Powered by Deep Web Technologies
Note: This page contains sample records for the topic "fabricated metal product" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

MECS 2006- Fabricated Metals  

Energy.gov (U.S. Department of Energy (DOE))

Manufacturing Energy and Carbon Footprint for Fabricated Metals (NAICS 332) Sector with Total Energy Input, October 2012 (MECS 2006)

2

Fabricated Metals (2010 MECS)  

Energy.gov (U.S. Department of Energy (DOE))

Manufacturing Energy and Carbon Footprint for Fabricated Metals Sector (NAICS 332) Energy use data source: 2010 EIA MECS (with adjustments) Footprint Last Revised: February 2014

3

Directed light fabrication of refractory metals  

SciTech Connect

Directed Light Fabrication (DLF) is a metal, rapid fabrication process that fuses metal powders to full density into a solid replica of a computer modeled component. It has been shown feasible for forming nearly any metal and also intermetallics to near net shape with a single process. DLF of refractory pure metals is feasible, bypassing the extensive series of conventional processing steps used for processing these high melting point materials. Tungsten, tantalum, and rhenium were processed and show a continuous resolidified microstructure. Porosity was a problem for the tantalum and rhenium powders produced by chemical reduction processes but not for the tungsten powder spherodized in a plasma arc. Chemical analysis of powder compared to the DLF deposit showed reductions in carbon, oxygen and hydrogen, indicating that process parameters may also be optimized for evolution of residual gases in the deposits.

Lewis, G.K.; Thoma, D.J.; Nemec, R.B.; Milewski, J.O. [Los Alamos National Lab., NM (United States). Materials Science and Technology Div.

1997-11-01T23:59:59.000Z

4

Production of magnesium metal  

SciTech Connect

A process of producing magnesium metal includes providing magnesium carbonate, and reacting the magnesium carbonate to produce a magnesium-containing compound and carbon dioxide. The magnesium-containing compound is reacted to produce magnesium metal. The carbon dioxide is used as a reactant in a second process. In another embodiment of the process, a magnesium silicate is reacted with a caustic material to produce magnesium hydroxide. The magnesium hydroxide is reacted with a source of carbon dioxide to produce magnesium carbonate. The magnesium carbonate is reacted to produce a magnesium-containing compound and carbon dioxide. The magnesium-containing compound is reacted to produce magnesium metal. The invention further relates to a process for production of magnesium metal or a magnesium compound where an external source of carbon dioxide is not used in any of the reactions of the process. The invention also relates to the magnesium metal produced by the processes described herein.

Blencoe, James G. (Harriman, TN) [Harriman, TN; Anovitz, Lawrence M. (Knoxville, TN) [Knoxville, TN; Palmer, Donald A. (Oliver Springs, TN) [Oliver Springs, TN; Beard, James S. (Martinsville, VA) [Martinsville, VA

2010-02-23T23:59:59.000Z

5

Enforcement Letter, Diversified Metal Products, Inc - October 28, 2004 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Diversified Metal Products, Inc - October 28, Diversified Metal Products, Inc - October 28, 2004 Enforcement Letter, Diversified Metal Products, Inc - October 28, 2004 October 28, 2004 Issued to Diversified Metal Products, Inc. related to Transportainer Fabrication Deficiencies for the Waste Isolation Pilot Plant This letter addresses deficiencies associated with the fabrication of four transportainers delivered under contract to Washington TRU Solutions LLC (WTS) in support of their Characterization and Repackaging Modular Unit development. The Department of Energy's (DOE) Office of Price-Anderson Enforcement (OE) has reviewed your performance in delivering these transportainers and is concerned with the quality assurance aspects of your work activities in fabricating the transportainers. Enforcement Letter, Diversified Metal Products, Inc - October 28, 2004

6

Enforcement Letter, Diversified Metal Products, Inc - October 28, 2004 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Diversified Metal Products, Inc - October 28, Diversified Metal Products, Inc - October 28, 2004 Enforcement Letter, Diversified Metal Products, Inc - October 28, 2004 October 28, 2004 Issued to Diversified Metal Products, Inc. related to Transportainer Fabrication Deficiencies for the Waste Isolation Pilot Plant This letter addresses deficiencies associated with the fabrication of four transportainers delivered under contract to Washington TRU Solutions LLC (WTS) in support of their Characterization and Repackaging Modular Unit development. The Department of Energy's (DOE) Office of Price-Anderson Enforcement (OE) has reviewed your performance in delivering these transportainers and is concerned with the quality assurance aspects of your work activities in fabricating the transportainers. Enforcement Letter, Diversified Metal Products, Inc - October 28, 2004

7

Directed Light Fabrication of Refractory Metals and Alloys  

SciTech Connect

This report covers work performed under Order No. FA0000020 AN Contract DE-AC12-76SN00052 for deposition of refractory pure metals and alloys using the Directed Light Fabrication (DLF) process and represents the progress in depositing these materials through September 1998. In extending the DLF process technology to refractory metals for producing fully dense, structurally sound deposits, several problems have become evident. 1. Control of porosity in DLF-deposited refractory metal is difficult because of gases, apparently present in commercially purchased refractory metal powder starting materials. 2. The radiant heat from the molten pool during deposition melts the DLF powder feed nozzle. 3. The high reflectivity of molten refractory metals, at the Nd-YAG laser wavelength (1.06{micro}m), produces damaging back reflections to the optical train and fiber optic delivery system that can terminate DLF processing. 4. The current limits on the maximum available laser power to prevent back reflection damage limit the parameter range available for densification of refractory metals. The work to date concentrated on niobium, W-25Re, and spherodized tungsten. Niobium samples, made from hydride-dehydride powder, had minimal gas porosity and the deposition parameters were optimized; however, test plates were not made at this time. W-25Re samples, containing sodium and potassium from a precipitation process, were made and porosity was a problem for all samples although minimized with some process parameters. Deposits made from potassium reduced tungsten that was plasma spherodized were made with minimized porosity. Results of this work indicate that further gas analysis of starting powders and de-gassing of starting powders and/or gas removal during deposition of refractory metals is required.

Fonseca, J.C.; Lewis, G.K.; Dickerson, P.G.; Nemec, R.B.

1999-05-14T23:59:59.000Z

8

Directed light fabrication of refractory metals and alloys  

SciTech Connect

This report covers deposition of refractory pure metals and alloys using the Directed Light Fabrication (DLF) process and represents progress in depositing these materials through September 1998. In extending the DLF process technology to refractory metals for producing fully dense, structurally sound deposits, several problems have become evident. (1) Control of porosity in DLF-deposited refractory metal is difficult because of gases, apparently present in commercially purchased refractory metal powder starting materials. (2) The radiant heat from the molten pool during deposition melts the DLF powder feed nozzle. (3) The high reflectivity of molten refractory metals, at the Nd-YAG laser wavelength (1.06{micro}m), produces damaging back reflections to the optical train and fiber optic delivery system that can terminate DLF processing. (4) The current limits on the maximum available laser power to prevent back reflection damage limit the parameter range available for densification of refractory metals. The work to date concentrated on niobium, W-25Re, and spherodized tungsten. Niobium samples, made from hydride-dehydride powder, had minimal gas porosity and the deposition parameters were optimized; however, test plates were not made at this time. W-25Re samples, containing sodium and potassium from a precipitation process, were made and porosity was a problem for all samples although minimized with some process parameters. Deposits made from potassium reduced tungsten that was plasma spherodized were made with minimized porosity. Results of this work indicate that further gas analysis of starting powders and de-gassing of starting powders and/or gas removal during deposition of refractory metals is required.

Fonseca, J.C.; Lewis, G.K.; Dickerson, P.G.; Nemec, R.B.

1999-05-30T23:59:59.000Z

9

Pu Glass Fabrication and Product Consistency Testing  

SciTech Connect

The DOE/EM plans to conduct the Plutonium Vitrification Project at the Savannah River Site (SRS). An important part of this project is to reduce the attractiveness of the plutonium by fabricating a plutonium glass form and immobilizing the Pu form within the high level waste (HLW) glass prepared in the Defense Waste Processing Facility (DWPF). This requires that a project schedule that is consistent with EM plans for DWPF and cleanup of the SRS be developed. Critical inputs to key decisions in the vitrification project schedule are near-term data that will increase confidence that lanthanide borosilicate (LaBS) glass product is suitable for disposal in the Yucca Mountain Repository. A workshop was held on April 28, 2005 at Bechtel SAIC Company facility in Las Vegas, NV to define the near term data needs. Dissolution rate data and the fate of plutonium oxide and the neutron absorbers during the dissolution process were defined as key data needs. A suite of short-term tests were defined at the workshop to obtain the needed data. The objectives of these short-term tests are to obtain data that can be used to show that the dissolution rate of a LaBS glass is acceptable and to show that the extent of Pu separation from neutron absorbers, as the glass degrades and dissolves, is not likely to lead to criticality concerns. An additional data need was identified regarding the degree of macroscopic cracking that occurs during processing of the Pu glass waste form and subsequent pouring of HLW glass in the DWPF. A final need to evaluate new frit formulations that may increase the durability of the plutonium glass and/or decrease the degree to which neutron absorbers separate from the plutonium during dissolution was identified. This task plan covers testing to support a near term data need regarding glass dissolution performance. Separate task plans will be developed for testing to address the degree of macroscopic cracking and the development of alternative frit formulations. The Product Consistency Test (PCT) was identified as a means to provide some of the near term performance data. The PCT is a static test method in which known masses of crushed glass and demineralized water are reacted for a desired duration [1]. There are two reasons to perform the PCT. The first is that the results are used as a measure of acceptance in the Waste Acceptance Product Specifications Document (WAPS) [2]. The second is the need for long-term static test results that can be used to verify the applicability of the degradation model. Thus, the primary focus will be on the use of the PCT Method B (PCT-B) to study the formation and stability of colloids and to study alteration phases formed on the glass surface. The standard 7-day PCT in demineralized water (PCT-A) will be included to demonstrate compliance with the waste acceptance criterion and determine the value of the k{sub E} rate parameter for comparison with the Defense HLW Glass Degradation Model [3].

Marra, James

2005-06-29T23:59:59.000Z

10

Materials Processing and Product Fabrication Course Description  

E-Print Network (OSTI)

/P/M Process Demo (1/2) 5 Monday, April 2 Machining/EDM/Die Fabrication (1/2) 6 Wednesday, April 4 Process. The course will concentrate on basic material processing techniques (i.e. casting, machining, and joining Wednesday, April 25 Project ­ Machining 13 Monday, April 30 Exam 14 Wednesday, May 2 Presentations #12;

11

Development of metallic substrate supported planar solid oxide fuel cells fabricated by atmospheric plasma spraying  

Science Journals Connector (OSTI)

A planar solid oxide fuel cell (SOFC) consisting of a cell supported with a porous metallic substrate and a metallic separator has been developed. In the fabrication of the cell, anodes and electrolytes were form...

Shunji Takenoiri; Naruaki Kadokawa; Kazuo Koseki

2000-09-01T23:59:59.000Z

12

Fabrication of high aspect ratio silicon nanostructure arrays by metal-assisted etching  

E-Print Network (OSTI)

The goal of this research was to explore and understand the mechanisms involved in the fabrication of silicon nanostructures using metal-assisted etching. We developed a method utilizing metal-assisted etching in conjunction ...

Chang, Shih-wei, Ph.D. Massachusetts Institute of Technology

2010-01-01T23:59:59.000Z

13

Metal Can and Bottle FabricationMetal Can and Bottle Fabrication ME 4210: Manufacturing Processes and Engineering  

E-Print Network (OSTI)

;Metal BottlesMetal Bottles ME 4210: Manufacturing Processes and Engineering Prof. J.S. Colton © GIT 2009

Colton, Jonathan S.

14

Metals Production Requirements for Rapid Photovoltaics Deployment  

E-Print Network (OSTI)

If global photovoltaics (PV) deployment grows rapidly, the required input materials need to be supplied at an increasing rate. In this paper, we quantify the effect of PV deployment levels on the scale of metals production. For example, we find that if cadmium telluride {copper indium gallium diselenide} PV accounts for more than 3% {10%} of electricity generation by 2030, the required growth rates for the production of indium and tellurium would exceed historically-observed production growth rates for a large set of metals. In contrast, even if crystalline silicon PV supplies all electricity in 2030, the required silicon production growth rate would fall within the historical range. More generally, this paper highlights possible constraints to the rate of scaling up metals production for some PV technologies, and outlines an approach to assessing projected metals growth requirements against an ensemble of past growth rates from across the metals production sector. The framework developed in this paper may be...

Kavlak, Goksin; Jaffe, Robert L; Trancik, Jessika E

2015-01-01T23:59:59.000Z

15

Fabrication of Emissible Metallic Layer-by-Layer Photonic Crystals...  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar Thermal Solar Thermal Solar Photovoltaic Solar Photovoltaic Building Energy Efficiency Building Energy Efficiency Find More Like This Return to Search Fabrication of...

16

Microstructure and characteristics of the metalceramic composite (MgCa-HA/TCP) fabricated by liquid metal infiltration  

E-Print Network (OSTI)

in calcium phosphate bioceramics. Recently metal matrix composites (MMC), consisting of an adequate ceramicMicrostructure and characteristics of the metal­ceramic composite (MgCa-HA/TCP) fabricated and characteristics of the metal­ ceramic composite (MgCa-HA/TCP) fabricated by liquid metal infiltration. J Biomed

Zheng, Yufeng

17

MICROSCALE THREE-DIMENSIONAL HEMISPHERICAL SHELL RESONATORS FABRICATED FROM METALLIC GLASS  

E-Print Network (OSTI)

MICROSCALE THREE-DIMENSIONAL HEMISPHERICAL SHELL RESONATORS FABRICATED FROM METALLIC GLASS M. Kanik.S. Abstract-- A novel use of bulk metallic glasses in microresonator applications is reported and a method scale glass blowmolding using quartz [2] and Pyrex [3], as well as the isotropic etching of silicon

M'Closkey, Robert T.

18

Utilizing Metalized Fabrics for Liquid and Rip Detection and Localization  

SciTech Connect

This paper proposes a novel technique for utilizing conductive textiles as a distributed sensor for detecting and localizing liquids (e.g., blood), rips (e.g., bullet holes), and potentially biosignals. The proposed technique is verified through both simulation and experimental measurements. Circuit theory is utilized to depict conductive fabric as a bounded, near-infinite grid of resistors. Solutions to the well-known infinite resistance grid problem are used to confirm the accuracy and validity of this modeling approach. Simulations allow for discontinuities to be placed within the resistor matrix to illustrate the effects of bullet holes within the fabric. A real-time experimental system was developed that uses a multiplexed Wheatstone bridge approach to reconstruct the resistor grid across the conductive fabric and detect liquids and rips. The resistor grid model is validated through a comparison of simulated and experimental results. Results suggest accuracy proportional to the electrode spacing in determining the presence and location of discontinuities in conductive fabric samples. Future work is focused on refining the experimental system to provide more accuracy in detecting and localizing events as well as developing a complete prototype that can be deployed for field testing. Potential applications include intelligent clothing, flexible, lightweight sensing systems, and combat wound detection.

Holland, Stephen [University of Tennessee, Knoxville (UTK); Mahan, Cody [Western Kentucky University; Kuhn, Michael J [ORNL; Rowe, Nathan C [ORNL

2013-01-01T23:59:59.000Z

19

Low resistance barrier layer for isolating, adhering, and passivating copper metal in semiconductor fabrication  

SciTech Connect

Cubic or metastable cubic refractory metal carbides act as barrier layers to isolate, adhere, and passivate copper in semiconductor fabrication. One or more barrier layers of the metal carbide are deposited in conjunction with copper metallizations to form a multilayer characterized by a cubic crystal structure with a strong (100) texture. Suitable barrier layer materials include refractory transition metal carbides such as vanadium carbide (VC), niobium carbide (NbC), tantalum carbide (TaC), chromium carbide (Cr.sub.3 C.sub.2), tungsten carbide (WC), and molybdenum carbide (MoC).

Weihs, Timothy P. (Baltimore, MD); Barbee, Jr., Troy W. (Palto Alto, CA)

2002-01-01T23:59:59.000Z

20

Method for fabricating an ignitable heterogeneous stratified metal structure  

DOE Patents (OSTI)

A multilayer structure has a selectable, (i) propagating reaction front velocity V, (ii) reaction initiation temperature attained by application of external energy and (iii) amount of energy delivered by a reaction of alternating unreacted layers of the multilayer structure. Because V is selectable and controllable, a variety of different applications for the multilayer structures are possible, including but not limited to their use as ignitors, in joining applications, in fabrication of new materials, as smart materials and in medical applications and devices. The multilayer structure has a period D, and an energy release rate constant K. Two or more alternating unreacted layers are made of different materials and separated by reacted zones. The period D is equal to a sum of the widths of each single alternating reaction layer of a particular material, and also includes a sum of reacted zone widths, t.sub.i, in the period D. The multilayer structure has a selectable propagating reaction front velocity V, where V=K(1/D.sup.n).times.[1-(t.sub.i /D)]and n is about 0.8 to 1.2.

Barbee, Jr., Troy W. (Palo Alto, CA); Weihs, Timothy (Menlo Park, CA)

1996-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fabricated metal product" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Method for fabricating an ignitable heterogeneous stratified metal structure  

DOE Patents (OSTI)

A multilayer structure has a selectable: (1) propagating reaction front velocity V; (2) reaction initiation temperature attained by application of external energy; and (3) amount of energy delivered by a reaction of alternating unreacted layers of the multilayer structure. Because V is selectable and controllable, a variety of different applications for the multilayer structures are possible, including but not limited to their use as igniters, in joining applications, in fabrication of new materials, as smart materials and in medical applications and devices. The multilayer structure has a period D, and an energy release rate constant K. Two or more alternating unreacted layers are made of different materials and separated by reacted zones. The period D is equal to a sum of the widths of each single alternating reaction layer of a particular material, and also includes a sum of reacted zone widths, t{sub i}, in the period D. The multilayer structure has a selectable propagating reaction front velocity V, where V=K(1/D{sup n}){times}[1-(t{sub i}/D)] and n is about 0.8 to 1.2. 8 figs.

Barbee, T.W. Jr.; Weihs, T.

1996-08-20T23:59:59.000Z

22

Titanium Metal Powder Production by the Plasma Quench Process  

SciTech Connect

The goals of this project included the scale-up of the titanium hydride production process to a production rate of 50 kg/hr at a purity level of 99+%. This goal was to be achieved by incrementally increasing the production capability of a series of reactor systems. This methodic approach was designed to allow Idaho Titanium Technologies to systematically address the engineering issues associated with plasma system performance, and powder collection system design and performance. With quality powder available, actual fabrication with the titanium hydride was to be pursued. Finally, with a successful titanium production system in place, the production of titanium aluminide was to be pursued by the simultaneously injection of titanium and aluminum precursors into the reactor system. Some significant accomplishments of the project are: A unique and revolutionary torch/reactor capable of withstanding temperatures up to 5000 C with high thermal efficiency has been operated. The dissociation of titanium tetrachloride into titanium powder and HC1 has been demonstrated, and a one-megawatt reactor potentially capable of producing 100 pounds per hour has been built, but not yet operated at the powder level. The removal of residual subchlorides and adsorbed HC1 and the sintering of powder to form solid bodies have been demonstrated. The production system has been operated at production rates up to 40 pounds per hour. Subsequent to the end of the project, Idaho Titanium Technologies demonstrated that titanium hydride powder can indeed be sintered into solid titanium metal at 1500 C without sintering aids.

R. A. Cordes; A. Donaldson

2000-09-01T23:59:59.000Z

23

Process for production of a metal hydride  

DOE Patents (OSTI)

A process for production of a metal hydride compound MH.sub.x, wherein x is one or two and M is an alkali metal, Be or Mg. The process comprises combining a compound of formula (R.sup.1O).sub.xM with aluminum, hydrogen and at least one metal selected from among titanium, zirconium, hafnium, niobium, vanadium, tantalum and iron to produce a compound of formula MH.sub.x. R.sup.1 is phenyl or phenyl substituted by at least one alkyl or alkoxy group. A mole ratio of aluminum to (R.sup.1O).sub.xM is from 0.1:1 to 1:1. The catalyst is present at a level of at least 200 ppm based on weight of aluminum.

Allen, Nathan Tait; Butterick, III, Robert; Chin, Arthur Achhing; Millar, Dean Michael; Molzahn, David Craig

2014-08-12T23:59:59.000Z

24

Inert anode containing base metal and noble metal useful for the electrolytic production of aluminum  

DOE Patents (OSTI)

An inert anode for production of metals such as aluminum is disclosed. The inert anode comprises a base metal selected from Cu and Ag, and at least one noble metal selected from Ag, Pd, Pt, Au, Rh, Ru, Ir and Os. The inert anode may optionally be formed of sintered particles having interior portions containing more base metal than noble metal and exterior portions containing more noble metal than base metal. In a preferred embodiment, the base metal comprises Cu, and the noble metal comprises Ag, Pd or a combination thereof.

Ray, Siba P. (Murrysville, PA); Liu, Xinghua (Monroeville, PA)

2000-01-01T23:59:59.000Z

25

Production of metal waste forms from spent fuel treatment  

SciTech Connect

Treatment of spent nuclear fuel at Argonne National Laboratory consists of a pyroprocessing scheme in which the development of suitable waste forms is being advanced. Of the two waste forms being proposed, metal and mineral, the production of the metal waste form utilizes induction melting to stabilize the waste product. Alloying of metallic nuclear materials by induction melting has long been an Argonne strength and thus, the transition to metallic waste processing seems compatible. A test program is being initiated to coalesce the production of the metal waste forms with current induction melting capabilities.

Westphal, B.R.; Keiser, D.D.; Rigg, R.H.; Laug, D.V.

1995-02-01T23:59:59.000Z

26

Catalytic production of metal carbonyls from metal oxides  

DOE Patents (OSTI)

This invention relates to the formation of metal carbonyls from metal oxides and specially the formation of molybdenum carbonyl and iron carbonyl from their respective oxides. Copper is used here in admixed form or used in chemically combined form as copper molybdate. The copper/metal oxide combination or combined copper is utilized with a solvent, such as toluene and subjected to carbon monoxide pressure of 25 atmospheres or greater at about 150 to 260/sup 0/C. The reducing metal copper is employed in catalytic concentrations or combined concentrations as CuMoO/sub 4/ and both hydrogen and water present serve as promoters. It has been found that the yields by this process have been salutary and that additionally the catalytic metal may be reused in the process to good effect. 3 tables.

Sapienza, R.S.; Slegeir, W.A.; Foran, M.T.

1984-01-06T23:59:59.000Z

27

Safeguards and security concept for the Secure Automated Fabrication (SAF) and Liquid Metal Reactor (LMR) fuel cycle, SAF line technical support  

SciTech Connect

This report is a safeguards and security concept system review for the secure automated fabrication (SAF) and national liquid metal reactor (LMR) fuel programs.

Schaubert, V.J.; Remley, M.E.; Grantham, L.F.

1986-02-21T23:59:59.000Z

28

Method for fabricating wrought components for high-temperature gas-cooled reactors and product  

DOE Patents (OSTI)

A method and alloys for fabricating wrought components of a high-temperature gas-cooled reactor are disclosed. These wrought, nickel-based alloys, which exhibit strength and excellent resistance to carburization at elevated temperatures, include aluminum and titanium in amounts and ratios to promote the growth of carburization resistant films while preserving the wrought character of the alloys. These alloys also include substantial amounts of molybdenum and/or tungsten as solid-solution strengtheners. Chromium may be included in concentrations less than 10% to assist in fabrication. Minor amounts of carbon and one or more carbide-forming metals also contribute to high-temperature strength.

Thompson, Larry D. (San Diego, CA); Johnson, Jr., William R. (San Diego, CA)

1985-01-01T23:59:59.000Z

29

Ultra-high vacuum fabrication and electrical characterization of environmentally sensitive metal oxide semiconductor capacitors  

SciTech Connect

We describe an integrated, ultra-high vacuum system for metal oxide semiconductor (MOS) device fabrication and characterization. Such a system is advantageous for electrical property measurements of electronic devices consisting of environmentally sensitive materials especially as device dimensions approach the nanoscale. Without exposure to atomosphere, MOS capacitors were fabricated by evaporating gate metal on molecular-beam-epitaxy (MBE) grown dielectrics on 3 inch-diameter substrates through a shadow mask in a UHV electrode-patterning chamber. The finished device is transferred in vacuum to an in-situ, UHV electrical characterization probe station that was designed with standard UHV coaxial feedthroughs and UHV-compatible, Kapton-insulated coaxial cable. The probe station also includes a heated sample stage that allows for annealing and measurements in a controlled ambient. We obtained excellent agreement between air-ambient ex-situ and in-situ probe station measurements utilizing a capacitor standard compatible with UHV based on single crystal sapphire as the dielectric. The measurements show less than 0.3 % dispersion for frequencies from 20 Hz to 1 MHz. We have successfully measured MOS capacitors and are sensitive to a density of interface states of 1x1010 states cm-2 eV-1. These measurements also show 0.5 % dispersion for measurement frequencies from 20 Hz to 1 kHz and less than 0.1 % from 1 kHz to 1 MHz. The integrated system presented here is one where complex, MBE-grown MOS heterostructures can be synthesized and tested rapidly to elucidate new field-effect-device physics and functionality.

Billman, Curt [Oak Ridge National Laboratory (ORNL); Walker, Frederick Joseph [ORNL

2007-01-01T23:59:59.000Z

30

Fabrication of carbon nanotube films from alkyne-transition metal complexes  

DOE Patents (OSTI)

A simple method for the production or synthesis of carbon nanotubes as free-standing films or nanotube mats by the thermal decomposition of transition metal complexed alkynes with aryl, alkyl, alkenyl, or alkynyl substituents. In particular, transition metal (e.g. Co, Ni, Fe, Mo) complexes of diarylacetylenes, e.g. diphenylacetylene, and solid mixtures of these complexes with suitable, additional carbon sources are heated in a vessel. More specifically, the heating of the transition metal complex is completed at a temperature between 400-800.degree. C. and more particularly 550-700.degree. C. for between 0.1 to 24 hours and more particularly 0.5-3 hours in a sealed vessel under a partial pressure of argon or helium.

Iyer, Vivekanantan S. (Delft, NL); Vollhardt, K. Peter C. (Oakland, CA)

2007-08-28T23:59:59.000Z

31

Fabrication of metal matrix composite by semi-solid powder processing  

SciTech Connect

Various metal matrix composites (MMCs) are widely used in the automotive, aerospace and electrical industries due to their capability and flexibility in improving the mechanical, thermal and electrical properties of a component. However, current manufacturing technologies may suffer from insufficient process stability and reliability and inadequate economic efficiency and may not be able to satisfy the increasing demands placed on MMCs. Semi-solid powder processing (SPP), a technology that combines traditional powder metallurgy and semi-solid forming methods, has potential to produce MMCs with low cost and high efficiency. In this work, the analytical study and experimental investigation of SPP on the fabrication of MMCs were explored. An analytical model was developed to understand the deformation mechanism of the powder compact in the semi-solid state. The densification behavior of the Al6061 and SiC powder mixtures was investigated with different liquid fractions and SiC volume fractions. The limits of SPP were analyzed in terms of reinforcement phase loading and its impact on the composite microstructure. To explore adoption of new materials, carbon nanotube (CNT) was investigated as a reinforcing material in aluminum matrix using SPP. The process was successfully modeled for the mono-phase powder (Al6061) compaction and the density and density distribution were predicted. The deformation mechanism at low and high liquid fractions was discussed. In addition, the compaction behavior of the ceramic-metal powder mixture was understood, and the SiC loading limit was identified by parametric study. For the fabrication of CNT reinforced Al6061 composite, the mechanical alloying of Al6061-CNT powders was first investigated. A mathematical model was developed to predict the CNT length change during the mechanical alloying process. The effects of mechanical alloying time and processing temperature during SPP were studied on the mechanical, microstructural and compositional properties of the Al6061-CNT composites. A shear lag model was applied to predict the mechanical property (hardness) of the composite. This work demonstrated the promising potential of SPP in the fabrication of particle/fiber (nanotube) reinforced MMCs.

Wu, Yufeng [Ames Laboratory

2012-11-28T23:59:59.000Z

32

ccsd00001984, Selective production of metallic carbon nanotubes  

E-Print Network (OSTI)

ccsd­00001984, version 1 ­ 18 Oct 2004 Selective production of metallic carbon nanotubes Yasushi- type nanotubes (metallic character) evaluated using the previous Huckel-Poisson method can be applied at the tip of a nanotube in a realistic system. Setting the cross-section of a nanotube and the external #12

33

Electrical characteristics and thermal stability of HfO{sub 2} metal-oxide-semiconductor capacitors fabricated on clean reconstructed GaSb surfaces  

SciTech Connect

HfO{sub 2}/GaSb interfaces fabricated by high-vacuum HfO{sub 2} deposition on clean reconstructed GaSb surfaces were examined to explore a thermally stable GaSb metal-oxide-semiconductor structure with low interface-state density (D{sub it}). Interface Sb-O bonds were electrically and thermally unstable, and post-metallization annealing at temperatures higher than 200?C was required to stabilize the HfO{sub 2}/GaSb interfaces. However, the annealing led to large D{sub it} in the upper-half band gap. We propose that the decomposition products that are associated with elemental Sb atoms act as interface states, since a clear correlation between the D{sub it} and the Sb coverage on the initial GaSb surfaces was observed.

Miyata, Noriyuki, E-mail: nori.miyata@aist.go.jp; Mori, Takahiro; Yasuda, Tetsuji [National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 (Japan); Ohtake, Akihiro [National Institute for Materials Science (NIMS), Tsukuba, Ibaraki 305-0044 (Japan); Ichikawa, Masakazu [The University of Tokyo, Tokyo 113-8656 (Japan)

2014-06-09T23:59:59.000Z

34

Modeling Fossil Energy Demands of Primary Nonferrous Metal Production: The Case of Copper  

Science Journals Connector (OSTI)

Modeling Fossil Energy Demands of Primary Nonferrous Metal Production: The Case of Copper ... Alumbrera (Argentina) ...

Pilar Swart; Jo Dewulf

2013-11-22T23:59:59.000Z

35

Process for continuous production of metallic uranium and uranium alloys  

DOE Patents (OSTI)

A method is described for forming metallic uranium, or a uranium alloy, from uranium oxide in a manner which substantially eliminates the formation of uranium-containing wastes. A source of uranium dioxide is first provided, for example, by reducing uranium trioxide (UO{sub 3}), or any other substantially stable uranium oxide, to form the uranium dioxide (UO{sub 2}). This uranium dioxide is then chlorinated to form uranium tetrachloride (UCl{sub 4}), and the uranium tetrachloride is then reduced to metallic uranium by reacting the uranium chloride with a metal which will form the chloride of the metal. This last step may be carried out in the presence of another metal capable of forming one or more alloys with metallic uranium to thereby lower the melting point of the reduced uranium product. The metal chloride formed during the uranium tetrachloride reduction step may then be reduced in an electrolysis cell to recover and recycle the metal back to the uranium tetrachloride reduction operation and the chlorine gas back to the uranium dioxide chlorination operation. 4 figs.

Hayden, H.W. Jr.; Horton, J.A.; Elliott, G.R.B.

1995-06-06T23:59:59.000Z

36

Comparative Study of Laboratory-Scale and Prototypic Production-Scale Fuel Fabrication Processes and Product Characteristics  

SciTech Connect

Abstract An objective of the High Temperature Gas Reactor fuel development and qualification program for the United States Department of Energy has been to qualify fuel fabricated in prototypic production-scale equipment. The quality and characteristics of the tristructural isotropic coatings on fuel kernels are influenced by the equipment scale and processing parameters. Some characteristics affecting product quality were suppressed while others have become more significant in the larger equipment. Changes to the composition and method of producing resinated graphite matrix material has eliminated the use of hazardous, flammable liquids and enabled it to be procured as a vendor-supplied feed stock. A new method of overcoating TRISO particles with the resinated graphite matrix eliminates the use of hazardous, flammable liquids, produces highly spherical particles with a narrow size distribution, and attains product yields in excess of 99%. Compact fabrication processes have been scaled-up and automated with relatively minor changes to compact quality to manual laboratory-scale processes. The impact on statistical variability of the processes and the products as equipment was scaled are discussed. The prototypic production-scale processes produce test fuels that meet fuel quality specifications.

Douglas W. Marshall

2014-10-01T23:59:59.000Z

37

Lightweight products with metal foam -- Properties and methods of processing  

SciTech Connect

The aim of future production technology is the economic application of lightweight components with improved property profiles. Demands for weight reduction made by both the automotive industry and the machine-building industry can be met through selective utilization of metal foam composite--structures. To that end, basic investigations into material behavior and the machineability of metal foam composites are necessary. The presentation will submit an overview of the properties and processing parameters of selected composites based on an analysis of industrial requirements. The development of analytical models of the process mechanics will contribute to the creation of preconditions for a numerical simulation of selected processes. Innovative applications and the potential for future use of metal foam composites in lightweight construction will be shown as well. Finally, results from projects of the Fraunhofer-Institut fuer Werkzeugmaschinen und Umformtechnik together with industrial companies in Saxony will be presented.

Neugebauer, R. [Institutsleiter FhG IWU, Chemnitz (Germany); Braeunlich, H.; Wagner, U. [Abteilung Umformtechnologien FhG IWU, Chemnitz (Germany)

1998-12-31T23:59:59.000Z

38

A hot isostatic pressing fabrication technique for particulate-reinforced metal matrix composites  

E-Print Network (OSTI)

Recent years have seen the development of a wide range of metal matrix composites (MMCs). Until recently, the primary support for these composites had come from the aerospace and defense industry. Now as current materials reach their performance...

McRea, Shana Aline

2012-06-07T23:59:59.000Z

39

Modeling of pattern dependencies in the fabrication of multilevel copper metallization  

E-Print Network (OSTI)

Multilevel copper metallization for Ultra-Large-Scale-Integrated (ULSI) circuits is a critical technology needed to meet performance requirements for advanced interconnect technologies with sub-micron dimensions. It is ...

Cai, Hong, Ph. D. Massachusetts Institute of Technology

2007-01-01T23:59:59.000Z

40

Controls of coal fabric on coalbed gas production and compositional shift in both field production and canister desorption tests  

SciTech Connect

The production rates of coalbed gas wells commonly vary significantly, even in the same field with similar reservoir permeability and gas content. The compositional variation in produced gas is also not everywhere predictable, although in most fields produced gas becomes progressively enriched in CO, through the production life of a reservoir, such as parts of the San Juan basin. In contrast, it is generally observed that the ratio of CO{sub 2}:CH{sub 4} declines with time during field and laboratory desorption testing of coal cores. In this study, we investigate numerically the importance of coal fabric, namely cleat spacing and aperture width, on the performance of coalbed gas wells and gas compositional shifts during production. Because of the cubic relationship between fracture permeability and fracture aperture width (and thus fracture porosity) for a given cleat permeability, the production profile of coal seams varies depending on whether the permeability is distributed among closely spaced fractures (cleat) with narrower apertures or more widely spaced fractures (cleat) with wider apertures. There is a lower fracture porosity for coal with widely spaced fractures than for coal with closely spaced fractures. Therefore, the relative permeability to gas increases more rapidly for coals with more widely spaced cleats as less dewatering from fractures is required, assuming that the fractures are initially water saturated. The enrichment of CO{sub 2} in the production gas with time occurs because of the stronger adsorption of coals for CO{sub 2} than CH{sub 4}. However, during desorption of coal cores, CO{sub 2} desorbs more rapidly than methane because desorption rate is governed more by diffusion than by sorption affinity, and CO{sub 2} has much higher effective diffusivity in microporous coals than CH{sub 4}.

Cui, X.J.; Bustin, R.M. [University of British Columbia, Vancouver, BC (Canada)

2006-03-15T23:59:59.000Z

Note: This page contains sample records for the topic "fabricated metal product" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Method for fabricating a seal between a ceramic and a metal alloy  

DOE Patents (OSTI)

A method of fabricating a seal between a ceramic and an alloy comprising the steps of prefiring the alloy in an atmosphere with a very low partial pressure of oxygen, firing the assembled alloy and ceramic in air, and gradually cooling the fired assembly to avoid the formation of thermal stress in the ceramic. The method forms a bond between the alloy and the ceramic capable of withstanding the environment of a pressurized water reactor and suitable for use in an electrical conductivity sensitive liquid level transducer.

Kelsey, P.V. Jr.; Siegel, W.T.

1983-08-16T23:59:59.000Z

42

Method for fabricating a seal between a ceramic and a metal alloy  

DOE Patents (OSTI)

A method of fabricating a seal between a ceramic and an alloy comprising the steps of prefiring the alloy in an atmosphere with a very low partial pressure of oxygen, firing the assembled alloy and ceramic in air, and gradually cooling the fired assembly to avoid the formation of thermal stress in the ceramic. The method forms a bond between the alloy and the ceramic capable of withstanding the environment of a pressurized water reactor and suitable for use in an electrical conductivity sensitive liquid level transducer.

Kelsey, Jr., Paul V. (Idaho Falls, ID); Siegel, William T. (Rigby, ID)

1983-01-01T23:59:59.000Z

43

Friction welded nonconsumable electrode assembly and use thereof for electrolytic production of metals and silicon  

DOE Patents (OSTI)

A nonconsumable electrode assembly suitable for use in the production of metal by electrolytic reduction of a metal compound dissolved in a molten salt, the assembly comprising a metal conductor and a ceramic electrode body connected by a friction weld between a portion of the body having a level of free metal or metal alloy sufficient to effect such a friction weld and a portion of the metal conductor.

Byrne, Stephen C. (Monroeville, PA); Ray, Siba P. (Pittsburgh, PA); Rapp, Robert A. (Columbus, OH)

1984-01-01T23:59:59.000Z

44

Production of aggregate from non-metallic automotive shredder residues  

Science Journals Connector (OSTI)

In this paper, the results of an experimentation on the production of granules suitable to be used as aggregates in cementitious or asphalt mixes are presented and discussed. The granules were obtained by granulating the non-metallic fraction of automotive shredder residues. In a preliminary separation step the fluff fraction containing mainly inert and non-metallic materials was sieved and analyzed for the metal content. In the following granulation step, the sieved fraction was mixed with binding materials, fly ash and a densifier agent, to produce granules of 530mm of diameter and up to 1400kg/m3 of specific weight. The granulation was carried out at room temperature in a rotating tank. Concrete samples prepared using as aggregates the produced granules showed a specific weight up to 1800kg/m3 and a compressive strength up to about 55% of reference samples prepared using a calcareous aggregate, depending on the fluff content of the mixes, and on the nature of the binder and of the other components used.

Vito Alunno Rossetti; Luca Di Palma; Franco Medici

2006-01-01T23:59:59.000Z

45

Central Fabrication Services | Brookhaven National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Central Fabrication Services Central Fabrication Services Home Management Staff Facilities Heavy Machine Shop Welding Shop Sheet Metal Shop Central Cleaning Facility CR X-Ray Facility Inspection Area Services Fabrication Services Group is committed to providing exceptional service to all of its customers. Safety is an integral part of our program and is in the foundation of everything we do. Fabrication Services is a full service proto type shop with production capabilities. Our facilities include machining, wire EDM, water jet cutting, orbital welding, welding, sheet metal, precision measurement, 3D printing, maintenance metal working, cleaning for UHV applications, and our newest addition Computed Radiography. Our capabilities include working on ultra-miniature parts to 20 ton assemblies. Our capability and range of services we provide is largely due

46

ElectronicFabrication  

NLE Websites -- All DOE Office Websites (Extended Search)

Fabrication Fabrication Manufacturing Technologies Electronic Fabrication provides our cus- tomers solutions for the packaging design, production acceptable prototype fabrica- tion, or deliverable production fabrication. Capabilities * Final electronic product packaging from sketches and verbal instructions * Provide CAD drawing package after project completion if no formal prints are available * Complete system development and fab- rication through concurrent engineering * Concurrent engineering in prototype and production fabrication * Integrate commercial equipment into prototype system design * Implementation and modification of commercial equipment * Packaging of prototype into finalized product assembly Resources * Customer assistance from fabrication, to testing, to complete system installation

47

Amorphous semiconducting and conducting transparent metal oxide thin films and production thereof  

DOE Patents (OSTI)

Metal oxide thin films and production thereof are disclosed. An exemplary method of producing a metal oxide thin film may comprise introducing at least two metallic elements and oxygen into a process chamber to form a metal oxide. The method may also comprise depositing the metal oxide on a substrate in the process chamber. The method may also comprise simultaneously controlling a ratio of the at least two metallic elements and a stoichiometry of the oxygen during deposition. Exemplary amorphous metal oxide thin films produced according to the methods herein may exhibit highly transparent properties, highly conductive properties, and/or other opto-electronic properties.

Perkins, John (Boulder, CO); Van Hest, Marinus Franciscus Antonius Maria (Lakewood, CO); Ginley, David (Evergreen, CO); Taylor, Matthew (Golden, CO); Neuman, George A. (Holland, MI); Luten, Henry A. (Holland, MI); Forgette, Jeffrey A. (Hudsonville, MI); Anderson, John S. (Holland, MI)

2010-07-13T23:59:59.000Z

48

GLASS FABRICATION AND PRODUCT CONSISTENCY TESTING OF LANTHANIDE BOROSILICATE FRIT B COMPOSITION FOR PLUTONIUM DISPOSITION  

SciTech Connect

The Department of Energy Office of Environmental Management (DOE/EM) plans to conduct the Plutonium Disposition Project at the Savannah River Site (SRS) to disposition excess weapons-usable plutonium. A plutonium glass waste form is a leading candidate for immobilization of the plutonium for subsequent disposition in a geologic repository. A reference glass composition (Lanthanide Borosilicate (LaBS) Frit B) was developed during the Plutonium Immobilization Program (PIP) to immobilize plutonium. A limited amount of performance testing was performed on this baseline composition before efforts to further pursue Pu disposition via a glass waste form ceased. Therefore, the objectives of this present task were to fabricate plutonium loaded LaBS Frit B glass and perform additional testing to provide near-term data that will increase confidence that LaBS glass product is suitable for disposal in the Yucca Mountain Repository. Specifically, testing was conducted in an effort to provide data to Yucca Mountain Project (YMP) personnel for use in performance assessment calculations. Plutonium containing LaBS glass with the Frit B composition with a 9.5 wt% PuO{sub 2} loading was prepared for testing. Glass was prepared to support Product Consistency Testing (PCT) at Savannah River National Laboratory (SRNL) and for additional performance testing at Argonne National Laboratory (ANL) and Pacific Northwest National Laboratory (PNNL). The glass was characterized using x-ray diffraction (XRD) and scanning electron microscopy coupled with energy dispersive spectroscopy (SEM/EDS) prior to performance testing. A series of PCTs were conducted at SRNL with varying exposed surface area and test durations. The leachates from these tests were analyzed to determine the dissolved concentrations of key elements. Acid stripping of leach vessels was performed to determine the concentration of the glass constituents that may have sorbed on the vessels during leach testing. Additionally, the leachate solutions were ultrafiltered to quantify colloid formation. The leached solids from select PCTs were examined in an attempt to evaluate the Pu and neutron absorber release behavior from the glass and to identify the formation of alteration phases on the glass surface. Characterization of the glass prior to testing revealed that some undissolved plutonium oxide was present in the glass. The undissolved particles had a disk-like morphology and likely formed via coarsening of particles in areas compositionally enriched in plutonium. Similar disk-like PuO{sub 2} phases were observed in previous LaBS glass testing at PNNL. In that work, researchers concluded that plutonium formed with this morphology as a result of the leaching process. It was more likely that the presence of the plutonium oxide crystals in the PNNL testing was a result of glass fabrication. A series of PCTs were conducted at 90 C in ASTM Type 1 water. The PCT-Method A (PCT-A) was conducted to compare the Pu LaBS Frit B glass durability to current requirements for High Level Waste (HLW) glass in a geologic repository. The PCT-A test has a strict protocol and is designed to specifically be used to evaluate whether the chemical durability and elemental release characteristics of a nuclear waste glass have been consistently controlled during production and, thus, meet the repository acceptance requirements. The PCT-A results on the Pu containing LaBS Frit B glass showed that the glass was very durable with a normalized elemental release value for boron of approximately 0.02 g/L. This boron release value was better than two orders of magnitude better from a boron release standpoint than the current Environmental Assessment (EA) glass used for repository acceptance. The boron release value for EA glass is 16.7 g/L.

Marra, J

2006-01-19T23:59:59.000Z

49

GLASS FABRICATION AND PRODUCT CONSISTENCY TESTING OF LANTHANIDE BOROSILICATE GLASS FOR PLUTONIUM DISPOSITION  

SciTech Connect

The Department of Energy Office of Environmental Management (DOE/EM) plans to conduct the Plutonium Disposition Project at the Savannah River Site (SRS) in Aiken, SC, to disposition excess weapons-usable plutonium. A plutonium glass waste form is a leading candidate for immobilization of the plutonium for subsequent disposition in a geologic repository. The objectives of this present task were to fabricate plutonium-loaded lanthanide borosilicate (LaBS) Frit B glass and perform testing to provide near-term data that will increase confidence that LaBS glass product is suitable for disposal in the proposed Federal Repository. Specifically, testing was conducted in an effort to provide data to Yucca Mountain Project (YMP) personnel for use in performance assessment calculations. Plutonium containing LaBS glass with the Frit B composition with a 9.5 wt% PuO{sub 2} loading was prepared for testing. Glass was prepared to support glass durability testing via the ASTM Product Consistency Testing (PCT) at Savannah River National Laboratory (SRNL). The glass was characterized with X-ray diffraction (XRD) and scanning electron microscopy coupled with energy dispersive spectroscopy (SEM/EDS) prior to performance testing. This characterization revealed some crystalline PuO{sub 2} inclusions with disk-like morphology present in the as fabricated, quench-cooled glass. A series of PCTs was conducted at SRNL with varying exposed surface area and test durations. Filtered leachates from these tests were analyzed to determine the dissolved concentrations of key elements. The leachate solutions were also ultrafiltered to quantify colloid formation. Leached solids from select PCTs were examined in an attempt to evaluate the Pu and neutron absorber release behavior from the glass and to investigate formation of alteration phases on the glass surface. A series of PCTs was conducted at 90 C in ASTM Type 1 water to compare the Pu LaBS Frit B glass durability to current requirements for High Level Waste (HLW) glass in a geologic repository. The PCT (7-day static test with powdered glass) results on the Pu-containing LaBS Frit B glass at SA/V of {approx} 2000 m{sup -1} showed that the glass was very durable with an average normalized elemental release value for boron of 0.013 g/m{sup 2}. This boron release value is {approx} 640X lower than normalized boron release from current Environmental Assessment (EA) glass used for repository acceptance. The PCT-B (7, 14, 28 and 56-day, static test with powdered glass) normalized elemental releases were similar to the normalized elemental release values from PCT-A testing, indicating that the LaBS Frit B glass is very durable as measured by the PCT. Normalized plutonium releases were essentially the same within the analytical uncertainty of the ICP-MS methods used to quantify plutonium in the 0.45 {micro}m-filtered leachates and ultra-filtered leachates, indicating that colloidal plutonium species do not form under the PCT conditions used in this study.

Crawford, C; James Marra, J; Ned Bibler, N

2007-02-12T23:59:59.000Z

50

Method and apparatus for the production of metal oxide powder  

DOE Patents (OSTI)

The present invention provides a method for preparing metal oxide powder. A first solution, which is substantially organic, is prepared. A second solution, which is an aqueous solution substantially immiscible in the first solution, is prepared and delivered as drops to the first solution. The drops of the second solution are atomized by a pulsed electric field forming micro-drops of the second solution. Reagents in the first solution diffuse into and react with reactants in the micro-drops of the second solution forming metal hydroxide or oxalate particles. The metal hydroxide or metal oxalate particles are then recovered and dried to produce the metal oxide powder. An apparatus for preparing a metal oxide powder is also disclosed.

Harris, Michael T. (Knoxville, TN); Scott, Timothy C. (Knoxville, TN); Byers, Charles H. (Oak Ridge, TN)

1993-01-01T23:59:59.000Z

51

Method and apparatus for the production of metal oxide powder  

DOE Patents (OSTI)

The present invention provides a method for preparing metal oxide powder. A first solution, which is substantially organic, is prepared. A second solution, which is an aqueous solution substantially immiscible in the first solution, is prepared and delivered as drops to the first solution. The drops of the second solution are atomized by a pulsed electric field forming micro-drops of the second solution. Reagents in the first solution diffuse into and react with reactants in the micro-drops of the second solution forming metal hydroxide or oxalate particles. The metal hydroxide or metal oxalate particles are then recovered and dried to produce the metal oxide powder. An apparatus for preparing a metal oxide powder is also disclosed.

Harris, Michael T. (Knoxville, TN); Scott, Timothy C. (Knoxville, TN); Byers, Charles H. (Oak Ridge, TN)

1992-01-01T23:59:59.000Z

52

Method and apparatus for the production of metal oxide powder  

DOE Patents (OSTI)

The present invention provides a method for preparing metal oxide powder. A first solution, which is substantially organic, is prepared. A second solution, which is an aqueous solution substantially immiscible in the first solution, is prepared and delivered as drops to the first solution. The drops of the second solution are atomized by a pulsed electric field forming micro-drops of the second solution. Reagents in the first solution diffuse into and react with reactants in the micro-drops of the second solution forming metal hydroxide or oxalate particles. The metal hydroxide or metal oxalate particles are then recovered and dried to produce the metal oxide powder. An apparatus for preparing a metal oxide powder is also disclosed. 2 figs.

Harris, M.T.; Scott, T.C.; Byers, C.H.

1992-06-16T23:59:59.000Z

53

Strengthening porous metal skeletons by metal deposition from a nanoparticle dispersion  

E-Print Network (OSTI)

The accuracy of solid freeform fabrication processes such as three-dimensional printing (3DP) and selective laser sintering (SLS) must be improved for them to achieve wide application in direct production of metal parts. ...

Crane, Nathan B., 1974-

2005-01-01T23:59:59.000Z

54

Impact of Fission Products Impurity on the Plutonium Content of Metal- and Oxide- Fuels in Sodium Cooled Fast Reactors  

SciTech Connect

This short report presents the neutronic analysis to evaluate the impact of fission product impurity on the Pu content of Sodium-cooled Fast Reactor (SFR) metal- and oxide- fuel fabrication. The similar work has been previously done for PWR MOX fuel [1]. The analysis will be performed based on the assumption that the separation of the fission products (FP) during the reprocessing of UOX spent nuclear fuel assemblies is not perfect and that, consequently, a certain amount of FP goes into the Pu stream used to fabricate SFR fuels. Only non-gaseous FPs have been considered (see the list of 176 isotopes considered in the calculations in Appendix 1 of Reference 1). Throughout of this report, we define the mixture of Pu and FPs as PuFP. The main objective of this analysis is to quantify the increase of the Pu content of SFR fuels necessary to maintain the same average burnup at discharge independently of the amount of FP in the Pu stream, i.e. independently of the PuFP composition. The FP losses are considered element-independent, i.e., for example, 1% of FP losses mean that 1% of all non-gaseous FP leak into the Pu stream.

Hikaru Hiruta; Gilles Youinou

2013-09-01T23:59:59.000Z

55

Method of making metal-doped organic foam products  

DOE Patents (OSTI)

Organic foams having a low density and very small cell size and method for roducing same in either a metal-loaded or unloaded (nonmetal loaded) form are described. Metal-doped foams are produced by soaking a polymer gel in an aqueous solution of desired metal salt, soaking the gel successively in a solvent series of decreasing polarity to remove water from the gel and replace it with a solvent of lower polarity with each successive solvent in the series being miscible with the solvents on each side and being saturated with the desired metal salt, and removing the last of the solvents from the gel to produce the desired metal-doped foam having desired density cell size, and metal loading. The unloaded or metal-doped foams can be utilized in a variety of applications requiring low density, small cell size foam. For example, rubidium-doped foam made in accordance with the invention has utility in special applications, such as in x-ray lasers.

Rinde, James A. (Livermore, CA)

1981-01-01T23:59:59.000Z

56

Massive zero-metal stars: Energy production and mixing  

E-Print Network (OSTI)

Time-dependent nuclear network calculations at constant temperature show that for zero-metal stars >= 20 Msun (i) beta-decay reactions and (ii) the 13N(p,gamma)14O reaction must be included. It is also shown that the nuclear timescale in these zero-metal stars is shorter than the mixing timescale and therefore the assumption of instantaneous mixing across convective regions is not fulfilled. We conclude that proper modeling of these processes may alter the evolution of massive zero-metal stars.

C. W. Straka; W. M. Tscharnuter

2001-03-21T23:59:59.000Z

57

DOE - Office of Legacy Management -- Enterprise Metal Products...  

Office of Legacy Management (LM)

, New York NY.0-10-1 Evaluation Year: 1987 NY.0-10-1 Site Operations: Machined magnesium metal NY.0-10-1 Site Disposition: Eliminated - Potential for contamination remote...

58

ccsd-00001984,version1-18Oct2004 Selective production of metallic carbon nanotubes  

E-Print Network (OSTI)

ccsd-00001984,version1-18Oct2004 Selective production of metallic carbon nanotubes Yasushi- type nanotubes (metallic character) evaluated using the previous H¨uckel-Poisson method can be applied at the tip of a nanotube in a realistic system. Setting the cross-section of a nanotube and the external

Paris-Sud XI, Université de

59

D/sup -/ production by charge transfer in metal vapors  

SciTech Connect

Fast D/sup -/ ions can be produced from D/sup +/ by multiple charge-transfer collisions in a metal-vapor target. Experimental cross sections and thick-target D/sup -/ yields are presented and discussed. The high D/sup -/ yield experimentally observed from charge transfer in cesium vapor is consistent with recent low-energy cross-section calculations and measurements.

Schlachter, A.S.

1980-10-01T23:59:59.000Z

60

Digital Photonic Production: High Power ultrashort Lasers, Laser Additive Manufacturing and Laser Micro/ Nano Fabrication  

Science Journals Connector (OSTI)

The high power optical technologies enter a new era: The age of DIGITAL PHOTONIC PRODUCTION. Very recently new lasers in new time- and wavelength domains with high average powers have...

Poprawe, Reinhart; Gillner, Arnold; Hoffmann, Dieter; Kelbassa, Ingomar; Loosen, Peter; Wissenbach, Konrad

Note: This page contains sample records for the topic "fabricated metal product" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Hydrogen production during processing of radioactive sludge containing noble metals  

SciTech Connect

Hydrogen was produced when radioactive sludge from Savannah River Site radioactive waste containing noble metals was reacted with formic acid. This will occur in a process tank in the Defense Waste Facility at SRS when waste is vitrified. Radioactive sludges from four tanks were tested in a lab-scale apparatus. Maximum hydrogen generation rates varied from 5 {times}10{sup {minus}7} g H{sub 2}/hr/g of sludge from the least reactive sludge (from Waste Tank 51) to 2 {times}10{sup {minus}4} g H{sub 2}/hr/g of sludge from the most reactive sludge (from Waste Tank 11). The time required for the hydrogen generation to reach a maximum varied from 4.1 to 25 hours. In addition to hydrogen, carbon dioxide and nitrous oxide were produced and the pH of the reaction slurry increased. In all cases, the carbon dioxide and nitrous oxide were generated before the hydrogen. The results are in agreement with large-scale studies using simulated sludges.

Ha, B.C.; Ferrara, D.M.; Bibler, N.E.

1992-09-01T23:59:59.000Z

62

Hydrogen production during processing of radioactive sludge containing noble metals  

SciTech Connect

Hydrogen was produced when radioactive sludge from Savannah River Site radioactive waste containing noble metals was reacted with formic acid. This will occur in a process tank in the Defense Waste Facility at SRS when waste is vitrified. Radioactive sludges from four tanks were tested in a lab-scale apparatus. Maximum hydrogen generation rates varied from 5 {times}10{sup {minus}7} g H{sub 2}/hr/g of sludge from the least reactive sludge (from Waste Tank 51) to 2 {times}10{sup {minus}4} g H{sub 2}/hr/g of sludge from the most reactive sludge (from Waste Tank 11). The time required for the hydrogen generation to reach a maximum varied from 4.1 to 25 hours. In addition to hydrogen, carbon dioxide and nitrous oxide were produced and the pH of the reaction slurry increased. In all cases, the carbon dioxide and nitrous oxide were generated before the hydrogen. The results are in agreement with large-scale studies using simulated sludges.

Ha, B.C.; Ferrara, D.M.; Bibler, N.E.

1992-01-01T23:59:59.000Z

63

Industrial recovered-materials-utilization targets for the metals and metal-products industry  

SciTech Connect

The National Energy Conservation Policy Act of 1978 directs DOE to set targets for increased utilization of energy-saving recovered materials for certain industries. These targets are to be established at levels representing the maximum feasible increase in utilization of recovered materials that can be achieved progressively by January 1, 1987 and is consistent with technical and economic factors. A benefit to be derived from the increased use of recoverable materials is in energy savings, as state in the Act. Therefore, emhasis on different industries in the metals sector has been related to their energy consumption. The ferrous industry (iron and steel, ferrour foundries and ferralloys), as defined here, accounts for approximately 3%, and all others for the remaining 3%. Energy consumed in the lead and zinc segments is less than 1% each. Emphasis is placed on the ferrous scrap users, followed by the aluminum and copper industries. A bibliography with 209 citations is included.

None

1980-03-01T23:59:59.000Z

64

Fabrication of superconducting metal-oxide textiles by heating impregnated polymeric material in a weakly oxidizing atmosphere  

SciTech Connect

A process is described for producing crystalline fibers, textiles or shapes comprised of YBa[sub 2]Cu[sub 3]O[sub 7[minus]x] where x varies from about 0 to about 0.4, said process comprising: (a) impregnating a preformed organic polymeric material with three metal compounds to provide metal elements in said material in substantially the atomic ratio occurring in said YBa[sub 2]Cu[sub 3]O[sub 7[minus]x]; (b) heating said impregnated material in a weakly oxidizing atmosphere containing from about 0.05% to about 2% oxygen by volume to a temperature sufficiently high to at least partially pyrolize and oxidize said organic material and at least partially oxidize said metal compounds substantially without ignition of said organic material and without formation of a molten phase or reaching a decomposition temperature of said YBa[sub 2]Cu[sub 3]O[sub 7[minus]x]; and (c) cooling the resulting material in at least a moderately oxidizing atmosphere to room temperature so as to obtain said fibers, textiles or shapes.

Van den Sype, J.S.

1993-07-13T23:59:59.000Z

65

Mass production of multi-wall carbon nanotubes by metal dusting process with high yield  

SciTech Connect

Research highlights: {yields} Synthesis of carbon nanotubes over Fe-Ni nanoparticles supported alloy 304L. {yields} Production of carbon nanotubes with high yield (700-1000%) and low cost catalyst. {yields} Optimum growth condition is CO/H{sub 2} = 1/1, 100 cm{sup 3}/min, at 620 {sup o}C under long term repetitive thermal cycling. {yields} Possibility of the mass production by metal dusting process with low cost. -- Abstract: Carbon nanotube materials were synthesized over Fe-Ni nanoparticles generated during disintegration of the surface of alloy 304L under metal dusting environment. The metal dusting condition was simulated and optimized through exposing stainless steel samples during long term repetitive thermal cycling in CO/H{sub 2} = 1/1, total gas flow rate 100 cm{sup 3}/min, at 620 {sup o}C for 300 h. After reaction, surface morphology of the samples and also carbonaceous deposition which had grown on sample surfaces were examined by stereoscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Results revealed that multi-wall carbon nanotubes could be formed over nanocatalyst generated on the alloy surface by exploiting metal dusting process. By optimization of reaction parameters the yields of carbon nanotube materials obtained were 700-1000%. Also it has been shown herein that the amount of carbon nanotube materials remarkably increases when the reaction time is extended up to 300 h, indicating a possibility of the mass production by this easy method.

Ghorbani, H. [School of Metallurgy and Materials Engineering, Iran University of Science and Technology, Narmak, Tehran (Iran, Islamic Republic of)] [School of Metallurgy and Materials Engineering, Iran University of Science and Technology, Narmak, Tehran (Iran, Islamic Republic of); Rashidi, A.M., E-mail: Rashidiam@ripi.ir [Nanotechnology Research Center, Research Institute of Petroleum Industry (RIPI), West Blvd. Azadi Sport Complex, P.O. Box 14665-1998, Tehran (Iran, Islamic Republic of); Rastegari, S.; Mirdamadi, S. [School of Metallurgy and Materials Engineering, Iran University of Science and Technology, Narmak, Tehran (Iran, Islamic Republic of)] [School of Metallurgy and Materials Engineering, Iran University of Science and Technology, Narmak, Tehran (Iran, Islamic Republic of); Alaei, M. [Nanotechnology Research Center, Research Institute of Petroleum Industry (RIPI), West Blvd. Azadi Sport Complex, P.O. Box 14665-1998, Tehran (Iran, Islamic Republic of)] [Nanotechnology Research Center, Research Institute of Petroleum Industry (RIPI), West Blvd. Azadi Sport Complex, P.O. Box 14665-1998, Tehran (Iran, Islamic Republic of)

2011-05-15T23:59:59.000Z

66

Biofuels production from hydrotreating of vegetable oil using supported noble metals, and transition metal carbide and nitride.  

E-Print Network (OSTI)

?? The focus of this research is to prepare non-sulfided hydrotreating catalysts, supported noble metal and transition metal carbide/ nitride, and evaluate their hydrocracking activities (more)

Wang, Huali

2012-01-01T23:59:59.000Z

67

Design, fabrication and testing of a 15-kW gas-fired liquid-metal evaporator  

SciTech Connect

This paper describes the development and testing of a compact heat- pipe heat exchanger that is designed to transfer thermal energy from hot combustion gases to the heater tubes of a 25-kW{sub e} Stirling engine. In this system, sodium evaporates from a surface that is heated by a stream of hot gases and the liquid metal then condenses on the heater tubes of a Stirling engine where energy is transferred to the engine`s helium working fluid. Recent tests on a prototype unit illustrated that a compact (8 cm {times} 13 cm {times} 16 cm) sodium evaporator can routinely transfer 15-kW{sub t} of energy at an operating vapor temperature of 760{degrees}C. Four of these prototype units will eventually be used to power a 25-kW{sub e} Stirling engine system. Design details and test results from the prototype unit are presented in this paper.

Adkins, D.R.; Rawlinson, K.S.

1992-07-01T23:59:59.000Z

68

Design, fabrication and testing of a 15-kW gas-fired liquid-metal evaporator  

SciTech Connect

This paper describes the development and testing of a compact heat- pipe heat exchanger that is designed to transfer thermal energy from hot combustion gases to the heater tubes of a 25-kW{sub e} Stirling engine. In this system, sodium evaporates from a surface that is heated by a stream of hot gases and the liquid metal then condenses on the heater tubes of a Stirling engine where energy is transferred to the engine's helium working fluid. Recent tests on a prototype unit illustrated that a compact (8 cm {times} 13 cm {times} 16 cm) sodium evaporator can routinely transfer 15-kW{sub t} of energy at an operating vapor temperature of 760{degrees}C. Four of these prototype units will eventually be used to power a 25-kW{sub e} Stirling engine system. Design details and test results from the prototype unit are presented in this paper.

Adkins, D.R.; Rawlinson, K.S.

1992-01-01T23:59:59.000Z

69

Nitrogen-Doped Anatase Nanofibers Decorated with Noble Metal Nanoparticles for Photocatalytic Production of Hydrogen  

Science Journals Connector (OSTI)

Nitrogen-Doped Anatase Nanofibers Decorated with Noble Metal Nanoparticles for Photocatalytic Production of Hydrogen ... High-aspect-ratio titanate nanotubes (NT) and nanowires (NW) were produced by the hydrothermal conversion of TiO2 at 400 K. ... Two novel deposition methods were used to synthesize Pt-TiO2 composite photoelectrodes: a tilt-target room temperature sputtering method and aerosol-chemical vapor deposition (ACVD). ...

Ming-Chung Wu; Jussi Hiltunen; Andrs Spi; Anna Avila; William Larsson; Hsueh-Chung Liao; Mika Huuhtanen; Gza Tth; Andrey Shchukarev; Nomi Laufer; kos Kukovecz; Zoltn Knya; Jyri-Pekka Mikkola; Riitta Keiski; Wei-Fang Su; Yang-Fang Chen; Heli Jantunen; Pulickel M. Ajayan; Robert Vajtai; Krisztin Kords

2011-05-13T23:59:59.000Z

70

Interaction of noble-metal fission products with pyrolytic silicon carbide  

SciTech Connect

Fuel particles for the High-Temperature Gas-Cooled Reactor (HTGR) contain layers of pyrolytic carbon and silicon carbide, which act as a miniature pressure vessel and form the primary fission product barrier. Of the many fission products formed during irradiation, the noble metals are of particular interest because they interact significantly with the SiC layer and their concentrations are somewhat higher in the low-enriched uranium fuels currently under consideration. To study fission product-SiC interactions, particles of UO/sub 2/ or UC/sub 2/ are doped with fission product elements before coating and are then held in a thermal gradient up to several thousand hours. Examination of the SiC coatings by TEM-AEM after annealing shows that silver behaves differently from the palladium group.

Lauf, R.J.; Braski, D.N.

1982-01-01T23:59:59.000Z

71

TREATMENT OF METAL-LADEN HAZARDOUS WASTES WITH ADVANCED CLEAN COAL TECHNOLOGY BY-PRODUCTS  

SciTech Connect

Metal-laden wastes can be stabilized and solidified using advanced clean coal technology by-products (CCTBs)--fluid bed combustor ash and spray drier solids. These utility-generated treatment chemicals are available for purchase through brokers, and commercial applications of this process are being practiced by treaters of metal-laden hazardous waste. A complex of regulations governs this industry, and sensitivities to this complex has discouraged public documentation of treatment of metal-laden hazardous wastes with CCTBs. This report provides a comprehensive public documentation of laboratory studies that show the efficacy of the stabilization and solidification of metal-laden hazardous wastes--such as lead-contaminated soils and sandblast residues--through treatment with CCTBs. It then describes the extensive efforts that were made to obtain the permits allowing a commercial hazardous waste treater to utilize CCTBs as treatment chemicals and to install the equipment required to do so. It concludes with the effect of this lengthy process on the ability of the treatment company to realize the practical, physical outcome of this effort, leading to premature termination of the project.

James T. Cobb, Jr.

2003-09-12T23:59:59.000Z

72

Inert anode containing oxides of nickel iron and cobalt useful for the electrolytic production of metals  

DOE Patents (OSTI)

An inert anode for the electrolytic production of metals such as aluminum is disclosed. The inert anode includes a ceramic oxide material preferably made from NiO, Fe.sub.2 O.sub.3 and CoO. The inert anode composition may comprise the following mole fractions of NiO, Fe.sub.2 O.sub.3 and CoO: 0.15 to 0.99 NiO; 0.0001 to 0.85 Fe.sub.2 O.sub.3 ; and 0.0001 to 0.45 CoO. The inert anode may optionally include other oxides and/or at least one metal phase, such as Cu, Ag, Pd, Pt, Au, Rh, Ru, Ir and/or Os. The Ni--Fe--Co--O ceramic material exhibits very low solubility in Hall cell baths used to produce aluminum.

Ray, Siba P. (Murrysville, PA); Liu, Xinghua (Monroeville, PA); Weirauch, Jr., Douglas A. (Murrysville, PA)

2002-01-01T23:59:59.000Z

73

Inert anode containing oxides of nickel, iron and zinc useful for the electrolytic production of metals  

DOE Patents (OSTI)

An inert anode for the electrolytic production of metals such as aluminum is disclosed. The inert anode includes a ceramic oxide material preferably made from NiO, Fe.sub.2 O.sub.3 and ZnO. The inert anode composition may comprise the following mole fractions of NiO, Fe.sub.2 O.sub.3 and ZnO: 0.2 to 0.99 NiO; 0.0001 to 0.8 Fe.sub.2 O.sub.3 ; and 0.0001 to 0.3 ZnO. The inert anode may optionally include other oxides and/or at least one metal phase, such as Cu, Ag, Pd, Pt, Au, Rh, Ru, Ir and/or Os. The Ni--Fe--Co--O ceramic material exhibits very low solubility in Hall cell baths used to produce aluminum.

Ray, Siba P. (Murrysville, PA); Weirauch, Jr., Douglas A. (Murrysville, PA); Liu, Xinghua (Monroeville, PA)

2002-01-01T23:59:59.000Z

74

Lithium Methyl Carbonate as a Reaction Product of Metallic Lithiumand Dimethyl Carbonate  

SciTech Connect

To improve the understanding of passive film formation on metallic lithium in organic electrolyte, we synthesized and characterized lithium methyl carbonate (LiOCO{sub 2}CH{sub 3}), a prototypical component of the film. The chemical structure of this compound was characterized with Nuclear Magnetic Resonance (NMR) and Fourier Transform Infrared Spectroscopy (FTIR), and its thermal stability and decomposition pathway was studied by thermo-gravimetric analysis (TGA). The FTIR spectrum of chemically synthesized compound enabled us to resolve multiple products in the passive film on lithium in dimethyl carbonate (DMC). Lithium methyl carbonate is only one of the components, the others being lithium oxalate and lithium methoxide.

Zhuang, Guorong V.; Yang, Hui; Ross Jr., Philip N.; Xu, Kang; Jow, T. Richard

2005-10-16T23:59:59.000Z

75

Helium enrichment and Carbon-star Production in Metal-rich Populations  

E-Print Network (OSTI)

We present new theoretical stellar evolutionary models of metal-rich asymptotic giant branch (AGB) stars. Stellar models are evolved with initial masses between 1Msun and 7Msun at Z=0.007, and 1Msun and 8Msun at Z=0.014 (solar) and at Z=0.03. We evolve models with a canonical helium abundance and with helium enriched compositions (Y=0.30, 0.35, 0.40) at Z=0.014 and Z=0.03. The efficiency of third dredge-up and the mass range of carbon stars decreases with an increase in metallicity. We predict carbon stars form from initial masses between 1.75-7Msun at Z=0.007 and between 2-4.5Msun at solar metallicity. At Z=0.03 the mass range for C-star production is narrowed to 3.25-4Msun. The third dredge-up is reduced when the helium content of the model increases owing to the reduced number of thermal pulses on the AGB. A small increase of Delta Y = 0.05 is enough to prevent the formation of C stars at Z=0.03, depending on the mass-loss rate, whereas at Z=0.014, an increase of Delta Y = 0.1 is required to prevent the fo...

Karakas, Amanda I

2014-01-01T23:59:59.000Z

76

The chemistry of transition metal complexes related to solar energy storage : H? production and small molecule (CO? and HX; X = Cl, Br) chemistry.  

E-Print Network (OSTI)

The studies in this thesis have focused on the chemistry of transition metal complexes related to solar energy storage: electrochemical H? production, HX splitting and CO? activation mediated by transition metal complexes. ...

Lee, Changhoon, Ph. D. Massachusetts Institute of Technology

2011-01-01T23:59:59.000Z

77

Metal Aminoboranes  

NLE Websites -- All DOE Office Websites (Extended Search)

Metal Aminoboranes Metal Aminoboranes Metal Aminoboranes Metal aminoboranes of the formula M(NH.sub.2BH.sub.3).sub.n have been synthesized. June 25, 2013 Metal Aminoboranes Metal aminoboranes of the formula M(NH.sub.2BH.sub.3).sub.n have been synthesized. Available for thumbnail of Feynman Center (505) 665-9090 Email Metal Aminoboranes Metal aminoboranes of the formula M(NH.sub.2BH.sub.3).sub.n have been synthesized. Metal aminoboranes are hydrogen storage materials. Metal aminoboranes are also precursors for synthesizing other metal aminoboranes. Metal aminoboranes can be dehydrogenated to form hydrogen and a reaction product. The reaction product can react with hydrogen to form a hydrogen storage material. Metal aminoboranes can be included in a kit. U.S. Patent No.: 7,713,506 (DOE S-112,798)

78

Advanced Safeguards Approaches for New TRU Fuel Fabrication Facilities  

SciTech Connect

This second report in a series of three reviews possible safeguards approaches for the new transuranic (TRU) fuel fabrication processes to be deployed at AFCF specifically, the ceramic TRU (MOX) fuel fabrication line and the metallic (pyroprocessing) line. The most common TRU fuel has been fuel composed of mixed plutonium and uranium dioxide, referred to as MOX. However, under the Advanced Fuel Cycle projects custom-made fuels with higher contents of neptunium, americium, and curium may also be produced to evaluate if these minor actinides can be effectively burned and transmuted through irradiation in the ABR. A third and final report in this series will evaluate and review the advanced safeguards approach options for the ABR. In reviewing and developing the advanced safeguards approach for the new TRU fuel fabrication processes envisioned for AFCF, the existing international (IAEA) safeguards approach at the Plutonium Fuel Production Facility (PFPF) and the conceptual approach planned for the new J-MOX facility in Japan have been considered as a starting point of reference. The pyro-metallurgical reprocessing and fuel fabrication process at EBR-II near Idaho Falls also provided insight for safeguarding the additional metallic pyroprocessing fuel fabrication line planned for AFCF.

Durst, Philip C.; Ehinger, Michael H.; Boyer, Brian; Therios, Ike; Bean, Robert; Dougan, A.; Tolk, K.

2007-12-15T23:59:59.000Z

79

Fabric composite heat pipe technology development  

SciTech Connect

Testing has been performed on a variety of fabric composite technology feasibility issues. These include an evaluation of the effective radiation heat transfer rate from a heated metallic surface covered by a ceramic fabric with the intent of determining the effective emissivity'' of the combination of materials, studies of the wicking properties of ceramic fabrics, and the construction of fabric composite heat pipes to test their working properties under both steady state and transient conditions. Results of these experiments shown that fabric composite combinations have greatly enhanced effective emissivities'' resulting from the increases surface area of the fabric, ceramic fabrics can work very well as the wick for heat pipes, ceramic fabric heat pipes have been demonstrated to operate under typical space conditions, and large mass reductions are possible by using fabric composite heat pipes for heat rejection radiator systems.

Klein, A.C.; Gulshan-Ara, Z.; Kiestler, W.; Snuggerud, R.; Marks, T.S. (Department of Nuclear Engineering, Oregon State University, Corvallis, Oregon 97331 (United States))

1993-01-10T23:59:59.000Z

80

19 th International Conference on Production Research MANUFACTURING FEATURES IN CUTTING SHAPES AND PUNCHING HOLES IN SHEET METAL  

E-Print Network (OSTI)

By examining sheet metal parts it is rather evident that each sheet metal shape has its own manufacturing procedure. There are several manufacturing devices behind each procedure. This means that each shape can be divided into manufacturing features, which consist of shapes of sheet metal and their manufacturing methods. When creating rules and structures for manufacturing features, it is possible to prepare simple guides for engineering designers so that they can design parts which are easy to manufacture. A manufacturing guide can be a kind of database. A designing engineer may follow the guidelines of the database. It proposes different kinds of possibilities to produce sheet metal parts. This enables the design of products which are easy to manufacture. In addition, it allows the designer to diversify his or her knowledge of manufacturing methods. In this study, simple sheet metal parts and their manufacturing features are studied. For example, simple shapes such as holes can be made in several ways. Cutting a hole consists of several attributes which determine the requirements for manufacturing. This study tries to validate what kinds of factors are needed in order for the engineering designer to design parts which are simple to manufacture. Keywords: Sheet metal, sheet metal manufacturing, sheet metal features.

M. Lohtander J. Varis

Note: This page contains sample records for the topic "fabricated metal product" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Production of glass or glass-ceramic to metal seals with the application of pressure  

DOE Patents (OSTI)

In a process for preparing a glass or glass-ceramic to metal seal comprising contacting the glass with the metal and heat-treating the glass and metal under conditions whereby the glass to metal seal is effected and, optionally, the glass is converted to a glass-ceramic, an improvement comprises carrying out the heat-treating step using hot isostatic pressing.

Kelly, Michael D. (West Alexandria, OH); Kramer, Daniel P. (Dayton, OH)

1987-11-10T23:59:59.000Z

82

Production of glass or glass-ceramic to metal seals with the application of pressure  

DOE Patents (OSTI)

In a process for preparing a glass or glass-ceramic to metal seal comprising contacting the glass with the metal and heat-treating the glass and metal under conditions whereby the glass to metal seal is effected and, optionally, the glass is converted to a glass-ceramic, an improvement comprises carrying out the heat-treating step using hot isostatic pressing.

Kelly, M.D.; Kramer, D.P.

1985-01-04T23:59:59.000Z

83

Cryogenic Fabric  

Science Journals Connector (OSTI)

The distinct soil micromorphology is produced due to the effects of freezing and thawing processes and is termed as cryogenic fabric. Layers, lenses, and streaks of segregation ice are typical elements of the cryogenic

P. Pradeep Kumar

2014-08-01T23:59:59.000Z

84

Fabric Facts.  

E-Print Network (OSTI)

's Sewing Book. Stanford, Conn: Coats and Clark's, Inc., 1976. Complete Sewing Guide. Pleasantville, NY: The Reader's Digest Association, Inc;, 1976. "Giving Conventional Fabrics a Run for the Money." Clothes Etc. New York: Prads, Inc., April 15, 1978...

Saunders, Becky

1980-01-01T23:59:59.000Z

85

A survey of foundries that cast red brass products to ascertain an effective pouring rate of molten metal  

E-Print Network (OSTI)

A SURVEY OF FOUNDRIES THAT CAST RED BRASS PRODUCTS TO ASCERTAIN AN EFPECTIVE POURING RATE OF MOLTEN METAL A Thesis by RONALD KEE TOM Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement... for the degree of MASTER OF SCIENCE May 1974 Major Subject: Industrial Technology A SURVEY OF FOUNDRIES THAT CAST RED BRASS PRODUCTS TO ASCERTAIN AN EFFECTIVE POURING RATE OF MOLTEN METAL A Thesis by RONALD KEE TOM Approved as to style and content by...

Tom, Ronald Kee

2012-06-07T23:59:59.000Z

86

Concentrations of Naturally Occuring Radionuclides and Fission Products in Brick Samples Fabricated and Used in and Around Greater Dhaka City  

Science Journals Connector (OSTI)

...Radiation Protection Dosimetry Article Concentrations of Naturally Occuring Radionuclides and Fission Products in Brick Samples...measures to minimise the harmful effects of ionising radiation. The radium equivalent activity concentrations......

S. Roy; M.S. Alam; F.K. Miah; B. Alam

2000-04-01T23:59:59.000Z

87

Fabrication Flaw Density and Distribution in Piping Weldments  

SciTech Connect

The U.S. Nuclear Regulatory Commission supported the Pacific Northwest National Laboratory (PNNL) to develop empirical data on the density and distribution of fabrication flaws in nuclear reactor components. These data are needed to support probabilistic fracture mechanics calculations and studies on component structural integrity. PNNL performed nondestructive examination inspections and destructive testing on archived piping welds to determine the fabrication flaw size and distribution characteristics of the flaws in nuclear power plant piping weldments. Eight different processes and product forms in piping weldments were studied including wrought stainless steel and dissimilar metal weldments. Parametric analysis using an exponential fit was performed on the data. Results were created as a function of the through-wall size of the fabrication flaws as well as the length distribution. The results are compared and contrasted with those developed for reactor pressure vessel processes and product forms. The most significant findings were that the density of fabrication flaws versus through-wall size was higher in piping weldments than that for the reactor pressure vessel weldments, and the density of fabrication flaws versus through-wall size in both reactor pressure vessel weld repairs and piping weldments were greater than the density in the original weldments. Curves showing these distributions are presented.

Doctor, Steven R.

2009-09-01T23:59:59.000Z

88

In Vitro Metabolic Formation of Perfluoroalkyl Sulfonamides from Copolymer Surfactants of Pre- and Post-2002 Scotchgard Fabric Protector Products  

Science Journals Connector (OSTI)

This result is consistent with reports of high concentrations of PFASs detected in the plasma of persons in households where Scotchgard products are heavily used. ... In a very recent study, exceptionally high concentrations of PFOS and PFHxS have been reported in the serum samples in persons in a household environment where Scotchgard carpet products were heavily used. ... (13, 35) There are also reports of liver concentrations of PFOS that are lower than FOSA concentrations including arctic beluga whales from Alaska,(36) and melon-headed whales from Japan. ...

Shaogang Chu; Robert J. Letcher

2014-05-01T23:59:59.000Z

89

(Data in thousand metric tons of metal unless otherwise noted) Domestic Production and Use: In 2010, five companies operated nine primary aluminum smelters; six smelters  

E-Print Network (OSTI)

16 ALUMINUM1 (Data in thousand metric tons of metal unless otherwise noted) Domestic Production and Use: In 2010, five companies operated nine primary aluminum smelters; six smelters were closed on published market prices, the value of primary metal production was $3.99 billion. Aluminum consumption

90

Final LDRD report : metal oxide films, nanostructures, and heterostructures for solar hydrogen production.  

SciTech Connect

The distinction between electricity and fuel use in analyses of global power consumption statistics highlights the critical importance of establishing efficient synthesis techniques for solar fuels-those chemicals whose bond energies are obtained through conversion processes driven by solar energy. Photoelectrochemical (PEC) processes show potential for the production of solar fuels because of their demonstrated versatility in facilitating optoelectronic and chemical conversion processes. Tandem PEC-photovoltaic modular configurations for the generation of hydrogen from water and sunlight (solar water splitting) provide an opportunity to develop a low-cost and efficient energy conversion scheme. The critical component in devices of this type is the PEC photoelectrode, which must be optically absorptive, chemically stable, and possess the required electronic band alignment with the electrochemical scale for its charge carriers to have sufficient potential to drive the hydrogen and oxygen evolution reactions. After many decades of investigation, the primary technological obstacle remains the development of photoelectrode structures capable of efficient conversion of light with visible frequencies, which is abundant in the solar spectrum. Metal oxides represent one of the few material classes that can be made photoactive and remain stable to perform the required functions.

Kronawitter, Coleman X. [Lawrence Berkeley National Laboratory, Berkeley, CA; Antoun, Bonnie R.; Mao, Samuel S. [Lawrence Berkeley National Laboratory, Berkeley, CA

2012-01-01T23:59:59.000Z

91

Fabrication technology for ODS Alloy MA957  

SciTech Connect

A successful fabrication schedule has been developed at Carpenter Technology Corporation for the production of MA957 fuel and blanket cladding. Difficulties with gun drilling, plug drawing and recrystallization were overcome to produce a pilot lot of tubing. This report documents the fabrication efforts of two qualified vendors and the support studies performed at WHC to develop the fabrication-schedule.

ML Hamilton; DS Gelles; RJ Lobsinger; MM Paxton; WF Brown

2000-03-16T23:59:59.000Z

92

Method of producing metallized chloroplasts and use thereof in the photochemical production of hydrogen and oxygen  

DOE Patents (OSTI)

The invention is primarily a metallized chloroplast composition for use in a photosynthetic reaction. A catalytic metal is precipitated on a chloroplast membrane at the location where a catalyzed reduction reaction occurs. This metallized chloroplast is stabilized by depositing it on a support medium such as fiber so that it can be easily handled. A possible application of this invention is the splitting of water to form hydrogen and oxygen that can be used as a renewable energy source.

Greenbaum, Elias (Oak Ridge, TN)

1987-01-01T23:59:59.000Z

93

Fabrication of Niobium sheet for RF cavities  

E-Print Network (OSTI)

..................................................................................... 18 2 Fabrication of Niobium SRF Cavities............................................. 20 3 Fine Grain Cavities versus Single Crystal and Large Grain........... Cavities... typical to that of RF cavities in comparison with Cu at 77 and 300K. Nb has low surface resistance in the operating range of 1GHz among the metals. [27]. 2. Fabrication of Niobium SRF Cavities There are different approaches involved in making...

Balachandran, Shreyas

2009-05-15T23:59:59.000Z

94

Partition of actinides and fission products between metal and molten salt phases: Theory, measurement, and application to IFR pyroprocess development  

SciTech Connect

The chemical basis of Integral Fast Reactor fuel reprocessing (pyroprocessing) is partition of fuel, cladding, and fission product elements between molten LiCl-KCl and either a solid metal phase or a liquid cadmium phase. The partition reactions are described herein, and the thermodynamic basis for predicting distributions of actinides and fission products in the pyroprocess is discussed. The critical role of metal-phase activity coefficients, especially those of rare earth and the transuranic elements, is described. Measured separation factors, which are analogous to equilibrium constants but which involve concentrations rather than activities, are presented. The uses of thermodynamic calculations in process development are described, as are computer codes developed for calculating material flows and phase compositions in pyroprocessing.

Ackerman, J.P.; Johnson, T.R.

1993-10-01T23:59:59.000Z

95

Comparative Summer Thermal Performance of Finished and Unfinished Metal Roofing Products with Composition Shingles  

E-Print Network (OSTI)

of five roofing systems against a control roof using dark shingles. The intent of the testing is to evaluate how roofing systems impact residential cooling energy use. Recent testing emphasizes evaluation of how increasingly popular metal roofing systems...

Parker, D. S.; Sherwin, J.; Sonne, J.

2004-01-01T23:59:59.000Z

96

Gas Phase Ion Chemistry of Transition Metal Clusters: Production, Reactivity, and Catalysis  

Science Journals Connector (OSTI)

This review focuses on the use of mass spectrometry to examine the gas phase ion chemistry of metal clusters. Ways of forming gas phase clusters are briefly overviewed and then the gas phase chemistry of silve...

Richard A. J. O'Hair; George N. Khairallah

2004-09-01T23:59:59.000Z

97

Production of hard metal-like wear protection coatings by CO2 laser cladding  

Science Journals Connector (OSTI)

Protective coatings with hard metal-like wear properties could be obtained by laser beam surfacing of powder mixtures consisting of coarse-grained tungsten carbide and a nickel or cobalt hard alloy. The micros...

A. Techel; A. Luft; A. Mller; S. Nowotny

1995-12-01T23:59:59.000Z

98

Comparison of Nonprecious Metal Cathode Materials for Methane Production by Electromethanogenesis  

E-Print Network (OSTI)

a stoichiometric ratio of hydrogen (abiotic):methane (biotic) of 4:1, methane production with platinum could be explained solely by hydrogen production. For most other materials, however, abiotic hydrogen production the electrodes.1,2 Combined biological and electrochemical methods for methane production show great promise

99

(Data in thousand metric tons of silicon content unless otherwise noted) Domestic Production and Use: Estimated value of silicon alloys and metal (excluding semiconductor-and solar-  

E-Print Network (OSTI)

Production and Use: Estimated value of silicon alloys and metal (excluding semiconductor- and solar- grade and aluminum alloys and the chemical industry. The semiconductor and solar industries, which manufacture chips%; Venezuela, 15%; Canada, 8%; and other, 8%. Silicon metal: Brazil, 38%; South Africa, 24%; Canada, 16

100

Product/metal ratio (PMR): A novel criterion for the evaluation of electrolytes on micro-arc oxidation (MAO) of Mg and its alloys  

Science Journals Connector (OSTI)

Product/metal ratio (PMR...) was introduced as a novel criterion for the evaluation of electrolytes on micro-arc oxidation (MAO) of Mg and its alloys....PBR), focused on the roles of electrolytes for the compactn...

LaiWen Song; YingWei Song; DaYong Shan; GuoYi Zhu

2011-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "fabricated metal product" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Fabrication Flaw Density and Distribution In Repairs to Reactor Pressure Vessel and Piping Welds  

SciTech Connect

The Pacific Northwest National Laboratory is developing a generalized fabrication flaw distribution for the population of nuclear reactor pressure vessels and for piping welds in U.S. operating reactors. The purpose of the generalized flaw distribution is to predict component-specific flaw densities. The estimates of fabrication flaws are intended for use in fracture mechanics structural integrity assessments. Structural integrity assessments, such as estimating the frequency of loss-of-coolant accidents, are performed by computer codes that require, as input, accurate estimates of flaw densities. Welds from four different reactor pressure vessels and a collection of archived pipes have been studied to develop empirical estimates of fabrication flaw densities. This report describes the fabrication flaw distribution and characterization in the repair weld metal of vessels and piping. This work indicates that large flaws occur in these repairs. These results show that repair flaws are complex in composition and sometimes include cracks on the ends of the repair cavities. Parametric analysis using an exponential fit is performed on the data. The relevance of construction records is established for describing fabrication processes and product forms. An analysis of these records shows there was a significant change in repair frequency over the years when these components were fabricated. A description of repair flaw morphology is provided with a discussion of fracture mechanics significance. Fabrication flaws in repairs are characterized using optimized-access, high-sensitivity nondestructive ultrasonic testing. Flaw characterizations are then validated by other nondestructive evaluation techniques and complemented by destructive testing.

GJ Schuster, FA Simonen, SR Doctor

2008-04-01T23:59:59.000Z

102

Erroneous Wave Functions of Ciuchi et al for Collective Modes in Neutron Production on Metallic Hydride Cathodes  

E-Print Network (OSTI)

There is a recent comment (Ciuchi et al., 2012) concerning the theory of collective many body effects on the neutron production rates in a chemical battery cathode. Ciuchi et al employ an inverse beta decay expression that contains a two body amplitude. Only one electron and one proton may exist in the Ciuchi et al model initial state wave function. A flaw in their reasoning is that one cannot in reality describe collective many body correlations with only a two particle wave function. One needs very many particles to describe collective effects. In the model wave functions of Ciuchi et al there are no metallic hydrides, there are no cathodes and there are no chemical batteries. Employing a wave function with only one electron and one proton is inadequate for describing collective metallic hydride surface quantum plasma physics in cathodes accurately.

Widom, A; Larsen, L

2012-01-01T23:59:59.000Z

103

Erroneous Wave Functions of Ciuchi et al for Collective Modes in Neutron Production on Metallic Hydride Cathodes  

E-Print Network (OSTI)

There is a recent comment (Ciuchi et al., 2012) concerning the theory of collective many body effects on the neutron production rates in a chemical battery cathode. Ciuchi et al employ an inverse beta decay expression that contains a two body amplitude. Only one electron and one proton may exist in the Ciuchi et al model initial state wave function. A flaw in their reasoning is that one cannot in reality describe collective many body correlations with only a two particle wave function. One needs very many particles to describe collective effects. In the model wave functions of Ciuchi et al there are no metallic hydrides, there are no cathodes and there are no chemical batteries. Employing a wave function with only one electron and one proton is inadequate for describing collective metallic hydride surface quantum plasma physics in cathodes accurately.

A. Widom; Y. N. Srivastava; L. Larsen

2012-10-17T23:59:59.000Z

104

Research on micro-electric resistance slip welding of copper electrode during the fabrication of 3D metal micro-mold  

Science Journals Connector (OSTI)

Abstract 3D micro-mold fabricated by the micro double-staged laminated object manufacturing process (micro-DLOM) is formed via stacking and fitting of multi-layer 2D micro-structures. The connection of 2D micro-structures is related to forming accuracy and mechanical properties of 3D micro-mold. In this research, micro-electric resistance slip welding of copper electrodes was proposed to connect multi-layer 2D micro-structures. Firstly, the proper process parameters of slip welding were obtained through the welding experiment, and the temperature field of micro-electric resistance slip welding under such process parameters was simulated. Secondly, deposition effect of the copper bar electrode produced during slip welding was studied and the study results show that the copper element deposited in the slip welding area decreases as the surface roughness of copper electrode decreases. Finally, based on the above research, a square micro-cavity mold with micro-channel, a circular micro-cavity mold with cross keyway and micro gear cavity mold with two-stage steps were welded by the micro-electric resistance slip welding.

Bin Xu; Xiao-yu Wu; Jian-guo Lei; Feng Luo; Feng Gong; Chen-lin Du; Xiu-quan Sun; Shuang-chen Ruan

2013-01-01T23:59:59.000Z

105

Oxygen production by molten alkali metal salts using multiple absorption-desorption cycles  

DOE Patents (OSTI)

A continuous chemical air separation is performed wherein oxygen is recovered with a molten alkali metal salt oxygen acceptor in a series of absorption zones which are connected to a plurality of desorption zones operated in separate parallel cycles with the absorption zones. A greater recovery of high pressure oxygen is achieved at reduced power requirements and capital costs.

Cassano, Anthony A. (Allentown, PA)

1985-01-01T23:59:59.000Z

106

Oxygen production by molten alkali metal salts using multiple absorption-desorption cycles  

DOE Patents (OSTI)

A continuous chemical air separation is performed wherein oxygen is recovered with a molten alkali metal salt oxygen acceptor in a series of absorption zones which are connected to a plurality of desorption zones operated in separate parallel cycles with the absorption zones. A greater recovery of high pressure oxygen is achieved at reduced power requirements and capital costs. 3 figs.

Cassano, A.A.

1985-07-02T23:59:59.000Z

107

Primary productivity and trace-metal contamination measurements from a clean rosette system versus ultra-clean Go-Flo bottles  

Science Journals Connector (OSTI)

Primary productivity rates, measured during the 1992 United States Joint Global Ocean Flux Study (U.S. JGOFS) Equatorial Pacific (EqPac) process study with a new Trace-Metal clean rosette system (TM rosette) designed to be trace-metal clean, agreed within 5% with those determined using ultra-clean procedures that were previously shown to be trace-metal clean. The TM rosette system did not inhibit phytoplankton primary productivity rates. Using the TM rosette system, there was no contamination of Co, Ni, Cu, Cd or Pb, and only slight contamination of Fe and Zn, relative to ultra-clean collection. However, the slight contaminations were below levels that affect primary productivity rates. Therefore, systematic phytoplankton inhibition by trace-metal contamination appears to have been successfully eliminated with water collected using the TM rosette system.

Marta P. Sanderson; Craig N. Hunter; Steve E. Fitzwater; R.Michael Gordon; Richard T. Barber

1995-01-01T23:59:59.000Z

108

Divalent metal nanoparticles  

E-Print Network (OSTI)

Metal nanoparticles hold promise for many scientific and technological applications, such as chemical and biological sensors, vehicles for drug delivery, and subdiffraction limit waveguides. To fabricate such devices, a ...

DeVries, Gretchen Anne

2008-01-01T23:59:59.000Z

109

Fuel Fabrication Facility  

National Nuclear Security Administration (NNSA)

Construction of the Mixed Oxide Fuel Fabrication Facility Construction of the Mixed Oxide Fuel Fabrication Facility November 2005 May 2007 June 2008 May 2012...

110

Autothermal oxidative pyrolysis of biomass feedstocks over noble metal catalysts to liquid products.  

E-Print Network (OSTI)

??Two thermal processing technologies have emerged for processing biomass into renewable liquid products: pyrolysis and gasification/Fischer-Tropsch processing. The work presented here will demonstrate oxidative pyrolysis (more)

Balonek, Christine Marie

2011-01-01T23:59:59.000Z

111

A New Concept for the Fabrication of Hydrogen Selective Silica Membranes  

NLE Websites -- All DOE Office Websites (Extended Search)

New CoNCept for the fAbriCAtioN of New CoNCept for the fAbriCAtioN of hydrogeN SeleCtive SiliCA MeMbrANeS Background As stated in the National Research Council report on Novel Approaches to Carbon Management, a novel membrane is needed that can achieve the separation of carbon dioxide (CO 2 ) and hydrogen (H 2 ) at a high temperature and pressure. Extensive efforts over the last several decades have explored high temperature H 2 -selective membranes made of silicon dioxide (SiO 2 ) and other oxides, palladium (Pd) and other metals or alloys and, more recently, various zeolites and non-aluminosilicate molecular sieves. Although promising separation results have been reported for many of them, these technologies, they all suffer from high production costs for membrane fabrication and from long term stability problems. This project revisits

112

Management Staff | Central Fabrication Services | Brookhaven National  

NLE Websites -- All DOE Office Websites (Extended Search)

Management Staff Management Staff Al Farland Al Farland Central Fabrication Services General Supervisor Welding, Sheet Metal, and Maintenance Metal Work Supervisor Al Farland joined the Laboratory in 1978 with over 20 years of experience in the metal fabrication industry. Al worked on the floor before becoming a supervisor and is familiar and responsible for the Central Fabrication Services group. Phone: (631) 344-8462 Fax: (631) 344-7208 Email: farland@bnl.gov Kevin Campbell Kevin Campbell Machine Shop Supervisor Kevin Campbell came to the Laboratory in 2008 as a programmer/planner/estimator and has since been promoted to Machine Shop Supervisor. Kevin is responsible for Machine shop operations. Phone: (631) 344-3498 Fax: (631) 344-7208 Email: kcampbell@bnl.gov Chris Manning Chris Manning

113

Polymorphous computing fabric  

DOE Patents (OSTI)

Fabric-based computing systems and methods are disclosed. A fabric-based computing system can include a polymorphous computing fabric that can be customized on a per application basis and a host processor in communication with said polymorphous computing fabric. The polymorphous computing fabric includes a cellular architecture that can be highly parameterized to enable a customized synthesis of fabric instances for a variety of enhanced application performances thereof. A global memory concept can also be included that provides the host processor random access to all variables and instructions associated with the polymorphous computing fabric.

Wolinski, Christophe Czeslaw (Los Alamos, NM); Gokhale, Maya B. (Los Alamos, NM); McCabe, Kevin Peter (Los Alamos, NM)

2011-01-18T23:59:59.000Z

114

Fabrication of transparent ceramics using nanoparticles  

DOE Patents (OSTI)

A method of fabrication of a transparent ceramic using nanoparticles synthesized via organic acid complexation-combustion includes providing metal salts, dissolving said metal salts to produce an aqueous salt solution, adding an organic chelating agent to produce a complexed-metal sol, heating said complexed-metal sol to produce a gel, drying said gel to produce a powder, combusting said powder to produce nano-particles, calcining said nano-particles to produce oxide nano-particles, forming said oxide nano-particles into a green body, and sintering said green body to produce the transparent ceramic.

Cherepy, Nerine J; Tillotson, Thomas M; Kuntz, Joshua D; Payne, Stephen A

2012-09-18T23:59:59.000Z

115

MUC-NOTE-TARGET-234 Moving Solid Metallic Targets for Pion Production in the Muon Collider /  

E-Print Network (OSTI)

/ Neutrino Factory Project P.A. Thieberger and H.G. Kirk Brookhaven National Laboratory Introduction The production of large fluxes of pions and muons using high energy, high intensity proton pulses impinging) , extremely small, beam-induced strains in a carbon-carbon composite indicate that such a material may perhaps

McDonald, Kirk

116

Dust production from sub-solar to super-solar metallicity in Thermally Pulsing Asymptotic Giant Branch Stars  

E-Print Network (OSTI)

We discuss the dust chemistry and growth in the circumstellar envelopes (CSEs) of Thermally Pulsing Asymptotic Giant Branch (TP-AGB) star models computed with the COLIBRI code, at varying initial mass and metallicity (Z=0.001, 0.008, 0.02, 0.04, 0.06). A relevant result of our analysis deals with the silicate production in M-stars. We show that, in order to reproduce the observed trend between terminal velocities and mass-loss rates in Galactic M-giants, one has to significantly reduce the efficiency of chemisputtering by H2 molecules, usually considered as the most effective dust destruction mechanism. This indication is also in agreement with the most recent laboratory results, which show that silicates may condense already at T=1400 K, instead than at Tcond=1000 K, as obtained by models that include chemisputtering. From the analysis of the total dust ejecta, we find that the total dust-to-gas ejecta of intermediate-mass stars are much less dependent on metallicity than usually assumed. In a broader contex...

Ambra, Nanni; Paola, Marigo; Lo, Girardi; Atefeh, Javadi; Jacco, van Loon

2014-01-01T23:59:59.000Z

117

Reference Alloy Waste Form Fabrication and Initiation of Reducing Atmosphere and Reductive Additives Study on Alloy Waste Form Fabrication  

SciTech Connect

This report describes the fabrication of two reference alloy waste forms, RAW-1(Re) and RAW-(Tc) using an optimized loading and heating method. The composition of the alloy materials was based on a generalized formulation to process various proposed feed streams resulting from the processing of used fuel. Waste elements are introduced into molten steel during alloy fabrication and, upon solidification, become incorporated into durable iron-based intermetallic phases of the alloy waste form. The first alloy ingot contained surrogate (non-radioactive), transition-metal fission products with rhenium acting as a surrogate for technetium. The second alloy ingot contained the same components as the first ingot, but included radioactive Tc-99 instead of rhenium. Understanding technetium behavior in the waste form is of particular importance due the longevity of Tc-99 and its mobility in the biosphere in the oxide form. RAW-1(Re) and RAW-1(Tc) are currently being used as test specimens in the comprehensive testing program investigating the corrosion and radionuclide release mechanisms of the representative alloy waste form. Also described in this report is the experimental plan to study the effects of reducing atmospheres and reducing additives to the alloy material during fabrication in an attempt to maximize the oxide content of waste streams that can be accommodated in the alloy waste form. Activities described in the experimental plan will be performed in FY12. The first aspect of the experimental plan is to study oxide formation on the alloy by introducing O2 impurities in the melt cover gas or from added oxide impurities in the feed materials. Reducing atmospheres will then be introduced to the melt cover gas in an attempt to minimize oxide formation during alloy fabrication. The second phase of the experimental plan is to investigate melting parameters associated with alloy fabrication to allow the separation of slag and alloy components of the melt.

S.M. Frank; T.P. O'Holleran; P.A. Hahn

2011-09-01T23:59:59.000Z

118

Metallic Membrane Materials Development for Hydrogen Production from Coal Derived Syngas  

SciTech Connect

The goals of Office of Clean Coal are: (1) Improved energy security; (2) Reduced green house gas emissions; (3) High tech job creation; and (4) Reduced energy costs. The goals of the Hydrogen from Coal Program are: (1) Prove the feasibility of a 40% efficient, near zero emissions IGCC plant that uses membrane separation technology and other advanced technologies to reduce the cost of electricity by at least 35%; and (2) Develop H{sub 2} production and processing technologies that will contribute {approx}3% in improved efficiency and 12% reduction in cost of electricity.

O.N. Dogan; B.H. Howard; D.E. Alman

2012-02-26T23:59:59.000Z

119

Cryogenic Dark Matter Search Detector Fabrication Process and Recent Improvements  

E-Print Network (OSTI)

A dedicated facility has been commissioned for Cryogenic Dark Matter Search (CDMS) detector fabrication at Texas A&M University (TAMU). The fabrication process has been carefully tuned using this facility and its equipment. Production of successfully tested detectors has been demonstrated. Significant improvements in detector performance have been made using new fabrication methods/equipment and tuning of process parameters.

Andrew Jastram; Rusty Harris; Rupak Mahapatra; James Phillips; Mark Platt; Kunj Prasad; Joel Sander; Sriteja Upadhyayula

2014-08-01T23:59:59.000Z

120

Cryogenic Dark Matter Search Detector Fabrication Process and Recent Improvements  

E-Print Network (OSTI)

A dedicated facility has been commissioned for Cryogenic Dark Matter Search (CDMS) detector fabrication at Texas A&M University (TAMU). The fabrication process has been carefully tuned using this facility and its equipment. Production of successfully tested detectors has been demonstrated. Significant improvements in detector performance have been made using new fabrication methods/equipment and tuning of process parameters.

Jastram, Andrew; Mahapatra, Rupak; Phillips, James; Platt, Mark; Prasad, Kunj; Sander, Joel; Upadhyayula, Sriteja

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fabricated metal product" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Neutron generators with size scalability, ease of fabrication and multiple ion source functionalities  

DOE Patents (OSTI)

A neutron generator is provided with a flat, rectilinear geometry and surface mounted metallizations. This construction provides scalability and ease of fabrication, and permits multiple ion source functionalities.

Elizondo-Decanini, Juan M

2014-11-18T23:59:59.000Z

122

Noble Metal-Free Reduced Graphene Oxide-ZnxCd1-xS Nanocomposite with Enhanced Solar Photocatalytic H2Production  

E-Print Network (OSTI)

solar energy by production of hydrogen from water splitting is of great importance from both theoretical strategy for solving simultaneously the incoming energy and environmental problems.2 So far, numerousNoble Metal-Free Reduced Graphene Oxide-ZnxCd1-xS Nanocomposite with Enhanced Solar Photocatalytic

Gong, Jian Ru

123

Spacecraft fabrication and test MODIL. Final report  

SciTech Connect

This report covers the period from October 1992 through the close of the project. FY 92 closed out with the successful briefing to industry and with many potential and important initiatives in the spacecraft arena. Due to the funding uncertainties, we were directed to proceed as if our funding would be approximately the same as FY 92 ($2M), but not to make any major new commitments. However, the MODIL`s FY 93 funding was reduced to $810K and we were directed to concentrate on the cryocooler area. The cryocooler effort completed its demonstration project. The final meetings with the cryocooler fabricators were very encouraging as we witnessed the enthusiastic reception of technology to help them reduce fabrication uncertainties. Support of the USAF Phillips Laboratory cryocooler program was continued including kick-off meetings for the Prototype Spacecraft Cryocooler (PSC). Under Phillips Laboratory support, Gill Cruz visited British Aerospace and Lucas Aerospace in the United Kingdom to assess their manufacturing capabilities. In the Automated Spacecraft & Assembly Project (ASAP), contracts were pursued for the analysis by four Brilliant Eyes prime contractors to provide a proprietary snap shot of their current status of Integrated Product Development. In the materials and structure thrust the final analysis was completed of the samples made under the contract (``Partial Automation of Matched Metal Net Shape Molding of Continuous Fiber Composites``) to SPARTA. The Precision Technologies thrust funded the Jet Propulsion Laboratory to prepare a plan to develop a Computer Aided Alignment capability to significantly reduce the time for alignment and even possibly provide real time and remote alignment capability of systems in flight.

Saito, T.T.

1994-05-01T23:59:59.000Z

124

Purifying metallurgical silicon to solar grade silicon by metal-assisted chemical etching  

Science Journals Connector (OSTI)

Metal impurities have detrimental effects on the performance of Si solar cells. Through metal assisted chemical etching, we fabricate Si nanowires from metallurgical Si while purifying...

Li, Xiaopeng; Sprafke, Alexander N; Schweizer, Stefan L; Wehrspohn, Ralf

125

PRODUCTION  

Science Journals Connector (OSTI)

Booklet describing in pictorial sequence the process of reducing alumina to aluminum pig at the Reynolds Metals' plant in Troutdale, Ore. ...

1952-06-30T23:59:59.000Z

126

Update on US High Density Fuel Fabrication Development  

SciTech Connect

Second generation uranium molybdenum fuel has shown excellent in-reactor irradiation performance. This metallic fuel type is capable of being fabricated at much higher loadings than any presently used research reactor fuel. Due to the broad range of fuel types this alloy system encompassesfuel powder to monolithic foil and binary fuel systems to multiple element additionssignificant amounts of research and development have been conducted on the fabrication of these fuels. This paper presents an update of the US RERTR effort to develop fabrication techniques and the fabrication methods used for the RERTR-9A miniplate test.

C.R. Clark; G.A. Moore; J.F. Jue; B.H. Park; N.P. Hallinan; D.M. Wachs; D.E. Burkes

2007-03-01T23:59:59.000Z

127

The distribution of copper, manganese, zinc, and iron in antarctic waters and the relation of the concentrations of these metals to biological primary productivity  

E-Print Network (OSTI)

THE DISTRIBUTION OF COPPER, MANGANESE, ZINC, AND IRON IN ANTARCTIC WATERS AND THE RELATION OF THE CONCENTRATIONS OF THESE METALS TO BIOLOGICAL PRIMARY PRODUCTIVITY A Thesis By MARTIN EDWARD ARHELGER Submitted to the Graduate College... of the Texas A& 1 University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August I967 Major Subj ect: CHEMICAL OCEANOGRAPHY THE DISTRIBUTION OF COPPER, MANGANESE, ZINC, AND IRON IN ANTARCTIC WATERS AND THE RELATION...

Arhelger, Martin Edward

1967-01-01T23:59:59.000Z

128

PRODUCTION  

Science Journals Connector (OSTI)

ABOUT AS CLOSE as a U. S. plant can be to rich Caribbean bauxite deposits, close to natural gas supplies, close to caustic soda suppliesthese factors enable Reynolds Metals to cut transportation costs in its La Quinta-San Patricio aluminum processing facilities near Corpus Christi, Tex. ... The Corpus Christi faculties consist of two plants, La Quinta, which converts bauxite to aluminum oxide, and San Patricio, which reduces the alumina to metallic aluminum. ...

1954-11-29T23:59:59.000Z

129

Services | Central Fabrication Services | Brookhaven National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Services & Capabilities Services & Capabilities The Central Fabrication Services Division's capabilities range from an Electric Discharge Machining (EDM) capability, to a state of the art cleaning facility, to a large fabricating facility which includes CNC Machining, Automatic Tube Welding, CNC Punch Press capability, and 3-D printing. CNC Auto Feed Saw High Bay Area 3-D Printer Main Shop, Building 479 Maintenance Sheet Metal Area Water Jet Machine X-ray Generating Tube CR X-ray Processor with High Resolution Monitor Low Bay Area in Machine Shop Wire EDM Machine Wire EDM Machine Oil Recycling Facility, Building 495 UHV Cleaning Facility, Building 498 Material Storage and Stock Central Fabrication Services is proud of it's highly proficient technical staff all of which are available, at no cost to the customer, for

130

Method to fabricate hollow microneedle arrays  

DOE Patents (OSTI)

An inexpensive and rapid method for fabricating arrays of hollow microneedles uses a photoetchable glass. Furthermore, the glass hollow microneedle array can be used to form a negative mold for replicating microneedles in biocompatible polymers or metals. These microneedle arrays can be used to extract fluids from plants or animals. Glucose transport through these hollow microneedles arrays has been found to be orders of magnitude more rapid than natural diffusion.

Kravitz, Stanley H. (Placitas, NM); Ingersoll, David (Albuquerque, NM); Schmidt, Carrie (Los Lunas, NM); Flemming, Jeb (Albuquerque, NM)

2006-11-07T23:59:59.000Z

131

Problem solving in product development: a model for the advanced materials industries  

Science Journals Connector (OSTI)

Problem solving has been identified as a key aspect of product development. Yet, existing descriptive models of problem solving in product development are derived from experience in traditional fabrication and assembly-based industries. This paper examines the sequence of problem solving activities in the advanced materials industries. As opposed to the paradigm of product development seen in industries based on traditional metal fabrication and assembly production technology, development activities in advanced materials industries are focused around a core effort in process development. The paper characterises the steps of design and the associated testing patterns in the advanced materials industries. The model formalises the emphasis on process design and process experimentation, providing a richer description of the problem-solving sequence than the traditional design-build-test sequence so common in the fabrication/assembly industries.

Brent D. Barnett; Kim B. Clark

1998-01-01T23:59:59.000Z

132

Production  

Science Journals Connector (OSTI)

Production is obtained from proved reserves but the determinants of the scale of production in the industry and country components of the world total are many and complex with some unique to the individual com...

D. C. Ion

1980-01-01T23:59:59.000Z

133

Sumitomo Metal Industries Ltd Sumitomo Metals | Open Energy Information  

Open Energy Info (EERE)

Sumitomo Metal Industries Ltd Sumitomo Metals Sumitomo Metal Industries Ltd Sumitomo Metals Jump to: navigation, search Name Sumitomo Metal Industries Ltd (Sumitomo Metals) Place Osaka-shi, Osaka, Japan Zip 540-0041 Sector Solar Product Engaged in the steel, engineering, and electronics businesses; works on fuel cell component technology and manufactures silicon wafers for the solar sector. References Sumitomo Metal Industries Ltd (Sumitomo Metals)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Sumitomo Metal Industries Ltd (Sumitomo Metals) is a company located in Osaka-shi, Osaka, Japan . References ↑ "Sumitomo Metal Industries Ltd (Sumitomo Metals)" Retrieved from "http://en.openei.org/w/index.php?title=Sumitomo_Metal_Industries_Ltd_Sumitomo_Metals&oldid=351744"

134

Biologically inspired digital fabrication  

E-Print Network (OSTI)

Objects and systems in nature are models for the practice of sustainable design and fabrication. From trees to bones, natural systems are characterized by the constant interplay of creation, environmental response, and ...

Han, Sarah (Sarah J.)

2013-01-01T23:59:59.000Z

135

Removal of selected heavy metals from aqueous solutions using a solid by-product from the Jordanian oil shale refining  

Science Journals Connector (OSTI)

...?The potential use of treated solid by-product of oil shale to treat aqueous solutions containing several heavy ... Results indicate that the solid by-product of oil shale removes Cd(II), Cu(II),...

W. Y. Abu-El-Sha'r; S. H. Gharaibeh; M. M. Al-Kofahi

1999-12-01T23:59:59.000Z

136

Fabricated torque shaft  

DOE Patents (OSTI)

A fabricated torque shaft is provided that features a bolt-together design to allow vane schedule revisions with minimal hardware cost. The bolt-together design further facilitates on-site vane schedule revisions with parts that are comparatively small. The fabricated torque shaft also accommodates stage schedules that are different one from another in non-linear inter-relationships as well as non-linear schedules for a particular stage of vanes.

Mashey, Thomas Charles (Anderson, SC)

2002-01-01T23:59:59.000Z

137

Nuclear Fabrication Consortium  

SciTech Connect

This report summarizes the activities undertaken by EWI while under contract from the Department of Energy (DOE) â?? Office of Nuclear Energy (NE) for the management and operation of the Nuclear Fabrication Consortium (NFC). The NFC was established by EWI to independently develop, evaluate, and deploy fabrication approaches and data that support the re-establishment of the U.S. nuclear industry: ensuring that the supply chain will be competitive on a global stage, enabling more cost-effective and reliable nuclear power in a carbon constrained environment. The NFC provided a forum for member original equipment manufactures (OEM), fabricators, manufacturers, and materials suppliers to effectively engage with each other and rebuild the capacity of this supply chain by : â?¢ Identifying and removing impediments to the implementation of new construction and fabrication techniques and approaches for nuclear equipment, including system components and nuclear plants. â?¢ Providing and facilitating detailed scientific-based studies on new approaches and technologies that will have positive impacts on the cost of building of nuclear plants. â?¢ Analyzing and disseminating information about future nuclear fabrication technologies and how they could impact the North American and the International Nuclear Marketplace. â?¢ Facilitating dialog and initiate alignment among fabricators, owners, trade associations, and government agencies. â?¢ Supporting industry in helping to create a larger qualified nuclear supplier network. â?¢ Acting as an unbiased technology resource to evaluate, develop, and demonstrate new manufacturing technologies. â?¢ Creating welder and inspector training programs to help enable the necessary workforce for the upcoming construction work. â?¢ Serving as a focal point for technology, policy, and politically interested parties to share ideas and concepts associated with fabrication across the nuclear industry. The report the objectives and summaries of the Nuclear Fabrication Consortium projects. Full technical reports for each of the projects have been submitted as well.

Levesque, Stephen

2013-04-05T23:59:59.000Z

138

High Speed, Low Cost Fabrication of Gas Diffusion Electrodes for Membrane Electrode Assemblies  

SciTech Connect

Fabrication of membrane electrode assemblies (MEAs) depends on creating inks or pastes of catalyst and binder, and applying this suspension to either the membrane (catalyst coated membrane) or gas diffusion media (gas diffusion electrode) and respectively laminating either gas diffusion media or gas diffusion electrodes (GDEs) to the membrane. One barrier to cost effective fabrication for either of these approaches is the development of stable and consistent suspensions. This program investigated the fundamental forces that destabilize the suspensions and developed innovative approaches to create new, highly stable formulations. These more concentrated formulations needed fewer application passes, could be coated over longer and wider substrates, and resulted in significantly lower coating defects. In March of 2012 BASF Fuel Cell released a new high temperature product based on these advances, whereby our customers received higher performing, more uniform MEAs resulting in higher stack build yields. Furthermore, these new materials resulted in an instant increase in capacity due to higher product yields and material throughput. Although not part of the original scope of this program, these new formulations have also led us to materials that demonstrate equivalent performance with 30% less precious metal in the anode. This program has achieved two key milestones in DOEs Manufacturing R&D program: demonstration of processes for direct coating of electrodes and continuous in-line measurement for component fabrication.

DeCastro, Emory S.; Tsou, Yu-Min; Liu, Zhenyu

2013-09-20T23:59:59.000Z

139

Fabrication of Chemically Doped, High Upper Critical Field Magnesium Diboride Superconducting Wires  

SciTech Connect

Controlled chemical doping of magnesium diboride (MgB2) has been shown to substantially improve its superconducting properties to the levels required for high field magnets, but the doping is difficult to accomplish through the usual route of solid state reaction and diffusion. Further, superconducting cables of MgB2 are difficult to fabricate because of the friable nature of the material. In this Phase I STTR project, doped and undoped boron fibers were made by chemical vapor deposition (CVD). Several >100m long batches of doped and undoped fiber were made by CVD codeposition of boron plus dopants. Bundles of these fibers infiltrated with liquid magnesium and subsequently converted to MgB2 to form Mg-MgB2 metal matrix composites. In a parallel path, doped boron nano-sized powder was produced by a plasma synthesis technique, reacted with magnesium to produce doped MgB2 superconducting ceramic bodies. The doped powder was also fabricated into superconducting wires several meters long. The doped boron fibers and powders made in this program were fabricated into fiber-metal composites and powder-metal composites by a liquid metal infiltration technique. The kinetics of the reaction between boron fiber and magnesium metal was investigated in fiber-metal composites. It was found that the presence of dopants had significantly slowed the reaction between magnesium and boron. The superconducting properties were measured for MgB2 fibers and MgB2 powders made by liquid metal infiltration. Properties of MgB2 products (Jc, Hc2) from Phase I are among the highest reported to date for MgB2 bulk superconductors. Chemically doped MgB2 superconducting magnets can perform at least as well as NbTi and NbSn3 in high magnetic fields and still offer an improvement over the latter two in terms of operating temperature. These characteristics make doped MgB2 an effective material for high magnetic field applications, such as magnetic confined fusion, and medical MRI devices. Developing fusion as an energy source will dramatically reduce energy costs, global warming, and radioactive waste. Cheaper and more efficient medical MRI devices could lower examination costs, find potential health problems earlier, and thus also benefit society as a whole. Other potential commercial applications for this material are devices for the generation and storage of electrical power, thus lowering the cost of delivered electricity.

Marzik, James, V.

2005-10-13T23:59:59.000Z

140

Fabrication of cubic micron-scale 3D metamaterial resonators.  

SciTech Connect

We present a new fabrication technique called Membrane Projection Lithography for the production of three-dimensional metamaterials at infrared wavelengths. Using this technique, multilayer infrared metamaterials that include both in-plane and out-of-plane resonators can be fabricated.

Sinclair, Michael B.; Brener, Igal; Wendt, Joel Robert; Burckel, David Bruce; Ten Eyck, Gregory A.

2010-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "fabricated metal product" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Midas: fabricating custom capacitive touch sensors to prototype interactive objects  

Science Journals Connector (OSTI)

An increasing number of consumer products include user interfaces that rely on touch input. While digital fabrication techniques such as 3D printing make it easier to prototype the shape of custom devices, adding interactivity to such prototypes remains ... Keywords: capacitive touch sensing, design tools, fabrication, prototyping

Valkyrie Savage; Xiaohan Zhang; Bjrn Hartmann

2012-10-01T23:59:59.000Z

142

Production  

Energy.gov (U.S. Department of Energy (DOE))

Algae production R&D focuses on exploring resource use and availability, algal biomass development and improvements, characterizing algal biomass components, and the ecology and engineering of...

143

Career Map: Assembler and Fabricator  

Energy.gov (U.S. Department of Energy (DOE))

The Wind Program's Career Map provides job description information for Assembler and Fabricator positions.

144

Lithium metal reduction of plutonium oxide to produce plutonium metal  

DOE Patents (OSTI)

A method is described for the chemical reduction of plutonium oxides to plutonium metal by the use of pure lithium metal. Lithium metal is used to reduce plutonium oxide to alpha plutonium metal (alpha-Pu). The lithium oxide by-product is reclaimed by sublimation and converted to the chloride salt, and after electrolysis, is removed as lithium metal. Zinc may be used as a solvent metal to improve thermodynamics of the reduction reaction at lower temperatures. Lithium metal reduction enables plutonium oxide reduction without the production of huge quantities of CaO--CaCl.sub.2 residues normally produced in conventional direct oxide reduction processes.

Coops, Melvin S. (Livermore, CA)

1992-01-01T23:59:59.000Z

145

EFFECTS ON CHP PLANT EFFICIENCY OF H2 PRODUCTION THROUGH PARTIAL OXYDATION OF NATURAL GAS OVER TWO GROUP VIII METAL  

E-Print Network (OSTI)

EFFECTS ON CHP PLANT EFFICIENCY OF H2 PRODUCTION THROUGH PARTIAL OXYDATION OF NATURAL GAS OVER TWO with natural gas in spark ignition engines can increase for electric efficiency. In-situ H23 production for spark ignition engines fuelled by natural gas has therefore been investigated recently, and4 reformed

Paris-Sud XI, Université de

146

MOX Fabrication Isolation Considerations  

SciTech Connect

This document provides a technical position on the preferred level of isolation to fabricate demonstration quantities of mixed oxide transmutation fuels. The Advanced Fuel Cycle Initiative should design and construct automated glovebox fabrication lines for this purpose. This level of isolation adequately protects the health and safety of workers and the general public for all mixed oxide (and other transmutation fuel) manufacturing efforts while retaining flexibility, allowing parallel development and setup, and minimizing capital expense. The basis regulations, issues, and advantages/disadvantages of five potential forms of isolation are summarized here as justification for selection of the preferred technical position.

Eric L. Shaber; Bradley J Schrader

2005-08-01T23:59:59.000Z

147

Covering Walls With Fabrics.  

E-Print Network (OSTI)

the glue a dull surface to adhere to. Fill any gouges or nail holes with patching plaster and sand smooth after they have dried thoroughly. Minor ripples can be covered with spackling compound, a plaster-like substance that is spread thinly... during dry weather and in a well-ventilated room. Cut each panel 3 inches longer than the ceiling height. Match and cut sufficient fabric widths to cover completely one wall at a time. Start with Corner I nstall the first fabric panel so...

Anonymous,

1979-01-01T23:59:59.000Z

148

Production  

Energy.gov (U.S. Department of Energy (DOE))

Algae production R&D focuses on exploring resource use and availability, algal biomass development and improvements, characterizing algal biomass components, and the ecology and engineering of cultivation systems.

149

Small mill for the high-temperature rotary rolling of semifinished products composed of refractory metals in protective media  

Science Journals Connector (OSTI)

A description is presented of a small vacuum-type rotary rolling mill designed for the high-temperature deformation of semifinished products to obtain bars 710mm in diameter. It is shown that the CAD software Autodesk

S. M. Gorbatyuk; E. Z. Tuktarov; L. A. Rudenskii

2012-01-01T23:59:59.000Z

150

Polymer micromold and fabrication process  

DOE Patents (OSTI)

A mold assembly is disclosed with micro-sized features in which the hollow portion thereof is fabricated from a sacrificial mandrel which is surface treated and then coated to form an outer shell. The sacrificial mandrel is then selectively etched away leaving the outer shell as the final product. The sacrificial mandrel is fabricated by a precision lathe, for example, so that when removed by etching the inner or hollow area has diameters as small as 10`s of micros ({micro}m). Varying the inside diameter contours of the mold can be accomplished with specified ramping slopes formed on the outer surface of the sacrificial mandrel, with the inside or hollow section being, for example, 275 {micro}m in length up to 150 {micro}m in diameter within a 6 mm outside diameter (o.d.) mold assembly. The mold assembly itself can serve as a micronozzle or microneedle, and plastic parts, such as microballoons for angioplasty, polymer microparts, and microactuators, etc., may be formed within the mold assembly. 6 figs.

Lee, A.P.; Northrup, M.A.; Ahre, P.E.; Dupuy, P.C.

1997-08-19T23:59:59.000Z

151

Lithographic fabrication of nanoapertures  

DOE Patents (OSTI)

A new class of silicon-based lithographically defined nanoapertures and processes for their fabrication using conventional silicon microprocessing technology have been invented. The new ability to create and control such structures should significantly extend our ability to design and implement chemically selective devices and processes.

Fleming, James G. (Albuquerque, NM)

2003-01-01T23:59:59.000Z

152

Method of producing catalytic materials for fabricating nanostructures  

DOE Patents (OSTI)

Methods of fabricating nano-catalysts are described. In some embodiments the nano-catalyst is formed from a powder-based substrate material and is some embodiments the nano-catalyst is formed from a solid-based substrate material. In some embodiments the substrate material may include metal, ceramic, or silicon or another metalloid. The nano-catalysts typically have metal nanoparticles disposed adjacent the surface of the substrate material. The methods typically include functionalizing the surface of the substrate material with a chelating agent, such as a chemical having dissociated carboxyl functional groups (--COO), that provides an enhanced affinity for metal ions. The functionalized substrate surface may then be exposed to a chemical solution that contains metal ions. The metal ions are then bound to the substrate material and may then be reduced, such as by a stream of gas that includes hydrogen, to form metal nanoparticles adjacent the surface of the substrate.

Seals, Roland D; Menchhofer, Paul A; Howe, Jane Y; Wang, Wei

2013-02-19T23:59:59.000Z

153

Thin film lithium-based batteries and electrochromic devices fabricated with nanocomposite electrode materials  

DOE Patents (OSTI)

Thin-film lithium-based batteries and electrochromic devices (10) are fabricated with positive electrodes (12) comprising a nanocomposite material composed of lithiated metal oxide nanoparticles (40) dispersed in a matrix composed of lithium tungsten oxide.

Gillaspie, Dane T; Lee, Se-Hee; Tracy, C. Edwin; Pitts, John Roland

2014-02-04T23:59:59.000Z

154

Fabrication process for openable microfluidic devices and externally actuated microfluidic switch  

E-Print Network (OSTI)

In this document I discuss the fabrication of metallic, aluminum and aluminum oxide, 3D micro channels, made with standard milling technology, along with two channel closing methods for openable devices: half cured-glued ...

Cartas Ayala, Marco Aurelio

2008-01-01T23:59:59.000Z

155

EELE408 Photovoltaics Lecture 16: Silicon Solar Cell Fabrication Techniques  

E-Print Network (OSTI)

;3 Screen Printed Solar Cells · Firing the contacts ­ The furnace heats the cell to a high temperature & Metal Closeup 14 Front and Back of Screen Printed Solar Cell 15 Crystallization Furnace for Ingot1 EELE408 Photovoltaics Lecture 16: Silicon Solar Cell Fabrication Techniques Dr. Todd J. Kaiser

Kaiser, Todd J.

156

Upgrading platform using alkali metals  

DOE Patents (OSTI)

A process for removing sulfur, nitrogen or metals from an oil feedstock (such as heavy oil, bitumen, shale oil, etc.) The method involves reacting the oil feedstock with an alkali metal and a radical capping substance. The alkali metal reacts with the metal, sulfur or nitrogen content to form one or more inorganic products and the radical capping substance reacts with the carbon and hydrogen content to form a hydrocarbon phase. The inorganic products may then be separated out from the hydrocarbon phase.

Gordon, John Howard

2014-09-09T23:59:59.000Z

157

Fabrication of Molecular Devices  

E-Print Network (OSTI)

This project focuses on the synthesis and attachment of metal nanoparticles to Au and GaAs surfaces using a combination of chemical self-assembly and scanned probe lithography. In this project self-assembled monolayers (SAMs) of alkanethiols...

Walton, Katherine

2011-08-04T23:59:59.000Z

158

Anchored nanostructure materials and method of fabrication  

DOE Patents (OSTI)

Anchored nanostructure materials and methods for their fabrication are described. The anchored nanostructure materials may utilize nano-catalysts that include powder-based or solid-based support materials. The support material may comprise metal, such as NiAl, ceramic, a cermet, or silicon or other metalloid. Typically, nanoparticles are disposed adjacent a surface of the support material. Nanostructures may be formed as anchored to nanoparticles that are adjacent the surface of the support material by heating the nano-catalysts and then exposing the nano-catalysts to an organic vapor. The nanostructures are typically single wall or multi-wall carbon nanotubes.

Seals, Roland D; Menchhofer, Paul A; Howe, Jane Y; Wang, Wei

2012-11-27T23:59:59.000Z

159

Fabrication of faceted nanopores in magnesium  

SciTech Connect

In this paper, using high resolution transmission electron microscopy, we showed the fabrication of faceted nanopores with various shapes in magnesium by focused electron beam (e-beam). The characteristics of nanopore shapes and the crystallographic planes corresponding to the edges of the nanopores were discussed in detail. Interestingly, by manipulating the e-beam (e.g., irradiation direction and duration), the nanopore shape and size could be effectively controlled along different directions. Our results provide important insight into the nanopore patterning in metallic materials and are of fundamental importance concerning the relevant applications, such as nanopore-based sensor, etc.

Wu, Shujing; Cao, Fan; Zheng, He; Sheng, Huaping; Liu, Chun; Liu, Yu; Zhao, Dongshan; Wang, Jianbo, E-mail: wang@whu.edu.cn [School of Physics and Technology, Center for Electron Microscopy and MOE Key Laboratory of Artificial Micro- and Nano-Structures, Wuhan University, Wuhan 430072 (China)] [School of Physics and Technology, Center for Electron Microscopy and MOE Key Laboratory of Artificial Micro- and Nano-Structures, Wuhan University, Wuhan 430072 (China)

2013-12-09T23:59:59.000Z

160

Fabrication of 5 nm linewidth and 14 nm pitch features by nanoimprint lithography  

E-Print Network (OSTI)

Fabrication of 5 nm linewidth and 14 nm pitch features by nanoimprint lithography Michael D. Austin pitch and feature sizes of these applications. Thus, presently, re- searchers have been largely pitch over a large area, its applications in nanogap metal contacts, and a study of fabrication yields

Note: This page contains sample records for the topic "fabricated metal product" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Single-molecule transistor fabrication by self-aligned lithography and in situ molecular assembly  

E-Print Network (OSTI)

Single-molecule transistor fabrication by self-aligned lithography and in situ molecular assembly J of single-molecule transistors by self-aligned lithography and in situ molecular assembly. Ultrathin metal fabrication of electrodes that can be bridged by a single molecule remains a significant challenge

Hone, James

162

Fabrication and Testing of Deflecting Cavities for APS  

SciTech Connect

Jefferson Lab (Newport News, Virginia) in collaboration with Argonne National Laboratory (Argonne, IL) has fabricated and tested four first article, 2.8 GHz, deflecting SRF cavities, for Argonne's Short-Pulse X-ray (SPX) project. These cavities are unique in many ways including the fabrication techniques in which the cavity cell and waveguides were fabricated. These cavity subcomponents were milled from bulk large grain niobium ingot material directly from 3D CAD files. No forming of sub components was used with the exception of the beam-pipes. The challenging cavity and helium vessel design and fabrication results from the stringent RF performance requirements required by the project and operation in the APS ring. Production challenges and fabrication techniques as well as testing results will be discussed in this paper.

Mammosser, John; Wang, Haipeng; Rimmer, Robert; Jim, Henry; Katherine, Wilson; Dhakal, Pashupati; Ali, Nassiri; Jim, Kerby; Jeremiah, Holzbauer; Genfa, Wu; Joel, Fuerst; Yawei, Yang; Zenghai, Li

2013-09-01T23:59:59.000Z

163

Stabilization of Electrocatalytic Metal Nanoparticles at Metal...  

NLE Websites -- All DOE Office Websites (Extended Search)

Electrocatalytic Metal Nanoparticles at Metal-Metal Oxide-Graphene Triple Junction Points. Stabilization of Electrocatalytic Metal Nanoparticles at Metal-Metal Oxide-Graphene...

164

Fate of Sulfur, Chlorine, Alkali Metal, and Vanadium Species during High-Temperature Gasification of Canadian Tar Sand Products  

Science Journals Connector (OSTI)

Co-feed of alternative fuels, e.g., petcoke, gains increasing importance for energy conversion in not only Germany but also worldwide. ... The aim of this work was to obtain detailed information on the influence of fuel composition of the refinery product line tar sand, bitumen, and petcoke in comparison to the standard fuel hard coal on the release of sodium, potassium, chlorine, sulfur, and vanadium species during high-temperature gasification. ... In addition to the pure fuels, blends of hard coal and petcoke were gasified in lab-scale experiments in a helium/oxygen atmosphere at 1500 C. ...

Marc Blsing; Kaveh Nazeri; Michael Mller

2014-10-01T23:59:59.000Z

165

Hybrid Input?Output Approach to Metal Production and Its Application to the Introduction of Lead-Free Solders  

Science Journals Connector (OSTI)

Graduate School of Economics, Waseda University, Tokyo 169-8050, Japan, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan, National Institute for Environmental Studies, Tsukuba 980-8579, Japan, and Graduate School of Environmental Studies, Tohoku University, Sendai 980-8579, Japan ... household electrical appliances(except air conditioners) ... For a given EoL product, its recovery is easier when it is concentrated in a few public sectors than when it is scattered over a large number of private households. ...

Shinichiro Nakamura; Shinsuke Murakami; Kenichi Nakajima; Tetsuya Nagasaka

2008-04-18T23:59:59.000Z

166

Carbon Nanotubes Based Nanoelectrode Arrays: Fabrication, Evaluation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Arrays: Fabrication, Evaluation and Application in Voltammetric Analysis. Carbon Nanotubes Based Nanoelectrode Arrays: Fabrication, Evaluation and Application in Voltammetric...

167

Fuel Fabrication Capability Research and Development Plan  

SciTech Connect

The purpose of this document is to provide a comprehensive review of the mission of the Fuel Fabrication Capability (FFC) within the Global Threat Reduction Initiative Convert Program, along with research and development (R&D) needs that have been identified as necessary to ensuring mission success. The design and fabrication of successful nuclear fuels must be closely linked endeavors. Therefore, the overriding motivation behind the FFC R&D program described in this plan is to foster closer integration between fuel design and fabrication to reduce programmatic risk. These motivating factors are all interrelated, and progress addressing one will aid understanding of the others. The FFC R&D needs fall into two principal categories, 1) baseline process optimization, to refine the existing fabrication technologies, and 2) manufacturing process alternatives, to evaluate new fabrication technologies that could provide improvements in quality, repeatability, material utilization, or cost. The FFC R&D Plan examines efforts currently under way in regard to coupon, foil, plate, and fuel element manufacturing, and provides recommendations for a number of R&D topics that are of high priority but not currently funded (i.e., knowledge gaps). The plan ties all FFC R&D efforts into a unified vision that supports the overall Convert Program schedule in general, and the fabrication schedule leading up to the MP-1 and FSP-1 irradiation experiments specifically. The fabrication technology decision gates and down-selection logic and schedules are tied to the schedule for fabricating the MP-1 fuel plates, which will provide the necessary data to make a final fuel fabrication process down-selection. Because of the short turnaround between MP-1 and the follow-on FSP-1 and MP-2 experiments, the suite of specimen types that will be available for MP-1 will be the same as those available for FSP-1 and MP-2. Therefore, the only opportunity to explore parameter space and alternative processing is between now and 2016 when the candidate processes are down-selected in preparation for the MP-1, FSP-1, and MP-2 plate manufacturing campaigns. A number of key risks identified by the FFC are discussed in this plan, with recommended mitigating actions for those activities within FFC, and identification of risks that are impacted by activities in other areas of the Convert Program. The R&D Plan does not include discussion of FFC initiatives related to production-scale manufacturing of fuel (e.g., establishment of the Pilot Line Production Facility), rather, the goal of this plan is to document the R&D activities needed ultimately to enable high-quality and cost-effective production of the fuel by the commercial fuel fabricator. The intent is for this R&D Plan to be a living document that will be reviewed and updated on a regular basis (e.g., annually) to ensure that FFC R&D activities remain properly aligned to the needs of the Convert Program. This version of the R&D Plan represents the first annual review and revision.

Senor, David J.; Burkes, Douglas

2014-04-17T23:59:59.000Z

168

Status of Transuranic Bearing Metallic Fuel Development  

SciTech Connect

This paper summarizes the status of the metallic fuel development under the Advanced Fuel Cycle Initiative (AFCI). The metallic fuel development program includes fuel fabrication, characterization, advanced cladding research, irradiation testing and post-irradiation examination (PIE). The focus of this paper is on the recent irradiation experiments conducted in the Advanced Test Reactor and some PIE results from these tests.

Steve Hayes; Bruce Hilton; Heather MacLean; Debbie Utterbeck; Jon Carmack; Kemal Pasamehmetoglu

2009-09-01T23:59:59.000Z

169

Intraocular lens fabrication  

DOE Patents (OSTI)

This invention describes a method for fabricating an intraocular lens made from clear Teflon{trademark}, Mylar{trademark}, or other thermoplastic material having a thickness of about 0.025 millimeters. These plastic materials are thermoformable and biocompatable with the human eye. The two shaped lenses are bonded together with a variety of procedures which may include thermosetting and solvent based adhesives, laser and impulse welding, and ultrasonic bonding. The fill tube, which is used to inject a refractive filling material is formed with the lens so as not to damage the lens shape. A hypodermic tube may be included inside the fill tube. 13 figs.

Salazar, M.A.; Foreman, L.R.

1997-07-08T23:59:59.000Z

170

Intraocular lens fabrication  

DOE Patents (OSTI)

This invention describes a method for fabricating an intraocular lens made rom clear Teflon.TM., Mylar.TM., or other thermoplastic material having a thickness of about 0.025 millimeters. These plastic materials are thermoformable and biocompatable with the human eye. The two shaped lenses are bonded together with a variety of procedures which may include thermosetting and solvent based adhesives, laser and impulse welding, and ultrasonic bonding. The fill tube, which is used to inject a refractive filling material is formed with the lens so as not to damage the lens shape. A hypodermic tube may be included inside the fill tube.

Salazar, Mike A. (Albuquerque, NM); Foreman, Larry R. (Los Alamos, NM)

1997-01-01T23:59:59.000Z

171

Nitrided Metallic Bipolar Plates | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nitrided Metallic Bipolar Plates Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Applications: 2010 Update Mass Production Cost Estimation...

172

Maximal light-energy transfer through a dielectric/metal-layered electrode on a photoactive device  

Science Journals Connector (OSTI)

We report the fabrication of an optimized low reflective dielectric/metal-layered electrode that provides significant electrical conductivity and light transparency in the...

Kim, Kyoung-Ho; Park, Q-Han

2014-01-01T23:59:59.000Z

173

Fate of Noble Metals during the Pyroprocessing of Spent Nuclear Fuel  

SciTech Connect

During the pyroprocessing of spent nuclear fuel by electrochemical techniques, fission products are separated as the fuel is oxidized at the anode and refined uranium is deposited at the cathode. Those fission products that are oxidized into the molten salt electrolyte are considered active metals while those that do not react are considered noble metals. The primary noble metals encountered during pyroprocessing are molybdenum, zirconium, ruthenium, rhodium, palladium, and technetium. Pyroprocessing of spent fuel to date has involved two distinctly different electrorefiner designs, in particular the anode to cathode configuration. For one electrorefiner, the anode and cathode collector are horizontally displaced such that uranium is transported across the electrolyte medium. As expected, the noble metal removal from the uranium during refining is very high, typically in excess of 99%. For the other electrorefiner, the anode and cathode collector are vertically collocated to maximize uranium throughput. This arrangement results in significantly less noble metals removal from the uranium during refining, typically no better than 20%. In addition to electrorefiner design, operating parameters can also influence the retention of noble metals, albeit at the cost of uranium recovery. Experiments performed to date have shown that as much as 100% of the noble metals can be retained by the cladding hulls while affecting the uranium recovery by only 6%. However, it is likely that commercial pyroprocessing of spent fuel will require the uranium recovery to be much closer to 100%. The above mentioned design and operational issues will likely be driven by the effects of noble metal contamination on fuel fabrication and performance. These effects will be presented in terms of thermal properties (expansion, conductivity, and fusion) and radioactivity considerations. Ultimately, the incorporation of minor amounts of noble metals from pyroprocessing into fast reactor metallic fuel will be shown to be of no consequence to reactor performance.

B.R. Westphal; D. Vaden; S.X. Li; G.L. Fredrickson; R.D. Mariani

2009-09-01T23:59:59.000Z

174

Fabrication Flaws in Reactor Pressure Vessel Repair Welds  

SciTech Connect

This paper describes the fabrication flaw distribution and characterization in the repair weld metal of reactor pressure vessels. This work indicates that the large flaws occur in these repairs. These results show that repair flaws are complex in composition and sometimes include cracks on the repair ends. Parametric analysis using an exponential fit is performed on the data. A description of repair flaw morphology is provided. Fabrication flaws in repairs are characterized using high sensitivity nondestructive ultrasonic testing, validation by other nondestructive evaluation (NDE) techniques, and complemented by destructive testing.

Schuster, George J.; Doctor, Steven R.

2007-12-01T23:59:59.000Z

175

Electrospun and oxidized cellulose materials for environmental remediation of heavy metals in groundwater  

SciTech Connect

This chapter focuses on the use of modified cellulosic materials in the field of environmental remediation. Two different chemical methods were involved in fabricating oxidized cellulose (OC), which has shown promise as a metal ion chelator in environmental applications. Electrospinning was utilized to introduce a more porous structure into an oxidized cellulose matrix. FTIR and Raman spectroscopy were used to study both the formation of OC and its surface complexation with metal ions. IR and Raman spectroscopic data demonstrate the formation of characteristic carboxylic groups in the structure of the final products and the successful formation of OC-metal complexes. Subsequent field tests at the Field Research Site at Oak Ridge National Laboratory confirmed the value of OC for sorption of both U and Th ions.

Han, Dong [Stony Brook University (SUNY); Halada, Gary P. [Stony Brook University (SUNY); Spalding, Brian Patrick [ORNL; Brooks, Scott C [ORNL

2009-12-01T23:59:59.000Z

176

PHYSICAL PROPERTIES OF METALS1  

Science Journals Connector (OSTI)

... the application of pressing and shaping force is afforded by the processes in use for "teapot spinning,"i.e. the production of a Britannia-metal ... spinning,"i.e. the production of a Britannia-metal teapot by a process technically termed spinning. The alloy being rolled into sheets of convenient ...

1878-05-16T23:59:59.000Z

177

Fabrication of High-Speed Resonant Cavity Enhanced Schottky Photodiodes  

E-Print Network (OSTI)

Abstract We report the fabrication and testing of a GaAsbased high-speed resonant cavity enhanced (RCE) Schottky photodiode. The top-illuminated RCE detector is constructed by integrating a Schottky contact, a thin absorption region (InHXHVGaHXWPAs) and a distributed AlAsGaAs Bragg mirror. The Schottky contact metal serves as a high-reflectivity top mirror in the RCE detector structure. The devices were fabricated by using a microwave-compatible fabrication process. The resulting spectral photo response had a resonance around 895 nm, in good agreement with our simulations. The full-widthat-half-maximum (FWHM) was 15 nm, and the enhancement factor was in excess of 6. The photodiode had an experimental setup limited temporal response of 18 ps FWHM, corresponding to a 3-dB bandwidth of 20 GHz. Index TermsHigh-speed circuits/devices, photodetectors, photodiodes, resonant caity enhancement, Schottky diodes.

Ekmel zbay; M. Saiful Islam; Bora Onat; Student Member; Mutlu Gkkavas; Orhan Aytr; Gary Tuttle; Elias Towe; R. H. Henderson; M. Selim nl; Senior Member

178

Novel Fabrication and Simple Hybridization of Exotic Material MEMS  

SciTech Connect

Work in materials other than silicon for MEMS applications has typically been restricted to metals and metal oxides instead of more ''exotic'' semiconductors. However, group III-V and II-VI semiconductors form a very important and versatile collection of material and electronic parameters available to the MEMS and MOEMS designer. With these materials, not only are the traditional mechanical material variables (thermal conductivity, thermal expansion, Young's modulus, etc.) available, but also chemical constituents can be varied in ternary and quaternary materials. This flexibility can be extremely important for both friction and chemical compatibility issues for MEMS. In addition, the ability to continually vary the bandgap energy can be particularly useful for many electronics and infrared detection applications. However, there are two major obstacles associated with alternate semiconductor material MEMS. The first issue is the actual fabrication of non-silicon devices and the second impediment is communicating with these novel devices. We will describe an essentially material independent fabrication method that is amenable to most group III-V and II-VI semiconductors. This technique uses a combination of non-traditional direct write precision fabrication processes such as diamond turning, ion milling, laser ablation, etc. This type of deterministic fabrication approach lends itself to an almost trivial assembly process. We will also describe in detail the mechanical, electrical, and optical self-aligning hybridization technique used for these alternate-material MEMS.

Datskos, P.G.; Rajic, S.

1999-11-13T23:59:59.000Z

179

Fabrication methods for low impedance lithium polymer electrodes  

DOE Patents (OSTI)

A process for fabricating an electrolyte-electrode composite suitable for high energy alkali metal battery that includes mixing composite electrode materials with excess liquid, such as ethylene carbonate or propylene carbonate, to produce an initial formulation, and forming a shaped electrode therefrom. The excess liquid is then removed from the electrode to compact the electrode composite which can be further compacted by compression. The resulting electrode exhibits at least a 75% lower resistance.

Chern, Terry Song-Hsing (Midlothian, VA); MacFadden, Kenneth Orville (Highland, MD); Johnson, Steven Lloyd (Arbutus, MD)

1997-01-01T23:59:59.000Z

180

Fabrication methods for low impedance lithium polymer electrodes  

DOE Patents (OSTI)

A process is described for fabricating an electrolyte-electrode composite suitable for high energy alkali metal battery that includes mixing composite electrode materials with excess liquid, such as ethylene carbonate or propylene carbonate, to produce an initial formulation, and forming a shaped electrode therefrom. The excess liquid is then removed from the electrode to compact the electrode composite which can be further compacted by compression. The resulting electrode exhibits at least a 75% lower resistance.

Chern, T.S.; MacFadden, K.O.; Johnson, S.L.

1997-12-16T23:59:59.000Z

Note: This page contains sample records for the topic "fabricated metal product" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Comments on Americium Volatilization during Fuel Fabrication for Fast Reactors  

SciTech Connect

The physical processes relevant to the fabrication of metallic and ceramic nuclear fuels are analyzed, with attention to recycling of fuels containing U, Pu, and minor volatile actinides for the use in fast reactors. This analysis is relevant to the development of a process model that can be used for the numerical simulation and prediction of the spatial distribution of composition in the fuel, an important factor in fuel performance.

Sabau, Adrian S [ORNL; Ohriner, Evan Keith [ORNL

2008-01-01T23:59:59.000Z

182

Fundamentals of Designing Products  

Science Journals Connector (OSTI)

The term design has many connotations. Essentially it is the process of devising a product that fulfills as completely as possible the total requirements of the user, while satisfying the needs of the fabric...

Dominick V. Rosato P.E.; Donald V. Rosato PH.D.

2000-01-01T23:59:59.000Z

183

Fabrication of catalyzed ion transport membrane systems  

DOE Patents (OSTI)

Process for fabricating a catalyzed ion transport membrane (ITM). In one embodiment, an uncatalyzed ITM is (a) contacted with a non-reducing gaseous stream while heating to a temperature and for a time period sufficient to provide an ITM possessing anion mobility; (b) contacted with a reducing gaseous stream for a time period sufficient to provide an ITM having anion mobility and essentially constant oxygen stoichiometry; (c) cooled while contacting the ITM with the reducing gaseous stream to provide an ITM having essentially constant oxygen stoichiometry and no anion mobility; and (d) treated by applying catalyst to at least one of (1) a porous mixed conducting multicomponent metallic oxide (MCMO) layer contiguous with a first side of a dense layer of MCMO and (2) a second side of the dense MCMO layer. In another embodiment, these steps are carried out in the alternative order of (a), (d), (b), and (c).

Carolan, Michael Francis; Kibby, Charles Leonard

2013-06-04T23:59:59.000Z

184

(Data in thousand metric tons of silicon content unless otherwise noted) Domestic Production and Use: Estimated value of silicon metal and alloys (excluding semiconductor-grade silicon)  

E-Print Network (OSTI)

%; China, 16%; South Africa, 13%; Canada, 12%; and other, 39%. Tariff: Item Number Normal Trade Relations metal: Brazil, 37%; South Africa, 25%; Canada, 14%; Norway, 6%; and other, 18%. Total: Brazil, 20 energy costs. Demand for silicon metal comes primarily from the aluminum and chemical industries

185

Parameter survey on heating conditions for glass-bonded sodalite ceramic waste fabrication from type-A zeolite containing simulating FPs  

SciTech Connect

In the pyrometallurgical reprocessing for metal fuel cycle, fission products (FPs) in the spent salt is converted into a glass-bonded sodalite by means of Pressure-less Consolidation (PC). Although a standard condition of the PC method was reported, the reason for choosing this condition is not clear particularly for the temperature condition. In the present study, a parameter survey on the heating condition was performed by fabricating the glass-bonded sodalite containing simulating FPs under various conditions. The maximum temperature, the heating duration, the glass ratio in the initial material, and the weight load for pressing the material were chosen as the variable parameters. The mass balance of each element and the quality of the product were evaluated. It was exhibited that both the volatilized content and the free salt in the product were reduced by lowering the maximum temperature. The apparent density of the product was enhanced by both increasing the heating duration and increasing the weight load. Accordingly, lowering the maximum temperature while increasing the weight load was chosen to modify the fabricating condition. As a result of the modified condition, both the volatilized and the free salt ratios were reduced without significant change in the apparent density of the product. (authors)

Fujihata, Kenji; Uozumi, Koichi; Tsukada, Takeshi [Central Research Institute of Electric Power Industry, Komae-shi, Tokyo 201-8511 (Japan)

2013-07-01T23:59:59.000Z

186

International Recycling of LLW Metals  

SciTech Connect

Melting of radioactive scrap metal has been successfully practiced for more than 15 years, with approximately 60,000 tons of steel being processed into beneficial reuse applications. This process has converted radioactive scrap metal at a licensed facility into useful products such as shield blocks, security barriers and shield containers. These products are used within the nuclear industry, such as nuclear power plants, waste disposal facilities and high-energy physics research facilities. Recycling provides the following benefits by comparison with direct disposal: - Preserving metal resources. - Conserving valuable Low Level Waste (LLW) disposal site resources, thereby extending disposal site life. - Reducing the cost of metal products to end users by using materials less expensive than virgin metals. This paper outlines international metal recycling practices implemented at EnergySolutions' Bear Creek Facility in Oak Ridge, Tennessee. (authors)

Eshleman, T.; Jansen, J. [EnergySolutions (United States); Shinya, Sawada [KEK - High Energy Accelerator Research Organization (Japan)

2008-07-01T23:59:59.000Z

187

Biaxial Creep Specimen Fabrication  

SciTech Connect

This report documents the results of the weld development and abbreviated weld qualification efforts performed by Pacific Northwest National Laboratory (PNNL) for refractory metal and superalloy biaxial creep specimens. Biaxial creep specimens were to be assembled, electron beam welded, laser-seal welded, and pressurized at PNNL for both in-pile (JOYO reactor, O-arai, Japan) and out-of-pile creep testing. The objective of this test campaign was to evaluate the creep behavior of primary cladding and structural alloys under consideration for the Prometheus space reactor. PNNL successfully developed electron beam weld parameters for six of these materials prior to the termination of the Naval Reactors program effort to deliver a space reactor for Project Prometheus. These materials were FS-85, ASTAR-811C, T-111, Alloy 617, Haynes 230, and Nirnonic PE16. Early termination of the NR space program precluded the development of laser welding parameters for post-pressurization seal weldments.

JL Bump; RF Luther

2006-02-09T23:59:59.000Z

188

WeldingFabr&MetalForm  

NLE Websites -- All DOE Office Websites (Extended Search)

Welding, Welding, Fabrication, and Metal Forming Manufacturing Technologies The department consists of three trades: weld- ing; fabrication and assembly; and precision metal forming. These interrelated groups use similar equipment and rely on each other's skills. One stop will get you the service of three reliable trades. The team manufactures and assembles proto- type hardware and has the in-house capability of producing hardware with sizes ranging from thumbnail to rail-car. Expertise includes aircraft quality sheet metal construction, certified weld- ing, and assembly. The staff has experience managing a variety of activities: design modifi- cation assistance; in-house fabrication; and project management and can work with your engineers to transform sketches and ideas into working prototypes.

189

Rapid Freeform Sheet Metal Forming Project Touted in the News  

Energy.gov (U.S. Department of Energy (DOE))

Fabricating and Forming Journal's April issue includes "Forming the Future," a feature story about AMO's Innovative Manufacturing Initiative (IMI) Project Rapid Freeform Sheet Metal Forming. This project, begun in 2013, involves Ford, Boeing, Northwestern University, Penn State, and MIT.

190

Micro-optic fabrication with subdomain masking  

Science Journals Connector (OSTI)

An innovative fabrication technique is introduced that is based on multiple-exposure techniques for micro-optics fabrication. This approach is compatible with conventional lithography...

Pitchumani, Mahesh; Brown, Jeremiah; Mohammed, Waleed; Johnson, Eric G

2004-01-01T23:59:59.000Z

191

Enforcement Letter, Parsons Technology Development & Fabrication...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Technology Development & Fabrication Complex - April 13, 2010 Enforcement Letter, Parsons Technology Development & Fabrication Complex - April 13, 2010 April 13, 2010 Issued to...

192

Digital materials for digital fabrication  

E-Print Network (OSTI)

This thesis introduces digital materials by analogy with digital computation and digital communications. Traditional fabrication techniques include pick-and-place, roll-to-roll, molding, patterning and more. Current research ...

Popescu, George A

2007-01-01T23:59:59.000Z

193

Facile fabrication of spherical nanoparticle-tipped AFM probes for plasmonic applications  

E-Print Network (OSTI)

for reliably producing metallic spherical nanoparticle tips using only a simple electrochemical cell. Fabrication of Au spherical nanoparticle (AuNP) tips onto commercial AFM probes is achieved using single-pulse high- fi eld electrochemical growth... is employed for growth since both the cell geometry and electrodeposition solution are kept the same between fabrications. AFM probes are attached to fl u- orine-doped tin oxide (FTO) conductive glass, used as a working DOI: 10.1002/ppsc.201400104 Facile...

Sanders, Alan; Zhang, Liwu; Bowman, Richard W.; Herrmann, Lars O.; Baumberg, Jeremy J.

2014-07-16T23:59:59.000Z

194

Fabrication of metallic nanostructures from sputtered nanocluster precursors  

E-Print Network (OSTI)

This thesis studies the morphological and electrical properties of copper nanocluster devices generated by DC magnetron sputtering and annealed at temperatures up to 1100 C. At each annealing step, the resistivity of the ...

DelHagen, William S

2004-01-01T23:59:59.000Z

195

Fabrication of Emissible Metallic Layer-by-Layer Photonic Crystals...  

NLE Websites -- All DOE Office Websites (Extended Search)

crystals that can be used as highly efficient light sources.DescriptionOrdinary incandescent lamps waste most of the supplied electric power to emit invisible light such as...

196

Fabrication of amorphous metal matrix composites by severe plastic deformation  

E-Print Network (OSTI)

of Vitreloy 106a (Zr58.5Nb2.8Cu15.6Ni12.8Al10.3-wt%), ARLloy #1 (Hf71.3Cu16.2Ni7.6Ti2.2Al2.6 -wt%), and both of these amorphous alloys blended with crystalline phases of W, Cu and Ni. Novel instrumented extrusions and a host of postprocessing material...

Mathaudhu, Suveen Nigel

2006-10-30T23:59:59.000Z

197

Metal inks  

DOE Patents (OSTI)

Self-reducing metal inks and systems and methods for producing and using the same are disclosed. In an exemplary embodiment, a method may comprise selecting metal-organic (MO) precursor, selecting a reducing agent, and dissolving the MO precursor and the reducing agent in an organic solvent to produce a metal ink that remains in a liquid phase at room temperature. Metal inks, including self-reducing and fire-through metal inks, are also disclosed, as are various applications of the metal inks.

Ginley, David S; Curtis, Calvin J; Miedaner, Alex; van Hest, Marinus Franciscus Antonius Maria; Kaydanova, Tatiana

2014-02-04T23:59:59.000Z

198

MORP: makespan optimization for processors with an embedded reconfigurable fabric  

Science Journals Connector (OSTI)

Processors with an embedded runtime reconfigurable fabric have been explored in academia and industry started production of commercial platforms (e.g. Xilinx Zynq-7000). While providing significant performance and efficiency, the comparatively long reconfiguration ... Keywords: area allocation, reconfigurable processor, task scheduling

Artjom Grudnitsky; Lars Bauer; Jrg Henkel

2014-02-01T23:59:59.000Z

199

High Activity of Ce1-xNixO2-y for H2 Production through Ethanol Steam Reforming: Tuning Catalytic Performance through Metal-Oxide Interactions  

SciTech Connect

The importance of the oxide: Ce{sub 0.8}Ni{sub 0.2}O{sub 2-y} is an excellent catalyst for ethanol steam reforming. Metal-oxide interactions perturb the electronic properties of the small particles of metallic nickel present in the catalyst under the reaction conditions and thus suppress any methanation activity. The nickel embedded in ceria induces the formation of O vacancies, which facilitate cleavage of the OH bonds in ethanol and water.

G Zhou; L Barrio; S Agnoli; S Senanayake; J Evans; A Kubacka; M Estrella; J Hanson; A Martinez-Arias; et al.

2011-12-31T23:59:59.000Z

200

Chapter 4 - Recycling Rare Metals  

Science Journals Connector (OSTI)

Abstract The industrial system now utilizes many more elements, especially rare metals, than was the case even a half century ago. Most are not mined for themselves but are obtained as by-products or hitchhikers of the more familiar industrial metals, such as iron, aluminum, copper, nickel, and zinc. This imposes a limit on the production of by-product metals. But in some cases, demand may increase much faster than new supply. This suggests a need for recycling. But the uses of these metals are often in products, such as cell phones, that are mass-produced but where the amount in each individual product is very small. Some uses are also inherently dissipative. This makes recycling very difficult in principle. It constitutes a serious challenge for the future economy. Prices will rise.

Robert U. Ayres; Gara Villalba Mndez; Laura Talens Peir

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fabricated metal product" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Process modeling of plutonium conversion and MOX fabrication for plutonium disposition  

SciTech Connect

Two processes are currently under consideration for the disposition of 35 MT of surplus plutonium through its conversion into fuel for power production. These processes are the ARIES process, by which plutonium metal is converted into a powdered oxide form, and MOX fuel fabrication, where the oxide powder is combined with uranium oxide powder to form ceramic fuel. This study was undertaken to determine the optimal size for both facilities, whereby the 35 MT of plutonium metal will be converted into fuel and burned for power. The bounding conditions used were a plutonium concentration of 3--7%, a burnup of 20,000--40,000 MWd/MTHM, a core fraction of 0.1 to 0.4, and the number of reactors ranging from 2--6. Using these boundary conditions, the optimal cost was found with a plutonium concentration of 7%. This resulted in an optimal throughput ranging from 2,000 to 5,000 kg Pu/year. The data showed minimal costs, resulting from throughputs in this range, at 3,840, 2,779, and 3,497 kg Pu/year, which results in a facility lifetime of 9.1, 12.6, and 10.0 years, respectively.

Schwartz, K.L. [Univ. of Texas, Austin, TX (United States). Dept. of Nuclear Engineering

1998-10-01T23:59:59.000Z

202

Metal Oxides  

Science Journals Connector (OSTI)

Metal oxides are the class of materials having the widest application in gas sensors. This chapter presents information related to the application of various metal oxides in gas sensors designed on different p...

Ghenadii Korotcenkov

2013-01-01T23:59:59.000Z

203

Epsilon Metal Waste Form for Immobilization of Noble Metals from Used Nuclear Fuel  

SciTech Connect

Epsilon metal (?-metal), an alloy of Mo, Pd, Rh, Ru, and Tc, is being developed as a waste form to treat and immobilize the undissolved solids and dissolved noble metals from aqueous reprocessing of commercial used nuclear fuel. Epsilon metal is an attractive waste form for several reasons: increased durability relative to borosilicate glass, it can be fabricated without additives (100% waste loading), and in addition it also benefits borosilicate glass waste loading by eliminating noble metals from the glass and thus the processing problems related there insolubility in glass. This work focused on the processing aspects of the epsilon metal waste form development. Epsilon metal is comprised of refractory metals resulting in high reaction temperatures to form the alloy, expected to be 1500 - 2000C making it a non-trivial phase to fabricate by traditional methods. Three commercially available advanced technologies were identified: spark-plasma sintering, microwave sintering, and hot isostatic pressing, and investigated as potential methods to fabricate this waste form. Results of these investigations are reported and compared in terms of bulk density, phase assemblage (X-ray diffraction and elemental analysis), and microstructure (scanning electron microscopy).

Crum, Jarrod V.; Strachan, Denis M.; Rohatgi, Aashish; Zumhoff, Mac R.

2013-02-01T23:59:59.000Z

204

Epsilon metal waste form for immobilization of noble metals from used nuclear fuel  

Science Journals Connector (OSTI)

Abstract Epsilon metal (?-metal), an alloy of Mo, Pd, Rh, Ru, and Tc, is being developed as a waste form to treat and immobilize the undissolved solids and dissolved noble metals from aqueous reprocessing of commercial used nuclear fuel. Epsilon metal is an attractive waste form for several reasons: increased durability relative to borosilicate glass, it can be fabricated without additives (100% waste loading), and in addition it also benefits borosilicate glass waste loading by eliminating noble metals from the glass, thus the processing problems related to their insolubility in glass. This work focused on the processing aspects of the epsilon metal waste form development. Epsilon metal is comprised of refractory metals resulting in high alloying temperatures, expected to be 15002000C, making it a non-trivial phase to fabricate by traditional methods. Three commercially available advanced technologies were identified: spark-plasma sintering, microwave sintering, and hot isostatic pressing, and investigated as potential methods to fabricate this waste form. Results of these investigations are reported and compared in terms of bulk density, phase assemblage (X-ray diffraction and elemental analysis), and microstructure (scanning electron microscopy).

Jarrod V. Crum; Denis Strachan; Aashish Rohatgi; Mac Zumhoff

2013-01-01T23:59:59.000Z

205

Advances in LIGA-Based Post-Mold Fabrication  

SciTech Connect

The establishment of a process to allow planarization of deep x-ray lithography based microfabncated metal components via diamond lapping has enabled examination of three additional microfabrication issues. The areas of improvement that are discussed include materials, microassembly and packaging, and multilevel fabrication. New materials work has centered on magnetic materials including precision micromagnets and surface treatments of electrodeposited materials. Assembly and packaging has been aided by deep silicon etch processing and the use of conventional precision milling equipment combined with press-tit assembly. Diffhsion bonding is shown to be a particularly important approach to achieving multilevel metal mechanisms and furthermore shows promise for achieving batch assembled and packaged high aspect-ratio metal micromechanics,

Christenson, T.R.

1998-10-21T23:59:59.000Z

206

Silicone metalization  

DOE Patents (OSTI)

A system for providing metal features on silicone comprising providing a silicone layer on a matrix and providing a metal layer on the silicone layer. An electronic apparatus can be produced by the system. The electronic apparatus comprises a silicone body and metal features on the silicone body that provide an electronic device.

Maghribi, Mariam N. (Livermore, CA); Krulevitch, Peter (Pleasanton, CA); Hamilton, Julie (Tracy, CA)

2006-12-05T23:59:59.000Z

207

Application of foams to the processing of fabrics. Final report, October 1, 1977-September 30, 1981  

SciTech Connect

The primary objective of this project was to reduce the energy consumed in the wet processing of fabrics where wet processing encompasses those processes used to convert loomstate (greige) goods to finished textile products. This includes desizing, scouring, bleaching, dyeing, printing, and finishing of fabrics. The energy intensive step in most of these processes is drying the fabric. By having less water on the fabric as it enters a drying oven, proportionately less energy is consumed in drying the fabric. The specific route used in this project to accomplish this objective has been to use air to distribute the finish, dye or printing ink onto the fabric. Rather than saturating the fabric with a dilute finish formulation, a concentrated formulation is mechanically foamed, air serving as the diluting medium and the foam applied to the fabric. In this manner, the water content of the fabric as it enters the drying oven is reduced by as much as 80% thereby leading to a corresponding reduction in the energy required to dry the fabric. Details on the procedure are presented and experimental results are discussed. (MCW)

Namboodri, C.G.

1981-10-01T23:59:59.000Z

208

Digital Design and Fabrication Techniques Using a 3-Axis CNC Mill  

E-Print Network (OSTI)

The objective of my research involves an investigation of the relationship between design and production through a case study fabrication project which utilize digital design software and manufacturing technologies, to achieve a better understanding...

Coffman, Ky

2010-07-14T23:59:59.000Z

209

Metal stocks and sustainability  

Science Journals Connector (OSTI)

...14). Unlike oil, which is irremediably...relative scarcity (or price) of the material substituted...interior wiring; plumbing, heating, and architectural uses; and...defined in terms of current prices and costs of production; this...cost-effective at current metal prices. Because the real price of copper has remained...

R. B. Gordon; M. Bertram; T. E. Graedel

2006-01-01T23:59:59.000Z

210

Metallic Fuel Casting Development and Parameter Optimization Simulations  

SciTech Connect

One of the advantages of metallic fuel is the abilility to cast the fuel slugs to near net shape with little additional processing. However, the high aspect ratio of the fuel is not ideal for casting. EBR-II fuel was cast using counter gravity injection casting (CGIC) but, concerns have been raised concerning the feasibility of this process for americium bearing alloys. The Fuel Cycle Research and Development program has begun developing gravity casting techniques suitable for fuel production. Compared to CGIC gravity casting does not require a large heel that then is recycled, does not require application of a vacuum during melting, and is conducive to re-usable molds. Development has included fabrication of two separate benchscale, approximately 300 grams, systems. To shorten development time computer simulations have been used to ensure mold and crucible designs are feasible and to identify which fluid properties most affect casting behavior and therefore require more characterization.

R.S. Fielding; J. Crapps; C. Unal; J.R. Kennedy

2013-03-01T23:59:59.000Z

211

Logomatic Gmbh Grinding Machines Fabrication | Open Energy Information  

Open Energy Info (EERE)

Logomatic Gmbh Grinding Machines Fabrication Logomatic Gmbh Grinding Machines Fabrication Jump to: navigation, search Name Logomatic Gmbh Grinding Machines Fabrication Place Mainaschaff, Germany Zip D-63814 Sector Solar Product German manufacturer of capital equipment for semiconductor and solar industries; for solar, offers diamond cropping and squaring machines. Coordinates 49.97746°, 9.085379° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":49.97746,"lon":9.085379,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

212

Joined ceramic product  

DOE Patents (OSTI)

According to the present invention, a joined product is at least two ceramic parts, specifically bi-element carbide parts with a bond joint therebetween, wherein the bond joint has a metal silicon phase. The bi-element carbide refers to compounds of MC, M.sub.2 C, M.sub.4 C and combinations thereof, where M is a first element and C is carbon. The metal silicon phase may be a metal silicon carbide ternary phase, or a metal silicide.

Henager, Jr., Charles W [Kennewick, WA; Brimhall, John L. (West Richland, WA) [West Richland, WA

2001-08-21T23:59:59.000Z

213

Effectiveness of a dopant in U-Zr metallic fuel to prevent lanthanide migration  

SciTech Connect

The advanced fast reactor concepts to achieve ultra-high burnup (about 50%) without requiring refueling by way of using metallic alloy fuel have gained interest. Fission product lanthanide accumulation at high burnup is substantial and its migration to cladding and reaction with cladding is a potential life-limiting phenomenon. As a means to solve this problem, adding an element that forms stable compounds with lanthanides to immobilize them has been proposed. The theoretical assessment shows that indium, thallium, gallium, and antimony are good candidates. Except for Sb, because these elements are low-melting temperature elements, liquid metal embrittlement of cladding is a concern if large sized agglomerates exist contacting the cladding. Alloy characterization of as-fabricated samples was performed to examine the effectiveness of the dopant addition method using optical microscopy and scanning electron microscopy. Although preliminary, the present results showed that indium is a better dopant to immobilize lanthanides.

Kim, Yeon Soo; Wieneck, T.; O'Hare, E.; Fortner, J. [Argonne National Laboratory 9700 S. Cass Ave, Argonne, IL 60439 (United States)

2013-07-01T23:59:59.000Z

214

Process for the production of hydrogen and carbonyl sulfide from hydrogen sulfide and carbon monoxide using a metal boride, nitride, carbide and/or silicide catalyst  

SciTech Connect

Hydrogen and carbonyl sulfide are produced by a process comprising contacting gaseous hydrogen sulfide with gaseous carbon monoxide in the presence of a metal boride, carbide, nitride and/or silicide catalyst, such as titanium carbide, vanadium boride, manganese nitride or molybdenum silicide.

McGuiggan, M.F.; Kuch, P.L.

1984-05-08T23:59:59.000Z

215

Process for fabricating composite material having high thermal conductivity  

DOE Patents (OSTI)

A process for fabricating a composite material such as that having high thermal conductivity and having specific application as a heat sink or heat spreader for high density integrated circuits. The composite material produced by this process has a thermal conductivity between that of diamond and copper, and basically consists of coated diamond particles dispersed in a high conductivity metal, such as copper. The composite material can be fabricated in small or relatively large sizes using inexpensive materials. The process basically consists, for example, of sputter coating diamond powder with several elements, including a carbide forming element and a brazeable material, compacting them into a porous body, and infiltrating the porous body with a suitable braze material, such as copper-silver alloy, thereby producing a dense diamond-copper composite material with a thermal conductivity comparable to synthetic diamond films at a fraction of the cost.

Colella, Nicholas J. (Livermore, CA); Davidson, Howard L. (San Carlos, CA); Kerns, John A. (Livermore, CA); Makowiecki, Daniel M. (Livermore, CA)

2001-01-01T23:59:59.000Z

216

Method of electrode fabrication for solid oxide electrochemical cells  

DOE Patents (OSTI)

A process for fabricating cermet electrodes for solid oxide electrochemical cells by sintering is disclosed. First, a porous metal electrode is fabricated on a solid oxide cell, such as a fuel cell by, for example, sintering, and is then infiltrated with a high volume fraction stabilized zirconia suspension. A second sintering step is used to sinter the infiltrated zirconia to a high density in order to more securely attach the electrode to the solid oxide electrolyte of the cell. High performance fuel electrodes can be obtained with this process. Further electrode performance enhancement may be achieved if stabilized zirconia doped with cerium oxide, chromium oxide, titanium oxide, and/or praseodymium oxide for electronic conduction is used.

Jensen, Russell R. (Murrysville, PA)

1990-01-01T23:59:59.000Z

217

Method of electrode fabrication for solid oxide electrochemical cells  

DOE Patents (OSTI)

A process for fabricating cermet electrodes for solid oxide electrochemical cells by sintering is disclosed. First, a porous metal electrode is fabricated on a solid oxide cell, such as a fuel cell by, for example, sintering, and is then infiltrated with a high volume fraction stabilized zirconia suspension. A second sintering step is used to sinter the infiltrated zirconia to a high density in order to more securely attach the electrode to the solid oxide electrolyte of the cell. High performance fuel electrodes can be obtained with this process. Further electrode performance enhancement may be achieved if stabilized zirconia doped with cerium oxide, chromium oxide, titanium oxide, and/or praseodymium oxide for electronic conduction is used. 5 figs.

Jensen, R.R.

1990-11-20T23:59:59.000Z

218

Method of fabricating a honeycomb structure  

DOE Patents (OSTI)

A method of fabricating a monolithic honeycomb structure product involves shaping a first mixture of raw materials and a binder into a green honeycomb, extruding a second mixture of raw materials and a binder into one or more green members that each define an opening extending longitudinally therethrough. The raw materials of the second mixture are compatible with the raw materials of the first mixture. The green honeycomb and member(s) are dried. The binders of the green honeycomb and member(s) are softened at the surfaces that are to be bonded. The green member(s) is inserted into the honeycomb and bonded to the honeycomb to form an assembly thereof, which is then dried and fired to form a unified monolithic honeycomb structure. The insertion is best carried out by mounting a member in the shape of a tube on a mandrel, and inserting the mandrel into the honeycomb opening to bond the tube to the honeycomb. 7 figs.

Holleran, L.M.; Lipp, G.D.

1999-08-03T23:59:59.000Z

219

Method of fabricating a honeycomb structure  

DOE Patents (OSTI)

A method of fabricating a monolithic honeycomb structure product involves shaping a first mixture of raw materials and a binder into a green honeycomb, extruding a second mixture of raw materials and a binder into one or more green members that each define an opening extending longitudinally therethrough. The raw materials of the second mixture are compatible with the raw materials of the first mixture. The green honeycomb and member(s) are dried. The binders of the green honeycomb and member(s) are softened at the surfaces that are to be bonded. The green member(s) is inserted into the honeycomb and bonded to the honeycomb to form an assembly thereof, which is then dried and fired to form a unified monolithic honeycomb structure. The insertion is best carried out by mounting a member in the shape of a tube on a mandrel, and inserting the mandrel into the honeycomb opening to bond the tube to the honeycomb.

Holleran, Louis M. (Big Flats, NY); Lipp, G. Daniel (Fort Collins, CO)

1999-01-01T23:59:59.000Z

220

Processing of Refractory Metal Alloys for JOYO Irradiations  

SciTech Connect

This is a summary of the refractory metal processing experienced by candidate Prometheus materiats as they were fabricated into specimens destined for testing within the JOYO test reactor, ex-reactor testing at Oak Ridge National Laboratory (ORNL), or testing within the NRPCT. The processing is described for each alloy from the point of inception to the point where processing was terminated due to the cancellation of Naval Reactor's involvement in the Prometheus Project. The alloys included three tantalum-base alloys (T-111, Ta-10W, and ASTAR-811C), a niobium-base alloy, (FS-85), and two molybdenum-rhenium alloys, one containing 44.5 w/o rhenium, and the other 47.5 w/o rhenium. Each of these alloys was either a primary candidate or back-up candidate for cladding and structural applications within the space reactor. Their production was intended to serve as a forerunner for large scale production ingots that were to be procured from commercial refractory metal vendors such as Wah Chang.

RF Luther; ME Petrichek

2006-02-21T23:59:59.000Z

Note: This page contains sample records for the topic "fabricated metal product" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Fabrication and characterization of the source grating for visibility improvement of neutron phase imaging with gratings  

SciTech Connect

The fabrication of gratings including metal deposition processes for highly neutron absorbing lines is a critical issue to achieve a good visibility of the grating-based phase imaging system. The source grating for a neutron Talbot-Lau interferometer is an array of Gadolinium (Gd) structures that are generally made by sputtering, photo-lithography, and chemical wet etching. However, it is very challenging to fabricate a Gd structure with sufficient neutron attenuation of approximately more than 20 {mu}m using a conventional metal deposition method because of the slow Gd deposition rate, film stress, high material cost, and so on. In this article, we fabricated the source gratings for neutron Talbot-Lau interferometers by filling the silicon structure with Gadox particles. The new fabrication method allowed us a very stable and efficient way to achieve a much higher Gadox filled structure than a Gd film structure, and is even more suitable for thermal polychromatic neutrons, which are more difficult to stop than cold neutrons. The newly fabricated source gratings were tested at the polychromatic thermal neutron grating interferometer system of HANARO at the Korea Atomic Energy Research Institute, and the visibilities and images from the neutron phase imaging system with the new source gratings were compared with those fabricated by a Gd deposition method.

Kim, Jongyul [Neutron Science Division, Korea Atomic Energy Research Institute, Daejeon 305-353 (Korea, Republic of); Nuclear and Quantum Engineering Department, Korea Advanced Institute of Science and Technology, Daejeon 305-701 (Korea, Republic of); Lee, Kye Hong; Lim, Chang Hwy; Kim, Taejoo [Neutron Science Division, Korea Atomic Energy Research Institute, Daejeon 305-353 (Korea, Republic of); Ahn, Chi Won [Nano Fusion Technology Division, National Nanofab Center, Daejeon 305-701 (Korea, Republic of); Cho, Gyuseong [Nuclear and Quantum Engineering Department, Korea Advanced Institute of Science and Technology, Daejeon 305-701 (Korea, Republic of); Lee, Seung Wook [School of Mechanical Engineering, Pusan National University, Pusan 609-735 (Korea, Republic of)

2013-06-15T23:59:59.000Z

222

Digital fabrication in the architectural design process  

E-Print Network (OSTI)

Digital fabrication is affecting the architectural design process due to the increasingly important role it has in the fabrication of architectural models. Many design professionals, professors, and students have experienced ...

Seely, Jennifer C. K., 1975-

2004-01-01T23:59:59.000Z

223

Optimized fabrication and electrical analysis of silver nanowires templated on DNA molecules  

E-Print Network (OSTI)

. In this letter, we present the base sequence design of synthetic double-stranded DNA dsDNA and fabrication of metallic silver nanowires templated on both synthetic dsDNA and bacteriophage -DNA molecules. We also as programmable interconnects in bio- electronic devices. The DNA base sequence of the synthetic unit dsDNA tile

Finkelstein, Gleb

224

Three-dimensional Composite Lattice Structures Fabricated by Electrical Discharge Machining  

E-Print Network (OSTI)

construction by means of electrical discharge machining (EDM). First, flat- top corrugated carbon fiber. In this paper, we used electrical discharge machining (EDM)--previously used to transform corrugated metallicThree-dimensional Composite Lattice Structures Fabricated by Electrical Discharge Machining J

Vaziri, Ashkan

225

Reproducible Tip Fabrication and Cleaning for UHV STM . | EMSL  

NLE Websites -- All DOE Office Websites (Extended Search)

Reproducible Tip Fabrication and Cleaning for UHV STM . Reproducible Tip Fabrication and Cleaning for UHV STM . Abstract: Several technical modifications related to the fabrication...

226

Examination of dissimilar metal welds in BWR and PWR piping  

SciTech Connect

This paper addresses dissimilar metal weld examinations at PWRS. Surveys were conducted to document the dissimilar metal weld configurations at PWR plants and to update the information known about dissimilar metal weld configurations at BWR plants. The experiences which BWR utilities have had with dissimilar metal weld examinations are documented and include: correct identification of IGSCC, indications thought to be IGSCC but were actually fabrication flaws, and difficulties encountered with the examination of dissimilar metal welds after stress improvement. An experimental program was conducted which verified that the longitudinal wave procedures developed for BWRs are also applicable to PWR designs.

MacDonald, D.E. [Electric Power Research Inst., Charlotte, NC (United States). NDE Center

1994-12-31T23:59:59.000Z

227

Method of fabricating silicon carbide coatings on graphite surfaces  

DOE Patents (OSTI)

The vacuum plasma spray process produces well-bonded, dense, stress-free coatings for a variety of materials on a wide range of substrates. The process is used in many industries to provide for the excellent wear, corrosion resistance, and high temperature behavior of the fabricated coatings. In this application, silicon metal is deposited on graphite. This invention discloses the optimum processing parameters for as-sprayed coating qualities. The method also discloses the effect of thermal cycling on silicon samples in an inert helium atmosphere at about 1,600 C which transforms the coating to silicon carbide. 3 figs.

Varacalle, D.J. Jr.; Herman, H.; Burchell, T.D.

1994-07-26T23:59:59.000Z

228

Method of fabricating silicon carbide coatings on graphite surfaces  

DOE Patents (OSTI)

The vacuum plasma spray process produces well-bonded, dense, stress-free coatings for a variety of materials on a wide range of substrates. The process is used in many industries to provide for the excellent wear, corrosion resistance, and high temperature behavior of the fabricated coatings. In this application, silicon metal is deposited on graphite. This invention discloses the optimum processing parameters for as-sprayed coating qualities. The method also discloses the effect of thermal cycling on silicon samples in an inert helium atmosphere at about 1600.degree.C. which transforms the coating to silicon carbide.

Varacalle, Jr., Dominic J. (Idaho Falls, ID); Herman, Herbert (Port Jefferson, NY); Burchell, Timothy D. (Oak Ridge, TN)

1994-01-01T23:59:59.000Z

229

Tutorial: Hot Topics in Personal Fabrication Research  

Science Journals Connector (OSTI)

In this tutorial, we survey novel ways for interacting with personal fabrication machines, such as laser cutters, milling machines, and 3D printers. The goal is to provide attendees with an overview of recent HCI re- search in personal fabrication and ... Keywords: 3d printing, laser cutting, milling machines, personal fabrication, rapid prototyping

Stefanie Mueller, Alexandra Ion, Patrick Baudisch

2014-11-01T23:59:59.000Z

230

NREL: Technology Transfer - Fabric-Covered Blades Could Make Wind Turbines  

NLE Websites -- All DOE Office Websites (Extended Search)

Fabric-Covered Blades Could Make Wind Turbines Cheaper and More Efficient Fabric-Covered Blades Could Make Wind Turbines Cheaper and More Efficient A photo of a crew of workers watching as a wind blade is hauled up to a turbine for assembly. A new fabric-wrapped wind blade could eventually replace the traditional fiberglass blade, providing for lighter turbine components that could be built and assembled on site. January 2, 2013 A new design that calls for wrapping architectural fabric around metal wind turbine blades-instead of the traditional fiberglass-could be the latest revolution in dramatically reducing the cost of wind-produced power. That's the focus of a new project that partners NREL with General Electric (GE) and Virginia Polytechnic Institute & State University. Together, they are rethinking the way wind blades are designed,

231

Metal oxide films on metal  

DOE Patents (OSTI)

A structure including a thin film of a conductive alkaline earth metal oxide selected from the group consisting of strontium ruthenium trioxide, calcium ruthenium trioxide, barium ruthenium trioxide, lanthanum-strontium cobalt oxide or mixed alkaline earth ruthenium trioxides thereof upon a thin film of a noble metal such as platinum is provided.

Wu, Xin D. (Los Alamos, NM); Tiwari, Prabhat (Los Alamos, NM)

1995-01-01T23:59:59.000Z

232

Synthesis and structure of complex metal oxides produced by interaction of iron and nickel acetylacetonates with hydrolysis products of titanium and zirconium alcoholates  

Science Journals Connector (OSTI)

The interaction of nickel and iron acetylacetonates with hydrolysis products of titanium and zirconium alcoholates and their mixture has been studied. It was shown that chemical synthesis of organometallic gel...

M. V. Tsodikov; O. V. Bukhtenko

1991-02-01T23:59:59.000Z

233

Precious Metal Recovery from Fuel Cell MEA's  

SciTech Connect

One of the next-generation power sources is the proton exchange membrane (PEM) fuel cell, which runs on pure hydrogen or hydrogen-rich reformate. At the heart of the PEM fuel cell is a membrane electrode assembly (MEA). The MEA is a laminate composed of electrode layers sandwiched between outer layers, fabricated from either carbon fiber or fabric and which control the diffusion of reactant gases, and the inner polymer mebrane. Hydrogen is oxidized at the anode to form protons, which migrate through the membrane and react with oxygen at the cathode to form water. In this type of fuel cell, platinum catalyzes the reactions at both electrodes. Realization of a future that includes ubiquitous use of hydrogen fuel cell-powered vehicles will be partially contingent on a process for recycling components of the fuel cell membrane electrode assemblies. In aggregate, the platinum used for the fuel cell will represent a large pool of this precious metal, and the efficient recycling of Pt from MEA's will be a cost-enabling factor for success of this technology. Care must be taken in the reclamation process because of the presence of fluoropolymers in the MEA. While Pt is normally recovered with high yield, the combustion process commonly applied to remove an organic matrix will also liberate a large volume of HF, a gas which is both toxic and corrosive. Carbonyl fluoride, which has a recommended exposure limit of 2ppmv, is another undesirable product of fluoroploymer combustion. In 2003, the Department of Energy awarded Engelhard Corporation an 80% cost share grant for a five-year project budgeted at $5.9MM. The principal objective is reclaiming platinum from fuel cell MEA's without producing fluorine-containing emissions. Over the last three years, Engelhard has approached the problem from several directions in balancing the two goals: a commercially-viable recycling process and an environmentally favorable one. Working with both fresh and aged fuel cells, it has been shown that precious metals can be liberated at high yield using microwave assisted acid digestion, but exposure of the gas diffusion electrode surfaces is required. A low-cost solvent-stripping process has been identified for two geometries of fuel cell MEA's: GDL and GDE. This paper will detail progress made in realizing a practical, "green" process for recovery of Pt from PEM fuel cell MEA's

Lawrence Shore

2006-11-16T23:59:59.000Z

234

DEVELOPMENT OF CONTINUOUS SOLVENT EXTRACTION PROCESSES FOR COAL DERIVED CARBON PRODUCTS  

SciTech Connect

The purpose of this DOE-funded effort is to develop continuous processes for solvent extraction of coal for the production of carbon products. The largest applications are those which support metals smelting, such as anodes for aluminum smelting and electrodes for arc furnaces. Other carbon products include materials used in creating fuels for the Direct Carbon Fuel Cell, and porous carbon structural material referred to as ''carbon foam'' and carbon fibers. During this reporting period, hydrotreatment of solvent was completed in preparation for pitch fabrication for graphite electrodes. Coal digestion has lagged but is expected to be complete by next quarter. Studies are reported on coal dissolution, pitch production, foam synthesis using physical blowing agents, and alternate coking techniques.

Dady B. Dadyburjor; Mark E. Heavner; Manoj Katakdaunde; Liviu Magean; J. Joshua Maybury; Alfred H. Stiller; Joseph M. Stoffa; John W. Zondlo

2006-08-01T23:59:59.000Z

235

Metal Toxicity  

Science Journals Connector (OSTI)

Problems posed to plants by metal toxicity in the soils of the world are basically of two kinds. The first kind are of natural origin. These arise either as a consequence of the nature of the parent material f...

T. McNeilly

1994-01-01T23:59:59.000Z

236

Dendritic metal nanostructures  

DOE Patents (OSTI)

Dendritic metal nanostructures made using a surfactant structure template, a metal salt, and electron donor species.

Shelnutt, John A. (Tijeras, NM); Song, Yujiang (Albuquerque, NM); Pereira, Eulalia F. (Vila Nova de Gaia, PT); Medforth, Craig J. (Winters, CA)

2010-08-31T23:59:59.000Z

237

Removing Stains from Washable Fabrics.  

E-Print Network (OSTI)

of May 8, 1914, as amended, and June 30, 1914, in cooperation with the United States Department of Agriculture. Zerle L. Carpenter, Director, Texas Agricultural Extension Service, The Texas A&M University System. lOM-1l-88, New CLO ...I UUL. Z TA24S.7 8873 NO.1616 B.1616 / Texas Agricultural Extension Service LIBRARY FEB 0 1 1989 Texas A&M University Removing Stains from Washable Fabrics Ann Vanderpoorten 8eard* Most spots and stains can be removed by prompt...

Beard, Ann Vanderpoorten

1988-01-01T23:59:59.000Z

238

Size-Controllable and Low-Cost Fabrication of Graphene Quantum Dots Using Thermal Plasma Jet  

Science Journals Connector (OSTI)

graphene quantum dots; thermal plasma jet; mass production; size-controllable fabrication; low-cost fabrication; carbyne-like edges; photoluminescence ... We produced carbon soot by injecting ethylene gas continuously (at a rate of 2.5 L/min) into Ar plasma and attaching a carbon tube (5, 10, or 20 cm in length) to the anode. ... (34) In principle, oxygen is not contained in our fabrication, since only Ar and ethylene gases have been added into a plasma system as the plasma gas and carbon source, respectively. ...

Juhan Kim; Jung Sang Suh

2014-03-30T23:59:59.000Z

239

Residue-free fabrication of high-performance graphene devices by patterned PMMA stencil mask  

SciTech Connect

Two-dimensional (2D) atomic crystals and their hybrid structures have recently attracted much attention due to their potential applications. The fabrication of metallic contacts or nanostructures on 2D materials is very common and generally achieved by performing electron-beam (e-beam) lithography. However, e-beam lithography is not applicable in certain situations, e.g., cases in which the e-beam resist does not adhere to the substrates or the intrinsic properties of the 2D materials are greatly altered and degraded. Here, we present a residue-free approach for fabricating high-performance graphene devices by patterning a thin film of e-beam resist as a stencil mask. This technique can be generally applied to substrates with varying surface conditions, while causing negligible residues on graphene. The technique also preserves the design flexibility offered by e-beam lithography and therefore allows us to fabricate multi-probe metallic contacts. The graphene field-effect transistors fabricated by this method exhibit smooth surfaces, high mobility, and distinct magnetotransport properties, confirming the advantages and versatility of the presented residue-free technique for the fabrication of devices composed of 2D materials.

Shih, Fu-Yu [Department of Physics, National Taiwan University, Taipei 10617, Taiwan (China); Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan (China); Chen, Shao-Yu; Wu, Tsuei-Shin; Wang, Wei-Hua, E-mail: wwang@sinica.edu.tw [Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan (China); Liu, Cheng-Hua; Chen, Yang-Fang [Department of Physics, National Taiwan University, Taipei 10617, Taiwan (China); Ho, Po-Hsun; Chen, Chun-Wei [Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan (China)

2014-06-15T23:59:59.000Z

240

(Data in thousand metric tons of metal unless otherwise noted) Domestic Production and Use: In 2006, 5 companies operated 13 primary aluminum smelters; 6 smelters were  

E-Print Network (OSTI)

,800 South Africa 851 890 860 900 United Arab Emirates, Dubai 75%. Tariff: Item Number Normal Trade Relations 12-31-06 Unwrought (in coils) 7601.10.3000 2.6% ad val aluminum production decreased slightly owing to cutbacks attributed to increased energy and alumina costs

Note: This page contains sample records for the topic "fabricated metal product" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

A Low Temperature Fully Lithographic Process For MetalOxide Field-Effect Transistors  

E-Print Network (OSTI)

We report a low temperature ( ~ 100 °C) lithographic method for fabricating hybrid metal oxide/organic field-effect transistors (FETs) that combine a zinc-indium-oxide (ZIO) semiconductor channel and organic, parylene, ...

Sodini, Charles G.

242

Growth dynamics at a metal-metal interface  

Science Journals Connector (OSTI)

A determination of the sticking coefficient of sputter-deposited metal films on freshly deposited metal surfaces is described in detail. The systems investigated were Mo deposited on Ta and Ta on Mo. Also described is a detailed determination of the structure of Mo-Ta interfaces using Rutherford backscattering spectrometry and a combination of x-ray diffraction techniques. Within a few angstroms of each interface we find that the lattice is stretched in the growth direction and has an excess of defects relative to the bulk lattice. We also find that Mo/Ta superlattices fabricated with wavelengths in the range 20 to 120 A? exhibit structural coherence extending over a number of superlattice layers.

Wayne R. Bennett; J. A. Leavitt; Charles M. Falco

1987-03-15T23:59:59.000Z

243

Highly reproducible and reliable metal/graphene contact by ultraviolet-ozone treatment  

SciTech Connect

Resist residue from the device fabrication process is a significant source of contamination at the metal/graphene contact interface. Ultraviolet Ozone (UVO) treatment is proven here, by X-ray photoelectron spectroscopy and Raman measurement, to be an effective way of cleaning the metal/graphene interface. Electrical measurements of devices that were fabricated by using UVO treatment of the metal/graphene contact region show that stable and reproducible low resistance metal/graphene contacts are obtained and the electrical properties of the graphene channel remain unaffected.

Li, Wei [Key Laboratory for the Physics and Chemistry of Nanodevices and Department of Electronics, Peking University, Beijing 100871 (China); Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Hacker, Christina A.; Cheng, Guangjun; Hight Walker, A. R.; Richter, Curt A.; Gundlach, David J., E-mail: david.gundlach@nist.gov, E-mail: liangxl@pku.edu.cn [Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Liang, Yiran; Tian, Boyuan; Liang, Xuelei, E-mail: david.gundlach@nist.gov, E-mail: liangxl@pku.edu.cn; Peng, Lianmao [Key Laboratory for the Physics and Chemistry of Nanodevices and Department of Electronics, Peking University, Beijing 100871 (China)

2014-03-21T23:59:59.000Z

244

Intermediate inputs and economic productivity  

Science Journals Connector (OSTI)

...US sectoral-level production functions. Both the...316) and plastics and rubber-(326). The relationship...coefficients of the production function sum to a quantity...inputs were used in the production process. 16 This estimate...products 326 plastics and rubber products 327 non-metallic...

2013-01-01T23:59:59.000Z

245

Titanium metal: extraction to application  

SciTech Connect

In 1998, approximately 57,000 tons of titanium metal was consumed in the form of mill products (1). Only about 5% of the 4 million tons of titanium minerals consumed each year is used to produce titanium metal, with the remainder primarily used to produce titanium dioxide pigment. Titanium metal production is primarily based on the direct chlorination of rutile to produce titanium tetrachloride, which is then reduced to metal using the Kroll magnesium reduction process. The use of titanium is tied to its high strength-to-weight ratio and corrosion resistance. Aerospace is the largest application for titanium. In this paper, we discuss all aspects of the titanium industry from ore deposits through extraction to present and future applications. The methods of both primary (mining of ore, extraction, and purification) and secondary (forming and machining) operations will be analyzed. The chemical and physical properties of titanium metal will be briefly examined. Present and future applications for titanium will be discussed. Finally, the economics of titanium metal production also are analyzed as well as the advantages and disadvantages of various alternative extraction methods.

Gambogi, Joseph (USGS, Reston, VA); Gerdemann, Stephen J.

2002-09-01T23:59:59.000Z

246

(Data in thousand metric tons of metal unless otherwise noted) Domestic Production and Use: In 2005, 6 companies operated 15 primary aluminum smelters; 4 smelters  

E-Print Network (OSTI)

547 550 542 554 Norway 1,320 1,350 1,320 1,380 Russia 3,590 3,650 3,640 3,760 South Africa 863 830 850%. Tariff: Item Number Normal Trade Relations 12-31-05 Unwrought (in coils) 7601.10.3000 2.6% ad val aluminum production decreased slightly owing to cutbacks attributed to increased energy and alumina costs

247

Fabrication and Characterization of Organic Solar Cells.  

E-Print Network (OSTI)

??Bulk heterojunction organic solar cells have recently drawn tremendous attention because of their technological advantages for actualization of large-area and cost effective fabrication. Two important (more)

Yengel, Emre

2010-01-01T23:59:59.000Z

248

Direct electrochemical reduction of metal-oxides  

DOE Patents (OSTI)

A method of controlling the direct electrolytic reduction of a metal oxide or mixtures of metal oxides to the corresponding metal or metals. A non-consumable anode and a cathode and a salt electrolyte with a first reference electrode near the non-consumable anode and a second reference electrode near the cathode are used. Oxygen gas is produced and removed from the cell. The anode potential is compared to the first reference electrode to prevent anode dissolution and gas evolution other than oxygen, and the cathode potential is compared to the second reference electrode to prevent production of reductant metal from ions in the electrolyte.

Redey, Laszlo I. (Downers Grove, IL); Gourishankar, Karthick (Downers Grove, IL)

2003-01-01T23:59:59.000Z

249

CONTAINER MATERIALS, FABRICATION AND ROBUSTNESS  

SciTech Connect

The multi-barrier 3013 container used to package plutonium-bearing materials is robust and thereby highly resistant to identified degradation modes that might cause failure. The only viable degradation mechanisms identified by a panel of technical experts were pressurization within and corrosion of the containers. Evaluations of the container materials and the fabrication processes and resulting residual stresses suggest that the multi-layered containers will mitigate the potential for degradation of the outer container and prevent the release of the container contents to the environment. Additionally, the ongoing surveillance programs and laboratory studies should detect any incipient degradation of containers in the 3013 storage inventory before an outer container is compromised.

Dunn, K.; Louthan, M.; Rawls, G.; Sindelar, R.; Zapp, P.; Mcclard, J.

2009-11-10T23:59:59.000Z

250

New Metallization Technique Suitable for 6-MW Pilot Production of Efficient Multicrystalline Solar Cells Using Upgraded Metallurgical Silicon: Final Technical Progress Report, December 17, 2007-- June 16, 2009  

Energy.gov (U.S. Department of Energy (DOE))

This report describes CaliSolar's work as a Photovoltaic Technology Incubator awardee within the U.S. Department of Energy's Solar Energy Technologies Program. The term of this subcontract with the National Renewable Energy Laboratory was two years. During this time, CaliSolar evolved from a handful of employees to over 100 scientists, engineers, technicians, and operators. On the technical side, the company transitioned from a proof-of-concept through pilot-scale to large-scale industrial production. A fully automated 60-megawatt manufacturing line was commissioned in Sunnyvale, California. The facility converts upgraded metallurgical-grade silicon feedstock to ingots, wafers, and high-efficiency multicrystalline solar cells.

251

Nanotube Fabrication byNanotube Fabrication by Anodic Aluminum Oxide,Anodic Aluminum Oxide,  

E-Print Network (OSTI)

Nanotube Fabrication byNanotube Fabrication by Anodic Aluminum Oxide,Anodic Aluminum Oxide, Self-regulating phenomena in materials science: Self-assembly of nanopores during anodic oxidation of aluminum (AAO) Self combined anodic aluminum oxide (AAO) nanostructures with atomic layer deposition (ALD) to fabricate

Rubloff, Gary W.

252

Composite metal membrane  

DOE Patents (OSTI)

A composite metal membrane including a first metal layer of Group IVB met or Group VB metals, the first metal layer sandwiched between two layers of an oriented metal of palladium, platinum or alloys thereof is provided together with a process for the recovery of hydrogen from a gaseous mixture including contacting a hydrogen-containing gaseous mixture with a first side of a nonporous composite metal membrane including a first metal of Group IVB metals or Group VB metals, the first metal layer sandwiched between two layers of an oriented metal of palladium, platinum or alloys thereof, and, separating hydrogen from a second side of the nonporous composite metal membrane.

Peachey, Nathaniel M. (Espanola, NM); Dye, Robert C. (Los Alamos, NM); Snow, Ronny C. (Los Alamos, NM); Birdsell, Stephan A. (Los Alamos, NM)

1998-01-01T23:59:59.000Z

253

Composite metal membrane  

DOE Patents (OSTI)

A composite metal membrane including a first metal layer of Group IVB met or Group VB metals, the first metal layer sandwiched between two layers of an oriented metal of palladium, platinum or alloys thereof is provided together with a process for the recovery of hydrogen from a gaseous mixture including contacting a hydrogen-containing gaseous mixture with a first side of a nonporous composite metal membrane including a first metal of Group IVB metals or Group VB metals, the first metal layer sandwiched between two layers of an oriented metal of palladium, platinum or alloys thereof, and, separating hydrogen from a second side of the nonporous composite metal membrane.

Peachey, N.M.; Dye, R.C.; Snow, R.C.; Birdsell, S.A.

1998-04-14T23:59:59.000Z

254

Cell Fabrication Facility Team Production and Research Activities  

Energy.gov (U.S. Department of Energy (DOE))

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

255

Cost-Effective Fabrication Routes for the Production of Quantum...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Quantum-Well-Type Structures and Recovoery of Waste Heat from Heavy-Duty Trucks Thermoelectric Developments for Vehicular Applications Automotive Thermoelectric Generators and HVAC...

256

Cell Fabrication Facility Team Production and Research Activities...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting es030jansen2013o.pdf More Documents & Publications Current Research Activities in Electrode and...

257

Cell Fabrication Facility Team Production and Research Activities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

25% Complete Need a high energy density battery for PHEVEV use that is safe, cost-effective, and has long cycle life. - Independent validation analysis of newly...

258

Apparatus and method for fabricating a microbattery  

DOE Patents (OSTI)

An apparatus and method for fabricating a microbattery that uses silicon as the structural component, packaging component, and semiconductor to reduce the weight, size, and cost of thin film battery technology is described. When combined with advanced semiconductor packaging techniques, such a silicon-based microbattery enables the fabrication of autonomous, highly functional, integrated microsystems having broad applicability.

Shul, Randy J. (Albuquerque, NM); Kravitz, Stanley H. (Albuquerque, NM); Christenson, Todd R. (Albuquerque, NM); Zipperian, Thomas E. (Edgewood, NM); Ingersoll, David (Albuquerque, NM)

2002-01-01T23:59:59.000Z

259

Three dimensional fabric evolution of sheared sand  

SciTech Connect

Granular particles undergo translation and rolling when they are sheared. This paper presents a three-dimensional (3D) experimental assessment of fabric evolution of sheared sand at the particle level. F-75 Ottawa sand specimen was tested under an axisymmetric triaxial loading condition. It measured 9.5 mm in diameter and 20 mm in height. The quantitative evaluation was conducted by analyzing 3D high-resolution x-ray synchrotron micro-tomography images of the specimen at eight axial strain levels. The analyses included visualization of particle translation and rotation, and quantification of fabric orientation as shearing continued. Representative individual particles were successfully tracked and visualized to assess the mode of interaction between them. This paper discusses fabric evolution and compares the evolution of particles within and outside the shear band as shearing continues. Changes in particle orientation distributions are presented using fabric histograms and fabric tensor.

Hasan, Alsidqi; Alshibli, Khalid (UWA)

2012-10-24T23:59:59.000Z

260

Potential methods for the fabrication of high-T/sub c/ superconductors for wires and cables  

SciTech Connect

In this paper studies on practical properties, such as upper critical field and critical-current density of high-T/sub c/ oxide superconductors of Y-Ba-Cu-O, Bi-Sr-Ca-Cu-O, and Tl-Ba-Ca-Cu-O systems, are reviewed. Recent developments of fabrication processes that have good potentiality for producing wire or tape conductors of high-T/sub c/ oxide are then discussed. Some details are presented for the powder method (which is classified into use of an organic binder and a metal sheath) and for other fabrication processes using diffusion, solidification, and deposition techniques. For the Ag-sheathed oxide tapes, J/sub c/ values exceeding 10 000 A/cm/sup 2/ at 77 {Kappa} and 0 T have been reported for both Bi and Tl oxide materials. Further developments in fabrication processes that can overcome various problems limiting the transport J/sub c/ are required.

Tachikawa, K. (Tokai Univ., Hiratsuka, Kanagawa (Japan). Dept. of Physics); Togano, K. (National Research Inst. for Metals, Tsukuba, Ibaraki (Japan). Tsukuba Lab.)

1989-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "fabricated metal product" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Ravi Metallics Ltd | Open Energy Information  

Open Energy Info (EERE)

Metallics Ltd Metallics Ltd Jump to: navigation, search Name Ravi Metallics Ltd. Place Rourkela, Orissa, India Zip 769004 Sector Biomass Product Rourkela-based biomass project developer. References Ravi Metallics Ltd.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Ravi Metallics Ltd. is a company located in Rourkela, Orissa, India . References ↑ "Ravi Metallics Ltd." Retrieved from "http://en.openei.org/w/index.php?title=Ravi_Metallics_Ltd&oldid=350202" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load)

262

Micro-turbo-generator design and fabrication: A preliminary study  

SciTech Connect

The size and weight of portable electronic products are often dictated by the physical characteristics of the power supply system. The design of energy storage systems is therefore critical to market competitiveness. An alternative to energy storage is proposed in this paper which relies on a very small power generation system which converts a pressure difference in a gas into electrical power: a micro-turbo-generator. The design of the micro-turbo-generator involved combining two very different machines, a micro-generator and a micro-turbine, into a single device which could be fabricated within the constraints of current microelectronic processing techniques. Research into power generation on the micro-scale has begun to take place in the form of electromagnetic micro-motor design and fabrication. These variable reluctance machines can be transformed into power generation devices by implementing accurate rotor position sensing, high-speed current switching and a means for inducing rotor motion. This leads to the implementation of a switched reluctance generator, which is well-understood on the macro-scale but has not been attempted on the micro-scale. The most significant hurdle facing researchers is the task of coupling a prime mover, such as a micro-turbine, to the rotor of a power generation device efficiently and effectively while maintaining relative simplicity in the fabrication procedures. The design presented here offers a potential solution to this problem.

Wiegele, T.G. [Advanced Custom Technologies, Mesa, AZ (United States). Motorola Semiconductor Products Sector

1996-12-31T23:59:59.000Z

263

New route to the fabrication of nanocrystalline diamond films  

SciTech Connect

Nanocrystalline diamond (NCD) thin films offer applications in various fields, but the existing synthetic approaches are cumbersome and destructive. A major breakthrough has been achieved by our group in the direction of a non-destructive, scalable, and economic process of NCD thin-film fabrication. Here, we report a cheap precursor for the growth of nanocrystalline diamond in the form of paraffin wax. We show that NCD thin films can be fabricated on a copper support by using simple, commonplace paraffin wax under reaction conditions of Hot Filament Chemical Vapor Deposition (HFCVD). Surprisingly, even the presence of any catalyst or seeding that has been conventionally used in the state-of-the-art is not required. The structure of the obtained films was analyzed by scanning electron microscopy and transmission electron microscopy. Raman spectroscopy and electron energy-loss spectroscopy recorded at the carbon K-edge region confirm the presence of nanocrystalline diamond. The process is a significant step towards cost-effective and non-cumbersome fabrication of nanocrystalline diamond thin films for commercial production.

Varshney, Deepak, E-mail: deepvar20@gmail.com; Morell, Gerardo [Institute of Functional Nanomaterials, University of Puerto Rico, San Juan, Puerto Rico 00931, Puerto Rico (United States); Department of Physics, University of Puerto Rico, San Juan, PO Box 70377, Puerto Rico 00936, Puerto Rico (United States); Palomino, Javier; Resto, Oscar [Department of Physics, University of Puerto Rico, San Juan, PO Box 70377, Puerto Rico 00936, Puerto Rico (United States); Gil, Jennifer [Department of Chemistry, University of Puerto Rico, San Juan, Puerto Rico 00936, Puerto Rico (United States); Weiner, Brad R. [Institute of Functional Nanomaterials, University of Puerto Rico, San Juan, Puerto Rico 00931, Puerto Rico (United States); Department of Chemistry, University of Puerto Rico, San Juan, Puerto Rico 00936, Puerto Rico (United States)

2014-02-07T23:59:59.000Z

264

Literature on fabrication of tungsten for application in pyrochemical processing of spent nuclear fuels  

SciTech Connect

The pyrochemical processing of nuclear fuels requires crucibles, stirrers, and transfer tubing that will withstand the temperature and the chemical attack from molten salts and metals used in the process. This report summarizes the literature that pertains to fabrication (joining, chemical vapor deposition, plasma spraying, forming, and spinning) is the main theme. This report also summarizes a sampling of literature on molbdenum and the work previously performed at Argonne National Laboratory on other container materials used for pyrochemical processing of spent nuclear fuels.

Edstrom, C.M.; Phillips, A.G.; Johnson, L.D.; Corle, R.R.

1980-10-11T23:59:59.000Z

265

Fabrication of thin-wall hollow nickel spheres and low density syntactic foams  

SciTech Connect

A process has been developed to fabricate thin-wall hollow spheres from conventional oxide powders at room temperature. The polymer- bonded powder shells are fired in air to sinter the walls, leaving the shells either impervious or porous. Alternatively, the oxide shells can be preferentially reduced to produce thin-wall hollow metal spheres which can be bonded together to produce an ultra light weight closed-cell foam. Processing and properties of this class of low density structures will be discussed.

Clancy, R.B.; Sanders, T.H. Jr.; Cochran, J.K.

1991-12-31T23:59:59.000Z

266

Multi-phase glass-ceramics as a waste form for combined fission products: alkalis, alkaline earths, lanthanides, and transition metals  

SciTech Connect

In this study, multi-phase silicate-based glass-ceramics were investigated as an alternate waste form for immobilizing non-fissionable products from used nuclear fuel. Currently, borosilicate glass is the waste form selected for immobilization of this waste stream, however, the low thermal stability and solubility of MoO{sub 3} in borosilicate glass translates into a maximum waste loading in the range of 15-20 mass%. Glass-ceramics provide the opportunity to target durable crystalline phases, e.g., powellite, oxyapatite, celsian, and pollucite, that will incorporate MoO{sub 3} as well as other waste components such as lanthanides, alkalis, and alkaline earths at levels 2X the solubility limits of a single-phase glass. In addition a glass-ceramic could provide higher thermal stability, depending upon the properties of the crystalline and amorphous phases. Glass-ceramics were successfully synthesized at waste loadings of 42, 45, and 50 mass% with the following glass additives: B{sub 2}O{sub 3}, Al{sub 2}O{sub 3}, CaO and SiO{sub 2} by slow cooling form from a glass melt. Glass-ceramics were characterized in terms of phase assemblage, morphology, and thermal stability. The targeted phases: powellite and oxyapatite were observed in all of the compositions along with a lanthanide borosilicate, and cerianite. Results of this initial investigation of glass-ceramics show promise as a potential waste form to replace single-phase borosilicate glass.

Crum, Jarrod V.; Turo, Laura A.; Riley, Brian J.; Tang, Ming; Kossoy, Anna

2012-04-01T23:59:59.000Z

267

Process for the production of hydrogen from water  

DOE Patents (OSTI)

A method and device for the production of hydrogen from water and electricity using an active metal alloy. The active metal alloy reacts with water producing hydrogen and a metal hydroxide. The metal hydroxide is consumed, restoring the active metal alloy, by applying a voltage between the active metal alloy and the metal hydroxide. As the process is sustainable, only water and electricity is required to sustain the reaction generating hydrogen.

Miller, William E. (Naperville, IL); Maroni, Victor A. (Naperville, IL); Willit, James L. (Batavia, IL)

2010-05-25T23:59:59.000Z

268

Oil, Gas, and Metallic Minerals (Iowa)  

Energy.gov (U.S. Department of Energy (DOE))

Operators of oil, gas, and metallic mineral exploration and production operations are required to obtain a drilling permit from the Iowa Department of Natural Resources and file specific forms with...

269

Design & Fabrication of a High-Voltage Photovoltaic Cell  

SciTech Connect

Silicon photovoltaic (PV) cells are alternative energy sources that are important in sustainable power generation. Currently, applications of PV cells are limited by the low output voltage and somewhat low efficiency of such devices. In light of this fact, this project investigates the possibility of fabricating high-voltage PV cells on float-zone silicon wafers having output voltages ranging from 50 V to 2000 V. Three designs with different geometries of diffusion layers were simulated and compared in terms of metal coverage, recombination, built-in potential, and conduction current density. One design was then chosen and optimized to be implemented in the final device design. The results of the simulation serve as a feasibility test for the design concept and provide supportive evidence of the effectiveness of silicon PV cells as high-voltage power supplies.

Felder, Jennifer; /North Carolina State U. /SLAC

2012-09-05T23:59:59.000Z

270

Fabrication of solid oxide fuel cell by electrochemical vapor deposition  

DOE Patents (OSTI)

In a high temperature solid oxide fuel cell (SOFC), the deposition of an impervious high density thin layer of electrically conductive interconnector material, such as magnesium doped lanthanum chromite, and of an electrolyte material, such as yttria stabilized zirconia, onto a porous support/air electrode substrate surface is carried out at high temperatures (approximately 1100.degree.-1300.degree. C.) by a process of electrochemical vapor deposition. In this process, the mixed chlorides of the specific metals involved react in the gaseous state with water vapor resulting in the deposit of an impervious thin oxide layer on the support tube/air electrode substrate of between 20-50 microns in thickness. An internal heater, such as a heat pipe, is placed within the support tube/air electrode substrate and induces a uniform temperature profile therein so as to afford precise and uniform oxide deposition kinetics in an arrangement which is particularly adapted for large scale, commercial fabrication of SOFCs.

Brian, Riley (Willimantic, CT); Szreders, Bernard E. (Oakdale, CT)

1989-01-01T23:59:59.000Z

271

Microchannel crossflow fluid heat exchanger and method for its fabrication  

DOE Patents (OSTI)

A microchannel crossflow fluid heat exchanger and a method for its fabrication are disclosed. The heat exchanger is formed from a stack of thin metal sheets which are bonded together. The stack consists of alternating slotted and unslotted sheets. Each of the slotted sheets includes multiple parallel slots which form fluid flow channels when sandwiched between the unslotted sheets. Successive slotted sheets in the stack are rotated ninety degrees with respect to one another so as to form two sets of orthogonally extending fluid flow channels which are arranged in a crossflow configuration. The heat exchanger has a high surface to volume ratio, a small dead volume, a high heat transfer coefficient, and is suitable for use with fluids under high pressures. The heat exchanger has particular application in a Stirling engine that utilizes a liquid as the working substance. 9 figs.

Swift, G.W.; Migliori, A.; Wheatley, J.C.

1985-05-14T23:59:59.000Z

272

Microchannel crossflow fluid heat exchanger and method for its fabrication  

DOE Patents (OSTI)

A microchannel crossflow fluid heat exchanger and a method for its fabrication are disclosed. The heat exchanger is formed from a stack of thin metal sheets which are bonded together. The stack consists of alternating slotted and unslotted sheets. Each of the slotted sheets includes multiple parallel slots which form fluid flow channels when sandwiched between the unslotted sheets. Successive slotted sheets in the stack are rotated ninety degrees with respect to one another so as to form two sets of orthogonally extending fluid flow channels which are arranged in a crossflow configuration. The heat exchanger has a high surface to volume ratio, a small dead volume, a high heat transfer coefficient, and is suitable for use with fluids under high pressures. The heat exchanger has particular application in a Stirling engine that utilizes a liquid as the working substance.

Swift, G.W.; Migliori, A.; Wheatley, J.C.

1982-08-31T23:59:59.000Z

273

Fabrication of solid oxide fuel cell by electrochemical vapor deposition  

DOE Patents (OSTI)

In a high temperature solid oxide fuel cell (SOFC), the deposition of an impervious high density thin layer of electrically conductive interconnector material, such as magnesium doped lanthanum chromite, and of an electrolyte material, such as yttria stabilized zirconia, onto a porous support/air electrode substrate surface is carried out at high temperatures (/approximately/1100/degree/ /minus/ 1300/degree/C) by a process of electrochemical vapor deposition. In this process, the mixed chlorides of the specific metals involved react in the gaseous state with water vapor resulting in the deposit of an impervious thin oxide layer on the support tube/air electrode substrate of between 20--50 microns in thickness. An internal heater, such as a heat pipe, is placed within the support tube/air electrode substrate and induces a uniform temperature profile therein so as to afford precise and uniform oxide deposition kinetics in an arrangement which is particularly adapted for large scale, commercial fabrication of SOFCs.

Riley, B.; Szreders, B.E.

1988-04-26T23:59:59.000Z

274

Fabrication of phosphor micro-grids using proton beam lithography.  

SciTech Connect

A new nuclear microscopy technique called ion photon emission microscopy or IPEM was recently invented. IPEM allows analysis involving single ions, such as ion beam induced charge (IBIC) or single event upset (SEU) imaging using a slightly modified optical microscope. The spatial resolution of IPEM is currently limited to more than 10 {micro}m by the scattering and reflection of ion-induced photons, i.e. light blooming or spreading, in the ionoluminescent phosphor layer. We are developing a 'Microscopic Gridded Phosphor' (also called Black Matrix) where the phosphor nanocrystals are confined within the gaps of a micrometer scale opaque grid, which limits the amount of detrimental light blooming. MeV-energy proton beam lithography is ideally suited to lithographically form masks for the grid because of high aspect ratio, pattern density and sub-micron resolution of this technique. In brief, the fabrication of the grids was made in the following manner: (1) a MeV proton beam focused to 1.5-2 {micro}m directly fabricated a matrix of pillars in a 15 {micro}m thick SU-8 lithographic resist; (2) 7:1 aspect ratio pillars were then formed by developing the proton exposed area; (3) Ni (Au) was electrochemically deposited onto Cu-coated Si from a sulfamate bath (or buffered CN bath); (4) the SU-8 pillars were removed by chemical etching; finally (5) the metal micro-grid was freed from its substrate by etching the underlying Cu layer. Our proposed metal micro-grids promise an order-of-magnitude improvement in the resolution of IPEM.

Rossi, Paolo (University of Padova and INFN, Padova, Italy); Antolak, Arlyn J.; Provencio, Paula Polyak; Doyle, Barney Lee; Malmqvist, Klas (Lund Institute of Technology, Lund, Sweden); Hearne, Sean Joseph; Nilsson, Christer (Lund Institute of Technology, Lund, Sweden); Kristiansson, Per (Lund Institute of Technology, Lund, Sweden); Wegden, Marie (Lund Institute of Technology, Lund, Sweden); Elfman, Mikael (Lund Institute of Technology, Lund, Sweden); Pallon, Jan (Lund Institute of Technology, Lund, Sweden); Auzelyte, Vaida (Lund Institute of Technology, Lund, Sweden)

2005-07-01T23:59:59.000Z

275

Enforcement Letter, Parsons Technology Development & Fabrication Complex -  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Parsons Technology Development & Fabrication Parsons Technology Development & Fabrication Complex - April 13, 2010 Enforcement Letter, Parsons Technology Development & Fabrication Complex - April 13, 2010 April 13, 2010 Enforcement Letter issued to Parsons Technology Development & Fabrication Complex related to Deficiencies in the Fabrication of Safety Significant Embed Plates at the Salt Waste Processing Facility at the Savannah River Site This letter refers to the Office of Health, Safety and Security's Office of Enforcement's investigation into the facts and circumstances associated with quality assurance deficiencies in the fabrication of safety significant embed plates. These embed plates were fabricated by Parsons Technology Development and Fabrication Complex (PTDFC) a supplier to

276

FABRICATION AND CHARACTERIZATION OF MEMS THERMAL INTERFACE MATERIALS .  

E-Print Network (OSTI)

??This work presents the fabrication and characterization of MEMS thermal interface materials. Different materials were used to fabricate and characterize different configurations of sample thermal (more)

[No author

2011-01-01T23:59:59.000Z

277

Hydrogen Station Test Device Design and Fabrication | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hydrogen Station Test Device Design and Fabrication Hydrogen Station Test Device Design and Fabrication October 2, 2014 - 3:02pm Addthis Open Date: August 26, 2014 Requesting...

278

Characterization of candidate DOE sites for fabricating MOX fuel for lead assemblies  

SciTech Connect

The Office of Fissile Materials Disposition (MD) of the Department of Energy (DOE) is directing the program to disposition US surplus weapons-usable plutonium. For the reactor option for disposition of this surplus plutonium, MD is seeking to contract with a consortium, which would include a mixed-oxide (MOX) fuel fabricator and a commercial US reactor operator, to fabricate and burn MOX fuel in existing commercial nuclear reactors. This option would entail establishing a MOX fuel fabrication facility under the direction of the consortium on an existing DOE site. Because of the lead time required to establish a MOX fuel fabrication facility and the need to qualify the MOX fuel for use in a commercial reactor, MD is considering the early fabrication of lead assemblies (LAs) in existing DOE facilities under the technical direction of the consortium. The LA facility would be expected to produce a minimum of 1 metric ton heavy metal per year and must be operational by June 2003. DOE operations offices were asked to identify candidate sites and facilities to be evaluated for suitability to fabricate MOX fuel LAs. Savannah River Site, Argonne National Laboratory-West, Hanford, Lawrence Livermore National Laboratory, and Los Alamos National Laboratory were identified as final candidates to host the LA project. A Site Evaluation Team (SET) worked with each site to develop viable plans for the LA project. SET then characterized the suitability of each of the five plans for fabricating MOX LAs using 28 attributes and documented the characterization to aid DOE and the consortium in selecting the site for the LA project. SET concluded that each option has relative advantages and disadvantages in comparison with other options; however, each could meet the requirements of the LA project as outlined by MD and SET.

Holdaway, R.F.; Miller, J.W.; Sease, J.D.; Moses, R.J.; O`Connor, D.G. [Oak Ridge National Lab., TN (United States); Carrell, R.D. [Technical Resources International, Inc., Richland, WA (United States); Jaeger, C.D. [Sandia National Labs., Albuquerque, NM (United States); Thompson, M.L.; Strasser, A.A. [Delta-21 Resources, Inc., Oak Ridge, TN (United States)

1998-03-01T23:59:59.000Z

279

Mechanochemical processing for metals and metal alloys  

DOE Patents (OSTI)

A set of processes for preparing metal powders, including metal alloy powders, by ambient temperature reduction of a reducible metal compound by a reactive metal or metal hydride through mechanochemical processing. The reduction process includes milling reactants to induce and complete the reduction reaction. The preferred reducing agents include magnesium and calcium hydride powders. A process of pre-milling magnesium as a reducing agent to increase the activity of the magnesium has been established as one part of the invention.

Froes, Francis H. (Moscow, ID); Eranezhuth, Baburaj G. (Moscow, ID); Prisbrey, Keith (Moscow, ID)

2001-01-01T23:59:59.000Z

280

Free form fabrication of thermoplastic composites  

SciTech Connect

This report describes the results of composites fabrication research sponsored by the Laboratory Directed Research and Development (LDRD) program at Sandia National Laboratories. They have developed, prototyped, and demonstrated the feasibility of a novel robotic technique for rapid fabrication of composite structures. Its chief innovation is that, unlike all other available fabrication methods, it does not require a mold. Instead, the structure is built patch by patch, using a rapidly reconfigurable forming surface, and a robot to position the evolving part. Both of these components are programmable, so only the control software needs to be changed to produce a new shape. Hence it should be possible to automatically program the system to produce a shape directly from an electronic model of it. It is therefore likely that the method will enable faster and less expensive fabrication of composites.

Kaufman, S.G.; Spletzer, B.L.; Guess, T.R.

1998-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "fabricated metal product" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Fabrication and properties of microporous silicon  

E-Print Network (OSTI)

Microporous silicon layers were fabricated by electrochemical etching of single crystalline silicon wafers in HF-ethanol solutions. The pore properties of porous silicon were examined by physical adsorption of nitrogen and the relationship between...

Shao, Jianzhong

1994-01-01T23:59:59.000Z

282

FSC Request Form ME FABRICATION SUPPORT CENTER  

E-Print Network (OSTI)

:__________________ Date:__________________ ________Hrs Cost: $ ________________ Fabrication of Job Machine on Loan Material Tooling Machine Operation Cost Manpower Assistance --- Name : ___________________ _______ Hrs Cost: $ ______ Please tick CNC Lathe / Milling Lathe / Milling EDM / Wire Cut Welding Ripping Saw / Planner Power Shear

Zhiwei, Huang

283

The design and construction of fabric structures  

E-Print Network (OSTI)

In its short history, fabric structures have fascinated architects and engineers alike. Architects appreciate their unusual shapes and forms while engineers delight in their "pure" structural expression. Capable of spanning ...

Fang, Rosemarie

2009-01-01T23:59:59.000Z

284

Materials compatibility issues for fabric composite radiators  

SciTech Connect

Short term materials compatibility tests have been completed on potential materials to be used in fabric composite radiators for space applications. Specific materials tested include copper, aluminum, titanium, FEP Teflon tubing, and three high strength fabric fibers: alumina-boria-silica, silicon carbide, and silicon dioxide. These materials have been exposed to pure water, methanol, and acetone for periods of time up to 5000 hours at variety of appropriate temperatures.

Marks, T.S.; Klein, A.C. (Department of Nuclear Engineering, Radiation Center, C116, Oregon State University, Corvallis, Oregon 97331-5902 (US))

1991-01-01T23:59:59.000Z

285

Carbon nanotube collimator fabrication and application  

DOE Patents (OSTI)

Apparatus, methods, systems and devices for fabricating individual CNT collimators. Micron size fiber coated CNT samples are synthesized with chemical vapor deposition method and then the individual CNT collimators are fabricated with focused ion beam technique. Unfocused electron beams are successfully propagated through the CNT collimators. The CNT nano-collimators are used for applications including single ion implantation and in high-energy physics, and allow rapid, reliable testing of the transmission of CNT arrays for transport of molecules.

Chow, Lee (Orlando, FL); Chai, Guangyu (Orlando, FL); Schenkel, Thomas (San Francisco, CA)

2010-07-06T23:59:59.000Z

286

Fabrication of glass microspheres with conducting surfaces  

DOE Patents (OSTI)

A method for making hollow glass microspheres with conducting surfaces by adding a conducting vapor to a region of the glass fabrication furnace. As droplets or particles of glass forming material pass through multiple zones of different temperature in a glass fabrication furnace, and are transformed into hollow glass microspheres, the microspheres pass through a region of conducting vapor, forming a conducting coating on the surface of the microspheres.

Elsholz, William E. (Acampo, CA)

1984-01-01T23:59:59.000Z

287

Picosecond response of gallium-nitride metalsemiconductormetal photodetectors  

Science Journals Connector (OSTI)

Metalsemiconductormetal ultraviolet photodiodes fabricated on GaN were tested in the picosecond regime with an electro-optic sampling system. A device with a feature size of 1 ?m showed a response with 1.4 ps rise time and 3.5 ps full width at half maximum. The derived electron velocity 1.4310 7 ? cm/s is in good agreement with independent photoexcitation measurements. A slower impulse response was observed in a device with smaller feature size of 0.5?? m .

Jianliang Li; Ying Xu; T. Y. Hsiang; W. R. Donaldson

2004-01-01T23:59:59.000Z

288

Design and Fabrication of Photonic Crystals for Thermal Energy Conservation  

SciTech Connect

The vision of intelligent and large-area fabrics capable of signal processing, sensing and energy harvesting has made incorporating electronic devices into flexible fibers an active area of research. Fiber-integrated rectifying junctions in the form of photovoltaic cells and light-emitting diodes (LEDs) have been fabricated on optical fiber substrates. However, the length of these fiber devices has been limited by the processing methods and the lack of a sufficiently conductive and transparent electrode. Their cylindrical device geometry is ideal for single device architectures, like photovoltaics and LEDs, but not amenable to building multiple devices into a single fiber. In contrast, the composite preform-to-fiber approach pioneered in our group addresses the key challenges of device density and fiber length simultaneously. It allows one to construct structured fibers composed of metals, insulators and semiconductors and enables the incorporation of many devices into a single fiber capable of performing complex tasks such as of angle of incidence and color detection. However, until now, devices built by the preform-to-fiber approach have demonstrated only ohmic behavior due to the chalcogenide semiconductor's amorphous nature and defect density. From a processing standpoint, non-crystallinity is necessary to ensure that the preform viscosity during thermal drawing is large enough to extend the time-scale of breakup driven by surface tension effects in the fluids to times much longer than that of the actual drawing. The structured preform cross-section is maintained into the microscopic fiber only when this requirement is met. Unfortunately, the same disorder that is integral to the fabrication process is detrimental to the semiconductors' electronic properties, imparting large resistivities and effectively pinning the Fermi level near mid-gap. Indeed, the defect density within the mobility gap of many chalcogenides has been found to be 1018-1019 cm-3 eV-1, resulting in a narrow depletion width and ohmic behavior at metal-semiconductor junctions. In this work we incorporated phase-changing semiconductors, those that may be easily converted between the amorphous and crystalline states, into composite fibers with a goal towards constructing rectifying junctions in fiber.

Professor John Joannopoulos; Professor Yoel Fink

2009-09-17T23:59:59.000Z

289

COST-EFFECTIVE TARGET FABRICATION FOR INERTIAL FUSION ENERGY  

SciTech Connect

A central feature of an Inertial Fusion Energy (IFE) power plant is a target that has been compressed and heated to fusion conditions by the energy input of the driver. The IFE target fabrication programs are focusing on methods that will scale to mass production, and working closely with target designers to make material selections that will satisfy a wide range of required and desirable characteristics. Targets produced for current inertial confinement fusion experiments are estimated to cost about $2500 each. Design studies of cost-effective power production from laser and heavy-ion driven IFE have found a cost requirement of about $0.25-0.30 each. While four orders of magnitude cost reduction may seem at first to be nearly impossible, there are many factors that suggest this is achievable. This paper summarizes the paradigm shifts in target fabrication methodologies that will be needed to economically supply targets and presents the results of ''nth-of-a-kind'' plant layouts and concepts for IFE power plant fueling. Our engineering studies estimate the cost of the target supply in a fusion economy, and show that costs are within the range of commercial feasibility for laser-driven and for heavy ion driven IFE.

GOODIN,D.T; NOBILE,A; SCHROEN,D.G; MAXWELL,J.L; RICKMAN,W.S

2004-03-01T23:59:59.000Z

290

Advanced semiconductor fabrication process control using dual filter exponentially weighted moving average  

Science Journals Connector (OSTI)

Semiconductor industry needs to meet high standards to ensure survival and success in the 21st century. Rising expectations from the customers are demanding the semiconductor industry to manufacture products with both accuracy and precision. To comply ... Keywords: Dual filter EWMA, EWMA, Process control, Run-to-run, Semiconductor fabrication process

Hyo-Heon Ko; Jihyun Kim; Sang-Hoon Park; Jun-Geol Baek; Sung-Shick Kim

2012-06-01T23:59:59.000Z

291

Fabrication of superconducting wire using organometallic precursors and infiltration  

SciTech Connect

Organometallic precursors from naphthenic acid and metal nitrates were used for the synthesis of YBCO oxide superconducting compounds. The characteristics of metal naphthenates as organometallic precursors were investigated by IR spectra, viscosity measurements, and infiltration. 123 superconducting compound obtained from 123 naphthenate showed a Tc of 90{degree}K and a rather dense and elongated microstructure. Also, the melting behavior of Ba-cuprates which were used for 123 making was studied. A low-temperature melting process was developed to fabricate silver-sheathed superconducting wire with the powder-in-tube method; flowing argon gas is introduced to the system at 930-945{degree}C to reduce the melting temperature of the 123 compound without silver sheath melting. It resulted in a 90{degree}K Tc superconducting core with dense and locally aligned microstructure. SEM-EDS and XRD analysis, 4-probe resistance and Jc measurements, and carbon-content determinations were carried out to characterize the microstructure, grain alignment, and superconducting properties of the samples.

Lee, Y.J.

1991-01-01T23:59:59.000Z

292

First-principles study of thin magnetic transition-metal silicide films on Si(001) Hua Wu, Peter Kratzer, and Matthias Scheffler  

E-Print Network (OSTI)

First-principles study of thin magnetic transition-metal silicide films on Si(001) Hua Wu, Peter of ferromag- netic FM materials have been suggested for the fabrication of metal/semiconductor heterojunctions s : 75.70. i, 73.20.At, 68.35.Md I. INTRODUCTION Metal-semiconductor heterojunctions have received much

293

Co-Design: Fabrication of Unalloyed Plutonium  

SciTech Connect

The successful induction casting of plutonium is a challenge which requires technical expertise in areas including physical metallurgy, surface and corrosion chemistry, materials science, electromagnetic engineering and a host of other technologies all which must be applied in concert. Here at LANL, we are employing a combined experimental and computational approach to design molds and develop process parameters needed to produce desired temperature profiles and improved castings. Computer simulations are performed using the commercial code FLOW-3D and the LANL ASC computer code TRUCHAS to reproduce the entire casting process starting with electromagnetic or radiative heating of the mold and metal and continuing through pouring with coupled fluid flow, heat transfer and non-isothermal solidification. This approach greatly reduces the time required to develop a new casting designs and also increases our understanding of the casting process, leading to a more homogeneous, consistent product and better process control. We will discuss recent casting development results in support of unalloyed plutonium rods for mechanical testing.

Korzekwa, Deniece R. [Los Alamos National Laboratory; Knapp, Cameron M. [Los Alamos National Laboratory; Korzekwa, David A. [Los Alamos National Laboratory; Gibbs, John W [Northwestern University

2012-07-25T23:59:59.000Z

294

Chapter 14 - Metal oxide nanopowder  

Science Journals Connector (OSTI)

Research into soft chemical techniques has gained an importance for the synthesis of high quality advanced nanosized materials with desired properties at the low crystallization temperature. The closer interaction between the material chemists and alkoxide chemists has led to the molecular design of more suitable precursors, for fabrication of functional material has resulted in synergetic developments in both the fields. Metal alkoxide is a versatile precursor and is used for the synthesis of functional gradient nanomaterials, and characterization of materials was carried out in term of composition, microstructure and specific surface area. The write-up provides simple and convenient routes to many building blocks for assembling the structure with novel properties and its functional use in nanotechnology.

Taimur Athar

2015-01-01T23:59:59.000Z

295

Metal salen catalyzed production of polytrimethylene carbonate  

E-Print Network (OSTI)

. My thanks and gratitude goes out to all the former members of the DJD group, not only for their mentoring but also for their advice and all their help. I would especially like to thank Dr. Damon R. Billodeaux for teaching me the ropes..................................................21 2.2 Skeletal representation of the synthesis of salen ligands.....................................22 2.3 Generic diagram of a M salen chloride, where M=Al or SnY, R 2 and R 1 refers to the 3,5-positions of the phenolate rings...

Ganguly, Poulomi

2009-06-02T23:59:59.000Z

296

Metal-phosphate binders  

DOE Patents (OSTI)

A metal-phosphate binder is provided. The binder may include an aqueous phosphoric acid solution, a metal-cation donor including a metal other than aluminum, an aluminum-cation donor, and a non-carbohydrate electron donor.

Howe, Beth Ann [Lewistown, IL; Chaps-Cabrera, Jesus Guadalupe [Coahuila, MX

2009-05-12T23:59:59.000Z

297

Monodispersed biocompatible Ag2S nanoparticles: Facile extracellular bio-fabrication using the gamma-proteobacterium, S. oneidensis  

SciTech Connect

Interest in engineered metal and semiconductor nanocrystallites continues to grow due to their unique size and or shape dependent optoelectronic, physicochemical and biological properties. Therefore identifying novel non-hazardous nanoparticle synthesis routes that address hydrophilicity, size and shape control and production costs have become a priority. In the present illustration we report for the first time the efficient generation of extracellular Ag2S nanoparticles by the metal reducing bacterium, Shewanella oneidensis. The particles are nearly monodispersed with homogeneous shape distributions and are produced under ambient temperatures and pressures at high yield, 85 % theoretical maximum. UV-vis and Fourier transform infrared spectroscopy, dynamic light scattering, X-ray diffraction, transmission electron microscopy and X-ray photoelectron spectroscopy measurements confirmed the formation, optical properties, purity, and crystallinity of the as-synthesized particles. Further characterization revealed that the particles consist of spheres in the size range of 1-22 nm, with an average size of 9 3 nm and are capped by a detachable protein/peptide surface coat. Toxicity assessments of these silver sulfide nanoparticles on Gram-negative Escherichia coli and Shewanella oneidensis and Gram-positive Bacillus subtilis bacterial systems as well as eukaryotic; mouse lung epithelial (C 10) and macrophage (RAW-264.7) cells showed that the particles were non-inhibitory or non-cytotoxic to both these systems. Our results provide a facile, eco-friendly and economical route for the fabrication of technologically important semiconducting Ag2S nanoparticles which are dispersible and biocompatible; thus providing excellent potential for their uses in optical imaging and electronic devices, and solar cell applications.

Suresh, Anil K [ORNL; Doktycz, Mitchel John [ORNL; Wang, Wei [ORNL; Moon, Ji Won [ORNL; Gu, Baohua [ORNL; Meyer III, Harry M [ORNL; Hensley, Dale K [ORNL; Retterer, Scott T [ORNL; Allison, David P [ORNL; Phelps, Tommy Joe [ORNL; Pelletier, Dale A [ORNL

2011-01-01T23:59:59.000Z

298

Aerogel-Coated Metal Nanoparticle Colloids as Novel Entities for the Synthesis of Defined Supported Metal Catalysts  

Science Journals Connector (OSTI)

Aerogel-Coated Metal Nanoparticle Colloids as Novel Entities for the Synthesis of Defined Supported Metal Catalysts ... Nanometer metal particles of tailored size (3?5 nm) and composition prepared via inverse microemulsion were encapsulated by ultrathin coatings (aerogels covered with surface ?OH groups. ... Thus, the product and technology described may be suitable to synthesize these precursor entities of defined metal sizes (as inks) for wash coat/impregnation applications in catalysis. ...

Kai Man K. Yu; Connie M. Y. Yeung; David Thompsett; Shik Chi Tsang

2003-04-10T23:59:59.000Z

299

Metal Hydrides - Science Needs  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Storage Grand Challenge Pre-Solicitation Meeting, June 19, 2003 1 Metal Hydrides - Science Needs TRADITIONAL METALLIC HYDRIDES: 1.5 to 2 wt.% H. Well studied. COMPLEX...

300

Probing metal solidification nondestructively  

NLE Websites -- All DOE Office Websites (Extended Search)

Probing metal solidification nondestructively This is the first time that high-energy protons have been used to nondestructively image a large metal sample during melting and...

Note: This page contains sample records for the topic "fabricated metal product" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Probing metal solidification nondestructively  

NLE Websites -- All DOE Office Websites (Extended Search)

Probing metal solidification nondestructively This is the first time that high-energy protons have been used to nondestructively image a large metal sample during melting...

302

Fabrication of microfluidics structures on different glasses by simplified imprinting technique  

Science Journals Connector (OSTI)

Imprinting technique is an efficient method for fabricating microstructures for microfluidics and lab-on-chip applications. However such technique is not commonly used for glass based microstructures fabrication. In this study, microstructures were transferred completely and successfully from a nickel alloy stamp to different glasses such as sodalime glass, Pyrex glass, SGBN glass and magneto optical glasses, using imprinting technique. Furthermore, the traditional vacuum hot press for imprinting was replaced with the conventional electric furnace which increases the cost efficiency and simplicity greatly. Using specific mold in the conventional furnace, the mass production of microstructured glass chips can be realized.

Qiuping Chen; Qiuling Chen; Gabriele Maccioni

2013-01-01T23:59:59.000Z

303

Controlled atmosphere for fabrication of cermet electrodes  

DOE Patents (OSTI)

A process for making an inert electrode composite wherein a metal oxide and a metal are reacted in a gaseous atmosphere at an elevated temperature of at least about 750.degree. C. The metal oxide is at least one of the nickel, iron, tin, zinc and zirconium oxides and the metal is copper, silver, a mixture of copper and silver or a copper-silver alloy. The gaseous atmosphere has an oxygen content that is controlled at about 5-3000 ppm in order to obtain a desired composition in the resulting composite.

Ray, Siba P. (Murrysville, PA); Woods, Robert W. (New Kensington, PA)

1998-01-01T23:59:59.000Z

304

Method of fabricating a multilayer insulation blanket  

DOE Patents (OSTI)

An improved multilayer insulation blanket for insulating cryogenic structures operating at very low temperatures is disclosed. An apparatus and method for fabricating the improved blanket are also disclosed. In the improved blanket, each successive layer of insulating material is greater in length and width than the preceding layer so as to accommodate thermal contraction of the layers closest to the cryogenic structure. The fabricating apparatus has a rotatable cylindrical mandrel having an outer surface of fixed radius that is substantially arcuate, preferably convex, in cross-section. The method of fabricating the improved blanket comprises (a) winding a continuous sheet of thermally reflective material around the circumference of the mandrel to form multiple layers, (b) binding the layers along two lines substantially parallel to the edges of the circumference of the mandrel, (c) cutting the layers along a line parallel to the axle of the mandrel, and (d) removing the bound layers from the mandrel.

Gonczy, John D. (Oak Lawn, IL); Niemann, Ralph C. (Downers Grove, IL); Boroski, William N. (Aurora, IL)

1993-01-01T23:59:59.000Z

305

Multilayer insulation blanket, fabricating apparatus and method  

DOE Patents (OSTI)

An improved multilayer insulation blanket for insulating cryogenic structures operating at very low temperatures is disclosed. An apparatus and method for fabricating the improved blanket are also disclosed. In the improved blanket, each successive layer of insulating material is greater in length and width than the preceding layer so as to accommodate thermal contraction of the layers closest to the cryogenic structure. The fabricating apparatus has a rotatable cylindrical mandrel having an outer surface of fixed radius that is substantially arcuate, preferably convex, in cross-section. The method of fabricating the improved blanket comprises (a) winding a continuous sheet of thermally reflective material around the circumference of the mandrel to form multiple layers, (b) binding the layers along two lines substantially parallel to the edges of the circumference of the mandrel, (c) cutting the layers along a line parallel to the axle of the mandrel, and (d) removing the bound layers from the mandrel.

Gonczy, John D. (Oak Lawn, IL); Niemann, Ralph C. (Downers Grove, IL); Boroski, William N. (Aurora, IL)

1992-01-01T23:59:59.000Z

306

Epoxy bond and stop etch fabrication method  

DOE Patents (OSTI)

A class of epoxy bond and stop etch (EBASE) microelectronic fabrication techniques is disclosed. The essence of such techniques is to grow circuit components on top of a stop etch layer grown on a first substrate. The first substrate and a host substrate are then bonded together so that the circuit components are attached to the host substrate by the bonding agent. The first substrate is then removed, e.g., by a chemical or physical etching process to which the stop etch layer is resistant. EBASE fabrication methods allow access to regions of a device structure which are usually blocked by the presence of a substrate, and are of particular utility in the fabrication of ultrafast electronic and optoelectronic devices and circuits.

Simmons, Jerry A. (Sandia Park, NM); Weckwerth, Mark V. (Pleasanton, CA); Baca, Wes E. (Albuquerque, NM)

2000-01-01T23:59:59.000Z

307

E-Print Network 3.0 - allied natural products Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

that supply, our industry... the end products are to the fabric of our society. Building homes, educating kids, disseminating news... and information, and protecting all the...

308

METAL MEDIA FILTERS, AG-1 SECTION FI  

SciTech Connect

One application of metal media filters is in various nuclear air cleaning processes including applications for protecting workers, the public and the environment from hazardous and radioactive particles. To support this application the development of the ASME AG-1 FI Standard on Metal Media has been under way for more than ten years. Development of the proposed section has required resolving several difficult issues associated with operating conditions (media velocity, pressure drop, etc.), qualification testing, and quality acceptance testing. Performance characteristics of metal media are dramatically different than the glass fiber media with respect to parameters like differential pressures, operating temperatures, media strength, etc. These differences make existing data for a glass fiber media inadequate for qualifying a metal media filter for AG-1. In the past much work has been conducted on metal media filters at facilities such as Lawrence Livermore National Laboratory (LLNL) and Savannah River National Laboratory (SRNL) to qualify the media as High Efficiency Particulate Air (HEPA) Filters. Particle retention testing has been conducted at Oak Ridge Filter Test Facility and at Air Techniques International (ATI) to prove that the metal media meets or exceeds the 99.97% particle retention required for a HEPA Filter. Even with his testing, data was lacking to complete an AG-1 FI Standard on metal media. With funding secured by Mississippi State University (MSU) from National Nuclear Security Administration (NNSA), a research test stand is being designed and fabricated at MSU's Institute for Clean Energy Technology (ICET) Facility to obtain qualification data on metal media. This in turn will support required data needed for the FI Standard. The paper will discuss in detail how the test stand at MSU will obtain the necessary data to complete the FI Standard.

Adamson, D.

2012-05-23T23:59:59.000Z

309

Trending: Metal Oxo Bonds  

NLE Websites -- All DOE Office Websites (Extended Search)

Trending: Metal Oxo Bonds Trending: Metal Oxo Bonds Trending: Metal Oxo Bonds Print Wednesday, 29 May 2013 00:00 Metal oxides are important for scientific and technical applications in a variety of disciplines, including materials science, chemistry, and biology. Highly covalent metal-oxygen multiple bonds (metal oxos) are the building blocks of metal oxides and have a bearing on the oxide's desirable chemical, magnetic, electronic, and thermal properties. The lack of a more sophisticated grasp of bonding in metal oxides constitutes a roadblock to innovation in a wide variety of important emergent technologies, including industrial catalysis, biomimetic transformations, and artificial photosynthesis. To address this problem, a research team from four national laboratories, three Department of Energy synchrotron user facilities, and the University of Washington has applied spectroscopic and computational analyses to a number of metal oxides, quantifying trends in metal oxo bonding for groups of metals across the periodic table.

310

Reaction-Forming Method for Producing Near Net-Shape Refractory Metal Carbides  

DOE Patents (OSTI)

A method for reaction forming refractory metal carbides. The method involves the fabrication of a glassy carbon preform by casting an organic, resin-based liquid mixture into a mold and subsequently heat treating it in two steps, which cures and pyrolizes the resin resulting in a porous carbon preform. By varying the amounts of the constituents in the organic, resin-based liquid mixture, control over the density of the carbon preform is obtained. Control of the density and microstructure of the carbon preform allows for determination of the microstructure and properties of the refractory metal carbide material produced. The glassy carbon preform is placed on a bed of refractory metal or refractory metal--silicon alloy. The pieces are heated above the melting point of the metal or alloy. The molten metal wicks inside the porous carbon preform and reacts, forming the refractory metal carbide or refractory metal carbide plus a minor secondary phase.

Palmisiano, Marc N.; Jakubenas, Kevin J.; Baranwal, Rita

2004-07-20T23:59:59.000Z

311

Business Cycle Effects on Metal and Oil Prices: Understanding the Price Retreat of 2008-9  

E-Print Network (OSTI)

1 Business Cycle Effects on Metal and Oil Prices: Understanding the Price Retreat of 2008 of macroeconomic business cycles on six metals traded on the London Metal Exchange and oil prices. Reduced GDP oil prices (as a proxy for energy inputs in metals production) are derived. The estimated trend

312

Fabrication and testing of optics for EUV projection lithography  

SciTech Connect

EUV Lithography (EUVL) is a leading candidate as a stepper technology for fabricating the ``0.1 {micro}m generation`` of microelectronic circuits. EUVL is an optical printing technique qualitatively similar to DUV Lithography (DUVL), except that 11-13nm wavelength light is used instead of 193-248nm. The feasibility of creating 0.1{micro}m features has been well-established using small-field EUVL printing tools and development efforts are currently underway to demonstrate that cost-effective production equipment can be engineered to perform full-width ring-field imaging consistent with high wafer throughput rates Ensuring that an industrial supplier base will be available for key components and subsystems is crucial to the success of EUVL. In particular, the projection optics are the heart of the EUVL imaging system, yet they have figure and finish specifications that are beyond the state-of-the-art in optics manufacturing. Thus it is important to demonstrate that industry will be able to fabricate and certify these optics commensurate with EUVL requirements. Indeed, the goal of this paper is to demonstrate that procuring EUVL projection optical substrates is feasible. This conclusion is based on measurements of both commercially-available and developmental substrates. The paper discusses EUVL figure and finish specifications, followed by examples of ultrasmooth and accurate surfaces, and concludes with a discussion of how substrates are measured and evaluated.

Taylor, J. S., LLNL

1998-03-18T23:59:59.000Z

313

Heavy metal biosensor  

DOE Patents (OSTI)

Compositions and methods are provided for detection of certain heavy metals using bacterial whole cell biosensors.

Hillson, Nathan J; Shapiro, Lucille; Hu, Ping; Andersen, Gary L

2014-04-15T23:59:59.000Z

314

Method of fabricating a solar cell  

DOE Patents (OSTI)

Methods of fabricating solar cells are described. A porous layer may be formed on a surface of a substrate, the porous layer including a plurality of particles and a plurality of voids. A solution may be dispensed into one or more regions of the porous layer to provide a patterned composite layer. The substrate may then be heated.

Pass, Thomas; Rogers, Robert

2014-02-25T23:59:59.000Z

315

Method of fabrication of anchored nanostructure materials  

SciTech Connect

Methods for fabricating anchored nanostructure materials are described. The methods include heating a nano-catalyst under a protective atmosphere to a temperature ranging from about 450.degree. C. to about 1500.degree. C. and contacting the heated nano-catalysts with an organic vapor to affix carbon nanostructures to the nano-catalysts and form the anchored nanostructure material.

Seals, Roland D; Menchhofer, Paul A; Howe, Jane Y; Wang, Wei

2013-11-26T23:59:59.000Z

316

Environmentally Benign Flame Retardant Nanocoatings for Fabric  

E-Print Network (OSTI)

testing. A silica-like sheath was formed after burning that protected the fibers. Finally, the first intumescent LbL assembly was deposited on cotton fabric. SEM images show significant bubble formation on fibers, coated with a 0.5 wt percent PAAm/1 wt...

Li, Yu-Chin

2012-07-16T23:59:59.000Z

317

Partial oxidation of lower alkanes by active lattice oxygen of metal oxide systems: 2. Synthesis of solid contacts and syngas production in a pilot plant with a riser reactor  

Science Journals Connector (OSTI)

Metal oxide systems with a high lattice-oxygen content, which exhibit reversibility of oxidationreduction transitions, have been synthesized and characterized. Oxidant Solid Contacts have been prepared using t...

I. M. Gerzeliev; N. Ya. Usachev; A. Yu. Popov; S. N. Khadzhiev

2012-09-01T23:59:59.000Z

318

Application of Self-Propagating High Temperature Synthesis to the Fabrication of Actinide Bearing Nitride and Other Ceramic Nuclear Fuels  

SciTech Connect

The project uses an exothermic combustion synthesis reaction, termed self-propagating high-temperature synthesis (SHS), to produce high quality, reproducible nitride fuels and other ceramic type nuclear fuels (cercers and cermets, etc.) in conjunction with the fabrication of transmutation fuels. The major research objective of the project is determining the fundamental SHS processing parameters by first using manganese as a surrogate for americium to produce dense Zr-Mn-N ceramic compounds. These fundamental principles will then be transferred to the production of dense Zr-Am-N ceramic materials. A further research objective in the research program is generating fundamental SHS processing data to the synthesis of (i) Pu-Am-Zr-N and (ii) U-Pu-Am-N ceramic fuels. In this case, Ce will be used as the surrogate for Pu, Mn as the surrogate for Am, and depleted uranium as the surrogate for U. Once sufficient fundamental data has been determined for these surrogate systems, the information will be transferred to Idaho National Laboratory (INL) for synthesis of Zr-Am-N, Pu-Am-Zr-N and U-Pu-Am-N ceramic fuels. The high vapor pressures of americium (Am) and americium nitride (AmN) are cause for concern in producing nitride ceramic nuclear fuel that contains Am. Along with the problem of Am retention during the sintering phases of current processing methods, are additional concerns of producing a consistent product of desirable homogeneity, density and porosity. Similar difficulties have been experienced during the laboratory scale process development stage of producing metal alloys containing Am wherein compact powder sintering methods had to be abandoned. Therefore, there is an urgent need to develop a low-temperature or lowheat fuel fabrication process for the synthesis of Am-containing ceramic fuels. Self-propagating high temperature synthesis (SHS), also called combustion synthesis, offers such an alternative process for the synthesis of Am nitride fuels. Although SHS takes thermodynamic advantage of the high combustion temperatures of these exothermic SHS reactions to synthesize the required compounds, the very fast heating, reaction and cooling rates can kinetically generate extremely fast reaction rates and facilitate the retention of volatile species within the rapidly propagating SHS reaction front. The initial objective of the research program is to use Mn as the surrogate for Am to synthesize a reproducible, dense, high quality Zr-Mn-N ceramic compound. Having determined the fundamental SHS reaction parameters and optimized SHS processing steps using Mn as the surrogate for Am, the technology will be transferred to Idaho National Laboratory to successfully synthesize a high quality Zr-Am-N ceramic fuel.

John J. Moore, Marissa M. Reigel, Collin D. Donohoue

2009-04-30T23:59:59.000Z

319

Trending: Metal Oxo Bonds  

NLE Websites -- All DOE Office Websites (Extended Search)

Trending: Metal Oxo Bonds Print Trending: Metal Oxo Bonds Print Metal oxides are important for scientific and technical applications in a variety of disciplines, including materials science, chemistry, and biology. Highly covalent metal-oxygen multiple bonds (metal oxos) are the building blocks of metal oxides and have a bearing on the oxide's desirable chemical, magnetic, electronic, and thermal properties. The lack of a more sophisticated grasp of bonding in metal oxides constitutes a roadblock to innovation in a wide variety of important emergent technologies, including industrial catalysis, biomimetic transformations, and artificial photosynthesis. To address this problem, a research team from four national laboratories, three Department of Energy synchrotron user facilities, and the University of Washington has applied spectroscopic and computational analyses to a number of metal oxides, quantifying trends in metal oxo bonding for groups of metals across the periodic table.

320

Trending: Metal Oxo Bonds  

NLE Websites -- All DOE Office Websites (Extended Search)

Trending: Metal Oxo Bonds Print Trending: Metal Oxo Bonds Print Metal oxides are important for scientific and technical applications in a variety of disciplines, including materials science, chemistry, and biology. Highly covalent metal-oxygen multiple bonds (metal oxos) are the building blocks of metal oxides and have a bearing on the oxide's desirable chemical, magnetic, electronic, and thermal properties. The lack of a more sophisticated grasp of bonding in metal oxides constitutes a roadblock to innovation in a wide variety of important emergent technologies, including industrial catalysis, biomimetic transformations, and artificial photosynthesis. To address this problem, a research team from four national laboratories, three Department of Energy synchrotron user facilities, and the University of Washington has applied spectroscopic and computational analyses to a number of metal oxides, quantifying trends in metal oxo bonding for groups of metals across the periodic table.

Note: This page contains sample records for the topic "fabricated metal product" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Trending: Metal Oxo Bonds  

NLE Websites -- All DOE Office Websites (Extended Search)

Trending: Metal Oxo Bonds Print Trending: Metal Oxo Bonds Print Metal oxides are important for scientific and technical applications in a variety of disciplines, including materials science, chemistry, and biology. Highly covalent metal-oxygen multiple bonds (metal oxos) are the building blocks of metal oxides and have a bearing on the oxide's desirable chemical, magnetic, electronic, and thermal properties. The lack of a more sophisticated grasp of bonding in metal oxides constitutes a roadblock to innovation in a wide variety of important emergent technologies, including industrial catalysis, biomimetic transformations, and artificial photosynthesis. To address this problem, a research team from four national laboratories, three Department of Energy synchrotron user facilities, and the University of Washington has applied spectroscopic and computational analyses to a number of metal oxides, quantifying trends in metal oxo bonding for groups of metals across the periodic table.

322

Trending: Metal Oxo Bonds  

NLE Websites -- All DOE Office Websites (Extended Search)

Trending: Metal Oxo Bonds Print Trending: Metal Oxo Bonds Print Metal oxides are important for scientific and technical applications in a variety of disciplines, including materials science, chemistry, and biology. Highly covalent metal-oxygen multiple bonds (metal oxos) are the building blocks of metal oxides and have a bearing on the oxide's desirable chemical, magnetic, electronic, and thermal properties. The lack of a more sophisticated grasp of bonding in metal oxides constitutes a roadblock to innovation in a wide variety of important emergent technologies, including industrial catalysis, biomimetic transformations, and artificial photosynthesis. To address this problem, a research team from four national laboratories, three Department of Energy synchrotron user facilities, and the University of Washington has applied spectroscopic and computational analyses to a number of metal oxides, quantifying trends in metal oxo bonding for groups of metals across the periodic table.

323

FABRICATION OF URANIUM OXYCARBIDE KERNELS AND COMPACTS FOR HTR FUEL  

SciTech Connect

As part of the program to demonstrate tristructural isotropic (TRISO)-coated fuel for the Next Generation Nuclear Plant (NGNP), Advanced Gas Reactor (AGR) fuel is being irradiation tested in the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL). This testing has led to improved kernel fabrication techniques, the formation of TRISO fuel particles, and upgrades to the overcoating, compaction, and heat treatment processes. Combined, these improvements provide a fuel manufacturing process that meets the stringent requirements associated with testing in the AGR experimentation program. Researchers at Idaho National Laboratory (INL) are working in conjunction with a team from Babcock and Wilcox (B&W) and Oak Ridge National Laboratory (ORNL) to (a) improve the quality of uranium oxycarbide (UCO) fuel kernels, (b) deposit TRISO layers to produce a fuel that meets or exceeds the standard developed by German researches in the 1980s, and (c) develop a process to overcoat TRISO particles with the same matrix material, but applies it with water using equipment previously and successfully employed in the pharmaceutical industry. A primary goal of this work is to simplify the process, making it more robust and repeatable while relying less on operator technique than prior overcoating efforts. A secondary goal is to improve first-pass yields to greater than 95% through the use of established technology and equipment. In the first test, called AGR-1, graphite compacts containing approximately 300,000 coated particles were irradiated from December 2006 to November 2009. The AGR-1 fuel was designed to closely replicate many of the properties of German TRISO-coated particles, thought to be important for good fuel performance. No release of gaseous fission product, indicative of particle coating failure, was detected in the nearly 3-year irradiation to a peak burn up of 19.6% at a time-average temperature of 10381121C. Before fabricating AGR-2 fuel, each fabrication process was improved and changed. Changes to the kernel fabrication process included replacing the carbon black powder feed with a surface-modified carbon slurry and shortening the sintering schedule. AGR-2 TRISO particles were produced in a 6-inch diameter coater using a charge size about 21-times that of the 2-inch diameter coater used to coat AGR-1 particles. The compacting process was changed to increase matrix density and throughput by increasing the temperature and pressure of pressing and using a different type of press. AGR-2 fuel began irradiation in the ATR in late spring 2010.

Dr. Jeffrey A. Phillips; Eric L. Shaber; Scott G. Nagley

2012-10-01T23:59:59.000Z

324

Composite material having high thermal conductivity and process for fabricating same  

DOE Patents (OSTI)

A process is disclosed for fabricating a composite material such as that having high thermal conductivity and having specific application as a heat sink or heat spreader for high density integrated circuits. The composite material produced by this process has a thermal conductivity between that of diamond and copper, and basically consists of coated diamond particles dispersed in a high conductivity metal, such as copper. The composite material can be fabricated in small or relatively large sizes using inexpensive materials. The process basically consists, for example, of sputter coating diamond powder with several elements, including a carbide forming element and a brazeable material, compacting them into a porous body, and infiltrating the porous body with a suitable braze material, such as copper-silver alloy, thereby producing a dense diamond-copper composite material with a thermal conductivity comparable to synthetic diamond films at a fraction of the cost. 7 figs.

Colella, N.J.; Davidson, H.L.; Kerns, J.A.; Makowiecki, D.M.

1998-07-21T23:59:59.000Z

325

Composite material having high thermal conductivity and process for fabricating same  

DOE Patents (OSTI)

A process for fabricating a composite material such as that having high thermal conductivity and having specific application as a heat sink or heat spreader for high density integrated circuits. The composite material produced by this process has a thermal conductivity between that of diamond and copper, and basically consists of coated diamond particles dispersed in a high conductivity metal, such as copper. The composite material can be fabricated in small or relatively large sizes using inexpensive materials. The process basically consists, for example, of sputter coating diamond powder with several elements, including a carbide forming element and a brazeable material, compacting them into a porous body, and infiltrating the porous body with a suitable braze material, such as copper-silver alloy, thereby producing a dense diamond-copper composite material with a thermal conductivity comparable to synthetic diamond films at a fraction of the cost.

Colella, Nicholas J. (Livermore, CA); Davidson, Howard L. (San Carlos, CA); Kerns, John A. (Livermore, CA); Makowiecki, Daniel M. (Livermore, CA)

1998-01-01T23:59:59.000Z

326

Fabrication of high-density cantilever arrays and through-wafer interconnects  

SciTech Connect

Processes to fabricate dense, dry released microstructures with electrical connections on the opposite side of the wafer are described. A 10 x 10 array of silicon and polysilicon cantilevers with high packing density (5 tips/mm2) and high uniformity (<10 m length variation across the wafer) are demonstrated. The cantilever release process uses a deep SF6/C4F8, plasma etch followed by a HBr plasma etch to accurately release cantilevers. A process for fabricating electrical contacts through the backside of the wafer is also described. Electrodeposited resist, conformal CVD metal deposition and deep SF6/C4F8 plasma etching are used to make 30 m/side square vias each of which has a resistance of 50 m(omega).

A. Harley, J.; Abdollahi-Alibeik, S.; Chow, E. M.; Kenney, T. W.; McCarthy, A. M.; McVittie, J. P.; Partridge; Quate, C. F.; Soh, H. T.

1998-11-03T23:59:59.000Z

327

Lightning Arrestor Connectors Production Readiness  

SciTech Connect

The Lightning Arrestor Connector (LAC), part M, presented opportunities to improve the processes used to fabricate LACs. The A## LACs were the first production LACs produced at the KCP, after the product was transferred from Pinnellas. The new LAC relied on the lessons learned from the A## LACs; however, additional improvements were needed to meet the required budget, yield, and schedule requirements. Improvement projects completed since 2001 include Hermetic Connector Sealing Improvement, Contact Assembly molding Improvement, development of a second vendor for LAC shells, general process improvement, tooling improvement, reduction of the LAC production cycle time, and documention of the LAC granule fabrication process. This report summarizes the accomplishments achieved in improving the LAC Production Readiness.

Marten, Steve; Linder, Kim; Emmons, Jim; Gomez, Antonio; Hasam, Dawud; Maurer, Michelle

2008-10-20T23:59:59.000Z

328

Los Alamos National Laboratory summary plan to fabricate mixed oxide lead assemblies for the fissile material disposition program  

SciTech Connect

This report summarizes an approach for using existing Los Alamos National Laboratory (Laboratory) mixed oxide (MOX) fuel-fabrication and plutonium processing capabilities to expedite and assure progress in the MOX/Reactor Plutonium Disposition Program. Lead Assembly MOX fabrication is required to provide prototypic fuel for testing in support of fuel qualification and licensing requirements. It is also required to provide a bridge for the full utilization of the European fabrication experience. In part, this bridge helps establish, for the first time since the early 1980s, a US experience base for meeting the safety, licensing, safeguards, security, and materials control and accountability requirements of the Department of Energy and Nuclear Regulatory Commission. In addition, a link is needed between the current research and development program and the production of disposition mission fuel. This link would also help provide a knowledge base for US regulators. Early MOX fabrication and irradiation testing in commercial nuclear reactors would provide a positive demonstration to Russia (and to potential vendors, designers, fabricators, and utilities) that the US has serious intent to proceed with plutonium disposition. This report summarizes an approach to fabricating lead assembly MOX fuel using the existing MOX fuel-fabrication infrastructure at the Laboratory.

Buksa, J.J.; Eaton, S.L.; Trellue, H.R.; Chidester, K.; Bowidowicz, M.; Morley, R.A.; Barr, M.

1997-12-01T23:59:59.000Z

329

Metal Surface Decontamination by the PFC Solution  

SciTech Connect

PFC (per-fluorocarbon) spray decontamination equipment was fabricated and its decontamination behavior was investigated. Europium oxide powder was mixed with the isotope solution which contains Co-60 and Cs-137. The different shape of metal specimens artificially contaminated with europium oxide powder was used as the surrogate contaminants. Before and after the application of the PFC spray decontamination method, the radioactivity of the metal specimens was measured by MCA. The decontamination factors were in the range from 9.6 to 62.4. The spent PFC solution was recycled by distillation. Before and after distillation, the turbidity of PFC solution was also measured. From the test results, it was found that more than 98% of the PFC solution could be recycled by a distillation. (authors)

Hui-Jun Won; Gye-Nam Kim; Wang-Kyu Choi; Chong-Hun Jung; Won-Zin Oh [Korea Atomic Energy Research Institute - KAERI, P.O.Box 105, Yuseong, Daejeon, Korea, 305-353 (Korea, Republic of)

2006-07-01T23:59:59.000Z

330

Upgrading of petroleum oil feedstocks using alkali metals and hydrocarbons  

DOE Patents (OSTI)

A method of upgrading an oil feedstock by removing heteroatoms and/or one or more heavy metals from the oil feedstock composition. This method reacts the oil feedstock with an alkali metal and an upgradant hydrocarbon. The alkali metal reacts with a portion of the heteroatoms and/or one or more heavy metals to form an inorganic phase separable from the organic oil feedstock material. The upgradant hydrocarbon bonds to the oil feedstock material and increases the number of carbon atoms in the product. This increase in the number of carbon atoms of the product increases the energy value of the resulting oil feedstock.

Gordon, John Howard

2014-09-09T23:59:59.000Z

331

Carbonation of metal silicates for long-term CO2 sequestration  

DOE Patents (OSTI)

In a preferred embodiment, the invention relates to a process of sequestering carbon dioxide. The process comprises the steps of: (a) reacting a metal silicate with a caustic alkali-metal hydroxide to produce a hydroxide of the metal formerly contained in the silicate; (b) reacting carbon dioxide with at least one of a caustic alkali-metal hydroxide and an alkali-metal silicate to produce at least one of an alkali-metal carbonate and an alkali-metal bicarbonate; and (c) reacting the metal hydroxide product of step (a) with at least one of the alkali-metal carbonate and the alkali-metal bicarbonate produced in step (b) to produce a carbonate of the metal formerly contained in the metal silicate of step (a).

Blencoe, James G; Palmer, Donald A; Anovitz, Lawrence M; Beard, James S

2014-03-18T23:59:59.000Z

332

DEVELOPMENT OF CONTINUOUS SOLVENT EXTRACTION PROCESSES FOR COAL DERIVED CARBON PRODUCTS  

SciTech Connect

The purpose of this DOE-funded effort is to develop continuous processes for solvent extraction of coal for the production of carbon products. The largest applications are those which support metals smelting, such as anodes for aluminum smelting and electrodes for arc furnaces. Other carbon products include materials used in creating fuels for the Direct Carbon Fuel Cell, metals smelting, especially in the aluminum and steel industries, as well as porous carbon structural material referred to as ''carbon foam'' and carbon fibers. During this reporting period, coking and composite fabrication continued using coal-derived samples. These samples were tested in direct carbon fuel cells. Methodology was refined for determining the aromatic character of hydro treated liquid, based on Nuclear Magnetic Resonance (NMR) and Fourier Transform Infrared (FTIR). Tests at GrafTech International showed that binder pitches produced using the WVU solvent extraction protocol can result in acceptable graphite electrodes for use in arc furnaces. These tests were made at the pilot scale.

Elliot B. Kennel; R. Michael Bergen; Stephen P. Carpenter; Dady Dadyburjor; Manoj Katakdaunde; Liviu Magean; Alfred H. Stiller; W. Morgan Summers; John W. Zondlo

2006-05-12T23:59:59.000Z

333

ARIES-CS COIL STRUCTURE ADVANCED FABRICATION APPROACH  

E-Print Network (OSTI)

: ARIES-CS, advanced fabrication, additive manufacturing Note: Some figures in this paper are in color with conventional means would be very challenging and costly. A new fabrication technology is "additive manufac

California at San Diego, University of

334

Design and Fabrication of Security and Home Automation System  

Science Journals Connector (OSTI)

Home automation system was designed and fabricated for controlling of home appliances, gas detection and home security. The fabricated system could detect the ... the house or office and the operation of home app...

Eung Soo Kim; Min Sung Kim

2006-01-01T23:59:59.000Z

335

Analysis of a Fabric/Desiccant Window Cavity Dehumidifier  

E-Print Network (OSTI)

This paper presents the results of an exploratory study of a fabric/desiccant window cavity dehumidifier system for possible use in commercial buildings. The objective was to evaluate fabrics commonly used in buildings, and system concepts...

Hunn, B. D.; Grasso, M. M.; Vadlamani, V.

1994-01-01T23:59:59.000Z

336

Effective Conveyor Belt Inspection for Improved Mining Productivity  

SciTech Connect

This document details progress on the project entitled ''Effective Conveyor Belt Inspection for Improved Mining Productivity'' during the period from November 15, 2004 to May 14, 2004. Highlights include fabrication of an improved LED lightbar, fabrication of a line-scan sensor head for the Smart-Camera based prototype, and development of prototype vulcanized splice detection algorithms.

Chris Fromme

2006-06-01T23:59:59.000Z

337

Smooth electrode and method of fabricating same  

DOE Patents (OSTI)

A smooth electrode is provided. The smooth electrode includes at least one metal layer having thickness greater than about 1 micron; wherein an average surface roughness of the smooth electrode is less than about 10 nm.

Weaver, Stanton Earl (Northville, NY); Kennerly, Stacey Joy (Albany, NY); Aimi, Marco Francesco (Niskayuna, NY)

2012-08-14T23:59:59.000Z

338

Fabrication of carbon nanotube nanogap electrodes by helium ion sputtering for molecular contacts  

SciTech Connect

Carbon nanotube nanogaps have been used to contact individual organic molecules. However, the reliable fabrication of a truly nanometer-sized gap remains a challenge. We use helium ion beam lithography to sputter nanogaps of only (2.8 0.6) nm size into single metallic carbon nanotubes embedded in a device geometry. The high reproducibility of the gap size formation provides a reliable nanogap electrode testbed for contacting small organic molecules. To demonstrate the functionality of these nanogap electrodes, we integrate oligo(phenylene ethynylene) molecular rods, and measure resistance before and after gap formation and with and without contacted molecules.

Thiele, Cornelius, E-mail: Cornelius.Thiele@kit.edu [Institute of Nanotechnology, Karlsruhe Institute of Technology, 76021 Karlsruhe (Germany) [Institute of Nanotechnology, Karlsruhe Institute of Technology, 76021 Karlsruhe (Germany); DFG Center for Functional Nanostructures (CFN), 76028 Karlsruhe (Germany); Vieker, Henning; Beyer, Andr; Glzhuser, Armin [Faculty of Physics, Bielefeld University, 33615 Bielefeld (Germany)] [Faculty of Physics, Bielefeld University, 33615 Bielefeld (Germany); Flavel, Benjamin S.; Hennrich, Frank [Institute of Nanotechnology, Karlsruhe Institute of Technology, 76021 Karlsruhe (Germany)] [Institute of Nanotechnology, Karlsruhe Institute of Technology, 76021 Karlsruhe (Germany); Muoz Torres, David; Eaton, Thomas R. [Department of Chemistry, University of Basel, 4056 Basel (Switzerland)] [Department of Chemistry, University of Basel, 4056 Basel (Switzerland); Mayor, Marcel [Institute of Nanotechnology, Karlsruhe Institute of Technology, 76021 Karlsruhe (Germany) [Institute of Nanotechnology, Karlsruhe Institute of Technology, 76021 Karlsruhe (Germany); DFG Center for Functional Nanostructures (CFN), 76028 Karlsruhe (Germany); Department of Chemistry, University of Basel, 4056 Basel (Switzerland); Kappes, Manfred M. [Institute of Nanotechnology, Karlsruhe Institute of Technology, 76021 Karlsruhe (Germany) [Institute of Nanotechnology, Karlsruhe Institute of Technology, 76021 Karlsruhe (Germany); DFG Center for Functional Nanostructures (CFN), 76028 Karlsruhe (Germany); Institut fr Physikalische Chemie, Karlsruhe Institute of Technology, 76131 Karlsruhe (Germany); Lhneysen, Hilbert v. [Institute of Nanotechnology, Karlsruhe Institute of Technology, 76021 Karlsruhe (Germany) [Institute of Nanotechnology, Karlsruhe Institute of Technology, 76021 Karlsruhe (Germany); DFG Center for Functional Nanostructures (CFN), 76028 Karlsruhe (Germany); Physikalisches Institut, Karlsruhe Institute of Technology, 76128 Karlsruhe (Germany); Institut fr Festkrperphysik, Karlsruhe Institute of Technology, 76021 Karlsruhe (Germany); and others

2014-03-10T23:59:59.000Z

339

An experimental approach to compare wicking abilities of fabric materials for heat pipe applications  

SciTech Connect

Replacement of components of a space reactor heat pipe by advanced ceramic fabrics will decrease system mass considerably. Replacement of the metal wick by a fibrous materials makes calculation of the wicking ability difficult. An experimental approach is necessary to ensure that heat transport ability is not affected considerably and to optimize material chosen for wicking structure. Variables such as material composition, surface preparation, weave type and density, and pressure/temperature variations need to be examined. Two experiments are discussed which allow complete comparison of all these variables and measurement of the wicking ability. These experiments are unique in their approach to simulation of operating conditions of the heat pipe.

Marks, T.S.; Klein, A.C. (Department of Nuclear Engineering Radiation Center, C116 Oregon State University Corvallis, OR 97331-5902 (US))

1991-01-05T23:59:59.000Z

340

Metal-Air Batteries  

SciTech Connect

Metal-air batteries have much higher specific energies than most currently available primary and rechargeable batteries. Recent advances in electrode materials and electrolytes, as well as new designs on metal-air batteries, have attracted intensive effort in recent years, especially in the development of lithium-air batteries. The general principle in metal-air batteries will be reviewed in this chapter. The materials, preparation methods, and performances of metal-air batteries will be discussed. Two main metal-air batteries, Zn-air and Li-air batteries will be discussed in detail. Other type of metal-air batteries will also be described.

Zhang, Jiguang; Bruce, Peter G.; Zhang, Gregory

2011-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "fabricated metal product" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Update on uranium-molybdenum fuel foil fabrication development activities at the Y-12 National Security Complex in 2007  

SciTech Connect

In support of the RERTR Program, efforts are underway at Y-12 to develop and validate a production oriented, monolithic uranium molybdenum (U-Mo) foil fabrication process adaptable for potential implementation in a manufacturing environment. These efforts include providing full-scale prototype depleted and enriched U-Mo foils in support of fuel qualification testing. The work has three areas of focus; develop and demonstrate a feasible foil fabrication process utilizing depleted uranium-molybdenum (DU-Mo) source material, transition these production techniques to enriched uranium (EU-Mo) source material, and evaluate full-scale implementation of the developed production techniques. In 2006, Y-12 demonstrated successful fabrication of full-size DU-10Mo foils. In 2007, Y-12 activities were expanded to include continued DU-Mo foil fabrication with a focus on process refinement, source material impurity effects (specifically carbon), and the feasibility of physical vapor deposition (PVD) on DU-10Mo mini-foils. FY2007 activities also included a transition to EU-Mo and fabrication of full-size enriched foils. The purpose of this report is to update the RERTR audience on Y-12 efforts in 2007 that support the overall RERTR Program goals. (author)

DeMint, Amy; Gooch, Jack [Technology Development, Y-12 National Security Complex, Oak Ridge, TN 37830 (United States); Dunavant, Randy J.; Andes, Trent C. [National Security Programs, Y-12 National Security Complex, Oak Ridge, TN 37830 (United States)

2008-07-15T23:59:59.000Z

342

OPT Optics and Metrology Fabrication Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Fabrication & X-ray Laboratories Fabrication & X-ray Laboratories Search Button About Welcome Overview Visiting the APS Mission & Goals Find People Organization Charts Committees Job Openings User Information Prospective Users New Users Current Users APS User Portal Macromolecular Crystallographers Administrators Find a Beamline Apply for Beam Time Contacts Calendars Community Scientific Access Site Access Training Science & Education Science & Research Highlights Conferences Seminars Publications Annual Reports APS Upgrade Courses and Schools Graduate Programs Scientific Software Media Center Calendar of Events APS News User News Argonne/APS Press Releases Argonne/APS Feature Stories Argonne/APS In The News Article Archives APS Brochure Annual Reports Posters Podcasts Image Gallery Video Library Syndicated Feeds (RSS)

343

Miniature plastic gripper and fabrication method  

DOE Patents (OSTI)

A miniature plastic gripper actuated by inflation of a miniature balloon and method of fabricating same. The gripper is constructed of either heat-shrinkable or heat-expandable plastic tubing and is formed around a mandrel, then cut to form gripper prongs or jaws and the mandrel removed. The gripper is connected at one end with a catheter or tube having an actuating balloon at its tip, whereby the gripper is opened or closed by inflation or deflation of the balloon. The gripper is designed to removably retain a member to which is connected a quantity or medicine, plugs, or micro-components. The miniature plastic gripper is inexpensive to fabricate and can be used for various applications, such as gripping, sorting, or placing of micron-scale particles for analysis.

Benett, William J. (Livermore, CA); Krulevitch, Peter A. (Los Altos, CA); Lee, Abraham P. (Walnut Creek, CA); Northrup, Milton A. (Berkeley, CA); Folta, James A. (Livermore, CA)

1997-01-01T23:59:59.000Z

344

Fabrication method for miniature plastic gripper  

DOE Patents (OSTI)

A miniature plastic gripper is described actuated by inflation of a miniature balloon and method of fabricating same. The gripper is constructed of either heat-shrinkable or heat-expandable plastic tubing and is formed around a mandrel, then cut to form gripper prongs or jaws and the mandrel removed. The gripper is connected at one end with a catheter or tube having an actuating balloon at its tip, whereby the gripper is opened or dosed by inflation or deflation of the balloon. The gripper is designed to removably retain a member to which is connected a quantity or medicine, plugs, or micro-components. The miniature plastic gripper is inexpensive to fabricate and can be used for various applications, such as gripping, sorting, or placing of micron-scale particles for analysis. 8 figs.

Benett, W.J.; Krulevitch, P.A.; Lee, A.P.; Northrup, M.A.; Folta, J.A.

1998-07-21T23:59:59.000Z

345

Miniature plastic gripper and fabrication method  

DOE Patents (OSTI)

A miniature plastic gripper actuated by inflation of a miniature balloon and method of fabricating same are disclosed. The gripper is constructed of either heat-shrinkable or heat-expandable plastic tubing and is formed around a mandrel, then cut to form gripper prongs or jaws and the mandrel removed. The gripper is connected at one end with a catheter or tube having an actuating balloon at its tip, whereby the gripper is opened or closed by inflation or deflation of the balloon. The gripper is designed to removably retain a member to which is connected a quantity or medicine, plugs, or micro-components. The miniature plastic gripper is inexpensive to fabricate and can be used for various applications, such as gripping, sorting, or placing of micron-scale particles for analysis. 8 figs.

Benett, W.J.; Krulevitch, P.A.; Lee, A.P.; Northrup, M.A.; Folta, J.A.

1997-03-11T23:59:59.000Z

346

Fabrication method for miniature plastic gripper  

DOE Patents (OSTI)

A miniature plastic gripper actuated by inflation of a miniature balloon and method of fabricating same. The gripper is constructed of either heat-shrinkable or heat-expandable plastic tubing and is formed around a mandrel, then cut to form gripper prongs or jaws and the mandrel removed. The gripper is connected at one end with a catheter or tube having an actuating balloon at its tip, whereby the gripper is opened or dosed by inflation or deflation of the balloon. The gripper is designed to removably retain a member to which is connected a quantity or medicine, plugs, or micro-components. The miniature plastic gripper is inexpensive to fabricate and can be used for various applications, such as gripping, sorting, or placing of micron-scale particles for analysis.

Benett, William J. (Livermore, CA); Krulevitch, Peter A. (Los Altos, CA); Lee, Abraham P. (Walnut Creek, CA); Northrup, Milton A. (Berkeley, CA); Folta, James A. (Livermore, CA)

1998-01-01T23:59:59.000Z

347

High-efficiency solar cell and method for fabrication  

DOE Patents (OSTI)

A high-efficiency 3- or 4-junction solar cell is disclosed with a theoretical AM0 energy conversion efficiency of about 40%. The solar cell includes p-n junctions formed from indium gallium arsenide nitride (InGaAsN), gallium arsenide (GaAs) and indium gallium aluminum phosphide (InGaAlP) separated by n-p tunnel junctions. An optional germanium (Ge) p-n junction can be formed in the substrate upon which the other p-n junctions are grown. The bandgap energies for each p-n junction are tailored to provide substantially equal short-circuit currents for each p-n junction, thereby eliminating current bottlenecks and improving the overall energy conversion efficiency of the solar cell. Additionally, the use of an InGaAsN p-n junction overcomes super-bandgap energy losses that are present in conventional multi-junction solar cells. A method is also disclosed for fabricating the high-efficiency 3- or 4-junction solar cell by metal-organic chemical vapor deposition (MOCVD).

Hou, Hong Q. (Albuquerque, NM); Reinhardt, Kitt C. (Albuquerque, NM)

1999-01-01T23:59:59.000Z

348

High-efficiency solar cell and method for fabrication  

DOE Patents (OSTI)

A high-efficiency 3- or 4-junction solar cell is disclosed with a theoretical AM0 energy conversion efficiency of about 40%. The solar cell includes p-n junctions formed from indium gallium arsenide nitride (InGaAsN), gallium arsenide (GaAs) and indium gallium aluminum phosphide (InGaAlP) separated by n-p tunnel junctions. An optional germanium (Ge) p-n junction can be formed in the substrate upon which the other p-n junctions are grown. The bandgap energies for each p-n junction are tailored to provide substantially equal short-circuit currents for each p-n junction, thereby eliminating current bottlenecks and improving the overall energy conversion efficiency of the solar cell. Additionally, the use of an InGaAsN p-n junction overcomes super-bandgap energy losses that are present in conventional multi-junction solar cells. A method is also disclosed for fabricating the high-efficiency 3- or 4-junction solar cell by metal-organic chemical vapor deposition (MOCVD). 4 figs.

Hou, H.Q.; Reinhardt, K.C.

1999-08-31T23:59:59.000Z

349

Corrosion resistance of transmission structures fabricated from weathering steel  

SciTech Connect

Introduced to utilities in the late 1960's, weathering steel' appeared to offer a way to reduce structure weight and maintenance of lattice towers through the application of bare, high strength steel that had natural corrosion resistance. Weathering steel found wide application in lattice and tubular transmission structures. Through its service life, however, the weathering steel showed evidence of continuing corrosion rather than the expected protection from corrosion. A consortium of utilities was formed to investigate the impact on structure reliability of the continuing corrosion of the steel beyond initial expectations. Through the completion of field surveys and laboratory tests, projected lifetime corrosion rates, structural integrity and potential sealer/penetrant systems were evaluated. The investigation has shown that existing lattice and tubular structures fabricated from weathering steel will provide continued reliable service with minimal maintenance programs. Weathering Steel remains practical for new lattice and tubular structures provided steps are taken during the design process to minimize the retention and collection of moisture between and around metal contact surfaces and during the operation of the line to minimize vegetation encroachment around structures.

Goodwin, E.J. (Sverdrup Technology TLMRC, Haslet, TX (United States)); Pohlman, J.C.

1993-01-01T23:59:59.000Z

350

Ceramic Thin Films: Fabrication and Applications  

Science Journals Connector (OSTI)

...SPRAYED CERAMIC COATING, JOURNAL...PB1-XCAXTIO3 THIN-FILM GROWN BY...ELECTRICAL, OPTICAL, AND ELECTRO-OPTIC...fabrication and applications. | Ceramics...controlled optical switches...Ceramic coatings ofalumina...modified by the application of mechanical...material as a thin film cannot only...successive coatings. Although...respect to CVD that the...purposes. Applications of Thin Film Ceramics...

M. Sayer; K. Sreenivas

1990-03-02T23:59:59.000Z

351

Design and Fabrication of Nanochannel Devices  

E-Print Network (OSTI)

and Stage 2 can be shifted horizontally to x-direction by rotating the handle. Butane torch is placed under the tubing to heat it up. The inset shows the deformation of the tubing under the heat and stretching??????? ..29 Fig. 12 SEM images... pace. In 1990s, a research interest in fluid handling microchannel devices boosted because of their genomics application and potential capability in bio/chemical agent detection. Now the fabrication techniques have pushed those devices down...

Wang, Miao

2010-10-12T23:59:59.000Z

352

Schottky barrier MOSFET systems and fabrication thereof  

DOE Patents (OSTI)

(MOS) device systems-utilizing Schottky barrier source and drain to channel region junctions are disclosed. Experimentally derived results which demonstrate operation of fabricated N-channel and P-channel Schottky barrier (MOSFET) devices, and of fabricated single devices with operational characteristics similar to (CMOS) and to a non-latching (SRC) are reported. Use of essentially non-rectifying Schottky barriers in (MOS) structures involving highly doped and the like and intrinsic semiconductor to allow non-rectifying interconnection of, and electrical accessing of device regions is also disclosed. Insulator effected low leakage current device geometries and fabrication procedures therefore are taught. Selective electrical interconnection of drain to drain, source to drain, or source to source, of N-channel and/or P-channel Schottky barrier (MOSFET) devices formed on P-type, N-type and Intrinsic semiconductor allows realization of Schottky Barrier (CMOS), (MOSFET) with (MOSFET) load, balanced differential (MOSFET) device systems and inverting and non-inverting single devices with operating characteristics similar to (CMOS), which devices can be utilized in modulation, as well as in voltage controled switching and effecting a direction of rectification.

Welch, James D. (10328 Pinehurst Ave., Omaha, NE 68124)

1997-01-01T23:59:59.000Z

353

Fabrication of brittle materials -- current status  

SciTech Connect

The research initiatives in the area of precision fabrication will be continued in the upcoming year. Three students, T. Bifano (PhD), P. Blake (PhD) and E. Smith (MS), finished their research programs in the last year. Sections 13 and 14 will summarize the essential results from the work of the Materials Engineering students Blake and Smith. Further details will be presented in forthcoming publications that are now in preparation. The results from Bifano`s thesis have been published in adequate detail and need not be summarized further. Three new students, S. Blackley (MS), H. Paul (PhD), and S. Smith (PhD) have joined the program and will continue the research efforts in precision fabrication. The programs for these students will be outlined in Sections 15 and 16. Because of the success of the earlier work in establishing new process models and experimental techniques for the study of diamond turning and diamond grinding, the new programs will, in part, build upon the earlier work. This is especially true for investigations concerned with brittle materials. The basic understanding of material response of nominally brittle materials during machining or grinding operations remains as a challenge. The precision fabrication of brittle materials will continue as an area of emphasis for the Precision Engineering Center.

Scattergood, R.O.

1988-12-01T23:59:59.000Z

354

Synthesis Of Fluorescent Metal Nanoclusters  

NLE Websites -- All DOE Office Websites (Extended Search)

Synthesis Of Fluorescent Metal Nanoclusters Synthesis Of Fluorescent Metal Nanoclusters Fluorescent metal nanoclusters were prepared. Available for thumbnail of Feynman Center...

355

Homogeneous fast-flux isotope-production reactor  

DOE Patents (OSTI)

A method is described for producing tritium in a liquid metal fast breeder reactor. Lithium target material is dissolved in the liquid metal coolant in order to facilitate the production and removal of tritium.

Cawley, W.E.; Omberg, R.P.

1982-08-19T23:59:59.000Z

356

Quality assurance during fabrication of high-damping rubber isolation bearings  

SciTech Connect

Successful implementation of a high-damping rubber (HDR) base isolation project requires the application of Quality Assurance/Quality Control (QA/QC) methodology through all phases of the bearing fabrication process. HDR base isolation bearings must be fabricated with uniform physical characteristics while being produced in large quantities. To satisfy this requirement, manufacturing processes must be controlled. Prototype tests that include dynamic testing of small samples of rubber are necessary. Stringent full scale bearing testing must be carried out prior to beginning production, during which manufacturing is strictly regulated by small rubber sample and production bearing testing. All such activities should be supervised and continuously inspected by independent and experienced QA/QC personnel.

Way, D.; Greaves, W.C. [Base Isolation Consultants, Inc., San Francisco, CA (United States)

1995-12-01T23:59:59.000Z

357

Fabrication and development of several heat pipe honeycomb sandwich panel concepts. Final report  

SciTech Connect

The feasibility of fabricating and processing liquid metal heat pipes in a low mass honeycomb sandwich panel configuration for application on the NASA Langley airframe-integrated Scramjet engine was investigated. A variety of honeycomb panel facesheet and core-ribbon wick concepts was evaluated within constraints dictated by existing manufacturing technology and equipment. The chosen design consists of an all-stainless steel structure, sintered screen facesheets, and two types of core-ribbon, a diffusion bonded wire mesh and a foil-screen composite. Cleaning, fluid charging, processing, and process port sealing techniques were established. The liquid metals, potassium, sodium and cesium were used as working fluids. Eleven honeycomb panels 15.24 cm X 15.24 cm X 2.94 cm were delivered to NASA Langley for extensive performance testing and evaluation, nine panels were processed as heat pipes, and two panels were left unprocessed.

Tanzer, H.J.

1982-06-01T23:59:59.000Z

358

Liquid Metal Thermal Electric Converter bench test module  

SciTech Connect

This report describes the design, fabrication, and test of a Liquid Metal Thermal Electric Converter Bench Test Module. The work presented in this document was conducted as a part of Heat Engine Task of the US Department of Energy's (DOE) Solar Thermal Technology Program. The objective of this task is the development and evaluation of heat engine technologies applicable to distributed receiver systems, in particular, dish electric systems.

Lukens, L.L.; Andraka, C.E.; Moreno, J.B.

1988-04-01T23:59:59.000Z

359

Steam generator for liquid metal fast breeder reactor  

DOE Patents (OSTI)

Improvements in the design of internal components of J-shaped steam generators for liquid metal fast breeder reactors. Complex design improvements have been made to the internals of J-shaped steam generators which improvements are intended to reduce tube vibration, tube jamming, flow problems in the upper portion of the steam generator, manufacturing complexities in tube spacer attachments, thermal stripping potentials and difficulties in the weld fabrication of certain components.

Gillett, James E. (Greensburg, PA); Garner, Daniel C. (Murrysville, PA); Wineman, Arthur L. (Greensburg, PA); Robey, Robert M. (North Huntingdon, PA)

1985-01-01T23:59:59.000Z

360

Development of insulating coatings for liquid metal blankets  

SciTech Connect

It is shown that self-cooled liquid metal blankets are feasible only with electrically insulating coatings at the duct walls. The requirements on the insulation properties are estimated by simple analytical models. Candidate insulator materials are selected based on insulating properties and thermodynamic consideration. Different fabrication technologies for insulating coatings are described. The status of the knowledge on the most crucial feasibility issue, the degradation of the resisivity under irradiation, is reviewed.

Malang, S.; Borgstedt, H.U. [Kernforschungszentrum Karlsruhe GmbH (Germany); Farnum, E.H. [Los Alamos National Lab., NM (United States); Natesan, K. [Argonne National Lab., IL (United States); Vitkovski, I.V. [Efremov Inst., St. Petersburg (Russian Federation). MHD-Machines Lab.

1994-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "fabricated metal product" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Metal phthalocyanine catalysts  

DOE Patents (OSTI)

As a new composition of matter, alkali metal or ammonium or tetraalkylammonium diazidoperfluorophthalocyanatoferrate. Other embodiments of the invention comprise compositions wherein the metal of the coordination complex is cobalt, manganese and chromium.

Ellis, Jr., Paul E. (Downingtown, PA); Lyons, James E. (Wallingford, PA)

1994-01-01T23:59:59.000Z

362

Supercritical Fluid Immersion Deposition: A New Process for Selective Deposition of Metal Films on Silicon Substrates  

SciTech Connect

Supercritical CO2 is used as a new solvent for immersion deposition, a galvanic displacement process traditionally carried out in aqueous HF solutions containing metal ions, to selectively develop metal films on featured or non-featured silicon substrates. Components of supercritical fluid immersion deposition (SFID) solutions for fabricating Cu and Pd films on silicon substrates are described along with the corresponding experimental setup and procedure. Only silicon substrates exposed and reactive to SFID solutions can be coated. The highly pressurized and gas-like supercritical CO2, combined with the galvanic displacement property of immersion deposition, enables the SFID technique to selectively deposit metal films in small features. SFID may also provide a new method to fabricate palladium silicide in small features or to metallize porous silicon.

Ye, Xiangrong; Wai, Chien M.; Lin, Yuehe; Young, James S.; Engelhard, Mark H.

2005-01-01T23:59:59.000Z

363

(Data in thousand metric tons of silicon content unless otherwise noted) Domestic Production and Use: Estimated value of silicon alloys and metal produced in the United States in 2013  

E-Print Network (OSTI)

producers of aluminum and aluminum alloys and the chemical industry. The semiconductor and solar industries, 47%; China, 22%; Canada, 12%; Venezuela, 11%; and other, 8%. Silicon metal: Brazil, 39%; South Africa, 20%; Canada, 14%; Australia, 9%; and other, 18%. Total: Russia, 21%; Brazil, 18%; Canada, 13%; South

364

Deposition of Contiguous Metal Adlayer on Transition Metal Nanostructu...  

NLE Websites -- All DOE Office Websites (Extended Search)

and Abstract Primary Lab Date Application 20100099012 Application 20100099012 Electrocatalyst Synthesized by Depositing a Contiguous Metal Adlayer on Transition Metal...

365

Synthesis of transition metal carbonitrides  

DOE Patents (OSTI)

Transition metal carbonitrides (in particular, titanium carbonitride, TiC.sub.0.5 N.sub.0.5) are synthesized by a self-propagating reaction between the metal (e.g., titanium) and carbon in a nitrogen atmosphere. Complete conversion to the carbonitride phase is achieved with the addition of TiN as diluent and with a nitrogen pressure .gtoreq.0.6 MPa. Thermodynamic phase-stability calculations and experimental characterizations of quenched samples provided revealed that the mechanism of formation of the carbonitride is a two-step process. The first step involves the formation of the nonstoichiometric carbide, TiC.sub.0.5, and is followed by the formation of the product by the incorporation of nitrogen in the defect-structure carbide.

Munir, Zuhair A. R. (Davis, CA); Eslamloo-Grami, Maryam (Davis, CA)

1994-01-01T23:59:59.000Z

366

IEEE PHOTONICS TECHNOLOGY LETTERS, VOL. 16, NO. 6, JUNE 2001 623 MetalSemiconductorMetal Traveling-Wave  

E-Print Network (OSTI)

in high-power distributed PD array or terahertz signal generation. Index Terms--Low-temperature-grown Ga­Semiconductor­Metal Traveling-Wave Photodetectors Jin-Wei Shi, Kian-Giap Gan, Yi-Jen Chiu, Yen-Hung Chen, Chi-Kuang Sun, Member-TWPD). Demonstrated devices were fabricated using low-temperature grown GaAs (LTG-GaAs). In order to achieve high

Bowers, John

367

Beryllium fabrication/cost assessment for ITER (International Thermonuclear Experimental Reactor)  

SciTech Connect

A fabrication and cost estimate of three possible beryllium shapes for the International Thermonuclear Experimental Reactor (ITER) blanket is presented. The fabrication method by hot pressing (HP), cold isostatic pressing plus sintering (CIP+S), cold isostatic pressing plus sintering plus hot isostatic pressing (CIP+S+HIP), and sphere production by atomization or rotary electrode will be discussed. Conventional hot pressing blocks of beryllium with subsequent machining to finished shapes can be more expensive than production of a net shape by cold isostatic pressing and sintering. The three beryllium shapes to be considered here and proposed for ITER are: (1) cubic blocks (3 to 17 cm on an edge), (2) tubular cylinders (33 to 50 mm i.d. by 62 mm o.d. by 8 m long), and (3) spheres (1--5 mm dia.). A rough cost estimate of the basic shape is presented which would need to be refined if the surface finish and tolerances required are better than the sintering process produces. The final cost of the beryllium in the blanket will depend largely on the machining and recycling of beryllium required to produce the finished product. The powder preparation will be discussed before shape fabrication. 10 refs., 6 figs.

Beeston, J.M. (Beeston (J.M.), Garrison, UT (USA)); Longhurst, G.R. (EG and G Idaho, Inc., Idaho Falls, ID (USA)); Parsonage, T. (Brush Wellman, Inc., Elmore, OH (USA))

1990-06-01T23:59:59.000Z

368

Iron Dominated Electromagnets: Design, Fabrication, Assembly and Measurements  

SciTech Connect

Medium energy electron synchrotrons used for the production of high energy photons from synchrotron radiation is an accelerator growth industry. Many of these accelerators have been built or are under construction to satisfy the needs of synchrotron light users throughout the world. Because of the long beam lifetimes required for these synchrotrons, these medium energy accelerators require the highest quality magnets of various types. Other accelerators, for instance low and medium energy boosters for high energy physics machines and electron/positron colliders, require the same types of magnets. Because of these needs, magnet design lectures, were organized and presented periodically at biennual classes organized under the auspices of the US Particle Accelerator School (USPAS). These classes were divided among areas of magnet design from fundamental theoretical considerations, the design approaches and algorithms for permanent magnet wigglers and undulators and the design and engineering of conventional accelerator magnets. The conventional magnet lectures were later expanded for the internal training of magnet designers at LLNL at the request of Lou Bertolini. Because of the broad nature of magnet design, Dr. S. Y. Lee, the former Director of the Particle Accelerator School, saw the need for a specialized course covering the various aspects of the design, engineering and fabrication of conventional magnets. This section of the class was isolated and augmented using the LLNL developed material resulting in the class on conventional magnet design. Conventional magnets are defined (for the purposes of this publication) as magnets whose field shape is dominated by the shape of the iron magnet yoke and are excited by coils, usually wound from solid or hollow water-cooled copper or aluminum conductors. This publication collects the lecture notes, written for the first course in the USPAS conventional magnet design course and evolved over subsequent presentations of this same course, and organizes the material roughly divided among two parts. One part is theoretical and computational and attempts to provide a foundation for later chapters which exploit the expressions and algorithms for the engineering and design calculations required to specify magnet conceptual designs. A chapter is devoted to the description and use of one of many magnet codes used to characterize the two dimensional field resulting from various magnet cross-sections. A chapter is included which exploits the two-dimensional theory and applies the mathematics to techniques and systems for magnet measurement. The second part of this publication ranges to practical issues associated with the fabrication of components, assembly, installation and alignment of magnets. This section also includes fabrication practices which respond to personnel and equipment protection needs. Required design calculations are supplemented by examples and problems. A CD is included with tools provided to simplify the computation of some of the more tedious relationships. This CD also includes useful photographs and pictures describing the high volume production of typical magnet types, which if included in the publication will add too many pages and increase the cost of publication. Styles among those facing similar problems will result in a wide variation of individual magnet designs. Designs and technologies will evolve and improve. This publication provides a snapshot of the present technology and presents as examples the magnet designs developed in response to the needs of several projects, the Advanced Light Source at LBNL, PEPII Low Energy Ring and SPEAR3 synchrotron light source at SLAC and the Australian Light Source, currently under construction in Melbourne. In each example, the reasons for fabrication design decisions are itemized and rationalized as much as is reasonable. The examples presented in this publication are provided as starting points which can be used as a design basis for magnets required for future projects. It is hoped that the listing of some design choi

Tanabe, Jack; /SLAC, SSRL

2005-09-19T23:59:59.000Z

369

Cermet insert high voltage holdoff improvement for ceramic/metal vacuum devices  

DOE Patents (OSTI)

An improved metal-to-ceramic seal is provided wherein the ceramic body of the seal contains an integral region of cermet material in electrical contact with the metallic member, e.g., an electrode, of the seal. The seal is useful in high voltage vacuum devices, e.g., vacuum switches, and increases the high-voltage holdoff capabilities of such devices. A method of fabricating such seals is also provided.

Ierna, W.F.

1986-03-11T23:59:59.000Z

370

Cobalt discovery replaces precious metals as industrial catalyst  

NLE Websites -- All DOE Office Websites (Extended Search)

Cobalt Discovery Replaces Precious Metals Cobalt Discovery Replaces Precious Metals Cobalt discovery replaces precious metals as industrial catalyst Cobalt holds promise as an industrial catalyst with potential applications in such energy-related technologies such as production of biofuels and reduction of carbon dioxide. November 26, 2012 The artwork depicts the substitution of cobalt for precious metals in catalysis as a variation on the ancient alchemical theme of transmuting base metals into precious ones. The artwork depicts the substitution of cobalt for precious metals in catalysis as a variation on the ancient alchemical theme of transmuting base metals into precious ones. Contact Nancy Ambrosiano Communications Office (505) 699-1149 Email Catalysts are also integral to thousands of industrial, synthetic, and

371

Cobalt discovery replaces precious metals as industrial catalyst  

NLE Websites -- All DOE Office Websites (Extended Search)

Cobalt discovery replaces precious metals Cobalt discovery replaces precious metals Cobalt discovery replaces precious metals as industrial catalyst Cobalt holds promise as an industrial catalyst with potential applications in such energy-related technologies such as production of biofuels and reduction of carbon dioxide. November 26, 2012 The artwork depicts the substitution of cobalt for precious metals in catalysis as a variation on the ancient alchemical theme of transmuting base metals into precious ones. The artwork depicts the substitution of cobalt for precious metals in catalysis as a variation on the ancient alchemical theme of transmuting base metals into precious ones. Contact Nancy Ambrosiano Communications Office (505) 699-1149 Email Catalysts are also integral to thousands of industrial, synthetic, and

372

Cobalt discovery replaces precious metals as industrial catalyst  

NLE Websites -- All DOE Office Websites (Extended Search)

Cobalt Discovery Replaces Precious Metals Cobalt Discovery Replaces Precious Metals Cobalt discovery replaces precious metals as industrial catalyst Cobalt holds promise as an industrial catalyst with potential applications in such energy-related technologies such as production of biofuels and reduction of carbon dioxide. November 26, 2012 The artwork depicts the substitution of cobalt for precious metals in catalysis as a variation on the ancient alchemical theme of transmuting base metals into precious ones. The artwork depicts the substitution of cobalt for precious metals in catalysis as a variation on the ancient alchemical theme of transmuting base metals into precious ones. Contact Nancy Ambrosiano Communications Office (505) 699-1149 Email Catalysts are also integral to thousands of industrial, synthetic, and

373

Uranium Metal: Potential for Discovering Commercial Uses  

NLE Websites -- All DOE Office Websites (Extended Search)

Uranium Metal Uranium Metal Potential for Discovering Commercial Uses Steven M. Baker, Ph.D. Knoxville Tn 5 August 1998 Summary Uranium Metal is a Valuable Resource 3 Large Inventory of "Depleted Uranium" 3 Need Commercial Uses for Inventory  Avoid Disposal Cost  Real Added Value to Society 3 Uranium Metal Has Valuable Properties  Density  Strength 3 Market will Come if Story is Told Background The Nature of Uranium Background 3 Natural Uranium: 99.3% U238; 0.7% U 235 3 U235 Fissile  Nuclear Weapons  Nuclear Reactors 3 U238 Fertile  Neutron Irradiation of U238 Produces Pu239  Neutrons Come From U235 Fission  Pu239 is Fissile (Weapons, Reactors, etc.) Post World War II Legacy Background 3 "Enriched" Uranium Product  Weapons Program 

374

Metallic Power Inc | Open Energy Information  

Open Energy Info (EERE)

Metallic Power Inc Metallic Power Inc Jump to: navigation, search Name Metallic Power Inc Place Carlsbad, California Zip CA 92009- Product Metallic Power, which closed down in September 2004, was focused on remote and distributed power solutions based on zinc-air fuel cell technology. Coordinates 31.60396°, -100.641609° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.60396,"lon":-100.641609,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

375

Multijunction photovoltaic device and fabrication method  

DOE Patents (OSTI)

A multijunction photovoltaic device includes first and second amorphous silicon PIN photovoltaic cells in a stacked arrangement. An interface layer, composed of a doped silicon compound, is disposed between the two cells and has a lower bandgap than the respective n- and p-type adjacent layers of the first and second cells. The interface layer forms an ohmic contact with the one or the adjacent cell layers of the same conductivity type, and a tunnel junction with the other of the adjacent cell layers. The disclosed device is fabricated by a glow discharge process.

Arya, Rajeewa R. (Jamison, PA); Catalano, Anthony W. (Furlong, PA)

1993-09-21T23:59:59.000Z

376

Design considerations for a ceramic fabric radiator  

SciTech Connect

The design of an Advanced Ceramic Fabric (ACF) thermal management device for use in both interplanetary and near-earth space must consider several important aspects of the environment. First, the radiation field at various locations is dominated by a proton component which deposits its energy on the surface of the device. Second, the ACF materials, as well as pressure liner materials, must also be compatible with the working fluids selected for the system. Third, the fluid dynamics and heat transfer characteristics of this device should be adequately characterized. With the proper consideration of materials and operating conditions, the Bubble Membrane Radiator (BMR) may be utilized for several advanced space missions. 17 refs.

Pauley, K.A.; Webb, B.J. (Pacific Northwest Lab., Richland, WA (USA)); Klein, A.C. (Oregon State Univ., Corvallis, OR (USA). Dept. of Nuclear Engineering)

1990-04-01T23:59:59.000Z

377

Method of fabricating bifacial tandem solar cells  

DOE Patents (OSTI)

A method of fabricating on a semiconductor substrate bifacial tandem solar cells with semiconductor subcells having a lower bandgap than the substrate bandgap on one side of the substrate and with subcells having a higher bandgap than the substrate on the other including, first, growing a lower bandgap subcell on one substrate side that uses only the same periodic table group V material in the dislocation-reducing grading layers and bottom subcells as is present in the substrate and after the initial growth is complete and then flipping the substrate and growing the higher bandgap subcells on the opposite substrate side which can be of different group V material.

Wojtczuk, Steven J; Chiu, Philip T; Zhang, Xuebing; Gagnon, Edward; Timmons, Michael

2014-10-07T23:59:59.000Z

378

Metal enrichment and reionization constraints on early star formation  

Science Journals Connector (OSTI)

......cut-offs for the IMFs, respectively. Z input denotes the metallicity of the gas from...results of analysis with higher fixed input metallicity for models 2-4 in Fig...not enrich the ISM with the products of nuclear fusion that takes place in the core. The ratio......

J. S. Bagla; Girish Kulkarni; T. Padmanabhan

2009-08-01T23:59:59.000Z

379

Sheffield Metals International | Open Energy Information  

Open Energy Info (EERE)

Metals International Metals International Jump to: navigation, search Name Sheffield Metals International Address 5467 Evergreen Parkway Place Sheffield Village, Ohio Zip 44054 Sector Buildings, Efficiency, Solar Product Agriculture; Consulting; Manufacturing; Retail product sales and distribution;Trainining and education Phone number 800-283-5262 Website http://www.sheffieldmetals.com Coordinates 41.452914°, -82.072009° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.452914,"lon":-82.072009,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

380

Challenges to achievement of metal sustainability in our high-tech society  

SciTech Connect

Achievement of sustainability in metal life cycles from mining of virgin ore to consumer and industrial devices to end-of-life products requires greatly increased recycling and improved processing of metals. Electronic and other high-tech products containing precious, toxic, and specialty metals usually have short lifetimes and low recycling rates. Products containing these metals generally are incinerated, discarded as waste in landfills, or dismantled in informal recycling using crude and environmentally irresponsible procedures. Low metal recycling rates coupled with increasing demand for products containing them necessitate increased mining with attendant environmental, health, energy, water, and carbon-footprint consequences. In this tutorial review, challenges to achieving metal sustainability in present high-tech society are presented; health, environmental, and economic incentives for various stakeholders to improve metal sustainability are discussed; a case for technical improvements in separations technology, especially employing molecular recognition, is given; and global consequences of continuing on the present path are examined.

Izatt, Reed M. [IBC Advanced Technologies, INC] [IBC Advanced Technologies, INC; Izatt, Steven R. [IBC Advanced Technologies, INC] [IBC Advanced Technologies, INC; Bruening, Ronald L. [IBC Advanced Technologies, INC] [IBC Advanced Technologies, INC; Izatt, Neil [IBC Advanced Technologies, INC] [IBC Advanced Technologies, INC; Moyer, Bruce A [ORNL] [ORNL

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fabricated metal product" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Extraction process for removing metallic impurities from alkalide metals  

DOE Patents (OSTI)

A development is described for removing metallic impurities from alkali metals by employing an extraction process wherein the metallic impurities are extracted from a molten alkali metal into molten lithium metal due to the immiscibility of the alkali metals in lithium and the miscibility of the metallic contaminants or impurities in the lithium. The purified alkali metal may be readily separated from the contaminant-containing lithium metal by simple decanting due to the differences in densities and melting temperatures of the alkali metals as compared to lithium.

Royer, L.T.

1987-03-20T23:59:59.000Z

382

Notice Type: Presolicitation  

E-Print Network (OSTI)

-- Fabricated Metal Product Manufacturing/332996 -- Fabricated Pipe and Pipe Fitting Manufacturing Synopsis Materials. (Microsoft IE required). Additional specifications and opening and closing dates will appear

383

The industrial ecology of metals: a reconnaissance  

Science Journals Connector (OSTI)

...Washington, DC 20036, USA Industrial ecology involves a systems...products to landfills. The industrial ecology of metals...Audrey Webber4 1 Belfer Center for Science and International...Washington, DC 20036, USA Industrial ecology involves a systems...Office of Technology Assessment 1992, based on personal...

1997-01-01T23:59:59.000Z

384

HIGH-TEMPERATURE ELECTROLYSIS FOR HYDROGEN PRODUCTION FROM NUCLEAR ENERGY  

SciTech Connect

An experimental study is under way to assess the performance of solid-oxide cells operating in the steam electrolysis mode for hydrogen production over a temperature range of 800 to 900C. Results presented in this paper were obtained from a ten-cell planar electrolysis stack, with an active area of 64 cm2 per cell. The electrolysis cells are electrolyte-supported, with scandia-stabilized zirconia electrolytes (~140 m thick), nickel-cermet steam/hydrogen electrodes, and manganite air-side electrodes. The metallic interconnect plates are fabricated from ferritic stainless steel. The experiments were performed over a range of steam inlet mole fractions (0.1 - 0.6), gas flow rates (1000 - 4000 sccm), and current densities (0 to 0.38 A/cm2). Steam consumption rates associated with electrolysis were measured directly using inlet and outlet dewpoint instrumentation. Cell operating potentials and cell current were varied using a programmable power supply. Hydrogen production rates up to 90 Normal liters per hour were demonstrated. Values of area-specific resistance and stack internal temperatures are presented as a function of current density. Stack performance is shown to be dependent on inlet steam flow rate.

James E. O'Brien; Carl M. Stoots; J. Stephen Herring; Joseph J. Hartvigsen

2005-10-01T23:59:59.000Z

385

Sacrificial template method of fabricating a nanotube  

DOE Patents (OSTI)

Methods of fabricating uniform nanotubes are described in which nanotubes were synthesized as sheaths over nanowire templates, such as using a chemical vapor deposition process. For example, single-crystalline zinc oxide (ZnO) nanowires are utilized as templates over which gallium nitride (GaN) is epitaxially grown. The ZnO templates are then removed, such as by thermal reduction and evaporation. The completed single-crystalline GaN nanotubes preferably have inner diameters ranging from 30 nm to 200 nm, and wall thicknesses between 5 and 50 nm. Transmission electron microscopy studies show that the resultant nanotubes are single-crystalline with a wurtzite structure, and are oriented along the <001> direction. The present invention exemplifies single-crystalline nanotubes of materials with a non-layered crystal structure. Similar "epitaxial-casting" approaches could be used to produce arrays and single-crystalline nanotubes of other solid materials and semiconductors. Furthermore, the fabrication of multi-sheath nanotubes are described as well as nanotubes having multiple longitudinal segments.

Yang, Peidong (Berkeley, CA); He, Rongrui (Berkeley, CA); Goldberger, Joshua (Berkeley, CA); Fan, Rong (El Cerrito, CA); Wu, Yi-Ying (Albany, CA); Li, Deyu (Albany, CA); Majumdar, Arun (Orinda, CA)

2007-05-01T23:59:59.000Z

386

Self-assembled monolayer cleaning methods: Towards fabrication of clean high-temperature superconductor nanostructures  

SciTech Connect

Although extensive amounts of research have been carried out on superconductor-normal metal-superconductor (SNS) electronic devices, the fabrication of superconductor SNS devices still remains difficult. Surface modification of high-temperature superconductors could be a way to control the interface of SNS electronic device fabrication. Here, we developed a cleaning method for thin films of high-temperature superconductor surface based on self-assembled monolayers. High-quality c-axis orientated YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} (i.e., YBCO) and Y{sub 0.6}Ca{sub 0.4}Ba{sub 1.6}La{sub 0.4}Cu{sub 3}O{sub 7-{delta}} (i.e., TX-YBCO) thin films were deposited by standard laser ablation methods. YBCO/Au/YBCO and TX-YBCO/Au/TX-YBCO planar type junctions were fabricated by photolithography, focused-ion-beam milling, and ex situ sputter depositions. A 40-50 nm nanotrench was ion milled on the thin film by FIB, and a thin gold layer was deposited by an ex situ method on the nanotrench to connect the two separated high-temperature superconductor electrodes. SEM, AFM, and R vs T resistivity measurements were used to compare the corrosion layer formed in the interface of the SNS junctions with the SAM cleaned SNS junction. Evidence here suggests that the SAM cleaning method can be used to remove the degradation layer on the surface of cuprate superconductors. The obtained contact resistivity value (10{sup -8} {omega} cm{sup 2}) for a SNS junction with SAM treatment is comparable with that of SNS junctions fabricated by the in situ methods.

Kim, Sungwook; Chang, In Soon; McDevitt, John T. [Department of Chemistry and Biochemistry, Center for Nano- and Molecular Science and Technology, University of Texas at Austin, Austin, Texas 78712-1167 (United States)

2005-04-11T23:59:59.000Z

387

EA-0534: Radioisotope Heat Source Fuel Processing and Fabrication, Los  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4: Radioisotope Heat Source Fuel Processing and Fabrication, 4: Radioisotope Heat Source Fuel Processing and Fabrication, Los Alamos, New Mexico EA-0534: Radioisotope Heat Source Fuel Processing and Fabrication, Los Alamos, New Mexico SUMMARY This EA evaluates the environmental impacts of a proposal to operate existing Pu-238 processing facilities at Savannah River Site, and fabricate a limited quantity of Pu-238 fueled heat sources at an existing facility at U.S. Department of Energy's Los Alamos National Laboratory. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD July 19, 1991 EA-0534: Finding of No Significant Impact Radioisotope Heat Source Fuel Processing and Fabrication July 19, 1991 EA-0534: Final Environmental Assessment Radioisotope Heat Source Fuel Processing and Fabrication

388

Photoactivated metal removal  

SciTech Connect

The authors propose the use of photochromic dyes as light activated switches to bind and release metal ions. This process, which can be driven by solar energy, can be used in environmental and industrial processes to remove metals from organic and aqueous solutions. Because the metals can be released from the ligands when irradiated with visible light, regeneration of the ligands and concentration of the metals may be easier than with conventional ion exchange resins. Thus, the process has the potential to be less expensive than currently used metal extraction techniques. In this paper, the authors report on their studies of the metal binding of spirogyran dyes and the hydrolytic stability of these dyes. They have prepared a number of spirogyrans and measured their binding constants for calcium and magnesium. They discuss the relationship of the structure of the dyes to their binding strengths. These studies are necessary towards determining the viability of this technique.

Nimlos, M.R.; Filley, J.; Ibrahim, M.A.; Watt, A.S.; Blake, D.M.

1999-07-01T23:59:59.000Z

389

Contextus: A Modern Intervention in the Urban Fabric.  

E-Print Network (OSTI)

??Contextus: a Modern Intervention in the Urban Fabric, by Richard Gallagher ABSTRACT The word "context" originates in "contextus", which is Latin for "weaving." An architectural (more)

Gallagher, Richard

2007-01-01T23:59:59.000Z

390

Graphene and its derivatives : fabrication and Raman spectroscopy study.  

E-Print Network (OSTI)

??This thesis presents results on fabrication and Raman spectroscopy studies of graphene and its derivates. The works can be divided into two parts as follows. (more)

Cong, Chunxiao.

2012-01-01T23:59:59.000Z

391

Apparatus and Method for Fabricating Thin Film Devices using...  

NLE Websites -- All DOE Office Websites (Extended Search)

method for manufacturing thin-films was developed specifically for fabrication of CdSCdTe photovoltaic modules. However, this innovation should perform excellently for any...

392

Fabricate PHEV Cells for Testing & Diagnostics | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Documents & Publications Overview of Applied Battery Research Fabricate PHEV Cells for Testing & Diagnostics Vehicle Technologies Office: 2008 Energy Storage R&D Annual Progress...

393

Reduction in Fabrication Costs of Gas Diffusion Layers | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Layers Reduction in Fabrication Costs of Gas Diffusion Layers 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation...

394

Metal atomization spray nozzle  

DOE Patents (OSTI)

A spray nozzle for a magnetohydrodynamic atomization apparatus has a feed passage for molten metal and a pair of spray electrodes mounted in the feed passage. The electrodes, diverging surfaces which define a nozzle throat and diverge at an acute angle from the throat. Current passes through molten metal when fed through the throat which creates the Lorentz force necessary to provide atomization of the molten metal. 6 figures.

Huxford, T.J.

1993-11-16T23:59:59.000Z

395

New applications of noble metal catalysts in hydrocracking  

SciTech Connect

The paper explores how a noble metal hydrocracking catalyst functions stably in a hydrogen sulfide and ammonia environment and, in particular, how the physical positioning of the noble metal molecules affects catalyst performance. A commercial example, HC-28 catalyst in the Unicracking unit at Marathon Oil Refinery in Robinson, Illinois, demonstrates the success of the noble metal catalyst approach for naphtha production. In addition, a new Unicracking catalyst, HC-35, which uses a noble metal component to produce high-quality middle distillates, is introduced. The paper also shows how refiners may derive increased economic and operational benefits from their catalyst investment by using the latest developments in reactor internals design.

Mitchell, D.H.G.; Bertram, R.V. [UOP, Des Plaines, IL (United States); Dencker, G.D. [Marathon Oil Co., Robinson, IL (United States). Illinois Refining Div.

1995-09-01T23:59:59.000Z

396

EMSL - trace metals  

NLE Websites -- All DOE Office Websites (Extended Search)

trace-metals en Microbial Reductive Transformation of Phyllosilicate Fe(III) and U(VI) in Fluvial Subsurface Sediments. http:www.emsl.pnl.govemslwebpublications...

397

DOE - Office of Legacy Management -- Nuclear Metals Inc - MA 09  

Office of Legacy Management (LM)

Metals Inc - MA 09 Metals Inc - MA 09 FUSRAP Considered Sites Site: NUCLEAR METALS, INC. (MA.09) Eliminated from consideration under FUSRAP - Licensed facility - included in NRC action plan (Site Decommissioning Management Plan) in 1990 for cleanup Designated Name: Not Designated Alternate Name: None Location: 1555 Massachusetts Ave. , Cambridge , Massachusetts MA.09-2 Evaluation Year: 1987 MA.09-1 Site Operations: Produced natural uranium tubes for Savannah River reactor program and fabricated power reactor fuel elements under AEC/NRC license. MA.09-4 MA.09-3 Site Disposition: Eliminated - No Authority under FUSRAP - AEC licensed operation MA.09-1 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Uranium, Thorium MA.09-1 Radiological Survey(s): None Indicated

398

Fabrication of Cerium Oxide and Uranium Oxide Microspheres for Space Nuclear Power Applications  

SciTech Connect

Cerium oxide and uranium oxide microspheres are being produced via an internal gelation sol-gel method to investigate alternative fabrication routes for space nuclear fuels. Depleted uranium and non-radioactive cerium are being utilized as surrogates for plutonium-238 (Pu-238) used in radioisotope thermoelectric generators and for enriched uranium required by nuclear thermal rockets. While current methods used to produce Pu-238 fuels at Los Alamos National Laboratory (LANL) involve the generation of fine powders that pose a respiratory hazard and have a propensity to contaminate glove boxes, the sol-gel route allows for the generation of oxide microsphere fuels through an aqueous route. The sol-gel method does not generate fine powders and may require fewer processing steps than the LANL method with less operator handling. High-quality cerium dioxide microspheres have been fabricated in the desired size range and equipment is being prepared to establish a uranium dioxide microsphere production capability.

Jeffrey A. Katalenich; Michael R. Hartman; Robert C. O'Brien

2013-02-01T23:59:59.000Z

399

The Role of Friction Stir Welding in Nuclear Fuel Plate Fabrication  

SciTech Connect

The friction bonding process combines desirable attributes of both friction stir welding and friction stir processing. The development of the process is spurred on by the need to fabricate thin, high density, reduced enrichment fuel plates for nuclear research reactors. The work seeks to convert research and test reactors currently operating on highly enriched uranium fuel to operate on low enriched uranium fuel without significant loss in reactor performance, safety characteristics, or significant increase in cost. In doing so, the threat of global nuclear material proliferation will be reduced. Feasibility studies performed on the process show that this is a viable option for mass production of plate-type nuclear fuel. Adapting the friction stir weld process for nuclear fuel fabrication has resulted in the development of several unique ideas and observations. Preliminary results of this adaptation and process model development are discussed.

D Burkes; P Medvedev; M Chapple; A Amritkar; P Wells; I Charit

2009-02-01T23:59:59.000Z

400

Method of fabricating a cooled electronic system  

DOE Patents (OSTI)

A method of fabricating a liquid-cooled electronic system is provided which includes an electronic assembly having an electronics card and a socket with a latch at one end. The latch facilitates securing of the card within the socket. The method includes providing a liquid-cooled cold rail at the one end of the socket, and a thermal spreader to couple the electronics card to the cold rail. The thermal spreader includes first and second thermal transfer plates coupled to first and second surfaces on opposite sides of the card, and thermally conductive extensions extending from end edges of the plates, which couple the respective transfer plates to the liquid-cooled cold rail. The extensions are disposed to the sides of the latch, and the card is securable within or removable from the socket using the latch without removing the cold rail or the thermal spreader.

Chainer, Timothy J; Gaynes, Michael A; Graybill, David P; Iyengar, Madhusudan K; Kamath, Vinod; Kochuparambil, Bejoy J; Schmidt, Roger R; Schultz, Mark D; Simco, Daniel P; Steinke, Mark E

2014-02-11T23:59:59.000Z

Note: This page contains sample records for the topic "fabricated metal product" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Turbine airfoil fabricated from tapered extrusions  

DOE Patents (OSTI)

An airfoil (30) and fabrication process for turbine blades with cooling channels (26). Tapered tubes (32A-32D) are bonded together in a parallel sequence, forming a leading edge (21), a trailing edge (22), and pressure and suction side walls (23, 24) connected by internal ribs (25). The tapered tubes may be extruded without camber to simplify the extrusion process, then bonded along matching surfaces (34), forming a non-cambered airfoil (28), which may be cambered in a hot forming process and cut (48) to length. The tubes may have tapered walls that are thinner at the blade tip (T1) than at the base (T2), reducing mass. A cap (50) may be attached to the blade tip. A mounting lug (58) may be forged (60) on the airfoil base and then machined, completing the blade for mounting in a turbine rotor disk.

Marra, John J

2013-07-16T23:59:59.000Z

402

Fabrication of advanced design (grooved) cermet anodes  

SciTech Connect

Attempts were made to fabricate full-size anodes with advanced, or grooved, design using isostatic pressing, slip casting injection molding. Of the three approaches, isostatic pressing produced an anode with dimensions nearest to the target specifications, without serious macroscopic flaws. This approach is considered the most promising for making advanced anodes for aluminum smelting. However, significant work still remains to optimize the physical properties and microstructure of the anode, both of which were significantly different from that of previous anodes. Injection molding and slip casting yielded anode materials with serious deficiencies, including cracks and holes. Injection molding gave cermet material with the best intrinsic microstructure, i.e., the microstructure of the material between macroscopic flaws was very similar to that of anodes previously made at PNL. Reason for the similarity may have to do with amount of residual binder in the material prior to sintering.

Windisch, C.F. Jr. (Pacific Northwest Lab., Richland, WA (United States)); Huettig, F.R. (Ceramic Magnetics, Inc., Fairfield, NJ (United States))

1993-05-01T23:59:59.000Z

403

Fabrication of Li-intercalated bilayer graphene  

Science Journals Connector (OSTI)

We have succeeded in fabricating Li-intercalated bilayer graphene on silicon carbide. The low-energy electron diffraction from Li-deposited bilayer graphene shows a sharp 3 3 R 30 pattern in contrast to Li-deposited monolayer graphene. This indicates that Li atoms are intercalated between two adjacent graphene layers and take the same well-ordered superstructure as in bulk C6Li. The angle-resolved photoemission spectroscopy has revealed that Li atoms are fully ionized and the ? bands of graphene are systematically folded by the superstructure of intercalated Li atoms producing a snowflake-like Fermi surface centered at the ? point. The present result suggests a high potential of Li-intercalated bilayer graphene for application to a nano-scale Li-ion battery.

K. Sugawara; K. Kanetani; T. Sato; T. Takahashi

2011-01-01T23:59:59.000Z

404

Fabrication of nanoscale charge density wave systems  

Science Journals Connector (OSTI)

Nanoscale charge density wave systems of quasi-one-dimensional o ? TaS 3 crystals were fabricated.Goldelectrodes 400 nm wide were made by standard lift-off technique on o ? TaS 3 nanocrystals prepared by deposition on silicon substrates. Interface resistance was higher than 100 G ? just after evaporation and were significantly reduced by electron-beam irradiation. The electrodes were tested down to 80 mK and were found quite durable for cryogenic measurement. The temperature dependence of the resistance of the nanocrystal was represented as the variable-range-hopping-type conduction with one dimension over the wide range of temperature from 4.2 to 100 K. This behavior was different from that of conventional bulk samples.

Katsuhiko Inagaki; Takeshi Toshima; Satoshi Tanda; Kazuhiko Yamaya; Shinya Uji

2005-01-01T23:59:59.000Z

405

Tenth target fabrication specialists` meeting: Proceedings  

SciTech Connect

This tenth meeting of specialists in target fabrication for inertial confinement is unique in that it is the first meeting that was completely unclassified. As a result of the new classification, we were able to invite more foreign participation. In addition to participants from the US, UK, and Canada, representatives from France, Japan, and two Russian laboratories attended, about 115 in all. This booklet presents full papers and poster sessions. Indirect and direct drive laser implosions are considered. Typical topics include: polymer or aluminium or resorcinol/formaldehyde shells, laser technology, photon tunneling microscopy as a characterization tool, foams, coatings, hohlraums, and beryllium capsules. Hydrogen, deuterium, tritium, and beryllium are all considered as fuels.

Foreman, L.R.; Stark, J.C. [comp.

1995-11-01T23:59:59.000Z

406

Methods for freeform fabrication of structures  

DOE Patents (OSTI)

Rapid prototyping methods and apparatuses that produce structures made of continuous-fiber polymer-matrix composites without the use of molds. Instead of using molds, the composite structure is fabricated patch by patch in layers or wraps, using a two- or three-axis stage connected to a rapidly-reconfigurable forming surface, and a robot arm to position the evolving composite structure, which are both programmable devices. Because programmable devices are included, i.e., a robot and a two- or three-axis stage connected to the reconfigurable forming surface, the control program needed to produce a desired shape can be easily modified to automatically generate the desired shape from an electronic model (e.g., using a CAD/CAM system) of the desired (predetermined) shape.

Kaufman, Stephen G. (Albuquerque, NM); Spletzer, Barry L. (Albuquerque, NM)

2000-01-01T23:59:59.000Z

407

Time-space fabric underlying anomalous diffusion  

E-Print Network (OSTI)

This study unveils the time-space transforms underlying anomalous diffusion process. Based on this finding, we present the two hypotheses concerning the effect of fractal time-space fabric on physical behaviors and accordingly derive fractional quantum relationships between energy and frequency, momentum and wavenumber which further give rise to fractional Schrodinger equation. As an alternative modeling approach to the standard fractional derivatives, we introduce the concept of the Hausdorff derivative underlying the Hausdorff dimensions of metric spacetime. And in terms of the proposed hypotheses, the Hausdorff derivative is used to derive a linear anomalous transport-diffusion equation underlying anomalous diffusion process. Its Green's function solution turns out to be a new type of stretched Gaussian distribution and is compared with that from the Richardson's diffusion equation.

W Chen

2005-05-08T23:59:59.000Z

408

LASER METALLIZATION AND DOPING FOR SILICON CARBIDE DIODE FABRICATION AND ENDOTAXY.  

E-Print Network (OSTI)

??Silicon carbide is a promising semiconductor material for high voltage, high frequency and high temperature devices due to its wide bandgap, high breakdown electric field (more)

Tian, Zhaoxu

2006-01-01T23:59:59.000Z

409

Fabrication of Metal/Oxide Nanostructures by Anodization Processes for Biosensor, Drug Delivery and Supercapacitor Applications  

E-Print Network (OSTI)

applications of micro/nano structures; (2) novel processes to innovate anodic aluminum oxide nanotube template; (3) the supercapacitor applications of anodic titanium oxide. First, the extremely high surface area AAO coated microneedle and microneedle array...

Chen, Po-Chun

2014-01-13T23:59:59.000Z

410

Fabrication and characterization of ferroelectric PLZT film capacitors on metallic substrates.  

SciTech Connect

We have grown ferroelectric Pb{sub 0.92}La{sub 0.08}Zr{sub 0.52}Ti{sub 0.48}O{sub 3} (PLZT) films on Hastelloy C276 (HC) substrates by chemical solution deposition. Samples of 1.15-{micro}m-thick PLZT films were prepared on HC with and without lanthanum nickel oxide (LNO) films as an intermediate buffer layer. On samples with and without LNO buffers at room temperature, we measured dielectric constants of {approx}1,300 and {approx}450 and loss tangents of {approx}0.06 and {approx}0.07, respectively. For PLZT films grown on HC with LNO buffer, the dielectric constant increases, while the dielectric loss decreases, with increasing temperature. A dielectric constant of {approx}2,000 and loss of {approx}0.05 were observed at 150 C. Samples with LNO buffer also exhibited slimmer hysteresis loops and lower leakage current density when compared to samples without LNO buffer. The following results were measured on samples with and without LNO buffers: remanent polarization (P{sub r}) values of 21.3 and 36.4 {micro}C/cm{sup 2}, coercive electric field (E{sub c}) values of 41 and 173 kV/cm, and leakage current densities of {approx}1.1 x 10{sup -8} and {approx}1.6 x 10{sup -7} A/cm{sup 2}, respectively. The energy storage capability was measured at {approx}65 J/cm{sup 3} for the PLZT film-on-foil capacitor deposited on HC with LNO buffer.

Ma, B.; Narayanan, M.; Tong, S.; Balachandran, U.; Energy Systems

2010-01-01T23:59:59.000Z

411

Ceramic fabricator quality revolution: A case study  

SciTech Connect

This case study discusses statistical process control and other quality tools in the application of continuous improvement and total quality management programs to a mature ceramic parts manufacturing operation that had been producing quality'' products for many years. By applying these tools, significant incremental improvements in process performance and product quality were achieved.

Martin, S.C. (Advanced Refractory Technologies, Inc., Buffalo, NY (United States))

1993-11-01T23:59:59.000Z

412

Microalloying of transition metal silicides by mechanical activation and field-activated reaction  

DOE Patents (OSTI)

Alloys of transition metal suicides that contain one or more alloying elements are fabricated by a two-stage process involving mechanical activation as the first stage and densification and field-activated reaction as the second stage. Mechanical activation, preferably performed by high-energy planetary milling, results in the incorporation of atoms of the alloying element(s) into the crystal lattice of the transition metal, while the densification and field-activated reaction, preferably performed by spark plasma sintering, result in the formation of the alloyed transition metal silicide. Among the many advantages of the process are its ability to accommodate materials that are incompatible in other alloying methods.

Munir, Zuhair A. (Davis, CA); Woolman, Joseph N. (Davis, CA); Petrovic, John J. (Los Alamos, NM)

2003-09-02T23:59:59.000Z

413

Controlled incorporation of mid-to-high Z transition metals in CVD diamond  

SciTech Connect

We report on a general method to fabricate transition metal related defects in diamond. Controlled incorporation of Mo and W in synthetic CVD diamond was achieved by adding volatile metal precursors to the diamond chemical vapor deposition (CVD) growth process. Effects of deposition temperature, grain structure and precursor exposure on the doping level were systematically studied, and doping levels of up to 0.25 at.% have been achieved. The metal atoms are uniformly distributed throughout the diamond grains without any indication of inclusion formation. These results are discussed in context of the kinetically controlled growth process of CVD diamond.

Biener, M M; Biener, J; Kucheyev, S O; Wang, Y M; El-Dasher, B; Teslich, N E; Hamza, A V; Obloh, H; Mueller-Sebert, W; Wolfer, M; Fuchs, T; Grimm, M; Kriele, A; Wild, C

2010-01-08T23:59:59.000Z

414

Closeout of JOYO-1 Specimen Fabrication Efforts  

SciTech Connect

Fabrication was well under way for the JOYO biaxial creep and tensile specimens when the NR Space program was canceled. Tubes of FS-85, ASTAR-811C, and T-111 for biaxial creep specimens had been drawn at True Tube (Paso Robles, CA), while tubes of Mo-47.5 Re were being drawn at Rhenium Alloys (Cleveland, OH). The Mo-47.5 Re tubes are now approximately 95% complete. Their fabrication and the quantities produced will be documented at a later date. End cap material for FS-85, ASTAR-811C, and T-111 had been swaged at Pittsburgh Materials Technology, Inc. (PMTI) (Large, PA) and machined at Vangura (Clairton, PA). Cutting of tubes, pickling, annealing, and laser engraving were in process at PMTI. Several biaxial creep specimen sets of FS-85, ASTAR-811C, and T-111 had already been sent to Pacific Northwest National Laboratory (PNNL) for weld development. In addition, tensile specimens of FS-85, ASTAR-811C, T-111, and Mo-47.5 Re had been machined at Kin-Tech (North Huntington, PA). Actual machining of the other specimen types had not been initiated. Flowcharts 1-3 detail the major processing steps each piece of material has experienced. A more detailed description of processing will be provided in a separate document [B-MT(SRME)-51]. Table 1 lists the in-process materials and finished specimens. Also included are current metallurgical condition of these materials and specimens. The available chemical analyses for these alloys at various points in the process are provided in Table 2.

ME Petrichek; JL Bump; RF Luther

2005-10-31T23:59:59.000Z

415

Silicon metal-semiconductor-metal photodetector  

DOE Patents (OSTI)

Silicon MSM photodiodes sensitive to radiation in the visible to near infrared spectral range are produced by altering the absorption characteristics of crystalline Si by ion implantation. The implantation produces a defected region below the surface of the silicon with the highest concentration of defects at its base which acts to reduce the contribution of charge carriers formed below the defected layer. The charge carriers generated by the radiation in the upper regions of the defected layer are very quickly collected between biased Schottky barrier electrodes which form a metal-semiconductor-metal structure for the photodiode.

Brueck, Steven R. J. (Albuquerque, NM); Myers, David R. (Albuquerque, NM); Sharma, Ashwani K. (Albuquerque, NM)

1997-01-01T23:59:59.000Z

416

Silicon metal-semiconductor-metal photodetector  

DOE Patents (OSTI)

Silicon MSM photodiodes sensitive to radiation in the visible to near infrared spectral range are produced by altering the absorption characteristics of crystalline Si by ion implantation. The implantation produces a defected region below the surface of the silicon with the highest concentration of defects at its base which acts to reduce the contribution of charge carriers formed below the defected layer. The charge carriers generated by the radiation in the upper regions of the defected layer are very quickly collected between biased Schottky barrier electrodes which form a metal-semiconductor-metal structure for the photodiode.

Brueck, Steven R. J. (Albuquerque, NM); Myers, David R. (Albuquerque, NM); Sharma, Ashwani K. (Albuquerque, NM)

1995-01-01T23:59:59.000Z

417

Symmetry reduction of metal phthalocyanines on metals  

Science Journals Connector (OSTI)

The temperature-dependent adsorption behavior of fourfold symmetric metal phthalocyanines (MPcs) on metals with commensurate and incommensurate symmetries was investigated by scanning tunneling microscopy. On the fourfold symmetric Cu(100) surface, planar and fourfold molecular structures in two equivalent orientations were found for MPcs when prepared at room temperature. In addition, two metastable orientations were identified when prepared at low temperature, which can be depopulated upon annealing. MPcs adsorbed on the sixfold symmetric Cu(111) surface showed a disturbed molecular appearance. The symmetry of molecular structures changed from fourfold to twofold, which is discussed in terms of molecule-substrate interaction.

Shih-Hsin Chang; Stefan Kuck; Jens Brede; Leonid Lichtenstein; Germar Hoffmann; Roland Wiesendanger

2008-12-29T23:59:59.000Z

418

Design, fabrication, and certification of advanced modular PV power systems. Final technical progress report  

SciTech Connect

Solar Electric Specialties Company (SES) has completed a two and a half year effort under the auspices of the US Department of Energy (DOE) PVMaT (Photovoltaic Manufacturing Technology) project. Under Phase 4A1 of the project for Product Driven System and Component Technology, the SES contract ``Design, Fabrication and Certification of Advanced Modular PV Power Systems`` had the goal to reduce installed system life cycle costs through development of certified (Underwriters Laboratories or other listing) and standardized prototype products for two of the product lines, MAPPS{trademark} (Modular Autonomous PV Power Supply) and Photogensets{trademark}. MAPPS are small DC systems consisting of Photovoltaic modules, batteries and a charge controller and producing up to about a thousand watt-hours per day. Photogensets are stand-alone AC systems incorporating a generator as backup for the PV in addition to a DC-AC inverter and battery charger. The program tasks for the two-year contract consisted of designing and fabricating prototypes of both a MAPPS and a Photogenset to meet agency listing requirements using modular concepts that would support development of families of products, submitting the prototypes for listing, and performing functionality testing at Sandia and NREL. Both prototypes were candidates for UL (Underwriters Laboratories) listing. The MAPPS was also a candidate for FM (Factory Mutual) approval for hazardous (incendiary gases) locations.

Lambarski, T.; Minyard, G. [Solar Electric Specialties Co., Willits, CA (United States)

1998-10-01T23:59:59.000Z

419

MICRO-SEISMOMETERS VIA ADVANCED MESO-SCALE FABRICATION  

SciTech Connect

The Department of Energy (DOE) and the National Nuclear Security Administration (NNSA) seek revolutionary sensing innovations for the monitoring of nuclear detonations. Performance specifications are to be consistent with those obtainable by only an elite few products available today, but with orders of magnitude reduction in size, weight, power, and cost. The proposed commercial innovation calls upon several technologies including the combination of meso-scale fabrication and assembly, photonics-based displacement / motion detection methods, and the use of digital control electronics . Early Phase II development has demonstrated verified and repeatable sub 2ng noise floor from 3Hz to 100Hz, compact integration of 3-axis prototypes, and robust deployment exercises. Ongoing developments are focusing on low frequency challenges, low power consumption, ultra-miniature size, and low cross axis sensitivity. We are also addressing the rigorous set of specifications required for repeatable and reliable long-term explosion monitoring, including thermal stability, reduced recovery time from mass re-centering and large mechanical shocks, sensitivity stability, and transportability. Successful implementation will result in small, hand-held demonstration units with the ability to address national security needs of the DOE/NNSA. Additional applications envisioned include military/defense, scientific instrumentation, oil and gas exploration, inertial navigation, and civil infrastructure monitoring.

Garcia, Caesar A; Onaran, Guclu; Avenson, Brad; Hall, Neal

2014-11-07T23:59:59.000Z

420

PHYTOEXTRACTION OF HEAVY METALS  

E-Print Network (OSTI)

) Type of phytoremediation Cost effective form of environmental remediation (Glass 1999) Chelating Agents: desorb heavy metals from soil matrix and form water-soluble metal complexes (Shen et al -using hyperaccumulator plant biomass to produce a bio-ore for commercial use -Li et al. look at using Ni

Blouin-Demers, Gabriel

Note: This page contains sample records for the topic "fabricated metal product" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Metallization of fluid hydrogen  

Science Journals Connector (OSTI)

...P. Tunstall Metallization of fluid hydrogen W. J. Nellis 1 A. A. Louis 2 N...The electrical resistivity of liquid hydrogen has been measured at the high dynamic...which structural changes are paramount. hydrogen|metallization of hydrogen|liquid...

1998-01-01T23:59:59.000Z

422

Electroreflectance in Metals  

Science Journals Connector (OSTI)

Calculations have been made which suggest that the prominent maximum in the electroreflectance spectra of metals observed by Feinleib is not due to modulation of the optical constants of the electrolyte, but to modulation of the optical constants of the metal.

Arnold Prostak and Wilford N. Hansen

1967-08-15T23:59:59.000Z

423

Capacitive micro-fabricated ultrasonic transducers for biometric applications  

Science Journals Connector (OSTI)

Two capacitive micro-fabricated ultrasonic transducers (cMUT) are evaluated for application in biometric recognition. Both transducers are 192 elements linear arrays, fabricated using the Reverse Process(TM) previously reported by some of the authors, ... Keywords: Acoustic imaging, Biometrics, CMUT

Antonio Iula; Alessandro Savoia; Giosu Caliano

2011-08-01T23:59:59.000Z

424

Optically Fabricated Three Dimensional Nanofluidic Mixers for Microfluidic  

E-Print Network (OSTI)

Optically Fabricated Three Dimensional Nanofluidic Mixers for Microfluidic Devices Seokwoo Jeon in the channels of microfluidic systems. Near field scanning optical measurements reveal the optics associated with the fabrication process and the key features that enable its application to the area of microfluidics. Confocal

Rogers, John A.

425

Self-Assembled Computer Architecture: Design and Fabrication Theory  

E-Print Network (OSTI)

Self-Assembled Computer Architecture: Design and Fabrication Theory by Christopher L. Dwyer CHRISTOPHER L. DWYER: Self-Assembled Computer Architecture: Design and Fabrication Theory (under the direction using self-assembling electronic circuitry. A DNA-guided self-assembly method, inspired by discoveries

Whitton, Mary C.

426

Glass Concrete Thin Sheets Reinforced with Prestressed Aramid Fabrics  

E-Print Network (OSTI)

Glass Concrete Thin Sheets Reinforced with Prestressed Aramid Fabrics Gregor Vilkner Submitted Glass Concrete Thin Sheets Reinforced with Prestressed Aramid Fabrics Gregor Vilkner Thin sheet concrete crushed glass as aggregate, a multitude of different esthetic effects can be produced, which again open up

Meyer, Christian

427

A Production Type GC Analysis System for Light Gases  

Science Journals Connector (OSTI)

......sonic, the gaseous combustion products are one...mixtures. In tests of hydrocarbon and metallic-hydrocarbon fuels the gas- eous combustion products which...of a coiled tube heat exchanger emersed...MIXTURES) ANALYSIS DATA; COLUMNS: SILICA......

R. C. Orth; H. B. Land

1971-06-01T23:59:59.000Z

428

Extracellular Palladium Nanoparticle Production using Geobacter sulfurreducens  

E-Print Network (OSTI)

Extracellular Palladium Nanoparticle Production using Geobacter sulfurreducens Matthew D. Yates catalytic nanoparticles. Palladium nanoparticles can be produced via microbial reduction of soluble Pd(II) to Pd(0), but in previous tests using dissimilatory metal reducing bacteria (DMRB), the nanoparticles

429

SPS Fabrication of Tungsten-Rhenium Alloys in Support of NTR Fuels Development  

SciTech Connect

Abstract. Tungsten metal slugs were fabricated via Spark Plasma Sintering (SPS) of powdered metals at temperatures ranging from 1575 K to 1975 K and hold times of 5 minutes to 30 minutes, using powders with an average diameter of 7.8 ?m. Sintered tungsten specimens were found to have relative densities ranging from 83 % to 94 % of the theoretical density for tungsten. Consolidated specimens were also tested for their Vickers Hardness Number (VHN), which was fitted as a function of relative density; the fully consolidated VHN was extrapolated to be 381.45 kg/mm2. Concurrently, tungsten and rhenium powders with average respective diameters of 0.5 ?m and 13.3 ?m were pre-processed either by High-Energy-Ball-Milling (HEBM) or by homogeneous mixing to yield W-25at.%Re mixtures. The powder batches were sintered at temperatures of 1975 K and 2175 K for hold times ranging from 0 minutes to 60 minutes yielding relative densities ranging from 94% to 97%. The combination of HEBM and sintering showed a significant decrease in the inter-metallic phases compared to that of the homogenous mixing and sintering.

Jonathan A. Webb; Indrajit Charit; Cory Sparks; Darryl P. Butt; Megan Frary; Mark Carroll

2011-02-01T23:59:59.000Z

430

Metal-Nonmetal Transition in Metal-Ammonia Solutions  

Science Journals Connector (OSTI)

A review is given of the properties of metal-ammonia solutions together with a summary of the evidence for the existence of a metal-nonmetal transition.

J. C. THOMPSON

1968-10-01T23:59:59.000Z

431

Fabrication of microscale carbon nanotube fibers  

Science Journals Connector (OSTI)

Carbon nanotubes (CNTs) have excellent mechanical, chemical, and electronic properties, but realizing these excellences in practical applications needs to assemble individual CNTs into larger-scale products. Recently, CNT fibers demonstrate the potential ...

Gengzhi Sun; Yani Zhang; Lianxi Zheng

2012-01-01T23:59:59.000Z

432

Daiyang Metal Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Daiyang Metal Co Ltd Daiyang Metal Co Ltd Jump to: navigation, search Name Daiyang Metal Co Ltd Place Seoul, Seoul, Korea (Republic) Zip 137-040 Sector Solar Product Stainless steel manufacturing and CIGS solar cell maker. Coordinates 37.557121°, 126.977379° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.557121,"lon":126.977379,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

433

Northern States Metals Company | Open Energy Information  

Open Energy Info (EERE)

Metals Company Metals Company Jump to: navigation, search Name Northern States Metals Company Address 3207 Innovation Place Place Youngstown, Ohio Zip 44509 Sector Solar Product Manufacturing Phone number 330-799-1855 Website http://extrusions.com Coordinates 41.123592°, -80.704685° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.123592,"lon":-80.704685,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

434

Fabrication and properties of syntactic magnesium foams  

SciTech Connect

Syntactic magnesium foams which consist of thin-walled hollow alumina spheres embedded in a magnesium matrix were fabricated by infiltrating a three-dimensional array of hollow spheres with a magnesium melt by using a gas pressure-assisted casting technique. The resulting composite contains closed cells of homogeneous and isotropic morphology. The densities of the syntactic magnesium foams were between 1.0 and 1.4 g/cm{sup 3}. The densities were controlled by variations in the bulk density of the hollow spheres with the volume fraction of spheres kept constant at approximately 63%. Compressive deformation characteristics of the composites were evaluated with respect to the influence of matrix strength and sphere wall thickness on characteristic variables such as compressive strength, plateau stress and energy absorption efficiency. Differences in the strength of the magnesium-based matrix materials investigated (cp-Mg, AM20, AM50, AZ91) had little influence on the compressive strength of the syntactic foam. However, an increasing relative wall thickness of the hollow ceramic spheres led to a significant strength enhancement. In all cases the ratio between compressive and plateau strength rose with increasing composite strength resulting in decreasing energy absorption efficiency.

Hartmann, M.; Reindel, K.; Singer, R.F. [Univ. of Erlangen (Germany). Dept. of Material Science

1998-12-31T23:59:59.000Z

435

Liquid metal electric pump  

DOE Patents (OSTI)

An electrical pump for pumping liquid metals to high pressures in high temperature environments without the use of magnets or moving mechanical parts. The pump employs a non-porous solid electrolyte membrane, typically ceramic, specific to the liquid metal to be pumped. A DC voltage is applied across the thickness of the membrane causing ions to form and enter the membrane on the electrically positive surface, with the ions being neutralized on the opposite surface. This action provides pumping of the liquid metal from one side of the non-porous solid electrolyte membrane to the other. 3 figs.

Abbin, J.P.; Andraka, C.E.; Lukens, L.L.; Moreno, J.B.

1992-01-14T23:59:59.000Z

436

Supersonic Bare Metal Cluster Beams. Final Report  

DOE R&D Accomplishments (OSTI)

A major portion of the project involved elucidating the relation between reactivity and the electronic structure of transition-metal (TM) clusters of 2--200 atoms, which required the construction and continuous development of two principal apparati; the Fourier Transform-Ion Cyclotron Resonance (FT-ICR) apparatus, and Ultraviolet Photoelectron Spectroscopy (UPS). Together, these machines have enabled the most detailed probing of the structure and chemical reactivity of TM clusters. Clusters of all the transition metals were included in these studies. Fundamental aspects in chemisorption, reactivity, and heterogeneous catalysis have also become better understood as a result of these experiments for important classes of systems such as H{sub 2}, CO, and CO{sub 2} adsorbed onto clusters of many of the metals listed above. In particular, a correlation was found between reactivity of H{sub 2} with Fe, Co, and Ni clusters and differences between the cluster IP and EA. As recounted in a previous technical report, the DOE`s role in the initial discovery of fullerenes at Rice was central, and from the start investigations were made into metal atoms trapped in the fullerenes cage. More recently, the authors have discovered that 2--4 atoms of La, Y, or Sc can be produced by laser vaporization of composite graphite/metal-oxide disks. This work was largely motivated by the prospects of using such endohedral TM metals for their catalytic activity without the well-known difficulties of effective support media and lack of control over particle size. Thus, while it will certainly be important to discover ways to efficiently scale up production (e.g., the solar generation method explored with DOE support), the efforts have concentrated more on characterization, purification, and manipulation of doped fullerenes. For the past two years, much of the group`s effort has involved the production, purification, and characterization of carbon nanotubes.

Smalley, R. E.

1997-10-14T23:59:59.000Z

437

Cysteine Modified Small Ligament Au Nanoporous Film: An Easy Fabricating and Highly Efficient Surface-Assisted Laser Desorption/Ionization Substrate  

Science Journals Connector (OSTI)

Cysteine Modified Small Ligament Au Nanoporous Film: An Easy Fabricating and Highly Efficient Surface-Assisted Laser Desorption/Ionization Substrate ... Another plausible reason is that OH may also compete for the binding sites with TX-114 and result in Au NWs sedimentation, but unlike Cl the replacement of TX-114 by OH caused no NW fusion. ... H2O2-metal-HF etching as a versatile platform for studying the effects of morphol. ...

Rui Liu; Jing-fu Liu; Xiao-xia Zhou; Gui-bin Jiang

2011-04-04T23:59:59.000Z

438

Large Area Micro-texture Imprinting onto Metallic Sheet via CNC Stamping  

Science Journals Connector (OSTI)

Abstract Micro-lens array and micro optical elements require for geometrically accurate registration of micro-patterns onto the oxide glasses. Heat radiation device and heat reservoir units have to equip their own unique micro-patterns with high aspect ratio. Lithography and related processes, or, micro- and nano-imprinting are effective to make these micro-patterns once onto the silicon or silica substrates. Even in those applications, the aspect ratio of micro-patterns is still limited to be shallow. The authors have been developing a new method to fabricate a DLC (Diamond-Like Carbon) coated mother mold-die by plasma oxygen etching and to duplicate the original micro-patterns on the mold-die onto the metallic and plastic sheets. This approach is suitable not only to mass-production of micro-patterned sensors and devices but also to selective nano- and micro-imprinting of various micro-patterns onto the metallic sheets. In the present paper, a micro-cavity pattern with the unit size of 3.5x3.5x4.6?m3 is imprinted onto an aluminum sheet with the thickness of 0.08mm by CNC-stamping with use of the micro-textured DLC-die. This CNC-stamping system is revised to make motion control both in loading and unloading processes for improvement of geometric accuracy and increase of aspect ratio in the micro-cavity pattern. Among several motion-control programs, a pulse-wise motion is employed to duplicate the deeper micro-cavity patterns onto the aluminum sheets.

Tatstuhiko Aizawa; Masahiro Tamaki; Tatsuya Fukuda

2014-01-01T23:59:59.000Z

439

Notice Type: Presolicitation  

E-Print Network (OSTI)

NAICS Code: 332 -- Fabricated Metal Product Manufacturing/332322 -- Sheet Metal Work Manufacturing Storage Container. (Microsoft IE required). Additional specifications and opening and closing dates

440

Advanced fabrication techniques for hydrogen-cooled engine structures. Final report, October 1975-June 1982  

SciTech Connect

Described is a program for development of coolant passage geometries, material systems, and joining processes that will produce long-life hydrogen-cooled structures for scramjet applications. Tests were performed to establish basic material properties, and samples constructed and evaluated to substantiate fabrication processes and inspection techniques. Results of the study show that the basic goal of increasing the life of hydrogen-cooled structures two orders of magnitude relative to that of the Hypersonic Research Engine can be reached with available means. Estimated life is 19000 cycles for the channels and 16000 cycles for pin-fin coolant passage configurations using Nickel 201. Additional research is required to establish the fatigue characteristics of dissimilar-metal coolant passages (Nickel 201/Inconel 718) and to investigate the embrittling effects of the hydrogen coolant.

Buchmann, O.A.; Arefian, V.V.; Warren, H.A.; Vuigner, A.A.; Pohlman, M.J.

1985-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "fabricated metal product" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Surplus weapons plutonium: Technologies for pit disassembly/conversion and MOX fuel fabrication  

SciTech Connect

This paper will provide a description of the technologies involved in the disposition of plutonium from surplus nuclear weapon components (pits), based on pit disassembly and conversion and on fabrication of mixed oxide (MOX) fuel for disposition through irradiation in nuclear reactors. The MOX/Reactor option is the baseline disposition plan for both the US and russian for plutonium from pits and other clean plutonium metal and oxide. In the US, impure plutonium in various forms will be converted to oxide and immobilized in glass or ceramic, surrounded by vitrified high level waste to provide a radiation barrier. A similar fate is expected for impure material in Russia as well. The immobilization technologies will not be discussed. Following technical descriptions, a discussion of options for monitoring the plutonium during these processes will be provided.

Toevs, J.W.

1997-12-31T23:59:59.000Z

442

Synthesis, fabrication and characterization of Ge/Si axial nanowire heterostructure tunnel FETs  

SciTech Connect

Axial Ge/Si heterostructure nanowires allow energy band-edge engineering along the axis of the nanowire, which is the charge transport direction, and the realization of asymmetric devices for novel device architectures. This work reports on two advances in the area of heterostructure nanowires and tunnel FETs: (i) the realization of 100% compositionally modulated Si/Ge axial heterostructure nanowires with lengths suitable for device fabrication and (ii) the design and implementation of Schottky barrier tunnel FETs on these nanowires for high-on currents and suppressed ambipolar behavior. Initial prototype devices resulted in a current drive in excess of 100 {micro}A/{micro}m (I/{pi}D) and 10{sup 5} I{sub on}/I{sub off} ratios. These results demonstrate the potential of such asymmetric heterostructures (both in the semiconductor channel and metal-semiconductor barrier heights) for low-power and high performance electronics.

Picraux, Samuel T [Los Alamos National Laboratory; Dayeh, Shadi A [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

443

Thermal tunability in terahertz metamaterials fabricated on strontium titanate single crystal substrates  

E-Print Network (OSTI)

We report an experimental demonstration of thermal tuning of resonance frequency in a planar terahertz metamaterial consisting of a gold split-ring resonator array fabricated on a bulk single crystal strontium titanate (SrTiO3) substrate. Cooling the metamaterial starting from 409 K down to 150 K causes about 50% shift in resonance frequency as compare to its room temperature resonance, and there is very little variation in resonance strength. The resonance shift is due to the temperature-dependent refractive index (or the dielectric constant) of the strontium titanate. The experiment opens up avenues for designing tunable terahertz devices by exploiting the temperature sensitive characteristic of high dielectric constant substrates and complex metal oxide materials.

Singh, Ranjan; Jia, Q X; Taylor, Antoinette J; Chen, Hou-Tong

2011-01-01T23:59:59.000Z

444

Fabrication of contacts for silicon solar cells including printing burn through layers  

DOE Patents (OSTI)

A method for fabricating a contact (240) for a solar cell (200). The method includes providing a solar cell substrate (210) with a surface that is covered or includes an antireflective coating (220). For example, the substrate (210) may be positioned adjacent or proximate to an outlet of an inkjet printer (712) or other deposition device. The method continues with forming a burn through layer (230) on the coating (220) by depositing a metal oxide precursor (e.g., using an inkjet or other non-contact printing method to print or apply a volume of liquid or solution containing the precursor). The method includes forming a contact layer (240) comprising silver over or on the burn through layer (230), and then annealing is performed to electrically connect the contact layer (240) to the surface of the solar cell substrate (210) through a portion of the burn through layer (230) and the coating (220).

Ginley, David S; Kaydanova, Tatiana; Miedaner, Alexander; Curtis, Calvin J; Van Hest, Marinus Franciscus Antonius Maria

2014-06-24T23:59:59.000Z

445

Nitrided Metallic Bipolar Plates  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to meet 5000 h automotive durability goal at cost < 5kW Year 1 Goals: Single-cell fuel cell test performance for 25 cm 2 stamped and nitrided metallic bipolar plates...

446

Metal stocks and sustainability  

Science Journals Connector (OSTI)

...dissipated through corrosion and wear, and some enters waste repositories...landfills. Dissipation from wear and corrosion is generally small...dispersion of metals from wear and corrosion is an important...transportation (railroad, marine, aircraft, and aerospace equipment...

R. B. Gordon; M. Bertram; T. E. Graedel

2006-01-01T23:59:59.000Z

447

Oligocyclopentadienyl transition metal complexes  

SciTech Connect

Synthesis, characterization, and reactivity studies of oligocyclopentadienyl transition metal complexes, namely those of fulvalene, tercyclopentadienyl, quatercyclopentadienyl, and pentacyclopentadienyl(cyclopentadienyl) are the subject of this account. Thermal-, photo-, and redox chemistries of homo- and heteropolynuclear complexes are described.

de Azevedo, Cristina G.; Vollhardt, K. Peter C.

2002-01-18T23:59:59.000Z

448

Excitons in Metals  

Science Journals Connector (OSTI)

It is shown that exciton states exist in metals, occurring near the interband threshold in optical absorption and substantially altering the shape and strength of the absorption edge. Their relation to the corresponding donor states is discussed.

G. D. Mahan

1967-03-20T23:59:59.000Z

449

Method for recovering metals from waste  

DOE Patents (OSTI)

A method is described for recovering metals from metals-containing wastes, and vitrifying the remainder of the wastes for disposal. Metals-containing wastes such as circuit boards, cathode ray tubes, vacuum tubes, transistors and so forth, are broken up and placed in a suitable container. The container is heated by microwaves to a first temperature in the range of approximately 300--800 C to combust organic materials in the waste, then heated further to a second temperature in the range of approximately 1,000--1,550 C at which temperature glass formers present in the waste will cause it to melt and vitrify. Low-melting-point metals such as tin and aluminum can be recovered after organics combustion is substantially complete. Metals with higher melting points, such as gold, silver and copper, can be recovered from the solidified product or separated from the waste at their respective melting points. Network former-containing materials can be added at the start of the process to assist vitrification. 2 figs.

Wicks, G.G.; Clark, D.E.; Schulz, R.L.

1998-12-01T23:59:59.000Z

450

ME 4171 Environmentally Conscious Design & Manufacturing (Bras) Assignment Aircraft Fuel Tank Production Pollution Prevention  

E-Print Network (OSTI)

ME 4171 ­ Environmentally Conscious Design & Manufacturing (Bras) Assignment ­ Aircraft Fuel Tank Production Pollution Prevention A local company manufactures a wide variety of fabric fuel tanks for use mainly in the aircraft industry. The main reasons for using fabric in the construction of these tanks

451

Metallic glass composition  

DOE Patents (OSTI)

A metallic glass alloy that is either iron-based or nickel-based or based on a mixture of iron and nickel, containing lesser amounts of elements selected from the group boron, silicon carbon and phosphorous to which is added an amount of a ductility enhancing element selected from the group cerium, lanthanum, praseodymium and neodymium sufficient to increase ductility of the metallic glass upon annealing.

Kroeger, Donald M. (Knoxville, TN); Koch, Carl C. (Raleigh, NC)

1986-01-01T23:59:59.000Z

452

Molten metal reactors  

DOE Patents (OSTI)

A molten metal reactor for converting a carbon material and steam into a gas comprising hydrogen, carbon monoxide, and carbon dioxide is disclosed. The reactor includes an interior crucible having a portion contained within an exterior crucible. The interior crucible includes an inlet and an outlet; the outlet leads to the exterior crucible and may comprise a diffuser. The exterior crucible may contain a molten alkaline metal compound. Contained between the exterior crucible and the interior crucible is at least one baffle.

Bingham, Dennis N; Klingler, Kerry M; Turner, Terry D; Wilding, Bruce M

2013-11-05T23:59:59.000Z

453

Direct write with microelectronic circuit fabrication  

DOE Patents (OSTI)

In a process for deposition of material onto a substrate, for example, the deposition of metals for dielectrics onto a semiconductor laser, the material is deposited by providing a colloidal suspension of the material and directly writing the suspension onto the substrate surface by ink jet printing techniques. This procedure minimizes the handling requirements of the substrate during the deposition process and also minimizes the exchange of energy between the material to be deposited and the substrate at the interface. The deposited material is then resolved into a desired pattern, preferably by subjecting the deposit to a laser annealing step. The laser annealing step provides high resolution of the resultant pattern while minimizing the overall thermal load of the substrate and permitting precise control of interface chemistry and interdiffusion between the substrate and the deposit. 3 figs.

Drummond, T.; Ginley, D.

1988-05-31T23:59:59.000Z

454

Functionalized Silicone Nanospheres: Synthesis, Transition Metal...  

NLE Websites -- All DOE Office Websites (Extended Search)

Functionalized Silicone Nanospheres: Synthesis, Transition Metal Immobilization, and Catalytic Applications. Functionalized Silicone Nanospheres: Synthesis, Transition Metal...

455

OPTIMIZATION OF CUTTING CONDITIONS FOR SUSTAINABLE MACHINING OF SINTERED POWDER METAL STEELS USING PCBN AND CARBIDE TOOLS.  

E-Print Network (OSTI)

??Powder metals are becoming a popular choice in the automotive and other manufacturing industries because of their ability to meet wide ranging product functional requirements (more)

Joshi, Kunal J.

2006-01-01T23:59:59.000Z

456

Pyroprocessing of IFR Metal Fuel  

SciTech Connect

The Integral Fast Reactor (IFR) fuel cycle features the use of an innovative reprocessing method, known as {open_quotes}pyroprocessing{close_quotes} featuring fused-salt electrofining of the spent fuel. Electrofining of IFR spent fuel involves uranium recovery by electro-transport to a solid steel cathode. The thermodynamics of the system preclude plutonium recovery in the same way, so a liquid cadmium cathode located in the electrolyte salt phase is utilized. The deposition of Pu, Am, Np, and Cm takes place at the liquid cadmium cathode in the form of cadmium intermetallic compounds (e.g, PuCd{sub 6}), and uranium deposits as the pure metal when cadmium saturation is reached. A small amount of rare earth fission products deposit together with the heavy metals at both the solid and liquid cadmium cathodes, providing a significant degree of self-protection. A full scope demonstration of the IFR fuel cycle will begin in 1993, using fuel irradiated in EBR-II.

Laidler, J.J. [Argonne National Laboratory, IL (United States)

1993-12-31T23:59:59.000Z

457

Gaillard et al. reply Fabrice Gaillard,1  

E-Print Network (OSTI)

sedimentary organic carbon into CO2, which results in oxygen production6 . In parallel, hydrothermal sulphate carbon (CH2O) and thereby limit the associated consumption4 of atmospheric H2. However, although reduction, which decreases the reducing potential of hydrothermal fluids and fixes hydrothermal ferrous iron

Paris-Sud XI, Université de

458

Economic Analysis on Direct Use of Spent Pressurized Water Reactor Fuel in CANDU Reactors - I: DUPIC Fuel Fabrication Cost  

SciTech Connect

A preliminary conceptual design of a Direct Use of spent Pressurized water reactor (PWR) fuel In Canada deuterium uranium (CANDU) reactors (DUPIC) fuel fabrication plant was studied, which annually converts spent PWR fuel of 400 tonnes heavy element (HE) into CANDU fuel. The capital and operating costs were estimated from the viewpoint of conceptual design. Assuming that the annual discount rate is 5% during the construction (5 yr) and operation period (40 yr) and contingency is 25% of the capital cost, the levelized unit cost (LUC) of DUPIC fuel fabrication was estimated to be 616 $/kg HE, which is mostly governed by annual operation and maintenance costs that correspond to 63% of LUC. Among the operation and maintenance cost components being considered, the waste disposal cost has the dominant effect on LUC ({approx}49%). From sensitivity analyses of production capacity, discount rate, and contingency, it was found that the production capacity of the plant is the major parameter that affects the LUC.

Choi, Hangbok; Ko, Won Il; Yang, Myung Seung [Korea Atomic Energy Research Institute (Korea, Republic of)

2001-05-15T23:59:59.000Z

459

METAL OXIDE NANOPARTICLES  

SciTech Connect

This chapter covers the fundamental science, synthesis, characterization, physicochemical properties and applications of oxide nanomaterials. Explains fundamental aspects that determine the growth and behavior of these systems, briefly examines synthetic procedures using bottom-up and top-down fabrication technologies, discusses the sophisticated experimental techniques and state of the art theory results used to characterize the physico-chemical properties of oxide solids and describe the current knowledge concerning key oxide materials with important technological applications.

FERNANDEZ-GARCIA,M.; RODGRIGUEZ, J.A.

2007-10-01T23:59:59.000Z

460

Fabrication and testing of nano-optical structures for advanced photonics and quantum information processing applications  

E-Print Network (OSTI)

approach : : : : : : : : : : : : : : : : : : : : : : : : : : : 34 xi FIGURE Page 18 Key fabrication steps utilizing e-beam lithography with bi-layer PMMA approach : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 35 19 Key fabrication steps...

Khan, Mughees Mahmood

2009-05-15T23:59:59.000Z

Note: This page contains sample records for the topic "fabricated metal product" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Fuel injector Holes (Fabrication of Micro-Orifices for Fuel Injectors...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

injector Holes (Fabrication of Micro-Orifices for Fuel Injectors) Fuel injector Holes (Fabrication of Micro-Orifices for Fuel Injectors) 2009 DOE Hydrogen Program and Vehicle...

462

2 - Products Using Vacuum Deposited Coatings  

Science Journals Connector (OSTI)

Publisher Summary Most of the vacuum coating done is thin metal coating for packaging applications covering many aspects of packaging. The metal coatings can be bright and highly reflective providing more advertising impact than metallic inks, which are duller. The metalized polymer webs can be used directly by heat sealing, laminated to other webs, or have the metallic layer transferred onto other surfaces by a stamping process. These and other variations make the aluminized film very versatile as a packaging material. The more important feature of the metal coating is that it provides a barrier performance against oxygen, water, and light. The barrier performance of the metal thin film depends on the thickness of the coating and the cleanliness of the coating. The use of lacquers or transparent colored inks enables metalized papers to be overprinted and used to make more reflective printed products than can be achieved by metallic inks. Many of these applications of metalized paper are purely esthetic. Holograms are bright, usually reflective, patterns or images that are used as decorative packaging and/or as security devices. Where holograms are used for packaging, they can be in the form of a small area integrated into the pack design or as a patterned background to the whole pack. This chapter provides examples of a large variety of products that make use of vacuum deposited coatings onto flexible substrates. Some of these may not be obvious to the users. The products range from flexible packaging, capacitors, pyrotechnics, flake fillers for paints and inks, holographic devices, transparent conducting coatings, thin film batteries, electronic circuits through to the current high market growth products such as displays, photovoltaics (solar cells), and high barrier coatings.

Charles A. Bishop

2011-01-01T23:59:59.000Z

463

Fabrication and electrical transport properties of binary Co-Si nanostructures prepared by focused electron beam-induced deposition  

SciTech Connect

CoSi-C binary alloys have been fabricated by focused electron beam-induced deposition by the simultaneous use of dicobaltoctacarbonyl, Co{sub 2}(CO){sub 8}, and neopentasilane, Si{sub 5}H{sub 12}, as precursor gases. By varying the relative flux of the precursors, alloys with variable chemical composition are obtained, as shown by energy dispersive x-ray analysis. Room temperature electrical resistivity measurements strongly indicate the formation of cobalt silicide and cobalt disilicide nanoclusters embedded in a carbonaceous matrix. Temperature-dependent electrical conductivity measurements show that the transport properties are governed by electron tunneling between neighboring CoSi or CoSi{sub 2} nanoclusters. In particular, by varying the metal content of the alloy, the electrical conductivity can be finely tuned from the insulating regime into the quasi-metallic tunneling coupling regime.

Porrati, F.; Huth, M. [Physikalisches Institut, Goethe-Universitaet, Max-von-Laue-Str. 1, D-60438 Frankfurt am Main (Germany); Kaempken, B.; Terfort, A. [Institut fr Anorganische und Analytische Chemie, Goethe-Universitaet, Max-von-Laue-Str. 7, D-60438 Frankfurt am Main (Germany)

2013-02-07T23:59:59.000Z

464

Welding of HSLA-100 steel using ultra low carbon bainitic weld metal to eliminate preheating  

SciTech Connect

Advanced high strength steels such as the Navy`s HSLA-100 and HSLA-80 contain sufficiently low carbon levels to be weldable without preheating. Unfortunately, commercial filler metals specifically designed to weld these steels without costly preheating have not yet been developed. The objective of this paper is to show that the Navy`s advanced steels can be welded by gas metal-arc (GMAW) and gas tungsten-arc welding (GTAW) without preheating by using filler metal compositions that produce weld metal with an ultra-low carbon bainitic (ULCB) microstructure. Filler metals were fabricated from vacuum induction melted (VIM) ingots containing ultra-low levels of C, O and N. HSLA-100 plate and plate from the VIM ingots were welded by both GMAW and GTAW with Ar-5% CO{sub 2} shielding gas using welding conditions to achieve cooling times from 800 to 500 C (t{sub 8-5}) from 35 to 14 sec. Weld metal tensile, hardness and CVN impact toughness testing as well as microstructural studies using transmission electron microscopy were conducted. The ULCB weld metal was relatively insensitive to cooling rate, resulting in good strength and toughness values over a wide range of t{sub 8-5} cooling times. Filler metal compositions which met the mechanical property requirements for HSLA-100, HSLA-80 and HSLA-65 weld metal were developed.

Devletian, J.H.; Singh, D.; Wood, W.E. [Oregon Graduate Inst. of Science and Technology, Portland, OR (United States)

1996-12-31T23:59:59.000Z

465

ITP Materials: Development of Materials Resistant to Metal Dustiing Degradation  

NLE Websites -- All DOE Office Websites (Extended Search)

INDUSTRIAL INDUSTRIAL TECHNOLOGIES PROGRAM Bringing you a prosperous future where energy is clean, abundant, reliable, and affordable Energy Efficiency and Renewable Energy U.S. Department of Energy Degradation of metallic structural compo- nents by metal dusting is a major issue in plants such as those involved in hydrogen production, ammonia synthesis, methanol reforming, and syngas (H 2 /CO mixtures) pro- duction. Metal dusting is also experienced at high temperatures in the oxidizing-carbur- izing environments that are prevalent in the heat-treating industry and in processes that involve direct reduction in the production of iron. While experiments have proved that metal dusting does occur, industries could not develop an approach to combat this problem because of a lack of understanding

466

Methods of making metallic glass foil laminate composites  

DOE Patents (OSTI)

A process for the fabrication of a rapidly solidified foil laminate composite. An amorphous metallic glass foil is flux treated and coated with solder. Before solidification of the solder the foil is collected on a take-up spool which forms the composite into a solid annular configuration. The resulting composite exhibits high strength, resiliency and favorable magnetic and electrical properties associated with amorphous materials. The composite also exhibits bonding strength between the foil layers which significantly exceeds the bulk strength of the solder alone. 6 figs.

Vianco, P.T.; Fisher, R.W.; Hosking, F.M.; Zanner, F.J.

1996-08-20T23:59:59.000Z

467

Continuous production of tritium in an isotope-production reactor with a separate circulation system  

DOE Patents (OSTI)

A method is described for producing tritium in a fast breeder reactor cooled with liquid metal. Lithium is allowed to flow through the reactor in separate loops in order to facilitate the production and removal of tritium.

Cawley, W.E.; Omberg, R.P.

1982-08-19T23:59:59.000Z

468

Fabrication Of Multilayered Thin Films Via Spin-Assembly  

NLE Websites -- All DOE Office Websites (Extended Search)

Fabrication Of Multilayered Thin Films Via Spin-Assembly Fabrication Of Multilayered Thin Films Via Spin-Assembly Fabrication Of Multilayered Thin Films Via Spin-Assembly A process of forming multilayer thin film heterostructures. Available for thumbnail of Feynman Center (505) 665-9090 Email Fabrication Of Multilayered Thin Films Via Spin-Assembly A process of forming multilayer thin film heterostructures is disclosed and includes applying a solution including a first water-soluble polymer from the group of polyanionic species, polycationic species and uncharged polymer species onto a substrate to form a first coating layer on the substrate, drying the first coating layer on the substrate, applying a solution including a second water-soluble polymer from the group of polyanionic species, polycationic species and uncharged polymer species

469

fabrication-polybenzimidazole-sri | netl.doe.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Fabrication and Scale-Up of Polybenzimidazole-Based Membrane System for Pre-Combustion Capture of Carbon Dioxide Project No.: FC26-07NT43090 SRI International is developing a...

470

Reusable plasmonic substrates fabricated by interference lithography: a platform for  

E-Print Network (OSTI)

Reusable plasmonic substrates fabricated by interference lithography: a platform for systematic between electromagnetic and chemical enhancement, the development of standardized and recyclable SERS open a powerful platform within an analytical tool and in particular for systematic SERS studies

Dalang, Robert C.

471

Template-based Ferromagnetic Nanowires and Nanotubes: Fabrication and Characterization  

E-Print Network (OSTI)

This dissertation describes experimental studies of the structures and properties, and their correlations in ferromagnetic nanowires and nanotubes fabricated using porous templates. Ferromagnetic Ni and Fe nanowires with diameters 30 ~ 250 nm were...

Wei, Zhiyuan

2013-05-01T23:59:59.000Z

472

Nanostructure fabrication by electron and ion beam patterning of nanoparticles  

E-Print Network (OSTI)

Two modes of energetic beam-mediated fabrication have been investigated, namely focused ion beam (FIB) direct-writing of nanoparticles, and a technique for electrostatically patterning ionized inorganic nanoparticles, ...

Kong, David Sun, 1979-

2004-01-01T23:59:59.000Z

473

Materials for freeform fabrication of GHz tunable dielectric photonic crystals.  

SciTech Connect

Photonic crystals are of interest for GHz transmission applications, including rapid switching, GHz filters, and phased-array technology. 3D fabrication by Robocasting enables moldless printing of high solid loading slurries into structures such as the ''woodpile'' structures used to fabricate dielectric photonic band gap crystals. In this work, tunable dielectric materials were developed and printed into woodpile structures via solid freeform fabrication (SFF) toward demonstration of tunable photonic crystals. Barium strontium titanate ceramics possess interesting electrical properties including high permittivity, low loss, and high tunability. This paper discusses the processing route and dielectric characterization of (BaxSr1-XTiO3):MgO ceramic composites, toward fabrication of tunable dielectric photonic band gap crystals.

Niehaus, Michael Keith; Lewis, Jennifer A. (University of Illinois, Urbana, IL); Smay, James Earl; Clem, Paul Gilbert; Lin, Shawn-Yu; Cesarano, Joseph, III (,; ); Carroll, James F.

2003-01-01T23:59:59.000Z

474

Fabrication and Characterization of Organic/Inorganic Photovoltaic Devices  

E-Print Network (OSTI)

is described from its power conversion efficiency (PCE).PCE of a photovoltaic device is determined from the currentPower conversion efficiency (PCE) of all of the fabricated

Guvenc, Ali Bilge

2012-01-01T23:59:59.000Z

475

Designing liquid repellent surfaces for fabrics, feathers and fog  

E-Print Network (OSTI)

Omniphobicity refers to a property of surfaces which are not wetted by water, oils, alcohols and other low surface tension liquids. Robust omniphobic surfaces can be applied in many areas including fabrics with chemical / ...

Chhatre, Shreerang S. (Shreerang Sharad)

2013-01-01T23:59:59.000Z

476

Design and fabrication of pressure-compensating compliant tubes  

E-Print Network (OSTI)

Different fabrication methods are evaluated for producing pressure-compensating tubes for use in low-pressure drip irrigation systems. Such devices would allow drip irrigation systems to operate at driving pressures much ...

Martin, Ian (Ian P.)

2014-01-01T23:59:59.000Z

477

MODEL 9975 SHIPPING PACKAGE FABRICATION PROBLEMS AND SOLUTIONS  

SciTech Connect

The Model 9975 Shipping Package is the latest in a series (9965, 9968, etc.) of radioactive material shipping packages that have been the mainstay for shipping radioactive materials for several years. The double containment vessels are relatively simple designs using pipe and pipe cap in conjunction with the Chalfont closure to provide a leak-tight vessel. The fabrication appears simple in nature, but the history of fabrication tells us there are pitfalls in the different fabrication methods and sequences. This paper will review the problems that have arisen during fabrication and precautions that should be taken to meet specifications and tolerances. The problems and precautions can also be applied to the Models 9977 and 9978 Shipping Packages.

May, C; Allen Smith, A

2008-05-07T23:59:59.000Z

478

Fabrication of Annealed Proton-Exchanged Waveguides for Vertical Integration  

E-Print Network (OSTI)

There is a drive for improving the surface uniformity of optical waveguide devices in the photonics lab. This report focuses on the exploration of annealed proton exchange (APE) waveguide fabrication on lithium niobate crystal as a method...

Webb, Jacob Douglas

2011-08-08T23:59:59.000Z

479

Timber tower : a flexible fabrication method for reconfigurable housing  

E-Print Network (OSTI)

"Prefabricating Housing...again", this time it's going to be different. Fabrication machine functionality is bracketed by the physical configuration and componentry of the system. Traditionally, a machine designer engineers ...

Coleman, James (James Richard)

2014-01-01T23:59:59.000Z

480

Fabricate PHEV Cells for Testing & Diagnostics | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation es030jansen2011p.pdf More Documents & Publications Fabricate PHEV...

Note: This page contains sample records for the topic "fabricated metal product" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Fabrication of Micro-Orifices for Diesel Fuel Injectors  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

G. Fenske, J. Wang, and E. El- Hannouny (ANL), R Schaefer and F. Hamady (NVFEL) US DOE - Vehicle Technologies Propulsion Materials Jerry Gibbs Fabrication of Micro-orifices for...

482

Liquid metal thermal electric converter  

DOE Patents (OSTI)

A liquid metal thermal electric converter which converts heat energy to electrical energy. The design of the liquid metal thermal electric converter incorporates a unique configuration which directs the metal fluid pressure to the outside of the tube which results in the structural loads in the tube to be compressive. A liquid metal thermal electric converter refluxing boiler with series connection of tubes and a multiple cell liquid metal thermal electric converter are also provided.

Abbin, Joseph P. (Albuquerque, NM); Andraka, Charles E. (Albuquerque, NM); Lukens, Laurance L. (Albuquerque, NM); Moreno, James B. (Albuquerque, NM)

1989-01-01T23:59:59.000Z

483

Manufacturers Saving with Lost Foam Metal Casting | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Manufacturers Saving with Lost Foam Metal Casting Manufacturers Saving with Lost Foam Metal Casting Manufacturers Saving with Lost Foam Metal Casting December 18, 2009 - 2:43pm Addthis Eric Barendsen Energy Technology Program Specialist, Office of Energy Efficiency and Renewable Energy What are the key facts? Metal casting was identified as one of the top 10 energy users in manufacturing. The technology represents a 20- to 25-percent reduction in production costs and uses 7 percent fewer materials than traditional processes. One example of this technology is being used by General Motors to make lightweight engine blocks for the fuel-efficient vehicles they manufacture. A government-funded effort to support development of foam metal casting helped reduce an estimated 9.4 million tons of solid waste between 1994 and 2005, which saved industry an estimated 3 trillion Btu.

484

Catalytic activation of carbon monoxide on metal surfaces  

SciTech Connect

In discussing the important basic aspects of carbon monoxide chemistry, this review covers the adsorption and reaction of CO with H/sub 2/O and H/sub 2/ on reduced metal surfaces. Carbon monoxide adsorption of the Group VIII metals exhibits certain patterns. Typically, as coverages exceed one-half, compression occurs in the monolayer and the molecules lose registry with the surface metal atoms. Particular sites associated with rough surfaces facilitate CO dissociation to the surface carbon; these sites may have a significant effect on selectivity in the CO hydrogenation reaction. The support used and the metal crystallite size both affect the catalyst activity and product selectivity. Indications are strong that a better knowledge of metal-support interactions combined with a more complete understanding of the surface chemistry involved will lead to improved catalyst systems in the future.

Vannice, M.A.

1982-01-01T23:59:59.000Z

485

Feasibility of Starting a Waterjet Fabrication Plant in Amman, Jordan  

E-Print Network (OSTI)

Engineering Management Field Project Feasibility of Starting a Waterjet Fabrication Plant in Amman, Jordan By Khaled A. Ahmad Spring Semester, 2010 An EMGT Field Project report submitted to the Engineering Management... and library search support. 3 Preface It has been my desire for a long time to investigate what it takes to start a water jet fabrication plant in Amman, Jordan to precisely cut marble, granite, and ceramics. I worked in the manufacturing...

Ahmad, Khaled A.

2010-05-14T23:59:59.000Z

486

Method of fabricating vertically aligned group III-V nanowires  

DOE Patents (OSTI)

A top-down method of fabricating vertically aligned Group III-V micro- and nanowires uses a two-step etch process that adds a selective anisotropic wet etch after an initial plasma etch to remove the dry etch damage while enabling micro/nanowires with straight and smooth faceted sidewalls and controllable diameters independent of pitch. The method enables the fabrication of nanowire lasers, LEDs, and solar cells.

Wang, George T; Li, Qiming

2014-11-25T23:59:59.000Z

487

High-temperature fabricable nickel-iron aluminides  

DOE Patents (OSTI)

Nickel-iron aluminides are described that are based on Ni.sub.3 Al, and have significant iron content, to which additions of hafnium, boron, carbon and cerium are made resulting in Ni.sub.3 Al base alloys that can be fabricated at higher temperatures than similar alloys previously developed. Further addition of molybdenum improves oxidation and cracking resistance. These alloys possess the advantages of ductility, hot fabricability, strength, and oxidation resistance.

Liu, Chain T. (Oak Ridge, TN)

1988-02-02T23:59:59.000Z

488

Low Cost Fabrication of Oxide Dispersion Strengthened Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Low Cost Fabrication of Oxide Dispersion Low Cost Fabrication of Oxide Dispersion Strengthened Materials Background To obtain significant increases in the efficiency of coal fired power plants, steam pressure and temperature must be increased beyond current technology to advanced ultra-supercritical (A-USC) conditions -temperatures and pressures up to 760 degrees Celsius (°C) and 35 megapascals (MPa). The upper bounds of operating pressure and temperature are limited by the properties of the current set

489

Cast Metal Coalition Research and Development Closeout Report  

SciTech Connect

The Cast Metal Coalition, composed of more than 22 research providers and universities and 149 industrial partners, has completed a four-year research and development partnership with the Department of Energy. This report provides brief summaries of the 29 projects performed by the Coalition. These projects generated valuable information in such aspects of the metals industry as process prediction technologies, quality control, improved alloys, product machinability, and casting process improvements.

Allen, D.

2000-08-01T23:59:59.000Z

490

High-Temperature Zirconia Oxygen Sensor with Sealed Metal/Metal...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

High-Temperature Zirconia Oxygen Sensor with Sealed MetalMetal Oxide Internal Reference High-Temperature Zirconia Oxygen Sensor with Sealed MetalMetal Oxide Internal Reference...