Model Based Safety Assessment Dynamic System
Grigoras, .Romulus
Assessment Techniques ·Failure mode and effect analysis (FMEA) Model: from a local failure to its system chain .... 2 Functional FMEA template FT unannunciated loss of wheel braking #12;Drawbacks of the Classical Safety Assessment Techniques · Fault Tree, FMEA Give failure propagation paths without referring
Paris-Sud XI, Université de
Dynamic Model for Assessing Impact of Regeneration Actions on System Availability: Application) Key Words: failure, damage, regeneration, availability assessment, stochastic activity networks, Monte Carlo simulations SUMMARY & CONCLUSIONS Availability is a determining factor in systems characterization
A next-generation modeling capability assesses wind turbine array fluid dynamics and aeroelastic simulations Characterizing and optimizing overall performance of wind plants composed of large numbers at the National Renewable Energy Laboratory (NREL) are coupling physical models of the atmosphere and wind
Dynamic nuclear renography kinetic analysis: Four-compartment model for assessing kidney function
Raswan, T. R., E-mail: tara.raissa@gmail.com; Haryanto, F., E-mail: tara.raissa@gmail.com [Department of Physics, Nuclear Physics and Biophysics Research Group, Institut Teknologi Bandung, Bandung (Indonesia)
2014-09-30T23:59:59.000Z
Dynamic nuclear renography method produces TACs of kidneys and bladder. Multiple TACs data can be further analyzed to obtain the overview of urinary system's condition. Tracer kinetic analysis was performed using four-compartment models. The system's model consist of four irreversible compartment with four transport constants (k1, k2, k3 and k4). The mathematical expressions of tracer's distributions is fitted to experimental data (TACs) resulting in model constants. This transport constants represent the urinary system behavior, and later can be used for analyzing system's condition. Different intervals of kinetics parameter are clearly shown by abnormal system with respect to the normal one. Furthermore, the system with delayed uptake has 82% lower uptake parameters (k1 and k2) than normal one. Meanwhile, the system with prolonged clearance time has its kinetics parameters k3 or k4 lower than the others. This model is promising for quantitatively describe urinary system's function especially if supplied with more data.
Benjamin, A.S.; Paez, T.L.; Brown, N.N.
1998-01-01T23:59:59.000Z
In most probabilistic risk assessments, there is a subset of accident scenarios that involves physical challenges to the system, such as high heat rates and/or accelerations. The system`s responses to these challenges may be complicated, and their prediction may require the use of long-running computer codes. To deal with the many scenarios demanded by a risk assessment, the authors have been investigating the use of artificial neural networks (ANNs) as a fast-running estimation tool. They have developed a multivariate linear spline algorithm by extending previous ANN methods that use radial basis functions. They have applied the algorithm to problems involving fires, shocks, and vibrations. They have found that within the parameter range for which it is trained, the algorithm can simulate the nonlinear responses of complex systems with high accuracy. Running times per case are less than one second.
Assessment of Models for Pedestrian Dynamics with Functional Principal Component Analysis
Chraibi, M; Gottschalk, H; Saadi, M; Seyfried, A
2015-01-01T23:59:59.000Z
Many agent based simulation approaches have been proposed for pedestrian flow. As such models are applied e.g.\\ in evacuation studies, the quality and reliability of such models is of vital interest. Pedestrian trajectories are functional data and thus functional principal component analysis is a natural tool to asses the quality of pedestrian flow models beyond average properties. In this article we conduct functional PCA for the trajectories of pedestrians passing through a bottleneck. We benchmark two agent based models of pedestrian flow against the experimental data using PCA average and stochastic features. Functional PCA proves to be an efficient tool to detect deviation between simulation and experiment and to asses quality of pedestrian models.
Dynamic modeling of physical phenomena for probabilistic assessment of spent fuel accidents
Benjamin, A.S.
1997-11-01T23:59:59.000Z
If there should be an accident involving drainage of all the water from a spent fuel pool, the fuel elements will heat up until the heat produced by radioactive decay is balanced by that removed by natural convection to air, thermal radiation, and other means. If the temperatures become high enough for the cladding or other materials to ignite due to rapid oxidation, then some of the fuel might melt, leading to an undesirable release of radioactive materials. The amount of melting is dependent upon the fuel loading configuration and its age, the oxidation and melting characteristics of the materials, and the potential effectiveness of recovery actions. The authors have developed methods for modeling the pertinent physical phenomena and integrating the results with a probabilistic treatment of the uncertainty distributions. The net result is a set of complementary cumulative distribution functions for the amount of fuel melted.
Dynamical systems probabilistic risk assessment.
Denman, Matthew R.; Ames, Arlo Leroy
2014-03-01T23:59:59.000Z
Probabilistic Risk Assessment (PRA) is the primary tool used to risk-inform nuclear power regulatory and licensing activities. Risk-informed regulations are intended to reduce inherent conservatism in regulatory metrics (e.g., allowable operating conditions and technical specifications) which are built into the regulatory framework by quantifying both the total risk profile as well as the change in the risk profile caused by an event or action (e.g., in-service inspection procedures or power uprates). Dynamical Systems (DS) analysis has been used to understand unintended time-dependent feedbacks in both industrial and organizational settings. In dynamical systems analysis, feedback loops can be characterized and studied as a function of time to describe the changes to the reliability of plant Structures, Systems and Components (SSCs). While DS has been used in many subject areas, some even within the PRA community, it has not been applied toward creating long-time horizon, dynamic PRAs (with time scales ranging between days and decades depending upon the analysis). Understanding slowly developing dynamic effects, such as wear-out, on SSC reliabilities may be instrumental in ensuring a safely and reliably operating nuclear fleet. Improving the estimation of a plant's continuously changing risk profile will allow for more meaningful risk insights, greater stakeholder confidence in risk insights, and increased operational flexibility.
Predictive Dynamic Security Assessment through Advanced Computing
Huang, Zhenyu; Diao, Ruisheng; Jin, Shuangshuang; Chen, Yousu
2014-11-30T23:59:59.000Z
Abstract— Traditional dynamic security assessment is limited by several factors and thus falls short in providing real-time information to be predictive for power system operation. These factors include the steady-state assumption of current operating points, static transfer limits, and low computational speed. This addresses these factors and frames predictive dynamic security assessment. The primary objective of predictive dynamic security assessment is to enhance the functionality and computational process of dynamic security assessment through the use of high-speed phasor measurements and the application of advanced computing technologies for faster-than-real-time simulation. This paper presents algorithms, computing platforms, and simulation frameworks that constitute the predictive dynamic security assessment capability. Examples of phasor application and fast computation for dynamic security assessment are included to demonstrate the feasibility and speed enhancement for real-time applications.
Dynamic Operational Risk Assessment with Bayesian Network
Barua, Shubharthi
2012-10-19T23:59:59.000Z
equipment/component on others. The developed Bayesian network is then extended to the dynamic Bayesian network to demonstrate dynamic operational risk assessment. A case study on a holdup tank problem is provided to illustrate the application of the method...
Research progress in dynamic security assessment
Not Available
1982-12-01T23:59:59.000Z
Areas discussed are power system modeling, state estimation, structure decomposition, state forecasting, clustering and security measure development. A detailed dynamic model of a multi-machine power system has been developed. A process state estimator was developed to estimate the long-term dynamic behavior of the power system. The algorithm is identical to the extended Kalman filter but has a modified process noise driving term. A two-stage structure estimation technique was proposed for identifying the power system network configuration. Two approaches to structure decomposition were investigated. A time-scale decomposition of the system equations, based on a singular perturbation approach, was evaluated using a detailed model of a generating system. Spatial decomposition was examined by applying an optimal network decomposition technique to a 39-bus test system. Stochastic approximation based approaches to estimator simplification were examined. Explicit expressions were obtained for the evolution of the first and second moments of the system state. Research into security measures proceeded in three directions. The first area involves viewing the security assessment problem as a hyperplane crossing problem for a stochastic process. The second approach examined the stability of an unforced linear system where the system coefficients are subject to future jumps. The third area of research has led to the formulation of a security measure suitable for on-line assessment of transient stability.
Integrated Assessment Modeling
Edmonds, James A.; Calvin, Katherine V.; Clarke, Leon E.; Janetos, Anthony C.; Kim, Son H.; Wise, Marshall A.; McJeon, Haewon C.
2012-10-31T23:59:59.000Z
This paper discusses the role of Integrated Assessment models (IAMs) in climate change research. IAMs are an interdisciplinary research platform, which constitutes a consistent scientific framework in which the large-scale interactions between human and natural Earth systems can be examined. In so doing, IAMs provide insights that would otherwise be unavailable from traditional single-discipline research. By providing a broader view of the issue, IAMs constitute an important tool for decision support. IAMs are also a home of human Earth system research and provide natural Earth system scientists information about the nature of human intervention in global biogeophysical and geochemical processes.
Tools for dynamic model development
Schaber, Spencer Daniel
2014-01-01T23:59:59.000Z
For this thesis, several tools for dynamic model development were developed and analyzed. Dynamic models can be used to simulate and optimize the behavior of a great number of natural and engineered systems, from the ...
Mesoscale ocean dynamics modeling
mHolm, D.; Alber, M.; Bayly, B.; Camassa, R.; Choi, W.; Cockburn, B.; Jones, D.; Lifschitz, A.; Margolin, L.; Marsden, L.; Nadiga, B.; Poje, A.; Smolarkiewicz, P. [Los Alamos National Lab., NM (United States); Levermore, D. [Arizona Univ., Tucson, AZ (United States)
1996-05-01T23:59:59.000Z
This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The ocean is a very complex nonlinear system that exhibits turbulence on essentially all scales, multiple equilibria, and significant intrinsic variability. Modeling the ocean`s dynamics at mesoscales is of fundamental importance for long-time-scale climate predictions. A major goal of this project has been to coordinate, strengthen, and focus the efforts of applied mathematicians, computer scientists, computational physicists and engineers (at LANL and a consortium of Universities) in a joint effort addressing the issues in mesoscale ocean dynamics. The project combines expertise in the core competencies of high performance computing and theory of complex systems in a new way that has great potential for improving ocean models now running on the Connection Machines CM-200 and CM-5 and on the Cray T3D.
Next Generation On-Line Dynamic Security Assessment
Next Generation On-Line Dynamic Security Assessment Parts III and IV Final Project Report Power;Next Generation On-Line Dynamic Security Assessment Parts III and IV Final Project Report Parts III Research Center (PSERC) research project titled "Next Generation On-Line Dynamic Security Assessment
Assessment of Molecular Modeling & Simulation
None
2002-01-03T23:59:59.000Z
This report reviews the development and applications of molecular and materials modeling in Europe and Japan in comparison to those in the United States. Topics covered include computational quantum chemistry, molecular simulations by molecular dynamics and Monte Carlo methods, mesoscale modeling of material domains, molecular-structure/macroscale property correlations like QSARs and QSPRs, and related information technologies like informatics and special-purpose molecular-modeling computers. The panel's findings include the following: The United States leads this field in many scientific areas. However, Canada has particular strengths in DFT methods and homogeneous catalysis; Europe in heterogeneous catalysis, mesoscale, and materials modeling; and Japan in materials modeling and special-purpose computing. Major government-industry initiatives are underway in Europe and Japan, notably in multi-scale materials modeling and in development of chemistry-capable ab-initio molecular dynamics codes.
Modeling Space-Time Dynamics of Aerosols Using Satellite Data and Atmospheric Transport Model Output
Shi, Tao
Modeling Space-Time Dynamics of Aerosols Using Satellite Data and Atmospheric Transport Model of aerosol optical depth across mainland Southeast Asia. We include a cross validation study to assess
Utility of Social Modeling for Proliferation Assessment - Preliminary Assessment
Coles, Garill A.; Gastelum, Zoe N.; Brothers, Alan J.; Thompson, Sandra E.
2009-06-01T23:59:59.000Z
This Preliminary Assessment draft report will present the results of a literature search and preliminary assessment of the body of research, analysis methods, models and data deemed to be relevant to the Utility of Social Modeling for Proliferation Assessment research. This report will provide: 1) a description of the problem space and the kinds of information pertinent to the problem space, 2) a discussion of key relevant or representative literature, 3) a discussion of models and modeling approaches judged to be potentially useful to the research, and 4) the next steps of this research that will be pursued based on this preliminary assessment. This draft report represents a technical deliverable for the NA-22 Simulations, Algorithms, and Modeling (SAM) program. Specifically this draft report is the Task 1 deliverable for project PL09-UtilSocial-PD06, Utility of Social Modeling for Proliferation Assessment. This project investigates non-traditional use of social and cultural information to improve nuclear proliferation assessment, including nonproliferation assessment, proliferation resistance assessments, safeguards assessments and other related studies. These assessments often use and create technical information about the State’s posture towards proliferation, the vulnerability of a nuclear energy system to an undesired event, and the effectiveness of safeguards. This project will find and fuse social and technical information by explicitly considering the role of cultural, social and behavioral factors relevant to proliferation. The aim of this research is to describe and demonstrate if and how social science modeling has utility in proliferation assessment.
DYNAMIC MODELING FUEL PROCESSORS
Mease, Kenneth D.
turbine module (compressor and turbine sub-modules) Catalytic oxidizer Combustor module Heat exchanger, PEM, Gas Turbine General Model Assumptions · 1D process flow · Well-stirred within nodal volume · Slow reactants #12;Steam Reformation Occurs in Reformer and Fuel Cells Methane reformation reaction Water Gas
Modeling Blog Dynamics Michaela Gotz
Leskovec, Jure
Modeling Blog Dynamics Michaela G¨otz Cornell University goetz@cs.cornell.edu Jure Leskovec@cs.cmu.edu Christos Faloutsos Carnegie Mellon University christos@cs.cmu.edu Abstract How do blogs produce posts? What local, underlying mech- anisms lead to the bursty temporal behaviors observed in blog networks? Earlier
Trends in Ln(III) Sorption to Quartz Assessed by Molecular Dynamics...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Ln(III) Sorption to Quartz Assessed by Molecular Dynamics Simulations and Laser Induced Flourescence Studies. Trends in Ln(III) Sorption to Quartz Assessed by Molecular Dynamics...
ORISE: Dose modeling and assessments
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
assessments is to ensure that radiological dose is "As Low As Reasonably Achievable" (ALARA). To make the most accurate assessments, our health physicists use a variety of...
Computational Fluid Dynamics (CFD) Modelling on Soot Yield for Fire
Computational Fluid Dynamics (CFD) Modelling on Soot Yield for Fire Engineering Assessment Yong S (CFD) Modelling is now widely used by fire safety engineers throughout the world as a tool of the smoke control design as part of the performance based fire safety design in the current industry
Model Fire Protection Assessment Guide
Broader source: Energy.gov [DOE]
This Assessment guide covers the implementation of the DOE's responsibility of assuring that DOE and the DOE Contractors have established Fire Protection Programs that are at the level required for the area being assessed.
Bayesian inference of stochastic dynamical models
Lu, Peter Guang Yi
2013-01-01T23:59:59.000Z
A new methodology for Bayesian inference of stochastic dynamical models is developed. The methodology leverages the dynamically orthogonal (DO) evolution equations for reduced-dimension uncertainty evolution and the Gaussian ...
Dynamical modeling of tidal streams
Bovy, Jo, E-mail: bovy@ias.edu [Institute for Advanced Study, Einstein Drive, Princeton, NJ 08540 (United States)
2014-11-01T23:59:59.000Z
I present a new framework for modeling the dynamics of tidal streams. The framework consists of simple models for the initial action-angle distribution of tidal debris, which can be straightforwardly evolved forward in time. Taking advantage of the essentially one-dimensional nature of tidal streams, the transformation to position-velocity coordinates can be linearized and interpolated near a small number of points along the stream, thus allowing for efficient computations of a stream's properties in observable quantities. I illustrate how to calculate the stream's average location (its 'track') in different coordinate systems, how to quickly estimate the dispersion around its track, and how to draw mock stream data. As a generative model, this framework allows one to compute the full probability distribution function and marginalize over or condition it on certain phase-space dimensions as well as convolve it with observational uncertainties. This will be instrumental in proper data analysis of stream data. In addition to providing a computationally efficient practical tool for modeling the dynamics of tidal streams, the action-angle nature of the framework helps elucidate how the observed width of the stream relates to the velocity dispersion or mass of the progenitor, and how the progenitors of 'orphan' streams could be located. The practical usefulness of the proposed framework crucially depends on the ability to calculate action-angle variables for any orbit in any gravitational potential. A novel method for calculating actions, frequencies, and angles in any static potential using a single orbit integration is described in the Appendix.
Dynamic Operational Risk Assessment with Bayesian Network
Barua, Shubharthi
2012-10-19T23:59:59.000Z
-spread acceptance in the oil and gas industry after the Piper Alpha disaster in 1988. The Lord Cullen investigation report (1990) on the Piper Alpha disaster recommended formulating quantitative risk assessment as an official requirement for the oil and gas... such as the Flixborough disaster, the Bhopal incident, and the Piper Alpha disaster caused fatalities and unbearable economic loss. The U.S. Chemical Safety Board (U.S. CSB, April 06, 2012) completed investigation on sixty-five serious accidents that occurred in the U...
Modelling and Dynamic Simulation for Process Control
Skogestad, Sigurd
principles for model development are outlined, and these principles are applied to a simple ash tank (which. In this paper we consider dynamic process models obtained using fundamental principles (eg. based reactor, a simple trend analysis using temperature measurements may be suĆcient. Dynamic models
Quantitative Modeling of High Temperature Magnetization Dynamics
Zhang, Shufeng
2009-03-01T23:59:59.000Z
Final Technical Report Project title: Quantitative Modeling of High Temperature Magnetization Dynamics DOE/Office of Science Program Manager Contact: Dr. James Davenport
Assessment and Event Based Analysis of Dynamic Wireless Networks
Paris-Sud XI, Université de
Assessment and Event Based Analysis of Dynamic Wireless Networks Denis Carvin1,2, Guillaume Kremer1 of mobile nodes in networks is significantly changing the way they are managed. Indeed, these wireless-estimation algorithm for wireless mobile networks. We then provide events' collection and distributed mining methods
Conceptual aircraft dynamics from inverse aircraft modeling
Ziegler, Gregory E
1999-01-01T23:59:59.000Z
This thesis presents a method of construe' ting a nonlinear dynamics model of a theoretical aircraft from the nonlinear batch simulation of an existing aircrew This method provides control law designers with a method of fabricating nonlinear models...
Dynamic competition model for construction contractors
Kim, Hyung Jin
2004-01-01T23:59:59.000Z
competition, a system dynamics model has been developed based on the identified concepts. In this model, there are three managerial areas in which a contractor makes policy: 1) markup; 2) marketing; and 3) capacity. Each firm's backlog level is considered...
Conceptual aircraft dynamics from inverse aircraft modeling
Ziegler, Gregory E
1999-01-01T23:59:59.000Z
This thesis presents a method of construe' ting a nonlinear dynamics model of a theoretical aircraft from the nonlinear batch simulation of an existing aircrew This method provides control law designers with a method of fabricating nonlinear models...
Modeling and simulation of consumer response to dynamic pricing.
Valenzuela, J.; Thimmapuram, P.; Kim, J (Decision and Information Sciences); (Auburn Univ.)
2012-08-01T23:59:59.000Z
Assessing the impacts of dynamic-pricing under the smart grid concept is becoming extremely important for deciding its full deployment. In this paper, we develop a model that represents the response of consumers to dynamic pricing. In the model, consumers use forecasted day-ahead prices to shift daily energy consumption from hours when the price is expected to be high to hours when the price is expected to be low while maintaining the total energy consumption as unchanged. We integrate the consumer response model into the Electricity Market Complex Adaptive System (EMCAS). EMCAS is an agent-based model that simulates restructured electricity markets. We explore the impacts of dynamic-pricing on price spikes, peak demand, consumer energy bills, power supplier profits, and congestion costs. A simulation of an 11-node test network that includes eight generation companies and five aggregated consumers is performed for a period of 1 month. In addition, we simulate the Korean power system.
Benchmarking of Planning Models Using Recorded Dynamics
Huang, Zhenyu; Yang, Bo; Kosterev, Dmitry
2009-03-15T23:59:59.000Z
Power system planning extensively uses model simulation to understand the dynamic behaviors and determine the operating limits of a power system. Model quality is key to the safety and reliability of electricity delivery. Planning model benchmarking, or model validation, has been one of the central topics in power engineering studies for years. As model validation aims at obtaining reasonable models to represent dynamic behavior of power system components, it has been essential to validate models against actual measurements. The development of phasor technology provides such measurements and represents a new opportunity for model validation as phasor measurements can capture power system dynamics with high-speed, time-synchronized data. Previously, methods for rigorous comparison of model simulation and recorded dynamics have been developed and applied to quantify model quality of power plants in the Western Electricity Coordinating Council (WECC). These methods can locate model components which need improvement. Recent work continues this effort and focuses on how model parameters may be calibrated to match recorded dynamics after the problematic model components are identified. A calibration method using Extended Kalman Filter technique is being developed. This paper provides an overview of prior work on model validation and presents new development on the calibration method and initial results of model parameter calibration.
Johnson, Chris
Using the `Internet of Things' to Support Dynamic Risk Assessment in Future://www.dcs.gla.ac.uk/~johnson Keywords: Internet of Things, Area Navigation (RNAV), Dynamic Risk Assessment. Abstract. The `Internet. In contrast, this paper uses concepts from the Internet of Things to inform the dynamic risk assessments
Models and parameters for environmental radiological assessments
Miller, C W [ed.] [ed.
1984-01-01T23:59:59.000Z
This book presents a unified compilation of models and parameters appropriate for assessing the impact of radioactive discharges to the environment. Models examined include those developed for the prediction of atmospheric and hydrologic transport and deposition, for terrestrial and aquatic food-chain bioaccumulation, and for internal and external dosimetry. Chapters have been entered separately into the data base. (ACR)
OPTIMAL CONTROL WITH ADAPTIVE INTERNAL DYNAMICS MODELS
Vijayakumar, Sethu
. The optimal feedback control law for systems with non-linear dynamics and non-quadratic costs can be foundOPTIMAL CONTROL WITH ADAPTIVE INTERNAL DYNAMICS MODELS Djordje Mitrovic, Stefan Klanke, and Sethu, optimal control, adaptive control, robot simulation Abstract: Optimal feedback control has been proposed
Simple Dynamic Gasifier Model That Runs in Aspen Dynamics
Robinson, P.J.; Luyben, W.L. [Lehigh University, Bethlehem, PA (United States). Dept. of Chemical Engineering
2008-10-15T23:59:59.000Z
Gasification (or partial oxidation) is a vital component of 'clean coal' technology. Sulfur and nitrogen emissions can be reduced, overall energy efficiency is increased, and carbon dioxide recovery and sequestration are facilitated. Gasification units in an electric power generation plant produce a fuel for driving combustion turbines. Gasification units in a chemical plant generate gas, which can be used to produce a wide spectrum of chemical products. Future plants are predicted to be hybrid power/chemical plants with gasification as the key unit operation. The widely used process simulator Aspen Plus provides a library of models that can be used to develop an overall gasifier model that handles solids. So steady-state design and optimization studies of processes with gasifiers can be undertaken. This paper presents a simple approximate method for achieving the objective of having a gasifier model that can be exported into Aspen Dynamics. The basic idea is to use a high molecular weight hydrocarbon that is present in the Aspen library as a pseudofuel. This component should have the same 1:1 hydrogen-to-carbon ratio that is found in coal and biomass. For many plantwide dynamic studies, a rigorous high-fidelity dynamic model of the gasifier is not needed because its dynamics are very fast and the gasifier gas volume is a relatively small fraction of the total volume of the entire plant. The proposed approximate model captures the essential macroscale thermal, flow, composition, and pressure dynamics. This paper does not attempt to optimize the design or control of gasifiers but merely presents an idea of how to dynamically simulate coal gasification in an approximate way.
ORISE: Dose modeling and assessments
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5 TablesExports(Journal Article) |govInstrumentsmfrirtA Journey Inside the Complex andFOURPhotoNewCapabilities ORISEORAU Contract withDose modeling and
Dynamic modeling issues for power system applications
Song, Xuefeng
2005-02-17T23:59:59.000Z
Power system dynamics are commonly modeled by parameter dependent nonlinear differential-algebraic equations (DAE) x ???p y x f ) and 0 = p y x g ) . Due to (,, (,, the algebraic constraints, we cannot directly perform...
Modeling of Alpine Atmospheric Dynamics II
Gohm, Alexander
Modeling of Alpine Atmospheric Dynamics II 707.424, VU 2, SS2005 Unit 7: Model code structure: mesoscale convective system 17-18 April 2004: Sierra hydraulic jump case 21 January 2005: the "Universiade) Introduction (brief description of the phenomenon and a description of the model and of the measurements
Bilayer Structure and Lipid Dynamics in a Model Stratum Corneum...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Bilayer Structure and Lipid Dynamics in a Model Stratum Corneum with Oleic Acid. Bilayer Structure and Lipid Dynamics in a Model Stratum Corneum with Oleic Acid. Abstract: The...
Model and Analytic Processes for Export License Assessments
Thompson, Sandra E.; Whitney, Paul D.; Weimar, Mark R.; Wood, Thomas W.; Daly, Don S.; Brothers, Alan J.; Sanfilippo, Antonio P.; Cook, Diane; Holder, Larry
2011-09-29T23:59:59.000Z
This paper represents the Department of Energy Office of Nonproliferation Research and Development (NA-22) Simulations, Algorithms and Modeling (SAM) Program's first effort to identify and frame analytical methods and tools to aid export control professionals in effectively predicting proliferation intent; a complex, multi-step and multi-agency process. The report focuses on analytical modeling methodologies that alone, or combined, may improve the proliferation export control license approval process. It is a follow-up to an earlier paper describing information sources and environments related to international nuclear technology transfer. This report describes the decision criteria used to evaluate modeling techniques and tools to determine which approaches will be investigated during the final 2 years of the project. The report also details the motivation for why new modeling techniques and tools are needed. The analytical modeling methodologies will enable analysts to evaluate the information environment for relevance to detecting proliferation intent, with specific focus on assessing risks associated with transferring dual-use technologies. Dual-use technologies can be used in both weapons and commercial enterprises. A decision-framework was developed to evaluate which of the different analytical modeling methodologies would be most appropriate conditional on the uniqueness of the approach, data availability, laboratory capabilities, relevance to NA-22 and Office of Arms Control and Nonproliferation (NA-24) research needs and the impact if successful. Modeling methodologies were divided into whether they could help micro-level assessments (e.g., help improve individual license assessments) or macro-level assessment. Macro-level assessment focuses on suppliers, technology, consumers, economies, and proliferation context. Macro-level assessment technologies scored higher in the area of uniqueness because less work has been done at the macro level. An approach to developing testable hypotheses for the macro-level assessment methodologies is provided. The outcome of this works suggests that we should develop a Bayes Net for micro-level analysis and continue to focus on Bayes Net, System Dynamics and Economic Input/Output models for assessing macro-level problems. Simultaneously, we need to develop metrics for assessing intent in export control, including the risks and consequences associated with all aspects of export control.
Protein viscoelastic dynamics: a model system
Craig Fogle; Joseph Rudnick; David Jasnow
2015-02-02T23:59:59.000Z
A model system inspired by recent experiments on the dynamics of a folded protein under the influence of a sinusoidal force is investigated and found to replicate many of the response characteristics of such a system. The essence of the model is a strongly over-damped oscillator described by a harmonic restoring force for small displacements that reversibly yields to stress under sufficiently large displacement. This simple dynamical system also reveals unexpectedly rich behavior, exhibiting a series of dynamical transitions and analogies with equilibrium thermodynamic phase transitions. The effects of noise and of inertia are briefly considered and described.
Dynamical models with a general anisotropy profile
M. Baes; E. Van Hese
2007-05-28T23:59:59.000Z
Both numerical simulations and observational evidence indicate that the outer regions of galaxies and dark matter haloes are typically mildly to significantly radially anisotropic. The inner regions can be significantly non-isotropic, depending on the dynamical formation and evolution processes. In an attempt to break the lack of simple dynamical models that can reproduce this behaviour, we explore a technique to construct dynamical models with an arbitrary density and an arbitrary anisotropy profile. We outline a general construction method and propose a more practical approach based on a parameterized anisotropy profile. This approach consists of fitting the density of the model with a set of dynamical components, each of which have the same anisotropy profile. Using this approach we avoid the delicate fine-tuning difficulties other fitting techniques typically encounter when constructing radially anisotropic models. We present a model anisotropy profile that generalizes the Osipkov-Merritt profile, and that can represent any smooth monotonic anisotropy profile. Based on this model anisotropy profile, we construct a very general seven-parameter set of dynamical components for which the most important dynamical properties can be calculated analytically. We use the results to look for simple one-component dynamical models that generate simple potential-density pairs while still supporting a flexible anisotropy profile. We present families of Plummer and Hernquist models in which the anisotropy at small and large radii can be chosen as free parameters. We also generalize these two families to a three-parameter family that self-consistently generates the set of Veltmann potential-density pairs. (Abridged...)
Consistent nonlinear dynamics: identifying model inadequacy
Patrick E. McSharry; Leonard A. Smith
2004-03-09T23:59:59.000Z
Empirical modelling often aims for the simplest model consistent with the data. A new technique is presented which quantifies the consistency of the model dynamics as a function of location in state space. As is well-known, traditional statistics of nonlinear models like root-mean-square (RMS) forecast error can prove misleading. Testing consistency is shown to overcome some of the deficiencies of RMS error, both within the perfect model scenario and when applied to data from several physical systems using previously published models. In particular, testing for consistent nonlinear dynamics provides insight towards (i) identifying when a delay reconstruction fails to be an embedding, (ii) allowing state dependent model selection and (iii) optimising local neighbourhood size. It also provides a more relevant (state dependent) threshold for identifying false nearest neighbours.
Dynamic models for nonstationary signal segmentation
Penny, Will
widely used in the biomedical signal processing com munity there are relatively few applications usingDynamic models for nonstationary signal segmentation William D. Penny and Stephen J. Roberts wknown parametric technique for the spectral esti mation of stationary signals [1]. The standard AR model can also
STOCHASTIC DYNAMICS OF A COUPLED ATMOSPHEREOCEAN MODEL
by an energy balance model. The oceanic dynamics is de- scribed by the Navier-Stokes equation in vorticity form and the transport equations for heat and salinity. The energy balance model is under random impact due to's longwave radiation coefficient and the shortwave solar radiation profile. Third, we have demon- strated
Dynamic Modeling of Butterfly Subdivision Surfaces
Qin, Hong
on control vertices. This provides the user an intuitive and natural feeling that is produced while modeling manipulation of control points, whereas we provide interaction tools that directly manipulate the smooth limitDynamic Modeling of Butterfly Subdivision Surfaces Chhandomay Mandal, Hong Qin, Member, IEEE
Six Degree of Freedom Morphing Aircraft Dynamical Model with Aerodynamics
Niksch, Adam
2010-01-14T23:59:59.000Z
model of a morphing aircraft is needed. This paper develops an aerodynamic model and a dynamic model of a morphing flying wing aircraft. The dynamic model includes realistic aerodynamic forces, consisting of lift, drag, and pitching moment about...
Modeling the Dynamics of Compromised Networks
Soper, B; Merl, D M
2011-09-12T23:59:59.000Z
Accurate predictive models of compromised networks would contribute greatly to improving the effectiveness and efficiency of the detection and control of network attacks. Compartmental epidemiological models have been applied to modeling attack vectors such as viruses and worms. We extend the application of these models to capture a wider class of dynamics applicable to cyber security. By making basic assumptions regarding network topology we use multi-group epidemiological models and reaction rate kinetics to model the stochastic evolution of a compromised network. The Gillespie Algorithm is used to run simulations under a worst case scenario in which the intruder follows the basic connection rates of network traffic as a method of obfuscation.
Assessment of Algal Farm Designs Using a Dynamic Modular Approach
Abodeely, Jared [Idaho National Laboratory (INL), Idaho Falls, ID (United States). Biofuels and Renewable Energy Technology; Coleman, Andre M. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States). Hydrology Technical Group; Stevens, Daniel M. [Idaho National Laboratory (INL), Idaho Falls, ID (United States). Biofuels and Renewable Energy Technology; Ray, Allison E. [Idaho National Laboratory (INL), Idaho Falls, ID (United States). Biofuels and Renewable Energy Technology; Cafferty, Kara G. [Idaho National Laboratory (INL), Idaho Falls, ID (United States). Biofuels and Renewable Energy Technology; Newby, Deborah T. [Idaho National Laboratory (INL), Idaho Falls, ID (United States). Biofuels and Renewable Energy Technology
2014-07-01T23:59:59.000Z
The notion of renewable energy provides an important mechanism for diversifying an energy portfolio, which ultimately would have numerous benefits including increased energy resilience, reduction of foreign energy supplies, reduced GHG emissions, development of a green energy sector that contributes to economic growth, and providing a sustainable energy supply. The conversion of autotrophic algae to liquid transportation fuels is the basis of several decades of research to competitively bring energy-scale production into reality; however, many challenges still remain for making algal biofuels economically viable. Addressing current challenges associated with algal production systems, in part, requires the ability to assess spatial and temporal variability, rapidly evaluate alternative algal production system designs, and perform large-scale assessments considering multiple scenarios for thousands of potential sites. We introduce the Algae Logistics Model (ALM) which helps to address these challenges. The flexible nature of the ALM architecture allows the model to: 1) interface with external biomass production and resource assessment models, as well as other relevant datasets including those with spatiotemporal granularity; 2) interchange design processes to enable operational and economic assessments of multiple design configurations, including the integration of current and new innovative technologies; and 3) conduct trade-off analysis to help understand the site-specific techno-economic trade-offs and inform technology decisions. This study uses the ALM to investigate a baseline open-pond production system determined by model harmonization efforts conducted by the U.S. Department of Energy. Six sites in the U.S. southern-tier were sub-selected and assessed using daily site-specific algae biomass productivity data to determine the economic viability of large-scale open-pond systems. Results show that costs can vary significantly depending on location and biomass productivity and that integration of novel dewatering equipment, order of operations, and equipment scaling can also have significant impacts on economics.
Assessment of Algal Farm Designs using a Dynamic Modular Approach
Abodeely, Jared M. [Idaho National Laboratory (INL), Idaho Falls, ID (United States). Biofuels and Renewable Energy Technology; Stevens, Daniel M. [Idaho National Laboratory (INL), Idaho Falls, ID (United States). Biofuels and Renewable Energy Technology; Ray, Allison E. [Idaho National Laboratory (INL), Idaho Falls, ID (United States). Biofuels and Renewable Energy Technology; Newby, Deborah T. [Idaho National Laboratory (INL), Idaho Falls, ID (United States). Biofuels and Renewable Energy Technology; Coleman, Andre M. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States). Hydrology Technical Group; Cafferty, Kara G. [Idaho National Laboratory (INL), Idaho Falls, ID (United States). Biofuels and Renewable Energy Technology
2014-07-01T23:59:59.000Z
The notion of renewable energy provides an importantmechanism for diversifying an energy portfolio,which ultimately would have numerous benefits including increased energy resilience, reduced reliance on foreign energysupplies, reduced GHG emissions, development of a green energy sector that contributes to economic growth,and providing a sustainable energy supply. The conversion of autotrophic algae to liquid transportation fuels is the basis of several decades of research to competitively bring energy-scale production into reality; however, many challenges still remain for making algal biofuels economically viable. Addressing current challenges associatedwith algal production systems, in part, requires the ability to assess spatial and temporal variability, rapidly evaluate alternative algal production system designs, and perform large-scale assessments considering multiple scenarios for thousands of potential sites. We introduce the development and application of the Algae Logistics Model (ALM) which is tailored to help address these challenges. The flexible nature of the ALM architecture allows the model to: 1) interface with external biomass production and resource assessment models, as well as other relevant datasets including those with spatiotemporal granularity; 2) interchange design processes to enable operational and economic assessments ofmultiple design configurations, including the integration of current and new innovative technologies; and 3) conduct trade-off analysis to help understand the site-specific techno-economic trade-offs and inform technology decisions. This study uses the ALM to investigate a baseline open-pond production system determined by model harmonization efforts conducted by the U.S. Department of Energy. Six sites in the U.S. southern-tierwere sub-selected and assessed using daily site-specific algaebiomass productivity data to determine the economic viability of large-scale open-pond systems. Results show that costs can vary significantly depending on location and biomass productivity and that integration of novel dewatering equipment, order of operations, and equipment scaling can also have significant impacts on economics.
Dynamical dark matter. II. An explicit model
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Dienes, Keith R.; Thomas, Brooks
2012-04-01T23:59:59.000Z
In a recent paper [K. R. Dienes and B. Thomas, Phys. Rev. D 85, 083523 (2012).], we introduced “dynamical dark matter,” a new framework for dark-matter physics, and outlined its underlying theoretical principles and phenomenological possibilities. Unlike most traditional approaches to the dark-matter problem which hypothesize the existence of one or more stable dark-matter particles, our dynamical dark-matter framework is characterized by the fact that the requirement of stability is replaced by a delicate balancing between cosmological abundances and lifetimes across a vast ensemble of individual dark-matter components. This setup therefore collectively produces a time-varying cosmological dark-matter abundance, and the different dark-matter components can interact and decay throughout the current epoch. While the goal of our previous paper was to introduce the broad theoretical aspects of this framework, the purpose of the current paper is to provide an explicit model of dynamical dark matter and demonstrate that this model satisfies all collider, astrophysical, and cosmological constraints. The results of this paper therefore constitute an “existence proof” of the phenomenological viability of our overall dynamical dark-matter framework, and demonstrate that dynamical dark matter is indeed a viable alternative to the traditional paradigm of dark-matter physics. Dynamical dark matter must therefore be considered alongside other approaches to the dark-matter problem, particularly in scenarios involving large extra dimensions or string theory in which there exist large numbers of particles which are neutral under standard-model symmetries.
Analytical modeling of balloon launch dynamics
Strganac, Thomas W
1980-01-01T23:59:59.000Z
aerodynam1cs. Actual fl1ght data has been used to qualify the model via comparisons of the launch trans1ent configurations. DEDICATION To my father. . THOMAS JOHN STRGANAC 1922-1980 . . . who provided me the examp1e to fo1Iow in life. ACKNOWLEDGEMENTS... OF TABLES. LIST OF FIGURES NOMENCLATURE. INTRODUCTION. PRESENT STATUS. DYNAMIC MODEL Forces on the Balloon. Buoyancy . Weight Distribution. Catenary . Bubble Aerodynamics, Equations of Motion. Kutta-Simpson Solution Technique NUMERICAL MODEL...
Modeling of Reactor Kinetics and Dynamics
Matthew Johnson; Scott Lucas; Pavel Tsvetkov
2010-09-01T23:59:59.000Z
In order to model a full fuel cycle in a nuclear reactor, it is necessary to simulate the short time-scale kinetic behavior of the reactor as well as the long time-scale dynamics that occur with fuel burnup. The former is modeled using the point kinetics equations, while the latter is modeled by coupling fuel burnup equations with the kinetics equations. When the equations are solved simultaneously with a nonlinear equation solver, the end result is a code with the unique capability of modeling transients at any time during a fuel cycle.
DYNAMIC MODELING PROTON EXCHANGE MEMBRANE FUEL CELL
Mease, Kenneth D.
DYNAMIC MODELING PROTON EXCHANGE MEMBRANE FUEL CELL OVERVIEW Current/Completed Plug Power to garner SCAQMD funding for fuel cell testing GenCore system is sensitive to diluents · As built design stream to compensate for removal of EGR · Functionality of the modified GenCore Fuel Cell system
Feature extraction for structural dynamics model validation
Hemez, Francois [Los Alamos National Laboratory; Farrar, Charles [Los Alamos National Laboratory; Park, Gyuhae [Los Alamos National Laboratory; Nishio, Mayuko [UNIV OF TOKYO; Worden, Keith [UNIV OF SHEFFIELD; Takeda, Nobuo [UNIV OF TOKYO
2010-11-08T23:59:59.000Z
This study focuses on defining and comparing response features that can be used for structural dynamics model validation studies. Features extracted from dynamic responses obtained analytically or experimentally, such as basic signal statistics, frequency spectra, and estimated time-series models, can be used to compare characteristics of structural system dynamics. By comparing those response features extracted from experimental data and numerical outputs, validation and uncertainty quantification of numerical model containing uncertain parameters can be realized. In this study, the applicability of some response features to model validation is first discussed using measured data from a simple test-bed structure and the associated numerical simulations of these experiments. issues that must be considered were sensitivity, dimensionality, type of response, and presence or absence of measurement noise in the response. Furthermore, we illustrate a comparison method of multivariate feature vectors for statistical model validation. Results show that the outlier detection technique using the Mahalanobis distance metric can be used as an effective and quantifiable technique for selecting appropriate model parameters. However, in this process, one must not only consider the sensitivity of the features being used, but also correlation of the parameters being compared.
Receptor modeling assessment of particle total exposure assessment methodology data
Yakovleva, E.; Hopke, P.K.; Wallace, L.
1999-10-15T23:59:59.000Z
Data from the 1991 Particle Total Exposure Assessment Methodology (PTEAM) study in Riverside, CA, were analyzed using a new receptor modeling method. In this study, ambient (outdoor), indoor, and personal particulate matter (PM) concentrations and elemental concentrations of PM{sub 2.5} and PM{sub 10} were measured for a number of participants. These measurements made is possible to relate the pollution to which people were exposed throughout their daily activities with the outdoor air conditions. Personal daytime concentrations of the PM{sub 10} and majority of elements were significantly higher than outdoor or indoor concentrations, suggesting that a significant part of personal aerosol exposure is the result of personal daily activities. Possible sources of additional particulate mass include resuspension of particles that penetrate from the outdoors and formation of new particles during cooking, smoking, etc. Positive matrix factorization analysis was performed to describe the sources of personal exposure. To identify relative contribution of different sources, regression of the particulate matter mass against the factor contributions was performed. Major sources of PM{sub 2.5} were oil combustion, nonferrous metal operations, and motor vehicles. The mass contributions of particles from these sources were similar for outdoor air and personal exposure. Personal exposure to particles from these sources can be controlled by changing outdoor sources. The primary source of PM{sub 10} was soil.
Assessment of Combustion and Turbulence Models for the Simulation...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Combustion and Turbulence Models for the Simulation of Combustion Processes in a DI Diesel Engine Assessment of Combustion and Turbulence Models for the Simulation of Combustion...
Transactions in GIS Dynamic Modelling and Visualization on the Internet
Worboys, Mike
1 Transactions in GIS Dynamic Modelling and Visualization on the Internet Bo Huang* and Michael F for GIS to incorporate dynamic analytic models. At the same time, there is a need to distribute results of dynamic GIS using the Internet. Therefore, this paper sets out to explore the implementation of dynamic
Model for assessing bronchial mucus transport
Agnew, J.E.; Bateman, J.R.M.; Pavia, D.; Clarke, S.W.
1984-02-01T23:59:59.000Z
The authors propose a scheme for the assessment of regional mucus transport using inhaled Tc-99m aerosol particles and quantitative analysis of serial gamma-camera images. The model treats input to inner and intermediate lung regions as the total of initial deposition there plus subsequent transport into these regions from more peripheral airways. It allows for interregional differences in the proportion of particles deposited on the mucus-bearing conducting airways, and does not require a gamma image 24 hr after particle inhalation. Instead, distribution of particles reaching the respiratory bronchioles or alveoli is determined from a Kr-81m ventilation image, while the total amount of such deposition is obtained from 24-hr Tc-99m retention measured with a sensitive counter system. The model is applicable to transport by mucociliary action or by cough, and has been tested in ten normal and ten asthmatic subjects.
A Dynamic Network Oligopoly Model Transportation Costs, Product Differentiation,
Nagurney, Anna
of Operations & Information Management Isenberg School of Management University of Massachusetts AmherstA Dynamic Network Oligopoly Model with Transportation Costs, Product Differentiation, and Quality of Massachusetts Amherst A Dynamic Network Oligopoly Model with Quality Competition #12;Acknowledgments
The dynamic radiation environment assimilation model (DREAM)
Reeves, Geoffrey D [Los Alamos National Laboratory; Koller, Josef [Los Alamos National Laboratory; Tokar, Robert L [Los Alamos National Laboratory; Chen, Yue [Los Alamos National Laboratory; Henderson, Michael G [Los Alamos National Laboratory; Friedel, Reiner H [Los Alamos National Laboratory
2010-01-01T23:59:59.000Z
The Dynamic Radiation Environment Assimilation Model (DREAM) is a 3-year effort sponsored by the US Department of Energy to provide global, retrospective, or real-time specification of the natural and potential nuclear radiation environments. The DREAM model uses Kalman filtering techniques that combine the strengths of new physical models of the radiation belts with electron observations from long-term satellite systems such as GPS and geosynchronous systems. DREAM includes a physics model for the production and long-term evolution of artificial radiation belts from high altitude nuclear explosions. DREAM has been validated against satellites in arbitrary orbits and consistently produces more accurate results than existing models. Tools for user-specific applications and graphical displays are in beta testing and a real-time version of DREAM has been in continuous operation since November 2009.
Analytical modeling of balloon launch dynamics
Strganac, Thomas W
1980-01-01T23:59:59.000Z
Subject; Aerospace Engineer1ng ANALYTICAL MODELING OF BALLOON LAUNCH DYNAMICS A Thesis by THOMAS WILLIAM STRGANAC Approved as to sty1e and content by: (Chairman of Committee) (Member) (Member) (Head of Dep rtment) December 1980 ABSTRACT Analyt1... aerodynam1cs. Actual fl1ght data has been used to qualify the model via comparisons of the launch trans1ent configurations. DEDICATION To my father. . THOMAS JOHN STRGANAC 1922-1980 . . . who provided me the examp1e to fo1Iow in life. ACKNOWLEDGEMENTS...
Direct modelling of envelope dynamics in resonant inverters
is to model the AC dynamics from input modulation to output envelops to facilitate optimised controller designDirect modelling of envelope dynamics in resonant inverters Y. Yin, R. Zane, R. Erickson and J. Glaser A direct dynamic modelling approach is proposed for envelope signals in resonant inverters
Restoration of the Potosi Dynamic Model 2010
Adushita, Yasmin; Leetaru, Hannes
2014-09-30T23:59:59.000Z
In topical Report DOE/FE0002068-1 [2] technical performance evaluations on the Cambrian Potosi Formation were performed through reservoir modeling. The data included formation tops from mud logs, well logs from the VW1 and the CCS1 wells, structural and stratigraphic formation from three dimensional (3D) seismic data, and field data from several waste water injection wells for Potosi Formation. Intention was for two million tons per annum (MTPA) of CO2 to be injected for 20 years. In this Task the 2010 Potosi heterogeneous model (referred to as the "Potosi Dynamic Model 2010" in this report) was re-run using a new injection scenario; 3.2 MTPA for 30 years. The extent of the Potosi Dynamic Model 2010, however, appeared too small for the new injection target. It was not sufficiently large enough to accommodate the evolution of the plume. Also, it might have overestimated the injection capacity by enhancing too much the pressure relief due to the relatively close proximity between the injector and the infinite acting boundaries. The new model, Potosi Dynamic Model 2013a, was built by extending the Potosi Dynamic Model 2010 grid to 30 miles x 30 miles (48 km by 48 km), while preserving all property modeling workflows and layering. This model was retained as the base case. Potosi Dynamic Model 2013.a gives an average CO2 injection rate of 1.4 MTPA and cumulative injection of 43 Mt in 30 years, which corresponds to 45% of the injection target. This implies that according to this preliminary model, a minimum of three (3) wells could be required to achieve the injection target. The injectivity evaluation of the Potosi formation will be revisited in topical Report 15 during which more data will be integrated in the modeling exercise. A vertical flow performance evaluation could be considered for the succeeding task to determine the appropriate tubing size, the required injection tubing head pressure (THP) and to investigate whether the corresponding well injection rate falls within the tubing erosional velocity limit. After 30 years, the plume extends 15 miles (24 km) in E-W and 14 miles (22 km) in N-S directions. After injection is completed, the plume continues to migrate laterally, mainly driven by the remaining pressure gradient. After 100 years post-injection, the plume extends 17 miles (27 km) in E-W and 15 miles (24 km) in N-S directions. The increase of reservoir pressure at the end of injection is approximately 370 psia around the injector and gradually decreases away from the well. The reservoir pressure increase is less than 30 psia beyond 14 miles (22 km) away from injector. The initial reservoir pressure is restored after approximately 20 years post-injection. This result, however, is associated with uncertainties on the boundary conditions, and a sensitivity analysis could be considered for the succeeding tasks. It is important to remember that the respective plume extent and areal pressure increase corresponds to an injection of 43 Mt CO2. Should the targeted cumulative injection of 96 Mt be achieved; a much larger plume extent and areal pressure increase could be expected. Re-evaluating the permeability modeling, vugs and heterogeneity distributions, and relative permeability input could be considered for the succeeding Potosi formation evaluations. A simulation using several injectors could also be considered to determine the required number of wells to achieve the injection target while taking into account the pressure interference.
A Game-Theoretical Dynamic Model for Electricity Markets
Aswin Kannan
2010-10-06T23:59:59.000Z
Oct 6, 2010 ... Abstract: We present a game-theoretical dynamic model for competitive electricity markets.We demonstrate that the model can be used to ...
A Game-Theoretical Dynamic Model for Electricity Markets
Oct 6, 2010 ... Abstract: We present a game-theoretical dynamic model for competitive electricity markets.We demonstrate that the model can be used to ...
AFDM: An Advanced Fluid-Dynamics Model
Bohl, W.R.; Parker, F.R. (Los Alamos National Lab., NM (USA)); Wilhelm, D. (Kernforschungszentrum Karlsruhe GmbH (Germany, F.R.). Inst. fuer Neutronenphysik und Reaktortechnik); Berthier, J. (CEA Centre d'Etudes Nucleaires de Grenoble, 38 (France)); Goutagny, L. (CEA Centre d'Etudes Nucleaires de Cadarache, 13 - Saint-Paul-lez-Durance (France). Inst. de Protection et de Surete Nucleaire); Ninokata,
1990-09-01T23:59:59.000Z
AFDM, or the Advanced Fluid-Dynamics Model, is a computer code that investigates new approaches simulating the multiphase-flow fluid-dynamics aspects of severe accidents in fast reactors. The AFDM formalism starts with differential equations similar to those in the SIMMER-II code. These equations are modified to treat three velocity fields and supplemented with a variety of new models. The AFDM code has 12 topologies describing what material contacts are possible depending on the presence or absence of a given material in a computational cell, on the dominant liquid, and on the continuous phase. Single-phase, bubbly, churn-turbulent, cellular, and dispersed flow regimes are permitted for the pool situations modeled. Virtual mass terms are included for vapor in liquid-continuous flow. Interfacial areas between the continuous and discontinuous phases are convected to allow some tracking of phenomenological histories. Interfacial areas are also modified by models of nucleation, dynamic forces, turbulence, flashing, coalescence, and mass transfer. Heat transfer is generally treated using engineering correlations. Liquid-vapor phase transitions are handled with the nonequilibrium, heat-transfer-limited model, whereas melting and freezing processes are based on equilibrium considerations. Convection is treated using a fractional-step method of time integration, including a semi-implicit pressure iteration. A higher-order differencing option is provided to control numerical diffusion. The Los Alamos SESAME equation-of-state has been implemented using densities and temperatures as the independent variables. AFDM programming has vectorized all computational loops consistent with the objective of producing an exportable code. 24 refs., 4 figs.
Dislocation dynamics: from microscopic models to macroscopic crystal plasticity
Hajj, A El; Monneau, R
2009-01-01T23:59:59.000Z
In this paper we study the connection between four models describing dislocation dynamics: a generalized 2D Frenkel-Kontorova model at the atomic level, the Peierls-Nabarro model, the discrete dislocation dynamics and a macroscopic model with dislocation densities. We show how each model can be deduced from the previous one at a smaller scale.
ESD.864 Modeling and Assessment for Policy, Spring 2011
Selin, Noelle
ESD.864 Modeling and Assessment for Policy explores how scientific information and quantitative models can be used to inform policy decision-making. Students will develop an understanding of quantitative modeling techniques ...
Dr. Atul Jain
2005-04-17T23:59:59.000Z
This report outlines the progress on the development and application of Integrated Assessment Modeling of Carbon Sequestrations and Land Use Emissions supported by the DOE Office of Biological and Environmental Research (OBER), U.S. Department of Energy, Grant No. DOE-DE-FG02-01ER63069. The overall objective of this collaborative project between the University of Illinois at Urbana-Champaign (UIUC), Oak Ridge National Laboratory (ORNL), Lawrence Livermore National Laboratory (LLNL), and Pacific Northwest National Laboratory (PNNL) was to unite the latest advances in carbon cycle research with scientifically based models and policy-related integrated assessment tools that incorporate computationally efficient representations of the latest knowledge concerning science and emission trajectories, and their policy implications. As part of this research we accomplished the following tasks that we originally proposed: (1) In coordination with LLNL and ORNL, we enhanced the Integrated Science Assessment Model's (ISAM) parametric representation of the ocean and terrestrial carbon cycles that better represent spatial and seasonal variations, which are important to study the mechanisms that influence carbon sequestration in the ocean and terrestrial ecosystems; (2) Using the MiniCAM modeling capability, we revised the SRES (IPCC Special Report on Emission Scenarios; IPCC, 2000) land use emission scenarios; and (3) On the application front, the enhanced version of ISAM modeling capability is applied to understand how short- and long-term natural carbon fluxes, carbon sequestration, and human emissions contribute to the net global emissions (concentrations) trajectories required to reach various concentration (emission) targets. Under this grant, 21 research publications were produced. In addition, this grant supported a number of graduate and undergraduate students whose fundamental research was to learn a disciplinary field in climate change (e.g., ecological dynamics and ocean circulations) and then complete research on how this field could be linked to the other factors we need to consider in its dynamics (e.g., land use, ocean and terrestrial carbon sequestration and climate change).
Gradient Navigation Model for Pedestrian Dynamics
Felix Dietrich; Gerta Köster
2014-05-14T23:59:59.000Z
We present a new microscopic ODE-based model for pedestrian dynamics: the Gradient Navigation Model. The model uses a superposition of gradients of distance functions to directly change the direction of the velocity vector. The velocity is then integrated to obtain the location. The approach differs fundamentally from force based models needing only three equations to derive the ODE system, as opposed to four in, e.g., the Social Force Model. Also, as a result, pedestrians are no longer subject to inertia. Several other advantages ensue: Model induced oscillations are avoided completely since no actual forces are present. The derivatives in the equations of motion are smooth and therefore allow the use of fast and accurate high order numerical integrators. At the same time, existence and uniqueness of the solution to the ODE system follow almost directly from the smoothness properties. In addition, we introduce a method to calibrate parameters by theoretical arguments based on empirically validated assumptions rather than by numerical tests. These parameters, combined with the accurate integration, yield simulation results with no collisions of pedestrians. Several empirically observed system phenomena emerge without the need to recalibrate the parameter set for each scenario: obstacle avoidance, lane formation, stop-and-go waves and congestion at bottlenecks. The density evolution in the latter is shown to be quantitatively close to controlled experiments. Likewise, we observe a dependence of the crowd velocity on the local density that compares well with benchmark fundamental diagrams.
Nonlinear Hybrid Dynamical Systems: Modeling, Optimal Control, and Applications
Stryk, Oskar von
Nonlinear Hybrid Dynamical Systems: Modeling, Optimal Control, and Applications Martin Buss1¨unchen, Germany Abstract. Nonlinear hybrid dynamical systems are the main focus of this paper. A modeling Introduction The recent interest in nonlinear hybrid dynamical systems has forced the merger of two very
Modelling and simulation of multidisciplinary dynamic systems Lead: A. Fakri.
Baudoin, GeneviĂ¨ve
Modelling and simulation of multidisciplinary dynamic systems Lead: A. Fakri. Permanent members: P. Integration of various engineering disciplines and the consideration of the dynamic control need a concurrent suited for the energy exchanges to study multidisciplinary dynamic engineering systems modelling. Our
Dynamics of an Economics Model for Generation Coupled to the OPA Power Transmission Model
Dobson, Ian
Dynamics of an Economics Model for Generation Coupled to the OPA Power Transmission Model B. A a dynamic model of the power transmission system (OPA) and a simple economic model of power generation development. Despite the simplicity of this economic model, complex dynamics both in the economics (prices
Linking Dynamical and Population Genetic Models of Persistent Viral Infection
Kelly, John K.; Williamson, Scott; Orive, Maria E.; Smith, Marilyn S.; Holt, Robert D.
2003-07-01T23:59:59.000Z
This article develops a theoretical framework to link dynamical and population genetic models of persistent viral infection. This linkage is useful because, while the dynamical and population genetic theories have developed ...
Student Learning Assessment: Towards an Environmental Model for
Bieber, Michael
Student Learning Assessment: Towards an Environmental Model for Academic and Student Services in the classroom. · And, implicitly, design assessment methods that lead to documentation and improvement. #12;MSCHE and Student Learning Assessment #12;The NJIT Academic Affairs Institutional Level Learning Goals 1
AFDM: An Advanced Fluid-Dynamics Model
Berthier, J. (CEA Centre d'Etudes Nucleaires de Grenoble, 38 (France)); Wilhelm, D. (Kernforschungszentrum Karlsruhe GmbH (Germany, F.R.). Inst. fuer Neutronenphysik und Reaktortechnik); Bohl, W.R. (Los Alamos National Lab., NM (USA))
1990-09-01T23:59:59.000Z
This report consists of three parts. First, for the standard Advanced Fluid-Dynamics Model (AFDM), heat-transfer coefficients between components are worked out, depending on the different possible topologies. Conduction, convection, and radiative heat-transfer mechanisms are modeled. For solid particles, discontinuous phases that obey a rigid'' model, and components lacking relative motion, heat transfer is by conduction. Convection is represented for fluids in motion inside circulating'' bubbles and/or droplets. Radiation is considered between droplets in vapor continuous flow. In addition, a film-boiling model has been formulated, where radiation provides the lower limit on the fuel-to-coolant heat-transfer coefficient. Second, the momentum-exchange coefficients are defined for the standard AFDM. Between a continuous and discontinuous phase, the model consists of both laminar and turbulent terms. The most important feature is the drag coefficient in the turbulent term. It is calculated by a drag similarity hypothesis with limits for large Reynolds numbers, distorted particles,'' and churn-turbulent flow. A unique hysteresis algorithm exists to treat the liquid continuous to vapor continuous transition. Two discontinuous components are coupled using a turbulent term with an input drag coefficient. Fluid- structure momentum exchange is represented with a standard friction-factor correlation. Third, the formulas used for the AFDM simplified Step 1 models are discussed. These include the heat-transfer coefficients, the momentum-exchange functions, and the manner in which interfacial areas are determined from input length scales. The simplified modeling uses steady-state engineering correlations, as in SIMMER-II.
GIS and plume dispersion modeling for population exposure assessment
Archer, Jeffrey Keith
1998-01-01T23:59:59.000Z
that can prove extremely valuable in the modeling process. This data can serve to extend the capabilities of air pollution dispersion modeling from mere estimation of concentrations to comprehensive exposure assessment of neighboring populations (Lowry, et...
Coastal Dynamics 2013 MODELING OF THE TOHOKU-OKI 2011 TSUNAMI GENERATION, FAR-FIELD AND
Kirby, James T.
Coastal Dynamics 2013 Paper No. MODELING OF THE TOHOKU-OKI 2011 TSUNAMI GENERATION, FAR Tsunami hazard assessment for future megathrust earthquakes requires that we understand the source mechanisms and tsunami generation processes for large historical events, such as the devastating Tohoku
Solid Oxide Fuel Cell: Perspective of Dynamic Modeling and Control
Huang, Biao
Solid Oxide Fuel Cell: Perspective of Dynamic Modeling and Control Biao Huang Yutong Qi Monjur: This paper presents a review of state-of-the-art solid oxide fuel cells (SOFC), from perspective of dynamic. Keywords: Solid Oxide Fuel Cell, Control Relevant Model, Model Predictive Control 1. INTRODUCTION Today
Dynamic Bayesian Networks model to estimate process availability.
Paris-Sud XI, Université de
Dynamic Bayesian Networks model to estimate process availability. Weber P. Centre de Recherche en reported here explores a new methodology to develop Dynamic Bayesian Network-based Availability of the system availability estimation comparing DBN model with the classical Markov chain model. Keywords
Uncertainties and assessments of chemistry-climate models of the
Wirosoetisno, Djoko
and assessments of chemistry-climate models of the stratosphere. Atmospheric Chemistry and Physics, 3 (1). pp. 1, 127, 2003 www.atmos-chem-phys.org/acp/3/1/ Atmospheric Chemistry and Physics UncertaintiesUncertainties and assessments of chemistry-climate models of the stratosphere Article Published
Accepted Manuscript Title: Quantitative assessment of dynamic control of fingertip
Valero-Cuevas, Francisco
spring prone to buckling between the thumb and first finger to quantify dynamic control over, lateral pinch, and tripod pinch strength, Box and Blocks, and 9- hole peg test. Six of 10 pollicized hands
Structure and Dynamics of Dinucleosomes Assessed by Atomic Force Microscopy
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Filenko, Nina A.; Palets, Dmytro B.; Lyubchenko, Yuri L.
2012-01-01T23:59:59.000Z
Dynamics of nucleosomes and their interactions are important for understanding the mechanism of chromatin assembly. Internucleosomal interaction is required for the formation of higher-order chromatin structures. Although H1 histone is critically involved in the process of chromatin assembly, direct internucleosomal interactions contribute to this process as well. To characterize the interactions of nucleosomes within the nucleosome array, we designed a dinucleosome and performed direct AFM imaging. The analysis of the AFM data showed dinucleosomes are very dynamic systems, enabling the nucleosomes to move in a broad range along the DNA template. Di-nucleosomes in close proximity were observed, but their populationmore »was low. The use of the zwitterionic detergent, CHAPS, increased the dynamic range of the di-nucleosome, facilitating the formation of tight di-nucleosomes. The role of CHAPS and similar natural products in chromatin structure and dynamics is also discussed.« less
LDRD final report : mesoscale modeling of dynamic loading of...
Office of Scientific and Technical Information (OSTI)
Technical Report: LDRD final report : mesoscale modeling of dynamic loading of heterogeneous materials. Citation Details In-Document Search Title: LDRD final report : mesoscale...
Assessment of Tools and Data for System-Level Dynamic Analyses
Steven J. Piet; Nick R. Soelberg
2011-06-01T23:59:59.000Z
The only fuel cycle for which dynamic analyses and assessments are not needed is the null fuel cycle - no nuclear power. For every other concept, dynamic analyses are needed and can influence relative desirability of options. Dynamic analyses show how a fuel cycle might work during transitions from today's partial fuel cycle to something more complete, impact of technology deployments, location of choke points, the key time lags, when benefits can manifest, and how well parts of fuel cycles work together. This report summarizes the readiness of existing Fuel Cycle Technology (FCT) tools and data for conducting dynamic analyses on the range of options. VISION is the primary dynamic analysis tool. Not only does it model mass flows, as do other dynamic system analysis models, but it allows users to explore various potential constraints. The only fuel cycle for which constraints are not important are those in concept advocates PowerPoint presentations; in contrast, comparative analyses of fuel cycles must address what constraints exist and how they could impact performance. The most immediate tool need is extending VISION to the thorium/U233 fuel cycle. Depending on further clarification of waste management strategies in general and for specific fuel cycle candidates, waste management sub-models in VISION may need enhancement, e.g., more on 'co-flows' of non-fuel materials, constraints in waste streams, or automatic classification of waste streams on the basis of user-specified rules. VISION originally had an economic sub-model. The economic calculations were deemed unnecessary in later versions so it was retired. Eventually, the program will need to restore and improve the economics sub-model of VISION to at least the cash flow stage and possibly to incorporating cost constraints and feedbacks. There are multiple sources of data that dynamic analyses can draw on. In this report, 'data' means experimental data, data from more detailed theoretical or empirical calculations on technology performance, and assumptions such as the earliest date a technology can be deployed. The only fuel cycles for which we currently have adequate data are those we are sure we will never build, e.g., a PUREX plant in the U.S. For actual candidates, even for once through LWRs, there remain missing data such as how the fuel cycle would be completed with a geologic repository. The most immediate data needs are probably basic reactor physics data for new concepts and data associated with waste management for anything other than current technology. The readiness of tools and data is fluid and depends on what purposes are envisioned to drive upcoming analyses and further definition of the waste-related characteristics of fuel cycle candidates. Tools and data sets evolve as needs evolve. Thus, much of the document explains that if the FCT program wants a certain type of analysis, then the tools and data needs are as indicated. For example, functions can be treated as either commodities or facilities. Reactors, separation, fuel fabrication, repository are treated as facility types. Other functions such as uranium mining, conversion, enrichment, and waste packaging and non-repository disposal are treated as commodities and therefore not modeled as extensively. In summary, the tools are functional and can answer many fuel cycle questions but some analyses will require that the tools be modified to support those analyses.
Albert, Réka
with a random network with a given degree distribution P(k). Mark edges with probability T. DisregardThe two faces of network dynamics Evolving network models describe the dynamics (assembly, evolution) OF networks by the addition/removal of nodes and edges. It is possible to have network dynamics
Deep Learning Helicopter Dynamics Models Ali Punjani and Pieter Abbeel
Abbeel, Pieter
Deep Learning Helicopter Dynamics Models Ali Punjani and Pieter Abbeel Abstract-- We consider the problem of system identification of helicopter dynamics. Helicopters are complex systems, cou- pling rigid inspiration from recent results in Deep Learning to represent the helicopter dynamics with a Rectified Linear
VISION -- A Dynamic Model of the Nuclear Fuel Cycle
J. J. Jacobson; A. M. Yacout; S. J. Piet; D. E. Shropshire; G. E. Matthern
2006-02-01T23:59:59.000Z
The Advanced Fuel Cycle Initiative’s (AFCI) fundamental objective is to provide technology options that – if implemented – would enable long-term growth of nuclear power while improving sustainability and energy security. The AFCI organization structure consists of four areas; Systems Analysis, Fuels, Separations and Transmutations. The Systems Analysis Working Group is tasked with bridging the program technical areas and providing the models, tools, and analyses required to assess the feasibility of design and deploy¬ment options and inform key decision makers. An integral part of the Systems Analysis tool set is the development of a system level model that can be used to examine the implications of the different mixes of reactors, implications of fuel reprocessing, impact of deployment technologies, as well as potential “exit” or “off ramp” approaches to phase out technologies, waste management issues and long-term repository needs. The Verifiable Fuel Cycle Simulation Model (VISION) is a computer-based simulation model that allows performing dynamic simulations of fuel cycles to quantify infrastructure requirements and identify key trade-offs between alternatives. VISION is intended to serve as a broad systems analysis and study tool applicable to work conducted as part of the AFCI (including costs estimates) and Generation IV reactor development studies.
From quantum to classical dynamics: Dynamic crossover in the relativistic $O(N)$ model
Mesterházy, David; Tanizaki, Yuya
2015-01-01T23:59:59.000Z
We investigate the transition from quantum to classical dynamics in the relativistic $O(N)$ vector model using the nonperturbative functional renormalization group in the real-time formalism. In thermal equilibrium, the theory is characterized by two scales, the interaction range for coherent scattering of particles and the mean free path determined by the rate of incoherent collision with excitations in the thermal medium. Their competition determines the renormalization group flow and the effective dynamics of the model. Here we quantify the dynamic properties of the model in terms of the scale-dependent dynamic critical exponent $z$ for arbitrary temperatures and in $2 \\leq d \\leq 4$ spatial dimensions.
Factoring Gaussian Precision Matrices for Linear Dynamic Models
Frankel, Joe; King, Simon
2007-01-01T23:59:59.000Z
The linear dynamic model (LDM), also known as the Kalman filter model, has been the subject of research in the engineering, control, and more recently, machine learning and speech technology communities. The Gaussian noise processes are usually...
A Dynamic Network Oligopoly Model Transportation Costs, Product Differentiation,
Nagurney, Anna
and Operations Management Isenberg School of Management University of Massachusetts Amherst, Massachusetts 01003A Dynamic Network Oligopoly Model with Transportation Costs, Product Differentiation, and Quality Network Oligopoly Model with Quality Competition #12;Acknowledgments This research was supported, in part
A Dynamic Model of Social Network Formation Brian Skyrms 1
Pemantle, Robin
A Dynamic Model of Social Network Formation Brian Skyrms 1 Robin Pemantle 2;3 ABSTRACT: We consider a dynamic social network model in which agents play repeated games in pairings determined by a stochastically evolving social network. In- dividual agents begin to interact at random, with the interactions
Computational Modeling of Brain Dynamics during Repetitive Head Motions
Burtscher, Martin
Computational Modeling of Brain Dynamics during Repetitive Head Motions Igor Szczyrba School the HIC scale to arbitrary head motions. Our simulations of the brain dynamics in sagittal and horizontal injury modeling, resonance effects 1 Introduction A rapid head motion can result in a severe brain injury
A New Motorcycle Simulator Platform: Mechatronics Design, Dynamics Modeling
Paris-Sud XI, Université de
A New Motorcycle Simulator Platform: Mechatronics Design, Dynamics Modeling and Control L. Nehaoua and dynamics modeling will be presented. Some results are shown, validating the actutation requirements and platform control. 1. INTRODUCTION Road safety has become a major political and economical issue. While all
Learning vehicular dynamics, with application to modeling helicopters
Thrun, Sebastian
Learning vehicular dynamics, with application to modeling helicopters Pieter Abbeel Computer Abstract We consider the problem of modeling a helicopter's dynamics based on stateaction trajectories such as learned by CIFER (the industry standard in helicopter identification), and show that the linear
Learning vehicular dynamics, with application to modeling helicopters
Thrun, Sebastian
Learning vehicular dynamics, with application to modeling helicopters Pieter Abbeel Computer Abstract We consider the problem of modeling a helicopter's dynamics based on state-action trajectories such as learned by CIFER (the industry standard in helicopter identification), and show that the linear
A model simulation of white-winged dove population dynamics in the Tamaulipan Biotic Province
Martinez, Cristina Ann
2002-01-01T23:59:59.000Z
the population dynamics model. The current population dynamics model is useful in the understanding of observed patterns and processes of WWDO population dynamics. The model also serves to direct research efforts that would enhance the reliability of the model...
Hydrodynamic and Ecological Assessment of Nearshore Restoration: A Modeling Study
Yang, Zhaoqing; Sobocinski, Kathryn L.; Heatwole, Danelle W.; Khangaonkar, Tarang; Thom, Ronald M.; Fuller, Roger
2010-04-10T23:59:59.000Z
Along the Pacific Northwest coast, much of the estuarine habitat has been diked over the last century for agricultural land use, residential and commercial development, and transportation corridors. As a result, many of the ecological processes and functions have been disrupted. To protect coastal habitats that are vital to aquatic species, many restoration projects are currently underway to restore the estuarine and coastal ecosystems through dike breaches, setbacks, and removals. Information on physical processes and hydrodynamic conditions are critical for the assessment of the success of restoration actions. Restoration of a 160- acre property at the mouth of the Stillaguamish River in Puget Sound has been proposed. The goal is to restore native tidal habitats and estuary-scale ecological processes by removing the dike. In this study, a three-dimensional hydrodynamic model was developed for the Stillaguamish River estuary to simulate estuarine processes. The model was calibrated to observed tide, current, and salinity data for existing conditions and applied to simulate the hydrodynamic responses to two restoration alternatives. Responses were evaluated at the scale of the restoration footprint. Model data was combined with biophysical data to predict habitat responses at the site. Results showed that the proposed dike removal would result in desired tidal flushing and conditions that would support four habitat types on the restoration footprint. At the estuary scale, restoration would substantially increase the proportion of area flushed with freshwater (< 5 ppt) at flood tide. Potential implications of predicted changes in salinity and flow dynamics are discussed relative to the distribution of tidal marsh habitat.
Learning Usability Assessment Models for Web Sites
Davis, Paul
2012-02-14T23:59:59.000Z
students pursuing advanced degrees in the area of computer-human interaction. These students were divided into two groups and given different scenarios of use of a Web site. They assessed the usability of Web pages from the site, and their data was divided...
Wind resource assessment with a mesoscale non-hydrostatic model
Boyer, Edmond
Wind resource assessment with a mesoscale non- hydrostatic model Vincent Guénard, Center for Energy is developed for assessing the wind resource and its uncertainty. The work focuses on an existing wind farm mast measurements. The wind speed and turbulence fields are discussed. It is shown that the k
Dioxins in San Francisco Conceptual Model/Impairment Assessment
FINAL Dioxins in San Francisco Bay Conceptual Model/Impairment Assessment Prepared by Mike Connor, Donald Yee, Jay Davis, and Christine Werme San Francisco Estuary Institute Prepared for Clean Estuary Partnership November 12, 2004 SFEI Contribution #309 #12;Dioxins in San Francisco Bay: Impairment Assessment
Model for a web based medical technology assessment system
Prabhu, Gopal
1999-01-01T23:59:59.000Z
. In an era of managed care, the very survival of healthcare facilities is linked to the efficient use and application of medical technology. This project will provide a model for implementing a medical technology assessment system. A database of information...
Assessment of Dynamic Closure for Premixed Combustion LES
Langella, Ivan; Swaminathan, Nedunchezhian; Gao, Yuan; Chakraborty, Nilanjan
2015-08-04T23:59:59.000Z
model 1. Introduction High efficiency and low emission can be achieved simultaneously for power plants used in transport sectors, specifically gas turbines, using lean turbulent premixed combustion. A strong interplay between thermochemical and fluid... stream_source_info Langella et al 2015 Combustion Theory and Modelling.pdf.txt stream_content_type text/plain stream_size 77455 Content-Encoding UTF-8 stream_name Langella et al 2015 Combustion Theory and Modelling.pdf.txt Content...
Dynamic Modeling of Cascading Failure in Power Systems
Song, Jiajia; Ghanavati, Goodarz; Hines, Paul D H
2014-01-01T23:59:59.000Z
The modeling of cascading failure in power systems is difficult because of the many different mechanisms involved; no single model captures all of these mechanisms. Understanding the relative importance of these different mechanisms is an important step in choosing which mechanisms need to be modeled for particular types of cascading failure analysis. This work presents a dynamic simulation model of both power networks and protection systems, which can simulate a wider variety of cascading outage mechanisms, relative to existing quasi-steady state (QSS) models. The model allows one to test the impact of different load models and protections on cascading outage sizes. This paper describes each module of the developed dynamic model and demonstrates how different mechanisms interact. In order to test the model we simulated a batch of randomly selected $N-2$ contingencies for several different static load configurations, and found that the distribution of blackout sizes and event lengths from the proposed dynamic...
Dynamic Modeling in Solid-Oxide Fuel Cells Controller Design
Lu, Ning; Li, Qinghe; Sun, Xin; Khaleel, Mohammad A.
2007-06-28T23:59:59.000Z
In this paper, a dynamic model of the solid-oxide fuel cell (SOFC) power unit is developed for the purpose of designing a controller to regulate fuel flow rate, fuel temperature, air flow rate, and air temperature to maintain the SOFC stack temperature, fuel utilization rate, and voltage within operation limits. A lumped model is used to consider the thermal dynamics and the electro-chemial dynamics inside an SOFC power unit. The fluid dynamics at the fuel and air inlets are considered by using the in-flow ramp-rates.
Quantitative Adaptation Analytics for Assessing Dynamic Systems of Systems.
Gauthier, John H.; Miner, Nadine E.; Wilson, Michael L.; Le, Hai D.; Kao, Gio K; Melander, Darryl J.; Longsine, Dennis Earl [Sandia National Laboratories, Unknown, Unknown; Vander Meer, Robert Charles,
2015-01-01T23:59:59.000Z
Our society is increasingly reliant on systems and interoperating collections of systems, known as systems of systems (SoS). These SoS are often subject to changing missions (e.g., nation- building, arms-control treaties), threats (e.g., asymmetric warfare, terrorism), natural environments (e.g., climate, weather, natural disasters) and budgets. How well can SoS adapt to these types of dynamic conditions? This report details the results of a three year Laboratory Directed Research and Development (LDRD) project aimed at developing metrics and methodologies for quantifying the adaptability of systems and SoS. Work products include: derivation of a set of adaptability metrics, a method for combining the metrics into a system of systems adaptability index (SoSAI) used to compare adaptability of SoS designs, development of a prototype dynamic SoS (proto-dSoS) simulation environment which provides the ability to investigate the validity of the adaptability metric set, and two test cases that evaluate the usefulness of a subset of the adaptability metrics and SoSAI for distinguishing good from poor adaptability in a SoS. Intellectual property results include three patents pending: A Method For Quantifying Relative System Adaptability, Method for Evaluating System Performance, and A Method for Determining Systems Re-Tasking.
RAVEN and Dynamic Probabilistic Risk Assessment: Software overview
Andrea Alfonsi; Cristian Rabiti; Diego Mandelli; Joshua Cogliati; Robert Kinoshita; Antonio Naviglio
2014-06-01T23:59:59.000Z
RAVEN is a generic software framework to perform parametric and probabilistic analysis based on the response of complex system codes. The initial development was aimed to provide dynamic risk analysis capabilities to the Thermo-Hydraulic code RELAP-7 [], currently under development at the Idaho National Laboratory. Although the initial goal has been fully accomplished, RAVEN is now a multi-purpose probabilistic and uncertainty quantification platform, capable to agnostically communicate with any system code. This agnosticism has been employed by providing Application Programming Interfaces (APIs). These interfaces are used to allow RAVEN to interact with any code as long as all the parameters that need to be perturbed are accessible by inputs files or via python interfaces. RAVEN is capable to investigate the system response, investigating the input space using Monte Carlo, Grid, or Latin Hyper Cube sampling schemes, but its strength is focused toward system feature discovery, such as limit surfaces, separating regions of the input space leading to system failure, using dynamic supervised learning techniques. The paper presents an overview of the software capabilities and their implementation schemes followed by some application examples.
Safety assessment document for the dynamic test complex (Building 836)
Odell, B.N.; Pfeifer, H.E.
1981-11-24T23:59:59.000Z
A safety assessment was performed to determine if potential accidents at the 836 Complex at Site 300 could present undue hazards to the general public, personnel at Site 300, or have an adverse effect on the environment. The credible accidents that might have an effect on these facilities or have off-site consequences were considered. These were earthquake, extreme wind (including missiles), lightning, flood, criticality, high explosive (H) detonation that disperses uranium and beryllium, spontaneous oxidation of plutonium, explosions due to finely divided particles, and a fire.
Learning Usability Assessment Models for Web Sites
Davis, Paul
2012-02-14T23:59:59.000Z
This research explores an approach to learning types of usability concerns considered useful for the management of Web sites and to identifying usability concerns based on these learned models. By having one or more Web site managers rate a subset...
Generic solar photovoltaic system dynamic simulation model specification.
Ellis, Abraham; Behnke, Michael Robert; Elliott, Ryan Thomas
2013-10-01T23:59:59.000Z
This document is intended to serve as a specification for generic solar photovoltaic (PV) system positive-sequence dynamic models to be implemented by software developers and approved by the WECC MVWG for use in bulk system dynamic simulations in accordance with NERC MOD standards. Two specific dynamic models are included in the scope of this document. The first, a Central Station PV System model, is intended to capture the most important dynamic characteristics of large scale (> 10 MW) PV systems with a central Point of Interconnection (POI) at the transmission level. The second, a Distributed PV System model, is intended to represent an aggregation of smaller, distribution-connected systems that comprise a portion of a composite load that might be modeled at a transmission load bus.
Optimal control with adaptive internal dynamics models
Mitrovic, Djordje; Klanke, Stefan; Vijayakumar, Sethu
2008-01-01T23:59:59.000Z
Optimal feedback control has been proposed as an attractive movement generation strategy in goal reaching tasks for anthropomorphic manipulator systems. The optimal feedback control law for systems with non-linear dynamics ...
Fibre Based Modeling of Wood Dynamics and Fracture
Bridson, Robert
Fibre Based Modeling of Wood Dynamics and Fracture by Sean Meiji Sutherland B.Sc., The University for the simulation of the dynamics and fracturing char- acteristics of wood, specifically its anisotropic behaviour bundles of fibres. Additionally, we describe the conditions under which fracture occurs in the material
Dynamic Simulation Model of a Consumer Foods Production Process !
Sun, Yu
schedule based on product list The SIMUL8 Component 1. Over 200 lines of simula0on code 2. ReadsDynamic Simulation Model of a Consumer Foods Production Process ! Goals · Create a dynamic simula0 Created par0ally automated Excel files to go handin hand with simula0on o Contains all SKUs and meat
Dynamic Modelling for Control of Fuel Cells Federico Zenith
Skogestad, Sigurd
Dynamic Modelling for Control of Fuel Cells Federico Zenith Sigurd Skogestad Department of Chemical Engineering Norwegian University of Science and Technology ( ntnu) Trondheim Abstract Fuel-cell dynamics have been investigated with a variable-resistance board applied to a high temperature polymer fuel cell
UNEDITED PREPRINT Building a dynamic growth model for trembling
García, Oscar
UNEDITED PREPRINT Building a dynamic growth model for trembling aspen in Western Canada without age for even-aged thinned or unthinned stands dominated by trembling aspen. Estimation used permanent sample words: Forest growth and yield, Populus tremuloides, quacking aspen, thinning, dynamical systems, TAG. 1
Water Body Temperature Model for Assessing Climate Change Impacts
Water Body Temperature Model for Assessing Climate Change Impacts on Thermal Cooling Ken Strzepek for Energy and Environmental Policy Research (CEEPR). These two centers--along with collaborators from; understand complex connections among the many forces that will shape our future; and improve methods to model
Small-Signal Stability Assessment of Active Distribution Networks with Dynamic Loads
Pota, Himanshu Roy
the flow of power and the voltage profiles of the system and these profiles are different for different types of loads [3]. In addition to the power flow at and around N. K. Roy, H. R. Pota, and T. F. OrchiSmall-Signal Stability Assessment of Active Distribution Networks with Dynamic Loads N. K. Roy
Using connectionist models to assess programmers' expertise
Chapa-Villarreal, Rodolfo
1994-01-01T23:59:59.000Z
A programmer can be classified as a novice or an expert according to the performance exhibited in a programming related task. The objective of this thesis is to show that a neural network can be used to model the classification strategies...
Dynamic (G2) Model Design Document, 24590-WTP-MDD-PR-01-002, Rev. 12
Deng, Yueying; Kruger, Albert A.
2013-12-16T23:59:59.000Z
The Hanford Tank Waste Treatment and Immobilization Plant (WTP) Statement of Work (Department of Energy Contract DE-AC27-01RV14136, Section C) requires the contractor to develop and use process models for flowsheet analyses and pre-operational planning assessments. The Dynamic (G2) Flowsheet is a discrete-time process model that enables the project to evaluate impacts to throughput from eventdriven activities such as pumping, sampling, storage, recycle, separation, and chemical reactions. The model is developed by the Process Engineering (PE) department, and is based on the Flowsheet Bases, Assumptions, and Requirements Document (24590-WTP-RPT-PT-02-005), commonly called the BARD. The terminologies of Dynamic (G2) Flowsheet and Dynamic (G2) Model are interchangeable in this document. The foundation of this model is a dynamic material balance governed by prescribed initial conditions, boundary conditions, and operating logic. The dynamic material balance is achieved by tracking the storage and material flows within the plant as time increments. The initial conditions include a feed vector that represents the waste compositions and delivery sequence of the Tank Farm batches, and volumes and concentrations of solutions in process equipment before startup. The boundary conditions are the physical limits of the flowsheet design, such as piping, volumes, flowrates, operation efficiencies, and physical and chemical environments that impact separations, phase equilibriums, and reaction extents. The operating logic represents the rules and strategies of running the plant.
Transmission Dynamics of an Influenza Model with Age of Infection ...
2010-07-20T23:59:59.000Z
J Dyn Diff Equat. DOI 10.1007/s10884-010-9178-x. Transmission Dynamics of an Influenza Model with Age of Infection and Antiviral Treatment. Zhipeng Qiu ...
Model reduction for nonlinear dynamical systems with parametric uncertainties
Zhou, Yuxiang Beckett
2012-01-01T23:59:59.000Z
Nonlinear dynamical systems are known to be sensitive to input parameters. In this thesis, we apply model order reduction to an important class of such systems -- one which exhibits limit cycle oscillations (LCOs) and ...
2.003 Modeling Dynamics and Control I, Spring 2002
Trumper, David L.
First of two-term sequence on modeling, analysis and control of dynamic systems. Mechanical translation, uniaxial rotation, electrical circuits and their coupling via levers, gears and electro-mechanical devices. Analytical ...
Off-line calibration of Dynamic Traffic Assignment models
Balakrishna, Ramachandran, 1978-
2006-01-01T23:59:59.000Z
Advances in Intelligent Transportation Systems (ITS) have resulted in the deployment of surveillance systems that automatically collect and store extensive network-wide traffic data. Dynamic Traffic Assignment (DTA) models ...
Applications of axial and radial compressor dynamic system modeling
Spakovszky, Zoltán S. (Zoltán Sándor), 1972-
2001-01-01T23:59:59.000Z
The presented work is a compilation of four different projects related to axial and centrifugal compression systems. The projects are related by the underlying dynamic system modeling approach that is common in all of them. ...
A Dynamic Island Model for Adaptive Operator Selection Caner Candan
Goëffon, Adrien
A Dynamic Island Model for Adaptive Operator Selection Caner Candan LERIA - University of Angers Angers, France caner.candan@univ-angers.fr Adrien Goëffon LERIA - University of Angers Angers, France
Modeling and control of undesirable dynamics in atomic force microscopes
El Rifai, Osamah M
2002-01-01T23:59:59.000Z
The phenomenal resolution and versatility of the atomic force microscope (AFM), has made it a widely-used instrument in nanotechnology. In this thesis, a detailed model of AFM dynamics has been developed. It includes a new ...
Human Growth and Body Weight Dynamics: An Integrative Systems Model
Rahmandad, Hazhir
Quantifying human weight and height dynamics due to growth, aging, and energy balance can inform clinical practice and policy analysis. This paper presents the first mechanism-based model spanning full individual life and ...
Dynamic Modelling and Control Design of Pre-combustion Power
Foss, Bjarne A.
- pressors, gas and steam turbines and a heat recovery system. Analysis of dynamic models at an early stage principles. The pre- combustion gas power cycle plants consist of reformers and separation units, com
SIMULATING MARKET TRANSFORMATION DYNAMICS USING A HYBRID ENERGY ECONOMY MODEL
ii SIMULATING MARKET TRANSFORMATION DYNAMICS USING A HYBRID ENERGY ECONOMY MODEL: A LOOK to society in the long run. My goal was to use a "hybrid" energy economy model (CIMS), which combines.............................................. 1 1.2 The Challenge of Energy-Economy Modelling
A Diffusion Model in Population Genetics with Mutation and Dynamic
O'Leary, Michael
A Diffusion Model in Population Genetics with Mutation and Dynamic Fitness Mike O'Leary Department of Mathematics Towson University May 24, 2008 Mike O'Leary (Towson University) A Diffusion Model in Genetics May Miller, Georgetown University Mike O'Leary (Towson University) A Diffusion Model in Genetics May 24, 2008
COMPUTATIONAL FLUID DYNAMICS MODELING OF SOLID OXIDE FUEL CELLS
COMPUTATIONAL FLUID DYNAMICS MODELING OF SOLID OXIDE FUEL CELLS Ugur Pasaogullari and Chao-dimensional model has been developed to simulate solid oxide fuel cells (SOFC). The model fully couples current density operation. INTRODUCTION Solid oxide fuel cells (SOFC) are among possible candidates
REGULAR ARTICLE A Simple Dynamic Model of Respiratory Pump
Fontecave-Jallon, Julie
REGULAR ARTICLE A Simple Dynamic Model of Respiratory Pump Pascale Calabrese · Pierre Baconnier the relative motion of rib cage and abdomen during quiet breathing. Keywords Respiratory pump model Á. Hillman and Finucane (1987) have produced a simple model of the respiratory pump that ``appears
Dynamic wind turbine models in power system simulation tool
Dynamic wind turbine models in power system simulation tool DIgSILENT Anca D. Hansen, Florin Iov models in power system simulation tool DIgSILENT Department: Wind Energy Department Risř-R-1400(ed.2)(EN and at a system level. The report contains both the description of DIgSILENT built-in models for the electrical
Reisslein, Martin
IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 0, NO. 0, MONTH YEAR 1 On-line Dynamic Security Assessment is proposed for on-line dynamic security assessment (DSA), with the objective of mitigating the impact of viable small DTs. The security classification decision for on-line DSA is obtained via a weighted voting
Developing Generic Dynamic Models for the 2030 Eastern Interconnection Grid
Kou, Gefei [ORNL; Hadley, Stanton W [ORNL; Markham, Penn N [ORNL; Liu, Yilu [ORNL
2013-12-01T23:59:59.000Z
The Eastern Interconnection Planning Collaborative (EIPC) has built three major power flow cases for the 2030 Eastern Interconnection (EI) based on various levels of energy/environmental policy conditions, technology advances, and load growth. Using the power flow cases, this report documents the process of developing the generic 2030 dynamic models using typical dynamic parameters. The constructed model was validated indirectly using the synchronized phasor measurements by removing the wind generation temporarily.
Interactive Rapid Dose Assessment Model (IRDAM): reactor-accident assessment methods. Vol. 2
Poeton, R.W.; Moeller, M.P.; Laughlin, G.J.; Desrosiers, A.E.
1983-05-01T23:59:59.000Z
As part of the continuing emphasis on emergency preparedness, the US Nuclear Regulatory Commission (NRC) sponsored the development of a rapid dose assessment system by Pacific Northwest Laboratory (PNL). This system, the Interactive Rapid Dose Assessment Model (IRDAM) is a micro-computer based program for rapidly assessing the radiological impact of accidents at nuclear power plants. This document describes the technical bases for IRDAM including methods, models and assumptions used in calculations. IRDAM calculates whole body (5-cm depth) and infant thyroid doses at six fixed downwind distances between 500 and 20,000 meters. Radionuclides considered primarily consist of noble gases and radioiodines. In order to provide a rapid assessment capability consistent with the capacity of the Osborne-1 computer, certain simplifying approximations and assumptions are made. These are described, along with default values (assumptions used in the absence of specific input) in the text of this document. Two companion volumes to this one provide additional information on IRDAM. The user's Guide (NUREG/CR-3012, Volume 1) describes the setup and operation of equipment necessary to run IRDAM. Scenarios for Comparing Dose Assessment Models (NUREG/CR-3012, Volume 3) provides the results of calculations made by IRDAM and other models for specific accident scenarios.
Dynamic reactor modeling with applications to SPR and ZEDNA.
Suo-Anttila, Ahti Jorma
2011-12-01T23:59:59.000Z
A dynamic reactor model has been developed for pulse-type reactor applications. The model predicts reactor power, axial and radial fuel expansion, prompt and delayed neutron population, and prompt and delayed gamma population. All model predictions are made as a function of time. The model includes the reactivity effect of fuel expansion on a dynamic timescale as a feedback mechanism for reactor power. All inputs to the model are calculated from first principles, either directly by solving systems of equations, or indirectly from Monte Carlo N-Particle Transport Code (MCNP) derived results. The model does not include any empirical parameters that can be adjusted to match experimental data. Comparisons of model predictions to actual Sandia Pulse Reactor SPR-III pulses show very good agreement for a full range of pulse magnitudes. The model is also applied to Z-pinch externally driven neutron assembly (ZEDNA) type reactor designs to model both normal and off-normal ZEDNA operations.
AIR INGRESS ANALYSIS: PART 2 – COMPUTATIONAL FLUID DYNAMIC MODELS
Chang H. Oh; Eung S. Kim; Richard Schultz; Hans Gougar; David Petti; Hyung S. Kang
2011-01-01T23:59:59.000Z
The Idaho National Laboratory (INL), under the auspices of the U.S. Department of Energy, is performing research and development that focuses on key phenomena important during potential scenarios that may occur in very high temperature reactors (VHTRs). Phenomena Identification and Ranking Studies to date have ranked an air ingress event, following on the heels of a VHTR depressurization, as important with regard to core safety. Consequently, the development of advanced air ingress-related models and verification and validation data are a very high priority. Following a loss of coolant and system depressurization incident, air will enter the core of the High Temperature Gas Cooled Reactor through the break, possibly causing oxidation of the in-the core and reflector graphite structure. Simple core and plant models indicate that, under certain circumstances, the oxidation may proceed at an elevated rate with additional heat generated from the oxidation reaction itself. Under postulated conditions of fluid flow and temperature, excessive degradation of the lower plenum graphite can lead to a loss of structural support. Excessive oxidation of core graphite can also lead to the release of fission products into the confinement, which could be detrimental to a reactor safety. Computational fluid dynamic model developed in this study will improve our understanding of this phenomenon. This paper presents two-dimensional and three-dimensional CFD results for the quantitative assessment of the air ingress phenomena. A portion of results of the density-driven stratified flow in the inlet pipe will be compared with results of the experimental results.
Mesoscale modeling of phase transition dynamics of thermoresponsive polymers
Li, Zhen; Li, Xuejin; Karniadakis, George Em
2015-01-01T23:59:59.000Z
We present a non-isothermal mesoscopic model for investigation of the phase transition dynamics of thermoresponsive polymers. Since this model conserves energy in the simulations, it is able to correctly capture not only the transient behavior of polymer precipitation from solvent, but also the energy variation associated with the phase transition process. Simulations provide dynamic details of the thermally induced phase transition and confirm two different mechanisms dominating the phase transition dynamics. A shift of endothermic peak with concentration is observed and the underlying mechanism is explored.
ERCOT's Dynamic Model of Wind Turbine Generators: Preprint
Muljadi, E.; Butterfield, C. P.; Conto, J.; Donoho, K.
2005-08-01T23:59:59.000Z
By the end of 2003, the total installed wind farm capacity in the Electric Reliability Council of Texas (ERCOT) system was approximately 1 gigawatt (GW) and the total in the United States was about 5 GW. As the number of wind turbines installed throughout the United States increases, there is a greater need for dynamic wind turbine generator models that can properly model entire power systems for different types of analysis. This paper describes the ERCOT dynamic models and simulations of a simple network with different types of wind turbine models currently available.
Human Muscle Fatigue Model in Dynamic Motions
Boyer, Edmond
into account. In this paper, each human joint is assumed to be controlled by two muscle groups to generate on motor units pattern. They demonstrated the relationship among muscle activation, fatigue and recovery fatigue trend in static working posture (elbow = 90 , shoulder = 30 ), but in dynamic working situation
Dynamic competition model for construction contractors
Kim, Hyung Jin
2004-01-01T23:59:59.000Z
as an entity in a dynamic system, in which every entity is a profit optimizer responding to market conditions as well as its competitors' actions. In construction, the issue of competition has been focused on competitive bidding, which is a critical mechanism...
Fire models for assessment of nuclear power plant fires
Nicolette, V.F.; Nowlen, S.P.
1989-01-01T23:59:59.000Z
This paper reviews the state-of-the-art in available fire models for the assessment of nuclear power plants fires. The advantages and disadvantages of three basic types of fire models (zone, field, and control volume) and Sandia's experience with these models will be discussed. It is shown that the type of fire model selected to solve a particular problem should be based on the information that is required. Areas of concern which relate to all nuclear power plant fire models are identified. 17 refs., 6 figs.
Vermont, University of
MODELING/GIS, RISK ASSESSMENT, ECONOMIC IMPACT Household Model of Chagas Disease Vectors (Hemiptera vectors (Hemiptera: Reduviidae) of the causative parasite Trypanosoma cruzi (Kinetoplastida bitten by infected insect vectors. There are 130 species in the subfamily Triatominae (Hemiptera
A stochastic evolutionary model for capturing human dynamics
Fenner, Trevor; Loizou, George
2015-01-01T23:59:59.000Z
The recent interest in human dynamics has led researchers to investigate the stochastic processes that explain human behaviour in various contexts. Here we propose a generative model to capture the dynamics of survival analysis, traditionally employed in clinical trials and reliability analysis in engineering. We derive a general solution for the model in the form of a product, and then a continuous approximation to the solution via the renewal equation describing age-structured population dynamics. This enables us to model a wide rage of survival distributions, according to the choice of the mortality distribution. We provide empirical evidence for the validity of the model from a longitudinal data set of popular search engine queries over 114 months, showing that the survival function of these queries is closely matched by the solution for our model with power-law mortality.
A Dynamic Model with Import Quota Constraints
Basak, Suleyman
2004-07-09T23:59:59.000Z
The analysis of import quotas is predominantly based on a static model, which is unable to capture the fact that a quota is imposed over a period of time. This article develops a continuous-time model ...
Modeling emotion dynamics in intelligent agents
Seif El-Nasr, Magy
1998-01-01T23:59:59.000Z
Emotions were shown to have a leading role in the human decision-making process, and thus they play an important role in human intelligence. Intelligent agents' research produced many models of emotional agents. However, most of these models focused...
Structure formation: Models, Dynamics and Status
T. Padmanabhan
1995-08-25T23:59:59.000Z
The constraints on the models for the structure formation arising from various cosmological observations at different length scales are reviewed. The status of different models for structure formation is examined critically in the light of these observations.
Assessing the Power Requirements for Sawtooth Control in ITER Through Modelling and Joint Experiments
Bright, Ryan M., E-mail: ryan.m.bright@ntnu.no; Cherubini, Francesco; Stromman, Anders H.
2012-11-15T23:59:59.000Z
Life cycle assessment (LCA) can be an invaluable tool for the structured environmental impact assessment of bioenergy product systems. However, the methodology's static temporal and spatial scope combined with its restriction to emission-based metrics in life cycle impact assessment (LCIA) inhibits its effectiveness at assessing climate change impacts that stem from dynamic land surface-atmosphere interactions inherent to all biomass-based product systems. In this paper, we focus on two dynamic issues related to anthropogenic land use that can significantly influence the climate impacts of bioenergy systems: i) temporary changes to the terrestrial carbon cycle; and ii) temporary changes in land surface albedo-and illustrate how they can be integrated within the LCA framework. In the context of active land use management for bioenergy, we discuss these dynamics and their relevancy and outline the methodological steps that would be required to derive case-specific biogenic CO{sub 2} and albedo change characterization factors for inclusion in LCIA. We demonstrate our concepts and metrics with application to a case study of transportation biofuel sourced from managed boreal forest biomass in northern Europe. We derive GWP indices for three land management cases of varying site productivities to illustrate the importance and need to consider case- or region-specific characterization factors for bioenergy product systems. Uncertainties and limitations of the proposed metrics are discussed. - Highlights: Black-Right-Pointing-Pointer A method for including temporary surface albedo and carbon cycle changes in Life Cycle Impact Assessment (LCIA) is elaborated. Black-Right-Pointing-Pointer Concepts are applied to a single bioenergy case whereby a range of feedstock productivities are shown to influence results. Black-Right-Pointing-Pointer Results imply that case- and site-specific characterization factors can be essential for a more informed impact assessment. Black-Right-Pointing-Pointer Uncertainties and limitations of the proposed methodologies are elaborated.
Diagnostic indicators for integrated assessment models of climate policy
Kriegler, Elmar; Petermann, Nils; Krey, Volker; Schwanitz, Jana; Luderer, Gunnar; Ashina, Shuichi; Bosetti, Valentina; Eom, Jiyong; Kitous, Alban; Mejean, Aurelie; Paroussos, Leonidas; Sano, Fuminori; Turton, Hal; Wilson, Charlie; Van Vuuren, Detlef
2015-01-01T23:59:59.000Z
Integrated assessments of how climate policy interacts with energy-economic systems can be performed by a variety of models with different functional structures. This article proposes a diagnostic scheme that can be applied to a wide range of integrated assessment models to classify differences among models based on their carbon price responses. Model diagnostics can uncover patterns and provide insights into why, under a given scenario, certain types of models behave in observed ways. Such insights are informative since model behavior can have a significant impact on projections of climate change mitigation costs and other policy-relevant information. The authors propose diagnostic indicators to characterize model responses to carbon price signals and test these in a diagnostic study with 11 global models. Indicators describe the magnitude of emission abatement and the associated costs relative to a harmonized baseline, the relative changes in carbon intensity and energy intensity and the extent of transformation in the energy system. This study shows a correlation among indicators suggesting that models can be classified into groups based on common patterns of behavior in response to carbon pricing. Such a classification can help to more easily explain variations among policy-relevant model results.
Numerically Estimating Internal Models of Dynamic Virtual Objects
Sekuler, Robert
human subjects to manipulate a computer-animated virtual object. This virtual object (vO) was a high, human cognition, human information processing, ideal performer, internal model, virtual object, virtual, specifically how humans acquire an internal model of a dynamic virtual object. Our methodology minimizes
Numerical Modeling of Brain Dynamics in Traumatic Situations -Impulsive Translations
Burtscher, Martin
.S.A. Abstract We numerically model the brain dy- namics during and after impulsive head translations using brain injuries appear among boxers and shaken babies despite minimal rotations of their heads. Modeling head translations also helps understand the brain dynamics during head rotations about an arbitrary
A STOCHASTIC CELLULAR AUTOMATON MODEL OF EBOLA VIRUS DYNAMICS
Hawkins, Jane M.
A STOCHASTIC CELLULAR AUTOMATON MODEL OF EBOLA VIRUS DYNAMICS E. BURKHEAD AND J. HAWKINS Abstract. We construct a stochastic cellular automaton (SCA) model for the spread of the Ebola virus (EBOV). We of virus and the typical immune response to it, and the differences which reflect the drastically different
Thermodiffusion in model nanofluids by molecular dynamics simulations
Paris-Sud XI, Université de
1 Thermodiffusion in model nanofluids by molecular dynamics simulations G. Galliero1,2,* , S. Volz3-Jones fluids and for model nanofluids (spherical non-metallic nanoparticles + Lennard-Jones fluid) where concentration. Then, in nanofluids in the liquid state, by changing the nature of the nanoparticle (size, mass
Title of dissertation: MODELING, SIMULATING, AND CONTROLLING THE FLUID DYNAMICS
Shapiro, Benjamin
ABSTRACT Title of dissertation: MODELING, SIMULATING, AND CONTROLLING THE FLUID DYNAMICS OF ELECTRO an algorithm to steer indi- vidual particles inside the EWOD system by control of actuators already present number of actuators available in the EWOD system. #12;MODELING, SIMULATING, AND CONTROLLING THE FLUID
A Dynamic Model coupling Photoacclimation and Photoinhibition in Microalgae
Boyer, Edmond
in microalgae, thereby spanning multiple time scales. The properties of the model are investigated under quasi2 mitigation due to their inherent consumption of CO2 during photosynthesis, they can be coupledA Dynamic Model coupling Photoacclimation and Photoinhibition in Microalgae Philipp Hartmann1
DYNAMIC MODELLING OF AUTONOMOUS POWER SYSTEMS INCLUDING RENEWABLE POWER SOURCES.
Paris-Sud XI, Université de
DYNAMIC MODELLING OF AUTONOMOUS POWER SYSTEMS INCLUDING RENEWABLE POWER SOURCES. ABSTRACT The use of renewable energies for electricity production presents a growing interest, especially in autonomous power production imposes several difficulties to the power system operation when penetration is high. Here, a model
Fluid Dynamic Models of Flagellar and Ciliary Beating
Fauci, Lisa
University, New Orleans, Louisiana, USA ABSTRACT: We have developed a fluidmechanical model of a eucaryotic mechanics of microtubules, and forces due to nexin links with a surrounding incompressible fluid. This model mechanisms, the passive elastic structure of the axoneme, and the external fluid dynamics. These flagellar
Dislocation dynamics: from microscopic models to macroscopic crystal plasticity
El Hajj, Ahmad
Dislocation dynamics: from microscopic models to macroscopic crystal plasticity A. El Hajj , H study ranges from atomic models to macroscopic crystal plasticity. At each scale, dislocations can crystal Z3 where each position with integer coordinates is occupied by one atom. We want to describe
Controlling Social Dynamics with a Parametrized Model of Floor Regulation
Das, Suman
Controlling Social Dynamics with a Parametrized Model of Floor Regulation Crystal Chao, Andrea L is to build autonomous robot controllers for successfully engaging in human-like turn-taking interactions. Towards this end, we present CADENCE, a novel computational model and architecture that explicitly reasons
Model Reduction Near Periodic Orbits of Hybrid Dynamical Systems
Sastry, S. Shankar
manipulation in manufacturing [2], gene regulation in cells [3], and power generation in electrical systems [41 Model Reduction Near Periodic Orbits of Hybrid Dynamical Systems Samuel A. Burden, Shai Revzen system. We demonstrate reduction of a highÂdimensional underactuated mechanical model for terrestrial
Dynamical many-body localization in an integrable model
Aydin Cem Keser; Sriram Ganeshan; Gil Refael; Victor Galitski
2015-06-17T23:59:59.000Z
We investigate dynamical many-body localization and delocalization in an integrable system of periodically-kicked, interacting linear rotors. The Hamiltonian we investigate is linear in momentum, and its Floquet evolution operator is analytically tractable for arbitrary interaction strengths. One of the hallmarks of this model is that depending on certain parameters, it manifest both localization and delocalization in momentum space. We explicitly show that, for this model, the energy being bounded at long times is not a sufficient condition for dynamical localization. Besides integrals of motion associated to the integrability, this model manifests additional integrals of motion, which are the exclusive consequence of dynamical many-body localization. We also propose an experimental scheme, involving voltage-biased Josephson junctions, to realize such many-body kicked models.
RELAP5/MOD3 subcooled boiling model assessment
Devkin, A.S.; Podosenov, A.S. [Russian Research Center, Moscow (Russian Federation). Nuclear Safety Inst.
1998-05-01T23:59:59.000Z
This report presents the assessment of the RELAP5/Mod3 (5m5 version) code subcooled boiling process model which is based on a variety of experiments. The accuracy of the model is confirmed for a wide range of regime parameters for the case of uniform heating along the channel. The condensation rate is rather underpredicted, which may lead to considerable errors in void fraction behavior prediction in subcooled boiling regimes for nonuniformly or unheated channels.
Integrated Dam Assessment Models Towards Sustainability of Dams
Tullos, Desiree
Integrated Dam Assessment Models Towards Sustainability of Dams Desiree Tullos, Bryan Tilt, Phil Brown, Darrin Magee, and Aaron Wolf #12;Costs and benefits of dams "Dams have made an important, and by the natural environment" (WCD 2000) #12;Dams in, out, and reoperated #12;Dams out: Dam removal in America
POWER PLANT IMPACT ASSESSMENT: A SIMPLE FISHERY PRODUCTION MODEL APPROACH
POWER PLANT IMPACT ASSESSMENT: A SIMPLE FISHERY PRODUCTION MODEL APPROACH ALECD. MACCALL,' KEITHR power plant entrainment mortality as a fraction (Rc) of the abundance ofthat cohort in the absence of power plant impact can be calculated by Rc = exp (-Ejtj) wheretj is the duration oflife stagei, and
Incorporating carbon capture and storage technologies in integrated assessment models
Incorporating carbon capture and storage technologies in integrated assessment models James R. Mc examines the representation of carbon capture and storage (CCS) technologies, one form of technologicalFarland , Howard J. Herzog Massachusetts Institute of Technology, USA Available online 7 July 2006 Abstract Low-carbon
Incorporating Carbon Capture and Storage Technologies in Integrated Assessment Models
Incorporating Carbon Capture and Storage Technologies in Integrated Assessment Models J. R. Mc carbon capture and storage, 2) a natural gas combined cycle technology with carbon capture and storage 1 emissions growth. Both the magnitude and rate of technological change toward low- or no-carbon emitting
Friction in a Model of Hamiltonian Dynamics
Juerg Froehlich; Zhou Gang; Avy Soffer
2011-11-01T23:59:59.000Z
We study the motion of a heavy tracer particle weakly coupled to a dense ideal Bose gas exhibiting Bose-Einstein condensation. In the so-called mean-field limit, the dynamics of this system approaches one determined by nonlinear Hamiltonian evolution equations describing a process of emission of Cerenkov radiation of sound waves into the Bose-Einstein condensate along the particle's trajectory. The emission of Cerenkov radiation results in a friction force with memory acting on the tracer particle and causing it to decelerate until it comes to rest.
DYNAMICAL MODEL OF AN EXPANDING SHELL
Pe'er, Asaf [Harvard-Smithsonian Center for Astrophysics, MS-51, 60 Garden Street, Cambridge, MA 02138 (United States)
2012-06-10T23:59:59.000Z
Expanding blast waves are ubiquitous in many astronomical sources, such as supernova remnants, X-ray emitting binaries, and gamma-ray bursts. I consider here the dynamics of such an expanding blast wave, both in the adiabatic and the radiative regimes. As the blast wave collects material from its surroundings, it decelerates. A full description of the temporal evolution of the blast wave requires consideration of both the energy density and the pressure of the shocked material. The obtained equation is different from earlier works in which only the energy was considered. The solution converges to the familiar results in both the ultrarelativistic and the sub-relativistic (Newtonian) regimes.
Yuan, Fengming [ORNL; Yi, Shuhua [Cold and Arid Regions Environmental and Engineering Research Institute, CAS; McGuire, A. David [University of Alaska; Johnson, Kristopher D [University of Alaska, Fairbanks; Liang, Jingjing [University of Alaska, Fairbanks; Harden, Jennifer [USGS, Menlo Park, CA; Kasischke, Eric S. [University of Maryland, College Park; Kurz, Werner [Canadian Forest Service
2012-01-01T23:59:59.000Z
Carbon (C) dynamics of boreal forest ecosystems have substantial implications for efforts to mitigate the rise of atmospheric CO2 and may be substantially influenced by warming and changing wildfire regimes. In this study we applied a large-scale ecosystem model that included dynamics of organic soil horizons and soil organic matter characteristics of multiple pools to assess forest C stock changes of the Yukon River Basin (YRB) in Alaska, USA, and Canada from 1960 through 2006, a period characterized by substantial climate warming and increases in wildfire. The model was calibrated for major forests with data from long-term research sites and evaluated using a forest inventory database. The regional assessment indicates that forest vegetation C storage increased by 46 Tg C, but that total soil C storage did not change appreciably during this period. However, further analysis suggests that C has been continuously lost from the mineral soil horizon since warming began in the 1970s, but has increased in the amorphous organic soil horizon. Based on a factorial experiment, soil C stocks would have increased by 158 Tg C if the YRB had not undergone warming and changes in fire regime. The analysis also identified that warming and changes in fire regime were approximately equivalent in their effects on soil C storage, and interactions between these two suggests that the loss of organic horizon thickness associated with increases in wildfire made deeper soil C stocks more vulnerable to loss via decomposition. Subbasin analyses indicate that C stock changes were primarily sensitive to the fraction of burned forest area within each subbasin and that boreal forest ecosystems in the YRB are currently transitioning from being sinks to sources at ;0.7% annual area burned. We conclude that it is important for international mitigation efforts focused on controlling atmospheric CO2 to consider how climate warming and changes in fire regime may concurrently affect the CO2 sink strength of boreal forests. It is also important for large-scale biogeochemical and earth system models to include organic soil dynamics in applications to assess regional C dynamics of boreal forests responding to warming and changes in fire regime.
Weeks, Eric R.
this behavior. The mode coupling theory [1] describes many aspects of dynamical behavior at high T- stood as a simple activated bondbreaking process. Here, we perform molecular dynamics (MD) simula- tionsSpatially Heterogeneous Dynamics and Dynamic Facilitation in a Model of Viscous Silica Michael
Slow dynamics in a model of the cellulose network
O. V. Manyuhina; A. Fasolino; M. I. Katsnelson
2007-06-07T23:59:59.000Z
We present numerical simulations of a model of cellulose consisting of long stiff rods, representing cellulose microfibrils, connected by stretchable crosslinks, representing xyloglucan molecules, hydrogen bonded to the microfibrils. Within a broad range of temperature the competing interactions in the resulting network give rise to a slow glassy dynamics. In particular, the structural relaxation described by orientational correlation functions shows a logarithmic time dependence. The glassy dynamics is found to be due to the frustration introduced by the network of xyloglucan molecules. Weakening of interactions between rod and xyloglucan molecules results in a more marked reorientation of cellulose microfibrils, suggesting a possible mechanism to modify the dynamics of the plant cell wall.
Generative modeling of dynamic visual scenes
Lin, Dahua, Ph. D. Massachusetts Institute of Technology
2012-01-01T23:59:59.000Z
Modeling visual scenes is one of the fundamental tasks of computer vision. Whereas tremendous efforts have been devoted to video analysis in past decades, most prior work focuses on specific tasks, leading to dedicated ...
Modeling Infection with Multi-agent Dynamics
Dong, Wen
2012-01-01T23:59:59.000Z
Developing the ability to comprehensively study infections in small populations enables us to improve epidemic models and better advise individuals about potential risks to their health. We currently have a limited ...
Integrated science model for assessment of climate change
Jain, A.K.; Wuebbles, D.J. [Lawrence Livermore National Lab., CA (United States); Kheshgi, H.S. [Exxon Research and Engineering Co., Annandale, NJ (United States)
1994-04-01T23:59:59.000Z
Integrated assessment models are intended to represent processes that govern physical, ecological, economic and social systems. This report describes a scientific model relating emissions to global temperature and sea level. This model is intended to be one component of an integrated assessment model which is, of course, much more comprehensive. The model is able to reproduce past changes in CO{sub 2} concentration, global temperature, and sea level. The model is used to estimate the emissions rates required to lead to stabilization of CO{sub 2} at various levels. The model is also used to estimate global temperature rise, the rate of temperature change, and sea level rise driven by IPCC emissions scenarios. The emission of fossil fuel CO{sub 2} is modeled to have the largest long term effect on climate. Results do show the importance of expected changes of trace greenhouse gases other than CO{sub 2} in the near future. Because of the importance of these other trace gases, further work is recommended to more accurately estimate their effects.
Modeling emotion dynamics in intelligent agents
Seif El-Nasr, Magy
1998-01-01T23:59:59.000Z
OF SIMULATION AND RESULTS . . . . . . . . . . . D. CONTRIBUTIONS 7. STRUCTURE OF THE THESIS 1 3 4 7 9 13 13 15 18 18 19 11 PREVIOUS WORK . . 20 1. PSYCHOLOGICAL MODELS . A. MOTIVATIONAL STATES . B. APPRAISAL MODELS OF EMOTIONS... all the needs and urges, while the mind is the heart of the rational thinking process [9]. After three centuries, new theories of emotions were established. By 1884, William James [15] published his article "What is Emotion?" At that time...
Comprehensive country energy assessments using the MARKAL-MACRO model
Reisman, A.W.
1997-07-01T23:59:59.000Z
A number of comprehensive country energy assessments were performed in the late 1970s and early 1980s in cooperation with the governments of various countries. The assessments provided a framework for analyzing the impacts of various national strategies for meeting energy requirements. These analyses considered the total energy framework. Economics, energy supply, national resources, energy use, environmental impacts, technologies, energy efficiencies, and sociopolitical impacts were some of the factors addressed. These analyses incorporated the best available data bases and computer models to facilitate the analyses. National policy makers identified the various strategies to examine. The results of the analyses were provided to the national policy makers to support their decision making. Almost 20 years have passed since these assessments were performed. There have been major changes in energy supply and use, technologies, economics, available resources, and environmental concerns. The available tools for performing the assessments have improved drastically. The availability of improved computer modeling, i.e., MARKAL-MACRO, and improved data collection methods and data bases now permit such assessments to be performed in a more sophisticated manner to provide state of the art support to policy makers. The MARKAL-MACRO model was developed by Brookhaven National Laboratory over the last 25 years to support strategic energy planning. It is widely used in the international community for integrating analyses of environmental options, such as reduction of greenhouse gas emissions. It was used to perform the analyses in the least cost energy strategy study for the Energy Policy Act of 1992. Improvements continue to be made to MARKAL-MACRO and its capabilities extended. A methodology to conduct Country Energy Assessments using MARKAL-MACRO is discussed.
Radionuclide release rates from spent fuel for performance assessment modeling
Curtis, D.B.
1994-11-01T23:59:59.000Z
In a scenario of aqueous transport from a high-level radioactive waste repository, the concentration of radionuclides in water in contact with the waste constitutes the source term for transport models, and as such represents a fundamental component of all performance assessment models. Many laboratory experiments have been done to characterize release rates and understand processes influencing radionuclide release rates from irradiated nuclear fuel. Natural analogues of these waste forms have been studied to obtain information regarding the long-term stability of potential waste forms in complex natural systems. This information from diverse sources must be brought together to develop and defend methods used to define source terms for performance assessment models. In this manuscript examples of measures of radionuclide release rates from spent nuclear fuel or analogues of nuclear fuel are presented. Each example represents a very different approach to obtaining a numerical measure and each has its limitations. There is no way to obtain an unambiguous measure of this or any parameter used in performance assessment codes for evaluating the effects of processes operative over many millennia. The examples are intended to suggest by example that in the absence of the ability to evaluate accuracy and precision, consistency of a broadly based set of data can be used as circumstantial evidence to defend the choice of parameters used in performance assessments.
Multi-model assessment of stratospheric ozone return dates and ozone recovery in
Wirosoetisno, Djoko
Multi-model assessment of stratospheric ozone return dates and ozone recovery in CCMVal-2 models. (2010) Multi-model assessment of stratospheric ozone return dates and ozone recovery in CCMVal-2 models Chemistry and Physics Multi-model assessment of stratospheric ozone return dates and ozone recovery
Fuel cycle assessment: A compendium of models, methodologies, and approaches
Not Available
1994-07-01T23:59:59.000Z
The purpose of this document is to profile analytical tools and methods which could be used in a total fuel cycle analysis. The information in this document provides a significant step towards: (1) Characterizing the stages of the fuel cycle. (2) Identifying relevant impacts which can feasibly be evaluated quantitatively or qualitatively. (3) Identifying and reviewing other activities that have been conducted to perform a fuel cycle assessment or some component thereof. (4) Reviewing the successes/deficiencies and opportunities/constraints of previous activities. (5) Identifying methods and modeling techniques/tools that are available, tested and could be used for a fuel cycle assessment.
Analytical properties of a three-compartmental dynamical demographic model
E. B. Postnikov
2015-07-29T23:59:59.000Z
The three-compartmental demographic model by Korotaeyv-Malkov-Khaltourina, connecting population size, economic surplus, and educational level, is considered from the point of view of dynamical systems theory. It is shown that there exist two integrals of motion, which enable the system to be reduced to one non-linear ordinary differential equation. The study of its structure provides analytical criteria for the dominance ranges of the dynamics of Malthus and Kremer. Additionally, the particular ranges of parameters enable the derived general ordinary differential equations to be reduced to the models of Gompertz and Thoularis-Wallace.
CSAW: a dynamical model of protein folding
Kerson Huang
2006-01-12T23:59:59.000Z
CSAW (conditioned self-avoiding walk) is a model of protein folding that combines SAW (self-avoiding walk) with Monte-Carlo. It simulates the Brownian motion of a chain molecule in the presence of interactions, both among chain residues, and with the environment. In a first model that includes the hydrophobic effect and hydrogen bonding, a chain of 30 residues folds into a native state with stable secondary and tertiary structures. The process starts with a rapid collapse into an intermediate "molten globule", which slowly decays into the native state afer a relatively long quiescent period. The behavior of the radius of gyration mimics experimental data.
Modelling of Remediation Technologies at the Performance Assessment Level
Parton, N.J.; Paksy, A.; Eden, L.; Trivedi, D.P. [Nexia Solutions Limited, Hinton House, Risley, Warrington, Cheshire, UK, WA (United States)
2008-07-01T23:59:59.000Z
This paper presents approaches to modelling three different remediation technologies that are designed to support site operators during their assessment of remediation options for the management of radioactively contaminated land on nuclear licensed sites in the UK. The three selected technologies were soil washing, permeable reactive barrier and in-situ stabilisation. The potential exists to represent electrokinetics in the future. These technologies were chosen because it was considered that enough information already existed for site operators to assess mature technologies such as soil dig and disposal and groundwater pump and treat. Using the software code GoldSim, the models have been designed to allow site operators to make both a reasonable scoping level assessment of the viability of treatment and understand the cost-benefits of each technology. For soil washing, a standard soil leaching technique was simulated whereby the soil is separated into fines and oversize particles, and subsequently a chemical reagent is used to strip contamination off the soil. The cost benefit of this technology in terms of capital costs for the plant and materials, operational costs and waste disposal costs can also be assessed. The permeable reactive barrier (PRB) model can represent either a continuous wall or a funnel and gate system. The model simulates the transport of contaminants through the reactive material contained in the PRB. The outputs from the model include concentration of contaminants in the groundwater flow downstream of the PRB, mass of contaminants retained by the PRB, total mass and volume of waste and the various costs associated with the PRB remediation technology. The in-situ stabilisation (ISS) model has the capability to represent remediation by the addition of reagents that immobilise contaminated soil. The model simulates the release of contaminants from the treated soil over time. Performance is evaluated by comparison of the mass of contaminants retained and released to the area outside the treatment zone. Other outputs include amount of spoil generated (to be treated as waste) and the costs associated with the application of the ISS technology. These models are aimed to help users select a technology or technologies that are potentially suitable for a particular site. It is anticipated that they will prompt the user to undertake more detailed assessments to tailor the selected technology to their site specific circumstances and contaminated land conditions. (author)
Green Algae as Model Organisms for Biological Fluid Dynamics
Goldstein, Raymond E
2014-01-01T23:59:59.000Z
In the past decade the volvocine green algae, spanning from the unicellular $Chlamydomonas$ to multicellular $Volvox$, have emerged as model organisms for a number of problems in biological fluid dynamics. These include flagellar propulsion, nutrient uptake by swimming organisms, hydrodynamic interactions mediated by walls, collective dynamics and transport within suspensions of microswimmers, the mechanism of phototaxis, and the stochastic dynamics of flagellar synchronization. Green algae are well suited to the study of such problems because of their range of sizes (from 10 $\\mu$m to several millimetres), their geometric regularity, the ease with which they can be cultured and the availability of many mutants that allow for connections between molecular details and organism-level behavior. This review summarizes these recent developments and highlights promising future directions in the study of biological fluid dynamics, especially in the context of evolutionary biology, that can take advantage of these re...
Green Algae as Model Organisms for Biological Fluid Dynamics
Raymond E. Goldstein
2014-09-08T23:59:59.000Z
In the past decade the volvocine green algae, spanning from the unicellular $Chlamydomonas$ to multicellular $Volvox$, have emerged as model organisms for a number of problems in biological fluid dynamics. These include flagellar propulsion, nutrient uptake by swimming organisms, hydrodynamic interactions mediated by walls, collective dynamics and transport within suspensions of microswimmers, the mechanism of phototaxis, and the stochastic dynamics of flagellar synchronization. Green algae are well suited to the study of such problems because of their range of sizes (from 10 $\\mu$m to several millimetres), their geometric regularity, the ease with which they can be cultured and the availability of many mutants that allow for connections between molecular details and organism-level behavior. This review summarizes these recent developments and highlights promising future directions in the study of biological fluid dynamics, especially in the context of evolutionary biology, that can take advantage of these remarkable organisms.
Dynamic Modeling and Cascaded Control for a Multi-Evaporator Supermarket Refrigeration System
Gupta, Ankush 1986-
2012-09-27T23:59:59.000Z
dynamic models for the HVAC components, which leads to implementation of better control and optimization techniques. In this research, efforts are made to model a multi-evaporator system. A novel dynamic modeling technique is proposed based on moving...
Assessing the reliability of linear dynamic transformer thermal modelling
arbitrarily small. When this did not happen, an investigation began that showed why there is a limitation that are not often available to a planning or operations engineer in a production environment. An alternative
Dynamic crack initiation toughness : experiments and peridynamic modeling.
Foster, John T.
2009-10-01T23:59:59.000Z
This is a dissertation on research conducted studying the dynamic crack initiation toughness of a 4340 steel. Researchers have been conducting experimental testing of dynamic crack initiation toughness, K{sub Ic}, for many years, using many experimental techniques with vastly different trends in the results when reporting K{sub Ic} as a function of loading rate. The dissertation describes a novel experimental technique for measuring K{sub Ic} in metals using the Kolsky bar. The method borrows from improvements made in recent years in traditional Kolsky bar testing by using pulse shaping techniques to ensure a constant loading rate applied to the sample before crack initiation. Dynamic crack initiation measurements were reported on a 4340 steel at two different loading rates. The steel was shown to exhibit a rate dependence, with the recorded values of K{sub Ic} being much higher at the higher loading rate. Using the knowledge of this rate dependence as a motivation in attempting to model the fracture events, a viscoplastic constitutive model was implemented into a peridynamic computational mechanics code. Peridynamics is a newly developed theory in solid mechanics that replaces the classical partial differential equations of motion with integral-differential equations which do not require the existence of spatial derivatives in the displacement field. This allows for the straightforward modeling of unguided crack initiation and growth. To date, peridynamic implementations have used severely restricted constitutive models. This research represents the first implementation of a complex material model and its validation. After showing results comparing deformations to experimental Taylor anvil impact for the viscoplastic material model, a novel failure criterion is introduced to model the dynamic crack initiation toughness experiments. The failure model is based on an energy criterion and uses the K{sub Ic} values recorded experimentally as an input. The failure model is then validated against one class of problems showing good agreement with experimental results.
Robertson, David E.; Cataldo, Dominic A.; Napier, Bruce A.; Krupka, Kenneth M.; Sasser, Lyle B.
2003-07-20T23:59:59.000Z
A literature review and assessment was conducted by Pacific Northwest National Laboratory (PNNL) to update information on plant and animal radionuclide transfer factors used in performance-assessment modeling. A group of 15 radionuclides was included in this review and assessment. The review is composed of four main sections, not including the Introduction. Section 2.0 provides a review of the critically important issue of physicochemical speciation and geochemistry of the radionuclides in natural soil-water systems as it relates to the bioavailability of the radionuclides. Section 3.0 provides an updated review of the parameters of importance in the uptake of radionuclides by plants, including root uptake via the soil-groundwater system and foliar uptake due to overhead irrigation. Section 3.0 also provides a compilation of concentration ratios (CRs) for soil-to-plant uptake for the 15 selected radionuclides. Section 4.0 provides an updated review on radionuclide uptake data for animal products related to absorption, homeostatic control, approach to equilibration, chemical and physical form, diet, and age. Compiled transfer coefficients are provided for cow’s milk, sheep’s milk, goat’s milk, beef, goat meat, pork, poultry, and eggs. Section 5.0 discusses the use of transfer coefficients in soil, plant, and animal modeling using regulatory models for evaluating radioactive waste disposal or decommissioned sites. Each section makes specific suggestions for future research in its area.
Agent Model Development for Assessing Climate-Induced Geopolitical Instability.
Boslough, Mark B.; Backus, George A.
2005-12-01T23:59:59.000Z
We present the initial stages of development of new agent-based computational methods to generate and test hypotheses about linkages between environmental change and international instability. This report summarizes the first year's effort of an originally proposed three-year Laboratory Directed Research and Development (LDRD) project. The preliminary work focused on a set of simple agent-based models and benefited from lessons learned in previous related projects and case studies of human response to climate change and environmental scarcity. Our approach was to define a qualitative model using extremely simple cellular agent models akin to Lovelock's Daisyworld and Schelling's segregation model. Such models do not require significant computing resources, and users can modify behavior rules to gain insights. One of the difficulties in agent-based modeling is finding the right balance between model simplicity and real-world representation. Our approach was to keep agent behaviors as simple as possible during the development stage (described herein) and to ground them with a realistic geospatial Earth system model in subsequent years. This work is directed toward incorporating projected climate data--including various C02 scenarios from the Intergovernmental Panel on Climate Change (IPCC) Third Assessment Report--and ultimately toward coupling a useful agent-based model to a general circulation model.3
A Dynamical Model of Plasma Turbulence in the Solar Wind
Howes, G G
2015-01-01T23:59:59.000Z
A dynamical approach, rather than the usual statistical approach, is taken to explore the physical mechanisms underlying the nonlinear transfer of energy, the damping of the turbulent fluctuations, and the development of coherent structures in kinetic plasma turbulence. It is argued that the linear and nonlinear dynamics of Alfven waves are responsible, at a very fundamental level, for some of the key qualitative features of plasma turbulence that distinguish it from hydrodynamic turbulence, including the anisotropic cascade of energy and the development of current sheets at small scales. The first dynamical model of kinetic turbulence in the weakly collisional solar wind plasma that combines self-consistently the physics of Alfven waves with the development of small-scale current sheets is presented and its physical implications are discussed. This model leads to a simplified perspective on the nature of turbulence in a weakly collisional plasma: the nonlinear interactions responsible for the turbulent casca...
Kinetic Modeling and Assessment of Lime Pretreatment of Poplar Wood
Sierra Ramirez, Rocio
2012-02-14T23:59:59.000Z
biomass is one of the most promising feedstocks for producing biofuels through fermentation processes. Among lignocellulose choices, poplar wood is appealing because of high energy potential, above-average carbon mitigation potential, fast growth... KINETIC MODELING AND ASSESSMENT OF LIME PRETREATMENT OF POPLAR WOOD A Dissertation by ROCIO SIERRA RAMIREZ Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements...
Model Independent Analysis of Beam Centroid Dynamics in Accelerators
Wang, Chun-xi
2003-04-21T23:59:59.000Z
Fundamental issues in Beam-Position-Monitor (BPM)-based beam dynamics observations are studied in this dissertation. The major topic is the Model-Independent Analysis (MIA) of beam centroid dynamics. Conventional beam dynamics analysis requires a certain machine model, which itself of ten needs to be refined by beam measurements. Instead of using any particular machine model, MIA relies on a statistical analysis of the vast amount of BPM data that often can be collected non-invasively during normal machine operation. There are two major parts in MIA. One is noise reduction and degrees-of-freedom analysis using a singular value decomposition of a BPM-data matrix, which constitutes a principal component analysis of BPM data. The other is a physical base decomposition of the BPM-data matrix based on the time structure of pulse-by-pulse beam and/or machine parameters. The combination of these two methods allows one to break the resolution limit set by individual BPMs and observe beam dynamics at more accurate levels. A physical base decomposition is particularly useful for understanding various beam dynamics issues. MIA improves observation and analysis of beam dynamics and thus leads to better understanding and control of beams in both linacs and rings. The statistical nature of MIA makes it potentially useful in other fields. Another important topic discussed in this dissertation is the measurement of a nonlinear Poincare section (one-turn) map in circular accelerators. The beam dynamics in a ring is intrinsically nonlinear. In fact, nonlinearities are a major factor that limits stability and influences the dynamics of halos. The Poincare section map plays a basic role in characterizing and analyzing such a periodic nonlinear system. Although many kinds of nonlinear beam dynamics experiments have been conducted, no direct measurement of a nonlinear map has been reported for a ring in normal operation mode. This dissertation analyzes various issues concerning map measurements and shows that it is possible to measure the Poincare section map (in terms of Taylor series) of a circular accelerator to a surprisingly high order and accuracy based on present BPM technology. MIA can overcome the inherent limit of BPM resolution. Nonlinear map measurements will advance understanding of the beam dynamics of a ring.
Open problem: Dynamic Relational Models for Improved Hazardous Weather Prediction
McGovern, Amy
Open problem: Dynamic Relational Models for Improved Hazardous Weather Prediction Amy McGovern1 dis- covery methods for use on mesoscale weather data. Severe weather phenomena such as tornados, thun, current techniques for predicting severe weather are tied to specific characteristics of the radar systems
Parameterized Model Order Reduction of Nonlinear Dynamical Systems
Reif, Rafael
Parameterized Model Order Reduction of Nonlinear Dynamical Systems Brad Bond Research Laboratory reduction technique for non-linear systems. Our approach combines an existing non-parameterized trajectory piecewise linear method for non-linear systems, with an existing moment matching param- eterized technique
Transport coefficients of a mesoscopic fluid dynamics model
N. Kikuchi; C. M. Pooley; J. F. Ryder; J. M. Yeomans
2003-02-21T23:59:59.000Z
We investigate the properties of stochastic rotation dynamics (Malevanets-Kapral method), a mesoscopic model used for simulating fluctuating hydrodynamics. Analytical results are given for the transport coefficients. We discuss the most efficient way of measuring the transport properties and obtain excellent agreement between the theoretical and numerical calculations.
Lessons Learned from Quantitative Dynamical Modeling in Systems Biology
Timmer, Jens
Lessons Learned from Quantitative Dynamical Modeling in Systems Biology Andreas Raue1,2 *. , Marcel of Physics, University of Freiburg, Freiburg, Germany, 2 Institute of Computational Biology, Helmholtz Center, Munich, Germany, 3 Systems Biology of Signal Transduction, German Cancer Research Center
Non-perturbative Dynamical Decoupling Control: A Spin Chain Model
Zhao-Ming Wang; Lian-Ao Wu; Jun Jing; Bin Shao; Ting Yu
2012-03-24T23:59:59.000Z
This paper considers a spin chain model by numerically solving the exact model to explore the non-perturbative dynamical decoupling regime, where an important issue arises recently (J. Jing, L.-A. Wu, J. Q. You and T. Yu, arXiv:1202.5056.). Our study has revealed a few universal features of non-perturbative dynamical control irrespective of the types of environments and system-environment couplings. We have shown that, for the spin chain model, there is a threshold and a large pulse parameter region where the effective dynamical control can be implemented, in contrast to the perturbative decoupling schemes where the permissible parameters are represented by a point or converge to a very small subset in the large parameter region admitted by our non-perturbative approach. An important implication of the non-perturbative approach is its flexibility in implementing the dynamical control scheme in a experimental setup. Our findings have exhibited several interesting features of the non-perturbative regimes such as the chain-size independence, pulse strength upper-bound, noncontinuous valid parameter regions, etc. Furthermore, we find that our non-perturbative scheme is robust against randomness in model fabrication and time-dependent random noise.
Dynamic and Static Influence Models on Starbucks Networks Minkyoung Kim
Dynamic and Static Influence Models on Starbucks Networks Minkyoung Kim Interdisciplinary Program Starbucks stores in Korea, which have been spread most rapidly in the world, as an exemplary social network for Starbucks to open the 100th store in Korea, which is the fastest growth of Starbucks in the world [10
Wind Energy Applications of Unified and Dynamic Turbulence Models
Heinz, Stefan
Wind Energy Applications of Unified and Dynamic Turbulence Models Stefan Heinz and Harish Gopalan applicable as a low cost alternative. 1 Introduction There is a growing interest in using wind energy suggests the possibility of providing 20% of the electricity in the U.S. by wind energy in 2030
Modelling Dynamic Trust with Property Based Attestation in Trusted Platforms
Paris-Sud XI, Université de
Modelling Dynamic Trust with Property Based Attestation in Trusted Platforms Aarthi Nagarajan attestation in trusted computing provides the ability to reason about the state of a platform using integrity attestation by abstracting low level binary values to high level security properties or functions of platforms
Modeling Combined Time-and Event-Driven Dynamic Systems
Baclawski, Kenneth B.
such as logistical systems, distributed sensor sys- tems and intelligent highway vehicle systems, are complex dynamic. In this approach, future behaviors are generated through quantitative simulation which "executes" a simulation model, typically at fixed time steps, to obtain quantitative values of state and/or output variables. 1
Geographical Information Systems and Dynamic Modeling via Agent Based Systems
de Figueiredo, Luiz Henrique
Geographical Information Systems and Dynamic Modeling via Agent Based Systems Cláudio Antônio da fariasol@eng.uerj.br ABSTRACT A full integration among Geographical Information Systems and Agent Based integrated with Geographical Information Systems (GIS). The first one is the movement of pedestrians
Multiscale modeling of polystyrene dynamics in different environments
Faller, Roland
Multiscale modeling of polystyrene dynamics in different environments Qi Sun1 , Florence Pon1 simulations can address not only the average properties of the system but also the distribution over any component in their neighborhood and vice versa. The simulation temperature of 450 K is chosen to be above
Approximate Dynamic Programming for Networks: Fluid Models and Constraint Reduction
Veatch, Michael H.
of approximating functions for the differential cost. The first contribution of this paper is identifying new or piece-wise quadratic. Fluid cost has been used to initialize the value iteration algorithm [5Approximate Dynamic Programming for Networks: Fluid Models and Constraint Reduction Michael H
Model-Driven Dynamic Control of Embedded Wireless Sensor Networks
Agarwal, Pankaj K.
Model-Driven Dynamic Control of Embedded Wireless Sensor Networks Paul G. Flikkema1 , Pankaj K-generation wireless sensor networks may revolution- ize understanding of environmental change by assimilating heteroge of wireless sensor networks is now becoming a mature research field. As a result, the discipline is undergoing
Dynamical Analysis of the Fitzhugh-Nagumo Model
Beer, Randall D.
Dynamical Analysis of the Fitzhugh-Nagumo Model #12;IU/COGS-Q580/Beer This isYour Brain #12;IU/COGS-Q580/Beer Action Potentials Tateno, T., Harsch, A. and Robinson, H.P.C. (2004). Threshold Firing. Neurophysiology 92:2283-2294. #12;IU/COGS-Q580/Beer The Ionic Basis of the Action Potential Delcomyn, F. (1998
LECTURES ON GLAUBER DYNAMICS FOR DISCRETE SPIN MODELS
Transitions 5.1 The SolidonSolid Approximation 5.2 Back to the Ising Model 5.3 Recent Progresses 6. Phase Measures 2.3 Weak and Strong Mixing Conditions 2.4 Mixing properties and bounds on relative densities 3 on the Spectral Gap with Free B.C 6.6 Mixed B.C 6.7 Applications 7. Glauber Dynamics for the Dilute Ising Model 7
PORFLOW Modeling Supporting The H-Tank Farm Performance Assessment
Jordan, J. M.; Flach, G. P.; Westbrook, M. L.
2012-08-31T23:59:59.000Z
Numerical simulations of groundwater flow and contaminant transport in the vadose and saturated zones have been conducted using the PORFLOW code in support of an overall Performance Assessment (PA) of the H-Tank Farm. This report provides technical detail on selected aspects of PORFLOW model development and describes the structure of the associated electronic files. The PORFLOW models for the H-Tank Farm PA, Rev. 1 were updated with grout, solubility, and inventory changes. The aquifer model was refined. In addition, a set of flow sensitivity runs were performed to allow flow to be varied in the related probabilistic GoldSim models. The final PORFLOW concentration values are used as input into a GoldSim dose calculator.
Gauge turbulence, topological defect dynamics, and condensation in Higgs models
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Gasenzer, Thomas [Universitat Heidelberg, Institut fur Theoretische Physik, Heidelberg (Germany); GSI, ExtreMe Matter Institute EMMI, Darmstadt (Germany); McLerran, Larry [Brookhaven National Laboratory, Physics Department, RIKEN BNL Research Center Upton NY (United States); China Central Normal University, Physics Department, Wuhan (China); Pawlowski, Jan M [Universitat Heidelberg, Institut fur Theoretische Physik, Heidelberg (Germany); GSI, ExtreMe Matter Institute EMMI, Darmstadt (Germany); Sexty, Denes [Universitat Heidelberg, Institut fur Theoretische Physik, Heidelberg (Germany); GSI, ExtreMe Matter Institute EMMI, Darmstadt (Germany)
2014-10-01T23:59:59.000Z
The real-time dynamics of topological defects and turbulent configurations of gauge fields for electric and magnetic confinement are studied numerically within a 2+1D Abelian Higgs model. It is shown that confinement is appearing in such systems equilibrating after a strong initial quench such as the overpopulation of the infrared modes. While the final equilibrium state does not support confinement, metastable vortex defect configurations appearing in the gauge field are found to be closely related to the appearance of physically observable confined electric and magnetic charges. These phenomena are seen to be intimately related to the approach of a non-thermal fixed point of the far-from-equilibrium dynamical evolution, signaled by universal scaling in the gauge-invariant correlation function of the Higgs field. Even when the parameters of the Higgs action do not support condensate formation in the vacuum, during this approach, transient Higgs condensation is observed. We discuss implications of these results for the far-from-equilibrium dynamics of Yang–Mills fields and potential mechanisms of how confinement and condensation in non-Abelian gauge fields can be understood in terms of the dynamics of Higgs models. These suggest that there is an interesting new class of dynamics of strong coherent turbulent gauge fields with condensates.
Gauge turbulence, topological defect dynamics, and condensation in Higgs models
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Gasenzer, Thomas; McLerran, Larry; Pawlowski, Jan M.; Sexty, Dénes
2014-10-01T23:59:59.000Z
The real-time dynamics of topological defects and turbulent configurations of gauge fields for electric and magnetic confinement are studied numerically within a 2+1D Abelian Higgs model. It is shown that confinement is appearing in such systems equilibrating after a strong initial quench such as the overpopulation of the infrared modes. While the final equilibrium state does not support confinement, metastable vortex defect configurations appearing in the gauge field are found to be closely related to the appearance of physically observable confined electric and magnetic charges. These phenomena are seen to be intimately related to the approach of a non-thermal fixedmore »point of the far-from-equilibrium dynamical evolution, signaled by universal scaling in the gauge-invariant correlation function of the Higgs field. Even when the parameters of the Higgs action do not support condensate formation in the vacuum, during this approach, transient Higgs condensation is observed. We discuss implications of these results for the far-from-equilibrium dynamics of Yang–Mills fields and potential mechanisms of how confinement and condensation in non-Abelian gauge fields can be understood in terms of the dynamics of Higgs models. These suggest that there is an interesting new class of dynamics of strong coherent turbulent gauge fields with condensates.« less
Russell, Lynn
Geophysical Fluid Dynamics Laboratory general circulation model investigation of the indirect Corporation for Atmospheric Research, Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey, USA V. Ramaswamy, Paul A. Ginoux, and Larry W. Horowitz Geophysical Fluid Dynamics Laboratory, Princeton, New
California at Irvine, University of
CVSys: A Coordination Framework for Dynamic and Fully Distributed Cardiovascular Modeling and dynamic simulation control. This coordination framework uniquely incorporates attributes of open indigenous and a more integrated system representation. Dynamic simulation control serves to interject new
Fant, C.A.
This paper describes the use of the CliCrop model in the context of climate change general assessment
A dynamical symmetry breaking model in Weyl space
A. Feoli; W. R. Wood; G. Papini
1998-05-11T23:59:59.000Z
The dynamical process following the breaking of Weyl geometry to Riemannian geometry is considered by studying the motion of de Sitter bubbles in a Weyl vacuum. The bubbles are given in terms of an exact, spherically symmetric thin shell solution to the Einstein equations in a Weyl-Dirac theory with a time-dependent scalar field of the form beta = f(t)/r. The dynamical solutions obtained lead to a number of possible applications. An important feature of the thin shell model is the manner in which beta provides a connection between the interior and exterior geometries since information about the exterior geometry is contained in the boundary conditions for beta.
Gaussian Process Model for Collision Dynamics of Complex Molecules
Cui, Jie
2015-01-01T23:59:59.000Z
We show that a Gaussian Process model can be combined with a small number of scattering calculations to provide an accurate multi-dimensional dependence of scattering observables on the experimentally controllable parameters (such as the collision energy, temperature or external fields) as well as the potential energy surface parameters. This can be used for solving the inverse scattering problem, the prediction of collision properties of a specific molecular system based on the information for another molecule, the efficient calculation of thermally averaged observables and for reducing the error of the molecular dynamics calculations by averaging over the potential energy surface variations. We show that, trained by a combination of classical and quantum dynamics calculations, the model provides an accurate description of the scattering cross sections, even near scattering resonances. In this case, the classical calculations stabilize the model against uncertainties arising from wildly varying correlations ...
Sensitivity analysis of a dynamic model for submerged arc silicon furnaces.
Foss, Bjarne A.
Sensitivity analysis of a dynamic model for submerged arc silicon furnaces. B. F. Lund1 , B. A for a dynamic model of submerged arc silicon furnaces. The model we study, called "Simod", was developed updating a nonlinear, dynamic model of a silicon furnace. We have identified a parameter set that has
Lee, Jooyoung
Random Forest-Based Protein Model Quality Assessment (RFMQA) Using Structural Features and Potential Energy Terms Balachandran Manavalan, Juyong Lee, Jooyoung Lee* Center for In Silico Protein quality assessment (RFMQA) to rank protein models using its structural features and knowledge
An investigation into the use of biokinetic models when assessing intakes of plutonium
Hrycushko, Brian Andrew
2008-10-10T23:59:59.000Z
plutonium systemic model to assess an intake based on fecal bioassay data, but not urine bioassay data for ingestion intakes. It is not feasible to interchange the systemic models when assessing intakes from a wound or injection. Using different combinations...
Model for dynamic self-assembled magnetic surface structures.
Belkin, M.; Glatz, A.; Snezhko, A.; Aranson, I. S.; Materials Science Division; Northwestern Univ.
2010-07-07T23:59:59.000Z
We propose a first-principles model for the dynamic self-assembly of magnetic structures at a water-air interface reported in earlier experiments. The model is based on the Navier-Stokes equation for liquids in shallow water approximation coupled to Newton equations for interacting magnetic particles suspended at a water-air interface. The model reproduces most of the observed phenomenology, including spontaneous formation of magnetic snakelike structures, generation of large-scale vortex flows, complex ferromagnetic-antiferromagnetic ordering of the snake, and self-propulsion of bead-snake hybrids.
Donovan, Amy R.; Oppenheimer, Clive
2014-11-27T23:59:59.000Z
(Stirling, 151 2008). For Massey, space is dynamic: it must be thought of in relation to time. It resists 152 enclosure in a model. In considering geographical models in light of this, O’Sullivan (2004) 153 suggests that “it is vital that modelling... , 215 noting the presence of social, psychological and geographical uncertainties (see also Stirling, 216 2007, 2008; Wynne, 1992; Jasanoff, 2004, 2005). Understanding the complex ways in which 217 uncertainty is generated is critical in appreciating...
Modeling Dynamics in the Central Regions of Disk Galaxies
Isaac Shlosman
2004-12-07T23:59:59.000Z
The central regions of disk galaxies are hosts to supermassive black holes whose masses show a tight correlation with the properties of surrounding stellar bulges. While the exact origin of this dependency is not clear, it can be related to the very basic properties of dark matter halos and the associated gas and stellar dynamics in the central kpc of host galaxies. In this review we discuss some of the recent developments in modeling the wide spectrum of dynamical processes which can be affiliated with the above phenomena, such as the structure of molecular tori in AGN, structure formation in triaxial halos, and dissipative and non-dissipative dynamics in nested bar systems, with a particular emphasis on decoupling of gaseous nuclear bars. We also briefly touch on the subject of fueling the nuclear starbursts and AGN.
An Inspector's Assessment of the New Model Safeguards Approach for Enrichment Plants
Curtis, Michael M.
2007-07-31T23:59:59.000Z
This conference paper assesses the changes that are being made to the Model Safeguards Approach for Gas Centrifuge Enrichment Plants.
Dynamic Absorption Model for Off-Gas Separation
Veronica J. Rutledge
2011-07-01T23:59:59.000Z
Modeling and simulations will aid in the future design of U.S. advanced reprocessing plants for the recovery and recycle of actinides in used nuclear fuel. The specific fuel cycle separation process discussed in this report is the off-gas treatment system. The off-gas separation consists of a series of scrubbers and adsorption beds to capture constituents of interest. Dynamic models are being developed to simulate each unit operation involved so each unit operation can be used as a stand-alone model and in series with multiple others. Currently, a rate based, dynamic absorption model is being developed in gPROMS software. Inputs include liquid and gas stream constituents, column properties, liquid and gas phase reactions, number of stages, and inlet conditions. It simulates multiple component absorption with countercurrent flow and accounts for absorption by mass transfer and chemical reaction. The assumption of each stage being a discrete well-mixed entity was made. Therefore, the model is solved stagewise. The simulation outputs component concentrations in both phases as a function of time from which the rate of absorption is determined. Temperature of both phases is output as a function of time also. The model will be used able to be used as a standalone model in addition to in series with other off-gas separation unit operations. The current model is being generated based on NOx absorption; however, a future goal is to develop a CO2 specific model. The model will have the capability to be modified for additional absorption systems. The off-gas models, both adsorption and absorption, will be made available via the server or web for evaluation by customers.
Dynamics of Matter in a Compactified Kaluza-Klein Model
Valentino Lacquaniti; Giovanni Montani
2009-02-10T23:59:59.000Z
A longstanding problem in Kaluza-Klein models is the description of matter dynamics. Within the 5D model, the dimensional reduction of the geodesic motion for a 5D free test particle formally restores electrodynamics, but the reduced 4D particle shows a charge-mass ratio that is upper bounded, such that it cannot fit to any kind of elementary particle. At the same time, from the quantum dynamics viewpoint, there is the problem of the huge massive modes generation. We present a criticism against the 5D geodesic approach and face the hypothesis that in Kaluza-Klein space the geodesic motion does not deal with the real dynamics of test particle. We propose a new approach: starting from the conservation equation for the 5D matter tensor, within the Papapetrou multipole expansion, we prove that the 5D dynamical equation differs from the 5D geodesic one. Our new equation provides right coupling terms without bounding and in such a scheme the tower of massive modes is removed.
Model of a deterministic detector and dynamical decoherence
Lee, Jae Weon; Shepelyansky, Dima L. [Laboratoire de Physique Theorique, UMR 5152 du CNRS, Univ. P. Sabatier, 31062 Toulouse Cedex 4 (France); Averin, Dmitri V. [Department of Physics, University of Stony Brook, SUNY, Stony Brook, New York 11794 (United States); Benenti, Giuliano [Center for Nonlinear and Complex Systems, Universita degli Studi dell'Insubria and Istituto Nazionale per la Fisica della Materia, Unita di Como, Via Valleggio 11, 22100 Como (Italy)
2005-07-15T23:59:59.000Z
We discuss a deterministic model of detector coupled to a two-level system (a qubit). The detector is a quasiclassical object whose dynamics is described by the kicked rotator Hamiltonian. We show that in the regime of quantum chaos the detector acts as a chaotic bath and induces decoherence of the qubit. We discuss the dephasing and relaxation rates and demonstrate that the main features of single-qubit decoherence due to a heat bath can be reproduced by our fully deterministic dynamical model. Moreover, we show that, for strong enough qubit-detector coupling, the dephasing rate is given by the rate of exponential instability of the detector's dynamics, that is, by the Lyapunov exponent of classical motion. Finally, we discuss the measurement in the regimes of strong and weak qubit-detector coupling. For the case of strong coupling the detector performs a measurement of the up/down state of the qubit. In the case of weak coupling, due to chaos, the dynamical evolution of the detector is strongly sensitive to the state of the qubit. However, in this case it is unclear how to extract a signal from any measurement with a coarse-graining in the phase space on a size much larger than the Planck cell.
Keratin Dynamics: Modeling the Interplay between Turnover and Transport
Stephanie Portet; Anotida Madzvamuse; Andy Chung; Rudolf E. Leube; Reinhard Windoffer
2015-04-01T23:59:59.000Z
Keratin are among the most abundant proteins in epithelial cells. Functions of the keratin network in cells are shaped by their dynamical organization. Using a collection of experimentally-driven mathematical models, different hypotheses for the turnover and transport of the keratin material in epithelial cells are tested. The interplay between turnover and transport and their effects on the keratin organization in cells are hence investigated by combining mathematical modeling and experimental data. Amongst the collection of mathematical models considered, a best model strongly supported by experimental data is identified. Fundamental to this approach is the fact that optimal parameter values associated with the best fit for each model are established. The best candidate among the best fits is characterized by the disassembly of the assembled keratin material in the perinuclear region and an active transport of the assembled keratin. Our study shows that an active transport of the assembled keratin is required to explain the experimentally observed keratin organization.
Dynamic ModelingDynamic Modeling the Electric Power Networkthe Electric Power Network
Oro, Daniel
at the National Energy Modeling System/Annual Energy Outlook Conference, Washington, DC, March 10, 2003] #12
A preliminary study to Assess Model Uncertainties in Fluid Flows
Marc Oliver Delchini; Jean C. Ragusa
2009-09-01T23:59:59.000Z
The goal of this study is to assess the impact of various flow models for a simplified primary coolant loop of a light water nuclear reactor. The various fluid flow models are based on the Euler equations with an additional friction term, gravity term, momentum source, and energy source. The geometric model is purposefully chosen simple and consists of a one-dimensional (1D) loop system in order to focus the study on the validity of various fluid flow approximations. The 1D loop system is represented by a rectangle; the fluid is heated up along one of the vertical legs and cooled down along the opposite leg. A pressurizer and a pump are included in the horizontal legs. The amount of energy transferred and removed from the system is equal in absolute value along the two vertical legs. The various fluid flow approximations are compressible vs. incompressible, and complete momentum equation vs. Darcy’s approximation. The ultimate goal is to compute the fluid flow models’ uncertainties and, if possible, to generate validity ranges for these models when applied to reactor analysis. We also limit this study to single phase flows with low-Mach numbers. As a result, sound waves carry a very small amount of energy in this particular case. A standard finite volume method is used for the spatial discretization of the system.
Nuclear Hybrid Energy System Modeling: RELAP5 Dynamic Coupling Capabilities
Piyush Sabharwall; Nolan Anderson; Haihua Zhao; Shannon Bragg-Sitton; George Mesina
2012-09-01T23:59:59.000Z
The nuclear hybrid energy systems (NHES) research team is currently developing a dynamic simulation of an integrated hybrid energy system. A detailed simulation of proposed NHES architectures will allow initial computational demonstration of a tightly coupled NHES to identify key reactor subsystem requirements, identify candidate reactor technologies for a hybrid system, and identify key challenges to operation of the coupled system. This work will provide a baseline for later coupling of design-specific reactor models through industry collaboration. The modeling capability addressed in this report focuses on the reactor subsystem simulation.
Dynamic Versus Steady-State Modeling of FACTS Controllers in Transmission Congestion
Cańizares, Claudio A.
1 Dynamic Versus Steady-State Modeling of FACTS Controllers in Transmission Congestion Claudio A of dynamic models of power systems elements, including FACTS controllers, and a better representation controller dynamic models in market clearing and power dispatch. The research work presented here
Efficient Dynamic Modeling, Numerical Optimal Control and Experimental Results for Various Gaits
Stryk, Oskar von
Efficient Dynamic Modeling, Numerical Optimal Control and Experimental Results for Various Gaits. A fully three- dimensional dynamical model of Sony's four-legged robot is used to state an optimal control model and the algorithm for evaluating the dynamics. The formulation of the optimal control problem
Learning Multiple Models of Non-Linear Dynamics for Control under Varying Contexts
Vijayakumar, Sethu
Learning Multiple Models of Non-Linear Dynamics for Control under Varying Contexts Georgios Petkos for adaptive motor control exist which learn the system's inverse dynamics online and use this single model;II Command Context 1 Context 2 Dynamics models Context n Control Learning Commands Switch / Mix
AIAA 2001-2126 DYNAMICAL MODELS FOR CONTROL OF CAVITY OSCILLATIONS
Dabiri, John O.
AIAA 2001-2126 DYNAMICAL MODELS FOR CONTROL OF CAVITY OSCILLATIONS Clarence W. Rowley Tim Colonius have used an explicit dynamical model for control design, or analysis of performance or robustness, CA 91125 Abstract We investigate nonlinear dynamical models for self- sustained oscillations
Learning Multiple Models of Non-Linear Dynamics for Control under Varying Contexts
Toussaint, Marc
Learning Multiple Models of Non-Linear Dynamics for Control under Varying Contexts Georgios Petkos for adaptive motor control exist which learn the system's inverse dynamics online and use this single model version - to appear in ICANN 2006 #12;II Command Context 1 Context 2 Dynamics models Context n Control
Load estimation and control using learned dynamics models Georgios Petkos and Sethu Vijayakumar
Vijayakumar, Sethu
Load estimation and control using learned dynamics models Georgios Petkos and Sethu Vijayakumar with their robustness in light of imperfect, intermediate dynamic models. I. INTRODUCTION Adaptive control the learned dynamics for control. In Section IV, we see how from a set of learned models with known inertial
Direct Modeling of Envelope Dynamics in Resonant Inverters Yan Yin, Regan Zane, Robert Erickson
to facilitate optimized controller design. Several approaches are available to model the envelope dynamicsDirect Modeling of Envelope Dynamics in Resonant Inverters Yan Yin, Regan Zane, Robert Erickson- This paper provides a direct dynamic modeling approach for envelope signals in resonant inverters driven
Best practices for system dynamics model design and construction with powersim studio.
Malczynski, Leonard A.
2011-06-01T23:59:59.000Z
This guide addresses software quality in the construction of Powersim{reg_sign} Studio 8 system dynamics simulation models. It is the result of almost ten years of experience with the Powersim suite of system dynamics modeling tools (Constructor and earlier Studio versions). It is a guide that proposes a common look and feel for the construction of Powersim Studio system dynamics models.
A CONCEPT TO ASSESS THE PERFORMANCE OF A PERMAFROST MODEL RUN FULLY COUPLED WITH A CLIMATE MODEL
Moelders, Nicole
A CONCEPT TO ASSESS THE PERFORMANCE OF A PERMAFROST MODEL RUN FULLY COUPLED WITH A CLIMATE MODEL APPROVED: Dean, College of Natural Science and Mathematics Dean of the Graduate School Date #12;A CONCEPT TO ASSESS THE PERFORMANCE OF A PERMAFROST MODEL RUN FULLY COUPLED WITH A CLIMATE MODEL A DISSERTATION
Jeffrey C. JOe; Ronald L. Boring
2014-06-01T23:59:59.000Z
Probabilistic Risk Assessment (PRA) and Human Reliability Assessment (HRA) are important technical contributors to the United States (U.S.) Nuclear Regulatory Commission’s (NRC) risk-informed and performance based approach to regulating U.S. commercial nuclear activities. Furthermore, all currently operating commercial NPPs in the U.S. are required by federal regulation to be staffed with crews of operators. Yet, aspects of team performance are underspecified in most HRA methods that are widely used in the nuclear industry. There are a variety of "emergent" team cognition and teamwork errors (e.g., communication errors) that are 1) distinct from individual human errors, and 2) important to understand from a PRA perspective. The lack of robust models or quantification of team performance is an issue that affects the accuracy and validity of HRA methods and models, leading to significant uncertainty in estimating HEPs. This paper describes research that has the objective to model and quantify team dynamics and teamwork within NPP control room crews for risk informed applications, thereby improving the technical basis of HRA, which improves the risk-informed approach the NRC uses to regulate the U.S. commercial nuclear industry.
A Nonlocal Peridynamic Plasticity Model for the Dynamic Flow and Fracture of Concrete.
Vogler, Tracy; Lammi, Christopher James
2014-10-01T23:59:59.000Z
A nonlocal, ordinary peridynamic constitutive model is formulated to numerically simulate the pressure-dependent flow and fracture of heterogeneous, quasi-brittle ma- terials, such as concrete. Classical mechanics and traditional computational modeling methods do not accurately model the distributed fracture observed within this family of materials. The peridynamic horizon, or range of influence, provides a characteristic length to the continuum and limits localization of fracture. Scaling laws are derived to relate the parameters of peridynamic constitutive model to the parameters of the classical Drucker-Prager plasticity model. Thermodynamic analysis of associated and non-associated plastic flow is performed. An implicit integration algorithm is formu- lated to calculate the accumulated plastic bond extension and force state. The gov- erning equations are linearized and the simulation of the quasi-static compression of a cylinder is compared to the classical theory. A dissipation-based peridynamic bond failure criteria is implemented to model fracture and the splitting of a concrete cylinder is numerically simulated. Finally, calculation of the impact and spallation of a con- crete structure is performed to assess the suitability of the material and failure models for simulating concrete during dynamic loadings. The peridynamic model is found to accurately simulate the inelastic deformation and fracture behavior of concrete during compression, splitting, and dynamically induced spall. The work expands the types of materials that can be modeled using peridynamics. A multi-scale methodology for simulating concrete to be used in conjunction with the plasticity model is presented. The work was funded by LDRD 158806.
Modelling the e#ects of air pollution on health using Bayesian Dynamic Generalised Linear Models
Bath, University of
Modelling the e#ects of air pollution on health using Bayesian Dynamic Generalised Linear Models 1 Introduction The potential detrimental e#ects of ambient air pollution is a major issue in public (2004)). Large multicity studies such as `Air pollution and health: a European approach' (APHEA
User Guide for PV Dynamic Model Simulation Written on PSCAD Platform
Muljadi, E.; Singh, M.; Gevorgian, V.
2014-11-01T23:59:59.000Z
This document describes the dynamic photovoltaic model developed by the National Renewable Energy Laboratory and is intended as a guide for users of these models.
Use dynamic simulation to model HPU reactor depressuring
Ernest, J.B.; Depew, C.A. (Fluor Daniel, Inc., Irvine, CA (United States))
1995-01-01T23:59:59.000Z
Dynamic simulation is the best available method for the analysis of hydroprocessing unit (HPU) depressuring. Depressuring is crucial for the safe operation of hydrocracking and other HPUs with catalysts that have hydrocracking activity. Effective design for depressuring is valuable for all types of HPUs, both grass-roots and revamps. Reactor loop depressuring can set design temperatures and pressures for the reactor effluent cooling train and other equipment and piping in an HPU. Unfortunately, usual methods for determining equipment and piping design conditions during depressuring leave much room for improvement because they poorly account for time-dependent temperature and pressure changes. Dynamic simulation makes it practical to more accurately estimate these transient conditions. The paper discusses depressuring design, including the nature of depressuring, the impact of depressuring on design, and depressuring calculation methods. The author then describes modeling of hydroprocessing unit depressuring by discussing the general and particular correspondence of simulation modules to physical equipment using the base case of total electrical power failure. The special data that is required for dynamic simulation is described and typical simulation results are given. Lastly, the advantages of dynamic simulation are summarized.
Assessing the role of static lengthscales behind glassy dynamics in polydisperse hard disks
John Russo; Hajime Tanaka
2015-02-20T23:59:59.000Z
The possible role of growing static order in the dynamical slowing down towards the glass transition has recently attracted considerable attention. On the basis of random first-order transition (RFOT) theory, a new method to measure the static correlation length of amorphous order, called "point-to-set (PTS)" length, has been proposed, and used to show that the dynamic length grows much faster than the static length. Here we study the nature of the PTS length, using a polydisperse hard disk system, which is a model that is known to exhibit a growing hexatic order upon densification. We show that the PTS correlation length is decoupled from the steeper increase of the correlation length of hexatic order, while closely mirroring the decay length of two-body density correlations. Our results thus provide a clear example that other forms of order can play an important role in the slowing down of the dynamics, casting a serious doubt on the order agnostic nature of the PTS length and its relevance to slow dynamics, provided that a polydisperse hard disk system is a typical glass former.
A spectral transform dynamical core option within the Community Atmosphere Model (CAM4)
Evans, Katherine J [ORNL; Mahajan, Salil [ORNL; Branstetter, Marcia L [ORNL; McClean, Julie L. [Scripps Institute of Oceanography; Caron, Julie M. [National Center for Atmospheric Research (NCAR); Maltrud, Matthew E. [Los Alamos National Laboratory (LANL); Hack, James J [ORNL; Bader, David C [ORNL; Neale, Rich [National Center for Atmospheric Research (NCAR)
2014-01-01T23:59:59.000Z
A spectral transform dynamical core with an 85 spectral truncation resolution (T85) within the Community Atmosphere Model (CAM), version 4, is evaluated within the recently released Community Earth System Model, version 1.0 (CESM) global climate model. The spectral dynamical core option provides a well-known base within the climate model community from which to assess climate behavior and statistics, and its relative computational efficiency for smaller computing platforms allows it to be extended to perform climate length simulations using high-resolution configurations in the near term. To establish the characteristics of the CAM4 T85, an ensemble of simulations covering the present day observational period using forced sea surface temperatures and prescribed sea-ice extent are evaluated. Overall, the T85 ensemble attributes and biases are similar to a companion ensemble of simulations using the one degree finite volume (FV1) dynamical core, relative to observed and model derived datasets. Notable improvements with T85 compared to FV1 include the representation of wintertime Arctic sea level pressure and summer precipitation over the Western Indian subcontinent. The mean and spatial patterns of the land surface temperature trends over the AMIP period are generally well simulated with the T85 ensemble relative to observations, however the model is not able to capture the extent nor magnitude of changes in temperature extremes over the boreal summer, where the changes are most dramatic. Biases in the wintertime Arctic surface temperature and annual mean surface stress fields persist with T85 as with the CAM3 version of T85.
Eulerian hydrocode modeling of a dynamic tensile extrusion experiment (u)
Burkett, Michael W [Los Alamos National Laboratory; Clancy, Sean P [Los Alamos National Laboratory
2009-01-01T23:59:59.000Z
Eulerian hydrocode simulations utilizing the Mechanical Threshold Stress flow stress model were performed to provide insight into a dynamic extrusion experiment. The dynamic extrusion response of copper (three different grain sizes) and tantalum spheres were simulated with MESA, an explicit, 2-D Eulerian continuum mechanics hydrocode and compared with experimental data. The experimental data consisted of high-speed images of the extrusion process, recovered extruded samples, and post test metallography. The hydrocode was developed to predict large-strain and high-strain-rate loading problems. Some of the features of the features of MESA include a high-order advection algorithm, a material interface tracking scheme and a van Leer monotonic advection-limiting. The Mechanical Threshold Stress (MTS) model was utilized to evolve the flow stress as a function of strain, strain rate and temperature for copper and tantalum. Plastic strains exceeding 300% were predicted in the extrusion of copper at 400 m/s, while plastic strains exceeding 800% were predicted for Ta. Quantitative comparisons between the predicted and measured deformation topologies and extrusion rate were made. Additionally, predictions of the texture evolution (based upon the deformation rate history and the rigid body rotations experienced by the copper during the extrusion process) were compared with the orientation imaging microscopy measurements. Finally, comparisons between the calculated and measured influence of the initial texture on the dynamic extrusion response of tantalum was performed.
Dynamic mesoscale model of dipolar fluids via fluctuating hydrodynamics
Persson, Rasmus A. X.; Chu, Jhih-Wei, E-mail: jwchu@nctu.edu.tw [Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu 30068, Taiwan (China); Department of Biological Science and Technology, National Chiao Tung University, Hsinchu 30068, Taiwan (China); Voulgarakis, Nikolaos K. [Department of Mathematics, Washington State University, Richland, Washington 99372 (United States)
2014-11-07T23:59:59.000Z
Fluctuating hydrodynamics (FHD) is a general framework of mesoscopic modeling and simulation based on conservational laws and constitutive equations of linear and nonlinear responses. However, explicit representation of electrical forces in FHD has yet to appear. In this work, we devised an Ansatz for the dynamics of dipole moment densities that is linked with the Poisson equation of the electrical potential ? in coupling to the other equations of FHD. The resulting ?-FHD equations then serve as a platform for integrating the essential forces, including electrostatics in addition to hydrodynamics, pressure-volume equation of state, surface tension, and solvent-particle interactions that govern the emergent behaviors of molecular systems at an intermediate scale. This unique merit of ?-FHD is illustrated by showing that the water dielectric function and ion hydration free energies in homogeneous and heterogenous systems can be captured accurately via the mesoscopic simulation. Furthermore, we show that the field variables of ?-FHD can be mapped from the trajectory of an all-atom molecular dynamics simulation such that model development and parametrization can be based on the information obtained at a finer-grained scale. With the aforementioned multiscale capabilities and a spatial resolution as high as 5 Ĺ, the ?-FHD equations represent a useful semi-explicit solvent model for the modeling and simulation of complex systems, such as biomolecular machines and nanofluidics.
Multiphase flow in the advanced fluid dynamics model
Bohl, W.R.; Wilhelm, D.; Berthier, J.; Parker, F.P.; Ichikawa, S.; Goutagny, L.; Ninokata, H.
1988-01-01T23:59:59.000Z
This paper describes the modeling used in the Advanced Fluid Dynamics Model (AFDM), a computer code to investigate new approaches to simulating severe accidents in fast reactors. The AFDM code has 12 topologies describing what material contacts are possible depending on the presence or absence of a given material in a computational cell, the dominant liquid, and the continuous phase. Single-phase, bubbly, churn-turbulent, cellular, and dispersed flow are permitted for the pool situations modeled. Interfacial areas between the continuous and discontinuous phases are convected to allow some tracking of phenomenological histories. Interfacial areas also are modified by models of nucleation, dynamic forces, turbulence, flashing, coalescence, and mass transfer. Heat transfer generally is treated using engineering correlations. Liquid/vapor phase transitions are handled with a nonequililbrium heat-transfer-limited model, whereas melting and freezing processes are based on equilibrium considerations. The Los Alamos SESAME equation of state (EOS) has been inplemented using densities and temperatures as the independent variables. A summary description of the AFDM numerical algorithm is provided. The AFDM code currently is being debugged and checked out. Two sample three-field calculations also are presented. The first is a three-phase bubble column mixing experiment performed at Argonne National Laboratory; the second is a liquid-liquid mixing experiment performed at Kernforschungszentrum, Karlsruhe, that resulted in rapid vapor production. We conclude that only qualitative comparisons currently are possible for complex multiphase situations. Many further model developments can be pursued, but there are limits because of the lack of a comprehensive theory, the lack of detailed multicomponent experimental data, and the difficulties in keeping the resulting model complexities tractable.
Computational fluid dynamic modeling of fluidized-bed polymerization reactors
Rokkam, Ram [Ames Laboratory
2012-11-02T23:59:59.000Z
Polyethylene is one of the most widely used plastics, and over 60 million tons are produced worldwide every year. Polyethylene is obtained by the catalytic polymerization of ethylene in gas and liquid phase reactors. The gas phase processes are more advantageous, and use fluidized-bed reactors for production of polyethylene. Since they operate so close to the melting point of the polymer, agglomeration is an operational concern in all slurry and gas polymerization processes. Electrostatics and hot spot formation are the main factors that contribute to agglomeration in gas-phase processes. Electrostatic charges in gas phase polymerization fluidized bed reactors are known to influence the bed hydrodynamics, particle elutriation, bubble size, bubble shape etc. Accumulation of electrostatic charges in the fluidized-bed can lead to operational issues. In this work a first-principles electrostatic model is developed and coupled with a multi-fluid computational fluid dynamic (CFD) model to understand the effect of electrostatics on the dynamics of a fluidized-bed. The multi-fluid CFD model for gas-particle flow is based on the kinetic theory of granular flows closures. The electrostatic model is developed based on a fixed, size-dependent charge for each type of particle (catalyst, polymer, polymer fines) phase. The combined CFD model is first verified using simple test cases, validated with experiments and applied to a pilot-scale polymerization fluidized-bed reactor. The CFD model reproduced qualitative trends in particle segregation and entrainment due to electrostatic charges observed in experiments. For the scale up of fluidized bed reactor, filtered models are developed and implemented on pilot scale reactor.
Parameter Estimation of Dynamic Air-conditioning Component Models Using Limited Sensor Data
Hariharan, Natarajkumar
2011-08-08T23:59:59.000Z
This thesis presents an approach for identifying critical model parameters in dynamic air-conditioning systems using limited sensor information. The expansion valve model and the compressor model parameters play a crucial role in the system model...
Nucleon-nucleon interaction in the chromodielectric soliton model: Dynamics
Pepin, S.; Stancu, F. [Universite de Liege, Institut de Physique B.5, Sart-Tilman, B-4000 Liege 1 (Belgium)] [Universite de Liege, Institut de Physique B.5, Sart-Tilman, B-4000 Liege 1 (Belgium); Koepf, W. [School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, 69978 Tel Aviv (Israel)] [School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, 69978 Tel Aviv (Israel); Wilets, L. [Department of Physics, FM-15, University of Washington, Seattle, Washington 98195 (United States)] [Department of Physics, FM-15, University of Washington, Seattle, Washington 98195 (United States)
1996-03-01T23:59:59.000Z
The present work is an extension of a previous study of the nucleon-nucleon interaction based on the chromodielectric soliton model. The former approach was static, leading to an adiabatic potential. Here we perform a dynamical study in the framework of the generator coordinate method. In practice we derive an approximate Hill-Wheeler differential equation and obtain a local nucleon-nucleon potential as a function of a mean generator coordinate. This coordinate is related to an effective separation distance between the two nucleons by a Fujiwara transformation. This latter relationship is especially useful in studying the quark substructure of light nuclei. We investigate the explicit contribution of the one-gluon exchange part of the six-quark Hamiltonian to the nucleon-nucleon potential, and we find that the dynamics are responsible for a significant part of the short-range {ital N}-{ital N} repulsion. {copyright} {ital 1996 The American Physical Society.}
Coles, Garill A.; Brothers, Alan J.; Gastelum, Zoe N.; Olson, Jarrod; Thompson, Sandra E.
2009-10-26T23:59:59.000Z
The Utility of Social Modeling for Proliferation Assessment project (PL09-UtilSocial) investigates the use of social and cultural information to improve nuclear proliferation assessments, including nonproliferation assessments, Proliferation Resistance (PR) assessments, safeguards assessments, and other related studies. These assessments often use and create technical information about a host State and its posture towards proliferation, the vulnerability of a nuclear energy system (NES) to an undesired event, and the effectiveness of safeguards. This objective of this project is to find and integrate social and technical information by explicitly considering the role of cultural, social, and behavioral factors relevant to proliferation; and to describe and demonstrate if and how social science modeling has utility in proliferation assessment. This report describes a modeling approach and how it might be used to support a location-specific assessment of the PR assessment of a particular NES. The report demonstrates the use of social modeling to enhance an existing assessment process that relies on primarily technical factors. This effort builds on a literature review and preliminary assessment performed as the first stage of the project and compiled in PNNL-18438. [ T his report describes an effort to answer questions about whether it is possible to incorporate social modeling into a PR assessment in such a way that we can determine the effects of social factors on a primarily technical assessment. This report provides: 1. background information about relevant social factors literature; 2. background information about a particular PR assessment approach relevant to this particular demonstration; 3. a discussion of social modeling undertaken to find and characterize social factors that are relevant to the PR assessment of a nuclear facility in a specific location; 4. description of an enhancement concept that integrates social factors into an existing, technically based nuclear facility assessment; 5. a discussion of a way to engage with the owners of the PR assessment methodology to assess and improve the enhancement concept; 6. a discussion of implementation of the proposed approach, including a discussion of functionality and potential users; and 7. conclusions from the research. This report represents technical deliverables for the NA-22 Simulations, Algorithms, and Modeling program. Specifically this report is the Task 2 and 3 deliverables for project PL09-UtilSocial.
System vulnerability as a concept to assess power system dynamic security
Fouad, A.A.; Qin Zhou; Vittal, V. (Iowa State Univ., Ames, IA (United States))
1994-05-01T23:59:59.000Z
The concept of system vulnerability is introduced as a new framework for power system dynamic security assessment. This new concept combines information on the level of security and its trend with changing system condition. In this paper the transient energy function (TEF) method is used as a tool of analysis. The energy margin [Delta]V is used as an indicator of the level of security, and its sensitivity ([partial derivative][Delta]V/[partial derivative]p) to a changing system parameter p as an indicator of its trend. The thresholds for acceptable levels of the security indicator ([Delta]V) and its trend ([partial derivative][Delta]V/[partial derivative]p) are related to the stability limits of a critical system parameter. A method is proposed to determine these thresholds using heuristic techniques derived from operating practices and policies for a change in plant generation. Results from the IEEE 50 generator test system are presented to illustrate the procedure.
Model for Aggregated Water Heater Load Using Dynamic Bayesian Networks
Vlachopoulou, Maria; Chin, George; Fuller, Jason C.; Lu, Shuai; Kalsi, Karanjit
2012-07-19T23:59:59.000Z
The transition to the new generation power grid, or “smart grid”, requires novel ways of using and analyzing data collected from the grid infrastructure. Fundamental functionalities like demand response (DR), that the smart grid needs, rely heavily on the ability of the energy providers and distributors to forecast the load behavior of appliances under different DR strategies. This paper presents a new model of aggregated water heater load, based on dynamic Bayesian networks (DBNs). The model has been validated against simulated data from an open source distribution simulation software (GridLAB-D). The results presented in this paper demonstrate that the DBN model accurately tracks the load profile curves of aggregated water heaters under different testing scenarios.
Explorations in combining cognitive models of individuals and system dynamics models of groups.
Backus, George A.
2008-07-01T23:59:59.000Z
This report documents a demonstration model of interacting insurgent leadership, military leadership, government leadership, and societal dynamics under a variety of interventions. The primary focus of the work is the portrayal of a token societal model that responds to leadership activities. The model also includes a linkage between leadership and society that implicitly represents the leadership subordinates as they directly interact with the population. The societal model is meant to demonstrate the efficacy and viability of using System Dynamics (SD) methods to simulate populations and that these can then connect to cognitive models depicting individuals. SD models typically focus on average behavior and thus have limited applicability to describe small groups or individuals. On the other hand, cognitive models readily describe individual behavior but can become cumbersome when used to describe populations. Realistic security situations are invariably a mix of individual and population dynamics. Therefore, the ability to tie SD models to cognitive models provides a critical capability that would be otherwise be unavailable.
Li, Yangmin
Dynamic Modeling and Adaptive Neural-Fuzzy Control for Nonholonomic Mobile Manipulators Moving on a Slope 1 Dynamic Modeling and Adaptive Neural-Fuzzy Control for Nonholonomic Mobile Manipulators Moving manipulator, neural-fuzzy control, nonholonomic. 1. INTRODUCTION Intelligent and autonomous mobile
A simple microscopic model for the dynamics of adhesive failure
Dominic Vella; L. Mahadevan
2005-12-27T23:59:59.000Z
We consider a microscopic model for the failure of soft adhesives in tension based on ideas of bond rupture under dynamic loading. Focusing on adhesive failure under loading at constant velocity, we demonstrate that bi-modal curves of stress against strain may occur due to effects of finite polymer chain or bond length and characterise the loading conditions under which such bi-modal behaviour is observed. The results of this analysis are in qualitative agreement with experiments performed on unconfined adhesives in which failure does not occur by cavitation.
Validation of DWPF MOG dynamics model -- Phase 1
Choi, A.S.
1996-09-23T23:59:59.000Z
The report documents the results of a study to validate the DWPF melter off-gas system dynamics model using the data collected during the Waste Qualification Runs in 1995. The study consisted of: (1) calibration of the model using one set of melter idling data, (2) validation of the calibrated model using three sets of steady feeding and one set of transient data, and (3) application of the validated model to simulate the melter overfeeding incident which took place on 7/5.95. All the controller tuning constants and control logic used in the validated model are identical to those used in the DCS in 1995. However, the model does not reflect any design and/or operational changes made in 1996 to alleviate the glass pouring problem. Based on the results of the overfeeding simulation, it is concluded that the actual feed rates during that incident were about 2.75 times the indicated readings and that the peak concentration of combustible gases remained below 15% of the lower flammable limit during the entire one-hour duration.
A LUMPED-PARAMETER DYNAMIC MODEL OF A THERMAL REGENERATOR FOR FREE-PISTON STIRLING ENGINES
Barth, Eric J.
A LUMPED-PARAMETER DYNAMIC MODEL OF A THERMAL REGENERATOR FOR FREE-PISTON STIRLING ENGINES Mark the mass flow, piston dynamics, and control volume behavior inside a free-piston Stirling engine. A new model for a Stirling engine thermal regenerator that incorporates a dynamically changing temperature
Designability, thermodynamic stability, and dynamics in protein folding: A lattice model study
Levine, Alex J.
Designability, thermodynamic stability, and dynamics in protein folding: A lattice model study Re October 1998 In the framework of a lattice-model study of protein folding, we investigate the interplay model. Lattice models have been widely used in the study of protein folding dynamics.28 The main
Computational Fluid Dynamics Modeling of the John Day Dam Tailrace
Rakowski, Cynthia L.; Perkins, William A.; Richmond, Marshall C.; Serkowski, John A.
2010-07-08T23:59:59.000Z
US Army Corps of Engineers - Portland District required that a two-dimensional (2D) depth-averaged and a three-dimensional (3D) free-surface numerical models to be developed and validated for the John Day tailrace. These models were used to assess potential impact of a select group of structural and operational alternatives to tailrace flows aimed at improving fish survival at John Day Dam. The 2D model was used for the initial assessment of the alternatives in conjunction with a reduced-scale physical model of the John Day Project. A finer resolution 3D model was used to more accurately model the details of flow in the stilling basin and near-project tailrace hydraulics. Three-dimensional model results were used as input to the Pacific Northwest National Laboratory particle tracking software, and particle paths and times to pass a downstream cross section were used to assess the relative differences in travel times resulting from project operations and structural scenarios for multiple total river flows. Streamlines and neutrally-buoyant particles were seeded in all turbine and spill bays with flows. For a Total River of 250 kcfs running with the Fish Passage Plan spill pattern and a spillwall, the mean residence times for all particles were little changed; however the tails of the distribution were truncated for both spillway and powerhouse release points, and, for the powerhouse releases, reduced the residence time for 75% of the particles to pass a downstream cross section from 45.5 minutes to 41.3 minutes. For a total river of 125 kcfs configured with the operations from the Fish Passage Plan for the temporary spillway weirs and for a proposed spillwall, the neutrally-buoyant particle tracking data showed that the river with a spillwall in place had the overall mean residence time increase; however, the residence time for 75% of the powerhouse-released particles to pass a downstream cross section was reduced from 102.4 min to 89 minutes.
Assessment of a Molecular Diffusion Model in MELCOR
Chang OH; Richard Moore
2005-06-01T23:59:59.000Z
The MELCOR (version 1.8.5) [1] computer code with INEEL revisions is being improved for the analysis of very high temperature gas-cooled reactors [2]. Following a loss-of-coolant accident, flow through the reactor vessel may initially stagnate due to a non-uniform concentration of helium and air. However, molecular diffusion will eventually result in a uniform concentration of air and helium. The differences in fluid temperatures within the reactor vessel will then result in the establishment of a natural circulation flow that can supply significant amounts of air to the reactor core. The heat released by the resulting oxidation of graphite in the reactor core has the potential to increase the peak fuel temperature. In order to analyze the effects of oxidation on the response of the reactor during accidents, a molecular diffusion model was added to MELCOR. The model is based on Fick's Second Law for spatially uniform pressure and temperature. This paper describes equimolal counter diffusion experiments in a two bulb diffusion cell and the results of the assessment calculations.
Reeves, Geoffrey D [Los Alamos National Laboratory; Friedel, Reiner H W [Los Alamos National Laboratory; Chen, Yue [Los Alamos National Laboratory; Koller, Josef [Los Alamos National Laboratory; Henderson, Michael G [Los Alamos National Laboratory
2008-01-01T23:59:59.000Z
The Dynamic Radiation Environment Assimilation Model (DREAM) was developed at Los Alamos National Laboratory to assess, quantify, and predict the hazards from the natural space environment and the anthropogenic environment produced by high altitude nuclear explosions (HANE). DREAM was initially developed as a basic research activity to understand and predict the dynamics of the Earth's Van Allen radiation belts. It uses Kalman filter techniques to assimilate data from space environment instruments with a physics-based model of the radiation belts. DREAM can assimilate data from a variety of types of instruments and data with various levels of resolution and fidelity by assigning appropriate uncertainties to the observations. Data from any spacecraft orbit can be assimilated but DREAM was designed to function with as few as two spacecraft inputs: one from geosynchronous orbit and one from GPS orbit. With those inputs, DREAM can be used to predict the environment at any satellite in any orbit whether space environment data are available in those orbits or not. Even with very limited data input and relatively simple physics models, DREAM specifies the space environment in the radiation belts to a high level of accuracy. DREAM has been extensively tested and evaluated as we transition from research to operations. We report here on one set of test results in which we predict the environment in a highly-elliptical polar orbit. We also discuss long-duration reanalysis for spacecraft design, using DREAM for real-time operations, and prospects for 1-week forecasts of the radiation belt environment.
Modeling Temporal Behavior in Large Networks: A Dynamic Mixed-Membership Model
Rossi, R; Gallagher, B; Neville, J; Henderson, K
2011-11-11T23:59:59.000Z
Given a large time-evolving network, how can we model and characterize the temporal behaviors of individual nodes (and network states)? How can we model the behavioral transition patterns of nodes? We propose a temporal behavior model that captures the 'roles' of nodes in the graph and how they evolve over time. The proposed dynamic behavioral mixed-membership model (DBMM) is scalable, fully automatic (no user-defined parameters), non-parametric/data-driven (no specific functional form or parameterization), interpretable (identifies explainable patterns), and flexible (applicable to dynamic and streaming networks). Moreover, the interpretable behavioral roles are generalizable, computationally efficient, and natively supports attributes. We applied our model for (a) identifying patterns and trends of nodes and network states based on the temporal behavior, (b) predicting future structural changes, and (c) detecting unusual temporal behavior transitions. We use eight large real-world datasets from different time-evolving settings (dynamic and streaming). In particular, we model the evolving mixed-memberships and the corresponding behavioral transitions of Twitter, Facebook, IP-Traces, Email (University), Internet AS, Enron, Reality, and IMDB. The experiments demonstrate the scalability, flexibility, and effectiveness of our model for identifying interesting patterns, detecting unusual structural transitions, and predicting the future structural changes of the network and individual nodes.
Paris-Sud XI, Université de
24 Automate Monitoring System for the Dynamics of Lands Based on Aerial Photos Assessed by Artificial Neural Techniques Ioan Ilean Department of Computer Science "1Decembrie 1918" University Alba. In this project an application of artificial neural networks to human-centered earth science information
Learning Multiple Models of Non-Linear Dynamics for Control under Varying Contexts
Petkos, Georgios; Toussaint, Marc; Vijayakumar, Sethu
For stationary systems, efficient techniques for adaptive motor control exist which learn the system’s inverse dynamics online and use this single model for control. However, in realistic domains the system dynamics often ...
Griffith, Daniel Todd
2005-02-17T23:59:59.000Z
The main objective of this work is to demonstrate some new computational methods for estimation, optimization and modeling of dynamical systems that use automatic differentiation. Particular focus will be upon dynamical ...
Dynamic chirality in the interacting boson fermion-fermion model
Brant, S. [Department of Physics, Faculty of Science, University of Zagreb, 10000 Zagreb (Croatia); Tonev, D. [INFN, Laboratori Nazionali di Legnaro, I-35020 Legnaro (Italy); Institute for Nuclear Research and Nuclear Energy, BAS, 1784 Sofia (Bulgaria); De Angelis, G. [INFN, Laboratori Nazionali di Legnaro, I-35020 Legnaro (Italy); Ventura, A. [Ente per le Nuove tecnologie, l'Energia e l'Ambiente, I-40129 Bologna and Istituto Nazionale di Fisica Nucleare, Sezione di Bologna (Italy)
2008-09-15T23:59:59.000Z
The chiral interpretation of twin bands in odd-odd nuclei was investigated in the interacting boson fermion-fermion model. The analysis of the wave functions has shown that the possibility for angular momenta of the valence proton, neutron and core to find themselves in the favorable, almost orthogonal geometry is present, but not dominant. Such behavior is found to be similar in nuclei where both the level energies and the electromagnetic decay properties display the chiral pattern, as well as in those where only the level energies of the corresponding levels in the twin bands are close together. The difference in the structure of the two types of chiral candidates nuclei can be attributed to different {beta} and {gamma} fluctuations, induced by the exchange boson-fermion interaction of the interacting boson fermion-fermion model. In both cases the chirality is weak and dynamic.
An integrated assessment modeling framework for uncertainty studies in global and regional
environmental changes. Being data-driven, the Program uses extensive Earth system and economic data and models System Model (IGSM), an integrated assessment model that couples an Earth system model of intermediate's Integrated Global System Model. Through this integrated model, the Program seeks to: discover new
Modeling and Risk Assessment of CO{sub 2} Sequestration at the Geologic-basin Scale
Juanes, Ruben
2013-08-31T23:59:59.000Z
Objectives. The overall objective of this proposal was to develop tools for better understanding, modeling and risk assessment of CO{sub 2} permanence in geologic formations at the geologic basin scale. The main motivation was that carbon capture and storage (CCS) will play an important role as a climate change mitigation technology only if it is deployed at scale of gigatonne per year injections over a period of decades. Continuous injection of this magnitude must be understood at the scale of a geologic basin. Specifically, the technical objectives of this project were: (1) to develop mathematical models of capacity and injectivity at the basin scale; (2) to apply quantitative risk assessment methodologies that will inform on CO{sub 2} permanence; (3) to apply the models to geologic basins across the continental United States. These technical objectives go hand-in-hand with the overarching goals of: (1) advancing the science for deployment of CCS at scale; and (2) contributing to training the next generation of scientists and engineers that will implement and deploy CCS in the United States and elsewhere. Methods. The differentiating factor of this proposal was to perform fundamental research on migration and fate of CO{sub 2} and displaced brine at the geologic basin scale. We developed analytical sharp-interface models of the evolution of CO{sub 2} plumes over the duration of injection (decades) and after injection (centuries). We applied the analytical solutions of CO{sub 2} plume migration and pressure evolution to specific geologic basins, to estimate the maximum footprint of the plume, and the maximum injection rate that can be sustained during a certain injection period without fracturing the caprock. These results have led to more accurate capacity estimates, based on fluid flow dynamics, rather than ad hoc assumptions of an overall “efficiency factor.” We also applied risk assessment methodologies to evaluate the uncertainty in our predictions of storage capacity and leakage rates. This was possible because the analytical mathematical models provide ultrafast forward simulation and they contain few parameters. Impact. The project has been enormously successful both in terms of its scientific output (journal publications) as well as impact in the government and industry. The mathematical models and uncertainty quantification methodologies developed here o?er a physically-based approach for estimating capacity and leakage risk at the basin scale. Our approach may also facilitate deployment of CCS by providing the basis for a simpler and more coherent regulatory structure than an “individual-point-of-injection” permitting approach. It may also lead to better science-based policy for post-closure design and transfer of responsibility to the State.
Modeling the Dynamic Behavior of a Single Pile in Dry Sand using a new p-y Material Model
Choi, JungIn; Brandenberg, Scott J; Kim, MyoungMo
2013-01-01T23:59:59.000Z
of dynamic pile behavior by centrifuge tests consideringof KOCED geotechnical centrifuge and its shear wave velocitysurface plasticity theory. Centrifuge model data analyzed
DYNAMIC MODELLING OF LIVING ANIONIC SOLUTION POLYMERIZATION OF STYRENE/BUTADIENE/DIVINYLBENZENE
Schittkowski, Klaus
DYNAMIC MODELLING OF LIVING ANIONIC SOLUTION POLYMERIZATION OF STYRENE/BUTADIENE model for the living anionic solution polymerization of styrene/butadiene/divinylbenzene in a continuous kinetic reactor model for the living anionic solution polymerization of styrene/butadiene
Parameter Estimation of Dynamic Air-conditioning Component Models Using Limited Sensor Data
Hariharan, Natarajkumar
2011-08-08T23:59:59.000Z
This thesis presents an approach for identifying critical model parameters in dynamic air-conditioning systems using limited sensor information. The expansion valve model and the compressor model parameters play a crucial ...
Toward a mechanistic modeling of nitrogen limitation on vegetation dynamics
Xu, Chonggang [Los Alamos National Laboratory (LANL); Fisher, Rosie [National Center for Atmospheric Research (NCAR); Wullschleger, Stan D [ORNL; Wilson, Cathy [Los Alamos National Laboratory (LANL); Cai, Michael [Los Alamos National Laboratory (LANL); McDowell, Nathan [Los Alamos National Laboratory (LANL)
2012-01-01T23:59:59.000Z
Nitrogen is a dominant regulator of vegetation dynamics, net primary production, and terrestrial carbon cycles; however, most ecosystem models use a rather simplistic relationship between leaf nitrogen content and photosynthetic capacity. Such an approach does not consider how patterns of nitrogen allocation may change with differences in light intensity, growing-season temperature and CO{sub 2} concentration. To account for this known variability in nitrogen-photosynthesis relationships, we develop a mechanistic nitrogen allocation model based on a trade-off of nitrogen allocated between growth and storage, and an optimization of nitrogen allocated among light capture, electron transport, carboxylation, and respiration. The developed model is able to predict the acclimation of photosynthetic capacity to changes in CO{sub 2} concentration, temperature, and radiation when evaluated against published data of V{sub c,max} (maximum carboxylation rate) and J{sub max} (maximum electron transport rate). A sensitivity analysis of the model for herbaceous plants, deciduous and evergreen trees implies that elevated CO{sub 2} concentrations lead to lower allocation of nitrogen to carboxylation but higher allocation to storage. Higher growing-season temperatures cause lower allocation of nitrogen to carboxylation, due to higher nitrogen requirements for light capture pigments and for storage. Lower levels of radiation have a much stronger effect on allocation of nitrogen to carboxylation for herbaceous plants than for trees, resulting from higher nitrogen requirements for light capture for herbaceous plants. As far as we know, this is the first model of complete nitrogen allocation that simultaneously considers nitrogen allocation to light capture, electron transport, carboxylation, respiration and storage, and the responses of each to altered environmental conditions. We expect this model could potentially improve our confidence in simulations of carbon-nitrogen interactions and the vegetation feedbacks to climate in Earth system models.
Lin, Wen-Sheng [Hydrotech Research Institute, National Taiwan University, Taiwan (China)] [Hydrotech Research Institute, National Taiwan University, Taiwan (China); Yu, Charley; Cheng, Jing-Jy; Kamboj, Sunita; Gnanapragasam, Emmanuel [Argonne National Laboratory, Argonne, IL 60439 (United States)] [Argonne National Laboratory, Argonne, IL 60439 (United States); Liu, Chen-Wuing [Department of Bioenvironmental Systems Engineering, National Taiwan University, Taiwan (China)] [Department of Bioenvironmental Systems Engineering, National Taiwan University, Taiwan (China); Li, Ming-Hsu [Institute of Hydrological and Oceanic Sciences, National Central University, Taiwan (China)] [Institute of Hydrological and Oceanic Sciences, National Central University, Taiwan (China)
2013-07-01T23:59:59.000Z
Performance assessments are crucial steps for the long-term radiological safety requirements of low-level waste (LLW) disposal facility. How much concentration of radionuclides released from the near-field to biosphere and what radiation exposure levels of an individual can influence on the satisfactory performance of the LLW disposal facility and safety disposal environment. Performance assessment methodology for the radioactive waste disposal consists of the reactive transport modeling of safety-concerned radionuclides released from the near-field to the far-field, and the potential exposure pathways and the movements of radionuclides through the geosphere, biosphere and man of which the accompanying dose. Therefore, the integration of hydrogeochemical transport model and dose assessment code, HYDROGEOCHEM code and RESRAD family of codes is imperative. The RESRAD family of codes such as RESRAD-OFFSITE computer code can evaluate the radiological dose and excess cancer risk to an individual who is exposed while located within or outside the area of initial (primary) contamination. The HYDROGEOCHEM is a 3-D numerical model of fluid flow, thermal, hydrologic transport, and biogeochemical kinetic and equilibrium reactions in saturated and unsaturated media. The HYDROGEOCHEM model can also simulate the crucial geochemical mechanism, such as the effect of redox processes on the adsorption/desorption, hydrogeochemical influences on concrete degradation, adsorption/desorption of radionuclides (i.e., surface complexation model) between solid and liquid phase in geochemically dynamic environments. To investigate the safety assessment of LLW disposal facility, linking RESRAD-OFFSITE and HYDROGEOCHEM model can provide detailed tools of confidence in the protectiveness of the human health and environmental impact for safety assessment of LLW disposal facility. (authors)
MODEST: modeling stellar evolution and (hydro)dynamics
Piet Hut
2003-09-15T23:59:59.000Z
Simulations of dense stellar systems currently face two major hurdles, one astrophysical and one computational. The astrophysical problem lies in the fact that several major stages in binary evolution, such as common envelope evolution, are still poorly understood. The best we can do in these cases is to parametrize our ignorance, in a way that is reminiscent of the introduction of a mixing length to describe convection in a single star, or an alpha parameter in modeling an accretion disk. The hope is that by modeling a whole star cluster in great detail, and comparing the results to the wealth of observational data currently available, we will be able to constrain the parameters that capture the unknown physics. The computational problem is one of composition: while we have accurate computer codes for modeling stellar dynamics, stellar hydrodynamics, and stellar evolution, we currently have no good way to put all this knowledge together in a single software environment. A year ago, a loosely-knit organization was founded to address these problems, MODEST for MOdeling DEnse STellar systems, with nine working groups and a series of meetings that are held every half year. This report reviews the first year of this initiative. Much more detail can be found on the MODEST web site http://www.manybody.org/modest.html .
Kunsman, David Marvin; Aldemir, Tunc (Ohio State University); Rutt, Benjamin (Ohio State University); Metzroth, Kyle (Ohio State University); Catalyurek, Umit (Ohio State University); Denning, Richard (Ohio State University); Hakobyan, Aram (Ohio State University); Dunagan, Sean C.
2008-05-01T23:59:59.000Z
This LDRD project has produced a tool that makes probabilistic risk assessments (PRAs) of nuclear reactors - analyses which are very resource intensive - more efficient. PRAs of nuclear reactors are being increasingly relied on by the United States Nuclear Regulatory Commission (U.S.N.R.C.) for licensing decisions for current and advanced reactors. Yet, PRAs are produced much as they were 20 years ago. The work here applied a modern systems analysis technique to the accident progression analysis portion of the PRA; the technique was a system-independent multi-task computer driver routine. Initially, the objective of the work was to fuse the accident progression event tree (APET) portion of a PRA to the dynamic system doctor (DSD) created by Ohio State University. Instead, during the initial efforts, it was found that the DSD could be linked directly to a detailed accident progression phenomenological simulation code - the type on which APET construction and analysis relies, albeit indirectly - and thereby directly create and analyze the APET. The expanded DSD computational architecture and infrastructure that was created during this effort is called ADAPT (Analysis of Dynamic Accident Progression Trees). ADAPT is a system software infrastructure that supports execution and analysis of multiple dynamic event-tree simulations on distributed environments. A simulator abstraction layer was developed, and a generic driver was implemented for executing simulators on a distributed environment. As a demonstration of the use of the methodological tool, ADAPT was applied to quantify the likelihood of competing accident progression pathways occurring for a particular accident scenario in a particular reactor type using MELCOR, an integrated severe accident analysis code developed at Sandia. (ADAPT was intentionally created with flexibility, however, and is not limited to interacting with only one code. With minor coding changes to input files, ADAPT can be linked to other such codes.) The results of this demonstration indicate that the approach can significantly reduce the resources required for Level 2 PRAs. From the phenomenological viewpoint, ADAPT can also treat the associated epistemic and aleatory uncertainties. This methodology can also be used for analyses of other complex systems. Any complex system can be analyzed using ADAPT if the workings of that system can be displayed as an event tree, there is a computer code that simulates how those events could progress, and that simulator code has switches to turn on and off system events, phenomena, etc. Using and applying ADAPT to particular problems is not human independent. While the human resources for the creation and analysis of the accident progression are significantly decreased, knowledgeable analysts are still necessary for a given project to apply ADAPT successfully. This research and development effort has met its original goals and then exceeded them.
Paris-Sud XI, Université de
Transitional Modeling of Building Heating Energy Demand Using Artificial1 Neural Network2 Subodh Paudel a artificial12 neural network. In addition, novel pseudo dynamic transitional model is introduced, which Institution15 building and compared its results with static and other pseudo dynamic neural network models
Object-oriented Dynamics Modeling for Legged Robot Trajectory Optimization and Control
Stryk, Oskar von
Object-oriented Dynamics Modeling for Legged Robot Trajectory Optimization and Control Robert. To facilitate the investigation of new concepts of nonlinear model-based optimization and control methods also-level specification of multibody dynamics models using component libraries serves as a basis for generation
Technical Note Comparing Dynamic Causal Models using AIC, BIC and Free Energy
Penny, Will
Technical Note Comparing Dynamic Causal Models using AIC, BIC and Free Energy W.D. Penny Wellcome) and Dynamic Causal Models (DCMs). We find that the Free Energy has the best model selection ability, to instead score DCMs using the Free Energy (Friston et al., 2007a). However, until now there has been
Dynamic Friction Models for Longitudinal Road/Tire Interaction: Theoretical Advances
Tsiotras, Panagiotis
Dynamic Friction Models for Longitudinal Road/Tire Interaction: Theoretical Advances C. Canudas we derive a new dynamic friction force model for the longitudinal road/tire interaction for wheeled-point friction problems, called the LuGre model [1]. By assuming a con- tact patch between the tire
THE DYNAMICAL STRUCTURE FACTOR AND CRITICAL BEHAVIOR OF A TRAFFIC FLOW MODEL
Lübeck, Sven
261 THE DYNAMICAL STRUCTURE FACTOR AND CRITICAL BEHAVIOR OF A TRAFFIC FLOW MODEL L. ROTERS, S. L. The behavior of the model is determined by three parameters, the maximal velocity v max , the noise parameter P of the dynamical structure factor of the Nagel Schreckenberg traffic flow model based on the local occupation
THE ROAD AHEAD FOR ENERGY-ECONOMY POLICY MODELS: INTEGRATING MARKET DYNAMICS,
THE ROAD AHEAD FOR ENERGY-ECONOMY POLICY MODELS: INTEGRATING MARKET DYNAMICS, EXPECTATIONS of Research Project: The Road Ahead For Energy-Economy Policy Models: Integrating Market Dynamics of Resource and Environmental Management Date Approved: ii #12;Abstract Energy-economy models have emerged
Ris-R-1400(EN) Dynamic wind turbine models in power
Risř-R-1400(EN) Dynamic wind turbine models in power system simulation tool DIgSILENT Anca D system simulation tool - DIgSILENT 7 2.2 Built-in models in DIgSILENT 8 2.2.1 Electrical machinery 8 2 the dynamic wind turbine models imple- mented in the power system simulation tool DIgSILENT (Version 12
A Statistical Model to Assess Indirect CO2 Emissions of the UAE Residential Sector
Radhi, H.; Fikry, F.
2010-01-01T23:59:59.000Z
This study presents a regional bottom-up model for assessing space cooling energy and related greenhouse gas emissions. The model was developed with the aim of improving the quality and quantity of cooling energy and emission data, especially...
Assessment of Driving Mental Models as a Predictor of Crashes and Moving Violations
Munoz Galvez, Gonzalo Javier
2012-07-16T23:59:59.000Z
The purpose of the current study was to assess the efficacy of mental models as a predictor of driving outcomes. In contrast to more traditional measures of knowledge, mental models capture the configural property of knowledge, that is...
Dynamical modeling of the Deep Impact dust ejecta cloud
Tanyu Bonev; Nancy Ageorges; Stefano Bagnulo; Luis Barrera; Hermann B{ö}hnhardt; Olivier Hainaut; Emmanuel Jehin; Hans-Ullrich K{ä}ufl; Florian Kerber; Gaspare LoCurto; Jean Manfroid; Olivier Marco; Eric Pantin; Emanuela Pompei; Ivo Saviane; Fernando Selman; Chris Sterken; Heike Rauer; Gian Paolo Tozzi; Michael Weiler
2007-03-21T23:59:59.000Z
The collision of Deep Impact with comet 9P/Tempel 1 generated a bright cloud of dust which dissipated during several days after the impact. The brightness variations of this cloud and the changes of its position and shape are governed by the physical properties of the dust grains. We use a Monte Carlo model to describe the evolution of the post-impact dust plume. The results of our dynamical simulations are compared to the data obtained with FORS2, the FOcal Reducer and low dispersion Spectrograph for the VLT of the European Southern Observatory (ESO), to derive the particle size distribution and the total amount of material contained in the dust ejecta cloud.
EPR pairing dynamics in Hubbard model with resonant $U$
X. Z. Zhang; Z. Song
2015-04-28T23:59:59.000Z
We study the dynamics of the collision between two fermions in Hubbard model with on-site interaction strength $U$. The exact solution shows that the scattering matrix for two-wavepacket collision is separable into two independent parts, operating on spatial and spin degrees of freedom, respectively. The S-matrix for spin configuration is equivalent to that of Heisenberg-type pulsed interaction with the strength depending on $U$ and relative group velocity $\\upsilon _{r}$. This can be applied to create distant EPR pair, through a collision process for two fermions with opposite spins in the case of $\\left\\vert \\upsilon _{r}/U\\right\\vert =1$,\\ without the need for temporal control and measurement process. Multiple collision process for many particles is also discussed.
Hydro-dynamical models for the chaotic dripping faucet
P. Coullet; L. Mahadevan; C. S. Riera
2004-08-20T23:59:59.000Z
We give a hydrodynamical explanation for the chaotic behaviour of a dripping faucet using the results of the stability analysis of a static pendant drop and a proper orthogonal decomposition (POD) of the complete dynamics. We find that the only relevant modes are the two classical normal forms associated with a Saddle-Node-Andronov bifurcation and a Shilnikov homoclinic bifurcation. This allows us to construct a hierarchy of reduced order models including maps and ordinary differential equations which are able to qualitatively explain prior experiments and numerical simulations of the governing partial differential equations and provide an explanation for the complexity in dripping. We also provide a new mechanical analogue for the dripping faucet and a simple rationale for the transition from dripping to jetting modes in the flow from a faucet.
Some optical and dynamical phenomena in the Rindler model
E. Birsin; W. Hasse
2014-11-15T23:59:59.000Z
In Rindler's model of a uniformly accelerated reference frame we analyze the apparent shape of rods and marked light rays for the case that the observers as well as the rods and the sources of light are at rest with respect to the Rindler observers. Contrary to the expectation suggested by the strong principle of equivalence, there is no apparent "bending down" of a light ray with direction transversal to the direction of acceleration, but a straight rod oriented orthogonal to the direction of acceleration appears bended "upwards". These optical phenomena are in accordance with the dynamical experience of observers guided by a straight track or a track curved in the same way as the marked light ray, respectively: While the former observer feels a centrifugal force directed "downwards", the centrifugal force for the latter vanishes. The properties of gyroscope transport along such tracks are correspondingly.
Description of waste pretreatment and interfacing systems dynamic simulation model
Garbrick, D.J.; Zimmerman, B.D.
1995-05-01T23:59:59.000Z
The Waste Pretreatment and Interfacing Systems Dynamic Simulation Model was created to investigate the required pretreatment facility processing rates for both high level and low level waste so that the vitrification of tank waste can be completed according to the milestones defined in the Tri-Party Agreement (TPA). In order to achieve this objective, the processes upstream and downstream of the pretreatment facilities must also be included. The simulation model starts with retrieval of tank waste and ends with vitrification for both low level and high level wastes. This report describes the results of three simulation cases: one based on suggested average facility processing rates, one with facility rates determined so that approximately 6 new DSTs are required, and one with facility rates determined so that approximately no new DSTs are required. It appears, based on the simulation results, that reasonable facility processing rates can be selected so that no new DSTs are required by the TWRS program. However, this conclusion must be viewed with respect to the modeling assumptions, described in detail in the report. Also included in the report, in an appendix, are results of two sensitivity cases: one with glass plant water recycle steams recycled versus not recycled, and one employing the TPA SST retrieval schedule versus a more uniform SST retrieval schedule. Both recycling and retrieval schedule appear to have a significant impact on overall tank usage.
Comparing the escape dynamics in tidally limited star cluster models
Zotos, Euaggelos E
2015-01-01T23:59:59.000Z
The aim of this work is to compare the orbital dynamics in three different models describing the properties of a star cluster rotating around its parent galaxy in a circular orbit. In particular, we use the isochrone and the Hernquist potentials to model the spherically symmetric star cluster and we compare our results with the corresponding ones of a previous work in which the Plummer model was applied for the same purpose. Our analysis takes place both in the configuration $(x,y)$ and in the phase $(x,\\dot{x})$ space in order to elucidate the escape process as well as the overall orbital properties of the tidally limited star cluster. We restrict our investigation into two dimensions and we conduct a thorough numerical analysis distinguishing between ordered and chaotic orbits as well as between trapped and escaping orbits, considering only unbounded motion for several energy levels above the critical escape energy. It is of particular interest to determine the escape basins towards the two exit channels (n...
Comparing the escape dynamics in tidally limited star cluster models
Euaggelos E. Zotos
2015-08-21T23:59:59.000Z
The aim of this work is to compare the orbital dynamics in three different models describing the properties of a star cluster rotating around its parent galaxy in a circular orbit. In particular, we use the isochrone and the Hernquist potentials to model the spherically symmetric star cluster and we compare our results with the corresponding ones of a previous work in which the Plummer model was applied for the same purpose. Our analysis takes place both in the configuration $(x,y)$ and in the phase $(x,\\dot{x})$ space in order to elucidate the escape process as well as the overall orbital properties of the tidally limited star cluster. We restrict our investigation into two dimensions and we conduct a thorough numerical analysis distinguishing between ordered and chaotic orbits as well as between trapped and escaping orbits, considering only unbounded motion for several energy levels above the critical escape energy. It is of particular interest to determine the escape basins towards the two exit channels (near the Lagrangian points $L_1$ and $L_2$) and relate them with the corresponding escape times of the orbits.
Como, Giacomo
Automating efficiency-targeted approximations in modelling and simulation tools: dynamic decoupling (classical) efficiency-targeted approximation tech- niques, within a unified framework. Some application
A model for coupling within-host and between-host dynamics in an ...
2011-12-20T23:59:59.000Z
Abstract Studies on the modeling of the coupled dy- namics of infectious diseases at both the population level (the epidemic process or between-host dynamics).
Microscale and mesoscale discrete models for dynamic fracture of structures built of brittle are derived either at microscale with random distribution of material properties or at a mesoscale
Emerging disease dynamics in a model coupling within-host and ...
Xiuli Cen
2014-08-27T23:59:59.000Z
Aug 2, 2014 ... Immunological models consider the within-host dynamics independent of the interactions between hosts (e.g., De Leenheer and Smith, 2003;.
Creating dynamic equivalent PV circuit models with impedance spectroscopy for arc-fault modeling.
Johnson, Jay Dean; Kuszmaul, Scott S.; Strauch, Jason E.; Schoenwald, David Alan
2011-06-01T23:59:59.000Z
Article 690.11 in the 2011 National Electrical Code{reg_sign} (NEC{reg_sign}) requires new photovoltaic (PV) systems on or penetrating a building to include a listed arc fault protection device. Currently there is little experimental or empirical research into the behavior of the arcing frequencies through PV components despite the potential for modules and other PV components to filter or attenuate arcing signatures that could render the arc detector ineffective. To model AC arcing signal propagation along PV strings, the well-studied DC diode models were found to inadequately capture the behavior of high frequency arcing signals. Instead dynamic equivalent circuit models of PV modules were required to describe the impedance for alternating currents in modules. The nonlinearities present in PV cells resulting from irradiance, temperature, frequency, and bias voltage variations make modeling these systems challenging. Linearized dynamic equivalent circuits were created for multiple PV module manufacturers and module technologies. The equivalent resistances and capacitances for the modules were determined using impedance spectroscopy with no bias voltage and no irradiance. The equivalent circuit model was employed to evaluate modules having irradiance conditions that could not be measured directly with the instrumentation. Although there was a wide range of circuit component values, the complex impedance model does not predict filtering of arc fault frequencies in PV strings for any irradiance level. Experimental results with no irradiance agree with the model and show nearly no attenuation for 1 Hz to 100 kHz input frequencies.
Boyer, Edmond
, and simple models are usually considered in the analysis. This is an important constraint when uncertaintiesProbabilistic model identification of the bit-rock-interaction-model uncertainties in nonlinear model of uncertainties in a bit-rock interaction model for the nonlinear dynamics of a drill
11/05/2007 16:29 1 Bayesian Belief Network Model for the Safety Assessment
Fenton, Norman
11/05/2007 16:29 1 Bayesian Belief Network Model for the Safety Assessment of Nuclear Computer assessment task for computer and software based nuclear systems important to safety. Our model is developed University P.-J. Courtois AV Nuclear Brussels, Belgium Abstract The formalism of Bayesian Belief Networks
Ventilation performance prediction for buildings: Model Assessment Qingyan Chena,b,*
Chen, Qingyan "Yan"
ventilation systems for buildings requires a suitable tool to assess the system performance of a ventilation system if the flow could be approximated to obtain an analytical solution. The empirical model ventilation systems for buildings requires a suitable model to assess system performance. The performance can
Application of Extended Kalman Filter Techniques for Dynamic Model Parameter Calibration
Huang, Zhenyu; Du, Pengwei; Kosterev, Dmitry; Yang, Bo
2009-07-26T23:59:59.000Z
Abstract -Phasor measurement has previously been used for sub-system model validation, which enables rigorous comparison of model simulation and recorded dynamics and facilitates identification of problematic model components. Recent work extends the sub-system model validation approach with a focus on how model parameters may be calibrated to match recorded dynamics. In this paper, a calibration method using Extended Kalman Filter (EKF) technique is proposed. This paper presents the formulation as well as case studies to show the validity of the EKF-based parameter calibration method. The proposed calibration method is expected to be a cost-effective means complementary to traditional equipment testing for improving dynamic model quality.
Mixtures of Predictive Linear Gaussian Models for Nonlinear Stochastic Dynamical Systems
Baveja, Satinder Singh
Mixtures of Predictive Linear Gaussian Models for Nonlinear Stochastic Dynamical Systems David dynamical systems. The primary contribution of this work is to extend the PLG to nonlinear, stochastic- proves upon traditional linear dynamical system mod- els by using a predictive representation of state
December 2002 Assessment of doses and environmental contamination from decommissioning of the nuclear on the envi- ronment are described below. 2 Models for assessing doses and environmental contamination WhenSeminar on Radioactive Waste, Modelling and Dose Assessment - Risř National Laboratory 2 - 6
A Dynamic Solar Core model: the SSM-like solution
Attila Grandpierre
1998-08-31T23:59:59.000Z
I point out that the all the arguments against an astrophysical solution do not exclude a yet not recognised class of solar models, in which an explosive energy source is present in the solar core besides the standard pp and CNO cycle. It is shown from first principle physics that stars have a non-pp,CNO source: local thermonuclear runaways. I derive a model independent inequality, which shows that the problem of the missing beryllium neutrinos lies in that the SuperKamiokande contains a term arising from neutrinos from a runaway source which can produce high-energy electrons and high-energy axions, and muon and tau neutrinos. I point out, that the temperature dependence of the individual neutrino fluxes is related to pure nuclear physics but the usual luminosity constraint is model dependent and actually is a questionable assumption. Allowing non-pp,CNO reaction chains a new approach arises to interpret the neutrino detector data. The explicit temperature dependence leads to $\\Phi_{pp} \\propto T^4$ instead of the usual $\\Phi_{pp} \\propto T^{-1/2}$ for the SSM luminosity constraint. I assume a Sun analogue to the SSM with a different $T_c$. The separate neutrino detector equations lead to separate detector-related temperatures with the neutrino detector data. The results show a slightly lower than standard central temperature. I attempt to show that helioseismology is not in a necessary conflict with the dynamic solar model presented here. The results of the calculations may propose solutions to the problems of solar and atmospheric neutrino oscillations without an ad hoc introduction of sterile neutrinos and present predictions to Borexino and SNO measurements. {\\it PACS numbers}: 26.65+t, 26.30.+k, 96.60Jw, 95.30.Cq
Adaptive Optimal Feedback Control with Learned Internal Dynamics Models
Mitrovic, Djordje; Klanke, Stefan; Vijayakumar, Sethu
2010-01-01T23:59:59.000Z
, have focused on the case of non-linear, but still analytically available, dynamics. For realistic control systems, however, the dynamics may often be unknown, difficult to estimate, or subject to frequent systematic changes. In this chapter, we combine...
Computation Modeling and Assessment of Nanocoatings for Ultra Supercritical Boilers
J. Shingledecker; D. Gandy; N. Cheruvu; R. Wei; K. Chan
2011-06-21T23:59:59.000Z
Forced outages and boiler unavailability of coal-fired fossil plants is most often caused by fire-side corrosion of boiler waterwalls and tubing. Reliable coatings are required for Ultrasupercritical (USC) application to mitigate corrosion since these boilers will operate at a much higher temperatures and pressures than in supercritical (565 C {at} 24 MPa) boilers. Computational modeling efforts have been undertaken to design and assess potential Fe-Cr-Ni-Al systems to produce stable nanocrystalline coatings that form a protective, continuous scale of either Al{sub 2}O{sub 3} or Cr{sub 2}O{sub 3}. The computational modeling results identified a new series of Fe-25Cr-40Ni with or without 10 wt.% Al nanocrystalline coatings that maintain long-term stability by forming a diffusion barrier layer at the coating/substrate interface. The computational modeling predictions of microstructure, formation of continuous Al{sub 2}O{sub 3} scale, inward Al diffusion, grain growth, and sintering behavior were validated with experimental results. Advanced coatings, such as MCrAl (where M is Fe, Ni, or Co) nanocrystalline coatings, have been processed using different magnetron sputtering deposition techniques. Several coating trials were performed and among the processing methods evaluated, the DC pulsed magnetron sputtering technique produced the best quality coating with a minimum number of shallow defects and the results of multiple deposition trials showed that the process is repeatable. scale, inward Al diffusion, grain growth, and sintering behavior were validated with experimental results. The cyclic oxidation test results revealed that the nanocrystalline coatings offer better oxidation resistance, in terms of weight loss, localized oxidation, and formation of mixed oxides in the Al{sub 2}O{sub 3} scale, than widely used MCrAlY coatings. However, the ultra-fine grain structure in these coatings, consistent with the computational model predictions, resulted in accelerated Al diffusion from the coating into the substrate. An effective diffusion barrier interlayer coating was developed to prevent inward Al diffusion. The fire-side corrosion test results showed that the nanocrystalline coatings with a minimum number of defects have a great potential in providing corrosion protection. The coating tested in the most aggressive environment showed no evidence of coating spallation and/or corrosion attack after 1050 hours exposure. In contrast, evidence of coating spallation in isolated areas and corrosion attack of the base metal in the spalled areas were observed after 500 hours. These contrasting results after 500 and 1050 hours exposure suggest that the premature coating spallation in isolated areas may be related to the variation of defects in the coating between the samples. It is suspected that the cauliflower-type defects in the coating were presumably responsible for coating spallation in isolated areas. Thus, a defect free good quality coating is the key for the long-term durability of nanocrystalline coatings in corrosive environments. Thus, additional process optimization work is required to produce defect-free coatings prior to development of a coating application method for production parts.
A Dynamic Solar Core Model: the Deviant Temperatures Approach
Attila Grandpierre
1998-08-31T23:59:59.000Z
I derive here a model independent inequality which shows that the problem of the missing beryllium neutrinos of the Sun roots in the fact that the SuperKamiokande contains a term arising from a non-pp,CNO source. First principle physics shows that the non-pp,CNO source is of thermonuclear runaway origin. Several indications suggest that the non-pp,CNO term plays a more significant role in the solar neutrino problems than neutrino oscillations. When removing the over-restricted SSM luminosity constraint, the temperature dependence of the neutrino fluxes is related to pure nuclear physics and follows $\\Phi_{pp} \\propto T^4$ instead of $\\Phi_{pp} \\propto T^{-1/2}$. The results of the calculations offer solutions to the solar neutrino problems and problems of neutrino oscillations. The dynamic solar model presents predictions to Borexino and SNO measurements. These predictions can serve to distinguish between the MSW and the non-pp,CNO effect. {\\it PACS numbers|: 26.65.+t, 26.30.+k, 96.60.JW, 95.30.Cq
Ultrafast Structural Dynamics in Combustion Relevant Model Systems
Weber, Peter M. [Brown University
2014-03-31T23:59:59.000Z
The research project explored the time resolved structural dynamics of important model reaction system using an array of novel methods that were developed specifically for this purpose. They include time resolved electron diffraction, time resolved relativistic electron diffraction, and time resolved Rydberg fingerprint spectroscopy. Toward the end of the funding period, we also developed time-resolved x-ray diffraction, which uses ultrafast x-ray pulses at LCLS. Those experiments are just now blossoming, as the funding period expired. In the following, the time resolved Rydberg Fingerprint Spectroscopy is discussed in some detail, as it has been a very productive method. The binding energy of an electron in a Rydberg state, that is, the energy difference between the Rydberg level and the ground state of the molecular ion, has been found to be a uniquely powerful tool to characterize the molecular structure. To rationalize the structure sensitivity we invoke a picture from electron diffraction: when it passes the molecular ion core, the Rydberg electron experiences a phase shift compared to an electron in a hydrogen atom. This phase shift requires an adjustment of the binding energy of the electron, which is measurable. As in electron diffraction, the phase shift depends on the molecular, geometrical structure, so that a measurement of the electron binding energy can be interpreted as a measurement of the molecule’s structure. Building on this insight, we have developed a structurally sensitive spectroscopy: the molecule is first elevated to the Rydberg state, and the binding energy is then measured using photoelectron spectroscopy. The molecule’s structure is read out as the binding energy spectrum. Since the photoionization can be done with ultrafast laser pulses, the technique is inherently capable of a time resolution in the femtosecond regime. For the purpose of identifying the structures of molecules during chemical reactions, and for the analysis of molecular species in the hot environments of combustion processes, there are several features that make the Rydberg ionization spectroscopy uniquely useful. First, the Rydberg electron’s orbit is quite large and covers the entire molecule for most molecular structures of combustion interest. Secondly, the ionization does not change vibrational quantum numbers, so that even complicated and large molecules can be observed with fairly well resolved spectra. In fact, the spectroscopy is blind to vibrational excitation of the molecule. This has the interesting consequence for the study of chemical dynamics, where the molecules are invariably very energetic, that the molecular structures are observed unobstructed by the vibrational congestion that dominates other spectroscopies. This implies also that, as a tool to probe the time-dependent structural dynamics of chemically interesting molecules, Rydberg spectroscopy may well be better suited than electron or x-ray diffraction. With recent progress in calculating Rydberg binding energy spectra, we are approaching the point where the method can be evolved into a structure determination method. To implement the Rydberg ionization spectroscopy we use a molecular beam based, time-resolved pump-probe multi-photon ionization/photoelectron scheme in which a first laser pulse excites the molecule to a Rydberg state, and a probe pulse ionizes the molecule. A time-of-flight detector measures the kinetic energy spectrum of the photoelectrons. The photoelectron spectrum directly provides the binding energy of the electron, and thereby reveals the molecule’s time-dependent structural fingerprint. Only the duration of the laser pulses limits the time resolution. With a new laser system, we have now reached time resolutions better than 100 fs, although very deep UV wavelengths (down to 190 nm) have slightly longer instrument functions. The structural dynamics of molecules in Rydberg-excited states is obtained by delaying the probe ionization photon from the pump photon; the structural dynamics of molecules in their ground state or e
Stochastic model for aerodynamic force dynamics on wind turbine blades in unsteady wind inflow
Luhur, Muhammad Ramzan; Kühn, Martin; Wächter, Matthias
2015-01-01T23:59:59.000Z
The paper presents a stochastic approach to estimate the aerodynamic forces with local dynamics on wind turbine blades in unsteady wind inflow. This is done by integrating a stochastic model of lift and drag dynamics for an airfoil into the aerodynamic simulation software AeroDyn. The model is added as an alternative to the static table lookup approach in blade element momentum (BEM) wake model used by AeroDyn. The stochastic forces are obtained for a rotor blade element using full field turbulence simulated wind data input and compared with the classical BEM and dynamic stall models for identical conditions. The comparison shows that the stochastic model generates additional extended dynamic response in terms of local force fluctuations. Further, the comparison of statistics between the classical BEM, dynamic stall and stochastic models' results in terms of their increment probability density functions gives consistent results.
Modeling toxic endpoints for improving human health risk assessment
Bruce, Erica Dawn
2009-05-15T23:59:59.000Z
Risk assessment procedures for mixtures of polycyclic aromatic hydrocarbons (PAHs) present a problem due to the lack of available potency and toxicity data on mixtures and individual compounds. This study examines the toxicity of parent compound...
[10-386] Assessing and Improving the Scale Dependence of Ecosystem Processes in Earth System Models
. Goodale Cornell U. *Overall Project Lead *Lead Institution Intellectual Merit: Earth system models include policies. Our research assesses and improves Earth system model simulations of the carbon cycle, ecosystem of the Community Climate System Model/Community Earth System Model, which includes statistical meteorological
Model for a web based medical technology assessment system
Prabhu, Gopal
1999-01-01T23:59:59.000Z
. 6. Figure 3. 7. Figure 3. 8. Figure 3. 9. Telemetry Assessment 37 ECG Assessment. 39 The Home Page 43 Clinical Engineer Registration. Clinical Engineer Login. . 44 45 Search Results When User Searches for Defibrillator by ID. . 41 Figure... to those, which your facility is considering, or the information may be dated (pers. comm. N. Cram). The Internet is a computer network that connects millions of computers globally and provides worldwide communications to businesses, homes, schools...
Assessing Models of Public Understanding In ELSI Outreach Materials
Bruce V. Lewenstein, Ph.D.; Dominique Brossard, Ph.D.
2006-03-01T23:59:59.000Z
Advances in the science of genetics have implications for individuals and society, and have to be taken into account at the policy level. Studies of ethical, legal and social issues related to genomic research have therefore been integrated in the Human Genome Project (HGP) since the earliest days of the project. Since 1990, three to five percent of the HGP annual budget has been devoted to such studies, under the umbrella of the Ethical, Legal, and Social Implications (ELSI) Programs of the National Human Genome Research Institute of the National Institute of Health, and of the Office of Biological and Environmental Research of the U.S. Department of Energy (DOE). The DOE-ELSI budget has been used to fund a variety of projects that have aimed at ?promoting education and help guide the conduct of genetic research and the development of related medical and public policies? (HGP, 2003). As part of the educational component, a significant portion of DOE-ELSI funds have been dedicated to public outreach projects, with the underlying goal of promoting public awareness and ultimately public discussion of ethical, legal, and social issues surrounding availability of genetic information (Drell, 2002). The essential assumption behind these projects is that greater access to information will lead to more knowledge about ethical, legal and social issues, which in turn will lead to enhanced ability on the part of individuals and communities to deal with these issues when they encounter them. Over the same period of time, new concepts of ?public understanding of science? have emerged in the theoretical realm, moving from a ?deficit? or linear dissemination of popularization, to models stressing lay-knowledge, public engagement and public participation in science policy-making (Lewenstein, 2003). The present project uses the base of DOE-funded ELSI educational project to explore the ways that information about a new and emerging area of science that is intertwined with public issues has been used in educational public settings to affect public understanding of science. After a theoretical background discussion, our approach is three-fold. First, we will provide an overview, a ?map? of DOE-funded of outreach programs within the overall ELSI context to identify the importance of the educational component, and to present the criteria we used to select relevant and representative case studies. Second, we will document the history of the case studies. Finally, we will explore an intertwined set of research questions: (1) To identify what we can expect such projects to accomplish -in other words to determine the goals that can reasonably be achieved by different types of outreach, (2) To point out how the case study approach could be useful for DOE-ELSI outreach as a whole, and (3) To use the case study approach as a basis to test theoretical models of science outreach in order to assess to what extent those models accord with real world outreach activities. For this last goal, we aim at identifying what practices among ELSI outreach activities contribute most to dissemination, or to participation, in other words in which cases outreach materials spark action in terms of public participation in decisions about scientific issues.
DYNAMIC MODELING AND CONTROL OF REACTIVE DISTILLATION FOR HYDROGENATION OF BENZENE
Aluko, Obanifemi
2010-01-16T23:59:59.000Z
This work presents a modeling and control study of a reactive distillation column used for hydrogenation of benzene. A steady state and a dynamic model have been developed to investigate control structures for the column. The most important aspects...
Networking technology adoption : system dynamics modeling of fiber-to-the-home
Kelic, Andjelka, 1972-
2005-01-01T23:59:59.000Z
A system dynamics model is developed and run to study the adoption of fiber-to-the-home as a residential broadband technology. Communities that currently do not have broadband in the United States are modeled. This case ...
Multiple Model Robust Dynamic Programming Eric C. Whitman and Christopher G. Atkeson
-- Modeling error is a common problem for model- based control techniques. We present multiple model dynamic programming (MMDP) as a method to generate controllers that are robust to modeling error. Our method generates controllers that are approximately optimal for a collection of models, thereby forcing the controller
Data-based Subsystem Identification for Dynamic Model Updating Steven Gillijns and Bart De Moor
Data-based Subsystem Identification for Dynamic Model Updating Steven Gillijns and Bart De Moor-pump example. I. INTRODUCTION Models induced from physical laws and models identified from data are both values. In empirical models, inaccuracies can be due to an inappropriate model class or to bad data
Berning, Torsten
Aalborg Universitet Dynamic Modeling of a Reformed Methanol Fuel Cell System using Empirical Data Reza Published in: Journal of Fuel Cell Science and Technology DOI (link to publication from Publisher. K., Andreasen, S. J., & Shaker, H. R. (2014). Dynamic Modeling of a Reformed Methanol Fuel Cell
Protecting the African elephant: A dynamic bioeconomic model of ivory trade
Protecting the African elephant: A dynamic bioeconomic model of ivory trade G. Cornelis van Kooten Accepted 25 May 2008 Available online 7 July 2008 Keywords: Economics Elephant conservation Ivory trade ban Mathematical programming Trade quota A B S T R A C T A dynamic bioeconomic model of ivory trade is used
GLOBAL STABILITY FOR A VIRUS DYNAMICS MODEL WITH NONLINEAR INCIDENCE OF INFECTION AND REMOVAL
GLOBAL STABILITY FOR A VIRUS DYNAMICS MODEL WITH NONLINEAR INCIDENCE OF INFECTION AND REMOVAL PAUL GEORGESCU AND YING-HEN HSIEH Abstract. Global dynamics of a compartmental model which describes virus and the removal rate of the virus are assumed to be nonlinear. In the case where the functional quotient between
ROLE OF VEHICLE DYNAMIC MODELING FIDELITY WITH HAPTIC COLLABORATION IN STEER BY WIRE
Krovi, Venkat
ROLE OF VEHICLE DYNAMIC MODELING FIDELITY WITH HAPTIC COLLABORATION IN STEER BY WIRE SYSTEMS control back to the driver. Candidate solutions for mimicking the steering feel have ranged from direct torque prediction schemes based on mathematical dynamics models (of tire-road, suspension, power-steering
Multi-Point Contact Models for Dynamic Self-Righting of a Hexapod
Multi-Point Contact Models for Dynamic Self-Righting of a Hexapod Uluc. Saranli1 , Alfred A. Rizzi1 on the design of a model-based controller that can achieve dynamical self-righting of a hexapod robot. Extending hexapod robot that negotiates badly irregular terrain at speeds better than one body length per second [12
Sand dune dynamics and climate change: A modeling H. Yizhaq,1
Ashkenazy, Yossi "Yosef"
Sand dune dynamics and climate change: A modeling approach H. Yizhaq,1 Y. Ashkenazy,1 and H. Tsoar2] We provide several examples for the coexistence of active and fixed sand dunes under similar climatic: Yizhaq, H., Y. Ashkenazy, and H. Tsoar (2009), Sand dune dynamics and climate change: A modeling approach
Dynamic Friction Models for Longitudinal Road/Tire Interaction: Experimental Results
Tsiotras, Panagiotis
Dynamic Friction Models for Longitudinal Road/Tire Interaction: Experimental Results C. Canudas dynamic friction force model for the longitudinal road/tire interaction for wheeled ground vehicles is val- idated via experiments with an actual passenger vehicle. Contrary to common static friction/slip maps
Nagurney, Anna
An Efficiency Measure for Dynamic Networks Modeled as Evolutionary Variational Inequalities propose an efficiency/performance measure for dynamic net- works, which have been modeled as evolutionary and their rankings. We provide both continuous time and discrete time versions of the efficiency measure. We
Gupta, Rajesh
A Model Checking Approach to Evaluating System Level Dynamic Power Management Policies for Embedded, and laptops, controlling power dissipation is an important system design issue [2]. This is either because enforced at the system level. In [3], a system modeling ap- proach for dynamic power management strategy
AN IMPROVED DYNAMIC MODEL FOR THE STUDY OF A FLEXIBLE PAVEMENT
Avignon et des Pays de Vaucluse, Université de
AN IMPROVED DYNAMIC MODEL FOR THE STUDY OF A FLEXIBLE PAVEMENT A. El Ayadi 1 , B. Picoux 1 , G to study a Falling Weight Deectometer test conducted on a exible pavement. These dynamic models take with in situ measurements recorded on an instrumented pavement; such a comparison has indicated the importance
Dang, Zhe
Bond Computing Systems: a Biologically Inspired and High-level Dynamics Model for Pervasive. Targeting at modeling the high-level dynamics of pervasive comput- ing systems, we introduce Bond Computing are regular, and study their computation power and verification problems. Among other results, we show
Xu, Haiping
that DRBD provides a powerful tool for system reliability modeling, and our proposed verification approachFORMAL SEMANTICS AND VERIFICATION OF DYNAMIC RELIABILITY BLOCK DIAGRAMS FOR SYSTEM RELIABILITY-scale computer-based systems. KEY WORDS Reliability modeling, dynamic reliability block diagrams (DRBD), Object
A Dynamic Model for Phase Transformations in 3D Samples of Shape Memory Alloys
Melnik, Roderick
A Dynamic Model for Phase Transformations in 3D Samples of Shape Memory Alloys D.R. Mahapatra and R Introduction Modelling of dynamics of phase transformations (PT) in Shape Memory Al- loys (SMAs) under which assist the researchers in designing new materials and devices by harnessing the shape memory
Coupled thermodynamic-dynamic semi-analytical model of Free Piston Stirling engines
Formosa, Fabien
2013-01-01T23:59:59.000Z
The study of free piston Stirling engine (FPSE) requires both accurate thermodynamic and dynamic modelling to predict its performances. The steady state behaviour of the engine partly relies on non linear dissipative phenomena such as pressure drop loss within heat exchangers which is dependant on the temperature within the associated components. An analytical thermodynamic model which encompasses the effectiveness and the flaws of the heat exchangers and the regenerator has been previously developed and validated. A semi-analytical dynamic model of FPSE is developed and presented in this paper. The thermodynamic model is used to define the thermal variables that are used in the dynamic model which evaluates the kinematic results. Thus, a coupled iterative strategy has been used to perform a global simulation. The global modelling approach has been validated using the experimental data available from the NASA RE-1000 Stirling engine prototype. The resulting coupled thermodynamic-dynamic model using a standard...
Integrated dynamic landscape analysis and modeling system (IDLAMS) : installation manual.
Li, Z.; Majerus, K. A.; Sundell, R. C.; Sydelko, P. J.; Vogt, M. C.
1999-02-24T23:59:59.000Z
The Integrated Dynamic Landscape Analysis and Modeling System (IDLAMS) is a prototype, integrated land management technology developed through a joint effort between Argonne National Laboratory (ANL) and the US Army Corps of Engineers Construction Engineering Research Laboratories (USACERL). Dr. Ronald C. Sundell, Ms. Pamela J. Sydelko, and Ms. Kimberly A. Majerus were the principal investigators (PIs) for this project. Dr. Zhian Li was the primary software developer. Dr. Jeffrey M. Keisler, Mr. Christopher M. Klaus, and Mr. Michael C. Vogt developed the decision analysis component of this project. It was developed with funding support from the Strategic Environmental Research and Development Program (SERDP), a land/environmental stewardship research program with participation from the US Department of Defense (DoD), the US Department of Energy (DOE), and the US Environmental Protection Agency (EPA). IDLAMS predicts land conditions (e.g., vegetation, wildlife habitats, and erosion status) by simulating changes in military land ecosystems for given training intensities and land management practices. It can be used by military land managers to help predict the future ecological condition for a given land use based on land management scenarios of various levels of training intensity. It also can be used as a tool to help land managers compare different land management practices and further determine a set of land management activities and prescriptions that best suit the needs of a specific military installation.
Fire dynamics during the 20th century simulated by the Community Land Model
Kloster, S.; Mahowald, N. M.; Randerson, J. T.; Thornton, P. E.; Hoffman, F. M.; Levis, Samuel; Lawrence, Peter J.; Feddema, Johannes J.; Oleson, Keith W.; Lawrence, David M.
2010-01-01T23:59:59.000Z
Fire is an integral Earth System process that interacts with climate in multiple ways. Here we assessed the parametrization of fires in the Community Land Model (CLM-CN) and improved the ability of the model to reproduce ...
Valuing climate impacts in integrated assessment models: the MIT IGSM*
interactions among natural and human climate system components; objectively assess uncertainty in economic, monitor and verify greenhouse gas emissions and climatic impacts. This reprint is one of a series intended to their daily lives--crop yield, food prices, premature death, flooding or drought events, land use change
Janetos, Anthony C.; Collins, William D.; Wuebbles, D.J.; Diffenbaugh, Noah; Hayhoe, Katharine; Hibbard, Kathleen A.; Hurtt, George
2012-03-31T23:59:59.000Z
This is the full workshop report for the modeling workshop we did for the National Climate Assessment, with DOE support.
Models used to assess the performance of photovoltaic systems.
Stein, Joshua S.; Klise, Geoffrey T.
2009-12-01T23:59:59.000Z
This report documents the various photovoltaic (PV) performance models and software developed and utilized by researchers at Sandia National Laboratories (SNL) in support of the Photovoltaics and Grid Integration Department. In addition to PV performance models, hybrid system and battery storage models are discussed. A hybrid system using other distributed sources and energy storage can help reduce the variability inherent in PV generation, and due to the complexity of combining multiple generation sources and system loads, these models are invaluable for system design and optimization. Energy storage plays an important role in reducing PV intermittency and battery storage models are used to understand the best configurations and technologies to store PV generated electricity. Other researcher's models used by SNL are discussed including some widely known models that incorporate algorithms developed at SNL. There are other models included in the discussion that are not used by or were not adopted from SNL research but may provide some benefit to researchers working on PV array performance, hybrid system models and energy storage. The paper is organized into three sections to describe the different software models as applied to photovoltaic performance, hybrid systems, and battery storage. For each model, there is a description which includes where to find the model, whether it is currently maintained and any references that may be available. Modeling improvements underway at SNL include quantifying the uncertainty of individual system components, the overall uncertainty in modeled vs. measured results and modeling large PV systems. SNL is also conducting research into the overall reliability of PV systems.
U.S. GEOLOGICAL SURVEY ASSESSMENT MODEL FOR UNDISCOVERED CONVENTIONAL OIL, GAS, AND NGL
Laughlin, Robert B.
AM-i Chapter AM U.S. GEOLOGICAL SURVEY ASSESSMENT MODEL FOR UNDISCOVERED CONVENTIONAL OIL, GAS Survey (USGS) periodically conducts assessments of the oil, gas, and natural-gas liquids (NGL) resources by the USGS in1998 for undiscovered oil, gas, and NGL resources that reside in conventional accumulations
Automated Software Engineering Process Assessment: Supporting Diverse Models using an Ontology
Ulm, Universität
, ISO 9001). It also provides an in-the-loop automated process assessment capability that can help, ISO 9001), and suitable performance and scalability. The approach can reduce the effort required, and common reference model assessment standards utilize external audits (CMMI [3], ISO 15504 [4], and ISO
A simplified physical model for assessing solar radiation over Brazil using GOES 8 visible imagery
A simplified physical model for assessing solar radiation over Brazil using GOES 8 visible imagery; published 30 January 2004. [1] Solar radiation assessment by satellite is constrained by physical Composition and Structure: Transmission and scattering of radiation; KEYWORDS: solar radiation, satellite
Rate models with delays and the dynamics of large networks of spiking neurons
Roxin, Alex
1 Rate models with delays and the dynamics of large networks of spiking neurons Alex Roxin, Nicolas in a reduced rate model provided that the interactions are delayed. §1. Introduction Simplified models of large transformation through a sigmoidal input-output transfer function. Network models of spiking neurons can
1 Abstract--Eventually, prediction of transformer thermal performance for dynamic loading will be made using models distilled from measure data, rather than models derived from transformer heat for measuring the acceptability of transformer thermal models. For a model to be acceptable, it must have
Conceptual design of an integrated technology model for carbon policy assessment.
Backus, George A.; Dimotakes, Paul E. (NASA Jet Propulsion Laboratory, Pasadena, CA)
2011-01-01T23:59:59.000Z
This report describes the conceptual design of a technology choice model for understanding strategies to reduce carbon intensity in the electricity sector. The report considers the major modeling issues affecting technology policy assessment and defines an implementable model construct. Further, the report delineates the basis causal structure of such a model and attempts to establish the technical/algorithmic viability of pursuing model development along with the associated analyses.
Towing tank PIV measurement system, data and uncertainty assessment for DTMB Model 5512
Gui, Lichuan
Basin (DTMB) model 5512. The mean velocities are compared with previous 5-hole pitot probe dataTowing tank PIV measurement system, data and uncertainty assessment for DTMB Model 5512 L. Gui, J stresses at the nominal-wake plane of a model-scale ship. The mean velocities are compared with previous 5
Assessing Uncertainty in Spatial Exposure Models for Air Pollution Health Effects Assessment
2007-01-01T23:59:59.000Z
Spatial analysis of air pollution and mor- tality in Loslinking chronic air pollution exposure to health outcomes. J2006. Bayesian modeling of air pollution health effects with
Assessing Uncertainty in Spatial Exposure Models for Air Pollution Health Effects Assessment
2007-01-01T23:59:59.000Z
Spatial analysis of air pollution and mor- tality in Losin studies linking chronic air pollution exposure to health2006. Bayesian modeling of air pollution health effects with
Cirpka, Olaf Arie
1 Integrated modelling and assessment of regional groundwater resources in Germany and Benin, West.J.S. SONNEVELD [1] Institute of Hydraulic Engineering, Universitaet Stuttgart, Germany (Roland Conservation University of Bonn, Germany [3] Institute of Landscape Planning and Ecology, University
JACKSON VL
2011-08-31T23:59:59.000Z
The primary purpose of the tank mixing and sampling demonstration program is to mitigate the technical risks associated with the ability of the Hanford tank farm delivery and celtification systems to measure and deliver a uniformly mixed high-level waste (HLW) feed to the Waste Treatment and Immobilization Plant (WTP) Uniform feed to the WTP is a requirement of 24590-WTP-ICD-MG-01-019, ICD-19 - Interface Control Document for Waste Feed, although the exact definition of uniform is evolving in this context. Computational Fluid Dynamics (CFD) modeling has been used to assist in evaluating scaleup issues, study operational parameters, and predict mixing performance at full-scale.
Markakis, Michail
This paper presents the results of a computational study that compares simulated compartmental (differential equation) and Volterra models of the dynamic effects of insulin on blood glucose concentration in humans. In the ...
Be Migration Studies at JET and their Interpretation by an Integrated Model for Plasma Impurity Transport and Wall Composition Dynamics
Utility of Social Modeling in Assessment of a State’s Propensity for Nuclear Proliferation
Coles, Garill A.; Brothers, Alan J.; Whitney, Paul D.; Dalton, Angela C.; Olson, Jarrod; White, Amanda M.; Cooley, Scott K.; Youchak, Paul M.; Stafford, Samuel V.
2011-06-01T23:59:59.000Z
This report is the third and final report out of a set of three reports documenting research for the U.S. Department of Energy (DOE) National Security Administration (NASA) Office of Nonproliferation Research and Development NA-22 Simulations, Algorithms, and Modeling program that investigates how social modeling can be used to improve proliferation assessment for informing nuclear security, policy, safeguards, design of nuclear systems and research decisions. Social modeling has not to have been used to any significant extent in a proliferation studies. This report focuses on the utility of social modeling as applied to the assessment of a State's propensity to develop a nuclear weapons program.
Modeling the dynamics and depositional patterns of sandy rivers
Jerolmack, Douglas J
2006-01-01T23:59:59.000Z
This thesis seeks to advance our understanding of the dynamic nature, spatial organization and depositional record of topography in sand-bedded rivers. I examine patterns and processes over a wide range of scales, on Earth ...
Modeling Robot Dynamic Performance for Endpoint Force Control
Eppinger, Steven D.
1988-09-01T23:59:59.000Z
This research aims to understand the fundamental dynamic behavior of servo-controlled machinery in response to various types of sensory feedback. As an example of such a system, we study robot force control, a scheme ...
Dynamic reduced order modeling of entrained flow gasifiers
Monaghan, Rory F. D. (Rory Francis Desmond)
2010-01-01T23:59:59.000Z
Gasification-based energy systems coupled with carbon dioxide capture and storage technologies have the potential to reduce greenhouse gas emissions from continued use of abundant and secure fossil fuels. Dynamic reduced ...
Multiscale Modeling of Process Dynamics and Microstructure Development...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
of Process Dynamics and Microstructure Development in Laser-based Keyhole Welding and Additive Manufacturing Jun 05 2015 10:00 AM - 11:00 AM Wenda Tan, University of Utah, Salt...
The Development of Dynamic Operational Risk Assessment in Oil/Gas and Chemical Industries
Yang, Xiaole
2011-08-08T23:59:59.000Z
In oil/gas and chemical industries, dynamics is one of the most essential characteristics of any process. Time-dependent response is involved in most steps of both the physical/engineering processes and the equipment ...
Chi, K C; Reiner, David; Nuttall, William J
www.eprg.group.cam.ac.uk E P R G W O R K IN G P A P E R N O N -T E C H N IC A L S U M M A R Y DYNAMICS OF THE UK NATURAL GAS INDUSTRY: SYSTEM DYNAMICS MODELLING AND LONG-TERM ENERGY POLICY ANALYSIS EPRG Working Paper 0913... Cambridge Working Paper in Economics 0922 Kong Chyong Chi , David M. Reiner and William J. Nuttall The UK offshore natural gas and oil industry has a long and successful history and has been said to represent the pride of UK...
Performance assessment model of a single waste package (Conference) |
Office of Scientific and Technical Information (OSTI)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5 TablesExports to3,1,50022,3,,0,,6,1,SeparationConnect JournalPentoxide. (Journal Article) |SciTech Connect Conference: Performance assessment
Aquifer sensitivity assessment modeling at a large scale
Berg, R.C.; Abert, C.C. (Illinois State Geological Survey, Champaign, IL (United States))
1994-03-01T23:59:59.000Z
A 480 square-mile region within Will County, northeastern Illinois was used as a test region for an evaluation of the sensitivity of aquifers to contamination. An aquifer sensitivity model was developed using a Geographic Information System (GIS) with ARC/INFO software to overlay and combine several data layers. Many of the input data layers were developed using 2-dimensional surface modeling (Interactive Surface Modeling (ISM)) and 3-dimensional volume modeling (Geologic Modeling Program (GMP)) computer software. Most of the input data layers (drift thickness, thickness of sand and gravel, depth to first aquifer) were derived from interpolation of descriptive logs for water wells and engineering borings from their study area. A total of 2,984 logs were used to produce these maps. The components used for the authors' model are (1) depth to sand and gravel or bedrock, (2) thickness of the uppermost sand and gravel aquifer, (3) drift thickness, and (4) absence or presence of uppermost bedrock aquifer. The model is an improvement over many aquifer sensitivity models because it combines specific information on depth to the uppermost sand and gravel aquifer with information on the thickness of the uppermost sand and gravel aquifer. The manipulation of the source maps according to rules-based assumptions results in a colored aquifer sensitivity map for the Will County study area. This colored map differentiates 42 aquifer sensitivity map areas by using line patterns within colors. The county-scale model results in an aquifer sensitivity map that can be a useful tool for making land-use planning decisions regarding aquifer protection and management of groundwater resources.
Model-based Trajectory Control of Robots with Pneumatic Actuator Dynamics
Tedrake, Russ
movements despite being equipped with actuators (human muscles) that have band- width limitations similar. Motion planning has been successfully applied to a number of dynamic legged robots [13Model-based Trajectory Control of Robots with Pneumatic Actuator Dynamics Ryuma Niiyama Abstract
Modeling the dynamic component of the geoid and topography of Venus
Cerveny, Vlastislav
Modeling the dynamic component of the geoid and topography of Venus M. Pauer,1,2 K. Fleming,3 and O. [1] We analyze the Venusian geoid and topography to determine the relative importance of isostatic is whole mantle in style, (2) the long-wavelength geoid and topography are of purely dynamic origin, and (3
Static and dynamic length scales in a simple glassy plaquette model Robert L. Jack,1
Berthier, Ludovic
Static and dynamic length scales in a simple glassy plaquette model Robert L. Jack,1 Ludovic manuscript received 6 April 2005; published 5 July 2005 We study static and dynamic spatial correlations representation where spins are mapped to plaquette variables. We study the interplay between nontrivial static
Calibration of CDO Tranches with the Dynamical Generalized-Poisson Loss Model
Brigo, Damiano
Calibration of CDO Tranches with the Dynamical Generalized-Poisson Loss Model (updated shortened, and consistent calibration to quoted index CDO tranches and tranchelets for several maturities is feasible, as we dynamics, investigating calibration improve- ments and stability. JEL classification code: G13. AMS
A Formal Framework for Modeling and Analysis of System-Level Dynamic Power Management
Ha, Dong S.
A Formal Framework for Modeling and Analysis of System-Level Dynamic Power Management Shrirang, tlmartin, ha}@vt.edu Abstract Recent advances in Dynamic Power Management (DPM) tech- niques have resulted in designs that support a rich set of power management options, both at the hardware and software levels
Assessment of reduced mechanisms using One Dimensional Stochastic Turbulence model
Chien, Li-Chun
2010-01-01T23:59:59.000Z
turbulence model for a syngas jet flame. Proceeding of FallKerstein 2002), a turbulent syngas (CO/H2/NO) jet flame wasand DNS results of the syngas jet flame was recently done
Studies of crack dynamics in clay soil II. A physically based model for
Hoffmann, Heiko
; accepted 20 July 2004 Available online 23 August 2004 Abstract The temporal dynamics of soil structure are capable of treating water and solute transport within macro- pores and within the surrounding soil matrix, 1976; Gerke and van Genuchten, 1993; Jarvis, 1994). Assessing preferential flow requires information
Keppens, J; 10.1613/jair.1335
2011-01-01T23:59:59.000Z
The predominant knowledge-based approach to automated model construction, compositional modelling, employs a set of models of particular functional components. Its inference mechanism takes a scenario describing the constituent interacting components of a system and translates it into a useful mathematical model. This paper presents a novel compositional modelling approach aimed at building model repositories. It furthers the field in two respects. Firstly, it expands the application domain of compositional modelling to systems that can not be easily described in terms of interacting functional components, such as ecological systems. Secondly, it enables the incorporation of user preferences into the model selection process. These features are achieved by casting the compositional modelling problem as an activity-based dynamic preference constraint satisfaction problem, where the dynamic constraints describe the restrictions imposed over the composition of partial models and the preferences correspond to thos...
Bevelhimer, Mark S [ORNL; Coutant, Charles C [ORNL
2006-07-01T23:59:59.000Z
Dissolved oxygen (DO) in rivers is a common environmental problem associated with hydropower projects. Approximately 40% of all FERC-licensed projects have requirements to monitor and/or mitigate downstream DO conditions. Most forms of mitigation for increasing DO in dam tailwaters are fairly expensive. One area of research of the Department of Energy's Hydropower Program is the development of advanced turbines that improve downstream water quality and have other environmental benefits. There is great interest in being able to predict the benefits of these modifications prior to committing to the cost of new equipment. In the case of turbine replacement or modification, there is a need for methods that allow us to accurately extrapolate the benefits derived from one or two turbines with better design to the replacement or modification of all turbines at a site. The main objective of our study was to demonstrate a modeling approach that integrates the effects of flow and water quality dynamics with fish bioenergetics to predict DO mitigation effectiveness over long river segments downstream of hydropower dams. We were particularly interested in demonstrating the incremental value of including a fish growth model as a measure of biological response. The models applied are a suite of tools (RMS4 modeling system) originally developed by the Tennessee Valley Authority for simulating hydrodynamics (ADYN model), water quality (RQUAL model), and fish growth (FISH model) as influenced by DO, temperature, and available food base. We parameterized a model for a 26-mile reach of the Caney Fork River (Tennessee) below Center Hill Dam to assess how improvements in DO at the dam discharge would affect water quality and fish growth throughout the river. We simulated different types of mitigation (i.e., at the turbine and in the reservoir forebay) and different levels of improvement. The model application successfully demonstrates how a modeling approach like this one can be used to assess whether a prescribed mitigation is likely to meet intended objectives from both a water quality and a biological resource perspective. These techniques can be used to assess the tradeoffs between hydropower operations, power generation, and environmental quality.
A Numerical Model For The Dynamics Of Pyroclastic Flows At Galeras...
model is applied to one of the slopes of Galeras Volcano to show: (1) the temperature evolution with the time; (2) dynamic pressure change; and (3) particle concentration along the...
Rojas Paico, Danny H.
2001-01-01T23:59:59.000Z
The integration of dynamic data into reservoir models is known as automatic history matching, and it requires the solution of an inverse problem through the minimization of an objective function. The objective function to ...
Dynamic soil-structure interaction-comparison of FEM model with experimental results
Srinivasan, Palanivel Rajan
2000-01-01T23:59:59.000Z
to represent twenty different laboratory experiments. The results of these models are compared with results available from extensive experimental dynamic testing on a geotechnical centrifuge. Though the various results from the finite element analysis...
A Nonlinear Continuous Time Optimal Control Model of Dynamic Pricing and Inventory Control with no
Adida, Elodie
time optimal control model for studying a dynamic pricing and inventory control problem for a make-to-stock of not introducing any approximation to the real setting: it provides the exact solution of the system. When taking
Seagraves, Andrew Nathan
2010-01-01T23:59:59.000Z
In this thesis a new parallel computational method is proposed for modeling threedimensional dynamic fracture of brittle solids. The method is based on a combination of the discontinuous Galerkin (DG) formulation of the ...
Dynamic First-Principles Molecular-Scale Model for Solid Oxide Fuel Cells V. Hugo Schmidt
Dynamic First-Principles Molecular-Scale Model for Solid Oxide Fuel Cells V. Hugo Schmidt vs. current density i characteristics applies both to the Solid Oxide Fuel Cell (SOFC) and Solid
Dynamic Modeling and Wavelet-Based Multi-Parametric Tuning and Validation for HVAC Systems
Liang, Shuangshuang
2014-07-10T23:59:59.000Z
Dynamic Heating, Ventilation, and Air-Conditioning (HVAC) system models are used for the purpose of control design, fault detection and diagnosis, system analysis, design and optimization. Therefore, ensuring the accuracy ...
Nonrigid Motion Analysis Based on Dynamic Refinement of Finite Element Models
Sarkar, Sudeep
Nonrigid Motion Analysis Based on Dynamic Refinement of Finite Element Models Leonid V. Tsap finite element models. The method is based on the iterative analysis of the differences betweenĂPhysically-based vision, deformable models, nonrigid motion analysis, biomedical applications, finite element analysis. Ă¦
Dynamic modeling of three-phase upflow fixed-bed reactor including pore diffusion C. Julcoura
Paris-Sud XI, Université de
Dynamic modeling of three-phase upflow fixed-bed reactor including pore diffusion C. Julcoura , R-phase upflow fixed-bed reactor are investigated using a non-isothermal heterogeneous model including gas not limiting, so that the simplest model predicts accurately the transient reactor behavior. Keywords: fixed-bed
New trends in vehicle dynamics: from modelling to control. Olivier SENAME
Paris-Sud XI, Université de
New trends in vehicle dynamics: from modelling to control. Olivier SENAME GIPSA-lab - Department approaches such as H approach for Linear Parameter Varying systems and Model predictive control have shown methods for modelling and control of subsystems and of the vehicle. The session will be organized
Computational Fluid Dynamics Modeling of a Lithium/Thionyl Chloride Battery with Electrolyte Flow
Wang, Chao-Yang
Computational Fluid Dynamics Modeling of a Lithium/Thionyl Chloride Battery with Electrolyte Flow W-dimensional model is developed to simulate discharge of a primary lithium/thionyl chloride battery. The model to the first task with important examples of lead-acid,1-3 nickel-metal hydride,4-8 and lithium-based batteries
Automated Modeling of Dynamic Reliability Block Diagrams Using Colored Petri Nets
Xu, Haiping
solution to automated verification of DRBD models. Index Terms--System reliability, reliability block \\ Abstract--Computer system reliability is conventionally modeled and analyzed using techniques such as fault), defines a framework for modeling dynamic reliability behavior of computer-based systems. However
Development of a Data Driven Dynamic Model for a Plasma Etching Reactor Michael Nikolaoua)
Nikolaou, Michael
1 Development of a Data Driven Dynamic Model for a Plasma Etching Reactor Michael Nikolaoua for identification and validation of an empirical model for a helicon plasma reactor, on the basis of experimental manufacturing processes such as plasma etching, accurate models based on first principles may be developed
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5 TablesExports(Journal Article)41cloth Documentation DataDepartment of EnergyOn-Farm BiofuelinAnalysisCycle2014) |40'ArticlesYourLegacyAssessment of the
Sleep Dynamics and Seizure Control in a Mesoscale Cortical Model
Lopour, Beth Ann
2009-01-01T23:59:59.000Z
Contributions . . . . . . . . . 2 Mesoscale Cortical Modelstates in h e from the mesoscale cortical model, here- afterand Seizure Control in a Mesoscale Cortical Model by Beth
Huang, Zhenyu; Du, Pengwei; Kosterev, Dmitry; Yang, Steve
2013-05-01T23:59:59.000Z
Disturbance data recorded by phasor measurement units (PMU) offers opportunities to improve the integrity of dynamic models. However, manually tuning parameters through play-back events demands significant efforts and engineering experiences. In this paper, a calibration method using the extended Kalman filter (EKF) technique is proposed. The formulation of EKF with parameter calibration is discussed. Case studies are presented to demonstrate its validity. The proposed calibration method is cost-effective, complementary to traditional equipment testing for improving dynamic model quality.
Characteristics of identifying linear dynamic models from impulse response data using Prony analysis
Trudnowski, D.J.
1992-12-01T23:59:59.000Z
The purpose of the study was to investigate the characteristics of fitting linear dynamic models to the impulse response of oscillatory dynamic systems using Prony analysis. Many dynamic systems exhibit oscillatory responses with multiple modes of oscillations. Although the underlying dynamics of such systems are often nonlinear, it is frequently possible and very useful to represent the system operating about some set point with a linear model. Derivation of such linear models can be done using two basic approaches: model the system using theoretical derivations and some linearization method such as a Taylor series expansion; or use a curve-fitting technique to optimally fit a linear model to specified system response data. Prony analysis belongs to the second class of system modeling because it is a method of fitting a linear model to the impulse response of a dynamic system. Its parallel formulation inherently makes it well suited for fitting models to oscillatory system data. Such oscillatory dynamic effects occur in large synchronous-generator-based power systems in the form of electromechanical oscillations. To study and characterize these oscillatory dynamics, BPA has developed computer codes to analyze system data using Prony analysis. The objective of this study was to develop a highly detailed understanding of the properties of using Prony analysis to fit models to systems with characteristics often encountered in power systems. This understanding was then extended to develop general ``rules-of-thumb`` for using Prony analysis. The general characteristics were investigated by performing fits to data from known linear models under controlled conditions. The conditions studied include various mathematical solution techniques; different parent system configurations; and a large variety of underlying noise characteristics.
Characteristics of identifying linear dynamic models from impulse response data using Prony analysis
Trudnowski, D.J.
1992-12-01T23:59:59.000Z
The purpose of the study was to investigate the characteristics of fitting linear dynamic models to the impulse response of oscillatory dynamic systems using Prony analysis. Many dynamic systems exhibit oscillatory responses with multiple modes of oscillations. Although the underlying dynamics of such systems are often nonlinear, it is frequently possible and very useful to represent the system operating about some set point with a linear model. Derivation of such linear models can be done using two basic approaches: model the system using theoretical derivations and some linearization method such as a Taylor series expansion; or use a curve-fitting technique to optimally fit a linear model to specified system response data. Prony analysis belongs to the second class of system modeling because it is a method of fitting a linear model to the impulse response of a dynamic system. Its parallel formulation inherently makes it well suited for fitting models to oscillatory system data. Such oscillatory dynamic effects occur in large synchronous-generator-based power systems in the form of electromechanical oscillations. To study and characterize these oscillatory dynamics, BPA has developed computer codes to analyze system data using Prony analysis. The objective of this study was to develop a highly detailed understanding of the properties of using Prony analysis to fit models to systems with characteristics often encountered in power systems. This understanding was then extended to develop general rules-of-thumb'' for using Prony analysis. The general characteristics were investigated by performing fits to data from known linear models under controlled conditions. The conditions studied include various mathematical solution techniques; different parent system configurations; and a large variety of underlying noise characteristics.
Re-conceptualizing the soil and water assessment tool (SWAT) model to predict runoff from variable
Walter, M.Todd
runoff in ways that implicitly assume an infiltration-excess response to rainfall. Because of this generated in rural, humid regions. In this study, the Soil and Water Assessment Tool (SWAT) model was re is applied in these models implicitly assumes an infiltration-excess (or Hortonian, i.e., Horton, 1933
Thesis proposal CSF Brazil 2014 Causal model for flood risk assessment
Bordenave, Charles
Thesis proposal CSF Brazil 2014 Title: Causal model for flood risk assessment Thesis supervisor: The thesis aims to provide an operational tool for the anticipation of flood risk in mountain areas. The work for the anticipation of flood risk in mountain areas. The work will lead to the establishment of a model
Using beryllium-7 to assess cross-tropopause1 transport in global models2
Liu, Hongyu
1 Using beryllium-7 to assess cross-tropopause1 transport in global models2 3 Hongyu Liu1 , David B, MA13 14 Short Title: Beryllium-7 and cross-tropopause transport15 Index Terms: 0368 Troposphere Initiative (GMI) modeling framework the29 utility of cosmogenic beryllium-7 (7 Be), a natural aerosol tracer
An Assessment of Converter Modelling Needs for Offshore Wind Power Plants Connected via VSC-
Bak, Claus Leth
An Assessment of Converter Modelling Needs for Offshore Wind Power Plants Connected via VSC- HVDC, especially in case of connection of offshore wind power plants (OWPPs). Modelling challenges are faced Networks Jakob Glasdam, Lorenzo Zeni, Jesper Hjerrild, Lukasz Kocewiak, Bo Hesselbaek Wind Power
Modeling of tsunami sources and propagation in the Atlantic Ocean Basin to assess coastal tsunami
Kirby, James T.
Modeling of tsunami sources and propagation in the Atlantic Ocean Basin to assess coastal tsunami 19716, USA Abstract Since 2010, under the auspices of the US National Tsunami Hazard Mitigation Pro- gram (NTHMP), the authors have conducted modeling work to gradually develop tsunami inundation maps
Integration of Landsat Imagery and an Inundation Model in Flood Assessment and Predictions
Ezer,Tal
regions. The topography data used by the model were based only on a subjective assessment from various data in shallow regions and flood zones where land- base data are not available. Keywords constraint to the development of such numerical models is the lack of suitable validation data sources [3
Gastelum, Zoe N.; White, Amanda M.; Whitney, Paul D.; Gosink, Luke J.; Sego, Landon H.
2013-06-04T23:59:59.000Z
The Multi-Source Signatures for Nuclear Programs project, part of Pacific Northwest National Laboratory’s (PNNL) Signature Discovery Initiative, seeks to computationally capture expert assessment of multi-type information such as text, sensor output, imagery, or audio/video files, to assess nuclear activities through a series of Bayesian network (BN) models. These models incorporate knowledge from a diverse range of information sources in order to help assess a country’s nuclear activities. The models span engineering topic areas, state-level indicators, and facility-specific characteristics. To illustrate the development, calibration, and use of BN models for multi-source assessment, we present a model that predicts a country’s likelihood to participate in the international nuclear nonproliferation regime. We validate this model by examining the extent to which the model assists non-experts arrive at conclusions similar to those provided by nuclear proliferation experts. We also describe the PNNL-developed software used throughout the lifecycle of the Bayesian network model development.
First Prev Next Last Go Back Full Screen Close Quit Model Assessment
Spang, Rainer
Â·First Â·Prev Â·Next Â·Last Â·Go Back Â·Full Screen Â·Close Â·Quit Model Assessment and Selection Axel Â·Prev Â·Next Â·Last Â·Go Back Â·Full Screen Â·Close Â·Quit Model Assessment and Selection 2 Topics Predictive Â· Restriction Â· Selection Â· Regularization #12;Â·First Â·Prev Â·Next Â·Last Â·Go Back Â·Full Screen Â·Close Â·Quit Model
Fast Dynamic Simulation-Based Small Signal Stability Assessment and Control
Acharya, Naresh; Baone, Chaitanya; Veda, Santosh; Dai, Jing; Chaudhuri, Nilanjan; Leonardi, Bruno; Sanches-Gasca, Juan; Diao, Ruisheng; Wu, Di; Huang, Zhenyu; Zhang, Yu; Jin, Shuangshuang; Zheng, Bin; Chen, Yousu
2014-12-31T23:59:59.000Z
Power grid planning and operation decisions are made based on simulation of the dynamic behavior of the system. Enabling substantial energy savings while increasing the reliability of the aging North American power grid through improved utilization of existing transmission assets hinges on the adoption of wide-area measurement systems (WAMS) for power system stabilization. However, adoption of WAMS alone will not suffice if the power system is to reach its full entitlement in stability and reliability. It is necessary to enhance predictability with "faster than real-time" dynamic simulations that will enable the dynamic stability margins, proactive real-time control, and improve grid resiliency to fast time-scale phenomena such as cascading network failures. Present-day dynamic simulations are performed only during offline planning studies, considering only worst case conditions such as summer peak, winter peak days, etc. With widespread deployment of renewable generation, controllable loads, energy storage devices and plug-in hybrid electric vehicles expected in the near future and greater integration of cyber infrastructure (communications, computation and control), monitoring and controlling the dynamic performance of the grid in real-time would become increasingly important. The state-of-the-art dynamic simulation tools have limited computational speed and are not suitable for real-time applications, given the large set of contingency conditions to be evaluated. These tools are optimized for best performance of single-processor computers, but the simulation is still several times slower than real-time due to its computational complexity. With recent significant advances in numerical methods and computational hardware, the expectations have been rising towards more efficient and faster techniques to be implemented in power system simulators. This is a natural expectation, given that the core solution algorithms of most commercial simulators were developed decades ago, when High Performance Computing (HPC) resources were not commonly available.
Environmental Modeling and Assessment (2005) 10:6379 DOI 10.1007/s10666-004-4267-z Springer 2005
Risbey, James S.
2005-01-01T23:59:59.000Z
Environmental Modeling and Assessment (2005) 10:6379 DOI 10.1007/s10666-004-4267-z Springer 2005 Application of a checklist for quality assistance in environmental modelling to an energy model James Risbey a present considerable challenges to develop and test. Uncertainty assessments of such models provide only
Modeling the star formation in galaxies using the Chemo - dynamical SPH code
Peter Berczik
2000-07-19T23:59:59.000Z
A new Chemo - Dynamical Smoothed Particle Hydrodynamic (CD - SPH) code is presented. The disk galaxy is described as a multi - fragmented gas and star system, embedded in a cold dark matter halo. The star formation (SF) process, SNII, SNIa and PN events as well as chemical enrichment of gas have been considered within the framework of the standard SPH model. Using this model we describe the dynamical and chemical evolution of triaxial disk - like galaxies. It is found that such approach provides a realistic description of the process of formation, chemical and dynamical evolution of disk galaxies over a cosmological timescale.
Common-Cause Failure Treatment in Event Assessment: Basis for a Proposed New Model
Dana Kelly; Song-Hua Shen; Gary DeMoss; Kevin Coyne; Don Marksberry
2010-06-01T23:59:59.000Z
Event assessment is an application of probabilistic risk assessment in which observed equipment failures and outages are mapped into the risk model to obtain a numerical estimate of the event’s risk significance. In this paper, we focus on retrospective assessments to estimate the risk significance of degraded conditions such as equipment failure accompanied by a deficiency in a process such as maintenance practices. In modeling such events, the basic events in the risk model that are associated with observed failures and other off-normal situations are typically configured to be failed, while those associated with observed successes and unchallenged components are assumed capable of failing, typically with their baseline probabilities. This is referred to as the failure memory approach to event assessment. The conditioning of common-cause failure probabilities for the common cause component group associated with the observed component failure is particularly important, as it is insufficient to simply leave these probabilities at their baseline values, and doing so may result in a significant underestimate of risk significance for the event. Past work in this area has focused on the mathematics of the adjustment. In this paper, we review the Basic Parameter Model for common-cause failure, which underlies most current risk modelling, discuss the limitations of this model with respect to event assessment, and introduce a proposed new framework for common-cause failure, which uses a Bayesian network to model underlying causes of failure, and which has the potential to overcome the limitations of the Basic Parameter Model with respect to event assessment.
Wang, Shaobu; Lu, Shuai; Zhou, Ning; Lin, Guang; Elizondo, Marcelo A.; Pai, M. A.
2014-09-04T23:59:59.000Z
In interconnected power systems, dynamic model reduction can be applied on generators outside the area of interest to mitigate the computational cost with transient stability studies. This paper presents an approach of deriving the reduced dynamic model of the external area based on dynamic response measurements, which comprises of three steps, dynamic-feature extraction, attribution and reconstruction (DEAR). In the DEAR approach, a feature extraction technique, such as singular value decomposition (SVD), is applied to the measured generator dynamics after a disturbance. Characteristic generators are then identified in the feature attribution step for matching the extracted dynamic features with the highest similarity, forming a suboptimal ‘basis’ of system dynamics. In the reconstruction step, generator state variables such as rotor angles and voltage magnitudes are approximated with a linear combination of the characteristic generators, resulting in a quasi-nonlinear reduced model of the original external system. Network model is un-changed in the DEAR method. Tests on several IEEE standard systems show that the proposed method gets better reduction ratio and response errors than the traditional coherency aggregation methods.
Jorge L. Sarmiento - Princeton PI, Anand Gnanadesikan - Princeton Co-I, Nicolas Gruber - UCLA PI, Xin Jin - UCLA PostDoc, Robert Armstrong - SUNY /Stony Brook Consultant
2007-06-21T23:59:59.000Z
This final report summarizes research undertaken collaboratively between Princeton University, the NOAA Geophysical Fluid Dynamics Laboratory on the Princeton University campus, the State University of New York at Stony Brook, and the University of California, Los Angeles between September 1, 2000, and November 30, 2006, to do fundamental research on ocean iron fertilization as a means to enhance the net oceanic uptake of CO2 from the atmosphere. The approach we proposed was to develop and apply a suite of coupled physical-ecological-biogeochemical models in order to (i) determine to what extent enhanced carbon fixation from iron fertilization will lead to an increase in the oceanic uptake of atmospheric CO2 and how long this carbon will remain sequestered (efficiency), and (ii) examine the changes in ocean ecology and natural biogeochemical cycles resulting from iron fertilization (consequences). The award was funded in two separate three-year installments: • September 1, 2000 to November 30, 2003, for a project entitled “Ocean carbon sequestration by fertilization: An integrated biogeochemical assessment.” A final report was submitted for this at the end of 2003 and is included here as Appendix 1. • December 1, 2003 to November 30, 2006, for a follow-on project under the same grant number entitled “Carbon sequestration by patch fertilization: A comprehensive assessment using coupled physical-ecological-biogeochemical models.” This report focuses primarily on the progress we made during the second period of funding subsequent to the work reported on in Appendix 1. When we began this project, we were thinking almost exclusively in terms of long-term fertilization over large regions of the ocean such as the Southern Ocean, with much of our focus being on how ocean circulation and biogeochemical cycling would interact to control the response to a given fertilization scenario. Our research on these types of scenarios, which was carried out largely during the first three years of our project, led to several major new insights on the interaction between ocean biogeochemistry and circulation. This work, which is described in the following Section II on “Large scale fertilization,” has continued to appear in the literature over the past few years, including two high visibility papers in Nature. Early on in the first three years of our project, it became clear that small "patch-scale" fertilizations over limited regions of order 100 km diameter were much more likely than large scale fertilization, and we carried out a series of idealized patch fertilization simulations reported on in Gnanadesikan et al. (2003). Based on this paper and other results we had obtained by the end of our first three-year grant, we identified a number of important issues that needed to be addressed in the second three-year period of this grant. Section III on “patch fertilization” discusses the major findings of this phase of our research, which is described in two major manuscripts that will be submitted for publication in the near future. This research makes use of new more realistic ocean ecosystem and iron cycling models than our first paper on this topic. We have several major new insights into what controls the efficiency of iron fertilization in the ocean. Section IV on “model development” summarizes a set of papers describing the progress that we made on improving the ecosystem models we use for our iron fertilization simulations.
Chapter 18: Understanding the Developing Cellulosic Biofuels Industry through Dynamic Modeling
Newes, E.; Inman, D.; Bush, B.
2011-01-01T23:59:59.000Z
The purpose of this chapter is to discuss a system dynamics model called the Biomass Scenario Model (BSM), which is being developed by the U.S. Department of Energy as a tool to better understand the interaction of complex policies and their potential effects on the burgeoning cellulosic biofuels industry in the United States. The model has also recently been expanded to include advanced conversion technologies and biofuels (i.e., conversion pathways that yield biomass-based gasoline, diesel, jet fuel, and butanol), but we focus on cellulosic ethanol conversion pathways here. The BSM uses a system dynamics modeling approach (Bush et al., 2008) built on the STELLA software platform.
Humanoid Walking Robot: Modeling, Inverse Dynamics, and Gain Scheduling Control
Williams II, Robert L.
and Robert L. Williams II Department of Mechanical Engineering Ohio University, Athens, OH 45701 Revised trajectories, recorded from real human walking cycle data. Kinematic and dynamic analysis is discussed. This analysis is accompanied by a comparison with available experimental data. Finally, an inverse plant
Dynamic Model Validation of PV Inverters Under Short-Circuit Conditions: Preprint
Muljadi, E.; Singh, M.; Bravo, R.; Gevorgian, V.
2013-03-01T23:59:59.000Z
Photovoltaic (PV) modules have dramatically decreased in price in the past few years, spurring the expansion of photovoltaic deployment. Residential and commercial rooftop installations are connected to the distribution network; large-scale installation PV power plants (PVPs) have benefited from tax incentives and the low cost of PV modules. As the level penetration of PV generation increases, the impact on power system reliability will also be greater. Utility power system planners must consider the role of PV generation in power systems more realistically by representing PV generation in dynamic stability analyses. Dynamic models of PV inverters have been developed in the positive sequence representation. NREL has developed a PV inverter dynamic model in PSCAD/EMTDC. This paper validates the dynamic model with an actual hardware bench test conducted by Southern California Edison's Distributed Energy Resources laboratory. All the fault combinations -- symmetrical and unsymmetrical -- were performed in the laboratory. We compare the simulation results with the bench test results.
Archer, Daniel E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hornback, Donald Eric [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Johnson, Jeffrey O. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Nicholson, Andrew D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Patton, Bruce W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Peplow, Douglas E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Miller, Thomas Martin [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ayaz-Maierhafer, Birsen [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
2015-01-01T23:59:59.000Z
This report summarizes the findings of a two year effort to systematically assess neutron and gamma backgrounds relevant to operational modeling and detection technology implementation. The first year effort focused on reviewing the origins of background sources and their impact on measured rates in operational scenarios of interest. The second year has focused on the assessment of detector and algorithm performance as they pertain to operational requirements against the various background sources and background levels.
Mixed Layer Mesoscales for OGCMs: Model development and assessment with T/P, WOCE and Drifter data
Canuto, V M; Leboissetier, A
2011-01-01T23:59:59.000Z
We present a model for mixed layer (ML) mesoscale (M) fluxes of an arbitrary tracer in terms of the resolved fields (mean tracer and mean velocity). The treatment of an arbitrary tracer, rather than only buoyancy, is necessary since OGCMs time step T, S, CO2, etc and not buoyancy. The particular case of buoyancy is used to assess the model results. The paper contains three parts: derivation of the results, discussion of the results and assessment of the latter using, among others, WOCE, T/P and Drifter data. Derivation. To construct the M fluxes, we first solve the ML M dynamic equations for the velocity and tracer M fields. The goal of the derivation is to emphasize the different treatments of the non-linear terms in the adiabatic vs. diabatic ocean (deep ocean vs. mixed layer). Results. We derive analytic expressions for the following variables: a) vertical and horizontal M fluxes of an arbitrary tracer, b) M diffusivity in terms of the EKE, c) surface value of the EKE in terms of the vertical M buoyancy fl...
Bravo de la Parra, Rafael
Effects of density dependent sex allocation on the dynamics of a simultaneous hermaphroditic Available online 22 December 2009 Keywords: Sex-allocation model Sex-structured population dynamics Density model describing the dynamics of a population where sex allocation remains flexible throughout adult
TEPP Model Needs Assessment Document | Department of Energy
Office of Environmental Management (EM)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5 TablesExports to3,1,50022,3,,0,,6,1,Separation 23 362 334DepartmentCivilianAffairs,SiteStories StoriesEXC-14-0002ExecuteTribal TEC WorkingTEPP --Model
Liese, Eric [U.S. DOE; Zitney, Stephen E. [U.S. DOE
2013-01-01T23:59:59.000Z
Research in dynamic process simulation for integrated gasification combined cycles (IGCC) with carbon capture has been ongoing at the National Energy Technology Laboratory (NETL), culminating in a full operator training simulator (OTS) and immersive training simulator (ITS) for use in both operator training and research. A derivative work of the IGCC dynamic simulator has been a modification of the combined cycle section to more closely represent a typical natural gas fired combined cycle (NGCC). This paper describes the NGCC dynamic process model and highlights some of the simulator’s current capabilities through a particular startup and shutdown scenario.
Gedeon, Tomas
, from those appearing in physiology and ecology to Earth systems modeling, often experience critical
A nonlinear dynamic model of a once-through, helical-coil steam generator
Abdalla, M.A. [Oak Ridge Inst. for Science and Education, TN (United States)
1993-07-01T23:59:59.000Z
A dynamic model of a once-through, helical-coil steam generator is presented. The model simulates the advanced liquid metal reactor superheated cycle steam generator with a four-region, moving-boundary, drift-flux model. The model is described by a set of nonlinear differential equations derived from the fundamental equations of conversation of mass, energy, and momentum. Sample results of steady-state and transient calculations are presented.
SOCIAL MODELING IN ASSESSEMENT OF A STATE’S PROPENSITY FOR NUCLEAR PROLIFERATION
Dalton, Angela C.; Whitney, Paul D.; Coles, Garill A.; Brothers, Alan J.
2011-07-17T23:59:59.000Z
This paper presents approach for assessing a State’s propensity for nuclear weapons proliferation using social modeling. We supported this modeling by first reviewing primarily literature by social scientists on factors related to the propensity of a State to proliferation and by leveraging existing relevant data compiled by social scientists. We performed a number of validation tests on our model including one that incorporates use of benchmark data defining the proliferation status of countries in the years between 1945 and 2000. We exercise the BN model against a number of country cases representing different perceived levels of proliferation risk. We also describe how the BN model could be further refined to be a proliferation assessment tool for decision making.
Synchronized Phasor Data for Analyzing Wind Power Plant Dynamic Behavior and Model Validation
Wan, Y. H.
2013-01-01T23:59:59.000Z
The U.S. power industry is undertaking several initiatives that will improve the operations of the power grid. One of those is the implementation of 'wide area measurements' using phasor measurement units (PMUs) to dynamically monitor the operations and the status of the network and provide advanced situational awareness and stability assessment. This project seeks to obtain PMU data from wind power plants and grid reference points and develop software tools to analyze and visualize synchrophasor data for the purpose of better understanding wind power plant dynamic behaviors under normal and contingency conditions.
Computational Modeling and Assessment Of Nanocoatings for Ultra Supercritical Boilers
David W. Gandy; John P. Shingledecker
2011-04-11T23:59:59.000Z
Forced outages and boiler unavailability in conventional coal-fired fossil power plants is most often caused by fireside corrosion of boiler waterwalls. Industry-wide, the rate of wall thickness corrosion wastage of fireside waterwalls in fossil-fired boilers has been of concern for many years. It is significant that the introduction of nitrogen oxide (NOx) emission controls with staged burners systems has increased reported waterwall wastage rates to as much as 120 mils (3 mm) per year. Moreover, the reducing environment produced by the low-NOx combustion process is the primary cause of accelerated corrosion rates of waterwall tubes made of carbon and low alloy steels. Improved coatings, such as the MCrAl nanocoatings evaluated here (where M is Fe, Ni, and Co), are needed to reduce/eliminate waterwall damage in subcritical, supercritical, and ultra-supercritical (USC) boilers. The first two tasks of this six-task project-jointly sponsored by EPRI and the U.S. Department of Energy (DE-FC26-07NT43096)-have focused on computational modeling of an advanced MCrAl nanocoating system and evaluation of two nanocrystalline (iron and nickel base) coatings, which will significantly improve the corrosion and erosion performance of tubing used in USC boilers. The computational model results showed that about 40 wt.% is required in Fe based nanocrystalline coatings for long-term durability, leading to a coating composition of Fe-25Cr-40Ni-10 wt.% Al. In addition, the long term thermal exposure test results further showed accelerated inward diffusion of Al from the nanocrystalline coatings into the substrate. In order to enhance the durability of these coatings, it is necessary to develop a diffusion barrier interlayer coating such TiN and/or AlN. The third task 'Process Advanced MCrAl Nanocoating Systems' of the six-task project jointly sponsored by the Electric Power Research Institute, EPRI and the U.S. Department of Energy (DE-FC26-07NT43096)- has focused on processing of advanced nanocrystalline coating systems and development of diffusion barrier interlayer coatings. Among the diffusion interlayer coatings evaluated, the TiN interlayer coating was found to be the optimum one. This report describes the research conducted under the Task 3 workscope.
Modeling Red Blood Cell and Iron Dynamics in Patients with Chronic Kidney Disease
Modeling Red Blood Cell and Iron Dynamics in Patients with Chronic Kidney Disease H. T. Banks1, that stimulates red blood cell (RBC) production. Without intervention, patients suffer from anemia. Patients treatment. Keywords: mathematical model, mathematical biology, erythropoiesis, erythrocyte, red blood cell
Coupling remote sensing with computational fluid dynamics modelling to estimate lake chlorophyll form 17 October 2000; accepted 1 June 2001 Abstract A remotely sensed image of Loch Leven, a shallow in the remotely sensed image. It is proposed that CFD modelling benefits the interpretation of remotely sensed
El Nino duration time (month) Dynamic coupling of an ENSO model to the
Goelzer, Heiko
El Nino duration time (month) Dynamic coupling of an ENSO model to the global coupled climate model changes in the thermohaline circulation and changes in the El Nino/Southern Oscillation (ENSO), the Zebiak distribution El Nino event interval (month) · Interval between ENSO events shifted towards longer times
Discrete molecular dynamics studies of the folding of a protein-like model
Buldyrev, Sergey
Discrete molecular dynamics studies of the folding of a protein-like model Nikolay V Dokholyan1 to resolve in time the folding of model proteins in computer simulations. Different computational approaches). Results: We used the recently proposed approach of Zhou and Karplus to study the folding of a protein
A Diffusion Model in Population Genetics with Mutation and Dynamic Fitness
O'Leary, Michael
A Diffusion Model in Population Genetics with Mutation and Dynamic Fitness Mike O'Leary Department of Mathematics Towson University PDE Seminar Vanderbilt University November 2008 Mike O'Leary (Towson University are joint with Judith Miller, Georgetown University. Mike O'Leary (Towson University) A Diffusion Model
Generalized models as a universal approach to the analysis of nonlinear dynamical systems
Thilo Gross; Ulrike Feudel
2006-01-29T23:59:59.000Z
We present a universal approach to the investigation of the dynamics in generalized models. In these models the processes that are taken into account are not restricted to specific functional forms. Therefore a single generalized models can describe a class of systems which share a similar structure. Despite this generality, the proposed approach allows us to study the dynamical properties of generalized models efficiently in the framework of local bifurcation theory. The approach is based on a normalization procedure that is used to identify natural parameters of the system. The Jacobian in a steady state is then derived as a function of these parameters. The analytical computation of local bifurcations using computer algebra reveals conditions for the local asymptotic stability of steady states and provides certain insights on the global dynamics of the system. The proposed approach yields a close connection between modelling and nonlinear dynamics. We illustrate the investigation of generalized models by considering examples from three different disciplines of science: a socio-economic model of dynastic cycles in china, a model for a coupled laser system and a general ecological food web.
A 3D dynamical biomechanical tongue model to study speech motor control
Paris-Sud XI, Université de
- 1 - A 3D dynamical biomechanical tongue model to study speech motor control Jean-Michel Gérard1 about speech motor control. Tissue elastic properties are accounted for in Finite Element Modeling (FEM shape are presented and analyzed. #12;- 3 - I.Introduction The study of human motor control implies
Data-driven Modeling of Metal-oxide Sensors with Dynamic Bayesian Networks
Gutierrez-Osuna, Ricardo
to model the transient response of MOX sensors modulated with a sequence of voltage steps. Analytical models of MOX sensors are usually built based on the physico-chemical properties of the sensing materials. Our results show that DBNs can accurately predict the dynamic response of MOX sensors, as well
ForPeerReview Drug user dynamics: a compartmental model of drug users
Triolo, Livio
ForPeerReview Only Drug user dynamics: a compartmental model of drug users for scenario analyses Journal: Drugs: Education, Prevention & Policy Manuscript ID: CDEP-2012-0094.R1 Manuscript Type: Original papers Keywords: Drug use, Epidemics, Compartmental modeling, Scenario analysis, Evaluation, Drug policy
Liquid Water Dynamics in a Model Polymer Electrolyte Fuel Cell Flow Channel
Victoria, University of
Liquid Water Dynamics in a Model Polymer Electrolyte Fuel Cell Flow Channel by Chris Miller in a Model Polymer Electrolyte Fuel Cell Flow Channel by Chris Miller Bachelors of Engineering, University in a polymer electrolyte fuel cell is a critical issue in ensuring high cell performance. The water production
Mehmood et al. Paper No. 03-2158 1 Modeling Car-following Using System Dynamics
Hellinga, Bruce
Mehmood et al. Paper No. 03-2158 1 Modeling Car-following Using System Dynamics ARIF MEHMOOD, BRUCE2L 3G1, Canada. E-mail: amehmood@uwaterloo.ca Car following models describe driver behavior of relationships that do not correspond to physical aspects of the car- following process. In this paper we
Dynamic Topic Models David M. Blei BLEI@CS.PRINCETON.EDU
Blei, David M.
Dynamic Topic Models David M. Blei BLEI@CS.PRINCETON.EDU Computer Science Department, Princeton patterns of words in document collec- tions using hierarchical probabilistic models (Blei et al., 2003; McCallum et al., 2004; Rosen-Zvi et al., 2004; Grif- fiths and Steyvers, 2004; Buntine and Jakulin, 2004; Blei
Affinely-rigid body and oscillatory dynamical models on GL(2,R)
Agnieszka Martens; Jan J. S?awianowski
2010-11-23T23:59:59.000Z
Discussed is a model of the two-dimensional affinely-rigid body with the double dynamical isotropy. We investigate the systems with potential energies for which the variables can be separated. The special stress is laid on the model of the harmonic oscillator potential and certain anharmonic alternatives. Some explicit solutions are found on the classical, quasiclassical (Bohr-Sommerfeld) and quantum level.
Dynamics of cerebral blood flow regulation explained using a lumped parameter model
Olufsen, Mette Sofie
Dynamics of cerebral blood flow regulation explained using a lumped parameter model METTE S, and Harvard Medical School, Boston, Massachusetts 02131 Received 22 May 2001; accepted in final form 10 regulation explained using a lumped parameter model. Am J Physiol Regulatory Integra- tive Comp Physiol 282
Analysis of a Darcy flow model with a dynamic pressure saturation relation \\Lambda
Hulshof, Joost
equations modelling the flow. In the standard approach for two phase flows, such as oilwater or airwater mixtures, one combines the mass conservation equations and Darcy's law for the separate phasesAnalysis of a Darcy flow model with a dynamic pressure saturation relation \\Lambda Josephus Hulshof
Hammes-Schiffer, Sharon
Proton-coupled electron transfer reactions in solution: Molecular dynamics with quantum transitions A general minimal model for proton-coupled electron transfer PCET reactions in solution is presented. This model consists of three coupled degrees of freedom that represent an electron, a proton, and a solvent
Dang, Zhe
Bond Computing Systems: a Biologically Inspired and High-level Dynamics Model for Pervasive their com- putation power and verification problems. Among other results, we show that the computing power) techniques for pervasive computing systems. At a high-level, there are at least two views in modeling
Phase Field Dynamic Modelling of Shape Memory Alloys Based on Isogeometric Analysis
Gomez, Hector
Phase Field Dynamic Modelling of Shape Memory Alloys Based on Isogeometric Analysis Rakesh Dhote1 transformations, phase-field model, Ginzburg-Landau theory, nonlinear thermo-elasticity. Abstract. Shape Memory. Introduction Shape Memory Alloys have attracted considerable attention of physicists, engineers and mathemati
Dynamics of an age-structured metapopulation model
2005-10-28T23:59:59.000Z
of these types of age distributions into the model may provide more realistic predictions for .... It is clear that K2(a) represents the production of newly occupied ...
Dynamic Models for Wind Turbines and Wind Power Plants
Singh, M.; Santoso, S.
2011-10-01T23:59:59.000Z
The primary objective of this report was to develop universal manufacturer-independent wind turbine and wind power plant models that can be shared, used, and improved without any restrictions by project developers, manufacturers, and engineers. Manufacturer-specific models of wind turbines are favored for use in wind power interconnection studies. While they are detailed and accurate, their usages are limited to the terms of the non-disclosure agreement, thus stifling model sharing. The primary objective of the work proposed is to develop universal manufacturer-independent wind power plant models that can be shared, used, and improved without any restrictions by project developers, manufacturers, and engineers. Each of these models includes representations of general turbine aerodynamics, the mechanical drive-train, and the electrical characteristics of the generator and converter, as well as the control systems typically used. To determine how realistic model performance is, the performance of one of the models (doubly-fed induction generator model) has been validated using real-world wind power plant data. This work also documents selected applications of these models.
LECTURES ON DYNAMICS IN MODELS OF COARSENING AND COAGULATION
bath 11 2.4 Mean-field model of domain growth--the Gallay-Mielke transform 13 2.5 Proof of universal
Modeling the dynamics of a tracer particle in an elastic active gel
Isaac, E Ben; Visco, P; van Wijland, F; Gov, N S
2015-01-01T23:59:59.000Z
The internal dynamics of active gels, both in artificial (in-vitro) model systems and inside the cytoskeleton of living cells, has been extensively studied by experiments of recent years. These dynamics are probed using tracer particles embedded in the network of biopolymers together with molecular motors, and distinct non-thermal behavior is observed. We present a theoretical model of the dynamics of a trapped active particle, which allows us to quantify the deviations from equilibrium behavior, using both analytic and numerical calculations. We map the different regimes of dynamics in this system, and highlight the different manifestations of activity: breakdown of the virial theorem and equipartition, different elasticity-dependent "effective temperatures" and distinct non-Gaussian distributions. Our results shed light on puzzling observations in active gel experiments, and provide physical interpretation of existing observations, as well as predictions for future studies.
On preparation of viscous pore fluids for dynamic centrifuge modelling
Adamidis, O.; Madabhushi, S. P. G.
2014-11-21T23:59:59.000Z
dynamic cen- trifuge tests, the use of water as pore fluid can limit the generation of excess pore pressures in sand formations below gravel embankments, lowering the recorded crest settlement signif- icantly. Chian and Madabhushi [2010] exam- ined... with changing 4 1.2 1.6 2 2.4 2.8 3.2 0 40 80 120 160 200 Concentration [%] V is co si ty [m P a · s] measurements at 20?C best fit (8th order) best fit (power law) Stewart et al. [1998] Figure 2: Viscosity change with concentration 1.2 1.6 2 2.4 2.8 3.2 1...
Modeling Temporal Activity Patterns in Dynamic Social Networks
Raghavan, Vasanthan; Galstyan, Aram; Tartakovsky, Alexander G
2013-01-01T23:59:59.000Z
The focus of this work is on developing probabilistic models for user activity in social networks by incorporating the social network influence as perceived by the user. For this, we propose a coupled Hidden Markov Model, where each user's activity evolves according to a Markov chain with a hidden state that is influenced by the collective activity of the friends of the user. We develop generalized Baum-Welch and Viterbi algorithms for model parameter learning and state estimation for the proposed framework. We then validate the proposed model using a significant corpus of user activity on Twitter. Our numerical studies show that with sufficient observations to ensure accurate model learning, the proposed framework explains the observed data better than either a renewal process-based model or a conventional uncoupled Hidden Markov Model. We also demonstrate the utility of the proposed approach in predicting the time to the next tweet. Finally, clustering in the model parameter space is shown to result in dist...
Dynamic modelling of chorded mitral valves inside left ventricle
Luo, Xiaoyu
model. This model allows us to investigate the influences of the flow vortex generated by the LV motion and swirls around in a clockwise fashion, forming a main clockwise vortex. This vortex persists through inside a tube, where the forward jet is accompanied by two vortices at each side. References
Cognitive Modeling Formulation and Analysis of Dynamic Systems
Bremen, Universität
trajectories produced by a local generator. #12;7 Logistic Growth Model Define p(t) as the probability affects the output (or, vice-versa, what inputs should be given to generate a desired output for the n-element binary valued lists. The state space of a brain model is the set of points contained
Dynamic modeling of a single-stage downward firing, entrained flow gasifier
Kasule, J., Turton, R., Bhattacharyya, D., Zitney, S.
2012-01-01T23:59:59.000Z
The gasifier is the heart of the integrated gasification combined cycle (IGCC), a technology that has emerged as an attractive alternative to conventional coal-fired power plant technology due to its higher efficiency and cleaner environmental performance especially with the option of CO{sub 2} capture and sequestration. Understanding the optimal performance of the gasifier is therefore paramount for the efficient operation of IGCC power plants. Numerous gasifier models of varying complexity have been developed to study the various aspects of gasifier performance. These range from simple one-dimensional (1D) process-type models to rigorous higher order 2-3D models based on computational fluid dynamics (CFD). Whereas high-fidelity CFD models can accurately predict most key aspects of gasifier performance, they are computationally expensive and typically take hours to days to execute on high-performance computers. Therefore, faster 1D partial differential equation (PDE)-based models are required for use in dynamic simulation studies, control system analysis, and training applications. A number of 1D gasifier models can be found in the literature, but most are steady-state models that have limited application in the practical operation of the gasifier. As a result, 1D PDE-based dynamic models are needed to further study and predict gasifier performance under a wide variety of process conditions and disturbances. In the current study, a 1D transient model of a single-stage downward-fired GE/Texaco-type entrained-flow gasifier has been developed. The model comprises mass, momentum and energy balances for the gas and solid phases. The model considers the initial gasification processes of water evaporation and coal devolatilization. In addition, the key heterogeneous and homogeneous chemical reactions have been modeled. The resulting time-dependent PDE model is solved using the well-known method of lines approach in Aspen Custom Modeler®, whereby the PDEs in the spatial domain are discretized and the resulting differential algebraic equations (DAEs) are then integrated over time using a dynamic integrator. The dynamic response results of the gasifier performance parameters to certain disturbances commonly encountered during practical operation are presented. These disturbances include ramp and step changes to input variables such as coal flow rate, oxygen-to-coal ratio and water-to-coal ratio among others. Comparison of model predictions to available dynamic data will also be discussed.
Advanced Modeling of Renewable Energy Market Dynamics: May 2006
Evans, M.; Little, R.; Lloyd, K.; Malikov, G.; Passolt, G.; Arent, D.; Swezey, B.; Mosey, G.
2007-08-01T23:59:59.000Z
This report documents a year-long academic project, presenting selected techniques for analysis of market growth, penetration, and forecasting applicable to renewable energy technologies. Existing mathematical models were modified to incorporate the effects of fiscal policies and were evaluated using available data. The modifications were made based on research and classification of current mathematical models used for predicting market penetration. An analysis of the results was carried out, based on available data. MATLAB versions of existing and new models were developed for research and policy analysis.
On the Characterization of Classical Dynamical Systems Using Supersymmetric Nonlinear $?$-models
A. J. Niemi; K. Palo
1995-03-13T23:59:59.000Z
We construct a two dimensional nonlinear $\\sigma$-model that describes the Hamiltonian flow in the loop space of a classical dynamical system. This model is obtained by equivariantizing the standard N=1 supersymmetric nonlinear $\\sigma$-model by the Hamiltonian flow. We use localization methods to evaluate the corresponding partition function for a general class of integrable systems, and find relations that can be viewed as generalizations of standard relations in classical Morse theory.
Coupled Dynamic Modeling of Floating Wind Turbine Systems: Preprint
Wayman, E. N.; Sclavounos, P. D.; Butterfield, S.; Jonkman, J.; Musial, W.
2006-03-01T23:59:59.000Z
This article presents a collaborative research program that the Massachusetts Institute of Technology (MIT) and the National Renewable Energy Laboratory (NREL) have undertaken to develop innovative and cost-effective floating and mooring systems for offshore wind turbines in water depths of 10-200 m. Methods for the coupled structural, hydrodynamic, and aerodynamic analysis of floating wind turbine systems are presented in the frequency domain. This analysis was conducted by coupling the aerodynamics and structural dynamics code FAST [4] developed at NREL with the wave load and response simulation code WAMIT (Wave Analysis at MIT) [15] developed at MIT. Analysis tools were developed to consider coupled interactions between the wind turbine and the floating system. These include the gyroscopic loads of the wind turbine rotor on the tower and floater, the aerodynamic damping introduced by the wind turbine rotor, the hydrodynamic damping introduced by wave-body interactions, and the hydrodynamic forces caused by wave excitation. Analyses were conducted for two floater concepts coupled with the NREL 5-MW Offshore Baseline wind turbine in water depths of 10-200 m: the MIT/NREL Shallow Drafted Barge (SDB) and the MIT/NREL Tension Leg Platform (TLP). These concepts were chosen to represent two different methods of achieving stability to identify differences in performance and cost of the different stability methods. The static and dynamic analyses of these structures evaluate the systems' responses to wave excitation at a range of frequencies, the systems' natural frequencies, and the standard deviations of the systems' motions in each degree of freedom in various wind and wave environments. This article in various wind and wave environments. This article explores the effects of coupling the wind turbine with the floating platform, the effects of water depth, and the effects of wind speed on the systems' performance. An economic feasibility analysis of the two concepts was also performed. Key cost components included the material and construction costs of the buoy; material and installation costs of the tethers, mooring lines, and anchor technologies; costs of transporting and installing the system at the chosen site; and the cost of mounting the wind turbine to the platform. The two systems were evaluated based on their static and dynamic performance and the total system installed cost. Both systems demonstrated acceptable motions, and have estimated costs of $1.4-$1.8 million, not including the cost of the wind turbine, the power electronics, or the electrical transmission.
Refinement of weed risk assessments for biofuels using Camelina sativa as a model species
Peterson, Robert K. D.
Refinement of weed risk assessments for biofuels using Camelina sativa as a model species Philip B and Environmental Sciences, Montana State University, PO Box 173120, Bozeman, MT 59717-3120, USA Summary 1. Biofuel. However, concerns have been raised on the invasiveness of biofuel feedstocks. Estimating invasion
ASSESSMENT OF THE MODELS FOR THE ESTIMATION OF THE CO2 RELEASES TOXIC EFFECTS
Boyer, Edmond
the global warming due to high concentration of CO2 in the atmosphere. However, in case of massive accidental to specific properties regarding its triple point. Then, this CO2 flakes creation may be followed1 ASSESSMENT OF THE MODELS FOR THE ESTIMATION OF THE CO2 RELEASES TOXIC EFFECTS Frédéric Antoine
Arc Fault Risk Assessment and Degradation Model Development for Photovoltaic Connectors
Arc Fault Risk Assessment and Degradation Model Development for Photovoltaic Connectors Benjamin B of photovoltaic installations information necessary to develop a data-driven plan for BOS connector maintenance, reliability I. INTRODUCTION As the reliability of traditional photovoltaic (PV) modules becomes better
NOTES AND CORRESPONDENCE Surface Melting over Ice Shelves and Ice Sheets as Assessed from Modeled
Meissner, Katrin Juliane
NOTES AND CORRESPONDENCE Surface Melting over Ice Shelves and Ice Sheets as Assessed from Modeled of ice shelves and their progenitor ice sheets. To explore the magnitude of surface melt occurring over modern ice shelves and ice sheets in a climate scenario forced by anthropogenic emissions of carbon
A System for 3D Error Visualization and Assessment of Digital Elevation Models
Gousie, Michael B.
A System for 3D Error Visualization and Assessment of Digital Elevation Models Michael B. Gousie that displays a DEM and possible errors in 3D, along with its associated contour or sparse data and detail. The cutting tool is semi-transparent so that the profile is seen in the context of the 3D surface
Assessing and Modeling Exposure to Indoor Air Pollution among Rural Women in Guatemala
Assessing and Modeling Exposure to Indoor Air Pollution among Rural Women in Guatemala Lisa Thompson, February 2003 Abstract: Cooking stoves that rely on biomass fuel are a major source of indoor air pollution in rural areas of developing countries. It is estimated that about half (53%) of all households
Washington at Seattle, University of
Assessing Seasonal Confounding and Model Selection Bias in Air Pollution Epidemiology Using July 15, 1999 #12;Abstract Much of the evidence for health e ects of particulate air pollution has come standards for ambient air pollutants to protect the public from adverse e ects. Much of the evidence for air
Models for Assessing Power Fluctuations from Large Wind Farms N. A. Cutululis1)
that the active power supplied from the first large 160 MW offshore wind farm in this system, Horns Rev today). Figure 1. Power generation of Horns Rev offshore wind farm and onshore turbines, January 18 2005Models for Assessing Power Fluctuations from Large Wind Farms N. A. Cutululis1) , P. Sřrensen1) , A
Model for Dynamic Self-Assembled Magnetic Surface Structures
M. Belkin; A. Glatz; A. Snezhko; I. S. Aranson
2010-02-02T23:59:59.000Z
We propose a first-principles model for self-assembled magnetic surface structures on the water-air interface reported in earlier experiments \\cite{snezhko2,snezhko4}. The model is based on the Navier-Stokes equation for liquids in shallow water approximation coupled to Newton equations for interacting magnetic particles suspended on the water-air interface. The model reproduces most of the observed phenomenology, including spontaneous formation of magnetic snake-like structures, generation of large-scale vortex flows, complex ferromagnetic-antiferromagnetic ordering of the snake, and self-propulsion of bead-snake hybrids. The model provides valuable insights into self-organization phenomena in a broad range of non-equilibrium magnetic and electrostatic systems with competing interactions.
Dynamics of the Oil Transition: Modeling Capacity, Costs, and Emissions
Brandt, Adam R.; Farrell, Alexander E.
2008-01-01T23:59:59.000Z
and income on energy and oil demand. Energy Journal, 23(1):conventional oil supply and demand. But, interestingly,World crude oil and natural gas: a demand and supply model.
Time consistency and risk averse dynamic decision models ...
2013-05-02T23:59:59.000Z
sistent models as we provide practitioners with an intuitive economic inter- pretation for the ... ning and financial engineering problems. Based on ... consistency is shown to be one basic requirement to get suitable optimal de- cisions, in ...
Stochastic Modeling and Analysis of Pathway Regulation and Dynamics
Zhao, Chen
2012-07-16T23:59:59.000Z
To effectively understand and treat complex diseases such as cancer, mathematical and statistical modeling is essential if one wants to represent and characterize the interactions among the different regulatory components ...
Stochastic Modeling and Analysis of Pathway Regulation and Dynamics
Zhao, Chen
2012-07-16T23:59:59.000Z
To effectively understand and treat complex diseases such as cancer, mathematical and statistical modeling is essential if one wants to represent and characterize the interactions among the different regulatory components that govern the underlying...
Vector-Based Dynamic Modeling and Control of the Quattro Parallel Robot by means of Leg Orientations
Paris-Sud XI, Université de
Vector-Based Dynamic Modeling and Control of the Quattro Parallel Robot by means of Leg-speed control of a parallel robot is to define an efficient dynamic model. It is usually not easy to have by a calibrated camera, in the sense of solving the entire control-oriented (hard) modeling problem, both
Tsiotras, Panagiotis
A LuGre Tire Friction Model with Exact Aggregate Dynamics Panagiotis Tsiotras, Efstathios Velenis and Michel Sorine Abstract-- The LuGre dynamic point contact friction model for the two-dimensional translation of a body on a surface has been used in the past to derive a model for the friction forces
Winguth, Arne
a dynamic Earth system model A. Winguth Center for Climatic Research, Department of Atmospheric and Oceanic; accepted 26 October 2005; published 15 December 2005. [1] A complex Earth system model including atmosphere and anthropogenic climate change using a dynamic Earth system model, Geophys. Res. Lett., 32, L23714, doi:10
Steady-State Dynamics of the Forest Fire Model on Complex Networks
Bancal, Jean-Daniel
2009-01-01T23:59:59.000Z
Many sociological networks, as well as biological and technological ones, can be represented in terms of complex networks with a heterogeneous connectivity pattern. Dynamical processes taking place on top of them can be very much influenced by this topological fact. In this paper we consider a paradigmatic model of non-equilibrium dynamics, namely the forest fire model, whose relevance lies in its capacity to represent several epidemic processes in a general parametrization. We study the behavior of this model in complex networks by developing the corresponding heterogeneous mean-field theory and solving it in its steady state. We provide exact and approximate expressions for homogeneous networks and several instances of heterogeneous networks. A comparison of our analytical results with extensive numerical simulations allows to draw the region of the parameter space in which heterogeneous mean-field theory provides an accurate description of the dynamics, and enlights the limits of validity of the mean-field...
Düring, Bertram
2015-01-01T23:59:59.000Z
We propose and investigate different kinetic models for opinion formation, when the opinion formation process depends on an additional independent variable, e.g. a leadership or a spatial variable. More specifically, we consider:(i) opinion dynamics under the effect of opinion leadership, where each individual is characterised not only by its opinion, but also by another independent variable which quantifies leadership qualities; (ii) opinion dynamics modelling political segregation in the `The Big Sort', a phenomenon that US citizens increasingly prefer to live in neighbourhoods with politically like-minded individuals. Based on microscopic opinion consensus dynamics such models lead to inhomogeneous Boltzmann-type equations for the opinion distribution. We derive macroscopic Fokker-Planck-type equations in a quasi-invariant opinion limit and present results of numerical experiments.
. Assigning values to these parameters is a time-dependent process, captured as the evolution of a dynamical categorization task due to the inherent stabilization property of the dynamical formalism. Dynamic Model Coupled-field Dynamic Model · Two coupled dynamic fields, one corresponding to DA, the other to TA, each with activation
Stochastic Wilson-Cowan models of neuronal network dynamics with memory and delay
Goychuk, Igor
2015-01-01T23:59:59.000Z
We consider a simple Markovian class of the stochastic Wilson-Cowan type models of neuronal network dynamics, which incorporates stochastic delay caused by the existence of a refractory period of neurons. From the point of view of the dynamics of the individual elements, we are dealing with a network of non-Markovian stochastic two-state oscillators with memory which are coupled globally in a mean-field fashion. This interrelation of a higher-dimensional Markovian and lower-dimensional non-Markovian dynamics is discussed in its relevance to the general problem of the network dynamics of complex elements possessing memory. The simplest model of this class is provided by a three-state Markovian neuron with one refractory state, which causes firing delay with an exponentially decaying memory within the two-state reduced model. This basic model is used to study critical avalanche dynamics (the noise sustained criticality) in a balanced feedforward network consisting of the excitatory and inhibitory neurons. Such ...
A Dynamic Solar Core Model: On the Activity-Related Changes of the Neutrino Fluxes
Attila Grandpierre
1998-10-08T23:59:59.000Z
The energy sources of the Sun may actually involve a thermonuclear runaway energy source present in stellar energy producing regions. I consider the conjectures of the derived model for the solar neutrino fluxes in case of a solar core allowed to vary in relation to the surface activity cycle. The observed neutrino flux data suggest a solar core possibly varying in time. In the dynamic solar model the quiet and runaway energy sources together may produce quasi-constant flux in the SuperKamiokande because it is sensitive to neutral currents, axions and anti-neutrinos, too. I calculate the contributions of the runaway source to the individual neutrino detectors. The results of the dynamic solar core model suggest that since the HOMESTAKE detects mostly the high energy electron neutrinos, therefore the HOMESTAKE data may aniticorrelate with the activity cycle. Activity correlated changes are expected to be present only marginally in the GALLEX and GNO data. The gallium detectors are sensitive mostly to the pp neutrinos, and the changes of the pp neutrinos arising from the SSM-like core is mostly compensated by the high-energy electron neutrinos produced by the hot bubbles of the dynamic energy source. The results suggest that the GALLEX data may show an anti-correlation, while the SuperKamiokande data may show a correlation with the activity cycle. Predictions of the dynamic solar model are presented for the SNO and Borexino experiments which can distinguish between the effects of the MSW mechanism and the consequences of the dynamic solar model. The results of the dynamic solar model are consistent with the present heioseismic measurements and can be checked with future heioseismic measurements as well. Keywords: solar neutrino problems - solar activity - thermonuclear runaways
Indoor Air Nuclear, Biological, and Chemical Health Modeling and Assessment System
Stenner, Robert D.; Hadley, Donald L.; Armstrong, Peter R.; Buck, John W.; Hoopes, Bonnie L.; Janus, Michael C.
2001-03-01T23:59:59.000Z
Indoor air quality effects on human health are of increasing concern to public health agencies and building owners. The prevention and treatment of 'sick building' syndrome and the spread of air-borne diseases in hospitals, for example, are well known priorities. However, increasing attention is being directed to the vulnerability of our public buildings/places, public security and national defense facilities to terrorist attack or the accidental release of air-borne biological pathogens, harmful chemicals, or radioactive contaminants. The Indoor Air Nuclear, Biological, and Chemical Health Modeling and Assessment System (IA-NBC-HMAS) was developed to serve as a health impact analysis tool for use in addressing these concerns. The overall goal was to develop a user-friendly fully functional prototype Health Modeling and Assessment system, which will operate under the PNNL FRAMES system for ease of use and to maximize its integration with other modeling and assessment capabilities accessible within the FRAMES system (e.g., ambient air fate and transport models, water borne fate and transport models, Physiologically Based Pharmacokinetic models, etc.). The prototype IA-NBC-HMAS is designed to serve as a functional Health Modeling and Assessment system that can be easily tailored to meet specific building analysis needs of a customer. The prototype system was developed and tested using an actual building (i.e., the Churchville Building located at the Aberdeen Proving Ground) and release scenario (i.e., the release and measurement of tracer materials within the building) to ensure realism and practicality in the design and development of the prototype system. A user-friendly "demo" accompanies this report to allow the reader the opportunity for a "hands on" review of the prototype system's capability.
Boutchko, R.
2014-01-01T23:59:59.000Z
emission tomography systems and computational fluid dynamicsa computational ?uid dynamics (CFD) model of the systemthe computational domain. A Cartesian coordinate system was
Levitt, Michael
Calibration and Testing of a Water Model for Simulation of the Molecular Dynamics of Proteins important in biological macromolecules, where fewer experimental results are available for calibration. Our
LHC limits on the top-Higgs in models with strong top-quark dynamics
Chivukula, R. Sekhar; Simmons, Elizabeth H.; Coleppa, Baradhwaj; Logan, Heather E.; Martin, Adam [Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824 (United States); Ottawa-Carleton Institute for Physics, Carleton University, Ottawa, Ontario K1S 5B6 (Canada); Theoretical Physics Department, Fermilab, Batavia, Illinois 60510 (United States)
2011-11-01T23:59:59.000Z
LHC searches for the standard model Higgs boson in WW or ZZ decay modes place strong constraints on the top-Higgs state predicted in many models with new dynamics preferentially affecting top quarks. Such a state couples strongly to top quarks, and is therefore produced through gluon fusion at a rate enhanced relative to the rate for the standard model Higgs boson. A top-Higgs state with mass less than 300 GeV is excluded at 95% C.L. if the associated top-pion has a mass of 150 GeV, and the constraint is even stronger if the mass of the top-pion state exceeds the top-quark mass or if the top-pion decay constant is a substantial fraction of the weak scale. These results have significant implications for theories with strong top dynamics, such as topcolor-assisted technicolor, top-seesaw models, and certain Higgsless models.
Alternating-phase focusing: A model to study nonlinear dynamics
Sagalovsky, L.; Delayen, J.R.
1992-01-01T23:59:59.000Z
We discuss a new model to study alternating-phase focusing (APF). Our approach is based on representing the accelerating electric field with a continuous phase modulated traveling wave. The resulting nonlinear equations of motion can be solved analytically to predict the regions of stable APF motion. We also identify the key parameters which adequately describe the physics of APF. The model is believed to be applicable to low-{beta} ion linacs with short independently-controlled superconducting cavities being developed at ANL.
Alternating-phase focusing: A model to study nonlinear dynamics
Sagalovsky, L.; Delayen, J.R.
1992-09-01T23:59:59.000Z
We discuss a new model to study alternating-phase focusing (APF). Our approach is based on representing the accelerating electric field with a continuous phase modulated traveling wave. The resulting nonlinear equations of motion can be solved analytically to predict the regions of stable APF motion. We also identify the key parameters which adequately describe the physics of APF. The model is believed to be applicable to low-{beta} ion linacs with short independently-controlled superconducting cavities being developed at ANL.
MODEL-BASED HYDROACOUSTIC BLOCKAGE ASSESSMENT AND DEVELOPMENT OF AN EXPLOSIVE SOURCE DATABASE
Matzel, E; Ramirez, A; Harben, P
2005-07-11T23:59:59.000Z
We are continuing the development of the Hydroacoustic Blockage Assessment Tool (HABAT) which is designed for use by analysts to predict which hydroacoustic monitoring stations can be used in discrimination analysis for any particular event. The research involves two approaches (1) model-based assessment of blockage, and (2) ground-truth data-based assessment of blockage. The tool presents the analyst with a map of the world, and plots raypath blockages from stations to sources. The analyst inputs source locations and blockage criteria, and the tool returns a list of blockage status from all source locations to all hydroacoustic stations. We are currently using the tool in an assessment of blockage criteria for simple direct-path arrivals. Hydroacoustic data, predominantly from earthquake sources, are read in and assessed for blockage at all available stations. Several measures are taken. First, can the event be observed at a station above background noise? Second, can we establish backazimuth from the station to the source. Third, how large is the decibel drop at one station relative to other stations. These observational results are then compared with model estimates to identify the best set of blockage criteria and used to create a set of blockage maps for each station. The model-based estimates are currently limited by the coarse bathymetry of existing databases and by the limitations inherent in the raytrace method. In collaboration with BBN Inc., the Hydroacoustic Coverage Assessment Model (HydroCAM) that generates the blockage files that serve as input to HABAT, is being extended to include high-resolution bathymetry databases in key areas that increase model-based blockage assessment reliability. An important aspect of this capability is to eventually include reflected T-phases where they reliably occur and to identify the associated reflectors. To assess how well any given hydroacoustic discriminant works in separating earthquake and in-water explosion populations it is necessary to have both a database of reference earthquake events and of reference in-water explosive events. Although reference earthquake events are readily available, explosive reference events are not. Consequently, building an in-water explosion reference database requires the compilation of events from many sources spanning a long period of time. We have developed a database of small implosive and explosive reference events from the 2003 Indian Ocean Cruise data. These events were recorded at some or all of the IMS Indian Ocean hydroacoustic stations: Diego Garcia, Cape Leeuwin, and Crozet Island. We have also reviewed many historical large in-water explosions and identified five that have adequate source information and can be positively associated to the hydrophone recordings. The five events are: Cannekin, Longshot, CHASE-3, CHASE-5, and IITRI-1. Of these, the first two are nuclear tests on land but near water. The latter three are in-water conventional explosive events with yields from ten to hundreds of tons TNT equivalent. The objective of this research is to enhance discrimination capabilities for events located in the world's oceans. Two research and development efforts are needed to achieve this: (1) improvement in discrimination algorithms and their joint statistical application to events, and (2) development of an automated and accurate blockage prediction capability that will identify all stations and phases (direct and reflected) from a given event that will have adequate signal to be used in a discrimination analysis. The strategy for improving blockage prediction in the world's oceans is to improve model-based prediction of blockage and to develop a ground-truth database of reference events to assess blockage. Currently, research is focused on the development of a blockage assessment software tool. The tool is envisioned to develop into a sophisticated and unifying package that optimally and automatically assesses both model and data based blockage predictions in all ocean basins, for all NDC stations, and accounting for refle
UPDATE ON SMALL MODULAR REACTORS DYNAMIC SYSTEM MODELING TOOL Molten Salt Cooled Architecture
Hale, Richard Edward [ORNL; Cetiner, Sacit M [ORNL; Fugate, David L [ORNL; Qualls, A L [ORNL; Borum, Robert C [ORNL; Chaleff, Ethan S [ORNL; Rogerson, Doug W [ORNL; Batteh, John J [Modelon Corporation; Tiller, Michael M. [Xogeny Corporation
2014-08-01T23:59:59.000Z
The Small Modular Reactor (SMR) Dynamic System Modeling Tool project is in the third year of development. The project is designed to support collaborative modeling and study of various advanced SMR (non-light water cooled) concepts, including the use of multiple coupled reactors at a single site. The objective of the project is to provide a common simulation environment and baseline modeling resources to facilitate rapid development of dynamic advanced reactor SMR models, ensure consistency among research products within the Instrumentation, Controls, and Human-Machine Interface (ICHMI) technical area, and leverage cross-cutting capabilities while minimizing duplication of effort. The combined simulation environment and suite of models are identified as the Modular Dynamic SIMulation (MoDSIM) tool. The critical elements of this effort include (1) defining a standardized, common simulation environment that can be applied throughout the program, (2) developing a library of baseline component modules that can be assembled into full plant models using existing geometry and thermal-hydraulic data, (3) defining modeling conventions for interconnecting component models, and (4) establishing user interfaces and support tools to facilitate simulation development (i.e., configuration and parameterization), execution, and results display and capture.
Hoffman, Forrest M [ORNL; Randerson, James T [ORNL; Thornton, Peter E [ORNL; Bonan, Gordon [National Center for Atmospheric Research (NCAR); Erickson III, David J [ORNL; Fung, Inez [University of California, Berkeley
2009-12-01T23:59:59.000Z
The need to capture important climate feedbacks in general circulation models (GCMs) has resulted in efforts to include atmospheric chemistry and land and ocean biogeochemistry into the next generation of production climate models, called Earth System Models (ESMs). While many terrestrial and ocean carbon models have been coupled to GCMs, recent work has shown that such models can yield a wide range of results (Friedlingstein et al., 2006). This work suggests that a more rigorous set of global offline and partially coupled experiments, along with detailed analyses of processes and comparisons with measurements, are needed. The Carbon-Land Model Intercomparison Project (C-LAMP) was designed to meet this need by providing a simulation protocol and model performance metrics based upon comparisons against best-available satellite- and ground-based measurements (Hoffman et al., 2007). Recently, a similar effort in Europe, called the International Land Model Benchmark (ILAMB) Project, was begun to assess the performance of European land surface models. These two projects will now serve as prototypes for a proposed international land-biosphere model benchmarking activity for those models participating in the IPCC Fifth Assessment Report (AR5). Initially used for model validation for terrestrial biogeochemistry models in the NCAR Community Land Model (CLM), C-LAMP incorporates a simulation protocol for both offline and partially coupled simulations using a prescribed historical trajectory of atmospheric CO2 concentrations. Models are confronted with data through comparisons against AmeriFlux site measurements, MODIS satellite observations, NOAA Globalview flask records, TRANSCOM inversions, and Free Air CO2 Enrichment (FACE) site measurements. Both sets of experiments have been performed using two different terrestrial biogeochemistry modules coupled to the CLM version 3 in the Community Climate System Model version 3 (CCSM3): the CASA model of Fung, et al., and the carbon-nitrogen (CN) model of Thornton. Comparisons of the CLM3 offline results against observational datasets have been performed and are described in Randerson et al. (2009). CLM version 4 has been evaluated using C-LAMP, showing improvement in many of the metrics. Efforts are now underway to initiate a Nitrogen-Land Model Intercomparison Project (N-LAMP) to better constrain the effects of the nitrogen cycle in biosphere models. Presented will be new results from C-LAMP for CLM4, initial N-LAMP developments, and the proposed land-biosphere model benchmarking activity.
Using Simulations and kinetic network models to reveal the dynamics and functions of Riboswitches
Jong-Chin Lin; Jeseong Yoon; Changbong Hyeon; D. Thirumalai
2014-10-02T23:59:59.000Z
Riboswitches, RNA elements found in the untranslated region, regulate gene expression by binding to target metaboloites with exquisite specificity. Binding of metabolites to the conserved aptamer domain allosterically alters the conformation in the downstream expression platform. The fate of gene expression is determined by the changes in the downstream RNA sequence. As the metabolite-dependent cotranscriptional folding and unfolding dynamics of riboswitches is the key determinant of gene expression, it is important to investigate both the thermodynamics and kinetics of riboswitches both in the presence and absence of metabolite. Single molecule force experiments that decipher the free energy landscape of riboswitches from their mechanical responses, theoretical and computational studies have recently shed light on the distinct mechanism of folding dynamics in different classes of riboswitches. Here we first discuss the dynamics of water around riboswitch, highlighting that water dynamics can enhance the fluctuation of nucleic acid structure. To go beyond native state fluctuations we used the Self-Organized Polymer (SOP) model to predict the dynamics of add adenine riboswitch under mechanical forces. In addition to quantitatively predicting the folding landscape of add-riboswitch our simulations also explain the difference in the dynamics between pbuE adenine- and add adenine-riboswitches. In order to probe the function {\\it in vivo} we use the folding landscape to propose a system level kinetic network model to quantitatively predict how gene expression is regulated for riboswitches that are under kinetic control.
Dynamic Delayed Duplicate Detection for External Memory Model Checking
Evangelista, Sami
is a method to prove that finite state systems match their spec- ification. Given a model of the system space, of the system to check the validity of the property. Despite its simplicity, its practical to benefit from the aggregate computational power and memory of a cluster of machines, or make use
Li, Tim
Dynamic and Thermodynamic AirSea Coupling Associated with the Indian Ocean Dipole Diagnosed from and the thermodynamic airsea coupling in shaping the different model behaviors. The Bjerknes feedback processes include of the dynamic and ther- modynamic feedback processes. The distinctive features in the dynamic and thermodynamic
Analyzing Dynamic Probabilistic Risk Assessment Data through Topology-Based Clustering
Diego Mandelli; Dan Maljovec; BeiWang; Valerio Pascucci; Peer-Timo Bremer
2013-09-01T23:59:59.000Z
We investigate the use of a topology-based clustering technique on the data generated by dynamic event tree methodologies. The clustering technique we utilizes focuses on a domain-partitioning algorithm based on topological structures known as the Morse-Smale complex, which partitions the data points into clusters based on their uniform gradient flow behavior. We perform both end state analysis and transient analysis to classify the set of nuclear scenarios. We demonstrate our methodology on a dataset generated for a sodium-cooled fast reactor during an aircraft crash scenario. The simulation tracks the temperature of the reactor as well as the time for a recovery team to fix the passive cooling system. Combined with clustering results obtained previously through mean shift methodology, we present the user with complementary views of the data that help illuminate key features that may be otherwise hidden using a single methodology. By clustering the data, the number of relevant test cases to be selected for further analysis can be drastically reduced by selecting a representative from each cluster. Identifying the similarities of simulations within a cluster can also aid in the drawing of important conclusions with respect to safety analysis.
Multiple higher-order singularities and iso-dynamics in a simple glass-former model
Nicoletta Gnan; Gayatri Das; Matthias Sperl; Francesco Sciortino; Emanuela Zaccarelli
2014-07-15T23:59:59.000Z
We investigate the slow dynamics of a colloidal model with two repulsive length scales, whose interaction potential is the sum of a hard-core and a square shoulder. Despite the simplicity of the interactions, Mode-Coupling theory predicts a complex dynamic scenario: a fluid-glass line with two reentrances and a glass-glass line ending with multiple higher-order ($A_3$ or $A_4$) singularities. In this work we verify the existence of the two $A_4$ points by numerical simulations, observing subdiffusive behaviour of the mean-square displacement and logarithmic decay of the density correlators. Surprisingly, we also discover a novel dynamic behaviour generated by the competition between the two higher-order singularities. This results in the presence of special loci along which the dynamics is identical \\textit{at all} length and time scales.
Hibbard, Kathy; Janetos, Anthony; van Vuuren, Detlef P.; Pongtatz, Julia; Rose, Steven K.; Betts, Richard; Herold, Martin; Feddema, Johannes J.
2010-01-01T23:59:59.000Z
). Copyright ? 2010 Royal Meteorological Society and Crown Copyright. KEY WORDS land use; land cover; Earth system models; integrated assessment models; research priorities Received 12 January 2009; Revised 9 March 2010; Accepted 14 March 2010 1. Introduction 1... biogeophysical, socio- economic and human decision-making perspectives. The Earth System Modeling (ESM) and the Integrated Assessment Modeling (IAM) communities play an impor- tant role in understanding and quantifying Earth system analysis and, specifically...
Modeling ramp compression experiments using large-scale molecular dynamics simulation.
Mattsson, Thomas Kjell Rene; Desjarlais, Michael Paul; Grest, Gary Stephen; Templeton, Jeremy Alan; Thompson, Aidan Patrick; Jones, Reese E.; Zimmerman, Jonathan A.; Baskes, Michael I. (University of California, San Diego); Winey, J. Michael (Washington State University); Gupta, Yogendra Mohan (Washington State University); Lane, J. Matthew D.; Ditmire, Todd (University of Texas at Austin); Quevedo, Hernan J. (University of Texas at Austin)
2011-10-01T23:59:59.000Z
Molecular dynamics simulation (MD) is an invaluable tool for studying problems sensitive to atomscale physics such as structural transitions, discontinuous interfaces, non-equilibrium dynamics, and elastic-plastic deformation. In order to apply this method to modeling of ramp-compression experiments, several challenges must be overcome: accuracy of interatomic potentials, length- and time-scales, and extraction of continuum quantities. We have completed a 3 year LDRD project with the goal of developing molecular dynamics simulation capabilities for modeling the response of materials to ramp compression. The techniques we have developed fall in to three categories (i) molecular dynamics methods (ii) interatomic potentials (iii) calculation of continuum variables. Highlights include the development of an accurate interatomic potential describing shock-melting of Beryllium, a scaling technique for modeling slow ramp compression experiments using fast ramp MD simulations, and a technique for extracting plastic strain from MD simulations. All of these methods have been implemented in Sandia's LAMMPS MD code, ensuring their widespread availability to dynamic materials research at Sandia and elsewhere.
Modelling the Structure and Dynamics of Science Using Books
Ginda, Michael; Borner, Katy
2015-01-01T23:59:59.000Z
Scientific research is a major driving force in a knowledge based economy. Income, health and wellbeing depend on scientific progress. The better we understand the inner workings of the scientific enterprise, the better we can prompt, manage, steer, and utilize scientific progress. Diverse indicators and approaches exist to evaluate and monitor research activities, from calculating the reputation of a researcher, institution, or country to analyzing and visualizing global brain circulation. However, there are very few predictive models of science that are used by key decision makers in academia, industry, or government interested to improve the quality and impact of scholarly efforts. We present a novel 'bibliographic bibliometric' analysis which we apply to a large collection of books relevant for the modelling of science. We explain the data collection together with the results of the data analyses and visualizations. In the final section we discuss how the analysis of books that describe different modellin...
Victoria, University of
On the Use of Computational Models for Wave Climate Assessment in Support of the Wave Energy On the Use of Computational Models for Wave Climate Assessment in Support of the Wave Energy Industry Effective, economic extraction of ocean wave energy requires an intimate under- standing of the ocean wave
Grilli, Stéphan T.
Modeling of Tsunami Propagation in the Atlantic Ocean Basin for Tsunami Hazard Assessment along to estimating future seismic and tsunami hazard in Hispaniola. In 2013, the UNESCO commissioned initial modeling studies to assess tsunami hazard along the North shore of Hispaniola (NSOH), which is shared
A novel mathematical technique to assess of the mitral valve dynamics based on echocardiography
Karvandi, Mersedeh; Hassantash, Seyed Ahmad; Foroughi, Mahnoosh
2015-01-01T23:59:59.000Z
Purpose: The mechanics of the mitral valve leaflet as a nonlinear, inelastic and anisotropic soft tissue results from an integrated response of many mathematical/physical indexes' that illustrate the tissue. In the past decade, finite element modeling of complete heart valves has greatly aided evaluation of heart valve surgery, design of bioprosthetic valve replacements, and general understanding of healthy and abnormal cardiac function. Such a model must be based on an accurate description of the mechanical behavior of the valve material. It is essential to calculate velocity/displacement and strain rate/strain at a component level that is to work at the cellular level. In this study we developed the first three-dimensional displacement vectors field in the characterization of mitral valve leaflets in continuum equations of inelasticity framework based on echocardiography. Method: Much of our knowledge of abnormal mitral valve function is based on surgical and post-mortem studies while these studies are quan...
Glinsky, M.E.; Amendt, P.A.; Bailey, D.S.; London, R.A.; Rubenchik, A.M. [Lawrence Livermore National Lab., CA (United States); Strauss, M. [Israel Atomic Energy Commission, Beersheba (Israel). Nuclear Research Center-Negev
1997-03-04T23:59:59.000Z
The validity of an extended Rayleigh model for laser generated bubbles in soft tissue is examined. This model includes surface tension, viscosity, a realistic water equation of state, material strength and failure, stress wave emission, and linear growth of interface instabilities. It is compared to dynamic simulations using LATIS, which include stress wave propagation, water equation of state, material strength and failure, and viscosity. The model and the simulations are compared using 1-D spherical geometry with bubble in center and a 2-D cylindrical geometry of a laser fiber in water with a bubble formed at the end of the fiber. The model executes over 300x faster on computer than the dynamic simulations.
Power Flow Modelling of Dynamic Systems - Introduction to Modern Teaching Tools
Geitner, Gert-Helge
2015-01-01T23:59:59.000Z
As tools for dynamic system modelling both conventional methods such as transfer function or state space representation and modern power flow based methods are available. The latter methods do not depend on energy domain, are able to preserve physical system structures, visualize power conversion or coupling or split, identify power losses or storage, run on conventional software and emphasize the relevance of energy as basic principle of known physical domains. Nevertheless common control structures as well as analysis and design tools may still be applied. Furthermore the generalization of power flow methods as pseudo-power flow provides with a universal tool for any dynamic modelling. The phenomenon of power flow constitutes an up to date education methodology. Thus the paper summarizes fundamentals of selected power flow oriented modelling methods, presents a Bond Graph block library for teaching power oriented modelling as compact menu-driven freeware, introduces selected examples and discusses special f...
Effects of CDTT model on the dynamical instability of cylindrically symmetric collapsing stars
Kausar, Hafiza Rizwana, E-mail: rizwa_math@yahoo.com [Centre for Applicable Mathematics and Statistics, UCP Business School, University of Central Punjab, Johar Town, Lahore (Pakistan)
2013-01-01T23:59:59.000Z
We assume cylindrically symmetric stars which begin collapsing by dissipating energy in the form of heat flux. We wish to study the effects of Carroll-Duvvuri-Trodden-Turner (CDTT) model, f(R) = R+??{sup 4}/R, on the range of dynamical instability. For this purpose, perturbation scheme is applied to all the metric functions, material functions and f(R) model to obtain the full set of dynamical equation which control the evolution of the physical variables at the surface of a star. It is found that instability limit involves adiabatic index ? which depends on the density profile and immense terms of perturbed CDTT model. In addition, model is constrained by some requirement, e.g. positivity of physical quantities. We also reduce our results asymptotically as ??0, being the GR results in both the Newtonian and post Newtonian regimes.
Dynamics of Cell Shape and Forces on Micropatterned Substrates Predicted by a Cellular Potts Model
Philipp J. Albert; Ulrich S. Schwarz
2014-05-19T23:59:59.000Z
Micropatterned substrates are often used to standardize cell experiments and to quantitatively study the relation between cell shape and function. Moreover, they are increasingly used in combination with traction force microscopy on soft elastic substrates. To predict the dynamics and steady states of cell shape and forces without any a priori knowledge of how the cell will spread on a given micropattern, here we extend earlier formulations of the two-dimensional cellular Potts model. The third dimension is treated as an area reservoir for spreading. To account for local contour reinforcement by peripheral bundles, we augment the cellular Potts model by elements of the tension-elasticity model. We first parameterize our model and show that it accounts for momentum conservation. We then demonstrate that it is in good agreement with experimental data for shape, spreading dynamics, and traction force patterns of cells on micropatterned substrates. We finally predict shapes and forces for micropatterns that have not yet been experimentally studied.
Discrete Fracture Network Models for Risk Assessment of Carbon Sequestration in Coal
Jack Pashin; Guohai Jin; Chunmiao Zheng; Song Chen; Marcella McIntyre
2008-07-01T23:59:59.000Z
A software package called DFNModeler has been developed to assess the potential risks associated with carbon sequestration in coal. Natural fractures provide the principal conduits for fluid flow in coal-bearing strata, and these fractures present the most tangible risks for the leakage of injected carbon dioxide. The objectives of this study were to develop discrete fracture network (DFN) modeling tools for risk assessment and to use these tools to assess risks in the Black Warrior Basin of Alabama, where coal-bearing strata have high potential for carbon sequestration and enhanced coalbed methane recovery. DFNModeler provides a user-friendly interface for the construction, visualization, and analysis of DFN models. DFNModeler employs an OpenGL graphics engine that enables real-time manipulation of DFN models. Analytical capabilities in DFNModeler include display of structural and hydrologic parameters, compartmentalization analysis, and fluid pathways analysis. DFN models can be exported to third-party software packages for flow modeling. DFN models were constructed to simulate fracturing in coal-bearing strata of the upper Pottsville Formation in the Black Warrior Basin. Outcrops and wireline cores were used to characterize fracture systems, which include joint systems, cleat systems, and fault-related shear fractures. DFN models were constructed to simulate jointing, cleating, faulting, and hydraulic fracturing. Analysis of DFN models indicates that strata-bound jointing compartmentalizes the Pottsville hydrologic system and helps protect shallow aquifers from injection operations at reservoir depth. Analysis of fault zones, however, suggests that faulting can facilitate cross-formational flow. For this reason, faults should be avoided when siting injection wells. DFN-based flow models constructed in TOUGH2 indicate that fracture aperture and connectivity are critical variables affecting the leakage of injected CO{sub 2} from coal. Highly transmissive joints near an injection well have potential to divert a large percentage of an injected CO{sub 2} stream away from a target coal seam. However, the strata-bound nature of Pottsville fracture systems is a natural factor that mitigates the risk of long-range leakage and surface seepage. Flow models indicate that cross-formational flow in strata-bound joint networks is low and is dissipated by about an order of magnitude at each successive bedding contact. These models help confirm that strata-bound joint networks are self-compartmentalizing and that the thick successions of interbedded shale and sandstone separating the Pottsville coal zones are confining units that protect shallow aquifers from injection operations at reservoir depth. DFN models are powerful tools for the simulation and analysis of fracture networks and can play an important role in the assessment of risks associated with carbon sequestration and enhanced coalbed methane recovery. Importantly, the stochastic nature DFN models dictates that they cannot be used to precisely reproduce reservoir conditions in a specific field area. Rather, these models are most useful for simulating the fundamental geometric and statistical properties of fracture networks. Because the specifics of fracture architecture in a given area can be uncertain, multiple realizations of DFN models and DFN-based flow models can help define variability that may be encountered during field operations. Using this type of approach, modelers can inform the risk assessment process by characterizing the types and variability of fracture architecture that may exist in geologic carbon sinks containing natural fractures.
Detonating Failed Deflagration Model of Thermonuclear Supernovae I. Explosion Dynamics
Tomasz Plewa
2006-11-24T23:59:59.000Z
We present a detonating failed deflagration model of Type Ia supernovae. In this model, the thermonuclear explosion of a massive white dwarf follows an off-center deflagration. We conduct a survey of asymmetric ignition configurations initiated at various distances from the stellar center. In all cases studied, we find that only a small amount of stellar fuel is consumed during deflagration phase, no explosion is obtained, and the released energy is mostly wasted on expanding the progenitor. Products of the failed deflagration quickly reach the stellar surface, polluting and strongly disturbing it. These disturbances eventually evolve into small and isolated shock-dominated regions which are rich in fuel. We consider these regions as seeds capable of forming self-sustained detonations that, ultimately, result in the thermonuclear supernova explosion. Preliminary nucleosynthesis results indicate the model supernova ejecta are typically composed of about 0.1-0.25 Msun of silicon group elements, 0.9-1.2 Msun of iron group elements, and are essentially carbon-free. The ejecta have a composite morphology, are chemically stratified, and display a modest amount of intrinsic asymmetry. The innermost layers are slightly egg-shaped with the axis ratio ~1.2-1.3 and dominated by the products of silicon burning. This central region is surrounded by a shell of silicon-group elements. The outermost layers of ejecta are highly inhomogeneous and contain products of incomplete oxygen burning with only small admixture of unburned stellar material. The explosion energies are ~1.3-1.5 10^51 erg.
Bass, Steffen A.
-ion collisions? · Introduction: the basics of kinetic theory · Examples of transport models and their application-equilibrium QGP and hydrodynamic expansion hadronization hadronic phase and freeze-out · rigorous calculation and data Transport-Theory: · only observe the final state · rely on QGP signatures predicted by Theory
Combining Multiple Dynamic Models and Deep Learning Architectures for Tracking the
Carneiro, Gustavo
1 Combining Multiple Dynamic Models and Deep Learning Architectures for Tracking the Left Ventricle such that the expected segmentation of the current time step is estimated based on the appearance, shape, and motion Classifiers. This work was supported by project the FCT (ISR/IST plurianual funding) through the PIDDAC
Modeling and Dynamic Management of 3D Multicore Systems with Liquid Cooling
Simunic, Tajana
Modeling and Dynamic Management of 3D Multicore Systems with Liquid Cooling Ayse K. Coskun , Jos liquid cooling. Furthermore, for systems capable of varying the coolant flow rate at runtime, our University of Madrid, Spain. Embedded Systems Laboratory (ESL), Ecole Polytechnique FÂ´edÂ´erale de Lausanne