Sample records for dynamics models assessing

  1. Assessing the reliability of linear dynamic transformer thermal modelling

    E-Print Network [OSTI]

    Assessing the reliability of linear dynamic transformer thermal modelling X. Mao, D.J. Tylavsky and G.A. McCulla Abstract: Improving the utilisation of transformers requires that the hot-spot and top. An alternative method for assessing transformer model reliability is provided. 1 Introduction The maximally

  2. A next-generation modeling capability assesses wind turbine array fluid dynamics and aeroelastic simulations

    E-Print Network [OSTI]

    A next-generation modeling capability assesses wind turbine array fluid dynamics and aeroelastic of multi-megawatt turbines requires a new generation of modeling capability to assess individual turbine. Key Result The work is generating several models, including actuator line models of several wind

  3. Queuing models System dynamics models

    E-Print Network [OSTI]

    Glushko, Robert J.

    models Value chain models Business Model / Organizational Perspective Process Perspective Information#12;#12;#12;#12;Queuing models System dynamics models #12;#12;#12;#12;Blueprint or touchpoint

  4. Dynamical systems probabilistic risk assessment.

    SciTech Connect (OSTI)

    Denman, Matthew R.; Ames, Arlo Leroy

    2014-03-01T23:59:59.000Z

    Probabilistic Risk Assessment (PRA) is the primary tool used to risk-inform nuclear power regulatory and licensing activities. Risk-informed regulations are intended to reduce inherent conservatism in regulatory metrics (e.g., allowable operating conditions and technical specifications) which are built into the regulatory framework by quantifying both the total risk profile as well as the change in the risk profile caused by an event or action (e.g., in-service inspection procedures or power uprates). Dynamical Systems (DS) analysis has been used to understand unintended time-dependent feedbacks in both industrial and organizational settings. In dynamical systems analysis, feedback loops can be characterized and studied as a function of time to describe the changes to the reliability of plant Structures, Systems and Components (SSCs). While DS has been used in many subject areas, some even within the PRA community, it has not been applied toward creating long-time horizon, dynamic PRAs (with time scales ranging between days and decades depending upon the analysis). Understanding slowly developing dynamic effects, such as wear-out, on SSC reliabilities may be instrumental in ensuring a safely and reliably operating nuclear fleet. Improving the estimation of a plant's continuously changing risk profile will allow for more meaningful risk insights, greater stakeholder confidence in risk insights, and increased operational flexibility.

  5. Research progress in dynamic security assessment

    SciTech Connect (OSTI)

    Not Available

    1982-12-01T23:59:59.000Z

    Areas discussed are power system modeling, state estimation, structure decomposition, state forecasting, clustering and security measure development. A detailed dynamic model of a multi-machine power system has been developed. A process state estimator was developed to estimate the long-term dynamic behavior of the power system. The algorithm is identical to the extended Kalman filter but has a modified process noise driving term. A two-stage structure estimation technique was proposed for identifying the power system network configuration. Two approaches to structure decomposition were investigated. A time-scale decomposition of the system equations, based on a singular perturbation approach, was evaluated using a detailed model of a generating system. Spatial decomposition was examined by applying an optimal network decomposition technique to a 39-bus test system. Stochastic approximation based approaches to estimator simplification were examined. Explicit expressions were obtained for the evolution of the first and second moments of the system state. Research into security measures proceeded in three directions. The first area involves viewing the security assessment problem as a hyperplane crossing problem for a stochastic process. The second approach examined the stability of an unforced linear system where the system coefficients are subject to future jumps. The third area of research has led to the formulation of a security measure suitable for on-line assessment of transient stability.

  6. Models of Dynamical Supersymmetry Breaking

    E-Print Network [OSTI]

    Lisa Randall

    1997-06-23T23:59:59.000Z

    We review a class of models of dynamical supersymmetry breaking, and give a unified description of these models.

  7. Dynamic Modelling, Measurement and

    E-Print Network [OSTI]

    Fernandez, Thomas

    Dynamic Modelling, Measurement and Control of Co-rotating Twin-Screw Extruders Justin Rae Elsey, B;Summary Co-rotating twin-screw extruders are unique and versatile machines that are used widely that these extruders are currently being optimally utilised. The most signi cant improvement to the eld of twin-screw

  8. Modal aerosol dynamics modeling

    SciTech Connect (OSTI)

    Whitby, E.R.; McMurry, P.H.; Shankar, U.; Binkowski, F.S.

    1991-02-01T23:59:59.000Z

    The report presents the governing equations for representing aerosol dynamics, based on several different representations of the aerosol size distribution. Analytical and numerical solution techniques for these governing equations are also reviewed. Described in detail is a computationally efficient numerical technique for simulating aerosol behavior in systems undergoing simultaneous heat transfer, fluid flow, and mass transfer in and between the gas and condensed phases. The technique belongs to a general class of models known as modal aerosol dynamics (MAD) models. These models solve for the temporal and spatial evolution of the particle size distribution function. Computational efficiency is achieved by representing the complete aerosol population as a sum of additive overlapping populations (modes), and solving for the time rate of change of integral moments of each mode. Applications of MAD models for simulating aerosol dynamics in continuous stirred tank aerosol reactors and flow aerosol reactors are provided. For the application to flow aerosol reactors, the discussion is developed in terms of considerations for merging a MAD model with the SIMPLER routine described by Patankar (1980). Considerations for incorporating a MAD model into the U.S. Environmental Protection Agency's Regional Particulate Model are also described. Numerical and analytical techniques for evaluating the size-space integrals of the modal dynamics equations (MDEs) are described. For multimodal logonormal distributions, an analytical expression for the coagulation integrals of the MDEs, applicable for all size regimes, is derived, and is within 20% of accurate numerical evaluation of the same moment coagulation integrals. A computationally efficient integration technique, based on Gauss-Hermite numerical integration, is also derived.

  9. Integrated Assessment Modeling

    SciTech Connect (OSTI)

    Edmonds, James A.; Calvin, Katherine V.; Clarke, Leon E.; Janetos, Anthony C.; Kim, Son H.; Wise, Marshall A.; McJeon, Haewon C.

    2012-10-31T23:59:59.000Z

    This paper discusses the role of Integrated Assessment models (IAMs) in climate change research. IAMs are an interdisciplinary research platform, which constitutes a consistent scientific framework in which the large-scale interactions between human and natural Earth systems can be examined. In so doing, IAMs provide insights that would otherwise be unavailable from traditional single-discipline research. By providing a broader view of the issue, IAMs constitute an important tool for decision support. IAMs are also a home of human Earth system research and provide natural Earth system scientists information about the nature of human intervention in global biogeophysical and geochemical processes.

  10. Tools for dynamic model development

    E-Print Network [OSTI]

    Schaber, Spencer Daniel

    2014-01-01T23:59:59.000Z

    For this thesis, several tools for dynamic model development were developed and analyzed. Dynamic models can be used to simulate and optimize the behavior of a great number of natural and engineered systems, from the ...

  11. A unified point process probabilistic framework to assess heartbeat dynamics and autonomic cardiovascular control

    E-Print Network [OSTI]

    Chen, Zhe

    In recent years, time-varying inhomogeneous point process models have been introduced for assessment of instantaneous heartbeat dynamics as well as specific cardiovascular control mechanisms and hemodynamics. Assessment ...

  12. Assessment of Molecular Modeling & Simulation

    SciTech Connect (OSTI)

    None

    2002-01-03T23:59:59.000Z

    This report reviews the development and applications of molecular and materials modeling in Europe and Japan in comparison to those in the United States. Topics covered include computational quantum chemistry, molecular simulations by molecular dynamics and Monte Carlo methods, mesoscale modeling of material domains, molecular-structure/macroscale property correlations like QSARs and QSPRs, and related information technologies like informatics and special-purpose molecular-modeling computers. The panel's findings include the following: The United States leads this field in many scientific areas. However, Canada has particular strengths in DFT methods and homogeneous catalysis; Europe in heterogeneous catalysis, mesoscale, and materials modeling; and Japan in materials modeling and special-purpose computing. Major government-industry initiatives are underway in Europe and Japan, notably in multi-scale materials modeling and in development of chemistry-capable ab-initio molecular dynamics codes.

  13. Modeling emotional dynamics : currency versus field.

    SciTech Connect (OSTI)

    Sallach, D .L.; Decision and Information Sciences; Univ. of Chicago

    2008-08-01T23:59:59.000Z

    Randall Collins has introduced a simplified model of emotional dynamics in which emotional energy, heightened and focused by interaction rituals, serves as a common denominator for social exchange: a generic form of currency, except that it is active in a far broader range of social transactions. While the scope of this theory is attractive, the specifics of the model remain unconvincing. After a critical assessment of the currency theory of emotion, a field model of emotion is introduced that adds expressiveness by locating emotional valence within its cognitive context, thereby creating an integrated orientation field. The result is a model which claims less in the way of motivational specificity, but is more satisfactory in modeling the dynamic interaction between cognitive and emotional orientations at both individual and social levels.

  14. Model Refinement for Economic Assessments of

    E-Print Network [OSTI]

    Model Refinement for Economic Assessments of Hawai`i Clean Energy Policies: Scenario Selection agency thereof. #12;Model Refinement for Economic Assessments of Hawaii Clean Energy Policies Selection

  15. Modeling Molecular Dynamics from Simulations

    SciTech Connect (OSTI)

    Hinrichs, Nina Singhal (University of Chicago) [University of Chicago

    2009-01-28T23:59:59.000Z

    Many important processes in biology occur at the molecular scale. A detailed understanding of these processes can lead to significant advances in the medical and life sciences. For example, many diseases are caused by protein aggregation or misfolding. One approach to studying these systems is to use physically-based computational simulations to model the interactions and movement of the molecules. While molecular simulations are computationally expensive, it is now possible to simulate many independent molecular dynamics trajectories in a parallel fashion by using super- or distributed- computing methods such as Folding@Home or Blue Gene. The analysis of these large, high-dimensional data sets presents new computational challenges. In this seminar, I will discuss a novel approach to analyzing large ensembles of molecular dynamics trajectories to generate a compact model of the dynamics. This model groups conformations into discrete states and describes the dynamics as Markovian, or history-independent, transitions between the states. I will discuss why the Markovian state model (MSM) is suitable for macromolecular dynamics, and how it can be used to answer many interesting and relevant questions about the molecular system. I will also discuss many of the computational and statistical challenges in building such a model, such as how to appropriately cluster conformations, determine the statistical reliability, and efficiently design new simulations.

  16. SYSTEM DYNAMICS USE FOR TECHNOLOGIES ASSESSMENT Egils Ginters (a)

    E-Print Network [OSTI]

    Boyer, Edmond

    , and existence of concurrent technologies for sustainability assessment. Keywords: technology assessment, system and sustainability of the new technology in real time. In the framework of FP7-ICT- 2009-5 CHOREOS project No. 257178SYSTEM DYNAMICS USE FOR TECHNOLOGIES ASSESSMENT Egils Ginters (a) , Zane Barkane (b) , Hugues

  17. Utility of Social Modeling for Proliferation Assessment - Preliminary Assessment

    SciTech Connect (OSTI)

    Coles, Garill A.; Gastelum, Zoe N.; Brothers, Alan J.; Thompson, Sandra E.

    2009-06-01T23:59:59.000Z

    This Preliminary Assessment draft report will present the results of a literature search and preliminary assessment of the body of research, analysis methods, models and data deemed to be relevant to the Utility of Social Modeling for Proliferation Assessment research. This report will provide: 1) a description of the problem space and the kinds of information pertinent to the problem space, 2) a discussion of key relevant or representative literature, 3) a discussion of models and modeling approaches judged to be potentially useful to the research, and 4) the next steps of this research that will be pursued based on this preliminary assessment. This draft report represents a technical deliverable for the NA-22 Simulations, Algorithms, and Modeling (SAM) program. Specifically this draft report is the Task 1 deliverable for project PL09-UtilSocial-PD06, Utility of Social Modeling for Proliferation Assessment. This project investigates non-traditional use of social and cultural information to improve nuclear proliferation assessment, including nonproliferation assessment, proliferation resistance assessments, safeguards assessments and other related studies. These assessments often use and create technical information about the State’s posture towards proliferation, the vulnerability of a nuclear energy system to an undesired event, and the effectiveness of safeguards. This project will find and fuse social and technical information by explicitly considering the role of cultural, social and behavioral factors relevant to proliferation. The aim of this research is to describe and demonstrate if and how social science modeling has utility in proliferation assessment.

  18. Trends in Ln(III) Sorption to Quartz Assessed by Molecular Dynamics...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ln(III) Sorption to Quartz Assessed by Molecular Dynamics Simulations and Laser Induced Flourescence Studies. Trends in Ln(III) Sorption to Quartz Assessed by Molecular Dynamics...

  19. Computational Fluid Dynamics Framework for Turbine Biological Performance Assessment

    SciTech Connect (OSTI)

    Richmond, Marshall C.; Serkowski, John A.; Carlson, Thomas J.; Ebner, Laurie L.; Sick, Mirjam; Cada, G. F.

    2011-05-04T23:59:59.000Z

    In this paper, a method for turbine biological performance assessment is introduced to bridge the gap between field and laboratory studies on fish injury and turbine design. Using this method, a suite of biological performance indicators is computed based on simulated data from a computational fluid dynamics (CFD) model of a proposed turbine design. Each performance indicator is a measure of the probability of exposure to a certain dose of an injury mechanism. If the relationship between the dose of an injury mechanism and frequency of injury (dose-response) is known from laboratory or field studies, the likelihood of fish injury for a turbine design can be computed from the performance indicator. By comparing the values of the indicators from various turbine designs, the engineer can identify the more-promising designs. Discussion here is focused on Kaplan-type turbines, although the method could be extended to other designs. Following the description of the general methodology, we will present sample risk assessment calculations based on CFD data from a model of the John Day Dam on the Columbia River in the USA.

  20. A Relativistic Dynamical Collapse Model

    E-Print Network [OSTI]

    Philip Pearle

    2014-12-21T23:59:59.000Z

    A model is discussed where all operators are constructed from a quantum scalar field whose energy spectrum takes on all real values. The Schr\\"odinger picture wave function depends upon space and time coordinates for each particle, as well as an inexorably increasing evolution parameter $s$ which labels a foliation of space-like hypersurfaces. The model is constructed to be manifestly Lorentz invariant in the interaction picture. Free particle states and interactions are discussed in this framework. Then, the formalism of the CSL (Continuous Spontaneous Localization) theory of dynamical collapse is applied. The collapse-generating operator is chosen to to be the particle number space-time density. Unlike previous relativistically invariant models, the vacuum state is not excited. The collapse dynamics depends upon two parameters, a parameter $\\Lambda$ which represents the collapse rate/volume and a scale factor $\\ell$. A common example of collapse dynamics, involving a clump of matter in a superposition of two locations, is analyzed. The collapse rate is shown to be identical to that of non-relativistic CSL when the GRW-CSL choice of $\\ell=a=10^{-5}$cm, is made, along with $\\Lambda=\\lambda/a^{3}$ (GRW-CSL choice $\\lambda=10^{-16}s^{-1}$). However, it is also shown that the change of mass of a nucleon over the age of the universe is then unacceptably large. The case where $\\ell$ is the size of the universe is then considered. It is shown that the collapse behavior is satisfactory and the change of mass over the age of the universe is acceptably small, when $\\Lambda= \\lambda/\\ell a^{2}$.

  1. Model Fire Protection Assessment Guide

    Broader source: Energy.gov [DOE]

    This Assessment guide covers the implementation of the DOE's responsibility of assuring that DOE and the DOE Contractors have established Fire Protection Programs that are at the level required for the area being assessed.

  2. An Impact Assessment Model for Distributed Adaptive Security Situation Assessment*

    E-Print Network [OSTI]

    California at Davis, University of

    1 An Impact Assessment Model for Distributed Adaptive Security Situation Assessment* Mark Heckman mechanism is not simply to stop attacks, but to protect a computing resource so that the resource can continue to perform its function. A computing resource, however, is only a component of a larger system

  3. Dynamic Operational Risk Assessment with Bayesian Network

    E-Print Network [OSTI]

    Barua, Shubharthi

    2012-10-19T23:59:59.000Z

    objective of this study is to show parallelism of Bayesian network with other available risk assessment methods such as event tree, HAZOP, FMEA. In this research, an event tree mapping procedure in Bayesian network is described. A case study on a chemical...

  4. Dynamic Assessment of Baroreflex Control of Heart Rate During Induction of Propofol Anesthesia Using a Point Process Method

    E-Print Network [OSTI]

    Chen, Zhe

    In this article, we present a point process method to assess dynamic baroreflex sensitivity (BRS) by estimating the baroreflex gain as focal component of a simplified closed-loop model of the cardiovascular system. ...

  5. DYNAMIC MODELLING OF AUTONOMOUS POWER SYSTEMS INCLUDING RENEWABLE POWER SOURCES.

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    (thermal, gas, diesel) and renewable (hydro, wind) power units. The objective is to assess the impact - that have a special dynamic behaviour, and the wind turbines. Detailed models for each one of the power system components are developed. Emphasis is given in the representation of different hydro power plant

  6. Quantitative Modeling of High Temperature Magnetization Dynamics

    SciTech Connect (OSTI)

    Zhang, Shufeng

    2009-03-01T23:59:59.000Z

    Final Technical Report Project title: Quantitative Modeling of High Temperature Magnetization Dynamics DOE/Office of Science Program Manager Contact: Dr. James Davenport

  7. Mercury Dynamics in a San Francisco Estuary Tidal Wetland: Assessing Dynamics Using In Situ Measurements

    E-Print Network [OSTI]

    Boss, Emmanuel S.

    Mercury Dynamics in a San Francisco Estuary Tidal Wetland: Assessing Dynamics Using In Situ the tidally driven exchange of mercury (Hg) between the waters of the San Francisco estuary and Browns Island, respectively--together predicted 94 % of the observed variability in measured total mercury concentra- tion

  8. Dynamic control of DHM for ergonomic assessments Giovanni De Magistrisa,

    E-Print Network [OSTI]

    Boyer, Edmond

    Dynamic control of DHM for ergonomic assessments Giovanni De Magistrisa, , Alain Micaellia , Paul hamper movement task per- formance. In recent years, it has become possible to study the ergonomic ergonomic aspects, especially when it comes to movement, applied forces and joint torques evaluation

  9. Conceptual aircraft dynamics from inverse aircraft modeling

    E-Print Network [OSTI]

    Ziegler, Gregory E

    1999-01-01T23:59:59.000Z

    This thesis presents a method of construe' ting a nonlinear dynamics model of a theoretical aircraft from the nonlinear batch simulation of an existing aircrew This method provides control law designers with a method of fabricating nonlinear models...

  10. Model Validation with Hybrid Dynamic Simulation

    SciTech Connect (OSTI)

    Huang, Zhenyu; Kosterev, Dmitry; Guttromson, Ross T.; Nguyen, Tony B.

    2006-06-18T23:59:59.000Z

    Abstract—Model validation has been one of the central topics in power engineering studies for years. As model validation aims at obtaining reasonable models to represent actual behavior of power system components, it has been essential to validate models against actual measurements or known benchmark behavior. System-wide model simulation results can be compared with actual recordings. However, it is difficult to construct a simulation case for a large power system such as the WECC system and to narrow down to problematic models in a large system. Hybrid dynamic simulation with its capability of injecting external signals into dynamic simulation enables rigorous comparison of measurements and simulation in a small subsystem of interest. This paper presents such a model validation methodology with hybrid dynamic simulation. Two application examples on generator and load model validation are presented to show the validity of this model validation methodology. This methodology is further extended for automatic model validation and dichotomous subsystem model validation.

  11. Calcium Dynamics in Large Neuronal Models

    E-Print Network [OSTI]

    De Schutter, Erik

    Chapter 6 Calcium Dynamics in Large Neuronal Models ERIK DE SCHUTTER and PAUL SMOLEN 6.1 Introduction Calcium is an important intracellular signaling molecule with rapid e ect on the kinetics of many active membrane model that includes Ca2+ dynamics, one is faced with a feedback loop: the Ca2+-activated

  12. Benchmarking of Planning Models Using Recorded Dynamics

    SciTech Connect (OSTI)

    Huang, Zhenyu; Yang, Bo; Kosterev, Dmitry

    2009-03-15T23:59:59.000Z

    Power system planning extensively uses model simulation to understand the dynamic behaviors and determine the operating limits of a power system. Model quality is key to the safety and reliability of electricity delivery. Planning model benchmarking, or model validation, has been one of the central topics in power engineering studies for years. As model validation aims at obtaining reasonable models to represent dynamic behavior of power system components, it has been essential to validate models against actual measurements. The development of phasor technology provides such measurements and represents a new opportunity for model validation as phasor measurements can capture power system dynamics with high-speed, time-synchronized data. Previously, methods for rigorous comparison of model simulation and recorded dynamics have been developed and applied to quantify model quality of power plants in the Western Electricity Coordinating Council (WECC). These methods can locate model components which need improvement. Recent work continues this effort and focuses on how model parameters may be calibrated to match recorded dynamics after the problematic model components are identified. A calibration method using Extended Kalman Filter technique is being developed. This paper provides an overview of prior work on model validation and presents new development on the calibration method and initial results of model parameter calibration.

  13. Modeling and simulation of consumer response to dynamic pricing.

    SciTech Connect (OSTI)

    Valenzuela, J.; Thimmapuram, P.; Kim, J (Decision and Information Sciences); (Auburn Univ.)

    2012-08-01T23:59:59.000Z

    Assessing the impacts of dynamic-pricing under the smart grid concept is becoming extremely important for deciding its full deployment. In this paper, we develop a model that represents the response of consumers to dynamic pricing. In the model, consumers use forecasted day-ahead prices to shift daily energy consumption from hours when the price is expected to be high to hours when the price is expected to be low while maintaining the total energy consumption as unchanged. We integrate the consumer response model into the Electricity Market Complex Adaptive System (EMCAS). EMCAS is an agent-based model that simulates restructured electricity markets. We explore the impacts of dynamic-pricing on price spikes, peak demand, consumer energy bills, power supplier profits, and congestion costs. A simulation of an 11-node test network that includes eight generation companies and five aggregated consumers is performed for a period of 1 month. In addition, we simulate the Korean power system.

  14. A Dynamic Waste Isolation Pilot Plant Performance Assessment Tool - 12490

    SciTech Connect (OSTI)

    Scopatz, Anthony M.; March, Jonathan; Weckesser, Warren; Jones, Eric [Enthought Inc, Austin, Texas, 78701 (United States); Lee, Moo; Camphouse, Chris [Sandia National Laboratories, Carlsbad, NM, 88220 (United States)

    2012-07-01T23:59:59.000Z

    The Waste Isolation Pilot Plant (WIPP) Performance Assessment (PA) methodology comprises a toolbox used to demonstrate regulatory compliance of the repository after facility closure. The PA framework rests upon an extensive suite of computational codes. In some cases, significant alteration of code inputs is a tedious and difficult task. Due to the nature of the application for which they are used, PA codes used in support of WIPP regulatory compliance demonstration must satisfy stringent quality assurance requirements. Consequently, many of the coding practices used during original code development are still implemented today. A more efficient workflow configuration has the potential to alleviate difficulties associated with extensive code input modifications. Here, this potential is assessed via an implementation of a more flexible scientific workflow system for a subset of the codes used in WIPP PA. The scientific workflow approach taken here for a dynamic PA system enables users from disparate backgrounds to dramatically shorten the time between hypothesis and analysis by decreasing the amount of a priori knowledge, from a range of disciplines, needed to execute the code. Having smaller iteration times allows for more ideas to be tested and explored, which leads to safer and more optimized systems. Note that these high-level, dynamic tools are intended only for initial scoping studies on the personal computer of a researcher. Full, regulatory compliance calculations may occur only within a qualified computing environment. However, the WIPP PA tools here may guide future research and indicate regions of the analysis space that are worth further study. This next generation of PA software provides the ability to perform scoping investigations of repository performance quickly and easily, and has an accessible and useful interface to a variety of users, such as fuel cycle systems designers, domain experts such as repository modelers, and policy makers. The purview of this project allows for many opportunities for future work. Foremost among these is the desire to implement the full BRAGFLO suite within the workflow. This will entail porting or wrapping Genmesh, Matset, LHS, and ICSet within Python. Moreover, unifying the two GUIs into a single driver application would be a natural next step. Once the BRAGFLO suite is completed, other portions of WIPP PA could be implemented with corresponding and inter-operable work-flows. Likely first candidates for this are those codes that are similarly computationally intensive, such as the one used to generate complementary cumulative distribution functions used to demonstrate regulatory compliance (code CCDFGF). (authors)

  15. Very Large System Dynamics Models - Lessons Learned

    SciTech Connect (OSTI)

    Jacob J. Jacobson; Leonard Malczynski

    2008-10-01T23:59:59.000Z

    This paper provides lessons learned from developing several large system dynamics (SD) models. System dynamics modeling practice emphasize the need to keep models small so that they are manageable and understandable. This practice is generally reasonable and prudent; however, there are times that large SD models are necessary. This paper outlines two large SD projects that were done at two Department of Energy National Laboratories, the Idaho National Laboratory and Sandia National Laboratories. This paper summarizes the models and then discusses some of the valuable lessons learned during these two modeling efforts.

  16. ASSESSMENT OF ECONOMIC PERFORMANCE OF MODEL PREDICTIVE

    E-Print Network [OSTI]

    Huang, Biao

    ASSESSMENT OF ECONOMIC PERFORMANCE OF MODEL PREDICTIVE CONTROL THROUGH VARIANCE/CONSTRAINT TUNING advanced process control (APC) strategies to deal with multivariable constrained control problems with an ultimate objective towards economic optimization. Any attempt to evaluate MPC performance should therefore

  17. ORISE: Dose modeling and assessments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    or state regulatory compliance requirements are being met during the decontamination and decommissioning of nuclear facilities. Dose modeling is an important step in the...

  18. Dynamics Modelling of Biolistic Gene Guns

    SciTech Connect (OSTI)

    Zhang, M.; Tao, W.; Pianetta, P.A.

    2009-06-04T23:59:59.000Z

    The gene transfer process using biolistic gene guns is a highly dynamic process. To achieve good performance, the process needs to be well understood and controlled. Unfortunately, no dynamic model is available in the open literature for analysing and controlling the process. This paper proposes such a model. Relationships of the penetration depth with the helium pressure, the penetration depth with the acceleration distance, and the penetration depth with the micro-carrier radius are presented. Simulations have also been conducted. The results agree well with experimental results in the open literature. The contribution of this paper includes a dynamic model for improving and manipulating performance of the biolistic gene gun.

  19. DYNAMIC MODELING PROTON EXCHANGE MEMBRANE FUEL CELL

    E-Print Network [OSTI]

    Mease, Kenneth D.

    DYNAMIC MODELING PROTON EXCHANGE MEMBRANE FUEL CELL OVERVIEW Current/Completed Plug Power reformer from GE · Use of GenCore to investigate effects of fuel quality and dynamic changes in fuel to garner SCAQMD funding for fuel cell testing GenCore system is sensitive to diluents · As built design

  20. Simple Dynamic Gasifier Model That Runs in Aspen Dynamics

    SciTech Connect (OSTI)

    Robinson, P.J.; Luyben, W.L. [Lehigh University, Bethlehem, PA (United States). Dept. of Chemical Engineering

    2008-10-15T23:59:59.000Z

    Gasification (or partial oxidation) is a vital component of 'clean coal' technology. Sulfur and nitrogen emissions can be reduced, overall energy efficiency is increased, and carbon dioxide recovery and sequestration are facilitated. Gasification units in an electric power generation plant produce a fuel for driving combustion turbines. Gasification units in a chemical plant generate gas, which can be used to produce a wide spectrum of chemical products. Future plants are predicted to be hybrid power/chemical plants with gasification as the key unit operation. The widely used process simulator Aspen Plus provides a library of models that can be used to develop an overall gasifier model that handles solids. So steady-state design and optimization studies of processes with gasifiers can be undertaken. This paper presents a simple approximate method for achieving the objective of having a gasifier model that can be exported into Aspen Dynamics. The basic idea is to use a high molecular weight hydrocarbon that is present in the Aspen library as a pseudofuel. This component should have the same 1:1 hydrogen-to-carbon ratio that is found in coal and biomass. For many plantwide dynamic studies, a rigorous high-fidelity dynamic model of the gasifier is not needed because its dynamics are very fast and the gasifier gas volume is a relatively small fraction of the total volume of the entire plant. The proposed approximate model captures the essential macroscale thermal, flow, composition, and pressure dynamics. This paper does not attempt to optimize the design or control of gasifiers but merely presents an idea of how to dynamically simulate coal gasification in an approximate way.

  1. Modeling Dynamics of Post Disaster Recovery

    E-Print Network [OSTI]

    Nejat, Ali

    2012-10-19T23:59:59.000Z

    Subject: Civil Engineering iii ABSTRACT Modeling Dynamics of Post Disaster Recovery. (August 2011) Ali Nejat, B.S., Zanjan University, Zanjan, Iran; M.S., Islamic Azad University, Tehran, Iran Chair of Advisory Committee: Dr. Ivan Damnjanovic... MODELING DYNAMICS OF POST DISASTER RECOVERY A Dissertation by ALI NEJAT Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY...

  2. Models and parameters for environmental radiological assessments

    SciTech Connect (OSTI)

    Miller, C W [ed.] [ed.

    1984-01-01T23:59:59.000Z

    This book presents a unified compilation of models and parameters appropriate for assessing the impact of radioactive discharges to the environment. Models examined include those developed for the prediction of atmospheric and hydrologic transport and deposition, for terrestrial and aquatic food-chain bioaccumulation, and for internal and external dosimetry. Chapters have been entered separately into the data base. (ACR)

  3. Protein viscoelastic dynamics: a model system

    E-Print Network [OSTI]

    Craig Fogle; Joseph Rudnick; David Jasnow

    2015-02-02T23:59:59.000Z

    A model system inspired by recent experiments on the dynamics of a folded protein under the influence of a sinusoidal force is investigated and found to replicate many of the response characteristics of such a system. The essence of the model is a strongly over-damped oscillator described by a harmonic restoring force for small displacements that reversibly yields to stress under sufficiently large displacement. This simple dynamical system also reveals unexpectedly rich behavior, exhibiting a series of dynamical transitions and analogies with equilibrium thermodynamic phase transitions. The effects of noise and of inertia are briefly considered and described.

  4. Model Validation with Hybrid Dynamic Simulation

    SciTech Connect (OSTI)

    Huang, Zhenyu; Kosterev, Dmitry; Guttromson, Ross T.; Nguyen, Tony B.

    2006-06-22T23:59:59.000Z

    Abstract—Model validation has been one of the central topics in power engineering studies for years. As model validation aims at obtaining reasonable models to represent actual behavior of power system components, it has been essential to validate models against actual measurements or known benchmark behavior. System-wide model simulation results can be compared with actual recordings. However, it is difficult to construct a simulation case for a large power system such as the WECC system and to narrow down to problematic models in a large system. Hybrid dynamic simulation with its capability of injecting external signals into dynamic simulation enables rigorous comparison of measurements and simulation in a small subsystem of interest. This paper presents such a model validation methodology with hybrid dynamic simulation. Two application examples on generator and load model validation are presented to show the validity of this model validation methodology. This methodology is further extended for automatic model validation and dichotomous subsystem model validation. A few methods to define model quality indices have been proposed to quantify model error for model validation criteria development.

  5. ORISE: Dose modeling and assessments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory |CHEMPACK Mapping Application ORISECenterMakingDOEOakDose modeling

  6. Model and Analytic Processes for Export License Assessments

    SciTech Connect (OSTI)

    Thompson, Sandra E.; Whitney, Paul D.; Weimar, Mark R.; Wood, Thomas W.; Daly, Don S.; Brothers, Alan J.; Sanfilippo, Antonio P.; Cook, Diane; Holder, Larry

    2011-09-29T23:59:59.000Z

    This paper represents the Department of Energy Office of Nonproliferation Research and Development (NA-22) Simulations, Algorithms and Modeling (SAM) Program's first effort to identify and frame analytical methods and tools to aid export control professionals in effectively predicting proliferation intent; a complex, multi-step and multi-agency process. The report focuses on analytical modeling methodologies that alone, or combined, may improve the proliferation export control license approval process. It is a follow-up to an earlier paper describing information sources and environments related to international nuclear technology transfer. This report describes the decision criteria used to evaluate modeling techniques and tools to determine which approaches will be investigated during the final 2 years of the project. The report also details the motivation for why new modeling techniques and tools are needed. The analytical modeling methodologies will enable analysts to evaluate the information environment for relevance to detecting proliferation intent, with specific focus on assessing risks associated with transferring dual-use technologies. Dual-use technologies can be used in both weapons and commercial enterprises. A decision-framework was developed to evaluate which of the different analytical modeling methodologies would be most appropriate conditional on the uniqueness of the approach, data availability, laboratory capabilities, relevance to NA-22 and Office of Arms Control and Nonproliferation (NA-24) research needs and the impact if successful. Modeling methodologies were divided into whether they could help micro-level assessments (e.g., help improve individual license assessments) or macro-level assessment. Macro-level assessment focuses on suppliers, technology, consumers, economies, and proliferation context. Macro-level assessment technologies scored higher in the area of uniqueness because less work has been done at the macro level. An approach to developing testable hypotheses for the macro-level assessment methodologies is provided. The outcome of this works suggests that we should develop a Bayes Net for micro-level analysis and continue to focus on Bayes Net, System Dynamics and Economic Input/Output models for assessing macro-level problems. Simultaneously, we need to develop metrics for assessing intent in export control, including the risks and consequences associated with all aspects of export control.

  7. Consistent nonlinear dynamics: identifying model inadequacy

    E-Print Network [OSTI]

    Patrick E. McSharry; Leonard A. Smith

    2004-03-09T23:59:59.000Z

    Empirical modelling often aims for the simplest model consistent with the data. A new technique is presented which quantifies the consistency of the model dynamics as a function of location in state space. As is well-known, traditional statistics of nonlinear models like root-mean-square (RMS) forecast error can prove misleading. Testing consistency is shown to overcome some of the deficiencies of RMS error, both within the perfect model scenario and when applied to data from several physical systems using previously published models. In particular, testing for consistent nonlinear dynamics provides insight towards (i) identifying when a delay reconstruction fails to be an embedding, (ii) allowing state dependent model selection and (iii) optimising local neighbourhood size. It also provides a more relevant (state dependent) threshold for identifying false nearest neighbours.

  8. Human Muscle Fatigue Model in Dynamic Motions

    E-Print Network [OSTI]

    Boyer, Edmond

    Human Muscle Fatigue Model in Dynamic Motions Ruina Ma, Damien Chablat, Fouad Bennis, and Liang Ma Abstract Human muscle fatigue is considered to be one of the main reasons for Musculoskeletal Disorder (MSD). Recent models have been introduced to define muscle fatigue for static postures. However, the main

  9. Modeling dynamic swarms q Bernard Ghanem a,

    E-Print Network [OSTI]

    Ahuja, Narendra

    a c t This paper proposes the problem of modeling video sequences of dynamic swarms (DSs). We define of our method by conducting experiments on real and synthetic video sequences. Real sequences of birds Elsevier Inc. All rights reserved. 1. Introduction This paper is about modeling video sequences of a dense

  10. Modeling the Dynamics of Compromised Networks

    SciTech Connect (OSTI)

    Soper, B; Merl, D M

    2011-09-12T23:59:59.000Z

    Accurate predictive models of compromised networks would contribute greatly to improving the effectiveness and efficiency of the detection and control of network attacks. Compartmental epidemiological models have been applied to modeling attack vectors such as viruses and worms. We extend the application of these models to capture a wider class of dynamics applicable to cyber security. By making basic assumptions regarding network topology we use multi-group epidemiological models and reaction rate kinetics to model the stochastic evolution of a compromised network. The Gillespie Algorithm is used to run simulations under a worst case scenario in which the intruder follows the basic connection rates of network traffic as a method of obfuscation.

  11. Dynamical System Analysis for a phantom model

    E-Print Network [OSTI]

    Nilanjana Mahata; Subenoy Chakraborty

    2014-04-24T23:59:59.000Z

    The paper deals with a dynamical system analysis related to phantom cosmological model . Here gravity is coupled to phantom scalar field having scalar coupling function and a potential. The field equations are reduced to an autonomous dynamical system by a suitable redefinition of the basic variables and assuming some suitable form of the potential function. Finally, critical points are evaluated, their nature have been analyzed and corresponding cosmological scenario has been discussed.

  12. Assessing resilience and state-transition models with historical records of cheatgrass Bromus tectorum

    E-Print Network [OSTI]

    Assessing resilience and state-transition models with historical records of cheatgrass Bromus. Bestelmeyer2 and X. Ben Wu1 1 Department of Ecosystem Science and Management, Texas A&M University, 2138 TAMU. This requires management frameworks that can assess ecosystem dynamics, both within and between alternative

  13. Assessment of Algal Farm Designs using a Dynamic Modular Approach

    SciTech Connect (OSTI)

    Jared M. Abodeely; Daniel M. Stevens; Allison E. Ray; Deborah T. Newby; Andre M. Coleman; Kara G. Cafferty

    2014-07-01T23:59:59.000Z

    The notion of renewable energy provides an importantmechanism for diversifying an energy portfolio,which ultimately would have numerous benefits including increased energy resilience, reduced reliance on foreign energysupplies, reduced GHG emissions, development of a green energy sector that contributes to economic growth,and providing a sustainable energy supply. The conversion of autotrophic algae to liquid transportation fuels is the basis of several decades of research to competitively bring energy-scale production into reality; however, many challenges still remain for making algal biofuels economically viable. Addressing current challenges associatedwith algal production systems, in part, requires the ability to assess spatial and temporal variability, rapidly evaluate alternative algal production system designs, and perform large-scale assessments considering multiple scenarios for thousands of potential sites. We introduce the development and application of the Algae Logistics Model (ALM) which is tailored to help address these challenges. The flexible nature of the ALM architecture allows the model to: 1) interface with external biomass production and resource assessment models, as well as other relevant datasets including those with spatiotemporal granularity; 2) interchange design processes to enable operational and economic assessments ofmultiple design configurations, including the integration of current and new innovative technologies; and 3) conduct trade-off analysis to help understand the site-specific techno-economic trade-offs and inform technology decisions. This study uses the ALM to investigate a baseline open-pond production system determined by model harmonization efforts conducted by the U.S. Department of Energy. Six sites in the U.S. southern-tierwere sub-selected and assessed using daily site-specific algaebiomass productivity data to determine the economic viability of large-scale open-pond systems. Results show that costs can vary significantly depending on location and biomass productivity and that integration of novel dewatering equipment, order of operations, and equipment scaling can also have significant impacts on economics.

  14. Assessment of Algal Farm Designs Using a Dynamic Modular Approach

    SciTech Connect (OSTI)

    Abodeely, Jared; Coleman, Andre M.; Stevens, Daniel M.; Ray, Allison E.; Cafferty, Kara G.; Newby, Deborah T.

    2014-05-03T23:59:59.000Z

    The notion of renewable energy provides an important mechanism for diversifying an energy portfolio, which ultimately would have numerous benefits including increased energy resilience, reduction of foreign energy supplies, reduced GHG emissions, development of a green energy sector that contributes to economic growth, and providing a sustainable energy supply. The conversion of autotrophic algae to liquid transportation fuels is the basis of several decades of research to competitively bring energy-scale production into reality; however, many challenges still remain for making algal biofuels economically viable. Addressing current challenges associated with algal production systems, in part, requires the ability to assess spatial and temporal variability, rapidly evaluate alternative algal production system designs, and perform large-scale assessments considering multiple scenarios for thousands of potential sites. We introduce the Algae Logistics Model (ALM) which helps to address these challenges. The flexible nature of the ALM architecture allows the model to: 1) interface with external biomass production and resource assessment models, as well as other relevant datasets including those with spatiotemporal granularity; 2) interchange design processes to enable operational and economic assessments of multiple design configurations, including the integration of current and new innovative technologies; and 3) conduct trade-off analysis to help understand the site-specific techno-economic trade-offs and inform technology decisions. This study uses the ALM to investigate a baseline open-pond production system determined by model harmonization efforts conducted by the U.S. Department of Energy. Six sites in the U.S. southern-tier were sub-selected and assessed using daily site-specific algae biomass productivity data to determine the economic viability of large-scale open-pond systems. Results show that costs can vary significantly depending on location and biomass productivity and that integration of novel dewatering equipment, order of operations, and equipment scaling can also have significant impacts on economics.

  15. Modeling of Reactor Kinetics and Dynamics

    SciTech Connect (OSTI)

    Matthew Johnson; Scott Lucas; Pavel Tsvetkov

    2010-09-01T23:59:59.000Z

    In order to model a full fuel cycle in a nuclear reactor, it is necessary to simulate the short time-scale kinetic behavior of the reactor as well as the long time-scale dynamics that occur with fuel burnup. The former is modeled using the point kinetics equations, while the latter is modeled by coupling fuel burnup equations with the kinetics equations. When the equations are solved simultaneously with a nonlinear equation solver, the end result is a code with the unique capability of modeling transients at any time during a fuel cycle.

  16. Modeling the Dynamics of Fermentation and Respiratory

    E-Print Network [OSTI]

    Sheffield, University of

    , denitrification, and SO4-reduction). The accumulation of acetate as a fermentation product within the plume species, e.g., H2(aq) or acetate, followed by respiration by other groups of organisms where fermentationModeling the Dynamics of Fermentation and Respiratory Processes in a Groundwater Plume of Phenolic

  17. Modeling joint friction in structural dynamics.

    SciTech Connect (OSTI)

    Segalman, Daniel Joseph

    2005-05-01T23:59:59.000Z

    The presence of mechanical joints--typified by the lap joint--in otherwise linear structures has been accommodated in structural dynamics via ad hoc methods for a century. The methods range from tuning linear models to approximate non-linear behavior in restricted load ranges to various methods which introduce joint dissipation in a post-processing stage. Other methods, employing constitutive models for the joints are being developed and their routine use is on the horizon.

  18. Feature extraction for structural dynamics model validation

    SciTech Connect (OSTI)

    Hemez, Francois [Los Alamos National Laboratory; Farrar, Charles [Los Alamos National Laboratory; Park, Gyuhae [Los Alamos National Laboratory; Nishio, Mayuko [UNIV OF TOKYO; Worden, Keith [UNIV OF SHEFFIELD; Takeda, Nobuo [UNIV OF TOKYO

    2010-11-08T23:59:59.000Z

    This study focuses on defining and comparing response features that can be used for structural dynamics model validation studies. Features extracted from dynamic responses obtained analytically or experimentally, such as basic signal statistics, frequency spectra, and estimated time-series models, can be used to compare characteristics of structural system dynamics. By comparing those response features extracted from experimental data and numerical outputs, validation and uncertainty quantification of numerical model containing uncertain parameters can be realized. In this study, the applicability of some response features to model validation is first discussed using measured data from a simple test-bed structure and the associated numerical simulations of these experiments. issues that must be considered were sensitivity, dimensionality, type of response, and presence or absence of measurement noise in the response. Furthermore, we illustrate a comparison method of multivariate feature vectors for statistical model validation. Results show that the outlier detection technique using the Mahalanobis distance metric can be used as an effective and quantifiable technique for selecting appropriate model parameters. However, in this process, one must not only consider the sensitivity of the features being used, but also correlation of the parameters being compared.

  19. Model assessment of protective barriers: Part 3

    SciTech Connect (OSTI)

    Fayer, M.J.; Rockhold, M.L.; Holford, D.J.

    1992-02-01T23:59:59.000Z

    Radioactive waste exists at the US Department of Energy's (DOE's) Hanford Site in a variety of locations, including subsurface grout and tank farms, solid waste burial grounds, and contaminated soil sites. Some of these waste sites may need to be isolated from percolating water to minimize the potential for transport of the waste to the ground water, which eventually discharges to the Columbia River. Multilayer protective barriers have been proposed as a means of limiting the flow of water through the waste sites (DOE 1987). A multiyear research program (managed jointly by Pacific Northwest Laboratory (PNL) and Westinghouse Hanford Company for the DOE) is aimed at assessing the performance of these barriers. One aspect of this program involves the use of computer models to predict barrier performance. Three modeling studies have already been conducted and a test plan was produced. The simulation work reported here was conducted by PNL and extends the previous modeling work. The purpose of this report are to understand phenomena that have been observed in the field and to provide information that can be used to improve hydrologic modeling of the protective barrier. An improved modeling capability results in better estimates of barrier performance. Better estimates can be used to improve the design of barriers and the assessment of their long-term performance.

  20. Structural system identification: Structural dynamics model validation

    SciTech Connect (OSTI)

    Red-Horse, J.R.

    1997-04-01T23:59:59.000Z

    Structural system identification is concerned with the development of systematic procedures and tools for developing predictive analytical models based on a physical structure`s dynamic response characteristics. It is a multidisciplinary process that involves the ability (1) to define high fidelity physics-based analysis models, (2) to acquire accurate test-derived information for physical specimens using diagnostic experiments, (3) to validate the numerical simulation model by reconciling differences that inevitably exist between the analysis model and the experimental data, and (4) to quantify uncertainties in the final system models and subsequent numerical simulations. The goal of this project was to develop structural system identification techniques and software suitable for both research and production applications in code and model validation.

  1. Model Evaluation and Hindcasting: An Experiment with an Integrated Assessment Model

    SciTech Connect (OSTI)

    Chaturvedi, Vaibhav; Kim, Son H.; Smith, Steven J.; Clarke, Leon E.; Zhou, Yuyu; Kyle, G. Page; Patel, Pralit L.

    2013-11-01T23:59:59.000Z

    Integrated assessment models have been extensively used for analyzing long term energy and greenhouse emissions trajectories and have influenced key policies on this subject. Though admittedly these models are focused on the long term trajectories, how well these models are able to capture historical dynamics is an open question. In a first experiment of its kind, we present a framework for evaluation of such integrated assessment models. We use Global Change Assessment Model for this zero order experiment, and focus on the building sector results for USA. We calibrate the model for 1990 and run it forward up to 2095 in five year time steps. This gives us results for 1995, 2000, 2005 and 2010 which we compare to observed historical data at both fuel level and service level. We focus on bringing out the key insights for the wider process of model evaluation through our experiment with GCAM. We begin with highlighting that creation of an evaluation dataset and identification of key evaluation metric is the foremost challenge in the evaluation process. Our analysis highlights that estimation of functional form of the relationship between energy service demand, which is an unobserved variable, and its drivers is a significant challenge in the absence of adequate historical data for both the dependent and driver variables. Historical data availability for key metrics is a serious limiting factor in the process of evaluation. Interestingly, service level data against which such models need to be evaluated are itself a result of models. Thus for energy services, the best we can do is compare our model results with other model results rather than observed and measured data. We show that long term models, by the nature of their construction, will most likely underestimate the rapid growth in some services observed in a short time span. Also, we learn that modeling saturated energy services like space heating is easier than modeling unsaturated services like space cooling and understanding that how far a service is from its saturation level is a key question which we probably don’t have an answer to. Finally and most importantly, even if long term models partially miss the short term dynamics, the long term insights provides by these models is fairly robust. We conclude by highlighting that our work is the first step in the much wider process of integrated assessment model evaluation and will hence have its own limitations. Future evaluation research work should build upon this zero order experiment for improving our modeling of human and coupled earth systems.

  2. The dynamic radiation environment assimilation model (DREAM)

    SciTech Connect (OSTI)

    Reeves, Geoffrey D [Los Alamos National Laboratory; Koller, Josef [Los Alamos National Laboratory; Tokar, Robert L [Los Alamos National Laboratory; Chen, Yue [Los Alamos National Laboratory; Henderson, Michael G [Los Alamos National Laboratory; Friedel, Reiner H [Los Alamos National Laboratory

    2010-01-01T23:59:59.000Z

    The Dynamic Radiation Environment Assimilation Model (DREAM) is a 3-year effort sponsored by the US Department of Energy to provide global, retrospective, or real-time specification of the natural and potential nuclear radiation environments. The DREAM model uses Kalman filtering techniques that combine the strengths of new physical models of the radiation belts with electron observations from long-term satellite systems such as GPS and geosynchronous systems. DREAM includes a physics model for the production and long-term evolution of artificial radiation belts from high altitude nuclear explosions. DREAM has been validated against satellites in arbitrary orbits and consistently produces more accurate results than existing models. Tools for user-specific applications and graphical displays are in beta testing and a real-time version of DREAM has been in continuous operation since November 2009.

  3. Assessing Uncertainty in Spatial Exposure Models for Air Pollution Health Effects Assessment

    E-Print Network [OSTI]

    2007-01-01T23:59:59.000Z

    Holgate S. 2002. Air pollution and health. Lancet Brunekreef2006. Bayesian modeling of air pollution health effects withExposure Models for Air Pollution Health Effects Assessment

  4. Regional Dynamics Model (REDYN) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, searchVirginia Blue Ridge And Piedmont Provinces | Open EnergyDynamics Model

  5. DYNAMICAL MODELING OF GALAXY MERGERS USING IDENTIKIT

    SciTech Connect (OSTI)

    Privon, G. C.; Evans, A. S. [Department of Astronomy, University of Virginia, Charlottesville, VA 22904 (United States); Barnes, J. E. [Institute for Astronomy, University of Hawaii, at Manoa, Honolulu, HI (United States); Hibbard, J. E. [National Radio Astronomy Observatory, Charlottesville, VA 22904 (United States); Yun, M. S. [Astronomy Department, University of Massachusetts, Amherst, MA 01003 (United States); Mazzarella, J. M. [NASA Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125 (United States); Armus, L.; Surace, J., E-mail: gcp8y@virginia.edu [Spitzer Science Center, California Institute of Technology, Pasadena, CA 91125 (United States)

    2013-07-10T23:59:59.000Z

    We present dynamical models of four interacting systems: NGC 5257/8, The Mice, the Antennae, and NGC 2623. The parameter space of the encounters are constrained using the Identikit model-matching and visualization tool. Identikit utilizes hybrid N-body and test particle simulations to enable rapid exploration of the parameter space of galaxy mergers. The Identikit-derived matches of these systems are reproduced with self-consistent collisionless simulations which show very similar results. The models generally reproduce the observed morphology and H I kinematics of the tidal tails in these systems with reasonable properties inferred for the progenitor galaxies. The models presented here are the first to appear in the literature for NGC 5257/8 and NGC 2623, and The Mice and the Antennae are compared with previously published models. Based on the assumed mass model and our derived initial conditions, the models indicate that the four systems are currently being viewed 175-260 Myr after first passage and cover a wide range of merger stages. In some instances there are mismatches between the models and the data (e.g., in the length of a tail); these are likely due to our adoption of a single mass model for all galaxies. Despite the use of a single mass model, these results demonstrate the utility of Identikit in constraining the parameter space for galaxy mergers when applied to real data.

  6. A Game-Theoretical Dynamic Model for Electricity Markets

    E-Print Network [OSTI]

    Aswin Kannan

    2010-10-06T23:59:59.000Z

    Oct 6, 2010 ... Abstract: We present a game-theoretical dynamic model for competitive electricity markets.We demonstrate that the model can be used to ...

  7. Model for assessing bronchial mucus transport

    SciTech Connect (OSTI)

    Agnew, J.E.; Bateman, J.R.M.; Pavia, D.; Clarke, S.W.

    1984-02-01T23:59:59.000Z

    The authors propose a scheme for the assessment of regional mucus transport using inhaled Tc-99m aerosol particles and quantitative analysis of serial gamma-camera images. The model treats input to inner and intermediate lung regions as the total of initial deposition there plus subsequent transport into these regions from more peripheral airways. It allows for interregional differences in the proportion of particles deposited on the mucus-bearing conducting airways, and does not require a gamma image 24 hr after particle inhalation. Instead, distribution of particles reaching the respiratory bronchioles or alveoli is determined from a Kr-81m ventilation image, while the total amount of such deposition is obtained from 24-hr Tc-99m retention measured with a sensitive counter system. The model is applicable to transport by mucociliary action or by cough, and has been tested in ten normal and ten asthmatic subjects.

  8. Dynamical Models for the Milky Way

    E-Print Network [OSTI]

    Walter Dehnen; James Binney

    1996-01-10T23:59:59.000Z

    The only way to map the Galaxy's gravitational potential $\\Phi({\\bf x})$ and the distribution of matter that produces it is by modelling the dynamics of stars and gas. Observations of the kinematics of gas provide key information about gradients of $\\Phi$ within the plane, but little information about the structure of $\\Phi$ out of the plane. Traditional Galaxy models {\\em assume}, for each of the Galaxy's components, arbitrary flattenings, which together with the components' relative masses yield the model's equipotentials. However, the Galaxy's isopotential surfaces should be {\\em determined\\/} directly from the motions of stars that move far from the plane. Moreover, from the kinematics of samples of such stars that have well defined selection criteria, one should be able not only to map $\\Phi$ at all positions, but to determine the distribution function $f_i({\\bf x},{\\bf v})$ of each stellar population $i$ studied. These distribution functions will contain a wealth of information relevant to the formation and evolution of the Galaxy. An approach to fitting a wide class of dynamical models to the very heterogeneous body of available data is described and illustrated.

  9. MODELING PLANT COMPETITION WITH THE GAPS OBJECT-ORIENTED DYNAMIC SIMULATION MODEL

    E-Print Network [OSTI]

    Rossiter, D G "David"

    MODELING PLANT COMPETITION WITH THE GAPS OBJECT-ORIENTED DYNAMIC SIMULATION MODEL David G. Rossiter of Agronomy, Inc. #12;MODELING PLANT COMPETITION WITH THE GAPS OBJECT-ORIENTED DYNAMIC SIMULATION MODEL Abstract Modeling inter-species competition is a natural application for dynamic simulation models

  10. 1 Copyright 2003 by ASME IMPROVING LIFE CYCLE ASSESSMENT BY INCLUDING SPATIAL, DYNAMIC AND PLACE-

    E-Print Network [OSTI]

    Drawing from the substantial body of literature on life cycle assessment / analysis (LCA), the article models is suggested as a means of improving the impact assessment phase of LCA. Keywords: Life Cycle Assessment, Life Cycle Analysis, Life Cycle Impact Assessment, LCA, Environmental Impact Assessment

  11. Risk assessment compatible fire models (RACFMs)

    SciTech Connect (OSTI)

    Lopez, A.R.; Gritzo, L.A.; Sherman, M.P.

    1998-07-01T23:59:59.000Z

    A suite of Probabilistic Risk Assessment Compatible Fire Models (RACFMs) has been developed to represent the hazard posed by a pool fire to weapon systems transported on the B52-H aircraft. These models represent both stand-off (i.e., the weapon system is outside of the flame zone but exposed to the radiant heat load from fire) and fully-engulfing scenarios (i.e., the object is fully covered by flames). The approach taken in developing the RACFMs for both scenarios was to consolidate, reconcile, and apply data and knowledge from all available resources including: data and correlations from the literature, data from an extensive full-scale fire test program at the Naval Air Warfare Center (NAWC) at China Lake, and results from a fire field model (VULCAN). In the past, a single, effective temperature, T{sub f}, was used to represent the fire. The heat flux to an object exposed to a fire was estimated using the relationship for black body radiation, {sigma}T{sub f}{sup 4}. Significant improvements have been made by employing the present approach which accounts for the presence of temperature distributions in fully-engulfing fires, and uses best available correlations to estimate heat fluxes in stand-off scenarios.

  12. Gradient Navigation Model for Pedestrian Dynamics

    E-Print Network [OSTI]

    Felix Dietrich; Gerta Köster

    2014-05-14T23:59:59.000Z

    We present a new microscopic ODE-based model for pedestrian dynamics: the Gradient Navigation Model. The model uses a superposition of gradients of distance functions to directly change the direction of the velocity vector. The velocity is then integrated to obtain the location. The approach differs fundamentally from force based models needing only three equations to derive the ODE system, as opposed to four in, e.g., the Social Force Model. Also, as a result, pedestrians are no longer subject to inertia. Several other advantages ensue: Model induced oscillations are avoided completely since no actual forces are present. The derivatives in the equations of motion are smooth and therefore allow the use of fast and accurate high order numerical integrators. At the same time, existence and uniqueness of the solution to the ODE system follow almost directly from the smoothness properties. In addition, we introduce a method to calibrate parameters by theoretical arguments based on empirically validated assumptions rather than by numerical tests. These parameters, combined with the accurate integration, yield simulation results with no collisions of pedestrians. Several empirically observed system phenomena emerge without the need to recalibrate the parameter set for each scenario: obstacle avoidance, lane formation, stop-and-go waves and congestion at bottlenecks. The density evolution in the latter is shown to be quantitatively close to controlled experiments. Likewise, we observe a dependence of the crowd velocity on the local density that compares well with benchmark fundamental diagrams.

  13. ONGOING RESEARCH PROJECTS Model of tropical forest structure and dynamics

    E-Print Network [OSTI]

    Hill, Jeffrey E.

    ONGOING RESEARCH PROJECTS Model of tropical forest structure and dynamics There is a need canopy structure and partitions dynamic rates for a tropical forest on Barro Colorado Island (BCI structure and partitions dynamic rates in a tropical forest. In Review. Journal of Ecology. #12;PPA model

  14. Unbounded dynamics in dissipative flows: Rössler model

    SciTech Connect (OSTI)

    Barrio, Roberto, E-mail: rbarrio@unizar.es; Serrano, Sergio, E-mail: sserrano@unizar.es [Computational Dynamics Group, Dpto. Matemática Aplicada and IUMA, Universidad de Zaragoza, E-50009 Zaragoza (Spain)] [Computational Dynamics Group, Dpto. Matemática Aplicada and IUMA, Universidad de Zaragoza, E-50009 Zaragoza (Spain); Blesa, Fernando, E-mail: fblesa@unizar.es [Computational Dynamics Group, Dpto. Física Aplicada and IUMA, Universidad de Zaragoza, E-50009 Zaragoza (Spain)] [Computational Dynamics Group, Dpto. Física Aplicada and IUMA, Universidad de Zaragoza, E-50009 Zaragoza (Spain)

    2014-06-15T23:59:59.000Z

    Transient chaos and unbounded dynamics are two outstanding phenomena that dominate in chaotic systems with large regions of positive and negative divergences. Here, we investigate the mechanism that leads the unbounded dynamics to be the dominant behavior in a dissipative flow. We describe in detail the particular case of boundary crisis related to the generation of unbounded dynamics. The mechanism of the creation of this crisis in flows is related to the existence of an unstable focus-node (or a saddle-focus) equilibrium point and the crossing of a chaotic invariant set of the system with the weak-(un)stable manifold of the equilibrium point. This behavior is illustrated in the well-known Rössler model. The numerical analysis of the system combines different techniques as chaos indicators, the numerical computation of the bounded regions, and bifurcation analysis. For large values of the parameters, the system is studied by means of Fenichel's theory, providing formulas for computing the slow manifold which influences the evolution of the first stages of the orbit.

  15. A Dynamical IS-LM Model Allen Tang

    E-Print Network [OSTI]

    Marzuola, Jeremy

    A Dynamical IS-LM Model Allen Tang The University of North Carolina the specifications of a discrete dynamical IS-LM model and discuss how this model can of monetary policy, to an economy. The standard static IS-LM model arises

  16. ESD.864 Modeling and Assessment for Policy, Spring 2011

    E-Print Network [OSTI]

    Selin, Noelle

    ESD.864 Modeling and Assessment for Policy explores how scientific information and quantitative models can be used to inform policy decision-making. Students will develop an understanding of quantitative modeling techniques ...

  17. Eutrophication risk assessment in coastal embayments using simple statistical models

    E-Print Network [OSTI]

    Arhonditsis, George B.

    Eutrophication risk assessment in coastal embayments using simple statistical models G. Arhonditsis for assessing the risk of eutrophication in marine coastal embayments. The procedure followed of exogenous nutrient loading. Ã? 2003 Elsevier Ltd. All rights reserved. Keywords: Eutrophication; Coastal

  18. Dynamics of an Economics Model for Generation Coupled to the OPA Power Transmission Model

    E-Print Network [OSTI]

    Dobson, Ian

    Dynamics of an Economics Model for Generation Coupled to the OPA Power Transmission Model B. A a dynamic model of the power transmission system (OPA) and a simple economic model of power generation development. Despite the simplicity of this economic model, complex dynamics both in the economics (prices

  19. Towards a Simplified Dynamic Wake Model using POD Analysis

    E-Print Network [OSTI]

    Bastine, David; Wächter, Matthias; Peinke, Joachim

    2014-01-01T23:59:59.000Z

    We apply the proper orthogonal decomposition (POD) to large eddy simulation data of a wind turbine wake in a turbulent atmospheric boundary layer. The turbine is modeled as an actuator disk. Our analyis mainly focuses on the question whether POD could be a useful tool to develop a simplified dynamic wake model. The extracted POD modes are used to obtain approximate descriptions of the velocity field. To assess the quality of these POD reconstructions, we define simple measures which are believed to be relevant for a sequential turbine in the wake such as the energy flux through a disk in the wake. It is shown that only a few modes are necessary to capture basic dynamical aspects of these measures even though only a small part of the turbulent kinetic energy is restored. Furthermore, we show that the importance of the individual modes depends on the measure chosen. Therefore, the optimal choice of modes for a possible model could in principle depend on the application of interest. We additionally present a pos...

  20. Integrated Assessment Modeling of Carbon Sequestration and Land Use Emissions Using Detailed Model Results and Observations

    SciTech Connect (OSTI)

    Dr. Atul Jain

    2005-04-17T23:59:59.000Z

    This report outlines the progress on the development and application of Integrated Assessment Modeling of Carbon Sequestrations and Land Use Emissions supported by the DOE Office of Biological and Environmental Research (OBER), U.S. Department of Energy, Grant No. DOE-DE-FG02-01ER63069. The overall objective of this collaborative project between the University of Illinois at Urbana-Champaign (UIUC), Oak Ridge National Laboratory (ORNL), Lawrence Livermore National Laboratory (LLNL), and Pacific Northwest National Laboratory (PNNL) was to unite the latest advances in carbon cycle research with scientifically based models and policy-related integrated assessment tools that incorporate computationally efficient representations of the latest knowledge concerning science and emission trajectories, and their policy implications. As part of this research we accomplished the following tasks that we originally proposed: (1) In coordination with LLNL and ORNL, we enhanced the Integrated Science Assessment Model's (ISAM) parametric representation of the ocean and terrestrial carbon cycles that better represent spatial and seasonal variations, which are important to study the mechanisms that influence carbon sequestration in the ocean and terrestrial ecosystems; (2) Using the MiniCAM modeling capability, we revised the SRES (IPCC Special Report on Emission Scenarios; IPCC, 2000) land use emission scenarios; and (3) On the application front, the enhanced version of ISAM modeling capability is applied to understand how short- and long-term natural carbon fluxes, carbon sequestration, and human emissions contribute to the net global emissions (concentrations) trajectories required to reach various concentration (emission) targets. Under this grant, 21 research publications were produced. In addition, this grant supported a number of graduate and undergraduate students whose fundamental research was to learn a disciplinary field in climate change (e.g., ecological dynamics and ocean circulations) and then complete research on how this field could be linked to the other factors we need to consider in its dynamics (e.g., land use, ocean and terrestrial carbon sequestration and climate change).

  1. A lattice mesoscopic model of dynamically heterogeneous fluids

    E-Print Network [OSTI]

    A. Lamura; S. Succi

    2005-10-04T23:59:59.000Z

    We introduce a mesoscopic three-dimensional Lattice Boltzmann Model which attempts to mimick the physical features associated with cage effects in dynamically heterogeneous fluids. To this purpose, we extend the standard Lattice Boltzmann dynamics with self-consistent constraints based on the non-local density of the surrounding fluid. The resulting dynamics exhibits typical features of dynamic heterogeneous fluids, such as non-Gaussian density distributions and long-time relaxation. Due to its intrinsically parallel dynamics, and absence of statistical noise, the method is expected to compute significantly faster than molecular dynamics, Monte Carlo and lattice glass models.

  2. assessment models risk: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    practice in the use of spreadsheets in business. Butler, Raymond J 2008-01-01 13 Eutrophication risk assessment in coastal embayments using simple statistical models...

  3. Solid Oxide Fuel Cell: Perspective of Dynamic Modeling and Control

    E-Print Network [OSTI]

    Huang, Biao

    Solid Oxide Fuel Cell: Perspective of Dynamic Modeling and Control Biao Huang Yutong Qi Monjur: This paper presents a review of state-of-the-art solid oxide fuel cells (SOFC), from perspective of dynamic. Keywords: Solid Oxide Fuel Cell, Control Relevant Model, Model Predictive Control 1. INTRODUCTION Today

  4. Open problem: Dynamic Relational Models for Improved Hazardous Weather Prediction

    E-Print Network [OSTI]

    McGovern, Amy

    . Current weather radar detection and prediction sys- tems primarily rely on numerical models. We proposeOpen problem: Dynamic Relational Models for Improved Hazardous Weather Prediction Amy McGovern1, #12;Dynamic Relational Models for Improved Hazardous Weather Prediction Radar velocity Radar

  5. HOMOGENEOUS MODELS IN GENERAL RELATIVITY AND GAS DYNAMICS

    E-Print Network [OSTI]

    Novikov, Sergei Petrovich

    HOMOGENEOUS MODELS IN GENERAL RELATIVITY AND GAS DYNAMICS O. I. BOGOYAVLENSKII AND S. P. NOVIKOV analytically) in general relativity and gas dynamics. The investigation of these models is carried out begins with a short survey of results on non-trivial models (that is, those that are not integrable

  6. Modeling Dynamics and Exploring Control of a Single-Wheeled Dynamically Stable Mobile

    E-Print Network [OSTI]

    Modeling Dynamics and Exploring Control of a Single-Wheeled Dynamically Stable Mobile Robot. It actively balances and moves on a single wheel using closed loop feedback, making it dynamically stable it a good candidate for operating in human environments. Balancing on a ball allows Ballbot to be omni

  7. A dynamic model for the Lagrangian stochastic dispersion coefficient

    SciTech Connect (OSTI)

    Pesmazoglou, I.; Navarro-Martinez, S., E-mail: s.navarro@imperial.ac.uk [Department of Mechanical Engineering, Imperial College, London SW7 2AZ (United Kingdom); Kempf, A. M. [Chair of Fluid Dynamics, Institute for Combustion and Gasdynamics and Center for Computational Sciences and Simulation, Universität Duisburg-Essen, Duisburg, 47048 (Germany)] [Chair of Fluid Dynamics, Institute for Combustion and Gasdynamics and Center for Computational Sciences and Simulation, Universität Duisburg-Essen, Duisburg, 47048 (Germany)

    2013-12-15T23:59:59.000Z

    A stochastic sub-grid model is often used to accurately represent particle dispersion in turbulent flows using large eddy simulations. Models of this type have a free parameter, the dispersion coefficient, which is not universal and is strongly grid-dependent. In the present paper, a dynamic model for the evaluation of the coefficient is proposed and validated in decaying homogeneous isotropic turbulence. The grid dependence of the static coefficient is investigated in a turbulent mixing layer and compared to the dynamic model. The dynamic model accurately predicts dispersion statistics and resolves the grid-dependence. Dispersion statistics of the dynamically calculated constant are more accurate than any static coefficient choice for a number of grid spacings. Furthermore, the dynamic model produces less numerical artefacts than a static model and exhibits smaller sensitivity in the results predicted for different particle relaxation times.

  8. Stochastic modeling of lift and drag dynamics under turbulent conditions

    E-Print Network [OSTI]

    Peinke, Joachim

    measurement. The model is being developed with the aim to integrate it into a general wind energy converter dynamics, drag dynamics. 1 Introduction Wind energy converters (WECs) are permanently exposed to turbulent.peinke@forwind.de in every second, which imposes different risks. The dynamical nature of the wind has a significant impact

  9. Event-Based Approach to Modelling Dynamic Architecture

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Event-Based Approach to Modelling Dynamic Architecture: Application to Mobile Ad-Hoc Network.Attiogbe@univ-nantes.fr Abstract. We describe an event-based approach to specifiy systems with dynamically evolving architecture tools. Keywords: Specification, Verification, Dynamic Architecture, Event B. 1 Introduction Distributed

  10. Dynamic Modeling of a Two Wheeled Vehicle : Jourdain Formalism

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    This paper presents a motorcycle direct dynamic formulation by the Jourdain's principle approach on the motorcycle's handlebar. Simulation results reveal some dynamics features like load transfer and counter-steering phenomena. keywords Motorcycle modeling, motorcycle control, Jourdain's dynamics principle. 1 Introduction

  11. Wind Energy Assessment using a Wind Turbine with Dynamic Yaw Control.

    E-Print Network [OSTI]

    Pervez, Md Nahid

    2013-01-01T23:59:59.000Z

    ??The goal of this project was to analyze the wind energy potential over Lake Michigan. For this purpose, a dynamic model of a utility-scale wind… (more)

  12. A dynamic term structure model of Central Bank policy

    E-Print Network [OSTI]

    Staker, Shawn W

    2009-01-01T23:59:59.000Z

    This thesis investigates the implications of explicitly modeling the monetary policy of the Central Bank within a Dynamic Term Structure Model (DTSM). We follow Piazzesi (2005) and implement monetary policy by including ...

  13. A Qualitative Simulation Approach for Fuzzy Dynamical Models

    E-Print Network [OSTI]

    Bontempi, Gianluca

    .g., a nuclear power plant in unexpected emergency situations) or because if does not yet exist (eA Qualitative Simulation Approach for Fuzzy Dynamical Models ANDREA BONARINI and GIANLUCA BONTEMPI Politecnico di Milano This article deal with simulation of approximate models of dynamic systems. We propose

  14. Direct modelling of envelope dynamics in resonant inverters

    E-Print Network [OSTI]

    Direct modelling of envelope dynamics in resonant inverters Y. Yin, R. Zane, R. Erickson and J. Glaser A direct dynamic modelling approach is proposed for envelope signals in resonant inverters tank and simplify analysis and controller design. Introduction: High-frequency DC-AC inverters

  15. Static and Dynamic Debugging of Modelica Models Adrian Pop1

    E-Print Network [OSTI]

    Zhao, Yuxiao

    Static and Dynamic Debugging of Modelica Models Adrian Pop1 , Martin Sjölund1 , Adeel Asghar1@elet.polimi.it Abstract The high abstraction level of equation-based object- oriented languages (EOO) such as Modelica has and dynamic debugging methods for Modelica models and a debugger prototype that addresses several of those

  16. ASSESSING FRANCE AS A MODEL OF SOCIETAL SUCCESS

    E-Print Network [OSTI]

    Boyer, Edmond

    of this "French model": the French economy being heavily regulated, the well-oiled state tightly controls market crisis," "The French model: Vive la difference!"2 ), and also from free-market minded internationalASSESSING FRANCE AS A MODEL OF SOCIETAL SUCCESS �loi Laurent Sciences-Po Michèle Lamont Harvard

  17. Wind resource assessment with a mesoscale non-hydrostatic model

    E-Print Network [OSTI]

    Boyer, Edmond

    Wind resource assessment with a mesoscale non- hydrostatic model Vincent Guénard, Center for Energy is developed for assessing the wind resource and its uncertainty. The work focuses on an existing wind farm mast measurements. The wind speed and turbulence fields are discussed. It is shown that the k

  18. Dioxins in San Francisco Conceptual Model/Impairment Assessment

    E-Print Network [OSTI]

    FINAL Dioxins in San Francisco Bay Conceptual Model/Impairment Assessment Prepared by Mike Connor Partnership November 12, 2004 SFEI Contribution #309 #12;Dioxins in San Francisco Bay: Impairment Assessment. This CM/IA report examines dioxins in San Francisco Bay. Dioxins comprise a group of several hundred

  19. Modeling dilute sediment suspension using large-eddy simulation with a dynamic mixed model

    E-Print Network [OSTI]

    Fringer, Oliver B.

    Modeling dilute sediment suspension using large-eddy simulation with a dynamic mixed model Yi Transport of suspended sediment in high Reynolds number channel flows Re=O 600 000 is simulated using large-eddy simulation along with a dynamic-mixed model DMM . Because the modeled sediment concentration is low

  20. Generic solar photovoltaic system dynamic simulation model specification.

    SciTech Connect (OSTI)

    Ellis, Abraham; Behnke, Michael Robert; Elliott, Ryan Thomas

    2013-10-01T23:59:59.000Z

    This document is intended to serve as a specification for generic solar photovoltaic (PV) system positive-sequence dynamic models to be implemented by software developers and approved by the WECC MVWG for use in bulk system dynamic simulations in accordance with NERC MOD standards. Two specific dynamic models are included in the scope of this document. The first, a Central Station PV System model, is intended to capture the most important dynamic characteristics of large scale (> 10 MW) PV systems with a central Point of Interconnection (POI) at the transmission level. The second, a Distributed PV System model, is intended to represent an aggregation of smaller, distribution-connected systems that comprise a portion of a composite load that might be modeled at a transmission load bus.

  1. RAVEN and Dynamic Probabilistic Risk Assessment: Software overview

    SciTech Connect (OSTI)

    Andrea Alfonsi; Cristian Rabiti; Diego Mandelli; Joshua Cogliati; Robert Kinoshita; Antonio Naviglio

    2014-06-01T23:59:59.000Z

    RAVEN is a generic software framework to perform parametric and probabilistic analysis based on the response of complex system codes. The initial development was aimed to provide dynamic risk analysis capabilities to the Thermo-Hydraulic code RELAP-7 [], currently under development at the Idaho National Laboratory. Although the initial goal has been fully accomplished, RAVEN is now a multi-purpose probabilistic and uncertainty quantification platform, capable to agnostically communicate with any system code. This agnosticism has been employed by providing Application Programming Interfaces (APIs). These interfaces are used to allow RAVEN to interact with any code as long as all the parameters that need to be perturbed are accessible by inputs files or via python interfaces. RAVEN is capable to investigate the system response, investigating the input space using Monte Carlo, Grid, or Latin Hyper Cube sampling schemes, but its strength is focused toward system feature discovery, such as limit surfaces, separating regions of the input space leading to system failure, using dynamic supervised learning techniques. The paper presents an overview of the software capabilities and their implementation schemes followed by some application examples.

  2. Quantitative Adaptation Analytics for Assessing Dynamic Systems of Systems.

    SciTech Connect (OSTI)

    Gauthier, John H.; Miner, Nadine E.; Wilson, Michael L.; Le, Hai D.; Kao, Gio K; Melander, Darryl J.; Longsine, Dennis Earl [Sandia National Laboratories, Unknown, Unknown; Vander Meer, Robert Charles,

    2015-01-01T23:59:59.000Z

    Our society is increasingly reliant on systems and interoperating collections of systems, known as systems of systems (SoS). These SoS are often subject to changing missions (e.g., nation- building, arms-control treaties), threats (e.g., asymmetric warfare, terrorism), natural environments (e.g., climate, weather, natural disasters) and budgets. How well can SoS adapt to these types of dynamic conditions? This report details the results of a three year Laboratory Directed Research and Development (LDRD) project aimed at developing metrics and methodologies for quantifying the adaptability of systems and SoS. Work products include: derivation of a set of adaptability metrics, a method for combining the metrics into a system of systems adaptability index (SoSAI) used to compare adaptability of SoS designs, development of a prototype dynamic SoS (proto-dSoS) simulation environment which provides the ability to investigate the validity of the adaptability metric set, and two test cases that evaluate the usefulness of a subset of the adaptability metrics and SoSAI for distinguishing good from poor adaptability in a SoS. Intellectual property results include three patents pending: A Method For Quantifying Relative System Adaptability, Method for Evaluating System Performance, and A Method for Determining Systems Re-Tasking.

  3. Binaural model-based speech intelligibility enhancement and assessment in

    E-Print Network [OSTI]

    #12;Binaural model-based speech intelligibility enhancement and assessment in hearing aids beamforming and the effect on binaural cues and speech intelligibility . . . . . . . . . . 31 2.3.4 Cepstral smoothing of masks . . . . . . . . . . . . . . . . . . 35 2.4 Binaural CASA speech

  4. GASFLOW: A Computational Fluid Dynamics Code for Gases, Aerosols, and Combustion, Volume 3: Assessment Manual

    SciTech Connect (OSTI)

    C. Müller; E. D. Hughes; G. F. Niederauer; H. Wilkening; J. R. Travis; J. W. Spore; P. Royl; W. Baumann

    1998-10-01T23:59:59.000Z

    Los Alamos National Laboratory (LANL) and Forschungszentrum Karlsruhe (FzK) are developing GASFLOW, a three-dimensional (3D) fluid dynamics field code as a best- estimate tool to characterize local phenomena within a flow field. Examples of 3D phenomena include circulation patterns; flow stratification; hydrogen distribution mixing and stratification; combustion and flame propagation; effects of noncondensable gas distribution on local condensation and evaporation; and aerosol entrainment, transport, and deposition. An analysis with GASFLOW will result in a prediction of the gas composition and discrete particle distribution in space and time throughout the facility and the resulting pressure and temperature loadings on the walls and internal structures with or without combustion. A major application of GASFLOW is for predicting the transport, mixing, and combustion of hydrogen and other gases in nuclear reactor containment and other facilities. It has been applied to situations involving transporting and distributing combustible gas mixtures. It has been used to study gas dynamic behavior in low-speed, buoyancy-driven flows, as well as sonic flows or diffusion dominated flows; and during chemically reacting flows, including deflagrations. The effects of controlling such mixtures by safety systems can be analyzed. The code version described in this manual is designated GASFLOW 2.1, which combines previous versions of the United States Nuclear Regulatory Commission code HMS (for Hydrogen Mixing Studies) and the Department of Energy and FzK versions of GASFLOW. The code was written in standard Fortran 90. This manual comprises three volumes. Volume I describes the governing physical equations and computational model. Volume II describes how to use the code to set up a model geometry, specify gas species and material properties, define initial and boundary conditions, and specify different outputs, especially graphical displays. Sample problems are included. Volume III contains some of the assessments performed by LANL and FzK

  5. FORMAL SEMANTICS AND VERIFICATION OF DYNAMIC RELIABILITY BLOCK DIAGRAMS FOR SYSTEM RELIABILITY MODELING

    E-Print Network [OSTI]

    Xu, Haiping

    FORMAL SEMANTICS AND VERIFICATION OF DYNAMIC RELIABILITY BLOCK DIAGRAMS FOR SYSTEM RELIABILITY captured by existing reliability modeling tools. In this paper, we introduce a new reliability modeling tool, called dynamic reliability block diagrams (DRBD), for modeling dynamic relationships between

  6. Fibre Based Modeling of Wood Dynamics and Fracture

    E-Print Network [OSTI]

    Bridson, Robert

    Fibre Based Modeling of Wood Dynamics and Fracture by Sean Meiji Sutherland B.Sc., The University for the simulation of the dynamics and fracturing char- acteristics of wood, specifically its anisotropic behaviour bundles of fibres. Additionally, we describe the conditions under which fracture occurs in the material

  7. Dynamic wind turbine models in power system simulation tool

    E-Print Network [OSTI]

    Dynamic wind turbine models in power system simulation tool DIgSILENT Anca D. Hansen, Florin Iov Iov, Poul Sørensen, Nicolaos Cutululis, Clemens Jauch, Frede Blaabjerg Title: Dynamic wind turbine system simulation tool PowerFactory DIgSILENT for different wind turbine concepts. It is the second

  8. Dynamic Modelling for Control of Fuel Cells Federico Zenith

    E-Print Network [OSTI]

    Skogestad, Sigurd

    Dynamic Modelling for Control of Fuel Cells Federico Zenith Sigurd Skogestad Department of Chemical Engineering Norwegian University of Science and Technology ( ntnu) Trondheim Abstract Fuel-cell dynamics have been investigated with a variable-resistance board applied to a high temperature polymer fuel cell

  9. REGULAR ARTICLE A Simple Dynamic Model of Respiratory Pump

    E-Print Network [OSTI]

    Fontecave-Jallon, Julie

    ). Mathematical models are used to understand these interactions and the mechanics of respiratory system better) and introduce some dynamic properties of the respiratory system. The passive elements (rib cage and abdomen not take into account the dynamic component of the system, it appears valid for different respiratory

  10. Modeling and Management of Nonlinear Dependencies Copulas in Dynamic Financial

    E-Print Network [OSTI]

    Ulm, Universität

    an important tool for decision making and an essential part of enterprise risk management (ERM), particularly. Keywords: Non-Life Insurance, Risk Management, Dynamic Financial Analysis, Co- pulas, PerformanceModeling and Management of Nonlinear Dependencies ­ Copulas in Dynamic Financial Analysis Martin

  11. A New Motorcycle Simulator Platform: Mechatronics Design, Dynamics Modeling

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    A New Motorcycle Simulator Platform: Mechatronics Design, Dynamics Modeling and Control L. Nehaoua of these techniques to other simulators (cars and motorcycles) is possible but not direct. Indeed, the dynamics motorcycle driving simulators were build. The first prototype was developed by Honda in 1988

  12. Symbolic Dynamics in a Matching Labour Market Model

    E-Print Network [OSTI]

    Diana A. Mendes; Vivaldo M. Mendes; J. Sousa Ramos

    2006-08-01T23:59:59.000Z

    In this paper we apply the techniques of symbolic dynamics to the analysis of a labor market which shows large volatility in employment flows. In a recent paper, Bhattacharya and Bunzel \\cite{BB} have found that the discrete time version of the Pissarides-Mortensen matching model can easily lead to chaotic dynamics under standard sets of parameter values. To conclude about the existence of chaotic dynamics in the numerical examples presented in the paper, the Li-Yorke theorem or the Mitra sufficient condition were applied which seems questionable because they may lead to misleading conclusions. Moreover, in a more recent version of the paper, Bhattacharya and Bunzel \\cite{BB1} present new results in which chaos is completely removed from the dynamics of the model. Our paper explores the matching model so interestingly developed by the authors with the following objectives in mind: (i) to show that chaotic dynamics may still be present in the model for standard parameter values; (ii) to clarify some open questions raised by the authors in \\cite{BB}, by providing a rigorous proof of the existence of chaotic dynamics in the model through the computation of topological entropy in a symbolic dynamics setting.

  13. Applications of axial and radial compressor dynamic system modeling

    E-Print Network [OSTI]

    Spakovszky, Zoltán S. (Zoltán Sándor), 1972-

    2001-01-01T23:59:59.000Z

    The presented work is a compilation of four different projects related to axial and centrifugal compression systems. The projects are related by the underlying dynamic system modeling approach that is common in all of them. ...

  14. Human Growth and Body Weight Dynamics: An Integrative Systems Model

    E-Print Network [OSTI]

    Rahmandad, Hazhir

    Quantifying human weight and height dynamics due to growth, aging, and energy balance can inform clinical practice and policy analysis. This paper presents the first mechanism-based model spanning full individual life and ...

  15. Molecular Dynamics Modeling of Ionic Liquids in Electrospray Propulsion

    E-Print Network [OSTI]

    . Lozano June 2010 SSL # 6-10 #12;#12;Molecular Dynamics Modeling of Ionic Liquids in Electrospray Propulsion Nanako Takahashi, Paulo C. Lozano June 2010 SSL # 6-10 This work is based on the unaltered text

  16. 2.003 Modeling Dynamics and Control I, Spring 2002

    E-Print Network [OSTI]

    Trumper, David L.

    First of two-term sequence on modeling, analysis and control of dynamic systems. Mechanical translation, uniaxial rotation, electrical circuits and their coupling via levers, gears and electro-mechanical devices. Analytical ...

  17. Modeling and control of undesirable dynamics in atomic force microscopes

    E-Print Network [OSTI]

    El Rifai, Osamah M

    2002-01-01T23:59:59.000Z

    The phenomenal resolution and versatility of the atomic force microscope (AFM), has made it a widely-used instrument in nanotechnology. In this thesis, a detailed model of AFM dynamics has been developed. It includes a new ...

  18. Models of dynamic RNA regulation in mammalian cells

    E-Print Network [OSTI]

    Rabani, Michal

    2013-01-01T23:59:59.000Z

    Complex molecular circuits, consisting of multiple intertwined feedback loops and non-linear interactions, are a hallmark of every living cell, and a model of a dynamic complex network. Here, I systematically study the ...

  19. Modeling exchange rate dependence dynamics at different time horizons

    E-Print Network [OSTI]

    Embrechts, Paul

    , Copula-GARCH, Conditional dependence, Dynamic copula Corresponding author. Tel.: +44(0) 247 657 4297. Financial time-series are often modeled with GARCH type models. In the multivariate GARCH literature there exist several models, like CCC- GARCH, DVEC, matrix-diagonal GARCH, BEKK and principal components GARCH

  20. Cognitive Modeling Carsten Pfeffer Dynamical Systems Approaches to

    E-Print Network [OSTI]

    Bremen, Universität

    Cognitive Modeling Carsten Pfeffer Dynamical Systems Approaches to Cognition Carsten Pfeffer Universität Bremen December 1st, 2014 December 1st, 2014 1/30 #12;Cognitive Modeling Carsten Pfeffer Introduction Physical Symbol Systems December 1st, 2014 2/30 #12;Cognitive Modeling Carsten Pfeffer

  1. RESEARCH ARTICLE Modelling multi-species response to landscape dynamics

    E-Print Network [OSTI]

    Kleyer, Michael

    and to the spatio-temporal configuration of urban brownfield habitats in a multi-species approach (37 plant and 43- sion time of brownfield habitats required to support all and especially regionally rare species Dynamic landscape Á Species distribution model Á Habitat model Á Urban brownfields Á Model averaging Á

  2. Dynamic (G2) Model Design Document, 24590-WTP-MDD-PR-01-002, Rev. 12

    SciTech Connect (OSTI)

    Deng, Yueying; Kruger, Albert A.

    2013-12-16T23:59:59.000Z

    The Hanford Tank Waste Treatment and Immobilization Plant (WTP) Statement of Work (Department of Energy Contract DE-AC27-01RV14136, Section C) requires the contractor to develop and use process models for flowsheet analyses and pre-operational planning assessments. The Dynamic (G2) Flowsheet is a discrete-time process model that enables the project to evaluate impacts to throughput from eventdriven activities such as pumping, sampling, storage, recycle, separation, and chemical reactions. The model is developed by the Process Engineering (PE) department, and is based on the Flowsheet Bases, Assumptions, and Requirements Document (24590-WTP-RPT-PT-02-005), commonly called the BARD. The terminologies of Dynamic (G2) Flowsheet and Dynamic (G2) Model are interchangeable in this document. The foundation of this model is a dynamic material balance governed by prescribed initial conditions, boundary conditions, and operating logic. The dynamic material balance is achieved by tracking the storage and material flows within the plant as time increments. The initial conditions include a feed vector that represents the waste compositions and delivery sequence of the Tank Farm batches, and volumes and concentrations of solutions in process equipment before startup. The boundary conditions are the physical limits of the flowsheet design, such as piping, volumes, flowrates, operation efficiencies, and physical and chemical environments that impact separations, phase equilibriums, and reaction extents. The operating logic represents the rules and strategies of running the plant.

  3. Developing Generic Dynamic Models for the 2030 Eastern Interconnection Grid

    SciTech Connect (OSTI)

    Kou, Gefei [ORNL; Hadley, Stanton W [ORNL; Markham, Penn N [ORNL; Liu, Yilu [ORNL

    2013-12-01T23:59:59.000Z

    The Eastern Interconnection Planning Collaborative (EIPC) has built three major power flow cases for the 2030 Eastern Interconnection (EI) based on various levels of energy/environmental policy conditions, technology advances, and load growth. Using the power flow cases, this report documents the process of developing the generic 2030 dynamic models using typical dynamic parameters. The constructed model was validated indirectly using the synchronized phasor measurements by removing the wind generation temporarily.

  4. Assessment of dynamic energy conversion systems for radioisotope heat sources

    SciTech Connect (OSTI)

    Thayer, G.R.; Mangeng, C.A.

    1985-06-01T23:59:59.000Z

    The use of dynamic conversion systems to convert the heat generated in a 7500 W(t) 90 Sr radioisotopic heat source to electricity is examined. The systems studies were Stirling; Brayton Cycle; three organic Rankines (ORCs) (Barber-Nichols/ORMAT, Sundstrand, and TRW); and an organic Rankine plus thermoelectrics. The systems were ranked for a North Warning System mission using a Los Alamos Multiattribute Decision Theory code. Three different heat source designs were used: case I with a beginning of life (BOL) source temperature of 640 C, case II with a BOL source temperature of 745/sup 0/C, and case III with a BOL source temperature of 945/sup 0/C. The Stirling engine system was the top-ranked system of cases I and II, closely followed by the ORC systems in case I and ORC plus thermoelectrics in case II. The Brayton cycle system was top-ranked for case III, with the Stirling engine system a close second. The use of /sup 238/Pu in heat source sizes of 7500 W(t) was examined and found to be questionable because of cost and material availability and because of additional requirements for analysis of safeguards and critical mass.

  5. Real-Time Dynamic Brake Assessment Conduct a proof-of-concept

    E-Print Network [OSTI]

    Real-Time Dynamic Brake Assessment Purpose Conduct a proof-of-concept test to examine the Federal Motor Carrier Safety Administration's Vehicle and Roadside Operations Division Concept stemming conducted for the National Highway Transportation Safety Administration. Signals to be collected Real

  6. Dynamic reactor modeling with applications to SPR and ZEDNA.

    SciTech Connect (OSTI)

    Suo-Anttila, Ahti Jorma

    2011-12-01T23:59:59.000Z

    A dynamic reactor model has been developed for pulse-type reactor applications. The model predicts reactor power, axial and radial fuel expansion, prompt and delayed neutron population, and prompt and delayed gamma population. All model predictions are made as a function of time. The model includes the reactivity effect of fuel expansion on a dynamic timescale as a feedback mechanism for reactor power. All inputs to the model are calculated from first principles, either directly by solving systems of equations, or indirectly from Monte Carlo N-Particle Transport Code (MCNP) derived results. The model does not include any empirical parameters that can be adjusted to match experimental data. Comparisons of model predictions to actual Sandia Pulse Reactor SPR-III pulses show very good agreement for a full range of pulse magnitudes. The model is also applied to Z-pinch externally driven neutron assembly (ZEDNA) type reactor designs to model both normal and off-normal ZEDNA operations.

  7. ERCOT's Dynamic Model of Wind Turbine Generators: Preprint

    SciTech Connect (OSTI)

    Muljadi, E.; Butterfield, C. P.; Conto, J.; Donoho, K.

    2005-08-01T23:59:59.000Z

    By the end of 2003, the total installed wind farm capacity in the Electric Reliability Council of Texas (ERCOT) system was approximately 1 gigawatt (GW) and the total in the United States was about 5 GW. As the number of wind turbines installed throughout the United States increases, there is a greater need for dynamic wind turbine generator models that can properly model entire power systems for different types of analysis. This paper describes the ERCOT dynamic models and simulations of a simple network with different types of wind turbine models currently available.

  8. Model-based Safety Risk Assessment

    E-Print Network [OSTI]

    Lindsay, Peter

    development life-cycle, in order to identify critical system requirements, such as safety requirements their effectiveness, early in the system development life-cycle, on models derived directly from natural language of functional requirements of arbitrary detail ­ whether it is very early in the life-cycle when functions

  9. E-Print Network 3.0 - assessment modeling approach Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    OF ENGINEERING CYBERNETICS AND ROBOTICS, 60 Summary: , 60 2009 Sofia Service Oriented Architecture of Assessment Model1 Adelina Aleksieva... Assessment Model. To achieve...

  10. E-Print Network 3.0 - assessing local model Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    OF ENGINEERING CYBERNETICS AND ROBOTICS, 60 Summary: , 60 2009 Sofia Service Oriented Architecture of Assessment Model1 Adelina Aleksieva... Assessment Model. To achieve...

  11. Safety assessment document for the Dynamic Test Complex B854

    SciTech Connect (OSTI)

    Odell, B.N.; Pfeifer, H.E.

    1981-12-11T23:59:59.000Z

    A safety assessment was performed to determine if potential accidents at the 854 Complex at Site 300 could present undue hazards to the general public, personnel at Site 300, or have an adverse effect on the environment. The credible accidents that might have an effect on these facilities or have off-site consequences were considered. These were earthquake, extreme wind (including missiles), lightning, flood, criticality, high explosive (HE) detonation that disperses uranium and beryllium, spontaneous oxidation of plutonium, explosions due to finely divided particles, and a fire. Seismic and extreme wind (including missiles) analyses indicate that the buildings are basically sound. The lightning protection system is in the process of being upgraded to meet AMCR 385-100. These buildings are located high above the dry creek bed so that a flood is improbable. The probability of high explosive detonation involving plutonium is very remote since the radioactive materials are encased and plutonium and HE are not permitted concurrently in the same area at Site 300. (The exception to this policy is that explosive actuating devices are sometimes located in assemblies containing fissile materials. However, an accidental actuation will not affect the safe containment of the plutonium within the assembly.) There is a remote possibility of an HE explosion involving uranium and beryllium since these are permitted in the same area.The possibility of a criticality accident is very remote since the fissile materials are doubly encased in stout metal containers. All operations involving these materials are independently reviewed and inspected by the Criticality Safety Office. It was determined that a fire was unlikely due to the low fire loading and the absence of ignition sources. It was also determined that the consequences of any accidents were reduced by the remote location of these facilities, their design, and by administrative controls.

  12. A stochastic evolutionary model for capturing human dynamics

    E-Print Network [OSTI]

    Fenner, Trevor; Loizou, George

    2015-01-01T23:59:59.000Z

    The recent interest in human dynamics has led researchers to investigate the stochastic processes that explain human behaviour in various contexts. Here we propose a generative model to capture the dynamics of survival analysis, traditionally employed in clinical trials and reliability analysis in engineering. We derive a general solution for the model in the form of a product, and then a continuous approximation to the solution via the renewal equation describing age-structured population dynamics. This enables us to model a wide rage of survival distributions, according to the choice of the mortality distribution. We provide empirical evidence for the validity of the model from a longitudinal data set of popular search engine queries over 114 months, showing that the survival function of these queries is closely matched by the solution for our model with power-law mortality.

  13. Structure formation: Models, Dynamics and Status

    E-Print Network [OSTI]

    T. Padmanabhan

    1995-08-25T23:59:59.000Z

    The constraints on the models for the structure formation arising from various cosmological observations at different length scales are reviewed. The status of different models for structure formation is examined critically in the light of these observations.

  14. Dynamic physiological modeling for functional diffuse optical tomography

    E-Print Network [OSTI]

    ,c and David A. Boasa a Massachusetts General Hospital, Athinoula A. Martinos Center for Biomedical Imaging and brain that reflect competing metabolic demands and cardiovascular dynamics. The diffuse nature of near- namic response. In this paper, we present a linear state-space model for DOT analysis that models

  15. Numerical Modeling of Brain Dynamics in Traumatic Situations -Impulsive Translations

    E-Print Network [OSTI]

    Burtscher, Martin

    .S.A. Abstract We numerically model the brain dy- namics during and after impulsive head translations using brain injuries appear among boxers and shaken babies despite minimal rotations of their heads. Modeling head translations also helps understand the brain dynamics during head rotations about an arbitrary

  16. A Dynamic Model coupling Photoacclimation and Photoinhibition in Microalgae

    E-Print Network [OSTI]

    Boyer, Edmond

    A Dynamic Model coupling Photoacclimation and Photoinhibition in Microalgae Philipp Hartmann1, Andreas Nikolaou2, Beno^it Chachuat2, Olivier Bernard1 Abstract-- Microalgae are often considered in microalgae, thereby spanning multiple time scales. The properties of the model are investigated under quasi

  17. Computational Modeling of Brain Dynamics during Repetitive Head Motions

    E-Print Network [OSTI]

    Burtscher, Martin

    Computational Modeling of Brain Dynamics during Repetitive Head Motions Igor Szczyrba School motions in traumatic scenarios that are as- sociated with severe brain injuries. Our results are based on the linear Kelvin-Voigt brain injury model, which treats the brain matter as a viscoelastic solid, and on our

  18. Passive dynamic walking with knees : a point foot model

    E-Print Network [OSTI]

    Hsu Chen, Vanessa F. (Vanessa Fang)

    2007-01-01T23:59:59.000Z

    In this thesis, a hybrid model for a passive 2D walker with knees and point feet is presented. The step cycle of the model has two phases of continuous dynamics: one with an unlocked knee configuration and a second one ...

  19. Dynamic modelling for thermal micro-actuators using thermal networks

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Dynamic modelling for thermal micro-actuators using thermal networks Beatriz L´opez-Wallea,1 and analytical calculations. Key words: Micro-actuators, Thermal modelling, Electrical analogy, Thermal network 1 and MicroMechatronic Systems Department (AS2M), 24 rue Alain Savary, 25000 Besan¸con, France Abstract

  20. Long-wave models of thin film fluid dynamics

    E-Print Network [OSTI]

    A. J. Roberts

    1994-11-04T23:59:59.000Z

    Centre manifold techniques are used to derive rationally a description of the dynamics of thin films of fluid. The derived model is based on the free-surface $\\eta(x,t)$ and the vertically averaged horizontal velocity $\\avu(x,t)$. The approach appears to converge well and has significant differences from conventional depth-averaged models.

  1. Modeling Lake Erie ice dynamics: Process studies , Haoguo Hu2

    E-Print Network [OSTI]

    Modeling Lake Erie ice dynamics: Process studies Jia Wang1 , Haoguo Hu2 , and Xuezhi Bai2 1 NOAA of Michigan 4840 S. State Road, Ann Arbor, MI 48108 Abstract. A Great Lakes Ice-circulation Model (GLIM derived from meteorological measurements. After the seasonal cycles of ice concentration, thickness

  2. Variational Inference in Stochastic Dynamic Environmental Models Dan Cornford1

    E-Print Network [OSTI]

    Roulstone, Ian

    Variational Inference in Stochastic Dynamic Environmental Models Dan Cornford1 , Manfred Opper2 number of degrees of freedom. Environmental forecasting centres have taken strategic decisions to develop on related phenomena, such as flooding and storm damage, and on the spread of pollutants. The models needed

  3. Towards an assessment of skill acquisition in student modelling

    E-Print Network [OSTI]

    Yacef, Kalina

    /her operational skill in dynamic and highly risky domains, such as Air Traffic Control, nuclear plant operations,leila]@cmis.csiro.au Abstract: This paper presents an approach to student modelling in the context of a simulation-based ITS of the expertise. Examples are given in the domain of Air Traffic Control simulation training for conflict

  4. Friction in a Model of Hamiltonian Dynamics

    E-Print Network [OSTI]

    Juerg Froehlich; Zhou Gang; Avy Soffer

    2011-10-29T23:59:59.000Z

    We study the motion of a heavy tracer particle weakly coupled to a dense ideal Bose gas exhibiting Bose-Einstein condensation. In the so-called mean-field limit, the dynamics of this system approaches one determined by nonlinear Hamiltonian evolution equations describing a process of emission of Cerenkov radiation of sound waves into the Bose-Einstein condensate along the particle's trajectory. The emission of Cerenkov radiation results in a friction force with memory acting on the tracer particle and causing it to decelerate until it comes to rest.

  5. DYNAMICAL MODEL OF AN EXPANDING SHELL

    SciTech Connect (OSTI)

    Pe'er, Asaf [Harvard-Smithsonian Center for Astrophysics, MS-51, 60 Garden Street, Cambridge, MA 02138 (United States)

    2012-06-10T23:59:59.000Z

    Expanding blast waves are ubiquitous in many astronomical sources, such as supernova remnants, X-ray emitting binaries, and gamma-ray bursts. I consider here the dynamics of such an expanding blast wave, both in the adiabatic and the radiative regimes. As the blast wave collects material from its surroundings, it decelerates. A full description of the temporal evolution of the blast wave requires consideration of both the energy density and the pressure of the shocked material. The obtained equation is different from earlier works in which only the energy was considered. The solution converges to the familiar results in both the ultrarelativistic and the sub-relativistic (Newtonian) regimes.

  6. Wind turbine control systems: Dynamic model development using system identification and the fast structural dynamics code

    SciTech Connect (OSTI)

    Stuart, J.G.; Wright, A.D.; Butterfield, C.P.

    1996-10-01T23:59:59.000Z

    Mitigating the effects of damaging wind turbine loads and responses extends the lifetime of the turbine and, consequently, reduces the associated Cost of Energy (COE). Active control of aerodynamic devices is one option for achieving wind turbine load mitigation. Generally speaking, control system design and analysis requires a reasonable dynamic model of {open_quotes}plant,{close_quotes} (i.e., the system being controlled). This paper extends the wind turbine aileron control research, previously conducted at the National Wind Technology Center (NWTC), by presenting a more detailed development of the wind turbine dynamic model. In prior research, active aileron control designs were implemented in an existing wind turbine structural dynamics code, FAST (Fatigue, Aerodynamics, Structures, and Turbulence). In this paper, the FAST code is used, in conjunction with system identification, to generate a wind turbine dynamic model for use in active aileron control system design. The FAST code is described and an overview of the system identification technique is presented. An aileron control case study is used to demonstrate this modeling technique. The results of the case study are then used to propose ideas for generalizing this technique for creating dynamic models for other wind turbine control applications.

  7. Modeling of Alpine Atmospheric Dynamics II

    E-Print Network [OSTI]

    Gohm, Alexander

    for large mesh sizes (x 20 km) to vertically redistribute heat and moisture in a grid column when model in a numerical model Convective cloud systems are not resolved if the mesh size of the grid is larger than small to treat convection as sub-grid scale process but too large to treat it explicitly For example

  8. Bayesian Model Averaging in Proportional Hazard Models: Assessing the Risk of a Stroke

    E-Print Network [OSTI]

    Volinsky, Chris

    Bayesian Model Averaging in Proportional Hazard Models: Assessing the Risk of a Stroke Chris T In the context of the Cardiovascular Health Study, a comprehensive investigation into the risk factors for stroke of assessing who is at high risk for stroke. 1 Introduction Stroke is the third leading cause of death among

  9. Dynamic force spectroscopy on multiple bonds: experiments and model

    E-Print Network [OSTI]

    T. Erdmann; S. Pierrat; P. Nassoy; U. S. Schwarz

    2007-12-18T23:59:59.000Z

    We probe the dynamic strength of multiple biotin-streptavidin adhesion bonds under linear loading using the biomembrane force probe setup for dynamic force spectroscopy. Measured rupture force histograms are compared to results from a master equation model for the stochastic dynamics of bond rupture under load. This allows us to extract the distribution of the number of initially closed bonds. We also extract the molecular parameters of the adhesion bonds, in good agreement with earlier results from single bond experiments. Our analysis shows that the peaks in the measured histograms are not simple multiples of the single bond values, but follow from a superposition procedure which generates different peak positions.

  10. Climate impacts of bioenergy: Inclusion of carbon cycle and albedo dynamics in life cycle impact assessment

    SciTech Connect (OSTI)

    Bright, Ryan M., E-mail: ryan.m.bright@ntnu.no; Cherubini, Francesco; Stromman, Anders H.

    2012-11-15T23:59:59.000Z

    Life cycle assessment (LCA) can be an invaluable tool for the structured environmental impact assessment of bioenergy product systems. However, the methodology's static temporal and spatial scope combined with its restriction to emission-based metrics in life cycle impact assessment (LCIA) inhibits its effectiveness at assessing climate change impacts that stem from dynamic land surface-atmosphere interactions inherent to all biomass-based product systems. In this paper, we focus on two dynamic issues related to anthropogenic land use that can significantly influence the climate impacts of bioenergy systems: i) temporary changes to the terrestrial carbon cycle; and ii) temporary changes in land surface albedo-and illustrate how they can be integrated within the LCA framework. In the context of active land use management for bioenergy, we discuss these dynamics and their relevancy and outline the methodological steps that would be required to derive case-specific biogenic CO{sub 2} and albedo change characterization factors for inclusion in LCIA. We demonstrate our concepts and metrics with application to a case study of transportation biofuel sourced from managed boreal forest biomass in northern Europe. We derive GWP indices for three land management cases of varying site productivities to illustrate the importance and need to consider case- or region-specific characterization factors for bioenergy product systems. Uncertainties and limitations of the proposed metrics are discussed. - Highlights: Black-Right-Pointing-Pointer A method for including temporary surface albedo and carbon cycle changes in Life Cycle Impact Assessment (LCIA) is elaborated. Black-Right-Pointing-Pointer Concepts are applied to a single bioenergy case whereby a range of feedstock productivities are shown to influence results. Black-Right-Pointing-Pointer Results imply that case- and site-specific characterization factors can be essential for a more informed impact assessment. Black-Right-Pointing-Pointer Uncertainties and limitations of the proposed methodologies are elaborated.

  11. A Markov model of land use dynamics

    E-Print Network [OSTI]

    Campillo, Fabien; Raherinirina, Angelo; Rakotozafy, Rivo

    2011-01-01T23:59:59.000Z

    The application of the Markov chain to modeling agricultural succession is well known. In most cases, the main problem is the inference of the model, i.e. the estimation of the transition matrix. In this work we present methods to estimate the transition matrix from historical observations. In addition to the estimator of maximum likelihood (MLE), we also consider the Bayes estimator associated with the Jeffreys prior. This Bayes estimator will be approximated by a Markov chain Monte Carlo (MCMC) method. We also propose a method based on the sojourn time to test the adequation of Markov chain model to the dataset.

  12. Modeling Infection with Multi-agent Dynamics

    E-Print Network [OSTI]

    Dong, Wen

    2012-01-01T23:59:59.000Z

    Developing the ability to comprehensively study infections in small populations enables us to improve epidemic models and better advise individuals about potential risks to their health. We currently have a limited ...

  13. A dynamic model of industrial energy demand in Kenya

    SciTech Connect (OSTI)

    Haji, S.H.H. [Gothenburg Univ. (Sweden)

    1994-12-31T23:59:59.000Z

    This paper analyses the effects of input price movements, technology changes, capacity utilization and dynamic mechanisms on energy demand structures in the Kenyan industry. This is done with the help of a variant of the second generation dynamic factor demand (econometric) model. This interrelated disequilibrium dynamic input demand econometric model is based on a long-term cost function representing production function possibilities and takes into account the asymmetry between variable inputs (electricity, other-fuels and Tabour) and quasi-fixed input (capital) by imposing restrictions on the adjustment process. Variations in capacity utilization and slow substitution process invoked by the relative input price movement justifies the nature of input demand disequilibrium. The model is estimated on two ISIS digit Kenyan industry time series data (1961 - 1988) using the Iterative Zellner generalized least square method. 31 refs., 8 tabs.

  14. Assessment of boreal forest historical C dynamics in Yukon River Basin: relative roles of warming and fire regime change

    SciTech Connect (OSTI)

    Yuan, Fengming [ORNL; Yi, Shuhua [Cold and Arid Regions Environmental and Engineering Research Institute, CAS; McGuire, A. David [University of Alaska; Johnson, Kristopher D [University of Alaska, Fairbanks; Liang, Jingjing [University of Alaska, Fairbanks; Harden, Jennifer [USGS, Menlo Park, CA; Kasischke, Eric S. [University of Maryland, College Park; Kurz, Werner [Canadian Forest Service

    2012-01-01T23:59:59.000Z

    Carbon (C) dynamics of boreal forest ecosystems have substantial implications for efforts to mitigate the rise of atmospheric CO2 and may be substantially influenced by warming and changing wildfire regimes. In this study we applied a large-scale ecosystem model that included dynamics of organic soil horizons and soil organic matter characteristics of multiple pools to assess forest C stock changes of the Yukon River Basin (YRB) in Alaska, USA, and Canada from 1960 through 2006, a period characterized by substantial climate warming and increases in wildfire. The model was calibrated for major forests with data from long-term research sites and evaluated using a forest inventory database. The regional assessment indicates that forest vegetation C storage increased by 46 Tg C, but that total soil C storage did not change appreciably during this period. However, further analysis suggests that C has been continuously lost from the mineral soil horizon since warming began in the 1970s, but has increased in the amorphous organic soil horizon. Based on a factorial experiment, soil C stocks would have increased by 158 Tg C if the YRB had not undergone warming and changes in fire regime. The analysis also identified that warming and changes in fire regime were approximately equivalent in their effects on soil C storage, and interactions between these two suggests that the loss of organic horizon thickness associated with increases in wildfire made deeper soil C stocks more vulnerable to loss via decomposition. Subbasin analyses indicate that C stock changes were primarily sensitive to the fraction of burned forest area within each subbasin and that boreal forest ecosystems in the YRB are currently transitioning from being sinks to sources at ;0.7% annual area burned. We conclude that it is important for international mitigation efforts focused on controlling atmospheric CO2 to consider how climate warming and changes in fire regime may concurrently affect the CO2 sink strength of boreal forests. It is also important for large-scale biogeochemical and earth system models to include organic soil dynamics in applications to assess regional C dynamics of boreal forests responding to warming and changes in fire regime.

  15. Abstract--A stochastic dynamic programming hydrothermal dispatch model to simulate a bid-based market is

    E-Print Network [OSTI]

    Catholic University of Chile (Universidad Católica de Chile)

    on dynamic programming that optimizes and validates the bid prices strategies for each power plant in a hydro-thermal several plants. Emphasis is given to hydro reservoir modeling and to the assessment of their market power market power is detected, focalized on main reservoir plants and implicating important increases

  16. Assessing streamaquifer interactions through inverse modeling of flow routing q

    E-Print Network [OSTI]

    Szilagyi, Jozsef

    Assessing stream­aquifer interactions through inverse modeling of flow routing q Jozsef Szilagyi a and Nieber, 1977; Troch et al., 1993; Brutsaert and Lopez, 1998; Szilagyi et al., 1998; Par- lange et al., 2001; Szilagyi, 2003a). Knowledge of this inter- action between streamflow and groundwater during flood

  17. Multi-attribute Model for Assessment of SMEs adoption of

    E-Print Network [OSTI]

    Bohanec, Marko

    Multi-attribute Model for Assessment of SMEs adoption of High Performance Computing Cloud Services boosters for SMEs, particularly manufacturing. · Huge amount of and $ are currently being spent on simulation experiments through various initiatives. #12;Introduction · Technology adoptance is in its early

  18. Groundwater Impacts of Radioactive Wastes and Associated Environmental Modeling Assessment

    SciTech Connect (OSTI)

    Ma, Rui; Zheng, Chunmiao; Liu, Chongxuan

    2012-11-01T23:59:59.000Z

    This article provides a review of the major sources of radioactive wastes and their impacts on groundwater contamination. The review discusses the major biogeochemical processes that control the transport and fate of radionuclide contaminants in groundwater, and describe the evolution of mathematical models designed to simulate and assess the transport and transformation of radionuclides in groundwater.

  19. Clustering Properties of Dynamical Dark Energy Models

    E-Print Network [OSTI]

    P. P. Avelino; L. M. G. Beca; C. J. A. P. Martins

    2008-02-01T23:59:59.000Z

    We provide a generic but physically clear discussion of the clustering properties of dark energy models. We explicitly show that in quintessence-type models the dark energy fluctuations, on scales smaller than the Hubble radius, are of the order of the perturbations to the Newtonian gravitational potential, hence necessarily small on cosmological scales. Moreover, comparable fluctuations are associated with different gauge choices. We also demonstrate that the often used homogeneous approximation is unrealistic, and that the so-called dark energy mutation is a trivial artifact of an effective, single fluid description. Finally, we discuss the particular case where the dark energy fluid is coupled to dark matter.

  20. CSAW: a dynamical model of protein folding

    E-Print Network [OSTI]

    Kerson Huang

    2006-01-12T23:59:59.000Z

    CSAW (conditioned self-avoiding walk) is a model of protein folding that combines SAW (self-avoiding walk) with Monte-Carlo. It simulates the Brownian motion of a chain molecule in the presence of interactions, both among chain residues, and with the environment. In a first model that includes the hydrophobic effect and hydrogen bonding, a chain of 30 residues folds into a native state with stable secondary and tertiary structures. The process starts with a rapid collapse into an intermediate "molten globule", which slowly decays into the native state afer a relatively long quiescent period. The behavior of the radius of gyration mimics experimental data.

  1. Models of Receptive Field Dynamics in Visual Cortex

    E-Print Network [OSTI]

    1999-01-01T23:59:59.000Z

    The position, size, and shape of the receptive field (RF) of some cortical neurons change dynamically, in response to artificial scotoma conditioning (Pettet & Gilbert, 1992) and to retinal lesions (Chino et al., 1992; Darian-Smith & Gilbert, 1995) in adult animals. The RF dynamics are of interest because they show how visual systems may adaptively overcome damage (from lesions, scotomas, or other failures), may enhance processing efficiency by altering RF coverage in response to visual demand, and may perform perceptual learning. This paper presents an afferent excitatory synaptic plasticity rule and a lateral inhibitory synaptic plasticity rule -- the EXIN rules (Marshall, 1995a) -- to model persistent RF changes after artificial scotoma conditioning and retinal lesions. The EXIN model is compared to the LISSOM model (Sirosh et al., 1996) and to a neuronal adaptation model (Xing & Gerstein, 1994). The rules within each model are isolated and are analyzed independently, to elucidate t...

  2. Green Algae as Model Organisms for Biological Fluid Dynamics

    E-Print Network [OSTI]

    Goldstein, Raymond E

    2014-01-01T23:59:59.000Z

    In the past decade the volvocine green algae, spanning from the unicellular $Chlamydomonas$ to multicellular $Volvox$, have emerged as model organisms for a number of problems in biological fluid dynamics. These include flagellar propulsion, nutrient uptake by swimming organisms, hydrodynamic interactions mediated by walls, collective dynamics and transport within suspensions of microswimmers, the mechanism of phototaxis, and the stochastic dynamics of flagellar synchronization. Green algae are well suited to the study of such problems because of their range of sizes (from 10 $\\mu$m to several millimetres), their geometric regularity, the ease with which they can be cultured and the availability of many mutants that allow for connections between molecular details and organism-level behavior. This review summarizes these recent developments and highlights promising future directions in the study of biological fluid dynamics, especially in the context of evolutionary biology, that can take advantage of these re...

  3. Green Algae as Model Organisms for Biological Fluid Dynamics

    E-Print Network [OSTI]

    Raymond E. Goldstein

    2014-09-08T23:59:59.000Z

    In the past decade the volvocine green algae, spanning from the unicellular $Chlamydomonas$ to multicellular $Volvox$, have emerged as model organisms for a number of problems in biological fluid dynamics. These include flagellar propulsion, nutrient uptake by swimming organisms, hydrodynamic interactions mediated by walls, collective dynamics and transport within suspensions of microswimmers, the mechanism of phototaxis, and the stochastic dynamics of flagellar synchronization. Green algae are well suited to the study of such problems because of their range of sizes (from 10 $\\mu$m to several millimetres), their geometric regularity, the ease with which they can be cultured and the availability of many mutants that allow for connections between molecular details and organism-level behavior. This review summarizes these recent developments and highlights promising future directions in the study of biological fluid dynamics, especially in the context of evolutionary biology, that can take advantage of these remarkable organisms.

  4. Ad hoc continuum-atomistic thermostat for modeling heat flow in molecular dynamics simulations

    E-Print Network [OSTI]

    Brenner, Donald W.

    Ad hoc continuum-atomistic thermostat for modeling heat flow in molecular dynamics simulations J 2004) An ad hoc thermostating procedure that couples a molecular dynamics (MD) simulation

  5. Modeling Dynamic Landscapes in Open Source GIS

    E-Print Network [OSTI]

    Mitasova, Helena

    2013-11-20T23:59:59.000Z

    is free online • message board discussion, help • Google sites: post HW, get feedback • register to get credit Solar radiation modeling: monthly totals Applications in urban areas: solar panels, building design, thermal conditions,… Helena Mitasova, NCSU... that is free to run, study, modify and distribute Free means freedom: free is a matter of liberty not price It can be commercial (Red Hat Linux) but not proprietary OSGeo foundation supports the development of open source geospatial software and promotes its...

  6. Radionuclide release rates from spent fuel for performance assessment modeling

    SciTech Connect (OSTI)

    Curtis, D.B.

    1994-11-01T23:59:59.000Z

    In a scenario of aqueous transport from a high-level radioactive waste repository, the concentration of radionuclides in water in contact with the waste constitutes the source term for transport models, and as such represents a fundamental component of all performance assessment models. Many laboratory experiments have been done to characterize release rates and understand processes influencing radionuclide release rates from irradiated nuclear fuel. Natural analogues of these waste forms have been studied to obtain information regarding the long-term stability of potential waste forms in complex natural systems. This information from diverse sources must be brought together to develop and defend methods used to define source terms for performance assessment models. In this manuscript examples of measures of radionuclide release rates from spent nuclear fuel or analogues of nuclear fuel are presented. Each example represents a very different approach to obtaining a numerical measure and each has its limitations. There is no way to obtain an unambiguous measure of this or any parameter used in performance assessment codes for evaluating the effects of processes operative over many millennia. The examples are intended to suggest by example that in the absence of the ability to evaluate accuracy and precision, consistency of a broadly based set of data can be used as circumstantial evidence to defend the choice of parameters used in performance assessments.

  7. A Dynamical Model of Plasma Turbulence in the Solar Wind

    E-Print Network [OSTI]

    Howes, G G

    2015-01-01T23:59:59.000Z

    A dynamical approach, rather than the usual statistical approach, is taken to explore the physical mechanisms underlying the nonlinear transfer of energy, the damping of the turbulent fluctuations, and the development of coherent structures in kinetic plasma turbulence. It is argued that the linear and nonlinear dynamics of Alfven waves are responsible, at a very fundamental level, for some of the key qualitative features of plasma turbulence that distinguish it from hydrodynamic turbulence, including the anisotropic cascade of energy and the development of current sheets at small scales. The first dynamical model of kinetic turbulence in the weakly collisional solar wind plasma that combines self-consistently the physics of Alfven waves with the development of small-scale current sheets is presented and its physical implications are discussed. This model leads to a simplified perspective on the nature of turbulence in a weakly collisional plasma: the nonlinear interactions responsible for the turbulent casca...

  8. Fuel cycle assessment: A compendium of models, methodologies, and approaches

    SciTech Connect (OSTI)

    Not Available

    1994-07-01T23:59:59.000Z

    The purpose of this document is to profile analytical tools and methods which could be used in a total fuel cycle analysis. The information in this document provides a significant step towards: (1) Characterizing the stages of the fuel cycle. (2) Identifying relevant impacts which can feasibly be evaluated quantitatively or qualitatively. (3) Identifying and reviewing other activities that have been conducted to perform a fuel cycle assessment or some component thereof. (4) Reviewing the successes/deficiencies and opportunities/constraints of previous activities. (5) Identifying methods and modeling techniques/tools that are available, tested and could be used for a fuel cycle assessment.

  9. A Model for Dynamic Reconfiguration in Service-oriented Architectures

    E-Print Network [OSTI]

    Lopes, Antónia

    A Model for Dynamic Reconfiguration in Service-oriented Architectures Jos´e Luiz Fiadeiro1 and Ant of service-oriented applications goes be- yond what is currently addressed by existing architecture of service-oriented applications. 1 Introduction Several architectural aspects arise from service-oriented

  10. Multiscale modeling of polystyrene dynamics in different environments

    E-Print Network [OSTI]

    Faller, Roland

    Multiscale modeling of polystyrene dynamics in different environments Qi Sun1 , Florence Pon1 simulations can address not only the average properties of the system but also the distribution over any component in their neighborhood and vice versa. The simulation temperature of 450 K is chosen to be above

  11. Dynamic Modeling and Recipe Optimization of Polyether Polyol Processes

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    Dynamic Modeling and Recipe Optimization of Polyether Polyol Processes Fall 2012 EWO Meeting Yisu Monomer Reactor Basic procedures Starters are first mixed with catalyst in the liquid phase Alkylene oxides in the liquid phase are fed in controlled rates The reactor temperature is controlled by the heat

  12. FRW Cosmological model with Modified Chaplygin Gas and Dynamical System

    E-Print Network [OSTI]

    Nairwita Mazumder; Ritabrata Biswas; Subenoy Chakraborty

    2011-06-23T23:59:59.000Z

    The Friedmann-Robertson-Walker(FRW) model with dynamical Dark Energy(DE) in the form of modified Chaplygin gas(MCG) has been investigated. The evolution equations are reduced to an autonomous system on the two dimensional phase plane and it can be interpreted as the motion of the particle in an one dimensional potential.

  13. Wind Energy Applications of Unified and Dynamic Turbulence Models

    E-Print Network [OSTI]

    Heinz, Stefan

    Wind Energy Applications of Unified and Dynamic Turbulence Models Stefan Heinz and Harish Gopalan applicable as a low cost alternative. 1 Introduction There is a growing interest in using wind energy suggests the possibility of providing 20% of the electricity in the U.S. by wind energy in 2030

  14. Fitting Dynamical Models to Observations of Globular Clusters

    E-Print Network [OSTI]

    Dean E. McLaughlin

    2003-02-14T23:59:59.000Z

    The basic ingredients of models for the internal dynamics of globular clusters are reviewed, with an emphasis on the description of equilibrium configurations. The development of progressive complexity in the models is traced, concentrating on the inclusion of velocity anisotropy, rotation, and integrals of motion other than energy. Applications to observations of extragalactic globulars and to combined radial-velocity and proper-motion datasets are discussed.

  15. Solar Resource Assessment: Databases, Measurements, Models, and Information Sources (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2008-10-01T23:59:59.000Z

    Fact sheet for Solar Resource Assessment Workshop, Denver CO, Oct 29, 2008: ?Solar Resource Assessment Databases, Measurements, Models, and Information Sources

  16. The Dynamics of Brane-World Cosmological Models

    E-Print Network [OSTI]

    A. A. Coley

    2005-04-09T23:59:59.000Z

    Brane-world cosmology is motivated by recent developments in string/M-theory and offers a new perspective on the hierarchy problem. In the brane-world scenario, our Universe is a four-dimensional subspace or {\\em brane} embedded in a higher-dimensional {\\em bulk} spacetime. Ordinary matter fields are confined to the brane while the gravitational field can also propagate in the bulk, leading to modifications of Einstein's theory of general relativity at high energies. In particular, the Randall-Sundrum-type models are self-consistent and simple and allow for an investigation of the essential non-linear gravitational dynamics. The governing field equations induced on the brane differ from the general relativistic equations in that there are nonlocal effects from the free gravitational field in the bulk, transmitted via the projection of the bulk Weyl tensor, and the local quadratic energy-momentum corrections, which are significant in the high-energy regime close to the initial singularity. In this review we discuss the asymptotic dynamical evolution of spatially homogeneous brane-world cosmological models containing both a perfect fluid and a scalar field close to the initial singularity. Using dynamical systems techniques it is found that, for models with a physically relevant equation of state, an isotropic singularity is a past-attractor in all orthogonal spatially homogeneous models (including Bianchi type IX models). In addition, we describe the dynamics in a class of inhomogeneous brane-world models, and show that these models also have an isotropic initial singularity. These results provide support for the conjecture that typically the initial cosmological singularity is isotropic in brane-world cosmology.

  17. Literature Review and Assessment of Plant and Animal Transfer Factors Used in Performance Assessment Modeling

    SciTech Connect (OSTI)

    Robertson, David E.; Cataldo, Dominic A.; Napier, Bruce A.; Krupka, Kenneth M.; Sasser, Lyle B.

    2003-07-20T23:59:59.000Z

    A literature review and assessment was conducted by Pacific Northwest National Laboratory (PNNL) to update information on plant and animal radionuclide transfer factors used in performance-assessment modeling. A group of 15 radionuclides was included in this review and assessment. The review is composed of four main sections, not including the Introduction. Section 2.0 provides a review of the critically important issue of physicochemical speciation and geochemistry of the radionuclides in natural soil-water systems as it relates to the bioavailability of the radionuclides. Section 3.0 provides an updated review of the parameters of importance in the uptake of radionuclides by plants, including root uptake via the soil-groundwater system and foliar uptake due to overhead irrigation. Section 3.0 also provides a compilation of concentration ratios (CRs) for soil-to-plant uptake for the 15 selected radionuclides. Section 4.0 provides an updated review on radionuclide uptake data for animal products related to absorption, homeostatic control, approach to equilibration, chemical and physical form, diet, and age. Compiled transfer coefficients are provided for cow’s milk, sheep’s milk, goat’s milk, beef, goat meat, pork, poultry, and eggs. Section 5.0 discusses the use of transfer coefficients in soil, plant, and animal modeling using regulatory models for evaluating radioactive waste disposal or decommissioned sites. Each section makes specific suggestions for future research in its area.

  18. Mathematical Modeling of Microbial Community Dynamics: A Methodological Review

    SciTech Connect (OSTI)

    Song, Hyun-Seob; Cannon, William R.; Beliaev, Alex S.; Konopka, Allan

    2014-10-17T23:59:59.000Z

    Microorganisms in nature form diverse communities that dynamically change in structure and function in response to environmental variations. As a complex adaptive system, microbial communities show higher-order properties that are not present in individual microbes, but arise from their interactions. Predictive mathematical models not only help to understand the underlying principles of the dynamics and emergent properties of natural and synthetic microbial communities, but also provide key knowledge required for engineering them. In this article, we provide an overview of mathematical tools that include not only current mainstream approaches, but also less traditional approaches that, in our opinion, can be potentially useful. We discuss a broad range of methods ranging from low-resolution supra-organismal to high-resolution individual-based modeling. Particularly, we highlight the integrative approaches that synergistically combine disparate methods. In conclusion, we provide our outlook for the key aspects that should be further developed to move microbial community modeling towards greater predictive power.

  19. Gaussian Process Model for Collision Dynamics of Complex Molecules

    E-Print Network [OSTI]

    Cui, Jie

    2015-01-01T23:59:59.000Z

    We show that a Gaussian Process model can be combined with a small number of scattering calculations to provide an accurate multi-dimensional dependence of scattering observables on the experimentally controllable parameters (such as the collision energy, temperature or external fields) as well as the potential energy surface parameters. This can be used for solving the inverse scattering problem, the prediction of collision properties of a specific molecular system based on the information for another molecule, the efficient calculation of thermally averaged observables and for reducing the error of the molecular dynamics calculations by averaging over the potential energy surface variations. We show that, trained by a combination of classical and quantum dynamics calculations, the model provides an accurate description of the scattering cross sections, even near scattering resonances. In this case, the classical calculations stabilize the model against uncertainties arising from wildly varying correlations ...

  20. The Paradoxes of Military Risk Assessment: Will the Enterprise Risk Assessment Model, Composite Risk Management and Associated

    E-Print Network [OSTI]

    Johnson, Chris

    to assess the nation's military preparedness. However, risk management is not a panacea for the problemsThe Paradoxes of Military Risk Assessment: Will the Enterprise Risk Assessment Model, Composite Risk Management and Associated Techniques Provide the Predicted Benefits? Chris. W. Johnson, Glasgow

  1. Model equations in rarefied gas dynamics: Viscous-slip and thermal-slip coefficients

    E-Print Network [OSTI]

    Siewert, Charles E.

    Model equations in rarefied gas dynamics: Viscous-slip and thermal-slip coefficients C. E. Siewert-slip and the thermal-slip coefficients in rarefied gas dynamics. More specifically, the BGK model, the S model In reviewing numerous papers devoted to model equa- tions in rarefied gas dynamics, we have found no definitive

  2. Modeling issues associated with production reactor safety assessment

    SciTech Connect (OSTI)

    Stack, D.W. (Los Alamos National Lab., NM (USA)); Thomas, W.R. (Science and Engineering Associates, Inc., Albuquerque, NM (USA))

    1990-01-01T23:59:59.000Z

    This paper describes several Probabilistic Safety Assessment (PSA) modeling issues that are related to the unique design and operation of the production reactors. The identification of initiating events and determination of a set of success criteria for the production reactors is of concern because of their unique design. The modeling of accident recovery must take into account the unique operation of these reactors. Finally, a more thorough search and evaluation of common-cause events is required to account for combinations of unique design features and operation that might otherwise not be included in the PSA. It is expected that most of these modeling issues also would be encountered when modeling some of the other more unique reactor and nonreactor facilities that are part of the DOE nuclear materials production complex. 9 refs., 2 figs.

  3. A Dynamic Energy Budget (DEB) model for the energy usage and reproduction of the Icelandic capelin (Mallotus villosus)

    E-Print Network [OSTI]

    Einarsson, Baldvin; Birnir, Bjorn; Sigurðsson, Sven Þ.

    2010-01-01T23:59:59.000Z

    S.A.L.M. , 2010. Dynamic Energy Budget Theory For Metabolicthe use of dynamic energy budget theory. Biological Reviewsthrough dynamic energy budget models. Jour- nal of Animal

  4. CliCrop: a Crop Water-Stress and Irrigation Demand Model for an Integrated Global Assessment Model Approach

    E-Print Network [OSTI]

    Fant, C.A.

    This paper describes the use of the CliCrop model in the context of climate change general assessment

  5. Dynamics of Matter in a Compactified Kaluza-Klein Model

    E-Print Network [OSTI]

    Valentino Lacquaniti; Giovanni Montani

    2009-02-10T23:59:59.000Z

    A longstanding problem in Kaluza-Klein models is the description of matter dynamics. Within the 5D model, the dimensional reduction of the geodesic motion for a 5D free test particle formally restores electrodynamics, but the reduced 4D particle shows a charge-mass ratio that is upper bounded, such that it cannot fit to any kind of elementary particle. At the same time, from the quantum dynamics viewpoint, there is the problem of the huge massive modes generation. We present a criticism against the 5D geodesic approach and face the hypothesis that in Kaluza-Klein space the geodesic motion does not deal with the real dynamics of test particle. We propose a new approach: starting from the conservation equation for the 5D matter tensor, within the Papapetrou multipole expansion, we prove that the 5D dynamical equation differs from the 5D geodesic one. Our new equation provides right coupling terms without bounding and in such a scheme the tower of massive modes is removed.

  6. A Groundwater Dynamic Simulation Model: Application to the Upper San Pedro Basin

    E-Print Network [OSTI]

    Fay, Noah

    A Groundwater Dynamic Simulation Model: Application to the Upper San Pedro Basin Report Prepared by using tools such as tracers to determine groundwater travel times and this dynamic simulation modeling

  7. Dynamical Reduction Models: present status and future developments

    E-Print Network [OSTI]

    A. Bassi

    2007-02-08T23:59:59.000Z

    We review the major achievements of the dynamical reduction program, showing why and how it provides a unified, consistent description of physical phenomena, from the microscopic quantum domain to the macroscopic classical one. We discuss the difficulties in generalizing the existing models in order to comprise also relativistic quantum field theories. We point out possible future lines of research, ranging from mathematical physics to phenomenology.

  8. Dynamical Wave Function Collapse Models in Quantum Measure Theory

    E-Print Network [OSTI]

    Fay Dowker; Yousef Ghazi-Tabatabai

    2008-05-15T23:59:59.000Z

    The structure of Collapse Models is investigated in the framework of Quantum Measure Theory, a histories-based approach to quantum mechanics. The underlying structure of coupled classical and quantum systems is elucidated in this approach which puts both systems on a spacetime footing. The nature of the coupling is exposed: the classical histories have no dynamics of their own but are simply tied, more or less closely, to the quantum histories.

  9. Methods for Developing Emissions Scenarios for Integrated Assessment Models

    SciTech Connect (OSTI)

    Prinn, Ronald [MIT; Webster, Mort [MIT

    2007-08-20T23:59:59.000Z

    The overall objective of this research was to contribute data and methods to support the future development of new emissions scenarios for integrated assessment of climate change. Specifically, this research had two main objectives: 1. Use historical data on economic growth and energy efficiency changes, and develop probability density functions (PDFs) for the appropriate parameters for two or three commonly used integrated assessment models. 2. Using the parameter distributions developed through the first task and previous work, we will develop methods of designing multi-gas emission scenarios that usefully span the joint uncertainty space in a small number of scenarios. Results on the autonomous energy efficiency improvement (AEEI) parameter are summarized, an uncertainty analysis of elasticities of substitution is described, and the probabilistic emissions scenario approach is presented.

  10. Nuclear Hybrid Energy System Modeling: RELAP5 Dynamic Coupling Capabilities

    SciTech Connect (OSTI)

    Piyush Sabharwall; Nolan Anderson; Haihua Zhao; Shannon Bragg-Sitton; George Mesina

    2012-09-01T23:59:59.000Z

    The nuclear hybrid energy systems (NHES) research team is currently developing a dynamic simulation of an integrated hybrid energy system. A detailed simulation of proposed NHES architectures will allow initial computational demonstration of a tightly coupled NHES to identify key reactor subsystem requirements, identify candidate reactor technologies for a hybrid system, and identify key challenges to operation of the coupled system. This work will provide a baseline for later coupling of design-specific reactor models through industry collaboration. The modeling capability addressed in this report focuses on the reactor subsystem simulation.

  11. Best practices for system dynamics model design and construction with powersim studio.

    SciTech Connect (OSTI)

    Malczynski, Leonard A.

    2011-06-01T23:59:59.000Z

    This guide addresses software quality in the construction of Powersim{reg_sign} Studio 8 system dynamics simulation models. It is the result of almost ten years of experience with the Powersim suite of system dynamics modeling tools (Constructor and earlier Studio versions). It is a guide that proposes a common look and feel for the construction of Powersim Studio system dynamics models.

  12. Examining emissions policy issues with an integrated assessment model

    SciTech Connect (OSTI)

    Shannon, J. D.

    1999-10-21T23:59:59.000Z

    In the policy analysis process of asking ``What if'' questions, there is considerable advantage in the analyst being able to address the questions directly rather than sending the questions to scientists in particular disciplines and awaiting answers. Obviously the former option is likely to produce speedier results than the latter; in addition, the questions can be easily modified as the issues change or become more focused. The primary potential shortcoming of an analyst addressing questions that may be beyond his or her particular expertise is that the policy analyst may not understand the limitations of the analysis. Here the author briefly describes a peer-reviewed integrated assessment model that can be exercised within minutes in a desktop environment, discuss some of the advantages and limitations of the approach, and exercise portions of the model to compare with observations. Because of the nature of the conference at which this paper is being presented, the discussion focuses on the air pollution modeling components of the integrated assessment.

  13. Performance Assessment of Prediction In Dynamic Environments (PRIDE) in Manufacturing Environments

    SciTech Connect (OSTI)

    Kootbally, Zeid [National Institute of Standards and Technology (NIST)] [National Institute of Standards and Technology (NIST); Schlenoff, Craig [National Institute of Standards and Technology (NIST)] [National Institute of Standards and Technology (NIST); Madhavan, Raj [ORNL] [ORNL

    2009-01-01T23:59:59.000Z

    This paper describes PRIDE (Prediction in Dynamic Environments), a multi-resolution and hierarchical framework. PRIDE was developed as a test bed to assess the performance of autonomous vehicles in the presence of moving objects in a simulated environment. By simulating scenarios in which moving objects are prevalent, a designer of an autonomous vehicle can test the performance of their path planning and collision avoidance algorithms without having to immerse the vehicle in the physical world. This framework supports the prediction of the future location of moving objects at various levels of resolution, thus providing prediction information at the frequency and level of abstraction necessary for planners at different levels within the hierarchy. Previous works have demonstrated the reliability of PRIDE to simulate on-road traffic situations with multiple vehicles. To provide realistic scenarios, PRIDE integrates a level of situation awareness of how other vehicles in the environment are expected to behave considering the situation in which the vehicles find themselves in. In recent efforts, the PRIDE framework has been extended to consider production logistics in dynamic manufacturing environment while focusing on the scheduling of material transportation system. To demonstrate the characteristics of the PRIDE framework, this paper illustrates real-time navigation of Automated Guided Vehicles (AGVs) at different locations in a dynamic manufacturing environment. Moreover, using the high-fidelity physics?based framework for the Unified System for Automation and Robot Simulation (USARSim), this paper analyzes the performance of the PRIDE framework on a set of realistic scenarios.

  14. Code description: A dynamic modelling strategy for Bayesian computer model emulation

    E-Print Network [OSTI]

    West, Mike

    Code description: A dynamic modelling strategy for Bayesian computer model emulation 1 Example data and code directory The example data is provided under the directory "mydata": · "design1.dat": this file2.dat": this file contains the 60 validation runs. The Matlab code is provided under the directory

  15. Modelling the e#ects of air pollution on health using Bayesian Dynamic Generalised Linear Models

    E-Print Network [OSTI]

    Bath, University of

    Modelling the e#ects of air pollution on health using Bayesian Dynamic Generalised Linear Models (2004)). Large multi­city studies such as `Air pollution and health: a European approach' (APHEA across a number of US and European cities. Short­term e#ects of air pollution on health are estimated

  16. HVAC Modeling for Cost of Ownership Assessment in Biotechnology & Drugs Manufacturing

    E-Print Network [OSTI]

    Broomes, Peter; Dornfeld, David A

    2003-01-01T23:59:59.000Z

    2000 Broomes, Peter. , “HVAC Modeling for Cost of Ownership2000 Broomes, Peter. , “HVAC Results Comparison”, April,HVAC Modeling for Cost of Ownership Assessment in

  17. User Guide for PV Dynamic Model Simulation Written on PSCAD Platform

    SciTech Connect (OSTI)

    Muljadi, E.; Singh, M.; Gevorgian, V.

    2014-11-01T23:59:59.000Z

    This document describes the dynamic photovoltaic model developed by the National Renewable Energy Laboratory and is intended as a guide for users of these models.

  18. A Nonlocal Peridynamic Plasticity Model for the Dynamic Flow and Fracture of Concrete.

    SciTech Connect (OSTI)

    Vogler, Tracy; Lammi, Christopher James

    2014-10-01T23:59:59.000Z

    A nonlocal, ordinary peridynamic constitutive model is formulated to numerically simulate the pressure-dependent flow and fracture of heterogeneous, quasi-brittle ma- terials, such as concrete. Classical mechanics and traditional computational modeling methods do not accurately model the distributed fracture observed within this family of materials. The peridynamic horizon, or range of influence, provides a characteristic length to the continuum and limits localization of fracture. Scaling laws are derived to relate the parameters of peridynamic constitutive model to the parameters of the classical Drucker-Prager plasticity model. Thermodynamic analysis of associated and non-associated plastic flow is performed. An implicit integration algorithm is formu- lated to calculate the accumulated plastic bond extension and force state. The gov- erning equations are linearized and the simulation of the quasi-static compression of a cylinder is compared to the classical theory. A dissipation-based peridynamic bond failure criteria is implemented to model fracture and the splitting of a concrete cylinder is numerically simulated. Finally, calculation of the impact and spallation of a con- crete structure is performed to assess the suitability of the material and failure models for simulating concrete during dynamic loadings. The peridynamic model is found to accurately simulate the inelastic deformation and fracture behavior of concrete during compression, splitting, and dynamically induced spall. The work expands the types of materials that can be modeled using peridynamics. A multi-scale methodology for simulating concrete to be used in conjunction with the plasticity model is presented. The work was funded by LDRD 158806.

  19. Eulerian hydrocode modeling of a dynamic tensile extrusion experiment (u)

    SciTech Connect (OSTI)

    Burkett, Michael W [Los Alamos National Laboratory; Clancy, Sean P [Los Alamos National Laboratory

    2009-01-01T23:59:59.000Z

    Eulerian hydrocode simulations utilizing the Mechanical Threshold Stress flow stress model were performed to provide insight into a dynamic extrusion experiment. The dynamic extrusion response of copper (three different grain sizes) and tantalum spheres were simulated with MESA, an explicit, 2-D Eulerian continuum mechanics hydrocode and compared with experimental data. The experimental data consisted of high-speed images of the extrusion process, recovered extruded samples, and post test metallography. The hydrocode was developed to predict large-strain and high-strain-rate loading problems. Some of the features of the features of MESA include a high-order advection algorithm, a material interface tracking scheme and a van Leer monotonic advection-limiting. The Mechanical Threshold Stress (MTS) model was utilized to evolve the flow stress as a function of strain, strain rate and temperature for copper and tantalum. Plastic strains exceeding 300% were predicted in the extrusion of copper at 400 m/s, while plastic strains exceeding 800% were predicted for Ta. Quantitative comparisons between the predicted and measured deformation topologies and extrusion rate were made. Additionally, predictions of the texture evolution (based upon the deformation rate history and the rigid body rotations experienced by the copper during the extrusion process) were compared with the orientation imaging microscopy measurements. Finally, comparisons between the calculated and measured influence of the initial texture on the dynamic extrusion response of tantalum was performed.

  20. A spectral transform dynamical core option within the Community Atmosphere Model (CAM4)

    SciTech Connect (OSTI)

    Evans, Katherine J [ORNL; Mahajan, Salil [ORNL; Branstetter, Marcia L [ORNL; McClean, Julie L. [Scripps Institute of Oceanography; Caron, Julie M. [National Center for Atmospheric Research (NCAR); Maltrud, Matthew E. [Los Alamos National Laboratory (LANL); Hack, James J [ORNL; Bader, David C [ORNL; Neale, Rich [National Center for Atmospheric Research (NCAR)

    2014-01-01T23:59:59.000Z

    A spectral transform dynamical core with an 85 spectral truncation resolution (T85) within the Community Atmosphere Model (CAM), version 4, is evaluated within the recently released Community Earth System Model, version 1.0 (CESM) global climate model. The spectral dynamical core option provides a well-known base within the climate model community from which to assess climate behavior and statistics, and its relative computational efficiency for smaller computing platforms allows it to be extended to perform climate length simulations using high-resolution configurations in the near term. To establish the characteristics of the CAM4 T85, an ensemble of simulations covering the present day observational period using forced sea surface temperatures and prescribed sea-ice extent are evaluated. Overall, the T85 ensemble attributes and biases are similar to a companion ensemble of simulations using the one degree finite volume (FV1) dynamical core, relative to observed and model derived datasets. Notable improvements with T85 compared to FV1 include the representation of wintertime Arctic sea level pressure and summer precipitation over the Western Indian subcontinent. The mean and spatial patterns of the land surface temperature trends over the AMIP period are generally well simulated with the T85 ensemble relative to observations, however the model is not able to capture the extent nor magnitude of changes in temperature extremes over the boreal summer, where the changes are most dramatic. Biases in the wintertime Arctic surface temperature and annual mean surface stress fields persist with T85 as with the CAM3 version of T85.

  1. Computational fluid dynamic modeling of fluidized-bed polymerization reactors

    SciTech Connect (OSTI)

    Rokkam, Ram [Ames Laboratory

    2012-11-02T23:59:59.000Z

    Polyethylene is one of the most widely used plastics, and over 60 million tons are produced worldwide every year. Polyethylene is obtained by the catalytic polymerization of ethylene in gas and liquid phase reactors. The gas phase processes are more advantageous, and use fluidized-bed reactors for production of polyethylene. Since they operate so close to the melting point of the polymer, agglomeration is an operational concern in all slurry and gas polymerization processes. Electrostatics and hot spot formation are the main factors that contribute to agglomeration in gas-phase processes. Electrostatic charges in gas phase polymerization fluidized bed reactors are known to influence the bed hydrodynamics, particle elutriation, bubble size, bubble shape etc. Accumulation of electrostatic charges in the fluidized-bed can lead to operational issues. In this work a first-principles electrostatic model is developed and coupled with a multi-fluid computational fluid dynamic (CFD) model to understand the effect of electrostatics on the dynamics of a fluidized-bed. The multi-fluid CFD model for gas-particle flow is based on the kinetic theory of granular flows closures. The electrostatic model is developed based on a fixed, size-dependent charge for each type of particle (catalyst, polymer, polymer fines) phase. The combined CFD model is first verified using simple test cases, validated with experiments and applied to a pilot-scale polymerization fluidized-bed reactor. The CFD model reproduced qualitative trends in particle segregation and entrainment due to electrostatic charges observed in experiments. For the scale up of fluidized bed reactor, filtered models are developed and implemented on pilot scale reactor.

  2. THE PENA BLANCA NATURAL ANALOGUE PERFORMANCE ASSESSMENT MODEL

    SciTech Connect (OSTI)

    G. Saulnier and W. Statham

    2006-04-16T23:59:59.000Z

    The Nopal I uranium mine in the Sierra Pena Blanca, Chihuahua, Mexico serves as a natural analogue to the Yucca Mountain repository. The Pena Blanca Natural Analogue Performance Assessment Model simulates the mobilization and transport of radionuclides that are released from the mine and transported to the saturated zone. The Pena Blanca Natural Analogue Performance Assessment Model uses probabilistic simulations of hydrogeologic processes that are analogous to the processes that occur at the Yucca Mountain site. The Nopal I uranium deposit lies in fractured, welded, and altered rhyolitic ash-flow tuffs that overlie carbonate rocks, a setting analogous to the geologic formations at the Yucca Mountain site. The Nopal I mine site has the following analogous characteristics as compared to the Yucca Mountain repository site: (1) Analogous source--UO{sub 2} uranium ore deposit = spent nuclear fuel in the repository; (2) Analogous geology--(i.e. fractured, welded, and altered rhyolitic ash-flow tuffs); (3) Analogous climate--Semiarid to arid; (4) Analogous setting--Volcanic tuffs overlie carbonate rocks; and (5) Analogous geochemistry--Oxidizing conditions Analogous hydrogeology: The ore deposit lies in the unsaturated zone above the water table.

  3. Modeling and Quantification of Team Performance in Human Reliability Analysis for Probabilistic Risk Assessment

    SciTech Connect (OSTI)

    Jeffrey C. JOe; Ronald L. Boring

    2014-06-01T23:59:59.000Z

    Probabilistic Risk Assessment (PRA) and Human Reliability Assessment (HRA) are important technical contributors to the United States (U.S.) Nuclear Regulatory Commission’s (NRC) risk-informed and performance based approach to regulating U.S. commercial nuclear activities. Furthermore, all currently operating commercial NPPs in the U.S. are required by federal regulation to be staffed with crews of operators. Yet, aspects of team performance are underspecified in most HRA methods that are widely used in the nuclear industry. There are a variety of "emergent" team cognition and teamwork errors (e.g., communication errors) that are 1) distinct from individual human errors, and 2) important to understand from a PRA perspective. The lack of robust models or quantification of team performance is an issue that affects the accuracy and validity of HRA methods and models, leading to significant uncertainty in estimating HEPs. This paper describes research that has the objective to model and quantify team dynamics and teamwork within NPP control room crews for risk informed applications, thereby improving the technical basis of HRA, which improves the risk-informed approach the NRC uses to regulate the U.S. commercial nuclear industry.

  4. Dynamic ModelingDynamic Modeling the Electric Power Networkthe Electric Power Network

    E-Print Network [OSTI]

    Oro, Daniel

    criteria to enter the wholesale market DEREGULATION PROCESS: FERC's Order 888 mandated the wheeling at the National Energy Modeling System/Annual Energy Outlook Conference, Washington, DC, March 10, 2003] #12

  5. Optimization of Fed-Batch Saccharomyces cereWisiae Fermentation Using Dynamic Flux Balance Models

    E-Print Network [OSTI]

    Mountziaris, T. J.

    ARTICLES Optimization of Fed-Batch Saccharomyces cereWisiae Fermentation Using Dynamic Flux Balance metabolism with dynamic mass balances on key extracellular species. Model-based dynamic optimization concentration profiles, and the final batch time are treated as decision variables in the dynamic optimization

  6. Ultrafast Structural Dynamics Inside Planar Phospholipid Multibilayer Model Cell Membranes Measured with 2D IR

    E-Print Network [OSTI]

    Fayer, Michael D.

    Ultrafast Structural Dynamics Inside Planar Phospholipid Multibilayer Model Cell Membranes Measured diffusion caused by the structural dynamics of the membrane from 200 fs to 200 ps as a function structure and an abrupt change in dynamics at 35% cholesterol. The dynamics are independent of cholesterol

  7. Dynamics of popstar record sales on phonographic market -- stochastic model

    E-Print Network [OSTI]

    Jarynowski, Amdrzej

    2013-01-01T23:59:59.000Z

    We investigate weekly record sales of the world's most popular 30 artists (2003-2013). Time series of sales have non-trivial kind of memory (anticorrelations, strong seasonality and constant autocorrelation decay within 120 weeks). Amount of artists record sales are usually the highest in the first week after premiere of their brand new records and then decrease to fluctuate around zero till next album release. We model such a behavior by discrete mean-reverting geometric jump diffusion (MRGJD) and Markov regime switching mechanism (MRS) between the base and the promotion regimes. We can built up the evidence through such a toy model that quantifies linear and nonlinear dynamical components (with stationary and nonstationary parameters set), and measure local divergence of the system with collective behavior phenomena. We find special kind of disagreement between model and data for Christmas time due to unusual shopping behavior. Analogies to earthquakes, product life-cycles, and energy markets will also be d...

  8. The Third State of the Schelling Model of Residential Dynamics

    E-Print Network [OSTI]

    Benenson, Itzhak

    2009-01-01T23:59:59.000Z

    The Schelling model of segregation between two groups of residential agents (Schelling 1971; Schelling 1978) reflects the most abstract view of the non-economic forces of residential migrations: be close to people of 'your own'. The model assumes that the residential agent, located in the neighborhood where the fraction of 'friends' is less than a predefined threshold value F, tries to relocate to a neighborhood for which this fraction is above F. It is well known that for the equal groups, depending on F, Schelling's residential pattern converges either to complete integration (random pattern) or segregation. We investigate Schelling model pattern dynamics as dependent on F, the ratio of the group numbers and the size of the neighborhood and demonstrate that the traditional integrate-segregate dichotomy is incomplete. In case of unequal groups, there exists the wide interval of the F-values that entails the third persistent residential pattern, in which part of the majority population segregates, while the r...

  9. Mechanical reaction-diffusion model for bacterial population dynamics

    E-Print Network [OSTI]

    Ngamsaad, Waipot

    2015-01-01T23:59:59.000Z

    The effect of mechanical interaction between cells on the spreading of bacterial population was investigated in one-dimensional space. A nonlinear reaction-diffusion equation has been formulated as a model for this dynamics. In this model, the bacterial cells are treated as the rod-like particles that interact, when contacting each other, through the hard-core repulsion. The repulsion introduces the exclusion process that causes the fast diffusion in bacterial population at high density. The propagation of the bacterial density as the traveling wave front in long time behavior has been analyzed. The analytical result reveals that the front speed is enhanced by the exclusion process---and its value depends on the packing fraction of cell. The numerical solutions of the model have been solved to confirm this prediction.

  10. A model of riots dynamics: shocks, diffusion and thresholds

    E-Print Network [OSTI]

    Berestycki, Henri; Rodriguez, Nancy

    2015-01-01T23:59:59.000Z

    We introduce and analyze several variants of a system of differential equations which model the dynamics of social outbursts, such as riots. The systems involve the coupling of an explicit variable representing the intensity of rioting activity and an underlying (implicit) field of social tension. Our models include the effects of exogenous and endogenous factors as well as various propagation mechanisms. From numerical and mathematical analysis of these models we show that the assumptions made on how different locations influence one another and how the tension in the system disperses play a major role on the qualitative behavior of bursts of social unrest. Furthermore, we analyze here various properties of these systems, such as the existence of traveling wave solutions, and formulate some new open mathematical problems which arise from our work.

  11. Model for Aggregated Water Heater Load Using Dynamic Bayesian Networks

    SciTech Connect (OSTI)

    Vlachopoulou, Maria; Chin, George; Fuller, Jason C.; Lu, Shuai; Kalsi, Karanjit

    2012-07-19T23:59:59.000Z

    The transition to the new generation power grid, or “smart grid”, requires novel ways of using and analyzing data collected from the grid infrastructure. Fundamental functionalities like demand response (DR), that the smart grid needs, rely heavily on the ability of the energy providers and distributors to forecast the load behavior of appliances under different DR strategies. This paper presents a new model of aggregated water heater load, based on dynamic Bayesian networks (DBNs). The model has been validated against simulated data from an open source distribution simulation software (GridLAB-D). The results presented in this paper demonstrate that the DBN model accurately tracks the load profile curves of aggregated water heaters under different testing scenarios.

  12. Explorations in combining cognitive models of individuals and system dynamics models of groups.

    SciTech Connect (OSTI)

    Backus, George A.

    2008-07-01T23:59:59.000Z

    This report documents a demonstration model of interacting insurgent leadership, military leadership, government leadership, and societal dynamics under a variety of interventions. The primary focus of the work is the portrayal of a token societal model that responds to leadership activities. The model also includes a linkage between leadership and society that implicitly represents the leadership subordinates as they directly interact with the population. The societal model is meant to demonstrate the efficacy and viability of using System Dynamics (SD) methods to simulate populations and that these can then connect to cognitive models depicting individuals. SD models typically focus on average behavior and thus have limited applicability to describe small groups or individuals. On the other hand, cognitive models readily describe individual behavior but can become cumbersome when used to describe populations. Realistic security situations are invariably a mix of individual and population dynamics. Therefore, the ability to tie SD models to cognitive models provides a critical capability that would be otherwise be unavailable.

  13. Dynamic water wave pressures on a recurved model seawall

    E-Print Network [OSTI]

    Rismiller, Gregory Ross

    1989-01-01T23:59:59.000Z

    : Dr. Jerry L. Machemehl The dynamic pressures acting on a I:5 scale recurved model seawall caused by breaking water waves were investigated. The magnitude, location and distribution of the shock and secondary pressures were determined from physical... and incident wave height increased, the magnitude of the shock and secondary pressure increased. Shock pressures as great as 3. 72 kN/m~ were recorded, while a change in water depth of 0. 01m caused a mean pressure increase of approximately 0. 09 k...

  14. Large scale molecular dynamics modeling of materials fabrication processes

    SciTech Connect (OSTI)

    Belak, J.; Glosli, J.N.; Boercker, D.B.; Stowers, I.F.

    1994-02-01T23:59:59.000Z

    An atomistic molecular dynamics model of materials fabrication processes is presented. Several material removal processes are shown to be within the domain of this simulation method. Results are presented for orthogonal cutting of copper and silicon and for crack propagation in silica glass. Both copper and silicon show ductile behavior, but the atomistic mechanisms that allow this behavior are significantly different in the two cases. The copper chip remains crystalline while the silicon chip transforms into an amorphous state. The critical stress for crack propagation in silica glass was found to be in reasonable agreement with experiment and a novel stick-slip phenomenon was observed.

  15. Dynamic Modeling and Adaptive Neural-Fuzzy Control for Nonholonomic Mobile Manipulators Moving on a Slope 1 Dynamic Modeling and Adaptive Neural-Fuzzy Control for

    E-Print Network [OSTI]

    Li, Yangmin

    robots [7]. A robust fuzzy logic controller was devised for a robotic manipulator with uncertainties [8Dynamic Modeling and Adaptive Neural-Fuzzy Control for Nonholonomic Mobile Manipulators Moving on a Slope 1 Dynamic Modeling and Adaptive Neural-Fuzzy Control for Nonholonomic Mobile Manipulators Moving

  16. MODELLING RADIOIODINE DYNAMICS Modelling the Dynamics of Radioiodine in Dairy Cows

    E-Print Network [OSTI]

    Crout, Neil

    Department of Physiology & Environmental Science University of Nottingham Sutton Bonington LE12 5RD UK G for significant fecal excretion of radioiodine. The5 model is used to consider the effect of dietary stable iodine of iodine, in particular I-131, are important components in fallout from2 nuclear accidents

  17. Ice sheets and their dynamics Continuum thermo-mechanical model of a glacier

    E-Print Network [OSTI]

    Cerveny, Vlastislav

    Ice sheets and their dynamics Continuum thermo-mechanical model of a glacier Shallow Ice Approximation (SIA) SIA-I Iterative Improvement Technique Benchmarks Numerical modeling of ice-sheet dynamics and Cartography, Zdiby 1.6.2010 Ondej Soucek Ph.D. defense #12;Ice sheets and their dynamics Continuum thermo

  18. Modeling of Air-Fuel Ratio Dynamics of Gasoline Combustion Engine with ARX Network

    E-Print Network [OSTI]

    Johansen, Tor Arne

    DS-06-1351 Modeling of Air-Fuel Ratio Dynamics of Gasoline Combustion Engine with ARX Network Tomás dynamics of gasoline engines during transient operation. With a collection of input-output data measured;Modeling of Air-Fuel Ratio Dynamics of Gasoline Combustion Engine with ARX Network I. INTRODUCTION

  19. Designability, thermodynamic stability, and dynamics in protein folding: A lattice model study

    E-Print Network [OSTI]

    Levine, Alex J.

    Designability, thermodynamic stability, and dynamics in protein folding: A lattice model study Re October 1998 In the framework of a lattice-model study of protein folding, we investigate the interplay model. Lattice models have been widely used in the study of protein folding dynamics.2­8 The main

  20. Comparative Studies of Clustering Techniques for Real-Time Dynamic Model Reduction

    E-Print Network [OSTI]

    Hogan, Emilie; Halappanavar, Mahantesh; Huang, Zhenyu; Lin, Guang; Lu, Shuai; Wang, Shaobu

    2015-01-01T23:59:59.000Z

    Dynamic model reduction in power systems is necessary for improving computational efficiency. Traditional model reduction using linearized models or offline analysis would not be adequate to capture power system dynamic behaviors, especially the new mix of intermittent generation and intelligent consumption makes the power system more dynamic and non-linear. Real-time dynamic model reduction emerges as an important need. This paper explores the use of clustering techniques to analyze real-time phasor measurements to determine generator groups and representative generators for dynamic model reduction. Two clustering techniques -- graph clustering and evolutionary clustering -- are studied in this paper. Various implementations of these techniques are compared and also compared with a previously developed Singular Value Decomposition (SVD)-based dynamic model reduction approach. Various methods exhibit different levels of accuracy when comparing the reduced model simulation against the original model. But some ...

  1. Models for source term, flow, transport and dose assessment in NRC`s Iterative Performance Assessment, Phase 2

    SciTech Connect (OSTI)

    McCartin, T.; Codell, R.; Neel, R.; Ford, W.; Wescott, R.; Bradbury, J. [Nuclear Regulatory Commission, Washington, DC (United States); Sagar, B.; Walton, J. [Center for Nuclear Waste Regulatory Analyses, San Antonio, TX (United States)

    1994-12-31T23:59:59.000Z

    The core consequence modules for the recently completed Phase 2 Iterative Performance Assessment (IPA) of the Yucca Mountain repository for high-level nuclear waste depend on models for releases from the engineered barrier system (source term), flow of liquid and gas, transport of radionuclides in the geosphere and assessment of dose to target populations. The source term model includes temperature and moisture phenomena in the near-field environment, general, pitting and crevice corrosion, contact of the waste form by water, dissolution and oxidation of the waste form, and transport of dissolved and gaseous radionuclides from the waste package by advection and diffusion. The liquid flow and transport models describe water flow through fractures and matrix in both the unsaturated and saturated zones. Models for flow of gas and transport of {sup 14}CO{sub 2} released from the engineered barrier system to the atmosphere take into account repository heat and the geothermal gradient. The dose assessment model calculates doses to a regional population and a farm family for an assumed reference biosphere in the vicinity of the repository. The Phase 2 IPA led to a number of suggestions for model improvement: (1) improve the ability of the models to include spatial and temporal variability in the parameters; (2) improve the coupling among processes, especially the effects of changing environments in the waste packages; (3) develop more mechanistic models, but abstracted for use in total system performance assessment; and (4) use more site specific parameters, especially for the dose assessments.

  2. Computational Fluid Dynamics Modeling of the John Day Dam Tailrace

    SciTech Connect (OSTI)

    Rakowski, Cynthia L.; Perkins, William A.; Richmond, Marshall C.; Serkowski, John A.

    2010-07-08T23:59:59.000Z

    US Army Corps of Engineers - Portland District required that a two-dimensional (2D) depth-averaged and a three-dimensional (3D) free-surface numerical models to be developed and validated for the John Day tailrace. These models were used to assess potential impact of a select group of structural and operational alternatives to tailrace flows aimed at improving fish survival at John Day Dam. The 2D model was used for the initial assessment of the alternatives in conjunction with a reduced-scale physical model of the John Day Project. A finer resolution 3D model was used to more accurately model the details of flow in the stilling basin and near-project tailrace hydraulics. Three-dimensional model results were used as input to the Pacific Northwest National Laboratory particle tracking software, and particle paths and times to pass a downstream cross section were used to assess the relative differences in travel times resulting from project operations and structural scenarios for multiple total river flows. Streamlines and neutrally-buoyant particles were seeded in all turbine and spill bays with flows. For a Total River of 250 kcfs running with the Fish Passage Plan spill pattern and a spillwall, the mean residence times for all particles were little changed; however the tails of the distribution were truncated for both spillway and powerhouse release points, and, for the powerhouse releases, reduced the residence time for 75% of the particles to pass a downstream cross section from 45.5 minutes to 41.3 minutes. For a total river of 125 kcfs configured with the operations from the Fish Passage Plan for the temporary spillway weirs and for a proposed spillwall, the neutrally-buoyant particle tracking data showed that the river with a spillwall in place had the overall mean residence time increase; however, the residence time for 75% of the powerhouse-released particles to pass a downstream cross section was reduced from 102.4 min to 89 minutes.

  3. Modeling Temporal Behavior in Large Networks: A Dynamic Mixed-Membership Model

    SciTech Connect (OSTI)

    Rossi, R; Gallagher, B; Neville, J; Henderson, K

    2011-11-11T23:59:59.000Z

    Given a large time-evolving network, how can we model and characterize the temporal behaviors of individual nodes (and network states)? How can we model the behavioral transition patterns of nodes? We propose a temporal behavior model that captures the 'roles' of nodes in the graph and how they evolve over time. The proposed dynamic behavioral mixed-membership model (DBMM) is scalable, fully automatic (no user-defined parameters), non-parametric/data-driven (no specific functional form or parameterization), interpretable (identifies explainable patterns), and flexible (applicable to dynamic and streaming networks). Moreover, the interpretable behavioral roles are generalizable, computationally efficient, and natively supports attributes. We applied our model for (a) identifying patterns and trends of nodes and network states based on the temporal behavior, (b) predicting future structural changes, and (c) detecting unusual temporal behavior transitions. We use eight large real-world datasets from different time-evolving settings (dynamic and streaming). In particular, we model the evolving mixed-memberships and the corresponding behavioral transitions of Twitter, Facebook, IP-Traces, Email (University), Internet AS, Enron, Reality, and IMDB. The experiments demonstrate the scalability, flexibility, and effectiveness of our model for identifying interesting patterns, detecting unusual structural transitions, and predicting the future structural changes of the network and individual nodes.

  4. Quantum Dynamics of the Driven and Dissipative Rabi Model

    E-Print Network [OSTI]

    Loïc Henriet; Zoran Ristivojevic; Peter P. Orth; Karyn Le Hur

    2014-08-15T23:59:59.000Z

    The Rabi model considers a two-level system (or spin-1/2) coupled to a quantized harmonic oscillator and describes the simplest interaction between matter and light. The recent experimental progress in solid-state circuit quantum electrodynamics has engendered theoretical efforts to quantitatively describe the mathematical and physical aspects of the light-matter interaction beyond the rotating wave approximation. We develop a stochastic Schr\\"{o}dinger equation approach which enables us to access the strong-coupling limit of the Rabi model and study the effects of dissipation, and AC drive in an exact manner. We include the effect of ohmic noise on the non-Markovian spin dynamics resulting in Kondo-type correlations, as well as cavity losses. We compute the time evolution of spin variables in various conditions. As a consideration for future work, we discuss the possibility to reach a steady state with one polariton in realistic experimental conditions.

  5. Examination of temporal DDT trends in Lake Erie fish communities using dynamic linear modeling

    E-Print Network [OSTI]

    Arhonditsis, George B.

    Examination of temporal DDT trends in Lake Erie fish communities using dynamic linear modeling 25 July 2013 Communicated by Dr. Erik Christensen Keywords: DDT Bayesian inference Dynamic linear (DDT) was initially heralded for its effectiveness against malaria and agricultural pests

  6. Model Studies of the Dynamics of Bacterial Flagellar Motors

    SciTech Connect (OSTI)

    Bai, F; Lo, C; Berry, R; Xing, J

    2009-03-19T23:59:59.000Z

    The Bacterial Flagellar Motor is a rotary molecular machine that rotates the helical filaments which propel swimming bacteria. Extensive experimental and theoretical studies exist on the structure, assembly, energy input, power generation and switching mechanism of the motor. In our previous paper, we explained the general physics underneath the observed torque-speed curves with a simple two-state Fokker-Planck model. Here we further analyze this model. In this paper we show (1) the model predicts that the two components of the ion motive force can affect the motor dynamics differently, in agreement with the latest experiment by Lo et al.; (2) with explicit consideration of the stator spring, the model also explains the lack of dependence of the zero-load speed on stator number in the proton motor, recently observed by Yuan and Berg; (3) the model reproduces the stepping behavior of the motor even with the existence of the stator springs and predicts the dwelling time distribution. Predicted stepping behavior of motors with two stators is discussed, and we suggest future experimental verification.

  7. The Dynamically Extended Mind -- A Minimal Modeling Case Study

    E-Print Network [OSTI]

    Tom Froese; Carlos Gershenson; David A. Rosenblueth

    2013-05-08T23:59:59.000Z

    The extended mind hypothesis has stimulated much interest in cognitive science. However, its core claim, i.e. that the process of cognition can extend beyond the brain via the body and into the environment, has been heavily criticized. A prominent critique of this claim holds that when some part of the world is coupled to a cognitive system this does not necessarily entail that the part is also constitutive of that cognitive system. This critique is known as the "coupling-constitution fallacy". In this paper we respond to this reductionist challenge by using an evolutionary robotics approach to create a minimal model of two acoustically coupled agents. We demonstrate how the interaction process as a whole has properties that cannot be reduced to the contributions of the isolated agents. We also show that the neural dynamics of the coupled agents has formal properties that are inherently impossible for those neural networks in isolation. By keeping the complexity of the model to an absolute minimum, we are able to illustrate how the coupling-constitution fallacy is in fact based on an inadequate understanding of the constitutive role of nonlinear interactions in dynamical systems theory.

  8. Can a more realistic model error structure improve the parameter estimation in modelling the dynamics of sh populations?

    E-Print Network [OSTI]

    Chen, Yong

    or applying an estimation method that is robust to the error structure assumption in modelling the dynamicsCan a more realistic model error structure improve the parameter estimation in modelling the dynamics of ®sh populations? Y. Chena,* , J.E. Paloheimob a Fisheries Conservation Chair Program, Fisheries

  9. The Los Alamos dynamic radiation environment assimilation model (DREAM) for space weather specification and forecasting

    SciTech Connect (OSTI)

    Reeves, Geoffrey D [Los Alamos National Laboratory; Friedel, Reiner H W [Los Alamos National Laboratory; Chen, Yue [Los Alamos National Laboratory; Koller, Josef [Los Alamos National Laboratory; Henderson, Michael G [Los Alamos National Laboratory

    2008-01-01T23:59:59.000Z

    The Dynamic Radiation Environment Assimilation Model (DREAM) was developed at Los Alamos National Laboratory to assess, quantify, and predict the hazards from the natural space environment and the anthropogenic environment produced by high altitude nuclear explosions (HANE). DREAM was initially developed as a basic research activity to understand and predict the dynamics of the Earth's Van Allen radiation belts. It uses Kalman filter techniques to assimilate data from space environment instruments with a physics-based model of the radiation belts. DREAM can assimilate data from a variety of types of instruments and data with various levels of resolution and fidelity by assigning appropriate uncertainties to the observations. Data from any spacecraft orbit can be assimilated but DREAM was designed to function with as few as two spacecraft inputs: one from geosynchronous orbit and one from GPS orbit. With those inputs, DREAM can be used to predict the environment at any satellite in any orbit whether space environment data are available in those orbits or not. Even with very limited data input and relatively simple physics models, DREAM specifies the space environment in the radiation belts to a high level of accuracy. DREAM has been extensively tested and evaluated as we transition from research to operations. We report here on one set of test results in which we predict the environment in a highly-elliptical polar orbit. We also discuss long-duration reanalysis for spacecraft design, using DREAM for real-time operations, and prospects for 1-week forecasts of the radiation belt environment.

  10. A comparative study of Lotka-Volterra and system dynamics models for simulation of technology industry dynamics

    E-Print Network [OSTI]

    Ünver, Hakk? Özgür

    2008-01-01T23:59:59.000Z

    Scholars have developed a range of qualitative and quantitative models for generalizing the dynamics of technological innovation and identifying patterns of competition between rivals. This thesis compares two predominant ...

  11. Toward a mechanistic modeling of nitrogen limitation on vegetation dynamics

    SciTech Connect (OSTI)

    Xu, Chonggang [Los Alamos National Laboratory (LANL); Fisher, Rosie [National Center for Atmospheric Research (NCAR); Wullschleger, Stan D [ORNL; Wilson, Cathy [Los Alamos National Laboratory (LANL); Cai, Michael [Los Alamos National Laboratory (LANL); McDowell, Nathan [Los Alamos National Laboratory (LANL)

    2012-01-01T23:59:59.000Z

    Nitrogen is a dominant regulator of vegetation dynamics, net primary production, and terrestrial carbon cycles; however, most ecosystem models use a rather simplistic relationship between leaf nitrogen content and photosynthetic capacity. Such an approach does not consider how patterns of nitrogen allocation may change with differences in light intensity, growing-season temperature and CO{sub 2} concentration. To account for this known variability in nitrogen-photosynthesis relationships, we develop a mechanistic nitrogen allocation model based on a trade-off of nitrogen allocated between growth and storage, and an optimization of nitrogen allocated among light capture, electron transport, carboxylation, and respiration. The developed model is able to predict the acclimation of photosynthetic capacity to changes in CO{sub 2} concentration, temperature, and radiation when evaluated against published data of V{sub c,max} (maximum carboxylation rate) and J{sub max} (maximum electron transport rate). A sensitivity analysis of the model for herbaceous plants, deciduous and evergreen trees implies that elevated CO{sub 2} concentrations lead to lower allocation of nitrogen to carboxylation but higher allocation to storage. Higher growing-season temperatures cause lower allocation of nitrogen to carboxylation, due to higher nitrogen requirements for light capture pigments and for storage. Lower levels of radiation have a much stronger effect on allocation of nitrogen to carboxylation for herbaceous plants than for trees, resulting from higher nitrogen requirements for light capture for herbaceous plants. As far as we know, this is the first model of complete nitrogen allocation that simultaneously considers nitrogen allocation to light capture, electron transport, carboxylation, respiration and storage, and the responses of each to altered environmental conditions. We expect this model could potentially improve our confidence in simulations of carbon-nitrogen interactions and the vegetation feedbacks to climate in Earth system models.

  12. Dynamic first-order phase transition in kinetically constrained models of glasses

    E-Print Network [OSTI]

    J. P. Garrahan; R. L. Jack; V. Lecomte; E. Pitard; K. van Duijvendijk; F. van Wijland

    2007-05-22T23:59:59.000Z

    We show that the dynamics of kinetically constrained models of glass formers takes place at a first-order coexistence line between active and inactive dynamical phases. We prove this by computing the large-deviation functions of suitable space-time observables, such as the number of configuration changes in a trajectory. We present analytic results for dynamic facilitated models in a mean-field approximation, and numerical results for the Fredrickson-Andersen model, the East model, and constrained lattice gases, in various dimensions. This dynamical first-order transition is generic in kinetically constrained models, and we expect it to be present in systems with fully jammed states.

  13. Dynamic Friction Models for Longitudinal Road/Tire Interaction: Theoretical Advances

    E-Print Network [OSTI]

    Tsiotras, Panagiotis

    Dynamic Friction Models for Longitudinal Road/Tire Interaction: Theoretical Advances C. Canudas we derive a new dynamic friction force model for the longitudinal road/tire interaction for wheeled-point friction problems, called the LuGre model [1]. By assuming a con- tact patch between the tire

  14. Dynamic Code Overlay of SDF-Modeled Programs on Low-end Embedded Systems

    E-Print Network [OSTI]

    Ha, Soonhoi

    Dynamic Code Overlay of SDF-Modeled Programs on Low-end Embedded Systems Hae-woo Park Kyoungjoo Oh of synchronous data-flow (SDF) ­modeled program for low-end embedded systems which lack MMU- support-program code, dynamic loader and linker script files from the given SDF- modeled blocks and schematic, so we

  15. Capacitive effect of cavitation in xylem conduits: results from a dynamic model

    E-Print Network [OSTI]

    Mencuccini, Maurizio

    Capacitive effect of cavitation in xylem conduits: results from a dynamic model TEEMU HÃ?LTTÃ?1. A dynamic model is presented that models xylem water potential, xylem sap flow and cavitation, taking; xylem transport. INTRODUCTION Xylem embolism formation by cavitation causes a decrease in plant

  16. Lateral Dynamics Reconstruction for Sharp'71 Motorcycle Model with P2I Observer

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Lateral Dynamics Reconstruction for Sharp'71 Motorcycle Model with P2I Observer Chabane Chenane (motorcycle, scooter, etc.). For that purpose, the well-known motorcycle model developed by Sharp in 1971 is used. This model characterizes the lateral dynamics of a motorcycle [16]. The roll angle

  17. Modeling and Risk Assessment of CO{sub 2} Sequestration at the Geologic-basin Scale

    SciTech Connect (OSTI)

    Juanes, Ruben

    2013-08-31T23:59:59.000Z

    Objectives. The overall objective of this proposal was to develop tools for better understanding, modeling and risk assessment of CO{sub 2} permanence in geologic formations at the geologic basin scale. The main motivation was that carbon capture and storage (CCS) will play an important role as a climate change mitigation technology only if it is deployed at scale of gigatonne per year injections over a period of decades. Continuous injection of this magnitude must be understood at the scale of a geologic basin. Specifically, the technical objectives of this project were: (1) to develop mathematical models of capacity and injectivity at the basin scale; (2) to apply quantitative risk assessment methodologies that will inform on CO{sub 2} permanence; (3) to apply the models to geologic basins across the continental United States. These technical objectives go hand-in-hand with the overarching goals of: (1) advancing the science for deployment of CCS at scale; and (2) contributing to training the next generation of scientists and engineers that will implement and deploy CCS in the United States and elsewhere. Methods. The differentiating factor of this proposal was to perform fundamental research on migration and fate of CO{sub 2} and displaced brine at the geologic basin scale. We developed analytical sharp-interface models of the evolution of CO{sub 2} plumes over the duration of injection (decades) and after injection (centuries). We applied the analytical solutions of CO{sub 2} plume migration and pressure evolution to specific geologic basins, to estimate the maximum footprint of the plume, and the maximum injection rate that can be sustained during a certain injection period without fracturing the caprock. These results have led to more accurate capacity estimates, based on fluid flow dynamics, rather than ad hoc assumptions of an overall “efficiency factor.” We also applied risk assessment methodologies to evaluate the uncertainty in our predictions of storage capacity and leakage rates. This was possible because the analytical mathematical models provide ultrafast forward simulation and they contain few parameters. Impact. The project has been enormously successful both in terms of its scientific output (journal publications) as well as impact in the government and industry. The mathematical models and uncertainty quantification methodologies developed here o?er a physically-based approach for estimating capacity and leakage risk at the basin scale. Our approach may also facilitate deployment of CCS by providing the basis for a simpler and more coherent regulatory structure than an “individual-point-of-injection” permitting approach. It may also lead to better science-based policy for post-closure design and transfer of responsibility to the State.

  18. Modeling Biodiversity Dynamics in Countryside and Native Habitats Henrique M Pereira and Luis Borda-de-Agua, Faculdade de Cie^ncias da Universidade de Lisboa, Lisboa, Portugal

    E-Print Network [OSTI]

    Pereira, Henrique Miguel

    Modeling Biodiversity Dynamics in Countryside and Native Habitats Henrique M Pereira and Lui; Pereira et al., 2010). It is therefore es- sential to assess how different patterns of land-use affect at the impacts of climate change (Thuiller et al., 2008; Pereira et al., 2010). However, many of the original

  19. Modifying the Soil and Water Assessment Tool to Simulate Cropland Carbon Flux: Model Development and Initial Evaluation

    SciTech Connect (OSTI)

    Zhang, Xuesong; Izaurralde, Roberto C.; Arnold, Jeffrey; Williams, Jimmy R.; Srinivasan, Raghavan

    2013-10-01T23:59:59.000Z

    Climate change is one of the most compelling modern issues and has important implications for almost every aspect of natural and human systems. The Soil and Water Assessment Tool (SWAT) model has been applied worldwide to support sustainable land and water management in a changing climate. However, the inadequacies of the existing carbon algorithm in SWAT limit its application in assessing impacts of human activities on CO2 emission, one important source of greenhouse gases (GHGs) that traps heat in the earth system and results in global warming. In this research, we incorporate a revised version of the CENTURY carbon model into SWAT to describe dynamics of soil organic matter (SOM)- residue and simulate land-atmosphere carbon exchange.

  20. Tyre modelling for use in vehicle dynamics studies

    SciTech Connect (OSTI)

    Bakker, E.; Nyborg, L.; Pacejka, H.B.

    1987-01-01T23:59:59.000Z

    A new way of representing tyre data obtained from measurements in pure cornering and pure braking conditions has been developed in order to further improve the Dynamic Safety of vehicles. The method makes use of a formula with coefficients which describe some of the typifying quantities of a tyre, such as slip stiffnesses at zero slip and force and torque peak values. The formula is capable of describing the characteristics of side force, brake force and self aligning torque with great accuracy. This mathematical representation is limited to steady-state conditions during either pure cornering or pure braking and forms the basis for a model describing tyre behaviour during combined braking and cornering.

  1. Hydro-dynamical models for the chaotic dripping faucet

    E-Print Network [OSTI]

    P. Coullet; L. Mahadevan; C. S. Riera

    2004-08-20T23:59:59.000Z

    We give a hydrodynamical explanation for the chaotic behaviour of a dripping faucet using the results of the stability analysis of a static pendant drop and a proper orthogonal decomposition (POD) of the complete dynamics. We find that the only relevant modes are the two classical normal forms associated with a Saddle-Node-Andronov bifurcation and a Shilnikov homoclinic bifurcation. This allows us to construct a hierarchy of reduced order models including maps and ordinary differential equations which are able to qualitatively explain prior experiments and numerical simulations of the governing partial differential equations and provide an explanation for the complexity in dripping. We also provide a new mechanical analogue for the dripping faucet and a simple rationale for the transition from dripping to jetting modes in the flow from a faucet.

  2. Dynamic Markov bridges motivated by models of insider trading

    E-Print Network [OSTI]

    Campi, Luciano; Danilova, Albina

    2012-01-01T23:59:59.000Z

    Given a Markovian Brownian martingale $Z$, we build a process $X$ which is a martingale in its own filtration and satisfies $X_1 = Z_1$. We call $X$ a dynamic bridge, because its terminal value $Z_1$ is not known in advance. We compute explicitly its semimartingale decomposition under both its own filtration $\\cF^X$ and the filtration $\\cF^{X,Z}$ jointly generated by $X$ and $Z$. Our construction is heavily based on parabolic PDE's and filtering techniques. As an application, we explicitly solve an equilibrium model with insider trading, that can be viewed as a non-Gaussian generalization of Back and Pedersen's \\cite{BP}, where insider's additional information evolves over time.

  3. The Dynamics of Deterministic Chaos in Numerical Weather Prediction Models

    E-Print Network [OSTI]

    A. Mary Selvam

    2003-10-07T23:59:59.000Z

    Atmospheric weather systems are coherent structures consisting of discrete cloud cells forming patterns of rows/streets, mesoscale clusters and spiral bands which maintain their identity for the duration of their appreciable life times in the turbulent shear flow of the planetary Atmospheric Boundary Layer. The existence of coherent structures (seemingly systematic motion) in turbulent flows has been well established during the last 20 years of research in turbulence. Numerical weather prediction models based on the inherently non-linear Navier-Stokes equations do not give realistic forecasts because of the following inherent limitations: (1) the non-linear governing equations for atmospheric flows do not have exact analytic solutions and being sensitive to initial conditions give chaotic solutions characteristic of deterministic chaos (2) the governing equations do not incorporate the dynamical interactions and co-existence of the complete spectrum of turbulent fluctuations which form an integral part of the large coherent weather systems (3) limitations of available computer capacity necessitates severe truncation of the governing equations, thereby generating errors of approximations (4) the computer precision related roundoff errors magnify the earlier mentioned uncertainties exponentially with time and the model predictions become unrealistic. The accurate modelling of weather phenomena therefore requires alternative concepts and computational techniques. In this paper a universal theory of deterministic chaos applicable to the formation of coherent weather structures in the ABL is presented.

  4. Shear band dynamics from a mesoscopic modeling of plasticity

    E-Print Network [OSTI]

    E. A. Jagla

    2010-06-07T23:59:59.000Z

    The ubiquitous appearance of regions of localized deformation (shear bands) in different kinds of disordered materials under shear is studied in the context of a mesoscopic model of plasticity. The model may or may not include relaxational (aging) effects. In the absence of relaxational effects the model displays a monotonously increasing dependence of stress on strain-rate, and stationary shear bands do not occur. However, in start up experiments transient (although long lived) shear bands occur, that widen without bound in time. I investigate this transient effect in detail, reproducing and explaining a t^1/2 law for the thickness increase of the shear band that has been obtained in atomistic numerical simulations. Relaxation produces a negative sloped region in the stress vs. strain-rate curve that stabilizes the formation of shear bands of a well defined width, which is a function of strain-rate. Simulations at very low strain-rates reveal a non-trivial stick-slip dynamics of very thin shear bands that has relevance in the study of seismic phenomena. In addition, other non-stationary processes, such as stop-and-go, or strain-rate inversion situations display a phenomenology that matches very well the results of recent experimental studies.

  5. Development and application of the dynamic system doctor to nuclear reactor probabilistic risk assessments.

    SciTech Connect (OSTI)

    Kunsman, David Marvin; Aldemir, Tunc (Ohio State University); Rutt, Benjamin (Ohio State University); Metzroth, Kyle (Ohio State University); Catalyurek, Umit (Ohio State University); Denning, Richard (Ohio State University); Hakobyan, Aram (Ohio State University); Dunagan, Sean C.

    2008-05-01T23:59:59.000Z

    This LDRD project has produced a tool that makes probabilistic risk assessments (PRAs) of nuclear reactors - analyses which are very resource intensive - more efficient. PRAs of nuclear reactors are being increasingly relied on by the United States Nuclear Regulatory Commission (U.S.N.R.C.) for licensing decisions for current and advanced reactors. Yet, PRAs are produced much as they were 20 years ago. The work here applied a modern systems analysis technique to the accident progression analysis portion of the PRA; the technique was a system-independent multi-task computer driver routine. Initially, the objective of the work was to fuse the accident progression event tree (APET) portion of a PRA to the dynamic system doctor (DSD) created by Ohio State University. Instead, during the initial efforts, it was found that the DSD could be linked directly to a detailed accident progression phenomenological simulation code - the type on which APET construction and analysis relies, albeit indirectly - and thereby directly create and analyze the APET. The expanded DSD computational architecture and infrastructure that was created during this effort is called ADAPT (Analysis of Dynamic Accident Progression Trees). ADAPT is a system software infrastructure that supports execution and analysis of multiple dynamic event-tree simulations on distributed environments. A simulator abstraction layer was developed, and a generic driver was implemented for executing simulators on a distributed environment. As a demonstration of the use of the methodological tool, ADAPT was applied to quantify the likelihood of competing accident progression pathways occurring for a particular accident scenario in a particular reactor type using MELCOR, an integrated severe accident analysis code developed at Sandia. (ADAPT was intentionally created with flexibility, however, and is not limited to interacting with only one code. With minor coding changes to input files, ADAPT can be linked to other such codes.) The results of this demonstration indicate that the approach can significantly reduce the resources required for Level 2 PRAs. From the phenomenological viewpoint, ADAPT can also treat the associated epistemic and aleatory uncertainties. This methodology can also be used for analyses of other complex systems. Any complex system can be analyzed using ADAPT if the workings of that system can be displayed as an event tree, there is a computer code that simulates how those events could progress, and that simulator code has switches to turn on and off system events, phenomena, etc. Using and applying ADAPT to particular problems is not human independent. While the human resources for the creation and analysis of the accident progression are significantly decreased, knowledgeable analysts are still necessary for a given project to apply ADAPT successfully. This research and development effort has met its original goals and then exceeded them.

  6. Estimation of Parameterized Spatio-Temporal Dynamic Models Ke Xu and Christopher K. Wikle

    E-Print Network [OSTI]

    Estimation of Parameterized Spatio-Temporal Dynamic Models Ke Xu and Christopher K. Wikle: Christopher K. Wikle, Department of Statistics, University of Missouri, 146 Math Science Building, Columbia

  7. Dynamic Modeling of Cell Migration and Spreading Behaviors on Fibronectin Coated Planar Substrates and Micropatterned Geometries

    E-Print Network [OSTI]

    Kim, Min-Cheol

    An integrative cell migration model incorporating focal adhesion (FA) dynamics, cytoskeleton and nucleus remodeling, actin motor activity, and lamellipodia protrusion is developed for predicting cell spreading and migration ...

  8. Creating dynamic equivalent PV circuit models with impedance spectroscopy for arc-fault modeling.

    SciTech Connect (OSTI)

    Johnson, Jay Dean; Kuszmaul, Scott S.; Strauch, Jason E.; Schoenwald, David Alan

    2011-06-01T23:59:59.000Z

    Article 690.11 in the 2011 National Electrical Code{reg_sign} (NEC{reg_sign}) requires new photovoltaic (PV) systems on or penetrating a building to include a listed arc fault protection device. Currently there is little experimental or empirical research into the behavior of the arcing frequencies through PV components despite the potential for modules and other PV components to filter or attenuate arcing signatures that could render the arc detector ineffective. To model AC arcing signal propagation along PV strings, the well-studied DC diode models were found to inadequately capture the behavior of high frequency arcing signals. Instead dynamic equivalent circuit models of PV modules were required to describe the impedance for alternating currents in modules. The nonlinearities present in PV cells resulting from irradiance, temperature, frequency, and bias voltage variations make modeling these systems challenging. Linearized dynamic equivalent circuits were created for multiple PV module manufacturers and module technologies. The equivalent resistances and capacitances for the modules were determined using impedance spectroscopy with no bias voltage and no irradiance. The equivalent circuit model was employed to evaluate modules having irradiance conditions that could not be measured directly with the instrumentation. Although there was a wide range of circuit component values, the complex impedance model does not predict filtering of arc fault frequencies in PV strings for any irradiance level. Experimental results with no irradiance agree with the model and show nearly no attenuation for 1 Hz to 100 kHz input frequencies.

  9. Calibration of Reduced Dynamic Models of Power Systems using Phasor Measurement Unit (PMU) Data

    SciTech Connect (OSTI)

    Zhou, Ning; Lu, Shuai; Singh, Ruchi; Elizondo, Marcelo A.

    2011-09-23T23:59:59.000Z

    Accuracy of a power system dynamic model is essential to the secure and efficient operation of the system. Lower confidence on model accuracy usually leads to conservative operation and lowers asset usage. To improve model accuracy, identification algorithms have been developed to calibrate parameters of individual components using measurement data from staged tests. To facilitate online dynamic studies for large power system interconnections, this paper proposes a model reduction and calibration approach using phasor measurement unit (PMU) data. First, a model reduction method is used to reduce the number of dynamic components. Then, a calibration algorithm is developed to estimate parameters of the reduced model. This approach will help to maintain an accurate dynamic model suitable for online dynamic studies. The performance of the proposed method is verified through simulation studies.

  10. Shell Model Dynamics of HCl on the MgO(001) Surface Terrace Andreas Markmann,1

    E-Print Network [OSTI]

    Markmann, Andreas

    are then used to aid the analysis of MD calculations. After equilibrium dynamics, a sudden excitation of the OH of molecular dynamics using specially tailored laser fields. The reaction of hydrogen chloride moleculesShell Model Dynamics of HCl on the MgO(001) Surface Terrace Andreas Markmann,1 Jacob L. Gavartin,2

  11. Idealized test cases for the dynamical cores of Atmospheric General Circulation Models

    E-Print Network [OSTI]

    Jablonowski, Christiane

    Idealized test cases for the dynamical cores of Atmospheric General Circulation Models: A proposal) Ram Nair (NCAR) Mark Taylor (Sandia National Laboratory) May/29/2008 1 Idealized test cases for 3D dynamical cores This document describes the idealized dynamical core test cases that are proposed

  12. Physica D 159 (2001) 3557 Wave group dynamics in weakly nonlinear long-wave models

    E-Print Network [OSTI]

    Pelinovsky, Dmitry

    Physica D 159 (2001) 35­57 Wave group dynamics in weakly nonlinear long-wave models Roger Grimshawa Communicated by A.C. Newell Abstract The dynamics of wave groups is studied for long waves, using the framework reserved. Keywords: Wave group dynamics; Korteweg­de Vries equation; Nonlinear Schr¨odinger equation 1

  13. Automated Software Engineering Process Assessment: Supporting Diverse Models using an Ontology

    E-Print Network [OSTI]

    Ulm, Universität

    , ISO 9001). It also provides an in-the-loop automated process assessment capability that can help, ISO 9001), and suitable performance and scalability. The approach can reduce the effort required assessment while simultaneously supporting diverse process assessment reference models (CMMI, ISO/IEC 15504

  14. Modelling of Stochastic Hybrid Systems with Applications to Accident Risk Assessment

    E-Print Network [OSTI]

    Del Moral , Pierre

    Modelling of Stochastic Hybrid Systems with Applications to Accident Risk Assessment #12;The SYSTEMS WITH APPLICATIONS TO ACCIDENT RISK ASSESSMENT DISSERTATION to obtain the doctor's degree promotor Prof. dr. A. Bagchi #12;Contents 1 Introduction 3 1.1 Accident risk assessment

  15. 109J.D. Westervelt and G.L. Cohen (eds.), Ecologist-Developed Spatially Explicit Dynamic Landscape Models, Modeling Dynamic Systems,

    E-Print Network [OSTI]

    Georgia, University of

    Models, Modeling Dynamic Systems, DOI 10.1007/978-1-4614-1257-1_7, © Springer Science+Business Media, LLC, these targets should represent the most efficient use of limited resources, especially given that resource managers need to balance multiple, often complex issues (Reed et al. 2009). Population models can often aid

  16. A spatially structured metapopulation model with patch dynamics

    E-Print Network [OSTI]

    2007-08-22T23:59:59.000Z

    Sep 30, 2005 ... creation) and metapopulation dynamics (patch colonization and extinction). ... genetic structure (Gaines and Lyons, 1997), and commu-.

  17. Modeling Exposure to Persistent Chemicals in Hazard and Risk Assessment

    E-Print Network [OSTI]

    Cowan-Ellsberry, Christina E.

    2010-01-01T23:59:59.000Z

    of organohalogen contaminants (dioxins, PCB, PBDE andInvestigation into levels of dioxins, furans, PCBs and PBDEsfor risk assessment of dioxin-contaminated sites. Ambio 36:

  18. Pion photoproduction in a dynamical coupled-channels model

    E-Print Network [OSTI]

    Huang, F; Haberzettl, H; Haidenbauer, J; Hanhart, C; Krewald, S; ner, U -G Meiß; Nakayama, K

    2011-01-01T23:59:59.000Z

    The charged and neutral pion photoproduction reactions are investigated in a dynamical coupled-channels approach based on the formulation of Haberzettl, Huang, and Nakayama [Phys. Rev. C 83, 065502 (2011)]. The hadronic final-state interaction is provided by the Juelich pi-N model, which includes the channels pi-N and eta-N comprising stable hadrons as well as the effective pi-pi-N channels pi-Delta, sigma-N, and rho-N. This hadronic model has been quite successful in describing pi-N to pi-N scattering for center-of-mass energies up to 1.9 GeV. By construction, the full pion photoproduction current satisfies the generalized Ward-Takahashi identity and thus is gauge invariant as a matter of course. The calculated differential cross sections and photon spin asymmetries up to 1.65 GeV center-of-mass energy for the reactions gamma p to pi+ n, gamma p to pi0 p, gamma n to pi- p and gamma n to pi0 n are in good agreement with the experimental data.

  19. Pion photoproduction in a dynamical coupled-channels model

    E-Print Network [OSTI]

    F. Huang; M. Döring; H. Haberzettl; J. Haidenbauer; C. Hanhart; S. Krewald; U. -G. Meiß ner; K. Nakayama

    2011-10-17T23:59:59.000Z

    The charged and neutral pion photoproduction reactions are investigated in a dynamical coupled-channels approach based on the formulation of Haberzettl, Huang, and Nakayama [Phys. Rev. C 83, 065502 (2011)]. The hadronic final-state interaction is provided by the Juelich pi-N model, which includes the channels pi-N and eta-N comprising stable hadrons as well as the effective pi-pi-N channels pi-Delta, sigma-N, and rho-N. This hadronic model has been quite successful in describing pi-N to pi-N scattering for center-of-mass energies up to 1.9 GeV. By construction, the full pion photoproduction current satisfies the generalized Ward-Takahashi identity and thus is gauge invariant as a matter of course. The calculated differential cross sections and photon spin asymmetries up to 1.65 GeV center-of-mass energy for the reactions gamma p to pi+ n, gamma p to pi0 p, gamma n to pi- p and gamma n to pi0 n are in good agreement with the experimental data.

  20. Dynamic Transitions in a Two Dimensional Associating Lattice Gas Model

    E-Print Network [OSTI]

    Marcia M. Szortyka; Vera Henriques; Mauricio Girardi; Marcia C. Barbosa

    2009-02-10T23:59:59.000Z

    Using Monte Carlo simulations we investigate some new aspects of the phase diagram and the behavior of the diffusion coefficient in an associating lattice gas (ALG) model on different regions of the phase diagram. The ALG model combines a two dimensional lattice gas where particles interact through a soft core potential and orientational degrees of freedom. The competition between soft core potential and directional attractive forces results in a high density liquid phase, a low density liquid phase, and a gas phase. Besides anomalies in the behavior of the density with the temperature at constant pressure and of the diffusion coefficient with density at constant temperature are also found. The two liquid phases are separated by a coexistence line that ends in a bicritical point. The low density liquid phase is separated from the gas phase by a coexistence line that ends in tricritical point. The bicritical and tricritical points are linked by a critical $\\lambda$-line. The high density liquid phase and the fluid phases are separated by a second $\\tau$ critical line. We then investigate how the diffusion coefficient behaves on different regions of the chemical potential-temperature phase diagram. We find that diffusivity undergoes two types of dynamic transitions: a fragile-to-strong trans ition when the critical $\\lambda$-line is crossed by decreasing the temperature at a constant chemical potential; and a strong-to-strong transition when the $\\tau$-critical line is crossed by decreasing the temperature at a constant chemical potential.

  1. Ultrafast Structural Dynamics in Combustion Relevant Model Systems

    SciTech Connect (OSTI)

    Weber, Peter M. [Brown University

    2014-03-31T23:59:59.000Z

    The research project explored the time resolved structural dynamics of important model reaction system using an array of novel methods that were developed specifically for this purpose. They include time resolved electron diffraction, time resolved relativistic electron diffraction, and time resolved Rydberg fingerprint spectroscopy. Toward the end of the funding period, we also developed time-resolved x-ray diffraction, which uses ultrafast x-ray pulses at LCLS. Those experiments are just now blossoming, as the funding period expired. In the following, the time resolved Rydberg Fingerprint Spectroscopy is discussed in some detail, as it has been a very productive method. The binding energy of an electron in a Rydberg state, that is, the energy difference between the Rydberg level and the ground state of the molecular ion, has been found to be a uniquely powerful tool to characterize the molecular structure. To rationalize the structure sensitivity we invoke a picture from electron diffraction: when it passes the molecular ion core, the Rydberg electron experiences a phase shift compared to an electron in a hydrogen atom. This phase shift requires an adjustment of the binding energy of the electron, which is measurable. As in electron diffraction, the phase shift depends on the molecular, geometrical structure, so that a measurement of the electron binding energy can be interpreted as a measurement of the molecule’s structure. Building on this insight, we have developed a structurally sensitive spectroscopy: the molecule is first elevated to the Rydberg state, and the binding energy is then measured using photoelectron spectroscopy. The molecule’s structure is read out as the binding energy spectrum. Since the photoionization can be done with ultrafast laser pulses, the technique is inherently capable of a time resolution in the femtosecond regime. For the purpose of identifying the structures of molecules during chemical reactions, and for the analysis of molecular species in the hot environments of combustion processes, there are several features that make the Rydberg ionization spectroscopy uniquely useful. First, the Rydberg electron’s orbit is quite large and covers the entire molecule for most molecular structures of combustion interest. Secondly, the ionization does not change vibrational quantum numbers, so that even complicated and large molecules can be observed with fairly well resolved spectra. In fact, the spectroscopy is blind to vibrational excitation of the molecule. This has the interesting consequence for the study of chemical dynamics, where the molecules are invariably very energetic, that the molecular structures are observed unobstructed by the vibrational congestion that dominates other spectroscopies. This implies also that, as a tool to probe the time-dependent structural dynamics of chemically interesting molecules, Rydberg spectroscopy may well be better suited than electron or x-ray diffraction. With recent progress in calculating Rydberg binding energy spectra, we are approaching the point where the method can be evolved into a structure determination method. To implement the Rydberg ionization spectroscopy we use a molecular beam based, time-resolved pump-probe multi-photon ionization/photoelectron scheme in which a first laser pulse excites the molecule to a Rydberg state, and a probe pulse ionizes the molecule. A time-of-flight detector measures the kinetic energy spectrum of the photoelectrons. The photoelectron spectrum directly provides the binding energy of the electron, and thereby reveals the molecule’s time-dependent structural fingerprint. Only the duration of the laser pulses limits the time resolution. With a new laser system, we have now reached time resolutions better than 100 fs, although very deep UV wavelengths (down to 190 nm) have slightly longer instrument functions. The structural dynamics of molecules in Rydberg-excited states is obtained by delaying the probe ionization photon from the pump photon; the structural dynamics of molecules in their ground state or e

  2. A phenomenological muscle model to assess history dependent effects in human movement

    E-Print Network [OSTI]

    Ben-Yakar, Adela

    A phenomenological muscle model to assess history dependent effects in human movement C.P. Mc of the history dependent effects. The phenomenological model of stretch-induced force enhancement was dependent

  3. Assessing the Potential of Using Traffic Simulation Model Results for Evaluating Automatic Incident Detection Algorithms

    E-Print Network [OSTI]

    Hellinga, Bruce

    Assessing the Potential of Using Traffic Simulation Model Results for Evaluating Automatic Incident of such a test-bed would be the ability to incorporate synthetic data produced by a simulation model since

  4. Optimal foreign borrowing in a multisector dynamic equilibrium model for Brazil

    E-Print Network [OSTI]

    Tourinho, Octv?io A. F.

    1985-01-01T23:59:59.000Z

    This paper shows how a dynamic multisector equilibrium model can be formulated to be able to analyze the optimal borrowing policy of a developing country. It also describes how a non-linear programming model with the ...

  5. Networking technology adoption : system dynamics modeling of fiber-to-the-home

    E-Print Network [OSTI]

    Kelic, Andjelka, 1972-

    2005-01-01T23:59:59.000Z

    A system dynamics model is developed and run to study the adoption of fiber-to-the-home as a residential broadband technology. Communities that currently do not have broadband in the United States are modeled. This case ...

  6. A comparison of Bayesian versus deterministic formulation for dynamic data integration into reservoir models

    E-Print Network [OSTI]

    Rojas Paico, Danny H.

    2001-01-01T23:59:59.000Z

    Into Reservoir Models. (Decmnber 200 I) Danny LL Rojas Paico, B. S. , Universidad Nacional de Ingenieria, Peru Chair of Advisory Committee: Dr. Akhil Datta-Gupta The integration of dynamic data into reservoir models is known as automatic history matching...

  7. Evolutionary Processes in Economics: Multi-agent Model of Macrogenerations Dynamics

    E-Print Network [OSTI]

    López-Sánchez, Maite

    Evolutionary Processes in Economics: Multi-agent Model of Macrogenerations Dynamics Kateryna macroeconomic growth as an evolutionary process. Keywords. Economic growth, evolutionary theory, multi]. Our study models the economic growth as an evolutionary process, where the term `macrogeneration

  8. age-structured dynamical models: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    does not migrate. Le, Thuc Manh; Van Minh, Nguyen 2010-01-01 36 Galactic Nonlinear Dynamic Model Mathematical Physics (arXiv) Summary: We develop a model for spiral galaxies...

  9. Assessing nitrogen losses after sewage sludge spreading: A method based on simulation models and spreader

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Assessing nitrogen losses after sewage sludge spreading: A method based on simulation models performances. We define 45 sewage sludge spreading scenarios covering a wide range of situations in France. Several models are used to (i) assess nitrogen losses due to sewage sludge spreading and (ii) calculate

  10. Assessment of Managed Aquifer Recharge Site Suitability Using a GIS and Modeling

    E-Print Network [OSTI]

    Fisher, Andrew

    with a regional groundwater model to assess the hydrologic impact of potential MAR placement and operating planning, including evaluation of options for enhancing groundwater resources. Introduction ManagedAssessment of Managed Aquifer Recharge Site Suitability Using a GIS and Modeling by Tess A. Russo1

  11. New methods for estimation, modeling and validation of dynamical systems using automatic differentiation

    E-Print Network [OSTI]

    Griffith, Daniel Todd

    2005-02-17T23:59:59.000Z

    equations, for a class of nonlinear dynamical systems. In the area of trajectory optimization some new ideas are presented for automating the process of deriving co- state differential equations. Additionally, higher-order algorithms for computing... midcourse corrections are introduced. In Chapter IV, some new insights into modeling of dynamical systems are presented. Producing dynamical models in the form of coupled nonlinear differential equations is a frequent first step for analysis, estimation...

  12. Currents and turbulence within a kelp forest (Macrocystis pyrifera): Insights from a dynamically scaled laboratory model

    E-Print Network [OSTI]

    Denny, Mark

    Currents and turbulence within a kelp forest (Macrocystis pyrifera): Insights from a dynamically a dynamically matched 1/25-scale model. Two kelp configurations with surface canopies and one without a surface acoustic Doppler velocimeters. Since flow within the model kelp forest was very heterogeneous, spatially

  13. NUMERICAL MODELING OF SHOCK-INDUCED DAMAGE FOR GRANITE UNDER DYNAMIC LOADING

    E-Print Network [OSTI]

    Stewart, Sarah T.

    NUMERICAL MODELING OF SHOCK-INDUCED DAMAGE FOR GRANITE UNDER DYNAMIC LOADING H. A. Ai1 , T. J beneath impact crater in granite. Model constants are determined either directly from static uniaxial from Century Dynamics to simulate the shock-induced damage in granite targets impacted by projectiles

  14. Dynamic Versus Steady-State Modeling of FACTS Controllers in Transmission Congestion

    E-Print Network [OSTI]

    Cañizares, Claudio A.

    benchmark system is used to illustrate and compare the effect on locational marginal prices and transmission marginal prices obtained from stability-constrained auction models when dynamic and steady state FACTS discusses the effect on transmission congestion management and pricing of dynamic and steady- state models

  15. Dynamic Friction Models for Longitudinal Road/Tire Interaction: Experimental Results

    E-Print Network [OSTI]

    Tsiotras, Panagiotis

    Dynamic Friction Models for Longitudinal Road/Tire Interaction: Experimental Results C. Canudas dynamic friction force model for the longitudinal road/tire interaction for wheeled ground vehicles is val- idated via experiments with an actual passenger vehicle. Contrary to common static friction/slip maps

  16. A model for dynamic chance constraints in hydro power reservoir management

    E-Print Network [OSTI]

    Römisch, Werner

    A model for dynamic chance constraints in hydro power reservoir management L. Andrieu , R. Henrion In this paper, a model for (joint) dynamic chance constraints is proposed and ap- plied to an optimization for two and three stages. 1 Introduction A conventional optimization problem under chance constraints

  17. Development of a Dynamic Model of a Small High-Speed Autonomous Underwater Vehicle

    E-Print Network [OSTI]

    Virginia Tech

    Development of a Dynamic Model of a Small High-Speed Autonomous Underwater Vehicle Haider N. Arafat-- A dynamic model is developed for a small, high- speed autonomous underwater vehicle. The vehicle has manner: 1) Wind angle and angle : From u = V cos , v = V sin sin , and w = V sin cos , we have tan

  18. A Numerical Model for the Dynamic Simulation of a Recirculation Single-Effect Absorption Chiller

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    A Numerical Model for the Dynamic Simulation of a Recirculation Single- Effect Absorption Chiller A dynamic model for the simulation of a new single-effect water/lithium bromide absorption chiller is developed. The chiller is driven by two distinct heat sources, includes a custom integrated falling film

  19. STOCHASTIC COMPUTATIONAL DYNAMICAL MODEL OF UNCERTAIN STRUCTURE COUPLED WITH AN INSULATION LAYER

    E-Print Network [OSTI]

    Boyer, Edmond

    STOCHASTIC COMPUTATIONAL DYNAMICAL MODEL OF UNCERTAIN STRUCTURE COUPLED WITH AN INSULATION LAYER the effect of insulation layers in complex dynamical systems for low- and medium-frequency ranges such as car booming noise analysis, one introduces a sim- plified stochastic model of insulation layers based

  20. Dynamic Optimization in Continuous-Time Economic Models (A Guide for the Perplexed)

    E-Print Network [OSTI]

    Sadoulet, Elisabeth

    Dynamic Optimization in Continuous-Time Economic Models (A Guide for the Perplexed) Maurice, continuous-time modeling allows application of a powerful mathematical tool, the theory of optimal dynamic control. The basic idea of optimal control theory is easy to grasp-- indeed it follows from elementary

  1. A differentiable dynamic network loading model that yields queue length distributions and accounts for spillback

    E-Print Network [OSTI]

    Bierlaire, Michel

    A differentiable dynamic network loading model that yields queue length distributions and accounts, this is so because the kinematic wave model (KWM), the mainstay of traffic flow theory, only applies for spillback Carolina Osorio Gunnar Fl¨otter¨od Michel Bierlaire Abstract We derive a dynamic network

  2. Filtering Noisy ECG Signals Using the Extended Kalman Filter Based on a Modified Dynamic ECG Model

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Filtering Noisy ECG Signals Using the Extended Kalman Filter Based on a Modified Dynamic ECG Model for the filtering of noisy ECG signals. The method is based on a modified nonlinear dynamic model, previously introduced for the generation of synthetic ECG signals. An automatic parameter selection method has also been

  3. ECG Denoising Using a Dynamical Model and a Marginalized Particle Filter

    E-Print Network [OSTI]

    Tourneret, Jean-Yves

    ECG Denoising Using a Dynamical Model and a Marginalized Particle Filter Chao Lin1,3, M of robust ECG denoising tech- niques is important for automatic diagnoses of cardiac diseases. Based on a previously suggested nonlinear dynamic model for the generation of realistic synthetic ECG, we introduce

  4. Computation Modeling and Assessment of Nanocoatings for Ultra Supercritical Boilers

    SciTech Connect (OSTI)

    J. Shingledecker; D. Gandy; N. Cheruvu; R. Wei; K. Chan

    2011-06-21T23:59:59.000Z

    Forced outages and boiler unavailability of coal-fired fossil plants is most often caused by fire-side corrosion of boiler waterwalls and tubing. Reliable coatings are required for Ultrasupercritical (USC) application to mitigate corrosion since these boilers will operate at a much higher temperatures and pressures than in supercritical (565 C {at} 24 MPa) boilers. Computational modeling efforts have been undertaken to design and assess potential Fe-Cr-Ni-Al systems to produce stable nanocrystalline coatings that form a protective, continuous scale of either Al{sub 2}O{sub 3} or Cr{sub 2}O{sub 3}. The computational modeling results identified a new series of Fe-25Cr-40Ni with or without 10 wt.% Al nanocrystalline coatings that maintain long-term stability by forming a diffusion barrier layer at the coating/substrate interface. The computational modeling predictions of microstructure, formation of continuous Al{sub 2}O{sub 3} scale, inward Al diffusion, grain growth, and sintering behavior were validated with experimental results. Advanced coatings, such as MCrAl (where M is Fe, Ni, or Co) nanocrystalline coatings, have been processed using different magnetron sputtering deposition techniques. Several coating trials were performed and among the processing methods evaluated, the DC pulsed magnetron sputtering technique produced the best quality coating with a minimum number of shallow defects and the results of multiple deposition trials showed that the process is repeatable. scale, inward Al diffusion, grain growth, and sintering behavior were validated with experimental results. The cyclic oxidation test results revealed that the nanocrystalline coatings offer better oxidation resistance, in terms of weight loss, localized oxidation, and formation of mixed oxides in the Al{sub 2}O{sub 3} scale, than widely used MCrAlY coatings. However, the ultra-fine grain structure in these coatings, consistent with the computational model predictions, resulted in accelerated Al diffusion from the coating into the substrate. An effective diffusion barrier interlayer coating was developed to prevent inward Al diffusion. The fire-side corrosion test results showed that the nanocrystalline coatings with a minimum number of defects have a great potential in providing corrosion protection. The coating tested in the most aggressive environment showed no evidence of coating spallation and/or corrosion attack after 1050 hours exposure. In contrast, evidence of coating spallation in isolated areas and corrosion attack of the base metal in the spalled areas were observed after 500 hours. These contrasting results after 500 and 1050 hours exposure suggest that the premature coating spallation in isolated areas may be related to the variation of defects in the coating between the samples. It is suspected that the cauliflower-type defects in the coating were presumably responsible for coating spallation in isolated areas. Thus, a defect free good quality coating is the key for the long-term durability of nanocrystalline coatings in corrosive environments. Thus, additional process optimization work is required to produce defect-free coatings prior to development of a coating application method for production parts.

  5. Coupled thermodynamic-dynamic semi-analytical model of Free Piston Stirling engines

    E-Print Network [OSTI]

    Formosa, Fabien

    2013-01-01T23:59:59.000Z

    The study of free piston Stirling engine (FPSE) requires both accurate thermodynamic and dynamic modelling to predict its performances. The steady state behaviour of the engine partly relies on non linear dissipative phenomena such as pressure drop loss within heat exchangers which is dependant on the temperature within the associated components. An analytical thermodynamic model which encompasses the effectiveness and the flaws of the heat exchangers and the regenerator has been previously developed and validated. A semi-analytical dynamic model of FPSE is developed and presented in this paper. The thermodynamic model is used to define the thermal variables that are used in the dynamic model which evaluates the kinematic results. Thus, a coupled iterative strategy has been used to perform a global simulation. The global modelling approach has been validated using the experimental data available from the NASA RE-1000 Stirling engine prototype. The resulting coupled thermodynamic-dynamic model using a standard...

  6. Model for a web based medical technology assessment system

    E-Print Network [OSTI]

    Prabhu, Gopal

    1999-01-01T23:59:59.000Z

    will form the backbone of this system. Various queries can be run to produce the desired results. This system will provide a means for assessing the currently available medical technology. Based on the information present in the system clinical engineers...

  7. Modeling toxic endpoints for improving human health risk assessment

    E-Print Network [OSTI]

    Bruce, Erica Dawn

    2009-05-15T23:59:59.000Z

    Risk assessment procedures for mixtures of polycyclic aromatic hydrocarbons (PAHs) present a problem due to the lack of available potency and toxicity data on mixtures and individual compounds. This study examines the toxicity of parent compound...

  8. Integrated dynamic landscape analysis and modeling system (IDLAMS) : installation manual.

    SciTech Connect (OSTI)

    Li, Z.; Majerus, K. A.; Sundell, R. C.; Sydelko, P. J.; Vogt, M. C.

    1999-02-24T23:59:59.000Z

    The Integrated Dynamic Landscape Analysis and Modeling System (IDLAMS) is a prototype, integrated land management technology developed through a joint effort between Argonne National Laboratory (ANL) and the US Army Corps of Engineers Construction Engineering Research Laboratories (USACERL). Dr. Ronald C. Sundell, Ms. Pamela J. Sydelko, and Ms. Kimberly A. Majerus were the principal investigators (PIs) for this project. Dr. Zhian Li was the primary software developer. Dr. Jeffrey M. Keisler, Mr. Christopher M. Klaus, and Mr. Michael C. Vogt developed the decision analysis component of this project. It was developed with funding support from the Strategic Environmental Research and Development Program (SERDP), a land/environmental stewardship research program with participation from the US Department of Defense (DoD), the US Department of Energy (DOE), and the US Environmental Protection Agency (EPA). IDLAMS predicts land conditions (e.g., vegetation, wildlife habitats, and erosion status) by simulating changes in military land ecosystems for given training intensities and land management practices. It can be used by military land managers to help predict the future ecological condition for a given land use based on land management scenarios of various levels of training intensity. It also can be used as a tool to help land managers compare different land management practices and further determine a set of land management activities and prescriptions that best suit the needs of a specific military installation.

  9. Integrated dynamic landscape analysis and modeling system (IDLAMS) : programmer's manual.

    SciTech Connect (OSTI)

    Klaus, C. M.; Li, Z.; Majerus, K. A.; Sundell, R. C.; Sydelko, P. J.; Vogt, M. C.

    1999-02-24T23:59:59.000Z

    The Integrated Dynamic Landscape Analysis and Modeling System (IDLAMS) is a prototype, integrated land management technology developed through a joint effort between Argonne National Laboratory (ANL) and the US Army Corps of Engineers Construction Engineering Research Laboratories (USACERL). Dr. Ronald C. Sundell, Ms. Pamela J. Sydelko, and Ms. Kimberly A. Majerus were the principal investigators (PIs) for this project. Dr. Zhian Li was the primary software developer. Dr. Jeffrey M. Keisler, Mr. Christopher M. Klaus, and Mr. Michael C. Vogt developed the decision analysis component of this project. It was developed with funding support from the Strategic Environmental Research and Development Program (SERDP), a land/environmental stewardship research program with participation from the US Department of Defense (DoD), the US Department of Energy (DOE), and the US Environmental Protection Agency (EPA). IDLAMS predicts land conditions (e.g., vegetation, wildlife habitats, and erosion status) by simulating changes in military land ecosystems for given training intensities and land management practices. It can be used by military land managers to help predict the future ecological condition for a given land use based on land management scenarios of various levels of training intensity. It also can be used as a tool to help land managers compare different land management practices and further determine a set of land management activities and prescriptions that best suit the needs of a specific military installation.

  10. The modeling of aerosol dynamics during degraded core events

    SciTech Connect (OSTI)

    Clausse, A.; Lahey, R.T. Jr.

    1989-01-01T23:59:59.000Z

    There is substantial interest in developing simple, yet accurate, models for the prediction of aerosol dynamics during degraded core events. The exact aerosol transport equation is given by {partial derivative}n(v,t)/{partial derivative}t = 1/2 {integral}{sub 0}{sup {infinity}} K(u,v {minus} u)n(u,t)n(v {minus} u,t)du {minus} {integral}{sub 0}{sup {infinity}} K(u,v)n(v,t)n(u,t)du {minus} n(v,t)c(v)/h + n{sub p}(v), where n(v,t) is the particle size density distribution function. The kernel, K(v,u), is related to the frequency of coagulation between aerosol particles of volume u and v, and the quantity c(v) is the deposition velocity. The quantity h is the effective height for deposition of aerosol; it is the volume of the aerosol cloud divided by the projected horizontal area A. Finally, the term n{sub p} (v) is the source rate of aerosol. Evaluation of the above equation is discussed.

  11. Dynamics of an age-structured metapopulation model

    E-Print Network [OSTI]

    2005-10-28T23:59:59.000Z

    address the temporal dynamics that characterize local popu- lations in ... this metapopulation framework, two structures have emerged as being critical in the ...

  12. [10-386] Assessing and Improving the Scale Dependence of Ecosystem Processes in Earth System Models

    E-Print Network [OSTI]

    . Goodale Cornell U. *Overall Project Lead *Lead Institution Intellectual Merit: Earth system models include policies. Our research assesses and improves Earth system model simulations of the carbon cycle, ecosystem of the Community Climate System Model/Community Earth System Model, which includes statistical meteorological

  13. Modeling Thermodynamics and Dynamics of MixtureModeling Thermodynamics and Dynamics of Mixture Adsorption in Porous MaterialsAdsorption in Porous Materials

    E-Print Network [OSTI]

    Mountziaris, T. J.

    models to describe adsorption dynamics · Apply to case of Enhanced Coalbed Methane Extraction ­ Trillions of cubic meters of methane and carbon dioxide can be extracted and stored in unusable coal seams Models temperature, adsorption increases with pressure. Carbon Dioxide interacts more strongly with coal than methane

  14. Heating dynamics of CO{sub 2}-laser irradiated silica particles with evaporative shrinking: Measurements and modeling

    SciTech Connect (OSTI)

    Elhadj, S.; Qiu, S. R.; Stolz, C. J. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Monterrosa, A. M. [Department of Nuclear Engineering and Department of Materials Science and Engineering, University of California, Berkeley, California 94704 (United States)

    2012-05-01T23:59:59.000Z

    The heating dynamics of CO{sub 2}-laser heated micron-sized particles were determined for temperatures <3500 K measured using infrared imaging. A coupled mass and energy conservation model is derived to predict single particle temperatures and sizes, which were compared with data from particles deposited on non-absorbing substrates to assess the relevant heat transfer processes. Analysis reveals substrate conduction dominates all other heat losses, while laser absorption determined from Mie theory is strongly modulated by particle evaporative shrinking. This study provides insights into the light coupling and heating of particle arrays where the material optical properties are temperature-dependent and particle size changes are significant.

  15. E-Print Network 3.0 - assessing dynamic magnetic Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geosciences ; Physics ; Plasma Physics and Fusion 51 LITERATURE SURVEY OF PERMANENT MAGNET AC MOTORS AND P. PILIAY, MEMBER, IEEE, AND P. EREERE Summary: .A. Little, "Dynamic...

  16. A Business Model Framework for Dynamic Spectrum Access in Cognitive Networks

    E-Print Network [OSTI]

    Ha, Dong S.

    A Business Model Framework for Dynamic Spectrum Access in Cognitive Networks Nikhil Kelkar, Dr implement these technologies and still profit from them? III. FUNDAMENTAL MODEL The business model which we a multi-parameter approach by defining four levels on which everyday business models operate. Value

  17. BIOMECHANICAL ANALYSIS OF TWO SIMPLE DYNAMICAL MODELS FOR THE HUMAN GAIT

    E-Print Network [OSTI]

    Llanos, Diego R.

    and expenditure energy for the human body in normal walking models. Both models allow us to adapt a vector the adaptability of the subject to the environment in a reactive way . The high complexity of biomechanical modelsBIOMECHANICAL ANALYSIS OF TWO SIMPLE DYNAMICAL MODELS FOR THE HUMAN GAIT J.Finat1 , F.Montoya2

  18. Abstract--Eventually, prediction of transformer thermal performance for dynamic loading will be made using models

    E-Print Network [OSTI]

    1 Abstract--Eventually, prediction of transformer thermal performance for dynamic loading will be made using models distilled from measure data, rather than models derived from transformer heat for measuring the acceptability of transformer thermal models. For a model to be acceptable, it must have

  19. Fire dynamics during the 20th century simulated by the Community Land Model

    E-Print Network [OSTI]

    Kloster, S.; Mahowald, N. M.; Randerson, J. T.; Thornton, P. E.; Hoffman, F. M.; Levis, Samuel; Lawrence, Peter J.; Feddema, Johannes J.; Oleson, Keith W.; Lawrence, David M.

    2010-01-01T23:59:59.000Z

    Fire is an integral Earth System process that interacts with climate in multiple ways. Here we assessed the parametrization of fires in the Community Land Model (CLM-CN) and improved the ability of the model to reproduce ...

  20. Modeling and Algorithm for DynamicModeling and Algorithm for Dynamic Multi-Objective Max-CSPsMulti-Objective Max-CSPs

    E-Print Network [OSTI]

    Banbara, Mutsunori

    _n is blow m. ­ e.g. m=5 : No (3,3) / Yes (4,1) #12;Multi-Objective Max-CSP (Properties) For a cost vector RModeling and Algorithm for DynamicModeling and Algorithm for Dynamic Multi-Objective Max-CSPsMulti-Objective Max-CSPs Tenda Okimoto ¹², Tony Rebeiro ³, Maxime Clement and Katsumi Inoue ² ¹ Transdisciplinary

  1. COMPUTATIONAL FLUID DYNAMICS MODELING OF SCALED HANFORD DOUBLE SHELL TANK MIXING - CFD MODELING SENSITIVITY STUDY RESULTS

    SciTech Connect (OSTI)

    JACKSON VL

    2011-08-31T23:59:59.000Z

    The primary purpose of the tank mixing and sampling demonstration program is to mitigate the technical risks associated with the ability of the Hanford tank farm delivery and celtification systems to measure and deliver a uniformly mixed high-level waste (HLW) feed to the Waste Treatment and Immobilization Plant (WTP) Uniform feed to the WTP is a requirement of 24590-WTP-ICD-MG-01-019, ICD-19 - Interface Control Document for Waste Feed, although the exact definition of uniform is evolving in this context. Computational Fluid Dynamics (CFD) modeling has been used to assist in evaluating scaleup issues, study operational parameters, and predict mixing performance at full-scale.

  2. Nonlinear Modeling of the Dynamic Effects of Infused Insulin on Glucose: Comparison of Compartmental With Volterra Models

    E-Print Network [OSTI]

    Markakis, Michail

    This paper presents the results of a computational study that compares simulated compartmental (differential equation) and Volterra models of the dynamic effects of insulin on blood glucose concentration in humans. In the ...

  3. A new analytic-adaptive model for EGS assessment, development...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination Imaging, Characterizing, and Modeling of Fracture Networks and Fluid Flow in EGS Reservoirs Predicting Stimulation Response...

  4. The Niobrara River Basin Study: Using Various Models to Assess

    E-Print Network [OSTI]

    Farritor, Shane

    Seminar Series Brandi Flyr, Ph.D. Integrated Water Management Division Nebraska Department of Natural;#12;Integrated Water Management Identify Management Setting Assess Water Resources Understand & Predict Set effects of various water management strategies in order to develop water management tools #12;Goals

  5. Models used to assess the performance of photovoltaic systems.

    SciTech Connect (OSTI)

    Stein, Joshua S.; Klise, Geoffrey T.

    2009-12-01T23:59:59.000Z

    This report documents the various photovoltaic (PV) performance models and software developed and utilized by researchers at Sandia National Laboratories (SNL) in support of the Photovoltaics and Grid Integration Department. In addition to PV performance models, hybrid system and battery storage models are discussed. A hybrid system using other distributed sources and energy storage can help reduce the variability inherent in PV generation, and due to the complexity of combining multiple generation sources and system loads, these models are invaluable for system design and optimization. Energy storage plays an important role in reducing PV intermittency and battery storage models are used to understand the best configurations and technologies to store PV generated electricity. Other researcher's models used by SNL are discussed including some widely known models that incorporate algorithms developed at SNL. There are other models included in the discussion that are not used by or were not adopted from SNL research but may provide some benefit to researchers working on PV array performance, hybrid system models and energy storage. The paper is organized into three sections to describe the different software models as applied to photovoltaic performance, hybrid systems, and battery storage. For each model, there is a description which includes where to find the model, whether it is currently maintained and any references that may be available. Modeling improvements underway at SNL include quantifying the uncertainty of individual system components, the overall uncertainty in modeled vs. measured results and modeling large PV systems. SNL is also conducting research into the overall reliability of PV systems.

  6. Comparing partial-wave amplitude parametrization with dynamical models of meson-nucleon scattering

    E-Print Network [OSTI]

    Mark W. Paris; Ron L. Workman

    2011-02-28T23:59:59.000Z

    Relationships between partial-wave amplitude parametrizations, in particular the Chew-Mandelstam approach, and dynamical coupled-channel models are established and investigated. A bare pole corresponding to the Delta(1232) resonance, found in a recent dynamical-model fit to pion- and omega-meson production reactions, compares closely to one found in a unitary multichannel partial-wave amplitude parametrization of SAID. The model dependence of the bare pole precludes a direct connection between the approaches but is suggestive that the dynamical description and the phenomenological parametrization are closely related.

  7. Modeling the dynamics and depositional patterns of sandy rivers

    E-Print Network [OSTI]

    Jerolmack, Douglas J

    2006-01-01T23:59:59.000Z

    This thesis seeks to advance our understanding of the dynamic nature, spatial organization and depositional record of topography in sand-bedded rivers. I examine patterns and processes over a wide range of scales, on Earth ...

  8. SIMULATING MARKET TRANSFORMATION DYNAMICS USING A HYBRID ENERGY ECONOMY MODEL

    E-Print Network [OSTI]

    AT THE ADOPTION OF HYDROGEN FUEL CELL VEHICLES by Jimena Eyzaguirre M.Sc. Geology, University of Western Ontario, to develop policy-relevant information about dynamics in consumer preferences for hydrogen fuel cell vehicles

  9. Dynamic reduced order modeling of entrained flow gasifiers

    E-Print Network [OSTI]

    Monaghan, Rory F. D. (Rory Francis Desmond)

    2010-01-01T23:59:59.000Z

    Gasification-based energy systems coupled with carbon dioxide capture and storage technologies have the potential to reduce greenhouse gas emissions from continued use of abundant and secure fossil fuels. Dynamic reduced ...

  10. Isomorphic classical molecular dynamics model for an excess electronin a supercritical fluid

    SciTech Connect (OSTI)

    Miller III, Thomas F.

    2008-08-04T23:59:59.000Z

    Ring polymer molecular dynamics (RPMD) is used to directly simulate the dynamics of an excess electron in a supercritical fluid over a broad range of densities. The accuracy of the RPMD model is tested against numerically exact path integral statistics through the use of analytical continuation techniques. At low fluid densities, the RPMD model substantially underestimates the contribution of delocalized states to the dynamics of the excess electron. However, with increasing solvent density, the RPMD model improves, nearly satisfying analytical continuation constraints at densities approaching those of typical liquids. In the high density regime, quantum dispersion substantially decreases the self-diffusion of the solvated electron. In this regime where the dynamics of the electron is strongly coupled to the dynamics of the atoms in the fluid, trajectories that can reveal diffusive motion of the electron are long in comparison to {beta}{h_bar}.

  11. Dynamics of the UK Natural Gas Industry: System Dynamics Modelling and Long-Term Energy Policy Analysis

    E-Print Network [OSTI]

    Chi, K C; Reiner, David; Nuttall, William J

    www.eprg.group.cam.ac.uk E P R G W O R K IN G P A P E R N O N -T E C H N IC A L S U M M A R Y DYNAMICS OF THE UK NATURAL GAS INDUSTRY: SYSTEM DYNAMICS MODELLING AND LONG-TERM ENERGY POLICY ANALYSIS EPRG Working Paper 0913... Cambridge Working Paper in Economics 0922 Kong Chyong Chi , David M. Reiner and William J. Nuttall The UK offshore natural gas and oil industry has a long and successful history and has been said to represent the pride of UK...

  12. Conceptual design of an integrated technology model for carbon policy assessment.

    SciTech Connect (OSTI)

    Backus, George A.; Dimotakes, Paul E. (NASA Jet Propulsion Laboratory, Pasadena, CA)

    2011-01-01T23:59:59.000Z

    This report describes the conceptual design of a technology choice model for understanding strategies to reduce carbon intensity in the electricity sector. The report considers the major modeling issues affecting technology policy assessment and defines an implementable model construct. Further, the report delineates the basis causal structure of such a model and attempts to establish the technical/algorithmic viability of pursuing model development along with the associated analyses.

  13. Assessing the protective effect of mountain forests against rockfall using a 3D simulation model

    E-Print Network [OSTI]

    Stoffel, Markus

    Assessing the protective effect of mountain forests against rockfall using a 3D simulation model and compared the results obtained with the 3D simulation model RockyFor with empirical data on tree impacts; Rockfall; 3D simulation model; Swiss Alps 1. Introduction Many mountain forests effectively protect people

  14. Cognitive Assessment Models with Few Assumptions, and Connections with Nonparametric IRT

    E-Print Network [OSTI]

    Junker, Brian

    Cognitive Assessment Models with Few Assumptions, and Connections with Nonparametric IRT Brian of the monotonicity conditions discussed in Section 4. #12; Abstract In recent years, as cognitive theories and other cognitive features needed to perform tasks in a particular assess­ ment domain. Cognitive

  15. A simplified physical model for assessing solar radiation over Brazil using GOES 8 visible imagery

    E-Print Network [OSTI]

    A simplified physical model for assessing solar radiation over Brazil using GOES 8 visible imagery; published 30 January 2004. [1] Solar radiation assessment by satellite is constrained by physical Composition and Structure: Transmission and scattering of radiation; KEYWORDS: solar radiation, satellite

  16. Assessing residential exposure to urban noise using environmental models: does the size of the local living

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Assessing residential exposure to urban noise using environmental models: does the size on the quantification of the exposure level in a surface defined as the subject's exposure area. For residential residential buildings. Twelve noise exposure indicators have been used to assess inhabitants' exposure

  17. U.S. GEOLOGICAL SURVEY ASSESSMENT MODEL FOR UNDISCOVERED CONVENTIONAL OIL, GAS, AND NGL

    E-Print Network [OSTI]

    Laughlin, Robert B.

    AM-i Chapter AM U.S. GEOLOGICAL SURVEY ASSESSMENT MODEL FOR UNDISCOVERED CONVENTIONAL OIL, GAS Survey (USGS) periodically conducts assessments of the oil, gas, and natural-gas liquids (NGL) resources by the USGS in1998 for undiscovered oil, gas, and NGL resources that reside in conventional accumulations

  18. Climate Change Modeling and Downscaling Issues and Methodological Perspectives for the U.S. National Climate Assessment

    SciTech Connect (OSTI)

    Janetos, Anthony C.; Collins, William D.; Wuebbles, D.J.; Diffenbaugh, Noah; Hayhoe, Katharine; Hibbard, Kathleen A.; Hurtt, George

    2012-03-31T23:59:59.000Z

    This is the full workshop report for the modeling workshop we did for the National Climate Assessment, with DOE support.

  19. Brownian Dynamics Model of Excited-State Relaxation in Solutions of Conjugated Oligomers

    E-Print Network [OSTI]

    Yaron, David

    1 Brownian Dynamics Model of Excited-State Relaxation in Solutions of Conjugated Oligomers Nicolae, Pittsburgh, Pennsylvania 15213. Excited state relaxation, conjugated polymers, Brownian dynamics. The effects, of the oligomer. A simple molecular mechanical form is used for the ground electronic state. The excitation energy

  20. LIDAR measurements of wind turbine wake dyn_amics and comparison with an engineering model

    E-Print Network [OSTI]

    LIDAR measurements of wind turbine wake dyn_amics and comparison with an engineering model 1 dynamics, lIre performed at four diameters behind a 95 kW wind turbine. The wake 111eaeasurement technique allows esti111ation of qUClsiinstantancou~ two dimensional wind fields in an area

  1. Computational Fluid Dynamics Modeling of a Lithium/Thionyl Chloride Battery with Electrolyte Flow

    E-Print Network [OSTI]

    Wang, Chao-Yang

    Computational Fluid Dynamics Modeling of a Lithium/Thionyl Chloride Battery with Electrolyte Flow W.B. Gu and C.Y. Wang GATE Center of Excellence for Advanced Energy Storage Department of Mechanical are performed using a finite volume method of computational fluid dynamics. The predicted discharge curves

  2. Dynamic Phasor Modeling of the Doubly-Fed Induction Machine in Generator Operation Emmanuel Delaleau*

    E-Print Network [OSTI]

    Stankoviæ, Aleksandar

    Dynamic Phasor Modeling of the Doubly-Fed Induction Machine in Generator Operation Emmanuel at variable speed; second, the excitation power electronics converter feeding the rotor windings needs of the doubly- fed induction machine in generator operation using dynamic phasors. This concept is coming from

  3. Gurson's plasticity coupled to damage as a CAP model for concrete compaction in dynamics

    E-Print Network [OSTI]

    1 Gurson's plasticity coupled to damage as a CAP model for concrete compaction in dynamics Fabrice (compaction) but also the plastic strains in compression and cracking in tension. Recently, new dynamic is generally described by means of the plasticity theory where the spherical and the deviatoric responses

  4. Integrated Dynamic Optimization and Control in Reservoir Engineering using Locally Identified Linear Models

    E-Print Network [OSTI]

    Van den Hof, Paul

    on dynamic real-time optimization (D- RTO) of waterflooding strategies in petroleum reservoirs haveIntegrated Dynamic Optimization and Control in Reservoir Engineering using Locally Identified, the used large-scale, nonlinear, physics-based reservoir models suffer from vast parametric uncertainty

  5. Using species distribution models to inform IUCN Red List assessments

    E-Print Network [OSTI]

    Syfert, Mindy M.; Joppa, Lucas; Smith, Matthew J.; Coomes, David A.; Bachman, Steven P.; Brummitt, Neil A.

    2014-07-26T23:59:59.000Z

    to these as “SRLI species” because the occurrence data for these came from the plant component of the Sampled Red List Index (SRLI), an indicator to measure the current rate of loss of biodiversity by tracking trends in the conservation status of 6 a randomly... the Mesoamerica biodiversity hotspot (Myers et al. 2000). Many species in this region are poorly represented in the world’s herbaria, so limited knowledge of their true distribution exists; nonetheless, conservation assessments are urgently needed...

  6. An Energy-Aware Simulation Model and Transaction Protocol for Dynamic Workload Distribution in Mobile Ad Hoc Networks1

    E-Print Network [OSTI]

    Pedram, Massoud

    An Energy-Aware Simulation Model and Transaction Protocol for Dynamic Workload Distribution California {tari, prong, pedram}@usc.edu Abstract This paper introduces a network simulation model

  7. A Statistical Model to Assess Indirect CO2 Emissions of the UAE Residential Sector

    E-Print Network [OSTI]

    Radhi, H.; Fikry, F.

    2010-01-01T23:59:59.000Z

    . Determination of household energy using ?fingerprints? from energy billing data. Energy Research 10(4), pp: 393?405. [5] Snakin JPA, 2000. An engineering model for heating energy and emission assessment The case of North Karelia, Finland. Applied Energy...

  8. Integrated modelling and assessment of regional groundwater resources in Germany and Benin, West Africa

    E-Print Network [OSTI]

    Cirpka, Olaf Arie

    1 Integrated modelling and assessment of regional groundwater resources in Germany and Benin, West.J.S. SONNEVELD [1] Institute of Hydraulic Engineering, Universitaet Stuttgart, Germany (Roland Conservation University of Bonn, Germany [3] Institute of Landscape Planning and Ecology, University

  9. Using Noncompensatory Models in Cognitive Diagnostic Mathematics Assessments: An Evaluation Based on Empirical Data

    E-Print Network [OSTI]

    Zhao, Fei

    2013-08-31T23:59:59.000Z

    The present study evaluates the performance of four noncompensatory cognitive diagnostic models -- AHM, DINA, Fusion, and Bayesian Networks -- using both formative and large-scale mathematics assessments (Fraction dataset, ...

  10. A new analytic-adaptive model for EGS assessment, development...

    Open Energy Info (EERE)

    Investigator(s) George Danko, UNR Other Principal Investigators Jens Birkholzer, LBNL; Jaak Daemen, UNR Targets Milestones The model development work follows three main...

  11. assessment models version: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Szilagyi a is modeled with a spatially and temporally discretized version of the linear kinematic wave equation written-aquifer interactions; Baseflow separation; Flow routing;...

  12. assessment model version: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Szilagyi a is modeled with a spatially and temporally discretized version of the linear kinematic wave equation written-aquifer interactions; Baseflow separation; Flow routing;...

  13. Modeling Exposure to Persistent Chemicals in Hazard and Risk Assessment

    E-Print Network [OSTI]

    Cowan-Ellsberry, Christina E.

    2010-01-01T23:59:59.000Z

    chlorinated pesticides, e.g. , DDT) based on Swedish marketInvestigating the global fate of DDT: Model evaluation anddichlorodiphenyltrichloroethane (DDT), and its degradation

  14. Assessment of Combustion and Turbulence Models for the Simulation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    models were investigated along with chemical kinetic mechanisms simulating a biodiesel-fueled engine deer09ren.pdf More Documents & Publications Low Temperature...

  15. Dissolved Nutrient Retention Dynamics in River Networks: A Modeling Investigation of Transient Flow and Scale Effects

    SciTech Connect (OSTI)

    Ye, Sheng; Covino, Timothy P.; Sivapalan, Murugesu; Basu, Nandita; Li, Hongyi; Wang, Shaowen

    2012-06-30T23:59:59.000Z

    In this paper, we use a dynamic network flow model, coupled with a transient storage zone biogeochemical model, to simulate dissolved nutrient removal processes at the channel network scale. We have explored several scenarios in respect of the combination of rainfall variability, and the biological and geomorphic characteristics of the catchment, to understand the dominant controls on removal and delivery of dissolved nutrients (e.g., nitrate). These model-based theoretical analyses suggested that while nutrient removal efficiency is lower during flood events compared to during baseflow periods, flood events contribute significantly to bulk nutrient removal, whereas bulk removal during baseflow periods is less. This is due to the fact that nutrient supply is larger during flood events; this trend is even stronger in large rivers. However, the efficiency of removal during both periods decreases in larger rivers, however, due to (i) increasing flow velocities and thus decreasing residence time, and (ii) increasing flow depth, and thus decreasing nutrient uptake rates. Besides nutrient removal processes can be divided into two parts: in the main channel and in the hyporheic transient storage zone. When assessing their relative contributions the size of the transient storage zone is a dominant control, followed by uptake rates in the main channel and in the transient storage zone. Increasing size of the transient storage zone with downstream distance affects the relative contributions to nutrient removal of the water column and the transient storage zone, which also impacts the way nutrient removal rates scale with increasing size of rivers. Intra-annual hydrologic variability has a significant impact on removal rates at all scales: the more variable the streamflow is, compared to mean discharge, the less nutrient is removed in the channel network. A scale-independent first order uptake coefficient, ke, estimated from model simulations, is highly dependent on the relative size of the transient storage zone and how it changes in the downstream direction, as well as the nature of hydrologic variability.

  16. From Structure to Dynamics: Modeling Exciton Dynamics in the Photosynthetic Antenna B. Bru1ggemann, K. Sznee, V. Novoderezhkin, R. van Grondelle, and V. May*,

    E-Print Network [OSTI]

    Röder, Beate

    complemented by various experiments focusing on the dynamics of excitation energy transfer and relaxation afterFrom Structure to Dynamics: Modeling Exciton Dynamics in the Photosynthetic Antenna PS1 B. Bru1 of Sciences and Institute of Molecular Biological Sciences, Vrije UniVersiteit, De Boelelaan 1081, 1081 HV

  17. Assessing dynamics, spatial scale, and uncertainty in task-related brain network analyses

    E-Print Network [OSTI]

    Stephen, Emily P.; Lepage, Kyle Q.; Eden, Uri T.; Brunner, Peter; Schalk, Gerwin; Brumberg, Jonathan S.; Guenther, Frank H.; Kramer, Mark A.

    2014-03-19T23:59:59.000Z

    The brain is a complex network of interconnected elements, whose interactions evolve dynamically in time to cooperatively perform specific functions. A common technique to probe these interactions involves multi-sensor ...

  18. An investigation into the use of biokinetic models when assessing intakes of plutonium

    E-Print Network [OSTI]

    Hrycushko, Brian Andrew

    2008-10-10T23:59:59.000Z

    AN INVESTIGATION INTO THE USE OF BIOKINETIC MODELS WHEN ASSESSING INTAKES OF PLUTONIUM A Thesis by BRIAN ANDREW HRYCUSHKO Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE August 2008 Major Subject: Health Physics AN INVESTIGATION INTO THE USE OF BIOKINETIC MODELS WHEN ASSESSING INTAKES OF PLUTONIUM A Thesis by BRIAN ANDREW HRYCUSHKO Submitted...

  19. Statewide and Electricity-Sector Models for Economic Assessments of

    E-Print Network [OSTI]

    economic models applied to such diverse fields as climate change policy, alternative- fueled vehicles, fuel Economic Research Organization and Affiliate Faculty with the Public Policy Center UHM. Paul Bernstein, Ph....................................................................................................................... 6 2. The Hawaii Computable General Equilibrium Model (H-CGE)............................ 8 2.a. Data

  20. Finite Element Modelling and Molecular Dynamic Simulations of Carbon nanotubes/ Polymer Composites

    E-Print Network [OSTI]

    Gaddamanugu, Dhatri

    2010-07-14T23:59:59.000Z

    Modeling of single-walled carbon nanotubes, multi-walled nanotubes and nanotube reinforced polymer composites using both the Finite Element method and the Molecular Dynamic simulation technique is presented. Nanotubes subjected to mechanical loading...

  1. Optimal motion planning with the half-car dynamical model for autonomous high-speed driving

    E-Print Network [OSTI]

    Jeon, Jeong hwan

    We discuss an implementation of the RRT* optimal motion planning algorithm for the half-car dynamical model to enable autonomous high-speed driving. To develop fast solutions of the associated local steering problem, we ...

  2. Critical enhancements of a dynamic traffic assignment model for highly congested, complex urban network

    E-Print Network [OSTI]

    Wei, Zheng, S.M. Massachusetts Institute of Technology

    2010-01-01T23:59:59.000Z

    To accurately replicate the highly congested traffic situation of a complex urban network, significant challenges are posed to current simulation-based dynamic traffic assignment (DTA) models. This thesis discusses these ...

  3. Branching patterns emerge in a mathematical model of the dynamics of lung development

    E-Print Network [OSTI]

    2014-01-01T23:59:59.000Z

    fluid pressure and fluid–mechanical interactions. Lubarsky &The absence of fluid or mechanical effects may also ex-model to the mechanical and fluid dynamical factors in lung

  4. The Effect of Model Parameters on the Simulation of Fire Dynamics 

    E-Print Network [OSTI]

    Jahn, Wolfram; Rein, Guillermo; Torero, Jose L

    2008-01-01T23:59:59.000Z

    The sensitivity of computer fire modelling using results from NIST’s Fire Dynamics Simulator (FDS) to a set of input parameters related to fire growth has been analyzed. The scenario simulated is the real-scale Dalmarnock ...

  5. Coupled Modeling of Dynamic Reservoir/Well Interactions under Liquid-loading Conditions

    E-Print Network [OSTI]

    Limpasurat, Akkharachai

    2013-10-23T23:59:59.000Z

    backpressure on the formation, which decreases the gas production rate and may stop the well from flowing. To model these phenomena, the dynamic interaction between the reservoir and the wellbore must be characterized. Due to wellbore phase re...

  6. A Mechanical Fluid-Dynamical Model For Ground Movements At Campi...

    Open Energy Info (EERE)

    Mechanical Fluid-Dynamical Model For Ground Movements At Campi Flegrei Caldera Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: A Mechanical...

  7. A Dynamic household Alternative-fuel Vehicle Demand Model Using Stated and Revealed Transaction Information

    E-Print Network [OSTI]

    Sheng, Hongyan

    1999-01-01T23:59:59.000Z

    market share for alternative-fuel vehicles drop from thePreferences for Alternative-Fuel Vehicles”, Brownstone DavidA Dynamic Household Alternative-fuel Vehicle Demand Model

  8. A scalable computational approach for modeling dynamic fracture of brittle solids in three dimensions

    E-Print Network [OSTI]

    Seagraves, Andrew Nathan

    2010-01-01T23:59:59.000Z

    In this thesis a new parallel computational method is proposed for modeling threedimensional dynamic fracture of brittle solids. The method is based on a combination of the discontinuous Galerkin (DG) formulation of the ...

  9. Building Dynamic Models of Service Compositions with Simulation of Provision Resources

    E-Print Network [OSTI]

    Dustdar, Schahram

    Building Dynamic Models of Service Compositions with Simulation of Provision Resources Dragan compositions depends both on the composition structure, and on planning and management of compu- tational resources necessary for provision. Resource constraints on the service provider side have impact

  10. Learning Dynamic Models of Compartment Systems by Combining Symbolic Regression with Fuzzy Vector

    E-Print Network [OSTI]

    Fernandez, Thomas

    . Categories and Subject Descriptors I.2.1 [Pattern Recognition]: Models--Fuzzy Set; I.2.6 [ArtificialLearning Dynamic Models of Compartment Systems by Combining Symbolic Regression with Fuzzy Vector and fuzzy represen- tation. We need differential capabilities because, in a dy- namic environment, models

  11. From "Stages" of Business Growth to a Dynamic States Model of Entrepreneurial Growth and Change

    E-Print Network [OSTI]

    Mottram, Nigel

    From "Stages" of Business Growth to a Dynamic States Model of Entrepreneurial Growth and Change and Gumpert, 1985), and virtually all economic models of business creation follow firm birth with firm growth models of new business growth assume a limited number of distinct stages through #12;3 which businesses

  12. Utility of Social Modeling in Assessment of a State’s Propensity for Nuclear Proliferation

    SciTech Connect (OSTI)

    Coles, Garill A.; Brothers, Alan J.; Whitney, Paul D.; Dalton, Angela C.; Olson, Jarrod; White, Amanda M.; Cooley, Scott K.; Youchak, Paul M.; Stafford, Samuel V.

    2011-06-01T23:59:59.000Z

    This report is the third and final report out of a set of three reports documenting research for the U.S. Department of Energy (DOE) National Security Administration (NASA) Office of Nonproliferation Research and Development NA-22 Simulations, Algorithms, and Modeling program that investigates how social modeling can be used to improve proliferation assessment for informing nuclear security, policy, safeguards, design of nuclear systems and research decisions. Social modeling has not to have been used to any significant extent in a proliferation studies. This report focuses on the utility of social modeling as applied to the assessment of a State's propensity to develop a nuclear weapons program.

  13. Dynamics of the Oil Transition: Modeling Capacity, Costs, and Emissions

    E-Print Network [OSTI]

    Brandt, Adam R.; Farrell, Alexander E.

    2008-01-01T23:59:59.000Z

    market, allowing our model to focus on the supply of crude oil andterms of the model equations [7]). The oil market in ROMEO

  14. Generator Dynamic Model Validation and Parameter Calibration Using Phasor Measurements at the Point of Connection

    SciTech Connect (OSTI)

    Huang, Zhenyu; Du, Pengwei; Kosterev, Dmitry; Yang, Steve

    2013-05-01T23:59:59.000Z

    Disturbance data recorded by phasor measurement units (PMU) offers opportunities to improve the integrity of dynamic models. However, manually tuning parameters through play-back events demands significant efforts and engineering experiences. In this paper, a calibration method using the extended Kalman filter (EKF) technique is proposed. The formulation of EKF with parameter calibration is discussed. Case studies are presented to demonstrate its validity. The proposed calibration method is cost-effective, complementary to traditional equipment testing for improving dynamic model quality.

  15. Quantification of model mismatch errors of the dynamic energy distribution in a stirred-tank reactor

    E-Print Network [OSTI]

    Kimmich, Mark Raymond

    1987-01-01T23:59:59.000Z

    QUANTIFICATION OF MODEL MISMATCH ERRORS OF THE DYNAMIC ENERGY DISTRIBUTION IN A STIRRED- TANK REACTOR A Thesis by MARK RAYMOND KIMMICH Submitted to the Graduate College of Texas AkM University in partial fulfillment of the requirement... for the degree of MASTER OF SCIENCE August 198i Major Subject: Chemical Engineering QUANTIFICATION OF MODEL MISMATCH ERRORS OF THE DYNAMIC ENERGY DISTRIBUTION IN A STIRRED-TANK REACTOR A Thesis by MARK RAYMOND KIMMICH Approved as to style and content by...

  16. Characteristics of identifying linear dynamic models from impulse response data using Prony analysis

    SciTech Connect (OSTI)

    Trudnowski, D.J.

    1992-12-01T23:59:59.000Z

    The purpose of the study was to investigate the characteristics of fitting linear dynamic models to the impulse response of oscillatory dynamic systems using Prony analysis. Many dynamic systems exhibit oscillatory responses with multiple modes of oscillations. Although the underlying dynamics of such systems are often nonlinear, it is frequently possible and very useful to represent the system operating about some set point with a linear model. Derivation of such linear models can be done using two basic approaches: model the system using theoretical derivations and some linearization method such as a Taylor series expansion; or use a curve-fitting technique to optimally fit a linear model to specified system response data. Prony analysis belongs to the second class of system modeling because it is a method of fitting a linear model to the impulse response of a dynamic system. Its parallel formulation inherently makes it well suited for fitting models to oscillatory system data. Such oscillatory dynamic effects occur in large synchronous-generator-based power systems in the form of electromechanical oscillations. To study and characterize these oscillatory dynamics, BPA has developed computer codes to analyze system data using Prony analysis. The objective of this study was to develop a highly detailed understanding of the properties of using Prony analysis to fit models to systems with characteristics often encountered in power systems. This understanding was then extended to develop general rules-of-thumb'' for using Prony analysis. The general characteristics were investigated by performing fits to data from known linear models under controlled conditions. The conditions studied include various mathematical solution techniques; different parent system configurations; and a large variety of underlying noise characteristics.

  17. Characteristics of identifying linear dynamic models from impulse response data using Prony analysis

    SciTech Connect (OSTI)

    Trudnowski, D.J.

    1992-12-01T23:59:59.000Z

    The purpose of the study was to investigate the characteristics of fitting linear dynamic models to the impulse response of oscillatory dynamic systems using Prony analysis. Many dynamic systems exhibit oscillatory responses with multiple modes of oscillations. Although the underlying dynamics of such systems are often nonlinear, it is frequently possible and very useful to represent the system operating about some set point with a linear model. Derivation of such linear models can be done using two basic approaches: model the system using theoretical derivations and some linearization method such as a Taylor series expansion; or use a curve-fitting technique to optimally fit a linear model to specified system response data. Prony analysis belongs to the second class of system modeling because it is a method of fitting a linear model to the impulse response of a dynamic system. Its parallel formulation inherently makes it well suited for fitting models to oscillatory system data. Such oscillatory dynamic effects occur in large synchronous-generator-based power systems in the form of electromechanical oscillations. To study and characterize these oscillatory dynamics, BPA has developed computer codes to analyze system data using Prony analysis. The objective of this study was to develop a highly detailed understanding of the properties of using Prony analysis to fit models to systems with characteristics often encountered in power systems. This understanding was then extended to develop general ``rules-of-thumb`` for using Prony analysis. The general characteristics were investigated by performing fits to data from known linear models under controlled conditions. The conditions studied include various mathematical solution techniques; different parent system configurations; and a large variety of underlying noise characteristics.

  18. Assessment of reduced mechanisms using One Dimensional Stochastic Turbulence model

    E-Print Network [OSTI]

    Chien, Li-Chun

    2010-01-01T23:59:59.000Z

    turbulence model for a syngas jet flame. Proceeding of FallKerstein 2002), a turbulent syngas (CO/H2/NO) jet flame wasand DNS results of the syngas jet flame was recently done

  19. A comparison of radiological risk assessment models: Risk assessment models used by the BEIR V Committee, UNSCEAR, ICRP, and EPA (for NESHAP)

    SciTech Connect (OSTI)

    Wahl, L.E.

    1994-03-01T23:59:59.000Z

    Radiological risk assessments and resulting risk estimates have been developed by numerous national and international organizations, including the National Research Council`s fifth Committee on the Biological Effects of Ionizing Radiations (BEIR V), the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR), and the International Commission on Radiological Protection (ICRP). A fourth organization, the Environmental Protection Agency (EPA), has also performed a risk assessment as a basis for the National Emission Standards for Hazardous Air Pollutants (NESHAP). This paper compares the EPA`s model of risk assessment with the models used by the BEIR V Committee, UNSCEAR, and ICRP. Comparison is made of the values chosen by each organization for several model parameters: populations used in studies and population transfer coefficients, dose-response curves and dose-rate effects, risk projection methods, and risk estimates. This comparison suggests that the EPA has based its risk assessment on outdated information and that the organization should consider adopting the method used by the BEIR V Committee, UNSCEAR, or ICRP.

  20. Prof. Alessandro De Luca Dynamic model of robots

    E-Print Network [OSTI]

    De Luca, Alessandro

    , identification, uses #12;Analysis of inertial couplings ! Cartesian robot ! Cartesian "skew" robot ! PR robot ! 2 advantage for the design of a motion control law! (*) structural condition in mechanical design Robotics 2 8 in the mechanical design lead to g(q) 0!! Robotics 2 9 #12;Adding dynamic terms ... ! dissipative phenomena due

  1. Chapter 18: Understanding the Developing Cellulosic Biofuels Industry through Dynamic Modeling

    SciTech Connect (OSTI)

    Newes, E.; Inman, D.; Bush, B.

    2011-01-01T23:59:59.000Z

    The purpose of this chapter is to discuss a system dynamics model called the Biomass Scenario Model (BSM), which is being developed by the U.S. Department of Energy as a tool to better understand the interaction of complex policies and their potential effects on the burgeoning cellulosic biofuels industry in the United States. The model has also recently been expanded to include advanced conversion technologies and biofuels (i.e., conversion pathways that yield biomass-based gasoline, diesel, jet fuel, and butanol), but we focus on cellulosic ethanol conversion pathways here. The BSM uses a system dynamics modeling approach (Bush et al., 2008) built on the STELLA software platform.

  2. Assessment of Dissolved Oxygen Mitigation at Hydropower Dams Using an Integrated Hydrodynamic/Water Quality/Fish Growth Model

    SciTech Connect (OSTI)

    Bevelhimer, Mark S [ORNL; Coutant, Charles C [ORNL

    2006-07-01T23:59:59.000Z

    Dissolved oxygen (DO) in rivers is a common environmental problem associated with hydropower projects. Approximately 40% of all FERC-licensed projects have requirements to monitor and/or mitigate downstream DO conditions. Most forms of mitigation for increasing DO in dam tailwaters are fairly expensive. One area of research of the Department of Energy's Hydropower Program is the development of advanced turbines that improve downstream water quality and have other environmental benefits. There is great interest in being able to predict the benefits of these modifications prior to committing to the cost of new equipment. In the case of turbine replacement or modification, there is a need for methods that allow us to accurately extrapolate the benefits derived from one or two turbines with better design to the replacement or modification of all turbines at a site. The main objective of our study was to demonstrate a modeling approach that integrates the effects of flow and water quality dynamics with fish bioenergetics to predict DO mitigation effectiveness over long river segments downstream of hydropower dams. We were particularly interested in demonstrating the incremental value of including a fish growth model as a measure of biological response. The models applied are a suite of tools (RMS4 modeling system) originally developed by the Tennessee Valley Authority for simulating hydrodynamics (ADYN model), water quality (RQUAL model), and fish growth (FISH model) as influenced by DO, temperature, and available food base. We parameterized a model for a 26-mile reach of the Caney Fork River (Tennessee) below Center Hill Dam to assess how improvements in DO at the dam discharge would affect water quality and fish growth throughout the river. We simulated different types of mitigation (i.e., at the turbine and in the reservoir forebay) and different levels of improvement. The model application successfully demonstrates how a modeling approach like this one can be used to assess whether a prescribed mitigation is likely to meet intended objectives from both a water quality and a biological resource perspective. These techniques can be used to assess the tradeoffs between hydropower operations, power generation, and environmental quality.

  3. Modeling Spike Trains from Area This chapter describes the application of a motion energy model to the dynamic dot

    E-Print Network [OSTI]

    Bair, Wyeth

    74 Chapter 6 Modeling Spike Trains from Area MT This chapter describes the application of a motion energy model to the dynamic dot stimulus. We wanted to know whether the precise temporal modulation widely compared to electrophysiological data from both area MT and its V1 inputs (Heeger, 1987; Grzywacz

  4. Dynamic Model Validation of PV Inverters Under Short-Circuit Conditions: Preprint

    SciTech Connect (OSTI)

    Muljadi, E.; Singh, M.; Bravo, R.; Gevorgian, V.

    2013-03-01T23:59:59.000Z

    Photovoltaic (PV) modules have dramatically decreased in price in the past few years, spurring the expansion of photovoltaic deployment. Residential and commercial rooftop installations are connected to the distribution network; large-scale installation PV power plants (PVPs) have benefited from tax incentives and the low cost of PV modules. As the level penetration of PV generation increases, the impact on power system reliability will also be greater. Utility power system planners must consider the role of PV generation in power systems more realistically by representing PV generation in dynamic stability analyses. Dynamic models of PV inverters have been developed in the positive sequence representation. NREL has developed a PV inverter dynamic model in PSCAD/EMTDC. This paper validates the dynamic model with an actual hardware bench test conducted by Southern California Edison's Distributed Energy Resources laboratory. All the fault combinations -- symmetrical and unsymmetrical -- were performed in the laboratory. We compare the simulation results with the bench test results.

  5. A Comparative Assessment of Malware Classification using Binary Texture Analysis and Dynamic Analysis

    E-Print Network [OSTI]

    California at Santa Barbara, University of

    .ucsb.edu Vinod Yegneswaran SRI International Menlo Park, USA vinod@csl.sri.com Phillip Porras SRI International features. Further, feature extraction requires a time investment per binary that does not scale well and efficient complement to dynamic analysis. Categories and Subject Descriptors D.4.6 [Security and Protection

  6. The Development of Dynamic Operational Risk Assessment in Oil/Gas and Chemical Industries

    E-Print Network [OSTI]

    Yang, Xiaole

    2011-08-08T23:59:59.000Z

    of reliability and safety, conventional approaches that are static reveal their weakness in nature when applied to dynamic processes[7, 8]. For instance, fault tree/event tree analysis (FTA/ETA)[9], initially applied in nuclear power plants, collects a set...

  7. Random Forest-Based Protein Model Quality Assessment (RFMQA) Using Structural Features and Potential Energy

    E-Print Network [OSTI]

    Lee, Jooyoung

    Random Forest-Based Protein Model Quality Assessment (RFMQA) Using Structural Features and Potential Energy Terms Balachandran Manavalan, Juyong Lee, Jooyoung Lee* Center for In Silico Protein in protein structure prediction. In this study, we present the first application of random forest based model

  8. A flow resistance model for assessing the impact of vegetation on flood routing mechanics

    E-Print Network [OSTI]

    Katul, Gabriel

    control in urban storm water runoff [Kirby et al., 2005], and linking tidal hydrodynamic forcing to flow and field studies. The proposed model asymptotically recovers the flow resistance formulation when the waterA flow resistance model for assessing the impact of vegetation on flood routing mechanics Gabriel G

  9. An Assessment of Converter Modelling Needs for Offshore Wind Power Plants Connected via VSC-

    E-Print Network [OSTI]

    Bak, Claus Leth

    An Assessment of Converter Modelling Needs for Offshore Wind Power Plants Connected via VSC- HVDC high voltage direct current (HVDC) transmission is technically superior to other technologies of such complex devices. This paper presents an investigation of the modelling requirements of the MMCC HVDC

  10. Assessment of Transition Model and CFD Methodology for Wind Turbine Flows

    E-Print Network [OSTI]

    Alonso, Juan J.

    as fossil fuels are replaced by renewable alternatives. In the U.S., the Department of Energy has publishedAssessment of Transition Model and CFD Methodology for Wind Turbine Flows Aniket C. Aranake Vinod K Navier Stokes (RANS) solver with a transition model is performed for wind turbine applications

  11. Update and assessment of geothermal economic models, geothermal fluid flow and heat distribution models, and geothermal data bases

    SciTech Connect (OSTI)

    Kenkeremath, D. (ed.)

    1985-05-01T23:59:59.000Z

    Numerical simulation models and data bases that were developed for DOE as part of a number of geothermal programs have been assessed with respect to their overall stage of development and usefulness. This report combines three separate studies that focus attention upon: (1) economic models related to geothermal energy; (2) physical geothermal system models pertaining to thermal energy and the fluid medium; and (3) geothermal energy data bases. Computerized numerical models pertaining to the economics of extracting and utilizing geothermal energy have been summarized and catalogued with respect to their availability, utility and function. The 19 models that are discussed in detail were developed for use by geothermal operators, public utilities, and lending institutions who require a means to estimate the value of a given resource, total project costs, and the sensitivity of these values to specific variables. A number of the models are capable of economically assessing engineering aspects of geothermal projects. Computerized simulations of heat distribution and fluid flow have been assessed and are presented for ten models. Five of the models are identified as wellbore simulators and five are described as reservoir simulators. Each model is described in terms of its operational characteristics, input, output, and other pertinent attributes. Geothermal energy data bases are reviewed with respect to their current usefulness and availability. Summaries of eight data bases are provided in catalogue format, and an overall comparison of the elements of each data base is included.

  12. A dynamic process model of a natural gas combined cycle -- Model development with startup and shutdown simulations

    SciTech Connect (OSTI)

    Liese, Eric [U.S. DOE; Zitney, Stephen E. [U.S. DOE

    2013-01-01T23:59:59.000Z

    Research in dynamic process simulation for integrated gasification combined cycles (IGCC) with carbon capture has been ongoing at the National Energy Technology Laboratory (NETL), culminating in a full operator training simulator (OTS) and immersive training simulator (ITS) for use in both operator training and research. A derivative work of the IGCC dynamic simulator has been a modification of the combined cycle section to more closely represent a typical natural gas fired combined cycle (NGCC). This paper describes the NGCC dynamic process model and highlights some of the simulator’s current capabilities through a particular startup and shutdown scenario.

  13. Final Technical Report for "Collaborative Research: Regional climate-change projections through next-generation empirical and dynamical models"

    SciTech Connect (OSTI)

    Robertson, A.W.; Ghil, M.; Kravtsov, K.; Smyth, P.J.

    2011-04-08T23:59:59.000Z

    This project was a continuation of previous work under DOE CCPP funding in which we developed a twin approach of non-homogeneous hidden Markov models (NHMMs) and coupled ocean-atmosphere (O-A) intermediate-complexity models (ICMs) to identify the potentially predictable modes of climate variability, and to investigate their impacts on the regional-scale. We have developed a family of latent-variable NHMMs to simulate historical records of daily rainfall, and used them to downscale seasonal predictions. We have also developed empirical mode reduction (EMR) models for gaining insight into the underlying dynamics in observational data and general circulation model (GCM) simulations. Using coupled O-A ICMs, we have identified a new mechanism of interdecadal climate variability, involving the midlatitude oceans mesoscale eddy field and nonlinear, persistent atmospheric response to the oceanic anomalies. A related decadal mode is also identified, associated with the oceans thermohaline circulation. The goal of the continuation was to build on these ICM results and NHMM/EMR model developments and software to strengthen two key pillars of support for the development and application of climate models for climate change projections on time scales of decades to centuries, namely: (a) dynamical and theoretical understanding of decadal-to-interdecadal oscillations and their predictability; and (b) an interface from climate models to applications, in order to inform societal adaptation strategies to climate change at the regional scale, including model calibration, correction, downscaling and, most importantly, assessment and interpretation of spread and uncertainties in multi-model ensembles. Our main results from the grant consist of extensive further development of the hidden Markov models for rainfall simulation and downscaling specifically within the non-stationary climate change context together with the development of parallelized software; application of NHMMs to downscaling of rainfall projections over India; identification and analysis of decadal climate signals in data and models; and, studies of climate variability in terms of the dynamics of atmospheric flow regimes. Each of these project components is elaborated on below, followed by a list of publications resulting from the grant.

  14. Final Technical Report for "Collaborative Research: Regional climate-change projections through next-generation empirical and dynamical models"

    SciTech Connect (OSTI)

    Kravtsov, S.; Robertson, A. W.; Ghil, M.; Smyth, P. J.

    2011-04-08T23:59:59.000Z

    This project was a continuation of previous work under DOE CCPP funding in which we developed a twin approach of non-homogeneous hidden Markov models (NHMMs) and coupled ocean-atmosphere (O-A) intermediate-complexity models (ICMs) to identify the potentially predictable modes of climate variability, and to investigate their impacts on the regional-scale. We have developed a family of latent-variable NHMMs to simulate historical records of daily rainfall, and used them to downscale seasonal predictions. We have also developed empirical mode reduction (EMR) models for gaining insight into the underlying dynamics in observational data and general circulation model (GCM) simulations. Using coupled O-A ICMs, we have identified a new mechanism of interdecadal climate variability, involving the midlatitude oceansâ?? mesoscale eddy field and nonlinear, persistent atmospheric response to the oceanic anomalies. A related decadal mode is also identified, associated with the oceansâ?? thermohaline circulation. The goal of the continuation was to build on these ICM results and NHMM/EMR model developments and software to strengthen two key pillars of support for the development and application of climate models for climate change projections on time scales of decades to centuries, namely: (a) dynamical and theoretical understanding of decadal-to-interdecadal oscillations and their predictability; and (b) an interface from climate models to applications, in order to inform societal adaptation strategies to climate change at the regional scale, including model calibration, correction, downscaling and, most importantly, assessment and interpretation of spread and uncertainties in multi-model ensembles. Our main results from the grant consist of extensive further development of the hidden Markov models for rainfall simulation and downscaling specifically within the non-stationary climate change context together with the development of parallelized software; application of NHMMs to downscaling of rainfall projections over India; identification and analysis of decadal climate signals in data and models; and, studies of climate variability in terms of the dynamics of atmospheric flow regimes. Each of these project components is elaborated on below, followed by a list of publications resulting from the grant.

  15. Dynamic Inversion for Hydrological Process Monitoring with Electrical Resistance Tomography Under Model Uncertainty

    SciTech Connect (OSTI)

    Lehikoinen, A.; Huttunen, J.M.J.; Finsterle, S.; Kowalsky, M.B.; Kaipio, J.P.

    2009-08-01T23:59:59.000Z

    We propose an approach for imaging the dynamics of complex hydrological processes. The evolution of electrically conductive fluids in porous media is imaged using time-lapse electrical resistance tomography. The related dynamic inversion problem is solved using Bayesian filtering techniques, that is, it is formulated as a sequential state estimation problem in which the target is an evolving posterior probability density of the system state. The dynamical inversion framework is based on the state space representation of the system, which involves the construction of a stochastic evolution model and an observation model. The observation model used in this paper consists of the complete electrode model for ERT, with Archie's law relating saturations to electrical conductivity. The evolution model is an approximate model for simulating flow through partially saturated porous media. Unavoidable modeling and approximation errors in both the observation and evolution models are considered by computing approximate statistics for these errors. These models are then included in the construction of the posterior probability density of the estimated system state. This approximation error method allows the use of approximate - and therefore computationally efficient - observation and evolution models in the Bayesian filtering. We consider a synthetic example and show that the incorporation of an explicit model for the model uncertainties in the state space representation can yield better estimates than a frame-by-frame imaging approach.

  16. Dynamic cone beam CT angiography of carotid and cerebral arteries using canine model

    SciTech Connect (OSTI)

    Cai Weixing; Zhao Binghui; Conover, David; Liu Jiangkun; Ning Ruola [Department of Imaging Sciences, University of Rochester, 601 Elmwood Avenue, Rochester, New York 14642 (United States); Department of Radiology, Shanghai 6th People's Hospital, 600 Yishan Road, Xuhui, Shanghai (China); Koning Corporation, Lennox Tech Enterprise Center, 150 Lucius Gordon Drive Suite 112, West Henrietta, New York 14586 (United States); Department of Imaging Sciences, University of Rochester, 601 Elmwood Avenue, Rochester, New York 14642 (United States); Department of Imaging Sciences, University of Rochester, 601 Elmwood Avenue, Rochester, New York 14642 (United States) and Koning Corporation, Lennox Tech Enterprise Center, 150 Lucius Gordon Drive Suite 112, West Henrietta, New York 14586 (United States)

    2012-01-15T23:59:59.000Z

    Purpose: This research is designed to develop and evaluate a flat-panel detector-based dynamic cone beam CT system for dynamic angiography imaging, which is able to provide both dynamic functional information and dynamic anatomic information from one multirevolution cone beam CT scan. Methods: A dynamic cone beam CT scan acquired projections over four revolutions within a time window of 40 s after contrast agent injection through a femoral vein to cover the entire wash-in and wash-out phases. A dynamic cone beam CT reconstruction algorithm was utilized and a novel recovery method was developed to correct the time-enhancement curve of contrast flow. From the same data set, both projection-based subtraction and reconstruction-based subtraction approaches were utilized and compared to remove the background tissues and visualize the 3D vascular structure to provide the dynamic anatomic information. Results: Through computer simulations, the new recovery algorithm for dynamic time-enhancement curves was optimized and showed excellent accuracy to recover the actual contrast flow. Canine model experiments also indicated that the recovered time-enhancement curves from dynamic cone beam CT imaging agreed well with that of an IV-digital subtraction angiography (DSA) study. The dynamic vascular structures reconstructed using both projection-based subtraction and reconstruction-based subtraction were almost identical as the differences between them were comparable to the background noise level. At the enhancement peak, all the major carotid and cerebral arteries and the Circle of Willis could be clearly observed. Conclusions: The proposed dynamic cone beam CT approach can accurately recover the actual contrast flow, and dynamic anatomic imaging can be obtained with high isotropic 3D resolution. This approach is promising for diagnosis and treatment planning of vascular diseases and strokes.

  17. Synchronized Phasor Data for Analyzing Wind Power Plant Dynamic Behavior and Model Validation

    SciTech Connect (OSTI)

    Wan, Y. H.

    2013-01-01T23:59:59.000Z

    The U.S. power industry is undertaking several initiatives that will improve the operations of the power grid. One of those is the implementation of 'wide area measurements' using phasor measurement units (PMUs) to dynamically monitor the operations and the status of the network and provide advanced situational awareness and stability assessment. This project seeks to obtain PMU data from wind power plants and grid reference points and develop software tools to analyze and visualize synchrophasor data for the purpose of better understanding wind power plant dynamic behaviors under normal and contingency conditions.

  18. Pricing Bivariate Option under GARCH-GH Model with Dynamic Copula: Application for

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Pricing Bivariate Option under GARCH-GH Model with Dynamic Copula: Application for Chinese Market D Heteroskedastic (GARCH) process. In order to provide a general framework being able to accommodate skewness by the GARCH-GH model with time-varying copula differ substantially from the prices implied by the GARCH

  19. Modelling propagation of sinkhole, in both slow and dynamic modes, using the UDEC computer code.

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Modelling propagation of sinkhole, in both slow and dynamic modes, using the UDEC computer code RISques) : Adresse* : Ecole des mines de Nancy, Parc de Saurupt, 54042 Nancy-Cedex, France ; Adresse sinkhole forms and to propose a prediction model. The UDEC code is used. An actual case of sinkhole

  20. Generalized models as a universal approach to the analysis of nonlinear dynamical systems

    E-Print Network [OSTI]

    Thilo Gross; Ulrike Feudel

    2006-01-29T23:59:59.000Z

    We present a universal approach to the investigation of the dynamics in generalized models. In these models the processes that are taken into account are not restricted to specific functional forms. Therefore a single generalized models can describe a class of systems which share a similar structure. Despite this generality, the proposed approach allows us to study the dynamical properties of generalized models efficiently in the framework of local bifurcation theory. The approach is based on a normalization procedure that is used to identify natural parameters of the system. The Jacobian in a steady state is then derived as a function of these parameters. The analytical computation of local bifurcations using computer algebra reveals conditions for the local asymptotic stability of steady states and provides certain insights on the global dynamics of the system. The proposed approach yields a close connection between modelling and nonlinear dynamics. We illustrate the investigation of generalized models by considering examples from three different disciplines of science: a socio-economic model of dynastic cycles in china, a model for a coupled laser system and a general ecological food web.

  1. Liquid Water Dynamics in a Model Polymer Electrolyte Fuel Cell Flow Channel

    E-Print Network [OSTI]

    Victoria, University of

    Liquid Water Dynamics in a Model Polymer Electrolyte Fuel Cell Flow Channel by Chris Miller in a Model Polymer Electrolyte Fuel Cell Flow Channel by Chris Miller Bachelors of Engineering, University in a polymer electrolyte fuel cell is a critical issue in ensuring high cell performance. The water production

  2. A Dynamic Supply-Demand Model for Electricity Prices Manuela Buzoianu

    E-Print Network [OSTI]

    A Dynamic Supply-Demand Model for Electricity Prices Manuela Buzoianu , Anthony E. Brockwell, and Duane J. Seppi Abstract We introduce a new model for electricity prices, based on the principle in a study of Californian wholesale electricity prices over a three-year period including the crisis period

  3. Affinely-rigid body and oscillatory dynamical models on GL(2,R)

    E-Print Network [OSTI]

    Agnieszka Martens; Jan J. S?awianowski

    2010-11-23T23:59:59.000Z

    Discussed is a model of the two-dimensional affinely-rigid body with the double dynamical isotropy. We investigate the systems with potential energies for which the variables can be separated. The special stress is laid on the model of the harmonic oscillator potential and certain anharmonic alternatives. Some explicit solutions are found on the classical, quasiclassical (Bohr-Sommerfeld) and quantum level.

  4. Numerical Modeling of Nonlinear Surface Waves caused by Surface Effect Ships Dynamics and Kinematics

    E-Print Network [OSTI]

    Grilli, Stéphan T.

    Numerical Modeling of Nonlinear Surface Waves caused by Surface Effect Ships Dynamics and Kinematics Hong Gun Sung½ and Stephan T. Grilli¾ ½ Korea Ocean Research and Development Institute, Daejeon model fully nonlinear free surface waves caused by a translating dis- turbance made of a pressure patch

  5. Protecting the African elephant: A dynamic bioeconomic model of ivory trade

    E-Print Network [OSTI]

    Protecting the African elephant: A dynamic bioeconomic model of ivory trade G. Cornelis van Kooten Accepted 25 May 2008 Available online 7 July 2008 Keywords: Economics Elephant conservation Ivory trade ban on the protection of the African elephant (Laxadonta africana). The model consists of four ivory exporting regions

  6. Dynamic Modeling by Usage Data for Personalization Systems Saeed R. Aghabozorgi1

    E-Print Network [OSTI]

    Hammerton, James

    Dynamic Modeling by Usage Data for Personalization Systems Saeed R. Aghabozorgi1 , Teh Ying Wah2 Department of Information Science, Faculty of Computer Science and Information Technology, University mining algorithms to personalize web sites' usage data. This paper proposes an off-line model based web

  7. A model of sediment resuspension and transport dynamics in southern Lake Michigan

    E-Print Network [OSTI]

    A model of sediment resuspension and transport dynamics in southern Lake Michigan Jing Lou-three-dimensional suspended sediment transport model was developed and generalized to include combined wave-current effects to study bottom sediment resuspension and transport in southern Lake Michigan. The results from a three

  8. Modeling a Continuous Dynamic Task Wayne D. Gray, Michael J. Schoelles, & Wai-Tat Fu

    E-Print Network [OSTI]

    Gray, Wayne

    Modeling a Continuous Dynamic Task Wayne D. Gray, Michael J. Schoelles, & Wai-Tat Fu Human Factors in several ways. Modeling the impact of one such difference raised theoretical issues in motor movement and attention. For motor movement, the issue concerned the functional shape and size of a target

  9. A climate model intercomparison at the dynamics level Karsten Steinhaeuser Anastasios A. Tsonis

    E-Print Network [OSTI]

    Minnesota, University of

    A climate model intercomparison at the dynamics level Karsten Steinhaeuser · Anastasios A. Tsonis-Verlag Berlin Heidelberg 2013 Abstract Until now, climate model intercomparison has focused primarily on annual they generate, we have adopted a new approach based on climate networks. We have considered 28 pre

  10. A climate model intercomparison at the dynamics level Karsten Steinhaeuser Anastasios A. Tsonis

    E-Print Network [OSTI]

    Minnesota, University of

    A climate model intercomparison at the dynamics level Karsten Steinhaeuser · Anastasios A. Tsonis Until now, climate model intercomparison has focused primarily on annual and global averages of various adopted a new approach based on climate networks. We have considered 28 pre-industrial control runs

  11. A Fiber Tracking Method for Building Patient Specific Dynamic Musculoskeletal Models from

    E-Print Network [OSTI]

    Gilles, Benjamin

    A Fiber Tracking Method for Building Patient Specific Dynamic Musculoskeletal Models from Diffusion tracking algorithm based on an energy minimizing active curve that is well suited for building these strand and FEM models are complex to construct and time intensive to simulate. Recently a new simulation

  12. Modeling of quasistatic and dynamic load responses of filled viscoelastic materials

    E-Print Network [OSTI]

    are typically used for static finite element analysis (see [9]). The CRSC/Lord team worked, both theoreticallyModeling of quasi­static and dynamic load responses of filled viscoelastic materials H.T. Banks factors to the complications arising in the process of formulating models. Damping is highly complex

  13. A Preliminary Study to Assess Model Uncertainties in Fluid Flows

    E-Print Network [OSTI]

    Delchini, Marc Olivier

    2011-08-08T23:59:59.000Z

    of the fluid. ? The sound speed, c, is assumed to be constant even if it usually depends on the temperature and the pressure. This is a good approximation for liquids but not for gases. The sound speed is reactor-dependent. ? The Equation Of State (EOS... to the temperature. This parameter is assumed constant in this model. 7 ? ???P is the dilatation of the density due to the pressure. This parameter is also assumed constant but is different for different sound speeds. Its expression is as follows: ?? ?P = 1...

  14. Improvement of modelling capabilities for assessing urban contamination : The EMRAS Urban Remediation Working Group.

    SciTech Connect (OSTI)

    Thiessen, K. M.; Batandjieva, B.; Andersson, K. G.; Arkhipov, A.; Charnock, T. W.; Gallay, F.; Gaschak, S.; Golikov, V.; Hwang, W. T.; Kaiser, J. C.; Kamboj, S.; Steiner, M.; Tomas, J.; Trifunovic, D.; Yu, C.; Ziemer, R. L.; Zlobenko, B.; Environmental Science Division; SENES Oak Ridge; IAEA; Riso National Lab.; Chernobyl Center for Nuclear Safety; Health Protection Agency; IRSN; Inst. of Radiation Hygene of the Ministry of Public Health, Russian Federation; KAERI, Republic of Korea; GSF, Germany; BfS, Germany; CPHR, Cuba; State Office for Radiation Protection, Croatia; AECL, Canada; National Academy of Science, Ukraine

    2008-01-01T23:59:59.000Z

    The Urban Remediation Working Group of the International Atomic Energy Agency's Environmental Modeling for Radiation Safety (EMRAS) programme was established to improve modeling and assessment capabilities for radioactively contaminated urban situations, including the effects of countermeasures. An example of the Working Group's activities is an exercise based on Chernobyl fallout data in Ukraine, which has provided an opportunity to compare predictions among several models and with available measurements, to discuss reasons for discrepancies, and to identify areas where additional information would be helpful.

  15. Simulation of aerosol dynamics: a comparative review of mathematical models

    SciTech Connect (OSTI)

    Seigneur, C.; Hudischewskyj, A.B.; Seinfeld, J.H.; Whitby, K.T.; Whitby, E.R.

    1986-01-01T23:59:59.000Z

    Three modeling approaches used are based-continuous, discrete (sectional), and parameterized representations of the aerosol size distribution. Simulations of coagulation and condensation are performed with the three models for clear, hazy, and urban atmospheric conditions. Relative accuracies and computational costs are compared. Reference for the comparison is the continuous approach. The results of the study provide useful information for the selection of an aerosol model, depending on the accuracy requirements and computational constraints associated with a specific application.

  16. Comparative evaluation of life cycle assessment models for solid waste management

    SciTech Connect (OSTI)

    Winkler, Joerg [Institute for Waste Management and Contaminated Sites Treatment, TU Dresden Faculty of Forestry, Geo and Hydro Sciences, Pratzschwitzer Str. 15, 01796 Pirna (Germany); Bilitewski, Bernd [Institute for Waste Management and Contaminated Sites Treatment, TU Dresden Faculty of Forestry, Geo and Hydro Sciences, Pratzschwitzer Str. 15, 01796 Pirna (Germany)], E-mail: abfall@rcs.urz.tu-dresden.de

    2007-07-01T23:59:59.000Z

    This publication compares a selection of six different models developed in Europe and America by research organisations, industry associations and governmental institutions. The comparison of the models reveals the variations in the results and the differences in the conclusions of an LCA study done with these models. The models are compared by modelling a specific case - the waste management system of Dresden, Germany - with each model and an in-detail comparison of the life cycle inventory results. Moreover, a life cycle impact assessment shows if the LCA results of each model allows for comparable and consecutive conclusions, which do not contradict the conclusions derived from the other models' results. Furthermore, the influence of different level of detail in the life cycle inventory of the life cycle assessment is demonstrated. The model comparison revealed that the variations in the LCA results calculated by the models for the case show high variations and are not negligible. In some cases the high variations in results lead to contradictory conclusions concerning the environmental performance of the waste management processes. The static, linear modelling approach chosen by all models analysed is inappropriate for reflecting actual conditions. Moreover, it was found that although the models' approach to LCA is comparable on a general level, the level of detail implemented in the software tools is very different.

  17. Dynamic Conditional Correlation - A Simple Class of Multivariate GARCH Models

    E-Print Network [OSTI]

    Engle, Robert F

    2000-01-01T23:59:59.000Z

    Multivariate Simultaneous GARCH," Econometric Theory 11,and Joseph Mezrich, (1996) "GARCH for Groups," Risk August,SIMPLE CLASS OF MULTIVARIATE GARCH MODELS BY ROBERT F. ENGLE

  18. advanced dynamic models: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    . . . . 18 3.4.1 Heat Exchanger - Code description . . . . . . . . . . . . . . . 18 3.4.2 Simulation ResultsADVANCED POWER PLANT MODELING WITH APPLICATIONS TO THE ADVANCED BOILING...

  19. Dynamic Models for Wind Turbines and Wind Power Plants

    SciTech Connect (OSTI)

    Singh, M.; Santoso, S.

    2011-10-01T23:59:59.000Z

    The primary objective of this report was to develop universal manufacturer-independent wind turbine and wind power plant models that can be shared, used, and improved without any restrictions by project developers, manufacturers, and engineers. Manufacturer-specific models of wind turbines are favored for use in wind power interconnection studies. While they are detailed and accurate, their usages are limited to the terms of the non-disclosure agreement, thus stifling model sharing. The primary objective of the work proposed is to develop universal manufacturer-independent wind power plant models that can be shared, used, and improved without any restrictions by project developers, manufacturers, and engineers. Each of these models includes representations of general turbine aerodynamics, the mechanical drive-train, and the electrical characteristics of the generator and converter, as well as the control systems typically used. To determine how realistic model performance is, the performance of one of the models (doubly-fed induction generator model) has been validated using real-world wind power plant data. This work also documents selected applications of these models.

  20. Representation of Dormant and Active Microbial Dynamics for Ecosystem Modeling

    SciTech Connect (OSTI)

    Wang, Gangsheng [ORNL; Mayes, Melanie [ORNL; Gu, Lianhong [ORNL; Schadt, Christopher Warren [ORNL

    2014-01-01T23:59:59.000Z

    Dormancy is an essential strategy for microorganisms to cope with environmental stress. However, global ecosystem models typically ignore microbial dormancy, resulting in notable model uncertainties. To facilitate the consideration of dormancy in these large-scale models, we propose a new microbial physiology component that works for a wide range of substrate availabilities. This new model is based on microbial physiological states and the major parameters are the maximum specific growth and maintenance rates of active microbes and the ratio of dormant to active maintenance rates. A major improvement of our model over extant models is that it can explain the low active microbial fractions commonly observed in undisturbed soils. Our new model shows that the exponentially-increasing respiration from substrate-induced respiration experiments can only be used to determine the maximum specific growth rate and initial active microbial biomass, while the respiration data representing both exponentially-increasing and non-exponentially-increasing phases can robustly determine a range of key parameters including the initial total live biomass, initial active fraction, the maximum specific growth and maintenance rates, and the half-saturation constant. Our new model can be incorporated into existing ecosystem models to account for dormancy in microbially-driven processes and to provide improved estimates of microbial activities.

  1. Relativistic Dynamical Collapse Model for a Scalar Field

    E-Print Network [OSTI]

    Philip Pearle

    2014-04-26T23:59:59.000Z

    A natural generalization of the CSL (Continuous Spontaneous Localization) theory of dynamical collapse is applied to a relativistic quantum scalar field $\\phi({\\bf x},t)$. It is shown that the modified Schr\\"odinger equation is relativistically invariant, that the probabilities associated to all possible values of the classical scalar random field $w({\\bf x},t)$ (which determines the eventual state of collapse) add up to 1, that there is no energy production out of the vacuum and, in the limit of large time, the collapse is toward eigenstates of $\\phi({\\bf x},0)$.

  2. Sandia National Laboratories: structural-dynamics modeling capability

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1developmentturbineredox-activeNational Solar Thermalssls exhibitstructural-dynamics

  3. Dynamical Models Explaining Social Balance and Evolution of Cooperation

    E-Print Network [OSTI]

    De Leenheer, Patrick

    factions. Examples of such a split abound: revolutionaries versus an old regime, Republicans versus such factions emerge. An earlier model could explain the formation of such factions if reputations were assumed to split into two factions. In addition, the alternative model may lead to cooperation when faced

  4. Modeling Dynamic Receptive Field Changes in Primary Visual Cortex Using Inhibitory Learning

    E-Print Network [OSTI]

    1997-01-01T23:59:59.000Z

    The position, size, and shape of the visual receptive field (RF) of some primary visual cortical neurons change dynamically, in response to artificial scotoma conditioning in cats (Pettet & Gilbert, 1992) and to retinal lesions in cats and monkeys (DarianSmith & Gilbert, 1995). The "EXIN" learning rules (Marshall, 1995) are used to model dynamic RF changes. The EXIN model is compared with an adaptation model (Xing & Gerstein, 1994) and the LISSOM model (Sirosh & Miikkulainen, 1994; Sirosh et al., 1996). To emphasize the role of the lateral inhibitory learning rules, the EXIN and the LISSOM simulations were done with only lateral inhibitory learning. During scotoma conditioning, the EXIN model without feedforward learning produces centrifugal expansion of RFs initially inside the scotoma region, accompanied by increased responsiveness, without changes in spontaneous activation. The EXIN model without feedforward learning is more consistent with the neurophysiological data than are the a...

  5. Dynamical phase space from a SO(d,d) matrix model

    E-Print Network [OSTI]

    Athanasios Chatzistavrakidis

    2014-07-25T23:59:59.000Z

    It is shown that a matrix model with SO($d,d$) global symmetry is derived from a generalized Yang-Mills theory on the standard Courant algebroid. This model keeps all the positive features of the well-studied type IIB matrix model, and it has many additional welcome properties. We show that it does not only capture the dynamics of spacetime, but it should be associated with the dynamics of phase space. This is supported by a large set of classical solutions of its equations of motion, which corresponds to phase spaces of noncommutative curved manifolds and points to a new mechanism of emergent gravity. The model possesses an additional symmetry that exchanges positions and momenta, in analogy to quantum mechanics. It is argued that the emergence of phase space in the model is an essential feature for the investigation of the precise relation of matrix models to string theory and quantum gravity.

  6. Computational Modeling and Assessment Of Nanocoatings for Ultra Supercritical Boilers

    SciTech Connect (OSTI)

    David W. Gandy; John P. Shingledecker

    2011-04-11T23:59:59.000Z

    Forced outages and boiler unavailability in conventional coal-fired fossil power plants is most often caused by fireside corrosion of boiler waterwalls. Industry-wide, the rate of wall thickness corrosion wastage of fireside waterwalls in fossil-fired boilers has been of concern for many years. It is significant that the introduction of nitrogen oxide (NOx) emission controls with staged burners systems has increased reported waterwall wastage rates to as much as 120 mils (3 mm) per year. Moreover, the reducing environment produced by the low-NOx combustion process is the primary cause of accelerated corrosion rates of waterwall tubes made of carbon and low alloy steels. Improved coatings, such as the MCrAl nanocoatings evaluated here (where M is Fe, Ni, and Co), are needed to reduce/eliminate waterwall damage in subcritical, supercritical, and ultra-supercritical (USC) boilers. The first two tasks of this six-task project-jointly sponsored by EPRI and the U.S. Department of Energy (DE-FC26-07NT43096)-have focused on computational modeling of an advanced MCrAl nanocoating system and evaluation of two nanocrystalline (iron and nickel base) coatings, which will significantly improve the corrosion and erosion performance of tubing used in USC boilers. The computational model results showed that about 40 wt.% is required in Fe based nanocrystalline coatings for long-term durability, leading to a coating composition of Fe-25Cr-40Ni-10 wt.% Al. In addition, the long term thermal exposure test results further showed accelerated inward diffusion of Al from the nanocrystalline coatings into the substrate. In order to enhance the durability of these coatings, it is necessary to develop a diffusion barrier interlayer coating such TiN and/or AlN. The third task 'Process Advanced MCrAl Nanocoating Systems' of the six-task project jointly sponsored by the Electric Power Research Institute, EPRI and the U.S. Department of Energy (DE-FC26-07NT43096)- has focused on processing of advanced nanocrystalline coating systems and development of diffusion barrier interlayer coatings. Among the diffusion interlayer coatings evaluated, the TiN interlayer coating was found to be the optimum one. This report describes the research conducted under the Task 3 workscope.

  7. Advanced Modeling of Renewable Energy Market Dynamics: May 2006

    SciTech Connect (OSTI)

    Evans, M.; Little, R.; Lloyd, K.; Malikov, G.; Passolt, G.; Arent, D.; Swezey, B.; Mosey, G.

    2007-08-01T23:59:59.000Z

    This report documents a year-long academic project, presenting selected techniques for analysis of market growth, penetration, and forecasting applicable to renewable energy technologies. Existing mathematical models were modified to incorporate the effects of fiscal policies and were evaluated using available data. The modifications were made based on research and classification of current mathematical models used for predicting market penetration. An analysis of the results was carried out, based on available data. MATLAB versions of existing and new models were developed for research and policy analysis.

  8. Coupled Dynamic Modeling of Floating Wind Turbine Systems: Preprint

    SciTech Connect (OSTI)

    Wayman, E. N.; Sclavounos, P. D.; Butterfield, S.; Jonkman, J.; Musial, W.

    2006-03-01T23:59:59.000Z

    This article presents a collaborative research program that the Massachusetts Institute of Technology (MIT) and the National Renewable Energy Laboratory (NREL) have undertaken to develop innovative and cost-effective floating and mooring systems for offshore wind turbines in water depths of 10-200 m. Methods for the coupled structural, hydrodynamic, and aerodynamic analysis of floating wind turbine systems are presented in the frequency domain. This analysis was conducted by coupling the aerodynamics and structural dynamics code FAST [4] developed at NREL with the wave load and response simulation code WAMIT (Wave Analysis at MIT) [15] developed at MIT. Analysis tools were developed to consider coupled interactions between the wind turbine and the floating system. These include the gyroscopic loads of the wind turbine rotor on the tower and floater, the aerodynamic damping introduced by the wind turbine rotor, the hydrodynamic damping introduced by wave-body interactions, and the hydrodynamic forces caused by wave excitation. Analyses were conducted for two floater concepts coupled with the NREL 5-MW Offshore Baseline wind turbine in water depths of 10-200 m: the MIT/NREL Shallow Drafted Barge (SDB) and the MIT/NREL Tension Leg Platform (TLP). These concepts were chosen to represent two different methods of achieving stability to identify differences in performance and cost of the different stability methods. The static and dynamic analyses of these structures evaluate the systems' responses to wave excitation at a range of frequencies, the systems' natural frequencies, and the standard deviations of the systems' motions in each degree of freedom in various wind and wave environments. This article in various wind and wave environments. This article explores the effects of coupling the wind turbine with the floating platform, the effects of water depth, and the effects of wind speed on the systems' performance. An economic feasibility analysis of the two concepts was also performed. Key cost components included the material and construction costs of the buoy; material and installation costs of the tethers, mooring lines, and anchor technologies; costs of transporting and installing the system at the chosen site; and the cost of mounting the wind turbine to the platform. The two systems were evaluated based on their static and dynamic performance and the total system installed cost. Both systems demonstrated acceptable motions, and have estimated costs of $1.4-$1.8 million, not including the cost of the wind turbine, the power electronics, or the electrical transmission.

  9. Ris-R-1400(EN) Dynamic wind turbine models in power

    E-Print Network [OSTI]

    Risø-R-1400(EN) Dynamic wind turbine models in power system simulation tool DIgSILENT Anca D December 2003 #12;#12;Contents Preface 5 1 Introduction 6 2 Wind turbine modelling in DIgSILENT 7 2.1 Power converters 14 2.2.3 Transformer 16 2.3 DSL models of wind turbine in DIgSILENT 18 2.3.1 Initialisation issues

  10. Dynamics of holographic vacuum energy in the DGP model

    E-Print Network [OSTI]

    Xing Wu; Rong-Gen Cai; Zong-Hong Zhu

    2007-12-21T23:59:59.000Z

    We consider the evolution of the vacuum energy in the DGP model according to the holographic principle under the assumption that the relation linking the IR and UV cut-offs still holds in this scenario. The model is studied when the IR cut-off is chosen to be the Hubble scale $H^{-1}$, the particle horizon $R_{\\rm ph}$ and the future event horizon $R_{\\rm eh}$, respectively. And the two branches of the DGP model are also taken into account. Through numerical analysis, we find that in the cases of $H^{-1}$ in the (+) branch and $R_{\\rm eh}$ in both branches, the vacuum energy can play the role of dark energy. Moreover, when considering the combination of the vacuum energy and the 5D gravity effect in both branches, the equation of state of the effective dark energy may cross -1, which may lead to the Big Rip singularity. Besides, we constrain the model with the Type Ia supernovae and baryon oscillation data and find that our model is consistent with current data within $1\\sigma$, and that the observations prefer either a pure holographic dark energy or a pure DGP model

  11. A LuGre Tire Friction Model with Exact Aggregate Dynamics Panagiotis Tsiotras, Efstathios Velenis and Michel Sorine

    E-Print Network [OSTI]

    Tsiotras, Panagiotis

    A LuGre Tire Friction Model with Exact Aggregate Dynamics Panagiotis Tsiotras, Efstathios Velenis and Michel Sorine Abstract-- The LuGre dynamic point contact friction model for the two-dimensional translation of a body on a surface has been used in the past to derive a model for the friction forces

  12. Interaction of waves and currents with kelp forests (Macrocystis pyrifera): Insights from a dynamically scaled laboratory model

    E-Print Network [OSTI]

    Denny, Mark

    a dynamically matched 1/25-scale physical model in a laboratory flume. In experiments with kelp mimics, waves a dynamically scaled laboratory model Johanna H. Rosman,a,* Mark W. Denny,b Robert B. Zeller,c Stephen G between model kelp and water under waves increased wake generation of turbulence, resulting in turbulent

  13. 19th. AIAA-CEAS Aeroacoutics Conference, May 28th 2013, Berlin Dynamic Modeling and Numerical Simulation of

    E-Print Network [OSTI]

    Huang, Xun

    19th. AIAA-CEAS Aeroacoutics Conference, May 28th 2013, Berlin Dynamic Modeling and Numerical was presented in this paper. By this control-oriented model, transient dynamic process of multi-physics coupling problem in a progressive wave tube could be approximately studied. The proposed model is verified

  14. SUMO, System performance assessment for a high-level nuclear waste repository: Mathematical models

    SciTech Connect (OSTI)

    Eslinger, P.W.; Miley, T.B.; Engel, D.W.; Chamberlain, P.J. II

    1992-09-01T23:59:59.000Z

    Following completion of the preliminary risk assessment of the potential Yucca Mountain Site by Pacific Northwest Laboratory (PNL) in 1988, the Office of Civilian Radioactive Waste Management (OCRWM) of the US Department of Energy (DOE) requested the Performance Assessment Scientific Support (PASS) Program at PNL to develop an integrated system model and computer code that provides performance and risk assessment analysis capabilities for a potential high-level nuclear waste repository. The system model that has been developed addresses the cumulative radionuclide release criteria established by the US Environmental Protection Agency (EPA) and estimates population risks in terms of dose to humans. The system model embodied in the SUMO (System Unsaturated Model) code will also allow benchmarking of other models being developed for the Yucca Mountain Project. The system model has three natural divisions: (1) source term, (2) far-field transport, and (3) dose to humans. This document gives a detailed description of the mathematics of each of these three divisions. Each of the governing equations employed is based on modeling assumptions that are widely accepted within the scientific community.

  15. The dynamics of a low-order coupled ocean-atmosphere model

    E-Print Network [OSTI]

    L. van Veen; F. Verhulst; T. Opsteegh

    1998-12-16T23:59:59.000Z

    A system of five ordinary differential equations is studied which combines the Lorenz-84 model for the atmosphere and a box model for the ocean. The behaviour of this system is studied as a function of the coupling parameters. For most parameter values, the dynamics of the atmosphere model is dominant. For a range of parameter values, competing attractors exist. The Kaplan-Yorke dimension and the correlation dimension of the chaotic attractor are numerically calculated and compared to the values found in the uncoupled Lorenz model. In the transition from periodic behaviour to chaos intermittency is observed. The intermittent behaviour occurs near a Neimark-Sacker bifurcation at which a periodic solution loses its stability. The length of the periodic intervals is governed by the time scale of the ocean component. Thus, in this regime the ocean model has a considerable influence on the dynamics of the coupled system.

  16. Dynamic models of residential segregation: brief review, analytical resolution and study of the introduction of coordination

    E-Print Network [OSTI]

    Grauwin, S; Jensen, P

    2009-01-01T23:59:59.000Z

    In his 1971's Dynamic Models of Segregation paper, the economist Thomas C. Schelling showed that a small preference for one's neighbors to be of the same color could lead to total segregation, even if total segregation does not correspond to individual preferences and to a residential configuration maximizing the collective utility. The present work is aimed at deepening the understanding of the properties of dynamic models of segregation based on Schelling's hypotheses. Its main contributions are (i) to offer a comprehensive and up-to-date review of this family of models; (ii) to provide an analytical solution to the most general form of this model under rather general assumptions; to the best of our knowledge, such a solution did not exist so far; (iii) to analyse the effect of two devices aimed at decreasing segregation in such a model.

  17. Using Simulations and kinetic network models to reveal the dynamics and functions of Riboswitches

    E-Print Network [OSTI]

    Jong-Chin Lin; Jeseong Yoon; Changbong Hyeon; D. Thirumalai

    2014-10-02T23:59:59.000Z

    Riboswitches, RNA elements found in the untranslated region, regulate gene expression by binding to target metaboloites with exquisite specificity. Binding of metabolites to the conserved aptamer domain allosterically alters the conformation in the downstream expression platform. The fate of gene expression is determined by the changes in the downstream RNA sequence. As the metabolite-dependent cotranscriptional folding and unfolding dynamics of riboswitches is the key determinant of gene expression, it is important to investigate both the thermodynamics and kinetics of riboswitches both in the presence and absence of metabolite. Single molecule force experiments that decipher the free energy landscape of riboswitches from their mechanical responses, theoretical and computational studies have recently shed light on the distinct mechanism of folding dynamics in different classes of riboswitches. Here we first discuss the dynamics of water around riboswitch, highlighting that water dynamics can enhance the fluctuation of nucleic acid structure. To go beyond native state fluctuations we used the Self-Organized Polymer (SOP) model to predict the dynamics of add adenine riboswitch under mechanical forces. In addition to quantitatively predicting the folding landscape of add-riboswitch our simulations also explain the difference in the dynamics between pbuE adenine- and add adenine-riboswitches. In order to probe the function {\\it in vivo} we use the folding landscape to propose a system level kinetic network model to quantitatively predict how gene expression is regulated for riboswitches that are under kinetic control.

  18. A Predator-Prey Model with Disease Dynamics Chris Flake

    E-Print Network [OSTI]

    Logan, David

    a diseased fish population and their predators. Analysis of the system is performed to determine among the Tilapia fish of the Salton Sea and their predator, the pelican. This model is of interest deaths not only among the fish themselves, but also in the pelican population. Studies have indicated

  19. DYNAMIC PHASORS IN MODELING, ANALYSIS AND CONTROL OF ENERGY

    E-Print Network [OSTI]

    Stankoviæ, Aleksandar

    in: power electronics, electric drives and power systems. NEU Energy Processing Laboratory (1994) is a confluence of research and educational efforts: 1. Areas: power electronics, electric drives and power (ONR YIP) Systems Power Drives Electric Electronics Adaptive Converters Resonant Modeling Load

  20. Modelling the dynamical evolution of the Bootes dwarf spheroidal galaxy

    E-Print Network [OSTI]

    M. Fellhauer; M. I. Wilkinson; N. W. Evans; V. Belokurov; M. J. Irwin; G. Gilmore; D. B. Zucker; J. T. Kleyna

    2008-01-17T23:59:59.000Z

    We investigate a wide range of possible evolutionary histories for the recently discovered Bootes dwarf spheroidal galaxy, a Milky Way satellite. By means of N-body simulations we follow the evolution of possible progenitor galaxies of Bootes for a variety of orbits in the gravitational potential of the Milky Way. The progenitors considered cover the range from dark-matter-free star clusters to massive, dark-matter dominated outcomes of cosmological simulations. For each type of progenitor and orbit we compare the observable properties of the remnant after 10 Gyr with those of Bootes observed today. Our study suggests that the progenitor of Bootes must have been, and remains now, dark matter dominated. In general our models are unable to reproduce the observed high velocity dispersion in Bootes without dark matter. Our models do not support time-dependent tidal effects as a mechanism able to inflate significantly the internal velocity dispersion. As none of our initially spherical models is able to reproduce the elongation of Bootes, our results suggest that the progenitor of Bootes may have had some intrinsic flattening. Although the focus of the present paper is the Bootes dwarf spheroidal, these models may be of general relevance to understanding the structure, stability and dark matter content of all dwarf spheroidal galaxies.

  1. Modeling Climate Dynamically James Walsh and Richard McGehee

    E-Print Network [OSTI]

    Wilmer, Elizabeth

    to tropical latitudes, leaving a narrow strip of open ocean water about the equator? Can mathematical models and present day evidence. Global climate is determined by the radiation balance of the planet. The Earth warms through the absorption of incoming solar radiation (or insolation). Due to the shortwave nature

  2. Silva et al. Modelling cyanobacteria dynamics in urban lakes

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    watershed hydrologic modelling and high frequency data collection Talita SILVA*, Brigitte VINÃ?ON several essential functions for the cities such as storing rainwater and providing recreation spaces with high-frequency data collected in Lake Enghien. In the second part, we propose a methodology to connect

  3. physics/0512181 Modelling dynamics of samples exposed to

    E-Print Network [OSTI]

    not only the sample but also the optical elements of the FEL beamline. Radiation damage by photons from December 2005 Abstract: We apply Boltzmann equations for modelling the radiation damage in samples. Rapid progress of radiation damage in these samples prevents an accurate determination

  4. Equilibrium model with default and insider's dynamic information Luciano Campi

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Danilova§ August 3, 2011 Abstract We consider an equilibrium model `a la Kyle-Back for a defaultable claim, London School of Economics, u.cetin@lse.ac.uk. § Department of Mathematics, London School of Economics, a.danilova

  5. Lurking Pathway Prediction And Pathway ODE Model Dynamic Analysis

    E-Print Network [OSTI]

    Zhang, Rengjing

    2013-11-18T23:59:59.000Z

    regulated proteins in the transduction pro- cess. And by modeling the CCL2 pathway in MTB infected cells, J N K , cM Y C and P LC showed as the most significant modules. Hence, the drug treatments inhibit- ing J N K , cM Y C and P LC would effectively...

  6. Assessment of PWR Steam Generator modelling in RELAP5/MOD2. International Agreement Report

    SciTech Connect (OSTI)

    Putney, J.M.; Preece, R.J. [National Power, Leatherhead (GB). Technology and Environment Centre

    1993-06-01T23:59:59.000Z

    An assessment of Steam Generator (SG) modelling in the PWR thermal-hydraulic code RELAP5/MOD2 is presented. The assessment is based on a review of code assessment calculations performed in the UK and elsewhere, detailed calculations against a series of commissioning tests carried out on the Wolf Creek PWR and analytical investigations of the phenomena involved in normal and abnormal SG operation. A number of modelling deficiencies are identified and their implications for PWR safety analysis are discussed -- including methods for compensating for the deficiencies through changes to the input deck. Consideration is also given as to whether the deficiencies will still be present in the successor code RELAP5/MOD3.

  7. An overview of APECOSM, a spatialized mass balanced ``Apex Predators ECOSystem Model" to study physiologically structured tuna population dynamics

    E-Print Network [OSTI]

    Hawai'i at Manoa, University of

    physiologically structured tuna population dynamics in their ecosystem Olivier Maury * IRD (Institut de Recherche by the organisms are modelled according to the DEB (dynamic energy budget) theory (Kooijmann, 2000) and the size-structured- mental variability and fishing on the structure and dynamics of pe- lagic ecosystems. APECOSM uses a size

  8. Modeling the dynamics of tidally-interacting binary neutron stars up to merger

    E-Print Network [OSTI]

    Sebastiano Bernuzzi; Alessandro Nagar; Tim Dietrich; Thibault Damour

    2014-12-15T23:59:59.000Z

    We propose an effective-one-body (EOB) model that describes the general relativistic dynamics of neutron star binaries from the early inspiral up to merger. Our EOB model incorporates an enhanced attractive tidal potential motivated by recent analytical advances in the post-Newtonian and gravitational self-force description of relativistic tidal interactions. No fitting parameters are introduced for the description of tidal interaction in the late, strong-field dynamics. We compare the model dynamics (described by the gauge invariant relation between binding energy and orbital angular momentum), and the gravitational wave phasing, with new high-resolution multi-orbit numerical relativity simulations of equal-mass configurations with different equations of state. We find agreement essentially within the uncertainty of the numerical data for all the configurations. Our model is the first semi-analytical model which captures the tidal amplification effects close to merger. It thereby provides the most accurate analytical representation of binary neutron star dynamics and waveforms currently available.

  9. Modeling the dynamics of tidally-interacting binary neutron stars up to merger

    E-Print Network [OSTI]

    Sebastiano Bernuzzi; Alessandro Nagar; Tim Dietrich; Thibault Damour

    2015-02-18T23:59:59.000Z

    The data analysis of the gravitational wave signals emitted by coalescing neutron star binaries requires the availability of an accurate analytical representation of the dynamics and waveforms of these systems. We propose an effective-one-body (EOB) model that describes the general relativistic dynamics of neutron star binaries from the early inspiral up to merger. Our EOB model incorporates an enhanced attractive tidal potential motivated by recent analytical advances in the post-Newtonian and gravitational self-force description of relativistic tidal interactions. No fitting parameters are introduced for the description of tidal interaction in the late, strong-field dynamics. We compare the model energetics and the gravitational wave phasing with new high-resolution multi-orbit numerical relativity simulations of equal-mass configurations with different equations of state. We find agreement within the uncertainty of the numerical data for all configurations. Our model is the first semi-analytical model which captures the tidal amplification effects close to merger. It thereby provides the most accurate analytical representation of binary neutron star dynamics and waveforms currently available.

  10. Multiple higher-order singularities and iso-dynamics in a simple glass-former model

    E-Print Network [OSTI]

    Nicoletta Gnan; Gayatri Das; Matthias Sperl; Francesco Sciortino; Emanuela Zaccarelli

    2014-07-15T23:59:59.000Z

    We investigate the slow dynamics of a colloidal model with two repulsive length scales, whose interaction potential is the sum of a hard-core and a square shoulder. Despite the simplicity of the interactions, Mode-Coupling theory predicts a complex dynamic scenario: a fluid-glass line with two reentrances and a glass-glass line ending with multiple higher-order ($A_3$ or $A_4$) singularities. In this work we verify the existence of the two $A_4$ points by numerical simulations, observing subdiffusive behaviour of the mean-square displacement and logarithmic decay of the density correlators. Surprisingly, we also discover a novel dynamic behaviour generated by the competition between the two higher-order singularities. This results in the presence of special loci along which the dynamics is identical \\textit{at all} length and time scales.

  11. Solving the problem of inadequate scoring rules for assessing probabilistic football forecast models

    E-Print Network [OSTI]

    Fenton, Norman

    Solving the problem of inadequate scoring rules for assessing probabilistic football forecast forecasting models, and the relative simplicity of the outcome of such forecasts (they require only three their forecast accuracy. Moreover, the various scoring rules used for validation in previous studies

  12. Use of models and observations to assess trends in the 19502005 water balance and climate

    E-Print Network [OSTI]

    ) was about 50% of normal during 2000­2001. The ensuing drought-related water shortage led to seriousUse of models and observations to assess trends in the 1950­2005 water balance and climate of Upper-driven interannual (and longer) variability is evident. Evaporation and the other components of the water balance

  13. Refinement of weed risk assessments for biofuels using Camelina sativa as a model species

    E-Print Network [OSTI]

    Peterson, Robert K. D.

    Refinement of weed risk assessments for biofuels using Camelina sativa as a model species Philip B and Environmental Sciences, Montana State University, PO Box 173120, Bozeman, MT 59717-3120, USA Summary 1. Biofuel. However, concerns have been raised on the invasiveness of biofuel feedstocks. Estimating invasion

  14. Cognitive Assessment Models with Few Assumptions, and Connections with Nonparametric IRT

    E-Print Network [OSTI]

    Junker, Brian

    Cognitive Assessment Models with Few Assumptions, and Connections with Nonparametric IRT Brian of the monotonicity conditions discussed in Section 4. #12;Abstract In recent years, as cognitive theories of learning" on student achievement relative to theory-driven lists of examinee skills, beliefs and other cognitive

  15. Assessing Seasonal Confounding and Model Selection Bias in Air Pollution Epidemiology Using Positive and

    E-Print Network [OSTI]

    Washington at Seattle, University of

    July 15, 1999 #12;Abstract Much of the evidence for health e ects of particulate air pollution has come. We thus refer to the `air pollution hypothesis' to describe increased risk of health outcomes dueAssessing Seasonal Confounding and Model Selection Bias in Air Pollution Epidemiology Using

  16. Ex-plant consequence assessment for NUREG-1150: Models, typical results, uncertainties

    SciTech Connect (OSTI)

    Sprung, J.L.

    1987-01-01T23:59:59.000Z

    The assessment of ex-plant consequences for NUREG-1150 source terms was performed using the MELCOR Accident Consequence Code System (MACCS). This paper will briefly discuss the following elements of MACCS consequence calculations: input data, phenomena modeled, computational framework, typical results, controlling phenomena, and uncertainties. Wherever possible, NUREG-1150 results will be used to illustrate the discussion. 28 refs., 14 figs., 6 tabs.

  17. A Multi-Model Assessment of Regional Climate Disparities Caused by Solar Geoengineering

    E-Print Network [OSTI]

    Robock, Alan

    1 A Multi-Model Assessment of Regional Climate Disparities Caused by Solar Geoengineering Normal University, Beijing, China. 9 School of Engineering and Applied Sciences, Harvard University levels. G1 involves a reduction in solar irradiance to counteract the radiative forcing5 in abrupt4xCO2

  18. NOTES AND CORRESPONDENCE Surface Melting over Ice Shelves and Ice Sheets as Assessed from Modeled

    E-Print Network [OSTI]

    Meissner, Katrin Juliane

    NOTES AND CORRESPONDENCE Surface Melting over Ice Shelves and Ice Sheets as Assessed from Modeled of ice shelves and their progenitor ice sheets. To explore the magnitude of surface melt occurring over) and most of the Greenland Ice Sheet (GIS) by the year 2500. Capping CO2 concentrations at present

  19. Hydrodynamic Modeling, Optimization and Performance Assessment for Ducted and Non-ducted Tidal Turbines

    E-Print Network [OSTI]

    Victoria, University of

    Turbines by Michael Robert Shives B.Eng., Carleton University, 2008 A Thesis Submitted in Partial Hydrodynamic Modeling, Optimization and Performance Assessment for Ducted and Non-ducted Tidal Turbines examines methods for designing and analyzing kinetic turbines based on blade element momentum (BEM) theory

  20. Hydrodynamic Modeling, Optimization and Performance Assessment for Ducted and Non-ducted Tidal Turbines

    E-Print Network [OSTI]

    Pedersen, Tom

    Turbines by Michael Robert Shives B.Eng., Carleton University, 2008 A Dissertation Submitted in Partial Hydrodynamic Modeling, Optimization and Performance Assessment for Ducted and Non-ducted Tidal Turbines) #12;iii ABSTRACT This thesis examines methods for designing and analyzing kinetic turbines based

  1. Modeling ramp compression experiments using large-scale molecular dynamics simulation.

    SciTech Connect (OSTI)

    Mattsson, Thomas Kjell Rene; Desjarlais, Michael Paul; Grest, Gary Stephen; Templeton, Jeremy Alan; Thompson, Aidan Patrick; Jones, Reese E.; Zimmerman, Jonathan A.; Baskes, Michael I. (University of California, San Diego); Winey, J. Michael (Washington State University); Gupta, Yogendra Mohan (Washington State University); Lane, J. Matthew D.; Ditmire, Todd (University of Texas at Austin); Quevedo, Hernan J. (University of Texas at Austin)

    2011-10-01T23:59:59.000Z

    Molecular dynamics simulation (MD) is an invaluable tool for studying problems sensitive to atomscale physics such as structural transitions, discontinuous interfaces, non-equilibrium dynamics, and elastic-plastic deformation. In order to apply this method to modeling of ramp-compression experiments, several challenges must be overcome: accuracy of interatomic potentials, length- and time-scales, and extraction of continuum quantities. We have completed a 3 year LDRD project with the goal of developing molecular dynamics simulation capabilities for modeling the response of materials to ramp compression. The techniques we have developed fall in to three categories (i) molecular dynamics methods (ii) interatomic potentials (iii) calculation of continuum variables. Highlights include the development of an accurate interatomic potential describing shock-melting of Beryllium, a scaling technique for modeling slow ramp compression experiments using fast ramp MD simulations, and a technique for extracting plastic strain from MD simulations. All of these methods have been implemented in Sandia's LAMMPS MD code, ensuring their widespread availability to dynamic materials research at Sandia and elsewhere.

  2. Modelling the Structure and Dynamics of Science Using Books

    E-Print Network [OSTI]

    Ginda, Michael; Borner, Katy

    2015-01-01T23:59:59.000Z

    Scientific research is a major driving force in a knowledge based economy. Income, health and wellbeing depend on scientific progress. The better we understand the inner workings of the scientific enterprise, the better we can prompt, manage, steer, and utilize scientific progress. Diverse indicators and approaches exist to evaluate and monitor research activities, from calculating the reputation of a researcher, institution, or country to analyzing and visualizing global brain circulation. However, there are very few predictive models of science that are used by key decision makers in academia, industry, or government interested to improve the quality and impact of scholarly efforts. We present a novel 'bibliographic bibliometric' analysis which we apply to a large collection of books relevant for the modelling of science. We explain the data collection together with the results of the data analyses and visualizations. In the final section we discuss how the analysis of books that describe different modellin...

  3. Development of a Dynamic DOE Calibration Model | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models |Conduct, Parent CompanyaUSAMP AMDHeavy Duty TrucksDevelopment

  4. Analyzing Dynamic Probabilistic Risk Assessment Data through Topology-Based Clustering

    SciTech Connect (OSTI)

    Diego Mandelli; Dan Maljovec; BeiWang; Valerio Pascucci; Peer-Timo Bremer

    2013-09-01T23:59:59.000Z

    We investigate the use of a topology-based clustering technique on the data generated by dynamic event tree methodologies. The clustering technique we utilizes focuses on a domain-partitioning algorithm based on topological structures known as the Morse-Smale complex, which partitions the data points into clusters based on their uniform gradient flow behavior. We perform both end state analysis and transient analysis to classify the set of nuclear scenarios. We demonstrate our methodology on a dataset generated for a sodium-cooled fast reactor during an aircraft crash scenario. The simulation tracks the temperature of the reactor as well as the time for a recovery team to fix the passive cooling system. Combined with clustering results obtained previously through mean shift methodology, we present the user with complementary views of the data that help illuminate key features that may be otherwise hidden using a single methodology. By clustering the data, the number of relevant test cases to be selected for further analysis can be drastically reduced by selecting a representative from each cluster. Identifying the similarities of simulations within a cluster can also aid in the drawing of important conclusions with respect to safety analysis.

  5. Detonating Failed Deflagration Model of Thermonuclear Supernovae I. Explosion Dynamics

    E-Print Network [OSTI]

    Tomasz Plewa

    2006-11-24T23:59:59.000Z

    We present a detonating failed deflagration model of Type Ia supernovae. In this model, the thermonuclear explosion of a massive white dwarf follows an off-center deflagration. We conduct a survey of asymmetric ignition configurations initiated at various distances from the stellar center. In all cases studied, we find that only a small amount of stellar fuel is consumed during deflagration phase, no explosion is obtained, and the released energy is mostly wasted on expanding the progenitor. Products of the failed deflagration quickly reach the stellar surface, polluting and strongly disturbing it. These disturbances eventually evolve into small and isolated shock-dominated regions which are rich in fuel. We consider these regions as seeds capable of forming self-sustained detonations that, ultimately, result in the thermonuclear supernova explosion. Preliminary nucleosynthesis results indicate the model supernova ejecta are typically composed of about 0.1-0.25 Msun of silicon group elements, 0.9-1.2 Msun of iron group elements, and are essentially carbon-free. The ejecta have a composite morphology, are chemically stratified, and display a modest amount of intrinsic asymmetry. The innermost layers are slightly egg-shaped with the axis ratio ~1.2-1.3 and dominated by the products of silicon burning. This central region is surrounded by a shell of silicon-group elements. The outermost layers of ejecta are highly inhomogeneous and contain products of incomplete oxygen burning with only small admixture of unburned stellar material. The explosion energies are ~1.3-1.5 10^51 erg.

  6. Lattice Boltzmann model for collisionless electrostatic drift wave turbulence obeying Charney-Hasegawa-Mima dynamics

    E-Print Network [OSTI]

    Held, M

    2015-01-01T23:59:59.000Z

    A lattice Boltzmann method (LBM) approach to the Charney-Hasegawa-Mima (CHM) model for adiabatic drift wave turbulence in magnetised plasmas, is implemented. The CHM-LBM model contains a barotropic equation of state for the potential, a force term including a cross-product analogous to the Coriolis force in quasigeostrophic models, and a density gradient source term. Expansion of the resulting lattice Boltzmann model equations leads to cold-ion fluid continuity and momentum equations, which resemble CHM dynamics under drift ordering. The resulting numerical solutions of standard test cases (monopole propagation, stable drift modes and decaying turbulence) are compared to results obtained by a conventional finite difference scheme that directly discretizes the CHM equation. The LB scheme resembles characteristic CHM dynamics apart from an additional shear in the density gradient direction. The occuring shear reduces with the drift ratio and is ascribed to the compressible limit of the underlying LBM.

  7. Annual report, October 1980-September 1981 Multimedia radionuclide exposure assessment modeling.

    SciTech Connect (OSTI)

    Whelan, G.; Onishi, Y.; Simmons, C.S.; Horst, T.W.; Gupta, S.K.; Orgill, M.M.; Newbill, C.A.

    1982-12-01T23:59:59.000Z

    Pacific Northwest Laboratory (PNL) and Los Alamos National Laboratory (LANL) are jointly developing a methodology for assessing exposures of the air, water, and plants to radionuclides as part of an overall development effort of a radionuclide disposal site evaluation methodology. Work in FY-1981 continued the development of the Multimedia Contaminant Environmental Exposure Assessment (MCEA) methodology and initiated an assessment of radionuclide migration in Los Alamos and Pueblo Canyons, New Mexico, using the methodology. The AIRTRAN model was completed, briefly tested, and documented. In addition, a literature search for existing validation data for AIRTRAN was performed. The feasibility and advisability of including the UNSAT moisture flow model as a submodel of the terrestrial code BIOTRAN was assessed. A preliminary application of the proposed MCEA methodology, as it related to the Mortandad-South Mortandad Canyon site in New Mexico is discussed. This preliminary application represented a scaled-down version of the methodology in which only the terrestrial, overland, and surface water components were used. An update describing the progress in the assessment of radionuclide migration in Los Alamos and Pueblo Canyons is presented. 38 references, 47 figures, 11 tables.

  8. An international land-biosphere model benchmarking activity for the IPCC Fifth Assessment Report (AR5)

    SciTech Connect (OSTI)

    Hoffman, Forrest M [ORNL; Randerson, James T [ORNL; Thornton, Peter E [ORNL; Bonan, Gordon [National Center for Atmospheric Research (NCAR); Erickson III, David J [ORNL; Fung, Inez [University of California, Berkeley

    2009-12-01T23:59:59.000Z

    The need to capture important climate feedbacks in general circulation models (GCMs) has resulted in efforts to include atmospheric chemistry and land and ocean biogeochemistry into the next generation of production climate models, called Earth System Models (ESMs). While many terrestrial and ocean carbon models have been coupled to GCMs, recent work has shown that such models can yield a wide range of results (Friedlingstein et al., 2006). This work suggests that a more rigorous set of global offline and partially coupled experiments, along with detailed analyses of processes and comparisons with measurements, are needed. The Carbon-Land Model Intercomparison Project (C-LAMP) was designed to meet this need by providing a simulation protocol and model performance metrics based upon comparisons against best-available satellite- and ground-based measurements (Hoffman et al., 2007). Recently, a similar effort in Europe, called the International Land Model Benchmark (ILAMB) Project, was begun to assess the performance of European land surface models. These two projects will now serve as prototypes for a proposed international land-biosphere model benchmarking activity for those models participating in the IPCC Fifth Assessment Report (AR5). Initially used for model validation for terrestrial biogeochemistry models in the NCAR Community Land Model (CLM), C-LAMP incorporates a simulation protocol for both offline and partially coupled simulations using a prescribed historical trajectory of atmospheric CO2 concentrations. Models are confronted with data through comparisons against AmeriFlux site measurements, MODIS satellite observations, NOAA Globalview flask records, TRANSCOM inversions, and Free Air CO2 Enrichment (FACE) site measurements. Both sets of experiments have been performed using two different terrestrial biogeochemistry modules coupled to the CLM version 3 in the Community Climate System Model version 3 (CCSM3): the CASA model of Fung, et al., and the carbon-nitrogen (CN) model of Thornton. Comparisons of the CLM3 offline results against observational datasets have been performed and are described in Randerson et al. (2009). CLM version 4 has been evaluated using C-LAMP, showing improvement in many of the metrics. Efforts are now underway to initiate a Nitrogen-Land Model Intercomparison Project (N-LAMP) to better constrain the effects of the nitrogen cycle in biosphere models. Presented will be new results from C-LAMP for CLM4, initial N-LAMP developments, and the proposed land-biosphere model benchmarking activity.

  9. Adaptive Model Predictive Control of the Hybrid Dynamics of a Fuel Cell System.

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Adaptive Model Predictive Control of the Hybrid Dynamics of a Fuel Cell System. M. Fiacchini, T operation of a fuel cell system is presented. The aim of the control design is to guarantee that the oxygen control to a fuel cell plant is presented. The fuel cell, located in the laboratory of the Department

  10. DYNAMIC MODEL OF AN INDUSTRIAL HEAT PUMP USING WATER AS REFRIGERANT

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 DYNAMIC MODEL OF AN INDUSTRIAL HEAT PUMP USING WATER AS REFRIGERANT CHAMOUN MARWAN to improve industrial energy efficiency, the development of a high temperature heat pump using water vapor as refrigerant is investigated. Technical problems restraining the feasibility of this industrial heat pump

  11. A dynamic organic soil biogeochemical model for simulating the effects of wildfire on soil environmental

    E-Print Network [OSTI]

    Wagner, Diane

    of surface energy balance [Liu et al., 2005], soil thermal and hydrological regimes [MacKay, 1995; Burn, 1998A dynamic organic soil biogeochemical model for simulating the effects of wildfire on soil not comprehensively considered how interactions among fire disturbance, soil environmental conditions

  12. Soft-ratchet modeling of slow dynamics in the nonlinear resonant response of sedimentary

    E-Print Network [OSTI]

    Soft-ratchet modeling of slow dynamics in the nonlinear resonant response of sedimentary rocks of Physics 0-7354-0330-9/06/$23.00 CREDIT LINE (BELOW) TO BE INSERTED ONLY ON THE FIRST PAGE OF THE #12;SOFT-RATCHET

  13. Experimental Validation of a Computational Fluid Dynamics Model for IAQ applications in Ice Rink Arenas

    E-Print Network [OSTI]

    Chen, Qingyan "Yan"

    1 Experimental Validation of a Computational Fluid Dynamics Model for IAQ applications in Ice Rink, USA, Fax: 617-432-4122, Abstract Many ice rink arenas have ice resurfacing equipment that uses fossil temperature distributions in ice rinks. The numerical results agree reasonably with the corresponding

  14. A Note on Dynamic Data Driven Wildfire Modeling , L.P. Franca1

    E-Print Network [OSTI]

    Douglas, Craig C.

    of the interactions of fire, weather, and fuel, driven by remote sensing data of fire location and land surfaceA Note on Dynamic Data Driven Wildfire Modeling J. Mandel1 , M. Chen1 , L.P. Franca1 , C. Johns1 of Colorado Denver, Denver, CO 80217-3364, USA 2 National Center for Atmospheric Research, Boulder, CO 80307

  15. Modeling Sediment and Wood Storage and Dynamics in Small Mountainous Watersheds

    E-Print Network [OSTI]

    85 Modeling Sediment and Wood Storage and Dynamics in Small Mountainous Watersheds Stephen T controls on supply and transport of sediment and wood in a small (approximately two square kilometers) basin in the Oregon Coast Range, typical of streams at the interface between episodic sediment and wood

  16. Simplified dynamic models for control of riser slugging in offshore oil production

    E-Print Network [OSTI]

    Skogestad, Sigurd

    ForReview Only Simplified dynamic models for control of riser slugging in offshore oil production, Department of Chemical Engineering Keywords: oil production, two-phase flow, severe slugging, riser slugging for control of riser slugging in offshore oil production Esmaeil Jahanshahi, Sigurd Skogestad Department

  17. A model for vendor selection and dynamic evaluation Raffele Iannone1

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    A model for vendor selection and dynamic evaluation Raffele Iannone1 , Salvatore Miranda1 , Stefano with the monitoring and the continuous analysis of the vendor performances. The vendor evaluation process is realised and obtainable benefits. Keywords: Vendor Evaluation, Vendor Selection, AHP, Supply Management 1 Introduction

  18. Modelling of power plant dynamics and uncertainties for robust control synthesis *

    E-Print Network [OSTI]

    Ray, Asok

    -Kuo Weng, Asok Ray and Xiaowen Dai Mechanical Engineering Department, The Pennsylvania State University systems synthesis. In lieu of the actual plant data, mathematical models of computational fluid dynamics of Mechanical Engineering, The Pennsylvania State University, 137 Reber Building, University Park, PA 16802

  19. EMULATING A GRAVITY MODEL TO INFER THE SPATIOTEMPORAL DYNAMICS OF AN INFECTIOUS DISEASE

    E-Print Network [OSTI]

    Bjørnstad, Ottar Nordal

    EMULATING A GRAVITY MODEL TO INFER THE SPATIOTEMPORAL DYNAMICS OF AN INFECTIOUS DISEASE Roman grid. · Use pre-calculated matrices {Mtk}. GP-EMULATOR - BASED APPROACH · Based on constructing a new (proportions of zeros) on a pre-selected grid of parameters. · Second stage: We make inference based

  20. Modeling Malware Propagation in Networks of Smart Cell Phones with Spatial Dynamics

    E-Print Network [OSTI]

    Sikdar, Biplab

    Modeling Malware Propagation in Networks of Smart Cell Phones with Spatial Dynamics Krishna and worm attacks tar- geted at cell phones have have bought to the forefront the seriousness of the security threat to this increasingly popular means of communication. The ability of smart cell phones

  1. Condensation of helium in aerogels and athermal dynamics of the Random Field Ising Model

    E-Print Network [OSTI]

    Boyer, Edmond

    Condensation of helium in aerogels and athermal dynamics of the Random Field Ising Model Geoffroy J isotherms of 4He in a silica aerogel be- come discontinuous below a critical temperature. We show by the aerogel structure, but to the disorder-driven critical point predicted for the athermal out

  2. UNCORRECTED 2 Models of natural and human dynamics in forest landscapes

    E-Print Network [OSTI]

    Monticino, Michael

    protected areas, though they differ in the specifics of vegetation and land 23 use. In the Texas sitesUNCORRECTED PROOF 1 2 Models of natural and human dynamics in forest landscapes: 3 Cross natural and human systems across sites and cultures through a process of simplification and 17 abstraction

  3. A Combined Molecular Dynamics and Diffusion Model of Single Proton Conduction through Gramicidin

    E-Print Network [OSTI]

    Schumaker, Mark

    A Combined Molecular Dynamics and Diffusion Model of Single Proton Conduction through Gramicidin through the gramicidin pore is described by a potential of mean force and diffusion coefficient obtained in the hydrogen bonding structure of pore waters without an excess proton. Proton entrance and exit were

  4. Energy dynamics and modeled evapotranspiration from a wet tropical forest in Costa Rica

    E-Print Network [OSTI]

    Energy dynamics and modeled evapotranspiration from a wet tropical forest in Costa Rica H). #12;1. Introduction The energy balance of tropical forests is complex due to feedback mechanisms among.W. Loeschera, *, H.L. Gholza,b , J.M. Jacobsc , S.F. Oberbauerd,e a School of Forest Resources and Conservation

  5. Bayesian Emulation of Complex Multi-Output and Dynamic Computer Models

    E-Print Network [OSTI]

    Oakley, Jeremy

    Bayesian Emulation of Complex Multi-Output and Dynamic Computer Models Stefano Conti Anthony O the case). In particular, standard Monte Carlo-based methods of sensitivity analysis (extensively reviewed'Hagan, 2002), offering substantial efficiency gains over standard Monte Carlo-based meth- ods. These authors

  6. FLUID DYNAMICAL AND MODELING ISSUES OF CHEMICAL FLOODING FOR ENHANCED OIL RECOVERY

    E-Print Network [OSTI]

    Daripa, Prabir

    FLUID DYNAMICAL AND MODELING ISSUES OF CHEMICAL FLOODING FOR ENHANCED OIL RECOVERY Prabir Daripa developed flows in enhanced oil recovery (EOR). In a recent exhaustive study [Transport in Porous Media, 93 fluid flows that occur in porous media during tertiary dis- placement process of chemical enhanced oil

  7. SURFACE ELASTICITY MODELS FOR STATIC AND DYNAMIC RESPONSE OF NANOSCALE BEAMS

    E-Print Network [OSTI]

    Phani, A. Srikantha

    SURFACE ELASTICITY MODELS FOR STATIC AND DYNAMIC RESPONSE OF NANOSCALE BEAMS by Chang Liu B) THE UNIVERSITY OF BRITISH COLUMBIA (Vancouver) February 2010 © Chang Liu, 2010 #12;ii Abstract Nanoscale beam of nanoscale beams. The objective is to provide NEMS designers with an efficient set of tools that can predict

  8. A COMPARISON BETWEEN TWO SIMPLIFIED DYNAMICAL MODELS FOR THE HUMAN GAIT

    E-Print Network [OSTI]

    Llanos, Diego R.

    A COMPARISON BETWEEN TWO SIMPLIFIED DYNAMICAL MODELS FOR THE HUMAN GAIT A.Ortega 1 , F.Montoya 1 and J.Finat 2 , MoBiVA Group. 1 ETS Ing. Industrial, Paseo del Cauce, Univ. Valladolid, 47011 Valladolid to a passive approach to maintain the upright position and locomotion with a view to their applications

  9. CT-PET Landmark-based Lung Registration Using a Dynamic Breathing Model S. Chambon1

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    CT-PET Landmark-based Lung Registration Using a Dynamic Breathing Model S. Chambon1 , A. Moreno1-based registration of CT (at two different instants of the breathing cycle, intermediate expirations) and PET images in order to simulate the instant in the breathing cycle most similar to the PET image and guarantee

  10. Ecological Modelling 180 (2004) 135151 Simulating forest fuel and fire risk dynamics across

    E-Print Network [OSTI]

    He, Hong S.

    fuel module tracks fine fuel, coarse fuel and live fuel for each cell on a landscape. Fine fuel age (the oldest age cohorts) in combination with disturbance history. Live fuels, also called canopyEcological Modelling 180 (2004) 135­151 Simulating forest fuel and fire risk dynamics across

  11. IMA Journal of Applied Mathematics (2002) 67, 419439 Modelling thermal front dynamics in microwave heating

    E-Print Network [OSTI]

    Xin, Jack

    an electric field is applied to materials with high resistivity, the dipole moments of the molecules alignIMA Journal of Applied Mathematics (2002) 67, 419­439 Modelling thermal front dynamics in microwave July 2000; revised on 6 December 2001] The formation and propagation of thermal fronts in a cylindrical

  12. Modeling particle formation during low-pressure silane oxidation: Detailed chemical kinetics and aerosol dynamics

    E-Print Network [OSTI]

    Zachariah, Michael R.

    that the generation of SiOHx species from fast gas- phase reactions can significantly degrade film quality. Based conservation equations and a moment-type aerosol dynamics model were formulated for a batch reactor undergoing to impurity diffusion.1 During LPCVD film deposition rates are limited by the gas-phase nucleation

  13. Time Series Prediction by Chaotic Modeling of Nonlinear Dynamical Systems Arslan Basharat+

    E-Print Network [OSTI]

    Central Florida, University of

    Inc. Clifton Park, NY, USA arslan.basharat@kitware.com Mubarak Shah+ + University of Central Florida Orlando, FL, USA shah@cs.ucf.edu Abstract We use concepts from chaos theory in order to model nonlinear dynamical systems that exhibit deterministic be- havior. Observed time series from such a system can be em

  14. On the self-similarity assumption in dynamic models for large eddy simulations

    E-Print Network [OSTI]

    Van Den Eijnden, Eric

    that the present formulation of the DP is usually incompatible with its under- lying self-similarity assumption SSAOn the self-similarity assumption in dynamic models for large eddy simulations Daniele Carati eddy simulations and their underlying self-similarity assumption is discussed. The interpretation

  15. Coupled Damage and Plasticity Modelling in Transient Dynamic Analysis of Concrete

    E-Print Network [OSTI]

    Coupled Damage and Plasticity Modelling in Transient Dynamic Analysis of Concrete F. Gatuingt Abstract In a concrete structure subjected to an explosion, for example a concrete slab, the material on the same concrete. Computations of split Hopkinson tests on confined concrete, a tensile test with scabbing

  16. Cooling energy demand evaluation by means of regression models obtained from dynamic simulations

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Cooling energy demand evaluation by means of regression models obtained from dynamic simulations Ph, Université Lyon1, FRANCE ABSTRACT The forecast of the energy heating/cooling demand would be a good indicator between simple and complex methods of evaluating the cooling energy demand we have proposed to use energy

  17. A simplified model of thin layer static/flowing dynamics for granular materials with yield

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    /deposition processes when a layer of particles is flowing over a static layer or near the destabilization and arrestA simplified model of thin layer static/flowing dynamics for granular materials with yield, 75005 Paris, France, 4 ANGE team, INRIA, CETMEF, Lab. J.-L. Lions, Paris, France Abstract We introduce

  18. Building Dynamic Models of Service Compositions With Simulation of Provision Resources

    E-Print Network [OSTI]

    Politécnica de Madrid, Universidad

    Building Dynamic Models of Service Compositions With Simulation of Provision Resources Dragan of service compositions depends both on the composition structure, and on planning and management of compu- tational resources necessary for provision. Resource constraints on the service provider side have impact

  19. Modeling the dynamics of human hair cycles by a follicular automaton

    E-Print Network [OSTI]

    Goldbeter, Albert

    Modeling the dynamics of human hair cycles by a follicular automaton J. Halloy*, B. A. Bernard , G University of Brussels, Brussels, Belgium, May 15, 2000 (received for review December 23, 1999) The hair correspond, respectively, to hair growth, arrest, shedding, and absence before a new anagen phase

  20. Dynamical Coupled-Channel Model of Meson Production Reactions in the Nucleon Resonance Region

    SciTech Connect (OSTI)

    T.-S. H. Lee; A. Matsuyama; T. Sato

    2006-11-15T23:59:59.000Z

    A dynamical coupled-channel model is presented for investigating the nucleon resonances (N*) in the meson production reactions induced by pions and photons. Our objective is to extract the N* parameters and to investigate the meson production reaction mechanisms for mapping out the quark-gluon substructure of N* from the data. The model is based on an energy-independent Hamiltonian which is derived from a set of Lagrangians by using a unitary transformation method.

  1. Dynamical Systems analysis of an interacting dark energy model in the Brane Scenario

    E-Print Network [OSTI]

    Biswas, Sujay Kr

    2015-01-01T23:59:59.000Z

    In this paper, we investigate the background dynamics in brane cosmology when dark energy is coupled to dark matter by a suitable interaction. Here we consider an homogeneous and isotropic Friedmann-Robertson-Walker (FRW) brane model and the evolution equations are reduced to an autonomous system by suitable transformation of variables. The nature of critical points are analyzed by evaluating the eigenvalues of linearized Jacobi matrix. Finally, the classical stability of the model is also studied.

  2. Stochastic Dynamic Demand Inventory Models with Explicit Transportation Costs and Decisions

    E-Print Network [OSTI]

    Zhang, Liqing

    2011-07-01T23:59:59.000Z

    is the policy where several small loads will be dispatched as a single, combined load. From an inventory-modeling perspec- tive, the integrated inventory-transportation problems add dispatch quantities as decision variables to the stochastic dynamic inventory...): The vendor makes the inventory replen- ishment decisions on how much to order from the outside supplier. 2. Pure Outbound Transportation Models (PO): The collection depot makes the delivery schedules of order dispatches to the buyer(s). 3. Integrated...

  3. Experimental results and modeling of a dynamic hohlraum on SATURN

    SciTech Connect (OSTI)

    Derzon, M.S.; Allshouse, G.O.; Deeney, C.; Leeper, R.J.; Nash, T.J. [Sandia National Labs., Albuquerque, NM (United States); Matuska, W.; Peterson, D.L. [Los Alamos National Lab., NM (United States); MacFarlane, J.J. [Univ. of Wisconsin, Madison, WI (United States); Ryutov, D.D. [Lawrence Livermore National Lab., CA (United States)

    1998-06-01T23:59:59.000Z

    Experiments were performed at SATURN, a high current z-pinch, to explore the feasibility of creating a hohlraum by imploding a tungsten wire array onto a low-density foam. Emission measurements in the 200--280 eV energy band were consistent with a 110--135 eV Planckian before the target shock heated, or stagnated, on-axis. Peak pinch radiation temperatures of nominally 160 eV were obtained. Measured early time x-ray emission histories and temperature estimates agree well with modeled performance in the 200--280 eV band using a 2D radiation magneto-hydrodynamics code. However, significant differences are observed in comparisons of the x-ray images and 2D simulations.

  4. Membrane Fuzzy Sphere Dynamics in Plane-Wave Matrix Model

    E-Print Network [OSTI]

    Hyeonjoon Shin; Kentaroh Yoshida

    2004-09-03T23:59:59.000Z

    In plane-wave matrix model, the membrane fuzzy sphere extended in the SO(3) symmetric space is allowed to have periodic motion on a sub-plane in the SO(6) symmetric space. We consider a background configuration composed of two such fuzzy spheres moving on the same sub-plane and the one-loop quantum corrections to it. The one-loop effective action describing the fuzzy sphere interaction is computed up to the sub-leading order in the limit that the mean distance $r$ between two fuzzy spheres is very large. We show that the leading order interaction is of the 1/r^7 type and thus the membrane fuzzy spheres interpreted as giant gravitons really behave as gravitons.

  5. Florian SEITZ: Atmospheric and oceanic impacts to Earth rotations numerical studies with a dynamic Earth system model

    E-Print Network [OSTI]

    Schuh, Harald

    with a dynamic Earth system model (completed in October 2004) Variations of Earth rotation are caused Earth system model DyMEG has been developed. It is based on the balance of angular momentum

  6. Research priorities in land use and land-cover change for the Earth system and integrated assessment modelling

    E-Print Network [OSTI]

    Hibbard, Kathy; Janetos, Anthony; van Vuuren, Detlef P.; Pongtatz, Julia; Rose, Steven K.; Betts, Richard; Herold, Martin; Feddema, Johannes J.

    2010-01-01T23:59:59.000Z

    ). Copyright ? 2010 Royal Meteorological Society and Crown Copyright. KEY WORDS land use; land cover; Earth system models; integrated assessment models; research priorities Received 12 January 2009; Revised 9 March 2010; Accepted 14 March 2010 1. Introduction 1... biogeophysical, socio- economic and human decision-making perspectives. The Earth System Modeling (ESM) and the Integrated Assessment Modeling (IAM) communities play an impor- tant role in understanding and quantifying Earth system analysis and, specifically...

  7. Dynamic Thermal Model of Polymer Electrolyte Membrane (PEM) Fuel Cell Budi Hadisujoto, Rehan Refai, Dongmei Chen, Tess J. Moon

    E-Print Network [OSTI]

    Ben-Yakar, Adela

    Dynamic Thermal Model of Polymer Electrolyte Membrane (PEM) Fuel Cell Budi Hadisujoto, Rehan Refai to improve the performance of a PEM fuel cell Simulation Results Advanced Power Systems and Controls (GDL) to reduce water saturation · Model water transport in PEM fuel cell Contribution: · Dynamic

  8. Technical Review of the CENWP Computational Fluid Dynamics Model of the John Day Dam Forebay

    SciTech Connect (OSTI)

    Rakowski, Cynthia L.; Serkowski, John A.; Richmond, Marshall C.

    2010-12-01T23:59:59.000Z

    The US Army Corps of Engineers Portland District (CENWP) has developed a computational fluid dynamics (CFD) model of the John Day forebay on the Columbia River to aid in the development and design of alternatives to improve juvenile salmon passage at the John Day Project. At the request of CENWP, Pacific Northwest National Laboratory (PNNL) Hydrology Group has conducted a technical review of CENWP's CFD model run in CFD solver software, STAR-CD. PNNL has extensive experience developing and applying 3D CFD models run in STAR-CD for Columbia River hydroelectric projects. The John Day forebay model developed by CENWP is adequately configured and validated. The model is ready for use simulating forebay hydraulics for structural and operational alternatives. The approach and method are sound, however CENWP has identified some improvements that need to be made for future models and for modifications to this existing model.

  9. On the Use of Computational Models for Wave Climate Assessment in Support of the Wave Energy Industry

    E-Print Network [OSTI]

    Victoria, University of

    Effective, economic extraction of ocean wave energy requires an intimate under- standing of the ocean waveOn the Use of Computational Models for Wave Climate Assessment in Support of the Wave Energy On the Use of Computational Models for Wave Climate Assessment in Support of the Wave Energy Industry

  10. RAVEN AS A TOOL FOR DYNAMIC PROBABILISTIC RISK ASSESSMENT: SOFTWARE OVERVIEW

    SciTech Connect (OSTI)

    Alfonsi Andrea; Mandelli Diego; Rabiti Cristian; Joshua Cogliati; Robert Kinoshita

    2013-05-01T23:59:59.000Z

    RAVEN is a software tool under development at the Idaho National Laboratory (INL) that acts as the control logic driver and post-processing tool for the newly developed Thermo-Hydraylic code RELAP- 7. The scope of this paper is to show the software structure of RAVEN and its utilization in connection with RELAP-7. A short overview of the mathematical framework behind the code is presented along with its main capabilities such as on-line controlling/monitoring and Monte-Carlo sampling. A demo of a Station Black Out PRA analysis of a simplified Pressurized Water Reactor (PWR) model is shown in order to demonstrate the Monte-Carlo and clustering capabilities.

  11. Discrete Fracture Network Models for Risk Assessment of Carbon Sequestration in Coal

    SciTech Connect (OSTI)

    Jack Pashin; Guohai Jin; Chunmiao Zheng; Song Chen; Marcella McIntyre

    2008-07-01T23:59:59.000Z

    A software package called DFNModeler has been developed to assess the potential risks associated with carbon sequestration in coal. Natural fractures provide the principal conduits for fluid flow in coal-bearing strata, and these fractures present the most tangible risks for the leakage of injected carbon dioxide. The objectives of this study were to develop discrete fracture network (DFN) modeling tools for risk assessment and to use these tools to assess risks in the Black Warrior Basin of Alabama, where coal-bearing strata have high potential for carbon sequestration and enhanced coalbed methane recovery. DFNModeler provides a user-friendly interface for the construction, visualization, and analysis of DFN models. DFNModeler employs an OpenGL graphics engine that enables real-time manipulation of DFN models. Analytical capabilities in DFNModeler include display of structural and hydrologic parameters, compartmentalization analysis, and fluid pathways analysis. DFN models can be exported to third-party software packages for flow modeling. DFN models were constructed to simulate fracturing in coal-bearing strata of the upper Pottsville Formation in the Black Warrior Basin. Outcrops and wireline cores were used to characterize fracture systems, which include joint systems, cleat systems, and fault-related shear fractures. DFN models were constructed to simulate jointing, cleating, faulting, and hydraulic fracturing. Analysis of DFN models indicates that strata-bound jointing compartmentalizes the Pottsville hydrologic system and helps protect shallow aquifers from injection operations at reservoir depth. Analysis of fault zones, however, suggests that faulting can facilitate cross-formational flow. For this reason, faults should be avoided when siting injection wells. DFN-based flow models constructed in TOUGH2 indicate that fracture aperture and connectivity are critical variables affecting the leakage of injected CO{sub 2} from coal. Highly transmissive joints near an injection well have potential to divert a large percentage of an injected CO{sub 2} stream away from a target coal seam. However, the strata-bound nature of Pottsville fracture systems is a natural factor that mitigates the risk of long-range leakage and surface seepage. Flow models indicate that cross-formational flow in strata-bound joint networks is low and is dissipated by about an order of magnitude at each successive bedding contact. These models help confirm that strata-bound joint networks are self-compartmentalizing and that the thick successions of interbedded shale and sandstone separating the Pottsville coal zones are confining units that protect shallow aquifers from injection operations at reservoir depth. DFN models are powerful tools for the simulation and analysis of fracture networks and can play an important role in the assessment of risks associated with carbon sequestration and enhanced coalbed methane recovery. Importantly, the stochastic nature DFN models dictates that they cannot be used to precisely reproduce reservoir conditions in a specific field area. Rather, these models are most useful for simulating the fundamental geometric and statistical properties of fracture networks. Because the specifics of fracture architecture in a given area can be uncertain, multiple realizations of DFN models and DFN-based flow models can help define variability that may be encountered during field operations. Using this type of approach, modelers can inform the risk assessment process by characterizing the types and variability of fracture architecture that may exist in geologic carbon sinks containing natural fractures.

  12. Fundamental problems of modeling the dynamics of internal gravity waves with applications to the Arctic Basin

    E-Print Network [OSTI]

    Vitaly V. Bulatov; Yuriy V. Vladimirov

    2012-06-26T23:59:59.000Z

    In this paper, we consider fundamental problems of the dynamics of internal gravity waves. We present analytical and numerical algorithms for calculating the wave fields for a set of values of the parameters, as observed in the ocean. We show that our mathematical models can describe the wave dynamics of the Arctic Basin, taking into account the actual physical characteristics of sea water, topography of its floor, etc. The numerical and analytical results show that the internal gravity waves have a significant effect on underwater sea objects in the Arctic Basin.

  13. Quantum Dynamical Model for Wave Function Reduction in Classical and Macroscopic Limits

    E-Print Network [OSTI]

    Chang-Pu Sun

    1993-03-22T23:59:59.000Z

    In this papper, a quantum dynamical model describing the quantum measurement process is presented as an extensive generalization of the Coleman-Hepp model. In both the classical limit with very large quantum number and macroscopic limit with very large particle number in measuring instrument, this model generally realizes the wave packet collapse in quantum measurement as a consequence of the Schrodinger time evolution in either the exactly-solvable case or the non-(exactly-)solvable case. For the latter, its quasi-adiabatic case is explicitly analysed by making use of the high-order adiabatic approximation method and then manifests the wave packet collapse as well as the exactly-solvable case. By highlighting these analysis, it is finally found that an essence of the dynamical model of wave packet collapse is the factorization of the Schrodinger evolution other than the exact solvability. So many dynamical models including the well-known ones before, which are exactly-solvable or not, can be shown only to be the concrete realizations of this factorizability

  14. Simulation of aerosol dynamics: A comparative review of algorithms used in air quality models

    SciTech Connect (OSTI)

    Zhang, Y.; Seigneur, C.; Seinfeld, J.H.; Jacobson, M.Z.; Binkowski, F.S.

    1999-01-01T23:59:59.000Z

    A comparative review of algorithms currently used in air quality models to simulate aerosol dynamics is presented. This review addresses coagulation, condensational growth, nucleation, and gas/particle mass transfer. Two major approaches are used in air quality models to represent the particle size distribution: (1) the sectional approach in which the size distribution is discretized into sections and particle properties are assumed to be constant over particle size sections and (2) the modal approach in which the size distribution is approximated by several modes and particle properties are assumed to be uniform in each mode. The results of this study provide useful information to select algorithms to simulate aerosol dynamics in air quality models and to improve the accuracy of existing algorithms.

  15. Model Components of the Certification Framework for Geologic Carbon Sequestration Risk Assessment

    SciTech Connect (OSTI)

    Oldenburg, Curtis M.; Bryant, Steven L.; Nicot, Jean-Philippe; Kumar, Navanit; Zhang, Yingqi; Jordan, Preston; Pan, Lehua; Granvold, Patrick; Chow, Fotini K.

    2009-06-01T23:59:59.000Z

    We have developed a framework for assessing the leakage risk of geologic carbon sequestration sites. This framework, known as the Certification Framework (CF), emphasizes wells and faults as the primary potential leakage conduits. Vulnerable resources are grouped into compartments, and impacts due to leakage are quantified by the leakage flux or concentrations that could potentially occur in compartments under various scenarios. The CF utilizes several model components to simulate leakage scenarios. One model component is a catalog of results of reservoir simulations that can be queried to estimate plume travel distances and times, rather than requiring CF users to run new reservoir simulations for each case. Other model components developed for the CF and described here include fault characterization using fault-population statistics; fault connection probability using fuzzy rules; well-flow modeling with a drift-flux model implemented in TOUGH2; and atmospheric dense-gas dispersion using a mesoscale weather prediction code.

  16. Modelling risk and risking models: the diffusive boundary between science and policy in volcanic risk assessment

    E-Print Network [OSTI]

    Donovan, Amy R.; Oppenheimer, Clive

    2014-11-27T23:59:59.000Z

    to the appreciation that the eruptions may continue for 282 decades and should be regarded as a “chronic” problem for planning purposes (Donovan and 283 Oppenheimer, 2014). Managing this transition has required consistent yet innovative 284 approaches to scientific... to their advice. 524 There is abundant evidence of the political challenges of risk assessment and management on 525 Montserrat, and the complex boundaries and connectivities involved (Aspinall et al., 2002; 526 Haynes et al., 2007; Donovan and Oppenheimer...

  17. Modeling threat assessments of water supply systems using markov latent effects methodology.

    SciTech Connect (OSTI)

    Silva, Consuelo Juanita

    2006-12-01T23:59:59.000Z

    Recent amendments to the Safe Drinking Water Act emphasize efforts toward safeguarding our nation's water supplies against attack and contamination. Specifically, the Public Health Security and Bioterrorism Preparedness and Response Act of 2002 established requirements for each community water system serving more than 3300 people to conduct an assessment of the vulnerability of its system to a terrorist attack or other intentional acts. Integral to evaluating system vulnerability is the threat assessment, which is the process by which the credibility of a threat is quantified. Unfortunately, full probabilistic assessment is generally not feasible, as there is insufficient experience and/or data to quantify the associated probabilities. For this reason, an alternative approach is proposed based on Markov Latent Effects (MLE) modeling, which provides a framework for quantifying imprecise subjective metrics through possibilistic or fuzzy mathematics. Here, an MLE model for water systems is developed and demonstrated to determine threat assessments for different scenarios identified by the assailant, asset, and means. Scenario assailants include terrorists, insiders, and vandals. Assets include a water treatment plant, water storage tank, node, pipeline, well, and a pump station. Means used in attacks include contamination (onsite chemicals, biological and chemical), explosives and vandalism. Results demonstrated highest threats are vandalism events and least likely events are those performed by a terrorist.

  18. Expressive Statistical Model Checking of Genetic Networks with Delayed Stochastic Dynamics

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    introduced Hybrid Automata Stochastic Logic (HASL) [8] establishes a powerful framework for the analysis demonstrate the potential of HASL based verification in the context of genetic circuits. To this aim we properties related to this model, formally express them in HASL terms and, assess them with COSMOS

  19. Modeling the Gila-San Francisco Basin using system dynamics in support of the 2004 Arizona Water Settlement Act.

    SciTech Connect (OSTI)

    Tidwell, Vincent Carroll; Sun, Amy Cha-Tien; Peplinski, William J.; Klise, Geoffrey Taylor

    2012-04-01T23:59:59.000Z

    Water resource management requires collaborative solutions that cross institutional and political boundaries. This work describes the development and use of a computer-based tool for assessing the impact of additional water allocation from the Gila River and the San Francisco River prescribed in the 2004 Arizona Water Settlements Act. Between 2005 and 2010, Sandia National Laboratories engaged concerned citizens, local water stakeholders, and key federal and state agencies to collaboratively create the Gila-San Francisco Decision Support Tool. Based on principles of system dynamics, the tool is founded on a hydrologic balance of surface water, groundwater, and their associated coupling between water resources and demands. The tool is fitted with a user interface to facilitate sensitivity studies of various water supply and demand scenarios. The model also projects the consumptive use of water in the region as well as the potential CUFA (Consumptive Use and Forbearance Agreement which stipulates when and where Arizona Water Settlements Act diversions can be made) diversion over a 26-year horizon. Scenarios are selected to enhance our understanding of the potential human impacts on the rivers ecological health in New Mexico; in particular, different case studies thematic to water conservation, water rights, and minimum flow are tested using the model. The impact on potential CUFA diversions, agricultural consumptive use, and surface water availability are assessed relative to the changes imposed in the scenarios. While it has been difficult to gage the acceptance level from the stakeholders, the technical information that the model provides are valuable for facilitating dialogues in the context of the new settlement.

  20. Renormalization of lattice-regularized quantum gravity models II. The case of causal dynamical triangulations

    E-Print Network [OSTI]

    Joshua H. Cooperman

    2014-06-17T23:59:59.000Z

    The causal dynamical triangulations approach aims to construct a quantum theory of gravity as the continuum limit of a lattice-regularized model of dynamical geometry. A renormalization group scheme--in concert with finite size scaling analysis--is essential to this aim. Formulating and implementing such a scheme in the present context raises novel and notable conceptual and technical problems. I explored these problems, and, building on standard techniques, suggested potential solutions in the first paper of this two-part series. As an application of these solutions, I now propose a renormalization group scheme for causal dynamical triangulations. This scheme differs significantly from that studied recently by Ambjorn, Gorlich, Jurkiewicz, Kreienbuehl, and Loll.