellian spectrum incident on the face of the detector was measured under zero bias voltage to be {approx}26%. These results are very encouraging for fabrication of large area solid-state neutron detector that could be a viable alternative to {sup 3}He tube based technology.

  9. Reactive sputter deposition of pyrite structure transition metal disulfide thin films: Microstructure, transport, and magnetism

    SciTech Connect (OSTI)

    Baruth, A.; Manno, M.; Narasimhan, D.; Shankar, A.; Zhang, X.; Johnson, M.; Aydil, E. S.; Leighton, C. [Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455 (United States)

    2012-09-01

    Transition metal disulfides crystallizing in the pyrite structure (e.g., TMS{sub 2}, with TM = Fe, Co, Ni, and Cu) are a class of materials that display a remarkably diverse array of functional properties. These properties include highly spin-polarized ferromagnetism (in Co{sub 1-x}Fe{sub x}S{sub 2}), superconductivity (in CuS{sub 2}), an antiferromagnetic Mott insulating ground state (in NiS{sub 2}), and semiconduction with close to optimal parameters for solar absorber applications (in FeS{sub 2}). Exploitation of these properties in heterostructured devices requires the development of reliable and reproducible methods for the deposition of high quality pyrite structure thin films. In this manuscript, we report on the suitability of reactive sputter deposition from metallic targets in an Ar/H{sub 2}S environment as a method to achieve exactly this. Optimization of deposition temperature, Ar/H{sub 2}S pressure ratio, and total working gas pressure, assisted by plasma optical emission spectroscopy, reveals significant windows over which deposition of single-phase, polycrystalline, low roughness pyrite films can be achieved. This is illustrated for the test cases of the ferromagnetic metal CoS{sub 2} and the diamagnetic semiconductor FeS{sub 2}, for which detailed magnetic and transport characterization are provided. The results indicate significant improvements over alternative deposition techniques such as ex situ sulfidation of metal films, opening up exciting possibilities for all-sulfide heterostructured devices. In particular, in the FeS{sub 2} case it is suggested that fine-tuning of the sputtering conditions provides a potential means to manipulate doping levels and conduction mechanisms, critical issues in solar cell applications. Parenthetically, we note that conditions for synthesis of phase-pure monosulfides and thiospinels are also identified.

  10. Surface structure determinations of crystalline ionic thin films grown on transition metal single crystal surfaces by low energy electron diffraction

    SciTech Connect (OSTI)

    Roberts, J.G.

    2000-05-01

    The surface structures of NaCl(100), LiF(100) and alpha-MgCl2(0001) adsorbed on various metal single crystals have been determined by low energy electron diffraction (LEED). Thin films of these salts were grown on metal substrates by exposing the heated metal surface to a molecular flux of salt emitted from a Knudsen cell. This method of investigating thin films of insulators (ionic salts) on a conducting substrate (metal) circumvents surface charging problems that plagued bulk studies, thereby allowing the use of electron-based techniques to characterize the surface.

  11. Microlaminate composite structures by low pressure plasma spray deposition

    SciTech Connect (OSTI)

    Castro, R.G.; Stanek, P.W.

    1988-01-01

    The low pressure plasma spray (LPPS) process has been utilized in the development and fabrication of metal/metal, metal/carbide, and metal/oxide composite structures; including particulate dispersion and both continuous and discontinuous laminates. This report describes the LPPS process and the development of copper/tungsten microlaminate structures utilizing this processing method. Microstructures and mechanical properties of the Cu/W composites are compared to conventionally produced constituent material properties. 4 refs., 6 figs., 2 tabs.

  12. Planarization of metal films for multilevel interconnects

    DOE Patents [OSTI]

    Tuckerman, David B.

    1987-01-01

    In the fabrication of multilevel integrated circuits, each metal layer is anarized by heating to momentarily melt the layer. The layer is melted by sweeping laser pulses of suitable width, typically about 1 microsecond duration, over the layer in small increments. The planarization of each metal layer eliminates irregular and discontinuous conditions between successive layers. The planarization method is particularly applicable to circuits having ground or power planes and allows for multilevel interconnects. Dielectric layers can also be planarized to produce a fully planar multilevel interconnect structure. The method is useful for the fabrication of VLSI circuits, particularly for wafer-scale integration.

  13. Planarization of metal films for multilevel interconnects

    DOE Patents [OSTI]

    Tuckerman, D.B.

    1989-03-21

    In the fabrication of multilevel integrated circuits, each metal layer is planarized by heating to momentarily melt the layer. The layer is melted by sweeping laser pulses of suitable width, typically about 1 microsecond duration, over the layer in small increments. The planarization of each metal layer eliminates irregular and discontinuous conditions between successive layers. The planarization method is particularly applicable to circuits having ground or power planes and allows for multilevel interconnects. Dielectric layers can also be planarized to produce a fully planar multilevel interconnect structure. The method is useful for the fabrication of VLSI circuits, particularly for wafer-scale integration. 6 figs.

  14. Planarization of metal films for multilevel interconnects

    DOE Patents [OSTI]

    Tuckerman, D.B.

    1985-06-24

    In the fabrication of multilevel integrated circuits, each metal layer is planarized by heating to momentarily melt the layer. The layer is melted by sweeping lase pulses of suitable width, typically about 1 microsecond duration, over the layer in small increments. The planarization of each metal layer eliminates irregular and discontinuous conditions between successive layers. The planarization method is particularly applicable to circuits having ground or power planes and allows for multilevel interconnects. Dielectric layers can also be planarized to produce a fully planar multilevel interconnect structure. The method is useful for the fabrication of VLSI circuits, particularly for wafer-scale integration.

  15. Planarization of metal films for multilevel interconnects

    DOE Patents [OSTI]

    Tuckerman, David B.

    1989-01-01

    In the fabrication of multilevel integrated circuits, each metal layer is anarized by heating to momentarily melt the layer. The layer is melted by sweeping laser pulses of suitable width, typically about 1 microsecond duration, over the layer in small increments. The planarization of each metal layer eliminates irregular and discontinuous conditions between successive layers. The planarization method is particularly applicable to circuits having ground or power planes and allows for multilevel interconnects. Dielectric layers can also be planarized to produce a fully planar multilevel interconnect structure. The method is useful for the fabrication of VLSI circuits, particularly for wafer-scale integration.

  16. Planarization of metal films for multilevel interconnects

    DOE Patents [OSTI]

    Tuckerman, D.B.

    1985-08-23

    In the fabrication of multilevel integrated circuits, each metal layer is planarized by heating to momentarily melt the layer. The layer is melted by sweeping laser pulses of suitable width, typically about 1 microsecond duration, over the layer in small increments. The planarization of each metal layer eliminates irregular and discontinuous conditions between successive layers. The planarization method is particularly applicable to circuits having ground or power planes and allows for multilevel interconnects. Dielectric layers can also be planarized to produce a fully planar multilevel interconnect structure. The method is useful for the fabrication of VLSI circuits, particularly for wafer-scale integration.

  17. Electrolytic systems and methods for making metal halides and refining metals

    SciTech Connect (OSTI)

    Holland, Justin M.; Cecala, David M.

    2015-05-26

    Disclosed are electrochemical cells and methods for producing a halide of a non-alkali metal and for electrorefining the halide. The systems typically involve an electrochemical cell having a cathode structure configured for dissolving a hydrogen halide that forms the halide into a molten salt of the halogen and an alkali metal. Typically a direct current voltage is applied across the cathode and an anode that is fabricated with the non-alkali metal such that the halide of the non-alkali metal is formed adjacent the anode. Electrorefining cells and methods involve applying a direct current voltage across the anode where the halide of the non-alkali metal is formed and the cathode where the non-alkali metal is electro-deposited. In a representative embodiment the halogen is chlorine, the alkali metal is lithium and the non-alkali metal is uranium.

  18. Chemical Fabrication of Heterometallic Nanogaps for Molecular Transport Junctions

    SciTech Connect (OSTI)

    Chen, Xiaodong; Yeganeh, Sina; Qin, Lidong; Li, Shuzhou; Xue, Can; Braunschweig, Adam B.; Schatz, George C.; Ratner, Mark A.; Mirkin, Chad A.

    2009-01-01

    We report a simple and reproducible method for fabricating heterometallic nanogaps, which are made of two different metal nanorods separated by a nanometer-sized gap. The method is based upon on-wire lithography, which is a chemically enabled technique used to synthesize a wide variety of nanowire-based structures (e.g., nanogaps and disk arrays). This method can be used to fabricate pairs of metallic electrodes, which exhibit distinct work functions and are separated by gaps as small as 2 nm. Furthermore, we demonstrate that a symmetric thiol-terminated molecule can be assembled into such heterometallic nanogaps to form molecular transport junctions (MTJs) that exhibit molecular diode behavior. Theoretical calculations demonstrate that the coupling strength between gold and sulfur (Au-S) is 2.5 times stronger than that of Pt-S. In addition, the structures form Raman hot spots in the gap, allowing the spectroscopic characterization of the molecules that make up the MTJs.

  19. Microfluidic channel fabrication method

    DOE Patents [OSTI]

    Arnold, Don W.; Schoeniger, Joseph S.; Cardinale, Gregory F.

    2001-01-01

    A new channel structure for microfluidic systems and process for fabricating this structure. In contrast to the conventional practice of fabricating fluid channels as trenches or grooves in a substrate, fluid channels are fabricated as thin walled raised structures on a substrate. Microfluidic devices produced in accordance with the invention are a hybrid assembly generally consisting of three layers: 1) a substrate that can or cannot be an electrical insulator; 2) a middle layer, that is an electrically conducting material and preferably silicon, forms the channel walls whose height defines the channel height, joined to and extending from the substrate; and 3) a top layer, joined to the top of the channels, that forms a cover for the channels. The channels can be defined by photolithographic techniques and are produced by etching away the material around the channel walls.

  20. Medium-range structure and glass forming ability in Zr–Cu–Al bulk metallic glasses

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Pei; Maldonis, Jason J.; Besser, M. F.; Kramer, M. J.; Voyles, Paul M.

    2016-03-05

    Fluctuation electron microscopy experiments combined with hybrid reverse Monte Carlo modeling show a correlation between medium-range structure at the nanometer scale and glass forming ability in two Zr–Cu–Al bulk metallic glass (BMG) alloys. Both Zr50Cu35Al15 and Zr50Cu45Al5 exhibit two nanoscale structure types, one icosahedral and the other more crystal-like. In Zr50Cu35Al15, the poorer glass former, the crystal-like structure is more stable under annealing below the glass transition temperature, Tg, than in Zr50Cu45Al5. Variable resolution fluctuation microscopy of the MRO clusters show that in Zr50Cu35Al15 on sub-Tg annealing, the crystal-like clusters shrink even as they grow more ordered, while icosahedral-like clustersmore » grow. Furthermore, the results suggest that achieving better glass forming ability in this alloy system may depend more on destabilizing crystal-like structures than enhancing non-crystalline structures.« less

  1. On the correlation between microscopic structural heterogeneity and embrittlement behavior in metallic glasses

    SciTech Connect (OSTI)

    Li, Weidong; Gao, Yanfei; Bei, Hongbin

    2015-10-05

    To establish a relationship between microstructure and mechanical properties, we systematically annealed a Zr-based bulk metallic glass (BMG) at 100 ~ 300°C and measured their mechanical and thermal properties. The as-cast BMG exhibits some ductility, while the increase of annealing temperature and time leads to the transition to a brittle behavior that can reach nearly-zero fracture energy. The differential scanning calorimetry did not find any significant changes in crystallization temperature and enthalpy, indicating that the materials still remained fully amorphous. Elastic constants measured by ultrasonic technique vary only slightly with respect to annealing temperature and time, which does obey the empirical relationship between Poisson’s ratio and fracture behavior. Nanoindentation pop-in tests were conducted, from which the pop-in strength mapping provides a “mechanical probe” of the microscopic structural heterogeneities in these metallic glasses. Based on stochastically statistic defect model, we found that the defect density decreases with increasing annealing temperature and annealing time and is exponentially related to the fracture energy. A ductile-versus-brittle behavior (DBB) model based on the structural heterogeneity is developed to identify the physical origins of the embrittlement behavior through the interactions between these defects and crack tip.

  2. On the correlation between microscopic structural heterogeneity and embrittlement behavior in metallic glasses

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Li, Weidong; Gao, Yanfei; Bei, Hongbin

    2015-10-05

    To establish a relationship between microstructure and mechanical properties, we systematically annealed a Zr-based bulk metallic glass (BMG) at 100 ~ 300°C and measured their mechanical and thermal properties. The as-cast BMG exhibits some ductility, while the increase of annealing temperature and time leads to the transition to a brittle behavior that can reach nearly-zero fracture energy. The differential scanning calorimetry did not find any significant changes in crystallization temperature and enthalpy, indicating that the materials still remained fully amorphous. Elastic constants measured by ultrasonic technique vary only slightly with respect to annealing temperature and time, which does obey themore » empirical relationship between Poisson’s ratio and fracture behavior. Nanoindentation pop-in tests were conducted, from which the pop-in strength mapping provides a “mechanical probe” of the microscopic structural heterogeneities in these metallic glasses. Based on stochastically statistic defect model, we found that the defect density decreases with increasing annealing temperature and annealing time and is exponentially related to the fracture energy. A ductile-versus-brittle behavior (DBB) model based on the structural heterogeneity is developed to identify the physical origins of the embrittlement behavior through the interactions between these defects and crack tip.« less

  3. Jacking mechanism for upper internals structure of a liquid metal nuclear reactor

    DOE Patents [OSTI]

    Gillett, James E.; Wineman, Arthur L.

    1984-01-01

    A jacking mechanism for raising the upper internals structure of a liquid metal nuclear reactor which jacking mechanism uses a system of gears and drive shafts to transmit force from a single motor to four mechanically synchronized ball jacks to raise and lower support columns which support the upper internals structure. The support columns have a pin structure which rides up and down in a slot in a housing fixed to the reactor head. The pin has two locking plates which can be rotated around the pin to bring bolt holes through the locking plates into alignment with a set of bolt holes in the housing, there being a set of such housing bolt holes corresponding to both a raised and a lowered position of the support column. When the locking plate is so aligned, a surface of the locking plate mates with a surface in the housing such that the support column is then supported by the locking plate and not by the ball jacks. Since the locking plates are to be installed and bolted to the housing during periods of reactor operation, the ball jacks need not be sized to react the large forces which occur or potentially could occur on the upper internals structure of the reactor during operation. The locking plates react these loads. The ball jacks, used only during refueling, can be smaller, which enable conventionally available equipment to fulfill the precision requirements for the task within available space.

  4. Inertial fusion target fabrication using polystyrene mandrels

    SciTech Connect (OSTI)

    Kim, H.; Powers, T.F.; Mason, J.F.

    1984-04-01

    Large-aspect-ratio, plastic-coated, metal shells are useful targets for obtaining valuable information on thermal transport in laser implosion experiments. We have found that by using polystyrene as a leachable mandrel, it is possible to fabricate such complex, inertial-fusion targets. The present fabrication technique offers advantages over previous techniques, including the hemispherical-shell approach, the leachable-metal-mandrel approach, and the coating of a prefabricated metal shell. For fabrication of such diagnostic targets, comprised of a high-aspect-ratio, plastic-coated, metal shell, a polystyrene sphere is mounted on a stalk, then coated with metal and parylene layers. A hole of 5--10 ..mu..m is drilled with a laser pulse through the layers and the polystyrene is then leached out by immersing the system in toluene. The concept of the present technique presents a number of possibilities for the fabrication of complex targets not possible previously.

  5. Structural and electrical characterization of CoTiN metal gates

    SciTech Connect (OSTI)

    Wongpiya, Ranida; Ouyang, Jiaomin; Chung, Chia-Jung; Duong, Duc T.; Clemens, Bruce; Deal, Michael; Nishi, Yoshio

    2015-02-21

    As the gate size continues to decrease in nanoscale transistors, having metal gates with amorphous or near amorphous structures can potentially reduce grain-induced work function variation. Furthermore, amorphous materials are known to have superior diffusion barrier properties, which can help prevent work function change due to the diffusion of metals in contact with the gate. In this work we show that with the addition of cobalt, thin films of polycrystalline TiN become more amorphous with a smaller grain size. Co{sub x}(TiN){sub 1-x} films, where x?=?6080%, appear to consist of nanocrystals embedded in an amorphous matrix, and are thermally stable with no significant crystallization up to an annealing temperature of at least 600?C. Reducing the nitrogen gas flow ratio during sputter deposition from 9% to 2.5% further decreases the films' crystallinity, which is apparent by more sparse and even smaller nanocrystals. In addition to being partially amorphous, these CoTiN films also exhibit good thermal stability, low resistivity, low roughness, and have the potential for atomic layer deposition compatibility. Even though these materials are not completely amorphous, their small crystal size and amorphous matrix can potentially reduce work function variation and improve their diffusion barrier property. These properties make CoTiN a good candidate as a gate material for future nanoelectronic devices and technology.

  6. Method for large-scale fabrication of atomic-scale structures on material surfaces using surface vacancies

    DOE Patents [OSTI]

    Lim, Chong Wee; Ohmori, Kenji; Petrov, Ivan Georgiev; Greene, Joseph E.

    2004-07-13

    A method for forming atomic-scale structures on a surface of a substrate on a large-scale includes creating a predetermined amount of surface vacancies on the surface of the substrate by removing an amount of atoms on the surface of the material corresponding to the predetermined amount of the surface vacancies. Once the surface vacancies have been created, atoms of a desired structure material are deposited on the surface of the substrate to enable the surface vacancies and the atoms of the structure material to interact. The interaction causes the atoms of the structure material to form the atomic-scale structures.

  7. Unravelling structural ambiguities in lithium- and manganese-rich transition metal oxides

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Shukla, Alpesh Khushalchand; Ramasse, Quentin M.; Ophus, Colin; Duncan, Hugues; Hage, Fredrik; Chen, Guoying

    2015-10-29

    Although Li- and Mn-rich transition metal oxides have been extensively studied as high-capacity cathode materials for Li-ion batteries, the crystal structure of these materials in their pristine state is not yet fully understood. Here we apply complementary electron microscopy and spectroscopy techniques at multi-length scale on well-formed Li1.2(Ni0.13Mn0.54Co0.13)O2 crystals with two different morphologies as well as two commercially available materials with similar compositions, and unambiguously describe the structural make-up of these samples. Systematically observing the entire primary particles along multiple zone axes reveals that they are consistently made up of a single phase, save for rare localized defects and amore » thin surface layer on certain crystallographic facets. Finally and more specifically, we show the bulk of the oxides can be described as an aperiodic crystal consisting of randomly stacked domains that correspond to three variants of monoclinic structure, while the surface is composed of a Co- and/or Ni-rich spinel with antisite defects.« less

  8. Spin transport in normal metal/insulator/topological insulator coupled to ferromagnetic insulator structures

    SciTech Connect (OSTI)

    Kondo, Kenji

    2014-05-07

    In this study, we investigate the spin transport in normal metal (NM)/insulator (I)/topological insulator (TI) coupled to ferromagnetic insulator (FI) structures. In particular, we focus on the barrier thickness dependence of the spin transport inside the bulk gap of the TI with FI. The TI with FI is described by two-dimensional (2D) Dirac Hamiltonian. The energy profile of the insulator is assumed to be a square with barrier height V and thickness d along the transport-direction. This structure behaves as a tunnel device for 2D Dirac electrons. The calculation is performed for the spin conductance with changing the barrier thickness and the components of magnetization of FI layer. It is found that the spin conductance decreases with increasing the barrier thickness. Also, the spin conductance is strongly dependent on the polar angle ?, which is defined as the angle between the axis normal to the FI and the magnetization of FI layer. These results indicate that the structures are promising candidates for novel tunneling magnetoresistance devices.

  9. All-metal metamaterial slow-wave structure for high-power sources with high efficiency

    SciTech Connect (OSTI)

    Wang, Yanshuai; Duan, Zhaoyun Tang, Xianfeng; Wang, Zhanliang; Zhang, Yabin; Gong, Yubin; Feng, Jinjun

    2015-10-12

    In this paper, we have proposed a metamaterial (MTM) which is suitable for the compact high-power vacuum electron devices. For example, an S-band slow-wave structure (SWS) based on the all-metal MTMs has been studied by both simulation and experiment. The results show that this MTM SWS is very helpful to miniaturize the high-power vacuum electron devices and largely improve the output power and the electronic efficiency. The simulation model of an S-band MTM backward wave oscillator (BWO) is built, and the particle-in-cell simulated results are presented here: a 2.454 GHz signal is generated and its peak output power is 4.0 MW with a higher electronic efficiency of 31.5% relative to the conventional BWOs.

  10. Structural changes and conductance thresholds in metal-free intrinsic SiO{sub x} resistive random access memory

    SciTech Connect (OSTI)

    Mehonic, Adnan E-mail: t.kenyon@ucl.ac.uk; Buckwell, Mark; Montesi, Luca; Garnett, Leon; Hudziak, Stephen; Kenyon, Anthony J. E-mail: t.kenyon@ucl.ac.uk; Fearn, Sarah; Chater, Richard; McPhail, David

    2015-03-28

    We present an investigation of structural changes in silicon-rich silicon oxide metal-insulator-metal resistive RAM devices. The observed unipolar switching, which is intrinsic to the bulk oxide material and does not involve movement of metal ions, correlates with changes in the structure of the oxide. We use atomic force microscopy, conductive atomic force microscopy, x-ray photoelectron spectroscopy, and secondary ion mass spectroscopy to examine the structural changes occurring as a result of switching. We confirm that protrusions formed at the surface of samples during switching are bubbles, which are likely to be related to the outdiffusion of oxygen. This supports existing models for valence-change based resistive switching in oxides. In addition, we describe parallel linear and nonlinear conduction pathways and suggest that the conductance quantum, G{sub 0}, is a natural boundary between the high and low resistance states of our devices.

  11. Mechanical properties of vapor-deposited thin metallic films: a status report

    SciTech Connect (OSTI)

    Adler, P.H.

    1982-12-17

    The mechanical properties of vapor-deposited thin metallic films are being studied in conjunction with the target fabrication group associated with the laser-fusion energy program. The purpose of the work is to gain an understanding as to which metals are structurally best suited to contain a glass microsphere filled with deuterium-tritium (D-T) gas at large internal pressures.

  12. Nano-structure multilayer technology fabrication of high energy density capacitors for the power electronic building book

    SciTech Connect (OSTI)

    Barbee, T.W.; Johnson, G.W.; Wagner, A.V.

    1997-10-21

    Commercially available capacitors do not meet the specifications of the Power Electronic Building Block (PEBB) concept. We have applied our propriety nanostructure multilayer materials technology to the fabrication of high density capacitors designed to remove this impediment to PEBB progress. Our nanostructure multilayer capacitors will also be enabling technology in many industrial and military applications. Examples include transient suppression (snubber capacitors), resonant circuits, and DC filtering in PEBB modules. Additionally, weapon applications require compact energy storage for detonators and pulsed-power systems. Commercial applications run the gamut from computers to lighting to communications. Steady progress over the last five years has brought us to the threshold of commercial manufacturability. We have demonstrated a working dielectric energy density of > 11 J/cm3 in 20 nF devices designed for 1 kV operation.

  13. Lithographic fabrication of nanoapertures

    DOE Patents [OSTI]

    Fleming, James G.

    2003-01-01

    A new class of silicon-based lithographically defined nanoapertures and processes for their fabrication using conventional silicon microprocessing technology have been invented. The new ability to create and control such structures should significantly extend our ability to design and implement chemically selective devices and processes.

  14. Fabrication of large area plasmonic nanoparticle grating structure on silver halide based transmission electron microscope film and its application as a surface enhanced Raman spectroscopy substrate

    SciTech Connect (OSTI)

    Sudheer, Tiwari, P.; Singh, M. N.; Sinha, A. K.; Rai, V. N.; Srivastava, A. K.; Bhartiya, S.; Mukherjee, C.

    2015-08-14

    The plasmonic responses of silver nanoparticle grating structures of different periods made on silver halide based electron microscope film are investigated. Raster scan of the conventional scanning electron microscope (SEM) is used to carry out electron beam lithography for fabricating the plasmonic nanoparticle grating (PNG) structures. Morphological characterization of the PNG structures, carried out by the SEM and the atomic force microscope, indicates that the depth of the groove decreases with a decrease in the grating period. Elemental characterization performed by the energy dispersive spectroscopy and the x-ray diffraction shows the presence of nanoparticles of silver in the PNG grating. The optical characterization of the gratings shows that the localized surface plasmon resonance peak shifts from 366 to 378 nm and broadens with a decrease in grating period from 10 to 2.5 μm. The surface enhanced Raman spectroscopy of the Rhodamine-6G dye coated PNG structure shows the maximum enhancement by two orders of magnitude in comparison to the randomly distributed silver nanoparticles having similar size and shape as the PNG structure.

  15. Innovative forming and fabrication technologies : new opportunities.

    SciTech Connect (OSTI)

    Davis, B.; Hryn, J.; Energy Systems; Kingston Process Metallurgy, Inc.

    2008-01-31

    The advent of light metal alloys and advanced materials (polymer, composites, etc.) have brought the possibility of achieving important energy reductions into the full life cycle of these materials, especially in transportation applications. 1 These materials have gained acceptance in the aerospace industry but use of light metal alloys needs to gain wider acceptance in other commercial transportation areas. Among the main reasons for the relatively low use of these materials are the lack of manufacturability, insufficient mechanical properties, and increased material costs due to processing inefficiencies. Considering the enormous potential energy savings associated with the use of light metal alloys and advanced materials in transportation, there is a need to identify R&D opportunities in the fields of materials fabrication and forming aimed at developing materials with high specific mechanical properties combined with energy efficient processes and good manufacturability. This report presents a literature review of the most recent developments in the areas of fabrication and metal forming focusing principally on aluminum alloys. In the first section of the document, the different sheet manufacturing technologies including direct chill (DC) casting and rolling, spray forming, spray rolling, thin slab, and strip casting are reviewed. The second section of the document presents recent research on advanced forming processes. The various forming processes reviewed are: superplastic forming, electromagnetic forming, age forming, warm forming, hydroforming, and incremental forming. Optimization of conventional forming processes is also discussed. Potentially interesting light metal alloys for high structural efficiency including aluminum-scandium, aluminum-lithium, magnesium, titanium, and amorphous metal alloys are also reviewed. This section concludes with a discussion on alloy development for manufacturability. The third section of the document reviews the latest

  16. Metamaterial-based theoretical description of light scattering by metallic nano-hole array structures

    SciTech Connect (OSTI)

    Singh, Mahi R.; Najiminaini, Mohamadreza; Carson, Jeffrey J. L.; Balakrishnan, Shankar

    2015-05-14

    We have experimentally and theoretically investigated the light-matter interaction in metallic nano-hole array structures. The scattering cross section spectrum was measured for three samples each having a unique nano-hole array radius and periodicity. Each measured spectrum had several peaks due to surface plasmon polaritons. The dispersion relation and the effective dielectric constant of the structure were calculated using transmission line theory and Bloch's theorem. Using the effective dielectric constant and the transfer matrix method, the surface plasmon polariton energies were calculated and found to be quantized. Using these quantized energies, a Hamiltonian for the surface plasmon polaritons was written in the second quantized form. Working with the Hamiltonian, a theory of scattering cross section was developed based on the quantum scattering theory and Green's function method. For both theory and experiment, the location of the surface plasmon polariton spectral peaks was dependant on the array periodicity and radii of the nano-holes. Good agreement was observed between the experimental and theoretical results. It is proposed that the newly developed theory can be used to facilitate optimization of nanosensors for medical and engineering applications.

  17. Metal segregation in hierarchically structured cathode materials for high-energy lithium batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lin, Feng; Xin, Huolin L.; Nordlund, Dennis; Li, Yuyi; Quan, Matthew K.; Cheng, Lei; Weng, Tsu -Chien; Liu, Yijin; Doeff, Marca M.

    2016-01-11

    Controlling surface and interfacial properties of battery materials is key to improving performance in rechargeable Li-ion devices. Surface reconstruction from a layered to a rock salt structure in metal oxide cathode materials is commonly observed and results in poor high-voltage cycling performance, impeding attempts to improve energy density. Hierarchically structured LiNi0.4Mn0.4Co0.2O2 (NMC-442) spherical powders, made by spray pyrolysis, exhibit local elemental distribution gradients that deviate from the global NMC-442 composition; specifically, they are Ni-rich and Mn-poor at particle surfaces. These materials demonstrate improved Coulombic efficiencies, discharge capacities, and high-voltage capacity retention in lithium half-cell configurations. The subject powders show superiormore » resistance against surface reconstruction due to the tailored surface chemistry, compared to conventional NMC-442 materials. This paves the way towards the development of a new generation of robust and stable high-energy NMC cathodes for Li-ion batteries.« less

  18. Nuclear reactor fuel structure containing uranium alloy wires embedded in a metallic matrix plate

    DOE Patents [OSTI]

    Travelli, Armando

    1988-01-01

    A flat or curved plate structure, to be used as fuel in a nuclear reactor, comprises elongated fissionable wires or strips embedded in a metallic continuous non-fissionable matrix plate. The wires or strips are made predominantly of a malleable uranium alloy, such as uranium silicide, uranium gallide or uranium germanide. The matrix plate is made predominantly of aluminum or an aluminum alloy. The wires or strips are located in a single row at the midsurface of the plate, parallel with one another and with the length dimension of the plate. The wires or strips are separated from each other, and from the surface of the plate, by sufficient thicknesses of matrix material, to provide structural integrity and effective fission product retention, under neutron irradiation. This construction makes it safely feasible to provide a high uranium density, so that the uranium enrichment with uranium 235 may be reduced below about 20%, to deter the reprocessing of the uranium for use in nuclear weapons.

  19. Nuclear reactor fuel structure containing uranium alloy wires embedded in a metallic matrix plate

    DOE Patents [OSTI]

    Travelli, A.

    1985-10-25

    A flat or curved plate structure, to be used as fuel in a nuclear reactor, comprises elongated fissionable wires or strips embedded in a metallic continuous non-fissionable matrix plate. The wires or strips are made predominantly of a malleable uranium alloy, such as uranium silicide, uranium gallide or uranium germanide. The matrix plate is made predominantly of aluminum or an aluminum alloy. The wires or strips are located in a single row at the midsurface of the plate, parallel with one another and with the length dimension of the plate. The wires or strips are separated from each other, and from the surface of the plate, by sufficient thicknesses of matrix material, to provide structural integrity and effective fission product retention, under neutron irradiation. This construction makes it safely feasible to provide a high uranium density, so that the uranium enrichment with uranium 235 may be reduced below about 20%, to deter the reprocessing of the uranium for use in nuclear weapons.

  20. Thermoelectric material including a multiple transition metal-doped type I clathrate crystal structure

    DOE Patents [OSTI]

    Yang, Jihui; Shi, Xun; Bai, Shengqiang; Zhang, Wenqing; Chen, Lidong; Yang, Jiong

    2012-01-17

    A thermoelectric material includes a multiple transition metal-doped type I clathrate crystal structure having the formula A.sub.8TM.sub.y.sub.1.sup.1TM.sub.y.sub.2.sup.2 . . . TM.sub.y.sub.n.sup.nM.sub.zX.sub.46-y.sub.1.sub.-y.sub.2.sub.- . . . -y.sub.n.sub.-z. In the formula, A is selected from the group consisting of barium, strontium, and europium; X is selected from the group consisting of silicon, germanium, and tin; M is selected from the group consisting of aluminum, gallium, and indium; TM.sup.1, TM.sup.2, and TM.sup.n are independently selected from the group consisting of 3d, 4d, and 5d transition metals; and y.sub.1, y.sub.2, y.sub.n and Z are actual compositions of TM.sup.1, TM.sup.2, TM.sup.n, and M, respectively. The actual compositions are based upon nominal compositions derived from the following equation: z=8q.sub.A-|.DELTA.q.sub.1|y.sub.1-|.DELTA.q.sub.2|y.sub.2- . . . -|.DELTA.q.sub.n|y.sub.n, wherein q.sub.A is a charge state of A, and wherein .DELTA.q.sub.1, .DELTA.q.sub.2, .DELTA.q.sub.n are, respectively, the nominal charge state of the first, second, and n-th TM.

  1. Investigation of structural and electrical properties of flat a-Si/c-Si heterostructure fabricated by EBPVD technique

    SciTech Connect (OSTI)

    Demiro?lu, D.; Tatar, B.; Kazmanli, K.; Urgen, M.

    2013-12-16

    Flat amorphous silicon - crystal silicon (a-Si/c-Si) heterostructure were prepared by ultra-high vacuum electron beam evaporation technique on p-Si (111) and n-Si (100) single crystal substrates. Structural analyses were investigated by XRD, Raman and FEG-SEM analysis. With these analyses we determined that at the least amorphous structure shows modification but amorphous structure just protected. The electrical and photovoltaic properties of flat a-Si/c-Si heterojunction devices were investigated with current-voltage characteristics under dark and illumination conditions. Electrical properties of flat a-Si/c-Si heterorojunction; such as barrier height ?{sub B}, diode ideality factor ? were determined from current-voltage characteristics in dark conditions. These a-Si/c-Si heterostructure have good rectification behavior as a diode and exhibit high photovoltaic sensitivity.

  2. Synthesis, crystal structure and magnetic characterization of metal(II) coordination polymers based on 2-carboxyethylphosphonic acid and 1,10-phenanthroline (metal=Cu, Co, Cd)

    SciTech Connect (OSTI)

    Fernandez-Zapico, Eva; Montejo-Bernardo, Jose Manuel; D'Vries, Richard; Garcia, Jose R.; Garcia-Granda, Santiago; Rodriguez Fernandez, Jesus; Pedro, Imanol de; Blanco, Jesus A.

    2011-12-15

    Three non-isostructural metal(II) coordination polymers (metal=copper, cobalt, cadmium) were synthesized under the same mild hydrothermal conditions (T=408 K) by mixture of the corresponding metal acetate with 2-carboxyethylphosphonic acid and 1,10-phenanthroline (1:1:1 M ratio) and their structures were determined by single-crystal X-ray diffraction. Cu{sub 2}(HO{sub 3}PCH{sub 2}CH{sub 2}COO){sub 2}(C{sub 12}H{sub 8}N{sub 2}){sub 2}(H{sub 2}O){sub 2} and Cd{sub 2}(HO{sub 3}PCH{sub 2}CH{sub 2}COO){sub 2}(C{sub 12}H{sub 8}N{sub 2}){sub 2} are triclinic (space group P-1) with a=7.908(5) A, b=10.373(5) A, c=11.515(5) A, {alpha}=111.683(5) Degree-Sign , {beta}=95.801(5) Degree-Sign , {gamma}=110.212(5) Degree-Sign (T=120 K), and a=8.162(5) A, b=9.500(5) A, c=11.148(5) A, {alpha}=102.623(5) Degree-Sign , {beta}=98.607(5) Degree-Sign , {gamma}=113.004(5) Degree-Sign (T=293 K), respectively. In contrast, [Co{sub 2}(HO{sub 3}PCH{sub 2}CH{sub 2}COO){sub 2}(C{sub 12}H{sub 8}N{sub 2}){sub 2}({mu}-OH{sub 2})](H{sub 2}O) is orthorhombic (space group Pbcn) with a=21.1057(2) A, b=9.8231(1) A, c=15.4251(1) A (T=120 K). For these three compounds, structural features, including H-bond network and the {pi}-{pi} stacking interactions, and thermal stability are reported and discussed. None of the materials present a long-range magnetic order in the range of temperatures investigated from 300 K down to 1.8 K. - Graphical abstract: In same synthetic conditions, both the chemical and structural features of three transition metal(II) coordination polymers based on 2-carboxyethylphosphonate and 1-10 Prime -phenanthroline are influenced by the metal cation characteristics, leading to non-homologous materials with different properties, which show the high chemical versatility of this interesting system. Highlights: Black-Right-Pointing-Pointer Non-isostructural metal coordination polymers were synthesized under mild hydrothermal conditions. Black-Right-Pointing-Pointer Ligand's flexibility

  3. Copper-silver-titanium-tin filler metal for direct brazing of structural ceramics

    DOE Patents [OSTI]

    Moorhead, Arthur J.

    1988-04-05

    A method of joining ceramics and metals to themselves and to one another at about 800.degree. C. is described using a brazing filler metal consisting essentially of 35 to 50 at. % copper, 40 to 50 at. % silver, 1 to 15 at. % titanium, and 2 to 8 at. % tin. This method produces strong joints that can withstand high service temperatures and oxidizing environments.

  4. Copper-silver-titanium filler metal for direct brazing of structural ceramics

    DOE Patents [OSTI]

    Moorhead, Arthur J.

    1987-01-01

    A method of joining ceramics and metals to themselves and to one another is described using a brazing filler metal consisting essentially of 35 to 50 atomic percent copper, 15 to 50 atomic percent silver and 10 to 45 atomic percent titanium. This method produces strong joints that can withstand high service temperatures and oxidizing environments.

  5. Memristor comprising film with comb-like structure of nanocolumns of metal oxide embedded in a metal oxide matrix

    DOE Patents [OSTI]

    Driscoll, Judith L; Lee, ShinBuhm; Jia, Quanxi

    2015-05-12

    Films having a comb-like structure of nanocolumns of Sm.sub.2O.sub.3 embedded in a SrTiO.sub.3 formed spontaneously on a substrate surface by pulsed laser deposition. In an embodiment, the nanocolumns had a width of about 20 nm with spaces between nanocolumns of about 10 nm. The films exhibited memristive behavior, and were extremely uniform and tunable. Oxygen deficiencies were located at vertical interfaces between the nanocolumns and the matrix. The substrates may be single-layered or multilayered.

  6. Structural and photovoltaic properties of a-Si (SNc)/c-Si heterojunction fabricated by EBPVD technique

    SciTech Connect (OSTI)

    Demiro?lu, D.; Kazmanli, K.; Urgen, M.; Tatar, B.

    2013-12-16

    In last two decades sculptured thin films are very attractive for researches. Some properties of these thin films, like high porosity correspondingly high large surface area, controlled morphology; bring into prominence on them. Sculptured thin films have wide application areas as electronics, optics, mechanics, magnetic and chemistry. Slanted nano-columnar (SnC) thin films are a type of sculptured thin films. In this investigation SnC thin films were growth on n-type crystalline Si(100) and p-type crystalline Si(111) via ultra-high vacuum electron beam evaporation technique. The structural and morphological properties of the amorphous silicon thin films were investigated by XRD, Raman and FE-SEM analysis. According to the XRD and Raman analysis the structure of thin film was amorphous and FE-SEM analysis indicated slanted nano-columns were formed smoothly. Slanted nano-columns a-Si/c-Si heterojunction were prepared as using a photovoltaic device. In this regard we were researched photovoltaic properties of these heterojunction with current-voltage characterization under dark and illumination conditions. Electrical parameters were determined from the current-voltage characteristic in the dark conditions zero-bias barrier height ?{sub B0}?=?0.83?1.00eV; diode ideality factor ??=?11.71?10.73; series resistance R{sub s}?=?260?31.1 k? and shunt resistance R{sub sh}?=?25.71?63.5 M? SnC a-Si/n-Si and SnC a-Si/p-Si heterojunctions shows a pretty good photovoltaic behavior about 10{sup 3}- 10{sup 4} times. The obtained photovoltaic parameters are such as short circuit current density J{sub sc} 83-40 mA/m{sup 2}, open circuit voltage V{sub oc} 900-831 mV.

  7. Fabrication Flaw Density and Distribution In Repairs to Reactor Pressure Vessel and Piping Welds

    SciTech Connect (OSTI)

    GJ Schuster, FA Simonen, SR Doctor

    2008-04-01

    The Pacific Northwest National Laboratory is developing a generalized fabrication flaw distribution for the population of nuclear reactor pressure vessels and for piping welds in U.S. operating reactors. The purpose of the generalized flaw distribution is to predict component-specific flaw densities. The estimates of fabrication flaws are intended for use in fracture mechanics structural integrity assessments. Structural integrity assessments, such as estimating the frequency of loss-of-coolant accidents, are performed by computer codes that require, as input, accurate estimates of flaw densities. Welds from four different reactor pressure vessels and a collection of archived pipes have been studied to develop empirical estimates of fabrication flaw densities. This report describes the fabrication flaw distribution and characterization in the repair weld metal of vessels and piping. This work indicates that large flaws occur in these repairs. These results show that repair flaws are complex in composition and sometimes include cracks on the ends of the repair cavities. Parametric analysis using an exponential fit is performed on the data. The relevance of construction records is established for describing fabrication processes and product forms. An analysis of these records shows there was a significant change in repair frequency over the years when these components were fabricated. A description of repair flaw morphology is provided with a discussion of fracture mechanics significance. Fabrication flaws in repairs are characterized using optimized-access, high-sensitivity nondestructive ultrasonic testing. Flaw characterizations are then validated by other nondestructive evaluation techniques and complemented by destructive testing.

  8. The synthesis and structure of new transition metal lithium calcium nitride compounds

    SciTech Connect (OSTI)

    Hunting, Janet L.; Szymanski, Marta M.; Kowalsick, Amanda L.; Downie, Craig M.; DiSalvo, Francis J.

    2013-01-15

    Three new nitrides, Li{sub 3}Ca{sub 2}V{sub 0.79}Nb{sub 0.21}N{sub 4}, Li{sub 2}Ca{sub 2.67}Nb{sub 0.33}N{sub 3} and Li{sub 12}Ca{sub 9}W{sub 5}N{sub 20}, were synthesized in sealed niobium tubes using lithium nitride as a flux at temperatures ranging from 800 Degree-Sign C to 1050 Degree-Sign C. In all of these compounds, the transition metals are coordinated tetrahedrally by nitrogen; these tetrahedra are isolated from each other. Bullet Li{sub 3}Ca{sub 2}V{sub 0.79}Nb{sub 0.21}N{sub 4}, space group P2{sub 1}/m (no. 11), cell parameters a=5.7669(8) A, b=6.9123(9) A, c=6.0116(12) A, {beta}=90.727(9) Degree-Sign , Z=2, has a shared vanadium/niobium tetrahedral position which shares vertices with the tetrahedrally-coordinated lithium position. Bullet Li{sub 2}Ca{sub 2.67}Nb{sub 0.33}N{sub 3}, space group Req /o(3, Macron )m (no. 166), cell parameters a=3.6311(2) A, c=29.459(3) A, Z=3, contains a disordered tetrahedral calcium/niobium position, an octahedral calcium position and a triangularly coordinated lithium position. Bullet Li{sub 12}Ca{sub 9}W{sub 5}N{sub 20}, space group C2/c (no. 15), cell parameters a=27.7347(19) A, b=8.6652(6) A, c=10.7685(7) A, {beta}=110.314(2) Degree-Sign , Z=4, contains three crystallographically different tungsten positions as well as one disordered lithium position. - Graphical abstract: Crystal structure of Li{sub 3}Ca{sub 2}V{sub 0.79}Nb{sub 0.21}N{sub 4} depicting the chains of edge-sharing LiN{sub 4} (light hatching) and (V/Nb)N{sub 4} (dark hatching) tetrahedra viewed approximately along the [100] direction. Calcium atoms are shown as open circles and nitrogen atoms are colored black. Highlights: Black-Right-Pointing-Pointer Three new lithium calcium nitrides are synthesized. Black-Right-Pointing-Pointer Lithium nitride flux used in synthesis. Black-Right-Pointing-Pointer Structures contain isolated tetrahedrally coordinated transition metals. Black-Right-Pointing-Pointer Li{sub 12}Ca{sub 9}W{sub 5}N{sub 20} contains three

  9. Development of epitaxial AlxSc1-xN for artificially structured metal/semiconductor superlattice metamaterials

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sands, Timothy D.; Stach, Eric A.; Saha, Bivas; Saber, Sammy; Naik, Gururaj V.; Boltasseva, Alexandra; Kvam, Eric P.

    2015-02-01

    Epitaxial nitride rocksalt metal/semiconductor superlattices are emerging as a novel class of artificially structured materials that have generated significant interest in recent years for their potential application in plasmonic and thermoelectric devices. Though most nitride metals are rocksalt, nitride semiconductors in general have hexagonal crystal structure. We report rocksalt aluminum scandium nitride (Al,Sc)N alloys as the semiconducting component in epitaxial rocksalt metal/semiconductor superlattices. The AlxSc1-xN alloys when deposited directly on MgO substrates are stabilized in a homogeneous rocksalt (single) phase when x < 0.51. Employing 20 nm TiN as a seed layer on MgO substrates, the homogeneity range for stabilizingmore » the rocksalt phase has been extended to x < 0.82 for a 120 nm film. The rocksalt AlxSc1-xN alloys show moderate direct bandgap bowing with a bowing parameter, B = 1.41 ± 0.19 eV. The direct bandgap of metastable rocksalt AlN is extrapolated to be 4.70 ± 0.20 eV. The tunable lattice parameter, bandgap, dielectric permittivity, and electronic properties of rocksalt AlxSc1-xN alloys enable high quality epitaxial rocksalt metal/AlxSc1-xN superlattices with a wide range of accessible metamaterials properties.« less

  10. Ultrathin body GaSb-on-insulator p-channel metal-oxide-semiconductor field-effect transistors on Si fabricated by direct wafer bonding

    SciTech Connect (OSTI)

    Yokoyama, Masafumi Takenaka, Mitsuru; Takagi, Shinichi; Yokoyama, Haruki

    2015-02-16

    We have realized ultrathin body GaSb-on-insulator (GaSb-OI) on Si wafers by direct wafer bonding technology using atomic-layer deposition (ALD) Al{sub 2}O{sub 3} and have demonstrated GaSb-OI p-channel metal-oxide-semiconductor field-effect transistors (p-MOSFETs) on Si. A 23-nm-thick GaSb-OI p-MOSFET exhibits the peak effective mobility of ∼76 cm{sup 2}/V s. We have found that the effective hole mobility of the thin-body GaSb-OI p-MOSFETs decreases with a decrease in the GaSb-OI thickness or with an increase in Al{sub 2}O{sub 3} ALD temperature. The InAs passivation of GaSb-OI MOS interfaces can enhance the peak effective mobility up to 159 cm{sup 2}/V s for GaSb-OI p-MOSFETs with the 20-nm-thick GaSb layer.

  11. Metals 2000

    SciTech Connect (OSTI)

    Allison, S.W.; Rogers, L.C.; Slaughter, G.; Boensch, F.D.; Claus, R.O.; de Vries, M.

    1993-05-01

    This strategic planning exercise identified and characterized new and emerging advanced metallic technologies in the context of the drastic changes in global politics and decreasing fiscal resources. In consideration of a hierarchy of technology thrusts stated by various Department of Defense (DOD) spokesmen, and the need to find new and creative ways to acquire and organize programs within an evolving Wright Laboratory, five major candidate programs identified are: C-17 Flap, Transport Fuselage, Mach 5 Aircraft, 4.Fighter Structures, and 5. Missile Structures. These results were formed by extensive discussion with selected major contractors and other experts, and a survey of advanced metallic structure materials. Candidate structural applications with detailed metal structure descriptions bracket a wide variety of uses which warrant consideration for the suggested programs. An analysis on implementing smart skins and structures concepts is given from a metal structures perspective.

  12. Method of forming a thin unbacked metal foil

    SciTech Connect (OSTI)

    Duchane, D.V.; Barthell, B.L.

    1983-02-23

    The present invention relates generally to metal foils and methods of making the same. More particularly, this invention pertains to the fabrication of very thin, unbacked metal foils.

  13. Auger CVV spectra as a probe of the electronic structure of metallic glasses

    SciTech Connect (OSTI)

    Bevolo, A.J.; Severin, C.S.; Chen, C.W.

    1982-03-01

    Additional data on the Auger KVV spectra of Be and B in the Fe/sub 82/B/sub 18-x/Be/sub x/ ferromagnetic metallic glass system are presented. A weak but sharp peak in the B KVV spectra of the ternary alloys is identified with a Fe--B bonding state that is also present in the binary Fe--B metallic glass system. In addition to the previously reported 14-eV shift in the Be KVV energy for x< or =4 a narrowing of the linewidth of this transition from 8 to 5 eV is reported for the same composition range. Several models are considered to explain the unusual Be KVV Auger results for the ternary Fe--B--Be metallic glass system.

  14. Probing the structural dependency of photoinduced properties of colloidal quantum dots using metal-oxide photo-active substrates

    SciTech Connect (OSTI)

    Patty, Kira; Campbell, Quinn; Hamilton, Nathan; West, Robert G.; Sadeghi, Seyed M.; Mao, Chuanbin

    2014-09-21

    We used photoactive substrates consisting of about 1 nm coating of a metal oxide on glass substrates to investigate the impact of the structures of colloidal quantum dots on their photophysical and photochemical properties. We showed during irradiation these substrates can interact uniquely with such quantum dots, inducing distinct forms of photo-induced processes when they have different cores, shells, or ligands. In particular, our results showed that for certain types of core-shell quantum dot structures an ultrathin layer of a metal oxide can reduce suppression of quantum efficiency of the quantum dots happening when they undergo extensive photo-oxidation. This suggests the possibility of shrinking the sizes of quantum dots without significant enhancement of their non-radiative decay rates. We show that such quantum dots are not influenced significantly by Coulomb blockade or photoionization, while those without a shell can undergo a large amount of photo-induced fluorescence enhancement via such blockade when they are in touch with the metal oxide.

  15. Fabrication and characterization of Al{sub 2}O{sub 3} /Si composite nanodome structures for high efficiency crystalline Si thin film solar cells

    SciTech Connect (OSTI)

    Zhang, Ruiying; Zhu, Jian; Zhang, Zhen; Wang, Yanyan; Qiu, Bocang; Liu, Xuehua; Zhang, Jinping; Zhang, Yi; Fang, Qi; Ren, Zhong; Bai, Yu

    2015-12-15

    We report on our fabrication and characterization of Al{sub 2}O{sub 3}/Si composite nanodome (CND) structures, which is composed of Si nanodome structures with a conformal cladding Al{sub 2}O{sub 3} layer to evaluate its optical and electrical performance when it is applied to thin film solar cells. It has been observed that by application of Al{sub 2}O{sub 3}thin film coating using atomic layer deposition (ALD) to the Si nanodome structures, both optical and electrical performances are greatly improved. The reflectivity of less than 3% over the wavelength range of from 200 nm to 2000 nm at an incident angle from 0° to 45° is achieved when the Al{sub 2}O{sub 3} film is 90 nm thick. The ultimate efficiency of around 27% is obtained on the CND textured 2 μm-thick Si solar cells, which is compared to the efficiency of around 25.75% and 15% for the 2 μm-thick Si nanodome surface-decorated and planar samples respectively. Electrical characterization was made by using CND-decorated MOS devices to measure device’s leakage current and capacitance dispersion. It is found the electrical performance is sensitive to the thickness of the Al{sub 2}O{sub 3} film, and the performance is remarkably improved when the dielectric layer thickness is 90 nm thick. The leakage current, which is less than 4x10{sup −9} A/cm{sup 2} over voltage range of from -3 V to 3 V, is reduced by several orders of magnitude. C-V measurements also shows as small as 0.3% of variation in the capacitance over the frequency range from 10 kHz to 500 kHz, which is a strong indication of surface states being fully passivated. TEM examination of CND-decorated samples also reveals the occurrence of SiO{sub x} layer formed between the interface of Si and the Al{sub 2}O{sub 3} film, which is thin enough that ensures the presence of field-effect passivation, From our theoretical and experimental study, we believe Al{sub 2}O{sub 3} coated CND structures is a truly viable approach to achieving higher device

  16. Enforcement Letter, Diversified Metal Products, Inc- October 28, 2004

    Broader source: Energy.gov [DOE]

    Issued to Diversified Metal Products, Inc. related to Transportainer Fabrication Deficiencies for the Waste Isolation Pilot Plant

  17. Intermetallic alloy welding wires and method for fabricating the same

    DOE Patents [OSTI]

    Santella, Michael L.; Sikka, Vinod K.

    1996-01-01

    Welding wires for welding together intermetallic alloys of nickel aluminides, nickel-iron aluminides, iron aluminides, or titanium aluminides, and preferably including additional alloying constituents are fabricated as two-component, clad structures in which one component contains the primary alloying constituent(s) except for aluminum and the other component contains the aluminum constituent. This two-component approach for fabricating the welding wire overcomes the difficulties associated with mechanically forming welding wires from intermetallic alloys which possess high strength and limited ductilities at elevated temperatures normally employed in conventional metal working processes. The composition of the clad welding wires is readily tailored so that the welding wire composition when melted will form an alloy defined by the weld deposit which substantially corresponds to the composition of the intermetallic alloy being joined.

  18. Intermetallic alloy welding wires and method for fabricating the same

    DOE Patents [OSTI]

    Santella, M.L.; Sikka, V.K.

    1996-06-11

    Welding wires for welding together intermetallic alloys of nickel aluminides, nickel-iron aluminides, iron aluminides, or titanium aluminides, and preferably including additional alloying constituents are fabricated as two-component, clad structures in which one component contains the primary alloying constituent(s) except for aluminum and the other component contains the aluminum constituent. This two-component approach for fabricating the welding wire overcomes the difficulties associated with mechanically forming welding wires from intermetallic alloys which possess high strength and limited ductilities at elevated temperatures normally employed in conventional metal working processes. The composition of the clad welding wires is readily tailored so that the welding wire composition when melted will form an alloy defined by the weld deposit which substantially corresponds to the composition of the intermetallic alloy being joined. 4 figs.

  19. Linking structure to function: The search for active sites in non-platinum group metal oxygen reduction reaction catalysts

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Holby, Edward F.; Zelenay, Piotr

    2016-05-17

    Atomic-scale structures of oxygen reduction reaction (ORR) active sites in non-platinum group metal (non-PGM) catalysts, made from pyrolysis of carbon, nitrogen, and transition-metal (TM) precursors have been the subject of continuing discussion in the fuel cell electrocatalysis research community. We found that quantum chemical modeling is a path forward for understanding of these materials and how they catalyze the ORR. Here, we demonstrate through literature examples of how such modeling can be used to better understand non-PGM ORR active site relative stability and activity and how such efforts can also aid in the interpretation of experimental signatures produced by thesemore » materials.« less

  20. Nonwoven fabrics made from nickel and stainless steel fibers

    SciTech Connect (OSTI)

    Stepro, J.A.

    1996-11-01

    Nonwoven fabrics made from metal fiber have uses in a variety of applications due to their alloy composition, heat resistivity, conductivity and durability. Applications include: filtration media, battery current collectors, EMI/RFI shielding, insulation and conductive fillers. The ability to form metal fibers into fabrics of non-directionalized fiber webs has led to improved materials in a variety of applications. The non-orientation of the fibers provides a three dimensional structure that is filled with materials such as nickel hydroxide, cadmium oxide and MH alloy used for battery applications or to act as a contaminate trap for filtration. Fibers made from nickel, stainless steel, iron, cobalt, monel and copper are all possibilities for use in nonwoven fabrics. The density, porosity and thickness are all controllable during the web formation process. Fiber diameter is also a critical consideration when specific pore sizes are targeted. Fiber diameters are controlled during the fiber formation process. Diameters as low as 6 microns in stainless steel and 9 microns in other alloys are possible.

  1. A nanotubular metal-organic framework with permanent porosity : structure analysis and gas sorption studies.

    SciTech Connect (OSTI)

    Ma, S.; Simmons, J. M.; Li, J. R.; Yuan, D.; Weng, W.; Liu, D. J.; Zhou, H. C.; Chemical Sciences and Engineering Division; Texas A&M Univ.; NIST

    2009-01-01

    A nanotubular metal-organic framework, PCN-19, was constructed based on a micro3-oxo-trinickel basic carboxylate secondary building unit (SBU) and the 9,10-anthracenedicarboxylate ligand; its permanent porosity was confirmed by N2 adsorption isotherms, and its H2 storage performances were evaluated under both low and high pressures at 77 K.

  2. Fuel Fabrication Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Programs CONVERT Fuel Fabrication Development (CONVERT) The nation looks to our uranium-processing capabilities to optimize fabrication of a fuel, which will enable certain ...

  3. The large-scale structure of the halo of the Andromeda galaxy. I. Global stellar density, morphology and metallicity properties

    SciTech Connect (OSTI)

    Ibata, Rodrigo A.; Martin, Nicolas F.; Lewis, Geraint F.; McConnachie, Alan W.; Irwin, Michael J.; Ferguson, Annette M. N.; Bernard, Edouard J.; Peñarrubia, Jorge; Babul, Arif; Navarro, Julio; Chapman, Scott C.; Collins, Michelle; Fardal, Mark; Mackey, A. D.; Rich, R. Michael; Tanvir, Nial; Widrow, Lawrence

    2014-01-10

    We present an analysis of the large-scale structure of the halo of the Andromeda galaxy, based on the Pan-Andromeda Archeological Survey (PAndAS), currently the most complete map of resolved stellar populations in any galactic halo. Despite the presence of copious substructures, the global halo populations follow closely power-law profiles that become steeper with increasing metallicity. We divide the sample into stream-like populations and a smooth halo component (defined as the population that cannot be resolved into spatially distinct substructures with PAndAS). Fitting a three-dimensional halo model reveals that the most metal-poor populations ([Fe/H]<−1.7) are distributed approximately spherically (slightly prolate with ellipticity c/a = 1.09 ± 0.03), with only a relatively small fraction residing in discernible stream-like structures (f {sub stream} = 42%). The sphericity of the ancient smooth component strongly hints that the dark matter halo is also approximately spherical. More metal-rich populations contain higher fractions of stars in streams, with f {sub stream} becoming as high as 86% for [Fe/H]>−0.6. The space density of the smooth metal-poor component has a global power-law slope of γ = –3.08 ± 0.07, and a non-parametric fit shows that the slope remains nearly constant from 30 kpc to ∼300 kpc. The total stellar mass in the halo at distances beyond 2° is ∼1.1 × 10{sup 10} M {sub ☉}, while that of the smooth component is ∼3 × 10{sup 9} M {sub ☉}. Extrapolating into the inner galaxy, the total stellar mass of the smooth halo is plausibly ∼8 × 10{sup 9} M {sub ☉}. We detect a substantial metallicity gradient, which declines from ([Fe/H]) = –0.7 at R = 30 kpc to ([Fe/H]) = –1.5 at R = 150 kpc for the full sample, with the smooth halo being ∼0.2 dex more metal poor than the full sample at each radius. While qualitatively in line with expectations from cosmological simulations, these observations are of great importance as

  4. Fabrication of thin-wall hollow nickel spheres and low density syntactic foams

    SciTech Connect (OSTI)

    Clancy, R.B.; Sanders, T.H. Jr.; Cochran, J.K.

    1991-12-31

    A process has been developed to fabricate thin-wall hollow spheres from conventional oxide powders at room temperature. The polymer- bonded powder shells are fired in air to sinter the walls, leaving the shells either impervious or porous. Alternatively, the oxide shells can be preferentially reduced to produce thin-wall hollow metal spheres which can be bonded together to produce an ultra light weight closed-cell foam. Processing and properties of this class of low density structures will be discussed.

  5. Electrochemical fabrication of capacitors

    DOE Patents [OSTI]

    Mansour, Azzam N. (Fairfax Sta., VA); Melendres, Carlos A. (Lemont, IL)

    1999-01-01

    A film of nickel oxide is anodically deposited on a graphite sheet held in osition on an electrochemical cell during application of a positive electrode voltage to the graphite sheet while exposed to an electrolytic nickel oxide solution within a volumetrically variable chamber of the cell. An angularly orientated x-ray beam is admitted into the cell for transmission through the deposited nickel oxide film in order to obtain structural information while the film is subject to electrochemical and in-situ x-ray spectroscopy from which optimum film thickness, may be determined by comparative analysis for capacitor fabrication purposes.

  6. Methods for fabricating a micro heat barrier

    DOE Patents [OSTI]

    Marshall, Albert C.; Kravitz, Stanley H.; Tigges, Chris P.; Vawter, Gregory A.

    2004-01-06

    Methods for fabricating a highly effective, micron-scale micro heat barrier structure and process for manufacturing a micro heat barrier based on semiconductor and/or MEMS fabrication techniques. The micro heat barrier has an array of non-metallic, freestanding microsupports with a height less than 100 microns, attached to a substrate. An infrared reflective membrane (e.g., 1 micron gold) can be supported by the array of microsupports to provide radiation shielding. The micro heat barrier can be evacuated to eliminate gas phase heat conduction and convection. Semi-isotropic, reactive ion plasma etching can be used to create a microspike having a cusp-like shape with a sharp, pointed tip (<0.1 micron), to minimize the tip's contact area. A heat source can be placed directly on the microspikes. The micro heat barrier can have an apparent thermal conductivity in the range of 10.sup.-6 to 10.sup.-7 W/m-K. Multiple layers of reflective membranes can be used to increase thermal resistance.

  7. A New Structural Form in the SAM/Metal-Dependent O;#8209;Methyltransfe...

    Office of Scientific and Technical Information (OSTI)

    ... Sponsoring Org: OTHERNIH Country of Publication: United States Language: ENGLISH Subject: 60 APPLIED LIFE SCIENCES; ANTIBIOTICS; BIOSYNTHESIS; CRYSTAL STRUCTURE; ENZYMES; ...

  8. Application of Neutron-Absorbing Structural-Amorphous Metal (SAM) Coatings for Spent Nuclear Fuel (SNF) Container to Enhance Criticality Safety Control

    SciTech Connect (OSTI)

    Choi, J

    2007-01-12

    This report describes the analysis and modeling approaches used in the evaluation for criticality-control applications of the neutron-absorbing structural-amorphous metal (SAM) coatings. The applications of boron-containing high-performance corrosion-resistant material (HPCRM)--amorphous metal as the neutron-absorbing coatings to the metallic support structure can enhance criticality safety controls for spent nuclear fuel in baskets inside storage containers, transportation casks, and disposal containers. The use of these advanced iron-based, corrosion-resistant materials to prevent nuclear criticality in transportation, aging, and disposal containers would be extremely beneficial to the nuclear waste management programs.

  9. Structure of a Putative Metal-Chelate Type ABC Transporter: An

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Inward-facing Conformation Putative Metal-Chelate Type ABC Transporter: An Inward-facing Conformation ATP-binding Cassette (ABC) transporters represent a large family of integral membrane proteins, which are found in all organisms from mammals to bacteria. These proteins transport substrates across a biological membrane powered by the energy of adenosine triphosphate (ATP) hydrolysis. ABC transporters primarily consist of two transmembrane domains (TMDs) and two nucleotide binding domains

  10. Ion traps fabricated in a CMOS foundry

    SciTech Connect (OSTI)

    Mehta, K. K.; Ram, R. J.; Eltony, A. M.; Chuang, I. L.; Bruzewicz, C. D.; Sage, J. M. Chiaverini, J.

    2014-07-28

    We demonstrate trapping in a surface-electrode ion trap fabricated in a 90-nm CMOS (complementary metal-oxide-semiconductor) foundry process utilizing the top metal layer of the process for the trap electrodes. The process includes doped active regions and metal interconnect layers, allowing for co-fabrication of standard CMOS circuitry as well as devices for optical control and measurement. With one of the interconnect layers defining a ground plane between the trap electrode layer and the p-type doped silicon substrate, ion loading is robust and trapping is stable. We measure a motional heating rate comparable to those seen in surface-electrode traps of similar size. This demonstration of scalable quantum computing hardware utilizing a commercial CMOS process opens the door to integration and co-fabrication of electronics and photonics for large-scale quantum processing in trapped-ion arrays.

  11. Syntheses and crystal structures of a series of new divalent metal phosphonates with imino-bis(methylphosphonic acid)

    SciTech Connect (OSTI)

    Yang Bingping; Prosvirin, Andrey V.; Zhao, Han-Hua; Mao, Jiang-Gao . E-mail: mjg@ms.fjirsm.ac.cn

    2006-01-15

    Hydrothermal reactions of divalent transition metal salts with imino-bis(methylphosphonic acid), NH(CH{sub 2}PO{sub 3}H{sub 2}){sub 2} (H{sub 4}L) afforded three new metal phosphonates, namely, Cu[NH(CH{sub 2}PO{sub 3}H){sub 2}] 1, {l_brace}Co[NH{sub 2}(CH{sub 2}PO{sub 3}H)(CH{sub 2}PO{sub 3})](H{sub 2}O){sub 2}{r_brace}.H{sub 2}O 2 and Mn[NH{sub 2}(CH{sub 2}PO{sub 3}H)(CH{sub 2}PO{sub 3})](H{sub 2}O) 3. When HO{sub 2}C(CH{sub 2}){sub 3}N(CH{sub 2}PO{sub 3}H{sub 2}){sub 2} was used as the phosphonate ligand and 4,4'-bipy as the second metal linker, {l_brace}Cu{sub 4}[NH(CH{sub 2}PO{sub 3}){sub 2}]{sub 2}(4,4'-bipy)(H{sub 2}O){sub 4}{r_brace}.9H{sub 2}O 4 with a pillared layered architecture was obtained. The NH(CH{sub 2}PO{sub 3}){sub 2} anion resulted from the cleavage of the HO{sub 2}C(CH{sub 2}){sub 3}-group during the reaction. Although compounds 1-3 have a same M/L ratio (1:1), they exhibit totally different structures.Compound 1 has a linear chain structure, in which each pair of square-pyramidal coordinated copper(II) ions are bridged by two phosphonate oxygen atoms to form a Cu{sub 2}O{sub 2} dimeric unit, and such dimeric units are further interconnected via phosphonate groups to form a [010] chain. Compound 2 has a layered architecture built from CoO{sub 6} octahedra bridged by phosphonate ligands. In compound 3, the interconnection of the manganese(II) ions by bridging imino-diphosphonate ligands leads to a 3D network. Compound 4 has a pillar-layered structure, the layers composed of Cu(II) ions bridged by aminodiphosphonate ligands are interconnected by 4,4'-bipy ligands to form channels along c-axis. Several factors that affect the structures of the metal phosphonates formed have also been discussed. Compounds 2 and 3 show predominant antiferromagnetic interactions between magnetic centers. -- Graphical abstract: Four new metal phosphonates, namely, Cu[NH(CH{sub 2}PO{sub 3}H){sub 2}] 1, {l_brace}Co[NH{sub 2}(CH{sub 2}PO{sub 3}H)(CH{sub 2}PO{sub 3})](H

  12. Synthesis, Structure Determination, and Hydrogen Sorption Studies of New Metal-Organic Frameworks Using Triazole and Naphthalenedicarboxylic Acid

    SciTech Connect (OSTI)

    Park,H.; Britten, J.; Mueller, U.; Lee, J.; Li, J.; Parise, J.

    2007-01-01

    Two new metal-organic framework compounds were synthesized under solvothermal conditions using Zn{sup 2+} ion, 1,2,4-triazole (TRZ), and 1,4- and 2,6-naphthalenedicarboxylic acids (NDC): Zn{sub 4}(TRZ){sub 4}(1,4-NDC){sub 2}-2DMF-2H{sub 2}O (1) and Zn{sub 4}(TRZ){sub 4}(2,6-NDC){sub 2}-2DMF-4H{sub 2}O (2). Their crystal structures were characterized by single-crystal X-ray diffraction. Structure 1 crystallizes in the P2{sub 1}/n space group with a = 13.609(2) {angstrom}, b = 27.181(5){angstrom}, c = 13.617(3) {angstrom}, {beta} = 92.46(1){sup o}, V = 5032.4(16) {angstrom}{sup 3}, and Z = 4. Structure 2 crystallizes in orthorhombic Pna2{sub 2} space group with a = 30.978(6) {angstrom}, b = 12.620(3) {angstrom}, c = 13.339(3) {angstrom}, V = 5215(2) {angstrom}{sup 3}, and Z = 4. Both structures are analogues of the previously reported Zn{sub 4}(TRZ){sub 4}(1,4-BDC){sub 2}-16H{sub 2}O where the layers of Zn-triazole moieties are pillared by aromatic dicarboxylates to create 3-D open frameworks. Nitrogen sorption studies revealed that these structures have Brunaer-Emmett-Teller (BET) surface areas of 362.1-584.1 m{sup 2}/g. Hydrogen sorption experiments showed they can store 0.84-1.09 wt % H{sub 2} at 77 K and 1 atm. Although they do not contain large pores or surface areas, they possess the hydrogen sorption capacities comparable to those of highly porous metal-organic frameworks.

  13. Band structure engineering of anatase TiO{sub 2} by metal-assisted P-O coupling

    SciTech Connect (OSTI)

    Wang, Jiajun; Meng, Qiangqiang; Huang, Jing; School of Materials and Chemical Engineering, Anhui Jianzhu University, Hefei, Anhui 230601 ; Li, Qunxiang Yang, Jinlong; Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026

    2014-05-07

    In this work, we demonstrate that the metal-assisted P-O coupling is an effective approach to improve the photoelectrochemical properties of TiO{sub 2}. The (Sc + P) and (In + P) codoping effects on electronic structures and photocatalytic activities of anatase TiO{sub 2} are examined by performing hybrid density functional theory calculations. It is found that the coupling of P dopant with the second-nearest neighboring O atom assisted by acceptor metals (Sc/In) leads to the fully occupied and delocalized intermediate bands within the band gap of anatase TiO{sub 2}, which is driven by the P-O antibonding states (π*). This metal-assisted P-O coupling can prevent the recombination of photogenerated electron-hole pairs and effectively reduce the band gap of TiO{sub 2}. Moreover, the band edge alignments in (Sc + P) and (In + P) codoped anatase TiO{sub 2} are desirable for water-splitting. The calculated optical absorption curves indicate that (Sc + P) and (In + P) codoping in anatase TiO{sub 2} can also effectively enhance the visible light absorption.

  14. Advanced strategic interceptor composite structures

    SciTech Connect (OSTI)

    Ennis, D.H.; Patty, C.E. Jr.

    1993-12-31

    Launch mass reduction, stiffness increase, and primary bending mode frequency increase remain the prime focus of the US Army Strategic Defense Command (USASDC) advanced composite material development and testing program. The initial activity was directed toward fabrication of a demonstration structure consistent with the Ground-Based Interceptor (GBI) ERIS flight design. The objectives of this phase of the work were three-fold: selection of the optimum composite materials; concurrent bonding and joining technology development; evaluation of the performance of each test structure relative to its metal counterpart and relative to alternative composites. The effort exceeded model predictions. The resin matrix composite structure mass was 52% lower than the metal design. Modal testing demonstrated a 200% increase in stiffness and a 41% gain in first mode bending frequency. Given the demonstrated level of success, an additional element was added to the task focus: cost-effective, mass quantity fabrication techniques. Single step technology has been successfully applied to a relatively simple thermoset based bridge structure. Two step molding and assembly have been demonstrated for a GBI-X class thermoplastic structure. Preliminary testing has been completed to isolate and resolve problems associated with single step fabrication of the more complex GBI-X class structure. Fabrication of an appropriate test article as preparation for modal survey evaluation of the latter is in progress. Results are presented. Future program directions are summarized.

  15. Fabrication of transparent ceramics using nanoparticles

    DOE Patents [OSTI]

    Cherepy, Nerine J; Tillotson, Thomas M; Kuntz, Joshua D; Payne, Stephen A

    2012-09-18

    A method of fabrication of a transparent ceramic using nanoparticles synthesized via organic acid complexation-combustion includes providing metal salts, dissolving said metal salts to produce an aqueous salt solution, adding an organic chelating agent to produce a complexed-metal sol, heating said complexed-metal sol to produce a gel, drying said gel to produce a powder, combusting said powder to produce nano-particles, calcining said nano-particles to produce oxide nano-particles, forming said oxide nano-particles into a green body, and sintering said green body to produce the transparent ceramic.

  16. Metal oxide films on metal

    DOE Patents [OSTI]

    Wu, Xin D. (Los Alamos, NM); Tiwari, Prabhat (Los Alamos, NM)

    1995-01-01

    A structure including a thin film of a conductive alkaline earth metal oxide selected from the group consisting of strontium ruthenium trioxide, calcium ruthenium trioxide, barium ruthenium trioxide, lanthanum-strontium cobalt oxide or mixed alkaline earth ruthenium trioxides thereof upon a thin film of a noble metal such as platinum is provided.

  17. Modification of Thermal Emission via Metallic Photonic Crystals

    SciTech Connect (OSTI)

    Norris, David J.; Stein, Andreas; George, Steven M.

    2012-07-30

    Photonic crystals are materials that are periodically structured on an optical length scale. It was previously demonstrated that the glow, or thermal emission, of tungsten photonic crystals that have a specific structure - known as the 'woodpile structure' - could be modified to reduce the amount of infrared radiation from the material. This ability has implications for improving the efficiency of thermal emission sources and for thermophotovoltaic devices. The study of this effect had been limited because the fabrication of metallic woodpile structures had previously required a complex fabrication process. In this project we pursued several approaches to simplify the fabrication of metallic photonic crystals that are useful for modification of thermal emission. First, we used the self-assembly of micrometer-scale spheres into colloidal crystals known as synthetic opals. These opals can then be infiltrated with a metal and the spheres removed to obtain a structure, known as an inverse opal, in which a three-dimensional array of bubbles is embedded in a film. Second, we used direct laser writing, in which the focus of an infrared laser is moved through a thin film of photoresist to form lines by multiphoton polymerization. Proper layering of such lines can lead to a scaffold with the woodpile structure, which can be coated with a refractory metal. Third, we explored a completely new approach to modified thermal emission - thin metal foils that contain a simple periodic surface pattern, as shown in Fig. 1. When such a foil is heated, surface plasmons are excited that propagate along the metal interface. If these waves strike the pattern, they can be converted into thermal emission with specific properties.

  18. Polymorphous computing fabric

    DOE Patents [OSTI]

    Wolinski, Christophe Czeslaw; Gokhale, Maya B.; McCabe, Kevin Peter

    2011-01-18

    Fabric-based computing systems and methods are disclosed. A fabric-based computing system can include a polymorphous computing fabric that can be customized on a per application basis and a host processor in communication with said polymorphous computing fabric. The polymorphous computing fabric includes a cellular architecture that can be highly parameterized to enable a customized synthesis of fabric instances for a variety of enhanced application performances thereof. A global memory concept can also be included that provides the host processor random access to all variables and instructions associated with the polymorphous computing fabric.

  19. Fabricated Metals Footprint, October 2012 (MECS 2006)

    SciTech Connect (OSTI)

    2012-10-19

    Manufacturing energy and carbon footprints map energy consumption and losses, as well as greenhouse gas emissions from fuel consumption, for fifteen individual U.S. manufacturing sectors (representing 94% of all manufacturing energy use) and for the entire manufacturing sector. By providing energy consumption and emissions figures broken down by end use, the footprints allow for comparisons of energy use and emissions sources both within and across sectors. The footprints portray a large amount of information for each sector, including: * Comparison of the energy generated offsite and transferred to facilities versus that generated onsite * Nature and amount of energy consumed by end use within facilities * Magnitude of the energy lost both outside and inside facility boundaries * Magnitude of the greenhouse gas emissions released as a result of manufacturing energy use. Energy losses indicate opportunities to improve efficiency by implementing energy management best practices, upgrading energy systems, and developing new technologies. Footprints are available below for each sector. Data is presented in two levels of detail. The first page provides a high- level snapshot of the offsite and onsite energy flow, and the second page shows the detail for onsite generation and end use of energy. The principle energy use data source is the U.S. Department of Energy (DOE) Energy Information Administration's (EIA's) Manufacturing Energy Consumption Survey (MECS), for consumption in the year 2006, when the survey was last completed.

  20. Fabricated Metals Footprint, December 2010 (MECS 2006)

    SciTech Connect (OSTI)

    none,

    2010-06-01

    Manufacturing energy and carbon footprints map fuel energy consumption and losses, as well as greenhouse gas emissions from fuel consumption, for fifteen individual U.S. manufacturing sectors (representing 94% of all manufacturing energy use) and for the entire manufacturing industry sector. By providing energy consumption and emissions figures broken down by end use, the footprints allow for comparisons of energy use and emissions sources both within and across sectors. The footprints portray a large amount of information for each sector, including: * Comparison of the energy generated offsite and transferred to facilities versus that generated onsite * Nature and amount of energy consumed by end use within facilities * Magnitude of the energy lost both outside and inside facility boundaries * Magnitude of the greenhouse gas emissions released due to the combustion of fuel. Energy losses indicate opportunities to improve efficiency by implementing energy management best practices, upgrading energy systems, and developing new technologies. Footprints are available below for each sector. Data is presented in two levels of detail. The first page provides a high-level snapshot of the offsite and onsite energy flow, and the second page shows the detail for onsite generation and end use of energy. The energy data is primarily provided by the U.S. Department of Energy (DOE) Energy Information Administration's (EIA's) Manufacturing Energy Consumption Survey (MECS), and therefore reflects consumption in the year 2006, when the survey was last completed.

  1. Planarization of metal films for multilevel interconnects by pulsed laser heating

    DOE Patents [OSTI]

    Tuckerman, David B.

    1987-01-01

    In the fabrication of multilevel integrated circuits, each metal layer is planarized by heating to momentarily melt the layer. The layer is melted by sweeping laser pulses of suitable width, typically about 1 microsecond duration, over the layer in small increments. The planarization of each metal layer eliminates irregular and discontinuous conditions between successive layers. The planarization method is particularly applicable to circuits having ground or power planes and allows for multilevel interconnects. Dielectric layers can also be planarized to produce a fully planar multilevel interconnect structure. The method is useful for the fabrication of VLSI circuits, particularly for wafer-scale integration.

  2. Local Probe into the Atomic Structure of Metallic Glasses using EELS

    SciTech Connect (OSTI)

    Alamgir, F.M.; Ito, Y. Schwarz, R.B.

    1999-11-30

    Electron energy loss spectroscopy (EELS) is used to extract information on the topological arrangement of atoms around Pd in the bulk-glass-forming Pd{sub 60}Ni{sub 20}P{sub 20}. It is found that the environment around Pd in the glass is only a slight modification of the Pd crystalline structure. However, the modification is enough to allow this alloy to form a glass in bulk. In examining the differences between the structure of crystalline Pd and glassy Pd{sub 60}Ni{sub 20}P{sub 20} it is concluded that incorporation of Ni and P into the structure frustrates the structure enough that glass formation becomes easy.

  3. Apparatus and method for fabricating a microbattery

    DOE Patents [OSTI]

    Shul, Randy J.; Kravitz, Stanley H.; Christenson, Todd R.; Zipperian, Thomas E.; Ingersoll, David

    2002-01-01

    An apparatus and method for fabricating a microbattery that uses silicon as the structural component, packaging component, and semiconductor to reduce the weight, size, and cost of thin film battery technology is described. When combined with advanced semiconductor packaging techniques, such a silicon-based microbattery enables the fabrication of autonomous, highly functional, integrated microsystems having broad applicability.

  4. Effects of Ga substitution on the structural and magnetic properties of half metallic Fe{sub 2}MnSi Heusler compound

    SciTech Connect (OSTI)

    Pedro, S. S. Caraballo Vivas, R. J.; Andrade, V. M.; Cruz, C.; Paixão, L. S.; Contreras, C.; Costa-Soares, T.; Rocco, D. L.; Reis, M. S.; Caldeira, L.; Coelho, A. A.; Carvalho, A. Magnus G.

    2015-01-07

    The so-called half-metallic magnets have been proposed as good candidates for spintronic applications due to the feature of exhibiting a hundred percent spin polarization at the Fermi level. Such materials follow the Slater-Pauling rule, which relates the magnetic moment with the valence electrons in the system. In this paper, we study the bulk polycrystalline half-metallic Fe{sub 2}MnSi Heusler compound replacing Si by Ga to determine how the Ga addition changes the magnetic, the structural, and the half-metal properties of this compound. The material does not follow the Slater-Pauling rule, probably due to a minor structural disorder degree in the system, but a linear dependence on the magnetic transition temperature with the valence electron number points to the half-metallic behavior of this compound.

  5. Structural evolution across the insulator-metal transition in oxygen-deficient BaTiO3-δ studied using neutron total scattering and Rietveld analysis

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jeong, I.-K.; Lee, Seunghun; Jeong, Se-Young; Won, C. J.; Hur, N.; Llobet, A.

    2011-08-29

    Oxygen-deficient BaTiO3-δ exhibits an insulator-metal transition with increasing δ. We performed neutron total scattering measurements to study structural evolution across an insulator-metal transition in BaTiO3-δ. Despite its significant impact on resistivity, slight oxygen reduction (δ=0.09) caused only a small disturbance on the local doublet splitting of Ti-O bond. This finding implies that local polarization is well preserved under marginal electric conduction. In the highly oxygen-deficient metallic state (δ=0.25), however, doublet splitting of the Ti-O bond became smeared. The smearing of the local Ti-O doublet is complemented with long-range structural analysis and demonstrates that the metallic conduction in the highly oxygen-reducedmore » BaTiO3-δ is due to the appearance of nonferroelectric cubic lattice.« less

  6. Fabrication of boron sputter targets

    DOE Patents [OSTI]

    Makowiecki, Daniel M.; McKernan, Mark A.

    1995-01-01

    A process for fabricating high density boron sputtering targets with sufficient mechanical strength to function reliably at typical magnetron sputtering power densities and at normal process parameters. The process involves the fabrication of a high density boron monolithe by hot isostatically compacting high purity (99.9%) boron powder, machining the boron monolithe into the final dimensions, and brazing the finished boron piece to a matching boron carbide (B.sub.4 C) piece, by placing aluminum foil there between and applying pressure and heat in a vacuum. An alternative is the application of aluminum metallization to the back of the boron monolithe by vacuum deposition. Also, a titanium based vacuum braze alloy can be used in place of the aluminum foil.

  7. Fabrication of boron sputter targets

    DOE Patents [OSTI]

    Makowiecki, D.M.; McKernan, M.A.

    1995-02-28

    A process is disclosed for fabricating high density boron sputtering targets with sufficient mechanical strength to function reliably at typical magnetron sputtering power densities and at normal process parameters. The process involves the fabrication of a high density boron monolithe by hot isostatically compacting high purity (99.9%) boron powder, machining the boron monolithe into the final dimensions, and brazing the finished boron piece to a matching boron carbide (B{sub 4}C) piece, by placing aluminum foil there between and applying pressure and heat in a vacuum. An alternative is the application of aluminum metallization to the back of the boron monolithe by vacuum deposition. Also, a titanium based vacuum braze alloy can be used in place of the aluminum foil. 7 figs.

  8. Computational modeling of structure of metal matrix composite in centrifugal casting process

    SciTech Connect (OSTI)

    Zagorski, Roman [Department of Electrotechnology, Faculty of Materials Science and Metallurgy, Silesian University of Technology, ul. Krasinskiego 8, 40-019, Katowice (Poland)

    2007-04-07

    The structure of alumina matrix composite reinforced with crystalline particles obtained during centrifugal casting process are studied. Several parameters of cast process like pouring temperature, temperature, rotating speed and size of casting mould which influent on structure of composite are examined. Segregation of crystalline particles depended on other factors such as: the gradient of density of the liquid matrix and reinforcement, thermal processes connected with solidifying of the cast, processes leading to changes in physical and structural properties of liquid composite are also investigated. All simulation are carried out by CFD program Fluent. Numerical simulations are performed using the FLUENT two-phase free surface (air and matrix) unsteady flow model (volume of fluid model - VOF) and discrete phase model (DPM)

  9. Novel concepts in weld metal science: Role of gradients and composite structure. Annual technical progress report, January 1, 1991--December 31, 1991

    SciTech Connect (OSTI)

    Matlock, D.K.; Olson, D.L.

    1991-12-01

    The effects of compositional and microstructural gradients on weld metal properties are being investigated. Crack propagation is solidified alloy structures is being characterized as to solidification orientation and the profile of the compositional variations. The effects of compositional gradients, are considered based on a thermodynamic analysis, referred to as the Cahn-Hillard analysis, which describes the degree to which a local surface energy is modified by the presence of a compositional gradient. The analysis predicts that both ductile and brittle fracture mechanisms are enhanced by the presence of a composition gradient. Special techniques to produce laboratory samples with microstructures which simulate the composition and microstructure gradients in solidified weld metal are used, along with appropriate mathematical models, to evaluate the properties of the composite weld metals. The composite modeling techniques are being applied to describe the effects of compositional and microstructural gradients on weld metal properties in Ni-Cu alloys. The development of metal matrix composition weld deposits on austenitic stainless steels has been studied. The particulate metal matrix composites were produced with ceramic or refractory metal powder filled cored wire, which was gas tungsten arc and gas metal arc welded.

  10. FINAL TECHNICAL REPORT Synthetic, Structural and Mechanistic Investigations of Olefin Polymerization Catalyzed by Early Transition Metal Compounds

    SciTech Connect (OSTI)

    Bercaw, John E.

    2014-05-23

    The goal of this project is to develop new catalysts and provide understanding of ligand effects on catalyst composition in order to guide development of superior catalyst systems for polymerization of olefins. Our group is designing and synthesizing new “LX2”,“pincer” type ligands and complexing early transition metals to afford precatalysts. In a collaboration with Hans Brintzinger from the University of Konstanz, we are also examining the structures of the components of catalyst systems obtained from reaction of zirconocene dichlorides with aluminum alkyls and aluminum hydrides. Such systems are currently used commercially to produce polyolefins, but the nature of the active and dormant species as well as the mechanisms of their interconversions are not understood. New information on catalyst design and performance may lead to new types of polymers and/or new chemical transformations between hydrocarbons and transition metal centers, ultimately contributing to the development of catalytic reactions for the production of fuels, commodity and polymeric materials.

  11. Dominance of interface chemistry over the bulk properties in determining the electronic structure of epitaxial metal/perovskite oxide heterojunctions

    SciTech Connect (OSTI)

    Chambers, Scott A.; Du, Yingge; Gu, Meng; Droubay, Timothy C.; Hepplestone, Steven; Sushko, Petr

    2015-06-09

    We show that despite very similar crystallographic properties and work function values in the bulk, epitaxial Fe and Cr metallizations on Nb:SrTiO3(001) generate completely different heterojunction electronic properties. Cr is Ohmic whereas Fe forms a Schottky barrier with a barrier height of 0.50 eV. This contrast arises because of differences in interface chemistry. In contrast to Cr [Chambers, S. A. et al., Adv. Mater. 2013, 25, 4001.], Fe exhibits a +2 oxidation state and occupies Ti sites in the perovskite lattice, resulting in negligible charge transfer to Ti, upward band bending, and Schottky barrier formation. The differences between Cr and Fe are understood by performing first-principles calculations of the energetics of defect formation which corroborate the observed interface chemistry and structure.

  12. Neutron generators with size scalability, ease of fabrication and multiple ion source functionalities

    DOE Patents [OSTI]

    Elizondo-Decanini, Juan M

    2014-11-18

    A neutron generator is provided with a flat, rectilinear geometry and surface mounted metallizations. This construction provides scalability and ease of fabrication, and permits multiple ion source functionalities.

  13. Micro structural studies of PVA doped with metal oxide nanocomposites films

    SciTech Connect (OSTI)

    Kumar, N. B. Rithin [Dept. of Physics, Srinivas School of Engineering, Mangalore-575025, Karnataka (India); Crasta, Vincent, E-mail: vcrasta@yahoo.com; Viju, F. [Dept. of Physics, St. Joseph Engineering College, Vamanjoor, Mangalore-575028, Karnataka (India); Praveen, B. M. [Dept. of Chemistry, Srinivas School of Engineering, Mangalore-575025, Karnataka (India); Shreeprakash, B. [Dept. of Mechanical Engineering, Srinivas School of Engineering, Mangalore-575025, Karnataka (India)

    2014-04-24

    Nanostructured PVA polymer composites are of rapidly growing interest because of their sized-coupled properties. The present article deals with both ZnO and WO{sub 3} embedded in a polyvinyl alcohol (PVA) matrix using a solvent casting method. These films were characterized using FTIR, XRD, and SEM techniques. The FTIR spectra of the doped PVA shows shift in the bands, which can be understood on the basis of intra/inter molecular hydrogen bonding with the adjacent OH group of PVA. The phase homogeneity and morphology of the polymer composites have been analyzed using scanning electron microscope (SEM). The crystal structure and crystallinity of polymer nanocomposites were studied by X-ray diffraction technique (XRD). Thus due to the interaction of dopant and complex formation, the structural repositioning takes place and crystallinity of the nanocomposites decreases.

  14. Photochemical cutting of fabrics

    DOE Patents [OSTI]

    Piltch, Martin S.

    1994-01-01

    Apparatus for the cutting of garment patterns from one or more layers of fabric. A laser capable of producing laser light at an ultraviolet wavelength is utilized to shine light through a pattern, such as a holographic phase filter, and through a lens onto the one or more layers of fabric. The ultraviolet laser light causes rapid photochemical decomposition of the one or more layers of fabric, but only along the pattern. The balance of the fabric of the one or more layers of fabric is undamaged.

  15. Method to fabricate layered material compositions

    DOE Patents [OSTI]

    Fleming, James G.; Lin, Shawn-Yu

    2002-01-01

    A new class of processes suited to the fabrication of layered material compositions is disclosed. Layered material compositions are typically three-dimensional structures which can be decomposed into a stack of structured layers. The best known examples are the photonic lattices. The present invention combines the characteristic features of photolithography and chemical-mechanical polishing to permit the direct and facile fabrication of, e.g., photonic lattices having photonic bandgaps in the 0.1-20.mu. spectral range.

  16. Method to fabricate layered material compositions

    DOE Patents [OSTI]

    Fleming, James G.; Lin, Shawn-Yu

    2004-11-02

    A new class of processes suited to the fabrication of layered material compositions is disclosed. Layered material compositions are typically three-dimensional structures which can be decomposed into a stack of structured layers. The best known examples are the photonic lattices. The present invention combines the characteristic features of photolithography and chemical-mechanical polishing to permit the direct and facile fabrication of, e.g., photonic lattices having photonic bandgaps in the 0.1-20.mu. spectral range.

  17. Surface structural ion adsorption modeling of competitive binding of oxyanions by metal (hydr)oxides

    SciTech Connect (OSTI)

    Hiemstra, T.; Riemsdijk, W.H. van

    1999-02-01

    An important challenge in surface complexation models (SCM) is to connect the molecular microscopic reality to macroscopic adsorption phenomena. This study elucidates the primary factor controlling the adsorption process by analyzing the adsorption and competition of PO{sub 4}, AsO{sub 4}, and SeO{sub 3}. The authors show that the structure of the surface-complex acting in the dominant electrostatic field can be ascertained as the primary controlling adsorption factor. The surface species of arsenate are identical with those of phosphate and the adsorption behavior is very similar. On the basis of the selenite adsorption, The authors show that the commonly used 1pK models are incapable to incorporate in the adsorption modeling the correct bidentate binding mechanism found by spectroscopy. The use of the bidentate mechanism leads to a proton-oxyanion ratio and corresponding pH dependence that are too large. The inappropriate intrinsic charge attribution to the primary surface groups and the condensation of the inner sphere surface complex to a point charge are responsible for this behavior of commonly used 2pK models. Both key factors are differently defined in the charge distributed multi-site complexation (CD-MUSIC) model and are based in this model on a surface structural approach. The CD-MUSIC model can successfully describe the macroscopic adsorption phenomena using the surface speciation and binding mechanisms as found by spectroscopy. The model is also able to predict the anion competition well. The charge distribution in the interface is in agreement with the observed structure of surface complexes.

  18. TOWARD LOW-COST FABRICATION OF MICROCHANNEL PROCESS TECHNOLOGIES - COST MODELING FOR MANUFACTURING DEVELOPMENT

    SciTech Connect (OSTI)

    Leith, Steven D.; King, Dale A.; Paul, Brian

    2010-11-07

    Chemical and energy conversion systems based on microchannel process technology (MPT) demonstrate high performance in applications in which rates are controlled by diffusive heat and mass transfer flux. The performance of MPT-based heat exchangers, absorbers/desorbers and chemical reactors all benefit from process intensification and have been used in a variety of mobile energy conversion systems including fuel reformers/converters, heat pumps and waste heat scavenging technologies. The service environments typical of MPTs often require the devices to be fabricated from metals such as aluminum, titanium, stainless steel or high temperature super alloys. Flow channels and associated critical dimensions in these devices can be as small as 50 um, but generally range from 100 to 1000 um in width and height with characteristic flow channel lengths normally in the mm to cm range. High surface area architectures (e.g. wicks or textured surfaces) are often included in the flow channels as well for enhanced mass transfer and/or catalytic functionality. Fabrication of MPT devices has historically been performed using a stacked-shim approach in which individual metal sheets are first patterned with micro- and meso-scale flow channels and subsequently bonded in a stack to create an array of miniaturized, parallel flow paths. Typical proof-of-concept fabrication efforts have utilized photo chemical machining (PCM) for shim patterning and diffusion bonding or diffusion brazing for joining of shim stacks. While flexible and capable of supporting technology demonstration, however, these techniques can be expensive at prototyping volumes. The high fabrication cost associated with these prototyping processes has contributed to a perception that MPT technology is expensive and will be relegated to a small application space. Recent work at the Microproducts Breakthrough Institute (MBI) has focused on exploring the cost structure of high volume manufacturing of MPT devices in effort to

  19. Metal & Alloy Services | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Metal & Alloy Services The MPC specializes in the preparation, purification, and fabrication of high-purity rare earth metals, refractory metals, alkaline earth metals, and alloys in single and polycrystalline forms. Arc Casting. The interior of an arc casting furnace is shown. Arc casting has been employed for many years at ISU and Ames Laboratory, for preparing alloys and inter-metallic compounds for materials research. The molten metal in the center is zirconium, #40 on the periodic

  20. Impact of deformation on the atomic structures and dynamics of a Cu-Zr metallic glass: A molecular dynamics study

    SciTech Connect (OSTI)

    Zhang, Y.; Mendelev, M. I.; Wang, C. Z.; Ott, R.; Zhang, F.; Besser, M. F.; Ho, K. M.; Kramer, M. J.

    2014-11-03

    Despite numerous studies on the atomic structures of Cu-Zr metallic glasses (MGs), their inherent structural ordering, e.g., medium-range order (MRO), remains difficult to describe. Specifically lacking is an understanding of how the MRO responds to deformation and the associated changes in atomic mobility. In this paper, we focus on the impact of deformation on MRO and associated effect on diffusion in a well-relaxed Cu64.5Zr35.5 MG by molecular dynamics simulations. The Cu-Zr MG exhibits a larger elastic limit of 0.035 and a yield stress of 3.5 GPa. The cluster alignment method was employed to characterize the icosahedral short-range order (ISRO) and Bergman-type medium-range order (BMRO) in the models upon loading and unloading. From this analysis, we find the disruption of both ISRO and BMRO occurs as the strain reaches about 0.02, well below the elastic limit. Within the elastic limit, the total fractions of ISRO or BMRO can be fully recovered upon unloading. The diffusivity increases six to eight times in regions undergoing plastic deformation, which is due to the dramatic disruption of the ISRO and BMRO. As a result, by mapping the spatial distributions of the mobile atoms, we demonstrate the increase in atomic mobility is due to the extended regions of disrupted ISRO and more importantly BMRO.

  1. Impact of deformation on the atomic structures and dynamics of a Cu-Zr metallic glass: A molecular dynamics study

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Y.; Mendelev, M. I.; Wang, C. Z.; Ott, R.; Zhang, F.; Besser, M. F.; Ho, K. M.; Kramer, M. J.

    2014-11-03

    Despite numerous studies on the atomic structures of Cu-Zr metallic glasses (MGs), their inherent structural ordering, e.g., medium-range order (MRO), remains difficult to describe. Specifically lacking is an understanding of how the MRO responds to deformation and the associated changes in atomic mobility. In this paper, we focus on the impact of deformation on MRO and associated effect on diffusion in a well-relaxed Cu64.5Zr35.5 MG by molecular dynamics simulations. The Cu-Zr MG exhibits a larger elastic limit of 0.035 and a yield stress of 3.5 GPa. The cluster alignment method was employed to characterize the icosahedral short-range order (ISRO) andmore » Bergman-type medium-range order (BMRO) in the models upon loading and unloading. From this analysis, we find the disruption of both ISRO and BMRO occurs as the strain reaches about 0.02, well below the elastic limit. Within the elastic limit, the total fractions of ISRO or BMRO can be fully recovered upon unloading. The diffusivity increases six to eight times in regions undergoing plastic deformation, which is due to the dramatic disruption of the ISRO and BMRO. As a result, by mapping the spatial distributions of the mobile atoms, we demonstrate the increase in atomic mobility is due to the extended regions of disrupted ISRO and more importantly BMRO.« less

  2. Structure-Assisted Functional Anchor Implantation in Robust Metal-Organic Frameworks with Ultra large Pores

    SciTech Connect (OSTI)

    Park, J; Feng, DW; Zhou, HC

    2015-02-04

    A facile functionalization assisted by the structural attributes of PCN-333 has been studied while maintaining the integrity of the parent MOF including ultralarge pores, chemical robustness, and crystallinity. Herein we thoroughly analyzed ligand exchange phenomena in PCN-333 and demonstrate that the extent of exchange can be tailored by varying the exchange conditions as potential applications may require. Through this method a variety of functional groups are incorporated into PCN-333. To further show the capabilities of this system introduction of a BODIPY fluorophore as a secondary functionality was performed to the functionalized framework via a click reaction. We anticipate the PCN-333 with functional anchor can serve as a stable platform for further chemistry to be explored in future applications

  3. Electronic structure and weak itinerant magnetism in metallic Y2Ni7

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Singh, David J.

    2015-11-03

    We describe a density functional study of the electronic structure and magnetism of Y₂Ni₇. The results show itinerant magnetism very similar to that in the weak itinerant ferromagnet Ni₃Al. The electropositive Y atoms in Y₂Ni₇ donate charge to the Ni host mostly in the form of s electrons. The non-spin-polarized state shows a high density of states at the Fermi level, N (EF), due to flat bands. This leads to a ferromagnetic instability. However, there are also several much more dispersive bands crossing E(F), which should promote the conductivity. Spin fluctuation effects appear to be comparable to or weaker thanmore » Ni₃Al, based on comparison with experimental data. Y₂Ni₇ provides a uniaxial analog to cubic Ni₃Al, for studying weak itinerant ferromagnetism, suggesting detailed measurements of its low temperature physical properties and spin fluctuations, as well as experiments under pressure.« less

  4. Lithographically defined microporous carbon structures

    DOE Patents [OSTI]

    Burckel, David Bruce; Washburn, Cody M.; Polsky, Ronen; Brozik, Susan M.; Wheeler, David R.

    2013-01-08

    A lithographic method is used to fabricate porous carbon structures that can provide electrochemical electrodes having high surface area with uniform and controllable dimensions, providing enormous flexibility to tailor the electrodes toward specific applications. Metal nanoparticles deposited on the surface of the porous carbon electrodes exhibit ultra small dimensions with uniform size distribution. The resulting electrodes are rugged, electrically conductive and show excellent electrochemical behavior.

  5. Integrated Recycling Test Fuel Fabrication

    SciTech Connect (OSTI)

    R.S. Fielding; K.H. Kim; B. Grover; J. Smith; J. King; K. Wendt; D. Chapman; L. Zirker

    2013-03-01

    The Integrated Recycling Test is a collaborative irradiation test that will electrochemically recycle used light water reactor fuel into metallic fuel feedstock. The feedstock will be fabricated into a metallic fast reactor type fuel that will be irradiation tested in a drop in capsule test in the Advanced Test Reactor on the Idaho National Laboratory site. This paper will summarize the fuel fabrication activities and design efforts. Casting development will include developing a casting process and system. The closure welding system will be based on the gas tungsten arc burst welding process. The settler/bonder system has been designed to be a simple system which provides heating and controllable impact energy to ensure wetting between the fuel and cladding. The final major pieces of equipment to be designed are the weld and sodium bond inspection system. Both x-radiography and ultrasonic inspection techniques have been examine experimentally and found to be feasible, however the final remote system has not been designed. Conceptual designs for radiography and an ultrasonic system have been made.

  6. Spacecraft fabrication and test MODIL. Final report

    SciTech Connect (OSTI)

    Saito, T.T.

    1994-05-01

    This report covers the period from October 1992 through the close of the project. FY 92 closed out with the successful briefing to industry and with many potential and important initiatives in the spacecraft arena. Due to the funding uncertainties, we were directed to proceed as if our funding would be approximately the same as FY 92 ($2M), but not to make any major new commitments. However, the MODIL`s FY 93 funding was reduced to $810K and we were directed to concentrate on the cryocooler area. The cryocooler effort completed its demonstration project. The final meetings with the cryocooler fabricators were very encouraging as we witnessed the enthusiastic reception of technology to help them reduce fabrication uncertainties. Support of the USAF Phillips Laboratory cryocooler program was continued including kick-off meetings for the Prototype Spacecraft Cryocooler (PSC). Under Phillips Laboratory support, Gill Cruz visited British Aerospace and Lucas Aerospace in the United Kingdom to assess their manufacturing capabilities. In the Automated Spacecraft & Assembly Project (ASAP), contracts were pursued for the analysis by four Brilliant Eyes prime contractors to provide a proprietary snap shot of their current status of Integrated Product Development. In the materials and structure thrust the final analysis was completed of the samples made under the contract (``Partial Automation of Matched Metal Net Shape Molding of Continuous Fiber Composites``) to SPARTA. The Precision Technologies thrust funded the Jet Propulsion Laboratory to prepare a plan to develop a Computer Aided Alignment capability to significantly reduce the time for alignment and even possibly provide real time and remote alignment capability of systems in flight.

  7. Intriguing structures and magic sizes of heavy noble metal nanoclusters around size 55 governed by relativistic effect and covalent bonding

    SciTech Connect (OSTI)

    Zhao, X. J.; Xue, X. L.; Jia, Yu; Guo, Z. X.; Li, S. F.; Zhang, Zhenyu; Gao, Y. F.

    2015-11-07

    Nanoclusters usually display exotic physical and chemical properties due to their intriguing geometric structures in contrast to their bulk counterparts. By means of first-principles calculations within density functional theory, we find that heavy noble metal Pt{sub N} nanoclusters around the size N = 55 begin to prefer an open configuration, rather than previously reported close-packed icosahedron or core-shell structures. Particularly, for Pt{sub N}, the widely supposed icosahedronal magic cluster is changed to a three-atomic-layered structure with D{sub 6h} symmetry, which can be well addressed by our recently established generalized Wulff construction principle (GWCP). However, the magic number of Pt{sub N} clusters around 55 is shifted to a new odd number of 57. The high symmetric three-layered Pt{sub 57} motif is mainly stabilized by the enhanced covalent bonding contributed by both spin-orbital coupling effect and the open d orbital (5d{sup 9}6s{sup 1}) of Pt, which result in a delicate balance between the enhanced Pt–Pt covalent bonding of the interlayers and negligible d dangling bonds on the cluster edges. These findings about Pt{sub N} clusters are also applicable to Ir{sub N} clusters, but qualitatively different from their earlier neighboring element Os and their later neighboring element Au. The magic numbers for Os and Au are even, being 56 and 58, respectively. The findings of the new odd magic number 57 are the important supplementary of the recently established GWCP.

  8. Cost-Effective Fabrication Routes for the Productionof Quantum...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cost-Effective Fabrication Routes for the Production of Quantum Well Type Structures and Recovery of Waste Heat from Heavy Duty Trucks Automotive Thermoelectric Generators and HVAC ...

  9. BPAonFabric_jk

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    is designed for practitioners who routinely examine bloodstained fabrics and other textiles and are required to assess, interpret and report on bloodstain patterns as part of...

  10. Update on US High Density Fuel Fabrication Development

    SciTech Connect (OSTI)

    C.R. Clark; G.A. Moore; J.F. Jue; B.H. Park; N.P. Hallinan; D.M. Wachs; D.E. Burkes

    2007-03-01

    Second generation uranium molybdenum fuel has shown excellent in-reactor irradiation performance. This metallic fuel type is capable of being fabricated at much higher loadings than any presently used research reactor fuel. Due to the broad range of fuel types this alloy system encompasses—fuel powder to monolithic foil and binary fuel systems to multiple element additions—significant amounts of research and development have been conducted on the fabrication of these fuels. This paper presents an update of the US RERTR effort to develop fabrication techniques and the fabrication methods used for the RERTR-9A miniplate test.

  11. Deterministic, Nanoscale Fabrication of Mesoscale Objects

    SciTech Connect (OSTI)

    Jr., R M; Shirk, M; Gilmer, G; Rubenchik, A

    2004-09-24

    Neither LLNL nor any other organization has the capability to perform deterministic fabrication of mm-sized objects with arbitrary, {micro}m-sized, 3-dimensional features with 20-nm-scale accuracy and smoothness. This is particularly true for materials such as high explosives and low-density aerogels. For deterministic fabrication of high energy-density physics (HEDP) targets, it will be necessary both to fabricate features in a wide variety of materials as well as to understand and simulate the fabrication process. We continue to investigate, both in experiment and in modeling, the ablation/surface-modification processes that occur with the use of laser pulses that are near the ablation threshold fluence. During the first two years, we studied ablation of metals, and we used sub-ps laser pulses, because pulses shorter than the electron-phonon relaxation time offered the most precise control of the energy that can be deposited into a metal surface. The use of sub-ps laser pulses also allowed a decoupling of the energy-deposition process from the ensuing movement/ablation of the atoms from the solid, which simplified the modeling. We investigated the ablation of material from copper, gold, and nickel substrates. We combined the power of the 1-D hydrocode ''HYADES'' with the state-of-the-art, 3-D molecular dynamics simulations ''MDCASK'' in our studies. For FY04, we have stretched ourselves to investigate laser ablation of carbon, including chemically-assisted processes. We undertook this research, because the energy deposition that is required to perform direct sublimation of carbon is much higher than that to stimulate the reaction 2C + O{sub 2} => 2CO. Thus, extremely fragile carbon aerogels might survive the chemically-assisted process more readily than ablation via direct laser sublimation. We had planned to start by studying vitreous carbon and move onto carbon aerogels. We were able to obtain flat, high-quality vitreous carbon, which was easy to work on

  12. Synthesis and structural characterisation of iron(II) and copper(II) diphosphates containing flattened metal oxotetrahedra

    SciTech Connect (OSTI)

    Keates, Adam C.; Wang, Qianlong; Weller, Mark T.

    2014-02-15

    Single crystal and bulk polycrystalline forms of K{sub 2}MP{sub 2}O{sub 7} (M=Fe(II), Cu(II)) have been synthesised and their structures determined from single crystal X-ray diffraction data. Both compounds crystallize in the tetragonal system, space group P-42{sub 1}m. Their structures are formed from infinite sheets of linked oxopolyhedra of the stoichiometry [MP{sub 2}O{sub 7}]{sup 2?} with potassium cations situated between the layers. The MO{sub 4} tetrahedra share oxygen atoms with [P{sub 2}O{sub 7}]{sup 4?} diphosphate groups and the potassium ions have KO{sub 8} square prismatic geometry. In both compounds the M(II) centre has an unusual strongly flattened, tetrahedral coordination to oxygen, as a result of the JahnTeller (JT) effect for the high spin d{sup 6} Fe(II) and p-orbital mixing or a second order JT effect for d{sup 9} Cu(II) centres in four fold coordination. The uncommon transition metal ion environments found in these materials are reflected in their optical absorption spectra and magnetism data. - Graphical abstract: The structures of the tetragonal polymorphs of K{sub 2}MP{sub 2}O{sub 7}, M=Cu(II), Fe(II), consist of infinite sheets of stoichiometry [MP{sub 2}O{sub 7}]{sup 2?}, formed from linked pyrophosphate groups and MO{sub 4} tetrahedra, separated by potassium ions. In both compounds the unusual tetrahedral coordination of the M(II) centre is strongly flattened as a result of JahnTeller (JT) effects for high spin, d{sup 6} Fe(II) and p-orbital mixing and second-order JT effects for d{sup 9} Cu(II). Display Omitted - Highlights: Tetrahedral copper and iron(II) coordinated by oxygen. New layered phosphate structure. JahnTeller and d{sup 10} distorted coordinations.

  13. Method Of Bonding A Metal Connection To An Electrode Including A Core Having A Fiber Or Foam Type Structure For An Electrochemical Cell, An

    DOE Patents [OSTI]

    Loustau, Marie-Therese; Verhoog, Roelof; Precigout, Claude

    1996-09-24

    A method of bonding a metal connection to an electrode including a core having a fiber or foam-type structure for an electrochemical cell, in which method at least one metal strip is pressed against one edge of the core and is welded thereto under compression, wherein, at least in line with the region in which said strip is welded to the core, which is referred to as the "main core", a retaining core of a type analogous to that of the main core is disposed prior to the welding.

  14. Final Technical Report on DE-SC00002460 [Bimetallic or trimetallic materials with structural metal centers based on Mn, Fe or V

    SciTech Connect (OSTI)

    Takeuchi, Esther Sans; Takeuchi, Kenneth James; Marschilok, Amy Catherine

    2013-07-26

    Bimetallic or trimetallic materials with structural metal centers based on Mn, Fe or V were investigated under this project. These metal centers are the focus of this research as they have high earth abundance and have each shown success as cathode materials in lithium batteries. Silver ion, Ag{sup +}, was initially selected as the displacement material as reduction of this center should result in increased conductivity as Ag{sup 0} metal particles are formed in-situ upon electrochemical reduction. The in-situ formation of metal nanoparticles upon electrochemical reduction has been previously noted, and more recently, we have investigated the resulting increase in conductivity. Layered materials as well as materials with tunnel or channel type structures were selected. Layered materials are of interest as they can provide 2-dimensional ion mobility. Tunnel or channel structures are also of interest as they provide a rigid framework that should remain stable over many discharge/charge cycles. We describe some examples of materials we have synthesized that demonstrate promising electrochemistry.

  15. Biaxial Creep Specimen Fabrication

    SciTech Connect (OSTI)

    JL Bump; RF Luther

    2006-02-09

    This report documents the results of the weld development and abbreviated weld qualification efforts performed by Pacific Northwest National Laboratory (PNNL) for refractory metal and superalloy biaxial creep specimens. Biaxial creep specimens were to be assembled, electron beam welded, laser-seal welded, and pressurized at PNNL for both in-pile (JOYO reactor, O-arai, Japan) and out-of-pile creep testing. The objective of this test campaign was to evaluate the creep behavior of primary cladding and structural alloys under consideration for the Prometheus space reactor. PNNL successfully developed electron beam weld parameters for six of these materials prior to the termination of the Naval Reactors program effort to deliver a space reactor for Project Prometheus. These materials were FS-85, ASTAR-811C, T-111, Alloy 617, Haynes 230, and Nirnonic PE16. Early termination of the NR space program precluded the development of laser welding parameters for post-pressurization seal weldments.

  16. Free form fabrication of thermoplastic composites

    SciTech Connect (OSTI)

    Kaufman, S.G.; Spletzer, B.L.; Guess, T.R.

    1998-02-01

    This report describes the results of composites fabrication research sponsored by the Laboratory Directed Research and Development (LDRD) program at Sandia National Laboratories. They have developed, prototyped, and demonstrated the feasibility of a novel robotic technique for rapid fabrication of composite structures. Its chief innovation is that, unlike all other available fabrication methods, it does not require a mold. Instead, the structure is built patch by patch, using a rapidly reconfigurable forming surface, and a robot to position the evolving part. Both of these components are programmable, so only the control software needs to be changed to produce a new shape. Hence it should be possible to automatically program the system to produce a shape directly from an electronic model of it. It is therefore likely that the method will enable faster and less expensive fabrication of composites.

  17. Recent results from the Spacecraft Fabrication and Test MODIL

    SciTech Connect (OSTI)

    Saito, T.T.

    1993-04-01

    The Spacecraft Fabrication and Test Manufacturing Operations Development and Integration Laboratory (SF&T MODIL) is working with SDIO program offices and contractors to reduce schedule and budget risks for SDIO systems as they go into production. The concurrent engineering thrust has identified potential high payoff areas. A materials and structures demonstration project has been successfully completed in partial automated closing of matched metal molds for a continuous fiber composite. In addition to excellent accuracy, the parts demonstrated excellent predictability and repeatability of physical properties. The cryocooler thrust successfully demonstrated and inserted precision technologies into a generic cryocooler part. The precision technologies thrust outlined two potentially high payoff areas in precision alignment and miniature rocket thrust measurement. The Producible Technology Working Group (PTWG) efforts identified the need for a test and assembly thrust. Due to funding limitations, continuing efforts are limited to the cryocooler thrust.

  18. Method of fabricating composite superconducting wire

    DOE Patents [OSTI]

    Strauss, Bruce P.; Reardon, Paul J.; Remsbottom, Robert H.

    1977-01-01

    An improvement in the method for preparing composite rods of superconducting alloy and normal metal from which multifilament composite superconducting wire is fabricated by bending longitudinally a strip of normal metal around a rod of superconductor alloy and welding the edges to form the composite rod. After the rods have preferably been provided with a hexagonal cross-sectional shape, a plurality of the rods are stacked into a normal metal extrusion can, sealed and worked to reduce the cross-sectional size and form multifilament wire. Diffusion barriers and high-electrical resistance barriers can easily be introduced into the wire by plating or otherwise coating the faces of the normal metal strip with appropriate materials.

  19. STRUCTURAL INTERACTIONS OF HYDROGEN WITH BULK AMORPHOUS MICROSTRUCTURES IN METALLIC SYSTEMS UNDERSTANDING THE ROLE OF PARTIAL CRYSTALLINITY ON PERMEATION AND EMBRITTLEMENT

    SciTech Connect (OSTI)

    Brinkman, Kyle; Fox, Elise; Korinko, Paul; Adams, Thad

    2010-05-10

    The development of metallic glasses in bulk form has led to a resurgence of interest into the utilization of these materials for a variety of applications. A potentially exciting application for these bulk metallic glass (BMG) materials is their use as composite membranes to replace high cost Pd/Pd-alloy membranes for enhanced gas separation processes. One of the major drawbacks to the industrial use of Pd/Pd-alloy membranes is that during cycling above and below a critical temperature an irreversible change takes place in the palladium lattice structure which can result in significant damage to the membrane. Furthermore, the cost associated with Pd-based membranes is a potential detractor for their continued use and BMG alloys offer a potentially attractive alternative. Several BMG alloys have been shown to possess high permeation rates, comparable to those measured for pure Pd metal. In addition, high strength and toughness when either in-situ or ex-situ second phase dispersoids are present. Both of these properties, high permeation and high strength/toughness, potentially make these materials attractive for gas separation membranes that could resist hydrogen 'embrittlement'. However, a fundamental understanding of the relationship between partially crystalline 'structure'/devitrification and permeation/embrittlement in these BMG materials is required in order to determine the operating window for separation membranes and provide additional input to the material synthesis community for improved alloy design. This project aims to fill the knowledge gap regarding the impact of crystallization on the permeation properties of metallic glass materials. The objectives of this study are to (i) determine the crystallization behavior in different gas environments of Fe and Zr based commercially available bulk metallic glass and (ii) quantify the effects of partial crystallinity on the hydrogen permeation properties of these metallic glass membranes.

  20. Method for fabrication of electrodes

    DOE Patents [OSTI]

    Jankowski, Alan F.; Morse, Jeffrey D.; Barksdale, Randy

    2004-06-22

    Described herein is a method to fabricate porous thin-film electrodes for fuel cells and fuel cell stacks. Furthermore, the method can be used for all fuel cell electrolyte materials which utilize a continuous electrolyte layer. An electrode layer is deposited on a porous host structure by flowing gas (for example, Argon) from the bottomside of the host structure while simultaneously depositing a conductive material onto the topside of the host structure. By controlling the gas flow rate through the pores, along with the process conditions and deposition rate of the thin-film electrode material, a film of a pre-determined thickness can be formed. Once the porous electrode is formed, a continuous electrolyte thin-film is deposited, followed by a second porous electrode to complete the fuel cell structure.

  1. Fabricating solid carbon porous electrodes from powders

    DOE Patents [OSTI]

    Kaschmitter, J.L.; Tran, T.D.; Feikert, J.H.; Mayer, S.T.

    1997-06-10

    Fabrication is described for conductive solid porous carbon electrodes for use in batteries, double layer capacitors, fuel cells, capacitive deionization, and waste treatment. Electrodes fabricated from low surface area (<50 m{sup 2}/gm) graphite and cokes exhibit excellent reversible lithium intercalation characteristics, making them ideal for use as anodes in high voltage lithium insertion (lithium-ion) batteries. Electrodes having a higher surface area, fabricated from powdered carbon blacks, such as carbon aerogel powder, carbon aerogel microspheres, activated carbons, etc. yield high conductivity carbon composites with excellent double layer capacity, and can be used in double layer capacitors, or for capacitive deionization and/or waste treatment of liquid streams. By adding metallic catalysts to high surface area carbons, fuel cell electrodes can be produced. 1 fig.

  2. Fabricating solid carbon porous electrodes from powders

    DOE Patents [OSTI]

    Kaschmitter, James L.; Tran, Tri D.; Feikert, John H.; Mayer, Steven T.

    1997-01-01

    Fabrication of conductive solid porous carbon electrodes for use in batteries, double layer capacitors, fuel cells, capacitive dionization, and waste treatment. Electrodes fabricated from low surface area (<50 m.sup.2 /gm) graphite and cokes exhibit excellent reversible lithium intercalation characteristics, making them ideal for use as anodes in high voltage lithium insertion (lithium-ion) batteries. Electrodes having a higher surface area, fabricated from powdered carbon blacks, such as carbon aerogel powder, carbon aerogel microspheres, activated carbons, etc. yield high conductivity carbon compositives with excellent double layer capacity, and can be used in double layer capacitors, or for capacitive deionization and/or waste treatment of liquid streams. By adding metallic catalysts to be high surface area carbons, fuel cell electrodes can be produced.

  3. Method for fabricating laminated uranium composites

    DOE Patents [OSTI]

    Chapman, L.R.

    1983-08-03

    The present invention is directed to a process for fabricating laminated composites of uranium or uranium alloys and at least one other metal or alloy. The laminated composites are fabricated by forming a casting of the molten uranium with the other metal or alloy which is selectively positioned in the casting and then hot-rolling the casting into a laminated plate in or around which the casting components are metallurgically bonded to one another to form the composite. The process of the present invention provides strong metallurgical bonds between the laminate components primarily since the bond disrupting surface oxides on the uranium or uranium alloy float to the surface of the casting to effectively remove the oxides from the bonding surfaces of the components.

  4. DOE ER63951-3 Final Report: An Integrated Assessment of Geochemical and Community Structure Determinants of Metal Reduction Rates in Subsurface Sediments

    SciTech Connect (OSTI)

    Susan Pfiffner

    2010-06-28

    The objective of this research was to examine the importance of microbial community structure in influencing uranium reduction rates in subsurface sediments. If the redox state alone is the key to metal reduction, then any organisms that can utilize the oxygen and nitrate in the subsurface can change the geochemical conditions so metal reduction becomes an energetically favored reaction. Thus, community structure would not be critical in determining rates or extent of metal reduction unless community structure influenced the rate of change in redox. Alternatively, some microbes may directly catalyze metal reduction (e.g., specifically reduce U). In this case the composition of the community may be more important and specific types of electron donors may promote the production of communities that are more adept at U reduction. Our results helped determine if the type of electron donor or the preexisting community is important in the bioremediation of metal-contaminated environments subjected to biostimulation. In a series of experiments at the DOE FRC site in Oak Ridge we have consistently shown that all substrates promoted nitrate reduction, while glucose, ethanol, and acetate always promoted U reduction. Methanol only occasionally promoted extensive U reduction which is possibly due to community heterogeneity. There appeared to be limitations imposed on the community related to some substrates (e.g. methanol and pyruvate). Membrane lipid analyses (phospholipids and respiratory quinones) indicated different communities depending on electron donor used. Terminal restriction fragment length polymorphism and clone libraries indicated distinct differences among communities even in treatments that promoted U reduction. Thus, there was enough metabolic diversity to accommodate many different electron donors resulting in the U bioimmobilization.

  5. Development of epitaxial AlxSc1-xN for artificially structured metal/semiconductor superlattice metamaterials

    SciTech Connect (OSTI)

    Sands, Timothy D.; Stach, Eric A.; Saha, Bivas; Saber, Sammy; Naik, Gururaj V.; Boltasseva, Alexandra; Kvam, Eric P.

    2015-02-01

    Epitaxial nitride rocksalt metal/semiconductor superlattices are emerging as a novel class of artificially structured materials that have generated significant interest in recent years for their potential application in plasmonic and thermoelectric devices. Though most nitride metals are rocksalt, nitride semiconductors in general have hexagonal crystal structure. We report rocksalt aluminum scandium nitride (Al,Sc)N alloys as the semiconducting component in epitaxial rocksalt metal/semiconductor superlattices. The AlxSc1-xN alloys when deposited directly on MgO substrates are stabilized in a homogeneous rocksalt (single) phase when x < 0.51. Employing 20 nm TiN as a seed layer on MgO substrates, the homogeneity range for stabilizing the rocksalt phase has been extended to x < 0.82 for a 120 nm film. The rocksalt AlxSc1-xN alloys show moderate direct bandgap bowing with a bowing parameter, B = 1.41 0.19 eV. The direct bandgap of metastable rocksalt AlN is extrapolated to be 4.70 0.20 eV. The tunable lattice parameter, bandgap, dielectric permittivity, and electronic properties of rocksalt AlxSc1-xN alloys enable high quality epitaxial rocksalt metal/AlxSc1-xN superlattices with a wide range of accessible metamaterials properties.

  6. Development of epitaxial AlxSc1-xN for artificially structured metal/semiconductor superlattice metamaterials

    SciTech Connect (OSTI)

    Sands, Timothy D.; Stach, Eric A.; Saha, Bivas; Saber, Sammy; Naik, Gururaj V.; Boltasseva, Alexandra; Kvam, Eric P.

    2015-02-01

    Epitaxial nitride rocksalt metal/semiconductor superlattices are emerging as a novel class of artificially structured materials that have generated significant interest in recent years for their potential application in plasmonic and thermoelectric devices. Though most nitride metals are rocksalt, nitride semiconductors in general have hexagonal crystal structure. We report rocksalt aluminum scandium nitride (Al,Sc)N alloys as the semiconducting component in epitaxial rocksalt metal/semiconductor superlattices. The AlxSc1-xN alloys when deposited directly on MgO substrates are stabilized in a homogeneous rocksalt (single) phase when x < 0.51. Employing 20 nm TiN as a seed layer on MgO substrates, the homogeneity range for stabilizing the rocksalt phase has been extended to x < 0.82 for a 120 nm film. The rocksalt AlxSc1-xN alloys show moderate direct bandgap bowing with a bowing parameter, B = 1.41 ± 0.19 eV. The direct bandgap of metastable rocksalt AlN is extrapolated to be 4.70 ± 0.20 eV. The tunable lattice parameter, bandgap, dielectric permittivity, and electronic properties of rocksalt AlxSc1-xN alloys enable high quality epitaxial rocksalt metal/AlxSc1-xN superlattices with a wide range of accessible metamaterials properties.

  7. Method to fabricate hollow microneedle arrays

    DOE Patents [OSTI]

    Kravitz, Stanley H.; Ingersoll, David; Schmidt, Carrie; Flemming, Jeb

    2006-11-07

    An inexpensive and rapid method for fabricating arrays of hollow microneedles uses a photoetchable glass. Furthermore, the glass hollow microneedle array can be used to form a negative mold for replicating microneedles in biocompatible polymers or metals. These microneedle arrays can be used to extract fluids from plants or animals. Glucose transport through these hollow microneedles arrays has been found to be orders of magnitude more rapid than natural diffusion.

  8. Closed cell metal foam method

    DOE Patents [OSTI]

    Patten, James W.

    1978-01-01

    Foamed metals and metal alloys which have a closed cellular structure are prepared by heating a metal body containing entrapped inert gas uniformly distributed throughout to a temperature above the melting point of the metal and maintaining the body at this temperature a period of time sufficient to permit the entrapped gas to expand, forming individual cells within the molten metal, thus expanding and foaming the molten metal. After cell formation has reached the desired amount, the foamed molten metal body is cooled to below the melting temperature of the metal. The void area or density of the foamed metal is controlled by predetermining the amount of inert gas entrapped in the metal body and by the period of time the metal body is maintained in the molten state. This method is useful for preparing foamed metals and metal alloys from any metal or other material of which a body containing entrapped inert gas can be prepared.

  9. Activity of N-coordinated multi-metal-atom active site structures for Pt-free oxygen reduction reaction catalysis: Role of *OH ligands

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Holby, Edward F.; Taylor, Christopher D.

    2015-03-19

    We report calculated oxygen reduction reaction energy pathways on multi-metal-atom structures that have previously been shown to be thermodynamically favorable. We predict that such sites have the ability to spontaneously cleave the O₂ bond and then will proceed to over-bind reaction intermediates. In particular, the *OH bound state has lower energy than the final 2 H₂O state at positive potentials. Contrary to traditional surface catalysts, this *OH binding does not poison the multi-metal-atom site but acts as a modifying ligand that will spontaneously form in aqueous environments leading to new active sites that have higher catalytic activities. These *OH boundmore » structures have the highest calculated activity to date.« less

  10. Activity of N-coordinated multi-metal-atom active site structures for Pt-free oxygen reduction reaction catalysis: Role of *OH ligands

    SciTech Connect (OSTI)

    Holby, Edward F.; Taylor, Christopher D.

    2015-03-19

    We report calculated oxygen reduction reaction energy pathways on multi-metal-atom structures that have previously been shown to be thermodynamically favorable. We predict that such sites have the ability to spontaneously cleave the O? bond and then will proceed to over-bind reaction intermediates. In particular, the *OH bound state has lower energy than the final 2 H?O state at positive potentials. Contrary to traditional surface catalysts, this *OH binding does not poison the multi-metal-atom site but acts as a modifying ligand that will spontaneously form in aqueous environments leading to new active sites that have higher catalytic activities. These *OH bound structures have the highest calculated activity to date.

  11. Atomic Scale Imaging of the Electronic Structure and Chemistry of Graphene and Its Precursors on Metal Surfaces

    SciTech Connect (OSTI)

    Flynn, George W

    2015-02-16

    Executive Summary of Final Report for Award DE-FG02-88ER13937 Project Title: Atomic Scale Imaging of the Electronic Structure and Chemistry of Graphene and its Precursors on Metal Surfaces Applicant/Institution: Columbia University Principal Investigator: George W. Flynn Objectives: The objectives of this project were to reveal the mechanisms and reaction processes that solid carbon materials undergo when combining with gases such as oxygen, water vapor and hydrocarbons. This research was focused on fundamental chemical events taking place on single carbon sheets of graphene, a two-dimensional, polycyclic carbon material that possesses remarkable chemical and electronic properties. Ultimately, this work is related to the role of these materials in mediating the formation of polycyclic aromatic hydrocarbons (PAH’s), their reactions at interfaces, and the growth of soot particles. Our intent has been to contribute to a fundamental understanding of carbon chemistry and the mechanisms that control the formation of PAH’s, which eventually lead to the growth of undesirable particulates. We expect increased understanding of these basic chemical mechanisms to spur development of techniques for more efficient combustion of fossil fuels and to lead to a concomitant reduction in the production of undesirable solid carbon material. Project Description: Our work treated specifically the surface chemistry aspects of carbon reactions by using proximal probe (atomic scale imaging) techniques to study model systems of graphene that have many features in common with soot forming reactions of importance in combustion flames. Scanning tunneling microscopy (STM) is the main probe technique that we used to study the interfacial structure and chemistry of graphene, mainly because of its ability to elucidate surface structure and dynamics with molecular or even atomic resolution. Scanning tunneling spectroscopy (STS), which measures the local density of quantum states over a single

  12. Soft-Lithographical Fabrication of Three-dimensional Photonic Crystals in the Optical Regime

    SciTech Connect (OSTI)

    Jae-Hwang Lee

    2006-08-09

    detailed microscopy of the structure, we show that the diffracted moire fringe can be used as a nondestructive tool to analyze the alignment of multilayered structures. We demonstrate the alignment method for the case of layer-by-layer microstructures using soft lithography. The alignment method yields high contrast of fringes even when the materials being aligned have very weak contrasts. The imaging method of diffracted moire fringes is a versatile visual tool for the microfabrication of transparent deformable microstructures in layer-by-layer fashion. Third, we developed several methods to convert a polymer template to dielectric or metallic structures, for instance, metallic infiltration using electrodeposition, metallic coating using sputter deposition, dielectric infiltration using titania nano-slurry, and dielectric coating using atomic layer deposition of Titania. By several different developed techniques, high quality photonic crystals have been successfully fabricated; however, I will focus on a line of techniques to reach metallic photonic crystals in this dissertation since they are completely characterized at this moment. In addition to the attempts for photonic crystal fabrication, our non-photolithographic technique is applied for other photonic applications such as small optical waveguides whose diameter is comparable to the wavelength of guided light. Although, as guiding medium, polymers have tremendous potential because of their enormous variation in optical, chemical and mechanical properties, their application for optical waveguides is limited in conventional photolithography. By 2P-{mu}TM, we achieve low cost, high yield, high fidelity, and tailorable fabrication of small waveguides. Embedded semiconductor quantum-dots and grating couplers are used for efficient internal and external light source, respectively.

  13. Fabricated torque shaft

    SciTech Connect (OSTI)

    Mashey, Thomas Charles

    2002-01-01

    A fabricated torque shaft is provided that features a bolt-together design to allow vane schedule revisions with minimal hardware cost. The bolt-together design further facilitates on-site vane schedule revisions with parts that are comparatively small. The fabricated torque shaft also accommodates stage schedules that are different one from another in non-linear inter-relationships as well as non-linear schedules for a particular stage of vanes.

  14. Mixed Oxide Fuel Fabrication Facility

    National Nuclear Security Administration (NNSA)

    0%2A en Mixed Oxide (MOX) Fuel Fabrication Facility http:nnsa.energy.govfieldofficessavannah-river-field-officemixed-oxide-mox-fuel-fabrication-facility

  15. Micro-fabrication Techniques for Target Components

    SciTech Connect (OSTI)

    Miles, R; Hamilton, J; Crawford, J; Ratti, S; Trevino, J; Graff, T; Stockton, C; Harvey, C

    2008-06-10

    Micro-fabrication techniques, derived from the semi-conductor industry, can be used to make a variety of useful mechanical components for targets. A selection of these components including supporting cooling arms for prototype cryogenic inertial confinement fusion targets, stepped and graded density targets for materials dynamics experiments are described. Micro-fabrication enables cost-effective, simultaneous fabrication of multiple high-precision components with complex geometries. Micro-fabrication techniques such as thin-film deposition, photo-lithographic patterning and etch processes normally used in the semi-conductor manufacture industry, can be exploited to make useful mechanical target components. Micro-fabrication processes have in recent years been used to create a number of micro-electro-mechanical systems (MEMS) components such as pressure sensors, accelerometers, ink jet printer heads, microfluidics platforms and the like. These techniques consist primarily of deposition of thin films of material, photo-lithographic patterning and etching processes performed sequentially to produce three dimensional structures using essentially planar processes. While the planar technology can be limiting in terms of the possible geometries of the final product, advantages of using these techniques include the ability to make multiple complex structures simultaneously and cost-effectively. Target components fabricated using these techniques include the supporting cooling arms for cryogenic prototype fusion ignition targets, stepped targets for equation-of-state experiments, and graded density reservoirs for material strength experiments.

  16. The effect of in-situ noble metal chemical addition on crack growth rate behavior of structural materials in 288 C water

    SciTech Connect (OSTI)

    Andresen, P.L.; Angeliu, T.

    1996-10-01

    Stress corrosion cracking (SCC), especially in existing boiling water reactor (BVM) components, is most effectively accomplished by reducing the corrosion potential. This was successfully demonstrated by adding hydrogen to BNM water, which reduced oxidant concentration and corrosion potential by recombining with the radiolytically formed oxygen and hydrogen peroxide. However, reduction in the corrosion potential for some vessel internals is difficult, and others require high hydrogen addition rates, which results in an increase in the main steam radiation level from volatile N{sup 16}. Noble metal electrocatalysis provides a unique opportunity to efficiently achieve a dramatic reduction in corrosion potential and SCC in BWRs, by catalytically reacting all oxidants that diffuse to a (catalytic) metal surface with hydrogen. There are many techniques for creating catalytic surfaces, including alloying with noble metals or applying noble metal alloy powders to existing BWR components by thermal spraying or weld cladding. A novel system-wide approach for producing catalytic surfaces on all wetted components has been developed which employs the reactor coolant water as the medium of transport. This approach is termed in-situ noble metal chemical addition (NMCA), and has been successfully used in extensive laboratory tests to coat a wide range of pre-oxidized structural materials. In turn, these specimens have maintained catalytic response in long term, cyclic exposures to extremes in dissolved gases, impurity levels, pH, flow rate, temperature, straining, etc. With stoichiometric excess H{sub 2}, the corrosion potential drops dramatically and crack initiation and growth are greatly reduced, even at high O{sub 2} or H{sub 2}O{sub 2} levels. Without excess H{sub 2} (i.e., in normal BWR water chemistry), noble metals do not increase the corrosion potential or SCC.

  17. Metal nanodisks using bicellar templates

    DOE Patents [OSTI]

    Song, Yujiang; Shelnutt, John A

    2013-12-03

    Metallic nanodisks and a method of making them. The metallic nanodisks are wheel-shaped structures that that provide large surface areas for catalytic applications. The metallic nanodisks are grown within bicelles (disk-like micelles) that template the growth of the metal in the form of approximately circular dendritic sheets. The zero-valent metal forming the nanodisks is formed by reduction of a metal ion using a suitable electron donor species.

  18. All ceramic structure for molten carbonate fuel cell

    DOE Patents [OSTI]

    Smith, James L.; Kucera, Eugenia H.

    1992-01-01

    An all-ceramic molten carbonate fuel cell having a composition formed of a multivalent metal oxide or oxygenate such as an alkali metal, transition metal oxygenate. The structure includes an anode and cathode separated by an electronically conductive interconnect. The electrodes and interconnect are compositions ceramic materials. Various combinations of ceramic compositions for the anode, cathode and interconnect are disclosed. The fuel cell exhibits stability in the fuel gas and oxidizing environments. It presents reduced sealing and expansion problems in fabrication and has improved long-term corrosion resistance.

  19. Covalency in Metal-Oxygen Multiple Bonds Evaluated Using Oxygen K-edge Spectroscopy and Electronic Structure Theory

    SciTech Connect (OSTI)

    Minasian, Stefan G.; Keith, Jason M.; Batista, Enrique R.; Boland, Kevin S.; Bradley, Joseph A.; Daly, Scott R.; Kozimor, Stosh A.; Lukens, Wayne W.; Martin, Richard L.; Nordlund, Dennis; Seidler, Gerald T.; Shuh, David K.; Sokaras, Dimosthenis; Tyliszczak, Tolek; Wagner, Gregory L.; Weng, Tsu-Chein; Yang, Ping

    2014-01-01

    Advancing theories of how metal oxygen bonding influences metal oxo properties can expose new avenues for innovation in materials science, catalysis, and biochemistry. Historically, spectroscopic analyses of the transition metal peroxyanions, MO4x-, have formed the basis for new M O bonding theories. Herein, relative changes in M O orbital mixing in MO42- (M = Cr, Mo, W) and MO41- (M = Mn, Tc, Re) are evaluated for the first time by non-resonant inelastic X-ray scattering, X-ray absorption spectroscopy using fluorescence and transmission (via a scanning transmission X-ray microscope), and linear-response density functional theory. The results suggest that moving from Group 6 to Group 7 or down the triads increases M O e () mixing. Meanwhile, t2 mixing ( + ) remains relatively constant within the same Group. These unexpected changes in frontier orbital energy and composition are evaluated in terms of periodic trends in d orbital energy and radial extension.

  20. Binding energies and spatial structures of small carrier complexes in monolayer transition-metal dichalcogenides via diffusion Monte Carlo

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mayers, Matthew Z.; Berkelbach, Timothy C.; Hybertsen, Mark S.; Reichman, David R.

    2015-10-09

    Ground-state diffusion Monte Carlo is used to investigate the binding energies and intercarrier radial probability distributions of excitons, trions, and biexcitons in a variety of two-dimensional transition-metal dichalcogenide materials. We compare these results to approximate variational calculations, as well as to analogous Monte Carlo calculations performed with simplified carrier interaction potentials. Our results highlight the successes and failures of approximate approaches as well as the physical features that determine the stability of small carrier complexes in monolayer transition-metal dichalcogenide materials. In conclusion, we discuss points of agreement and disagreement with recent experiments.

  1. Using Direct Metal Deposition to Fabricate Mold Plates for an Injection Mold Machine Allowing for the Evaluation of Cost Effective Near-Sourcing Opportunities in Larger, High Volume Consumer Products

    SciTech Connect (OSTI)

    Duty, Chad E; Groh, Bill

    2014-10-31

    ORNL collaborated with Radio Systems Corporation to investigate additive manufacturing (AM) of mold plates for plastic injection molding by direct metal deposition. The team s modelling effort identified a 100% improvement in heat transfer through use of conformal cooling lines that could be built into the mold using a revolutionary design enabled by additive manufacturing. Using the newly installed laser deposition system at the ORNL Manufacturing Demonstration Facility (MDF) a stainless steel mold core was printed.

  2. Structurally-driven metal-insulator transition in Ca{sub 2}Ru{sub 1-x}Cr{sub x}O{sub 4} (0{<=}x<0.14): A single crystal X-ray diffraction study

    SciTech Connect (OSTI)

    Qi, T.F.; Ge, M.; Korneta, O.B.; Parkin, S.; De Long, L.E.; Cao, G.

    2011-04-15

    Correlation between structure and transport properties are investigated in high-quality single-crystals of Ca{sub 2}Ru{sub 1-x}Cr{sub x}O{sub 4} with 0structurally driven metal-insulator (MI) transition at 357 K. Upon chromium doping on the ruthenium site, the metal-insulator transition temperature (T{sub MI}) was drastically reduced, and is related to the competition between structural changes that occur upon Cr doping and with decreasing temperature. A strong suppression of structural distortions with increasing Cr substitution was identified. No clear T{sub MI} can be observed when x>13.5% and the system behaves as an insulator. Such a large, sharp metal-insulator transition and tuneable transition temperature may have potential applications in electronic devices. -- Graphical abstract: The metal-insulator transition temperature (T{sub MI}) was drastically reduced by Cr doping, and is closely related to the distortion of structure. Display Omitted Research highlights: {yields} The metal-insulator transition temperature (T{sub MI}) was drastically reduced by doping Cr into Ca{sub 2}RuO{sub 4} single crystal. {yields} Detailed single crystal structural analysis provided important insight into this structurally-driven metal-insulator transition. {yields} Negative Volume Thermal Expansion (NVTE) was observed with increasing temperature.

  3. Method of fabricating a multilayer insulation blanket

    DOE Patents [OSTI]

    Gonczy, John D. (Oak Lawn, IL); Niemann, Ralph C. (Downers Grove, IL); Boroski, William N. (Aurora, IL)

    1993-01-01

    An improved multilayer insulation blanket for insulating cryogenic structures operating at very low temperatures is disclosed. An apparatus and method for fabricating the improved blanket are also disclosed. In the improved blanket, each successive layer of insulating material is greater in length and width than the preceding layer so as to accommodate thermal contraction of the layers closest to the cryogenic structure. The fabricating apparatus has a rotatable cylindrical mandrel having an outer surface of fixed radius that is substantially arcuate, preferably convex, in cross-section. The method of fabricating the improved blanket comprises (a) winding a continuous sheet of thermally reflective material around the circumference of the mandrel to form multiple layers, (b) binding the layers along two lines substantially parallel to the edges of the circumference of the mandrel, (c) cutting the layers along a line parallel to the axle of the mandrel, and (d) removing the bound layers from the mandrel.

  4. Multilayer insulation blanket, fabricating apparatus and method

    DOE Patents [OSTI]

    Gonczy, John D. (Oak Lawn, IL); Niemann, Ralph C. (Downers Grove, IL); Boroski, William N. (Aurora, IL)

    1992-01-01

    An improved multilayer insulation blanket for insulating cryogenic structures operating at very low temperatures is disclosed. An apparatus and method for fabricating the improved blanket are also disclosed. In the improved blanket, each successive layer of insulating material is greater in length and width than the preceding layer so as to accommodate thermal contraction of the layers closest to the cryogenic structure. The fabricating apparatus has a rotatable cylindrical mandrel having an outer surface of fixed radius that is substantially arcuate, preferably convex, in cross-section. The method of fabricating the improved blanket comprises (a) winding a continuous sheet of thermally reflective material around the circumference of the mandrel to form multiple layers, (b) binding the layers along two lines substantially parallel to the edges of the circumference of the mandrel, (c) cutting the layers along a line parallel to the axle of the mandrel, and (d) removing the bound layers from the mandrel.

  5. Method of fabricating a multilayer insulation blanket

    DOE Patents [OSTI]

    Gonczy, J.D.; Niemann, R.C.; Boroski, W.N.

    1993-07-06

    An improved multilayer insulation blanket for insulating cryogenic structures operating at very low temperatures is disclosed. An apparatus and method for fabricating the improved blanket are also disclosed. In the improved blanket, each successive layer of insulating material is greater in length and width than the preceding layer so as to accommodate thermal contraction of the layers closest to the cryogenic structure. The fabricating apparatus has a rotatable cylindrical mandrel having an outer surface of fixed radius that is substantially arcuate, preferably convex, in cross-section. The method of fabricating the improved blanket comprises (a) winding a continuous sheet of thermally reflective material around the circumference of the mandrel to form multiple layers, (b) binding the layers along two lines substantially parallel to the edges of the circumference of the mandrel, (c) cutting the layers along a line parallel to the axle of the mandrel, and (d) removing the bound layers from the mandrel.

  6. Multilayer insulation blanket, fabricating apparatus and method

    DOE Patents [OSTI]

    Gonczy, J.D.; Niemann, R.C.; Boroski, W.N.

    1992-09-01

    An improved multilayer insulation blanket for insulating cryogenic structures operating at very low temperatures is disclosed. An apparatus and method for fabricating the improved blanket are also disclosed. In the improved blanket, each successive layer of insulating material is greater in length and width than the preceding layer so as to accommodate thermal contraction of the layers closest to the cryogenic structure. The fabricating apparatus has a rotatable cylindrical mandrel having an outer surface of fixed radius that is substantially arcuate, preferably convex, in cross-section. The method of fabricating the improved blanket comprises (a) winding a continuous sheet of thermally reflective material around the circumference of the mandrel to form multiple layers, (b) binding the layers along two lines substantially parallel to the edges of the circumference of the mandrel, (c) cutting the layers along a line parallel to the axle of the mandrel, and (d) removing the bound layers from the mandrel. 7 figs.

  7. Method for fabricating transistors using crystalline silicon devices on glass

    DOE Patents [OSTI]

    McCarthy, Anthony M.

    1997-01-01

    A method for fabricating transistors using single-crystal silicon devices on glass. This method overcomes the potential damage that may be caused to the device during high voltage bonding and employs a metal layer which may be incorporated as part of the transistor. This is accomplished such that when the bonding of the silicon wafer or substrate to the glass substrate is performed, the voltage and current pass through areas where transistors will not be fabricated. After removal of the silicon substrate, further metal may be deposited to form electrical contact or add functionality to the devices. By this method both single and gate-all-around devices may be formed.

  8. MOX Fabrication Isolation Considerations

    SciTech Connect (OSTI)

    Eric L. Shaber; Bradley J Schrader

    2005-08-01

    This document provides a technical position on the preferred level of isolation to fabricate demonstration quantities of mixed oxide transmutation fuels. The Advanced Fuel Cycle Initiative should design and construct automated glovebox fabrication lines for this purpose. This level of isolation adequately protects the health and safety of workers and the general public for all mixed oxide (and other transmutation fuel) manufacturing efforts while retaining flexibility, allowing parallel development and setup, and minimizing capital expense. The basis regulations, issues, and advantages/disadvantages of five potential forms of isolation are summarized here as justification for selection of the preferred technical position.

  9. Nuclear Fabrication Consortium

    SciTech Connect (OSTI)

    Levesque, Stephen

    2013-04-05

    This report summarizes the activities undertaken by EWI while under contract from the Department of Energy (DOE) – Office of Nuclear Energy (NE) for the management and operation of the Nuclear Fabrication Consortium (NFC). The NFC was established by EWI to independently develop, evaluate, and deploy fabrication approaches and data that support the re-establishment of the U.S. nuclear industry: ensuring that the supply chain will be competitive on a global stage, enabling more cost-effective and reliable nuclear power in a carbon constrained environment. The NFC provided a forum for member original equipment manufactures (OEM), fabricators, manufacturers, and materials suppliers to effectively engage with each other and rebuild the capacity of this supply chain by : • Identifying and removing impediments to the implementation of new construction and fabrication techniques and approaches for nuclear equipment, including system components and nuclear plants. • Providing and facilitating detailed scientific-based studies on new approaches and technologies that will have positive impacts on the cost of building of nuclear plants. • Analyzing and disseminating information about future nuclear fabrication technologies and how they could impact the North American and the International Nuclear Marketplace. • Facilitating dialog and initiate alignment among fabricators, owners, trade associations, and government agencies. • Supporting industry in helping to create a larger qualified nuclear supplier network. • Acting as an unbiased technology resource to evaluate, develop, and demonstrate new manufacturing technologies. • Creating welder and inspector training programs to help enable the necessary workforce for the upcoming construction work. • Serving as a focal point for technology, policy, and politically interested parties to share ideas and concepts associated with

  10. Synthesis, structural characterization and magnetic properties of RE{sub 2}MgGe{sub 2} (RE=rare-earth metal)

    SciTech Connect (OSTI)

    Suen, Nian-Tzu; Tobash, Paul H.; Bobev, Svilen

    2011-11-15

    A series of rare-earth metal-magnesium-germanides RE{sub 2}MgGe{sub 2} (RE=Y, Nd, Sm, Gd-Tm, Lu) has been synthesized by reactions of the corresponding elements at high temperature. Their structures have been established by single-crystal and powder X-ray diffraction and belong to the Mo{sub 2}FeB{sub 2} structure type (space group P4/mbm (No. 127), Z=2; Pearson symbol tP10). Temperature dependent DC magnetization measurements indicate Curie-Weiss paramagnetism in the high-temperature regime for all members of the family, excluding Y{sub 2}MgGe{sub 2}, Sm{sub 2}MgGe{sub 2}, and Lu{sub 2}MgGe{sub 2}. At cryogenic temperatures (ca. 60 K and below), most RE{sub 2}MgGe{sub 2} phases enter into an antiferromagnetic ground-state, except for Er{sub 2}MgGe{sub 2} and Tm{sub 2}MgGe{sub 2}, which do not undergo magnetic ordering down to 5 K. The structural variations as a function of the decreasing size of the rare-earth metals, following the lanthanide contraction, and the changes in the magnetic properties across the series are discussed as well. - Graphical Abstract: The structure of RE{sub 2}MgGe{sub 2} (RE=Y, Nd, Sm, Gd-Tm, Lu) can be best viewed as 2-dimensional slabs of Mg and Ge atoms (anionic sub-lattice), and layers of rare-earth metal atoms (cationic sub-lattice) between them. Within this description, one should consider the Ge-Ge dumbbells (formally Ge{sup 6-}{sub 2}), interconnected with square-planar Mg atom as forming flat [MgGe{sub 2}] layers (z=0), stacked along the c-axis with the layers at z=1/2, made of rare-earth metal cations (formally RE{sup 3+}). Highlights: > RE{sub 2}MgGe{sub 2} (RE=Y, Nd, Sm, Gd-Tm, Lu) are new ternary germanides. > Their structures can be recognized as a 1:1 intergrowth of CsCl- and AlB{sub 2}-like slabs. > Ge atoms are covalently bound into Ge{sub 2} dumbbells. > Most RE{sub 2}MgGe{sub 2} phases are antiferromagnetically ordered at cryogenic temperatures.

  11. Photodeposition Method For Fabricating A Three-Dimensional, Patterned Polymer Microstructure

    DOE Patents [OSTI]

    Walt, David R.; Healey, Brian G.

    2001-03-13

    The present invention is a photodeposition methodology for fabricating a three-dimensional patterned polymer microstructure. A variety of polymeric structures can be fabricated on solid substrates using unitary fiber optic arrays for light delivery. The methodology allows micrometer-scale photopatterning for the fabricated structures using masks substantially larger than the desired dimensions of the microstructure.

  12. Composite electrode/electrolyte structure

    DOE Patents [OSTI]

    Visco, Steven J.; Jacobson, Craig P.; DeJonghe, Lutgard C.

    2004-01-27

    Provided is an electrode fabricated from highly electronically conductive materials such as metals, metal alloys, or electronically conductive ceramics. The electronic conductivity of the electrode substrate is maximized. Onto this electrode in the green state, a green ionic (e.g., electrolyte) film is deposited and the assembly is co-fired at a temperature suitable to fully densify the film while the substrate retains porosity. Subsequently, a catalytic material is added to the electrode structure by infiltration of a metal salt and subsequent low temperature firing. The invention allows for an electrode with high electronic conductivity and sufficient catalytic activity to achieve high power density in ionic (electrochemical) devices such as fuel cells and electrolytic gas separation systems.

  13. A Molecular- and Nano-Electronics Test (MONET) platform fabricated using extreme ultraviolet lithography.

    SciTech Connect (OSTI)

    Dentinger, Paul M.; Cardinale, Gregory F.; Hunter, Luke L.; Talin, Albert Alec

    2003-12-01

    We describe the fabrication and characterization of an electrode array test structure, designed for electrical probing of molecules and nanocrystals. We use Extreme Ultraviolet Lithography (EUVL) to define the electrical test platform features. As fabricated, the platform includes nominal electrode gaps of 0 nm, 40 nm, 60 nm, and 80 nm. Additional variation in electrode gap is achieved by controlling the exposure conditions, such as dose and focus. To enable EUVL based nanofabrication, we develop a novel bi-level photoresist process. The bi-level photoresist consists of a combination of a commercially available polydimethylglutarimide (PMGI) bottom layer and an experimental EUVL photoresist top (imaging) layer. We measure the sensitivity of PMGI to EUV exposure dose as a function of photoresist pre-bake temperature, and using this data, optimize a metal lift-off process. Reliable fabrication of 700 Angstrom thick Au structures with sub-1000 Angstrom critical dimensions is achieved, even without the use of a Au adhesion layer, such as Ti. Several test platforms are used to characterize electrical properties of organic molecules deposited as self assembled monolayers.

  14. Composite fabrication via resin transfer molding technology

    SciTech Connect (OSTI)

    Jamison, G.M.; Domeier, L.A.

    1996-04-01

    The IMPReS (Integrated Modeling and Processing of Resin-based Structures) Program was funded in FY95 to consolidate, evaluate and enhance Sandia`s capabilities in the design and fabrication of composite structures. A key driver of this and related programs was the need for more agile product development processes and for model based design and fabrication tools across all of Sandia`s material technologies. A team of polymer, composite and modeling personnel was assembled to benchmark Sandia`s existing expertise in this area relative to industrial and academic programs and to initiate the tasks required to meet Sandia`s future needs. RTM (Resin Transfer Molding) was selected as the focus composite fabrication technology due to its versatility and growing use in industry. Modeling efforts focused on the prediction of composite mechanical properties and failure/damage mechanisms and also on the uncured resin flow processes typical of RTM. Appropriate molds and test composites were fabricated and model validation studies begun. This report summarizes and archives the modeling and fabrication studies carried out under IMPReS and evaluates the status of composite technology within Sandia. It should provide a complete and convenient baseline for future composite technology efforts within Sandia.

  15. Fabrication and performance of AIN insulator coatings for application in fusion reactor blankets

    SciTech Connect (OSTI)

    Natesan, K.

    1995-09-01

    The liquid-metal blanket concept for fusion reactors requires an coating on the first-wall structural material to minimize the magnetohydrodynamic pressure drop that occurs during the flow of liquid metal in a magnetic field. Based on the thermodynamics of interactions betwen the coating and the liquid lithium on one side and the structural V-base alloy on the other side, an AIN coating was selected as a candidate. Detailed investigations were conducted on the fabrication, metallurgical microstructure, compatibility in liquid Li, and electrical characteristics of AIN material obtained from several sources. Lithium compatibility was studied in static systems by exposing AIN-coated specimens to liquid Li for several time periods. Electrical resistance was measured at room temperature on the specimens before and after exposure to liquid Li. The results obtained in this study indicate that AIN is a viable coating from the standpoint of chemical compatibility in Li, electrical insulation, and ease of fabrication; for these reasons, the coating should be examined further for fusion reactor applications.

  16. Method to control artifacts of microstructural fabrication

    DOE Patents [OSTI]

    Shul, Randy J.; Willison, Christi G.; Schubert, W. Kent; Manginell, Ronald P.; Mitchell, Mary-Anne; Galambos, Paul C.

    2006-09-12

    New methods for fabrication of silicon microstructures have been developed. In these methods, an etching delay layer is deposited and patterned so as to provide differential control on the depth of features being etched into a substrate material. Compensation for etching-related structural artifacts can be accomplished by proper use of such an etching delay layer.

  17. Syntheses, structures and tunable luminescence of lanthanide metal-organic frameworks based on azole-containing carboxylic acid ligand

    SciTech Connect (OSTI)

    Zhao, Dian; Rao, Xingtang; Yu, Jiancan; Cui, Yuanjing Yang, Yu; Qian, Guodong

    2015-10-15

    Design and synthesis of a series of isostructural lanthanide metal-organic frameworks (LnMOFs) serving as phosphors by coordinate the H{sub 2}TIPA (5-(1H-tetrazol-5-yl)isophthalic acid) ligands and lanthanide ions is reported. The color of the luminescence can be tuned by adjusting the relative concentration of the lanthanide ions in the host framework GdTIPA, and near-pure-white light emission can be achieved. - Graphical abstract: Lanthanide metal-organic frameworks (LnMOFs) with tunable luminescence were synthesized using an azole-containing carboxylic acid as ligand. - Highlights: • A series of isostructural LnMOFs serving as phosphor is reported. • We model the GdTIPA: Tb{sup 3+}, Eu{sup 3+} which can tune color and emit white light. • The scheme and mechanism of luminescent LnMOFs are also presented and discussed.

  18. An Electrically Switchable Metal-Organic Framework

    SciTech Connect (OSTI)

    Fernandez, Carlos A.; Martin, Paul F.; Schaef, Herbert T.; Bowden, Mark E.; Thallapally, Praveen K.; Dang, Liem X.; Xu, Wu; Chen, Xilin; McGrail, B. Peter

    2014-08-19

    Crystalline metal organic framework (MOF) materials containing interconnected porosity can be chemically modified to promote stimulus-driven (light, magnetic or electric fields) structural transformations that can be used in a number of devices. Innovative research strategies are now focused on understanding the role of chemical bond manipulation to reversibly alter the free volume in such structures of critical importance for electro-catalysis, molecular electronics, energy storage technologies, sensor devices and smart membranes. In this letter, we study the mechanism for which an electrically switchable MOF composed of Cu(TCNQ) (TCNQ 5 7,7,8,8-tetracyanoquinodimethane) transitions from a high-resistance state to a conducting state in a reversible fashion by an applied potential. The actual mechanism for this reversible electrical switching is still not understood even though a number of reports are available describing the application of electric-field-induced switching of Cu(TCNQ) in device fabrication.

  19. An Electrically Switchable Metal-Organic Framework

    SciTech Connect (OSTI)

    Fernandez, CA; Martin, PC; Schaef, T; Bowden, ME; Thallapally, PK; Dang, L; Xu, W; Chen, XL; McGrail, BP

    2014-08-19

    Crystalline metal organic framework (MOF) materials containing interconnected porosity can be chemically modified to promote stimulus-driven (light, magnetic or electric fields) structural transformations that can be used in a number of devices. Innovative research strategies are now focused on understanding the role of chemical bond manipulation to reversibly alter the free volume in such structures of critical importance for electro-catalysis, molecular electronics, energy storage technologies, sensor devices and smart membranes. In this letter, we study the mechanism for which an electrically switchable MOF composed of Cu(TCNQ) (TCNQ = 7,7,8,8-tetracyanoquinodimethane) transitions from a high-resistance state to a conducting state in a reversible fashion by an applied potential. The actual mechanism for this reversible electrical switching is still not understood even though a number of reports are available describing the application of electric-field-induced switching of Cu(TCNQ) in device fabrication.

  20. Recovery of Rare Earths, Precious Metals and Other Critical Materials from Geothermal Waters with Advanced Sorbent Structures

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Pamela M. Kinsey

    2015-09-30

    The work evaluates, develops and demonstrates flexible, scalable mineral extraction technology for geothermal brines based upon solid phase sorbent materials with a specific focus upon rare earth elements (REEs). The selected organic and inorganic sorbent materials demonstrated high performance for collection of trace REEs, precious and valuable metals. The nanostructured materials typically performed better than commercially available sorbents. Data contains organic and inorganic sorbent removal efficiency, Sharkey Hot Springs (Idaho) water chemsitry analysis, and rare earth removal efficiency from select sorbents.

  1. Adsorption geometry, conformation, and electronic structure of 2H-octaethylporphyrin on Ag(111) and Fe metalation in ultra high vacuum

    SciTech Connect (OSTI)

    Borghetti, Patrizia; Sangaletti, Luigi; Santo, Giovanni Di; Castellarin-Cudia, Carla; Goldoni, Andrea; Fanetti, Mattia; Magnano, Elena; Bondino, Federica

    2013-04-14

    Due to the growing interest in the ferromagnetic properties of Fe-octaethylporphyrins (Fe-OEP) for applications in spintronics, methods to produce stable Fe-porphyrins with no Cl atoms are highly demanded. Here, we demonstrate the formation of Fe-OEP layers on Ag(111) single crystal by the ultra high vacuum in situ metalation of the free-base 2H-2,3,7,8,12,13,17,18-octaethylporphyrin (2H-OEP) molecules. The metalation proceeds exactly as in the case of 2H-5,10,15,20-tetraphenylporphyrin (2H-TPP) on the same substrate. An extensive surface characterization by means of X-ray photoemission spectroscopy, valence band photoemission, and NEXAFS with synchrotron radiation light provides information on molecular conformation and electronic structure in the monolayer and multilayer cases. We demonstrate that the presence of the ethyl groups affects the tilt of the adsorbed molecules, the conformation of the macrocycle, and the polarization screening in multilayers, but has only a minor effect in the metalation process with respect to 2H-TPP.

  2. Method of fabricating a flow device

    DOE Patents [OSTI]

    Hale, Robert L.

    1978-01-01

    This invention is a novel method for fabricating leak-tight tubular articles which have an interior flow channel whose contour must conform very closely with design specifications but which are composed of metal which tends to warp if welded. The method comprises designing two longitudinal half-sections of the article, the half-sections being contoured internally to cooperatively form the desired flow passageway. Each half-section is designed with a pair of opposed side flanges extending between the end flanges and integral therewith. The half-sections are positioned with their various flanges in confronting relation and with elongated metal gaskets extending between the confronting flanges for the length of the array. The gaskets are a deformable metal which is fusion-weldable to the end flanges. The mating side flanges are joined mechanically to deform the gaskets and provide a longitudinally sealed assembly. The portions of the end flanges contiguous with the ends of the gaskets then are welded to provide localized end welds which incorporate ends of the gaskets, thus transversely sealing the assembly. This method of fabrication provides leak-tight articles having the desired precisely contoured flow channels, whereas various conventional methods have been found unsatisfactory.

  3. Liquid metal thermal electric converter

    DOE Patents [OSTI]

    Abbin, Joseph P.; Andraka, Charles E.; Lukens, Laurance L.; Moreno, James B.

    1989-01-01

    A liquid metal thermal electric converter which converts heat energy to electrical energy. The design of the liquid metal thermal electric converter incorporates a unique configuration which directs the metal fluid pressure to the outside of the tube which results in the structural loads in the tube to be compressive. A liquid metal thermal electric converter refluxing boiler with series connection of tubes and a multiple cell liquid metal thermal electric converter are also provided.

  4. Method of producing catalytic materials for fabricating nanostructures

    SciTech Connect (OSTI)

    Seals, Roland D; Menchhofer, Paul A; Howe, Jane Y; Wang, Wei

    2013-02-19

    Methods of fabricating nano-catalysts are described. In some embodiments the nano-catalyst is formed from a powder-based substrate material and is some embodiments the nano-catalyst is formed from a solid-based substrate material. In some embodiments the substrate material may include metal, ceramic, or silicon or another metalloid. The nano-catalysts typically have metal nanoparticles disposed adjacent the surface of the substrate material. The methods typically include functionalizing the surface of the substrate material with a chelating agent, such as a chemical having dissociated carboxyl functional groups (--COO), that provides an enhanced affinity for metal ions. The functionalized substrate surface may then be exposed to a chemical solution that contains metal ions. The metal ions are then bound to the substrate material and may then be reduced, such as by a stream of gas that includes hydrogen, to form metal nanoparticles adjacent the surface of the substrate.

  5. The structures and dynamics of atomic and molecular adsorbates on metal surfaces by scanning tunneling microscopy and low energy electron diffraction

    SciTech Connect (OSTI)

    Yoon, Hyungsuk Alexander

    1996-12-01

    Studies of surface structure and dynamics of atoms and molecules on metal surfaces are presented. My research has focused on understanding the nature of adsorbate-adsorbate and adsorbate-substrate interactions through surface studies of coverage dependency and coadsorption using both scanning tunneling microscopy (STM) and low energy electron diffraction (LEED). The effect of adsorbate coverage on the surface structures of sulfur on Pt(111) and Rh(111) was examined. On Pt(111), sulfur forms p(2x2) at 0.25 ML of sulfur, which transforms into a more compressed ({radical}3x{radical}3)R30{degrees} at 0.33 ML. On both structures, it was found that sulfur adsorbs only in fcc sites. When the coverage of sulfur exceeds 0.33 ML, it formed more complex c({radical}3x7)rect structure with 3 sulfur atoms per unit cell. In this structure, two different adsorption sites for sulfur atoms were observed - two on fcc sites and one on hcp site within the unit cell.

  6. Understanding the Electronic Structure of 4d Metal Complexes: From Molecular Spinors to L-Edge Spectra of a di-Ru Catalyst

    SciTech Connect (OSTI)

    Alperovich, Igor; Smolentsev, Grigory; Moonshiram, Dooshaye; Jurss, Jonah W.; Concepcion, Javier J.; Meyer, Thomas J.; Soldatov, Alexander; Pushkar, Yulia

    2015-09-17

    L{sub 2,3}-edge X-ray absorption spectroscopy (XAS) has demonstrated unique capabilities for the analysis of the electronic structure of di-Ru complexes such as the blue dimer cis,cis-[Ru{sub 2}{sup III}O(H{sub 2}O){sub 2}(bpy){sub 4}]{sup 4+} water oxidation catalyst. Spectra of the blue dimer and the monomeric [Ru(NH{sub 3}){sub 6}]{sup 3+} model complex show considerably different splitting of the Ru L{sub 2,3} absorption edge, which reflects changes in the relative energies of the Ru 4d orbitals caused by hybridization with a bridging ligand and spin-orbit coupling effects. To aid the interpretation of spectroscopic data, we developed a new approach, which computes L{sub 2,3}-edges XAS spectra as dipole transitions between molecular spinors of 4d transition metal complexes. This allows for careful inclusion of the spin-orbit coupling effects and the hybridization of the Ru 4d and ligand orbitals. The obtained theoretical Ru L{sub 2,3}-edge spectra are in close agreement with experiment. Critically, existing single-electron methods (FEFF, FDMNES) broadly used to simulate XAS could not reproduce the experimental Ru L-edge spectra for the [Ru(NH{sub 3}){sub 6}]{sup 3+} model complex nor for the blue dimer, while charge transfer multiplet (CTM) calculations were not applicable due to the complexity and low symmetry of the blue dimer water oxidation catalyst. We demonstrated that L-edge spectroscopy is informative for analysis of bridging metal complexes. The developed computational approach enhances L-edge spectroscopy as a tool for analysis of the electronic structures of complexes, materials, catalysts, and reactive intermediates with 4d transition metals.

  7. Epoxy bond and stop etch fabrication method

    DOE Patents [OSTI]

    Simmons, Jerry A.; Weckwerth, Mark V.; Baca, Wes E.

    2000-01-01

    A class of epoxy bond and stop etch (EBASE) microelectronic fabrication techniques is disclosed. The essence of such techniques is to grow circuit components on top of a stop etch layer grown on a first substrate. The first substrate and a host substrate are then bonded together so that the circuit components are attached to the host substrate by the bonding agent. The first substrate is then removed, e.g., by a chemical or physical etching process to which the stop etch layer is resistant. EBASE fabrication methods allow access to regions of a device structure which are usually blocked by the presence of a substrate, and are of particular utility in the fabrication of ultrafast electronic and optoelectronic devices and circuits.

  8. Understanding the Adsorption Mechanism of Xe and Kr in a Metal-Organic Framework from X-ray Structural Analysis and First- Principles Calculations

    SciTech Connect (OSTI)

    Ghose, Sanjit K.; Li, Yan; Yakovenko, Andrey; Dooryhee, Eric; Ehm, Lars; Ecker, Lynne E.; Dippel, Ann-Christin; Halder, Gregory J.; Strachan, Denis M.; Thallapally, Praveen K.

    2015-04-16

    Enhancement of adsorption capacity and separation of radioactive Xe/Kr at room temperature and above is a challenging problem. Here, we report a detailed structural refinement and analysis of the synchrotron X-ray powder diffraction data of Ni-DODBC metal organic framework with in situ Xe and Kr adsorption at room temperature and above. Our results reveal that Xe and Kr adsorb at the open metal sites, with adsorption geometries well reproduced by DFT calculations. The measured temperature-dependent adsorption capacity of Xe is substantially larger than that for Kr, indicating the selectivity of Xe over Kr and is consistent with the more negative adsorption energy (dominated by van der Waals dispersion interactions) predicted from DFT. Our results reveal critical structural and energetic information about host–guest interactions that dictate the selective adsorption mechanism of these two inert gases, providing guidance for the design and synthesis of new MOF materials for the separation of environmentally hazardous gases from nuclear reprocessing applications.

  9. Materials & Fabrication

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fabrication - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy

  10. Neutronic fuel element fabrication

    DOE Patents [OSTI]

    Korton, George

    2004-02-24

    This disclosure describes a method for metallurgically bonding a complete leak-tight enclosure to a matrix-type fuel element penetrated longitudinally by a multiplicity of coolant channels. Coolant tubes containing solid filler pins are disposed in the coolant channels. A leak-tight metal enclosure is then formed about the entire assembly of fuel matrix, coolant tubes and pins. The completely enclosed and sealed assembly is exposed to a high temperature and pressure gas environment to effect a metallurgical bond between all contacting surfaces therein. The ends of the assembly are then machined away to expose the pin ends which are chemically leached from the coolant tubes to leave the coolant tubes with internal coolant passageways. The invention described herein was made in the course of, or under, a contract with the U.S. Atomic Energy Commission. It relates generally to fuel elements for neutronic reactors and more particularly to a method for providing a leak-tight metal enclosure for a high-performance matrix-type fuel element penetrated longitudinally by a multiplicity of coolant tubes. The planned utilization of nuclear energy in high-performance, compact-propulsion and mobile power-generation systems has necessitated the development of fuel elements capable of operating at high power densities. High power densities in turn require fuel elements having high thermal conductivities and good fuel retention capabilities at high temperatures. A metal clad fuel element containing a ceramic phase of fuel intimately mixed with and bonded to a continuous refractory metal matrix has been found to satisfy the above requirements. Metal coolant tubes penetrate the matrix to afford internal cooling to the fuel element while providing positive fuel retention and containment of fission products generated within the fuel matrix. Metal header plates are bonded to the coolant tubes at each end of the fuel element and a metal cladding or can completes the fuel-matrix enclosure

  11. Anchored nanostructure materials and method of fabrication

    SciTech Connect (OSTI)

    Seals, Roland D; Menchhofer, Paul A; Howe, Jane Y; Wang, Wei

    2012-11-27

    Anchored nanostructure materials and methods for their fabrication are described. The anchored nanostructure materials may utilize nano-catalysts that include powder-based or solid-based support materials. The support material may comprise metal, such as NiAl, ceramic, a cermet, or silicon or other metalloid. Typically, nanoparticles are disposed adjacent a surface of the support material. Nanostructures may be formed as anchored to nanoparticles that are adjacent the surface of the support material by heating the nano-catalysts and then exposing the nano-catalysts to an organic vapor. The nanostructures are typically single wall or multi-wall carbon nanotubes.

  12. Deep drawing of uranium metal

    SciTech Connect (OSTI)

    Jackson, R J; Lundberg, M R

    1987-01-19

    A procedure was developed to fabricate uranium forming blanks with high ''draw-ability'' so that cup shapes could be easily and uniformly deep drawn. The overall procedure involved a posttreatment to develop optimum mechanical and structural properties in the deep-drawn cups. The fabrication sequence is casting high-purity logs, pucking cast logs, cross-rolling pucks to forming blanks, annealing and outgassing forming blanks, cold deep drawing to hemispherical shapes, and stress relieving, outgassing, and annealing deep-drawn parts to restore ductility and impart dimensional stability. The fabrication development and the resulting fabrication procedure are discussed in detail. The mechanical properties and microstructural properties are discussed.

  13. Thin film lithium-based batteries and electrochromic devices fabricated with nanocomposite electrode materials

    DOE Patents [OSTI]

    Gillaspie, Dane T; Lee, Se-Hee; Tracy, C. Edwin; Pitts, John Roland

    2014-02-04

    Thin-film lithium-based batteries and electrochromic devices (10) are fabricated with positive electrodes (12) comprising a nanocomposite material composed of lithiated metal oxide nanoparticles (40) dispersed in a matrix composed of lithium tungsten oxide.

  14. MEA Fabrication | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    MEA Fabrication MEA Fabrication Presented at the 2009 High Temperature Membrane Working Group Meeting held May 18, 2009, in Arlington, Virginia htmwg_may09_mea_fabrication.pdf (678.88 KB) More Documents & Publications Integration of Non-Traditional Membranes into MEAs FSEC's MEA Test Protocol Membrane Performance and Durability Overview for Automotive Fuel Cell Applications

  15. Fabrication of dual porosity electrode structure

    DOE Patents [OSTI]

    Smith, James L.; Kucera, Eugenia H.

    1991-01-01

    A substantially entirely fibrous ceramic which may have dual porosity of both micro and macro pores. Total porosity may be 60-75% by volume. A method of spraying a slurry perpendicularly to an ambient stream of air is disclosed along with a method of removing binders without altering the fiber morphology. Adding fine ceramic particulates to the green ceramic fibers enhances the sintering characteristics of the fibers.

  16. Series connected OLED structure and fabrication method

    DOE Patents [OSTI]

    Foust, Donald Franklin; Balch, Ernest Wayne; Duggal, Anil Raj; Heller, Christian Maria; Guida, Renato; Nealon, William Francis; Faircloth, Tami Janene

    2006-05-23

    A light emitting device comprises a plurality of organic light emitting diode (OLED) modules. The OLED modules are arranged into a series group where the individual OLED modules are electrically connected in series. The device is configured to be coupled to a power supply. A display is also provided. The display includes a plurality of OLED modules arranged to depict a shape selected from the group consisting of at least one letter, at least one number, at least one image, and a combination thereof.

  17. Fabrication of dual porosity electrode structure

    DOE Patents [OSTI]

    Smith, J.L.; Kucera, E.H.

    1991-02-12

    A substantially entirely fibrous ceramic is described which may have dual porosity of both micro and macro pores. Total porosity may be 60-75% by volume. A method of spraying a slurry perpendicularly to an ambient stream of air is disclosed along with a method of removing binders without altering the fiber morphology. Adding fine ceramic particulates to the green ceramic fibers enhances the sintering characteristics of the fibers. 3 figures.

  18. Structural and electrical characterizations of In{sub x}Ga{sub 1-x}As/InP structures for infrared photodetector applications

    SciTech Connect (OSTI)

    Asar, Tar?k zelik, Sleyman; zbay, Ekmel

    2014-03-14

    Three InGaAs/InP structures for photodetector applications were grown with different indium compositions by MBE technique. The structural properties of the samples have been obtained by means of high resolution X-ray diffraction and secondary ion mass spectrometry measurements. Three InGaAs/InP metal-semiconductor-metal devices were fabricated at room temperature. The experimental forward and reverse bias currentvoltage characteristics of the devices such as ideality factor, barrier height, and saturation current were evaluated considering the structural properties of the grown structures. The carrier recombination lifetime and diffusion length in the devices were also calculated using carrier density and mobility data obtained with Hall effect measurement at room temperature. It was determined that all room temperature fabricated devices improved the Schottky barrier height. Especially, the device fabricated on the lower mismatched structure exhibited barrier height enhancement from 0.2?eV, which is the conventional barrier height to 0.642?eV. In addition, the obtained results show that the room temperature fabricated devices on InGaAs/InP structures can be convenient for infrared photodetector applications.

  19. Strategies to curb structural changes of lithium/transition metal oxide cathode materials & the changes' effects on thermal & cycling stability

    SciTech Connect (OSTI)

    Yu, Xiqian; Hu, Enyuan; Bak, Seongmin; Zhou, Yong -Ning; Yang, Xiao -Qing

    2015-12-07

    Structural transformation behaviors of several typical oxide cathode materials during a heating process are reviewed in detail to provide in-depth understanding of the key factors governing the thermal stability of these materials. Furthermore, we also discuss applying the information about heat induced structural evolution in the study of electrochemically induced structural changes. All these discussions are expected to provide valuable insights for designing oxide cathode materials with significantly improved structural stability for safe, long-life lithium ion batteries, as the safety of lithium-ion batteries is a critical issue. As a result, it is widely accepted that the thermal instability of the cathodes is one of the most critical factors in thermal runaway and related safety problems.

  20. Strategies to curb structural changes of lithium/transition metal oxide cathode materials & the changes' effects on thermal & cycling stability

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yu, Xiqian; Hu, Enyuan; Bak, Seongmin; Zhou, Yong -Ning; Yang, Xiao -Qing

    2015-12-07

    Structural transformation behaviors of several typical oxide cathode materials during a heating process are reviewed in detail to provide in-depth understanding of the key factors governing the thermal stability of these materials. Furthermore, we also discuss applying the information about heat induced structural evolution in the study of electrochemically induced structural changes. All these discussions are expected to provide valuable insights for designing oxide cathode materials with significantly improved structural stability for safe, long-life lithium ion batteries, as the safety of lithium-ion batteries is a critical issue. As a result, it is widely accepted that the thermal instability of themore »cathodes is one of the most critical factors in thermal runaway and related safety problems.« less

  1. Strategies to curb structural changes of lithium/transition metal oxide cathode materials & the changes' effects on thermal & cycling stability

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yu, Xiqian; Hu, Enyuan; Bak, Seongmin; Zhou, Yong -Ning; Yang, Xiao -Qing

    2015-12-07

    Structural transformation behaviors of several typical oxide cathode materials during a heating process are reviewed in detail to provide in-depth understanding of the key factors governing the thermal stability of these materials. Furthermore, we also discuss applying the information about heat induced structural evolution in the study of electrochemically induced structural changes. All these discussions are expected to provide valuable insights for designing oxide cathode materials with significantly improved structural stability for safe, long-life lithium ion batteries, as the safety of lithium-ion batteries is a critical issue. As a result, it is widely accepted that the thermal instability of themore » cathodes is one of the most critical factors in thermal runaway and related safety problems.« less

  2. Fiber metal interlayer improves ceramic coating performance

    SciTech Connect (OSTI)

    Jarrabet, G.P.

    1994-11-01

    This article is a review of the use of a compliant fiber metal inner layer between a ceramic coating and metal. The material used is Zirconia with phase stabilizers of magnesium oxide, calcium oxide, and yttrium oxide. Design, fabrication, and testing of the stabilized zirconia is discussed.

  3. Electron-beam-evaporated thin films of hafnium dioxide for fabricating electronic devices

    SciTech Connect (OSTI)

    Xiao, Zhigang; Kisslinger, Kim

    2015-06-17

    Thin films of hafnium dioxide (HfO2) are widely used as the gate oxide in fabricating integrated circuits because of their high dielectric constants. In this paper, the authors report the growth of thin films of HfO2 using e-beam evaporation, and the fabrication of complementary metal-oxide semiconductor (CMOS) integrated circuits using this HfO2 thin film as the gate oxide. The authors analyzed the thin films using high-resolution transmission electron microscopy and electron diffraction, thereby demonstrating that the e-beam-evaporation-grown HfO2 film has a polycrystalline structure and forms an excellent interface with silicon. Accordingly, we fabricated 31-stage CMOS ring oscillator to test the quality of the HfO2 thin film as the gate oxide, and obtained excellent rail-to-rail oscillation waveforms from it, denoting that the HfO2 thin film functioned very well as the gate oxide.

  4. Electron-beam-evaporated thin films of hafnium dioxide for fabricating electronic devices

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Xiao, Zhigang; Kisslinger, Kim

    2015-06-17

    Thin films of hafnium dioxide (HfO2) are widely used as the gate oxide in fabricating integrated circuits because of their high dielectric constants. In this paper, the authors report the growth of thin films of HfO2 using e-beam evaporation, and the fabrication of complementary metal-oxide semiconductor (CMOS) integrated circuits using this HfO2 thin film as the gate oxide. The authors analyzed the thin films using high-resolution transmission electron microscopy and electron diffraction, thereby demonstrating that the e-beam-evaporation-grown HfO2 film has a polycrystalline structure and forms an excellent interface with silicon. Accordingly, we fabricated 31-stage CMOS ring oscillator to test themore » quality of the HfO2 thin film as the gate oxide, and obtained excellent rail-to-rail oscillation waveforms from it, denoting that the HfO2 thin film functioned very well as the gate oxide.« less

  5. Controlled fabrication of Si nanocrystal delta-layers in thin SiO{sub 2} layers by plasma immersion ion implantation for nonvolatile memories

    SciTech Connect (OSTI)

    Bonafos, C.; Ben-Assayag, G.; Groenen, J.; Carrada, M.; Spiegel, Y.; Torregrosa, F.; Normand, P.; Dimitrakis, P.; Kapetanakis, E.; Sahu, B. S.; Slaoui, A.

    2013-12-16

    Plasma Immersion Ion Implantation (PIII) is a promising alternative to beam line implantation to produce a single layer of nanocrystals (NCs) in the gate insulator of metal-oxide semiconductor devices. We report herein the fabrication of two-dimensional Si-NCs arrays in thin SiO{sub 2} films using PIII and rapid thermal annealing. The effect of plasma and implantation conditions on the structural properties of the NC layers is examined by transmission electron microscopy. A fine tuning of the NCs characteristics is possible by optimizing the oxide thickness, implantation energy, and dose. Electrical characterization revealed that the PIII-produced-Si NC structures are appealing for nonvolatile memories.

  6. Metal aminoboranes

    DOE Patents [OSTI]

    Burrell, Anthony K.; Davis, Benjamin J.; Thorn, David L.; Gordon, John C.; Baker, R. Thomas; Semelsberger, Troy Allen; Tumas, William; Diyabalanage, Himashinie Vichalya Kaviraj; Shrestha, Roshan P.

    2010-05-11

    Metal aminoboranes of the formula M(NH.sub.2BH.sub.3).sub.n have been synthesized. Metal aminoboranes are hydrogen storage materials. Metal aminoboranes are also precursors for synthesizing other metal aminoboranes. Metal aminoboranes can be dehydrogenated to form hydrogen and a reaction product. The reaction product can react with hydrogen to form a hydrogen storage material. Metal aminoboranes can be included in a kit.

  7. Fabrication of boron articles

    DOE Patents [OSTI]

    Benton, Samuel T.

    1976-01-01

    This invention is directed to the fabrication of boron articles by a powder metallurgical method wherein the articles are of a density close to the theoretical density of boron and are essentially crackfree. The method comprises the steps of admixing 1 to 10 weight percent carbon powder with amorphous boron powder, cold pressing the mixture and then hot pressing the cold pressed compact into the desired article. The addition of the carbon to the mixture provides a pressing aid for inhibiting the cracking of the hot pressed article and is of a concentration less than that which would cause the articles to possess significant concentrations of boron carbide.

  8. Mask fabrication process

    DOE Patents [OSTI]

    Cardinale, Gregory F.

    2000-01-01

    A method for fabricating masks and reticles useful for projection lithography systems. An absorber layer is conventionally patterned using a pattern and etch process. Following the step of patterning, the entire surface of the remaining top patterning photoresist layer as well as that portion of an underlying protective photoresist layer where absorber material has been etched away is exposed to UV radiation. The UV-exposed regions of the protective photoresist layer and the top patterning photoresist layer are then removed by solution development, thereby eliminating the need for an oxygen plasma etch and strip and chances for damaging the surface of the substrate or coatings.

  9. Intraocular lens fabrication

    DOE Patents [OSTI]

    Salazar, Mike A.; Foreman, Larry R.

    1997-01-01

    This invention describes a method for fabricating an intraocular lens made rom clear Teflon.TM., Mylar.TM., or other thermoplastic material having a thickness of about 0.025 millimeters. These plastic materials are thermoformable and biocompatable with the human eye. The two shaped lenses are bonded together with a variety of procedures which may include thermosetting and solvent based adhesives, laser and impulse welding, and ultrasonic bonding. The fill tube, which is used to inject a refractive filling material is formed with the lens so as not to damage the lens shape. A hypodermic tube may be included inside the fill tube.

  10. FUEL ELEMENT FABRICATION METHOD

    DOE Patents [OSTI]

    Hix, J.N.; Cooley, G.E.; Cunningham, J.E.

    1960-05-31

    A method is given for assembling and fabricating a fuel element comprising a plurality of spaced parallel fuel plates of a bowed configuration supported by and between a pair of transperse aluminum side plates. In this method, a brasing alloy is preplated on one surface of the aluminum side plates in the form of a cladding or layer-of uniform thickness. Grooves are then cut into the side plates through the alloy layer and into the base aluminum which results in the utilization of thinner aluminum side plates since a portion of the necessary groove depth is supplied by the brazing alloy.

  11. Intraocular lens fabrication

    DOE Patents [OSTI]

    Salazar, M.A.; Foreman, L.R.

    1997-07-08

    This invention describes a method for fabricating an intraocular lens made from clear Teflon{trademark}, Mylar{trademark}, or other thermoplastic material having a thickness of about 0.025 millimeters. These plastic materials are thermoformable and biocompatable with the human eye. The two shaped lenses are bonded together with a variety of procedures which may include thermosetting and solvent based adhesives, laser and impulse welding, and ultrasonic bonding. The fill tube, which is used to inject a refractive filling material is formed with the lens so as not to damage the lens shape. A hypodermic tube may be included inside the fill tube. 13 figs.

  12. Microstructure fabrication process induced modulations in CVD graphene

    SciTech Connect (OSTI)

    Matsubayashi, Akitomo Zhang, Zhenjun; Lee, Ji Ung; LaBella, Vincent P.

    2014-12-15

    The systematic Raman spectroscopic study of a mimicked graphene device fabrication is presented. Upon photoresist baking, compressive stress is induced in the graphene which disappears after it is removed. The indirect irradiation from the electron beam (through the photoresist) does not significantly alter graphene characteristic Raman peaks indicating that graphene quality is preserved upon the exposure. The 2D peak shifts and the intensity ratio of 2D and G band, I(2D)/I(G), decreases upon direct metal deposition (Co and Py) suggesting that the electronic modulation occurs due to sp{sup 2} C-C bond weakening. In contrast, a thin metal oxide film deposited graphene does not show either the significant 2D and G peaks shift or I(2D)/I(G) decrease upon the metal deposition suggesting the oxide protect the graphene quality in the fabrication process.

  13. Assessing electronic structure approaches for gas-ligand interactions in metal-organic frameworks: The CO{sub 2}-benzene complex

    SciTech Connect (OSTI)

    Witte, Jonathon; Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720 ; Neaton, Jeffrey B.; Head-Gordon, Martin; Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720

    2014-03-14

    Adsorption of gas molecules in metal-organic frameworks is governed by many factors, the most dominant of which are the interaction of the gas with open metal sites, and the interaction of the gas with the ligands. Herein, we examine the latter class of interaction in the context of CO{sub 2} binding to benzene. We begin by clarifying the geometry of the CO{sub 2}benzene complex. We then generate a benchmark binding curve using a coupled-cluster approach with single, double, and perturbative triple excitations [CCSD(T)] at the complete basis set (CBS) limit. Against this ?CCSD(T)/CBS standard, we evaluate a plethora of electronic structure approximations: Hartree-Fock, second-order Mller-Plesset perturbation theory (MP2) with the resolution-of-the-identity approximation, attenuated MP2, and a number of density functionals with and without different empirical and nonempirical van der Waals corrections. We find that finite-basis MP2 significantly overbinds the complex. On the other hand, even the simplest empirical correction to standard density functionals is sufficient to bring the binding energies to well within 1 kJ/mol of the benchmark, corresponding to an error of less than 10%; PBE-D in particular performs well. Methods that explicitly include nonlocal correlation kernels, such as VV10, vdW-DF2, and ?B97X-V, perform with similar accuracy for this system, as do ?B97X and M06-L.

  14. Determination of active doping in highly resistive boron doped silicon nanocrystals embedded in SiO{sub 2} by capacitance voltage measurement on inverted metal oxide semiconductor structure

    SciTech Connect (OSTI)

    Zhang, Tian Puthen-Veettil, Binesh; Wu, Lingfeng; Jia, Xuguang; Lin, Ziyun; Yang, Terry Chien-Jen; Conibeer, Gavin; Perez-Wurfl, Ivan

    2015-10-21

    We investigate the Capacitance-Voltage (CV) measurement to study the electrically active boron doping in Si nanocrystals (ncSi) embedded in SiO{sub 2}. The ncSi thin films with high resistivity (200–400 Ω cm) can be measured by using an inverted metal oxide semiconductor (MOS) structure (Al/ncSi (B)/SiO{sub 2}/Si). This device structure eliminates the complications from the effects of lateral current flow and the high sheet resistance in standard lateral MOS structures. The characteristic MOS CV curves observed are consistent with the effective p-type doping. The CV modeling method is presented and used to evaluate the electrically active doping concentration. We find that the highly boron doped ncSi films have electrically active doping of 10{sup 18}–10{sup 19 }cm{sup −3} despite their high resistivity. The saturation of doping at about 1.4 × 10{sup 19 }cm{sup −3} and the low doping efficiency less than 5% are observed and discussed. The calculated effective mobility is in the order of 10{sup −3} cm{sup 2}/V s, indicating strong impurity/defect scattering effect that hinders carriers transport.

  15. Method of making patterned helical metallic ribbon for continuous edge winding applications

    DOE Patents [OSTI]

    Liebermann, Howard H.; Frischmann, Peter G.; Rosenberry, Jr., George M.

    1982-08-10

    Metallic ribbon having cutout patterns therein is fabricated in continuous helical form by directing a melt stream or jet onto a rapidly moving patterned substrate surface.

  16. Method of making patterned helical metallic ribbon for continuous edge winding applications

    DOE Patents [OSTI]

    Liebermann, H.H.; Frischmann, P.G.; Rosenberry, G.M. Jr.

    1982-08-10

    Metallic ribbon having cutout patterns therein is fabricated in continuous helical form by directing a melt stream or jet onto a rapidly moving patterned substrate surface. 10 figs.

  17. Method for fabricating pixelated silicon device cells

    SciTech Connect (OSTI)

    Nielson, Gregory N.; Okandan, Murat; Cruz-Campa, Jose Luis; Nelson, Jeffrey S.; Anderson, Benjamin John

    2015-08-18

    A method, apparatus and system for flexible, ultra-thin, and high efficiency pixelated silicon or other semiconductor photovoltaic solar cell array fabrication is disclosed. A structure and method of creation for a pixelated silicon or other semiconductor photovoltaic solar cell array with interconnects is described using a manufacturing method that is simplified compared to previous versions of pixelated silicon photovoltaic cells that require more microfabrication steps.

  18. Nano-fabricated superconducting radio-frequency composites, method for producing nano-fabricated superconducting rf composites

    DOE Patents [OSTI]

    Norem, James H.; Pellin, Michael J.

    2013-06-11

    Superconducting rf is limited by a wide range of failure mechanisms inherent in the typical manufacture methods. This invention provides a method for fabricating superconducting rf structures comprising coating the structures with single atomic-layer thick films of alternating chemical composition. Also provided is a cavity defining the invented laminate structure.

  19. Synthesis, structure elucidation and redox properties of 99Tc complexes of lacunary Wells Dawson polyoxometalates: insights into molecular 99Tc - metal oxide interactions

    SciTech Connect (OSTI)

    McGregor, Donna; Burton-Pye, Benjamin P.; Howell, Robertha C.; Mbomekalle, Israel M.; Lukens Jr, Wayne W.; Bian, Fang; Mausolf, Edward; Poineau, Frederic; Czerwinski, Kenneth R; Francesconi, Lynn C.

    2011-01-10

    The isotope 99Tc (beta max: 250 keV, half-life: 2 x 105 year) is an abundant product of uranium-235 fission in nuclear reactors and is present throughout the radioactive waste stored in underground tanks at Hanford and Savannah River. Understanding and controlling the extensive redox chemistry of 99Tc is important to identify tunable strategies to separate 99Tc from spent fuel and from waste tanks and once separated, to identify and develop an appropriately stable waste-form for 99Tc. Polyoxometalates (POMs), nanometer sized models for metal oxide solid-state materials, are used in this study to provide a molecular level understanding of the speciation and redox chemistry of incorporated 99Tc. In this study, 99Tc complexes of the (alpha 2-P2W17O61)10- and (alpha 1-P2W17O61)10- isomers were prepared. Ethylene glycol was used as a"transfer ligand" to minimize the formation of TcO2 cdot xH2O. The solution structures, formulations, and purity of TcVO(alpha 1/alpha 2-P2W17O61)7- were determined by multinuclear NMR. X-ray Absorption Spectroscopy of the complexes are in agreement with the formulation and structures determined from 31P and 183W NMR. Preliminary electrochemistry results are consistent with the EXAFS results, showing a facile reduction of the TcVO(alpha 1-P2W17O61)7- species compared to the TcVO(alpha 2-P2W17O61)7- analog. The alpha1- defect is unique in that a basic oxygen atom is positioned toward the alpha1- site and the TcVO center appears to form a dative metal-metal bond with a framework W site. These attributes may lead to the assistance of protonation events that facilitate reduction. Electrochemistry comparison shows that the ReV analogs are about 200 mV more difficult to reduce in accordance with periodic trends.

  20. Advanced Safeguards Approaches for New TRU Fuel Fabrication Facilities

    SciTech Connect (OSTI)

    Durst, Philip C.; Ehinger, Michael H.; Boyer, Brian; Therios, Ike; Bean, Robert; Dougan, A.; Tolk, K.

    2007-12-15

    This second report in a series of three reviews possible safeguards approaches for the new transuranic (TRU) fuel fabrication processes to be deployed at AFCF – specifically, the ceramic TRU (MOX) fuel fabrication line and the metallic (pyroprocessing) line. The most common TRU fuel has been fuel composed of mixed plutonium and uranium dioxide, referred to as “MOX”. However, under the Advanced Fuel Cycle projects custom-made fuels with higher contents of neptunium, americium, and curium may also be produced to evaluate if these “minor actinides” can be effectively burned and transmuted through irradiation in the ABR. A third and final report in this series will evaluate and review the advanced safeguards approach options for the ABR. In reviewing and developing the advanced safeguards approach for the new TRU fuel fabrication processes envisioned for AFCF, the existing international (IAEA) safeguards approach at the Plutonium Fuel Production Facility (PFPF) and the conceptual approach planned for the new J-MOX facility in Japan have been considered as a starting point of reference. The pyro-metallurgical reprocessing and fuel fabrication process at EBR-II near Idaho Falls also provided insight for safeguarding the additional metallic pyroprocessing fuel fabrication line planned for AFCF.

  1. The Use of Additive Manufacturing for Fabrication of Multi-Function...

    Office of Scientific and Technical Information (OSTI)

    Use of Additive Manufacturing for Fabrication of Multi-Function Small Satellite Structures Horais, Brian J ORNL ORNL; Love, Lonnie J ORNL ORNL; Dehoff, Ryan R ORNL ORNL...

  2. AFIP-4 Fabrication Summary Report

    SciTech Connect (OSTI)

    Glenn A. Moore

    2010-02-01

    The AFIP-4 (ATR Full –size-plate In center flux trap Position) experiment was designed to evaluate the performance of monolithic fuels at a scale prototypic of research reactor fuel plates. Twelve qualified fueled plates were fabricated for the AFIP-4 experiment; to be irradiated in the INL Advanced Test Reactor (ATR). This report provides details of the fuel fabrication efforts; including material selection, fabrication processes, and fuel plate qualification.

  3. AFIP-6 Fabrication Summary Report

    SciTech Connect (OSTI)

    Glenn A. Moore; M. Craig Marshall

    2011-09-01

    The AFIP-6 (ATR Full-size plate In center flux trap Position) experiment was designed to evaluate the performance of monolithic fuels at a scale prototypic of research reactor fuel plates. Two qualified fueled plates were fabricated for the AFIP-6 experiment; to be irradiated in the INL Advanced Test Reactor (ATR). This report provides details of the fuel fabrication efforts, including material selection, fabrication processes, and fuel plate qualification.

  4. AFIP-2 Fabrication Summary Report

    SciTech Connect (OSTI)

    Glenn Moore

    2010-02-01

    The Advanced Test Reactor (ATR) Full-size Plate In Center Flux Trap Position (AFIP)-2 experiment was designed to evaluate the performance of monolithic fuels at a scale prototypic of research reactor fuel plates. Two qualified fueled plates were fabricated for the AFIP 2 experiment to be irradiated in the Idaho National Laboratory ATR. This report provides details of the fuel fabrication efforts, including material selection, fabrication processes, and fuel plate qualification.

  5. Metal dusting

    SciTech Connect (OSTI)

    Edited by K. Natesan

    2004-01-01

    This workshop was held soon after the September 11th incident under a climate of sorrow and uncertainty among the people of the world, in particular the Workshop participants and their host organizations. With considerable help from the partiicpants, the Workshop was conducted as planed and we had excellent participation in spite of the circumstances. A good fraction of the attendees in the Workshop were from abroad and from several industries, indicating the importance and relevance of the subject for the chemical process industry. Degradation of structural metallic alloys by metal dusting has been an issue for over 40 years in the chemical, petrochemical, syngas, and iron ore reduction plants. However, the fundamental scientific reasons for the degradation of complex alloys in high carbon activity environments are not clear. one of the major parameters of importance is the variation in gas chemistry in both the laboratory experiments and in the plant-service environments. the industry has questioned the applicability of the laboratory test data, obtained in low steam environments, in assessment and life prediction for the materials in plant service where the environments contain 25-35% steam. Several other variables such as system pressure, gas flow velocity, incubation time, alloy chemistry, surface finish, and weldments, were also identified in the literature as to having an effect on the initiatino and propagation of metal dusting attack. It is the purpose of this Workshop to establish a forum in which the researchers from scientific and industrial laboratories, alloy manufacturers, end users, and research and development sponsors can exchange information, discuss different points of view, prioritize the issues, and to elaborate on the trends in industry for the future. We believe that we accomplished these goals successfully and sincerely thank the participants for their contributions.

  6. Dynamic response of Cu4Zr54 metallic glass to high strain rate shock loading: plasticity, spall and atomic-level structures

    SciTech Connect (OSTI)

    Luo, Shengnian; Arman, Bedri; Germann, Timothy C; Cagin, Tahir

    2009-01-01

    We investigate dynamic response of Cu{sub 46}Zr{sub 54} metallic glass under adiabatic planar shock wave loading (one-dimensional strain) wjth molecular dynamics simulations, including Hugoniot (shock) states, shock-induced plasticity and spallation. The Hugoniot states are obtained up to 60 CPa along with the von Mises shear flow strengths, and the dynamic spall strength, at different strain rates and temperatures. The spall strengths likely represent the limiting values achievable in experiments such as laser ablation. For the steady shock states, a clear elastic-plastic transition is identified (e.g., in the shock velocity-particle velocity curve), and the shear strength shows strain-softening. However, the elastic-plastic transition across the shock front displays transient stress overshoot (hardening) above the Hugoniot elastic limit followed by a relatively sluggish relaxation to the steady shock state, and the plastic shock front steepens with increasing shock strength. The local von Mises shear strain analysis is used to characterize local deformation, and the Voronoi tessellation analysis, the corresponding short-range structures at various stages of shock, release, tension and spallation. The plasticity in this glass is manifested as localized shear transformation zones and of local structure rather than thermal origin, and void nucleation occurs preferentially at the highly shear-deformed regions. The Voronoi and shear strain analyses show that the atoms with different local structures are of different shear resistances that lead to shear localization (e.g., the atoms indexed with (0,0,12,0) are most shear-resistant, and those with (0,2,8,1) are highly prone to shear flow). The dynamic changes in local structures are consistent with the observed deformation dynamics.

  7. Metals and Ceramics Division. Annual progress report, ending June 30, 1980

    SciTech Connect (OSTI)

    Not Available

    1980-09-01

    Research is reported concerning: (1) engineering materials, including materials compatibility, mechanical properties, nondestructive testing, pressure vessel technology, and welding and brazing; (2) fuels and processes consisting of ceramic technology, fuel cycle technology, fuels evaluation, fuel fabrication and metals processing; and (3) materials science which includes, ceramic studies, physical metallurgy properties, radiation effects and microstructural analysis, metastable and superconducting materials, structure and properties of surfaces, theroretical research and x-ray research and applications. Highlights of the work of the metallographic group and the current state of the High-Temperature Materials Laboratory (HTML) and the Materials and Structures Technology Management Center (MSTMC) are presented. (FS)

  8. Integrated porous-silicon light-emitting diodes: A fabrication process using graded doping profiles

    SciTech Connect (OSTI)

    Barillaro, G.; Diligenti, A.; Pieri, F.; Fuso, F.; Allegrini, M.

    2001-06-25

    A fabrication process, compatible with an industrial bipolar+complementary metal{endash}oxide{endash}semiconductor (MOS)+diffusion MOS technology, has been developed for the fabrication of efficient porous-silicon-based light-emitting diodes. The electrical contact is fabricated with a double n{sup +}/p doping, achieving a high current injection efficiency and thus lower biasing voltages. The anodization is performed as the last step of the process, thus reducing potential incompatibilities with industrial processes. The fabricated devices show yellow-orange electroluminescence, visible with the naked eye in room lighting. A spectral characterization of light emission is presented and briefly discussed. {copyright} 2001 American Institute of Physics.

  9. Stochastic dislocation kinetics and fractal structures in deforming metals probed by acoustic emission and surface topography measurements

    SciTech Connect (OSTI)

    Vinogradov, A.; Yasnikov, I. S.; Estrin, Y.

    2014-06-21

    We demonstrate that the fractal dimension (FD) of the dislocation population in a deforming material is an important quantitative characteristic of the evolution of the dislocation structure. Thus, we show that peaking of FD signifies a nearing loss of uniformity of plastic flow and the onset of strain localization. Two techniques were employed to determine FD: (i) inspection of surface morphology of the deforming crystal by white light interferometry and (ii) monitoring of acoustic emission (AE) during uniaxial tensile deformation. A connection between the AE characteristics and the fractal dimension determined from surface topography measurements was established. As a common platform for the two methods, the dislocation density evolution in the bulk was used. The relations found made it possible to identify the occurrence of a peak in the median frequency of AE as a harbinger of plastic instability leading to necking. It is suggested that access to the fractal dimension provided by AE measurements and by surface topography analysis makes these techniques important tools for monitoring the evolution of the dislocation structure during plastic deformation—both as stand-alone methods and especially when used in tandem.

  10. Effect of metal ion intercalation on the structure of MXene and water dynamics on its internal surfaces

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Osti, Naresh C.; Naguib, Michael; Ostadhossein, Alireza; Kent, Paul R. C.; Dyatkin, Boris; Rother, Gernot; Heller, William T.; Adri C. T. van Duin; Gogotsi, Yury; Mamontov, Eugene; et al

    2016-03-24

    MXenes are a recently discovered class of 2D materials with an excellent potential for energy storage applications. Because MXene surfaces are hydrophilic and attractive interaction forces between the layers are relatively weak, water molecules can spontaneously intercalate at ambient humidity and significantly influence the key properties of this 2D material. Using complementary X-ray and neutron scattering techniques, we demonstrate that intercalation with potassium cations significantly improves structural homogeneity and water stability in MXenes. Furthermore, in agreement with molecular dynamics simulations, intercalated potassium ions reduce the water self-diffusion coefficient by 2 orders of magnitude, suggesting greater stability of hydrated MXene againstmore » changing environmental conditions.« less

  11. Methods of fabrication of graphene nanoribbons

    DOE Patents [OSTI]

    Zhang, Yuegang

    2015-06-23

    Methods of fabricating graphene nanoribbons include depositing a catalyst layer on a substrate. A masking layer is deposited on the catalyst layer. The masking layer and the catalyst layer are etched to form a structure on the substrate, the structure comprising a portion of the catalyst layer and a portion of the masking layer disposed on the catalyst layer, with sidewalls of the catalyst layer being exposed. A graphene layer is formed on a sidewall of the catalyst layer with a carbon-containing gas.

  12. Metal inks

    DOE Patents [OSTI]

    Ginley, David S; Curtis, Calvin J; Miedaner, Alex; van Hest, Marinus Franciscus Antonius Maria; Kaydanova, Tatiana

    2014-02-04

    Self-reducing metal inks and systems and methods for producing and using the same are disclosed. In an exemplary embodiment, a method may comprise selecting metal-organic (MO) precursor, selecting a reducing agent, and dissolving the MO precursor and the reducing agent in an organic solvent to produce a metal ink that remains in a liquid phase at room temperature. Metal inks, including self-reducing and fire-through metal inks, are also disclosed, as are various applications of the metal inks.

  13. Crystal structure and hydrogenation properties of pseudo-binary Mg{sub 6}Pd{sub 0.5}Ni{sub 0.5} complex metallic alloy

    SciTech Connect (OSTI)

    Cuevas, F.; Latroche, M.

    2009-10-15

    The crystal structure of the Ni-substituted Mg{sub 6.10(2)}Pd{sub 0.52(2)}Ni{sub 0.41(2)} complex metallic alloy has been determined by X-ray and neutron powder diffraction. The reaction of this compound at 573 K towards deuterium absorption for pressures up to 23 bar has also been studied. The crystal structure of Mg{sub 6.10(2)}Pd{sub 0.52(2)}Ni{sub 0.41(2)} compound was determined in the light of Samson's [Acta Crystallogr. B 28 (1972) 936) and Makongo's (Philos. Mag. 86 (2006) 427] models for the binary Mg{sub 6}Pd compound. It crystallizes in F4-bar3m space group with lattice parameter 20.13331(7) A. The refined unit-cell composition is Mg{sub 342(1)}Pd{sub 29(1)}Ni{sub 23(1)} with Z=56. Nickel by palladium substitution is not fully random. Nickel atoms preferentially locate on Pd sites with low coordination number due to steric effects. Deuterium uptake is 9.6 D/f.u. under the given conditions of pressure and temperature. Upon absorption, the intermetallic compound disproportionates into MgD{sub 2}, Mg{sub 5}Pd{sub 2} and Mg{sub 2}NiD{sub 4} phases. The Mg{sub 2}NiD{sub 4} phase is observed to crystallize in the orthorhombic LT2 modification for which an averaged crystal structure in the Pcc2 space group is proposed. - Graphical abstract: Coordination polyhedron around site Mg14 in pseudobinary Mg{sub 6}(Pd,Ni) compounds.

  14. Metallic carbon materials

    DOE Patents [OSTI]

    Cohen, Marvin Lou; Crespi, Vincent Henry; Louie, Steven Gwon Sheng; Zettl, Alexander Karlwalter

    1999-01-01

    Novel metallic forms of planar carbon are described, as well as methods of designing and making them. Nonhexagonal arrangements of carbon are introduced into a graphite carbon network essentially without destroying the planar structure. Specifically a form of carbon comprising primarily pentagons and heptagons, and having a large density of states at the Fermi level is described. Other arrangements of pentagons and heptagons that include some hexagons, and structures incorporating squares and octagons are additionally disclosed. Reducing the bond angle symmetry associated with a hexagonal arrangement of carbons increases the likelihood that the carbon material will have a metallic electron structure.

  15. Liquid metal pump

    DOE Patents [OSTI]

    Pennell, William E.

    1982-01-01

    The liquid metal pump comprises floating seal rings and attachment of the pump diffuser to the pump bowl for isolating structural deflections from the pump shaft bearings. The seal rings also eliminate precision machining on large assemblies by eliminating the need for a close tolerance fit between the mounting surfaces of the pump and the seals. The liquid metal pump also comprises a shaft support structure that is isolated from the pump housing for better preservation of alignment of shaft bearings. The shaft support structure also allows for complete removal of pump internals for inspection and repair.

  16. Gradient porous electrode architectures for rechargeable metal-air batteries

    DOE Patents [OSTI]

    Dudney, Nancy J.; Klett, James W.; Nanda, Jagjit; Narula, Chaitanya Kumar; Pannala, Sreekanth

    2016-03-22

    A cathode for a metal air battery includes a cathode structure having pores. The cathode structure has a metal side and an air side. The porosity decreases from the air side to the metal side. A metal air battery and a method of making a cathode for a metal air battery are also disclosed.

  17. Planarization techniques for MEMS: enabling new structures and enhancing manufacturability

    SciTech Connect (OSTI)

    Smith, J.H.

    1996-12-31

    Planarization techniques such as chemical-mechanical polishing (CMP) have emerged as enabling technologies for the manufacturing of multi- level metal interconnects used in high-density Integrated Circuits (IC). An overview of general planarization techniques for MicroElectroMechanical Systems (MEMS) and, in particular, the extension of CMP from sub-micron IC manufacturing to the fabrication of complex surface-micromachined MEMS will be presented. Planarization technique alleviates processing problems associated with fabrication of multi-level polysilicon structures, eliminates design constraints linked with non-planar topography, and provides an avenue for integrating different process technologies. The CMP process and present examples of the use of CMP in fabricating MEMS devices such as microengines, pressure sensors, and proof masses for accelerometers along with its use for monolithically integrating MEMS devices with microelectronics are presented.

  18. Fabric panel clean change-out frame

    DOE Patents [OSTI]

    Brown, Ronald M.

    1995-01-31

    A fabric panel clean change-out frame, for use on a containment structure having rigid walls, is formed of a compression frame and a closure panel. The frame is formed of elongated spacers, each carrying a plurality of closely spaced flat springs, and each having a hooked lip extending on the side of the spring facing the spacer. The closure panel is includes a perimeter frame formed of flexible, wedge-shaped frame members that are receivable under the springs to deflect the hooked lips. A groove on the flexible frame members engages the hooked lips and locks the frame members in place under the springs. A flexible fabric panel is connected to the flexible frame members and closes its center.

  19. Silicon micro-mold and method for fabrication

    DOE Patents [OSTI]

    Morales, Alfredo M.

    2005-01-11

    The present invention describes a method for rapidly fabricating a robust 3-dimensional silicon micro-mold for use in preparing complex metal micro-components. The process begins by depositing a conductive metal layer onto one surface of a silicon wafer. A thin photoresist and a standard lithographic mask are then used to transfer a trace image pattern onto the opposite surface of the wafer by exposing and developing the resist. The exposed portion of the silicon substrate is anisotropically etched through the wafer thickness down to conductive metal layer to provide an etched pattern consisting of a series of rectilinear channels and recesses in the silicon which serve as the silicon micro-mold. Microcomponents are prepared with this mold by first filling the mold channels and recesses with a metal deposit, typically by electroplating, and then removing the silicon micro-mold by chemical etching.

  20. METAL PHTHALOCYANINES

    DOE Patents [OSTI]

    Frigerio, N.A.

    1962-03-27

    A process is given for preparing heavy metal phthalocyanines, sulfonated or not. The process comprises mixing an inorganic metal salt with dimethyl formamide or methyl sulfoxide; separating the metal complex formed from the solution; mixing the complex with an equimolar amount of sodium, potassium, lithium, magnesium, or beryllium sulfonated or unsulfonated phthalocyanine whereby heavy-metal phthalocyanine crystals are formed; and separating the crystals from the solution. Uranyl, thorium, lead, hafnium, and lanthanide rare earth phthalocyanines can be produced by the process. (AEC)

  1. Fabrication of Emissible Metallic Layer-by-Layer Photonic Crystals...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    lighting technologies, such as compact fluorescent bulbs or light-emitting diodes (LEDs) have gained increasing interest with energy security becoming an important national...

  2. Method for fabricating transistors using crystalline silicon devices on glass

    DOE Patents [OSTI]

    McCarthy, A.M.

    1997-09-02

    A method for fabricating transistors using single-crystal silicon devices on glass. This method overcomes the potential damage that may be caused to the device during high voltage bonding and employs a metal layer which may be incorporated as part of the transistor. This is accomplished such that when the bonding of the silicon wafer or substrate to the glass substrate is performed, the voltage and current pass through areas where transistors will not be fabricated. After removal of the silicon substrate, further metal may be deposited to form electrical contact or add functionality to the devices. By this method both single and gate-all-around devices may be formed. 13 figs.

  3. Silicone metalization

    DOE Patents [OSTI]

    Maghribi, Mariam N.; Krulevitch, Peter; Hamilton, Julie

    2006-12-05

    A system for providing metal features on silicone comprising providing a silicone layer on a matrix and providing a metal layer on the silicone layer. An electronic apparatus can be produced by the system. The electronic apparatus comprises a silicone body and metal features on the silicone body that provide an electronic device.

  4. Silicone metalization

    DOE Patents [OSTI]

    Maghribi, Mariam N.; Krulevitch, Peter; Hamilton, Julie

    2008-12-09

    A system for providing metal features on silicone comprising providing a silicone layer on a matrix and providing a metal layer on the silicone layer. An electronic apparatus can be produced by the system. The electronic apparatus comprises a silicone body and metal features on the silicone body that provide an electronic device.

  5. EXELFS of Metallic Glasses

    SciTech Connect (OSTI)

    Ito, Y.; Alamgir, F.M.; Schwarz, R.B.; Jain, H.; Williams, D.B.

    1999-11-30

    The feasibility of using extended energy-loss fine structure (EXELFS) obtained from {approximately}1 nm regions of metallic glasses to study their short-range order has been examined. Ionization edges of the metallic glasses in the electron energy-loss spectrum (EELS) have been obtained from PdNiP bulk metallic glass and Ni{sub 2}P polycrystalline powder in a transmission electron microscope. The complexity of EXELFS analysis of L- and M-ionization edges of heavy elements (Z>22, i.e. Ni and Pd) is addressed by theoretical calculations using an ab initio computer code, and its results are compared with the experimental data.

  6. Inert electrode containing metal oxides, copper and noble metal

    DOE Patents [OSTI]

    Ray, Siba P.; Woods, Robert W.; Dawless, Robert K.; Hosler, Robert B.

    2001-01-01

    A cermet composite material is made by treating at an elevated temperature a mixture comprising a compound of iron and a compound of at least one other metal, together with an alloy or mixture of copper and a noble metal. The alloy or mixture preferably comprises particles having an interior portion containing more copper than noble metal and an exterior portion containing more noble metal than copper. The noble metal is preferably silver. The cermet composite material preferably includes alloy phase portions and a ceramic phase portion. At least part of the ceramic phase portion preferably has a spinel structure.

  7. Inert electrode containing metal oxides, copper and noble metal

    DOE Patents [OSTI]

    Ray, Siba P.; Woods, Robert W.; Dawless, Robert K.; Hosler, Robert B.

    2000-01-01

    A cermet composite material is made by treating at an elevated temperature a mixture comprising a compound of iron and a compound of at least one other metal, together with an alloy or mixture of copper and a noble metal. The alloy or mixture preferably comprises particles having an interior portion containing more copper than noble metal and an exterior portion containing more noble metal than copper. The noble metal is preferably silver. The cermet composite material preferably includes alloy phase portions and a ceramic phase portion. At least part of the ceramic phase portion preferably has a spinel structure.

  8. New rare-earth metal germanides with bismuth substitution. Synthesis, structural variations, and magnetism of the RE[Bi{sub x}Ge{sub 1-x}]{sub 2} (RE=Y, Pr, Nd, Sm, Gd-Tm, Lu) compounds

    SciTech Connect (OSTI)

    Zhang, Jiliang; Hmiel, Benjamin; Antonelli, Anthony; Tobash, Paul H.; Bobev, Svilen; Saha, Shanta; Kirshenbaum, Kevin; Greene, Richard L.; Paglione, Johnpierre

    2012-12-15

    Single-crystals of the novel rare-earth metal-bismuth digermanides with idealized formula RE[Bi{sub x}Ge{sub 1-x}]{sub 2} (RE=Y, Pr, Nd, Sm, Gd-Tm, Lu; x<0.16(1)) have been obtained using the Bi-flux technique. Their structures have been established by single-crystal X-ray diffraction; they can be divided into three classes, closely related to the ZrSi{sub 2} structure with the space group Cmcm (no. 63). The structural relationship and the variations with the type of the rare-earth metal have been explored and discussed. Temperature-dependent magnetization measurements on the single-crystals reveal magnetic behavior, which have been rationalized based on the mean-field theory. At cryogenic temperatures, the localized 4f electrons in most of the compounds exhibit antiferromagnetic ordering, mediated by the conduction electrons via Ruderman-Kittel-Kasuya-Yosida (RKKY) exchange interactions. - Graphical abstract: This paper details the synthesis and the structural characterization of an extended series of rare-earth metal-bismuth-germanides RE[Bi{sub x}Ge{sub 1-x}]{sub 2} (RE=Y, Pr-Sm, Gd-Tm, Lu). They crystallize with the same extended symmetry (space group Cmcm), but with three distinct structures, which are closely related. Magnetization measurements show low-temperature antiferromagnetic ordering. RE[Bi{sub x}Ge{sub 1-x}]{sub 2} are the first compounds between these elements. Highlights: Black-Right-Pointing-Pointer RE[Bi{sub x}Ge{sub 1-x}]{sub 2} (RE=rare-earth metal) are the first compounds of the respective elements. Black-Right-Pointing-Pointer Their structures are closely related. Black-Right-Pointing-Pointer Three structures can be distinguished based on the packing of the REGe{sub 6} triangular prisms. Black-Right-Pointing-Pointer All compounds show low-temperature antiferromagnetic ordering.

  9. Fabrication of catalyzed ion transport membrane systems

    DOE Patents [OSTI]

    Carolan, Michael Francis; Kibby, Charles Leonard

    2013-06-04

    Process for fabricating a catalyzed ion transport membrane (ITM). In one embodiment, an uncatalyzed ITM is (a) contacted with a non-reducing gaseous stream while heating to a temperature and for a time period sufficient to provide an ITM possessing anion mobility; (b) contacted with a reducing gaseous stream for a time period sufficient to provide an ITM having anion mobility and essentially constant oxygen stoichiometry; (c) cooled while contacting the ITM with the reducing gaseous stream to provide an ITM having essentially constant oxygen stoichiometry and no anion mobility; and (d) treated by applying catalyst to at least one of (1) a porous mixed conducting multicomponent metallic oxide (MCMO) layer contiguous with a first side of a dense layer of MCMO and (2) a second side of the dense MCMO layer. In another embodiment, these steps are carried out in the alternative order of (a), (d), (b), and (c).

  10. Fabrication methods for low impedance lithium polymer electrodes

    DOE Patents [OSTI]

    Chern, T.S.; MacFadden, K.O.; Johnson, S.L.

    1997-12-16

    A process is described for fabricating an electrolyte-electrode composite suitable for high energy alkali metal battery that includes mixing composite electrode materials with excess liquid, such as ethylene carbonate or propylene carbonate, to produce an initial formulation, and forming a shaped electrode therefrom. The excess liquid is then removed from the electrode to compact the electrode composite which can be further compacted by compression. The resulting electrode exhibits at least a 75% lower resistance.

  11. Fabrication methods for low impedance lithium polymer electrodes

    DOE Patents [OSTI]

    Chern, Terry Song-Hsing; MacFadden, Kenneth Orville; Johnson, Steven Lloyd

    1997-01-01

    A process for fabricating an electrolyte-electrode composite suitable for high energy alkali metal battery that includes mixing composite electrode materials with excess liquid, such as ethylene carbonate or propylene carbonate, to produce an initial formulation, and forming a shaped electrode therefrom. The excess liquid is then removed from the electrode to compact the electrode composite which can be further compacted by compression. The resulting electrode exhibits at least a 75% lower resistance.

  12. Novel Fabrication and Simple Hybridization of Exotic Material MEMS

    SciTech Connect (OSTI)

    Datskos, P.G.; Rajic, S.

    1999-11-13

    Work in materials other than silicon for MEMS applications has typically been restricted to metals and metal oxides instead of more ''exotic'' semiconductors. However, group III-V and II-VI semiconductors form a very important and versatile collection of material and electronic parameters available to the MEMS and MOEMS designer. With these materials, not only are the traditional mechanical material variables (thermal conductivity, thermal expansion, Young's modulus, etc.) available, but also chemical constituents can be varied in ternary and quaternary materials. This flexibility can be extremely important for both friction and chemical compatibility issues for MEMS. In addition, the ability to continually vary the bandgap energy can be particularly useful for many electronics and infrared detection applications. However, there are two major obstacles associated with alternate semiconductor material MEMS. The first issue is the actual fabrication of non-silicon devices and the second impediment is communicating with these novel devices. We will describe an essentially material independent fabrication method that is amenable to most group III-V and II-VI semiconductors. This technique uses a combination of non-traditional direct write precision fabrication processes such as diamond turning, ion milling, laser ablation, etc. This type of deterministic fabrication approach lends itself to an almost trivial assembly process. We will also describe in detail the mechanical, electrical, and optical self-aligning hybridization technique used for these alternate-material MEMS.

  13. Two Keggin-type heteropolytungstates with transition metal as a central atom: Crystal structure and magnetic study with 2D-IR correlation spectroscopy

    SciTech Connect (OSTI)

    Chai, Feng [Department of Chemistry, Fuzhou University, Fuzhou 350108 (China); Chen, YiPing, E-mail: ypchen007@sina.com [Department of Chemistry, Fuzhou University, Fuzhou 350108 (China); State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002 (China); You, ZhuChai; Xia, ZeMin; Ge, SuZhi; Sun, YanQiong; Huang, BiHua [Department of Chemistry, Fuzhou University, Fuzhou 350108 (China)

    2013-06-01

    Two Keggin-type heteropolytungstates, [Co(phen)?]?[CoW??O??]9H?O 1 (phen=1,10-phenanthroline) and [Fe(phen)?]?[FeW??O??]H?OH?O 2, have been synthesized via the hydrothermal technique and characterized by single crystal X-ray diffraction analyses, IR, XPS, TG analysis, UVDRS, XRD, thermal-dependent and magnetic-dependent 2D-COS IR (two-dimensional infrared correlation spectroscopy). Crystal structure analysis reveals that the polyanions in compound 1 are linked into 3D supramolecule through hydrogen bonding interactions between lattice water molecules and terminal oxygen atoms of polyanion units, and [Co(phen)?]? cations distributed in the polyanion framework with many hydrogen bonding interactions. The XPS spectra indicate that all the Co atoms in 1 are +2 oxidation state, the Fe atoms in 2 existing with +2 and +3 mixed oxidation states. - Graphical abstract: The magnetic-dependent synchronous 2D correlation IR spectra of 1 (a), 2 (b) over 050 mT in the range of 6001000 cm?, the obvious response indicate two Keggin polyanions skeleton susceptible to applied magnetic field. Highlights: Two Keggin-type heteropolytungstates with transition metal as a central atom has been obtained. Compound 1 forms into 3D supramolecular architecture through hydrogen bonding between water molecules and polyanions. Magnetic-dependent 2D-IR correlation spectroscopy was introduced to discuss the magnetism of polyoxometalate.

  14. IMPROVED V II log(gf) VALUES, HYPERFINE STRUCTURE CONSTANTS, AND ABUNDANCE DETERMINATIONS IN THE PHOTOSPHERES OF THE SUN AND METAL-POOR STAR HD 84937

    SciTech Connect (OSTI)

    Wood, M. P.; Lawler, J. E.; Den Hartog, E. A.; Sneden, C.; Cowan, J. J. E-mail: jelawler@wisc.edu E-mail: chris@verdi.as.utexas.edu

    2014-10-01

    New experimental absolute atomic transition probabilities are reported for 203 lines of V II. Branching fractions are measured from spectra recorded using a Fourier transform spectrometer and an echelle spectrometer. The branching fractions are normalized with radiative lifetime measurements to determine the new transition probabilities. Generally good agreement is found between this work and previously reported V II transition probabilities. Two spectrometers, independent radiometric calibration methods, and independent data analysis routines enable a reduction in systematic uncertainties, in particular those due to optical depth errors. In addition, new hyperfine structure constants are measured for selected levels by least squares fitting line profiles in the FTS spectra. The new V II data are applied to high resolution visible and UV spectra of the Sun and metal-poor star HD 84937 to determine new, more accurate V abundances. Lines covering a range of wavelength and excitation potential are used to search for non-LTE effects. Very good agreement is found between our new solar photospheric V abundance, log ε(V) = 3.95 from 15 V II lines, and the solar-system meteoritic value. In HD 84937, we derive [V/H] = –2.08 from 68 lines, leading to a value of [V/Fe] = 0.24.

  15. Silicon metal-semiconductor-metal photodetector

    DOE Patents [OSTI]

    Brueck, Steven R. J.; Myers, David R.; Sharma, Ashwani K.

    1997-01-01

    Silicon MSM photodiodes sensitive to radiation in the visible to near infrared spectral range are produced by altering the absorption characteristics of crystalline Si by ion implantation. The implantation produces a defected region below the surface of the silicon with the highest concentration of defects at its base which acts to reduce the contribution of charge carriers formed below the defected layer. The charge carriers generated by the radiation in the upper regions of the defected layer are very quickly collected between biased Schottky barrier electrodes which form a metal-semiconductor-metal structure for the photodiode.

  16. Silicon metal-semiconductor-metal photodetector

    DOE Patents [OSTI]

    Brueck, Steven R. J.; Myers, David R.; Sharma, Ashwani K.

    1995-01-01

    Silicon MSM photodiodes sensitive to radiation in the visible to near infrared spectral range are produced by altering the absorption characteristics of crystalline Si by ion implantation. The implantation produces a defected region below the surface of the silicon with the highest concentration of defects at its base which acts to reduce the contribution of charge carriers formed below the defected layer. The charge carriers generated by the radiation in the upper regions of the defected layer are very quickly collected between biased Schottky barrier electrodes which form a metal-semiconductor-metal structure for the photodiode.

  17. Schottky barrier MOSFET systems and fabrication thereof

    DOE Patents [OSTI]

    Welch, James D.

    1997-01-01

    (MOS) device systems-utilizing Schottky barrier source and drain to channel region junctions are disclosed. Experimentally derived results which demonstrate operation of fabricated N-channel and P-channel Schottky barrier (MOSFET) devices, and of fabricated single devices with operational characteristics similar to (CMOS) and to a non-latching (SRC) are reported. Use of essentially non-rectifying Schottky barriers in (MOS) structures involving highly doped and the like and intrinsic semiconductor to allow non-rectifying interconnection of, and electrical accessing of device regions is also disclosed. Insulator effected low leakage current device geometries and fabrication procedures therefore are taught. Selective electrical interconnection of drain to drain, source to drain, or source to source, of N-channel and/or P-channel Schottky barrier (MOSFET) devices formed on P-type, N-type and Intrinsic semiconductor allows realization of Schottky Barrier (CMOS), (MOSFET) with (MOSFET) load, balanced differential (MOSFET) device systems and inverting and non-inverting single devices with operating characteristics similar to (CMOS), which devices can be utilized in modulation, as well as in voltage controled switching and effecting a direction of rectification.

  18. Schottky barrier MOSFET systems and fabrication thereof

    DOE Patents [OSTI]

    Welch, J.D.

    1997-09-02

    (MOS) device systems-utilizing Schottky barrier source and drain to channel region junctions are disclosed. Experimentally derived results which demonstrate operation of fabricated N-channel and P-channel Schottky barrier (MOSFET) devices, and of fabricated single devices with operational characteristics similar to (CMOS) and to a non-latching (SRC) are reported. Use of essentially non-rectifying Schottky barriers in (MOS) structures involving highly doped and the like and intrinsic semiconductor to allow non-rectifying interconnection of, and electrical accessing of device regions is also disclosed. Insulator effected low leakage current device geometries and fabrication procedures therefore are taught. Selective electrical interconnection of drain to drain, source to drain, or source to source, of N-channel and/or P-channel Schottky barrier (MOSFET) devices formed on P-type, N-type and Intrinsic semiconductor allows realization of Schottky Barrier (CMOS), (MOSFET) with (MOSFET) load, balanced differential (MOSFET) device systems and inverting and non-inverting single devices with operating characteristics similar to (CMOS), which devices can be utilized in modulation, as well as in voltage controlled switching and effecting a direction of rectification. 89 figs.

  19. A new architecture as transparent electrodes for solar and IR applications based on photonic structures via soft lithography

    SciTech Connect (OSTI)

    Kuang, Ping

    2011-05-15

    Transparent conducting electrodes with the combination of high optical transmission and good electrical conductivity are essential for solar energy harvesting and electric lighting devices. Currently, indium tin oxide (ITO) is used because ITO offers relatively high transparency (>80%) to visible light and low sheet resistance (R{sub s} = 10 ohms/square ({Omega}#2;/?)) for electrical conduction. However, ITO is costly due to limited indium reserves, and it is brittle. These disadvantages have motivated the search for other conducting electrodes with similar or better properties. There has been research on a variety of electrode structures involving carbon nanotube networks, graphene films, nanowire and nanopatterned meshes and grids. Due to their novel characteristics in light manipulation and collection, photonic crystal structures show promise for further improvement. Here, we report on a new architecture consisting of nanoscale high aspect ratio metallic photonic structures as transparent electrodes fabricated via a combination of processes. For (Au) and silver (Ag) structures, the visible light transmission can reach as high as 80%, and the sheet resistance of the structure can be as low as 3.2{Omega}#2;/?. The optical transparency of the high aspect ratio metal structures at visible wavelength range is comparable to that of ITO glass, while their sheet resistance is more than 3 times lower, which indicates a much higher electrical conductivity of the metal structures. Furthermore, the high aspect ratio metal structures have very high infrared (IR) reflection (90%) for the transverse magnetic (TM) mode, which can lead to the development of fabrication of metallic structures as IR filters for heat control applications. Investigations of interdigitated structures based on the high aspect ratio metal electrodes are ongoing to study the feasibility in smart window applications in light transmission modulation.

  20. Enforcement Letter, Parsons Technology Development & Fabrication...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Development & Fabrication Complex - April 13, 2010 Enforcement Letter, Parsons Technology Development & Fabrication Complex - April 13, 2010 April 13, 2010 Issued to...

  1. Solid freeform fabrication using chemically reactive suspensions

    DOE Patents [OSTI]

    Morisette, Sherry L.; Cesarano, III, Joseph; Lewis, Jennifer A.; Dimos, Duane B.

    2002-01-01

    The effects of processing parameters and suspension chemorheology on the deposition behavior of SFF components derived from polymeric-based gelcasting suspensions combines the advantages associated with SFF fabrication, including the ability to spatially tailor composition and structure as well as reduced tooling costs, with the improved handling strength afforded by the use of gel based formulations. As-cast free-formed Al.sub.2 O.sub.3 components exhibited uniform particle packing and had minimal macro-defects (e.g., slumping or stair casing) and no discernable micro-defects (e.g., bubbles or cracking).

  2. Structure of the glass-forming metallic liquids by ab-initio and classical molecular dynamics, a case study: Quenching the Cu{sub 60}Ti{sub 20}Zr{sub 20} alloy

    SciTech Connect (OSTI)

    Amokrane, S.; Ayadim, A.; Levrel, L.

    2015-11-21

    We consider the question of the amorphization of metallic alloys by melt quenching, as predicted by molecular dynamics simulations with semi-empirical potentials. The parametrization of the potentials is discussed on the example of the ternary Cu-Ti-Zr transition metals alloy, using the ab-initio simulation as a reference. The pair structure in the amorphous state is computed from a potential of the Stillinger-Weber form. The transferability of the parameters during the quench is investigated using two parametrizations: from solid state data, as usual and from a new parametrization on the liquid structure. When the adjustment is made on the pair structure of the liquid, a satisfactory transferability is found between the pure components and their alloys. The liquid structure predicted in this way agrees well with experiment, in contrast with the one obtained using the adjustment on the solid. The final structure, after quenches down to the amorphous state, determined with the new set of parameters is shown to be very close to the ab-initio one, the latter being in excellent agreement with recent X-rays diffraction experiments. The corresponding critical temperature of the glass transition is estimated from the behavior of the heat capacity. Discussion on the consistency between the structures predicted using semi-empirical potentials and ab-initio simulation, and comparison of different experimental data underlines the question of the dependence of the final structure on the thermodynamic path followed to reach the amorphous state.

  3. Epsilon Metal Waste Form for Immobilization of Noble Metals from Used Nuclear Fuel

    SciTech Connect (OSTI)

    Crum, Jarrod V.; Strachan, Denis M.; Rohatgi, Aashish; Zumhoff, Mac R.

    2013-10-01

    Epsilon metal (?-metal), an alloy of Mo, Pd, Rh, Ru, and Tc, is being developed as a waste form to treat and immobilize the undissolved solids and dissolved noble metals from aqueous reprocessing of commercial used nuclear fuel. Epsilon metal is an attractive waste form for several reasons: increased durability relative to borosilicate glass, it can be fabricated without additives (100% waste loading), and in addition it also benefits borosilicate glass waste loading by eliminating noble metals from the glass and thus the processing problems related there insolubility in glass. This work focused on the processing aspects of the epsilon metal waste form development. Epsilon metal is comprised of refractory metals resulting in high reaction temperatures to form the alloy, expected to be 1500 - 2000C making it a non-trivial phase to fabricate by traditional methods. Three commercially available advanced technologies were identified: spark-plasma sintering, microwave sintering, and hot isostatic pressing, and investigated as potential methods to fabricate this waste form. Results of these investigations are reported and compared in terms of bulk density, phase assemblage (X-ray diffraction and elemental analysis), and microstructure (scanning electron microscopy).

  4. Metal alkoxides and methods of making same

    DOE Patents [OSTI]

    Hentges, Patrick J.; Greene, Laura H.; Pafford, Margaret Mary; Westwood, Glenn; Klemperer, Walter G.

    2005-01-04

    A method of making a superconducting structure includes depositing a metal alkoxide on a surface of a metal and hydrolyzing the metal alkoxide on the surface to form a pinhole-free film. The metal is a superconductor. The metal alkoxide may be a compound of formula (I): where M is zirconium or hafnium, and the purity of the compound is at least 97% as measured by NMR spectroscopy.

  5. Synthesis and processing of composites by reactive metal penetration

    SciTech Connect (OSTI)

    Loehman, R.E.; Ewsuk, K.G.; Tomsia, A.P.

    1997-04-01

    Achieving better performance in commercial products and processes often is dependent on availability of new and improved materials. Ceramic-metal composites have advantages over more conventional materials because of their high stiffness-to-weight ratios, good fracture toughness, and because their electrical and thermal properties can be varied through control of their compositions and microstructures. However, ceramic composites will be more widely used only when their costs are competitive with other materials and when designers have more confidence in their reliability. Over the past four years reactive metal penetration has been shown to be a promising technique for making ceramic and metal-matrix composites to near-net-shape with control of both composition and microstructure. It appears that, with sufficient development, reactive metal penetration could be an economical process for manufacturing many of the advanced ceramic composites that are needed for light-weight structural and wear applications for transportation and energy conversion devices. Near-net-shape fabrication of parts is a significant advantage because costly and energy intensive grinding and machining operations are substantially reduced, and the waste generated from such finishing operations is minimized. The most promising compositions to date consist of Al and Al{sub 2}O{sub 3}; thus, these composites should be of particular interest to the aluminum industry. The goals of this ceramic-metal composite research and development program are: (1) to identify compositions favorable for making composites by reactive metal penetration; (2) to understand the mechanism(s) by which these composites are formed; (3) to control and optimize the process so that composites and composite coatings can be made economically; and (4) to apply R&D results to problems of interest to the aluminum industry.

  6. Methods for batch fabrication of cold cathode vacuum switch tubes

    DOE Patents [OSTI]

    Walker, Charles A.; Trowbridge, Frank R.

    2011-05-10

    Methods are disclosed for batch fabrication of vacuum switch tubes that reduce manufacturing costs and improve tube to tube uniformity. The disclosed methods comprise creating a stacked assembly of layers containing a plurality of adjacently spaced switch tube sub-assemblies aligned and registered through common layers. The layers include trigger electrode layer, cathode layer including a metallic support/contact with graphite cathode inserts, trigger probe sub-assembly layer, ceramic (e.g. tube body) insulator layer, and metallic anode sub-assembly layer. Braze alloy layers are incorporated into the stacked assembly of layers, and can include active metal braze alloys or direct braze alloys, to eliminate costs associated with traditional metallization of the ceramic insulator layers. The entire stacked assembly is then heated to braze/join/bond the stack-up into a cohesive body, after which individual switch tubes are singulated by methods such as sawing. The inventive methods provide for simultaneously fabricating a plurality of devices as opposed to traditional methods that rely on skilled craftsman to essentially hand build individual devices.

  7. Metallization of bacterial cellulose for electrical and electronic device manufacture

    DOE Patents [OSTI]

    Evans, Barbara R.; O'Neill, Hugh M.; Jansen, Valerie Malyvanh; Woodward, Jonathan

    2011-06-07

    A method for the deposition of metals in bacterial cellulose and for the employment of the metallized bacterial cellulose in the construction of fuel cells and other electronic devices is disclosed. The method for impregnating bacterial cellulose with a metal comprises placing a bacterial cellulose matrix in a solution of a metal salt such that the metal salt is reduced to metallic form and the metal precipitates in or on the matrix. The method for the construction of a fuel cell comprises placing a hydrated bacterial cellulose support structure in a solution of a metal salt such that the metal precipitates in or on the support structure, inserting contact wires into two pieces of the metal impregnated support structure, placing the two pieces of metal impregnated support structure on opposite sides of a layer of hydrated bacterial cellulose, and dehydrating the three layer structure to create a fuel cell.

  8. Metallization of bacterial cellulose for electrical and electronic device manufacture

    DOE Patents [OSTI]

    Evans, Barbara R [Oak Ridge, TN; O'Neill, Hugh M [Knoxville, TN; Jansen, Valerie Malyvanh [Memphis, TN; Woodward, Jonathan [Knoxville, TN

    2010-09-28

    A method for the deposition of metals in bacterial cellulose and for the employment of the metallized bacterial cellulose in the construction of fuel cells and other electronic devices is disclosed. The method for impregnating bacterial cellulose with a metal comprises placing a bacterial cellulose matrix in a solution of a metal salt such that the metal salt is reduced to metallic form and the metal precipitates in or on the matrix. The method for the construction of a fuel cell comprises placing a hydrated bacterial cellulose support structure in a solution of a metal salt such that the metal precipitates in or on the support structure, inserting contact wires into two pieces of the metal impregnated support structure, placing the two pieces of metal impregnated support structure on opposite sides of a layer of hydrated bacterial cellulose, and dehydrating the three layer structure to create a fuel cell.

  9. Nanostructured metal foams: synthesis and applications

    SciTech Connect (OSTI)

    Luther, Erik P; Tappan, Bryce; Mueller, Alex; Mihaila, Bogdan; Volz, Heather; Cardenas, Andreas; Papin, Pallas; Veauthier, Jackie; Stan, Marius

    2009-01-01

    Fabrication of monolithic metallic nanoporous materials is difficult using conventional methodology. Here they report a relatively simple method of synthesizing monolithic, ultralow density, nanostructured metal foams utilizing self-propagating combustion synthesis of novel metal complexes containing high nitrogen energetic ligands. Nanostructured metal foams are formed in a post flame-front dynamic assembly with densities as low as 0.011 g/cc and surface areas as high as 270 m{sup 2}/g. They have produced metal foams via this method of titanium, iron, cobalt, nickel, zirconium, copper, palladium, silver, hafnium, platinum and gold. Microstructural features vary as a function of composition and process parameters. Applications for the metal foams are discussed including hydrogen absorption in palladium foams. A model for the sorption kinetics of hydrogen in the foams is presented.

  10. Sacrificial template method of fabricating a nanotube

    DOE Patents [OSTI]

    Yang, Peidong; He, Rongrui; Goldberger, Joshua; Fan, Rong; Wu, Yi-Ying; Li, Deyu; Majumdar, Arun

    2007-05-01

    Methods of fabricating uniform nanotubes are described in which nanotubes were synthesized as sheaths over nanowire templates, such as using a chemical vapor deposition process. For example, single-crystalline zinc oxide (ZnO) nanowires are utilized as templates over which gallium nitride (GaN) is epitaxially grown. The ZnO templates are then removed, such as by thermal reduction and evaporation. The completed single-crystalline GaN nanotubes preferably have inner diameters ranging from 30 nm to 200 nm, and wall thicknesses between 5 and 50 nm. Transmission electron microscopy studies show that the resultant nanotubes are single-crystalline with a wurtzite structure, and are oriented along the <001> direction. The present invention exemplifies single-crystalline nanotubes of materials with a non-layered crystal structure. Similar "epitaxial-casting" approaches could be used to produce arrays and single-crystalline nanotubes of other solid materials and semiconductors. Furthermore, the fabrication of multi-sheath nanotubes are described as well as nanotubes having multiple longitudinal segments.

  11. Nanostructured metal-polyaniline composites

    DOE Patents [OSTI]

    Wang, Hsing-Lin; Li, Wenguang; Bailey, James A.; Gao, Yuan

    2010-08-31

    Metal-polyaniline (PANI) composites are provided together with a process of preparing such composites by an electrodeless process. The metal of the composite can have nanoscale structural features and the composites can be used in applications such as catalysis for hydrogenation reactions and for analytical detection methods employing SERS.

  12. Metal hydride fuel storage and method thereof

    DOE Patents [OSTI]

    Morse, Jeffrey D.; Jankowski, Alan F.; Yu, Conrad

    2006-10-17

    Disclosed herein is a metal hydride fuel storage cartridge having integrated resistive heaters that can be used in conjunction with fuel cells such as MEMS-based fuel cells. The cartridge is fabricated using micromachining methods and thin/thick film materials synthesis techniques.

  13. CONTROL ROD ALLOY CONTAINING NOBLE METAL ADDITIONS

    DOE Patents [OSTI]

    Anderson, W.K.; Ray, W.E.

    1960-05-01

    Silver-base alloys suitable for use in the fabrication of control rods for neutronic reactors are given. The alloy consists of from 0.5 wt.% to about 1.5 wt.% of a noble metal of platinum, ruthenium, rhodium, osmium, or palladium, up to 10 wt.% of cadmium, from 2 to 20 wt.% indium, the balance being silver.

  14. Metal hydride fuel storage and method thereof

    DOE Patents [OSTI]

    Morse, Jeffrey D [Martinez, CA; Jankowski, Alan F [Livermore, CA; Yu, Conrad [Antioch, CA

    2009-05-05

    Disclosed herein is a metal hydride fuel storage cartridge having integrated resistive heaters that can be used in conjunction with fuel cells such as MEMS-based fuel cells. The cartridge is fabricated using micromachining methods and thin/thick film materials synthesis techniques.

  15. LIGA-fabricated compact mm-wave linear accelerator cavities.

    SciTech Connect (OSTI)

    Song, J.J.; Bajikar, S.S.; DeCarlo, F.; Kang, Y.W.; Kustom, R.L.; Mancini, D.C.; Nassiri, A.; Lai, B.; Feinerman, A.D.; White, V.

    1998-03-23

    Millimeter-wave rf cavities for use in linear accelerators, free-electron lasers, and mm-wave undulatory are under development at Argonne National Laboratory. Typical cavity dimensions are in the 1000 mm range, and the overall length of the accelerator structure, which consists of 30-100 cavities, is about 50-100 mm. An accuracy of 0.2% in the cavity dimensions is necessary in order to achieve a high Q-factor of the cavity. To achieve this these structures are being fabricated using deep X-ray lithography, electroforming, and assembly (LIGA). The first prototype cavity structures are designed for 108 GHz and 2p/3-mode operation. Input and output couplers are integrated with the cavity structures. The cavities are fabricated on copper substrates by electroforming copper into 1-mm-thick PMMA resists patterned by deep x-ray lithography and polishing the copper down to the desired thickness. These are fabricated separately and subsequently assembled with precision spacing and alignment using microspheres, optical fibers, or microfabricated spacers/alignment pieces. Details of the fabrication process, alignment, and assembly work are presented in here.

  16. Cost-Effective Fabrication Routes for the Productionof Quantum-Well-Type

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Structures and Recovoery of Waste Heat from Heavy-Duty Trucks | Department of Energy Productionof Quantum-Well-Type Structures and Recovoery of Waste Heat from Heavy-Duty Trucks Cost-Effective Fabrication Routes for the Productionof Quantum-Well-Type Structures and Recovoery of Waste Heat from Heavy-Duty Trucks 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters 2005_deer_willigan.pdf (494.58 KB) More Documents & Publications Cost-Effective Fabrication

  17. A combined capacitance-voltage and hard x-ray photoelectron spectroscopy characterisation of metal/Al{sub 2}O{sub 3}/In{sub 0.53}Ga{sub 0.47}As capacitor structures

    SciTech Connect (OSTI)

    Lin, Jun; Povey, Ian M.; Hurley, Paul K.; Walsh, Lee; Hughes, Greg; Woicik, Joseph C.; O'Regan, Terrance P.

    2014-07-14

    Capacitance-Voltage (C-V) characterization and hard x-ray photoelectron spectroscopy (HAXPES) measurements have been used to study metal/Al{sub 2}O{sub 3}/In{sub 0.53}Ga{sub 0.47}As capacitor structures with high (Ni) and low (Al) work function metals. The HAXPES measurements observe a band bending occurring prior to metal deposition, which is attributed to a combination of fixed oxide charges and interface states of donor-type. Following metal deposition, the Fermi level positions at the Al{sub 2}O{sub 3}/In{sub 0.53}Ga{sub 0.47}As interface move towards the expected direction as observed from HAXPES measurements. The In{sub 0.53}Ga{sub 0.47}As surface Fermi level positions determined from both the C-V analysis at zero gate bias and HAXPES measurements are in reasonable agreement. The results are consistent with the presence of electrically active interface states at the Al{sub 2}O{sub 3}/In{sub 0.53}Ga{sub 0.47}As interface and suggest an interface state density increasing towards the In{sub 0.53}Ga{sub 0.47}As valence band edge.

  18. Lateral electrodeposition of compositionally modulated metal layers

    DOE Patents [OSTI]

    Hearne, Sean J

    2014-03-25

    A method for making a laterally modulated metallic structure that is compositionally modulated in the lateral direction with respect to a substrate.

  19. Epsilon Metal Summary Report FY 2011

    SciTech Connect (OSTI)

    Strachan, Denis M.; Crum, Jarrod V.; Zumhoff, Mac R.; Bovaird, Chase C.; Windisch, Charles F.; Riley, Brian J.

    2011-09-30

    The Epsilon-metal ({var_epsilon}-metal) phase was selected in FY 2009 as a potential waste form to for immobilizing the noble metals found in the undissolved solids + aqueous stream, and the soluble Tc from ion-exchange process, each resulting from proposed aqueous reprocessing. {var_epsilon}-metal phase is observed in used nuclear fuel and the natural reactors of Oklobono in Gabon, where the long-term corrosion behavior was demonstrated. This makes {var_epsilon}-metal a very attractive waste form. Last fiscal year, {var_epsilon}-metal was successfully fabricated by combining the five-metals, Mo, Ru, Rh, Pd and Re (surrogate for Tc), into pellets followed by consolidation with an arc melter. The arc melter produced fully dense samples with the epsilon structure. However, some chemistry differences were observed in the microstructure that resulted in regions rich in Re and Mo, and others rich in Pd, while Ru and Rh remained fairly constant throughout. This year, thermal stability (air), and corrosion testing of the samples fabricated by arc melting were the main focus for experimental work. Thermal stability was measured with a differential scanning calorimeter - thermogravimetric analyzer, by both ramp heating as well as step heating. There is clear evidence during the ramp heating experiment of an exothermic event + a weight loss peak both beginning at {approx}700 C. Step heating showed an oxidation event at {approx}690 C with minimal weight gain that occurs just before the weight loss event at 700 C. The conclusion being that the e-metal begins to oxidize and then become volatile. These findings are useful for considering the effects of voloxidation process. Three different pellets were subjected to electrochemical testing to study the corrosion behavior of the epsilon-metal phase in various conditions, namely acidic, basic, saline, and inert. Test was done according to an interim procedure developed for the alloy metal waste form. First an open circuit potential

  20. Metal Hydrides

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Metal Hydrides Theodore Motyka Savannah River National Laboratory Metal Hydride System Architect Jose-Miguel Pasini, & Bart van Hassel UTRC Claudio Corgnale & Bruce Hardy SRNL Kevin Simmons and Mark Weimar PNNL Darsh Kumar GM, Matthew Thornton NREL, Kevin Drost OSU DOE Materials-Based Hydrogen Storage Summit Defining Pathways for Onboard Automotive Applications 2 Outline * Background and MH History * MH HSECoE Results * Material Operating Requirements * Modeling and Analyses * BOP and

  1. Thin, porous metal sheets and methods for making the same

    SciTech Connect (OSTI)

    Liu, Wei; Li, Xiaohong Shari; Canfield, Nathan L.

    2015-07-14

    Thin, porous metal sheets and methods for forming them are presented to enable a variety of applications and devices. The thin, porous metal sheets are less than or equal to approximately 200 .mu.m thick, have a porosity between 25% and 75% by volume, and have pores with an average diameter less than or equal to approximately 2 .mu.m. The thin, porous metal sheets can be fabricated by preparing a slurry having between 10 and 50 wt % solvent and between 20 and 80 wt % powder of a metal precursor. The average particle size in the metal precursor powder should be between 100 nm and 5 .mu.m.

  2. Direct probe of Mott-Hubbard to charge-transfer insulator transition and electronic structure evolution in transition-metal systems

    SciTech Connect (OSTI)

    Olalde-Velasco, P; Jimenez-Mier, J; Denlinger, JD; Hussain, Z; Yang, WL

    2011-07-11

    We report the most direct experimental verification of Mott-Hubbard and charge-transfer insulators through x-ray emission spectroscopy in transition-metal (TM) fluorides. The p-d hybridization features in the spectra allow a straightforward energy alignment of the anion-2p and metal-3d valence states, which visually shows the difference between the two types of insulators. Furthermore, in parallel with the theoretical Zaanen-Sawatzky-Allen diagram, a complete experimental systematics of the 3d Coulomb interaction and the 2p-3d charge-transfer energy is reported and could serve as a universal experimental trend for other TM systems including oxides.

  3. Process for fabricating composite material having high thermal conductivity

    DOE Patents [OSTI]

    Colella, Nicholas J.; Davidson, Howard L.; Kerns, John A.; Makowiecki, Daniel M.

    2001-01-01

    A process for fabricating a composite material such as that having high thermal conductivity and having specific application as a heat sink or heat spreader for high density integrated circuits. The composite material produced by this process has a thermal conductivity between that of diamond and copper, and basically consists of coated diamond particles dispersed in a high conductivity metal, such as copper. The composite material can be fabricated in small or relatively large sizes using inexpensive materials. The process basically consists, for example, of sputter coating diamond powder with several elements, including a carbide forming element and a brazeable material, compacting them into a porous body, and infiltrating the porous body with a suitable braze material, such as copper-silver alloy, thereby producing a dense diamond-copper composite material with a thermal conductivity comparable to synthetic diamond films at a fraction of the cost.

  4. Fabricator tees up with golf-car redesign

    SciTech Connect (OSTI)

    Hallum, D.L.

    1994-09-01

    EZ-Go Textron, Augusta, USA, manufactures 40 models of gasoline- and electric-powered utility vehicles, personnel carriers, and golf cars. Despite its popular product line, EZ-Go management recognized it had a problem; fabricating processes and product design hadn`t changed for 25 years and, at peak production, workers cloistered in dark, dingy shops were fabricating over-designed chassis and car frames using manual gas-metal arc welding. A global production plan, involving redesign of the product and plant modernization, was presented 3 years ago. The plan established volume outputs and shutdown steps for migrating from the old to the new design. The author describes the plan which incorporates linking product redesign, complex stampings, conveyor lines, and robotic welding.

  5. Method of electrode fabrication for solid oxide electrochemical cells

    DOE Patents [OSTI]

    Jensen, Russell R.

    1990-01-01

    A process for fabricating cermet electrodes for solid oxide electrochemical cells by sintering is disclosed. First, a porous metal electrode is fabricated on a solid oxide cell, such as a fuel cell by, for example, sintering, and is then infiltrated with a high volume fraction stabilized zirconia suspension. A second sintering step is used to sinter the infiltrated zirconia to a high density in order to more securely attach the electrode to the solid oxide electrolyte of the cell. High performance fuel electrodes can be obtained with this process. Further electrode performance enhancement may be achieved if stabilized zirconia doped with cerium oxide, chromium oxide, titanium oxide, and/or praseodymium oxide for electronic conduction is used.

  6. Method of electrode fabrication for solid oxide electrochemical cells

    DOE Patents [OSTI]

    Jensen, R.R.

    1990-11-20

    A process for fabricating cermet electrodes for solid oxide electrochemical cells by sintering is disclosed. First, a porous metal electrode is fabricated on a solid oxide cell, such as a fuel cell by, for example, sintering, and is then infiltrated with a high volume fraction stabilized zirconia suspension. A second sintering step is used to sinter the infiltrated zirconia to a high density in order to more securely attach the electrode to the solid oxide electrolyte of the cell. High performance fuel electrodes can be obtained with this process. Further electrode performance enhancement may be achieved if stabilized zirconia doped with cerium oxide, chromium oxide, titanium oxide, and/or praseodymium oxide for electronic conduction is used. 5 figs.

  7. Processes for fabricating composite reinforced material

    SciTech Connect (OSTI)

    Seals, Roland D.; Ripley, Edward B.; Ludtka, Gerard M.

    2015-11-24

    A family of materials wherein nanostructures and/or nanotubes are incorporated into a multi-component material arrangement, such as a metallic or ceramic alloy or composite/aggregate, producing a new material or metallic/ceramic alloy. The new material has significantly increased strength, up to several thousands of times normal and perhaps substantially more, as well as significantly decreased weight. The new materials may be manufactured into a component where the nanostructure or nanostructure reinforcement is incorporated into the bulk and/or matrix material, or as a coating where the nanostructure or nanostructure reinforcement is incorporated into the coating or surface of a "normal" substrate material. The nanostructures are incorporated into the material structure either randomly or aligned, within grains, or along or across grain boundaries.

  8. Targets and processes for fabricating same

    DOE Patents [OSTI]

    Adams, Jesse D; Malekos, Steven; Le Galloudec, Nathalie; Korgan, Grant; Cowan, Thomas; Sentoku, Yasuhiko

    2016-05-17

    In particular embodiments, the present disclosure provides targets including a metal layer and defining a hollow inner surface. The hollow inner surface has an internal apex. The distance between at least two opposing points of the internal apex is less than about 15 .mu.m. In particular examples, the distance is less than about 1 .mu.m. Particular implementations of the targets are free standing. The targets have a number of disclosed shaped, including cones, pyramids, hemispheres, and capped structures. The present disclosure also provides arrays of such targets. Also provided are methods of forming targets, such as the disclosed targets, using lithographic techniques, such as photolithographic techniques. In particular examples, a target mold is formed from a silicon wafer and then one or more sides of the mold are coated with a target material, such as one or more metals.

  9. Targets and processes for fabricating same

    DOE Patents [OSTI]

    Cowna, Thomas; Malekos, Steven; Korgan, Grant; Adams, Jesse; Sentoku, Yasuhiko; LeGalloudec, Nathalie

    2014-06-10

    In particular embodiments, the present disclosure provides targets including a metal layer and defining a hollow inner surface. The hollow inner surface has an internal apex. The distance between at least two opposing points of the internal apex is less than about 15 .mu.m. In particular examples, the distance is less than about 1 .mu.m. Particular implementations of the targets are free standing. The targets have a number of disclosed shaped, including cones, pyramids, hemispheres, and capped structures. The present disclosure also provides arrays of such targets. Also provided are methods of forming targets, such as the disclosed targets, using lithographic techniques, such as photolithographic techniques. In particular examples, a target mold is formed from a silicon wafer and then one or more sides of the mold are coated with a target material, such as one or more metals.

  10. Targets and processes for fabricating same

    DOE Patents [OSTI]

    Cowan, Thomas; Malekos, Steven; Korgan, Grant; Adams, Jesse; Sentoku, Yasuhiko; Le Galloudec, Nathalie; Fuchs, Julien

    2012-07-24

    In particular embodiments, the present disclosure provides targets including a metal layer and defining a hollow inner surface. The hollow inner surface has an internal apex. The distance between at least two opposing points of the internal apex is less than about 15 .mu.m. In particular examples, the distance is less than about 1 .mu.m. Particular implementations of the targets are free standing. The targets have a number of disclosed shaped, including cones, pyramids, hemispheres, and capped structures. The present disclosure also provides arrays of such targets. Also provided are methods of forming targets, such as the disclosed targets, using lithographic techniques, such as photolithographic techniques. In particular examples, a target mold is formed from a silicon wafer and then one or more sides of the mold are coated with a target material, such as one or more metals.

  11. Technique for fabrication of ultrathin foils in cylindrical geometry for liner-plasma implosion experiments with sub-megaampere currents

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yager-Elorriaga, D. A.; Steiner, A. M.; Patel, S. G.; Jordan, N. M.; Lau, Y. Y.; Gilgenbach, R. M.

    2015-11-19

    In this study, we describe a technique for fabricating ultrathin foils in cylindrical geometry for liner-plasma implosion experiments using sub-MA currents. Liners are formed by wrapping a 400 nm, rectangular strip of aluminum foil around a dumbbell-shaped support structure with a non-conducting center rod, so that the liner dimensions are 1 cm in height, 6.55 mm in diameter, and 400 nm in thickness. The liner-plasmas are imploded by discharging ~600 kA with ~200 ns rise time using a 1 MA linear transformer driver, and the resulting implosions are imaged four times per shot using laser-shadowgraphy at 532 nm. As amore » result, this technique enables the study of plasma implosion physics, including the magneto Rayleigh-Taylor, sausage, and kink instabilities on initially solid, imploding metallic liners with university-scale pulsed power machines.« less

  12. Technique for fabrication of ultrathin foils in cylindrical geometry for liner-plasma implosion experiments with sub-megaampere currents

    SciTech Connect (OSTI)

    Yager-Elorriaga, D. A.; Steiner, A. M.; Patel, S. G.; Jordan, N. M.; Lau, Y. Y.; Gilgenbach, R. M.

    2015-11-19

    In this study, we describe a technique for fabricating ultrathin foils in cylindrical geometry for liner-plasma implosion experiments using sub-MA currents. Liners are formed by wrapping a 400 nm, rectangular strip of aluminum foil around a dumbbell-shaped support structure with a non-conducting center rod, so that the liner dimensions are 1 cm in height, 6.55 mm in diameter, and 400 nm in thickness. The liner-plasmas are imploded by discharging ~600 kA with ~200 ns rise time using a 1 MA linear transformer driver, and the resulting implosions are imaged four times per shot using laser-shadowgraphy at 532 nm. As a result, this technique enables the study of plasma implosion physics, including the magneto Rayleigh-Taylor, sausage, and kink instabilities on initially solid, imploding metallic liners with university-scale pulsed power machines.

  13. Impact of pulse thermal processing on the properties of inkjet printed metal and flexible sensors

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Joshi, Pooran C.; Kuruganti, Teja; Killough, Stephen M.

    2015-03-11

    In this paper, we report on the low temperature processing of environmental sensors employing pulse thermal processing (PTP) technique to define a path toward flexible sensor technology on plastic, paper, and fabric substrates. Inkjet printing and pulse thermal processing technique were used to realize mask-less, additive integration of low-cost sensors on polymeric substrates with specific focus on temperature, humidity, and strain sensors. The printed metal line performance was evaluated in terms of the electrical conductivity characteristics as a function of post-deposition thermal processing conditions. The PTP processed Ag metal lines exhibited high conductivity with metal sheet resistance values below 100more » mΩ/{whitesquare} using a pulse width as short as 250 μs. The flexible temperature and relative humidity sensors were defined on flexible polyimide substrates by direct printing of Ag metal structures. The printed resistive temperature sensor and capacitive humidity sensor were characterized for their sensitivity with focus on future smart-building applications. Strain gauges were printed on polyimide substrate to determine the mechanical properties of the silver nanoparticle films. Finally, the observed electrical properties of the printed metal lines and the sensitivity of the flexible sensors show promise for the realization of a high performance print-on-demand technology exploiting low thermal-budget PTP technique.« less

  14. Compressive and shear buckling analysis of metal matrix composite sandwich panels under different thermal environments

    SciTech Connect (OSTI)

    Ko, W.L.; Jackson, R.H.

    1993-06-01

    Combined inplane compressive and shear buckling analysis was conducted on flat rectangular sandwich panels using the Raleigh-Ritz minimum energy method with a consideration of transverse shear effect of the sandwich core. The sandwich panels were fabricated with titanium honeycomb core and laminated metal matrix composite face sheets. The results show that slightly slender (along unidirectional compressive loading axis) rectangular sandwich panels have the most desirable stiffness-to-weight ratios for aerospace structural applications; the degradation of buckling strength of sandwich panels with rising temperature is faster in shear than in compression; and the fiber orientation of the face sheets for optimum combined-load buckling strength of sandwich panels is a strong function of both loading condition and panel aspect ratio. Under the same specific weight and panel aspect ratio, a sandwich panel with metal matrix composite face sheets has much higher buckling strength than one having monolithic face sheets.

  15. Felt-metal-wick heat-pipe solar receiver

    SciTech Connect (OSTI)

    Andraka, C.E.; Adkins, D.R.; Moss, T.A.; Cole, H.M.; Andreas, N.H.

    1994-12-31

    Reflux heat-pipe receivers have been identified as a desirable interface to couple a Stirling-cycle engine with a parabolic dish solar concentrator. The reflux receiver provides power nearly isothermally to the engine heater heads while decoupling the heater head design from the solar absorber surface design. The independent design of the receiver and engine heater head leads to higher system efficiency. Heat pipe reflux receivers have been demonstrated at approximately 65 kW{sub t} power throughput. Several 25 to 30-kW{sub e} Stirling-cycle engines are under development, and will soon be incorporated in commercial dish-Stirling systems. These engines will require reflux receivers with power throughput limits reaching 90-kW{sub t}. The extension of heat pipe technology from 60 kW{sub t} to 100 kW{sub t} is not trivial. Current heat pipe wick technology is pushed to its limits. It is necessary to develop and test advanced wick structure technologies to perform this task. Sandia has developed and begun testing a Bekaert Corporation felt metal wick structure fabricated by Porous Metal Products Inc. This wick is about 95% porous, and has liquid permeability a factor of 2 to 8 times higher than conventional technologies for a given maximum pore radius. The wick has been successfully demonstrated in a bench-scale heat pipe, and a full-scale on-sun receiver has been fabricated. This report details the wick design, characterization and installation into a heat pipe receiver, and the results of the bench-scale tests are presented. The wick performance is modeled, and the model results are compared to test results.

  16. Fabrication of Pd/Pd-Alloy Films by Surfactant Induced Electroless Plating for Hydrogen Separation from Advanced Coal Gasification Processes

    SciTech Connect (OSTI)

    Ilias, Shamsuddin; Kumar, Dhananjay

    2012-07-31

    Dense Pd, Pd-Cu and Pd-Ag composite membranes on microporous stainless steel substrate (MPSS) were fabricated by a novel electroless plating (EP) process. In the conventional Pd-EP process, the oxidation-reduction reactions between Pd-complex and hydrazine result in an evolution of NH{sub 3} and N{sub 2} gas bubbles. When adhered to the substrate surface and in the pores, these gas bubbles hinder uniform Pd-film deposition which results in dendrite growth leading to poor film formation. This problem was addressed by introducing cationic surfactant in the electroless plating process known as surfactant induced electroless plating (SIEP). The unique features of this innovation provide control of Pd-deposition rate, and Pd-grain size distribution. The surfactant molecules play an important role in the EP process by tailoring grain size and the process of agglomeration by removing tiny gas bubbles through adsorption at the gas-liquid interface. As a result surfactant can tailor a nanocrystalline Pd, Cu and Ag deposition in the film resulting in reduced membrane film thickness. Also, it produces a uniform, agglomerated film structure. The Pd-Cu and Pd-Ag membranes on MPSS support were fabricated by sequential deposition using SIEP method. The pre- and post-annealing characterizations of these membranes (Pd, Pd-Cu and Pd-Ag on MPSS substrate) were carried out by SEM, EDX, XRD, and AFM studies. The SEM images show significant improvement of the membrane surface morphology, in terms of metal grain structures and grain agglomeration compared to the membranes fabricated by conventional EP process. The SEM images and helium gas-tightness studies indicate that dense and thinner films of Pd, Pd-Cu and Pd-Ag membranes can be produced with shorter deposition time using surfactant. H{sub 2} Flux through the membranes fabricated by SIEP shows large improvement compared to those by CEP with comparable permselectivity. Pd-MPSS composite membrane was subjected to test for long term

  17. Method of fabricating silicon carbide coatings on graphite surfaces

    DOE Patents [OSTI]

    Varacalle, D.J. Jr.; Herman, H.; Burchell, T.D.

    1994-07-26

    The vacuum plasma spray process produces well-bonded, dense, stress-free coatings for a variety of materials on a wide range of substrates. The process is used in many industries to provide for the excellent wear, corrosion resistance, and high temperature behavior of the fabricated coatings. In this application, silicon metal is deposited on graphite. This invention discloses the optimum processing parameters for as-sprayed coating qualities. The method also discloses the effect of thermal cycling on silicon samples in an inert helium atmosphere at about 1,600 C which transforms the coating to silicon carbide. 3 figs.

  18. Method of fabricating silicon carbide coatings on graphite surfaces

    DOE Patents [OSTI]

    Varacalle, Jr., Dominic J.; Herman, Herbert; Burchell, Timothy D.

    1994-01-01

    The vacuum plasma spray process produces well-bonded, dense, stress-free coatings for a variety of materials on a wide range of substrates. The process is used in many industries to provide for the excellent wear, corrosion resistance, and high temperature behavior of the fabricated coatings. In this application, silicon metal is deposited on graphite. This invention discloses the optimum processing parameters for as-sprayed coating qualities. The method also discloses the effect of thermal cycling on silicon samples in an inert helium atmosphere at about 1600.degree.C. which transforms the coating to silicon carbide.

  19. Method for fabricating boron carbide articles

    DOE Patents [OSTI]

    Ardary, Zane L.; Reynolds, Carl D.

    1980-01-01

    The present invention is directed to the fabrication of boron carbide articles having length-to-diameter or width ratios greater than 2 to 1. The process of the present invention is practiced by the steps comprising hot pressing boron carbide powder into article segments or portions in which the segments have a length-to-diameter or width ratio less than 1.5, aligning a plurality of the initially hot-pressed segments in a hot-pressing die with the end surfaces of the segments placed in intimate contact with one another, and then hot pressing the aligned segments into an article of the desired configuration. The resulting article exhibits essentially uniform density throughout the structure with the bonds between the segments being equivalent in hardness, strength, and density to the remainder of the article.

  20. Microoptical System And Fabrication Method Therefor

    DOE Patents [OSTI]

    Sweatt, William C. (Albuquerque, NM); Christenson, Todd R. (Albuquerque, NM)

    2005-03-15

    Microoptical systems with clear aperture of about one millimeter or less are fabricated from a layer of photoresist using a lithographic process to define the optical elements. A deep X-ray source is typically used to expose the photoresist. Exposure and development of the photoresist layer can produce planar, cylindrical, and radially symmetric micro-scale optical elements, comprising lenses, mirrors, apertures, diffractive elements, and prisms, monolithically formed on a common substrate with the mutual optical alignment required to provide the desired system functionality. Optical alignment can be controlled to better than one micron accuracy. Appropriate combinations of structure and materials enable optical designs that include corrections for chromatic and other optical aberrations. The developed photoresist can be used as the basis for a molding operation to produce microoptical systems made of a range of optical materials. Finally, very complex microoptical systems can be made with as few as three lithographic exposures.

  1. Microoptical system and fabrication method therefor

    DOE Patents [OSTI]

    Sweatt, William C.; Christenson, Todd R.

    2003-07-08

    Microoptical systems with clear aperture of about one millimeter or less are fabricated from a layer of photoresist using a lithographic process to define the optical elements. A deep X-ray source is typically used to expose the photoresist. Exposure and development of the photoresist layer can produce planar, cylindrical, and radially symmetric micro-scale optical elements, comprising lenses, mirrors, apertures, diffractive elements, and prisms, monolithically formed on a common substrate with the mutual optical alignment required to provide the desired system functionality. Optical alignment can be controlled to better than one micron accuracy. Appropriate combinations of structure and materials enable optical designs that include corrections for chromatic and other optical aberrations. The developed photoresist can be used as the basis for a molding operation to produce microoptical systems made of a range of optical materials. Finally, very complex microoptical systems can be made with as few as three lithographic exposures.

  2. Metal hydrides

    SciTech Connect (OSTI)

    Carnes, J.R.; Kherani, N.P.

    1987-11-01

    Metal hydride information is not available for most hydrides in a consolidated quick-reference source. This report's objective is to fill the need for such a document providing basic thermodynamic data for as many metal hydrides as possible. We conduced a computerized library search to access as many sources as possible and screened each source for such thermodynamic data as pressure-temperature graphs, van't Hoff curves, and impurity effects. We included any other relevant information and commented on it. A primary concern to be investigated in the future is the behavior of metal tritides. This would be important in the area of emergency tritium cleanup systems. The hydride graphs are useful, however, as tritides may be expected in most cases to behave similarly and at least follow trends of their respective hydrides. 42 refs., 40 figs., 5 tabs.

  3. Carbon nanotubes grown on bulk materials and methods for fabrication

    DOE Patents [OSTI]

    Menchhofer, Paul A.; Montgomery, Frederick C.; Baker, Frederick S.

    2011-11-08

    Disclosed are structures formed as bulk support media having carbon nanotubes formed therewith. The bulk support media may comprise fibers or particles and the fibers or particles may be formed from such materials as quartz, carbon, or activated carbon. Metal catalyst species are formed adjacent the surfaces of the bulk support material, and carbon nanotubes are grown adjacent the surfaces of the metal catalyst species. Methods employ metal salt solutions that may comprise iron salts such as iron chloride, aluminum salts such as aluminum chloride, or nickel salts such as nickel chloride. Carbon nanotubes may be separated from the carbon-based bulk support media and the metal catalyst species by using concentrated acids to oxidize the carbon-based bulk support media and the metal catalyst species.

  4. Fabrication and applications of sub-micron 2D and 3D periodic...

    Office of Scientific and Technical Information (OSTI)

    In-Document Search Title: Fabrication and applications of sub-micron 2D and 3D periodic carbon structures. Abstract not provided. Authors: Burckel, David Bruce ; Polsky, Ronen ;...

  5. Assessment of the performance potential of the martensitic alloy HT-9 for liquid-metal fast-breeder-reactor applications

    SciTech Connect (OSTI)

    Straalsund, J.L.; Gelles, D.S.

    1983-05-01

    Martensitic stainless steels appear to provide attractive alternatives to austenitic stainless steels for liquid metal fast breeder reactors (LMFBR). The United States National Cladding/Duct (NCD) Materials Development Program has selected Sandvik alloy HT-9 (12CrMoW) as one of six prime candidate alloys for advanced in-core structural materials having very high peak burnup capabilities. The NCD program, since 1974, has been accumulating engineering data for HT-9. Properties include swelling, irradiation creep and microstructure as a function of fluence, postirradiation mechanical properties, thermal creep, sodium compatibility and hardware fabrication technology. Tests results are presented.

  6. Reference Alloy Waste Form Fabrication and Initiation of Reducing Atmosphere and Reductive Additives Study on Alloy Waste Form Fabrication

    SciTech Connect (OSTI)

    S.M. Frank; T.P. O'Holleran; P.A. Hahn

    2011-09-01

    This report describes the fabrication of two reference alloy waste forms, RAW-1(Re) and RAW-(Tc) using an optimized loading and heating method. The composition of the alloy materials was based on a generalized formulation to process various proposed feed streams resulting from the processing of used fuel. Waste elements are introduced into molten steel during alloy fabrication and, upon solidification, become incorporated into durable iron-based intermetallic phases of the alloy waste form. The first alloy ingot contained surrogate (non-radioactive), transition-metal fission products with rhenium acting as a surrogate for technetium. The second alloy ingot contained the same components as the first ingot, but included radioactive Tc-99 instead of rhenium. Understanding technetium behavior in the waste form is of particular importance due the longevity of Tc-99 and its mobility in the biosphere in the oxide form. RAW-1(Re) and RAW-1(Tc) are currently being used as test specimens in the comprehensive testing program investigating the corrosion and radionuclide release mechanisms of the representative alloy waste form. Also described in this report is the experimental plan to study the effects of reducing atmospheres and reducing additives to the alloy material during fabrication in an attempt to maximize the oxide content of waste streams that can be accommodated in the alloy waste form. Activities described in the experimental plan will be performed in FY12. The first aspect of the experimental plan is to study oxide formation on the alloy by introducing O2 impurities in the melt cover gas or from added oxide impurities in the feed materials. Reducing atmospheres will then be introduced to the melt cover gas in an attempt to minimize oxide formation during alloy fabrication. The second phase of the experimental plan is to investigate melting parameters associated with alloy fabrication to allow the separation of slag and alloy components of the melt.

  7. Crashworthiness Assessment of Auto-body Members Considering the Fabrication Histories

    SciTech Connect (OSTI)

    Huh, Hoon; Song, Jung-Han; Kim, Kee-Poong; Kim, Hyun-Sub

    2005-08-05

    This paper is concerned with crashworthiness of auto-body members considering the effect of fabrication. Most auto-body members are fabricated with sheet metal forming process and welding process that induce fabrication histories such as the plastic work hardening, non-uniform thickness distribution and residual stress. Crash simulation is carried out for auto-body members with LS-DYNA3D in order to identify the fabrication effect on the crashworthiness. The analysis calculated crash mode, the reaction force and the energy absorption for crashworthiness assessment with the forming effect. The result shows that the crash analysis with considering the forming history leads to a different result from that without considering the forming effect. The analysis results demonstrate that the design of auto-body members should be carried out considering the forming history for accurate assessment of the crashworthiness.

  8. Reaction selectivity studies on nanolithographically-fabricated platinum model catalyst arrays

    SciTech Connect (OSTI)

    Grunes, Jeffrey Benjamin

    2004-05-15

    In an effort to understand the molecular ingredients of catalytic activity and selectivity toward the end of tuning a catalyst for 100% selectivity, advanced nanolithography techniques were developed and utilized to fabricate well-ordered two-dimensional model catalyst arrays of metal nanostructures on an oxide support for the investigation of reaction selectivity. In-situ and ex-situ surface science techniques were coupled with catalytic reaction data to characterize the molecular structure of the catalyst systems and gain insight into hydrocarbon conversion in heterogeneous catalysis. Through systematic variation of catalyst parameters (size, spacing, structure, and oxide support) and catalytic reaction conditions (hydrocarbon chain length, temperature, pressures, and gas composition), the data presented in this dissertation demonstrate the ability to direct a reaction by rationally adjusting, through precise control, the design of the catalyst system. Electron beam lithography (EBL) was employed to create platinum nanoparticles on an alumina (Al{sub 2}O{sub 3}) support. The Pt nanoparticle spacing (100-150-nm interparticle distance) was varied in these samples, and they were characterized using x-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and atomic force microscopy (AFM), both before and after reactions. The TEM studies showed the 28-nm Pt nanoparticles with 100 and 150-nm interparticle spacing on alumina to be polycrystalline in nature, with crystalline sizes of 3-5 nm. The nanoparticle crystallites increased significantly after heat treatment. The nanoparticles were still mostly polycrystalline in nature, with 2-3 domains. The 28-nm Pt nanoparticles deposited on alumina were removed by the AFM tip in contact mode with a normal force of approximately 30 nN. After heat treatment at 500 C in vacuum for 3 hours, the AFM tip, even at 4000 nN, could not remove the platinum nanoparticles. The

  9. METAL COMPOSITIONS

    DOE Patents [OSTI]

    Seybolt, A.U.

    1959-02-01

    Alloys of uranium which are strong, hard, and machinable are presented, These alloys of uranium contain bctween 0.1 to 5.0% by weight of at least one noble metal such as rhodium, palladium, and gold. The alloys may be heat treated to obtain a product with iniproved tensile and compression strengths,

  10. Near-Net Shape Fabrication Using Low-Cost Titanium Alloy Powders

    SciTech Connect (OSTI)

    Dr. David M. Bowden; Dr. William H. Peter

    2012-03-31

    The use of titanium in commercial aircraft production has risen steadily over the last half century. The aerospace industry currently accounts for 58% of the domestic titanium market. The Kroll process, which has been used for over 50 years to produce titanium metal from its mineral form, consumes large quantities of energy. And, methods used to convert the titanium sponge output of the Kroll process into useful mill products also require significant energy resources. These traditional approaches result in product forms that are very expensive, have long lead times of up to a year or more, and require costly operations to fabricate finished parts. Given the increasing role of titanium in commercial aircraft, new titanium technologies are needed to create a more sustainable manufacturing strategy that consumes less energy, requires less material, and significantly reduces material and fabrication costs. A number of emerging processes are under development which could lead to a breakthrough in extraction technology. Several of these processes produce titanium alloy powder as a product. The availability of low-cost titanium powders may in turn enable a more efficient approach to the manufacture of titanium components using powder metallurgical processing. The objective of this project was to define energy-efficient strategies for manufacturing large-scale titanium structures using these low-cost powders as the starting material. Strategies include approaches to powder consolidation to achieve fully dense mill products, and joining technologies such as friction and laser welding to combine those mill products into near net shape (NNS) preforms for machining. The near net shape approach reduces material and machining requirements providing for improved affordability of titanium structures. Energy and cost modeling was used to define those approaches that offer the largest energy savings together with the economic benefits needed to drive implementation. Technical

  11. Platinum-Coated Non-Noble Metal-Noble Metal Core-Shell Electrocatalyst...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of platinum. The nanoparticles have a core-shell structure and include palladium, gold, and their alloys with other transition metals. The platinum-coated composite can be...

  12. Damascene fabrication of nonplanar microcoils

    DOE Patents [OSTI]

    Adams, David P.; Vasile, Michael J.

    2003-06-17

    A process for fabricating coils using a Damascene process uses a curved substrate having a surface extending along and about an axis made of a first material. A groove is formed in the curved surface along and around said axis, and the groove is filled with a second material that is different from the first material to form a coil of second material in said first material. Excess second material is then removed from the surface of the first material, leaving the coil of second material in the groove.

  13. Composite metal membrane

    DOE Patents [OSTI]

    Peachey, Nathaniel M.; Dye, Robert C.; Snow, Ronny C.; Birdsell, Stephan A.

    1998-01-01

    A composite metal membrane including a first metal layer of Group IVB met or Group VB metals, the first metal layer sandwiched between two layers of an oriented metal of palladium, platinum or alloys thereof is provided together with a process for the recovery of hydrogen from a gaseous mixture including contacting a hydrogen-containing gaseous mixture with a first side of a nonporous composite metal membrane including a first metal of Group IVB metals or Group VB metals, the first metal layer sandwiched between two layers of an oriented metal of palladium, platinum or alloys thereof, and, separating hydrogen from a second side of the nonporous composite metal membrane.

  14. Composite metal membrane

    DOE Patents [OSTI]

    Peachey, N.M.; Dye, R.C.; Snow, R.C.; Birdsell, S.A.

    1998-04-14

    A composite metal membrane including a first metal layer of Group IVB met or Group VB metals, the first metal layer sandwiched between two layers of an oriented metal of palladium, platinum or alloys thereof is provided together with a process for the recovery of hydrogen from a gaseous mixture including contacting a hydrogen-containing gaseous mixture with a first side of a nonporous composite metal membrane including a first metal of Group IVB metals or Group VB metals, the first metal layer sandwiched between two layers of an oriented metal of palladium, platinum or alloys thereof, and, separating hydrogen from a second side of the nonporous composite metal membrane.

  15. Surface half-metallicity of CrS thin films and perfect spin filtering and spin diode effects of CrS/ZnSe heterostructure

    SciTech Connect (OSTI)

    Gao, G. Y. Yao, K. L.

    2014-11-03

    Recently, ferromagnetic zinc-blende Mn{sub 1−x}Cr{sub x}S thin films (above x = 0.5) were fabricated experimentally on ZnSe substrate, which confirmed the previous theoretical prediction of half-metallic ferromagnetism in zinc-blende CrS. Here, we theoretically reveal that both Cr- and S-terminated (001) surfaces of the CrS thin films retain the half-metallicity. The CrS/ZnSe(001) heterogeneous junction exhibits excellent spin filtering and spin diode effects, which are explained by the calculated band structure and transmission spectra. The perfect spin transport properties indicate the potential applications of half-metallic CrS in spintronic devices. All computational results are obtained by using the density functional theory combined with nonequilibrium Green's function.

  16. Structural and magnetic properties of transition metal substituted BaFe{sub 2}As{sub 2} compounds studied by x-ray and neutron scattering

    SciTech Connect (OSTI)

    Kim, Min Gyu

    2012-08-28

    The purpose of my dissertation is to understand the structural and magnetic properties of the newly discovered FeAs-based superconductors and the interconnection between superconductivity, antiferromagnetism, and structure. X-ray and neutron scattering techniques are powerful tools to directly observe the structure and magnetism in this system. I used both xray and neutron scattering techniques on di#11;erent transition substituted BaFe2As2 compounds in order to investigate the substitution dependence of structural and magnetic transitions and try to understand the connections between them.

  17. Polymer micromold and fabrication process

    DOE Patents [OSTI]

    Lee, A.P.; Northrup, M.A.; Ahre, P.E.; Dupuy, P.C.

    1997-08-19

    A mold assembly is disclosed with micro-sized features in which the hollow portion thereof is fabricated from a sacrificial mandrel which is surface treated and then coated to form an outer shell. The sacrificial mandrel is then selectively etched away leaving the outer shell as the final product. The sacrificial mandrel is fabricated by a precision lathe, for example, so that when removed by etching the inner or hollow area has diameters as small as 10`s of micros ({micro}m). Varying the inside diameter contours of the mold can be accomplished with specified ramping slopes formed on the outer surface of the sacrificial mandrel, with the inside or hollow section being, for example, 275 {micro}m in length up to 150 {micro}m in diameter within a 6 mm outside diameter (o.d.) mold assembly. The mold assembly itself can serve as a micronozzle or microneedle, and plastic parts, such as microballoons for angioplasty, polymer microparts, and microactuators, etc., may be formed within the mold assembly. 6 figs.

  18. Polymer micromold and fabrication process

    DOE Patents [OSTI]

    Lee, Abraham P. (1428 Whitecliff Way, Walnut Creek, CA 94596); Northrup, M. Allen (923 Creston Rd., Berkeley, CA 94708); Ahre, Paul E. (1299 Gonzaga Ct., Livermore, CA 94550); Dupuy, Peter C. (1736 Waldo Ct., Modesto, CA 95358)

    1997-01-01

    A mold assembly with micro-sized features in which the hollow portion thereof is fabricated from a sacrificial mandrel which is surface treated and then coated to form an outer shell. The sacrificial mandrel is then selectively etched away leaving the outer shell as the final product. The sacrificial mandrel is fabricated by a precision lathe, for example, so that when removed by etching the inner or hollow area has diameters as small as 10's of micros (.mu.m). Varying the inside diameter contours of the mold can be accomplished with specified ramping slopes formed on the outer surface of the sacrificial mandrel, with the inside or hollow section being, for example, 275 .mu.m in length up to 150 .mu.m in diameter within a 6 mm outside diameter (o.d.) mold assembly. The mold assembly itself can serve as a micronozzle or microneedle, and plastic parts, such as microballoons for angioplasty, polymer microparts, and microactuators, etc., may be formed within the mold assembly.

  19. Fabrication and characterization of submicron polymer waveguides by micro-transfer molding

    SciTech Connect (OSTI)

    Wu, Te-Wei

    2009-12-15

    Various methods exist for fabrication of micron and submicron sized waveguide structures. However, most of them include expensive and time consuming semiconductor fabrication techniques. An economical method for fabricating waveguide structures is introduced and demonstrated in this thesis. This method is established based on previously well-developed photonic crystal fabrication method called two-polymer microtransfer molding. The waveguide in this work functions by a coupler structure that diffracts the incident light into submicron polymer rods. The light is then guided through the rods. Characterization is done by collecting the light that has been guided through the waveguide and exits the end of these submicron polymer bars. The coupling and waveguiding capabilities are demonstrated using two light sources, a laser and white light.

  20. Method to fabricate a tilted logpile photonic crystal

    DOE Patents [OSTI]

    Williams, John D.; Sweatt, William C.

    2010-10-26

    A method to fabricate a tilted logpile photonic crystal requires only two lithographic exposures and does not require mask repositioning between exposures. The mask and photoresist-coated substrate are spaced a fixed and constant distance apart using a spacer and the stack is clamped together. The stack is then tilted at a crystallographic symmetry angle (e.g., 45 degrees) relative to the X-ray beam and rotated about the surface normal until the mask is aligned with the X-ray beam. The stack is then rotated in plane by a small stitching angle and exposed to the X-ray beam to pattern the first half of the structure. The stack is then rotated by 180.degree. about the normal and a second exposure patterns the remaining half of the structure. The method can use commercially available DXRL scanner technology and LIGA processes to fabricate large-area, high-quality tilted logpile photonic crystals.

  1. Highly reproducible and reliable metal/graphene contact by ultraviolet-ozone treatment

    SciTech Connect (OSTI)

    Li, Wei [Key Laboratory for the Physics and Chemistry of Nanodevices and Department of Electronics, Peking University, Beijing 100871 (China); Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Hacker, Christina A.; Cheng, Guangjun; Hight Walker, A. R.; Richter, Curt A.; Gundlach, David J., E-mail: david.gundlach@nist.gov, E-mail: liangxl@pku.edu.cn [Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Liang, Yiran; Tian, Boyuan; Liang, Xuelei, E-mail: david.gundlach@nist.gov, E-mail: liangxl@pku.edu.cn; Peng, Lianmao [Key Laboratory for the Physics and Chemistry of Nanodevices and Department of Electronics, Peking University, Beijing 100871 (China)

    2014-03-21

    Resist residue from the device fabrication process is a significant source of contamination at the metal/graphene contact interface. Ultraviolet Ozone (UVO) treatment is proven here, by X-ray photoelectron spectroscopy and Raman measurement, to be an effective way of cleaning the metal/graphene interface. Electrical measurements of devices that were fabricated by using UVO treatment of the metal/graphene contact region show that stable and reproducible low resistance metal/graphene contacts are obtained and the electrical properties of the graphene channel remain unaffected.

  2. Flexible transparent conductors based on metal nanowire networks

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Guo, Chuan Fei; Ren, Zhifeng

    2015-04-01

    Few conductors are transparent and flexible. Metals have the best electrical conductivity, but they are opaque and stiff in bulk form. However, metals can be transparent and flexible when they are very thin or properly arranged on the nanoscale. This review focuses on the flexible transparent conductors based on percolating networks of metal. Specifically, we discuss the fabrication, the means to improve the electrical conductivity, the large stretchability and its mechanism, and the applications of these metal networks. We also suggest some criteria for evaluating flexible transparent conductors and propose some new research directions in this emerging field.

  3. Gastropod (Otala lactea) shell nanomechanical and structural characterization as a biomonitoring tool for dermal and dietary exposure to a model metal

    SciTech Connect (OSTI)

    Allison, Paul G.; Seiter, Jennifer M.; Diaz, Alfredo; Lindsay, James H.; Moser, Robert D.; Tappero, Ryan V.; Kennedy, Alan J.

    2016-01-01

    Metallic tungsten (W) was initially assumed to be environmentally benign and a green alternative to lead. However, subsequent investigations showed that fishing weights and munitions containing elemental W can fragment and oxidize into complex monomeric and polymeric tungstate (WO4) species in the environment; this led to increased solubility and mobility in soils and increased bioaccumulation potential in plant and animal tissues. Here we expand on the results of our previous research, which examined tungsten toxicity, bioaccumulation, and compartmentalization into organisms, and present in this research that the bioaccumulation of W was related to greater than 50% reduction in the mechanical properties of the snail (Otala lactea), based on depth-sensing nanoindentation. Synchrotron-based X-ray fluorescence maps and X-ray diffraction measurements confirm the integration of W in newly formed layers of the shell matrix with the observed changes in shell biomechanical properties, mineralogical composition, and crystal orientation. With further development, this technology could be employed as a biomonitoring tool for historic metals contamination since unlike the more heavily studied bioaccumulation into soft tissue, shell tissue does not actively eliminate contaminants.

  4. Locally fabricated Savonius rotor wind water pumps. Final report

    SciTech Connect (OSTI)

    Blake, S.

    1982-12-31

    A prototype Savonius rotor and supporting structure were designed and fabricated to power several configurations of water pumps. In addition, several commercially available horizontal axis water pumping windmills were purchased and installed adjacent to the Savonius rotor prototype such that simultaneous real-time data could be compared. The Savonius rotor was found to be materials intensive and difficult to govern at high wind speeds, and the horizontal axis machines were found to be more cost effective. (LEW)

  5. Methods and devices for fabricating and assembling printable semiconductor elements

    DOE Patents [OSTI]

    Nuzzo, Ralph G.; Rogers, John A.; Menard, Etienne; Lee, Keon Jae; Khang, Dahl-Young; Sun, Yugang; Meitl, Matthew; Zhu, Zhengtao

    2009-11-24

    The invention provides methods and devices for fabricating printable semiconductor elements and assembling printable semiconductor elements onto substrate surfaces. Methods, devices and device components of the present invention are capable of generating a wide range of flexible electronic and optoelectronic devices and arrays of devices on substrates comprising polymeric materials. The present invention also provides stretchable semiconductor structures and stretchable electronic devices capable of good performance in stretched configurations.

  6. Methods and devices for fabricating and assembling printable semiconductor elements

    DOE Patents [OSTI]

    Nuzzo, Ralph G.; Rogers, John A.; Menard, Etienne; Lee, Keon Jae; Khang, Dahl-Young; Sun, Yugang; Meitl, Matthew; Zhu, Zhengtao

    2011-07-19

    The invention provides methods and devices for fabricating printable semiconductor elements and assembling printable semiconductor elements onto substrate surfaces. Methods, devices and device components of the present invention are capable of generating a wide range of flexible electronic and optoelectronic devices and arrays of devices on substrates comprising polymeric materials. The present invention also provides stretchable semiconductor structures and stretchable electronic devices capable of good performance in stretched configurations.

  7. Methods and devices for fabricating and assembling printable semiconductor elements

    DOE Patents [OSTI]

    Nuzzo, Ralph G; Rogers, John A; Menard, Etienne; Lee, Keon Jae; Khang, Dahl-Young; Sun, Yugang; Meitl, Matthew; Zhu, Zhengtao

    2014-03-04

    The invention provides methods and devices for fabricating printable semiconductor elements and assembling printable semiconductor elements onto substrate surfaces. Methods, devices and device components of the present invention are capable of generating a wide range of flexible electronic and optoelectronic devices and arrays of devices on substrates comprising polymeric materials. The present invention also provides stretchable semiconductor structures and stretchable electronic devices capable of good performance in stretched configurations.

  8. Methods and devices for fabricating and assembling printable semiconductor elements

    DOE Patents [OSTI]

    Nuzzo, Ralph G; Rogers, John A; Menard, Etienne; Lee, Keon Jae; Khang, Dahl-Young; Sun, Yugang; Meitl, Matthew; Zhu, Zhengtao

    2013-05-14

    The invention provides methods and devices for fabricating printable semiconductor elements and assembling printable semiconductor elements onto substrate surfaces. Methods, devices and device components of the present invention are capable of generating a wide range of flexible electronic and optoelectronic devices and arrays of devices on substrates comprising polymeric materials. The present invention also provides stretchable semiconductor structures and stretchable electronic devices capable of good performance in stretched configurations.

  9. Method to fabricate high performance tubular solid oxide fuel cells

    DOE Patents [OSTI]

    Chen, Fanglin; Yang, Chenghao; Jin, Chao

    2013-06-18

    In accordance with the present disclosure, a method for fabricating a solid oxide fuel cell is described. The method includes forming an asymmetric porous ceramic tube by using a phase inversion process. The method further includes forming an asymmetric porous ceramic layer on a surface of the asymmetric porous ceramic tube by using a phase inversion process. The tube is co-sintered to form a structure having a first porous layer, a second porous layer, and a dense layer positioned therebetween.

  10. Fusion welding of refractory metals

    SciTech Connect (OSTI)

    Robino, C.V.

    1991-01-01

    The refractory metals of Groups 5B and 6B and their alloys display a variety of unique physical and mechanical characteristics in addition to their high melting points. In turn, these characteristics make these materials strong candidates for severe service and specialized applications. However, these materials also present a variety of challenges with respect to both fabrication weldability and the in-service behavior of weldments, many of which are related to the dominant effects of interstitial impurities. This work reviews current understanding of the physical and joining metallurgy of these metals and their alloys with emphasis on fusion welding. Of specific interest are the role of impurities and alloy chemistry in fabrication and service weldability, the material processing route, eg. vacuum melting vs. powder metallurgy, the importance of welding process procedures and variables, weldment mechanical properties, and fracture behavior. Specific examples from the various alloy systems are used to illustrate general metallurgical and joining characteristics of this class of materials. 34 refs., 14 figs., 3 tabs.

  11. WINCO Metal Recycle annual report, FY 1993

    SciTech Connect (OSTI)

    Bechtold, T.E.

    1993-12-01

    This report is a summary of the first year progress of the WINCO Metal Recycle Program. Efforts were directed towards assessment of radioactive scrap metal inventories, economics and concepts for recycling, technology development, and transfer of technology to the private sector. Seven DOE laboratories worked together to develop a means for characterizing scrap metal. Radioactive scrap metal generation rates were established for several of these laboratories. Initial cost estimates indicate that recycle may be preferable over burial if sufficient decontamination factors can be achieved during melt refining. Radiation levels of resulting ingots must be minimized in order to keep fabrication costs low. Industry has much of the expertise and capability to execute the recycling of radioactive scrap metal. While no single company can sort, melt, refine, roll and fabricate, a combination of two to three can complete this operation. The one process which requires development is in melt refining for removal of radionuclides other than uranium. WINCO is developing this capability in conjunction with academia and industry. This work will continue into FY-94.

  12. Silicon-nitride and metal composite

    DOE Patents [OSTI]

    Landingham, R.L.; Huffsmith, S.A.

    A composite and a method for bonding the composite are described. The composite includes a ceramic portion of silicon nitride, a refractory metal portion and a layer of MoSi/sub 2/ indirectly bonding the composite together. The method includes contacting the layer of MoSi/sub 2/ with a surface of the silicon nitride and with a surface of the metal; heating the layer to a temperature below 1400/sup 0/C; and, simultaneously, compressing the layer such that the contacting is with a pressure of at least 30 MPa. This composite overcomes useful life problems in the fabrication of parts for a helical expander for use in power generation.

  13. Silicon-nitride and metal composite

    DOE Patents [OSTI]

    Landingham, Richard L.; Huffsmith, Sarah A.

    1981-01-01

    A composite and a method for bonding the composite. The composite includes a ceramic portion of silicon nitride, a refractory metal portion and a layer of MoSi.sub.2 indirectly bonding the composite together. The method includes contacting the layer of MoSi.sub.2 with a surface of the silicon nitride and with a surface of the metal; heating the layer to a temperature below 1400.degree. C.; and, simultaneously with the heating, compressing the layer such that the contacting is with a pressure of at least 30 MPa. This composite overcomes useful life problems in the fabrication of parts for a helical expander for use in power generation.

  14. Electronics Design and Fabrication | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electronics Design and Fabrication Electronics Design and Fabrication The HEP Electronics Support Group provides electronics engineering, design, fabrication, and support services for a wide variety of research projects at the laboratory. Historically, the group has been part of the High Energy Physics (HEP) division, providing electronics support for HEP experiments around the world. Several years ago, we expanded our operations to provide electronics design and support services for the entire

  15. Sandia National Laboratories: Fabrication, Testing and Validation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Capabilities Microsystems Science & Technology Center Rad-Hard and Trusted Systems Fabrication, Testing and Validation Capabilities RF & Photonics Quantum Systems Sensors MicroElectroMechanical Systems (MEMS) Power Electronics IPIMI Facebook Twitter YouTube Flickr RSS Microsystems Science & Technology Center Fabrication, Testing and Validation Capabilities Fabrication, Testing and Validation Capabilities The MESAFab complex develops and maintains core semiconductor processing

  16. Update On Monolithic Fuel Fabrication Development

    SciTech Connect (OSTI)

    C. R Clark; J. M. Wight; G. C. Knighton; G. A. Moore; J. F. Jue

    2005-11-01

    Efforts to develop a viable monolithic research reactor fuel plate have continued at Idaho National Laboratory. These efforts have concentrated on both fabrication process refinement and scale-up to produce full sized fuel plates. Advancements have been made in the production of U-Mo foil including full sized foils. Progress has also been made in the friction stir welding and transient liquid phase bonding fabrication processes resulting in better bonding, more stable processes and the ability to fabricate larger fuel plates.

  17. CONTAINER MATERIALS, FABRICATION AND ROBUSTNESS

    SciTech Connect (OSTI)

    Dunn, K.; Louthan, M.; Rawls, G.; Sindelar, R.; Zapp, P.; Mcclard, J.

    2009-11-10

    The multi-barrier 3013 container used to package plutonium-bearing materials is robust and thereby highly resistant to identified degradation modes that might cause failure. The only viable degradation mechanisms identified by a panel of technical experts were pressurization within and corrosion of the containers. Evaluations of the container materials and the fabrication processes and resulting residual stresses suggest that the multi-layered containers will mitigate the potential for degradation of the outer container and prevent the release of the container contents to the environment. Additionally, the ongoing surveillance programs and laboratory studies should detect any incipient degradation of containers in the 3013 storage inventory before an outer container is compromised.

  18. Application of Neutron-Absorbing Structural-Amorphous Metal (SAM) Coatings for Spent Nuclear Fuel (SNF) Container to Enhance Criticality Safety Controls

    SciTech Connect (OSTI)

    Choi, Jor-Shan; Lee, Chuck; Farmer, Joseph; Day, Dan; Wall, Mark; Saw, Cheng; Boussoufi, Moe; Liu, Ben; Egbert, Harold; Branagan, Dan; D'Amato, Andy

    2007-07-01

    Spent nuclear fuel contains fissionable materials ({sup 235}U, {sup 239}Pu, {sup 241}Pu, etc.). To prevent nuclear criticality in spent fuel storage, transportation, and during disposal, neutron-absorbing materials (or neutron poisons, such as borated stainless steel, Boral{sup TM}, Metamic{sup TM}, Ni-Gd, and others) would have to be applied. The success in demonstrating that the High-Performance Corrosion- Resistant Material (HPCRM){sup [1]} can be thermally applied as coating onto base metal to provide for corrosion resistance for many naval applications raises the interest in applying the HPCRM to USDOE/OCRWM spent fuel management program. The fact that the HPCRM relies on the high content of boron to make the material amorphous - an essential property for corrosion resistance - and that the boron has to be homogeneously distributed in the HPCRM qualify the material to be a neutron poison. (authors)

  19. Fabrication and Characterization of Suspended Carbon Nanotube...

    Office of Scientific and Technical Information (OSTI)

    of Suspended Carbon Nanotube Devices in Liquid Citation Details In-Document Search Title: Fabrication and Characterization of Suspended Carbon Nanotube Devices in ...

  20. Fabricate-on-Demand Vacuum Insulating Glazings

    Broader source: Energy.gov [DOE]

    PPG is working to design a fabricate-on-demand process to overcome the cost and supply chain issues preventing widespread adoption of vacuum insulating glazings (VIGs).