Sample records for fabricate prototype high-temp

  1. Midas: Fabricating Custom Capacitive Touch Sensors to Prototype Interactive Objects

    E-Print Network [OSTI]

    California at Irvine, University of

    . While digital fabrication techniques such as 3D printing make it easier to prototype the shape of custom processes like 3D printing and CNC ma- chining make it easier to prototype the form of such products

  2. BREAKOUT GROUP 3: HIGH TEMP (SOFC) SYSTEM AND BOP PARTICIPANTS

    E-Print Network [OSTI]

    BREAKOUT GROUP 3: HIGH TEMP (SOFC) SYSTEM AND BOP PARTICIPANTS NAME ORGANIZATION Dan Birmingham (SOFC) AND BOP KEY TECHNICAL BARRIERS SEALS DURABILITY/RELIABILITY/DEGRADATION CONTAMINANTS · Seals processes FC Solicitation Workshop 2 March 2010 #12;BREAKOUT GROUP 3: HIGH TEMP (SOFC) AND BOP CRITICAL R

  3. Detailed design, fabrication and testing of an engineering prototype compensated pulsed alternator. Final report

    SciTech Connect (OSTI)

    Bird, W.L. Jr.; Woodson, H.H.

    1980-03-01T23:59:59.000Z

    The design, fabrication, and test results of a prototype compensated pulsed alternator are discussed. The prototype compulsator is a vertical shaft single phase alternator with a rotating armature and salient pole stator. The machine is designed for low rep rate pulsed duty and is sized to drive a modified 10 cm Beta amplifier. The load consists of sixteen 15 mm x 20 mm x 112 cm long xenon flashlamps connected in parallel. The prototype compulsator generates an open circuit voltage of 6 kV, 180 Hz, at a maximum design speed of 5400 rpm. At maximum speed, the inertial energy stored in the compulsator rotor is 3.4 megajoules.

  4. Experience on Fabrication and Assembly of the First CLIC Two-Beam Module Prototype

    E-Print Network [OSTI]

    Gudkov, D; Riddone, G; Rossi, F; Lebet, S

    2013-01-01T23:59:59.000Z

    The CLIC two-beam module prototypes are intended to prove the design of all technical systems under the different operation modes. Two validation programs are currently under way and they foresee the construction of four prototype modules for mechanical tests without beam and three prototype modules for tests with RF and beam. The program without beam will show the capability of the technical solutions proposed to fulfil the stringent requirements on radio-frequency, supporting, pre-alignment, stabilization, vacuum and cooling systems. The engineering design was performed with the use of CAD/CAE software. Dedicated mock-ups of RF structures, with all mechanical interfaces and chosen technical solutions, are used for the tests and therefore reliable results are expected. The components were fabricated by applying different technologies and methods for manufacturing and joining. The first full-size prototype module was assembled in 2012. This paper is focused on the production process including the comparison o...

  5. Fabrication and Test Results of a Prototype, Nb3Sn Superconducting Racetrack Dipole Magnet

    SciTech Connect (OSTI)

    Gourlay, S. A.; Chow, K.; Dietderich, D.R.; Gupta, R.; Hannaford, R.; Harnden, W.; Lietzke, A.; McInturff, A.D.; Millos, G.A.; Morrison, L.; Morrison, M.; Scanlan, R.M.

    1998-09-01T23:59:59.000Z

    A prototype, Nb{sub 3}Sn superconducting magnet, utilizing a racetrack coil design has been built and tested. This magnet represents the first step in a recently implemented program to develop a high field, accelerator quality magnet. This magnet was constructed with coils wound from conductor developed for the ITER project, limiting the magnet to a field of 6-7 Tesla. Subsequent magnets in the program will utilize improved conductor, culminating in a magnet design capable of producing fields approaching 15 Tesla. The simple geometry is more suitable for the use of brittle superconductors necessary to eventually reach high field levels. In addition, fewer and simpler parts are used in fabricating these coils compared with the more conventional cosine theta cross section coils. The general fabrication steps, mechanical design and quench performance are discussed.

  6. he application of rapid prototyping (RP) in fabricat-ing nonassembly robotic systems with inserts is pre-

    E-Print Network [OSTI]

    Mavroidis, Constantinos

    T he application of rapid prototyping (RP) in fabricat- ing nonassembly robotic systems for the rapid and automatic design and fabrication of robotic sys- tems a reality is to study the application with inserts is pre- sented in this article. The development of robotic systems that have all necessary

  7. Comparative Study of Laboratory-Scale and Prototypic Production-Scale Fuel Fabrication Processes and Product Characteristics

    SciTech Connect (OSTI)

    Douglas W. Marshall

    2014-10-01T23:59:59.000Z

    An objective of the High Temperature Gas Reactor fuel development and qualification program for the United States Department of Energy has been to qualify fuel fabricated in prototypic production-scale equipment. The quality and characteristics of the tristructural isotropic coatings on fuel kernels are influenced by the equipment scale and processing parameters. Some characteristics affecting product quality were suppressed while others have become more significant in the larger equipment. Changes to the composition and method of producing resinated graphite matrix material has eliminated the use of hazardous, flammable liquids and enabled it to be procured as a vendor-supplied feed stock. A new method of overcoating TRISO particles with the resinated graphite matrix eliminates the use of hazardous, flammable liquids, produces highly spherical particles with a narrow size distribution, and attains product yields in excess of 99%. Compact fabrication processes have been scaled-up and automated with relatively minor changes to compact quality to manual laboratory-scale processes. The impact on statistical variability of the processes and the products as equipment was scaled are discussed. The prototypic production-scale processes produce test fuels that meet fuel quality specifications.

  8. Fabrication of a SWATH vessel scale model for seakeeping tests using rapid prototyping methods

    E-Print Network [OSTI]

    DiMino, John Robert

    2013-01-01T23:59:59.000Z

    This paper describes the techniques used to fabricate a one meter long, 1/6 scale model of a Small Waterplane Area, Twin Hull (SWATH) Unmanned Surface Vehicle (USV) that will be used primarily for dynamic seakeeping testing ...

  9. Design, fabrication, and test of an SRF cryomodule prototype at Fermilab

    SciTech Connect (OSTI)

    Soyars, W.; Darve, C.; Nicol, T.; Rowe, A.; /Fermilab

    2006-01-01T23:59:59.000Z

    In support of the Charged Kaons at the Main Injector (CKM) experiment [1], an SRF cryomodule was designed, assembled, and tested at Fermilab. The cryomodule prototype consists of a single niobium 13-cell 3.9 GHz superconducting RF cavity installed in its horizontal cryostat. The prototype was simplified to hold an additional dummy cavity in place of a second 13-cell SRF cavity. Although this cryomodule was originally intended for beamline deflection in the CKM experiment, this first preliminary test aims to compliment existing vertical 3-cell 3.9 GHz SRF cavity testing and also to gain expertise in the field of SRF testing. The cryomodule's thermal and mechanical design is reported. The test process and instrumentation is described. The first operational cooldown with RF powering is discussed and some cryogenic results are given.

  10. Prototype Development of Remote Operated Hot Uniaxial Press (ROHUP) to Fabricate Advanced Tc-99 Bearing Ceramic Waste Forms - 13381

    SciTech Connect (OSTI)

    Alaniz, Ariana J.; Delgado, Luc R.; Werbick, Brett M. [University of Nevada - Las Vegas, Howard R. Hughes College of Engineering, 4505 S. Maryland Parkway, Box 454009, Las Vegas, NV 89154-4009 (United States)] [University of Nevada - Las Vegas, Howard R. Hughes College of Engineering, 4505 S. Maryland Parkway, Box 454009, Las Vegas, NV 89154-4009 (United States); Hartmann, Thomas [University of Nevada - Las Vegas, Harry Reid Canter, 4505 S. Maryland Parkway, Box 454009, Las Vegas, NV 89154-4009 (United States)] [University of Nevada - Las Vegas, Harry Reid Canter, 4505 S. Maryland Parkway, Box 454009, Las Vegas, NV 89154-4009 (United States)

    2013-07-01T23:59:59.000Z

    The objective of this senior student project is to design and build a prototype construction of a machine that simultaneously provides the proper pressure and temperature parameters to sinter ceramic powders in-situ to create pellets of rather high densities of above 90% (theoretical). This ROHUP (Remote Operated Hot Uniaxial Press) device is designed specifically to fabricate advanced ceramic Tc-99 bearing waste forms and therefore radiological barriers have been included in the system. The HUP features electronic control and feedback systems to set and monitor pressure, load, and temperature parameters. This device operates wirelessly via portable computer using Bluetooth{sup R} technology. The HUP device is designed to fit in a standard atmosphere controlled glove box to further allow sintering under inert conditions (e.g. under Ar, He, N{sub 2}). This will further allow utilizing this HUP for other potential applications, including radioactive samples, novel ceramic waste forms, advanced oxide fuels, air-sensitive samples, metallic systems, advanced powder metallurgy, diffusion experiments and more. (authors)

  11. Mechanical design and fabrication of a prototype facility for processing NaK using a chlorine reaction method

    SciTech Connect (OSTI)

    Dafoe, R.; Keller, D.; Stoll, F.

    1990-01-01T23:59:59.000Z

    A prototype facility has been built at the Idaho National Engineering Laboratory (INEL) to dispose of 180 gal(0.68 m{sup 3}) of radioactively contaminated NaK (sodium-potassium) that have been stored on site for 35 years. The NaK was used as primary coolant for the Experimental Breeder Reactor I (EBR-I) at the INEL and was contaminated during a meltdown of the Mark II core in November 1955. The NaK then was transferred to four containers for temporary storage. The facility process will react the NaK with elemental chlorine using a batch process to produce chemically stable sodium chloride and potassium chloride salts. The first use of the facility will be on a prototype level to verify the method. If results are favorable, the facility will be modified to eventually dispose of the EBR-I NaK. The design and intended operation of the prototype facility are described. 2 figs.

  12. Rapid prototyping of green composites

    E-Print Network [OSTI]

    Peek, Nadya (Nadya Meile)

    2010-01-01T23:59:59.000Z

    Rapid prototyping employs digital fabrication techniques to quickly manufacture parts. However, the available materials are not yet suitable for making strong, large or durable objects. Composites are materials which are ...

  13. Advances in rapid prototyping

    SciTech Connect (OSTI)

    Atwood, C.L.; McCarty, G.D.; Pardo, B.T.; Bryce, E.A.

    1993-12-31T23:59:59.000Z

    Recent advances in stereolithography and selective laser sintering have had a significant impact on the overall quality of parts produced using these rapid prototyping processes. The development and implementation of 3D System`s QuickCast{trademark} resin and software for building investment casting patterns have proven to be major steps toward fabricating highly accurate patterns with very good surface finishes. Sandia uses patterns generated from rapid prototyping processes to reduce the cycle time and cost of fabricating prototype parts in support of a Sandia National Laboratories managed program called FASTCAST. As participants in the Beta test program for QuickCast{trademark} resin and software, they experienced a steep learning curve and were able to build accurate parts in a short period of time. It is now possible, using this technology, to produce highly accurate prototype parts as well as acceptable firs article and small lots size production parts. They use the Selective Laser Sintering (SLS) process to fabricate prototype wax patterns for investment casting. DTM Corporation recently introduced the use of their polycarbonate material for fabricating investment casting patterns. The polycarbonate material is processed significantly faster, with improved strength, dimensional stability, and without a support structure during the build process. Sandia is currently changing from investment casting wax to polycarbonate for the fabrication of investment casting patterns using the SLS process. This presentation will focus on the successes with these new materials from the standpoints of application, accuracy, surface finish, and post processing. Also presented will be examples of parts manufactured by these processes.

  14. Prototype to Test WHY prototype to test

    E-Print Network [OSTI]

    Prinz, Friedrich B.

    Prototype to Test METHOD WHY prototype to test HOW to prototype to test Prototyping to test or design space. The fundamental way you test your prototypes is by letting users experience them and react to them. In creating prototypes to test with users you have the opportunity to examine your solution

  15. Prototype system brings advantages of wireless technology to...

    National Nuclear Security Administration (NNSA)

    the NNSA, other federal agencies and critical manufacturing facilities. The Savannah River National Laboratory designed and fabricated a prototype wireless Tritium Air...

  16. Rapid prototyping applications for manufacturing

    SciTech Connect (OSTI)

    Atwood, C.L.; Maguire, M.C.; Pardo, B.T.; Bryce, E.A. [Sandia National Labs., Albuquerque, NM (United States)

    1996-01-01T23:59:59.000Z

    Recent advances in stereolithography and selective laser sintering have had a significant impact on the overall quality of parts produced using these rapid prototyping processes. The development and implementation of 3D System`s QuickCast{sup TM} resin and software for building investment casting patterns have proven to be major steps toward fabricating highly accurate patterns with very good surface finishes. As participants in the Beta test program for QuickCast{sup TM} resin and software, we experienced a steep learning curve and were able to build accurate parts in a short period of time. It is now possible using this technology to produce highly accurate prototype parts as well as acceptable first article and small lot size production parts. We use the Selective Laser Sintering (SLS) process to fabricate prototype wax patterns for investment casting. DTM Corporation recently introduced the use of their polycarbonate material for fabricating investment casting patterns. The polycarbonate material is processed significantly faster with improved strength, dimensional stability, and without a support structure during the build process. Sandia is currently changing from investment casting wax to polycarbonate for the fabrication of investment casting patterns using the SLS process. This report will focus on our successes with these new materials from the standpoints of application, accuracy, surface finish, and post processing. Also presented will be examples of parts manufactured by these processes. 6 refs., 10 figs.

  17. 4.212 Design Fabrication, Spring 2003

    E-Print Network [OSTI]

    Sass, Lawrence

    Design Fabrication is an introductory course in the field of advanced computing, prototyping and building fabrication. The class is focused on the relationship between design, various forms of computer modeling both explicit ...

  18. Prototyping Tangible Input Devices with Digital Fabrication

    E-Print Network [OSTI]

    Hartmann, Björn

    have previously investigated the benefits of tangibility in How Bodies Matter. 3D printing holds users of 3D printing can currently create such objects. For example, we surveyed the the online in this last sector are typically experts in PCB design and design for 3D printing. "Iconic Lion at the Steps

  19. AFIP-6 Fabrication Summary Report

    SciTech Connect (OSTI)

    Glenn A. Moore; M. Craig Marshall

    2011-09-01T23:59:59.000Z

    The AFIP-6 (ATR Full-size plate In center flux trap Position) experiment was designed to evaluate the performance of monolithic fuels at a scale prototypic of research reactor fuel plates. Two qualified fueled plates were fabricated for the AFIP-6 experiment; to be irradiated in the INL Advanced Test Reactor (ATR). This report provides details of the fuel fabrication efforts, including material selection, fabrication processes, and fuel plate qualification.

  20. AFIP-2 Fabrication Summary Report

    SciTech Connect (OSTI)

    Glenn Moore

    2010-02-01T23:59:59.000Z

    The Advanced Test Reactor (ATR) Full-size Plate In Center Flux Trap Position (AFIP)-2 experiment was designed to evaluate the performance of monolithic fuels at a scale prototypic of research reactor fuel plates. Two qualified fueled plates were fabricated for the AFIP 2 experiment to be irradiated in the Idaho National Laboratory ATR. This report provides details of the fuel fabrication efforts, including material selection, fabrication processes, and fuel plate qualification.

  1. AFIP-4 Fabrication Summary Report

    SciTech Connect (OSTI)

    Glenn A. Moore

    2010-02-01T23:59:59.000Z

    The AFIP-4 (ATR Full –size-plate In center flux trap Position) experiment was designed to evaluate the performance of monolithic fuels at a scale prototypic of research reactor fuel plates. Twelve qualified fueled plates were fabricated for the AFIP-4 experiment; to be irradiated in the INL Advanced Test Reactor (ATR). This report provides details of the fuel fabrication efforts; including material selection, fabrication processes, and fuel plate qualification.

  2. Creating Works-Like Prototypes of Mechanical Objects Bongjin Koo

    E-Print Network [OSTI]

    Agrawala, Maneesh

    of creating works-like prototypes. Designers are increasingly turning to 3D printing as a tool for fab Graphics]: Computational Ge- ometry and Object Modeling--Geometric algorithms. Keywords: fabrication, 3D printing, sketch-based modeling Links: DL PDF WEB VIDEO 1 Introduction Creating physical prototypes

  3. Fabrication and characterization of microscale sandwich beams

    E-Print Network [OSTI]

    Kenis, Paul J. A.

    /metal cores were produced through fabrication methods that combined photolithography and electrodeposition prototyping strategy consisting of photolithographic, electrodeposition, and face-sheet bonding steps sandwiched between two sheets of nickel. We also investigate the structural response--load, flex- ural

  4. Rapid prototyping: A paradigm shift in investment casting

    SciTech Connect (OSTI)

    Atwood, C.L.; Maguire, M.C.; Baldwin, M.D.; Pardo, B.T.

    1996-09-01T23:59:59.000Z

    The quest for fabricating complex metal parts rapidly and with minimal cost has brought rapid prototyping (RP) processes to the forefront of the investment casting industry. Relatively recent advances in DTM Corporation`s selective laser sintering (SLS) and 3D Systems stereolithography (SL) processes have had a significant impact on the overall quality of patterns produced using these rapid prototyping processes. Sandia National Laboratories uses patterns generated from rapid prototyping processes to reduce the cycle time and cost of fabricating prototype and small lot production parts in support of a program called FASTCAST. The SLS process is used to fabricate patterns from materials such as investment casting wax, polycarbonate, and a new material called TrueForm PM{trademark}. With the timely introduction of each of these materials, the quality of patterns fabricated has improved. The development and implementation of SL QuickCast{trademark} software has enabled this process to produce highly accurate patterns for use in investment casting. This paper focuses on the successes with these new pattern materials and the infrastructure required to cast rapid prototyping patterns successfully. In addition, a brief overview of other applications of rapid prototyping at Sandia will be discussed.

  5. Development of a prototype lignin concentration sensor

    SciTech Connect (OSTI)

    Malito, M.L.; Jeffers, L.A.

    1993-01-01T23:59:59.000Z

    The US Department of Energy, Office of Industrial Technologies, is sponsoring a research and development program for the development of a real-time, in-situ sensor to measure the concentration of lignin in wood pulp. The program is composed of phase I showing feasibility which is now complete, phase II for development and testing of a Field Prototype, in progress, Phase III commercialization. Phase I work (funded entirely by B W) demonstrated a correlation between the fluorescence intensity and lignin concentration (as measured by TAPPI procedure, T 236 hm-85 Kappa Number of Pulp) for undiluted wood pulp samples. In Phase II, a laboratory test program directed at characterizing the fluorescence of wood pulp has been conducted as a prelude to the design of a prototype sensor. The current report summarizes the testing completed in Phase I and documents the Phase II laboratory testing completed through December 1991. Future Phase II efforts include additional laboratory testing, design and fabrication of a prototype sensor, and field testing of the prototype sensor. Phase III of the program will concentrate on the incorporation of the sensor into a control system and commercialization of the sensor.

  6. Development of a prototype lignin concentration sensor

    SciTech Connect (OSTI)

    Malito, M.L.; Jeffers, L.A.

    1993-01-01T23:59:59.000Z

    The US Department of Energy, Office of Industrial Technologies, is sponsoring a research and development program for the development of a real-time, in-situ sensor to measure the concentration of lignin in wood pulp. The program is composed of phase I showing feasibility which is now complete, phase II for development and testing of a Field Prototype, in progress, Phase III commercialization. Phase I work (funded entirely by B&W) demonstrated a correlation between the fluorescence intensity and lignin concentration (as measured by TAPPI procedure, T 236 hm-85 Kappa Number of Pulp) for undiluted wood pulp samples. In Phase II, a laboratory test program directed at characterizing the fluorescence of wood pulp has been conducted as a prelude to the design of a prototype sensor. The current report summarizes the testing completed in Phase I and documents the Phase II laboratory testing completed through December 1991. Future Phase II efforts include additional laboratory testing, design and fabrication of a prototype sensor, and field testing of the prototype sensor. Phase III of the program will concentrate on the incorporation of the sensor into a control system and commercialization of the sensor.

  7. A method for nanofluidic device prototyping using elastomeric collapse

    E-Print Network [OSTI]

    Erickson, David

    A method for nanofluidic device prototyping using elastomeric collapse Seung-min Parka,1 , Yun Suk April 14, 2009) Nanofluidics represents a promising solution to problems in fields ranging from biomolecular analysis to optical property tuning. Recently a number of simple nanofluidic fabrication

  8. Methods and systems for rapid prototyping of high density circuits

    DOE Patents [OSTI]

    Palmer, Jeremy A. (Albuquerque, NM); Davis, Donald W. (Albuquerque, NM); Chavez, Bart D. (Albuquerque, NM); Gallegos, Phillip L. (Albuquerque, NM); Wicker, Ryan B. (El Paso, TX); Medina, Francisco R. (El Paso, TX)

    2008-09-02T23:59:59.000Z

    A preferred embodiment provides, for example, a system and method of integrating fluid media dispensing technology such as direct-write (DW) technologies with rapid prototyping (RP) technologies such as stereolithography (SL) to provide increased micro-fabrication and micro-stereolithography. A preferred embodiment of the present invention also provides, for example, a system and method for Rapid Prototyping High Density Circuit (RPHDC) manufacturing of solderless connectors and pilot devices with terminal geometries that are compatible with DW mechanisms and reduce contact resistance where the electrical system is encapsulated within structural members and manual electrical connections are eliminated in favor of automated DW traces. A preferred embodiment further provides, for example, a method of rapid prototyping comprising: fabricating a part layer using stereolithography and depositing thermally curable media onto the part layer using a fluid dispensing apparatus.

  9. 4.510 Digital Design Fabrication, Fall 2005

    E-Print Network [OSTI]

    Sass, Lawrence

    This class serves as an introductory subject in advanced computing, rapid prototyping, and CAD/CAM fabrication for architects. It focuses on the relationship between design and various forms of computer modeling as input, ...

  10. Rsum -Les mthodologies de Design for Assembly et de Design for Manufacturing visent rendre les produits plus faciles fabriquer et assembler en se basant sur les caractristiques des procds actuels de fabrication, toutefois ces

    E-Print Network [OSTI]

    Boyer, Edmond

    the new capabilities of Additive Manufacturing. This article describes a design methodology for Additive - Fabrication additive, conception, fabrication rapide, prototypage rapide. Keywords ­ Additive manufacturing, design, rapid manufacturing, rapid prototyping. 1 INTRODUCTION La Fabrication Additive (FA) est définie

  11. Breaking Down Brick Walls: Design, Construction, and Prototype Fabrication

    E-Print Network [OSTI]

    Lieberman, Henry

    design tools and methodology Figure 1. The IRB-140 robot arm stacking blocks. 1. INTRODUCING ADEON device: a "pick and place" articulating robot arm for constructing architectural models, the IRB-140, the robotic arm picks and stacks brick-sized blocks. Conventional software design tools do not exhibit

  12. ANL: Prototype Cell Fabrication Facility | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1 A Strategic Framework for8.pdfAL2008-07.pdf2ProgramAMWTPANDREWANL:

  13. MITG test assembly design and fabrication

    SciTech Connect (OSTI)

    Schock, A.

    1983-01-01T23:59:59.000Z

    The design, analysis, and evaluation of the Modular Isotopic Thermoelectric Generator (MITG), described in an earlier paper, led to a program to build and test prototypical, modules of that generator. Each test module duplicates the thermoelectric converters, thermal insulation, housing and radiator fins of a typical generator slice, and simulates its isotope heat source module by means of an electrical heater encased in a prototypical graphite box. Once the approx. 20-watt MITG module has been developed, it can be assembled in appropriate number to form a generator design yielding the desired power output. The present paper describes the design and fabrication of the MITG test assembly, which confirmed the fabricability of the multicouples and interleaved multifoil insulation called for by the design. Test plans, procedures, instrumentation, results, and post-test analyses, as well as revised designs, fabrication procedures, and performance estimates, are described in subsequent papers in these proceedings.

  14. Micro-fabrication Techniques for Target Components

    SciTech Connect (OSTI)

    Miles, R; Hamilton, J; Crawford, J; Ratti, S; Trevino, J; Graff, T; Stockton, C; Harvey, C

    2008-06-10T23:59:59.000Z

    Micro-fabrication techniques, derived from the semi-conductor industry, can be used to make a variety of useful mechanical components for targets. A selection of these components including supporting cooling arms for prototype cryogenic inertial confinement fusion targets, stepped and graded density targets for materials dynamics experiments are described. Micro-fabrication enables cost-effective, simultaneous fabrication of multiple high-precision components with complex geometries. Micro-fabrication techniques such as thin-film deposition, photo-lithographic patterning and etch processes normally used in the semi-conductor manufacture industry, can be exploited to make useful mechanical target components. Micro-fabrication processes have in recent years been used to create a number of micro-electro-mechanical systems (MEMS) components such as pressure sensors, accelerometers, ink jet printer heads, microfluidics platforms and the like. These techniques consist primarily of deposition of thin films of material, photo-lithographic patterning and etching processes performed sequentially to produce three dimensional structures using essentially planar processes. While the planar technology can be limiting in terms of the possible geometries of the final product, advantages of using these techniques include the ability to make multiple complex structures simultaneously and cost-effectively. Target components fabricated using these techniques include the supporting cooling arms for cryogenic prototype fusion ignition targets, stepped targets for equation-of-state experiments, and graded density reservoirs for material strength experiments.

  15. Integration of rapid prototyping into design and manufacturing

    SciTech Connect (OSTI)

    Atwood, C.L.; McCarty, G.D.; Pardo, B.T.; Bryce, E.A.

    1993-10-01T23:59:59.000Z

    The introduction of rapid prototyping machines into the marketplace promises to revolutionize the process of producing prototype parts with production-like quality. In the age of concurrent engineering and agile manufacturing, it is necessary to exploit applicable new technologies as soon as they become available. The driving force behind integrating these evolutionary processes into the design and manufacture of prototype parts is the need to reduce lead times and fabrication costs, improve efficiency, and increase flexibility without sacrificing quality. Sandia utilizes Stereolithography (SL) and Selective Laser Sintering (SLS) capabilities to support internal design and manufacturing efforts. SL is used in the design iteration process to produce proof-of-concept models, hands-on models for design reviews, fit-check models, visual aids for manufacturing, and functional parts in assemblies. SLS is used to produce wax patterns for the lost wax process of investment casting in support of an internal Sandia National Laboratories program called FASTCAST which integrates experimental and computational technologies into the investment casting process. This presentation will provide a brief overview of the SL and SLS processes and address our experiences with these technologies from the standpoints of application, accuracy, surface finish, and feature definition. Also presented will be several examples of prototype parts manufactured by the Stereolithography and Selective Laser Sintering rapid prototyping machines.

  16. Design and Testing of Prototypic Elements Containing Monolithic Fuel

    SciTech Connect (OSTI)

    N.E. Woolstenhulme; M.K. Meyer; D.M. Wachs

    2011-10-01T23:59:59.000Z

    The US fuel development team has performed numerous irradiation tests on small to medium sized specimens containing low enriched uranium fuel designs. The team is now focused on qualification and demonstration of the uranium-molybdenum Base Monolithic Design and has entered the next generation of testing with the design and irradiation of prototypic elements which contain this fuel. The designs of fuel elements containing monolithic fuel, such as AFIP-7 (which is currently under irradiation) and RERTR-FE (which is currently under fabrication), are appropriate progressions relative to the technology life cycle. The culmination of this testing program will occur with the design, fabrication, and irradiation of demonstration products to include the base fuel demonstration and design demonstration experiments. Future plans show that design, fabrication, and testing activities will apply the rigor needed for a demonstration campaign.

  17. Fabrication of 3D Silicon Sensors

    SciTech Connect (OSTI)

    Kok, A.; Hansen, T.E.; Hansen, T.A.; Lietaer, N.; Summanwar, A.; /SINTEF, Oslo; Kenney, C.; Hasi, J.; /SLAC; Da Via, C.; /Manchester U.; Parker, S.I.; /Hawaii U.

    2012-06-06T23:59:59.000Z

    Silicon sensors with a three-dimensional (3-D) architecture, in which the n and p electrodes penetrate through the entire substrate, have many advantages over planar silicon sensors including radiation hardness, fast time response, active edge and dual readout capabilities. The fabrication of 3D sensors is however rather complex. In recent years, there have been worldwide activities on 3D fabrication. SINTEF in collaboration with Stanford Nanofabrication Facility have successfully fabricated the original (single sided double column type) 3D detectors in two prototype runs and the third run is now on-going. This paper reports the status of this fabrication work and the resulted yield. The work of other groups such as the development of double sided 3D detectors is also briefly reported.

  18. The design, fabrication, and implications of a solvothermal vapor annealing chamber

    E-Print Network [OSTI]

    Porter, Nathaniel R., Jr

    2013-01-01T23:59:59.000Z

    This thesis documents the design, fabrication, use, and benefits of a prototype aluminum solvothermal vapor annealing chamber which facilitates the self-assembly of block copolymers (BCPs) on silicon wafers which are then ...

  19. Covering Walls With Fabrics.

    E-Print Network [OSTI]

    Anonymous,

    1979-01-01T23:59:59.000Z

    TDOC . Z TA24S.7 8873 NO.1227 WALLS with ;FABRICS Texas Agricultural Extension Service . The Texas A&M University System Daniel C. Pfannstiel, Director, College Station, Texas Covering Walls with Fabrics* When tastefully applied, fabrics... it is applied, fabric-covered walls improve the sound-absorbing acoustical properties of a room. Also, fabrics can be used for covering walls of either textured gypsum board or wood paneling. Home decorating magazines are good sources for ideas about fabric...

  20. High Efficiency Spectrum Splitting Prototype Submodule Using Commercial CPV Cells (Presentation)

    SciTech Connect (OSTI)

    Keevers, M.; Lau, J.; Green, M.; Thomas, I.; Lasich, J.; King, R.; Emery, K.

    2014-11-01T23:59:59.000Z

    This presentation summarizes progress on the design, fabrication and testing of a proof-of-concept, prototype spectrum splitting CPV submodule using commercial CPV cells, aimed at demonstrating an independently confirmed efficiency above 40% at STC (1000 W/m2, AM1.5D ASTM G173-03, 25 degrees C).

  1. Activity-Based Prototyping of Ubicomp Applications for Long-Lived, Everyday Human Activities

    E-Print Network [OSTI]

    Anderson, Richard

    design process, and it allowed creating realistic ubicomp application prototypes at a low cost computing (ubicomp) promises to support our everyday activities by weaving computing power into the fabric by orienting designs towards human needs. ACD, however, is largely a set of perspectives and concepts

  2. Fuel Fabrication Facility

    National Nuclear Security Administration (NNSA)

    Construction of the Mixed Oxide Fuel Fabrication Facility Construction of the Mixed Oxide Fuel Fabrication Facility November 2005 May 2007 June 2008 May 2012...

  3. High efficiency radioisotope thermophotovoltaic prototype generator

    SciTech Connect (OSTI)

    Avery, J.E.; Samaras, J.E.; Fraas, L.M.; Ewell, R. [JX Crystals, Inc., Issaquah, WA (United States)

    1995-10-01T23:59:59.000Z

    A radioisotope thermophotovoltaic generator space power system (RTPV) is lightweight, low-cost alternative to the present radioisotope thermoelectric generator system (RTG). The fabrication of such an RTPV generator has recently become feasible as the result of the invention of the GaSb infrared sensitive photovoltaic cell. Herein, the authors present the results of a parametric study of emitters and optical filters in conjuction with existing data on gallium antimonide cells. They compare a polished tungsten emitter with an Erbia selective emitter for use in combination with a simple dielectric filter and a gallium antimonide cell array. They find that the polished tungsten emitter is by itself a very selective emitter with low emissivity beyond 4 microns. Given a gallium antimonide cell and a tungsten emitter, a simple dielectric filter can be designed to transmit radiant energy below 1.7 microns and to reflect radiant energy between 1.7 and 4 microns back to the emitter. Because of the low long wavelength emissivity associated with the polished tungsten emitter, this simple dielectric filter then yields very respectable system performance. Also as a result of the longer wavelength fall-off in the tungsten emissivity curve, the radiation energy peak for a polished tungsten emitter operating at 1300 K shifts to shorter wavelengths relative to the blackbody spectrum so that the radiated energy peak falls right at the gallium antimonide cell bandedge. The result is that the response of the gallium antimonide cell is well matched to a polished tungsten emitter. The authors propose, therefore, to fabricate an operating prototype of a near term radioisotope thermophotovoltaic generator design consisting of a polished tungsten emitter, standard gallium antimonide cells, and a near-term dielectric filter.

  4. Polymorphous computing fabric

    DOE Patents [OSTI]

    Wolinski, Christophe Czeslaw (Los Alamos, NM); Gokhale, Maya B. (Los Alamos, NM); McCabe, Kevin Peter (Los Alamos, NM)

    2011-01-18T23:59:59.000Z

    Fabric-based computing systems and methods are disclosed. A fabric-based computing system can include a polymorphous computing fabric that can be customized on a per application basis and a host processor in communication with said polymorphous computing fabric. The polymorphous computing fabric includes a cellular architecture that can be highly parameterized to enable a customized synthesis of fabric instances for a variety of enhanced application performances thereof. A global memory concept can also be included that provides the host processor random access to all variables and instructions associated with the polymorphous computing fabric.

  5. Tests of prototype SSC magnets

    SciTech Connect (OSTI)

    Strait, J.

    1987-04-24T23:59:59.000Z

    Results are presented from tests of the first two full length prototype SSC dipole magnets. Magnetic field measurements have been made at currents up to 2000 A. The two magnets achieved peak currents at 4.5K of 5790 A and 6450 A, respectively, substantially below the short sample limit of 6700 A. These peak values, however, could not be achieved reproducibly. Data are presented from studies performed to try to understand the poor quench performance.

  6. Design, fabrication, and characterization of a low-cost flexural bearing based 3D printing tool head

    E-Print Network [OSTI]

    Ramirez, Aaron Eduardo

    2010-01-01T23:59:59.000Z

    This thesis discusses the design, characterization and optimization of a low-cost additive rapid-prototyping tool head for a technology known as Fused Filament Fabrication for use in an educational curriculum. Building a ...

  7. A prototype Distributed Audit System

    SciTech Connect (OSTI)

    Banning, D.L. [Sparta, Inc., El Segundo, CA (United States)

    1993-08-01T23:59:59.000Z

    Security auditing systems are used to detect and assess unauthorized or abusive system usage. Historically, security audits were confined to a single computer system. Recent work examines ways of extending auditing to include heterogeneous groups of computers (distributed system). This paper describes the design and prototype development of a Distributed Audit System (DAS) which was developed with funding received from Lawrence Livermore Laboratory and through the Master`s thesis effort performed by the author at California State University, Long Beach. The DAS is intended to provide collection, transfer, and control of audit data on distributed, heterogeneous hosts.

  8. Digital Library Research & Prototyping

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management FermiDavidDiesel pricesDiesel prices70thPrototyping

  9. Contextualizing urban mobile fabrics

    E-Print Network [OSTI]

    Lin, Michael Chia-Liang

    2007-01-01T23:59:59.000Z

    This thesis is focus on the urban fabric issues. To be more specific, I will focus on the "Mobile Fabrics" within the larger Asian urban context. Instead of working with a specific geographical site; I will focus on the ...

  10. Y-12: Seawolf to National Prototype Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Administration because of precision machining capabilities to help with the Gemini and Apollo programs. A National Prototype Center SUCCESS STORY located at the following link...

  11. Small-Scale Readout Systems Prototype for the STAR PIXEL Detector

    SciTech Connect (OSTI)

    Szelezniak, Michal A.; Besson, Auguste; Colledani, Claude; Dorokhov, Andrei; Dulinski, Wojciech; Greiner, Leo C.; Himmi, Abdelkader; Hu, Christine; Matis, Howard S.; Ritter, Hans Georg; Rose, Andrew; Shabetai, Alexandre; Stezelberger, Thorsten; Sun, Xiangming; Thomas, Jim H.; Valin, Isabelle; Vu, Chinh Q.; Wieman, Howard H.; Winter, Marc

    2008-10-01T23:59:59.000Z

    A prototype readout system for the STAR PIXEL detector in the Heavy Flavor Tracker (HFT) vertex detector upgrade is presented. The PIXEL detector is a Monolithic Active Pixel Sensor (MAPS) based silicon pixel vertex detector fabricated in a commercial CMOS process that integrates the detector and front-end electronics layers in one silicon die. Two generations ofMAPS prototypes designed specifically for the PIXEL are discussed. We have constructed a prototype telescope system consisting of three small MAPS sensors arranged in three parallel and coaxial planes with a readout system based on the readout architecture for PIXEL. This proposed readout architecture is simple and scales to the size required to readout the final detector. The real-time hit finding algorithm necessary for data rate reduction in the 400 million pixel detector is described, and aspects of the PIXEL system integration into the existing STAR framework are addressed. The complete system has been recently tested and shown to be fully functional.

  12. Dry Process Electrode Fabrication

    Broader source: Energy.gov (indexed) [DOE]

    Ratecapacity match cathode 12 8. Down-select low cost anode process 50% vs baseline capex + opex 13 9. Scale cathode film to support task 16 10 m 17 10. Lab prototype cell dry...

  13. Dry Process Electrode Fabrication

    Broader source: Energy.gov (indexed) [DOE]

    capacity match cathode Oct. 14 8. Down-select low cost anode process 50% vs baseline capex + opex Dec. 14 9. Scale cathode film to support task 16 10 m Apr. 15 10. Lab prototype...

  14. Computer Note A Prototype Object Database for

    E-Print Network [OSTI]

    Neigel, Joseph E.

    Computer Note A Prototype Object Database for Mitochondrial DNA Variation J. E. NEIGEL AND P preserved. We hope to prevent further loss by establishing a community database for population genetic surveys. We explored the feasibility of a population genetics database by developing a prototype

  15. LIFE Target Fabrication Research Plan Sept 2008

    SciTech Connect (OSTI)

    Miles, R; Biener, J; Kucheyev, S; Montesanti, R; Satcher, J; Spadaccini, C; Rose, K; Wang, M; Hamza, A; Alexander, N; Brown, L; Hund, J; Petzoldt, R; Sweet, W; Goodin, D

    2008-11-10T23:59:59.000Z

    The target-system for the baseline LIFE fast-ignition target was analyzed to establish a preliminary estimate for the costs and complexities involved in demonstrating the technologies needed to build a prototype LIFE plant. The baseline fast-ignition target upon which this analysis was developed is shown in Figure 1.0-1 below. The LIFE target-system incorporates requirements for low-cost, high throughput manufacture, high-speed, high accuracy injection of the target into the chamber, production of sufficient energy from implosion and recovery and recycle of the imploded target material residue. None of these functions has been demonstrated to date. Existing target fabrication techniques which lead to current 'hot spot' target costs of {approx}$100,000 per target and at a production rate of 2/day are unacceptable for the LIFE program. Fabrication techniques normally used for low-cost, low accuracy consumer products such as toys must be adapted to the high-accuracy LIFE target. This will be challenge. A research program resulting is the demonstration of the target-cycle technologies needed for a prototype LIFE reactor is expected to cost {approx}$51M over the course of 5 years. The effort will result in targets which will cost an estimated $0.23/target at a rep-rate of 20 Hz or about 1.73M targets/day.

  16. Prototype Imaging Cd-Zn-Te Array Detector

    E-Print Network [OSTI]

    P. F. Bloser; T. Narita; J. E. Grindlay; K. Shah

    1998-01-15T23:59:59.000Z

    We describe initial results of our program to develop and test Cd-Zn-Te (CZT) detectors with a pixellated array readout. Our primary interest is in the development of relatively thick CZT detectors for use in astrophysical coded aperture telescopes with response extending over the energy range $\\sim 10-600$ keV. The coded aperture imaging configuration requires only relatively large area pixels (1-3 mm), whereas the desired high energy response requires detector thicknesses of at least 3-5 mm. We have developed a prototype detector employing a 10 x 10 x 5 mm CZT substrate and 4 x 4 pixel (1.5 mm each) readout with gold metal contacts for the pixels and continuous gold contact for the bias on the opposite detector face. This MSM contact configuration was fabricated by RMD and tested at Harvard for uniformity, efficiency and spatial as well as spectral resolution. We have developed an ASIC readout (IDE-VA-1) and analysis system and report results, including $\\sim 4$% (FWHM) energy resolution at 60 keV. A prototype design for a full imaging detector array is discussed.

  17. New Prototype Safeguards Technology Offers Improved Confidence and Automation for Uranium Enrichment Facilities

    SciTech Connect (OSTI)

    Brim, Cornelia P.

    2013-03-04T23:59:59.000Z

    An important requirement for the international safeguards community is the ability to determine the enrichment level of uranium in gas centrifuge enrichment plants and nuclear fuel fabrication facilities. This is essential to ensure that countries with nuclear nonproliferation commitments, such as States Party to the Nuclear Nonproliferation Treaty, are adhering to their obligations. However, current technologies to verify the uranium enrichment level in gas centrifuge enrichment plants or nuclear fuel fabrication facilities are technically challenging and resource-intensive. NNSA’s Office of Nonproliferation and International Security (NIS) supports the development, testing, and evaluation of future systems that will strengthen and sustain U.S. safeguards and security capabilities—in this case, by automating the monitoring of uranium enrichment in the entire inventory of a fuel fabrication facility. One such system is HEVA—hybrid enrichment verification array. This prototype was developed to provide an automated, nondestructive assay verification technology for uranium hexafluoride (UF6) cylinders at enrichment plants.

  18. New Prototype Safeguards Technology Offers Improved Confidence and Automation for Uranium Enrichment Facilities

    SciTech Connect (OSTI)

    Brim, Cornelia P.

    2013-04-01T23:59:59.000Z

    An important requirement for the international safeguards community is the ability to determine the enrichment level of uranium in gas centrifuge enrichment plants and nuclear fuel fabrication facilities. This is essential to ensure that countries with nuclear nonproliferation commitments, such as States Party to the Nuclear Nonproliferation Treaty, are adhering to their obligations. However, current technologies to verify the uranium enrichment level in gas centrifuge enrichment plants or nuclear fuel fabrication facilities are technically challenging and resource-intensive. NNSA’s Office of Nonproliferation and International Security (NIS) supports the development, testing, and evaluation of future systems that will strengthen and sustain U.S. safeguards and security capabilities—in this case, by automating the monitoring of uranium enrichment in the entire inventory of a fuel fabrication facility. One such system is HEVA—hybrid enrichment verification array. This prototype was developed to provide an automated, nondestructive assay verification technology for uranium hexafluoride (UF6) cylinders at enrichment plants.

  19. A Prototype for Graphene Material Simulation: Structures and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Prototype for Graphene Material Simulation: Structures and Interaction Potentials ofCoronene Dimers. A Prototype for Graphene Material Simulation: Structures and Interaction...

  20. Norcal Prototype LNG Truck Fleet: Final Results

    SciTech Connect (OSTI)

    Not Available

    2004-07-01T23:59:59.000Z

    U.S. DOE and National Renewable Energy Laboratory evaluated Norcal Waste Systems liquefied natural gas (LNG) waste transfer trucks. Trucks had prototype Cummins Westport ISXG engines. Report gives final evaluation results.

  1. New polymorphous computing fabric.

    SciTech Connect (OSTI)

    Wolinski, C. (Christophe); Gokhale, M. (Maya); McCabe, K. P. (Kevin P.)

    2002-01-01T23:59:59.000Z

    This paper introduces a new polymorphous computing Fabric well suited to DSP and Image Processing and describes its implementation on a Configurable System on a Chip (CSOC). The architecture is highly parameterized and enables customization of the synthesized Fabric to achieve high performance for a specific class of application. For this reason it can be considered to be a generic model for hardware accelerator synthesis from a high level specification. Another important innovation is the Fabric uses a global memory concept, which gives the host processor random access to all the variables and instructions on the Fabric. The Fabric supports different computing models including MIMD, SPMD and systolic flow and permits dynamic reconfiguration. We present a specific implementation of a bank of FIR filters on a Fabric composed of 52 cells on the Altera Excalibur ARM running at 33 MHz. The theoretical performance of this Fabric is 1.8 GMACh. For the FIR application we obtain 1.6 GMAC/s real performance. Some automatic tools have been developed like the tool to provide a host access utility and assembler.

  2. MPACT Fast Neutron Multiplicity System Prototype Development

    SciTech Connect (OSTI)

    D.L. Chichester; S.A. Pozzi; J.L. Dolan; M.T. Kinlaw; S.J. Thompson; A.C. Kaplan; M. Flaska; A. Enqvist; J.T. Johnson; S.M. Watson

    2013-09-01T23:59:59.000Z

    This document serves as both an FY2103 End-of-Year and End-of-Project report on efforts that resulted in the design of a prototype fast neutron multiplicity counter leveraged upon the findings of previous project efforts. The prototype design includes 32 liquid scintillator detectors with cubic volumes 7.62 cm in dimension configured into 4 stacked rings of 8 detectors. Detector signal collection for the system is handled with a pair of Struck Innovative Systeme 16-channel digitizers controlled by in-house developed software with built-in multiplicity analysis algorithms. Initial testing and familiarization of the currently obtained prototype components is underway, however full prototype construction is required for further optimization. Monte Carlo models of the prototype system were performed to estimate die-away and efficiency values. Analysis of these models resulted in the development of a software package capable of determining the effects of nearest-neighbor rejection methods for elimination of detector cross talk. A parameter study was performed using previously developed analytical methods for the estimation of assay mass variance for use as a figure-of-merit for system performance. A software package was developed to automate these calculations and ensure accuracy. The results of the parameter study show that the prototype fast neutron multiplicity counter design is very nearly optimized under the restraints of the parameter space.

  3. Biologically inspired digital fabrication

    E-Print Network [OSTI]

    Han, Sarah (Sarah J.)

    2013-01-01T23:59:59.000Z

    Objects and systems in nature are models for the practice of sustainable design and fabrication. From trees to bones, natural systems are characterized by the constant interplay of creation, environmental response, and ...

  4. Nuclear Fabrication Consortium

    SciTech Connect (OSTI)

    Levesque, Stephen

    2013-04-05T23:59:59.000Z

    This report summarizes the activities undertaken by EWI while under contract from the Department of Energy (DOE) � Office of Nuclear Energy (NE) for the management and operation of the Nuclear Fabrication Consortium (NFC). The NFC was established by EWI to independently develop, evaluate, and deploy fabrication approaches and data that support the re-establishment of the U.S. nuclear industry: ensuring that the supply chain will be competitive on a global stage, enabling more cost-effective and reliable nuclear power in a carbon constrained environment. The NFC provided a forum for member original equipment manufactures (OEM), fabricators, manufacturers, and materials suppliers to effectively engage with each other and rebuild the capacity of this supply chain by : � Identifying and removing impediments to the implementation of new construction and fabrication techniques and approaches for nuclear equipment, including system components and nuclear plants. � Providing and facilitating detailed scientific-based studies on new approaches and technologies that will have positive impacts on the cost of building of nuclear plants. � Analyzing and disseminating information about future nuclear fabrication technologies and how they could impact the North American and the International Nuclear Marketplace. � Facilitating dialog and initiate alignment among fabricators, owners, trade associations, and government agencies. � Supporting industry in helping to create a larger qualified nuclear supplier network. � Acting as an unbiased technology resource to evaluate, develop, and demonstrate new manufacturing technologies. � Creating welder and inspector training programs to help enable the necessary workforce for the upcoming construction work. � Serving as a focal point for technology, policy, and politically interested parties to share ideas and concepts associated with fabrication across the nuclear industry. The report the objectives and summaries of the Nuclear Fabrication Consortium projects. Full technical reports for each of the projects have been submitted as well.

  5. A PROTOTYPE FOUR INCH SHORT HYDRIDE (FISH) BED AS A REPLACEMENT TRITIUM STORAGE BED

    SciTech Connect (OSTI)

    Klein, J.; Estochen, E.; Shanahan, K.; Heung, L.

    2011-02-23T23:59:59.000Z

    The Savannah River Site (SRS) tritium facilities have used 1st generation (Gen1) metal hydride storage bed assemblies with process vessels (PVs) fabricated from 3 inch nominal pipe size (NPS) pipe to hold up to 12.6 kg of LaNi{sub 4.25}Al{sub 0.75} metal hydride for tritium gas absorption, storage, and desorption for over 15 years. The 2nd generation (Gen2) of the bed design used the same NPS for the PV, but the added internal components produced a bed nominally 1.2 m long, and presented a significant challenge for heater cartridge replacement in a footprint limited glove-box. A prototype 3rd generation (Gen3) metal hydride storage bed has been designed and fabricated as a replacement candidate for the Gen2 storage bed. The prototype Gen3 bed uses a PV pipe diameter of 4 inch NPS so the bed length can be reduced below 0.7 m to facilitate heater cartridge replacement. For the Gen3 prototype bed, modeling results show increased absorption rates when using hydrides with lower absorption pressures. To improve absorption performance compared to the Gen2 beds, a LaNi{sub 4.15}Al{sub 0.85} material was procured and processed to obtain the desired pressure-composition-temperature (PCT) properties. Other bed design improvements are also presented.

  6. Alexandria Digital Earth ProtoType The Alexandria Digital Earth

    E-Print Network [OSTI]

    Janée, Greg

    Alexandria Digital Earth ProtoType The Alexandria Digital Earth Prototype System Terence Smith Greg Janée James Frew Anita Coleman #12;Alexandria Digital Earth ProtoType 2Smith et al. / JCDL 2001 / 2x Earth ProtoType 3Smith et al. / JCDL 2001 / 2x-Jun-2001 Core System (inherited from ADL) Components

  7. A Self-Reconfigurable Lightweight Interconnect for Scalable Processor Fabrics Heiner Giefers and Marco Platzner

    E-Print Network [OSTI]

    Hellebrand, Sybille

    , on the processor array. We prototype the processor fabric on FPGA technology and analyze the efficiency of our many, energy, and execution time. Therefore it is of high interest to also study alternative interconnects, the communication infrastructure incurs low over- heads in terms of energy and area, particularly compared to packet

  8. Methods for freeform fabrication of structures

    DOE Patents [OSTI]

    Kaufman, Stephen G. (Albuquerque, NM); Spletzer, Barry L. (Albuquerque, NM)

    2000-01-01T23:59:59.000Z

    Rapid prototyping methods and apparatuses that produce structures made of continuous-fiber polymer-matrix composites without the use of molds. Instead of using molds, the composite structure is fabricated patch by patch in layers or wraps, using a two- or three-axis stage connected to a rapidly-reconfigurable forming surface, and a robot arm to position the evolving composite structure, which are both programmable devices. Because programmable devices are included, i.e., a robot and a two- or three-axis stage connected to the reconfigurable forming surface, the control program needed to produce a desired shape can be easily modified to automatically generate the desired shape from an electronic model (e.g., using a CAD/CAM system) of the desired (predetermined) shape.

  9. A highly miniaturized electron and ion energy spectrometer prototype for the rapid analysis of space plasmas

    SciTech Connect (OSTI)

    Bedington, R., E-mail: r.bedington@stp.isas.jaxa.jp [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara 252-5210 (Japan); Kataria, D. O.; Smith, A. [Mullard Space Science Laboratory, University College London, Holmbury St. Mary RH5 6NT (United Kingdom)] [Mullard Space Science Laboratory, University College London, Holmbury St. Mary RH5 6NT (United Kingdom)

    2014-02-15T23:59:59.000Z

    MEMS (Micro Electro-Mechanical Systems) plasma analyzers are a promising possibility for future space missions but conventional instrument designs are not necessarily well suited to micro-fabrication. Here, a candidate design for a MEMS-based instrument has been prototyped using electron-discharge machining. The device features 10 electrostatic analyzers that, with a single voltage applied to it, allow five different energies of electron and five different energies of positive ion to be simultaneously sampled. It has been simulated using SIMION and the electron response characteristics tested in an instrument calibration chamber. Small deviations found in the electrode spacing of the as-built prototype were found to have some effect on the electron response characteristics but do not significantly impede its performance.

  10. Prototypical Rod Consolidation Demonstration Project. Phase 3, Final report: Volume 1, Cold checkout test report, Book 2

    SciTech Connect (OSTI)

    Not Available

    1993-05-01T23:59:59.000Z

    The objective of Phase 3 of the Prototypical Rod consolidation Demonstration Project (PRCDP) was to procure, fabricate, assemble, and test the Prototypical Rod consolidation System as described in the NUS Phase 2 Final Design Report. This effort required providing the materials, components, and fabricated parts which makes up all of the system equipment. In addition, it included the assembly, installation, and setup of this equipment at the Cold Test Facility. During the Phase 3 effort the system was tested on a component, subsystem, and system level. This volume 1, discusses the PRCDP Phase 3 Test Program that was conducted by the HALLIBURTON NUS Environmental Corporation under contract AC07-86ID12651 with the United States Department of Energy. This document, Volume 1, Book 2 discusses the following topics: Fuel Rod Extraction System Test Results and Analysis Reports and Clamping Table Test Results and Analysis Reports.

  11. SiGe Prototype Chip Design Implementing CMOS Fixed Bit-Load Drivers and Receivers for Next Generation High-Speed Board-Level Interconnect

    E-Print Network [OSTI]

    Bakos, Jason D.

    SiGe Prototype Chip Design Implementing CMOS Fixed Bit-Load Drivers and Receivers for Next. These designs were fabricated as part of a multi-project die in IBM's .5um 5HP SiGe process. 1. Introduction Figure 1 shows our multi-project test die, manufactured in IBM's .5 um 5HP SiGe process. In this paper

  12. Prototype bucket foundation for wind turbines

    E-Print Network [OSTI]

    Prototype bucket foundation for wind turbines -natural frequency estimation Lars Bo Ibsen Morten bucket foundation for wind turbines -natural frequency estimation by Lars Bo Ibsen Morten Liingaard foundation for wind turbines--natural frequency estimation" is divided into four numbered sections

  13. Lithographic fabrication of nanoapertures

    DOE Patents [OSTI]

    Fleming, James G. (Albuquerque, NM)

    2003-01-01T23:59:59.000Z

    A new class of silicon-based lithographically defined nanoapertures and processes for their fabrication using conventional silicon microprocessing technology have been invented. The new ability to create and control such structures should significantly extend our ability to design and implement chemically selective devices and processes.

  14. Fabric-circle-slider: Prototype Exploring the Interaction Aesthetic of Contextual Integration

    E-Print Network [OSTI]

    Zimmerman, John

    call by grasping and lifting the receiver and to terminate a call by placing the receiver in the cradle with a TV offers a good example of the more-devices-per-activity phenomenon. Today, users often need to interact with three or four devices just to watch TV. They need to turn on their TV; turn on their cable

  15. Breaking down brick walls: Design, construction, and prototype fabrication knowledge in architecture

    E-Print Network [OSTI]

    Villalon, Rachelle

    Architectural designs are not just collections of 3D objects. Architects have both high-level aesthetic design intent, and intent for the functionality of the building; these must eventually translate into real-world ...

  16. Model microfluidic platform prototyping : design and fabrication of a Polymerase Chain Reaction (PCR) chip

    E-Print Network [OSTI]

    Kumar, Sumeet, Ph. D. Massachusetts Institute of Technology

    2009-01-01T23:59:59.000Z

    Polymerase Chain Reaction (PCR) is a molecular biology method for the in vitro amplification of nucleic acid molecules, which has wide applications in the areas of genetics, medicine and biochemistry. MEMS technology offers ...

  17. Philips' LED Luminaires Brighten the Rensselaer Engineering Fabrication & Prototyping Facility (also known as the Machine Shop)

    E-Print Network [OSTI]

    Linhardt, Robert J.

    . #12;To help bridge its research efforts with currently available solid state lighting technology outreach to increase campus and community awareness as to the benefits of solid state lighting. About Royal a donation of LED fixtures from Philips Lighting. The Smart Lighting Sustainability Club, comprised

  18. Level Alignment of a Prototypical Photocatalytic System: Methanol...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Level Alignment of a Prototypical Photocatalytic System: Methanol on TiO2(110). Level Alignment of a Prototypical Photocatalytic System: Methanol on TiO2(110). Abstract:...

  19. Rapid prototyping in early stages of architectural design

    E-Print Network [OSTI]

    Simondetti, Alvise

    1997-01-01T23:59:59.000Z

    This thesis shows how architects can use Rapid Prototyping and what the advantages and disadvantages are in different manipulations of the tool. Chapter two attempts to chart a road map of the rapid prototyping media. The ...

  20. DOE`s annealing prototype demonstration projects

    SciTech Connect (OSTI)

    Warren, J.; Nakos, J.; Rochau, G.

    1997-02-01T23:59:59.000Z

    One of the challenges U.S. utilities face in addressing technical issues associated with the aging of nuclear power plants is the long-term effect of plant operation on reactor pressure vessels (RPVs). As a nuclear plant operates, its RPV is exposed to neutrons. For certain plants, this neutron exposure can cause embrittlement of some of the RPV welds which can shorten the useful life of the RPV. This RPV embrittlement issue has the potential to affect the continued operation of a number of operating U.S. pressurized water reactor (PWR) plants. However, RPV material properties affected by long-term irradiation are recoverable through a thermal annealing treatment of the RPV. Although a dozen Russian-designed RPVs and several U.S. military vessels have been successfully annealed, U.S. utilities have stated that a successful annealing demonstration of a U.S. RPV is a prerequisite for annealing a licensed U.S. nuclear power plant. In May 1995, the Department of Energy`s Sandia National Laboratories awarded two cost-shared contracts to evaluate the feasibility of annealing U.S. licensed plants by conducting an anneal of an installed RPV using two different heating technologies. The contracts were awarded to the American Society of Mechanical Engineers (ASME) Center for Research and Technology Development (CRTD) and MPR Associates (MPR). The ASME team completed its annealing prototype demonstration in July 1996, using an indirect gas furnace at the uncompleted Public Service of Indiana`s Marble Hill nuclear power plant. The MPR team`s annealing prototype demonstration was scheduled to be completed in early 1997, using a direct heat electrical furnace at the uncompleted Consumers Power Company`s nuclear power plant at Midland, Michigan. This paper describes the Department`s annealing prototype demonstration goals and objectives; the tasks, deliverables, and results to date for each annealing prototype demonstration; and the remaining annealing technology challenges.

  1. Carbon Nanotubes Based Nanoelectrode Arrays: Fabrication, Evaluation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Arrays: Fabrication, Evaluation and Application in Voltammetric Analysis. Carbon Nanotubes Based Nanoelectrode Arrays: Fabrication, Evaluation and Application in...

  2. Development of a Low Cost Heat Pump Water Heater - First Prototype

    SciTech Connect (OSTI)

    Mei, V. C. [Oak Ridge National Laboratory (Retired); Tomlinson, J. J. [Oak Ridge National Laboratory (Retired)

    2007-09-01T23:59:59.000Z

    Until now the heat pump water heater (HPWH) has been a technical success but a market failure because of its high initial cost. Oak Ridge National Laboratory (ORNL) was tasked to examine commercially available HPWH product technology and manufacturing processes for cost saving opportunities. ORNL was also tasked to verify the technical feasibility of the cost saving opportunities where necessary and appropriate. The objective was to retain most of the HPWH s energy saving performance while reducing cost and simple payback period to approximately three years in a residential application. Several cost saving opportunities were found. Immersing the HPWH condenser directly into the tank allowed the water-circulating pump to be eliminated and a standard electric resistance storage water heater to be used. In addition, designs could be based on refrigerator compressors. Standard water heaters and refrigerator compressors are both reliable, mass produced, and low cost. To verify the feasibility of these cost saving measures, ORNL completed a conceptual design for an HPWH based on an immersed condenser coil that could be directly inserted into a standard water heater tank through a sleeve affixed to one of the standard penetrations at the top of the tank. The sleeve contour causes the bayonet-style condenser to helix while being pushed into the tank, enabling a condenser of sufficient heat transfer surface area to be inserted. Based on this design, ORNL fabricated the first laboratory prototype and completed preliminary laboratory tests in accordance with the DOE Simulated Use Test Procedure. Hardening during double-wall condenser fabrication was not overcome, so the prototype is single-walled with a liner. The prototype unit was found to have an energy factor of 2.02, verifying that the low-cost design retains most of the HPWH s energy saving performance. Industry involvement is being sought to resolve the fabrication issue and quantify progress on reducing cost and simple payback period to approximately three years in a residential application. This report provides information on the design, prototype construction, laboratory test data, and analyses of this HPWH.

  3. Intraocular lens fabrication

    DOE Patents [OSTI]

    Salazar, Mike A. (Albuquerque, NM); Foreman, Larry R. (Los Alamos, NM)

    1997-01-01T23:59:59.000Z

    This invention describes a method for fabricating an intraocular lens made rom clear Teflon.TM., Mylar.TM., or other thermoplastic material having a thickness of about 0.025 millimeters. These plastic materials are thermoformable and biocompatable with the human eye. The two shaped lenses are bonded together with a variety of procedures which may include thermosetting and solvent based adhesives, laser and impulse welding, and ultrasonic bonding. The fill tube, which is used to inject a refractive filling material is formed with the lens so as not to damage the lens shape. A hypodermic tube may be included inside the fill tube.

  4. Intraocular lens fabrication

    DOE Patents [OSTI]

    Salazar, M.A.; Foreman, L.R.

    1997-07-08T23:59:59.000Z

    This invention describes a method for fabricating an intraocular lens made from clear Teflon{trademark}, Mylar{trademark}, or other thermoplastic material having a thickness of about 0.025 millimeters. These plastic materials are thermoformable and biocompatable with the human eye. The two shaped lenses are bonded together with a variety of procedures which may include thermosetting and solvent based adhesives, laser and impulse welding, and ultrasonic bonding. The fill tube, which is used to inject a refractive filling material is formed with the lens so as not to damage the lens shape. A hypodermic tube may be included inside the fill tube. 13 figs.

  5. Electrochemical fabrication of capacitors

    DOE Patents [OSTI]

    Mansour, Azzam N. (Fairfax Sta., VA); Melendres, Carlos A. (Lemont, IL)

    1999-01-01T23:59:59.000Z

    A film of nickel oxide is anodically deposited on a graphite sheet held in osition on an electrochemical cell during application of a positive electrode voltage to the graphite sheet while exposed to an electrolytic nickel oxide solution within a volumetrically variable chamber of the cell. An angularly orientated x-ray beam is admitted into the cell for transmission through the deposited nickel oxide film in order to obtain structural information while the film is subject to electrochemical and in-situ x-ray spectroscopy from which optimum film thickness, may be determined by comparative analysis for capacitor fabrication purposes.

  6. Electrochemical fabrication of capacitors

    SciTech Connect (OSTI)

    Mansour, A.N.; Melendres, C.A.

    1999-12-14T23:59:59.000Z

    A film of nickel oxide is anodically deposited on a graphite sheet held in position on an electrochemical cell during application of a positive electrode voltage to the graphite sheet while exposed to an electrolytic nickel oxide solution within a volumetrically variable chamber of the cell. An angularly orientated x-ray beam is admitted into the cell for transmission through the deposited nickel oxide film in order to obtain structural information while the film is subject to electrochemical and in-situ x-ray spectroscopy from which optimum film thickness, may be determined by comparative analysis for capacitor fabrication purposes.

  7. Mask fabrication process

    DOE Patents [OSTI]

    Cardinale, Gregory F. (Oakland, CA)

    2000-01-01T23:59:59.000Z

    A method for fabricating masks and reticles useful for projection lithography systems. An absorber layer is conventionally patterned using a pattern and etch process. Following the step of patterning, the entire surface of the remaining top patterning photoresist layer as well as that portion of an underlying protective photoresist layer where absorber material has been etched away is exposed to UV radiation. The UV-exposed regions of the protective photoresist layer and the top patterning photoresist layer are then removed by solution development, thereby eliminating the need for an oxygen plasma etch and strip and chances for damaging the surface of the substrate or coatings.

  8. Energy performance analysis of prototype electrochromic windows

    SciTech Connect (OSTI)

    Sullivan, R.; Rubin, M.; Selkowitz, S.

    1996-12-01T23:59:59.000Z

    This paper presents the results of a study investigating the energy performance of three newly developed prototype electrochromic devices. The DOE-2.1 E energy simulation program was used to analyze the annual cooling, lighting, and total electric energy use and peak demand as a function of window type and size. The authors simulated a prototypical commercial office building module located in the cooling-dominated locations of Phoenix, AZ and Miami, FL. Heating energy use was also studied in the heating-dominated location of Madison, WI. Daylight illuminance was used to control electrochromic state-switching. Two types of window systems were analyzed; i.e., the outer pane electrochromic glazing was combined with either a conventional low-E or a spectrally selective inner pane. The properties of the electrochromic glazings are based on measured data of new prototypes developed as part of a cooperative DOE-industry program. The results show the largest difference in annual electric energy performance between the different window types occurs in Phoenix and is about 6.5 kWh/m{sup 2} floor area (0.60 kWh/ft{sup 2}) which can represent a cost of about $.52/m{sup 2} ($.05/ft{sup 2}) using electricity costing $.08/kWh. In heating-dominated locations, the electrochromic should be maintained in its bleached state during the heating season to take advantage of beneficial solar heat gain which would reduce the amount of required heating. This also means that the electrochromic window with the largest solar heat gain coefficient is best.

  9. Prototyping of the ILC Baseline Positron Target

    SciTech Connect (OSTI)

    Gronberg, J; Brooksby, C; Piggott, T; Abbott, R; Javedani, J; Cook, E

    2012-02-29T23:59:59.000Z

    The ILC positron system uses novel helical undulators to create a powerful photon beam from the main electron beam. This beam is passed through a titanium target to convert it into electron-positron pairs. The target is constructed as a 1 m diameter wheel spinning at 2000 RPM to smear the 1 ms ILC pulse train over 10 cm. A pulsed flux concentrating magnet is used to increase the positron capture efficiency. It is cooled to liquid nitrogen temperatures to maximize the flatness of the magnetic field over the 1 ms ILC pulse train. We report on prototyping effort on this system.

  10. LANSCE Wire Scanner System Prototype: Switchyard Test

    SciTech Connect (OSTI)

    Sedillo, James D [Los Alamos National Laboratory

    2012-04-11T23:59:59.000Z

    On November 19, 2011, the beam diagnostics team of Los Alamos National Laboratory's LANSCE accelerator facility conducted a test of a prototype wire scanner system for future deployment within the accelerator's switchyard area. The primary focus of this test was to demonstrate the wire scanner control system's ability to extend its functionality beyond acquiring lower energy linac beam profile measurements to acquiring data in the switchyard. This study summarizes the features and performance characteristics of the electronic and mechanical implementation of this system with details focusing on the test results.

  11. Ramp-rate sensitivity of SSC dipole magnet prototypes

    SciTech Connect (OSTI)

    Devred, A.; Ogitsu, T.

    1994-07-01T23:59:59.000Z

    One of the major achievements of the magnet R&D program for the Superconducting Super Collider (SSC) is the fabrication and test of a series of 20 5-cm aperture, 15-m long dipole magnet prototypes. The ramp rate sensitivity of these magnets appears to fall in at least two categories that can be correlated to the manufacturer and production batch of the strands used for the inner-coil cables. The first category, referred to as type-A, is characterized by a strong quench current degradation at high ramp rates, usually accompanied by large distortions of the multipole fields and large energy losses. The second category, referred to as type-B, is characterized by a sudden drop of quench current at low ramp rates, followed by a much milder degradation at larger rates. The multipole fields of the type-B magnets show little ramp-rate sensitivity, and the energy losses are smaller than for the type-A magnets. The behavior of the Type-A magnets can be explained in terms of inter-strand eddy currents arising from low and non-uniform resistances at the crossovers between the strands of the two-layer Rutherford-type cable. Anomalies in the transport-current repartition among the cable strands are suggested as a possible cause for the type-B behavior. The origins of these anomalies have not yet been clearly identified. The SSC project was canceled by decision of the United States Congress on October 21, 1994.

  12. DESIGN AND FABRICATION OF SCRF CAVITIES FOR THE APT CONTINUOUS-WAVE PROTON LINAC.

    SciTech Connect (OSTI)

    Gentzlinger, R.C. (Robert C.); Haynes, W. B. (William B.); Chan, K. D. (Kwok-Chi D.); Kelley, J. P. (John Patrick); Krawczyk, F. L. (Frank L.); Kuzminski, J. (Jozef); Mitchell R.; Montoya, D. I. (Debbie I.); Rusnak, B. (Brian); Safa, H. (Henri); Schrage, D. L. (Dale L.); Tajima, T. (Tsuyoshi)

    2001-01-01T23:59:59.000Z

    At Los Alamos National Laboratory, a prototype design of proton superconducting cavities has been developed for the Accelerator Production of Tritium (APT) project. These cavities are designed for b=0.64. They have five cells and operate at 700 MHz. They will operate at 2.15 K in a liquid-helium bath contained in an unalloyed, Grade 2 titanium vessel. Six cavities were manufactured with RRR-250 niobium, one by Los Alamos and five by industry. This paper discusses both the design and fabrication of the cavity and helium vessel, and the experience gained during the fabrication process.

  13. A Computuerized Operator Support System Prototype

    SciTech Connect (OSTI)

    Ken Thomas; Ronald Boring; Roger Lew; Tom Ulrich; Richard Villim

    2013-08-01T23:59:59.000Z

    A report was published by the Idaho National Laboratory in September of 2012, entitled Design to Achieve Fault Tolerance and Resilience, which described the benefits of automating operator actions for transients. The report identified situations in which providing additional automation in lieu of operator actions would be advantageous. It recognized that managing certain plant upsets is sometimes limited by the operator’s ability to quickly diagnose the fault and to take the needed actions in the time available. Undoubtedly, technology is underutilized in the nuclear power industry for operator assistance during plant faults and operating transients. In contrast, other industry sectors have amply demonstrated that various forms of operator advisory systems can enhance operator performance while maintaining the role and responsibility of the operator as the independent and ultimate decision-maker. A computerized operator support system (COSS) is proposed for use in nuclear power plants to assist control room operators in addressing time-critical plant upsets. A COSS is a collection of technologies to assist operators in monitoring overall plant performance and making timely, informed decisions on appropriate control actions for the projected plant condition. The COSS does not supplant the role of the operator, but rather provides rapid assessments, computations, and recommendations to reduce workload and augment operator judgment and decision-making during fast-moving, complex events. This project proposes a general model for a control room COSS that addresses a sequence of general tasks required to manage any plant upset: detection, validation, diagnosis, recommendation, monitoring, and recovery. The model serves as a framework for assembling a set of technologies that can be interrelated to assist with each of these tasks. A prototype COSS has been developed in order to demonstrate the concept and provide a test bed for further research. The prototype is based on four underlying elements consisting of a digital alarm system, computer-based procedures, PI&D system representations, and a recommender module for mitigation actions. At this point, the prototype simulates an interface to a sensor validation module and a fault diagnosis module. These two modules will be fully integrated in the next version of the prototype. The initial version of the prototype is now operational at the Idaho National Laboratory using the U.S. Department of Energy’s Light Water Reactor Sustainability (LWRS) Human Systems Simulation Laboratory (HSSL). The HSSL is a full-scope, full-scale glass top simulator capable of simulating existing and future nuclear power plant main control rooms. The COSS is interfaced to the Generic Pressurized Water Reactor (gPWR) simulator with industry-typical control board layouts. The glass top panels display realistic images of the control boards that can be operated by touch gestures. A section of the simulated control board was dedicated to the COSS human-system interface (HSI), which resulted in a seamless integration of the COSS into the normal control room environment.

  14. A Computuerized Operator Support System Prototype

    SciTech Connect (OSTI)

    Ken Thomas; Ronald Boring; Roger Lew; Tom Ulrich; Richard Villim

    2013-11-01T23:59:59.000Z

    A report was published by the Idaho National Laboratory in September of 2012, entitled Design to Achieve Fault Tolerance and Resilience, which described the benefits of automating operator actions for transients. The report identified situations in which providing additional automation in lieu of operator actions would be advantageous. It recognized that managing certain plant upsets is sometimes limited by the operator’s ability to quickly diagnose the fault and to take the needed actions in the time available. Undoubtedly, technology is underutilized in the nuclear power industry for operator assistance during plant faults and operating transients. In contrast, other industry sectors have amply demonstrated that various forms of operator advisory systems can enhance operator performance while maintaining the role and responsibility of the operator as the independent and ultimate decision-maker. A computerized operator support system (COSS) is proposed for use in nuclear power plants to assist control room operators in addressing time-critical plant upsets. A COSS is a collection of technologies to assist operators in monitoring overall plant performance and making timely, informed decisions on appropriate control actions for the projected plant condition. The COSS does not supplant the role of the operator, but rather provides rapid assessments, computations, and recommendations to reduce workload and augment operator judgment and decision-making during fast-moving, complex events. This project proposes a general model for a control room COSS that addresses a sequence of general tasks required to manage any plant upset: detection, validation, diagnosis, recommendation, monitoring, and recovery. The model serves as a framework for assembling a set of technologies that can be interrelated to assist with each of these tasks. A prototype COSS has been developed in order to demonstrate the concept and provide a test bed for further research. The prototype is based on four underlying elements consisting of a digital alarm system, computer-based procedures, PI&D system representations, and a recommender module for mitigation actions. At this point, the prototype simulates an interface to a sensor validation module and a fault diagnosis module. These two modules will be fully integrated in the next version of the prototype. The initial version of the prototype is now operational at the Idaho National Laboratory using the U.S. Department of Energy’s Light Water Reactor Sustainability (LWRS) Human Systems Simulation Laboratory (HSSL). The HSSL is a full-scope, full-scale glass top simulator capable of simulating existing and future nuclear power plant main control rooms. The COSS is interfaced to the Generic Pressurized Water Reactor (gPWR) simulator with industry-typical control board layouts. The glass top panels display realistic images of the control boards that can be operated by touch gestures. A section of the simulated control board was dedicated to the COSS human-system interface (HSI), which resulted in a seamless integration of the COSS into the normal control room environment.

  15. Enertech 15-kW wind-system development. Phase II. Fabrication and test

    SciTech Connect (OSTI)

    Zickefoose, C.R.

    1982-12-01T23:59:59.000Z

    This Phase II report presents a description of the Enertech 15 kW prototype wind system hardware fabrication; results of component tests; and results of preliminary testing conducted at Norwich, VT and the RF Wind Energy Research Center. In addition, the assembly sequence is documented. During testing, the unit experienced several operational problems, but testing proved the design concept and demonstrated the system's ability to meet the contract design specifications for power output.

  16. Process for fabrication of cermets

    DOE Patents [OSTI]

    Landingham, Richard L. (Livermore, CA)

    2011-02-01T23:59:59.000Z

    Cermet comprising ceramic and metal components and a molten metal infiltration method and process for fabrication thereof. The light weight cermets having improved porosity, strength, durability, toughness, elasticity fabricated from presintered ceramic powder infiltrated with a molten metal or metal alloy. Alumina titanium cermets biocompatible with the human body suitable for bone and joint replacements.

  17. ahcal prototype temperaturabhaengigkeit: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    this paper we concentrate on the second scenario: we Vellekoop, Michel 144 Hydrodynamic Tesla Wheel Flume for Model and Prototype Testing Engineering Websites Summary: Hydrodynamic...

  18. On the Computation and Application of Prototype Point Patterns

    E-Print Network [OSTI]

    Tranbarger, Katherine; Schoenberg, Frederic P.

    2004-01-01T23:59:59.000Z

    distances and prototypes. HMEANS, KMEANS and Agglomerativeclustering HMEANS and KMEANS clustering are two closelydata. Both HMEANS and KMEANS clustering begin by randomly

  19. On the Computation and Application of Prototype Point Patterns

    E-Print Network [OSTI]

    Katherine Tranbarger; Frederic Paik Schoenberg

    2011-01-01T23:59:59.000Z

    distances and prototypes. HMEANS, KMEANS and Agglomerativeclustering HMEANS and KMEANS clustering are two closelydata. Both HMEANS and KMEANS clustering begin by randomly

  20. Psychology and Aging Normal Aging and the Dissociable Prototype Learning

    E-Print Network [OSTI]

    Maddox, W. Todd

    -based and information-integration classification learning (Ashby & Mad- dox, 2005). Recent research suggests & Mad- dox, 2004). Another important type of classification learning is prototype learning (Homa

  1. The design and fabrication of two portal vein flow phantoms by different methods

    SciTech Connect (OSTI)

    Yunker, Bryan E., E-mail: bryan.yunker@ucdenver.edu; Lanning, Craig J.; Shandas, Robin; Hunter, Kendall S. [Department of Bioengineering, University of Colorado – Denver/Anschutz, 12700 East 19th Avenue, MS 8607, Aurora, Colorado 80045 (United States)] [Department of Bioengineering, University of Colorado – Denver/Anschutz, 12700 East 19th Avenue, MS 8607, Aurora, Colorado 80045 (United States); Dodd, Gerald D., E-mail: gerald.dodd@ucdenver.edu; Chang, Samuel; Scherzinger, Ann L. [Department of Radiology, University of Colorado – SOM, 12401 East 17th Avenue, Mail Stop L954, Aurora, Colorado 80045 (United States)] [Department of Radiology, University of Colorado – SOM, 12401 East 17th Avenue, Mail Stop L954, Aurora, Colorado 80045 (United States); Chen, S. James, E-mail: james.chen@ucdenver.edu [Department of Medicine, University of Colorado Denver, Colorado 80045 and Department of Medicine/Cardiology, University of Colorado – SOM, 12401 East 17th Avenue, Mail Stop B132, Aurora, Colorado 80045 (United States); Feng, Yusheng, E-mail: yusheng.feng@utsa.edu [Department of Mechanical Engineering, University of Texas – San Antonio, One UTSA Circle, Mail Stop: AET 2.332, San Antonio, Texas 78249–0670 (United States)] [Department of Mechanical Engineering, University of Texas – San Antonio, One UTSA Circle, Mail Stop: AET 2.332, San Antonio, Texas 78249–0670 (United States)

    2014-02-15T23:59:59.000Z

    Purpose: This study outlines the design and fabrication techniques for two portal vein flow phantoms. Methods: A materials study was performed as a precursor to this phantom fabrication effort and the desired material properties are restated for continuity. A three-dimensional portal vein pattern was created from the Visual Human database. The portal vein pattern was used to fabricate two flow phantoms by different methods with identical interior surface geometry using computer aided design software tools and rapid prototyping techniques. One portal flow phantom was fabricated within a solid block of clear silicone for use on a table with Ultrasound or within medical imaging systems such as MRI, CT, PET, or SPECT. The other portal flow phantom was fabricated as a thin walled tubular latex structure for use in water tanks with Ultrasound imaging. Both phantoms were evaluated for usability and durability. Results: Both phantoms were fabricated successfully and passed durability criteria for flow testing in the next project phase. Conclusions: The fabrication methods and materials employed for the study yielded durable portal vein phantoms.

  2. Test of Two NB Superstructure Prototypes

    SciTech Connect (OSTI)

    Sekutowicz, J.

    2004-04-16T23:59:59.000Z

    An alternative layout of the TESLA linear collider [1], based on weakly coupled multi-cell superconducting structures (superstructures), significantly reduces investment cost due to a simplification in the RF system of the main accelerator. In January 1999, preparation of the beam test of the superstructure began in order to prove the feasibility of this layout. Progress in the preparation was reported frequently in Proceedings of TESLA Collaboration Meetings. Last year, two superstructures were installed in the TESLA Test Facility (TTF) linac at DESY to experimentally verify: methods to balance the accelerating gradient in a weakly coupled system, the stability of the energy gain for the entire train of bunches in macro-pulses and the damping of Higher Order Modes (HOMs). We present results of the first cold and beam test of these two Nb prototypes.

  3. PERFORMANCE OF THE CEBAF PROTOTYPE CRYOMODULE RENASCENCE

    SciTech Connect (OSTI)

    Charles Reece; Edward Daly; G. Davis; Michael Drury; William Hicks; Joseph Preble; Haipeng Wang

    2008-02-12T23:59:59.000Z

    The prototype cryomodule Renascence was constructed as an energy building block for securing 6 GeV operation of CEBAF and to validate design elements for future CEBAF upgrade modules. These elements include the new “HG” and “LL” 7-cell cavity designs and a new tuner design.[1,2] Issues were identified during initial testing in 2005. The module has been reworked to address the issues with thermal stability, component breakage, and tuner motion. In addition, opportunity was taken to employ upgraded cleaning and assembly techniques for the cavity string. The HOM coupler heating issue was resolved, and seven of the eight cavities in the cryomodule have run stably at an average of 20 MV/m CW. The cryogenic, rf, and mechanical performance of the cryomodule are presented. Commissioning in CEBAF has just been completed in October 2007.

  4. DOE Fuel Cell Pre-Solicitation Workshop - Breakout Group 3: HIGH TEMP

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave theJulyD&D Project|Statement |3250.1DOE(SOFC) SYSTEM AND BOP |

  5. Magnetic switching, final chapter, Book I: the ATA upgrade prototype

    SciTech Connect (OSTI)

    Birx, D.; Cook, E.; Hawkins, S.; Poor, S.; Reginato, L.; Schmidt, J.; Smith, M.W.

    1983-03-22T23:59:59.000Z

    Efforts directed at finding a 10 kHz switch to replace the current 1 kHz gas blown spark gap have culminated in a prototype for an upgrade of ATA. The design and performance of this prototype as well as possible options and recommendations concerning an eventual upgrade are described. 4 references, 9 figures.

  6. WP3 Prototype development for operational planning tool

    E-Print Network [OSTI]

    WP3 Prototype development for operational planning tool Kristoffersen, T., Meibom, P., Risø DTU: Kristoffersen, T., Meibom, P. Title: WP3 Prototype development for operational planning tool Department: System and forced outages in the two main components of the Wilmar Planning tool namely the Scenario Tree Tool

  7. Seamless Energy Management Systems Part II: Development of Prototype

    E-Print Network [OSTI]

    Seamless Energy Management Systems Part II: Development of Prototype Core Elements Final Project System #12;#12;Seamless Energy Management Systems Part II: Development of Prototype Core Elements Final Center (PSERC) research project entitled "Seamless Energy Management Systems" (S-53G for 2013

  8. Development of Wind Turbines Prototyping Software Under Matlab/Simulink

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    204 1 Development of Wind Turbines Prototyping Software Under Matlab/Simulink® Through present the development of a wind turbine prototyping software under Matlab/Simulink® through and the end of 1999, around 75% of all new grid-connected wind turbines worldwide were installed in Europe [3

  9. Enforcement Letter, Parsons Technology Development & Fabrication...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Development & Fabrication Complex - April 13, 2010 Enforcement Letter, Parsons Technology Development & Fabrication Complex - April 13, 2010 April 13, 2010 Issued to...

  10. Enhancements to ASHRAE Standard 90.1 Prototype Building Models

    SciTech Connect (OSTI)

    Goel, Supriya; Athalye, Rahul A.; Wang, Weimin; Zhang, Jian; Rosenberg, Michael I.; Xie, YuLong; Hart, Philip R.; Mendon, Vrushali V.

    2014-04-16T23:59:59.000Z

    This report focuses on enhancements to prototype building models used to determine the energy impact of various versions of ANSI/ASHRAE/IES Standard 90.1. Since the last publication of the prototype building models, PNNL has made numerous enhancements to the original prototype models compliant with the 2004, 2007, and 2010 editions of Standard 90.1. Those enhancements are described here and were made for several reasons: (1) to change or improve prototype design assumptions; (2) to improve the simulation accuracy; (3) to improve the simulation infrastructure; and (4) to add additional detail to the models needed to capture certain energy impacts from Standard 90.1 improvements. These enhancements impact simulated prototype energy use, and consequently impact the savings estimated from edition to edition of Standard 90.1.

  11. Vacuum Studies of a Prototype Composite Coil Dewar for HTSC Transformers

    SciTech Connect (OSTI)

    Schwenterly, S W [ORNL; Zhang, Y. [Oak Ridge National Laboratory (ORNL); Pleva, E. F. [Waukesha Electric Systems, Waukesha, WI; Rufer, M. [Scorpius Space Launch Co.

    2010-01-01T23:59:59.000Z

    Oak Ridge National Laboratory (ORNL) is collaborating with Waukesha Electric Systems (WES) to develop a high-temperature superconducting (HTSC) utility power transformer with primary and secondary coils cooled by liquid nitrogen. Since the vacuum-insulated cryogenic coil dewar surrounds the magnetic core limb and cannot form a shorted turn, non-conductive materials are required. Two test vessels and a small prototype dewar have been fabricated by Scorpius Space Launch Company with epoxy/fiberglass composites, using their proprietary PRESSURMAXX vessel technology. The effects of pumping time, bakeout temperature, and cryogenic vessel temperature on vacuum outgassing rates have been investigated. Outgassing rates of the individual materials used in vessel construction have also been measured. The results will be scaled up to determine the required pumping capacity for a full-size 25-MVA commercial transformer dewar.

  12. Vacuum Studies of a Prototype Composite Coil Dewar for HTSC Transformers

    SciTech Connect (OSTI)

    Schwenterly, S W [ORNL] [ORNL; Zhang, Y. [Oak Ridge National Laboratory (ORNL)] [Oak Ridge National Laboratory (ORNL); Pleva, Ed [Waukesha Electric Systems, Waukesha, WI] [Waukesha Electric Systems, Waukesha, WI; Rufer, M. [Scorpius Space Launch Co.] [Scorpius Space Launch Co.

    2010-01-01T23:59:59.000Z

    Oak Ridge National Laboratory (ORNL) is collaborating with Waukesha Electric Systems (WES) to develop a high-temperature superconducting (HTSC) utility power transformer with primary and secondary coils cooled by liquid nitrogen. Since the vacuuminsulated cryogenic coil dewar surrounds the magnetic core limb and cannot form a shorted turn, non-conductive materials are required. Two test vessels and a small prototype dewar have been fabricated by Scorpius Space Launch Company with epoxy/fiberglass composites, using their proprietary PRESSURMAXX vessel technology. The effects of pumping time, bakeout temperature, and cryogenic vessel temperature on vacuum outgassing rates have been investigated. Outgassing rates of the individual materials used in vessel construction have also been measured. The results will be scaled up to determine the required pumping capacity for a full-size 25-MVA commercial transformer dewar.

  13. Design, prototyping and testing of a compact superconducting double quarter wave crab cavity

    E-Print Network [OSTI]

    Xiao, Binping; Belomestnykh, Sergey; Ben-Zvi, Ilan; Calaga, Rama; Cullen, Chris; Capatina, Ofelia; Hammons, Lee; Li, Zenghai; Marques, Carlos; Skaritka, John; Verdú-Andres, Silvia; Wu, Qiong

    2015-01-01T23:59:59.000Z

    A novel design of superconducting Crab Cavity was proposed and designed at Brookhaven National Laboratory. The new cavity shape is a Double Quarter Wave or DQWCC. After fabrication and surface treatments, the niobium proof-of-principle cavity was cryogenically tested in a vertical cryostat. The cavity is extremely compact yet has a low frequency of 400 MHz, an essential property for service for the Large Hadron Collider luminosity upgrade. The electromagnetic properties of the cavity are also well matched for this demanding task. The demonstrated deflecting voltage of 4.6 MV is well above the requirement for a crab cavity in the future High Luminosity LHC of 3.34 MV. In this paper we present the design, prototyping and test results of the DQWCC.

  14. Report on Performance of Prototype Dynatronix Power Supplies Developed Under a Phase I DOE SBIR

    SciTech Connect (OSTI)

    Hoppe, Eric W.; Merriman, Jason H.

    2011-03-01T23:59:59.000Z

    The purpose of this study is to evaluate the prototype power supplies fabricated by Dynatronix, Inc. This project supports the advancement of electroforming capabilities to produce ultra-high purity copper. Ultra-high purity copper is an essential material used for a range of current and future fundamental nuclear physics programs such as the MAJORANA DEMONSTRATOR. The Mach 30 power supplies are a new design built to the specifications from the requirements of Pacific Northwest National Laboratory (PNNL) with regard to timing, voltage, current output, and the required tolerances. The parameters used in these tests were developed empirically over a number of years based on a combination of thermodynamic and kinetics of the electroplating process. The power supplies were operated in a typical cleanroom environment for the production electroforming at PNNL. The units that were received by PNNL in July, 2010 have performed satisfactorily and have demonstrated short term durability.

  15. Microdisk fabrication by emulsion evaporation

    E-Print Network [OSTI]

    Wong, Susanna Wing Man

    2007-09-17T23:59:59.000Z

    , such as asphaltenes in heavy oil industry, clay particles in agriculture, and red blood cells in biology, are of great interest in a variety of industries and scientific areas. However, to fabricate monodisperse microdisks, uniform in structure or composition...

  16. Reasonable computing for architectural fabrication

    E-Print Network [OSTI]

    Villalon, Rachelle B. (Rachelle Bentajado)

    2008-01-01T23:59:59.000Z

    The use of digital fabrication tools in the architecture industry serve a particular group of individuals whose familiarity of the tools are by trade skill. Machines lack the understanding of people in its ability to ...

  17. AC Losses of Prototype HTS Transmission Cables

    SciTech Connect (OSTI)

    Demko, J.A.; Dresner, L.; Hughey, R.L.; Lue, J.W.; Olsen, S.K.; Sinha, U.; Tolbert, J.C.

    1998-09-13T23:59:59.000Z

    Since 1995 Southwire Company and Oak Ridge National Laboratory (ORNL) have jointly designed, built, and tested nine, l-m long, high temperature superconducting (HTS) transmission cable prototypes. This paper summarizes the AC loss measurements of five of the cables not reported elsewhere, and compares the losses with each other and with theory developed by Dresner. Losses were measured with both a calorimetric and an electrical technique. Because of the broad resistive transition of the HTS tapes, the cables can be operated stably beyond their critical currents. The AC losses were measured in this region as well as below critical currents. Dresner's theory takes into account the broad resistive transition of the HTS tapes and calculates the AC losses both below and above the critical current. The two sets of AC 10SS data agree with each other and with the theory quite welL In particular, at low currents of incomplete penetration, the loss data agree with the theoretical prediction of hysteresis loss based on only the outer two Iayers carrying the total current.

  18. DEVELOPMENT OF A LOW COST INFERENTIAL NATURAL GAS ENERGY FLOW RATE PROTOTYPE RETROFIT MODULE

    SciTech Connect (OSTI)

    E. Kelner; D. George; T. Morrow; T. Owen; M. Nored; R. Burkey; A. Minachi

    2005-05-01T23:59:59.000Z

    In 1998, Southwest Research Institute began a multi-year project to develop a working prototype instrument module for natural gas energy measurement. The module will be used to retrofit a natural gas custody transfer flow meter for energy measurement, at a cost an order of magnitude lower than a gas chromatograph. Development and evaluation of the prototype energy meter in 2002-2003 included: (1) refinement of the algorithm used to infer properties of the natural gas stream, such as heating value; (2) evaluation of potential sensing technologies for nitrogen content, improvements in carbon dioxide measurements, and improvements in ultrasonic measurement technology and signal processing for improved speed of sound measurements; (3) design, fabrication and testing of a new prototype energy meter module incorporating these algorithm and sensor refinements; and (4) laboratory and field performance tests of the original and modified energy meter modules. Field tests of the original energy meter module have provided results in close agreement with an onsite gas chromatograph. The original algorithm has also been tested at a field site as a stand-alone application using measurements from in situ instruments, and has demonstrated its usefulness as a diagnostic tool. The algorithm has been revised to use measurement technologies existing in the module to measure the gas stream at multiple states and infer nitrogen content. The instrumentation module has also been modified to incorporate recent improvements in CO{sub 2} and sound speed sensing technology. Laboratory testing of the upgraded module has identified additional testing needed to attain the target accuracy in sound speed measurements and heating value.

  19. Fastcast: Integration and application of rapid prototyping and computational simulation to investment casting

    SciTech Connect (OSTI)

    Maguire, M.C.; Baldwin, M.D.; Atwood, C.L.

    1996-09-01T23:59:59.000Z

    The emergence of several rapid prototyping and manufacturing (RP and M) technologies is having a dramatic impact on investment casting. While the most successful of the rapid prototyping technologies are almost a decade old, relatively recent process advances in their application have produced some remarkable success in utilizing their products as patterns for investment castings. Sandia National Laboratories has been developed highly coupled experimental and computational capabilities to examine the investment casting process with the intention of reducing the amount of time required to manufacture castings, and to increase the quality of the finished product. This presentation will begin with process aspects of RP and M pattern production and handling, shell fabrication, burnout, and casting. The emphasis will be on how the use of Stereolithography (SL) or Selective Laser Sintered (SLS) patterns differs from more traditional wax pattern processes. Aspects of computational simulation to couple design, thermal analysis, and mold filling will be discussed. Integration of these topics is probably the greatest challenge to the use of concurrent engineering principles with investment casting. Sandia has conducted several experiments aimed at calibrating computer codes and providing data for input into these simulations. Studies involving materials as diverse as stainless steel and gold have been conducted to determine liquid metal behavior in molds via real time radiography. The application of these experiments to predictive simulations will be described.

  20. THE PROTOTYPE ALUMINUM - CARBON SINGLE, DOUBLE, AND TRIPLE BONDS: Al - CH3, Al = CH2, AND Al. = CH

    E-Print Network [OSTI]

    Fox, Douglas J.

    2011-01-01T23:59:59.000Z

    three prototype Table II. aluminum-carbon bonds and theirPhysics THE PROTOTYPE ALUMINUM - CARBON SINGLE, DOUBLE, ANDLBL-l0871 The Prototype Aluminum - Carbon Single, Double.

  1. 710 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 6, NO. 4, OCTOBER 2009 Design, Fabrication, and Visual Servo Control of an

    E-Print Network [OSTI]

    Li, Yangmin

    ) method. Moreover, a prototype of the micromanipulator is fabricated and calibrated using a microscope by the micromanipulator, both kinematic calibration and online servo control are carried out by processing images cap, Macao SAR, China (e-mail: qsxu@umac.mo; ymli@umac.mo). N. Xi is with the Department of Electrical

  2. An analysis of early stage prototypes using implementation, look and feel, and role

    E-Print Network [OSTI]

    Hernley, Lauren R. (Lauren Renee)

    2011-01-01T23:59:59.000Z

    Identifying the purpose of a prototype is central to making informed decisions about the kind of prototype to build. Houde and Hill (1997) propose a model for classifying prototypes according to their purpose and the design ...

  3. Structure and yarn sensor for fabric

    DOE Patents [OSTI]

    Mee, David K. (Knoxville, TN); Allgood, Glenn O. (Powell, TN); Mooney, Larry R. (Knoxville, TN); Duncan, Michael G. (Clinton, TN); Turner, John C. (Clinton, TN); Treece, Dale A. (Knoxville, TN)

    1998-01-01T23:59:59.000Z

    A structure and yarn sensor for fabric directly determines pick density in a fabric thereby allowing fabric length and velocity to be calculated from a count of the picks made by the sensor over known time intervals. The structure and yarn sensor is also capable of detecting full length woven defects and fabric. As a result, an inexpensive on-line pick (or course) density measurement can be performed which allows a loom or knitting machine to be adjusted by either manual or automatic means to maintain closer fiber density tolerances. Such a sensor apparatus dramatically reduces fabric production costs and significantly improves fabric consistency and quality for woven or knitted fabric.

  4. MONOLITHIC FUEL FABRICATION PROCESS DEVELOPMENT AT THE IDAHO NATIONAL LABORATORY_

    SciTech Connect (OSTI)

    G. A. Moore; F. J. Rice; N. E. Woolstenhulme; J-F. Jue; B. H. Park; S. E. Steffler; N. P. Hallinan; M. D. Chapple; M. C. Marshall; B. L. Mackowiak; C. R. Clark; B. H. Rabin

    2009-11-01T23:59:59.000Z

    Full-size/prototypic U10Mo monolithic fuel-foils and aluminum clad fuel plates are being developed at the Idaho National Laboratory’s (INL) Materials and Fuels Complex (MFC). These efforts are focused on realizing Low Enriched Uranium (LEU) high density monolithic fuel plates for use in High Performance Research and Test Reactors. The U10Mo fuel foils under development afford a fuel meat density of ~16 gU/cc and thus have the potential to facilitate LEU conversions without any significant reactor-performance penalty. An overview is provided of the ongoing monolithic UMo fuel development effort, including application of a zirconium barrier layer on fuel foils, fabrication scale-up efforts, and development of complex/graded fuel foils. Fuel plate clad bonding processes to be discussed include: Hot Isostatic Pressing (HIP) and Friction Bonding (FB).

  5. Design & implementation of a wireless sensor prototyping kit

    E-Print Network [OSTI]

    Hope, Jamison Roger

    2005-01-01T23:59:59.000Z

    In recent years, wireless sensor networks (WSN) has become an active area of research among computer scientists. In this work, JONA, a prototyping kit for wireless sensors, will be described. The intention of this kit is ...

  6. Y-12: Seawolf to National Prototype Center, part 2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    components, Y-12 is machining prototype fan cases for the next generation of General Electric jet engines. Working as a supplier to GE, GKN Aerospace has been tasked with...

  7. Norcal Prototype LNG Truck Fleet: Final Data Report

    SciTech Connect (OSTI)

    Chandler, K.; Proc, K.

    2005-02-01T23:59:59.000Z

    U.S. DOE and National Renewable Energy Laboratory evaluated Norcal Waste Systems liquefied natural gas (LNG) waste transfer trucks. Trucks had prototype Cummins Westport ISXG engines. Report gives final data.

  8. Testing a Prototype Adsorption Cooler in a Research Dwelling

    E-Print Network [OSTI]

    Sijpheer, N.; Bakker, E.J.; De Boer, R.

    2010-01-01T23:59:59.000Z

    TDC's are already available on the market. Only small scale (comfort) TDC's for applications in dwellings are not commercially available yet. This is why the Energy research Centre of the Netherlands (ECN) developed a prototype adsorption chiller...

  9. Prototype Spallation Neutron Source Rotating Target Assembly Final Test Report

    SciTech Connect (OSTI)

    McManamy, Thomas J [ORNL; Graves, Van [Oak Ridge National Laboratory (ORNL); Garmendia, Amaia Zarraoa [IDOM Bilbao; Sorda, Fernando [ESS Bilbao; Etxeita, Borja [IDOM Bilbao; Rennich, Mark J [ORNL

    2011-01-01T23:59:59.000Z

    A full-scale prototype of an extended vertical shaft, rotating target assembly based on a conceptual target design for a 1 to 3-MW spallation facility was built and tested. Key elements of the drive/coupling assembly implemented in the prototype include high integrity dynamic face seals, commercially available bearings, realistic manufacturing tolerances, effective monitoring and controls, and fail-safe shutdown features. A representative target disk suspended on a 3.5 meter prototypical shaft was coupled with the drive to complete the mechanical tests. Successful operation for 5400 hours confirmed the overall mechanical feasibility of the extended vertical shaft rotating target concept. The prototype system showed no indications of performance deterioration and the equipment did not require maintenance or relubrication.

  10. Design and prototyping methods for brushless motors and motor control

    E-Print Network [OSTI]

    Colton, Shane W. (Shane William)

    2010-01-01T23:59:59.000Z

    In this report, simple, low-cost design and prototyping methods for custom brushless permanent magnet synchronous motors are explored. Three case-study motors are used to develop, illustrate and validate the methods. Two ...

  11. Characteristics and fabrication of a 499 MHz superconducting deflecting cavity for the Jefferson Lab 12 geV Upgrade

    SciTech Connect (OSTI)

    HyeKyoung Park, S.U. De Silva, J.R. Delayen

    2012-07-01T23:59:59.000Z

    A 499 MHz parallel bar superconducting deflecting cavity has been designed and optimized for a possible implementation at the Jefferson Lab. Previously the mechanical analysis, mainly stress, was performed. Since then pressure sensitivity was studied further and the cavity parts were fabricated. The prototype cavity is not completed due to the renovation at Jefferson Lab which resulted in the temporary shutdown of the electron beam welding facility. This paper will present the analysis results and facts encountered during fabrication. The unique geometry of the cavity and its required mechanical strength present interesting manufacturing challenges.

  12. Development and Analysis of Desiccant Enhanced Evaporative Air Conditioner Prototype

    SciTech Connect (OSTI)

    Kozubal, E.; Woods, J.; Judkoff, R.

    2012-04-01T23:59:59.000Z

    This report documents the design of a desiccant enhanced evaporative air conditioner (DEVAP AC) prototype and the testing to prove its performance. Previous numerical modeling and building energy simulations indicate a DEVAP AC can save significant energy compared to a conventional vapor compression AC (Kozubal et al. 2011). The purposes of this research were to build DEVAP prototypes, test them to validate the numerical model, and identify potential commercialization barriers.

  13. Design and implementation of a prototype generator monitoring system

    E-Print Network [OSTI]

    Sun, Jianyong

    1996-01-01T23:59:59.000Z

    DESIGN AND IMPLEMENTATION OF A PROTOTYPE GENERATOR MONITORING SYSTEM A Thesis JIANYONG SUN Submitted to the Office of Graduate Studies of Texas ASM University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May... 1996 Major Subject: Electrical Engineering DESIGN AND IMPLEMENTATION OF A PROTOTYPE GENERATOR MONITORING SYSTEM A Thesis by JIANYONG SUN Submitted to Texas ASM University in partial fulfillment of the requirements for the degree of MASTER...

  14. Fabrication of metallic glass structures

    DOE Patents [OSTI]

    Cline, C.F.

    1983-10-20T23:59:59.000Z

    Amorphous metal powders or ribbons are fabricated into solid shapes of appreciable thickness by the application of compaction energy. The temperature regime wherein the amorphous metal deforms by viscous flow is measured. The metal powders or ribbons are compacted within the temperature regime.

  15. Los Alamos National Laboratory summary plan to fabricate mixed oxide lead assemblies for the fissile material disposition program

    SciTech Connect (OSTI)

    Buksa, J.J.; Eaton, S.L.; Trellue, H.R.; Chidester, K.; Bowidowicz, M.; Morley, R.A.; Barr, M.

    1997-12-01T23:59:59.000Z

    This report summarizes an approach for using existing Los Alamos National Laboratory (Laboratory) mixed oxide (MOX) fuel-fabrication and plutonium processing capabilities to expedite and assure progress in the MOX/Reactor Plutonium Disposition Program. Lead Assembly MOX fabrication is required to provide prototypic fuel for testing in support of fuel qualification and licensing requirements. It is also required to provide a bridge for the full utilization of the European fabrication experience. In part, this bridge helps establish, for the first time since the early 1980s, a US experience base for meeting the safety, licensing, safeguards, security, and materials control and accountability requirements of the Department of Energy and Nuclear Regulatory Commission. In addition, a link is needed between the current research and development program and the production of disposition mission fuel. This link would also help provide a knowledge base for US regulators. Early MOX fabrication and irradiation testing in commercial nuclear reactors would provide a positive demonstration to Russia (and to potential vendors, designers, fabricators, and utilities) that the US has serious intent to proceed with plutonium disposition. This report summarizes an approach to fabricating lead assembly MOX fuel using the existing MOX fuel-fabrication infrastructure at the Laboratory.

  16. Enertech 2-kW high-reliability wind system. Phase II. Fabrication and testing

    SciTech Connect (OSTI)

    Cordes, J A; Johnson, B A

    1981-06-01T23:59:59.000Z

    A high-reliability wind machine rated for 2 kW in a 9 m/s wind has been developed. Activities are summarized that are centered on the fabrication and testing of prototypes of the wind machine. The test results verified that the wind machine met the power output specification and that the variable-pitch rotor effectively controlled the rotor speed for wind speeds up to 50 mph. Three prototypes of the wind machine were shipped to the Rocky Flats test center in September through November of 1979. Work was also performed to reduce the start-up wind speed. The start-up wind speed to the Enertech facility has been reduced to 4.5 m/s.

  17. Design of the Prototypical Cryomodule for the EUROTRANS Superconducting Linac for Nuclear Waste Transmutation

    E-Print Network [OSTI]

    Barbanotti, S; Blache, P; Commeaux, C; Duthil, P; Panzeri, N; Pierini, P; Rampnoux, E; Souli, M

    2008-01-01T23:59:59.000Z

    Design of the Prototypical Cryomodule for the EUROTRANS Superconducting Linac for Nuclear Waste Transmutation

  18. Digital fabrication in the architectural design process

    E-Print Network [OSTI]

    Seely, Jennifer C. K., 1975-

    2004-01-01T23:59:59.000Z

    Digital fabrication is affecting the architectural design process due to the increasingly important role it has in the fabrication of architectural models. Many design professionals, professors, and students have experienced ...

  19. The Brasfield Hydroelectric Project: A model-prototype comparison

    SciTech Connect (OSTI)

    Gulliver, J.S.; Voigt, R.L. Jr.; Hibbs, D.E. [Univ. of Minnesota, Minneapolis, MN (United States)] [and others

    1995-12-31T23:59:59.000Z

    Observations made during start-up and operation of the 3 MW Brasfield Hydroelectric Project provide an excellent means of comparing physical model results with the prototype installation. During start-up, the turbine generator unit was operated without the surface vortex suppression grid in place to allow engineers to observe vortex formation without, and later with, the grid. The model performance is reproduced in the prototype with regard to surface vortices. Field data has also been obtained at 0.7 in depth increments to provide dissolved oxygen (D.O.) concentrations profiles in the reservoir and in the nearfield zone surrounding the intake. Parallel D.O. measurements at the powerhouse outlet and 1.6 km downstream of the outlet provide a good means of determining the average depth of water column from which the water was removed. Measurements of model velocities, scaled to the prototype, multiplied times the field measurements of dissolved oxygen (D.O.) concentration and water temperature provide a model-predicted downstream D.O. concentration that also compares well to that measured in the prototype. This paper provides support for an unconventional design technique which may be applicable to many other sites facing similar environmental constraints. The model-prototype comparison also provides a strong verification of the combined use of both physical and mathematical models to solve such a design problem.

  20. Fabrication technology for ODS Alloy MA957

    SciTech Connect (OSTI)

    ML Hamilton; DS Gelles; RJ Lobsinger; MM Paxton; WF Brown

    2000-03-16T23:59:59.000Z

    A successful fabrication schedule has been developed at Carpenter Technology Corporation for the production of MA957 fuel and blanket cladding. Difficulties with gun drilling, plug drawing and recrystallization were overcome to produce a pilot lot of tubing. This report documents the fabrication efforts of two qualified vendors and the support studies performed at WHC to develop the fabrication-schedule.

  1. Fabrication of boron sputter targets

    DOE Patents [OSTI]

    Makowiecki, Daniel M. (Livermore, CA); McKernan, Mark A. (Livermore, CA)

    1995-01-01T23:59:59.000Z

    A process for fabricating high density boron sputtering targets with sufficient mechanical strength to function reliably at typical magnetron sputtering power densities and at normal process parameters. The process involves the fabrication of a high density boron monolithe by hot isostatically compacting high purity (99.9%) boron powder, machining the boron monolithe into the final dimensions, and brazing the finished boron piece to a matching boron carbide (B.sub.4 C) piece, by placing aluminum foil there between and applying pressure and heat in a vacuum. An alternative is the application of aluminum metallization to the back of the boron monolithe by vacuum deposition. Also, a titanium based vacuum braze alloy can be used in place of the aluminum foil.

  2. Prototype Vector Machine for Large Scale Semi-Supervised Learning

    SciTech Connect (OSTI)

    Zhang, Kai; Kwok, James T.; Parvin, Bahram

    2009-04-29T23:59:59.000Z

    Practicaldataminingrarelyfalls exactlyinto the supervisedlearning scenario. Rather, the growing amount of unlabeled data poses a big challenge to large-scale semi-supervised learning (SSL). We note that the computationalintensivenessofgraph-based SSLarises largely from the manifold or graph regularization, which in turn lead to large models that are dificult to handle. To alleviate this, we proposed the prototype vector machine (PVM), a highlyscalable,graph-based algorithm for large-scale SSL. Our key innovation is the use of"prototypes vectors" for effcient approximation on both the graph-based regularizer and model representation. The choice of prototypes are grounded upon two important criteria: they not only perform effective low-rank approximation of the kernel matrix, but also span a model suffering the minimum information loss compared with the complete model. We demonstrate encouraging performance and appealing scaling properties of the PVM on a number of machine learning benchmark data sets.

  3. Development of Prototype Pixellated PIN CdZnTe Detectors

    E-Print Network [OSTI]

    T. Narita; P. Bloser; J. Grindlay; R. Sudharsanan; C. Reiche; C. Stenstrom

    1998-06-12T23:59:59.000Z

    We report initial results from the design and evaluation of two pixellated PIN Cadmium Zinc Telluride detectors and an ASIC-based readout system. The prototype imaging PIN detectors consist of 4X4 1.5 mm square indium anode contacts with 0.2 mm spacing and a solid cathode plane on 10X10 mm CdZnTe substrates of thickness 2 mm and 5 mm. The detector readout system, based on low noise preamplifier ASICs, allows for parallel readout of all channels upon cathode trigger. This prototype is under development for use in future astrophysical hard X-ray imagers with 10-600 keV energy response. Measurements of the detector uniformity, spatial resolution, and spectral resolution will be discussed and compared with a similar pixellated MSM detector. Finally, a prototype design for a large imaging array is outlined.

  4. The browser prototype for the CTBT knowledge base

    SciTech Connect (OSTI)

    Armstrong, H.M.; Keyser, R.G.

    1997-07-02T23:59:59.000Z

    As part of the United States Department of Energy`s (DOE) Comprehensive Test Ban Treaty (CTBT) research and development effort, a Knowledge Base is being developed. This Knowledge Base will store the regional geophysical research results as well as geographic contexual information and make this information available to the Automated Data Processing (ADP routines) as well as human analysts involved in CTBT monitoring. This paper focuses on the initial development of a browser prototype to be used to interactively examine the contents of the CTBT Knowledge Base. The browser prototype is intended to be a research tool to experiment with different ways to display and integrate the datasets. An initial prototype version has been developed using Environmental Systems Research Incorporated`s (ESRI) ARC/INFO Geographic Information System (GIS) product. The conceptual requirements, design, initial implementation, current status, and future work plans are discussed. 4 refs., 2 figs.

  5. Evaluation of static mixer flow enhancements for cryogenic viscous compressor prototype for ITER vacuum system

    SciTech Connect (OSTI)

    Duckworth, Robert C.; Baylor, Larry R.; Meitner, Steven J.; Combs, Stephen K.; Ha, Tam; Morrow, Michael; Biewer, T. [Fusion and Materials for Nuclear System Division, Oak Ridge National Laboratory, Oak Ridge (United States); Rasmussen, David A.; Hechler, Michael P. [U.S. ITER Project Office, Oak Ridge National Laboratory, Oak Ridge (United States); Pearce, Robert J. H.; Dremel, Mattias [ITER Organization, 13115 St. Paul-lez-Durance (France); Boissin, J.-C. [Consultant, Grenoble (France)

    2014-01-29T23:59:59.000Z

    As part of the U.S. ITER contribution to the vacuum systems for the ITER fusion project, a cryogenic viscous compressor (CVC) is being designed and fabricated to cryopump hydrogenic gases in the torus and neutral beam exhaust streams and to regenerate the collected gases to controlled pressures such that they can be mechanically pumped with controlled flows to the tritium reprocessing facility. One critical element of the CVC design that required additional investigation was the determination of flow rates of the low pressure (up to 1000 Pa) exhaust stream that would allow for complete pumping of hydrogenic gases while permitting trace levels of helium to pass through the CVC to be pumped by conventional vacuum pumps. A sub-scale prototype test facility was utilized to determine the effectiveness of a static mixer pump tube concept, which consisted of a series of rotated twisted elements brazed into a 2-mm thick, 5-cm diameter stainless steel tube. Cold helium gas flow provided by a dewar and helium transfer line was used to cool the exterior of the static mixer pump tube. Deuterium gas was mixed with helium gas through flow controllers at different concentrations while the composition of the exhaust gas was monitored with a Penning gauge and optical spectrometer to determine the effectiveness of the static mixer. It was found that with tube wall temperatures between 6 K and 9 K, the deuterium gas was completely cryopumped and only helium passed through the tube. These results have been used to design the cooling geometry and the static mixer pump tubes in the full-scale CVC prototype.

  6. Evaluation of Static Mixer Flow Enhancements for Cryogenic Viscous Compressor Prototype for ITER Vacuum System

    SciTech Connect (OSTI)

    Duckworth, Robert C [ORNL] [ORNL; Baylor, Larry R [ORNL] [ORNL; Meitner, Steven J [ORNL] [ORNL; Combs, Stephen Kirk [ORNL] [ORNL; Ha, Tam T [ORNL] [ORNL; Morrow, Michael [ORNL] [ORNL; Biewer, Theodore M [ORNL] [ORNL; Rasmussen, David A [ORNL] [ORNL; Hechler, Michael P [ORNL] [ORNL; Pearce, R.J.H. [ITER Organization, Cadarache, France] [ITER Organization, Cadarache, France; Dremel, M. [ITER Organization, Cadarache, France] [ITER Organization, Cadarache, France; Boissin, Jean Claude [Consultant] [Consultant

    2014-01-01T23:59:59.000Z

    As part of the U.S. ITER contribution to the vacuum systems for the ITER fusion project, a cryogenic viscous compressor (CVC) is being designed and fabricated to cryopump hydrogenic gases in the torus and neutral beam exhaust streams and to regenerate the collected gases to controlled pressures such that they can be mechanically pumped with controlled flows to the tritium reprocessing facility. One critical element of the CVC design that required additional investigation was the determination of flow rates of the low pressure (50 to 1000 Pa) exhaust stream that would allow for complete pumping of hydrogenic gases while permitting trace levels of helium to pass through the CVC to be pumped by conventional vacuum pumps. A sub-scale prototype test facility was utilized to determine the effectiveness of a static mixer pump tube concept, which consisted of a series of rotated twisted elements brazed into a 2-mm thick, 5-cm diameter stainless steel tube. Cold helium gas flow provided by a dewar and helium transfer line was used to cool the exterior of the static mixer pump tube. Deuterium gas was mixed with helium gas through flow controllers at different concentrations while the composition of the exhaust gas was monitored with a Penning gauge and optical spectrometer to determine the effectiveness of the static mixer. It was found that with tube wall temperatures between 6 K and 9 K, the deuterium gas was completely cryopumped and only helium passed through the tube. These results have been used to design the cooling geometry and the static mixer pump tubes in the full-scale CVC prototype

  7. An environment for the rapid prototyping of user interfaces

    E-Print Network [OSTI]

    Harbert, Joe Andrew

    1987-01-01T23:59:59.000Z

    , Tom Slade, Mark Lease, Randy Duncan. Mike O'Neah and John DeSoi. Also. thanks go to the Lockheed Software Technology Center and the Texas A&M Laboratory for Software Research for the funding and inspiration for this research. vi TABLE OF CO... Requirements GSS Prototypes . Prototype Application Display Generator Icon Generator Research Overview I I BACKGROUND 3 3 3 4 5 5 6 6 A Specification Language I'or Direct Manipulation User Interfaces LabVIEW . MIKE: Menu Interaction Kontrol...

  8. Structure and yarn sensor for fabric

    DOE Patents [OSTI]

    Mee, D.K.; Allgood, G.O.; Mooney, L.R.; Duncan, M.G.; Turner, J.C.; Treece, D.A.

    1998-10-20T23:59:59.000Z

    A structure and yarn sensor for fabric directly determines pick density in a fabric thereby allowing fabric length and velocity to be calculated from a count of the picks made by the sensor over known time intervals. The structure and yarn sensor is also capable of detecting full length woven defects and fabric. As a result, an inexpensive on-line pick (or course) density measurement can be performed which allows a loom or knitting machine to be adjusted by either manual or automatic means to maintain closer fiber density tolerances. Such a sensor apparatus dramatically reduces fabric production costs and significantly improves fabric consistency and quality for woven or knitted fabric. 13 figs.

  9. Development, fabrication, and metrology of the electro-optical breadboard model for the reflection grating array of the XMM grating spectrometer

    SciTech Connect (OSTI)

    Decker, T.A.; Montesanti, R.C.; Bixler, J.V.; Hailey, C.J. [Lawrence Livermore National Lab., CA (United States); Kahn, S.M. [Lawrence Livermore National Lab., CA (United States)]|[California Univ., Berkeley, CA (United States). Dept. of Physics

    1994-07-01T23:59:59.000Z

    A prototype array consisting of eight diffraction gratings has been fabricated for the XMM Reflection Grating Spectrometer. A component of the full spectrometer is an array of approximately 200 diffraction gratings. The diffraction gratings were produced using lightweight silicon carbide substrates and a replication technique. The prototype array was developed and assembled using the same tolerances as the flight arrays which have typical tolerances of 3 {mu}m in translation and sub-arc seconds in rotation. The metrology applied during inspection and assembly included precision linear measurements, full aperture figure measurements, and angular interferometry.

  10. A Prototype Robot Speech Interface with Multimodal Feedback Mathias Haage+

    E-Print Network [OSTI]

    Nugues, Pierre

    of industrial robot arms. The aim of the prototype is to develop a speech system for designing robot trajectories that would fit well with current CAD paradigms. 1 Introduction Industrial robot programming developed for studying multimodal user interfaces in the context of industrial robot programming [5

  11. UDC Develops Prototype High-Efficiency OLED Undercabinet Luminaire

    Broader source: Energy.gov [DOE]

    Universal Display Corporation (UDC) has demonstrated the real-world application of a novel lighting technology by developing two pre-prototype OLED undercabinet lighting systems that exceed 420 total lumens at an efficacy of more than 55 lm/W, with an estimated lifetime (LT70) in excess of 10,000 hours, and a color rendering index (CRI) greater than 85.

  12. Large Scale Spatial Augmented Reality for Design and Prototyping

    E-Print Network [OSTI]

    Thomas, Bruce

    Chapter 10 Large Scale Spatial Augmented Reality for Design and Prototyping Michael R. Marner, Ross Augmented Reality allows the appearance of physical objects to be transformed using projected light commercial and personal use. This chapter explores how large Spatial Augmented Reality systems can be applied

  13. Co-processing Simulation and Visualization on a Prototype Exascale

    E-Print Network [OSTI]

    Burst Buffer nodes SSDs for bandwidth Lustre/VNX disk storage Storage capacity EMC: John Bent, Sorin: An Integrated Solution LANL PLFS file system Fast write capability LLNL SCR checkpoint restart Data staging EMC Chen, Gary Grider, John PatcheH, Jon Woodring LANL and EMC's Burst buffer prototype and demonstration

  14. Designing a Virtual Manikin Animation Framework Aimed at Virtual Prototyping.

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    - of available new scientific techniques to animate Virtual Humans, in a new control scheme that better answersDesigning a Virtual Manikin Animation Framework Aimed at Virtual Prototyping. Antoine Rennuit1, 2, and analyse human behaviour in the product's environment (for maintenance, ergonomics...), thanks to Virtual

  15. Hydrodynamic Tesla Wheel Flume for Model and Prototype Testing

    E-Print Network [OSTI]

    Wood, Stephen L.

    The Tesla turbine, U.S. Patent 1,061,206 -- May 6, 1913 was invented by Nikola Tesla as a means to extractHydrodynamic Tesla Wheel Flume for Model and Prototype Testing Spencer Jenkins, Chris Scott, Jacob Engineering department at Florida Institute of Technology (Florida Tech) has developed a Hydrodynamic Tesla

  16. NANOMATERIALS TO BIOSENSORS: A BENCH-TOP RAPID PROTOTYPING APPROACH 

    E-Print Network [OSTI]

    Liao, Wei-Ssu

    2010-07-14T23:59:59.000Z

    methods in controlling nanoscale features and their properties were often time-consuming and expensive. The objective of my research was to design, fabricate, and test nanostructure platforms using a unique toolbox of bottom-up lithographic techniques...

  17. Polymer micromold and fabrication process

    DOE Patents [OSTI]

    Lee, A.P.; Northrup, M.A.; Ahre, P.E.; Dupuy, P.C.

    1997-08-19T23:59:59.000Z

    A mold assembly is disclosed with micro-sized features in which the hollow portion thereof is fabricated from a sacrificial mandrel which is surface treated and then coated to form an outer shell. The sacrificial mandrel is then selectively etched away leaving the outer shell as the final product. The sacrificial mandrel is fabricated by a precision lathe, for example, so that when removed by etching the inner or hollow area has diameters as small as 10`s of micros ({micro}m). Varying the inside diameter contours of the mold can be accomplished with specified ramping slopes formed on the outer surface of the sacrificial mandrel, with the inside or hollow section being, for example, 275 {micro}m in length up to 150 {micro}m in diameter within a 6 mm outside diameter (o.d.) mold assembly. The mold assembly itself can serve as a micronozzle or microneedle, and plastic parts, such as microballoons for angioplasty, polymer microparts, and microactuators, etc., may be formed within the mold assembly. 6 figs.

  18. Integrated Recycling Test Fuel Fabrication

    SciTech Connect (OSTI)

    R.S. Fielding; K.H. Kim; B. Grover; J. Smith; J. King; K. Wendt; D. Chapman; L. Zirker

    2013-03-01T23:59:59.000Z

    The Integrated Recycling Test is a collaborative irradiation test that will electrochemically recycle used light water reactor fuel into metallic fuel feedstock. The feedstock will be fabricated into a metallic fast reactor type fuel that will be irradiation tested in a drop in capsule test in the Advanced Test Reactor on the Idaho National Laboratory site. This paper will summarize the fuel fabrication activities and design efforts. Casting development will include developing a casting process and system. The closure welding system will be based on the gas tungsten arc burst welding process. The settler/bonder system has been designed to be a simple system which provides heating and controllable impact energy to ensure wetting between the fuel and cladding. The final major pieces of equipment to be designed are the weld and sodium bond inspection system. Both x-radiography and ultrasonic inspection techniques have been examine experimentally and found to be feasible, however the final remote system has not been designed. Conceptual designs for radiography and an ultrasonic system have been made.

  19. Polymer micromold and fabrication process

    DOE Patents [OSTI]

    Lee, Abraham P. (1428 Whitecliff Way, Walnut Creek, CA 94596); Northrup, M. Allen (923 Creston Rd., Berkeley, CA 94708); Ahre, Paul E. (1299 Gonzaga Ct., Livermore, CA 94550); Dupuy, Peter C. (1736 Waldo Ct., Modesto, CA 95358)

    1997-01-01T23:59:59.000Z

    A mold assembly with micro-sized features in which the hollow portion thereof is fabricated from a sacrificial mandrel which is surface treated and then coated to form an outer shell. The sacrificial mandrel is then selectively etched away leaving the outer shell as the final product. The sacrificial mandrel is fabricated by a precision lathe, for example, so that when removed by etching the inner or hollow area has diameters as small as 10's of micros (.mu.m). Varying the inside diameter contours of the mold can be accomplished with specified ramping slopes formed on the outer surface of the sacrificial mandrel, with the inside or hollow section being, for example, 275 .mu.m in length up to 150 .mu.m in diameter within a 6 mm outside diameter (o.d.) mold assembly. The mold assembly itself can serve as a micronozzle or microneedle, and plastic parts, such as microballoons for angioplasty, polymer microparts, and microactuators, etc., may be formed within the mold assembly.

  20. Preliminary results from direct-drive cryogenic target implosion experiments on SGIII prototype laser facility

    SciTech Connect (OSTI)

    Yu-dong, Pu; Tian-Xuan, Huang; Ping, Li; Hai-le, Lei; Jun, Li; Shao-En, Jiang; Huang, Li; Zhi-Wen, Yang; Jian, Teng; Bo, Wu; Kai, Wang; Wei, Lin; Ming, Su; Xia-Yu, Zhan; Li, Chen; Xiao-Shi, Peng; Tang-Qi,; Zi-Feng, Song; Jia-Bin, Chen; Ming, Chen [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, Sichuan 621900 (China)] [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, Sichuan 621900 (China); and others

    2014-01-15T23:59:59.000Z

    Since ignition target design with layered deuterium and triterium ice had been proposed several decades ago, much effort was devoted to fabricate and implode cryogenic targets. Until recently, direct-drive cryogenic target implosion experiment was carried out on SGIII prototype laser facility. The target consisted of a plastic capsule supported by fill tube. Cryogenic helium gas was used to cool the capsule to a few degrees below the deuterium triple point. The resulting deuterium ice layer was characterized by optical shadowgraph and smoothed by applied temperature gradient. Eight laser beams with total energy of 7?kJ were used to directly drive the implosion. On the path of laser light to the capsule, there were 500?nm sealing film and helium gas of mm length. X-ray pinhole images were analyzed to confirm that the sealing film, and helium gas had little effect on aiming accuracy but caused some loss of laser energy especially when condensation on the sealing film was observed.

  1. Test Results For a 25-m Prototype Fault Current Limiting HTS Cable for Project Hydra

    SciTech Connect (OSTI)

    Rey, Christopher M [ORNL] [ORNL; Duckworth, Robert C [ORNL] [ORNL; Demko, Jonathan A [ORNL] [ORNL; Ellis, Alvin R [ORNL] [ORNL; Gouge, Michael J [ORNL] [ORNL; James, David Randy [ORNL] [ORNL; Tuncer, Enis [ORNL] [ORNL

    2010-01-01T23:59:59.000Z

    The Oak Ridge National Laboratory (ORNL) has tested a 25-m long prototype High Temperature Superconducting (HTS) cable with inherent Fault-Current Limiting (FCL) capability at its recently upgraded HTS cable test facility in Oak Ridge, TN. The HTS-FCL cable and terminations were designed and fabricated by Ultera, which is a joint venture of Southwire and nkt cables with FCL features and HTS wire provided by American Superconductor Corporation. The overall project is sponsored by the U.S. Department of Homeland Security. The ultimate goal of the 25-m HTS-FCL cable test program was to verify the design and ensure the operational integrity for the eventual installation of a ~ 200-m fully functional HTS-FCL cable in the Consolidated Edison electric grid located in downtown New York City. The 25-m HTS-FCL cable consisted of a three-phase (3- ) Triax design with a cold dielectric between the phases. The HTS-FCL cable had an operational voltage of 13.8 kV phase-to-phase and an operating current of 4000 Arms per phase, which is the highest operating current to date of any HTS cable. The 25-m HTS-FCL cable was subjected to a series of cryogenic and electrical tests. Test results from the 25-m HTS-FCL cable are presented and discussed.

  2. LAPAS: A SiGe Front End Prototype for the Upgraded ATLAS LAr Calorimeter

    E-Print Network [OSTI]

    Dressnandt, N; Rescia, S; Vernon, E

    2009-01-01T23:59:59.000Z

    We have designed and fabricated a very low noise preamplifier and shaper to replace the existing ATLAS Liquid Argon readout for use at the Large Hadron Collider upgrade (sLHC). IBM’s 8WL 130nm SiGe process was chosen for it’s radiation tolerance, low noise bipolar NPN devices, wide voltage rand and potential use in other sLHC detector subsystems. Although the requirements for the final design can not be set at this time, the prototype was designed to accommodate a 16 bit dynamic range. This was accomplished by using a single stage, low noise, wide dynamic range preamp followed by a dual range shaper. The low noise of the preamp is made possible by the low base spreading resistance of the Silicon Germanium NPN bipolar transistors. The relatively high voltage rating of the NPN transistors is exploited to allow a gain of 650V/A in the preamplifier which eases the input voltage noise requirement on the shaper. Each shaper stage is designed as a cascaded differential operational amplifier doublet with a common...

  3. Direct Methanol Fuel Cell Prototype Demonstration for Consumer Electronics Applications

    SciTech Connect (OSTI)

    Carlstrom, Charles, M., Jr.

    2009-07-07T23:59:59.000Z

    This report is the final technical report for DOE Program DE-FC36-04GO14301 titled “Direct Methanol Fuel Cell Prototype Demonstration for Consumer Electronics Applications”. Due to the public nature of this report some of the content reported in confidential reports and meetings to the DOE is not covered in detail in this report and some of the content has been normalized to not show actual values. There is a comparison of the projects accomplishments with the objectives, an overview of some of the key subsystem work, and a review of the three levels of prototypes demonstrated during the program. There is also a description of the eventual commercial product and market this work is leading towards. The work completed under this program has significantly increased the understanding of how Direct Methanol Fuel Cells (DMFC) can be deployed successfully to power consumer electronic devices. The prototype testing has demonstrated the benefits a direct methanol fuel cell system has over batteries typically used for powering consumer electronic devices. Three generations of prototypes have been developed and tested for performance, robustness and life. The technologies researched and utilized in the fuel cell stack and related subsystems for these prototypes are leveraged from advances in other industries such as the hydrogen fueled PEM fuel cell industry. The work under this program advanced the state of the art of direct methanol fuel cells. The system developed by MTI micro fuel cells aided by this program differs significantly from conventional DMFC designs and offers compelling advantages in the areas of performance, life, size, and simplicity. The program has progressed as planned resulting in the completion of the scope of work and available funding in December 2008. All 18 of the final P3 prototypes builds have been tested and the results showed significant improvements over P2 prototypes in build yield, initial performance, and durability. The systems have demonstrated robust operation when tested at various orientations, temperatures, and humidity levels. Durability testing has progressed significantly over the course of the program. MEA, engine, and system level steady state testing has demonstrated degradation rates acceptable for initial product introduction. Test duration of over 5000 hrs has been achieved at both the MEA and breadboard system level. P3 level prototype life testing on engines (stacks with reactant conditioning) showed degradation rates comparable to carefully constructed lab fixtures. This was a major improvement over the P2 and P1 engine designs, which exhibited substantial reductions in life and performance between the lab cell and the actual engine. Over the course of the work on the P3 technology set, a platform approach was taken to the system design. By working in this direction, a number of product iterations with substantial market potential were identified. Although the main effort has been the development of a prototype charger for consumer electronic devices, multiple other product concepts were developed during the program showing the wide variety of potential applications.

  4. DEVELOPMENT AND DEMONSTRATION OF A SUPERCRITICAL HELIUM-COOLED CRYOGENIC VISCOUS COMPRESSOR PROTOTYPE FOR THE ITER VACUUM SYSTEM

    SciTech Connect (OSTI)

    Duckworth, Robert C [ORNL; Baylor, Larry R [ORNL; Meitner, Steven J [ORNL; Combs, Stephen Kirk [ORNL; Rasmussen, David A [ORNL; Edgemon, Timothy D [ORNL; Hechler, Michael P [ORNL; Barbier, Charlotte N [ORNL; Pearce, R.J.H. [ITER Organization, Cadarache, France; Kersevan, R. [ITER Organization, Cadarache, France; Dremel, M. [ITER Organization, Cadarache, France; Boissin, Jean Claude [Consultant

    2012-01-01T23:59:59.000Z

    As part of the vacuum system for the ITER fusion project, a cryogenic viscouscompressor (CVC) is being developed to collect hydrogenic exhaust gases from the toruscryopumps and compress them to a high enough pressure by regeneration for pumping tothe tritium reprocessing facility. Helium impurities that are a byproduct of the fusionreactions pass through the CVC and are pumped by conventional vacuum pumps andexhausted to the atmosphere. Before the development of a full-scale CVC, a representative,small-scale test prototype was designed, fabricated, and tested. With cooling provided bycold helium gas, hydrogen gas was introduced into the central column of the test prototypepump at flow rates between 0.001 g/s and 0.008 g/s. Based on the temperatures and flowrates of the cold helium gas, different percentages of hydrogen gas were frozen to the column surface wall as the hydrogen gas flow rate increased. Results from the measured temperatures and pressures will form a benchmark that will be used to judge future heattransfer enhancements to the prototype CVC and to develop a computational fluid dynamicmodel that will help develop design parameters for the full-scale CVC.

  5. Update On Monolithic Fuel Fabrication Development

    SciTech Connect (OSTI)

    C. R Clark; J. M. Wight; G. C. Knighton; G. A. Moore; J. F. Jue

    2005-11-01T23:59:59.000Z

    Efforts to develop a viable monolithic research reactor fuel plate have continued at Idaho National Laboratory. These efforts have concentrated on both fabrication process refinement and scale-up to produce full sized fuel plates. Advancements have been made in the production of U-Mo foil including full sized foils. Progress has also been made in the friction stir welding and transient liquid phase bonding fabrication processes resulting in better bonding, more stable processes and the ability to fabricate larger fuel plates.

  6. Portable electromechanical braille label maker : from a 2.009 prototype to a product

    E-Print Network [OSTI]

    Tatem, Rachel E

    2009-01-01T23:59:59.000Z

    Most student projects never make the transition from a class prototype to a commercial product. This document is meant to be used as a guide by any student trying to turn an alpha prototype into a product on the market. ...

  7. Sandia National Laboratories: improved fiberglass fabric positioning

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    fabric positioning Sandia Participated in AMII to Support American-Made Wind-Turbine Blades On December 3, 2014, in Computational Modeling & Simulation, Energy, Materials...

  8. Fabrication of Small Diesel Fuel Injector Orifices

    Broader source: Energy.gov (indexed) [DOE]

    Micro-Orifice Fabrication - Nickel Vapor Deposition - Laser Micro-Drilling NVD - Weber Laser - Sparkle Publications & PatentsInventions Publications - Fenske, G.,...

  9. Fabrication and characterization of conducting polymer microwires

    E-Print Network [OSTI]

    Saez, Miguel Angel

    2009-01-01T23:59:59.000Z

    Flexible microwires fabricated from conducting polymers have a wide range of potential applications, including smart textiles that incorporate sensing, actuation, and data processing. The development of garments that ...

  10. Patterned Fabric Know - How (Plaids, Stripes, Checks, and Figured Designs).

    E-Print Network [OSTI]

    Anoymous,

    1984-01-01T23:59:59.000Z

    DC \\1\\245.7 '13 Fbiterned Fabric mow-Kbw Contents Design Principles and Patterned Fabrics Pattern Selection Fabric Construction Selecting and Preparing Fabric Kinds of Plaids and Stripes Pri nts Other Patterned Fabrics Combining..., Stripes, Checks and Figured Designs) Extension Clothing Specialists The Texas A&M University System Patterned fabrics provide an interesting di mension to anyone's wardrobe. In a garment or as an accent, patterned fabrics are colorful and ex citing...

  11. Field Testing of Pre-Production Prototype Residential Heat Pump Water Heaters

    Broader source: Energy.gov [DOE]

    Provides and overview of field testing of 18 pre-production prototype residential heat pump water heaters

  12. Description of the prototype diagnostic residual gas analyzer for ITER

    SciTech Connect (OSTI)

    Younkin, T. R., E-mail: tyounkin@gatech.edu [Fusion and Materials for Nuclear Systems Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6169 (United States); Georgia Institute of Technology, Woodruff School of Mechanical Engineering – Nuclear and Radiological Engineering Program, Atlanta, Georgia 30332 (United States); Biewer, T. M.; Klepper, C. C.; Marcus, C. [Fusion and Materials for Nuclear Systems Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6169 (United States)

    2014-11-15T23:59:59.000Z

    The diagnostic residual gas analyzer (DRGA) system to be used during ITER tokamak operation is being designed at Oak Ridge National Laboratory to measure fuel ratios (deuterium and tritium), fusion ash (helium), and impurities in the plasma. The eventual purpose of this instrument is for machine protection, basic control, and physics on ITER. Prototyping is ongoing to optimize the hardware setup and measurement capabilities. The DRGA prototype is comprised of a vacuum system and measurement technologies that will overlap to meet ITER measurement requirements. Three technologies included in this diagnostic are a quadrupole mass spectrometer, an ion trap mass spectrometer, and an optical penning gauge that are designed to document relative and absolute gas concentrations.

  13. Design of a re-configurable test stand for a multi degree of freedom compliant robot prototype

    E-Print Network [OSTI]

    Klenk, Daniel E

    2009-01-01T23:59:59.000Z

    A test stand was designed and constructed to compress a compliant robot prototype, while measuring the force applied and the displacement of the prototype's end. The prototype is a five degree of freedom, compliant device, ...

  14. CONTAINER MATERIALS, FABRICATION AND ROBUSTNESS

    SciTech Connect (OSTI)

    Dunn, K.; Louthan, M.; Rawls, G.; Sindelar, R.; Zapp, P.; Mcclard, J.

    2009-11-10T23:59:59.000Z

    The multi-barrier 3013 container used to package plutonium-bearing materials is robust and thereby highly resistant to identified degradation modes that might cause failure. The only viable degradation mechanisms identified by a panel of technical experts were pressurization within and corrosion of the containers. Evaluations of the container materials and the fabrication processes and resulting residual stresses suggest that the multi-layered containers will mitigate the potential for degradation of the outer container and prevent the release of the container contents to the environment. Additionally, the ongoing surveillance programs and laboratory studies should detect any incipient degradation of containers in the 3013 storage inventory before an outer container is compromised.

  15. BNCP prototype detonator studies using a semiconductor bridge initiator

    SciTech Connect (OSTI)

    Fyfe, D.W.; Fronabarger, J.W. [Pacific Scientific Co., Avondale-Goodyear, AZ (United States). Energy Dynamics Div.; Bickes, R.W. Jr. [Sandia National Labs., Albuquerque, NM (United States)

    1994-06-01T23:59:59.000Z

    We report on experiments with prototype BNCP detonators incorporating a semiconductor bridge, SCB. We tested two device designs; one for DoD and one for DOE applications. We report tests with the DoD detonator using different firing conditions and two different grain sizes of BNCP. The DOE detonator utilized a 50 {mu}F CDU firing set with a 24 V all-fire condition.

  16. A REAL TIME 3D VISUALIZATION PROTOTYPE FOR INTERVENTIONAL MAGNETIC RESONANCE IMAGING

    E-Print Network [OSTI]

    Schumann, Heidrun

    A REAL TIME 3D VISUALIZATION PROTOTYPE FOR INTERVENTIONAL MAGNETIC RESONANCE IMAGING JENS FISCHER­invasive examinations. This prototype allows simultaneous visualization of three different types of data: a 3D­Magnetic@informatik.uni­rostock.de Abstract: This paper describes a prototype of a visualization system which is designed to support

  17. Modeling a Prototype Optical Collision Avoidance Sensor For Unmanned Aerial Vehicles

    E-Print Network [OSTI]

    Hornsey, Richard

    Modeling a Prototype Optical Collision Avoidance Sensor For Unmanned Aerial Vehicles Cyrus Minwalla) are essential in controlled airspace under visual flight rules (VFR). A prototype optical sensor accomplishes and evaluation of the prototype sensor are presented here, as are preliminary measurements to clarify the roles

  18. A first-generation prototype dynamic residential window

    SciTech Connect (OSTI)

    Kohler, Christian; Goudey, Howdy; Arasteh, Dariush

    2004-10-26T23:59:59.000Z

    We present the concept for a ''smart'' highly efficient dynamic window that maximizes solar heat gain during the heating season and minimizes solar heat gain during the cooling season in residential buildings. We describe a prototype dynamic window that relies on an internal shade, which deploys automatically in response to solar radiation and temperature. This prototype was built at Lawrence Berkeley National Laboratory from commercially available ''off-the-shelf'' components. It is a stand-alone, standard-size product, so it can be easily installed in place of standard window products. Our design shows promise for near-term commercialization. Improving thermal performance of this prototype by incorporating commercially available highly efficient glazing technologies could result in the first window that could be suitable for use in zero-energy homes. The unit's predictable deployment of shading could help capture energy savings that are not possible with manual shading. Installation of dynamically shaded windows in the field will allow researchers to better quantify the energy effects of shades, which could lead to increased efficiency in the sizing of heating, ventilation, and air conditioning equipment for residences.

  19. Construction and Commissioning of the CALICE Analog Hadron Calorimeter Prototype

    E-Print Network [OSTI]

    C. Adloff; Y. Karyotakis; J. Repond; A. Brandt; H. Brown; K. De; C. Medina; J. Smith; J. Li; M. Sosebee; A. White; J. Yu; T. Buanes; G. Eigen; Y. Mikami; O. Miller; N. K. Watson; J. A. Wilson; T. Goto; G. Mavromanolakis; M. A. Thomson; D. R. Ward; W. Yan; D. Benchekroun; A. Hoummada; Y. Khoulaki; M. Oreglia; M. Benyamna; C. Cârloganu; P. Gay; J. Ha; G. C. Blazey; D. Chakraborty; A. Dyshkant; K. Francis; D. Hedin; G. Lima; V. Zutshi; V. A. Babkin; S. N. Bazylev; Yu. I. Fedotov; V. M. Slepnev; I. A. Tiapkin; S. V. Volgin; J. -Y. Hostachy; L. Morin; N. D?Ascenzo; U. Cornett; D. David; R. Fabbri; G. Falley; N. Feege; K. Gadow; E. Garutti; P. Göttlicher; T. Jung; S. Karstensen; V. Korbel; A. -I. Lucaci-Timoce; B. Lutz; N. Meyer; V. Morgunov; M. Reinecke; S. Schätzel; S. Schmidt; F. Sefkow; P. Smirnov; A. Vargas-Trevino; N. Wattimena; O. Wendt; M. Groll; R. -D. Heuer; S. Richter; J. Samson; A. Kaplan; H. -Ch. Schultz-Coulon; W. Shen; A. Tadday; B. Bilki; E. Norbeck; Y. Onel; E. J. Kim; G. Kim; D-W. Kim; K. Lee; S. C. Lee; K. Kawagoe; Y. Tamura; J. A. Ballin; P. D. Dauncey; A. -M. Magnan; H. Yilmaz; O. Zorba; V. Bartsch; M. Postranecky; M. Warren; M. Wing; M. Faucci Giannelli; M. G. Green; F. Salvatore; R. Kieffer; I. Laktineh; M. C Fouz; D. S. Bailey; R. J. Barlow; R. J. Thompson; M. Batouritski; O. Dvornikov; Yu. Shulhevich; N. Shumeiko; A. Solin; P. Starovoitov; V. Tchekhovski; A. Terletski; B. Bobchenko; M. Chadeeva; M. Danilov; O. Markin; R. Mizuk; V. Morgunov; E. Novikov; V. Rusinov; E. Tarkovsky; V. Andreev; N. Kirikova; A. Komar; V. Kozlov; P. Smirnov; Y. Soloviev; A. Terkulov; P. Buzhan; B. Dolgoshein; A. Ilyin; V. Kantserov; V. Kaplin; A. Karakash; E. Popova; S. Smirnov; N. Baranova; E. Boos; L. Gladilin; D. Karmanov; M. Korolev; M. Merkin; A. Savin; A. Voronin; A. Topkar; A. Freyk; C. Kiesling; S. Lu; K. Prothmann; K. Seidel; F. Simon; C. Soldner; L. Weuste; B. Bouquet; S. Callier; P. Cornebise; F. Dulucq; J. Fleury; H. Li; G. Martin-Chassard; F. Richard; Ch. de la Taille; R. Poeschl; L. Raux; M. Ruan; N. Seguin-Moreau; F. Wicek; M. Anduze; V. Boudry; J-C. Brient; G. Gaycken; R. Cornat; D. Jeans; P. Mora de Freitas; G. Musat; M. Reinhard; A. Rougé; J-Ch. Vanel; H. Videau; K-H. Park; J. Zacek; J. Cvach; P. Gallus; M. Havranek; M. Janata; J. Kvasnicka; M. Marcisovsky; I. Polak; J. Popule; L. Tomasek; M. Tomasek; P. Ruzicka; P. Sicho; J. Smolik; V. Vrba; J. Zalesak; Yu. Arestov; V. Ammosov; B. Chuiko; V. Gapienko; Y. Gilitski; V. Koreshev; A. Semak; Yu. Sviridov; V. Zaets; B. Belhorma; M. Belmir; A. Baird; R. N. Halsall; S. W. Nam; I. H. Park; J. Yang; Jong-Seo Chai; Jong-Tae Kim; Geun-Bum Kim; Y. Kim; J. Kang; Y. -J. Kwon; Ilgoo Kim; Taeyun Lee; Jaehong Park; Jinho Sung; S. Itoh; K. Kotera; M. Nishiyama; T. Takeshita; S. Weber; C. Zeitnitz

    2010-03-13T23:59:59.000Z

    An analog hadron calorimeter (AHCAL) prototype of 5.3 nuclear interaction lengths thickness has been constructed by members of the CALICE Collaboration. The AHCAL prototype consists of a 38-layer sandwich structure of steel plates and highly-segmented scintillator tiles that are read out by wavelength-shifting fibers coupled to SiPMs. The signal is amplified and shaped with a custom-designed ASIC. A calibration/monitoring system based on LED light was developed to monitor the SiPM gain and to measure the full SiPM response curve in order to correct for non-linearity. Ultimately, the physics goals are the study of hadron shower shapes and testing the concept of particle flow. The technical goal consists of measuring the performance and reliability of 7608 SiPMs. The AHCAL was commissioned in test beams at DESY and CERN. The entire prototype was completed in 2007 and recorded hadron showers, electron showers and muons at different energies and incident angles in test beams at CERN and Fermilab.

  20. A Comparison of Two Prototype Laser-Optical Firing Systems

    SciTech Connect (OSTI)

    Gregg L. Morelli; Michelle R. Bright

    2008-08-11T23:59:59.000Z

    The design and characterization of small, ruggedized laser-optical subsystems is required for the continued development of robust laser-optical firing systems. Typically, these subsystems must be capable of generating the needed laser optical energy, delivering that energy via fiber-optical cables while taking up occupying a volume as small as possible. A novel beam splitting and fiber injection scheme has been proposed which utilizes two diffractive optical components. These components were utilized to reduce the volume of a previously designed system. A laser-optical prototype system was assembled and tested which utilized this beam splitting and fiber injection scheme along other modifications to the laser module and the power supply. This prototype was based on earlier designs that utilized environmentally proven opto-mechanical sub-assemblies. The system was tested to characterize the laser performance, the splitter-coupler transmission efficiency, channel-to-channel energy balance and fiber interchangeability. The results obtained for this design will be compared to the performance of a prototype system based on a more traditional beam splitting and fiber injection scheme. The traditional design utilized partially reflecting mirrors for beam splitting and plano-convex lenses for fiber injection. These results will be discussed as will their ultimate impact on future designs and packaging strategies.

  1. MICRO-SEISMOMETERS VIA ADVANCED MESO-SCALE FABRICATION

    SciTech Connect (OSTI)

    Garcia, Caesar A; Onaran, Guclu; Avenson, Brad; Hall, Neal

    2014-11-07T23:59:59.000Z

    The Department of Energy (DOE) and the National Nuclear Security Administration (NNSA) seek revolutionary sensing innovations for the monitoring of nuclear detonations. Performance specifications are to be consistent with those obtainable by only an elite few products available today, but with orders of magnitude reduction in size, weight, power, and cost. The proposed commercial innovation calls upon several technologies including the combination of meso-scale fabrication and assembly, photonics-based displacement / motion detection methods, and the use of digital control electronics . Early Phase II development has demonstrated verified and repeatable sub 2ng noise floor from 3Hz to 100Hz, compact integration of 3-axis prototypes, and robust deployment exercises. Ongoing developments are focusing on low frequency challenges, low power consumption, ultra-miniature size, and low cross axis sensitivity. We are also addressing the rigorous set of specifications required for repeatable and reliable long-term explosion monitoring, including thermal stability, reduced recovery time from mass re-centering and large mechanical shocks, sensitivity stability, and transportability. Successful implementation will result in small, hand-held demonstration units with the ability to address national security needs of the DOE/NNSA. Additional applications envisioned include military/defense, scientific instrumentation, oil and gas exploration, inertial navigation, and civil infrastructure monitoring.

  2. Progress report of the third Generation ECR ion source fabrication

    E-Print Network [OSTI]

    Leitner, M A; Lyneis, C M; Taylor, C E; Wutte, D C

    1999-01-01T23:59:59.000Z

    Recent progress in the construction of the 3rd Generation ECR ion source at the 88" cyclotron in Berkeley is reported. Test results of a full scale prototype superconducting magnet structure, which has been described in the last ECR Ion Source Workshop, lead to an improved coil design for the 3rd Generation ECR ion source. Solenoids of the new design have been fabricated and exceeded the design field values without quench. The new sextupole coils are currently being wound and will be tested this summer. This magnet structure consists of three solenoids and six race track coils with iron poles forming the sextupole. It is described in the report along with the structural support and coil winding specifications. The coils are designed to generate a 4T axial mirror field at injection and 3T at extraction and a radial sextupole field of 2.4 T at the plasma chamber wall. The high axial magnetic field of the 3rd Generation ECR ion source influences ion beam extraction considerably and we have initiated simulations ...

  3. Fuel Fabrication Capability Research and Development Plan

    SciTech Connect (OSTI)

    Senor, David J.; Burkes, Douglas

    2013-06-28T23:59:59.000Z

    The purpose of this document is to provide a comprehensive review of the mission of the Fuel Fabrication Capability (FFC) within the Global Threat Reduction Initiative (GTRI) Convert Program, along with research and development (R&D) needs that have been identified as necessary to ensuring mission success. The design and fabrication of successful nuclear fuels must be closely linked endeavors.

  4. Apparatus and method for fabricating a microbattery

    DOE Patents [OSTI]

    Shul, Randy J. (Albuquerque, NM); Kravitz, Stanley H. (Albuquerque, NM); Christenson, Todd R. (Albuquerque, NM); Zipperian, Thomas E. (Edgewood, NM); Ingersoll, David (Albuquerque, NM)

    2002-01-01T23:59:59.000Z

    An apparatus and method for fabricating a microbattery that uses silicon as the structural component, packaging component, and semiconductor to reduce the weight, size, and cost of thin film battery technology is described. When combined with advanced semiconductor packaging techniques, such a silicon-based microbattery enables the fabrication of autonomous, highly functional, integrated microsystems having broad applicability.

  5. Carbon Fiber Components with Integrated Wiring for Millirobot Prototyping *

    E-Print Network [OSTI]

    Fearing, Ron

    assembly tool. Index Terms ­ millimeter-scale robots, modular part construction, integrated wiring, flexure and develop a construction kit for fabricating almost any design, similar to the kits that are available even during large motions. Future work will include the automated assembly of the parts with a low cost

  6. Fabrication of an optical component

    DOE Patents [OSTI]

    Nichols, Michael A. (Livermore, CA); Aikens, David M. (Pleasanton, CA); Camp, David W. (Oakland, CA); Thomas, Ian M. (Livermore, CA); Kiikka, Craig (Livermore, CA); Sheehan, Lynn M. (Livermore, CA); Kozlowski, Mark R. (Livermore, CA)

    2000-01-01T23:59:59.000Z

    A method for forming optical parts used in laser optical systems such as high energy lasers, high average power lasers, semiconductor capital equipment and medical devices. The optical parts will not damage during the operation of high power lasers in the ultra-violet light range. A blank is first ground using a fixed abrasive grinding method to remove the subsurface damage formed during the fabrication of the blank. The next step grinds and polishes the edges and forms bevels to reduce the amount of fused-glass contaminants in the subsequent steps. A loose abrasive grind removes the subsurface damage formed during the fixed abrasive or "blanchard" removal process. After repolishing the bevels and performing an optional fluoride etch, the surface of the blank is polished using a zirconia slurry. Any subsurface damage formed during the loose abrasive grind will be removed during this zirconia polish. A post polish etch may be performed to remove any redeposited contaminants. Another method uses a ceria polishing step to remove the subsurface damage formed during the loose abrasive grind. However, any residual ceria may interfere with the optical properties of the finished part. Therefore, the ceria and other contaminants are removed by performing either a zirconia polish after the ceria polish or a post ceria polish etch.

  7. Print preview for the fabrication of physical objects

    E-Print Network [OSTI]

    Carr, David (David Alexander)

    2011-01-01T23:59:59.000Z

    This work proposes a new class of design and fabrication interfaces for digitally created objects, which the author terms augmented fabrication machines. By enhancing traditional fabrication machines with rich new input ...

  8. Validation of thermal models for a prototypical MEMS thermal actuator.

    SciTech Connect (OSTI)

    Gallis, Michail A.; Torczynski, John Robert; Piekos, Edward Stanley; Serrano, Justin Raymond; Gorby, Allen D.; Phinney, Leslie Mary

    2008-09-01T23:59:59.000Z

    This report documents technical work performed to complete the ASC Level 2 Milestone 2841: validation of thermal models for a prototypical MEMS thermal actuator. This effort requires completion of the following task: the comparison between calculated and measured temperature profiles of a heated stationary microbeam in air. Such heated microbeams are prototypical structures in virtually all electrically driven microscale thermal actuators. This task is divided into four major subtasks. (1) Perform validation experiments on prototypical heated stationary microbeams in which material properties such as thermal conductivity and electrical resistivity are measured if not known and temperature profiles along the beams are measured as a function of electrical power and gas pressure. (2) Develop a noncontinuum gas-phase heat-transfer model for typical MEMS situations including effects such as temperature discontinuities at gas-solid interfaces across which heat is flowing, and incorporate this model into the ASC FEM heat-conduction code Calore to enable it to simulate these effects with good accuracy. (3) Develop a noncontinuum solid-phase heat transfer model for typical MEMS situations including an effective thermal conductivity that depends on device geometry and grain size, and incorporate this model into the FEM heat-conduction code Calore to enable it to simulate these effects with good accuracy. (4) Perform combined gas-solid heat-transfer simulations using Calore with these models for the experimentally investigated devices, and compare simulation and experimental temperature profiles to assess model accuracy. These subtasks have been completed successfully, thereby completing the milestone task. Model and experimental temperature profiles are found to be in reasonable agreement for all cases examined. Modest systematic differences appear to be related to uncertainties in the geometric dimensions of the test structures and in the thermal conductivity of the polycrystalline silicon test structures, as well as uncontrolled nonuniform changes in this quantity over time and during operation.

  9. Hit efficiency study of CMS prototype forward pixel detectors

    SciTech Connect (OSTI)

    Kim, Dongwook; /Johns Hopkins U.

    2006-01-01T23:59:59.000Z

    In this paper the author describes the measurement of the hit efficiency of a prototype pixel device for the CMS forward pixel detector. These pixel detectors were FM type sensors with PSI46V1 chip readout. The data were taken with the 120 GeV proton beam at Fermilab during the period of December 2004 to February 2005. The detectors proved to be highly efficient (99.27 {+-} 0.02%). The inefficiency was primarily located near the corners of the individual pixels.

  10. Duct injection technology prototype development: Evaluation of engineering data

    SciTech Connect (OSTI)

    Not Available

    1990-07-01T23:59:59.000Z

    The objective of the Duct Injection Technology Prototype Development Project is to develop a sound design basis for applying duct injection technology as a post-combustion SO{sub 2}emissions control method to existing coal-fired power plants. The necessary engineering design and scale-up criteria will be developed for the commercialization of duct injection technology for the control of SO{sub 2} emissions from coal-fired boilers in the utility industry. The primary focus of the analyses summarized in this Topical Report is the review of the known technical and economic information associated with duct injection technology. (VC)

  11. UPDATE ON MONOLITHIC FUEL FABRICATION METHODS

    SciTech Connect (OSTI)

    C. R. Clark; J. F. Jue; G. A. Moore; N. P. Hallinan; B. H. Park; D. E. Burkes

    2006-10-01T23:59:59.000Z

    Efforts to develop a viable monolithic research reactor fuel plate have continued at Idaho National Laboratory. These efforts have concentrated on both fabrication process refinement and scale-up to produce full sized fuel plates. Progress at INL has led to fabrication of hot isostatic pressed uranium-molybdenum bearing monolithic fuel plates. These miniplates are part of the RERTR-8 miniplate irradiation test. Further progress has also been made on friction stir weld processing which has been used to fabricate full size fuel plates which will be irradiated in the ATR and OSIRIS reactors.

  12. Blunt Trauma Performance of Fabric Systems Utilizing Natural Rubber Coated High Strength Fabrics

    SciTech Connect (OSTI)

    Ahmad, M. R.; Ahmad, W. Y. W.; Samsuri, A.; Salleh, J.; Abidin, M. H. [Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM), 40450 Shah Alam Selangor (Malaysia)

    2010-03-11T23:59:59.000Z

    The blunt trauma performance of fabric systems against 9 mm bullets is reported. Three shots were fired at each fabric system with impact velocity of 367+-9 m/s and the depth of indentation on the modeling clay backing was measured. The results showed that 18-layer and 21-layer all-neat fabric systems failed the blunt trauma test. However, fabric systems with natural rubber (NR) latex coated fabric layers gave lower blunt trauma of between 25-32 mm indentation depths. Deformations on the neat fabrics upon impact were identified as broken yarns, yarn stretching and yarn pull-out. Deflections of the neat fabrics were more localised. For the NR latex coated fabric layers, no significant deformation can be observed except for peeled-off regions of the NR latex film at the back surface of the last layer. From the study, it can be said that the NR latex coated fabric layers were effective in reducing the blunt trauma of fabric systems.

  13. Odessa fabricator builds rig specifically for geothermal drilling...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Odessa fabricator builds rig specifically for geothermal drilling Odessa fabricator builds rig specifically for geothermal drilling August 3, 2008 - 2:59pm Addthis For 35 years, MD...

  14. Carbon dioxide-assisted fabrication of highly uniform submicron...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    dioxide-assisted fabrication of highly uniform submicron-sized colloidal carbon spheres via hydrothermal carbonization Carbon dioxide-assisted fabrication of highly uniform...

  15. Method for fabricating hafnia films

    DOE Patents [OSTI]

    Hu, Michael Z [Knoxville, TN

    2007-08-21T23:59:59.000Z

    The present invention comprises a method for fabricating hafnia film comprising the steps of providing a substrate having a surface that allows formation of a self-assembled monolayer thereon via covalent bonding; providing an aqueous solution that provides homogeneous hafnium ionic complexes and hafnium nanoclusters wherein the aqueous solution is capable of undergoing homogeneous precipitation under controlled conditions for a desired period of time at a controlled temperature and controlled solution acidity for desired nanocluster nucleation and growth kinetics, desired nanocluster size, desired growth rate of film thickness and desired film surface characteristics. The method further comprising forming the self-assembled monolayer on the surface of the substrate wherein the self-assembled monolayer comprises a plurality of hydrocarbon chains cross-linked together along the surface of the substrate, the hydrocarbon chains being uniformly spaced from one another and wherein each of the hydrocarbon chains having a functional anchoring group at a first end of the chain covalently bonded with the surface of the substrate and each of the hydrocarbon chains having a functional terminating group projected away from the surface wherein the functional terminating group provides a bonding site for the hafnium film to grow; and exposing the substrate to the aqueous solution for a desired period of time at a controlled temperature wherein the hafnium ionic complexes and the hafnium nanoclusters are deposited on the bonding site of the functional terminating group thereby forming the hafnia film wherein the hafnium bonded to the hydrocarbons and to one another provide a uniform ordered arrangement defined by the uniform arrangement of the hydrocarbons.

  16. Prototype Radiation Detector Positioning System For The Automated Nondestructive Assay Of Uf6 Cylinders

    SciTech Connect (OSTI)

    Hatchell, Brian K.; Valdez, Patrick LJ; Orton, Christopher R.; Mace, Emily K.

    2011-08-07T23:59:59.000Z

    International Atomic Energy Agency (IAEA) inspectors currently perform periodic inspections at uranium enrichment plants to verify UF6 cylinder enrichment declarations. Measurements are typically performed with handheld high-resolution sensors on a sampling of cylinders taken to be representative of the facility’s entire cylinder inventory. These measurements are time-consuming, expensive, and assay only a small fraction of the total cylinder volume. An automated nondestructive assay system capable of providing enrichment measurements over the full volume of the cylinder could improve upon current verification practices in terms of efficiency and assay accuracy. This paper describes an approach denoted the Integrated Cylinder Verification Station (ICVS) that supports 100% cylinder verification, provides volume-averaged cylinder enrichment assay, and reduces inspector manpower needs. To allow field measurements to be collected to validate data collection algorithms, a prototype radiation detector positioning system was constructed. The system was designed to accurately position an array of radiation detectors along the length of a cylinder to measure UF6 enrichment. A number of alternative radiation shields for the detectors were included with the system. A collimated gamma-ray spectrometer module that allows translation of the detectors in the surrounding shielding to adjust the field of view, and a collimating plug in the end to further reduce the low-energy field of view, were also developed. Proof-of-principle measurements of neutron and high-energy gamma-ray signatures, using moderated neutron detectors and large-volume spectrometers in a fixed-geometry, portal-like configuration, supported an early assessment of the viability of the concept. The system has been used successfully on two testing campaigns at an AREVA fuel fabrication plant to scan over 30 product cylinders. This paper will describe the overall design of the detector positioning system and provide an overview of the Integrated Cylinder Verification Station (ICVS) approach.

  17. Parametric constructs : computational designs for digital fabrication

    E-Print Network [OSTI]

    Araya Goldberg, Sergio

    2006-01-01T23:59:59.000Z

    This thesis explores strategies for building design toolchains in order to design, develop and fabricate architectural forms. The hipothesys of this research is that by embedding ruled based procedures addressing generative, ...

  18. Design and Fabrication of Nanochannel Devices

    E-Print Network [OSTI]

    Wang, Miao

    2010-10-12T23:59:59.000Z

    /oval cross section efficiently and cost-effectively. 2.2 Background of Fabrication Technique: Basics of Electrospinning In 1934, Anton Formhals invented a spinning technology that produced synthetic fibers with the aid of an electric field.61...

  19. Pantry and Fabric Pests in the Home

    E-Print Network [OSTI]

    Merchant, Michael E.; Brown, Wizzie

    2008-10-22T23:59:59.000Z

    Pests such as Indian meal moths and various beetles and weevils can infest stored food. Dermestes beetles and clothes moths attack stored fabrics, hides and feathers. The first step in controlling these pests is learning to identify them and find...

  20. Fabrication and properties of microporous silicon

    E-Print Network [OSTI]

    Shao, Jianzhong

    1994-01-01T23:59:59.000Z

    Microporous silicon layers were fabricated by electrochemical etching of single crystalline silicon wafers in HF-ethanol solutions. The pore properties of porous silicon were examined by physical adsorption of nitrogen and the relationship between...

  1. The design and construction of fabric structures

    E-Print Network [OSTI]

    Fang, Rosemarie

    2009-01-01T23:59:59.000Z

    In its short history, fabric structures have fascinated architects and engineers alike. Architects appreciate their unusual shapes and forms while engineers delight in their "pure" structural expression. Capable of spanning ...

  2. Fabrication and properties of microporous silicon 

    E-Print Network [OSTI]

    Shao, Jianzhong

    1994-01-01T23:59:59.000Z

    Microporous silicon layers were fabricated by electrochemical etching of single crystalline silicon wafers in HF-ethanol solutions. The pore properties of porous silicon were examined by physical adsorption of nitrogen and the relationship between...

  3. Raw fabric hardware implementation and characterization

    E-Print Network [OSTI]

    Sun, Albert (Albert G.)

    2006-01-01T23:59:59.000Z

    The Raw architecture is scalable, improving performance not by pushing the limits of clock frequency, but by spreading computation across numerous simple, replicated tiles. The first Raw processors fabricated have 16 RISC ...

  4. Status and operation of the Linac4 ion source prototypes

    SciTech Connect (OSTI)

    Lettry, J., E-mail: Jacques.lettry@cern.ch; Aguglia, D.; Andersson, P.; Bertolo, S.; Butterworth, A.; Coutron, Y.; Dallocchio, A.; Chaudet, E.; Gil-Flores, J.; Guida, R.; Hansen, J.; Koszar, I.; Mahner, E.; Mastrostefano, C.; Mathot, S.; Mattei, S.; Midttun, Ø.; Moyret, P.; Nisbet, D.; O’Neil, M. [CERN, 1211 Geneva 23 (Switzerland)] [CERN, 1211 Geneva 23 (Switzerland); and others

    2014-02-15T23:59:59.000Z

    CERN's Linac4 45 kV H{sup ?} ion sources prototypes are installed at a dedicated ion source test stand and in the Linac4 tunnel. The operation of the pulsed hydrogen injection, RF sustained plasma, and pulsed high voltages are described. The first experimental results of two prototypes relying on 2 MHz RF-plasma heating are presented. The plasma is ignited via capacitive coupling, and sustained by inductive coupling. The light emitted from the plasma is collected by viewports pointing to the plasma chamber wall in the middle of the RF solenoid and to the plasma chamber axis. Preliminary measurements of optical emission spectroscopy and photometry of the plasma have been performed. The design of a cesiated ion source is presented. The volume source has produced a 45 keV H{sup ?} beam of 16–22 mA which has successfully been used for the commissioning of the Low Energy Beam Transport (LEBT), Radio Frequency Quadrupole (RFQ) accelerator, and chopper of Linac4.

  5. Field measurements in the Fermilab electron cooling solenoid prototype

    SciTech Connect (OSTI)

    A. C. Crawford et al.

    2003-10-02T23:59:59.000Z

    To increase the Tevatron luminosity, Fermilab is developing a high-energy electron cooling system [1] to cool 8.9-GeV/c antiprotons in the Recycler ring. The schematic layout of the Recycler Electron Cooling (REC) system is shown in Figure 1. Cooling of antiprotons requires a round electron beam with a small angular spread propagating through a cooling section with a kinetic energy of 4.3 MeV. To confine the electron beam tightly and to keep its transverse angles below 10{sup -4} rad, the cooling section will be immersed into a solenoidal field of 50-150G. As part of the R&D effort, a cooling section prototype consisting of 9 modules (90% of the total length of a future section) was assembled and measured. This paper describes the technique of measuring and adjusting the magnetic field quality in the cooling section and presents preliminary results of solenoid prototype field measurements. The design of the cooling section solenoid is discussed in Chapter 2. Chapter 3 describes details of a dedicated measurement system, capable of measuring small transverse field components, while the system's measurement errors are analyzed in Chapter 4. Chapter 5 contains measured field distributions of individual elements of the cooling section as well as an evaluation of the magnetic shielding efficiency. An algorithm of field adjustments for providing lowest possible electron trajectory perturbations is proposed in Chapter 6; also, this chapter shows the results of our first attempts of implementing the algorithm.

  6. Method to fabricate layered material compositions

    DOE Patents [OSTI]

    Fleming, James G. (Albuquerque, NM); Lin, Shawn-Yu (Albuquerque, NM)

    2002-01-01T23:59:59.000Z

    A new class of processes suited to the fabrication of layered material compositions is disclosed. Layered material compositions are typically three-dimensional structures which can be decomposed into a stack of structured layers. The best known examples are the photonic lattices. The present invention combines the characteristic features of photolithography and chemical-mechanical polishing to permit the direct and facile fabrication of, e.g., photonic lattices having photonic bandgaps in the 0.1-20.mu. spectral range.

  7. Method to fabricate layered material compositions

    DOE Patents [OSTI]

    Fleming, James G.; Lin, Shawn-Yu

    2004-11-02T23:59:59.000Z

    A new class of processes suited to the fabrication of layered material compositions is disclosed. Layered material compositions are typically three-dimensional structures which can be decomposed into a stack of structured layers. The best known examples are the photonic lattices. The present invention combines the characteristic features of photolithography and chemical-mechanical polishing to permit the direct and facile fabrication of, e.g., photonic lattices having photonic bandgaps in the 0.1-20.mu. spectral range.

  8. Problems in interpretation of clay fabrics

    SciTech Connect (OSTI)

    Reynolds, S.

    1987-05-01T23:59:59.000Z

    Several models have been developed to explain the origins of different clay fabrics as seen with the scanning electron microscope, but some of these models may be oversimplified. One microfabric model suggests that bioturbation leads to a randomization of fabric; nonbioturbated fabrics should exhibit a preferred orientation (PO) of clay particles in the horizontal direction. However, in samples from the Los Angeles basin, California, it was discovered that bioturbated, hemipelagic mudstones had essentially the same clay fabric as nonbioturbated, turbiditic mudstones; both were highly random. The effect of bioturbation was also studied in anoxic-laminated, nonbioturbated muds which exhibited isolated burrows (Pico Formation, Rosario Group, California; Niobrara Formation, Colorado). The clay fabric inside and outside the burrows was similar; diagenesis appeared to be the controlling factor of these microfabrics. Another common conception is that PO of clays is developed during consolidation. The only PO seen in the samples from the Los Angeles basin is of silt-sized detrital micas and diagenetic chlorite. Much of the PO which has been measured in recent sediments may be due to the PO of silt-sized micas, not clays; and PO in shales may be due to diagenetic growth of phyllosilicates under uniaxial pressure. Another model states that pelagic settling of clays will lead to the development of PO. The nonbioturbated mudstones of the Pico Formation display random clay fabrics in both pelagic and turbiditic sediments. These results are not meant to disprove previous clay fabric studies but instead are intended as a warning against oversimplification of the origin and significance of clay fabrics.

  9. Carbon nanotube collimator fabrication and application

    DOE Patents [OSTI]

    Chow, Lee (Orlando, FL); Chai, Guangyu (Orlando, FL); Schenkel, Thomas (San Francisco, CA)

    2010-07-06T23:59:59.000Z

    Apparatus, methods, systems and devices for fabricating individual CNT collimators. Micron size fiber coated CNT samples are synthesized with chemical vapor deposition method and then the individual CNT collimators are fabricated with focused ion beam technique. Unfocused electron beams are successfully propagated through the CNT collimators. The CNT nano-collimators are used for applications including single ion implantation and in high-energy physics, and allow rapid, reliable testing of the transmission of CNT arrays for transport of molecules.

  10. Concentrating Solar Power �¢���� Central Receiver Panel Component Fabrication and Testing FINAL REPORT

    SciTech Connect (OSTI)

    McDowell, Michael W [Pratt & Whitney Rocketdyne; Miner, Kris [Pratt & Whitney Rocketdyne

    2013-03-30T23:59:59.000Z

    The objective of this project is to complete a design of an advanced concentrated solar panel and demonstrate the manufacturability of key components. Then confirm the operation of the key components under prototypic solar flux conditions. This work is an important step in reducing the levelized cost of energy (LCOE) from a central receiver solar power plant. The key technical risk to building larger power towers is building the larger receiver systems. Therefore, this proposed technology project includes the design of an advanced molten salt prototypic sub-scale receiver panel that can be utilized into a large receiver system. Then complete the fabrication and testing of key components of the receive design that will be used to validate the design. This project shall have a significant impact on solar thermal power plant design. Receiver panels of suitable size for utility scale plants are a key element to a solar power tower plant. Many subtle and complex manufacturing processes are involved in producing a reliable, robust receiver panel. Given the substantial size difference between receiver panels manufactured in the past and those needed for large plant designs, the manufacture and demonstration on prototype receiver panel components with representative features of a full-sized panel will be important to improving the build process for commercial success. Given the thermal flux limitations of the test facility, the panel components cannot be rendered full size. Significance changes occurred in the projects technical strategies from project initiation to the accomplishments described herein. The initial strategy was to define cost improvements for the receiver, design and build a scale prototype receiver and test, on sun, with a molten salt heat transport system. DOE had committed to constructing a molten salt heat transport loop to support receiver testing at the top of the NSTTF tower. Because of funding constraints this did not happen. A subsequent plan to test scale prototype receiver, off sun but at temperature, at a molten salt loop at ground level adjacent to the tower also had to be abandoned. Thus, no test facility existed for a molten salt receiver test. As a result, PWR completed the prototype receiver design and then fabricated key components for testing instead of fabricating the complete prototype receiver. A number of innovative design ideas have been developed. Key features of the receiver panel have been identified. This evaluation includes input from Solar 2, personal experience of people working on these programs and meetings with Sandia. Key components of the receiver design and key processes used to fabricate a receiver have been selected for further evaluation. The Test Plan, Concentrated Solar Power Receiver In Cooperation with the Department of Energy and Sandia National Laboratory was written to define the scope of the testing to be completed as well as to provide details related to the hardware, instrumentation, and data acquisition. The document contains a list of test objectives, a test matrix, and an associated test box showing the operating points to be tested. Test Objectives: 1. Demonstrate low-cost manufacturability 2. Demonstrate robustness of two different tube base materials 3. Collect temperature data during on sun operation 4. Demonstrate long term repeated daily operation of heat shields 5. Complete pinhole tube weld repairs 6. Anchor thermal models This report discusses the tests performed, the results, and implications for design improvements and LCOE reduction.

  11. Evaluation of Computer-Based Procedure System Prototype

    SciTech Connect (OSTI)

    Johanna Oxstrand; Katya Le Blanc; Seth Hays

    2012-09-01T23:59:59.000Z

    This research effort is a part of the Light-Water Reactor Sustainability (LWRS) Program, which is a research and development (R&D) program sponsored by Department of Energy (DOE), performed in close collaboration with industry R&D programs, to provide the technical foundations for licensing and managing the long-term, safe, and economical operation of current nuclear power plants. The LWRS program serves to help the U.S. nuclear industry adopt new technologies and engineering solutions that facilitate the continued safe operation of the plants and extension of the current operating licenses. The introduction of advanced technology in existing nuclear power plants may help to manage the effects of aging systems, structures, and components. In addition, the incorporation of advanced technology in the existing LWR fleet may entice the future workforce, who will be familiar with advanced technology, to work for these utilities rather than more newly built nuclear power plants. Advantages are being sought by developing and deploying technologies that will increase safety and efficiency. One significant opportunity for existing plants to increase efficiency is to phase out the paper-based procedures (PBPs) currently used at most nuclear power plants and replace them, where feasible, with computer-based procedures (CBPs). PBPs have ensured safe operation of plants for decades, but limitations in paper-based systems do not allow them to reach the full potential for procedures to prevent human errors. The environment in a nuclear power plant is constantly changing depending on current plant status and operating mode. PBPs, which are static by nature, are being applied to a constantly changing context. This constraint often results in PBPs that are written in a manner that is intended to cover many potential operating scenarios. Hence, the procedure layout forces the operator to search through a large amount of irrelevant information to locate the pieces of information relevant for the task and situation at hand, which has potential consequences of taking up valuable time when operators must be responding to the situation, and potentially leading operators down an incorrect response path. Other challenges related to PBPs are the management of multiple procedures, place-keeping, finding the correct procedure for the task at hand, and relying on other sources of additional information to ensure a functional and accurate understanding of the current plant status (Converse, 1995; Fink, Killian, Hanes, & Naser, 2009; Le Blanc & Oxstrand, 2012). The main focus of this report is to describe the research activities conducted to address the remaining two objectives; Develop a prototype CBP system based on requirements identified and Evaluate the CBP prototype. The emphasis will be on the evaluation of an initial CBP prototype in at a Nuclear Power Plant.

  12. THE PULTRUSION TECHNOLOGY FOR THE PRODUCTION OF FABRIC-CEMENT

    E-Print Network [OSTI]

    Mobasher, Barzin

    THE PULTRUSION TECHNOLOGY FOR THE PRODUCTION OF FABRIC-CEMENT COMPOSITES Alva Peled Structural Engineering, Arizona State University, USA #12;Advantages of Fabrics in Cement Composites 0 300 600 900 0 2 4 6 8 Deflection, mm FlexuralLoad,N Fabrics Continuous Fibers Cement Matrix #12;Fabrics

  13. Risk D&D Rapid Prototype: Scenario Documentation and Analysis Tool

    SciTech Connect (OSTI)

    Unwin, Stephen D.; Seiple, Timothy E.

    2009-05-28T23:59:59.000Z

    Report describes process and methodology associated with a rapid prototype tool for integrating project risk analysis and health & safety risk analysis for decontamination and decommissioning projects.

  14. Tests of prototype salt stripper system for IFR fuel cycle

    SciTech Connect (OSTI)

    Carls, E.L.; Blaskovitz, R.J.; Johnson, T.R. [Argonne National Lab., IL (United States); Ogata, T. [Central Research Inst. of Electric Power Industry, Tokyo (Japan)

    1993-09-01T23:59:59.000Z

    One of the waste treatment steps for the on-site reprocessing of spent fuel from the Integral Fast Reactor fuel cycles is stripping of the electrolyte salt used in the electrorefining process. This involves the chemical reduction of the actinides and rare earth chlorides forming metals which then dissolve in a cadmium pool. To develop the equipment for this step, a prototype salt stripper system has been installed in an engineering scale argon-filled glovebox. Pumping trails were successful in transferring 90 kg of LiCl-KCl salt containing uranium and rare earth metal chlorides at 500{degree}C from an electrorefiner to the stripper vessel at a pumping rate of about 5 L/min. The freeze seal solder connectors which were used to join sections of the pump and transfer line performed well. Stripping tests have commenced employing an inverted cup charging device to introduce a Cd-15 wt % Li alloy reductant to the stripper vessel.

  15. Development and Test of a Prototype 100MVA Superconducting Generator

    SciTech Connect (OSTI)

    Fogarty, James M.; Bray, James W.

    2007-05-25T23:59:59.000Z

    In 2002, General Electric and the US Department of Energy (DOE) entered into a cooperative agreement for the development of a commercialized 100 MVA generator using high temperature superconductors (HTS) in the field winding. The intent of the program was to: • Identify and develop technologies that would be needed for such a generator. • Develop conceptual designs for generators with ratings of 100 MVA and higher using HTS technology. • Perform proof of concept tests at the 1.5 MW level for GE’s proprietary warm iron rotor HTS generator concept. • Design, build, and test a prototype of a commercially viable 100 MVA generator that could be placed on the power grid. This report summarizes work performed during the program and is provided as one of the final program deliverables.

  16. Sensor Development and Readout Prototyping for the STAR Pixel Detector

    SciTech Connect (OSTI)

    Greiner, L.; Anderssen, E.; Matis, H.S.; Ritter, H.G.; Stezelberger, T.; Szelezniak, M.; Sun, X.; Vu, C.; Wieman, H.

    2009-01-14T23:59:59.000Z

    The STAR experiment at the Relativistic Heavy Ion Collider (RHIC) is designing a new vertex detector. The purpose of this upgrade detector is to provide high resolution pointing to allow for the direct topological reconstruction of heavy flavor decays such as the D{sup 0} by finding vertices displaced from the collision vertex by greater than 60 microns. We are using Monolithic Active Pixel Sensor (MAPS) as the sensor technology and have a coupled sensor development and readout system plan that leads to a final detector with a <200 {micro}s integration time, 400 M pixels and a coverage of -1 < {eta} < 1. We present our coupled sensor and readout development plan and the status of the prototyping work that has been accomplished.

  17. Test report : Princeton power systems prototype energy storage system.

    SciTech Connect (OSTI)

    Rose, David Martin; Schenkman, Benjamin L.; Borneo, Daniel R.

    2013-08-01T23:59:59.000Z

    The Department of Energy Office of Electricity (DOE/OE), Sandia National Laboratory (SNL) and the Base Camp Integration Lab (BCIL) partnered together to incorporate an energy storage system into a microgrid configured Forward Operating Base to reduce the fossil fuel consumption and to ultimately save lives. Energy storage vendors will be sending their systems to SNL Energy Storage Test Pad (ESTP) for functional testing and then to the BCIL for performance evaluation. The technologies that will be tested are electro-chemical energy storage systems comprised of lead acid, lithium-ion or zinc-bromide. Princeton Power Systems has developed an energy storage system that utilizes lithium ion phosphate batteries to save fuel on a military microgrid. This report contains the testing results and some limited analysis of performance of the Princeton Power Systems Prototype Energy Storage System.

  18. Accelerated aging studies and environmental stability of prototype tamper tapes

    SciTech Connect (OSTI)

    Wright, B.W.; Wright, C.W. [Pacific Northwest Lab., Richland, WA (United States); Bunk, A.R. [Battelle Columbus Lab., OH (United States)] [and others

    1995-05-01T23:59:59.000Z

    This report describes the results of accelerated aging experiments (weathering) conducted on prototype tamper tapes bonded to a variety of surface materials. The prototype tamper tapes were based on the patented Confirm{reg_sign} tamper-indicating technology developed and produced by 3M Company. Tamper tapes bonded to surfaces using pressure sensitive adhesive (PSA) and four rapid-set adhesives were evaluated. The configurations of the PSA-bonded tamper tapes were 1.27-cm-wide Confirm{reg_sign} 1700 windows with vinyl underlay and 2.54-cm-wide Confirm{reg_sign} 1700 windows with vinyl and polyester underlays. The configurations of the rapid-set adhesive-bonded tamper tapes were 2.54-cm-wide Confirm{reg_sign} (1700, 1500 with and without primer, and 1300) windows with vinyl underlay. Surfaces used for bonding included aluminum, steel, stainless steel, Kevlar{reg_sign}, brass, copper, fiberglass/resin with and without gel coat, polyurethane-painted steel, acrylonitrile:butadiene:styrene plastic, polyester fiberglass board, Lexan polycarbonate, and cedar wood. Weathering conditions included a QUV cabinet (ultraviolet light at 60{degrees}C, condensing humidity at 40{degrees}C), a thermal cycling cabinet (-18{degrees}C to 46{degrees}C), a Weather-O-Meter (Xenon lamp), and exposure outdoors in Daytona Beach, Florida. Environmental aging exposures lasted from 7 weeks to 5 months. After exposure, the tamper tapes were visually examined and tested for transfer resistance. Tamper tapes were also exposed to a variety of chemical liquids (including organic solvents, acids, bases, and oxidizing liquids) to determine chemical resistance and to sand to determine abrasion resistance.

  19. A prototype photovoltaic/thermal system integrated with transpired collector

    SciTech Connect (OSTI)

    Athienitis, Andreas K.; Bambara, James; O'Neill, Brendan; Faille, Jonathan [Dept. of Building, Civil and Environmental Engineering, Concordia University, 1455 Maisonneuve W., Montreal, Quebec (Canada)

    2011-01-15T23:59:59.000Z

    Building-integrated photovoltaic/thermal (BIPV/T) systems may be utilized to produce useful heat while simultaneously generating electricity from the same building envelope surface. A well known highly efficient collector is the open-loop unglazed transpired collector (UTC) which consists of dark porous cladding through which outdoor air is drawn and heated by absorbed solar radiation. Commercially available photovoltaic systems typically produce electricity with efficiencies up to about 18%. Thus, it is beneficial to obtain much of the normally wasted heat from the systems, possibly by combining UTC with photovoltaics. Combination of BIPV/T and UTC systems for building facades is considered in this paper - specifically, the design of a prototype facade-integrated photovoltaic/thermal system with transpired collector (BIPV/T). A full scale prototype is constructed with 70% of UTC area covered with PV modules specially designed to enhance heat recovery and compared to a UTC of the same area under outdoor sunny conditions with low wind. The orientation of the corrugations in the UTC is horizontal and the black-framed modules are attached so as to facilitate flow into the UTC plenum. While the overall combined thermal efficiency of the UTC is higher than that of the BIPV/T system, the value of the generated energy - assuming that electricity is at least four times more valuable than heat - is between 7% and 17% higher. Also, the electricity is always useful while the heat is usually utilized only in the heating season. The BIPV/T concept is applied to a full scale office building demonstration project in Montreal, Canada. The ratio of photovoltaic area coverage of the UTC may be selected based on the fresh air heating needs of the building, the value of the electricity generated and the available building surfaces. (author)

  20. Final report for 1.7 megajoule prototype bank testing

    SciTech Connect (OSTI)

    NONE

    1995-10-01T23:59:59.000Z

    American Control Engineering is pleased to submit to LLNL this Final Report describing the final assembly and preliminary testing of the 1.7 megajoule prototype capacitor bank that is located at our facility. The purpose of this test program was to evaluate and characterize the performance of this capacitor bank. These tests were necessary in order to proceed with the design of a final building block module that is to be used to create a reliable and cost effective multi-hundred megajoule energy storage system. The period of performance covered by this contract is from January 1, 1991 through August 31, 1992. American Control Engineering has provided all of the necessary facilities, personnel and materials that were required to perform this testing effort (except for the existing capacitor bank, the LLNL provided flashlamp assembly and E-size ignitron switch tube), An overall view of the assembled capacitor bank system as it appeared at the completion of this subcontract is shown. The initial statement-of-work for the testing and characterization of the capacitor bank was as follows: (1) Measure all of the principal electrical parameters for the 1.7 megajoule prototype capacitor bank at low voltage before proceeding to high voltage testing. This low voltage testing is to include measurement of both normal and fault current and voltage waveforms, starting with the smallest building block grouping and proceeding systematically through to the capacitor bank load. (2) Assemble and attach each of the major subsystem elements to the capacitor bank as they are required for low voltage testing including the ignition output switch structure, coaxial transmission line and load assembly. (3) Make comparison of the test results collected through low voltage testing with those forecasted by the computer mode. Evaluate and resolve any discrepancies between the two results until the computer model achieves reasonable agreement with the actual measured test results.

  1. Eaton Throat-Valve Element prototype concept. Phase 1

    SciTech Connect (OSTI)

    Stacey, M.R.; Arendts, J.G.; Berry, R.A.; Korth, G.E.; Schwieder, P.R.; Sekot, J.P.; Snow, S.D.

    1993-12-01T23:59:59.000Z

    As part of an ongoing effort to improve techniques for simulating nuclear blasts, the US Army Research Laboratory has been studying the merits of computer-controlled valves. The valve studies have been aimed at providing the Department of Defense with the capacity to conduct nuclear blast and thermal survivability testing on full-scale tactical vehicles. This report documents the development and findings of a computer model that simulates the behavior of the Eaton-Throat Valve Element (ETVE) prototype, and describes a proposed modification concept for the ETVE. The computer model reveals three main findings: (1) the ETVE chatters during the open cycle, (2) the chatter is caused by the high gas forces on the sliding sleeve as the driver gas passes through its portholes, and (3) the chatter is aggravated because there is insufficient damping in the system. The INEL recommends opening the ETVE by sliding the sleeve toward the downstream end of the valve instead of toward the upstream end, as the ETVE is presently configured, and to provide additional damping to the system. However, neither of these configuration changes can be achieved easily, and a redesign and analysis f the ETVE must be completed prior to performing any work on the current ETVE prototype. The ETVE simulation model proved to be an extremely valuable tool in analyzing the qualitative nature of the valve`s operation. Further development of the model is recommended for quantitative analysis and design of the ETVE. This report explains the model and stress analysis findings, and proposes a redesign concept.

  2. A prototype catalogue: DOE National Laboratory technologies for infrastructure modernization

    SciTech Connect (OSTI)

    Currie, J.W.; Wilfert, G.L.; March, F.

    1990-01-01T23:59:59.000Z

    The purpose of this report is to provide the Office of Technology Assessment (OTA) with information about selected technologies under development in the Department of Energy (DOE) through its National Laboratory System and its Program Office operations. The technologies selected are those that have the potential to improve the performance of the nation's public works infrastructure. The product is a relational database that we refer to as a prototype catalogue of technologies.'' The catalogue contains over 100 entries of DOE-supported technologies having potential application to infrastructure-related problems. The work involved conceptualizing an approach, developing a framework for organizing technology information, and collecting samples of readily available data to be put into a prototype catalogue. In developing the catalogue, our objectives were to demonstrate the concept and provide readily available information to OTA. As such, the catalogue represents a preliminary product. The existing database is not exhaustive and likely represents only a fraction of relevant technologies developed by DOE. In addition, the taxonomy we used to classify technologies is based on the judgment of project staff and has received minimal review by individuals who have been involved in the development and testing of the technologies. Finally, end users will likely identify framework changes and additions that will strengthen the catalogue approach. The framework for the catalogue includes four components: a description of the technology, along with potential uses and other pertinent information; identification of the source of the descriptive information; identification of a person or group knowledgeable about the technology; and a classification of the described technology in terms of its type, application, life-cycle use, function, and readiness.

  3. Fabrication and Testing of Full-Length Single-Cell Externally Fueled Converters for Thermionic Reactors

    SciTech Connect (OSTI)

    Schock, Alfred

    1994-06-01T23:59:59.000Z

    The preceding paper described designs and analyses of thermionic reactors employing full-core-length single-cell converters with their heated emitters located on the outside of their internally cooled collectors, and it presented results of detailed parametric analyses which illustrate the benefits of this unconventional design. The present paper describes the fabrication and testing of full-length prototypical converters, both unfueled and fueled, and presents parametric results of electrically heated tests. The unfueled converter tests demonstrated the practicality of operating such long converters without shorting across a 0.3-mm interelectrode gap. They produced a measured peak output of 751 watts(e) from a single diode and a peak efficiency of 15.4%. The fueled converter tests measured the parametric performance of prototypic UO(subscript 2)-fueled converters designed for subsequent in-pile testing. They employed revolver-shaped tungsten elements with a central emitter hole surrounded by six fuel chambers. The full-length converters were heated by a water-cooled RF-induction coil inside an ion-pumped vacuum chamber. This required development of high-vacuum coaxial RF feedthroughs. In-pile test rules required multiple containment of the UO (subscript 2)-fuel, which complicated the fabrication of the test article and required successful development of techniques for welding tungsten and other refractory components. The test measured a peak power output of 530 watts(e) or 7.1 watts/cm (superscript 2) at an efficiency of 11.5%. There are three copies in the file. Cross-Reference a copy FSC-ESD-217-94-529 in the ESD files with a CID #8574.

  4. Multilayer insulation blanket, fabricating apparatus and method

    DOE Patents [OSTI]

    Gonczy, John D. (Oak Lawn, IL); Niemann, Ralph C. (Downers Grove, IL); Boroski, William N. (Aurora, IL)

    1992-01-01T23:59:59.000Z

    An improved multilayer insulation blanket for insulating cryogenic structures operating at very low temperatures is disclosed. An apparatus and method for fabricating the improved blanket are also disclosed. In the improved blanket, each successive layer of insulating material is greater in length and width than the preceding layer so as to accommodate thermal contraction of the layers closest to the cryogenic structure. The fabricating apparatus has a rotatable cylindrical mandrel having an outer surface of fixed radius that is substantially arcuate, preferably convex, in cross-section. The method of fabricating the improved blanket comprises (a) winding a continuous sheet of thermally reflective material around the circumference of the mandrel to form multiple layers, (b) binding the layers along two lines substantially parallel to the edges of the circumference of the mandrel, (c) cutting the layers along a line parallel to the axle of the mandrel, and (d) removing the bound layers from the mandrel.

  5. Method of fabricating a multilayer insulation blanket

    DOE Patents [OSTI]

    Gonczy, John D. (Oak Lawn, IL); Niemann, Ralph C. (Downers Grove, IL); Boroski, William N. (Aurora, IL)

    1993-01-01T23:59:59.000Z

    An improved multilayer insulation blanket for insulating cryogenic structures operating at very low temperatures is disclosed. An apparatus and method for fabricating the improved blanket are also disclosed. In the improved blanket, each successive layer of insulating material is greater in length and width than the preceding layer so as to accommodate thermal contraction of the layers closest to the cryogenic structure. The fabricating apparatus has a rotatable cylindrical mandrel having an outer surface of fixed radius that is substantially arcuate, preferably convex, in cross-section. The method of fabricating the improved blanket comprises (a) winding a continuous sheet of thermally reflective material around the circumference of the mandrel to form multiple layers, (b) binding the layers along two lines substantially parallel to the edges of the circumference of the mandrel, (c) cutting the layers along a line parallel to the axle of the mandrel, and (d) removing the bound layers from the mandrel.

  6. Fabricating solid carbon porous electrodes from powders

    DOE Patents [OSTI]

    Kaschmitter, James L. (Pleasanton, CA); Tran, Tri D. (Livermore, CA); Feikert, John H. (Livermore, CA); Mayer, Steven T. (San Leandro, CA)

    1997-01-01T23:59:59.000Z

    Fabrication of conductive solid porous carbon electrodes for use in batteries, double layer capacitors, fuel cells, capacitive dionization, and waste treatment. Electrodes fabricated from low surface area (<50 m.sup.2 /gm) graphite and cokes exhibit excellent reversible lithium intercalation characteristics, making them ideal for use as anodes in high voltage lithium insertion (lithium-ion) batteries. Electrodes having a higher surface area, fabricated from powdered carbon blacks, such as carbon aerogel powder, carbon aerogel microspheres, activated carbons, etc. yield high conductivity carbon compositives with excellent double layer capacity, and can be used in double layer capacitors, or for capacitive deionization and/or waste treatment of liquid streams. By adding metallic catalysts to be high surface area carbons, fuel cell electrodes can be produced.

  7. Fabricating solid carbon porous electrodes from powders

    DOE Patents [OSTI]

    Kaschmitter, J.L.; Tran, T.D.; Feikert, J.H.; Mayer, S.T.

    1997-06-10T23:59:59.000Z

    Fabrication is described for conductive solid porous carbon electrodes for use in batteries, double layer capacitors, fuel cells, capacitive deionization, and waste treatment. Electrodes fabricated from low surface area (<50 m{sup 2}/gm) graphite and cokes exhibit excellent reversible lithium intercalation characteristics, making them ideal for use as anodes in high voltage lithium insertion (lithium-ion) batteries. Electrodes having a higher surface area, fabricated from powdered carbon blacks, such as carbon aerogel powder, carbon aerogel microspheres, activated carbons, etc. yield high conductivity carbon composites with excellent double layer capacity, and can be used in double layer capacitors, or for capacitive deionization and/or waste treatment of liquid streams. By adding metallic catalysts to high surface area carbons, fuel cell electrodes can be produced. 1 fig.

  8. Energy-beam-driven rapid fabrication system

    DOE Patents [OSTI]

    Keicher, David M. (Albuquerque, NM); Atwood, Clinton L. (Albuquerque, NM); Greene, Donald L. (Corrales, NM); Griffith, Michelle L. (Albuquerque, NM); Harwell, Lane D. (Albuquerque, NM); Jeantette, Francisco P. (Albuquerque, NM); Romero, Joseph A. (Albuquerque, NM); Schanwald, Lee P. (Albuquerque, NM); Schmale, David T. (Albuquerque, NM)

    2002-01-01T23:59:59.000Z

    An energy beam driven rapid fabrication system, in which an energy beam strikes a growth surface to form a molten puddle thereon. Feed powder is then injected into the molten puddle from a converging flow of feed powder. A portion of the feed powder becomes incorporated into the molten puddle, forcing some of the puddle contents to freeze on the growth surface, thereby adding an additional layer of material. By scanning the energy beam and the converging flow of feed powder across the growth surface, complex three-dimensional shapes can be formed, ready or nearly ready for use. Nearly any class of material can be fabricated using this system.

  9. Prototyping an Energy Harvesting Wireless Sensor Network Application Using HarvWSNet

    E-Print Network [OSTI]

    Boyer, Edmond

    Prototyping an Energy Harvesting Wireless Sensor Network Application Using HarvWSNet Florian of a simulation-based approach for the ar- chitecture exploration and prototyping of severely energy constrained of service to the instantaneous state of the energy harvesting module. The final goal is to propose

  10. Junior Team Design This competition challenges junior engineering students to design and build a prototype to

    E-Print Network [OSTI]

    Saskatchewan, University of

    Junior Team Design This competition challenges junior engineering students to design and build a prototype to address a technical problem. The Junior Team Design category is similar to the Senior Team Design competition, but emphasis is placed on prototype functionality rather than design theory. Team

  11. Normal Aging and the Dissociable Prototype Learning Systems Brian D. Glass1

    E-Print Network [OSTI]

    Maddox, W. Todd

    that the learning of different types of classification tasks are mediated by functionally and neurally distinct Filoteo & Maddox, 2004). Another important type of classification learning is prototype learning (Homa1 Normal Aging and the Dissociable Prototype Learning Systems Brian D. Glass1 Tanya Chotibut2

  12. A Prototypes-Embedded Genetic K-means Algorithm Shih-Sian Cheng1,2

    E-Print Network [OSTI]

    Wang, Hsin-Min

    A Prototypes-Embedded Genetic K-means Algorithm Shih-Sian Cheng1,2 , Yi-Hsiang Chao1,2 , Hsin into the chromosomes. The crossover operator is designed to exchange prototypes between two chromosomes. The one-step K-means K-means algorithm (PGKA). With the inherent evolution process of evolutionary algorithms, PGKA has

  13. InvenTcl: A Fast Prototyping Environment for 3D Graphics and Multimedia Applications

    E-Print Network [OSTI]

    British Columbia, University of

    InvenTcl: A Fast Prototyping Environment for 3D Graphics and Multimedia Applications Sidney Fels1- sion of Open Inventor, a 3D graphics toolkit. To create InvenTcl, the Open Inventor toolkit is \\wrapped, easy prototyping of 3D graphics and animation, low bandwidth communication of 3D scenes and animations

  14. LETTER Communicated by Christopher Williams Prototype Classification: Insights from Machine Learning

    E-Print Network [OSTI]

    LETTER Communicated by Christopher Williams Prototype Classification: Insights from Machine-of-class prototype classification using algorithms from machine learning that satisfy a set of invariance properties. We report a simple yet general approach to express different types of linear classification

  15. PROTOTYPE 350 MHZ NIOBIUM SPOKE-LOADED CAVITIES K. W. Shepard, M. Kedzie, ANL, Argonne, IL

    E-Print Network [OSTI]

    #12;PROTOTYPE 350 MHZ NIOBIUM SPOKE-LOADED CAVITIES K. W. Shepard, M. Kedzie, ANL, Argonne, IL J. R.4, and the other for v/c = 0.29. Construction of the prototype niobium cavities is nearly complete. Details in the form of an 855 MHz, single-cell niobium cavity [7,8]. For the linac contemplated here, a substantially

  16. Operation of prototype niobium gravitational radiation antenna with microwave parametric accelerometer (*)

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    L-113 Operation of prototype niobium gravitational radiation antenna with microwave parametric niobium à haut facteur de qualité, le tout soulevé par lévitation magnétique sans le moindre contact in conjunction with a high Q levitated niobium gravitational radiation antenna. Operation of a prototype antenna

  17. DESIGN SIMULATION OF LUNAR EXPLORATION AND ISRU PROTOTYPE VEHICLES AND MISSION SCENARIOS. B. Damer1

    E-Print Network [OSTI]

    Shen, Wei-Min

    School of Mines constructed and tested a prototype Bucket Wheel Excavator (BWE) in 2003 (fig 1) [1] Muff, T., Johnson, L., King, R., Duke, M.B., A Prototype Bucket Wheel Excavator for the Moon, Mars Figure 3 Figure 4 Results: DigitalSpace created a model of the vehicle drive train, bucket wheel

  18. Field tests of a vertical-fluted-tube condenser in the prototype power plant at the Raft River Geothermal Test Site

    SciTech Connect (OSTI)

    Murphy, R.W.

    1983-04-01T23:59:59.000Z

    A vertical-fluted-tube condenser was designed, fabricated, and tested with isobutane as the shell-side working fluid in a binary prototype power plant at the Raft River Geothermal Test Site. After shakedown and contamination removal operations were completed, the four-pass water-cooled unit (with 102 outside-fluted Admiralty tubes) achieved performance predictions while operating with the plant surface evaporator on-line. A sample comparison shows that use of this enhanced condenser concept offers the potential for a reduction of about 65% from the size suggested by corresponding designs using conventional horizontal-smooth-tube concepts. Subsequent substitution of a direct-contact evaporator for the surface evaporator brought drastic reductions in system performance, the apparent consequence of high concentrations of noncondensible gases introduced by the brine/working-fluid interaction.

  19. Decontamination of the Curium Source Fabrication Facility

    SciTech Connect (OSTI)

    Schaich, R.W.

    1982-01-01T23:59:59.000Z

    The Curium Source Fabrication Facility (CSFF) at Oak Ridge National Laboratory (ORNL) was decontaminated to acceptable contamination levels for maintenance activities, using standard decontamination techniques. Solid- and liquid-waste volumes were controlled to minimize discharge to the ORNL Waste Systems. This program required two years of decontamination effort at a total cost of $580K.

  20. Fabrication Procedures and Process Sensitivities for

    E-Print Network [OSTI]

    with an AM1.5 eciency of 15.4% as verified by the National Renewable Energy Laboratory. SOLAR CELL Avenue, Toledo, OH 43607, U.S.A. Contract/grant sponsor: U.S. Department of Energy; Contract/grant numberFabrication Procedures and Process Sensitivities for CdS/CdTe Solar Cells Doug H. Rose*, Falah S

  1. Fabrication of Surface Plasmon Resonators by Nanoskiving

    E-Print Network [OSTI]

    Prentiss, Mara

    . The diamond knife cuts cleanly through microplates 35 µm in diameter and 100 nm thick without bending); the single-crystalline gold nanowires fabricated here have much lower radiative loss than polycrystalline to act as surface plasmon resonators, a characteristic that polycrystalline metal nanowires do

  2. Method of fabrication of anchored nanostructure materials

    DOE Patents [OSTI]

    Seals, Roland D; Menchhofer, Paul A; Howe, Jane Y; Wang, Wei

    2013-11-26T23:59:59.000Z

    Methods for fabricating anchored nanostructure materials are described. The methods include heating a nano-catalyst under a protective atmosphere to a temperature ranging from about 450.degree. C. to about 1500.degree. C. and contacting the heated nano-catalysts with an organic vapor to affix carbon nanostructures to the nano-catalysts and form the anchored nanostructure material.

  3. Method of fabricating a solar cell

    DOE Patents [OSTI]

    Pass, Thomas; Rogers, Robert

    2014-02-25T23:59:59.000Z

    Methods of fabricating solar cells are described. A porous layer may be formed on a surface of a substrate, the porous layer including a plurality of particles and a plurality of voids. A solution may be dispensed into one or more regions of the porous layer to provide a patterned composite layer. The substrate may then be heated.

  4. Polymer microcantilevers fabricated via multiphoton absorption polymerization

    E-Print Network [OSTI]

    Teich, Malvin C.

    Polymer microcantilevers fabricated via multiphoton absorption polymerization Z. Bayindir, Y. Sun polymer cantilevers. Atomic force microscopy has been used to characterize the mechanical properties orders of magnitude smaller than would be predicted from the properties of the bulk polymer.6 If correct

  5. Fuel Fabrication Capability Research and Development Plan

    SciTech Connect (OSTI)

    Senor, David J.; Burkes, Douglas

    2014-04-17T23:59:59.000Z

    The purpose of this document is to provide a comprehensive review of the mission of the Fuel Fabrication Capability (FFC) within the Global Threat Reduction Initiative Convert Program, along with research and development (R&D) needs that have been identified as necessary to ensuring mission success. The design and fabrication of successful nuclear fuels must be closely linked endeavors. Therefore, the overriding motivation behind the FFC R&D program described in this plan is to foster closer integration between fuel design and fabrication to reduce programmatic risk. These motivating factors are all interrelated, and progress addressing one will aid understanding of the others. The FFC R&D needs fall into two principal categories, 1) baseline process optimization, to refine the existing fabrication technologies, and 2) manufacturing process alternatives, to evaluate new fabrication technologies that could provide improvements in quality, repeatability, material utilization, or cost. The FFC R&D Plan examines efforts currently under way in regard to coupon, foil, plate, and fuel element manufacturing, and provides recommendations for a number of R&D topics that are of high priority but not currently funded (i.e., knowledge gaps). The plan ties all FFC R&D efforts into a unified vision that supports the overall Convert Program schedule in general, and the fabrication schedule leading up to the MP-1 and FSP-1 irradiation experiments specifically. The fabrication technology decision gates and down-selection logic and schedules are tied to the schedule for fabricating the MP-1 fuel plates, which will provide the necessary data to make a final fuel fabrication process down-selection. Because of the short turnaround between MP-1 and the follow-on FSP-1 and MP-2 experiments, the suite of specimen types that will be available for MP-1 will be the same as those available for FSP-1 and MP-2. Therefore, the only opportunity to explore parameter space and alternative processing is between now and 2016 when the candidate processes are down-selected in preparation for the MP-1, FSP-1, and MP-2 plate manufacturing campaigns. A number of key risks identified by the FFC are discussed in this plan, with recommended mitigating actions for those activities within FFC, and identification of risks that are impacted by activities in other areas of the Convert Program. The R&D Plan does not include discussion of FFC initiatives related to production-scale manufacturing of fuel (e.g., establishment of the Pilot Line Production Facility), rather, the goal of this plan is to document the R&D activities needed ultimately to enable high-quality and cost-effective production of the fuel by the commercial fuel fabricator. The intent is for this R&D Plan to be a living document that will be reviewed and updated on a regular basis (e.g., annually) to ensure that FFC R&D activities remain properly aligned to the needs of the Convert Program. This version of the R&D Plan represents the first annual review and revision.

  6. A prototype station for ARIANNA: a detector for cosmic neutrinos

    E-Print Network [OSTI]

    Lisa Gerhardt; Spencer R. Klein; Thorsten Stezelberger; Steve Barwick; Kamlesh Dookayka; Jordan Hanson; Ryan Nichol

    2010-05-27T23:59:59.000Z

    The Antarctic Ross Iceshelf Antenna Neutrino Array (ARIANNA) is a proposed detector for ultra-high energy astrophysical neutrinos. It will detect coherent radio Cherenkov emission from the particle showers produced by neutrinos with energies above about 10^17 eV. ARIANNA will be built on the Ross Ice Shelf just off the coast of Antarctica, where it will eventually cover about 900 km^2 in surface area. There, the ice-water interface below the shelf reflects radio waves, giving ARIANNA sensitivity to downward going neutrinos and improving its sensitivity to horizontally incident neutrinos. ARIANNA detector stations will each contain 4-8 antennas which search for brief pulses of 50 MHz to 1 GHz radio emission from neutrino interactions. We describe a prototype station for ARIANNA which was deployed in Moore's Bay on the Ross Ice Shelf in December 2009, discuss the design and deployment, and present some initial figures on performance. The ice shelf thickness was measured to be 572 +/- 6 m at the deployment site.

  7. Rapid prototyping for radio-frequency geolocation applications

    SciTech Connect (OSTI)

    Briles, S. C. (Scott C.); Arrowood, J. L. (Joseph L.); Braun, T. R. (Thomas R.); Turcotte, D. (Dakx); Fiset, E. (Etienne)

    2004-01-01T23:59:59.000Z

    Previous space-to-ground, single-platform geolocation experiments exploiting time-difference-of arrival (TDOA) via interferometry were successful at separating and quantitatively characterizing interfering radio frequency (RF) signals from expected RF transmissions. Much of the success of these experiments rested on the use of embedded processors to perform the required signal processing. The experiments handled data in a 'snapshot' fashion: digitized data was collected, the data was processed via a digital signal processing (DSP) microprocessor to yield differential phase measurements, and these measurements were transmitted to the Earth for geolocation processing. With the utilization of FPGAs (field programmable gate arrays) for the intensive number-crunching algorithms, the processing of streaming real-time data is feasible for bandwidths on the order of 20 MHz. By partitioning the signal processing algorithm so there is a significant reduction in the data rate as data flows through the FPGA, a DSP microprocessor can now be employed to perform further decision-oriented processing on the FPGA output. This hybrid architecture, employing both FPGAs and DSPs, typically requires an expensive and lengthy development cycle. However, the use of graphical development environments with auto-code generation and hardware-in-the-loop testing can result in rapid prototyping for geolocation experiments, which enables adaptation to emerging signals of interest in a cost and time effective manner.

  8. Development and Testing of the NIF Prototype Module

    SciTech Connect (OSTI)

    Adcock, J.; Harjes, C.; Mowrer, G.; Wilson, M.

    1999-06-25T23:59:59.000Z

    The NIF Power Conditioning System (PCS) is required to deliver -68 kJ to each of the 3840 flashlamp pairs in the NIF laser in a current pulse with a peak of -500 kA and rise time of- 150 µs. The PCS will consist of 192 modules each of which drive 20 lamp-pairs. Each module will basically be a 6 rnF capacitor bank with a nominal charge voltage of 23.5 kV which is switched by a single pressurized air gas switch to 20 RG-220 cables that are connected to individual lamp loads. In addition each module will have a number of subsystems including; a lamp pre-ionization system, power supplies, isolation circuits, trigger systems, safety dump systems, gas system, and an embedded control system. A module will also include components whose primary function is to limit fault currents and thus minimize collateral damage in faults. In the Prototype Development and Testing effort at Sandia National Laboratories all of these were integrated into a single system and proper fimctionality was demonstrated. Extensive testing was done at nominal operating levels into resistive dummy loads and some testing in fault modes was also done. A description of the system and a summary of testing is given in this paper.

  9. The LEB to MEB transfer kicker system prototype

    SciTech Connect (OSTI)

    Pappas, C. [Brookhaven National Lab., Upton, NY (United States); Wilson, M. [Sandia National Labs., Albuquerque, NM (United States); Anderson, D. [Cornell Univ., Ithaca, NY (United States). Plasma Studies Lab.

    1994-08-01T23:59:59.000Z

    The design requirements for the Low Energy Booster (LEB) extraction kicker system at the Superconducting Super Collider Laboratory (SSCL) were to deflect a 12 GeV/c beam through an angle of 1.5 mrad. The circumference of the LEB was 540 M. This resulted in a 0.06 T-m integrated field, of 1.8 {mu}s width with a 1% to 99% rise time of less than 80 ns and allowable pulse ripple of less than {plus_minus}1%. The repetition frequency was 10 Hz and the allowable timing jitter was 2 ns. The field was required to be uniform over a 2{times}4 cm area to {plus_minus}2.5%. The requirements for the Medium Energy Booster (MEB) injection kicker were similar except that a 99% to 1% pulse fall time of less than 2 {mu}s was needed. Prototypes of the pulsed power system and magnet to meet these requirements were built and tested at the SSCL. This paper describes the results of that testing.

  10. Development of a prototype lignin concentration sensor. Final report. Draft

    SciTech Connect (OSTI)

    Jeffers, L.A.

    1994-11-01T23:59:59.000Z

    The ultimate objective of the DOE-sponsored program discussed in this report is to commercialize an instrument for real-time, in-situ measurement of lignin in wood pulp at a variety of locations in the pulp process stream. The instrument will be used as a primary sensor for process control in the pulp and paper industry. Work done by B&W prior to the initiation of this program had shown: there is a functional relationship between the fluorescence intensity and the Kappa number as measured at the pulp mill laboratory. Kappa number is a standard wet chemical method for determination of the lignin concentration; the relationship is one of decreasing intensity with Kappa number, indicating operation in the quenched fluorescence regime; a great deal of scatter in the data. Because of the preliminary nature of the study, the origin of the scatter was not identified. This report documents the results of laboratory measurements made on a variety of well defined pulp samples to generate the data necessary to: determine the feasibility of an instrument for on-line lignin concentration measurement using laser fluorescence; identify the preferred measurement strategy; define the range of applicability of the instrument; and to provide background information to guide the design of a field-worthy prototype.

  11. A prototype station for ARIANNA: a detector for cosmic neutrinos

    SciTech Connect (OSTI)

    Gerhardt, L.; Klein, S.; Stezelberger, T.; Barwick, S.; Dookayka, K.; Hanson, J.; Nichol, R.

    2010-05-27T23:59:59.000Z

    The Antarctic Ross Iceshelf Antenna Neutrino Array (ARIANNA) is a proposed detector for ultra-high energy astrophysical neutrinos. It will detect coherent radio Cherenkov emission from the particle showers produced by neutrinos with energies above about 1017 eV. ARIANNA will be built on the Ross Ice Shelf just off the coast of Antarctica, where it will eventually cover about 900 km2 in surface area. There, the ice-water interface below the shelf reflects radio waves, giving ARIANNA sensitivity to downward going neutrinos and improving its sensitivity to horizontally incident neutrinos. ARIANNA detector stations will each contain 4-8 antennas which search for brief pulses of 50 MHz to 1 GHz radio emission from neutrino interactions. We describe a prototype station for ARIANNA which was deployed in Moore's Bay on the Ross Ice Shelf in December 2009, discuss the design and deployment, and present some initial figures on performance. The ice shelf thickness was measured to be 572 +- 6 m at the deployment site.

  12. Construction and testing of a large scale prototype of a silicon tungsten electromagnetic calorimeter for a future lepton collider

    E-Print Network [OSTI]

    Rouëné,J

    2013-01-01T23:59:59.000Z

    The CALICE collaboration is preparing large scale prototypes of highly granular calorimeters for detectors to be operated at a future linear electron positron collider. After several beam campaigns at DESY, CERN and FNAL, the CALICE collaboration has demonstrated the principle of highly granular electromagnetic calorimeters with a first prototype called physics prototype. The next prototype, called technological prototype, addresses the engineering challenges which come along with the realisation of highly granular calorimeters. This prototype will comprise 30 layers where each layer is composed of four 9_9 cm2 silicon wafers. The front end electronics is integrated into the detector layers. The size of each pixel is 5_5 mm2. This prototype enter sits construction phase. We present results of the first layers of the technological prototype obtained during beam test campaigns in spring and summer 2012. According to these results the signal over noise ratio of the detector exceeds the R&D goal of10:1.

  13. Recent advances in fabrication of high-T{sub c} superconductors for electric power applications.

    SciTech Connect (OSTI)

    Balachandran, U.

    1998-03-25T23:59:59.000Z

    The U.S. Department of Energy (DOE) supports an applied superconductivity program entitled ''Superconductivity Program for Electric Power Systems.'' Activities within this program contribute to development of the high-temperature superconductor (HTS) technology needed for industry to proceed with the commercial development of electric power applications such as motors, generators, transformers, transmission cables, and current limiters. Research is conducted in three categories: wire development, systems technology development, and Superconductivity Partnership Initiative (SPI). Wire development activities are devoted to improving the critical current density (J{sub c}) of short-length HTS wires, whereas systems technology development focuses on fabrication of long-length wires, coils, and on magnets. The SPI activities are aimed at development of prototype products. Significant progress has been made in the development of (HTSs) for various applications: some applications have already made significant strides in the marketplace, while others are still in the developmental stages. For successful electric power applications, it is very important that the HTS be fabricated into long-length conductors that exhibit desired superconducting and mechanical properties. Several parameters of the PIT technique must be carefully controlled to obtain the desired properties. Long lengths of Bi-2223 tapes with respectable superconducting properties have been fabricated by a carefully designed thermomechanical treatment process. A 1-MVA capacity fault current limiter, a 286-hp motor, and 630-kVA transformers, and a 50-m-long conductor, all using HTSs, have already been demonstrated. While the use of HTS devices in the electric utility area has clear advantages, impediments to successful commercialization remain. Issues such as AC losses, conductor cost, and reliable superconducting joints must be addressed. The cost of HTS conductors are still quite high, and significant R and D effort must be focused on this issue. The general acceptance of HTS power equipment will ultimately be based on system performance, reliability and maintenance, efficiency, and installed cost relative to those of conventional technologies.

  14. Fabrication of microfluidic systems in poly(dimethylsiloxane)

    E-Print Network [OSTI]

    Prentiss, Mara

    Fabrication of microfluidic systems in PDMS . 29 2.1 Soft lithographyFabrication of microfluidic systems in poly(dimethylsiloxane) Microfluidic devices are finding increasing application as analytical systems, biomedi- cal devices, tools for chemistry and biochemistry

  15. ARIES-CS COIL STRUCTURE ADVANCED FABRICATION APPROACH

    E-Print Network [OSTI]

    California at San Diego, University of

    : ARIES-CS, advanced fabrication, additive manufacturing Note: Some figures in this paper are in color with conventional means would be very challenging and costly. A new fabrication technology is "additive manufac

  16. Fabrication of high-quality microflexures using micromilling techniques

    E-Print Network [OSTI]

    Gafford, Joshua B

    2010-01-01T23:59:59.000Z

    This research focuses on the feasibility of using micromilling as a process for fabricating the flexural body of mesoscale nanopositioners. A desire to fabricate non-silicon microflexures for more favorable material ...

  17. Fabrication and Characterization of Uranium-based High Temperature...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fabrication and Characterization of Uranium-based High Temperature Reactor Fuel June 01, 2013 The Uranium Fuel Development Laboratory is a modern R&D scale lab for the fabrication...

  18. SiGe-On-Insulator (SGOI) Technology and MOSFET Fabrication

    E-Print Network [OSTI]

    Cheng, Zhiyuan

    In this work, we have developed two different fabrication processes for relaxed Si??xGex-on-insulator (SGOI) substrates: (1) SGOI fabrication by etch-back approach, and (2) by "smart-cut" approach utilizing ...

  19. An Experimental Prototype for Scalable Server Selection Mohamed-Vall O. Mohamed-Salem, University of Montreal

    E-Print Network [OSTI]

    von Bochmann, Gregor

    An Experimental Prototype for Scalable Server Selection Mohamed-Vall O. Mohamed-Salem, University Abstract An experimental prototype for server selection using an independent brokerage service is described. This prototype is composed of four main components: instrumented Apache Web servers, monitoring agents, a Qo

  20. FABRICATION TECHNIQUES FOR REVERSE ELECTRODE COAXIAL GERMANIUM NUCLEAR RADIATION DETECTORS

    E-Print Network [OSTI]

    Hansen, W.L.

    2010-01-01T23:59:59.000Z

    Energy under Contract W-7405-ENG-48 FABRICATION TECHNIQUESunder Contract No. W-7405-ENG-48. References to a company or

  1. Graphene Device Fabrication and Applications in Communication Systems

    E-Print Network [OSTI]

    Liu, Guanxiong

    2012-01-01T23:59:59.000Z

    Device Fabrications 2.1 Graphene Samples Preparation We use2.1 Graphene samples preparation ……………………………………………….. 2.2 E-

  2. activated carbon fabrics: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    carbon fiberscarbon aerogels composites by gelation and supercritical drying Materials Science Websites Summary: Fabrication of activated carbon fiberscarbon aerogels...

  3. SATBOT I: Prototype of a biomorphic autonomous spacecraft

    SciTech Connect (OSTI)

    Frigo, J.; Tilden, M.W.

    1995-12-01T23:59:59.000Z

    Our goal is to produce a prototype of an autonomous satellite robot, SATBOT. This robot differs from conventional robots in that it has three degrees of freedom, uses magnetics to direct the motion, and needs a zero gravity environment. The design integrates the robot`s structure and a biomorphic (biological morphology) control system to produce a survival-oriented vehicle that adapts to an unknown environment. Biomorphic systems, loosely modeled after biological systems, use simple analog circuitry, low power, and are microprocessor independent. These analog networks called Nervous Networks (Nv), are used to solve real-time controls problems. The Nv approach to problem solving in the robotics has produced many surprisingly capable machines which exhibit emergent behavior. The network can be designed to respond to positive or negative inputs from a sensor and produce a desired directed motion. The fluidity and direction of motion is set by the neurons and is inherent to the structure of the device. The robot is designed to orient itself with respect to a local magnetic field; to direct its attitude toward the greatest source of light; and robustly recover from variations in the local magnetic field, power source, or structural stability. This design uses a two neuron network which acts as a push-pull controller for the actuator (air core coil), and two sun sensors (photodiodes) as bias inputs to the neuron. The effect of sensor activation as it relates to an attractive or repulsive torque (directional motion) is studied. A discussion of this system`s power (energy) efficiency and frequency, noise immunity, and some dynamic characteristics is presented.

  4. Cryogenic Dark Matter Search Detector Fabrication Process and Recent Improvements

    E-Print Network [OSTI]

    Andrew Jastram; Rusty Harris; Rupak Mahapatra; James Phillips; Mark Platt; Kunj Prasad; Joel Sander; Sriteja Upadhyayula

    2014-09-26T23:59:59.000Z

    A dedicated facility has been commissioned for Cryogenic Dark Matter Search (CDMS) detector fabrication at Texas A&M University (TAMU). The fabrication process has been carefully tuned using this facility and its equipment. Production of successfully tested detectors has been demonstrated. Significant improvements in detector performance have been made using new fabrication methods/equipment and tuning of process parameters.

  5. IMPACT BEHAVIOR OF FABRIC-CEMENT BASED COMPOSITES Efrat BUTNARIUa

    E-Print Network [OSTI]

    Mobasher, Barzin

    for the pultruded composites made from PE knitted fabrics. Keywords Impact, fabric, cement composite, textile, fiberIMPACT BEHAVIOR OF FABRIC-CEMENT BASED COMPOSITES Efrat BUTNARIUa , Alva PELEDb , and Barzin Engineering Department, Ben Gurion University, Beer Sheva Israel, c Civil and Environmental Engineering

  6. Fabrication method for miniature plastic gripper

    DOE Patents [OSTI]

    Benett, W.J.; Krulevitch, P.A.; Lee, A.P.; Northrup, M.A.; Folta, J.A.

    1998-07-21T23:59:59.000Z

    A miniature plastic gripper is described actuated by inflation of a miniature balloon and method of fabricating same. The gripper is constructed of either heat-shrinkable or heat-expandable plastic tubing and is formed around a mandrel, then cut to form gripper prongs or jaws and the mandrel removed. The gripper is connected at one end with a catheter or tube having an actuating balloon at its tip, whereby the gripper is opened or dosed by inflation or deflation of the balloon. The gripper is designed to removably retain a member to which is connected a quantity or medicine, plugs, or micro-components. The miniature plastic gripper is inexpensive to fabricate and can be used for various applications, such as gripping, sorting, or placing of micron-scale particles for analysis. 8 figs.

  7. Miniature plastic gripper and fabrication method

    DOE Patents [OSTI]

    Benett, W.J.; Krulevitch, P.A.; Lee, A.P.; Northrup, M.A.; Folta, J.A.

    1997-03-11T23:59:59.000Z

    A miniature plastic gripper actuated by inflation of a miniature balloon and method of fabricating same are disclosed. The gripper is constructed of either heat-shrinkable or heat-expandable plastic tubing and is formed around a mandrel, then cut to form gripper prongs or jaws and the mandrel removed. The gripper is connected at one end with a catheter or tube having an actuating balloon at its tip, whereby the gripper is opened or closed by inflation or deflation of the balloon. The gripper is designed to removably retain a member to which is connected a quantity or medicine, plugs, or micro-components. The miniature plastic gripper is inexpensive to fabricate and can be used for various applications, such as gripping, sorting, or placing of micron-scale particles for analysis. 8 figs.

  8. Fabrication of thorium bearing carbide fuels

    DOE Patents [OSTI]

    Gutierrez, Rueben L. (Los Alamos, NM); Herbst, Richard J. (Los Alamos, NM); Johnson, Karl W. R. (Los Alamos, NM)

    1981-01-01T23:59:59.000Z

    Thorium-uranium carbide and thorium-plutonium carbide fuel pellets have been fabricated by the carbothermic reduction process. Temperatures of 1750.degree. C. and 2000.degree. C. were used during the reduction cycle. Sintering temperatures of 1800.degree. C. and 2000.degree. C. were used to prepare fuel pellet densities of 87% and >94% of theoretical, respectively. The process allows the fabrication of kilogram quantities of fuel with good reproducibility of chemicals and phase composition. Methods employing liquid techniques that form carbide microspheres or alloying-techniques which form alloys of thorium-uranium or thorium-plutonium suffer from limitation on the quantities processed of because of criticality concerns and lack of precise control of process conditions, respectively.

  9. Method of fabricating boron containing coatings

    DOE Patents [OSTI]

    Makowiecki, Daniel M. (Livermore, CA); Jankowski, Alan F. (Livermore, CA)

    1999-01-01T23:59:59.000Z

    Hard coatings are fabricated from boron nitride, cubic boron nitride, and multilayer boron/cubic boron nitride, and the fabrication thereof involves magnetron sputtering in a selected atmosphere. These hard coatings may be applied to tools and engine and other parts, as well to reduce wear on tribological surfaces and electronic devices. These boron coatings contain no morphological growth features. For example, the boron is formed in an inert (e.g. argon) atmosphere, while the cubic boron nitride is formed in a reactive (e.g. nitrogen) atmosphere. The multilayer boron/cubic boron nitride, is produced by depositing alternate layers of boron and cubic boron nitride, with the alternate layers having a thickness of 1 nanometer to 1 micrometer, and at least the interfaces of the layers may be discrete or of a blended or graded composition.

  10. Method of fabricating boron containing coatings

    DOE Patents [OSTI]

    Makowiecki, D.M.; Jankowski, A.F.

    1999-04-27T23:59:59.000Z

    Hard coatings are fabricated from boron nitride, cubic boron nitride, and multilayer boron/cubic boron nitride, and the fabrication thereof involves magnetron sputtering in a selected atmosphere. These hard coatings may be applied to tools and engine and other parts, as well to reduce wear on tribological surfaces and electronic devices. These boron coatings contain no morphological growth features. For example, the boron is formed in an inert (e.g. argon) atmosphere, while the cubic boron nitride is formed in a reactive (e.g. nitrogen) atmosphere. The multilayer boron/cubic boron nitride, is produced by depositing alternate layers of boron and cubic boron nitride, with the alternate layers having a thickness of 1 nanometer to 1 micrometer, and at least the interfaces of the layers may be discrete or of a blended or graded composition. 3 figs.

  11. Method for fabricating laminated uranium composites

    DOE Patents [OSTI]

    Chapman, L.R.

    1983-08-03T23:59:59.000Z

    The present invention is directed to a process for fabricating laminated composites of uranium or uranium alloys and at least one other metal or alloy. The laminated composites are fabricated by forming a casting of the molten uranium with the other metal or alloy which is selectively positioned in the casting and then hot-rolling the casting into a laminated plate in or around which the casting components are metallurgically bonded to one another to form the composite. The process of the present invention provides strong metallurgical bonds between the laminate components primarily since the bond disrupting surface oxides on the uranium or uranium alloy float to the surface of the casting to effectively remove the oxides from the bonding surfaces of the components.

  12. Miniature plastic gripper and fabrication method

    DOE Patents [OSTI]

    Benett, William J. (Livermore, CA); Krulevitch, Peter A. (Los Altos, CA); Lee, Abraham P. (Walnut Creek, CA); Northrup, Milton A. (Berkeley, CA); Folta, James A. (Livermore, CA)

    1997-01-01T23:59:59.000Z

    A miniature plastic gripper actuated by inflation of a miniature balloon and method of fabricating same. The gripper is constructed of either heat-shrinkable or heat-expandable plastic tubing and is formed around a mandrel, then cut to form gripper prongs or jaws and the mandrel removed. The gripper is connected at one end with a catheter or tube having an actuating balloon at its tip, whereby the gripper is opened or closed by inflation or deflation of the balloon. The gripper is designed to removably retain a member to which is connected a quantity or medicine, plugs, or micro-components. The miniature plastic gripper is inexpensive to fabricate and can be used for various applications, such as gripping, sorting, or placing of micron-scale particles for analysis.

  13. Fabrication method for miniature plastic gripper

    DOE Patents [OSTI]

    Benett, William J. (Livermore, CA); Krulevitch, Peter A. (Los Altos, CA); Lee, Abraham P. (Walnut Creek, CA); Northrup, Milton A. (Berkeley, CA); Folta, James A. (Livermore, CA)

    1998-01-01T23:59:59.000Z

    A miniature plastic gripper actuated by inflation of a miniature balloon and method of fabricating same. The gripper is constructed of either heat-shrinkable or heat-expandable plastic tubing and is formed around a mandrel, then cut to form gripper prongs or jaws and the mandrel removed. The gripper is connected at one end with a catheter or tube having an actuating balloon at its tip, whereby the gripper is opened or dosed by inflation or deflation of the balloon. The gripper is designed to removably retain a member to which is connected a quantity or medicine, plugs, or micro-components. The miniature plastic gripper is inexpensive to fabricate and can be used for various applications, such as gripping, sorting, or placing of micron-scale particles for analysis.

  14. Method and apparatus for fabricating superconducting wire

    SciTech Connect (OSTI)

    Kumar, N.

    1993-07-20T23:59:59.000Z

    A method is described for fabricating a superconducting wire comprising the steps of: in a first means, sputter depositing on a base wire a partial superconduction layer consisting of at least some, but not all, of the elements of an HTS material; and in a second means, reacting said partial superconduction layer with the other element or elements, including at least one metallic element, of the HTS material so that a complete superconduction layer is formed on said base wire.

  15. Fabrication of metallic microstructures by micromolding nanoparticles

    DOE Patents [OSTI]

    Morales, Alfredo M. (Livermore, CA); Winter, Michael R. (Goleta, CA); Domeier, Linda A. (Danville, CA); Allan, Shawn M. (Henrietta, NY); Skala, Dawn M. (Fremont, CA)

    2002-01-01T23:59:59.000Z

    A method is provided for fabricating metallic microstructures, i.e., microcomponents of micron or submicron dimensions. A molding composition is prepared containing an optional binder and nanometer size (1 to 1000 nm in diameter) metallic particles. A mold, such as a lithographically patterned mold, preferably a LIGA or a negative photoresist mold, is filled with the molding composition and compressed. The resulting microstructures are then removed from the mold and the resulting metallic microstructures so provided are then sintered.

  16. Fabrication of brittle materials -- current status

    SciTech Connect (OSTI)

    Scattergood, R.O.

    1988-12-01T23:59:59.000Z

    The research initiatives in the area of precision fabrication will be continued in the upcoming year. Three students, T. Bifano (PhD), P. Blake (PhD) and E. Smith (MS), finished their research programs in the last year. Sections 13 and 14 will summarize the essential results from the work of the Materials Engineering students Blake and Smith. Further details will be presented in forthcoming publications that are now in preparation. The results from Bifano`s thesis have been published in adequate detail and need not be summarized further. Three new students, S. Blackley (MS), H. Paul (PhD), and S. Smith (PhD) have joined the program and will continue the research efforts in precision fabrication. The programs for these students will be outlined in Sections 15 and 16. Because of the success of the earlier work in establishing new process models and experimental techniques for the study of diamond turning and diamond grinding, the new programs will, in part, build upon the earlier work. This is especially true for investigations concerned with brittle materials. The basic understanding of material response of nominally brittle materials during machining or grinding operations remains as a challenge. The precision fabrication of brittle materials will continue as an area of emphasis for the Precision Engineering Center.

  17. Energy Systems Fabrication Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01T23:59:59.000Z

    This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Energy Systems Fabrication Laboratory at the Energy Systems Integration Facility. The Energy Systems Fabrication Laboratory at NREL's Energy Systems Integration Facility (ESIF) manufactures components for fuel cells and electrochemical cells using a variety of manufacturing techniques. Fabricated components include catalysts, thin-film and gas diffusion electrodes, and membrane electrode assemblies (MEAs). The laboratory supports NREL's fuel cell and electrochemical cell related research. The main focus of the laboratory is to provide support for fuel cell research that is performed in adjacent laboratories. The laboratory enables NREL to manufacture fuel cells in-house using, for example, experimental catalyst developed at NREL. It further enables the creation of MEAs containing artificial defects required for the systematic study of performance and lifetime effects and the evaluation of in-house and externally developed quality control diagnostics for high volume production of fuel cell. Experiments performed in the laboratory focus mainly on the development of alternative fuel cell manufacturing methods.

  18. Lightweight ventilated facade prototype: acoustic performance evaluation when the ventilation surface of

    E-Print Network [OSTI]

    Boyer, Edmond

    Lightweight ventilated facade prototype: acoustic performance evaluation when the ventilation Conference 23-27 April 2012, Nantes, France 3801 #12;1. INTRODUCTION Lightweight ventilated facades cavity is almost totally open, fully ventilated and not very wide. Therefore, its contribution

  19. DESIGN OF THE PROTOTYPICAL CRYOMODULE FOR THE EUROTRANS SUPERCONDUCTING LINAC FOR NUCLEAR WASTE

    E-Print Network [OSTI]

    Boyer, Edmond

    DESIGN OF THE PROTOTYPICAL CRYOMODULE FOR THE EUROTRANS SUPERCONDUCTING LINAC FOR NUCLEAR WASTE of the accelerator workpackage of the EUROTRANS program for the design of a nuclear waste transmutation system

  20. Design and prototyping of a low-cost portable mechanical ventilator

    E-Print Network [OSTI]

    Powelson, Stephen K. (Stephen Kirby)

    2010-01-01T23:59:59.000Z

    This paper describes the design and prototyping of a low-cost portable mechanical ventilator for use in mass casualty cases and resource-poor environments. The ventilator delivers breaths by compressing a conventional ...

  1. The Development of Multimedia Hypermedia Applications as Evolutionary, Prototyping-Based Requirements Engineering

    E-Print Network [OSTI]

    Berry, Daniel M.

    The Development of Multimedia Hypermedia Applications as Evolutionary, Prototyping in building multimedia hypermedia applications is that of understanding what is needed, i.e., of understanding the requirements and (2) that the development of multimedia hypermedia is essentially the engineering

  2. A computational tool for the rapid design and prototyping of propellers for underwater vehicles

    E-Print Network [OSTI]

    D'Epagnier, Kathryn Port

    2007-01-01T23:59:59.000Z

    An open source, MATLABTM-based propeller design code MPVL was improved to include rapid prototyping capabilities as well as other upgrades as part of this effort. The resulting code, OpenPVL is described in this thesis. ...

  3. Custom Prosthesis Design, Visualization, and Prototyping Chandrajit L. Bajaj Daniel R. Schikore

    E-Print Network [OSTI]

    Texas at Austin, University of

    Custom Prosthesis Design, Visualization, and Prototyping Chandrajit L. Bajaj Daniel R. Schikore Prosthesis Design The design of a custom hip prosthesis can be broken up into ve stages. First, a model

  4. The development of a prototype Zone-Plate-Array Lithography (ZPAL) system

    E-Print Network [OSTI]

    Patel, Amil Ashok, 1979-

    2004-01-01T23:59:59.000Z

    The research presented in this paper aims to build a Zone-Plate-Array Lithography (ZPAL) prototype tool that will demonstrate the high-resolution, parallel patterning capabilities of the architecture. The experiment will ...

  5. Design and prototype of an automated system for commercially viable production using micro contact printing

    E-Print Network [OSTI]

    Chauhan, Karan

    2006-01-01T23:59:59.000Z

    This dissertation is a documentation of the thought process, its justification and the implementation details that went into prototyping a fully automated system employing Micro Contact Printing, an emerging technique for ...

  6. Fast prototyping and Indirect Adaptive GPC temperature control of a class of passive HVAC

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Fast prototyping and Indirect Adaptive GPC temperature control of a class of passive HVAC TAWEGOUM (temperature, moisture) is a dominating factor, on the one hand to deal with the market quantitative

  7. Demonstration of Worldsens: A Fast Prototyping and Performance Evaluation of Wireless Sensor Network

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Demonstration of Worldsens: A Fast Prototyping and Performance Evaluation of Wireless Sensor environment for fast pro- totyping of wireless sensor protocols and applications. Our environment proposes sensor network simulation is feasible and that complex application design and deployment is affordable

  8. dlx and sp6-9 Control Optic Cup Regeneration in a Prototypic Eye

    E-Print Network [OSTI]

    Lapan, Sylvain William

    Optic cups are a structural feature of diverse eyes, from simple pit eyes to camera eyes of vertebrates and cephalopods. We used the planarian prototypic eye as a model to study the genetic control of optic cup formation ...

  9. Quantifying the Improvements in Rapid Prototyping and Product Life Cycle Performance Created by Machining

    E-Print Network [OSTI]

    2013-01-01T23:59:59.000Z

    to laser ablation and 3D printing for rapid prototypingMachining, Laser ablation, 3D printing, Microfluidics, Valuein new ways (e.g. , 3D printing to create products beyond

  10. Impact of prototyping resource environments on idea generation in product design

    E-Print Network [OSTI]

    Schlecht, Lisa (Lisa Anne)

    2013-01-01T23:59:59.000Z

    Some of the world's most challenging problems will require distributed innovation capacity in order to create high-quality and sustainable solutions. However, access to prototyping resources varies and design strategies ...

  11. A design visualization machine : an agile prototype for architectural plans on a finite grid

    E-Print Network [OSTI]

    Huang, Yu Linlin

    2013-01-01T23:59:59.000Z

    This thesis project proposes a rapid visualization machine that can produce agile prototypes of simple architectural plans on a finite grid system. While various visualization systems to demonstrate instantaneous three ...

  12. Exploring the Pinhole: Biochemical and Genetic Studies on the Prototype Pinholin, S21

    E-Print Network [OSTI]

    Pang, Ting

    2011-08-08T23:59:59.000Z

    EXPLORING THE PINHOLE: BIOCHEMICAL AND GENETIC STUDIES ON THE PROTOTYPE PINHOLIN, S21 A Dissertation by TING PANG Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements... for the degree of DOCTOR OF PHILOSOPHY May 2010 Major Subject: Biochemistry EXPLORING THE PINHOLE: BIOCHEMICAL AND GENETIC STUDIES ON THE PROTOTYPE PINHOLIN, S21 A Dissertation by TING PANG Submitted to the Office of Graduate...

  13. Design and fabrication of a meso-scale stirling engine and combustor.

    SciTech Connect (OSTI)

    Echekki, Tarek (Sandia National Laboratories, Livermore, CA); Haroldsen, Brent L. (Sandia National Laboratories, Livermore, CA); Krafcik, Karen L. (Sandia National Laboratories, Livermore, CA); Morales, Alfredo Martin (Sandia National Laboratories, Livermore, CA); Mills, Bernice E. (Sandia National Laboratories, Livermore, CA); Liu, Shiling (Sandia National Laboratories, Livermore, CA); Lee, Jeremiah C. (Sandia National Laboratories, Livermore, CA); Karpetis, Adionos N. (Sandia National Laboratories, Livermore, CA); Chen, Jacqueline H. (Sandia National Laboratories, Livermore, CA); Ceremuga, Joseph T. (Sandia National Laboratories, Livermore, CA); Raber, Thomas N. (Sandia National Laboratories, Livermore, CA); Hekmuuaty, Michelle A. (Sandia National Laboratories, Livermore, CA)

    2005-05-01T23:59:59.000Z

    Power sources capable of supplying tens of watts are needed for a wide variety of applications including portable electronics, sensors, micro aerial vehicles, and mini-robotics systems. The utility of these devices is often limited by the energy and power density capabilities of batteries. A small combustion engine using liquid hydrocarbon fuel could potentially increase both power and energy density by an order of magnitude or more. This report describes initial development work on a meso-scale external combustion engine based on the Stirling cycle. Although other engine designs perform better at macro-scales, we believe the Stirling engine cycle is better suited to small-scale applications. The ideal Stirling cycle requires efficient heat transfer. Consequently, unlike other thermodynamic cycles, the high heat transfer rates that are inherent with miniature devices are an advantage for the Stirling cycle. Furthermore, since the Stirling engine uses external combustion, the combustor and engine can be scaled and optimized semi-independently. Continuous combustion minimizes issues with flame initiation and propagation. It also allows consideration of a variety of techniques to promote combustion that would be difficult in a miniature internal combustion engine. The project included design and fabrication of both the engine and the combustor. Two engine designs were developed. The first used a cylindrical piston design fabricated with conventional machining processes. The second design, based on the Wankel rotor geometry, was fabricated by through-mold electroforming of nickel in SU8 and LIGA micromolds. These technologies provided the requisite precision and tight tolerances needed for efficient micro-engine operation. Electroformed nickel is ideal for micro-engine applications because of its high strength and ductility. A rotary geometry was chosen because its planar geometry was more compatible with the fabrication process. SU8 lithography provided rapid prototypes to verify the design. A final high precision engine was created via LIGA. The micro-combustor was based on an excess enthalpy concept. Development of a micro-combustor included both modeling and experiments. We developed a suite of simulation tools both in support of the design of the prototype combustors, and to investigate more fundamental aspects of combustion at small scales. Issues of heat management and integration with the micro-scale Stirling engine were pursued using CFD simulations. We found that by choice of the operating conditions and channel dimensions energy conversion occurs by catalysis-dominated or catalysis-then-homogeneous phase combustion. The purpose of the experimental effort in micro-combustion was to study the feasibility and explore the design parameters of excess enthalpy combustors. The efforts were guided by the necessity for a practical device that could be implemented in a miniature power generator, or as a stand-alone device used for heat generation. Several devices were fabricated and successfully tested using methane as the fuel.

  14. Analytical simulation of tensile response of fabric reinforced cement based composites

    E-Print Network [OSTI]

    Mobasher, Barzin

    Analytical simulation of tensile response of fabric reinforced cement based composites Barzin the tensile behavior of fabric­cement composites is presented to relate the properties of the matrix, fabric reserved. Keywords: Fabric reinforced composites; Cement composites; Laminated composites; Pultrusion

  15. 16.810 (16.682)16.810 (16.682) Engineering Design and Rapid PrototypingEngineering Design and Rapid Prototyping

    E-Print Network [OSTI]

    de Weck, Olivier L.

    on a lathe Milling Planing Drilling Countersinking Slotting Grinding Reaming New Techniques: Laser Cutting.54mm decks Fundamental Parts Fabrication Techniques Machining ­ e.g. milling, laser and waterjet

  16. Ceramic nanostructures and methods of fabrication

    DOE Patents [OSTI]

    Ripley, Edward B. (Knoxville, TN); Seals, Roland D. (Oak Ridge, TN); Morrell, Jonathan S. (Knoxville, TN)

    2009-11-24T23:59:59.000Z

    Structures and methods for the fabrication of ceramic nanostructures. Structures include metal particles, preferably comprising copper, disposed on a ceramic substrate. The structures are heated, preferably in the presence of microwaves, to a temperature that softens the metal particles and preferably forms a pool of molten ceramic under the softened metal particle. A nano-generator is created wherein ceramic material diffuses through the molten particle and forms ceramic nanostructures on a polar site of the metal particle. The nanostructures may comprise silica, alumina, titania, or compounds or mixtures thereof.

  17. Fabrication of transparent ceramics using nanoparticles

    DOE Patents [OSTI]

    Cherepy, Nerine J; Tillotson, Thomas M; Kuntz, Joshua D; Payne, Stephen A

    2012-09-18T23:59:59.000Z

    A method of fabrication of a transparent ceramic using nanoparticles synthesized via organic acid complexation-combustion includes providing metal salts, dissolving said metal salts to produce an aqueous salt solution, adding an organic chelating agent to produce a complexed-metal sol, heating said complexed-metal sol to produce a gel, drying said gel to produce a powder, combusting said powder to produce nano-particles, calcining said nano-particles to produce oxide nano-particles, forming said oxide nano-particles into a green body, and sintering said green body to produce the transparent ceramic.

  18. Solid freeform fabrication using chemically reactive suspensions

    DOE Patents [OSTI]

    Morisette, Sherry L. (Belmont, MA); Cesarano, III, Joseph (Albuquerque, NM); Lewis, Jennifer A. (Urbana, IL); Dimos, Duane B. (Albuquerque, NM)

    2002-01-01T23:59:59.000Z

    The effects of processing parameters and suspension chemorheology on the deposition behavior of SFF components derived from polymeric-based gelcasting suspensions combines the advantages associated with SFF fabrication, including the ability to spatially tailor composition and structure as well as reduced tooling costs, with the improved handling strength afforded by the use of gel based formulations. As-cast free-formed Al.sub.2 O.sub.3 components exhibited uniform particle packing and had minimal macro-defects (e.g., slumping or stair casing) and no discernable micro-defects (e.g., bubbles or cracking).

  19. Anchored nanostructure materials and method of fabrication

    DOE Patents [OSTI]

    Seals, Roland D; Menchhofer, Paul A; Howe, Jane Y; Wang, Wei

    2012-11-27T23:59:59.000Z

    Anchored nanostructure materials and methods for their fabrication are described. The anchored nanostructure materials may utilize nano-catalysts that include powder-based or solid-based support materials. The support material may comprise metal, such as NiAl, ceramic, a cermet, or silicon or other metalloid. Typically, nanoparticles are disposed adjacent a surface of the support material. Nanostructures may be formed as anchored to nanoparticles that are adjacent the surface of the support material by heating the nano-catalysts and then exposing the nano-catalysts to an organic vapor. The nanostructures are typically single wall or multi-wall carbon nanotubes.

  20. Method of fabricating bifacial tandem solar cells

    DOE Patents [OSTI]

    Wojtczuk, Steven J; Chiu, Philip T; Zhang, Xuebing; Gagnon, Edward; Timmons, Michael

    2014-10-07T23:59:59.000Z

    A method of fabricating on a semiconductor substrate bifacial tandem solar cells with semiconductor subcells having a lower bandgap than the substrate bandgap on one side of the substrate and with subcells having a higher bandgap than the substrate on the other including, first, growing a lower bandgap subcell on one substrate side that uses only the same periodic table group V material in the dislocation-reducing grading layers and bottom subcells as is present in the substrate and after the initial growth is complete and then flipping the substrate and growing the higher bandgap subcells on the opposite substrate side which can be of different group V material.

  1. Multijunction photovoltaic device and fabrication method

    DOE Patents [OSTI]

    Arya, Rajeewa R. (Jamison, PA); Catalano, Anthony W. (Furlong, PA)

    1993-09-21T23:59:59.000Z

    A multijunction photovoltaic device includes first and second amorphous silicon PIN photovoltaic cells in a stacked arrangement. An interface layer, composed of a doped silicon compound, is disposed between the two cells and has a lower bandgap than the respective n- and p-type adjacent layers of the first and second cells. The interface layer forms an ohmic contact with the one or the adjacent cell layers of the same conductivity type, and a tunnel junction with the other of the adjacent cell layers. The disclosed device is fabricated by a glow discharge process.

  2. Design, development and testing of a solar-powered multi-family residential size prototype turbocompressor heat pump

    SciTech Connect (OSTI)

    None

    1981-03-01T23:59:59.000Z

    A program described to design, fabricate, and conduct preliminary testing of a prototype solar-powered Rankine cycle turbocompressor heat pump module for a multi-family residential building is presented. A solar system designed to use the turbocompressor heat pump module including all of the subsystems required and the various system operating modes is described in Section I. Section II includes the preliminary design analyses conducted to select the heat pump module components and operating features, working fluid, configuration, size and performance goals, and estimated performance levels in the cooling and heating modes. Section III provides a detailed description of the other subsystems and components required for a complete solar installation. Using realistic performance and cost characteristics for all subsystems, the seasonal performance of the UTC heat pump is described in various US locations. In addition, the estimated energy savings and an assessment of the economic viability of the solar system is presented in Section III. The detailed design of the heat pump module and the arrangement of components and controls selected to conduct the laboratory performance tests are described in Section IV. Section V provides a description of the special laboratory test facility, including the subsystems to simulate the collectors and storage tanks for building load and ambient conditions and the instrumentation, monitoring, and data acquisition equipment. The test results and sample computer analyses and comparisons with predicted performance levels are presented in Section VI. Various appendices provide supplementary and background information concerning working fluid selection (A), configuration selection (B), capacity control concepts (C), building models (D), computer programs used to determine component and system performance and total system economics (E), and weather data (F).

  3. Magnetic measurement data of the 0.8-m prototype quadrupole magnets for the APS storage ring

    SciTech Connect (OSTI)

    Kim, S.H.

    1995-07-01T23:59:59.000Z

    From magnetic measurement data of the two 0.8-m prototype quadrupole magnets (P-SRQ-1 and P-SRQ-2) and the study of the geometries for the pole-end bevels and pole chamfers, the following conclusions have been made. Mechanical stability of the magnet poles has been achieved by modification of the weld procedures between two quadrants of the magnets. Stability of the magnet-pole positions was measured optically and was also concluded from the fact that the allowed coefficients, mainly sextupole and octupole terms, were independent of the magnet excitation currents. Unallowed multipole field coefficients for the second magnet, without correction of the magnet-pole positions, are smaller than for the first magnet. The field gradient integrals of the two magnets at 400A differ by less than 5 {times} 10{sup {minus}4} for r = 2.5 cm. This indicates that an acceptable magnet assembly procedure has been established. The 2-D calculations and ``body`` measurements for allowed coefficients after the main field, b{sub 5} and b{sub 9}, agree within 1.2 {times} 10{sup {minus}4} at r = 2.5 cm. This implies that the 2-D design geometry is basically correct and acceptable. As expected for a magnet with long and narrow poles, saturation effects of pole shims have been observed. In order to reduce fabrication cost for the end-plates, the geometries for the pole-end bevels and pole chamfers have been studied. By choosing a bevel angle of 61{degree}, instead of 45{degree}, it is possible to have acceptable allowed coefficients with dimensions of pole-chamfers up to 16.5 mm. This allows the design of the end-plate as one piece without removable pole-tip.

  4. Methods for fabricating a micro heat barrier

    DOE Patents [OSTI]

    Marshall, Albert C.; Kravitz, Stanley H.; Tigges, Chris P.; Vawter, Gregory A.

    2004-01-06T23:59:59.000Z

    Methods for fabricating a highly effective, micron-scale micro heat barrier structure and process for manufacturing a micro heat barrier based on semiconductor and/or MEMS fabrication techniques. The micro heat barrier has an array of non-metallic, freestanding microsupports with a height less than 100 microns, attached to a substrate. An infrared reflective membrane (e.g., 1 micron gold) can be supported by the array of microsupports to provide radiation shielding. The micro heat barrier can be evacuated to eliminate gas phase heat conduction and convection. Semi-isotropic, reactive ion plasma etching can be used to create a microspike having a cusp-like shape with a sharp, pointed tip (<0.1 micron), to minimize the tip's contact area. A heat source can be placed directly on the microspikes. The micro heat barrier can have an apparent thermal conductivity in the range of 10.sup.-6 to 10.sup.-7 W/m-K. Multiple layers of reflective membranes can be used to increase thermal resistance.

  5. Sacrificial template method of fabricating a nanotube

    DOE Patents [OSTI]

    Yang, Peidong (Berkeley, CA); He, Rongrui (Berkeley, CA); Goldberger, Joshua (Berkeley, CA); Fan, Rong (El Cerrito, CA); Wu, Yi-Ying (Albany, CA); Li, Deyu (Albany, CA); Majumdar, Arun (Orinda, CA)

    2007-05-01T23:59:59.000Z

    Methods of fabricating uniform nanotubes are described in which nanotubes were synthesized as sheaths over nanowire templates, such as using a chemical vapor deposition process. For example, single-crystalline zinc oxide (ZnO) nanowires are utilized as templates over which gallium nitride (GaN) is epitaxially grown. The ZnO templates are then removed, such as by thermal reduction and evaporation. The completed single-crystalline GaN nanotubes preferably have inner diameters ranging from 30 nm to 200 nm, and wall thicknesses between 5 and 50 nm. Transmission electron microscopy studies show that the resultant nanotubes are single-crystalline with a wurtzite structure, and are oriented along the <001> direction. The present invention exemplifies single-crystalline nanotubes of materials with a non-layered crystal structure. Similar "epitaxial-casting" approaches could be used to produce arrays and single-crystalline nanotubes of other solid materials and semiconductors. Furthermore, the fabrication of multi-sheath nanotubes are described as well as nanotubes having multiple longitudinal segments.

  6. Method for fabricating a microelectromechanical resonator

    DOE Patents [OSTI]

    Wojciechowski, Kenneth E; Olsson, III, Roy H

    2013-02-05T23:59:59.000Z

    A method is disclosed which calculates dimensions for a MEM resonator in terms of integer multiples of a grid width G for reticles used to fabricate the resonator, including an actual sub-width L.sub.a=NG and an effective electrode width W.sub.e=MG where N and M are integers which minimize a frequency error f.sub.e=f.sub.d-f.sub.a between a desired resonant frequency f.sub.d and an actual resonant frequency f.sub.a. The method can also be used to calculate an overall width W.sub.o for the MEM resonator, and an effective electrode length L.sub.e which provides a desired motional impedance for the MEM resonator. The MEM resonator can then be fabricated using these values for L.sub.a, W.sub.e, W.sub.o and L.sub.e. The method can also be applied to a number j of MEM resonators formed on a common substrate.

  7. Redundancy of Supply in the International Nuclear Fuel Fabrication Market: Are Fabrication Services Assured?

    SciTech Connect (OSTI)

    Seward, Amy M.; Toomey, Christopher; Ford, Benjamin E.; Wood, Thomas W.; Perkins, Casey J.

    2011-11-14T23:59:59.000Z

    For several years, Pacific Northwest National Laboratory (PNNL) has been assessing the reliability of nuclear fuel supply in support of the U.S. Department of Energy/National Nuclear Security Administration. Three international low enriched uranium reserves, which are intended back up the existing and well-functioning nuclear fuel market, are currently moving toward implementation. These backup reserves are intended to provide countries credible assurance that of the uninterrupted supply of nuclear fuel to operate their nuclear power reactors in the event that their primary fuel supply is disrupted, whether for political or other reasons. The efficacy of these backup reserves, however, may be constrained without redundant fabrication services. This report presents the findings of a recent PNNL study that simulated outages of varying durations at specific nuclear fuel fabrication plants. The modeling specifically enabled prediction and visualization of the reactors affected and the degree of fuel delivery delay. The results thus provide insight on the extent of vulnerability to nuclear fuel supply disruption at the level of individual fabrication plants, reactors, and countries. The simulation studies demonstrate that, when a reasonable set of qualification criteria are applied, existing fabrication plants are technically qualified to provide backup fabrication services to the majority of the world's power reactors. The report concludes with an assessment of the redundancy of fuel supply in the nuclear fuel market, and a description of potential extra-market mechanisms to enhance the security of fuel supply in cases where it may be warranted. This report is an assessment of the ability of the existing market to respond to supply disruptions that occur for technical reasons. A forthcoming report will address political disruption scenarios.

  8. Analysis of a Fabric/Desiccant Window Cavity Dehumidifier

    E-Print Network [OSTI]

    Hunn, B. D.; Grasso, M. M.; Vadlamani, V.

    1994-01-01T23:59:59.000Z

    were conducted to a) determine a suitable fabric/desiccant combination for use in the window cavity dehumidifier, and b) to estimate the moisture absorption (regain) capacity of the candidate fabriddesiccant combinations. After examining... the properties of various solid desiccants. we determined that silica gel beads, encapsulated in a fabric pouch, would be the best approach. ?bus, we measured the moisture regain characteristics of several fabrics used to encapsulate silica gel beads...

  9. Fabrication of fiber supported ionic liquids and methods of use

    DOE Patents [OSTI]

    Luebke, David R; Wickramanayake, Shan

    2013-02-26T23:59:59.000Z

    One or more embodiments relates to the production of a fabricated fiber having an asymmetric polymer network and having an immobilized liquid such as an ionic liquid within the pores of the polymer network. The process produces the fabricated fiber in a dry-wet spinning process using a homogenous dope solution, providing significant advantage over current fabrication methods for liquid-supporting polymers. The fabricated fibers may be effectively utilized for the separation of a chemical species from a mixture based on the selection of the polymer, the liquid, and the solvent utilized in the dope.

  10. Fabrication options for depleted uranium components in shielded containers

    SciTech Connect (OSTI)

    Derrington, S.B.; Thompson, J.E.; Coates, C.W.

    1994-01-27T23:59:59.000Z

    Depleted uranium (DU) is an attractive material for the gamma-shielding components in containers designed for the storage, transport, and disposal of high-level radioactive wastes or spent nuclear fuel. The size and weight of these components present fabrication challenges. A broad range of technical expertise, capabilities, and facilities for uranium manufacturing and technology development exist at the Department of Energy laboratories and production facilities and within commercial industry. Several cast and wrought processes are available to fabricate the DU components. Integration of the DU fabrication capabilities and physical limitations for handling the DU components into the early design phase will ensure a fabricable product.

  11. ORNL demonstrates first large-scale graphene fabrication | ornl...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ron Walli Communications 865.576.0226 ORNL demonstrates first large-scale graphene composite fabrication ORNL's ultrastrong graphene features layers of graphene and polymers and is...

  12. alumina core fabricated: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and toughening of carbon nanotube reinforced alumina nanocomposite fabricated by Materials Science Websites Summary: Strengthening and toughening of carbon nanotube reinforced...

  13. Update on US High Density Fuel Fabrication Development

    SciTech Connect (OSTI)

    C.R. Clark; G.A. Moore; J.F. Jue; B.H. Park; N.P. Hallinan; D.M. Wachs; D.E. Burkes

    2007-03-01T23:59:59.000Z

    Second generation uranium molybdenum fuel has shown excellent in-reactor irradiation performance. This metallic fuel type is capable of being fabricated at much higher loadings than any presently used research reactor fuel. Due to the broad range of fuel types this alloy system encompasses—fuel powder to monolithic foil and binary fuel systems to multiple element additions—significant amounts of research and development have been conducted on the fabrication of these fuels. This paper presents an update of the US RERTR effort to develop fabrication techniques and the fabrication methods used for the RERTR-9A miniplate test.

  14. Microfluidic Fabrication of Hydrogel Microparticles Containing Functionalized Viral Nanotemplates

    E-Print Network [OSTI]

    Lewis, Christina L.

    We demonstrate rapid microfluidic fabrication of hybrid microparticles composed of functionalized viral nanotemplates directly embedded in polymeric hydrogels. Specifically, genetically modified tobacco mosaic virus (TMV) ...

  15. Fundamental Approach to Electrode Fabrication and Failure Analysis

    Broader source: Energy.gov (indexed) [DOE]

    Fundamental Approach to Electrode Fabrication and Failure Analysis Vince Battaglia LBNL May 11, 2011 This presentation does not contain any proprietary, confidential, or otherwise...

  16. Cost-Effective Fabrication Routes for the Production of Quantum...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Production of Quantum Well Type Structures and Recovery of Waste Heat from Heavy Duty Trucks Cost-Effective Fabrication Routes for the Production of Quantum Well Type Structures...

  17. Optically Fabricated Three Dimensional Nanofluidic Mixers for Microfluidic

    E-Print Network [OSTI]

    Rogers, John A.

    Optically Fabricated Three Dimensional Nanofluidic Mixers for Microfluidic Devices Seokwoo Jeon in which large numbers (>2000) of lithographically defined 3D nanofluidic pathways (50-300 nm wide

  18. PRELIMINARY DATA CALL REPORT ADVANCED BURNER REACTOR START UP FUEL FABRICATION FACILITY

    SciTech Connect (OSTI)

    S. T. Khericha

    2007-04-01T23:59:59.000Z

    The purpose of this report is to provide data for preparation of a NEPA Environmental Impact Statement in support the U. S. Department of Energy (DOE) Global Nuclear Energy Partnership (GNEP). One of the GNEP objectives is to reduce the inventory of long lived actinide from the light water reactor (LWR) spent fuel. The LWR spent fuel contains Plutonium (Pu) -239 and other transuranics (TRU) such as Americium-241. One of the options is to transmute or burn these actinides in fast neutron spectra as well as generate the electricity. A sodium-cooled Advanced Recycling Reactor (ARR) concept has been proposed to achieve this goal. However, fuel with relatively high TRU content has not been used in the fast reactor. To demonstrate the utilization of TRU fuel in a fast reactor, an Advanced Burner Reactor (ABR) prototype of ARR is proposed, which would necessarily be started up using weapons grade (WG) Pu fuel. The WG Pu is distinguished by relatively highest proportions of Pu-239 and lesser amount of other actinides. The WG Pu will be used as the startup fuel along with TRU fuel in lead test assemblies. Because such fuel is not currently being produced in the US, a new facility (or new capability in an existing facility) is being considered for fabrication of WG Pu fuel for the ABR. This report is provided in response to ‘Data Call’ for the construction of startup fuel fabrication facility. It is anticipated that the facility will provide the startup fuel for 10-15 years and will take to 3 to 5 years to construct.

  19. Innovative forming and fabrication technologies : new opportunities.

    SciTech Connect (OSTI)

    Davis, B.; Hryn, J.; Energy Systems; Kingston Process Metallurgy, Inc.

    2008-01-31T23:59:59.000Z

    The advent of light metal alloys and advanced materials (polymer, composites, etc.) have brought the possibility of achieving important energy reductions into the full life cycle of these materials, especially in transportation applications. 1 These materials have gained acceptance in the aerospace industry but use of light metal alloys needs to gain wider acceptance in other commercial transportation areas. Among the main reasons for the relatively low use of these materials are the lack of manufacturability, insufficient mechanical properties, and increased material costs due to processing inefficiencies. Considering the enormous potential energy savings associated with the use of light metal alloys and advanced materials in transportation, there is a need to identify R&D opportunities in the fields of materials fabrication and forming aimed at developing materials with high specific mechanical properties combined with energy efficient processes and good manufacturability. This report presents a literature review of the most recent developments in the areas of fabrication and metal forming focusing principally on aluminum alloys. In the first section of the document, the different sheet manufacturing technologies including direct chill (DC) casting and rolling, spray forming, spray rolling, thin slab, and strip casting are reviewed. The second section of the document presents recent research on advanced forming processes. The various forming processes reviewed are: superplastic forming, electromagnetic forming, age forming, warm forming, hydroforming, and incremental forming. Optimization of conventional forming processes is also discussed. Potentially interesting light metal alloys for high structural efficiency including aluminum-scandium, aluminum-lithium, magnesium, titanium, and amorphous metal alloys are also reviewed. This section concludes with a discussion on alloy development for manufacturability. The third section of the document reviews the latest developments in fiber-reinforced composite materials. Emerging curing processes are presented along with a discussion on the possible developments in biocomposite materials. The fourth section presents recent developments in the fabrication of bulk nanomaterials and nanoparticles reinforced materials. Advanced joining technologies are presented in the fifth section. Future research is proposed in the last section.

  20. Simulation for Iron Calorimeter prototype detector of India-based Neutrino Observatory

    SciTech Connect (OSTI)

    Ghosh, Tapasi; Chattopadhyay, Subhasis [Variable Energy Cyclotron Centre, 1/AF Bidhan Nagar, Kolkata-700 064 (India)

    2010-03-30T23:59:59.000Z

    The India-based Neutrino Observatory (INO) collaboration is proposing to build a 50 kton magnetized iron calorimeter (ICAL) detector in an underground laboratory to be located in South India. As a first step towards building the ICAL detector, a 35 ton prototype of the same design has been set up on the surface to track cosmic ray muons. This paper discusses the prototype detector geometry simulation by GEANT4, and the detector response to the cosmic muons. We have developed a track fitting procedure based on the Kalman Filter technique for the prototype detector when the detector is exposed to single muon tracks. The relevant track parameters i.e., momentum, direction and charge are reconstructed and analyzed. Finally we show the resolution of reconstructed momenta.

  1. EIS-0275: Disposal of the S1C Prototype Reactor Plant, Hanford Site, Richland, WA (Navy Document)

    Broader source: Energy.gov [DOE]

    This EIS analyzes the Office of Naval Reactors (Naval Reactors) proposed action to dismantle the defueled S1C Prototype reactor plant.

  2. Fabrication of wedged multilayer Laue lenses

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Prasciolu, M.; Leontowich, A. F. G.; Krzywinski, J.; Andrejczuk, A.; Chapman, H. N.; Bajt, S.

    2015-01-01T23:59:59.000Z

    We present a new method to fabricate wedged multilayer Laue lenses, in which the angle of diffracting layers smoothly varies in the lens to achieve optimum diffracting efficiency across the entire pupil of the lens. This was achieved by depositing a multilayer onto a flat substrate placed in the penumbra of a straight-edge mask. The distance between the mask and the substrate was calibrated and the multilayer Laue lens was cut in a position where the varying layer thickness and the varying layer tilt simultaneously satisfy the Fresnel zone plate condition and Bragg’s law for all layers in the stack.more »This method can be used to extend the achievable numerical aperture of multilayer Laue lenses to reach considerably smaller focal spot sizes than achievable with lenses composed of parallel layers.« less

  3. Fabrication of specimens with controlled flaws

    SciTech Connect (OSTI)

    Edwards, R.L.; Gruber, G.J.; Watson, P.D. [Southwest Research Inst., San Antonio, TX (United States)

    1995-10-01T23:59:59.000Z

    Most nondestructive evaluation (NDE) codes and standards require that the NDE equipment be calibrated using a calibration block. Ultrasonic testing (UT) historically has required the use of side-drilled or flat-bottom holes or notches. Recent technology has recognized that the acoustic response of real flaws is not directly comparable to artificial reflectors. The need arose to manufacture UT test specimens that contained real flaws of known size, shape, position, and orientation. The 1989 Section XI ASME Code, Appendix VIII (ASME Code, 1989), requires NDE qualification of equipment, procedures, and personnel utilizing full-scale test specimens with actual (real) flaws. The same technology could prove of great benefit to industries other than nuclear, particularly for the fracture mechanics approach to fitness-for-purpose or lifetime-extension programs. This paper describes an approach to the design and fabrication of NDE test specimens with controlled flaws.

  4. Method of fabricating a honeycomb structure

    DOE Patents [OSTI]

    Holleran, Louis M. (Big Flats, NY); Lipp, G. Daniel (Fort Collins, CO)

    1999-01-01T23:59:59.000Z

    A method of fabricating a monolithic honeycomb structure product involves shaping a first mixture of raw materials and a binder into a green honeycomb, extruding a second mixture of raw materials and a binder into one or more green members that each define an opening extending longitudinally therethrough. The raw materials of the second mixture are compatible with the raw materials of the first mixture. The green honeycomb and member(s) are dried. The binders of the green honeycomb and member(s) are softened at the surfaces that are to be bonded. The green member(s) is inserted into the honeycomb and bonded to the honeycomb to form an assembly thereof, which is then dried and fired to form a unified monolithic honeycomb structure. The insertion is best carried out by mounting a member in the shape of a tube on a mandrel, and inserting the mandrel into the honeycomb opening to bond the tube to the honeycomb.

  5. Method of fabricating a honeycomb structure

    DOE Patents [OSTI]

    Holleran, L.M.; Lipp, G.D.

    1999-08-03T23:59:59.000Z

    A method of fabricating a monolithic honeycomb structure product involves shaping a first mixture of raw materials and a binder into a green honeycomb, extruding a second mixture of raw materials and a binder into one or more green members that each define an opening extending longitudinally therethrough. The raw materials of the second mixture are compatible with the raw materials of the first mixture. The green honeycomb and member(s) are dried. The binders of the green honeycomb and member(s) are softened at the surfaces that are to be bonded. The green member(s) is inserted into the honeycomb and bonded to the honeycomb to form an assembly thereof, which is then dried and fired to form a unified monolithic honeycomb structure. The insertion is best carried out by mounting a member in the shape of a tube on a mandrel, and inserting the mandrel into the honeycomb opening to bond the tube to the honeycomb. 7 figs.

  6. Fabrication of catalyzed ion transport membrane systems

    DOE Patents [OSTI]

    Carolan, Michael Francis; Kibby, Charles Leonard

    2013-06-04T23:59:59.000Z

    Process for fabricating a catalyzed ion transport membrane (ITM). In one embodiment, an uncatalyzed ITM is (a) contacted with a non-reducing gaseous stream while heating to a temperature and for a time period sufficient to provide an ITM possessing anion mobility; (b) contacted with a reducing gaseous stream for a time period sufficient to provide an ITM having anion mobility and essentially constant oxygen stoichiometry; (c) cooled while contacting the ITM with the reducing gaseous stream to provide an ITM having essentially constant oxygen stoichiometry and no anion mobility; and (d) treated by applying catalyst to at least one of (1) a porous mixed conducting multicomponent metallic oxide (MCMO) layer contiguous with a first side of a dense layer of MCMO and (2) a second side of the dense MCMO layer. In another embodiment, these steps are carried out in the alternative order of (a), (d), (b), and (c).

  7. Method of fabricating a cooled electronic system

    DOE Patents [OSTI]

    Chainer, Timothy J; Gaynes, Michael A; Graybill, David P; Iyengar, Madhusudan K; Kamath, Vinod; Kochuparambil, Bejoy J; Schmidt, Roger R; Schultz, Mark D; Simco, Daniel P; Steinke, Mark E

    2014-02-11T23:59:59.000Z

    A method of fabricating a liquid-cooled electronic system is provided which includes an electronic assembly having an electronics card and a socket with a latch at one end. The latch facilitates securing of the card within the socket. The method includes providing a liquid-cooled cold rail at the one end of the socket, and a thermal spreader to couple the electronics card to the cold rail. The thermal spreader includes first and second thermal transfer plates coupled to first and second surfaces on opposite sides of the card, and thermally conductive extensions extending from end edges of the plates, which couple the respective transfer plates to the liquid-cooled cold rail. The extensions are disposed to the sides of the latch, and the card is securable within or removable from the socket using the latch without removing the cold rail or the thermal spreader.

  8. Turbine airfoil fabricated from tapered extrusions

    DOE Patents [OSTI]

    Marra, John J

    2013-07-16T23:59:59.000Z

    An airfoil (30) and fabrication process for turbine blades with cooling channels (26). Tapered tubes (32A-32D) are bonded together in a parallel sequence, forming a leading edge (21), a trailing edge (22), and pressure and suction side walls (23, 24) connected by internal ribs (25). The tapered tubes may be extruded without camber to simplify the extrusion process, then bonded along matching surfaces (34), forming a non-cambered airfoil (28), which may be cambered in a hot forming process and cut (48) to length. The tubes may have tapered walls that are thinner at the blade tip (T1) than at the base (T2), reducing mass. A cap (50) may be attached to the blade tip. A mounting lug (58) may be forged (60) on the airfoil base and then machined, completing the blade for mounting in a turbine rotor disk.

  9. Fabrication of advanced design (grooved) cermet anodes

    SciTech Connect (OSTI)

    Windisch, C.F. Jr. (Pacific Northwest Lab., Richland, WA (United States)); Huettig, F.R. (Ceramic Magnetics, Inc., Fairfield, NJ (United States))

    1993-05-01T23:59:59.000Z

    Attempts were made to fabricate full-size anodes with advanced, or grooved, design using isostatic pressing, slip casting injection molding. Of the three approaches, isostatic pressing produced an anode with dimensions nearest to the target specifications, without serious macroscopic flaws. This approach is considered the most promising for making advanced anodes for aluminum smelting. However, significant work still remains to optimize the physical properties and microstructure of the anode, both of which were significantly different from that of previous anodes. Injection molding and slip casting yielded anode materials with serious deficiencies, including cracks and holes. Injection molding gave cermet material with the best intrinsic microstructure, i.e., the microstructure of the material between macroscopic flaws was very similar to that of anodes previously made at PNL. Reason for the similarity may have to do with amount of residual binder in the material prior to sintering.

  10. LAMPF transition-region mechanical fabrication

    SciTech Connect (OSTI)

    Bush, E.D. Jr.; Gallegos, J.D.F.; Harrison, R.; Hart, V.E.; Hunter, W.T.; Rislove, S.E.; Sims, J.R.; Van Dyke, W.J.

    1984-07-01T23:59:59.000Z

    The primary purpose of the new Transition Region (TR-II) is to optimize the phase matching of the H/sup +/ and H/sup -/ beams during simultaneous transport. TR-II incorporates several design improvements that include larger aperture, a straight beam track, greater beam-path length adjustments, and utility lines integrated with the support system. The close pack density of magnets and beam-line hardware required innovative solutions to magnet design and mounting, vacuum manifolding, and utility routing. Critical magnet placement was accomplished using a new three-dimensional alignment system that does real-time vector calculations on a computer with input from two digital theodolites. All assembly and a large fraction of the mechanical fabrication were done by LAMPF personnel. The TR-II has been operational since September 1983 and routinely transports production beams up to 900-..mu..A current with no major problems.

  11. Deterministic, Nanoscale Fabrication of Mesoscale Objects

    SciTech Connect (OSTI)

    Jr., R M; Shirk, M; Gilmer, G; Rubenchik, A

    2004-09-24T23:59:59.000Z

    Neither LLNL nor any other organization has the capability to perform deterministic fabrication of mm-sized objects with arbitrary, {micro}m-sized, 3-dimensional features with 20-nm-scale accuracy and smoothness. This is particularly true for materials such as high explosives and low-density aerogels. For deterministic fabrication of high energy-density physics (HEDP) targets, it will be necessary both to fabricate features in a wide variety of materials as well as to understand and simulate the fabrication process. We continue to investigate, both in experiment and in modeling, the ablation/surface-modification processes that occur with the use of laser pulses that are near the ablation threshold fluence. During the first two years, we studied ablation of metals, and we used sub-ps laser pulses, because pulses shorter than the electron-phonon relaxation time offered the most precise control of the energy that can be deposited into a metal surface. The use of sub-ps laser pulses also allowed a decoupling of the energy-deposition process from the ensuing movement/ablation of the atoms from the solid, which simplified the modeling. We investigated the ablation of material from copper, gold, and nickel substrates. We combined the power of the 1-D hydrocode ''HYADES'' with the state-of-the-art, 3-D molecular dynamics simulations ''MDCASK'' in our studies. For FY04, we have stretched ourselves to investigate laser ablation of carbon, including chemically-assisted processes. We undertook this research, because the energy deposition that is required to perform direct sublimation of carbon is much higher than that to stimulate the reaction 2C + O{sub 2} => 2CO. Thus, extremely fragile carbon aerogels might survive the chemically-assisted process more readily than ablation via direct laser sublimation. We had planned to start by studying vitreous carbon and move onto carbon aerogels. We were able to obtain flat, high-quality vitreous carbon, which was easy to work on, experimentally and relatively easy to model. We were provided with bulk samples of carbon aerogel by Dr. Joe Satcher, but the shop that would have prepared mounted samples for us was overwhelmed by programmatic assignments. We are pursuing aligned carbon nanotubes, provided to us by colleagues at NASA Ames Research Center, as an alternative to aerogels. Dr. Gilmer started modeling the laser/thermally accelerated reactions of carbon with H{sub 2}, rather than O{sub 2}, due to limited information on equation of state for CO. We have extended our molecular dynamics models of ablation to include carbon in the form of graphite, vitreous carbon, and aerogels. The computer code has features that allow control of temperature, absorption of shock waves, and for the ejection of material from the computational cell. We form vitreous carbon atomic configurations by melting graphite in a microcanonical cell at a temperature of about 5000K. Quenching the molten carbon at a controlled rate of cooling yields material with a structure close to that of the vitreous carbon produced in the laboratory. To represent the aerogel, we have a computer code that connects ''graphite'' rods to randomly placed points in the 3-D computational cell. Ablation simulations yield results for vitreous carbon similar to our previous results with copper, usually involving the transient melting of the material above the threshold energy density. However, some fracturing in the solid regions occurs in this case, but was never observed in copper. These simulations are continuing, together with studies of the reaction of hydrogen with vitreous graphite at high temperatures. These reactions are qualitatively similar to that of oxygen with the carbon atoms at the surface, and the simulations should provide insight into the applicability of the use of chemical reactions to shape the surfaces of aerogels.

  12. Microoptical system and fabrication method therefor

    DOE Patents [OSTI]

    Sweatt, William C.; Christenson, Todd R.

    2003-07-08T23:59:59.000Z

    Microoptical systems with clear aperture of about one millimeter or less are fabricated from a layer of photoresist using a lithographic process to define the optical elements. A deep X-ray source is typically used to expose the photoresist. Exposure and development of the photoresist layer can produce planar, cylindrical, and radially symmetric micro-scale optical elements, comprising lenses, mirrors, apertures, diffractive elements, and prisms, monolithically formed on a common substrate with the mutual optical alignment required to provide the desired system functionality. Optical alignment can be controlled to better than one micron accuracy. Appropriate combinations of structure and materials enable optical designs that include corrections for chromatic and other optical aberrations. The developed photoresist can be used as the basis for a molding operation to produce microoptical systems made of a range of optical materials. Finally, very complex microoptical systems can be made with as few as three lithographic exposures.

  13. Microoptical System And Fabrication Method Therefor

    DOE Patents [OSTI]

    Sweatt, William C. (Albuquerque, NM); Christenson, Todd R. (Albuquerque, NM)

    2005-03-15T23:59:59.000Z

    Microoptical systems with clear aperture of about one millimeter or less are fabricated from a layer of photoresist using a lithographic process to define the optical elements. A deep X-ray source is typically used to expose the photoresist. Exposure and development of the photoresist layer can produce planar, cylindrical, and radially symmetric micro-scale optical elements, comprising lenses, mirrors, apertures, diffractive elements, and prisms, monolithically formed on a common substrate with the mutual optical alignment required to provide the desired system functionality. Optical alignment can be controlled to better than one micron accuracy. Appropriate combinations of structure and materials enable optical designs that include corrections for chromatic and other optical aberrations. The developed photoresist can be used as the basis for a molding operation to produce microoptical systems made of a range of optical materials. Finally, very complex microoptical systems can be made with as few as three lithographic exposures.

  14. Tenth target fabrication specialists` meeting: Proceedings

    SciTech Connect (OSTI)

    Foreman, L.R.; Stark, J.C. [comp.

    1995-11-01T23:59:59.000Z

    This tenth meeting of specialists in target fabrication for inertial confinement is unique in that it is the first meeting that was completely unclassified. As a result of the new classification, we were able to invite more foreign participation. In addition to participants from the US, UK, and Canada, representatives from France, Japan, and two Russian laboratories attended, about 115 in all. This booklet presents full papers and poster sessions. Indirect and direct drive laser implosions are considered. Typical topics include: polymer or aluminium or resorcinol/formaldehyde shells, laser technology, photon tunneling microscopy as a characterization tool, foams, coatings, hohlraums, and beryllium capsules. Hydrogen, deuterium, tritium, and beryllium are all considered as fuels.

  15. Closeout of JOYO-1 Specimen Fabrication Efforts

    SciTech Connect (OSTI)

    ME Petrichek; JL Bump; RF Luther

    2005-10-31T23:59:59.000Z

    Fabrication was well under way for the JOYO biaxial creep and tensile specimens when the NR Space program was canceled. Tubes of FS-85, ASTAR-811C, and T-111 for biaxial creep specimens had been drawn at True Tube (Paso Robles, CA), while tubes of Mo-47.5 Re were being drawn at Rhenium Alloys (Cleveland, OH). The Mo-47.5 Re tubes are now approximately 95% complete. Their fabrication and the quantities produced will be documented at a later date. End cap material for FS-85, ASTAR-811C, and T-111 had been swaged at Pittsburgh Materials Technology, Inc. (PMTI) (Large, PA) and machined at Vangura (Clairton, PA). Cutting of tubes, pickling, annealing, and laser engraving were in process at PMTI. Several biaxial creep specimen sets of FS-85, ASTAR-811C, and T-111 had already been sent to Pacific Northwest National Laboratory (PNNL) for weld development. In addition, tensile specimens of FS-85, ASTAR-811C, T-111, and Mo-47.5 Re had been machined at Kin-Tech (North Huntington, PA). Actual machining of the other specimen types had not been initiated. Flowcharts 1-3 detail the major processing steps each piece of material has experienced. A more detailed description of processing will be provided in a separate document [B-MT(SRME)-51]. Table 1 lists the in-process materials and finished specimens. Also included are current metallurgical condition of these materials and specimens. The available chemical analyses for these alloys at various points in the process are provided in Table 2.

  16. Track fitting by Kalman Filter method for a prototype cosmic ray muon detector

    E-Print Network [OSTI]

    Tapasi Ghosh; Subhasis Chattopadhyay

    2009-08-06T23:59:59.000Z

    We have developed a track fitting procedure based on Kalman Filter technique for an Iron Calorimeter (ICAL) prototype detector when the detector is flushed with single muon tracks. The relevant track parameters i.e., momentum, direction and charge are reconstructed and analyzed. This paper discusses the design of the prototype detector, its geometry simulation by Geant4, and the detector response with the cosmic ray muons. Finally we show the resolution of reconstructed momenta and also the charge identification efficiency of $\\mu^+$ and $\\mu^-$ events in the magnetized ICAL.

  17. Development of a perfluorocarbon liquid immersed prototype large power transformer with compressed SF sub 6 insulation

    SciTech Connect (OSTI)

    Mukaryama, Y.; Nonaka, F.; Takagi, I. (Chubu Electric Power Co. Inc., Nagoya (Japan)); Higaki, M.; Endoo, K.; Sakamoto, T.; Hiraishi, K.; Kawashima, K. (Hitachi Ltd., Hitachi (JP))

    1991-07-01T23:59:59.000Z

    This paper reports on a prototype of three phase non-flammable, large power transformer that has been developed. It uses non-flammable perfluorocarbon liquid as both a coolant and an insulating material for windings, and compressed SF{sub 6} gas as the insulation from the outer windings to the tank. Using cooling and insulation models, the cooling and insulation characteristics of the disc windings were clarified. Stress analyses and the pressure tests of the transformer tank were carried out, to evaluate its mechanical characteristics. Finally, a prototype of 275kV 100MVA three phase transformer was developed, and its excellent performance was confirmed.

  18. Proposal for SPS beam time for the baby MIND and TASD neutrino detector prototypes

    E-Print Network [OSTI]

    R. Asfandiyarov; R. Bayes; A. Blondel; M. Bogomilov; A. Bross; F. Cadoux; A. Cervera; A. Izmaylov; Y. Karadzhov; I. Karpikov; M. Khabibulin; A. Khotyantsev; A. Kopylov; Y. Kudenko; R. Matev; O. Mineev; Y. Musienko; M. Nessi; E. Noah; A. Rubbia; A. Shaykiev; P. Soler; R. Tsenov; G. Vankova-Kirilova; N. Yershov

    2014-05-23T23:59:59.000Z

    The design, construction and testing of neutrino detector prototypes at CERN are ongoing activities. This document reports on the design of solid state baby MIND and TASD detector prototypes and outlines requirements for a test beam at CERN to test these, tentatively planned on the H8 beamline in the North Area, which is equipped with a large aperture magnet. The current proposal is submitted to be considered in light of the recently approved projects related to neutrino activities with the SPS in the North Area in the medium term 2015-2020.

  19. On the development of the final optical multiplexer board prototype for the TileCal experiment

    E-Print Network [OSTI]

    González, V; Torres, J; Soret, J; Castelo, J; Castillo, V; Cuenca, C; Ferrer, A; Fullana, E; Higón, E; Munar, A; Poveda, J; Ruíz, A; Salvachúa, B; Solans, C; Valero, A; Valls, J A

    2007-01-01T23:59:59.000Z

    This paper describes the architecture of the final optical multiplexer board for the TileCal experiment. The results of the first VME 6U prototype have led to the definition of the final block diagram and functionality of this prototype. Functional description of constituent blocks and the state of the work currently undergoing at the Department of Electronic Engineering, in collaboration with IFIC-Valencia, is presented. As no board is yet produced, no experimental results are presented but, nevertheless, design issues that have been taking into account as component placement and signal integrity issues will be detailed.

  20. Performance of a prototype RICH detector using hybrid photo-diodes

    E-Print Network [OSTI]

    Albrecht, E; Billy, J H; Brook, N H; Duane, A; French, M; Gibson, V; Giles, R; Halley, A W; Harnew, N; John, M; Miller, D G; O'Shea, V; Teixeira-Dias, P; Smale, N J; Websdale, D M; Wilkinson, G; Wotton, S A

    2001-01-01T23:59:59.000Z

    A prototype Ring-Imaging Cherenkov detector has been operated in a charged particle test beam. Cherenkov photons are imaged onto a plane of hybrid photo-diode detectors. The geometrical arrangement of the prototype and data-taking conditions are described. An analysis of the detector performance, using silica aerogel, air and C4F10 gas radiators, is presented. The photon yields and observed angle resolutions are found to be in good agreement with Monte Carlo simulation and satisfy the requirements of the RICH-1 detector in the LHCb experiment.

  1. Design and Fabrication of a Radiation-Hard 500-MHz Digitizer Using Deep Submicron Technology

    SciTech Connect (OSTI)

    K.K. Gan; M.O. Johnson; R.D. Kass; J. Moore

    2008-09-12T23:59:59.000Z

    The proposed International Linear Collider (ILC) will use tens of thousands of beam position monitors (BPMs) for precise beam alignment. The signal from each BPM is digitized and processed for feedback control. We proposed the development of an 11-bit (effective) digitizer with 500 MHz bandwidth and 2 G samples/s. The digitizer was somewhat beyond the state-of-the-art. Moreover we planned to design the digitizer chip using the deep-submicron technology with custom transistors that had proven to be very radiation hard (up to at least 60 Mrad). The design mitigated the need for costly shielding and long cables while providing ready access to the electronics for testing and maintenance. In FY06 as we prepared to submit a chip with test circuits and a partial ADC circuit we found that IBM had changed the availability of our chosen IC fabrication process (IBM 6HP SiGe BiCMOS), making it unaffordable for us, at roughly 3 times the previous price. This prompted us to change our design to the IBM 5HPE process with 0.35 µm feature size. We requested funding for FY07 to continue the design work and submit the first prototype chip. Unfortunately, the funding was not continued and we will summarize below the work accomplished so far.

  2. Glass Concrete Thin Sheets Reinforced with Prestressed Aramid Fabrics

    E-Print Network [OSTI]

    Meyer, Christian

    Glass Concrete Thin Sheets Reinforced with Prestressed Aramid Fabrics Gregor Vilkner Submitted Glass Concrete Thin Sheets Reinforced with Prestressed Aramid Fabrics Gregor Vilkner Thin sheet concrete crushed glass as aggregate, a multitude of different esthetic effects can be produced, which again open up

  3. advanced fabrication technology: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    fabrication technology First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Advances in IC fabrication...

  4. Direct laser additive fabrication system with image feedback control

    DOE Patents [OSTI]

    Griffith, Michelle L. (Albuquerque, NM); Hofmeister, William H. (Nashville, TN); Knorovsky, Gerald A. (Albuquerque, NM); MacCallum, Danny O. (Edgewood, NM); Schlienger, M. Eric (Albuquerque, NM); Smugeresky, John E. (Pleasanton, CA)

    2002-01-01T23:59:59.000Z

    A closed-loop, feedback-controlled direct laser fabrication system is disclosed. The feedback refers to the actual growth conditions obtained by real-time analysis of thermal radiation images. The resulting system can fabricate components with severalfold improvement in dimensional tolerances and surface finish.

  5. Nanomolding Based Fabrication of Synthetic Gecko Foot-Hairs

    E-Print Network [OSTI]

    Sitti, Metin

    Nanomolding Based Fabrication of Synthetic Gecko Foot-Hairs Metin Sitti and Ronald S. Fearing Dept -- This paper proposes two different nanomolding methods to fabricate synthetic gecko foot-hair nanostructures a nano-pore membrane as a template. These templates are molded with silicone rubber, polyimide

  6. Nickel Electroplating for Nanostructure Mold Fabrication * Xiaohui Lin1

    E-Print Network [OSTI]

    Chen, Ray

    Nickel Electroplating for Nanostructure Mold Fabrication * Xiaohui Lin1 , Xinyuan Dou1 , Xiaolong demonstrated a practical process of fabricating nickel molds for nanoimprinting. Dual-side polished glass is chosen as the substrate on which nickel nanostructures are successfully electroplated. Photonic crystal

  7. Assured Fuel Supply: Potential Conversion and Fabrication Bottlenecks

    E-Print Network [OSTI]

    Assured Fuel Supply: Potential Conversion and Fabrication Bottlenecks PNNL-16951 DRAFT Authors bottlenecks that may arise in the conversion and fuel fabrication steps when used in conjunction with the U.S.-sponsored Reliable Fuel Supply (RFS) reserve. Paper is also intended to identify pathways for assessing the magnitude

  8. Fabrication of 10 nm enclosed nanofluidic channels and Zhaoning Yu

    E-Print Network [OSTI]

    Fabrication of 10 nm enclosed nanofluidic channels Han Caoa) and Zhaoning Yu Nanostructure wafers . The nanofluidic channels were further narrowed and sealed by techniques that are based- tremely small nanofluidic structures need to be fabricated and used as matrices for the manipulation

  9. TECHNICAL PAPER Fabrication of microfluidic device channel using a photopolymer

    E-Print Network [OSTI]

    and industry areas (Manz et al. 1990). The technology allows designers to create small, portable, robust, low-costTECHNICAL PAPER Fabrication of microfluidic device channel using a photopolymer for colloidal of fabricating microfluidic device channels for bio-nanoelectronics sys- tem by using high performance epoxy

  10. Multistage-Based Switching Fabrics for Scalable Routers

    E-Print Network [OSTI]

    Tzeng, Nian-Feng

    with distributed packet routing to achieve high scalability and low costs. Our fabrics are based on a multistage patterns are evaluated and discussed as well. Being scalable and of low costs, the proposed switching their arrival LCs toward their destined LCs. Switching fabrics naturally affect overall router perfor- mance

  11. Design, Fabrication and Testing of a Superconducting Fault Current Limiter (SFCL)

    SciTech Connect (OSTI)

    Gouge, M..; Schwenterly, S.W.; Hazelton, D. (SuperPower, Inc.)

    2011-06-15T23:59:59.000Z

    The purpose of this project was to conduct R&D on specified components and provide technical design support to a SuperPower team developing a high temperature superconducting Fault Current Limiter (SFCL). ORNL teamed with SuperPower, Inc. on a Superconductivity Partnerships with Industry (SPI) proposal for the SFCL that was submitted to DOE and approved in FY 2003. A contract between DOE and SuperPower, Inc. was signed on July 14, 2003 to design, fabricate and test the SFCL. This device employs high temperature superconducting (HTS) elements and SuperPower's proprietary technology. The program goal was to demonstrate a device that will address a broad range of the utility applications and meet utility industry requirements. This DOE-sponsored Superconductivity Partnership with Industry project would positively impact electric power transmission reliability and security by introducing a new element in the grid that can significantly mitigate fault currents and provide lower cost solutions for grid protection. The project will conduct R&D on specified components and provide technical design support to a SuperPower-led team developing a SFCL as detailed in tasks 1-5 below. Note the SuperPower scope over the broad SPI project is much larger than that shown below which indicates only the SuperPower tasks that are complementary to the ORNL tasks. SuperPower is the Project Manager for the SFCL program, and is responsible for completion of the project on schedule and budget. The scope of work for ORNL is to provide R&D support for the SFCL in the following four broad areas: (1) Assist with high voltage subsystem R&D, design, fabrication and testing including characterization of the general dielectric performance of LN2 and component materials; (2) Consult on cryogenic subsystem R&D, design, fabrication and testing; (3) Participate in project conceptual and detailed design reviews; and (4) Guide commercialization by participation on the Technical Advisory Board (TAB). SuperPower's in-kind work for the SFCL will be provided in the following areas: (1) Work with ORNL to develop suitable test platforms for the evaluation of subsystems and components; (2) Provide cryogenic and high voltage subsystem designs for evaluation; (3) Lead the development of the test plans associated with the subsystem and components and participate in test programs at ORNL; and (4) Based on the test results, finalize the subsystem and component designs and incorporate into the respective SFCL prototypes.

  12. Ultrasonic imaging system for in-process fabric defect detection

    DOE Patents [OSTI]

    Sheen, Shuh-Haw (Naperville, IL); Chien, Hual-Te (Naperville, IL); Lawrence, William P. (Downers Grove, IL); Raptis, Apostolos C. (Downers Grove, IL)

    1997-01-01T23:59:59.000Z

    An ultrasonic method and system are provided for monitoring a fabric to identify a defect. A plurality of ultrasonic transmitters generate ultrasonic waves relative to the fabric. An ultrasonic receiver means responsive to the generated ultrasonic waves from the transmitters receives ultrasonic waves coupled through the fabric and generates a signal. An integrated peak value of the generated signal is applied to a digital signal processor and is digitized. The digitized signal is processed to identify a defect in the fabric. The digitized signal processing includes a median value filtering step to filter out high frequency noise. Then a mean value and standard deviation of the median value filtered signal is calculated. The calculated mean value and standard deviation are compared with predetermined threshold values to identify a defect in the fabric.

  13. Magnet Design of a Prototype Structure for the X-ray FELs at TESLA

    E-Print Network [OSTI]

    Magnet Design of a Prototype Structure for the X-ray FELs at TESLA M. Tischer, J. Pflüger Hamburger Synchrotronstrahlungslabor HASYLAB, DESY, Notkestr. 85, D-22603 Hamburg, Germany Abstract XFEL undulators for the TESLA device is suggested so that both field integrals are trimmed close to zero for all gaps. TESLA­FEL 2000

  14. A First-Generation Prototype Dynamic Residential Window Christian Kohler, Howdy Goudey, and Dariush Arasteh

    E-Print Network [OSTI]

    October 26, 2004 Abstract We present the concept for a "smart" highly efficient dynamic window in residential buildings. We describe a prototype dynamic window that relies on an internal shade, which deploys technology have significantly reduced window-related energy use and peak demand in residential buildings

  15. Function Test Framework for Testing IO-Blocks in a Model-Based Rapid Prototyping Development

    E-Print Network [OSTI]

    Function Test Framework for Testing IO-Blocks in a Model-Based Rapid Prototyping Development -- Testing and verification are important methods for gaining confidence in the reliability of a software changing development cycles or that is tar- geted at many platforms. In this paper we present a test

  16. MAR-CPS: Measurable Augmented Reality for Prototyping Cyber-Physical Systems

    E-Print Network [OSTI]

    Reif, Rafael

    MAR-CPS: Measurable Augmented Reality for Prototyping Cyber-Physical Systems Shayegan Omidshafiei in CPSs, hardware-in-the-loop experiments are an essential step for transitioning from simulations to real in the Aerospace Controls Laboratory at the Massachusetts Institute of Technology. This system, referred to as MAR-CPS

  17. Seismic modeling and analysis of a prototype heated nuclear waste storage tunnel, Yucca Mountain, Nevada

    E-Print Network [OSTI]

    Snieder, Roel

    Seismic modeling and analysis of a prototype heated nuclear waste storage tunnel, Yucca Mountain was heated to replicate the effects of long-term storage of decaying nuclear waste and to study the effects for the long- term storage of high-level nuclear waste from reactors and decom- missioned atomic weapons

  18. HAWC Calibration Optimization: Use Prototype WCD/Calibration/DAQ at CSU

    E-Print Network [OSTI]

    HAWC Calibration Optimization: Use Prototype WCD/Calibration/DAQ at CSU John A.J. Matthews johnm/9 #12;HAWC calibration: conceptual design · Use a pulsed (300ps, 532nm laser) light source of known density filters) over the (required) PMT dynamic range of 0.1PE to 104PEs. · Optimize calibration

  19. Immersive Vehicle Simulators for Prototyping, Training and Ergonomics Marcelo Kallmann1

    E-Print Network [OSTI]

    Cordier, Frederic

    Immersive Vehicle Simulators for Prototyping, Training and Ergonomics Marcelo Kallmann1 , Patrick (CRF), Human Factors - Physical Ergonomics Strada Torino, 50 - 10043 Orbassano TO - Italy {cecilia simulators allow engineers to test the car before it is built, evaluate ergonomic aspects, interior design

  20. A Taxonomy-Driven Approach to Visually Prototyping Pervasive Computing Applications

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    A Taxonomy-Driven Approach to Visually Prototyping Pervasive Computing Applications Zo´e Drey1 environment into a visual pro- gramming language. A taxonomy describes the relevant entities of a given to taxonomical information. We have implemented a visual environment to develop taxonomies and orchestration

  1. A geosemantic proximity-based prototype for the interoperability of geospatial data

    E-Print Network [OSTI]

    A geosemantic proximity-based prototype for the interoperability of geospatial data Jean Brodeur a 2004 Abstract The research agenda related to the interoperability of geospatial data is influenced by the increased accessibility of geospatial databases on the Internet, as well as their sharing

  2. Squeezing the Sandwich: A Mobile Pressure-Sensitive Two-Sided Multi-Touch Prototype

    E-Print Network [OSTI]

    .rohs,sven.kratz}@telekom.de ABSTRACT Two-sided pressure input is common in everyday interac- tions such as grabbing, sliding, twistingSqueezing the Sandwich: A Mobile Pressure-Sensitive Two-Sided Multi-Touch Prototype Georg Essl1,2 1 which allows for two- sided multitouch sensing with continuous pressure input at interactive rates

  3. Rapid prototyping of metallic parts and moulds K.P. Karunakaran*

    E-Print Network [OSTI]

    object man- ufacturing (LOM), fused deposition modelling (FDM) and selective laser sintering (SLS coated with a soft binder. While selectively sintering during the layer building process, only the soft material melts binding the hard particles around it. The prototype thus obtained is initially in `green

  4. DEVELOPMENT AND TESTING OF A PROTOTYPE TUNER FOR THE CEBAF UPGRADE CRYOMODULE*

    E-Print Network [OSTI]

    DEVELOPMENT AND TESTING OF A PROTOTYPE TUNER FOR THE CEBAF UPGRADE CRYOMODULE* G. Davis , J developed for CEBAF at Jefferson Lab. The high-gradient, low-current operation of the superconductingHz and resolution of 1Hz that will be used during normal operation [1]. Fig. 1: CEBAF Upgrade Tuner 2 MECHANICAL

  5. Prototype Passive Solar Buildings in Louisiana - A Hot-Humid Climate 

    E-Print Network [OSTI]

    Shih, J. C.

    1986-01-01T23:59:59.000Z

    This paper on prototype passive solar buildings in Louisiana presents state of the art passive solar design. According to U.S. Department of Energy report, the annual energy consumption for a single family detached dwelling in Louisiana is from 31...

  6. A Prototype RICH Detector Using Multi-Anode Photo Multiplier Tubes and Hybrid Photo-Diodes

    E-Print Network [OSTI]

    E. Albrecht; G. Barber; J. H. Bibby; N. H. Brook; G. Doucas; A. Duane; S. Easo; L. Eklund; M. French; V. Gibson; T. Gys; A. W. Halley; N. Harnew; M. John; D. Piedigrossi; J. Rademacker; B. Simmons; N. Smale; P. Teixeira-Dias; L. Toudup; D. Websdale; G. Wilkinson; S. A. Wotton; .

    2000-01-23T23:59:59.000Z

    The performance of a prototype Ring Imaging Cherenkov Detector is studied using a charged particle beam. The detector performance, using CF4 and air as radiators, is described. Cherenkov angle precision and photoelectron yield using hybrid photo-diodes and multi-anode PMTs agree with simulations and are assessed in terms of the requirements of the LHCb experiment.

  7. The Mentor-lite prototype has been developed within the research project "Architecture, Configuration, and

    E-Print Network [OSTI]

    Abstract The Mentor-lite prototype has been developed within the research project "Architecture (DFG). In this paper, we present the architecture of Mentor-lite and our approach towards customizability. The demo will show the feasibility of the presented approach. 1 System Overview The Mentor

  8. Prototype for a IEC 61400-25 Compliant Generic Server Supervisors

    E-Print Network [OSTI]

    Prototype for a IEC 61400-25 Compliant Generic Server Supervisors: Bjarne Poulsen, DTU-IMM Knud Ole.imm.dtu.dk Thesis number 96 #12;3 Summary IEC61850 has defined a family of standards for the power grid. E.g. the new IEC 61400- 25 defines protocols for communication, control, and monitoring of wind power plants

  9. Fourier transform microwave spectrum of the propane-water complex: A prototypical water-hydrophobe system

    E-Print Network [OSTI]

    Cohen, Ronald C.

    Fourier transform microwave spectrum of the propane-water complex: A prototypical water) The Fourier transform microwave spectrum of the propane-water complex (C3H,-H,O) has been observed and analyzed. This spectrum includes transitions assigned to propane complexed with both the ortho and para

  10. Prototype Passive Solar Buildings in Louisiana - A Hot-Humid Climate

    E-Print Network [OSTI]

    Shih, J. C.

    1986-01-01T23:59:59.000Z

    This paper on prototype passive solar buildings in Louisiana presents state of the art passive solar design. According to U.S. Department of Energy report, the annual energy consumption for a single family detached dwelling in Louisiana is from 31...

  11. A PROTOTYPE FOR ON-LINE MONITORING AND CONTROL OF ENERGY PERFORMANCE FOR RENEWABLE ENERGY

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    A PROTOTYPE FOR ON-LINE MONITORING AND CONTROL OF ENERGY PERFORMANCE FOR RENEWABLE ENERGY BUILDINGS@univ-perp.fr Keywords: Renewable energies, energy performance indicators, monitoring system, smart transducers, control. Control algorithms are tested in simulation to improve renewable energy consumption while reducing fossil

  12. GEOSTAR-II: A PROTOTYPE WATER VAPOR IMAGER/SOUNDER FOR THE PATH Todd Gaier1

    E-Print Network [OSTI]

    Ruf, Christopher

    GEOSTAR-II: A PROTOTYPE WATER VAPOR IMAGER/SOUNDER FOR THE PATH MISSION Todd Gaier1 , Bjorn the as yet undefined mission requirements. By far the most stringent "requirement" is the recovery. The IF signals are routed to a correlator unit on coaxial cables. The system is not designed to provide full

  13. Testprint gemaakt met een zelfgemaakte 3D printer (Reprap) in het "advanced prototyping for design" project

    E-Print Network [OSTI]

    " project Lamp ontworpen en gemaakt tijdens het "lightstyle" project 3D print van een sieraad, gebaseerd op! #12;3D prints gemaakt in gips bij Bouwkunde CT scan van middeleeuws glas om een digitale reproductie, modeling, data massaging, 3D printing. · Objet trouvé Prototyping in verschillende domeinen en hoe domein

  14. Test Case Preparation using a Prototype H. Treharne1, J. Draper2 and S. Schneider1

    E-Print Network [OSTI]

    Doran, Simon J.

    a software development lifecycle which uses the B-Method. Section 3 details the typical testing activity carried out in a software development lifecycle. Section 4 describes the testing process in a formal are also presented. Keywords: Prototype, B-Method, Formal Software Lifecycle. 1 Introduction This paper

  15. Dominance of extreme statistics in a prototype many-body Brownian ratchet Evan Hohlfeld

    E-Print Network [OSTI]

    Geissler, Phillip

    Dominance of extreme statistics in a prototype many-body Brownian ratchet Evan Hohlfeld Lawrence Many forms of cell motility rely on Brownian ratchet mechanisms that involve multiple stochas- tic of such a many-body ratchet, in the specific form of a growing polymer gel that pushes a diffusing obstacle. We

  16. SCIPP 06/04 1 Prototype Tracking Studies for Proton CT

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    SCIPP 06/04 1 Prototype Tracking Studies for Proton CT Nate Blumenkrantz, Jason Feldt, Jason the feasibility of proton computed tomography, the most likely path (MLP) of protons inside an absorber resolution. The locations of 200 MeV protons were measured at three different absorber depth of PMMA (3.75, 6

  17. Demo: Organic Solar Cell-equipped Energy Harvesting Active Networked Tag (EnHANT) Prototypes

    E-Print Network [OSTI]

    Carloni, Luca

    Demo: Organic Solar Cell-equipped Energy Harvesting Active Networked Tag (EnHANT) Prototypes Gerald harvesting and communications hardware, namely organic solar cells and ultra-wide-band impulse radio (UWB harvesting, organic solar cells, ultra-low-power com- munications, ultra-wideband impulse radio, energy

  18. Rapid Prototyping for Fuzzy Systems # Chantana Chantrapornchai Sissades Tongsima Edwin H.M. Sha

    E-Print Network [OSTI]

    Sha, Edwin

    model [6, 12, 20] proposed by Wee has been fre­ quently used for pattern recognition and learning the prototyping time, the fuzzy sys­ tem is partitioned into hardware and software portions. The model, called. In this research, we propose a new model called Fuzzy Rule­based Automata (FRA) which is used to design a cir­ cuit

  19. Prototyping a Residential Gateway Using Xilinx ISE S. W. Song, senior member, IEEE

    E-Print Network [OSTI]

    Gardner, William

    Prototyping a Residential Gateway Using Xilinx ISE S. W. Song, senior member, IEEE Department jzheng@uoguelph.ca, wgardner@cis.uoguelph.ca Abstract This paper presents a residential gateway (RG for broadband residential multiservices based on a SONET over DWDM (Dense Wavelength Division Multiplexing

  20. Conception centree utilisateur de prototypes interactifs pour la gestion de contenu multimedia par similarite

    E-Print Network [OSTI]

    Dupont, Stéphane

    Conception centr´ee utilisateur de prototypes interactifs pour la gestion de contenu multimedia par de donn´ees mul- timedia, adapt´ees `a des cas d'utilisation divers et pro- fils d'utilisateurs vari similaire? L'interface utilisateur au service des cas d'utilisation La navigation et manipulation de

  1. 1957 Gobi-Altay, Mongolia, earthquake as a prototype for southern California's most devastating earthquake

    E-Print Network [OSTI]

    Mojzsis, Stephen J.

    1957 Gobi-Altay, Mongolia, earthquake as a prototype for southern California's most devastating 210351, Mongolia A. Bayasgalan B. Enhtuvshin Centre for Informatics and Remote Sensing, Mongolian Academy of Sciences, Ulaanbaatar 210351, Mongolia Kenneth W. Hudnut U.S. Geological Survey, 525 South Wilson Avenue

  2. From Application to ASIP-based FPGA prototype: a Case Study on Turbo Decoding

    E-Print Network [OSTI]

    Muller, Olivier

    From Application to ASIP-based FPGA prototype: a Case Study on Turbo Decoding Olivier Muller, Amer turbo decoder. It introduces turbo decoding application and proposes an Application-Specific Instruction when decoding a double binary turbo code with 5 iterations. 1. Introduction Applications in the field

  3. Advances in three-dimensional rapid prototyping of microfluidic devices for biological applications

    E-Print Network [OSTI]

    Chang, Hsueh-Chia

    . #12;2 Abstract The capability of 3D printing technologies for direct production of complex 3D 3D printing technologies and direct internal 3D laser writing fabrication methods. Current

  4. David Erickson Towards numerical prototyping of labs-on-chip: modeling for integrated

    E-Print Network [OSTI]

    Erickson, David

    difficult to do experimentally. Thus, it is believed that future demand in the field will be for highly plastics and polymers as fabrication material of choice (de Mello 2002) have significantly helped to cut

  5. "MECHANICAL STRUCTURE & FRONT END ELECTRONICS FOR THE RUN-9 STAR MUON TELESCOPE PROTOTYPE "

    E-Print Network [OSTI]

    Llope, William J.

    to construct equipment for the STAR Experiment at Brookhaven National Laboratory. This equipment is intended fabrication order handling and qualification, and assistance with the final assembly of the detector

  6. Supervision and control prototyping for an engine exhaust gas heat recovery system based on a steam Rankine cycle

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Supervision and control prototyping for an engine exhaust gas heat recovery system based on a steam of a practical supervi- sion and control system for a pilot Rankine steam process for exhaust gas heat recovery Rankine steam process for exhaust gas heat recovery from a spark-ignition (SI) engine, from a prototyping

  7. Fabricating the Solid Core Heatpipe Reactor

    SciTech Connect (OSTI)

    Ring, Peter J.; Sayre, Edwin D. [Advanced Methods and Materials, Inc., 1190 Mountain View-Alviso Road, Suite P, Sunnyvale, CA 94089 (United States); Houts, Mike [NASA Marshall Space Flight Center, Huntsville, Alabama 35812 (United States)

    2006-01-20T23:59:59.000Z

    The solid core heatpipe nuclear reactor has the potential to be the most dependable concept for the nuclear space power system. The design of the conversion system employed permits multiple failure modes instead of the single failure mode of other concepts. Regardless of the material used for the reactor, either stainless steel, high-temperature alloys, Nb1Zr, Tantalum Alloys or MoRe Alloys, making the solid core by machining holes in a large diameter billet is not satisfactory. This is because the large diameter billet will have large grains that are detrimental to the performance of the reactor due to grain boundary diffusion. The ideal fabrication method for the solid core is by hot isostatic pressure diffusion bonding (HIPing). By this technique, wrought fine-grained tubes of the alloy chosen are assembled into the final shape with solid cusps and seal welded so that there is a vacuum in between all surfaces to be diffusion bonded. This welded structure is then HIPed for diffusion bonding. A solid core made of Type 321 stainless steel has been satisfactorily produced by Advanced Methods and Materials and is undergoing evaluation by NASA Marshall Space Flight Center.

  8. Fabrication and characterization of shunted ?-SQUID

    SciTech Connect (OSTI)

    Kumar, Nikhil, E-mail: knikhil@iitk.ac.in [Department of Physics, Indian Institute of Technology Kanpur - 208016 (India); Fournier, T.; Courtois, H.; Gupta, Anjan K. [Institute Neel, CNRS and Université Joseph Fourier, 25 Avenue des Martyrs, BP 166, 38042, Grenoble (France)

    2014-04-24T23:59:59.000Z

    In order to eliminate hysteresis, we have fabricated and characterized niobium based shunted micron size superconducting quantum interference devices (?-SQUIDs). We find a wide temperature range where these ?-SQUIDs are non-hysteretic in nature and show a very good I{sub c} vs. B oscillations in hysteretic regime and V vs. B oscillations in non-hysteretic regime. Here we report the characteristics of a shunted- ?-SQUID (Wf38LS72D5). In this device we have achieved a large voltage modulation, in non-hysteretic regime, at various temperatures including such as 1.1 mV at 6.62 K with a transfer function V{sub ?}?=?7.2mV/?{sub 0}. The figures within the original article PDF file, as supplied to AIP Publishing, were affected by a PDF-processing error. Consequently, the article re-flowed and pagination increased from 3 to 4 pages. This article was updated on 14 May 2014 to correct the PDF-processing error, with the scientific content remaining unchanged. Readers are advised that the replacement article PDF file contains an additional blank page to preserve the original pagination.

  9. Modeling electrodeposition for LIGA microdevice fabrication

    SciTech Connect (OSTI)

    Griffiths, S.K.; Nilson, R.H.; Bradshaw, R.W. [and others

    1998-02-01T23:59:59.000Z

    To better understand and to help optimize the electroforming portion of the LIGA process, we have developed one and two-dimensional numerical models describing electrode-position of metal into high aspect-ratio molds. The one-dimensional model addresses dissociation, diffusion, electromigration, and deposition of multiple ion species. The two-dimensional model is limited to a single species, but includes transport induced by forced flow of electrolyte outside the mold and by buoyancy associated with metal ion depletion within the mold. To guide model development and to validate these models, we have also conducted a series of laboratory experiments using a sulfamate bath to deposit nickel in cylindrical molds having aspect ratios up to twenty-five. The experimental results indicate that current densities well in excess of the diffusion-limited currents may still yield metal deposits of acceptable morphology. However, the numerical models demonstrate that such large ion fluxes cannot be sustained by convection within the mold resulting from flow across the mold top. Instead, calculations suggest that the observed enhancement of transport probably results from natural convection within the molds, and that buoyancy-driven flows may be critical to metal ion transport even in micron-scale features having very large aspect ratios. Taking advantage of this enhanced ion transport may allow order-of-magnitude reductions in electroforming times for LIGA microdevice fabrication. 42 refs., 14 figs., 1 tab.

  10. Analytical simulation of tensile response of fabric reinforced cement based composites

    E-Print Network [OSTI]

    Mobasher, Barzin

    Analytical simulation of tensile response of fabric reinforced cement based composites Barzin March 2005; accepted 2 June 2005 Abstract A model simulating the tensile behavior of fabric­cement composites; Cement composites; Laminated composites; Pultrusion; Fibers; Fabrics; Toughness; Strength; Micro

  11. A continuum constitutive model for the mechanical behavior of woven fabrics including slip and failure

    E-Print Network [OSTI]

    King, Michael J. (Michael James), 1978-

    2006-01-01T23:59:59.000Z

    Woven fabrics are used in many applications, including ballistic armors and fabric-reinforced composites. Advances in small-scale technologies are enabling new applications including fabrics with embedded electronics, ...

  12. Method and instrumentation for the measurement and characterization of MEMS fabricated electrical contacts

    E-Print Network [OSTI]

    Read, Melissa B. (Melissa Beth), 1982-

    2010-01-01T23:59:59.000Z

    MEMS fabricated electrical contacts consist of two MEMS fabricated surfaces which are physically separated and brought together for the purpose of carrying current. MEMS fabricated electrical contacts are used in a wide ...

  13. Nuclear target foil fabrication for the Romano Event

    SciTech Connect (OSTI)

    Weed, J.W.; Romo, J.G. Jr.; Griggs, G.E.

    1984-06-19T23:59:59.000Z

    The Vacuum Processes Lab, of LLNL's M.E. Dept. - Material Fabrication Division, was requested to provide 250 coated Parylene target foils for a nuclear physics experiment titled the ROMANO Event. Due to the developmental nature of some of the fabrication procedures, approximately 400 coated foils were produced to satisfy the event's needs. The foils were used in the experiment as subkilovolt x-ray, narrow band pass filters, and wide band ultraviolet filters. This paper is divided into three sections describing: (1) nuclear target foil fabrication, (2) Parylene substrate preparation and production, and (3) foil and substrate inspections.

  14. Fabrication and Measurements of 500 MHz Double Spoke Cavity

    SciTech Connect (OSTI)

    Park, HyeKyoung [JLAB; Hopper, Christopher S. [Old Dominion University; Delayen, Jean R. [Old Dominion University

    2014-12-01T23:59:59.000Z

    A 500 MHz ?0=1 double spoke cavity has been designed and optimized for a high velocity application such as a compact electron accelerator at the Center for Accelerator Science at Old Dominion University [1] and the fabrication was recently completed at Jefferson Lab. The geometry specific to the double spoke cavity required a variety of tooling and fixtures. Also a number of asymmetric weld joints were expected to make it difficult to maintain minimal geometric deviation from the design. This paper will report the fabrication procedure, resulting tolerance from the design, initial test results and the lessons learned from the first ?0=1 double spoke cavity fabrication.

  15. The Fabrication of Titanium Dioxide Based Anode Material Using Aerosol Method

    E-Print Network [OSTI]

    Zhao, Lin

    2013-01-01T23:59:59.000Z

    synthesis of graphene-based titanium dioxide nanocompositesLos Angeles The Fabrication of Titanium Dioxide Based AnodeTHE THESIS The Fabrication of Titanium Dioxide Based Anode

  16. Direct Fabrication of Enzyme-Carrying Polymer Nanofibers byElectrospi...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fabrication of Enzyme-Carrying Polymer Nanofibers by Electrospinning. Direct Fabrication of Enzyme-Carrying Polymer Nanofibers by Electrospinning. Abstract: Nanofibers of an...

  17. Electronic diamond: Fabrication processes and electron emission performance

    SciTech Connect (OSTI)

    Scott, M.; Springer, R.

    1996-09-01T23:59:59.000Z

    This is the final report of a one-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The project sought to develop a working Laboratory prototype model that would demonstrate the viability of a mercury-free light bulb concept in a controlled laboratory setting. A successful demonstration of the light bulb is reported.

  18. Digital Material Fabrication Using Mask-Image-Projection-based Stereolithography

    E-Print Network [OSTI]

    Chen, Yong

    on its PolyJet Matrix Technology, these three-dimensional (3D) printers are capable of manufacturing is motivated by the recent 3D printer development especially by the digital material fabrication in which two

  19. An automated pipette puller for fabrication of glass micropipettes

    SciTech Connect (OSTI)

    Tamizhanban, R.; Sreejith, K. R.; Jayanth, G. R. [Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore 560012 (India)] [Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore 560012 (India)

    2014-05-15T23:59:59.000Z

    Glass micropipettes are versatile probing tools for performing micro- and nano-manipulation tasks. This paper presents the design and development of an automated pipette puller system for fabrication of glass micropipettes. The pipette puller employs a new strategy for fabrication of micropipettes that enables achieving independent control of their taper, tip diameter, and bend-angle, and also facilitates theoretical derivation of simple, approximate relationships between the pipette shape and the pulling parameters. Subsequently, the design and fabrication of the pipette puller is described, which include that of the pipette heating system, the mechanical motion stages, and the control electronics of the pipette puller. The fabricated pipette puller is experimentally evaluated to demonstrate control of the taper, tip diameter, and the bend-angle of the micropipette. Further, the dependence of the taper and tip diameter on the pulling parameters is evaluated and is shown to be in alignment with the proposed theoretical relationships.

  20. THROUGH THICKNESS LASER JOINING OF CONTINUOUS GLASS FIBER FABRIC REINFORCEMENT

    E-Print Network [OSTI]

    Yao, Y. Lawrence

    THROUGH THICKNESS LASER JOINING OF CONTINUOUS GLASS FIBER FABRIC REINFORCEMENT Paper Number 405 Huade Tan, Gen Satoh, Y. Lawrence Yao Manufacturing Research Laboratory Department of Mechanical and propagation is a major failure mode in structural composite applications. Manufacturing induced fiber

  1. A fabrication method for integrated filter elements with inductance cancellation

    E-Print Network [OSTI]

    Perreault, David J.

    This paper outlines a fabrication method for integrated filter elements. An integrated filter element is a three- (or more) terminal device comprising a capacitor and coupled air-core magnetic windings, in which the magnetic ...

  2. Fabrication and characterization of thermally drawn fiber capacitors

    E-Print Network [OSTI]

    Lestoquoy, Guillaume

    We report on the fabrication of all-in-fiber capacitors with poly(vinylidene fluoride) (PVDF) as the dielectric material. Electrodes made of conductive polymer are separated by a PVDF thin film within a polycarbonate casing ...

  3. Fabrication of Annealed Proton-Exchanged Waveguides for Vertical Integration 

    E-Print Network [OSTI]

    Webb, Jacob Douglas

    2011-08-08T23:59:59.000Z

    There is a drive for improving the surface uniformity of optical waveguide devices in the photonics lab. This report focuses on the exploration of annealed proton exchange (APE) waveguide fabrication on lithium niobate crystal as a method...

  4. Fabrication process for a gradient index x-ray lens

    DOE Patents [OSTI]

    Bionta, Richard M. (Livermore, CA); Makowiecki, Daniel M. (Livermore, CA); Skulina, Kenneth M. (Livermore, CA)

    1995-01-01T23:59:59.000Z

    A process for fabricating high efficiency x-ray lenses that operate in the 0.5-4.0 keV region suitable for use in biological imaging, surface science, and x-ray lithography of integrated circuits. The gradient index x-ray optics fabrication process broadly involves co-sputtering multi-layers of film on a wire, followed by slicing and mounting on block, and then ion beam thinning to a thickness determined by periodic testing for efficiency. The process enables the fabrication of transmissive gradient index x-ray optics for the 0.5-4.0 keV energy range. This process allows the fabrication of optical elements for the next generation of imaging and x-ray lithography instruments m the soft x-ray region.

  5. Two-dimensional Photonic Crystals Fabricated by Nanoimprint Lithography

    E-Print Network [OSTI]

    Chen, A.

    We report on the process parameters of nanoimprint lithography (NIL) for the fabrication of two-dimensional (2-D) photonic crystals. The nickel mould with 2-D photonic crystal patterns covering the area up to 20mm² is ...

  6. Fabrication of Controlled Release Devices Using Supercritical Antisolvent Method

    E-Print Network [OSTI]

    Lee, Lai Yeng

    In this study, the supercritical antisolvent with enhanced mass transfer method (SASEM) is used to fabricate micro and nanoparticles of biocompatible and biodegradable polymer PLGA (poly DL lactide co glycolic acid). This ...

  7. Timber tower : a flexible fabrication method for reconfigurable housing

    E-Print Network [OSTI]

    Coleman, James (James Richard)

    2014-01-01T23:59:59.000Z

    "Prefabricating Housing...again", this time it's going to be different. Fabrication machine functionality is bracketed by the physical configuration and componentry of the system. Traditionally, a machine designer engineers ...

  8. Design and fabrication of pressure-compensating compliant tubes

    E-Print Network [OSTI]

    Martin, Ian (Ian P.)

    2014-01-01T23:59:59.000Z

    Different fabrication methods are evaluated for producing pressure-compensating tubes for use in low-pressure drip irrigation systems. Such devices would allow drip irrigation systems to operate at driving pressures much ...

  9. Fabrication of Annealed Proton-Exchanged Waveguides for Vertical Integration

    E-Print Network [OSTI]

    Webb, Jacob Douglas

    2011-08-08T23:59:59.000Z

    There is a drive for improving the surface uniformity of optical waveguide devices in the photonics lab. This report focuses on the exploration of annealed proton exchange (APE) waveguide fabrication on lithium niobate crystal as a method...

  10. Integrating digital design and fabrication and craft production

    E-Print Network [OSTI]

    Kamath, Ayodh Vasant

    2009-01-01T23:59:59.000Z

    This thesis examines if methods of manual craft production can be utilised to overcome the indeterminacies of physical materials and processes that hinder Digital Design and Fabrication (DDF). Indeterminacies in physical ...

  11. Fabrication process for a gradient index x-ray lens

    DOE Patents [OSTI]

    Bionta, R.M.; Makowiecki, D.M.; Skulina, K.M.

    1995-01-17T23:59:59.000Z

    A process is disclosed for fabricating high efficiency x-ray lenses that operate in the 0.5-4.0 keV region suitable for use in biological imaging, surface science, and x-ray lithography of integrated circuits. The gradient index x-ray optics fabrication process broadly involves co-sputtering multi-layers of film on a wire, followed by slicing and mounting on block, and then ion beam thinning to a thickness determined by periodic testing for efficiency. The process enables the fabrication of transmissive gradient index x-ray optics for the 0.5-4.0 keV energy range. This process allows the fabrication of optical elements for the next generation of imaging and x-ray lithography instruments in the soft x-ray region. 13 figures.

  12. Materials for freeform fabrication of GHz tunable dielectric photonic crystals.

    SciTech Connect (OSTI)

    Niehaus, Michael Keith; Lewis, Jennifer A. (University of Illinois, Urbana, IL); Smay, James Earl; Clem, Paul Gilbert; Lin, Shawn-Yu; Cesarano, Joseph, III (,; ); Carroll, James F.

    2003-01-01T23:59:59.000Z

    Photonic crystals are of interest for GHz transmission applications, including rapid switching, GHz filters, and phased-array technology. 3D fabrication by Robocasting enables moldless printing of high solid loading slurries into structures such as the ''woodpile'' structures used to fabricate dielectric photonic band gap crystals. In this work, tunable dielectric materials were developed and printed into woodpile structures via solid freeform fabrication (SFF) toward demonstration of tunable photonic crystals. Barium strontium titanate ceramics possess interesting electrical properties including high permittivity, low loss, and high tunability. This paper discusses the processing route and dielectric characterization of (BaxSr1-XTiO3):MgO ceramic composites, toward fabrication of tunable dielectric photonic band gap crystals.

  13. The design and analysis of tension fabric structures

    E-Print Network [OSTI]

    Son, Miriam Euni

    2007-01-01T23:59:59.000Z

    Although tensioned fabric structures are increasingly in demand, since they are comparatively new to the engineering world, there are relatively limited resources available about such structures. This report reviews the ...

  14. Reproducible Tip Fabrication and Cleaning for UHV STM . | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    etching has been further refined to enable a reproducible fabrication of the tungsten tips with a radius &61603;3 nm. Simple and flexible setup for the tip UHV annealing...

  15. advanced fabrication process: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    171 Application Of The Mold Sdm Process To The Fabrication Of Ceramic Parts For A Micro Gas Turbine Engine CiteSeer Summary: ... engine with silicon nitcon part is being developed....

  16. array mold fabrication: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    42 Application Of The Mold Sdm Process To The Fabrication Of Ceramic Parts For A Micro Gas Turbine Engine CiteSeer Summary: ... engine with silicon nitcon part is being developed....

  17. On the Fabrication of Microparticles Using Electrohydrodynamic Atomization Method

    E-Print Network [OSTI]

    Kuang, Lim Liang

    A new approach for the control of the size of particles fabricated using the Electrohydrodynamic Atomization (EHDA) method is being developed. In short, the EHDA process produces solution droplets in a controlled manner, ...

  18. Fabrication and Characterization of Poly(2-Hydroxyethyl Methacrylate) Microparticle Sensors

    E-Print Network [OSTI]

    Philip, Merene

    2013-04-24T23:59:59.000Z

    they are highly sensitive to analyte changes and may be implemented in lifetime or intensity-based systems. In order to develop particle-based fluorescent sensors, poly(2-hydroxyethylmethacrylate) (HEMA) microspheres have been fabricated via membrane...

  19. FABRICATION OF A TITANIUM MICROELECTRODE CHIP TO INVESTIGATE BULK TITANIUM

    E-Print Network [OSTI]

    MacDonald, Noel C.

    FABRICATION OF A TITANIUM MICROELECTRODE CHIP TO INVESTIGATE BULK TITANIUM MICROMACHININING, USA Abstract Bulk titanium has a number of attractive characteristics that are favorable of a microelectrode chip for particle trapping and fundamental microfluidic studies. Keywords: bulk titanium

  20. Beyond 3D Printing: The New Dimensions of Additive Fabrication

    E-Print Network [OSTI]

    Keating, Steven John

    Additive fabrication, often referred to as 3D printing, is the construction of objects by adding material. This stands in contrast to subtractive methods, which involve removing material by means of milling or cutting. ...

  1. Design and fabrication of a multipurpose compliant nanopositioning architecture

    E-Print Network [OSTI]

    Panas, Robert M. (Robert Matthew)

    2013-01-01T23:59:59.000Z

    This research focused on generating the knowledge required to design and fabricate a high-speed application flexible, low average cost multipurpose compliant nanopositioner architecture with high performance integrated ...

  2. Cost-Effective Fabrication Routes for the Productionof Quantum...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Productionof Quantum-Well-Type Structures and Recovoery of Waste Heat from Heavy-Duty Trucks Cost-Effective Fabrication Routes for the Productionof Quantum-Well-Type Structures and...

  3. Designing liquid repellent surfaces for fabrics, feathers and fog

    E-Print Network [OSTI]

    Chhatre, Shreerang S. (Shreerang Sharad)

    2013-01-01T23:59:59.000Z

    Omniphobicity refers to a property of surfaces which are not wetted by water, oils, alcohols and other low surface tension liquids. Robust omniphobic surfaces can be applied in many areas including fabrics with chemical / ...

  4. ag fuel fabrication: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    current design a plate ... Ie, Tze Yung Andrew, 1978- 2004-01-01 6 Fabrication of carbon-aerogel electrodes for use in phosphoric acid fuel cells MIT - DSpace Summary: An...

  5. Fabrication of organic and inorganic nanoparticles using electrospray

    E-Print Network [OSTI]

    Deotare, Parag Bhaskar

    2009-05-15T23:59:59.000Z

    A new fabrication process of organic and inorganic nanoparticles and cups by electrospraying blended polymer-sol-gel solutions followed by calcination has been investigated. Because of low viscosity and high surface tension of blended polymersol...

  6. Nanostructure fabrication by electron and ion beam patterning of nanoparticles

    E-Print Network [OSTI]

    Kong, David Sun, 1979-

    2004-01-01T23:59:59.000Z

    Two modes of energetic beam-mediated fabrication have been investigated, namely focused ion beam (FIB) direct-writing of nanoparticles, and a technique for electrostatically patterning ionized inorganic nanoparticles, ...

  7. GaN Nanopore Arrays: Fabrication and Characterization

    E-Print Network [OSTI]

    Wang, Yadong

    GaN nanopore arrays with pore diameters of approximately 75 nm were fabricated by inductively coupled plasma etching (ICP) using anodic aluminum oxide (AAO) films as etch masks. Nanoporous AAO films were formed on the GaN ...

  8. Proceedings of the twelfth target fabrication specialists` meeting

    SciTech Connect (OSTI)

    NONE

    1999-04-01T23:59:59.000Z

    Research in fabrication for inertial confinement fusion (ICF) comprises at least three broad categories: targets for high energy density physics on existing drivers, ignition capsule fabrication, and cryogenic fuel layer formation. The latter two are being pursued primarily for the National Ignition Facility (NIF). Scientists from over 14 laboratories, universities, and businesses contributed over 100 papers on all aspects of ICF target fabrication. The NIF is well along in construction and photos of poured concrete and exposed steel added to the technical excitement. It was clear from the meeting that there has been significant progress toward the fabrication of an ignition target for NIF and that new techniques are resulting in higher quality targets for high energy density research.

  9. Method of fabricating vertically aligned group III-V nanowires

    DOE Patents [OSTI]

    Wang, George T; Li, Qiming

    2014-11-25T23:59:59.000Z

    A top-down method of fabricating vertically aligned Group III-V micro- and nanowires uses a two-step etch process that adds a selective anisotropic wet etch after an initial plasma etch to remove the dry etch damage while enabling micro/nanowires with straight and smooth faceted sidewalls and controllable diameters independent of pitch. The method enables the fabrication of nanowire lasers, LEDs, and solar cells.

  10. Josephson Junctions and Devices fabricated by Focused Electron Beam Irradiation

    E-Print Network [OSTI]

    Booij, Wilfred Edwin

    Josephson Junctions and Devices fabricated by Focused Electron Beam Irradiation Wilfred Edwin Booij Gonville and Caius College Cambridge A dissertation submitted for the degree of Doctor of Philosophy at the University of Cambridge December 1997... Summary Josephson Junctions and Devices fabricated by Focused Electron Beam Irradiation The irradiation of high Tc superconducting thin films with a focused electron beam, such as that obtained in a scanning transmission electron microscope (STEM), can...

  11. Mechanical properties and fabric of the Punchbowl fault zone, California

    E-Print Network [OSTI]

    Chester, Frederick Michael

    1983-01-01T23:59:59.000Z

    MECHANICAL PROPERIIES AND FABRIC OF THE PUiVCHBOlv'L FAULT ZONE, CALIFORNIA A Thesis by FREDERICK MICHAEL CHESTER Subm-', tted to the Graduate College of Texas ABM University in partial fulfillment of the requirements for the degree... of MASTER OF SCIENCE December 1983 Major Subject: Geology MECHANICAL PROPERTIES AND FABRIC OF THE PUNCHBOWL FAULT ZONE, CALIFORNIA A Thesis by FREDERICK MICHAEL CHESTER Approved as to sty1e and content by: on . . an airman o ommittee) Me1vin edman...

  12. Design and Fabrication of an FEL Injector Cryomodule

    SciTech Connect (OSTI)

    Rathke; A. Ambrosio; M. Cole; E. Peterson; T. Schultheiss; H. Bluem; A.M.M. Todd; I. Campisi; E. Daly; J. Hogan; J. Mammosser; G. Neil; J. Preble; R. Rimmer; C. Rode; J. Sekutowicz; T.Whitlatch; M. Wiseman

    2005-05-16T23:59:59.000Z

    Advanced Energy Systems has recently completed the design of a four cavity cryomodule for use as an FEL injector accelerator on the JLAB Injector Test Stand. Fabrication is nearing completion. Four 748.5 MHz single cell superconducting cavities have been completed and are currently at Jefferson Lab for final processing and test prior to integration in the module. This paper will review the design and fabrication of the cavities and cryomodule.

  13. Comparative Wakefield Analysis of a First Prototype of a DDS Structure for CLIC Main Linac

    E-Print Network [OSTI]

    D'Elia, A; Khan, V F; Grudiev, A; Wuensch, W

    2011-01-01T23:59:59.000Z

    A Damped Detuned Structure (DDS) for CLIC main linac has been proposed as an alternative to the present baseline design which is based on heavy damping. A first prototype, CLIC_DDS_A, for high power tests has been already designed and is under construction. It is also foreseen to design a further prototype, CLIC_DDS_B, to test both the wakefield suppression and high power performances. Wakefield calculations for DDS are, in the early design stage, based on single infinitely periodic cells. Though cell-to-cell interaction is taken into account to calculate the wakefields, it is important to study full structure properties using computational tools. In particular this is fundamental for defining the input parameters for the HOM coupler that is crucial for the performances of DDS. In the following a full analysis of wakefields and impedances based on simulations conducted with finite difference based electromagnetic computer code GdfidL will be presented.

  14. Data Quality and Performance of the NOvA Prototype Detector

    E-Print Network [OSTI]

    S. Lein for the NOvA collaboration

    2011-09-14T23:59:59.000Z

    The NOvA project is a long-baseline neutrino experiment. It utilizes the NuMI neutrino beam at Fermilab and consists of two functionally-identical liquid scintillator filled detectors. The detectors are placed 14 milliradians off-axis from the beam and 810 km apart. A 209 ton prototype detector, the Near Detector On the Surface (NDOS), was built and began taking initial neutrino data in December 2010. NDOS is 110 milliradians off-axis from the NuMI beam and also records neutrinos from the Booster Neutrino Beam. As NDOS is in the commissioning phase, metrics are being developed to improve understanding of the detector as well as monitor the quality of data. Performance of the prototype detector will be presented.

  15. The Analog Front-end Prototype Electronics Designed for LHAASO WCDA

    E-Print Network [OSTI]

    Ma, Cong; Guo, Yu-Xiang; Liu, Jian-Feng; Liu, Shu-Bin; An, Qi

    2015-01-01T23:59:59.000Z

    In the readout electronics of the Water Cerenkov Detector Array (WCDA) in the Large High Altitude Air Shower Observatory (LHAASO) experiment, both high-resolution charge and time measurement are required over a dynamic range from 1 photoelectron (P.E.) to 4000 P.E. The Analog Front-end (AFE) circuit is one of the crucial parts in the whole readout electronics. We designed and optimized a prototype of the AFE through parameter calculation and circuit simulation, and conducted initial electronics tests on this prototype to evaluate its performance. Test results indicate that the charge resolution is better than 1% @ 4000 P.E. and remains better than 10% @ 1 P.E., and the time resolution is better than 0.5 ns RMS, which is better than application requirement.

  16. Beam Test Performance and Simulation of Prototypes for the ALICE Silicon Pixel Detector

    E-Print Network [OSTI]

    Jan Conrad

    2005-11-07T23:59:59.000Z

    The silicon pixel detector (SPD) of the ALICE experiment in preparation at the Large Hadron Collider (LHC) at CERN is designed to provide the precise vertex reconstruction needed for measuring heavy flavor production in heavy ion collisions at very high energies and high multiplicity. The SPD forms the innermost part of the Inner Tracking System (ITS) which also includes silicon drift and silicon strip detectors. Single assembly prototypes of the ALICE SPD have been tested at the CERN SPS using high energy proton/pion beams in 2002 and 2003. We report on the experimental determination of the spatial precision. We also report on the first combined beam test with prototypes of the other ITS silicon detector technologies at the CERN SPS in November 2004. The issue of SPD simulation is briefly discussed.

  17. Clinical prototype of a plastic water-equivalent scintillating fiber dosimeter array for QA applications

    SciTech Connect (OSTI)

    Lacroix, Frederic; Archambault, Louis; Gingras, Luc; Guillot, Mathieu; Beddar, A. Sam; Beaulieu, Luc [Departement de Physique, de Genie Physique et d'Optique, Universite Laval, Quebec, Quebec, G1K 7P4 (Canada) and Departement de Radio-Oncologie, Hotel-Dieu de Quebec, Centre Hospitalier Universitaire de Quebec, Quebec, Quebec G1R2J6 (Canada); Department of Radiation Physics, University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030 (United States); Departement de Physique, de Genie Physique et d'Optique, Universite Laval, Quebec, Quebec G1K 7P4 (Canada) and Departement de Radio-Oncologie, Hotel-Dieu de Quebec, Centre Hospitalier Universitaire de Quebec, Quebec, Quebec G1R2J6 (Canada); Department of Radiation Physics, University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030 (United States); Departement de Physique, de Genie Physique et d'Optique, Universite Laval, Quebec, Quebec, G1K 7P4 (Canada) and Departement de Radio-Oncologie, Hotel-Dieu de Quebec, Centre Hospitalier Universitaire de Quebec, Quebec, Quebec G1R2J6 (Canada)

    2008-08-15T23:59:59.000Z

    A clinical prototype of a scintillating fiber dosimeter array for quality assurance applications is presented. The array consists of a linear array of 29 plastic scintillation detectors embedded in a water-equivalent plastic sheet coupled to optical fibers used to guide optical photons to a charge coupled device (CCD) camera. The CCD is packaged in a light-tight, radiation-shielded housing designed for convenient transport. A custom designed connector is used to ensure reproducible mechanical positioning of the optical fibers relative to the CCD. Profile and depth dose characterization measurements are presented and show that the prototype provides excellent dose measurement reproducibility ({+-}0.8%) in-field and good accuracy ({+-}1.6% maximum deviation) relative to the dose measured with an IC10 ionization chamber.

  18. A versatile class of prototype dynamical systems for complex bifurcation cascades of limit cycles

    E-Print Network [OSTI]

    Sándor, Bulcsú

    2015-01-01T23:59:59.000Z

    We introduce a versatile class of prototype dynamical systems for the study of complex bifurcation cascades of limit cycles, including bifurcations breaking spontaneously a symmetry of the system, period doubling bifurcations and transitions to chaos induced by sequences of limit cycle bifurcations. The prototype system consist of a $2d$-dimensional dynamical system with friction forces $f(V(\\mathbf{x}))$ functionally dependent exclusively on the mechanical potential $V(\\mathbf{x})$, which is typically characterized, here, by a finite number of local minima. We present examples for $d=1,2$ and simple polynomial friction forces $f(V)$, where the zeros of $f(V)$ regulate the relative importance of energy uptake and dissipation respectively, serving as bifurcation parameters. Starting from simple Hopf- and homoclinic bifurcations, complex sequences of limit cycle bifurcation are observed when energy uptake gains progressively in importance.

  19. A versatile class of prototype dynamical systems for complex bifurcation cascades of limit cycles

    E-Print Network [OSTI]

    Bulcsú Sándor; Claudius Gros

    2015-04-13T23:59:59.000Z

    We introduce a versatile class of prototype dynamical systems for the study of complex bifurcation cascades of limit cycles, including bifurcations breaking spontaneously a symmetry of the system, period doubling bifurcations and transitions to chaos induced by sequences of limit cycle bifurcations. The prototype system consist of a $2d$-dimensional dynamical system with friction forces $f(V(\\mathbf{x}))$ functionally dependent exclusively on the mechanical potential $V(\\mathbf{x})$, which is typically characterized, here, by a finite number of local minima. We present examples for $d=1,2$ and simple polynomial friction forces $f(V)$, where the zeros of $f(V)$ regulate the relative importance of energy uptake and dissipation respectively, serving as bifurcation parameters. Starting from simple Hopf- and homoclinic bifurcations, complex sequences of limit cycle bifurcation are observed when energy uptake gains progressively in importance.

  20. Design of irradiation rig for reactor testing of prototype bolometers for ITER

    SciTech Connect (OSTI)

    Gusarov, A.; Huysmans, S. [SCK.CEN Belgian Nucrear Research Center, 2400 Mol (Belgium); Meister, H. [Max-Planck-Institut fuer Plasmaphysik, Boltzmannstr. 2, D-85748 Garching b. Muenchen (Germany); Hodgson, E. [Euratom/CIEMAT Fusion Association, Avenida Complutense 22, 28040 Madrid (Spain)

    2011-07-01T23:59:59.000Z

    We describe the design of an experimental rig, which was developed to allow reactor testing at relevant conditions, i.e. vacuum and {approx}400 deg.C temperature, of prototype resistive bolometers, which will be used in ITER to acquire information on the radiated power distribution from the main plasma and in the diverter region. The main feature of the design is that the rig has no active temperature control. (authors)

  1. A prototype expert system to aid in the identification of excitation emission matrix spectra

    SciTech Connect (OSTI)

    Yee, Y.P. (Army Atmospheric Sciences Laboratory, White Sands Missile Range, NM (USA)); Dudenhoeffer, A.W. (New Mexico State Univ., Las Cruces (USA))

    1990-01-01T23:59:59.000Z

    Advances in the area of luminescence has led to its application in many areas of science including atmospheric sciences, biology, chemistry, and hydrology. An important aspect to consider is the spectral sorting of a mixture of components. One particularly useful measurement in dealing with mixtures is the fluorescence Excitation Emission Matrix (EEM) spectra. A prototype expert system has been developed to aid in the identification of fluorescence EEM spectra.

  2. DEVELOPMENT OF A LOW-COST INFERENTIAL NATURAL GAS ENERGY FLOW RATE PROTOTYPE RETROFIT MODULE

    SciTech Connect (OSTI)

    E. Kelner; T.E. Owen; D.L. George; A. Minachi; M.G. Nored; C.J. Schwartz

    2004-03-01T23:59:59.000Z

    In 1998, Southwest Research Institute{reg_sign} began a multi-year project co-funded by the Gas Research Institute (GRI) and the U.S. Department of Energy. The project goal is to develop a working prototype instrument module for natural gas energy measurement. The module will be used to retrofit a natural gas custody transfer flow meter for energy measurement, at a cost an order of magnitude lower than a gas chromatograph. Development and evaluation of the prototype retrofit natural gas energy flow meter in 2000-2001 included: (1) evaluation of the inferential gas energy analysis algorithm using supplemental gas databases and anticipated worst-case gas mixtures; (2) identification and feasibility review of potential sensing technologies for nitrogen diluent content; (3) experimental performance evaluation of infrared absorption sensors for carbon dioxide diluent content; and (4) procurement of a custom ultrasonic transducer and redesign of the ultrasonic pulse reflection correlation sensor for precision speed-of-sound measurements. A prototype energy meter module containing improved carbon dioxide and speed-of-sound sensors was constructed and tested in the GRI Metering Research Facility at SwRI. Performance of this module using transmission-quality natural gas and gas containing supplemental carbon dioxide up to 9 mol% resulted in gas energy determinations well within the inferential algorithm worst-case tolerance of {+-}2.4 Btu/scf (nitrogen diluent gas measured by gas chromatograph). A two-week field test was performed at a gas-fired power plant to evaluate the inferential algorithm and the data acquisition requirements needed to adapt the prototype energy meter module to practical field site conditions.

  3. Design of 9-meter carbon-fiberglass prototype blades : CX-100 and TX-100 : final project report.

    SciTech Connect (OSTI)

    Berry, Derek (TPI Composites, Inc., Warren, RI)

    2007-09-01T23:59:59.000Z

    TPI Composites, Inc. (TPI), Global Energy Concepts, LLC (GEC), and MDZ Consulting (MDZ) have collaborated on a project to design, manufacture, and test prototype carbon-fiberglass hybrid wind turbine blades of 9-m length. The project, funded by Sandia National Laboratories, involves prototype blades in both conventional (unidirectional spar fibers running along the blade span) and ''adaptive'' (carbon fibers in off-axis orientation to achieve bend-twist-coupling) configurations. After manufacture, laboratory testing is being conducted to determine the static and fatigue strength of the prototypes, in conjunction with field testing to evaluate the performance under operational conditions.

  4. Advanced product realization through model-based design and virtual prototyping

    SciTech Connect (OSTI)

    Andreas, R.D. [Sandia National Labs., Albuquerque, NM (United States). Electronic Subsystems Center

    1995-03-01T23:59:59.000Z

    Several government agencies and industrial sectors have recognized the need for, and payoff of, investing in the methodologies and associated technologies for improving the product realization process. Within the defense community as well as commercial industry, there are three major needs. First, they must reduce the cost of military products, of related manufacturing processes, and of the enterprises that have to be maintained. Second, they must reduce the time required to realize products while still applying the latest technologies. Finally, they must improve the predictability of process attributes, product performance, cost, schedule and quality. They must continue to advance technology, quickly incorporate their innovations in new products and in processes to produce them, and they need to capitalize on the raw computational power and communications bandwidth that continues to become available at decreasing cost. Sandia National Laboratories initiative is pursuing several interrelated, key concepts and technologies in order to enable such product realization process improvements: model-based design; intelligent manufacturing processes; rapid virtual and physical prototyping; and agile people/enterprises. While progress in each of these areas is necessary, this paper only addresses a portion of the overall initiative. First a vision of a desired future capability in model-based design and virtual prototyping is presented. This is followed by a discussion of two specific activities parametric design analysis of Synthetic Aperture Radars (SARs) and virtual prototyping of miniaturized high-density electronics -- that exemplify the vision as well as provide a status report on relevant work in progress.

  5. Risk-Oriented Safety Evaluation of the CAREM-25 Prototype Reactor

    SciTech Connect (OSTI)

    Baron, Jorge H.; McLeod, Jorge E. Nunez; Rivera, Selva S

    2001-05-15T23:59:59.000Z

    Construction of the CAREM-25 full-size prototype, a very low power nuclear power station [25 MW(electric)], is scheduled to begin in Argentina in 2001. The CAREM-25 is designed based on principles of inherent safety, passive safety functions, and ease of operation. This paper analyzes the safety philosophy from the point of view of risk by performing a level-III probabilistic safety assessment (PSA) of this prototype. The specific PSA steps are discussed, including a specially developed method to obtain representative initiating events, system analysis by fault trees, event development in event trees, plant and containment response analysis, containment event tree development, consequence calculations, and risk representation. The PSA results are presented and discussed in terms of their own values as well as in comparison to other PSA results performed for larger nuclear power plants (NPPs). The advantages of the CAREM-25 from the risk point of view are studied in terms of the effective reduction of both the probability of severe accident sequences and the potential consequences of such sequences (radiological and emergency preparedness impact). The risk point of view also provides a perspective to analyze the impact of several design modifications in order to further reduce the residual risk of the NPP. These design modifications, several of which have already been included in the prototype, are discussed and evaluated.

  6. Design and Testing of a Prototype Spallation Neutron Source Rotating Target Assembly

    SciTech Connect (OSTI)

    Rennich, Mark J [ORNL; McManamy, Thomas J [ORNL; Graves, Van [Oak Ridge National Laboratory (ORNL); Garmendia, Amaia Zarraoa [IDOM Bilbao; Sorda, Fernando [ESS Bilbao

    2010-01-01T23:59:59.000Z

    The mechanical aspects of an extended vertical shaft rotating target have been evaluated in a full-scale mockup test. A prototype assembly based on a conceptual target design for a 1 to 3-MW spallation facility was built and tested. Key elements of the drive/coupling assembly implemented in the prototype include high integrity dynamic face seals, commercially available bearings, realistic manufacturing tolerances, effective monitoring and controls, and fail-safe shutdown features. A representative target disk suspended on a 3.5 meter prototypical shaft was coupled with the drive to complete the mechanical tests. After1800 hours of operation the test program has confirmed the overall mechanical feasibility of the extended vertical shaft rotating target concept. Precision alignment of the suspended target disk; successful containment of the water and verification of operational stability over the full speed range of 30 to 60 rpm were primary indications the proposed mechanical design is valid for use in a high power target station.

  7. Applying observations of work activity in designing prototype data analysis tools

    SciTech Connect (OSTI)

    Springmeyer, R.R.

    1993-07-06T23:59:59.000Z

    Designers, implementers, and marketers of data analysis tools typically have different perspectives than users. Consequently, data analysis often find themselves using tools focused on graphics and programming concepts rather than concepts which reflect their own domain and the context of their work. Some user studies focus on usability tests late in development; others observe work activity, but fail to show how to apply that knowledge in design. This paper describes a methodology for applying observations of data analysis work activity in prototype tool design. The approach can be used both in designing improved data analysis tools, and customizing visualization environments to specific applications. We present an example of user-centered design for a prototype tool to cull large data sets. We revisit the typical graphical approach of animating a large data set from the point of view of an analysis who is culling data. Field evaluations using the prototype tool not only revealed valuable usability information, but initiated in-depth discussions about user`s work, tools, technology, and requirements.

  8. Test of a prototype neutron spectrometer based on diamond detectors in a fast reactor

    E-Print Network [OSTI]

    M. Osipenko; F. Pompili; M. Ripani; M. Pillon; G. Ricco; B. Caiffi; R. Cardarelli; G. Verona-Rinati; S. Argiro

    2015-05-23T23:59:59.000Z

    A prototype of neutron spectrometer based on diamond detectors has been developed. This prototype consists of a $^6$Li neutron converter sandwiched between two CVD diamond crystals. The radiation hardness of the diamond crystals makes it suitable for applications in low power research reactors, while a low sensitivity to gamma rays and low leakage current of the detector permit to reach good energy resolution. A fast coincidence between two crystals is used to reject background. The detector was read out using two different electronic chains connected to it by a few meters of cable. The first chain was based on conventional charge-sensitive amplifiers, the other used a custom fast charge amplifier developed for this purpose. The prototype has been tested at various neutron sources and showed its practicability. In particular, the detector was calibrated in a TRIGA thermal reactor (LENA laboratory, University of Pavia) with neutron fluxes of $10^8$ n/cm$^2$s and at the 3 MeV D-D monochromatic neutron source named FNG (ENEA, Rome) with neutron fluxes of $10^6$ n/cm$^2$s. The neutron spectrum measurement was performed at the TAPIRO fast research reactor (ENEA, Casaccia) with fluxes of 10$^9$ n/cm$^2$s. The obtained spectra were compared to Monte Carlo simulations, modeling detector response with MCNP and Geant4.

  9. Test of a prototype neutron spectrometer based on diamond detectors in a fast reactor

    E-Print Network [OSTI]

    Osipenko, M; Ripani, M; Pillon, M; Ricco, G; Caiffi, B; Cardarelli, R; Verona-Rinati, G; Argiro, S

    2015-01-01T23:59:59.000Z

    A prototype of neutron spectrometer based on diamond detectors has been developed. This prototype consists of a $^6$Li neutron converter sandwiched between two CVD diamond crystals. The radiation hardness of the diamond crystals makes it suitable for applications in low power research reactors, while a low sensitivity to gamma rays and low leakage current of the detector permit to reach good energy resolution. A fast coincidence between two crystals is used to reject background. The detector was read out using two different electronic chains connected to it by a few meters of cable. The first chain was based on conventional charge-sensitive amplifiers, the other used a custom fast charge amplifier developed for this purpose. The prototype has been tested at various neutron sources and showed its practicability. In particular, the detector was calibrated in a TRIGA thermal reactor (LENA laboratory, University of Pavia) with neutron fluxes of $10^8$ n/cm$^2$s and at the 3 MeV D-D monochromatic neutron source na...

  10. Method for producing fabrication material for constructing micrometer-scaled machines, fabrication material for micrometer-scaled machines

    SciTech Connect (OSTI)

    Stevens, F.J.

    1995-12-31T23:59:59.000Z

    A method for producing fabrication material for use in the construction of nanometer-scaled machines is provided whereby similar protein molecules are isolated and manipulated at predetermined residue positions so as to facilitate noncovalent interaction, but without compromising the folding configuration or native structure of the original protein biomodules. A fabrication material is also provided consisting of biomodules systematically constructed and arranged at specific solution parameters.

  11. Modeling of Multilayer Composite Fabrics for Gas Turbine Engine Containment Systems

    E-Print Network [OSTI]

    Mobasher, Barzin

    Modeling of Multilayer Composite Fabrics for Gas Turbine Engine Containment Systems J. Sharda1 ; C of multilayer composite fabrics used in a gas turbine engine containment system is developed. Specifically to obtain the material properties of these fabrics. Later, one or more layers of these fabrics is tightly

  12. ME 397/379M Solid Freeform Fabrication Syllabus, Spring 2009

    E-Print Network [OSTI]

    Seepersad, Carolyn Conner

    Engineered Net Shaping, Electron Beam Melting) (3) Selection of Solid Freeform Fabrication Technologies (2

  13. This paper presents design, fabrication, and experimental results of a wireless induction heating

    E-Print Network [OSTI]

    transdermal patches. The micro-heating element arrays have been fabricated using electrodeposition of nickel

  14. Cost Estimating Database and Prototype Tool to Support Design and Construction of Rural and Small Urban Transit Facilities

    E-Print Network [OSTI]

    Zheng, Yue

    2014-10-13T23:59:59.000Z

    and small urban transit facility industry. Unique characteristics and risk factors of those facilities were identified. A cost estimating database was constructed based on the historical cost data collected through online surveys. A cost estimating prototype...

  15. First Spectroscopic Imaging Observations of the Sun at Low Radio Frequencies with the Murchison Widefield Array Prototype

    E-Print Network [OSTI]

    Oberoi, Divya

    We present the first spectroscopic images of solar radio transients from the prototype for the Murchison Widefield Array, observed on 2010 March 27. Our observations span the instantaneous frequency band 170.9–201.6 MHz. ...

  16. A prototype implementation of a network-level intrusion detection system. Technical report number CS91-11

    SciTech Connect (OSTI)

    Heady, R.; Luger, G.F.; Maccabe, A.B.; Servilla, M.; Sturtevant, J. [New Mexico Univ., Albuquerque, NM (United States). Dept. of Computer Science

    1991-05-15T23:59:59.000Z

    This paper presents the implementation of a prototype network level intrusion detection system. The prototype system monitors base level information in network packets (source, destination, packet size, time, and network protocol), learning the normal patterns and announcing anomalies as they occur. The goal of this research is to determine the applicability of current intrusion detection technology to the detection of network level intrusions. In particular, the authors are investigating the possibility of using this technology to detect and react to worm programs.

  17. Advanced Safeguards Approaches for New TRU Fuel Fabrication Facilities

    SciTech Connect (OSTI)

    Durst, Philip C.; Ehinger, Michael H.; Boyer, Brian; Therios, Ike; Bean, Robert; Dougan, A.; Tolk, K.

    2007-12-15T23:59:59.000Z

    This second report in a series of three reviews possible safeguards approaches for the new transuranic (TRU) fuel fabrication processes to be deployed at AFCF – specifically, the ceramic TRU (MOX) fuel fabrication line and the metallic (pyroprocessing) line. The most common TRU fuel has been fuel composed of mixed plutonium and uranium dioxide, referred to as “MOX”. However, under the Advanced Fuel Cycle projects custom-made fuels with higher contents of neptunium, americium, and curium may also be produced to evaluate if these “minor actinides” can be effectively burned and transmuted through irradiation in the ABR. A third and final report in this series will evaluate and review the advanced safeguards approach options for the ABR. In reviewing and developing the advanced safeguards approach for the new TRU fuel fabrication processes envisioned for AFCF, the existing international (IAEA) safeguards approach at the Plutonium Fuel Production Facility (PFPF) and the conceptual approach planned for the new J-MOX facility in Japan have been considered as a starting point of reference. The pyro-metallurgical reprocessing and fuel fabrication process at EBR-II near Idaho Falls also provided insight for safeguarding the additional metallic pyroprocessing fuel fabrication line planned for AFCF.

  18. Fabrication of control rods for the High Flux Isotope Reactor

    SciTech Connect (OSTI)

    Sease, J.D.

    1998-03-01T23:59:59.000Z

    The High Flux Isotope Reactor (HFIR) is a research-type nuclear reactor that was designed and built in the early 1960s and has been in continuous operation since its initial criticality in 1965. Under current plans, the HFIR is expected to continue in operation until 2035. This report updates ORNL/TM-9365, Fabrication Procedure for HFIR Control Plates, which was mainly prepared in the early 1970's but was not issued until 1984, and reflects process changes, lessons learned in the latest control rod fabrication campaign, and suggested process improvements to be considered in future campaigns. Most of the personnel involved with the initial development of the processes and in part campaigns have retired or will retire soon. Because their unlikely availability in future campaigns, emphasis has been placed on providing some explanation of why the processes were selected and some discussions about the importance of controlling critical process parameters. Contained in this report is a description of the function of control rods in the reactor, the brief history of the development of control rod fabrication processes, and a description of procedures used in the fabrication of control rods. A listing of the controlled documents and procedures used in the last fabrication campaigns is referenced in Appendix A.

  19. Feedback-controlled laser fabrication of micromirror substrates

    E-Print Network [OSTI]

    Benjamin Petrak; Kumarasiri Konthasinghe; Sonia Perez; Andreas Muller

    2012-06-11T23:59:59.000Z

    Short (40-200 microseconds) single focused CO2 laser pulses of energy of about 100 microJ were used to fabricate high quality concave micromirror templates on silica and fluoride glass. The ablated features have diameters of 20-100 microns and average root-mean-square (RMS) surface microroughness near their center of less than 0.2 nm. Temporally monitoring the fabrication process revealed that it proceeds on a time scale shorter than the laser pulse duration. We implement a fast feedback control loop (20 kHz bandwidth) based on the light emitted by the sample that ensures an RMS size dispersion of less than 5 percent in arrays on chips or in individually fabricated features on an optical fiber tip, a significant improvement over previous approaches using longer pulses and open loop operation.

  20. Method of fabricating reflection-mode EUV diffraction elements

    DOE Patents [OSTI]

    Naulleau, Patrick P. (Oakland, CA)

    2002-01-01T23:59:59.000Z

    Techniques for fabricating a well-controlled, quantized-level, engineered surface that serves as substrates for EUV reflection multilayer overcomes problems associated with the fabrication of reflective EUV diffraction elements. The technique when employed to fabricate an EUV diffraction element that includes the steps of: (a) forming an etch stack comprising alternating layers of first and second materials on a substrate surface where the two material can provide relative etch selectivity; (b) creating a relief profile in the etch stack wherein the relief profile has a defined contour; and (c) depositing a multilayer reflection film over the relief profile wherein the film has an outer contour that substantially matches that of the relief profile. For a typical EUV multilayer, if the features on the substrate are larger than 50 nm, the multilayer will be conformal to the substrate. Thus, the phase imparted to the reflected wavefront will closely match that geometrically set by the surface height profile.

  1. Energy conservation in electrostatic fabric filtration of industrial dust

    SciTech Connect (OSTI)

    Ariman, T.

    1981-12-01T23:59:59.000Z

    Conservation in energy consumption in industrial fabric filtration systems has become very important due to the substantial increase in energy costs. Recently, an external electric field was utilized in the industrial dust control by fabric filters with very promising initial results. A substantial decrease in the pressure drop and an increase in collection efficiency were observed. The detailed outcome of the experimental research program in electrostatic fabric filtration was presented. The results show that pressure drop decreases substantially with the increased electrostatic field strength for all relevant parameters. Furthermore, the data of the experimental program was utilized to develop a semi-empirical model for the determination of the pressure drop and to establish an Energy-Optimized Design Criteria.

  2. Surface Micromachine Microfluidics: Design, Fabrication, Packaging, and Characterization

    SciTech Connect (OSTI)

    Galambos, Paul; Eaton, William P.; Shul, Randy; Willison, Christi Gober; Sniegowski, Jeffrey J.; Miller, Samuel L.; Guttierez, Daniel

    1999-06-30T23:59:59.000Z

    The field of microfluidics is undergoing rapid growth in terms of new device and system development. Among the many methods of fabricating microfluidic devices and systems, surface micromachining is relatively underrepresented due to difficulties in the introduction of fluids into the very small channels produced, packaging problems, and difficulties in device and system characterization. The potential advantages of using surface micromachining including compatibility with the existing integrated circuit tool set, integration of electronic sensing and actuation with microfluidics, and fluid volume minimization. In order to explore these potential advantages we have developed first generation surface micromachined microfluidic devices (channels) using an adapted pressure sensor fabrication process to produce silicon nitride channels, and the SUMMiT process to produce polysilicon channels. The channels were characterized by leak testing and flow rate vs. pressure measurements. The fabrication processes used and results of these tests are reported in this paper.

  3. Coated U(Mo) Fuel: As-Fabricated Microstructures

    SciTech Connect (OSTI)

    Emmanuel Perez; Dennis D. Keiser, Jr.; Ann Leenaers; Sven Van den Berghe; Tom Wiencek

    2014-04-01T23:59:59.000Z

    As part of the development of low-enriched uranium fuels, fuel plates have recently been tested in the BR-2 reactor as part of the SELENIUM experiment. These fuel plates contained fuel particles with either Si or ZrN thin film coating (up to 1 µm thickness) around the U-7Mo fuel particles. In order to best understand irradiation performance, it is important to determine the starting microstructure that can be observed in as-fabricated fuel plates. To this end, detailed microstructural characterization was performed on ZrN and Si-coated U-7Mo powder in samples taken from AA6061-clad fuel plates fabricated at 500°C. Of interest was the condition of the thin film coatings after fabrication at a relatively high temperature. Both scanning electron microscopy and transmission electron microscopy were employed. The ZrN thin film coating was observed to consist of columns comprised of very fine ZrN grains. Relatively large amounts of porosity could be found in some areas of the thin film, along with an enrichment of oxygen around each of the the ZrN columns. In the case of the pure Si thin film coating sample, a (U,Mo,Al,Si) interaction layer was observed around the U-7Mo particles. Apparently, the Si reacted with the U-7Mo and Al matrix during fuel plate fabrication at 500°C to form this layer. The microstructure of the formed layer is very similar to those that form in U-7Mo versus Al-Si alloy diffusion couples annealed at higher temperatures and as-fabricated U-7Mo dispersion fuel plates with Al-Si alloy matrix fabricated at 500°C.

  4. Development of the prototype Munitions Case Moisture Meter, Model ORNL-1. Final report

    SciTech Connect (OSTI)

    Agouridis, D.C.; Gayle, T.M.; Griest, W.H.

    1993-02-24T23:59:59.000Z

    There is a great need for a rapid and simple means of determining the moisture content in combustible cartridge case (ccc) munitions. Previous studies have demonstrated that accumulation of moisture in ccc rounds, such as the M829, leads to softening of the case wall and weakening of the adhesive joint. Moisture in the ccc can lead to incomplete combustion of the case upon firing the round. Currently, there are no facile methods for measuring the moisture content. A prototype portable meter for non-destructive and rapid estimation of moisture in ccc has been developed. The Munitions Case Moisture Meter Model ORNL-1 demonstrates the feasibility of developing an instrument based on the moisture dependence of dielectric properties, to measure moisture in ccc munitions in storage and in the field. These instruments are simple, inexpensive, lightweight, portable, low-power battery operated, and intrinsically safe. They provide nondestructive, noninvasive, and rapid measurements. Calibration data for the prototype are not available at this time. Therefore, calibration of the meter and the development of a scale reading directly moisture content in munitions rounds could not be completed. These data will be supplied by the US Army from its tests of the meter with actual munitions. However, experimental results on empty cccs in laboratory conditions demonstrate satisfactory performance of the instrument. Additional work is needed to bring the prototype to its optimum usefulness and accuracy for field measurements. This includes: Calibration of the meter scale with full-up munitions; Data and evaluation procedures to adjust the performance of the meter for different environmental conditions such as temperature and humidity; and Studies of the dielectric properties of moist ccc materials, as a function of frequency and temperature, are needed for adjustment of the meter for optimal performance.

  5. Development of the prototype Munitions Case Moisture Meter, Model ORNL-1

    SciTech Connect (OSTI)

    Agouridis, D.C.; Gayle, T.M.; Griest, W.H.

    1993-02-24T23:59:59.000Z

    There is a great need for a rapid and simple means of determining the moisture content in combustible cartridge case (ccc) munitions. Previous studies have demonstrated that accumulation of moisture in ccc rounds, such as the M829, leads to softening of the case wall and weakening of the adhesive joint. Moisture in the ccc can lead to incomplete combustion of the case upon firing the round. Currently, there are no facile methods for measuring the moisture content. A prototype portable meter for non-destructive and rapid estimation of moisture in ccc has been developed. The Munitions Case Moisture Meter Model ORNL-1 demonstrates the feasibility of developing an instrument based on the moisture dependence of dielectric properties, to measure moisture in ccc munitions in storage and in the field. These instruments are simple, inexpensive, lightweight, portable, low-power battery operated, and intrinsically safe. They provide nondestructive, noninvasive, and rapid measurements. Calibration data for the prototype are not available at this time. Therefore, calibration of the meter and the development of a scale reading directly moisture content in munitions rounds could not be completed. These data will be supplied by the US Army from its tests of the meter with actual munitions. However, experimental results on empty cccs in laboratory conditions demonstrate satisfactory performance of the instrument. Additional work is needed to bring the prototype to its optimum usefulness and accuracy for field measurements. This includes: Calibration of the meter scale with full-up munitions; Data and evaluation procedures to adjust the performance of the meter for different environmental conditions such as temperature and humidity; and Studies of the dielectric properties of moist ccc materials, as a function of frequency and temperature, are needed for adjustment of the meter for optimal performance.

  6. Polarimetric performance of a Laue lens gamma-ray CdZnTe focal plane prototype

    SciTech Connect (OSTI)

    Curado da Silva, R. M. [Departmento de Fisica, Universidade de Coimbra, P-3000 Coimbra (Portugal); Center for Space Radiations, Univesite Catholique de Louvain (Belgium); Caroli, E.; Stephen, J. B.; Schiavone, F.; Donati, A.; Ventura, G. [Istituto di Astrofisica Spaziale e Fisica Cosmica-Bologna, Via Gobetti 101, I-40129 Bologna (Italy); Pisa, A.; Auricchio, N.; Frontera, F. [Dipartimento di Fisica, Universita di Ferrara, Ferrara (Italy); Del Sordo, S. [Istituto di Astrofisica Spaziale e Fisica Cosmica-Palermo, Via Ugo La Malfa 153, 90146 Palermo (Italy); Honkimaeki, V. [European Synchrotron Radiation Facility, Grenoble (France); Trindade, A. M. F. [Departmento de Fisica, Universidade de Coimbra, P-3000 Coimbra (Portugal)

    2008-10-15T23:59:59.000Z

    A gamma-ray telescope mission concept [gamma ray imager (GRI)] based on Laue focusing techniques has been proposed in reply to the European Space Agency call for mission ideas within the framework of the next decade planning (Cosmic Vision 2015-2025). In order to optimize the design of a focal plane for this satellite mission, a CdZnTe detector prototype has been tested at the European Synchrotron Radiation Facility under an {approx}100% polarized gamma-ray beam. The spectroscopic, imaging, and timing performances were studied and in particular its potential as a polarimeter was evaluated. Polarization has been recognized as being a very important observational parameter in high energy astrophysics (>100 keV) and therefore this capability has been specifically included as part of the GRI mission proposal. The prototype detector tested was a 5 mm thick CdZnTe array with an 11x11 active pixel matrix (pixel area of 2.5x2.5 mm{sup 2}). The detector was irradiated by a monochromatic linearly polarized beam with a spot diameter of about 0.5 mm over the energy range between 150 and 750 keV. Polarimetric Q factors of 0.35 and double event relative detection efficiency of 20% were obtained. Further measurements were performed with a copper Laue monochromator crystal placed between the beam and the detector prototype. In this configuration we have demonstrated that a polarized beam does not change its polarization level and direction after undergoing a small angle (<1 deg.) Laue diffraction inside a crystal.

  7. Note: Neutron bang time diagnostic system on Shenguang-III prototype

    SciTech Connect (OSTI)

    Tang, Qi; Chen, Jiabin; Liu, Zhongjie; Zhan, Xiayu; Song, Zifeng, E-mail: mphyszf@qq.com [Research Center of Laser Fusion, China Academy of Engineering Physics, P. O. Box 919-986, Mianyang, Sichuan 621900 (China)] [Research Center of Laser Fusion, China Academy of Engineering Physics, P. O. Box 919-986, Mianyang, Sichuan 621900 (China)

    2014-04-15T23:59:59.000Z

    A neutron bang time (NBT) diagnostic system has been implemented on Shenguang-III prototype. The bang time diagnostic system is based on a sensitive fusion neutron detector, which consists of a plastic scintillator and a micro-channel plate photomultiplier tube (PMT). An optical fiber bundle is used to couple the scintillator and the PMT. The bang time system is able to measure bang time above a neutron yield of 10{sup 7}. Bang times and start time of laser were related by probing x-ray pulses produced by 200 ps laser irradiating golden targets. Timing accuracy of the NBT is better than 60 ps.

  8. Frequency measurement of the prototype storage ring stainless steel single cell cavity

    SciTech Connect (OSTI)

    Reisinger, E.A.

    1992-07-29T23:59:59.000Z

    Frequency measurements were made on the stainless steel single cell cavity after prototype storage ring at the Advanced Photon Source with various port terminations, using two small loops. The cavity contains six larger ports. The top and bottom ports have a diameter of 144 mm, the front and back ports (beam ports) have a diameter of 140 mm, and the two side ports have a diameter of 120 mm. The cavity also have four smaller ports of diameter 34.8 mm, which contain an E-probe, a H-loop, and two field probes.

  9. Prototype Development Capabilities of 3D Spatial Interactions and Failures During Scenario Simulation

    SciTech Connect (OSTI)

    Steven Prescott; Ramprasad Sampath; Curtis Smith; Tony Koonce

    2014-09-01T23:59:59.000Z

    Computers have been used for 3D modeling and simulation, but only recently have computational resources been able to give realistic results in a reasonable time frame for large complex models. This report addressed the methods, techniques, and resources used to develop a prototype for using 3D modeling and simulation engine to improve risk analysis and evaluate reactor structures and components for a given scenario. The simulations done for this evaluation were focused on external events, specifically tsunami floods, for a hypothetical nuclear power facility on a coastline.

  10. Integral Validation of Minor Actinide Nuclear Data by using Samples Irradiated at Dounreay Prototype Fast Reactor

    SciTech Connect (OSTI)

    Tsujimoto, Kazufumi; Oigawa, Hiroyuki; Shinohara, Nobuo [Japan Atomic Energy Research Institute, Shirakata Shirane 2-4, Tokai, Ibaraki 319-1195 (Japan)

    2005-05-24T23:59:59.000Z

    The reliability of nuclear data for minor actinides was evaluated by using the results of the post-irradiation experiment for actinide samples irradiated at the Dounreay Prototype Fast Reactor. The burnup calculations with JENDL-3.3, ENDF/B-VI.8, and JEFF-3.0 were performed. From the comparison between the experimental data and the calculational results, in general, the reliability of nuclear data for the minor actinides are at an adequate level for the conceptual design study of transmutation systems. It is, however, found that improvement of the accuracy is necessary for some nuclides, such as 238Pu, 242Pu, and 241Am.

  11. Monitoring the Thermal Power of Nuclear Reactors with a Prototype Cubic Meter Antineutrino Detector

    E-Print Network [OSTI]

    A. Bernstein; N. S. Bowden; A. Misner; T. Palmer

    2008-04-30T23:59:59.000Z

    In this paper, we estimate how quickly and how precisely a reactor's operational status and thermal power can be monitored over hour to month time scales, using the antineutrino rate as measured by a cubic meter scale detector. Our results are obtained from a detector we have deployed and operated at 25 meter standoff from a reactor core. This prototype can detect a prompt reactor shutdown within five hours, and monitor relative thermal power to three percent within seven days. Monitoring of short-term power changes in this way may be useful in the context of International Atomic Energy Agency's (IAEA) Reactor Safeguards Regime, or other cooperative monitoring regimes.

  12. Study of the interactions of pions in the CALICE silicon-tungsten calorimeter prototype

    E-Print Network [OSTI]

    C. Adloff; Y. Karyotakis; J. Repond; J. Yu; G. Eigen; Y. Mikami; N. K. Watson; J. A. Wilson; T. Goto; G. Mavromanolakis; M. A. Thomson; D. R. Ward; W. Yan; D. Benchekroun; A. Hoummada; Y. Khoulaki; J. Apostolakis; A. Ribon; V. Uzhinskiy; M. Benyamna; C. Cârloganu; F. Fehr; P. Gay; G. C. Blazey; D. Chakraborty; A. Dyshkant; K. Francis; D. Hedin; J. G. Lima; V. Zutshi; J. -Y. Hostachy; K. Krastev; L. Morin; N. D'Ascenzo; U. Cornett; D. David; R. Fabbri; G. Falley; K. Gadow; E. Garutti; P. Göttlicher; T. Jung; S. Karstensen; A. -I. Lucaci-Timoce; B. Lutz; N. Meyer; V. Morgunov; M. Reinecke; F. Sefkow; P. Smirnov; A. Vargas-Trevino; N. Wattimena; O. Wendt; N. Feege; M. Groll; J. Haller; R. -D. Heuer; S. Morozov; S. Richter; J. Samson; A. Kaplan; H. -Ch. Schultz-Coulon; W. Shen; A. Tadday; B. Bilki; E. Norbeck; Y. Onel; E. J. Kim; G. Kim; D-W. Kim; K. Lee; S. C. Lee; K. Kawagoe; Y. Tamura; P. D. Dauncey; A. -M. Magnan; H. Yilmaz; O. Zorba; V. Bartsch; M. Postranecky; M. Warren; M. Wing; M. G. Green; F. Salvatore; M. Bedjidian; R. Kieffer; I. Laktineh; M. -C. Fouz; D. S. Bailey; R. J. Barlow; M. Kelly; R. J. Thompson; M. Danilov; E. Tarkovsky; N. Baranova; D. Karmanov; M. Korolev; M. Merkin; A. Voronin; A. Frey; S. Lu; K. Seidel; F. Simon; C. Soldner; L. Weuste; J. Bonis; B. Bouquet; S. Callier; P. Cornebise; Ph. Doublet; M. Faucci Giannelli; J. Fleury; H. Li; G. Martin-Chassard; F. Richard; Ch. de la Taille; R. Poeschl; L. Raux; N. Seguin-Moreau; F. Wicek; M. Anduze; V. Boudry; J-C. Brient; G. Gaycken; D. Jeans; P. Mora de Freitas; G. Musat; M. Reinhard; A. Rougé; M. Ruan; J-Ch. Vanel; H. Videau; K-H. Park; J. Zacek; J. Cvach; P. Gallus; M. Havranek; M. Janata; M. Marcisovsky; I. Polak; J. Popule; L. Tomasek; M. Tomasek; P. Ruzicka; P. Sicho; J. Smolik; V. Vrba; J. Zalesak; B. Belhorma; M. Belmir; S. W. Nam; I. H. Park; J. Yang; Jong-Seo Chai; Jong-Tae Kim; Geun-Bum Kim; J. Kang; Y. -J. Kwon

    2010-04-28T23:59:59.000Z

    A prototype silicon-tungsten electromagnetic calorimeter for an ILC detector was tested in 2007 at the CERN SPS test beam. Data were collected with electron and hadron beams in the energy range 8 to 80 GeV. The analysis described here focuses on the interactions of pions in the calorimeter. One of the main objectives of the CALICE program is to validate the Monte Carlo tools available for the design of a full-sized detector. The interactions of pions in the Si-W calorimeter are therefore confronted with the predictions of various physical models implemented in the GEANT4 simulation framework.

  13. Building and Calibration of a FAST Model of the SWAY Prototype Floating Wind Turbine: Preprint

    SciTech Connect (OSTI)

    Koh, J. H.; Robertson, A.; Jonkman, J.; Driscoll, F.; Ng, E. Y. K.

    2013-09-01T23:59:59.000Z

    Present efforts to verify and validate aero-hydro-servo-elastic numerical simulation tools that predict the dynamic response of a floating offshore wind turbine are primarily limited to code-to-code comparisons or code-to-data comparisons using data from wind-wave basin tests. In partnership with SWAY AS, the National Renewable Energy Laboratory (NREL) installed scientific wind, wave, and motion measurement equipment on the 1/6.5th-scale prototype SWAY floating wind system to collect data to validate a FAST model of the SWAY design in an open-water condition. Nanyang Technological University (NTU), through a collaboration with NREL, assisted in this validation.

  14. Greenfield Alternative Study LEU-Mo Fuel Fabrication Facility

    SciTech Connect (OSTI)

    Washington Division of URS

    2008-07-01T23:59:59.000Z

    This report provides the initial “first look” of the design of the Greenfield Alternative of the Fuel Fabrication Capability (FFC); a facility to be built at a Greenfield DOE National Laboratory site. The FFC is designed to fabricate LEU-Mo monolithic fuel for the 5 US High Performance Research Reactors (HPRRs). This report provides a pre-conceptual design of the site, facility, process and equipment systems of the FFC; along with a preliminary hazards evaluation, risk assessment as well as the ROM cost and schedule estimate.

  15. Fabrication of polycrystalline thin films by pulsed laser processing

    DOE Patents [OSTI]

    Mitlitsky, F.; Truher, J.B.; Kaschmitter, J.L.; Colella, N.J.

    1998-02-03T23:59:59.000Z

    A method is disclosed for fabricating polycrystalline thin films on low-temperature (or high-temperature) substrates which uses processing temperatures that are low enough to avoid damage to the substrate, and then transiently heating select layers of the thin films with at least one pulse of a laser or other homogenized beam source. The pulse length is selected so that the layers of interest are transiently heated to a temperature which allows recrystallization and/or dopant activation while maintaining the substrate at a temperature which is sufficiently low to avoid damage to the substrate. This method is particularly applicable in the fabrication of solar cells. 1 fig.

  16. JLab SRF Cavity Fabrication Errors, Consequences and Lessons Learned

    SciTech Connect (OSTI)

    Frank Marhauser

    2011-09-01T23:59:59.000Z

    Today, elliptical superconducting RF (SRF) cavities are preferably made from deep-drawn niobium sheets as pursued at Jefferson Laboratory (JLab). The fabrication of a cavity incorporates various cavity cell machining, trimming and electron beam welding (EBW) steps as well as surface chemistry that add to forming errors creating geometrical deviations of the cavity shape from its design. An analysis of in-house built cavities over the last years revealed significant errors in cavity production. Past fabrication flaws are described and lessons learned applied successfully to the most recent in-house series production of multi-cell cavities.

  17. Fabrication of polycrystalline thin films by pulsed laser processing

    DOE Patents [OSTI]

    Mitlitsky, Fred (Livermore, CA); Truher, Joel B. (San Rafael, CA); Kaschmitter, James L. (Pleasanton, CA); Colella, Nicholas J. (Livermore, CA)

    1998-02-03T23:59:59.000Z

    A method for fabricating polycrystalline thin films on low-temperature (or high-temperature) substrates which uses processing temperatures that are low enough to avoid damage to the substrate, and then transiently heating select layers of the thin films with at least one pulse of a laser or other homogenized beam source. The pulse length is selected so that the layers of interest are transiently heated to a temperature which allows recrystallization and/or dopant activation while maintaining the substrate at a temperature which is sufficiently low to avoid damage to the substrate. This method is particularly applicable in the fabrication of solar cells.

  18. Fabrication of strained silicon on insulator by strain transfer process

    SciTech Connect (OSTI)

    Jin Bo; Wang Xi; Chen Jing; Cheng Xinli; Chen Zhijun [Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Road, Shanghai 200050 (China)

    2005-08-01T23:59:59.000Z

    The fabrication of ultrathin strained silicon layer directly on insulator is demonstrated. 50 nm strained silicon on insulator layers were fabricated by a method which includes four steps: Epitaxial growth of strained SiGe on ultrathin silicon on insulator (SOI) substrates, ion implantation, postannealing process, and etch-back process. Strain of the layer was observed by Raman spectroscopy. 0.72% tensile strain was maintained in the strained silicon layer even after removing the SiGe film. The strained layer was the result of strain equalization and transfer process between the SiGe film and top silicon layer.

  19. Final report on LDRD project: Low-cost Pd-catalyzed metallization technology for rapid prototyping of electronic substrates and devices

    SciTech Connect (OSTI)

    Chen, K.S.; Morgan, W.P.; Zich, J.L.

    1998-02-01T23:59:59.000Z

    A low-cost, thermally-activated, palladium-catalyzed metallization process was developed for rapid prototyping of polymeric electronic substrates and devices. The process was successfully applied in producing adhesiveless copper/polyimide laminates with high peel strengths and thick copper coating; copper/polyimide laminates are widely used in fabricating interconnects such as printed wiring boards (PWBs) and flexible circuits. Also successfully metallized using this low-cost metallization process were: (1) scaled-down models of radar-and-communication antenna and waveguide; (2) scaled-down model of pulsed-power-accelerator electrode; (3) three-dimensional micro-porous, open-cell vitreous carbon foams. Moreover, additive patterned metallization was successfully achieved by selectively printing or plotting the catalyst ink only on areas where metallization is desired, and by uniform thermal activation. Additive patterned metallization eliminates the time-consuming, costly and environmentally-unfriendly etching process that is routinely carried out in conventional subtractive patterned metallization. A metallization process via ultraviolet (UV) irradiation activation was also demonstrated. In this process palladium-catalyst solution is first uniformly coated onto the substrate. A masking pattern is used to cover the areas where metallization is not wanted. UV irradiation is applied uniformly to activate the palladium catalyst and to cure the polymer carrier in areas that are not covered by the mask. Metal is then deposited by electroless plating only or by a combination of electroless and electrolytic plating. This UV-activation technique is particularly useful in additive fine-line patterned metallization. Lastly, computer models for electrolytic and electroless plating processes were developed to provide guidance in plating-process design.

  20. Performance of a new LMRPC prototype for the STAR MTD system

    SciTech Connect (OSTI)

    Ruan, L.J.; Wang, Y.; Chen, H. S.; Ding, W. C.; Qiu, X. Z.; Wang, J. B.; Zhu, X. L.; Kang, K. J.; Cheng, J. P.; Li, Y. J.; Ruan, L.; Xu, Z.; Asselta, K.; Christie, W.; D'Agostino, C.; Dunlop, J.; Landgraf, J.; Ljubicic, T.; Scheblein, J.; Soja, R.; Tang, A. H.; Ullrich, T.; Crawford, H. J.; Engelage, J.; Sanchez, M. Calderon de la Barca; Reed, R.; Liu, H. D.; Butterworth, J.; Eppley, G.; Geurts, F.; Llope, W. J.; McDonald, D.; Nussbaum, T.; Roberts, J.; Xin, K.; Bridges, L.; Li, J. C.; Qian, S.; Ning, Z.; Chen, H. F.; Huang, B. C.; Li, C.; Shao, M.; Sun, Y. J.; Tang, Z. B.; Wang, X. L.; Xu, Y. C.; Zhang, Z. P.; Zeng, H.; Zhou, Y.; Clarke, R.; Mioduszewski, S.; Davila, A.; Hoffmann, G. W.; Li, L.; Markert, C.; Ray, L.; Schambach, J.; Thein, D.; Wada, M.; Ahammed, Z.; Bhaduri, P. P.; Chattopadhyay, S.; Dubey, A. K.; Dutt-Mazumdar, M. R.; Ghosh, P.; Khan, S. A.; Muhuri, S.; Mohanty, B.; Nayak, T. K.; Pal, S.; Singaraju, R.; Singhal, V.; Tribedy, P.; Viyogi, Y. P.

    2011-03-21T23:59:59.000Z

    A new prototype of a Long-Strip Multi-Gap Resistive Plate Chamber (LMRPC) for the STAR Muon Telescope Detector (MTD) at RHIC has been developed. This prototype has an active area of 52 x 90 cm{sup 2} and consists of six 250 {mu}m wide gaps. Each detector has 12 strips, read-out at both ends, which are each 3.8 cm wide and 90 cm long with 0.6 cm intervals. In cosmic-ray tests, the efficiency was larger than 95% and the time resolution was {approx}75 ps for the 94% Freon, 5% iso-butane, and 1% SF{sub 6} gas mixture. There was good uniformity in the performance across the different strips. The module was also tested in a proton beam at IHEP in Beijing. The efficiency was close to 100% and the best timing resolution achieved was 55 ps for the 90% Freon, 5% iso-butane, and 5% SF6 gas mixture. Trigger scans along and across the strip direction were also performed.

  1. The Prototype Inductive Adder With Droop Compensation for the CLIC Kicker Systems

    E-Print Network [OSTI]

    Holma, J

    2014-01-01T23:59:59.000Z

    The Compact Linear Collider (CLIC) study is exploring the scheme for an electron-positron collider with high luminosity and a nominal center-of-mass energy of 3 TeV. The CLIC predamping rings and damping rings (DRs) will produce, through synchrotron radiation, an ultralow emittance beam with high bunch charge. To avoid beam emittance increase, the DR kicker systems must provide extremely flat, high-voltage, pulses. The specifications for the extraction kickers of the DRs are particularly demanding: the flattops of the pulses must be ±12.5 kV with a combined ripple and droop of not more than ±0.02% (±2.5 V). An inductive adder is a very promising approach to meeting the specifications. Recently, a five-layer prototype has been built at CERN. Passive analog modulation has been applied to compensate the voltage droop, for example of the pulse capacitors. The output waveforms of the prototype inductive adder have been compared with predictions of the voltage droop and pulse shape. Conclusions are drawn concern...

  2. Advanced Envelope Research for Factory Built Housing, Phase 3 -- Whole-House Prototyping

    SciTech Connect (OSTI)

    Levy, E.; Mullens, M.; Rath, P.

    2014-04-01T23:59:59.000Z

    The Advanced Envelope Research effort will provide factory homebuilders with high performance, cost-effective envelope designs that can be effectively integrated into the plant production process while meeting the thermal requirements of the 2012 IECC standards. Given the affordable nature of manufactured homes, impact on first cost is a major consideration in developing new envelope technologies. This work is part of a multi-phase effort. Phase 1 identified seven envelope technologies and provided a preliminary assessment of three methods for building high performance walls. Phase 2 focused on developing viable product designs, manufacturing strategies, addressing code and structural issues, and cost analysis of the three selected options. An industry advisory committee helped narrow the research focus to perfecting a stud wall design with exterior continuous insulation (CI). Phase 3, completed in two stages, continued the design development effort, exploring and evaluating a range or methods for applying CI to factory built homes. The scope also included material selection, manufacturing and cost analysis, and prototyping and testing. During this phase, a home was built with CI, evaluated, and placed in service. The experience of building a mock up wall section with CI and then constructing on line a prototype home resolved important concerns about how to integrate the material into the production process. First steps were taken toward finding least expensive approaches for incorporating CI in standard factory building practices and a preliminary assessment suggested that even at this early stage the technology is attractive when viewed from a life cycle cost perspective.

  3. Development and test of the DAQ system for a Micromegas prototype installed into the ATLAS experiment

    E-Print Network [OSTI]

    Zibell, Andre; The ATLAS collaboration; Bianco, Michele; Martoiu, Victor Sorin

    2015-01-01T23:59:59.000Z

    A Micromegas (MM) quadruplet prototype with an active area of 0.5 m$^2$ that adopts the general design foreseen for the upgrade of the innermost forward muon tracking systems (Small Wheels) of the ATLAS detector in 2018-2019, has been built at CERN and is going to be tested in the ATLAS cavern environment during the LHC RUN-II period 2015-2017. The integration of this prototype detector into the ATLAS data acquisition system using custom ATCA equipment is presented. An ATLAS compatible ReadOutDriver (ROD) based on the Scalable Readout System (SRS), the Scalable Readout Unit (SRU), will be used in order to transmit the data after generating valid event fragments to the high-level Read Out System (ROS). The SRU will be synchronized with the LHC bunch crossing clock (40.08 MHz) and will receive the Level-1 trigger signals from the Central Trigger Processor (CTP) through the TTCrx receiver ASIC. The configuration of the system will be driven directly from the ATLAS Run Control System. By using the ATLAS TDAQ Soft...

  4. Performance of an LPD prototype detector at MHz frame rates under Synchrotron and FEL radiation

    E-Print Network [OSTI]

    Koch, Andreas; Nicholls, Tim; Angelsen, Christian; Coughlan, John; French, Marcus; Hauf, Steffen; Kuster, Markus; Sztuk-Dambietz, Jolanta; Turcato, Monica; Carini, Gabriella A; Chollet, Matthieu; Herrmann, Sven C; Lemke, Henrik T; Nelson, Silke; Song, Sanghoon; Weaver, Matt; Zhu, Diling; Meents, Alke; Fischer, Pontus

    2013-01-01T23:59:59.000Z

    A MHz frame rate X-ray area detector (LPD - Large Pixel Detector) is under development by the Rutherford Appleton Laboratory for the European XFEL. The detector will have 1 million pixels and allows analogue storage of 512 images taken at 4.5 MHz in the detector front end. The LPD detector has 500 mm thick silicon sensor tiles that are bump bonded to a readout ASIC. The ASICs preamplifier provides relatively low noise at high speed which results in a high dynamic range of 10^5 photons over an energy range of 5-20 keV. Small scale prototypes of 32x256 pixels (LPD 2-Tile detector) and 256x256 pixels (LPD supermodule detector) are now available for X-ray tests. The performance of prototypes of the detector is reported for first tests under synchrotron radiation (PETRA III at DESY) and Free-Electron-Laser radiation (LCLS at SLAC). The initial performance of the detector in terms of signal range and noise, radiation hardness and spatial and temporal response are reported. The main result is that the 4.5 MHz sampli...

  5. Mechanical Design and Evaluation of the MP-11-Like Wire Scanner Prototype

    SciTech Connect (OSTI)

    Rodriguez Esparza, Sergio [Los Alamos National Laboratory; Sedillo, James Daniel [Los Alamos National Laboratory; Maestas, Alfred J. [Los Alamos National Laboratory; Gilpatrick, John D. [Los Alamos National Laboratory; Smith, Brian G. [Los Alamos National Laboratory; Raybun, Joseph L. [Los Alamos National Laboratory; Martinez, Jason P. [Los Alamos National Laboratory; Sattler, F. D. [Los Alamos National Laboratory; Gruchalla, Michael E. [Los Alamos National Laboratory

    2012-05-16T23:59:59.000Z

    A wire scanner (WS) is a linearly actuated diagnostic device that uses fiber wires (such as Tungsten or Silicon Carbide) to obtain the position and intensity profile of the proton beam at the Los Alamos Neutron Science Center (LANSCE) particle accelerator. LANSCE will be installing approximately 86 new WS in the near future as part of the LANSCE Risk Mitigation project. These 86 new WS include the replacement of many current WS and some newly added to the current linear accelerator and other beam lines. The reason for the replacement and addition of WS is that many of the existing actuators have parts that are no longer readily available and are difficult to find, thus making maintenance very difficult. One of the main goals is to construct the new WS with as many commercially-available-off-the-shelf components as possible. In addition, faster beam scans (both mechanically and in term of data acquisition) are desired for better operation of the accelerator. This document outlines the mechanical design of the new MP-11-like WS prototype and compares it to a previously built and tested SNS-like WS prototype.

  6. A continuous emissions monitor for metals: Field demonstration of a prototype probe

    SciTech Connect (OSTI)

    Flower, W.; Peng, L.; Woods, C. [and others

    1995-05-01T23:59:59.000Z

    Sandia National Laboratories conducted field tests of a prototype continuous emissions monitor for metals at Clemson University, August 5-11, 1994, in cooperation with the joule-melter vitrification project at Clemson and Savannah River. The monitor is based on Laser Spark Spectroscopy, an established laboratory diagnostic technique that has been adapted for monitoring metal emissions from thermal waste treatment facilities. In the field tests described in this report, emissions were measured from a joule melter that was processing a surrogate waste-water treatment sludge from Oak Ridge. Data from this test provides the first insight into how emissions change (in real time) as operating parameters such as waste feed rate are changed. We detected all metals that were present above the estimated minimum detectability limits (in the parts-per-billion range for Clean Air Act metals), in addition to glass-making species such as calcium, boron, and silicon. This report summarizes the Clemson field tests, including design of the prototype probe, preparations leading up to the tests, the tests themselves, and analysis of results.

  7. Evaluation of Affordable Prototype Houses at Two Levels of Energy Efficiency

    SciTech Connect (OSTI)

    Hendron, R.; Barker, G.; Hancock, E.; Reeves, P.

    2006-10-01T23:59:59.000Z

    Two high performance prototype houses were built in Carbondale, Colorado, as part of the U.S. Department of Energy's Building America (BA) Program. Each prototype was a 1256 ft2 (117 m2), 1-story, 3-bedroom house, and met the local requirements for affordable housing. The National Renewable Energy Laboratory (NREL) performed short-term field testing and DOE-2.2 simulations in support of this project at the end of December 2004. We also installed long-term monitoring equipment in one of the houses, and are currently tracking the performance of key building systems under occupied conditions. One of the houses (designated H1) included a package of cost-effective energy efficiency features that placed it well above the Energy Star level, targeting a Home Energy Rating System (HERS) score of 88-89. The other (designated H2) was a BA research house, targeting a HERS score of 94-95, and 45% whole-house energy savings compared to the BA Benchmark. Preliminary results from the field evaluation indicate that the energy savings for both houses will exceed the design targets established for the project, although the performance of certain building systems, including the ventilation and foundation systems, leave some room for improvement.

  8. Nano Fab Lab, Stockholm Sweden The Albanova Nano Fabrication Facility

    E-Print Network [OSTI]

    Haviland, David

    Nano Fab Lab, Stockholm Sweden The Albanova Nano Fabrication Facility Nano technology for basic research and small commercial enterprises Director: Prof. David Haviland #12;Nano Fab Lab, Stockholm Sweden Nano-Lab Philosophy · Nanometer scale patterning and metrology · Broad spectrum of user research

  9. Thin film solar cell configuration and fabrication method

    DOE Patents [OSTI]

    Menezes, Shalini

    2009-07-14T23:59:59.000Z

    A new photovoltaic device configuration based on an n-copper indium selenide absorber and a p-type window is disclosed. A fabrication method to produce this device on flexible or rigid substrates is described that reduces the number of cell components, avoids hazardous materials, simplifies the process steps and hence the costs for high volume solar cell manufacturing.

  10. TECHNICALADVANCES IN EPOXY TECHNOLOGY FOR WIND TURBINE BLADE COMPOSITE FABRICATION

    E-Print Network [OSTI]

    TECHNICALADVANCES IN EPOXY TECHNOLOGY FOR WIND TURBINE BLADE COMPOSITE FABRICATION George C. Jacob reliability in many demanding applications including components for aerospace and wind turbine blades. While in operation, wind turbine blades are subjected to significant stresses from their movement, wind and other

  11. Urban Fabric | Steenhuis stedenbouw/landschap Technische Universiteit Eindhoven

    E-Print Network [OSTI]

    Franssen, Michael

    Urban Fabric | Steenhuis stedenbouw/landschap Technische Universiteit Eindhoven cultuurhistorische Lieve Vrouwestraat JohnF.Kennedylaan Prof. Dorgelolaan Spoorgebiedrichting centrum Eindhoven Dom m el Dommel De Zaale De Wielen De Lismortel DenDolech DeRondom Situatie TU Eindhoven 2009 Bomen Spoorgebied N

  12. NANO EXPRESS Fabrication of Large Area Periodic Nanostructures Using

    E-Print Network [OSTI]

    Mohseni, Hooman

    , such as photonic band-gap materials, high dense data storage, and photonic devices. We have developed a maskless areas, such as photonic band-gap materials [1], high dense data storage [2], and photonic devices [3NANO EXPRESS Fabrication of Large Area Periodic Nanostructures Using Nanosphere Photolithography

  13. Behind the Scenes at Berkeley Lab - The Mechanical Fabrication Facility

    ScienceCinema (OSTI)

    Wells, Russell; Chavez, Pete; Davis, Curtis; Bentley, Brian

    2014-09-15T23:59:59.000Z

    Part of the Behind the Scenes series at Berkeley Lab, this video highlights the lab's mechanical fabrication facility and its exceptional ability to produce unique tools essential to the lab's scientific mission. Through a combination of skilled craftsmanship and precision equipment, machinists and engineers work with scientists to create exactly what's needed - whether it's measured in microns or meters.

  14. Foil fabrication for the ROMANO event. Revision 1

    SciTech Connect (OSTI)

    Romo, J.G. Jr.; Weed, J.W.; Griggs, G.E.; Brown, T.G.; Tassano, P.L.

    1984-06-13T23:59:59.000Z

    The Vacuum Processes Lab (VPL), of LLNL's M.E. Dept. - Material Fabrication Division (MFD), conducted various vacuum related support activities for the ROMANO nuclear physics experiment. This report focuses on the foil fabrication activities carried out between July and November 1983 for the ROMANO event. Other vacuum related activities for ROMANO, such as outgassing tests of materials, are covered in separate documentation. VPL was asked to provide 270 coated Parylene foils for the ROMANO event. However, due to the developmental nature of some of the procedures, approximately 400 coated foils were processed. In addition, VPL interacted with MFD's Plastics Shop to help supply Parylene substrates to other organizations (i.e., LBL and commercial vendors) which had also been asked to provide coated foils for ROMANO. The purposes of this report are (A) to document the processes developed and the techniques used to produce the foils, and (B) to suggest future directions. The report is divided into four sections describing: (1) nuclear target foil fabrication, (2) Parylene substrate preparation and production, (3) calibration foil fabrication, and (4) foil and substrate inspections.

  15. EELE408 Photovoltaics Lecture 16: Silicon Solar Cell Fabrication Techniques

    E-Print Network [OSTI]

    Kaiser, Todd J.

    ;3 Screen Printed Solar Cells · Firing the contacts ­ The furnace heats the cell to a high temperature by Efficiency 22 Rear Panel before Lamination 23 Buried Contact Solar Cells · High Efficiency · Laser groved1 EELE408 Photovoltaics Lecture 16: Silicon Solar Cell Fabrication Techniques Dr. Todd J. Kaiser

  16. Knit architecture : low tech fabrication techniques in modern design : thesis

    E-Print Network [OSTI]

    Mennel, Kimberly I. (Kimberly Irene)

    2012-01-01T23:59:59.000Z

    This thesis aims to bring the handicraft of knitting into the realm of architecture as a low-tech means of fabrication in a world of high-tech design. This thesis attempts to break knitting down into its most essential ...

  17. Conveyorized Photoresist Stripping Replacement for Flex Circuit Fabrication

    SciTech Connect (OSTI)

    Megan Donahue

    2009-02-24T23:59:59.000Z

    A replacement conveyorized photoresist stripping system was characterized to replace the ASI photoresist stripping system. This system uses the qualified ADF-25c chemistry for the fabrication of flex circuits, while the ASI uses the qualified potassium hydroxide chemistry. The stripping process removes photoresist, which is used to protect the copper traces being formed during the etch process.

  18. Tuna Management Simulato Fabrice Bouy and Shelton Harley

    E-Print Network [OSTI]

    Hawai'i at Manoa, University of

    TUMAS Tuna Management Simulato Fabrice Bouyé and Shelton Harley (SPC-OFP) #12;What is TUMAS Yes Export charts Yes Yes Yes #12;Future Features · Work is underway to produce a MacOS version Export charts Yes Yes Yes #12;Other Plans · Execute projection code in R directly in the JVM (http

  19. Process for fabrication of large titanium diboride ceramic bodies

    DOE Patents [OSTI]

    Moorhead, Arthur J. (Knoxville, TN); Bomar, E. S. (Knoxville, TN); Becher, Paul F. (Knoxville, TN)

    1989-01-01T23:59:59.000Z

    A process for manufacturing large, fully dense, high purity TiB.sub.2 articles by pressing powders with a sintering aid at relatively low temperatures to reduce grain growth. The process requires stringent temperature and pressure applications in the hot-pressing step to ensure maximum removal of sintering aid and to avoid damage to the fabricated article or the die.

  20. Fabrication of asymmetrically coated colloid particles by microcontact printing techniques

    E-Print Network [OSTI]

    Velev, Orlin D.

    Janus particles,4 non-spherical shaped ``acorn'' particles5,6 and unsymmetrical 3D macromoleculesFabrication of asymmetrically coated colloid particles by microcontact printing techniques Olivier particles by using a microcontact printing technique. Films of water-insoluble ionic surfactants deposited