Parameter and state estimation in nonlinear dynamical systems
Creveling, Daniel R.
2008-01-01
and J. Kurths. Nonlinear dynamical system identi?ca- tionEstimation In Nonlinear Dynamical Systems A dissertationState Estimation In Nonlinear Dynamical Systems by Daniel R.
Optimal State Estimation for Boolean Dynamical Systems
Braga-Neto, Ulisses
of its components, f = (f1,f2,...,fd), where each component fi {0,1}d {0,1}, i = 1,...,d, is a Boolean Engineering Texas A & M University College Station, Texas 77843 Email: ub@ieee.org Abstract--A novel state
Optimal PMU Placement Evaluation for Power System Dynamic State Estimation
Pollefeys, Marc
Optimal PMU Placement Evaluation for Power System Dynamic State Estimation Jinghe Zhang, Student--The synchronized phasor measurement unit (PMU), developed in the 1980s, is considered to be one of the most important devices in the future of power systems. The recent development of PMU technology provides high
Zhou, Ning; Huang, Zhenyu; Meng, Da; Elbert, Stephen T.; Wang, Shaobu; Diao, Ruisheng
2014-03-31
With the increasing complexity resulting from uncertainties and stochastic variations introduced by intermittent renewable energy sources, responsive loads, mobile consumption of plug-in vehicles, and new market designs, more and more dynamic behaviors are observed in everyday power system operation. To operate a power system efficiently and reliably, it is critical to adopt a dynamic paradigm so that effective control actions can be taken in time. The dynamic paradigm needs to include three fundamental components: dynamic state estimation; look-ahead dynamic simulation; and dynamic contingency analysis (Figure 1). These three components answer three basic questions: where the system is; where the system is going; and how secure the system is against accidents. The dynamic state estimation provides a solid cornerstone to support the other 2 components and is the focus of this study.
Toward a 6 DOF Body State Estimator for a Hexapod Robot with Dynamical Gaits
Lin, Pei-Chun
Toward a 6 DOF Body State Estimator for a Hexapod Robot with Dynamical Gaits Pei-Chun Lin on a continuous time full body state estimator for a hexapod robot operating in the dynamical regime (entailing-per-stride estimates. I. INTRODUCTION The hexapod, RHex [1], exhibits unprecedented mobility for a legged autonomous
Sensor Data Fusion for Body State Estimation in a Hexapod Robot with Dynamical Gaits
Lin, Pei-Chun
Sensor Data Fusion for Body State Estimation in a Hexapod Robot with Dynamical Gaits Pei-Chun Lin toward a continuous time full 6 DOF translational body state estimator for a hexapod robot executing this estimation procedure on the hexapod robot RHex and evaluate its per- formance using a visual ground truth
Meliopoulos, Sakis; Cokkinides, George; Fardanesh, Bruce; Hedrington, Clinton
2013-12-31
This is the final report for this project that was performed in the period: October1, 2009 to June 30, 2013. In this project, a fully distributed high-fidelity dynamic state estimator (DSE) that continuously tracks the real time dynamic model of a wide area system with update rates better than 60 times per second is achieved. The proposed technology is based on GPS-synchronized measurements but also utilizes data from all available Intelligent Electronic Devices in the system (numerical relays, digital fault recorders, digital meters, etc.). The distributed state estimator provides the real time model of the system not only the voltage phasors. The proposed system provides the infrastructure for a variety of applications and two very important applications (a) a high fidelity generating unit parameters estimation and (b) an energy function based transient stability monitoring of a wide area electric power system with predictive capability. Also the dynamic distributed state estimation results are stored (the storage scheme includes data and coincidental model) enabling an automatic reconstruction and “play back” of a system wide disturbance. This approach enables complete play back capability with fidelity equal to that of real time with the advantage of “playing back” at a user selected speed. The proposed technologies were developed and tested in the lab during the first 18 months of the project and then demonstrated on two actual systems, the USVI Water and Power Administration system and the New York Power Authority’s Blenheim-Gilboa pumped hydro plant in the last 18 months of the project. The four main thrusts of this project, mentioned above, are extremely important to the industry. The DSE with the achieved update rates (more than 60 times per second) provides a superior solution to the “grid visibility” question. The generator parameter identification method fills an important and practical need of the industry. The “energy function” based transient stability monitoring opens up new ways to protect the power grid, better manage disturbances, confine their impact and in general improve the reliability and security of the system. Finally, as a by-product of the proposed research project, the developed system is able to “play back” disturbances by a click of a mouse. The importance of this by-product is evident by considering the tremendous effort exerted after the August 2003 blackout to piece together all the disturbance recordings, align them and recreate the sequence of events. This project has moved the state of art from fault recording by individual devices to system wide disturbance recording with “play back” capability.
Venkatasubramanian, Mani V.
Abstract-- Estimating the dynamic state variables of a synchronous generator has been a long approximately the state variables of a synchronous generator, purely from terminal measurements measurements. Here, we deal with the problem of computing the dynamic internal state of a synchronous generator
Estimation of the Dynamic States of Synchronous Machines Using an Extended Particle Filter
Zhou, Ning; Meng, Da; Lu, Shuai
2013-11-11
In this paper, an extended particle filter (PF) is proposed to estimate the dynamic states of a synchronous machine using phasor measurement unit (PMU) data. A PF propagates the mean and covariance of states via Monte Carlo simulation, is easy to implement, and can be directly applied to a non-linear system with non-Gaussian noise. The extended PF modifies a basic PF to improve robustness. Using Monte Carlo simulations with practical noise and model uncertainty considerations, the extended PF’s performance is evaluated and compared with the basic PF and an extended Kalman filter (EKF). The extended PF results showed high accuracy and robustness against measurement and model noise.
Marius Buibas; Gabriel A. Silva
2010-06-22
We present a framework for simulating signal propagation in geometric networks (i.e. networks that can be mapped to geometric graphs in some space) and for developing algorithms that estimate (i.e. map) the state and functional topology of complex dynamic geometric net- works. Within the framework we define the key features typically present in such networks and of particular relevance to biological cellular neural networks: Dynamics, signaling, observation, and control. The framework is particularly well-suited for estimating functional connectivity in cellular neural networks from experimentally observable data, and has been implemented using graphics processing unit (GPU) high performance computing. Computationally, the framework can simulate cellular network signaling close to or faster than real time. We further propose a standard test set of networks to measure performance and compare different mapping algorithms.
PREDICTIVE POWER CONTROL FOR DYNAMIC STATE ESTIMATION OVER WIRELESS SENSOR NETWORKS WITH RELAYS
for state estimation of a stationary ARMA process over a wireless sensor network (WSN), consisting of sensor networks for a widespread of ap- plications, e.g., target-tracking and data acquisition [5,15]. A WSN energy. The wireless communication channel between nodes in the WSN is subject to fading, which
Battery State Estimation for a Single Particle Model with Electrolyte Dynamics
Moura, Scott J; Bribiesca Argomedo, Federico; Klein, Reinhardt; Mirtabatabaei, Anahita; Krstic, Miroslav
2015-01-01
and G. Fiengo, “Lithium-Ion Battery State of Charge andestimation of the lithium-ion battery using an adaptiveelectrochemical model for lithium ion battery on electric
Battery State Estimation for a Single Particle Model with Electrolyte Dynamics
Moura, Scott J; Bribiesca Argomedo, Federico; Klein, Reinhardt; Mirtabatabaei, Anahita; Krstic, Miroslav
2015-01-01
Algorithms for advanced battery-management systems,” IEEEG. Fiengo, “Lithium-Ion Battery State of Charge and CriticalExtended Kalman filtering for battery management systems of
Measurement enhancement for state estimation
Chen, Jian
2009-05-15
to accurately monitor the system operating state. State estimation is an essential tool in an energy management system (EMS). It is responsible for providing an accurate and correct estimate for the system operating state based on the available measurements...
Shantia Yarahmadian; Vineetha Menon; Majid Mahrooghy; Vahid A. Rezania
2015-10-25
Recent studies has revealed that Microtubules (MTs) exhibit three transition states of growth, shrinkage and pause. In this paper, we first introduce a three states random evolution model as a framework for studying MTs dynamics in three transition states of growth, pause and shrinkage. Then, we introduce a non-traditional stack run encoding scheme with 5 symbols for detecting transition states as well as to encode MT experimental data. The peak detection is carried out in the wavelet domain to effectively detect these three transition states. One of the added advantages of including peak information while encoding being that it enables to detect the peaks efficiently and encodes them simultaneously in the wavelet domain without having the need to do further processing after the decoding stage. Experimental results show that using this form of non-traditional stack run encoding has better compression and reconstruction performance as opposed to traditional stack run encoding and run length encoding schemes. Parameters for MTs modeled in the three states are estimated and is shown to closely approximate original MT data for lower compression rates. As the compression rate increases, we may end up throwing away details that are required to detect transition states of MTs. Thus, choosing the right compression rate is a trade-off between admissible level of error in signal reconstruction, its parameter estimation and considerable rate of compression of MT data.
Pollefeys, Marc
of a Synchronous Machine Using PMU Data: A Comparative Study Ning Zhou, Senior Member, IEEE, Da Meng, Member, IEEEKF), extended Kalman filter (EKF), particle filter (PF), phasor measurement unit (PMU), power system dynamics
Compressing measurements in quantum dynamic parameter estimation
Magesan, Easwar
We present methods that can provide an exponential savings in the resources required to perform dynamic parameter estimation using quantum systems. The key idea is to merge classical compressive sensing techniques with ...
State energy data report 1994: Consumption estimates
1996-10-01
This document provides annual time series estimates of State-level energy consumption by major economic sector. The estimates are developed in the State Energy Data System (SEDS), operated by EIA. SEDS provides State energy consumption estimates to members of Congress, Federal and State agencies, and the general public, and provides the historical series needed for EIA`s energy models. Division is made for each energy type and end use sector. Nuclear electric power is included.
State energy data report 1993: Consumption estimates
1995-07-01
The State Energy Data Report (SEDR) provides annual time series estimates of State-level energy consumption by major economic sector. The estimates are developed in the State Energy Data System (SEDS), which is maintained and operated by the Energy Information Administration (EIA). The goal in maintaining SEDS is to create historical time series of energy consumption by State that are defined as consistently as possible over time and across sectors. SEDS exists for two principal reasons: (1) to provide State energy consumption estimates to Members of Congress, Federal and State agencies, and the general public; and (2) to provide the historical series necessary for EIA`s energy models.
State Energy Data Report, 1991: Consumption estimates
Not Available
1993-05-01
The State Energy Data Report (SEDR) provides annual time series estimates of State-level energy consumption by major economic sector. The estimates are developed in the State Energy Data System (SEDS), which is maintained and operated by the Energy Information Administration (EIA). The goal in maintaining SEDS is to create historical time series of energy consumption by State that are defined as consistently as possible over time and across sectors. SEDS exists for two principal reasons: (1) to provide State energy consumption estimates to the Government, policy makers, and the public; and (2) to provide the historical series necessary for EIA`s energy models.
State energy data report 1995 - consumption estimates
1997-12-01
The State Energy Data Report (SEDR) provides annual time series estimates of State-level energy consumption by major economic sectors. The estimates are developed in the State Energy Data System (SEDS), which is maintained and operated by the Energy Information Administration (EIA). The goal in maintaining SEDS exists for two principal reasons: (1) to provide State energy consumption estimates to Members of Congress, Federal and State agencies, and the general public, and (2) to provide the historical series necessary for EIA`s energy models.
Enhanced State Estimators Final Project Report
Enhanced State Estimators Final Project Report Power Systems Engineering Research Center A National Engineering Research Center Enhanced State Estimators Final Project Report Report Authors Jun Zhu, Ph-373-3051 Fax: 617-373-4431 Email: abur@ece.neu.edu Power Systems Engineering Research Center This is a project
Estimating the uncertainty in underresolved nonlinear dynamics
Chorin, Alelxandre; Hald, Ole
2013-06-12
The Mori-Zwanzig formalism of statistical mechanics is used to estimate the uncertainty caused by underresolution in the solution of a nonlinear dynamical system. A general approach is outlined and applied to a simple example. The noise term that describes the uncertainty turns out to be neither Markovian nor Gaussian. It is argued that this is the general situation.
Parallel State Estimation Assessment with Practical Data
Chen, Yousu; Jin, Shuangshuang; Rice, Mark J.; Huang, Zhenyu
2014-10-31
This paper presents a full-cycle parallel state estimation (PSE) implementation using a preconditioned conjugate gradient algorithm. The developed code is able to solve large-size power system state estimation within 5 seconds using real-world data, comparable to the Supervisory Control And Data Acquisition (SCADA) rate. This achievement allows the operators to know the system status much faster to help improve grid reliability. Case study results of the Bonneville Power Administration (BPA) system with real measurements are presented. The benefits of fast state estimation are also discussed.
Efficient Power System State Estimation
Lavaei, Javad
failure or generator outages. In the normal insecure state, a system may not be able to handle to be normal, when in reality it is not. Then the employees at the control center would not be able to act preemptively to alleviate any situations on the ground. They might find out too late, when there are already
State energy data report 1996: Consumption estimates
1999-02-01
The State Energy Data Report (SEDR) provides annual time series estimates of State-level energy consumption by major economic sectors. The estimates are developed in the Combined State Energy Data System (CSEDS), which is maintained and operated by the Energy Information Administration (EIA). The goal in maintaining CSEDS is to create historical time series of energy consumption by State that are defined as consistently as possible over time and across sectors. CSEDS exists for two principal reasons: (1) to provide State energy consumption estimates to Members of Congress, Federal and State agencies, and the general public and (2) to provide the historical series necessary for EIA`s energy models. To the degree possible, energy consumption has been assigned to five sectors: residential, commercial, industrial, transportation, and electric utility sectors. Fuels covered are coal, natural gas, petroleum, nuclear electric power, hydroelectric power, biomass, and other, defined as electric power generated from geothermal, wind, photovoltaic, and solar thermal energy. 322 tabs.
Sub-Second Parallel State Estimation
Chen, Yousu; Rice, Mark J.; Glaesemann, Kurt R.; Wang, Shaobu; Huang, Zhenyu
2014-10-31
This report describes the performance of Pacific Northwest National Laboratory (PNNL) sub-second parallel state estimation (PSE) tool using the utility data from the Bonneville Power Administrative (BPA) and discusses the benefits of the fast computational speed for power system applications. The test data were provided by BPA. They are two-days’ worth of hourly snapshots that include power system data and measurement sets in a commercial tool format. These data are extracted out from the commercial tool box and fed into the PSE tool. With the help of advanced solvers, the PSE tool is able to solve each BPA hourly state estimation problem within one second, which is more than 10 times faster than today’s commercial tool. This improved computational performance can help increase the reliability value of state estimation in many aspects: (1) the shorter the time required for execution of state estimation, the more time remains for operators to take appropriate actions, and/or to apply automatic or manual corrective control actions. This increases the chances of arresting or mitigating the impact of cascading failures; (2) the SE can be executed multiple times within time allowance. Therefore, the robustness of SE can be enhanced by repeating the execution of the SE with adaptive adjustments, including removing bad data and/or adjusting different initial conditions to compute a better estimate within the same time as a traditional state estimator’s single estimate. There are other benefits with the sub-second SE, such as that the PSE results can potentially be used in local and/or wide-area automatic corrective control actions that are currently dependent on raw measurements to minimize the impact of bad measurements, and provides opportunities to enhance the power grid reliability and efficiency. PSE also can enable other advanced tools that rely on SE outputs and could be used to further improve operators’ actions and automated controls to mitigate effects of severe events on the grid. The power grid continues to grow and the number of measurements is increasing at an accelerated rate due to the variety of smart grid devices being introduced. A parallel state estimation implementation will have better performance than traditional, sequential state estimation by utilizing the power of high performance computing (HPC). This increased performance positions parallel state estimators as valuable tools for operating the increasingly more complex power grid.
State energy data report 1992: Consumption estimates
Not Available
1994-05-01
This is a report of energy consumption by state for the years 1960 to 1992. The report contains summaries of energy consumption for the US and by state, consumption by source, comparisons to other energy use reports, consumption by energy use sector, and describes the estimation methodologies used in the preparation of the report. Some years are not listed specifically although they are included in the summary of data.
PMU Deployment for Optimal State Estimation Performance
Roy, Sumit
PMU Deployment for Optimal State Estimation Performance Yue Yang, Student Member IEEE, and Sumit are anticipated; however, due to the high cost of PMU installation, their deployment will continue to be selective minimal-PMU sets that achieve full observability, affording an additional degree of freedom to select
Short communication Real-time estimation of lead-acid battery parameters: A dynamic
Ray, Asok
squares) have been applied to lead-acid [1] and lithium-ion [2] batteries. This paper proposes a dynamicShort communication Real-time estimation of lead-acid battery parameters: A dynamic data of State of charge (SOC) and State of health (SOH) in lead-acid batteries. Algorithm development based
Estimated United States Transportation Energy Use 2005
Smith, C A; Simon, A J; Belles, R D
2011-11-09
A flow chart depicting energy flow in the transportation sector of the United States economy in 2005 has been constructed from publicly available data and estimates of national energy use patterns. Approximately 31,000 trillion British Thermal Units (trBTUs) of energy were used throughout the United States in transportation activities. Vehicles used in these activities include automobiles, motorcycles, trucks, buses, airplanes, rail, and ships. The transportation sector is powered primarily by petroleum-derived fuels (gasoline, diesel and jet fuel). Biomass-derived fuels, electricity and natural gas-derived fuels are also used. The flow patterns represent a comprehensive systems view of energy used within the transportation sector.
Communication Capacity Requirement for Reliable and Secure State Estimation in Smart Grid
Qiu, Robert Caiming
1 Communication Capacity Requirement for Reliable and Secure State Estimation in Smart Grid Husheng, Cookeville, TN Abstract-- Secure system state estimation is an important issue in smart grid to assure the information the- oretic perspective. The smart grid is modeled as a linear dynamic system. Then, the channel
Wind field estimation for autonomous dynamic soaring Jack W. Langelaan
Spletzer, John R.
Wind field estimation for autonomous dynamic soaring Jack W. Langelaan Aerospace Engineering, Penn for distributed parameter estimation of a previously unknown wind field is described. The application is dynamic parameterization of the wind field is used, allowing implementation of a linear Kalman filter for parameter
Numerical Estimation of Frictional Torques with Rate and State Friction
Arun K. Singh; T. N. Singh
2015-01-20
In this paper, numerical estimation of frictional torques is carried out of a rotary elastic disc on a hard and rough surface under different rotating conditions. A one dimensional spring- mass rotary system is numerically solved under the quasistatic condition with the rate and state dependent friction model. It is established that torque of frictional strength as well as torque of steady dynamic stress increases with radius and found to be maximum at the periphery of the disc. Torque corresponding to frictional strength estimated using the analytical solution matches closely with the simulation only in the case of high stiffness of the connecting spring. In steady relaxation simulation, a steadily rotating disc is suddenly stopped and relaxational angular velocity and corresponding frictional torque decreases with both steady angular velocity and stiffness of the connecting spring in the velocity strengthening regime. In velocity weakening regime, in contrast, torque of relaxation stress deceases but relaxation velocity increases. The reason for the contradiction is explained.
Back-and-forth Operation of State Observers and Norm Estimation of Estimation Error
Back-and-forth Operation of State Observers and Norm Estimation of Estimation Error Hyungbo Shim with the plant, this paper proposes a state estimation algorithm that executes Luenberger observers in a back in the past have employed time-varying gains to over- come this problem [1], where the basic idea is to obtain
Control relevant modeling and nonlinear state estimation applied to
Foss, Bjarne A.
Control relevant modeling and nonlinear state estimation applied to SOFC-GT power systems #12;ii #12;iii Rambabu Kandepu Control relevant modeling and nonlin- ear state estimation applied to SOFC- GT of the most promising fuel cell technologies is the Solid Oxide Fuel Cell (SOFC), due to its solid state
A Dynamic Programming Approach to Estimate the Capacity Value of Energy Storage
Broader source: Energy.gov [DOE]
We present a method to estimate the capacity value of storage. Our method uses a dynamic program to model the effect of power system outages on the operation and state of charge of storage in subsequent periods. We combine the optimized dispatch from the dynamic program with estimated system loss of load probabilities to compute a probability distribution for the state of charge of storage in each period. This probability distribution can be used as a forced outage rate for storage in standard reliability-based capacity value estimation methods. Our proposed method has the advantage over existing approximations that it explicitly captures the effect of system shortage events on the state of charge of storage in subsequent periods. We also use a numerical case study, based on five utility systems in the U.S., to demonstrate our technique and compare it to existing approximation methods.
Hybrid Systems State estimation for hybrid systems: applications
Tomlin, Claire
Hybrid Systems State estimation for hybrid systems: applications to aircraft tracking I. Hwang, H of a stochastic linear hybrid system, given only the continuous system output data, is studied. Well established techniques for hybrid estimation, known as the multiple model adaptive estimation algorithm
Equilibrium free energy estimates based on nonequilibrium work relations and extended dynamics
Sun, Sean
Equilibrium free energy estimates based on nonequilibrium work relations and extended dynamics the equilibrium free energy and the nonequilibrium work is useful for computer simulations. In this paper, we exploit the fact that the free energy is a state function, independent of the pathway taken to change
Guaranteed state estimation by zonotopes for systems with interval uncertainties
Damm, Werner
. Stoica T. Alamo E.F. Camacho D. Dumur This talk focuses on guaranteed state estimation by zonotopes [1 example. References [1] T. Alamo, J.M. Bravo, and E.F. Camacho. Guaranteed state estimation by zonotopes. Automatica, 41:10351043, 2005. [2] V.T.H. Le, T. Alamo, E.F. Camacho, C. Stoica, and D. Dumur. A new
Evaluation of mutual information estimators on nonlinear dynamic systems
A. Papana; D. Kugiumtzis
2008-09-12
Mutual information is a nonlinear measure used in time series analysis in order to measure the linear and non-linear correlations at any lag $\\tau$. The aim of this study is to evaluate some of the most commonly used mutual information estimators, i.e. estimators based on histograms (with fixed or adaptive bin size), $k$-nearest neighbors and kernels. We assess the accuracy of the estimators by Monte-Carlo simulations on time series from nonlinear dynamical systems of varying complexity. As the true mutual information is generally unknown, we investigate the existence and rate of consistency of the estimators (convergence to a stable value with the increase of time series length), and the degree of deviation among the estimators. The results show that the $k$-nearest neighbor estimator is the most stable and less affected by the method-specific parameter.
Lin, Pei-Chun
Estimation in a Hexapod Robot With Dynamical Gaits Pei-Chun Lin, Member, IEEE, Haldun Komsuo¯glu, Member state estimator for a hexapod robot executing a jogging gait in steady state on level terrain of the hexapod robot RHex (bearing the appropriate sensor suite) and evaluate its performance with reference
Estimation of covariance matrix of macroscopic quantum states
László Ruppert; Vladyslav C. Usenko; Radim Filip
2015-11-20
For systems analogous to a linear harmonic oscillator, the simplest way to characterize the state is by a covariance matrix containing the symmetrically-ordered moments of position and momentum. We show that without direct access to either position or momentum, the estimation of the covariance matrix of non-classical states is still possible using interference with a classical noisy and low- intensity reference and linear detection of energy. Such a detection technique will allow to estimate macroscopic quantum states of electromagnetic radiation without a coherent high-intensity local oscillator. It can be directly applied to estimate the covariance matrix of macroscopically bright squeezed states of light.
Chen, Ru
The assumption that local baroclinic instability dominates eddy–mean flow interactions is tested on a global scale using a dynamically consistent eddy-permitting state estimate. Interactions are divided into local and ...
State-to-state dynamics of molecular energy transfer
Gentry, W.R.; Giese, C.F. [Univ. of Minnesota, Minneapolis (United States)
1993-12-01
The goal of this research program is to elucidate the elementary dynamical mechanisms of vibrational and rotational energy transfer between molecules, at a quantum-state resolved level of detail. Molecular beam techniques are used to isolate individual molecular collisions, and to control the kinetic energy of collision. Lasers are used both to prepare specific quantum states prior to collision by stimulated-emission pumping (SEP), and to measure the distribution of quantum states in the collision products by laser-induced fluorescence (LIF). The results are interpreted in terms of dynamical models, which may be cast in a classical, semiclassical or quantum mechanical framework, as appropriate.
Dynamical States in Driven Colloidal Liquid Crystals
Ellen Fischermeier; Matthieu Marechal; Klaus Mecke
2014-09-24
We study a model colloidal liquid crystal consisting of hard spherocylinders under the influence of an external aligning potential by Langevin dynamics simulation. The external field that rotates in a plane acts on the orientation of the individual particles and induces a variety of collective nonequilibrium states. We characterize these states by the time-resolved orientational distribution of the particles and explain their origin using the single particle behavior. By varying the external driving frequency and the packing fraction of the spherocylinders we construct the dynamical state diagram.
Mi, Chunting "Chris"
A robust state-of-charge estimator for multiple types of lithium-ion batteries using adaptive 48128, USA h i g h l i g h t s Proposed a dynamic universal battery model based on second-order RC a SOC estimator for suitable for multiple lithium ion battery chemistries. Proved the system robustness
Improved measurement placement and topology processing in power system state estimation
Wu, Yang
2009-06-02
State estimation plays an important role in modern power system energy management systems. The network observability is a pre-requisite for the state estimation solution. Topological error in the network may cause the state estimation results...
Current (2009) State-of-the-Art Hydrogen Production Cost Estimate...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Current (2009) State-of-the-Art Hydrogen Production Cost Estimate Using Water Electrolysis Current (2009) State-of-the-Art Hydrogen Production Cost Estimate Using Water...
The Lithium-Ion Cell: Model, State Of Charge Estimation
Schenato, Luca
The Lithium-Ion Cell: Model, State Of Charge Estimation and Battery Management System Tutor and Y. Fuentes. Computer simulations of a lithium-ion polymer battery and implications for higher. Di Domenico, A. Stefanopoulou, and G. Fiengo., Reduced Order Lithium-ion Battery Electrochemical
Multiple phase estimation for arbitrary pure states under white noise
Yao Yao; Li Ge; Xing Xiao; Xiaoguang Wang; C. P. Sun
2014-09-08
In any realistic quantum metrology scenarios, the ultimate precision in the estimation of parameters is limited not only by the so-called Heisenberg scaling, but also the environmental noise encountered by the underlying system. In the context of quantum estimation theory, it is of great significance to carefully evaluate the impact of a specific type of noise on the corresponding quantum Fisher information (QFI) or quantum Fisher information matrix (QFIM). Here we investigate the multiple phase estimation problem for a natural parametrization of arbitrary pure states under white noise. We obtain the explicit expression of the symmetric logarithmic derivative (SLD) and hence the analytical formula of QFIM. Moreover, the attainability of the quantum Cram\\'{e}r-Rao bound (QCRB) is confirmed by the commutability of SLDs and the optimal estimators are elucidated for the experimental purpose. These findings generalize previously known partial results and highlight the role of white noise in quantum metrology.
Freeman, Matthew A
2006-10-30
estimation is explained for a simple serial estimator. Then the thesis shows how conventional measurements and newer, more accurate PMU measurements work within the framework of weighted least squares estimation. Next, the multi-area state estimator...
A Two-Stage Kalman Filter Approach for Robust and Real-Time Power System State Estimation
Zhang, Jinghe; Welch, Greg; Bishop, Gary; Huang, Zhenyu
2014-04-01
As electricity demand continues to grow and renewable energy increases its penetration in the power grid, realtime state estimation becomes essential for system monitoring and control. Recent development in phasor technology makes it possible with high-speed time-synchronized data provided by Phasor Measurement Units (PMU). In this paper we present a two-stage Kalman filter approach to estimate the static state of voltage magnitudes and phase angles, as well as the dynamic state of generator rotor angles and speeds. Kalman filters achieve optimal performance only when the system noise characteristics have known statistical properties (zero-mean, Gaussian, and spectrally white). However in practice the process and measurement noise models are usually difficult to obtain. Thus we have developed the Adaptive Kalman Filter with Inflatable Noise Variances (AKF with InNoVa), an algorithm that can efficiently identify and reduce the impact of incorrect system modeling and/or erroneous measurements. In stage one, we estimate the static state from raw PMU measurements using the AKF with InNoVa; then in stage two, the estimated static state is fed into an extended Kalman filter to estimate the dynamic state. Simulations demonstrate its robustness to sudden changes of system dynamics and erroneous measurements.
Basin structure of optimization based state and parameter estimation
Jan Schumann-Bischoff; Ulrich Parlitz; Henry D. I. Abarbanel; Mark Kostuk; Daniel Rey; Michael Eldridge; Stefan Luther
2015-07-08
Most data based state and parameter estimation methods require suitable initial values or guesses to achieve convergence to the desired solution, which typically is a global minimum of some cost function. Unfortunately, however, other stable solutions (e.g., local minima) may exist and provide suboptimal or even wrong estimates. Here we demonstrate for a 9-dimensional Lorenz-96 model how to characterize the basin size of the global minimum when applying some particular optimization based estimation algorithm. We compare three different strategies for generating suitable initial guesses and we investigate the dependence of the solution on the given trajectory segment (underlying the measured time series). To address the question of how many state variables have to be measured for optimal performance, different types of multivariate time series are considered consisting of 1, 2, or 3 variables. Based on these time series the local observability of state variables and parameters of the Lorenz-96 model is investigated and confirmed using delay coordinates. This result is in good agreement with the observation that correct state and parameter estimation results are obtained if the optimization algorithm is initialized with initial guesses close to the true solution. In contrast, initialization with other exact solutions of the model equations (different from the true solution used to generate the time series) typically fails, i.e. the optimization procedure ends up in local minima different from the true solution. Initialization using random values in a box around the attractor exhibits success rates depending on the number of observables and the available time series (trajectory segment).
Estimated Carbon Dioxide Emissions in 2008: United States
Smith, C A; Simon, A J; Belles, R D
2011-04-01
Flow charts depicting carbon dioxide emissions in the United States have been constructed from publicly available data and estimates of state-level energy use patterns. Approximately 5,800 million metric tons of carbon dioxide were emitted throughout the United States for use in power production, residential, commercial, industrial, and transportation applications in 2008. Carbon dioxide is emitted from the use of three major energy resources: natural gas, coal, and petroleum. The flow patterns are represented in a compact 'visual atlas' of 52 state-level (all 50 states, the District of Columbia, and one national) carbon dioxide flow charts representing a comprehensive systems view of national CO{sub 2} emissions. Lawrence Livermore National Lab (LLNL) has published flow charts (also referred to as 'Sankey Diagrams') of important national commodities since the early 1970s. The most widely recognized of these charts is the U.S. energy flow chart (http://flowcharts.llnl.gov). LLNL has also published charts depicting carbon (or carbon dioxide potential) flow and water flow at the national level as well as energy, carbon, and water flows at the international, state, municipal, and organizational (i.e. United States Air Force) level. Flow charts are valuable as single-page references that contain quantitative data about resource, commodity, and byproduct flows in a graphical form that also convey structural information about the system that manages those flows. Data on carbon dioxide emissions from the energy sector are reported on a national level. Because carbon dioxide emissions are not reported for individual states, the carbon dioxide emissions are estimated using published energy use information. Data on energy use is compiled by the U.S. Department of Energy's Energy Information Administration (U.S. EIA) in the State Energy Data System (SEDS). SEDS is updated annually and reports data from 2 years prior to the year of the update. SEDS contains data on primary resource consumption, electricity generation, and energy consumption within each economic sector. Flow charts of state-level energy usage and explanations of the calculations and assumptions utilized can be found at: http://flowcharts.llnl.gov. This information is translated into carbon dioxide emissions using ratios of carbon dioxide emissions to energy use calculated from national carbon dioxide emissions and national energy use quantities for each particular sector. These statistics are reported annually in the U.S. EIA's Annual Energy Review. Data for 2008 (US. EIA, 2010) was updated in August of 2010. This is the first presentation of a comprehensive state-level package of flow charts depicting carbon dioxide emissions for the United States.
Griffith, Daniel Todd
2005-02-17
The main objective of this work is to demonstrate some new computational methods for estimation, optimization and modeling of dynamical systems that use automatic differentiation. Particular focus will be upon dynamical ...
Deshmukh, Venkatesh
Dynamical Systems Venkatesh Deshmukh Center for Nonlinear Dynamics and Control Department of Mechanical dynamic system models to be constructed from available data. The parameters to be estimated are assumed in the dynamic system models are assumed to have a known form, and the models are assumed to be parameter affine
Estimated United States Residential Energy Use in 2005
Smith, C A; Johnson, D M; Simon, A J; Belles, R D
2011-12-12
A flow chart depicting energy flow in the residential sector of the United States economy in 2005 has been constructed from publicly available data and estimates of national energy use patterns. Approximately 11,000 trillion British Thermal Units (trBTUs) of electricity and fuels were used throughout the United States residential sector in lighting, electronics, air conditioning, space heating, water heating, washing appliances, cooking appliances, refrigerators, and other appliances. The residential sector is powered mainly by electricity and natural gas. Other fuels used include petroleum products (fuel oil, liquefied petroleum gas and kerosene), biomass (wood), and on-premises solar, wind, and geothermal energy. The flow patterns represent a comprehensive systems view of energy used within the residential sector.
Measurement calibration/tuning & topology processing in power system state estimation
Zhong, Shan
2005-02-17
State estimation plays an important role in modern power systems. The errors in the telemetered measurements and the connectivity information of the network will greatly contaminate the estimated system state. This dissertation provides solutions...
Zhe An; Daniel Rey; Henry D. I. Abarbanel
2014-05-11
Utilizing the information in observations of a complex system to make accurate predictions through a quantitative model when observations are completed at time $T$, requires an accurate estimate of the full state of the model at time $T$. When the number of measurements $L$ at each observation time within the observation window is larger than a sufficient minimum value $L_s$, the impediments in the estimation procedure are removed. As the number of available observations is typically such that $L \\ll L_s$, additional information from the observations must be presented to the model. We show how, using the time delays of the measurements at each observation time, one can augment the information transferred from the data to the model, removing the impediments to accurate estimation and permitting dependable prediction. We do this in a core geophysical fluid dynamics model, the shallow water equations, at the heart of numerical weather prediction. The method is quite general, however, and can be utilized in the analysis of a broad spectrum of complex systems where measurements are sparse. When the model of the complex system has errors, the method still enables accurate estimation of the state of the model and thus evaluation of the model errors in a manner separated from uncertainties in the data assimilation procedure.
J2.5 ADDRESSING WIND DIRECTION UNCERTAINTY IN SOURCE ESTIMATION THROUGH DYNAMIC TIME WARPING
Lin, Jessica
J2.5 ADDRESSING WIND DIRECTION UNCERTAINTY IN SOURCE ESTIMATION THROUGH DYNAMIC TIME WARPING G score. The correct wind direction is paramount to source estimation problems. It was observed that errors in wind direction of only a few degrees drastically worsen the source estimation. Even when
Dynamical generation of phase-squeezed states in two-component Bose-Einstein condensates
Jin, G. R.; An, Y.; Yan, T.; Lu, Z. S. [Department of Physics, Beijing Jiaotong University, Beijing 100044 (China)
2010-12-15
As an ''input'' state of a linear (Mach-Zehnder or Ramsey) interferometer, the phase-squeezed state proposed by Berry and Wiseman exhibits the best sensitivity approaching to the Heisenberg limit [Phys. Rev. Lett. 85, 5098 (2000)]. Similar with the Berry and Wiseman's state, we find that two kinds of phase-squeezed states can be generated dynamically with atomic Bose-Einstein condensates confined in a symmetric double-well potential, which shows squeezing along spin operator S{sub y} and antisqueezing along S{sub z}, leading to subshot-noise phase estimation.
Team Description for Lucky Lubeck { Evidence-Based World State Estimation
Rolling Brains 1999 agent code. In Lucky L ubeck, a new method, Evidence- based World state EstimationTeam Description for Lucky Lubeck { Evidence-Based World State Estimation Daniel Polani and Thomas, has been introduced, by which player and ball position can be estimated about an order of magnitude
Heterophase liquid states: Thermodynamics, structure, dynamics
A. S. Bakai
2015-01-12
An overview of theoretical results and experimental data on the thermodynamics, structure and dynamics of the heterophase glass-forming liquids is presented. The theoretical approach is based on the mesoscopic heterophase fluctuations model (HPFM) developed within the framework of the bounded partition function approach. The Fischer cluster phenomenon, glass transition, liquid-liquid transformations, parametric phase diagram, cooperative dynamics and fragility of the glass-forming liquids is considered.
Battery-State Dependent Power Control as a Dynamic Game
, for example, that a station that transmits at high power prevents the signal of other stations from being1 Battery-State Dependent Power Control as a Dynamic Game Ishai Menache and Eitan Altman Faculty power in a noncooperative way. The novelty of our model is in considering the dynamic game in which
Sukhatme, Gaurav S.
State Estimation of an Autonomous Helicopter Using Kalman Filtering Myungsoo Juny, Stergios I the state of a robot helicopter using a combina- tion of gyroscopes, accelerometers, inclinometers and GPS modeling. The number of estimated states of helicopter is nine : three attitudes( ) from the gyroscopes
Hierarchical models for estimating state and demographic trends in U.S. death penalty public opinion
Gelman, Andrew
Hierarchical models for estimating state and demographic trends in U.S. death penalty public?" Because the death penalty is governed by state laws rather than federal laws, it is of special interest logistic regression model to estimate support for the death penalty as a function of the year, the state
Bayesian estimation of dynamic systems function expansions Georgios D. Mitsis and Saad Jbabdi
Mitsis, Georgios
coefficients utilizing least-squares estimation in connection with discrete-time Laguerre expansions [9Bayesian estimation of dynamic systems function expansions Georgios D. Mitsis and Saad Jbabdi, the rate of which is determined by the Laguerre parameter . A critical aspect of the Laguerre expansion
ChurnDetect: A Gossip-based Churn Estimator for Large-Scale Dynamic Networks
Langendoen, Koen
ChurnDetect: A Gossip-based Churn Estimator for Large-Scale Dynamic Networks Andrei Pruteanu1 computations, such as online detection of network churn, via distributed, robust and scalable algorithms. In this paper we introduce the ChurnDetect algorithm, a novel solution to the distributed churn estimation
Dynamic Solid State Lighting Matthew Aldrich
of domains, environments, sensors, and actuators to dynamically miti- gate energy usage while attaining Submitted to the Program in Media Arts and Sciences, School of Architecture and Planning, in partial Submitted to the Program in Media Arts and Sciences, School of Architecture and Planning, on May 7, 2010
Numerically Estimating Internal Models of Dynamic Virtual Objects
Sekuler, Robert
human subjects to manipulate a computer-animated virtual object. This virtual object (vO) was a high, human cognition, human information processing, ideal performer, internal model, virtual object, virtual, specifically how humans acquire an internal model of a dynamic virtual object. Our methodology minimizes
Optimal Estimation of Dynamically Evolving Diffusivities Kurt S. Riedel
of Mathematical Sciences New York University New York, New York 10012 Abstract The augmented, iterated Kalman of the coefficients is linear. We update the slowly varying mean temperature and conductivity by averaging in turbulent fluids and the plasma rotation velocity in plasma tomography. 1 #12;1. Introduction Estimation
Direct Molecular Dynamics Observation of Protein Folding Transition State Ensemble
Stanley, H. Eugene
Direct Molecular Dynamics Observation of Protein Folding Transition State Ensemble Feng Ding for the interpretation of experimental results and understanding of protein folding mechanics, which has at- tracted, 1999; Guerois and Serrano, 2000) have been proposed to predict the transition states in protein folding
Optimized dynamical control of state transfer through noisy spin chains
Analia Zwick; Gonzalo A. Alvarez; Guy Bensky; Gershon Kurizki
2015-01-09
We propose a method of optimally controlling the tradeoff of speed and fidelity of state transfer through a noisy quantum channel (spin-chain). This process is treated as qubit state-transfer through a fermionic bath. We show that dynamical modulation of the boundary-qubits levels can ensure state transfer with the best tradeoff of speed and fidelity. This is achievable by dynamically optimizing the transmission spectrum of the channel. The resulting optimal control is robust against both static and fluctuating noise in the channel's spin-spin couplings. It may also facilitate transfer in the presence of diagonal disorder (on site energy noise) in the channel.
Embedded avionics with Kalman state estimation for a novel micro-scale unmanned aerial vehicle
Tzanetos, Theodore
2013-01-01
An inertial navigation system leveraging Kalman estimation techniques and quaternion dynamics is developed for deployment to a micro-scale unmanned aerial vehicle (UAV). The capabilities, limitations, and requirements of ...
A Survey of State-Level Cost and Benefit Estimates of Renewable Portfolio Standards
Broader source: Energy.gov [DOE]
This report surveys and summarizes existing state-level RPS cost and benefit estimates and examines the various methods used to calculate such estimates. The report relies largely upon data or results reported directly by electric utilities and state regulators. As such, the estimated costs and benefits itemized in this document do not result from the application of a standardized approach or the use of a consistent set of underlying assumptions. Because the reported values may differ from those derived through a more consistent analytical treatment, we do not provide an aggregate national estimate of RPS costs and benefits, nor do we attempt to quantify net RPS benefits at national or state levels.
Tests of the impact of assimilation of surface data on ocean state estimates
Kurapov, Alexander
Tests of the impact of assimilation of surface data on ocean state estimates The coastal ocean. The relative impact of these data on the ocean state estimate has been evaluated. Accurate prediction of the front location is important to fisheries. Prediction and forecasting of surface currents would
False Data Injection Attacks against State Estimation in Electric Power Grids
Qiu, Robert Caiming
False Data Injection Attacks against State Estimation in Electric Power Grids Yao Liu, Peng Ning@cs.unc.edu Abstract--A power grid is a complex system connecting electric power generators to consumers through power to ensure the reliable operation of power grids, and state estimation is used in system monitoring to best
Nonparametric estimation of varying coefficient dynamic panel models
Cai, Zongwu; Li, Qi
2008-10-01
#2; m2 because the number of parameters in ~6! is m2+ However, when m1 #7; m2, the model is overidentified, and there may not exist a unique a to satisfy ~6!+ To obtain a unique a satisfy- ing ~6!, we premultiply ~6! by an m2 #3; m1 matrix Sn' , where... with Qit #1; Q~Vit ! and n #1; NT, Sn #1; 1 n #6; i#1;1 N #6; t#1;1 T QitUit' Kh~Zit #5; z!+ Then solving for a we obtain [a #1; ~Sn' Sn !#5;1Sn' Tn , (7) where Tn #1; 1 n #6; i#1;1 N #6; t#1;1 T Qit Kh~Zit #5; z!Yit + The estimator [a defined in ~7...
VEHICLE STATE ESTIMATION USING VISION AND INERTIAL MEASUREMENTS
Brennan, Sean
Department of Mechanical and Nuclear Engineering, Pennsylvania State University, University Park, PA Abstract missile and submarine guid- ance systems (Golden [1980],Denism and Roberts [1989],Hostetler and Andreas
Universal dynamical decoupling of multiqubit states from environment
Liang Jiang; Adilet Imambekov
2011-12-29
We study the dynamical decoupling of multiqubit states from environment. For a system of m qubits, the nested Uhrig dynamical decoupling (NUDD) sequence can efficiently suppress generic decoherence induced by system-environment interaction to order N using (N+1)^2m pulses. We prove that the NUDD sequence is universal, i.e., it can restore the coherence of m-qubit quantum system independent of the details of system-environment interaction. We also construct a general mapping between dynamical decoupling problems and discrete quantum walks in certain functional spaces.
STABILIZATION OF GAS LIFTED WELLS BASED ON STATE ESTIMATION
Foss, Bjarne A.
oil and gas from wells with low reservoir pressure by reducing the hydrostatic pressure in the tubing.imsland bjarne.foss}@itk.ntnu.no Abstract: This paper treats stabilization of multiphase flow in a gas lifted oil well. Two different controllers are investigated, PI control using the estimated downhole pressure
Lundquist, J. K.; Pukayastha, A.; St. Martin, C.; Newsom, R.
2014-03-01
Previous estimates of the wind resources in Uttarakhand, India, suggest minimal wind resources in this region. To explore whether or not the complex terrain in fact provides localized regions of wind resource, the authors of this study employed a dynamic down scaling method with the Weather Research and Forecasting model, providing detailed estimates of winds at approximately 1 km resolution in the finest nested simulation.
Load Modeling and State Estimation Methods for Power Distribution Systems: Final Report
Tom McDermott
2010-05-07
The project objective was to provide robust state estimation for distribution systems, comparable to what has been available on transmission systems for decades. This project used an algorithm called Branch Current State Estimation (BCSE), which is more effective than classical methods because it decouples the three phases of a distribution system, and uses branch current instead of node voltage as a state variable, which is a better match to current measurement.
Solid-State NMR Investigation of Block Copolymer Electrolyte Dynamics
Sadoway, Donald Robert
Solid-State NMR Investigation of Block Copolymer Electrolyte Dynamics D. J. Harris,*, T. J in solid polymer electrolytes. The electrolytic properties of lithium salt-doped poly(ethyl- ene oxide- vored candidates for polymer electrolytes.1,2 Some of the primary applications for polymer electrolyte
QUANTITATIVE ESTIMATES ON THE HYDROGEN GROUND STATE ENERGY IN NON-RELATIVISTIC QED
QUANTITATIVE ESTIMATES ON THE HYDROGEN GROUND STATE ENERGY IN NON-RELATIVISTIC QED J.-M. BARBAROUX for the hydrogen ground state energy in the Pauli-Fierz model up to the order O(5 log -1), where denotes). As a consequence, we prove that the ground state energy is not a real analytic function of , and verify
Improved estimates of the total correlation energy in the ground state of the water molecule
Anderson, James B.
Improved estimates of the total correlation energy in the ground state of the water molecule Arne calculations of the electronic energy of the ground state of the water molecule yield energies lower than those for the electronic energy of the ground state of the water molecule. The energy given by a fixed-node quantum Monte
Which Dynamic Rupture Parameters Can Be Estimated from Strong Ground Motion and Geodetic Data?
Olsen, Kim Bak
of seismic waves as well as ground failure caused by the earthquake. The level and variation of the initialWhich Dynamic Rupture Parameters Can Be Estimated from Strong Ground Motion and Geodetic Data the constitutive laws and the initial stress on the fault control how the earthquake propagates and arrests
Coupling remote sensing with computational fluid dynamics modelling to estimate lake chlorophyll form 17 October 2000; accepted 1 June 2001 Abstract A remotely sensed image of Loch Leven, a shallow in the remotely sensed image. It is proposed that CFD modelling benefits the interpretation of remotely sensed
Ensemble Kalman filter based state estimation in 2D shallow water equations using Lagrangian method for two- dimensional shallow water equations in rivers using Lagrangian drifter positions of the state of the river. This information is incorporated into shallow water equations by using Ensemble
Steady state estimation of soil organic carbon using satellite-derived canopy leaf area index
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Fang, Yilin; Liu, Chongxuan; Huang, Maoyi; Li, Hongyi; Leung, Lai-Yung R.
2014-12-02
Soil organic carbon (SOC) plays a key role in the global carbon cycle that is important for decadal-to-century climate prediction. Estimation of soil organic carbon stock using model-based methods typically requires spin-up (time marching transient simulation) of the carbon-nitrogen (CN) models by performing hundreds to thousands years long simulations until the carbon-nitrogen pools reach dynamic steady-state. This has become a bottleneck for global modeling and analysis, especially when testing new physical and/or chemical mechanisms and evaluating parameter sensitivity. Here we report a new numerical approach to estimate global soil carbon stock that can avoid the long term spin-up of themore »CN model. The approach uses canopy leaf area index (LAI) from satellite data and takes advantage of a reaction-based biogeochemical module NGBGC (Next Generation BioGeoChemical Module) that was recently developed and incorporated in version 4 of the Community Land Model (CLM4). Although NGBGC uses the same CN mechanisms as used in CLM4CN, it can be easily configured to run prognostic or steady state simulations. In this approach, monthly LAI from the multi-year Moderate Resolution Imaging Spectroradiometer (MODIS) data was used to calculate potential annual average gross primary production (GPP) and leaf carbon for the period of the atmospheric forcing. The calculated potential annual average GPP and leaf C are then used by NGBGC to calculate the steady-state distributions of carbon and nitrogen in different vegetation and soil pools by solving the steady-state reaction-network in NGBGC using the Newton-Raphson method. The new approach was applied at point and global scales and compared with SOC derived from long spin-up by running NGBGC in prognostic mode, and SOC from the empirical data of the Harmonized World Soil Database (HWSD). The steady-state solution is comparable to the spin-up value when the MODIS LAI is close to the LAI from the spin-up solution, and largely captured the variability of the HWSD SOC across the different dominant plant functional types (PFTs) at global scale. The numerical correlation between the calculated and HWSD SOC was, however, weak at both point and global scales, suggesting that the models used in describing biogeochemical processes in CLM needs improvements and/or HWSD needs updating as suggested by other studies. Besides SOC, the steady state solution also includes all other state variables simulated by a spin-up run, such as NPP, GPP, total vegetation C etc., which makes the developed approach a promising tool to efficiently estimate global SOC distribution and evaluate and compare different aspects simulated by different CN mechanisms in the model.« less
State machine analysis of sensor data from dynamic processes
Cook, William R.; Brabson, John M.; Deland, Sharon M.
2003-12-23
A state machine model analyzes sensor data from dynamic processes at a facility to identify the actual processes that were performed at the facility during a period of interest for the purpose of remote facility inspection. An inspector can further input the expected operations into the state machine model and compare the expected, or declared, processes to the actual processes to identify undeclared processes at the facility. The state machine analysis enables the generation of knowledge about the state of the facility at all levels, from location of physical objects to complex operational concepts. Therefore, the state machine method and apparatus may benefit any agency or business with sensored facilities that stores or manipulates expensive, dangerous, or controlled materials or information.
Efficient Hydraulic State Estimation Technique Using Reduced Models of Urban Water Networks
Preis, Ami
This paper describes and demonstrates an efficient method for online hydraulic state estimation in urban water networks. The proposed method employs an online predictor-corrector (PC) procedure for forecasting future water ...
Cerf, Nicolas
Superiority of Entangled Measurements over All Local Strategies for the Estimation of Product discrimination of product states via entangled measurements was verified experimentally only very recently measurement than with any local strategy supplemented by classical communication. Although this ensemble
Yoon, Yeo Jun
2006-04-12
This thesis will investigate the impact of the use of the Phasor Measurement Units (PMU) on the state estimation problem. First, incorporation of the PMU measurements in a conventional state estimation program will be discussed. Then, the effect...
Equation Chapter 1 Section 1Dynamic Demand Functions.doc A Primer on Estimating Short and Long.edu.lb December 19, 2011 ABSTRACT: Many empirical exercises estimating demand functions, whether in energy time. This paper first reviews a number of commonly used dynamic demand specifications to highlight
Surface Dynamic Deformation Estimates From Seismicity Near the Itoiz Reservoir, Northern Spain
Santoyo, Miguel A; García-Jerez, Antonio; Luzón, Francisco
2014-01-01
We analyzed the ground motion time histories due to the local seismicity near the Itoiz reservoir, in order to estimate the surface 3D displacement-gradients and dynamic deformations. The seismic data were obtained by a semi-permanent broadband and accelerometric network installed by the University of Almeria during 2008 and 2009. Seismic sensors were located on surface and at underground sites in the vicinity of the dam. The dynamic deformation field was calculated by two different methods. On one hand, by the Seismo-Geodetic method using the data from a three-station micro-array. On the other hand, by Single-Station estimates of displacement gradients, assuming the incidence of body wave fields propagating through the recording site. The dynamic deformations obtained from both methods were compared and analyzed in the context of the local effects near the dam. The shallow 1D velocity structure was estimated from seismic data by modeling the body-wave travel times. After the comparison of the dynamic displac...
Survey of State-Level Cost and Benefit Estimates of Renewable Portfolio Standards
Heeter, J.; Barbose, G.; Bird, L.; Weaver, S.; Flores-Espino, F.; Kuskova-Burns, K.; Wiser, R.
2014-05-01
Most renewable portfolio standards (RPS) have five or more years of implementation experience, enabling an assessment of their costs and benefits. Understanding RPS costs and benefits is essential for policymakers evaluating existing RPS policies, assessing the need for modifications, and considering new policies. This study provides an overview of methods used to estimate RPS compliance costs and benefits, based on available data and estimates issued by utilities and regulators. Over the 2010-2012 period, average incremental RPS compliance costs in the United States were equivalent to 0.8% of retail electricity rates, although substantial variation exists around this average, both from year-to-year and across states. The methods used by utilities and regulators to estimate incremental compliance costs vary considerably from state to state and a number of states are currently engaged in processes to refine and standardize their approaches to RPS cost calculation. The report finds that state assessments of RPS benefits have most commonly attempted to quantitatively assess avoided emissions and human health benefits, economic development impacts, and wholesale electricity price savings. Compared to the summary of RPS costs, the summary of RPS benefits is more limited, as relatively few states have undertaken detailed benefits estimates, and then only for a few types of potential policy impacts. In some cases, the same impacts may be captured in the assessment of incremental costs. For these reasons, and because methodologies and level of rigor vary widely, direct comparisons between the estimates of benefits and costs are challenging.
Hydrodynamics of stratified epithelium: steady state and linearized dynamics
Wei-Ting Yeh; Hsuan-Yi Chen
2015-08-07
A theoretical model for stratified epithelium is presented. The viscoelastic properties of the tissue is assumed to be dependent on the spatial distribution of proliferative and differentiated cells. Based on this assumption, a hydrodynamic description for tissue dynamics at long-wavelength, long-time limit is developed, and the analysis reveals important insight for the dynamics of an epithelium close to its steady state. When the proliferative cells occupy a thin region close to the basal membrane, the relaxation rate towards the steady state is enhanced by cell division and cell apoptosis. On the other hand, when the region where proliferative cells reside becomes sufficiently thick, a flow induced by cell apoptosis close to the apical surface could enhance small perturbations. This destabilizing mechanism is general for continuous self-renewal multi-layered tissues, it could be related to the origin of certain tissue morphology and developing pattern.
Query Cost Estimation through Remote System Contention States Analysis over the Internet
Liu, Weiru
Query Cost Estimation through Remote System Contention States Analysis over the Internet Weiru Liu costs of possible query plans in order to select the best one with the minimum cost. In this context, the cost of a query is affected by three factors: network congestion, server contention state
Optimization of hybrid dynamic/steady-state processes using process integration
Grooms, Daniel Douglas
2009-06-02
PROBLEM STATEMENT................................................................ 5 III OPTIMAL SYNTHESIS AND SCHEDULING OF HYBRID DYNAMIC/STEADY-STATE MASS EXCHANGE NETWORKS..................................................................................... 23 IV OPTIMAL SYNTHESIS AND SCHEDULING OF HYBRID DYNAMIC/STEADY-STATE PROPERTY INTEGRATION NETWORKS ......................................................... 24 4.1 Introduction...
Wu, Jianyong; Zhou, Ying; Gao, Yang; Fu, Joshua S.; Johnson, Brent; Huang, Cheng; Kim, Young-Min; Liu, Yang
2014-01-01
Background: It is anticipated that climate change will influence heat-related mortality in the future. However, the estimation of excess mortality attributable to future heat waves is subject to large uncertainties, which have not been examined under the latest greenhouse gas emission scenarios. Objectives: We estimated the future heat wave impact on mortality in the eastern United States (~ 1,700 counties) under two Representative Concentration Pathways (RCPs) and analyzed the sources of uncertainties. Methods Using dynamically downscaled hourly temperature projections in 2057-2059, we calculated heat wave days and episodes based on four heat wave metrics, and estimated the excess mortality attributable to them. The sources of uncertainty in estimated excess mortality were apportioned using a variance-decomposition method. Results: In the eastern U.S., the excess mortality attributable to heat waves could range from 200-7,807 with the mean of 2,379 persons/year in 2057-2059. The projected average excess mortality in RCP 4.5 and 8.5 scenarios was 1,403 and 3,556 persons/year, respectively. Excess mortality would be relatively high in the southern and eastern coastal areas. The major sources of uncertainty in the estimates are relative risk of heat wave mortality, the RCP scenarios, and the heat wave definitions. Conclusions: The estimated mortality risks from future heat waves are likely an order of magnitude higher than its current level and lead to thousands of deaths each year under the RCP8.5 scenario. The substantial spatial variability in estimated county-level heat mortality suggests that effective mitigation and adaptation measures should be developed based on spatially resolved data.
Asymptotic Efficiency and Finite Sample Performance of Frequentist Quantum State Estimation
Raj Chakrabarti; Anisha Ghosh
2011-11-15
We undertake a detailed study of the performance of maximum likelihood (ML) estimators of the density matrix of finite-dimensional quantum systems, in order to interrogate generic properties of frequentist quantum state estimation. Existing literature on frequentist quantum estimation has not rigorously examined the finite sample performance of the estimators and associated methods of hypothesis testing. While ML is usually preferred on the basis of its asymptotic properties - it achieves the Cramer-Rao (CR) lower bound - the finite sample properties are often less than optimal. We compare the asymptotic and finite-sample properties of the ML estimators and test statistics for two different choices of measurement bases: the average case optimal or mutually unbiased bases (MUB) and a representative set of suboptimal bases, for spin-1/2 and spin-1 systems. We show that, in both cases, the standard errors of the ML estimators sometimes do not contain the true value of the parameter, which can render inference based on the asymptotic properties of the ML unreliable for experimentally realistic sample sizes. The results indicate that in order to fully exploit the information geometry of quantum states and achieve smaller reconstruction errors, the use of Bayesian state reconstruction methods - which, unlike frequentist methods, do not rely on asymptotic properties - is desirable, since the estimation error is typically lower due to the incorporation of prior knowledge.
Dynamical Stability of an Ion in a Linear Trap as a Solid-State Problem of Electron Localization
G. P. Berman; A. R. Bishop; D. F. V. James; R. J. Hughes; D. I. Kamenev
2000-12-18
When an ion confined in a linear ion trap interacts with a coherent laser field, the internal degrees of freedom, related to the electron transitions, couple to the vibrational degree of freedom of the ion. As a result of this interaction, quantum dynamics of the vibrational degree of freedom becomes complicated, and in some ranges of parameters even chaotic. We analyze the vibrational ion dynamics using a formal analogy with the solid-state problem of electron localization. In particular, we show how the resonant approximation used in analysis of the ion dynamics, leads to a transition from a two-dimensional (2D) to a one-dimensional problem (1D) of electron localization. The localization length in the solid-state problem is estimated in cases of weak and strong interaction between the cites of the 2D cell by using the methods of resonance perturbation theory, common in analysis of 1D time-dependent dynamical systems.
Jochem, Warren C; Sims, Kelly M; Bright, Eddie A; Urban, Marie L; Rose, Amy N; Coleman, Phil R; Bhaduri, Budhendra L
2013-01-01
In recent years, uses of high-resolution population distribution databases are increasing steadily for environmental, socioeconomic, public health, and disaster-related research and operations. With the development of daytime population distribution, temporal resolution of such databases has been improved. However, the lack of incorporation of transitional population, namely business and leisure travelers, leaves a significant population unaccounted for within the critical infrastructure networks, such as at transportation hubs. This paper presents two general methodologies for estimating passenger populations in airport and cruise port terminals at a high temporal resolution which can be incorporated into existing population distribution models. The methodologies are geographically scalable and are based on, and demonstrate how, two different transportation hubs with disparate temporal population dynamics can be modeled utilizing publicly available databases including novel data sources of flight activity from the Internet which are updated in near-real time. The airport population estimation model shows great potential for rapid implementation for a large collection of airports on a national scale, and the results suggest reasonable accuracy in the estimated passenger traffic. By incorporating population dynamics at high temporal resolutions into population distribution models, we hope to improve the estimates of populations exposed to or at risk to disasters, thereby improving emergency planning and response, and leading to more informed policy decisions.
turbine dynamics, parameter estimation, trajectory sensitivity. I. INTRODUCTION WIND generation has of wind turbine generators (WTGs) on power system dynamic performance is becoming increasingly importantCopyright © 2008 IEEE. Reprinted from J. Rose, and I. Hiskens. Estimating Wind Turbine Parameters
Experimental estimation of dynamic plastic bending moments by plastic hinge models
Sogo, T.; Ujihashi, S.; Matsumoto, H.; Adachi, T.
1995-12-31
In the present paper, the experimental estimation of dynamic plastic bending moments for metallic materials is investigated. The three-point bending, test under impact and static loads is applied to aluminum alloy (JIS A6063S) and mild steel (JIS SS400). It is confirmed that tile dynamic bending deformations in three-point bending test can be modeled as a plastic hinge, tile experimental results show that the consumed energies of the specimens are proportional to the bending angles. The ratio of the consumed energy to the bending angle is approximately equal to the plastic bending moment. In the case of aluminum alloy, the dynamic plastic bending moments for the different average bending angular velocities coincide with the static plastic bending moments. On the other hand, in the case of mild steel, the dynamic plastic bending moments are proportional to the average bending angular velocities. As a result, we confirm that the present method based on the plastic hinge model and the consumed energy is efficient for determining tile dynamic plastic bending moment.
Wang, Gangsheng; Post, Wilfred M; Mayes, Melanie
2013-01-01
We developed a Microbial-ENzyme-mediated Decomposition (MEND) model, based on the Michaelis-Menten kinetics, that describes the dynamics of physically defined pools of soil organic matter (SOC). These include particulate, mineral-associated, dissolved organic matter (POC, MOC, and DOC, respectively), microbial biomass, and associated exoenzymes. The ranges and/or distributions of parameters were determined by both analytical steady-state and dynamic analyses with SOC data from the literature. We used an improved multi-objective parameter sensitivity analysis (MOPSA) to identify the most important parameters for the full model: maintenance of microbial biomass, turnover and synthesis of enzymes, and carbon use efficiency (CUE). The model predicted an increase of 2 C (baseline temperature =12 C) caused the pools of POC-Cellulose, MOC, and total SOC to increase with dynamic CUE and decrease with constant CUE, as indicated by the 50% confidence intervals. Regardless of dynamic or constant CUE, the pool sizes of POC, MOC, and total SOC varied from 8% to 8% under +2 C. The scenario analysis using a single parameter set indicates that higher temperature with dynamic CUE might result in greater net increases in both POC-Cellulose and MOC pools. Different dynamics of various SOC pools reflected the catalytic functions of specific enzymes targeting specific substrates and the interactions between microbes, enzymes, and SOC. With the feasible parameter values estimated in this study, models incorporating fundamental principles of microbial-enzyme dynamics can lead to simulation results qualitatively different from traditional models with fast/slow/passive pools.
False Data Injection Attacks against State Estimation in Electric Power Grids
Reiter, Michael
@cs.unc.edu ABSTRACT A power grid is a complex system connecting electric power generators to consumers through power estimate the power grid state through analysis of meter measurements and power system models. Various using IEEE test systems. Our results indicate that security protection of the electric power grid must
False Data Injection Attacks against State Estimation in Electric Power Grids
Young, R. Michael
@cs.unc.edu Abstract--A power grid is a complex system connecting electric power generators to consumers through power estimate the power grid state through analysis of meter measure- ments and power system models. Various malicious attacks. I. INTRODUCTION A power grid is a complex system connecting a variety of electric power
Aalborg Universitet Joint Parametric Fault Diagnosis and State Estimation Using KF-ML Method
Yang, Zhenyu
-ML Method Zhen Sun Zhenyu Yang Department of Energy Technology, Aalborg University, 6700 Esbjerg, DenmarkAalborg Universitet Joint Parametric Fault Diagnosis and State Estimation Using KF-ML Method Sun University Citation for published version (APA): Sun, Z., & Yang, Z. (2014). Joint Parametric Fault Diagnosis
Hutchinson, Seth
Spong Coordinated Science Lab Elect. and Comp. Eng. Coordinated Science Lab University of Illinois University of Illinois University of Illinois Urbana, IL 61801 Urbana, IL 61801 Urbana, IL 61801 Abstract between the image formation process and state estimation. To this end, in this paper we present a detailed
State-Estimators for Chemical Reaction Networks of Feinberg-Horn-Jackson Zero De ciency Type
Chaves, Madalena
State-Estimators for Chemical Reaction Networks of Feinberg-Horn-Jackson Zero De#12;ciency Type #3 for detectability for chemical reaction networks of the Feinberg-Horn-Jackson zero de#12;ciency type. Under. Keywords: observers, chemical reaction systems, detectability 1 Introduction One of the most interesting
A Biochemical Ocean State Estimate in the Southern1 Ocean Gas Exchange Experiment2
Haine, Thomas W. N.
of the oceanic31 carbon pool. It influences light penetration with consequences for primary productivity1 A Biochemical Ocean State Estimate in the Southern1 Ocean Gas Exchange Experiment2 S. Dwivedi1 , T. W. N. Haine2 and C. E. Del Castillo3 3 1 Department of Atmospheric and Ocean Sciences, University
STATE ESTIMATION OF SOFC/GT HYBRID SYSTEM USING UKF Rambabu Kandepu*, 1
Foss, Bjarne A.
STATE ESTIMATION OF SOFC/GT HYBRID SYSTEM USING UKF Rambabu Kandepu*, 1 , Biao Huang** , Bjarne.Imsland@sintef.no Abstract: A description of a Solid Oxide Fuel Cell (SOFC) combined Gas Turbine (GT) hybrid system is given reliability. One of the most promising fuel cell technologies is the Solid Oxide Fuel Cell (SOFC), due to its
Cell Equalization In Battery Stacks Through State Of Charge Estimation Polling
Stefanopoulou, Anna
Cell Equalization In Battery Stacks Through State Of Charge Estimation Polling Carmelo Speltino, Anna Stefanopoulou and Giovanni Fiengo Abstract-- Battery packs are charged and discharged as a single battery, therefore it is possible that differences between cells (i.e. chemical characteristics, operating
Nehorai, Arye
, Kalman filtering, phase mismatch, phasor measurement unit (PMU), state estimation, synchronization. NOMENCLATURE: PMU Phasor measurement unit. SCADA Supervisory control and data acquisition. GPS Global
Bajaj, Vikram Singh
2007-01-01
Solid state NMR can probe structure and dynamics on length scales from the atomic to the supramolecular. However, low sensitivity limits its application in macromolecules. NMR sensitivity can be improved by dynamic nuclear ...
A high dynamic range data acquisition system for a solid-state...
Office of Scientific and Technical Information (OSTI)
A high dynamic range data acquisition system for a solid-state electron electric dipole moment experiment Citation Details In-Document Search Title: A high dynamic range data...
Direct estimations of linear and non-linear functionals of a quantum state
Artur K. Ekert; Carolina Moura Alves; Daniel K. L. Oi; Michal Horodecki; Pawel Horodecki; L. C. Kwek
2002-03-04
We present a simple quantum network, based on the controlled-SWAP gate, that can extract certain properties of quantum states without recourse to quantum tomography. It can be used used as a basic building block for direct quantum estimations of both linear and non-linear functionals of any density operator. The network has many potential applications ranging from purity tests and eigenvalue estimations to direct characterization of some properties of quantum channels. Experimental realizations of the proposed network are within the reach of quantum technology that is currently being developed.
Dynamics of few-body states in a medium
M. Beyer; S. Mattiello; S. Strauss; T. Frederico; H. J. Weber; P. Schuck; S. A. Sofianos
2004-10-02
Strongly interacting matter such as nuclear or quark matter leads to few-body bound states and correlations of the constituents. As a consequence quantum chromodynamics has a rich phase structure with spontaneous symmetry breaking, superconductivity, condensates of different kinds. All this appears in many astrophysical scenarios. Among them is the formation of hadrns during the early stage of the Universe, the structure of a neutron star, the formation of nuclei during a supernova explosion. Some of these extreme conditions can be simulated in heavy ion colliders. To treat such a hot and dense system we use the Green function formalism of many-body theory. It turns out that a systematic Dyson expansion of the Green functions leads to modified few-body equations that are capable to describe phase transitions, condensates, cluster formation and more. These equations include self energy corrections and Pauli blocking. We apply this method to nonrelativistic and relativistic matter. The latter one is treated on the light front. Because of the medium and the inevitable truncation of space, the few-body dynamics and states depend on the thermodynamic parameters of the medium.
Baldick, Ross
IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 16, NO. 2, MAY 2001 273 State Estimator Condition Number empirical results using the IEEE RTS-96 and IEEE 118 bus systems that validate the formulas. I. INTRODUCTION approximations with actual condition numbers for two IEEE test cases, using a state estimation software developed
Noise modeling concepts in nonlinear state estimation S. Kols a,b,*, B.A. Foss a
Foss, Bjarne A.
Noise modeling concepts in nonlinear state estimation S. Kolås a,b,*, B.A. Foss a , T.S. Schei c Keywords: Nonlinear state estimation Constrained nonlinear systems Noise modeling Joint UKF a b s t r a c study noise modeling based on a hypothesis that it is important to model noise correctly. In practice
Estimated Benefits of IBWC Rio Grande Flood-Control Projects in the United States
Sturdivant, Allen W.; Lacewell, Ronald D.; Michelsen, Ari M.; Rister, M. Edward; Assadian, Naomi; Eriksson, Marian; Freeman, Roger; Jacobs, Jennifer H.; Madison, W. Tom; McGuckin, James T.; Morrison, Wendy; Robinson, John R.C.; Staats, Chris; Sheng, Zhuping; Srinivasan, R.; Villalobos, Joshua I.
2004-01-01
on a Residential Area, Along the Rio Grande, Hidalgo County, 2004 ...................................................60 Estimated Benefits of IBWC Rio Grande September, 2004 Flood-Control Projects in the United States page viii of 61 List of Tables... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 B1 Hidalgo County Land Use Categories for Revised FEMA 100-Year Flood Plain Area, 2004 ............................................................47 B2 Cameron County Land Use Categories for Revised FEMA 100-Year Flood Plain Area, 2004...
Using graph theory to resolve state estimator issues faced by deregulated power systems
Lei, Jiansheng
2009-05-15
.....................................................................15 C. Network observability under a single measurement loss ........................16 D. Network observability under a branch outage.........................................17 E. Network observability under a contingency... challenges as follows. A. Challenge 1: Keep the state estimator running reliably even under a contingency Here the contingency refers to a disturbance such as a branch outage. A loss of measurement is also considered as a contingency in this dissertation...
Ultrafast Dynamics of 1,3-Cyclohexadiene in Highly Excited States
Minitti, Michael P.
2011-01-01
The ultrafast dynamics of 1,3-cyclohexadiene has been investigated via structurally sensitive Rydberg electron binding energies and shown to differ upon excitation to the 1B state and the 3p Rydberg state. Excitation of ...
A new algorithm for contact angle estimation in molecular dynamics simulations
Sumith YD; Shalabh C. Maroo
2015-05-22
It is important to study contact angle of a liquid on a solid surface to understand its wetting properties, capillarity and surface interaction energy. While performing transient molecular dynamics (MD) simulations it requires calculating the time evolution of contact angle. This is a tedious effort to do manually or with image processing algorithms. In this work we propose a new algorithm to estimate contact angle from MD simulations directly and in a computationally efficient way. This algorithm segregates the droplet molecules from the vapor molecules using Mahalanobis distance (MND) technique. Then the density is smeared onto a 2D grid using 4th order B-spline interpolation function. The vapor liquid interface data is estimated from the grid using density filtering. With the interface data a circle is fitted using Landau method. The equation of this circle is solved for obtaining the contact angle. This procedure is repeated by rotating the droplet about the vertical axis. We have applied this algorithm to a number of studies (different potentials and thermostat methods) which involves the MD simulation of water.
Dynamic Interactions in the Western United States Electricity Spot Markets Christine A. Jerko
are balanced on a knife-edge with weather grid reliability, grid dynamics, transmission dynamicsDynamic Interactions in the Western United States Electricity Spot Markets Christine A. Jerko Economic Research Analyst at Tractebel Electricity & Gas International, Houston, TX James W. Mjelde
Steady state relativistic stellar dynamics around a massive black hole
Bar-Or, Ben
2015-01-01
A massive black hole (MBH) consumes stars whose orbits evolve into the small phase-space volume of unstable orbits, the "loss-cone", which take them directly into the MBH, or close enough to interact strongly with it. The resulting phenomena: tidal heating and tidal disruption, binary capture and hyper-velocity star ejection, gravitational wave (GW) emission by inspiraling compact remnants, or hydrodynamical interactions with an accretion disk, are of interest as they can produce observable signatures and thereby reveal the existence of the MBH, affect its mass and spin evolution, probe strong gravity, and provide information on stars and gas near the MBH. The continuous loss of stars and the processes that resupply them shape the central stellar distribution. We investigate relativistic stellar dynamics near the loss-cone of a non-spinning MBH in steady-state analytically and by Monte Carlo simulations of the diffusion of the orbital parameters. These take into account Newtonian mass precession due to enclos...
Controlling protein molecular dynamics: How to accelerate folding while preserving the native state
Nerukh, Dmitry
Controlling protein molecular dynamics: How to accelerate folding while preserving the native state state of the protein and at the same time, reduce the folding time in the simulation. We investigate 2008; accepted 14 October 2008; published online 11 December 2008 The dynamics of peptides and proteins
Teixeira, André; Sandberg, Henrik; Johansson, Karl H
2010-01-01
The electrical power network is a critical infrastructure in today's society, so its safe and reliable operation is of major concern. State estimators are commonly used in power networks, for example, to detect faulty equipment and to optimally route power flows. The estimators are often located in control centers, to which large numbers of measurements are sent over unencrypted communication channels. Therefore cyber security for state estimators becomes an important issue. In this paper we analyze the cyber security of state estimators in supervisory control and data acquisition (SCADA) for energy management systems (EMS) operating the power network. Current EMS state estimation algorithms have bad data detection (BDD) schemes to detect outliers in the measurement data. Such schemes are based on high measurement redundancy. Although these methods may detect a set of basic cyber attacks, they may fail in the presence of an intelligent attacker. We explore the latter by considering scenarios where stealthy de...
Peng, Huei
A Unified Open-Circuit-Voltage Model of Lithium-ion Batteries for State-of-Charge Estimation. Keywords: Electric vehicles, Lithium-ion batteries, Open-Circuit-Voltage, State-of-Charge, State is widely used for characterizing battery properties under different conditions. It contains important
Nizkorodov, Sergey
State-to-state reaction dynamics in crossed supersonic jets: threshold evidence for non(v,J) ] H is studied in a crossed jet apparatus underF ] n-H 2 single collision conditions, using high of the reaction has been investigated in our laboratory withF ] H 2 crossed supersonic jets.6 The full nascent
Esposito, A.; Porro, C.; Augustine, C.; Roberts, B.
2012-09-01
Because most sedimentary basins have been explored for oil and gas, well logs, temperatures at depth, and reservoir properties such as depth to basement and formation thickness are well known. The availability of this data reduces exploration risk and allows development of geologic exploration models for each basin. This study estimates the magnitude of recoverable geothermal energy from 15 major known U.S. sedimentary basins and ranks these basins relative to their potential. The total available thermal resource for each basin was estimated using the volumetric heat-in-place method originally proposed by (Muffler, 1979). A qualitative recovery factor was determined for each basin based on data on flow volume, hydrothermal recharge, and vertical and horizontal permeability. Total sedimentary thickness maps, stratigraphic columns, cross sections, and temperature gradient information was gathered for each basin from published articles, USGS reports, and state geological survey reports. When published data were insufficient, thermal gradients and reservoir properties were derived from oil and gas well logs obtained on oil and gas commission databases. Basin stratigraphy, structural history, and groundwater circulation patterns were studied in order to develop a model that estimates resource size, temperature distribution, and a probable quantitative recovery factor.
Stefanopoulou, Anna
Experimental Validation of a Lithium-Ion Battery State of Charge Estimation with an Extended Kalman-- In this paper an averaged electrochemical lithium- ion battery model, presented and discussed in [2] and [3 estimation. I. INTRODUCTION Lithium-ion batteries play an important role in the area of hybrid vehicle design
Mi, Chunting "Chris"
A robust state-of-charge estimator for multiple types of lithium-ion batteries using adaptive a SOC estimator for suitable for multiple lithium ion battery chemistries. Proved the system robustness of charge (SoC) of multiple types of lithium ion battery (LiB) cells with adaptive extended Kalman filter
Dynamic control of spin states in interacting magnetic elements
Jain, Shikha; Novosad, Valentyn
2014-10-07
A method for the control of the magnetic states of interacting magnetic elements comprising providing a magnetic structure with a plurality of interacting magnetic elements. The magnetic structure comprises a plurality of magnetic states based on the state of each interacting magnetic element. The desired magnetic state of the magnetic structure is determined. The active resonance frequency and amplitude curve of the desired magnetic state is determined. Each magnetic element of the magnetic structure is then subjected to an alternating magnetic field or electrical current having a frequency and amplitude below the active resonance frequency and amplitude curve of said desired magnetic state and above the active resonance frequency and amplitude curve of the current state of the magnetic structure until the magnetic state of the magnetic structure is at the desired magnetic state.
Hammes-Schiffer, Sharon
Nonadiabatic transition state theory and multiple potential energy surface molecular dynamics in the vicinity of the energy barrier, i.e., in the region of the transition state or bottleneck. In general, TST 07974 Received 7 July 1995; accepted 17 August 1995 Classical transition state theory TST provides
Egorov, E. N. Koronovskii, A. A.; Kurkin, S. A.; Hramov, A. E.
2013-11-15
Results of numerical simulations and analysis of the formation and nonlinear dynamics of the squeezed state of a helical electron beam in a vircator with a magnetron injection gun as an electron source and with additional electron deceleration are presented. The ranges of control parameters where the squeezed state can form in such a system are revealed, and specific features of the system dynamics are analyzed. It is shown that the formation of a squeezed state of a nonrelativistic helical electron beam in a system with electron deceleration is accompanied by low-frequency longitudinal dynamics of the space charge.
GROUND STATES AND DYNAMICS OF SPIN-ORBIT-COUPLED ...
2014-11-07
dynamics, we show that the motion of the center-of-mass is either non-periodic or with ... ?Department of Mathematics and Center for Computational Science and Engineer- ...... Here, we are going to characterize the convergence rates of the.
Wu, M.; Peng, J.
2011-02-24
Freshwater consumption for electricity generation is projected to increase dramatically in the next couple of decades in the United States. The increased demand is likely to further strain freshwater resources in regions where water has already become scarce. Meanwhile, the automotive industry has stepped up its research, development, and deployment efforts on electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs). Large-scale, escalated production of EVs and PHEVs nationwide would require increased electricity production, and so meeting the water demand becomes an even greater challenge. The goal of this study is to provide a baseline assessment of freshwater use in electricity generation in the United States and at the state level. Freshwater withdrawal and consumption requirements for power generated from fossil, nonfossil, and renewable sources via various technologies and by use of different cooling systems are examined. A data inventory has been developed that compiles data from government statistics, reports, and literature issued by major research institutes. A spreadsheet-based model has been developed to conduct the estimates by means of a transparent and interactive process. The model further allows us to project future water withdrawal and consumption in electricity production under the forecasted increases in demand. This tool is intended to provide decision makers with the means to make a quick comparison among various fuel, technology, and cooling system options. The model output can be used to address water resource sustainability when considering new projects or expansion of existing plants.
Prasad, Rajiv; Hibler, Lyle F.; Coleman, Andre M.; Ward, Duane L.
2011-11-01
The purpose of this document is to describe approaches and methods for estimation of the design-basis flood at nuclear power plant sites. Chapter 1 defines the design-basis flood and lists the U.S. Nuclear Regulatory Commission's (NRC) regulations that require estimation of the design-basis flood. For comparison, the design-basis flood estimation methods used by other Federal agencies are also described. A brief discussion of the recommendations of the International Atomic Energy Agency for estimation of the design-basis floods in its member States is also included.
Population Dynamics and Tropical Deforestation: State of the Debate and Conceptual Challenges
Lopez-Carr, David
); population. Please address correspondence to David L. Carr, University of California, Santa Barbara, CA, USAPopulation Dynamics and Tropical Deforestation: State of the Debate and Conceptual Challenges David L. Carr Laurel Suter University of California Alisson Barbieri Carolina Population Center What
How trehalose protects DNA in the dry state: a molecular dynamics simulation
Fu, Xuebing
2008-10-10
Molecular dynamics simulations were conducted on a system consisting of a decamer DNA solvated by trehalose and water (molecular ratio= 1:2), to mimic a relatively dry state for the DNA molecule. Simulations were performed ...
SU-E-T-238: Monte Carlo Estimation of Cerenkov Dose for Photo-Dynamic Radiotherapy
Chibani, O; Price, R; Ma, C; Eldib, A; Mora, G
2014-06-01
Purpose: Estimation of Cerenkov dose from high-energy megavoltage photon and electron beams in tissue and its impact on the radiosensitization using Protoporphyrine IX (PpIX) for tumor targeting enhancement in radiotherapy. Methods: The GEPTS Monte Carlo code is used to generate dose distributions from 18MV Varian photon beam and generic high-energy (45-MV) photon and (45-MeV) electron beams in a voxel-based tissueequivalent phantom. In addition to calculating the ionization dose, the code scores Cerenkov energy released in the wavelength range 375–425 nm corresponding to the pick of the PpIX absorption spectrum (Fig. 1) using the Frank-Tamm formula. Results: The simulations shows that the produced Cerenkov dose suitable for activating PpIX is 4000 to 5500 times lower than the overall radiation dose for all considered beams (18MV, 45 MV and 45 MeV). These results were contradictory to the recent experimental studies by Axelsson et al. (Med. Phys. 38 (2011) p 4127), where Cerenkov dose was reported to be only two orders of magnitude lower than the radiation dose. Note that our simulation results can be corroborated by a simple model where the Frank and Tamm formula is applied for electrons with 2 MeV/cm stopping power generating Cerenkov photons in the 375–425 nm range and assuming these photons have less than 1mm penetration in tissue. Conclusion: The Cerenkov dose generated by high-energy photon and electron beams may produce minimal clinical effect in comparison with the photon fluence (or dose) commonly used for photo-dynamic therapy. At the present time, it is unclear whether Cerenkov radiation is a significant contributor to the recently observed tumor regression for patients receiving radiotherapy and PpIX versus patients receiving radiotherapy only. The ongoing study will include animal experimentation and investigation of dose rate effects on PpIX response.
State-Boundedness in Data-Aware Dynamic Systems Babak Bagheri Hariri
Calvanese, Diego
relaxations of the sufficient conditions proposed in the concrete setting of Data-Centric Dynamic Systems, such as data-centric workflows (Vianu 2009) and business artifacts (Hull 2008), where the static (i.e., data for the verification of state-bounded Data-Centric Dynamic Systems (DCDSs) against a first-order variant of the µ
Femtosecond Transition-State Dynamics of Dissociating OCS on the Excited 1+ Potential Energy Surface
Liu, Shilin
Femtosecond Transition-State Dynamics of Dissociating OCS on the Excited 1+ Potential Energy photodissociation dynamics of OCS on the dissociative potential energy surface (PES) of the electronically excited 1 calculations. The high-resolution PHOFEX spectrum of the entire 1+-1+ transition (63 300-69 350 cm-1
Estimated Value of Service Reliability for Electric Utility Customers in the United States
Sullivan, M.J.
2009-01-01
applied to indicators like SAIDI and SAIFI for purposes ofperformance (e.g. , SAIFI and SAIDI); estimate partialperformance (e.g. , SAIFI and SAIDI); estimate partial
Woli, Prem; Paz, Joel O.
2011-12-23
Global solar radiation Rg is an important input for crop models to simulate crop responses. Because the scarcity of long and continuous records of Rg is a serious limitation in many countries, Rg is estimated using models. For crop-model application, empirical Rg models that use commonly measured meteorological variables, such as temperature and precipitation, are generally preferred. Although a large number of models of this kind exist, few have been evaluated for conditions in the United States. This study evaluated the performances of 16 empirical, temperature- and/or precipitation-based Rg models for the southeastern United States. By taking into account spatial distribution and data availability, 30 locations in the region were selected and their daily weather data spanning eight years obtained. One-half of the data was used for calibrating the models, and the other half was used for evaluation. For each model, location-specific parameter values were estimated through regressions. Models were evaluated for each location using the root-mean-square error and the modeling efficiency as goodness-of-fit measures. Among the models that use temperature or precipitation as the input variable, the Mavromatis model showed the best performance. The piecewise linear regressionÃ?Â¢Ã?Â?Ã?Â?based Wu et al. model (WP) performed best not only among the models that use both temperature and precipitation but also among the 16 models evaluated, mainly because it has separate relationships for low and high radiation levels. The modeling efficiency of WP was from ~5% to more than 100% greater than those of the other models, depending on models and locations.
Identification of the protein folding transition state from molecular dynamics trajectories
Caflisch, Amedeo
Identification of the protein folding transition state from molecular dynamics trajectories S. Muff The rate of protein folding is governed by the transition state so that a detailed characterization of its. INTRODUCTION Proteins fold from the heterogeneous set of denatured conformations to the structurally well
Groundwater dynamics along a hillslope: A test of the steady state hypothesis
McDonnell, Jeffrey J.
Groundwater dynamics along a hillslope: A test of the steady state hypothesis Jan Seibert,1 Kevin modeling is that the relation between groundwater levels and runoff can be described as a succession of steady state conditions. This results in a single- valued, monotonic function between the groundwater
Dynamic estimation of specific growth rates and concentrations of bacteria for the
Paris-Sud XI, Université de
-digestion of several wastes (manure, sewage sludge and wastes from food processing industry) is another environmentally the dilution rate and the flow rates of methane and carbon dioxide in the biogas. The estimation schemes thus. Keywords: Waste treatment, Biotechnology, Observer, Estimation theory, Algebraic systems theory 1
PMU Placement for Dynamic State Tracking of Power Systems
Sun, Yannan; Du, Pengwei; Huang, Zhenyu; Kalsi, Karanjit; Diao, Ruisheng; Anderson, Kevin K.; Li, Yulan; Lee, Barry
2011-08-04
Accurately tracking the state variables (rotor angle and speed) is a necessity for monitoring system stability conditions and assessing the risks of large-scale system collapse. This paper explores how the number and locations of PMUs installed in the system are determined to ensure satisfactory state tracking performance. A search algorithm is presented for determining PMU placement (location and quantity). The algorithm determines a placement that gives small tracking error in polynomial time. A modified, scalable algorithm is also presented. Observability in the presence of faults is considered. Simulation results for a 16-machine and a 50-machine system are provided.
Kim, Young-Min; Zhou, Ying; Gao, Yang; Fu, Joshua S.; Johnson, Brent; Huang, Cheng; Liu, Yang
2015-01-01
BACKGROUND: The spatial pattern of the uncertainty in climate air pollution health impact has rarely been studied due to the lack of high-resolution model simulations, especially under the latest Representative Concentration Pathways (RCPs). OBJECTIVES: We estimated county-level ozone (O3) and PM2.5 related excess mortality (EM) and evaluated the associated uncertainties in the continental United States in the 2050s under RCP4.5 and RCP8.5. METHODS: Using dynamically downscaled climate model simulations, we calculated changes in O3 and PM2.5 levels at 12 km resolution between the future (2057-2059) and present (2001-2004) under two RCP scenarios. Using concentration-response relationships in the literature and projected future populations, we estimated EM attributable to the changes in O3 and PM2.5. We finally analyzed the contribution of input variables to the uncertainty in the county-level EM estimation using Monte Carlo simulation. RESULTS: O3-related premature deaths in the continental U.S. were estimated to be 1,082 deaths/year under RCP8.5 (95% confidence interval (CI): -288 to 2,453), and -5,229 deaths/year under RCP4.5 (-7,212 to -3,246). Simulated PM2.5 changes resulted in a significant decrease in EM under the two RCPs. The uncertainty of O3-related EM estimates was mainly caused by RCP scenarios, whereas that of PM2.5-related EMs was mainly from concentration-response functions. CONCLUSION: EM estimates attributable to climate change-induced air pollution change as well as the associated uncertainties vary substantially in space, and so are the most influential input variables. Spatially resolved data is crucial to develop effective mitigation and adaptation policy.
Sun, Jian
[1] We use a conditional averaging approach to estimate the parameters of a land surface water and energy balance model and then use the estimated parameters to partition net radiation into latent, sensible, and ground ...
Chaotic Dynamics in Multidimensional Transition States Ali Allahem1, a)
, not in configuration space. It is bounded by a high-dimensional invariant hyper-sphere that plays the role of the periodic orbit in the two-dimensional setting. At sufficiently low energies, this hyper geometric objects in phase space: An invariant hyper-sphere that represents the transition state itself
Dutta, Parikshit
2012-10-19
Recently there has been growing interest to characterize and reduce uncertainty in stochastic dynamical systems. This drive arises out of need to manage uncertainty in complex, high dimensional physical systems. Traditional ...
Parameter Estimation of Dynamic Air-conditioning Component Models Using Limited Sensor Data
Hariharan, Natarajkumar
2011-08-08
This thesis presents an approach for identifying critical model parameters in dynamic air-conditioning systems using limited sensor information. The expansion valve model and the compressor model parameters play a crucial ...
Melanoma costs: A dynamic model comparing estimated overall costs of various clinical stages
Alexandrescu, Doru Traian
2009-01-01
AL. Trends in treatment costs for localized prostate cancer:R, Elkin EP, et al. Cumulative cost pattern comparison ofAn estimate of the annual direct cost of treating cutaneous
Jo, Sunhwan; Im, Wonpil
2011-06-22
As the major component of membrane proteins, transmembrane helices embedded in anisotropic bilayer environments adopt preferential orientations that are characteristic or related to their functional states. Recent developments ...
Lithium-Ion battery State of Charge estimation with a Kalman Filter based on a electrochemical model
Stefanopoulou, Anna
Lithium-Ion battery State of Charge estimation with a Kalman Filter based on a electrochemical model Domenico Di Domenico, Giovanni Fiengo and Anna Stefanopoulou Abstract-- Lithium-ion battery hybrid electric vehicles (HEV). In most cases the lithium-ion battery performance plays an important role
Robustness analysis of State-of-Charge estimation methods for two types of Li-ion batteries
Peng, Huei
Robustness analysis of State-of-Charge estimation methods for two types of Li-ion batteries i g h l i g h t s battery model parameters are optimized. 2012 Accepted 1 June 2012 Available online 9 June 2012 Keywords: Battery management systems SOC
2006-01-01
-based models developed using ADVISOR [13] and makes them suit- able for real-time embedded system applications of the system and provides a realistic estimate of the state of charge of the cell as a function of time, for a given set of properties of the electrodes. An electrochemical cell model is used to obtain an extended
Effective Temperature in Steady-state Dynamics from Holography
Kundu, Arnab
2015-01-01
We argue that, within the realm of gauge-gravity duality, for a large class of systems in a steady-state there exists an effective thermodynamic description. This description comes equipped with an effective temperature and a free energy, but no well-defined notion of entropy. Such systems are described by probe degrees of freedom propagating in a much larger background, e.g. $N_f$ number of ${\\cal N} =2$ hypermultiplets in ${\\cal N}=4$ $SU(N_c)$ super Yang-Mills theory, in the limit $N_f \\ll N_c$. The steady-state is induced by exciting an external electric field that couples to the hypermultiplets and drives a constant current. With various stringy examples, we demonstrate that an open string equivalence principle determines a unique effective temperature for all fluctuations in the probe-sector. We further discuss various properties of the corresponding open string metric that determines the effective geometry which the probe degrees of freedom are coupled to. We also comment on the non-Abelian generalizat...
Quantum Chemical Analysis of the Excited State Dynamics of Hydrated Electrons
P. O. J. Scherer; Sighart F. Fischer
2006-02-01
Quantum calculations are performed for an anion water cluster representing the first hydration shell of the solvated electron in solution. The absorption spectra from the ground state, the instant excited states and the relaxed excited states are calculated including CI-SD interactions. Analytic expressions for the nonadiabatic relaxation are presented. It is shown that the 50fs dynamics recently observed after s->p excitation is best accounted for if it is identified with the internal conversion, preceded by an adiabatic relaxation within the excited p state. In addition, transient absorptions found in the infrared are qualitatively reproduced by these calculations .
Dynamics of multi-modes maximum entangled coherent state over amplitude damping channel
A. El Allati; Y. Hassouni; N. Metwally
2012-02-18
The dynamics of maximum entangled coherent state travels through an amplitude damping channel is investigated. For small values of the transmissivity rate the travelling state is very fragile to this noise channel, where it suffers from the phase flip error with high probability. The entanglement decays smoothly for larger values of the transmissivity rate and speedily for smaller values of this rate. As the number of modes increases, the travelling state over this noise channel loses its entanglement hastily. The odd and even states vanish at the same value of the field intensity.
Estimated Value of Service Reliability for Electric Utility Customers in the United States
Sullivan, M.J.
2009-01-01
Ordinary Least Squares SAIDI – System Average Interruptionapplied to indicators like SAIDI and SAIFI for purposes ofe.g. , SAIFI and SAIDI); estimate partial interruption cost;
Estimate of Maximum Underground Working Gas Storage Capacity in the United States: 2007 Update
Reports and Publications (EIA)
2007-01-01
This report provides an update to an estimate for U.S. aggregate natural gas storage capacity that was released in 2006.
False Data Injection Attacks against State Estimation in Electric Power Grids
Ning, Peng
the measurements of meters at physically protected locations such as substations, such attacks can introduce of about 50 million people. The estimated total cost
A SURVEY OF STATE-LEVEL COST ESTIMATES OF RENEWABLES PORTFOLIO STANDARDS
Barbose, Galen
2014-01-01
LEVEL COST ESTIMATES OF RENEWABLES PORTFOLIO STANDARDS Galenthe incremental cost of renewables portfolio standards (RPS)Washington DC have adopted renewables portfolio standards (
Quantum dynamics and state-dependent affine gauge fields on CP(N-1)
Peter Leifer
2008-04-11
Gauge fields frequently used as an independent construction additional to so-called wave fields of matter. This artificial separation is of course useful in some applications (like Berry's interactions between the "heavy" and "light" sub-systems) but it is restrictive on the fundamental level of "elementary" particles and entangled states. It is shown that the linear superposition of action states and non-linear dynamics of the local dynamical variables form an oscillons of energy representing non-local particles - "lumps" arising together with their "affine gauge potential" agrees with Fubini-Study metric. I use the conservation laws of local dynamical variables (LDV's) during affine parallel transport in complex projective Hilbert space $CP(N-1)$ for twofold aim. Firstly, I formulate the variation problem for the ``affine gauge potential" as system of partial differential equations \\cite{Le1}. Their solutions provide embedding quantum dynamics into dynamical space-time whose state-dependent coordinates related to the qubit spinor subjected to Lorentz transformations of "quantum boosts" and "quantum rotations". Thereby, the problem of quantum measurement being reformulated as the comparison of LDV's during their affine parallel transport in $CP(N-1)$, is inherently connected with space-time emergences. Secondly, the important application of these fields is the completeness of quantum theory. The EPR and Schr\\"odinger's Cat paradoxes are discussed from the point of view of the restored Lorentz invariance due to the affine parallel transport of local Hamiltonian of the soliton-like field.
A STEADY-STATE FEL: PARTICLE DYNAMICS IN THE FEL PORTION OF A TWO-BEAM ACCELERATOR
Sternbach, E.
2008-01-01
September 8-13, 1985 A STEADY-STATE FEL: PARTICLE DYNAMICSIN THE FEL PORTION OF A TWO-BEAM ACCELERATOR E. SternbachLBL-19939 A STEADY-STATE FEL: PARTICLE DYNAMICS IN THE FEL
Soil thermal dynamics of terrestrial ecosystems of the conterminous United States from 1948 to 2008
Zhuang, Qianlai
). Thus, the heat stored in soil and temperature variations cannot be ignored when studying airSoil thermal dynamics of terrestrial ecosystems of the conterminous United States from 1948 to 2008 to changes in vegetation, snow, soil moisture, and other climate variables (i.e., precipitation, solar
Finding Bugs in Web Applications Using Dynamic Test Generation and Explicit-State
Ernst, Michael
during program execution, and HTML failures that occur when the application generates mal- formed HTML may be halted, depending on the severity of the failure. HTML failures occur when output is generatedFinding Bugs in Web Applications Using Dynamic Test Generation and Explicit-State Model Checking
Droegemeier, Kelvin K.
1 Draft Chapter from Mesoscale Dynamic Meteorology By Prof. Yu-lang Lin, North Carolina State University Chapter 1 Overview 1.1 Introduction The so-called mesometeorology or mesoscale meteorology as mesoscale phenomena by others (e.g. Orlanski 1975; Thunis and Bornstein 1996). Therefore, a more precise
Current (2009) State-of-the-Art Hydrogen Production Cost Estimate Using Water Electrolysis
Fuel Cell Technologies Publication and Product Library (EERE)
This independent review examines DOE cost targets for state-of-the art hydrogen production using water electrolysis.
Current (2009) State-of-the-Art Hydrogen Production Cost Estimate Using Water Electrolysis
None
2010-09-30
This independent review examines DOE cost targets for state-of-the art hydrogen production using water electrolysis.
Not Available
2009-09-01
This independent review examines DOE cost targets for state-of-the art hydrogen production using water electrolysis.
Excited State Structural Dynamics of Carotenoids and ChargeTransfer Systems
Van Tassle, Aaron Justin
2006-09-01
This dissertation describes the development andimplementation of a visible/near infrared pump/mid-infrared probeapparatus. Chapter 1 describes the background and motivation ofinvestigating optically induced structural dynamics, paying specificattention to solvation and the excitation selection rules of highlysymmetric molecules such as carotenoids. Chapter 2 describes thedevelopment and construction of the experimental apparatus usedthroughout the remainder of this dissertation. Chapter 3 will discuss theinvestigation of DCM, a laser dye with a fluorescence signal resultingfrom a charge transfer state. By studying the dynamics of DCM and of itsmethyl deuterated isotopomer (an otherwise identical molecule), we areable to investigate the origins of the charge transfer state and provideevidence that it is of the controversial twisted intramolecular (TICT)type. Chapter 4 introduces the use of two-photon excitation to the S1state, combined with one-photon excitation to the S2 state of thecarotenoid beta-apo-8'-carotenal. These 2 investigations show evidencefor the formation of solitons, previously unobserved in molecular systemsand found only in conducting polymers Chapter 5 presents an investigationof the excited state dynamics of peridinin, the carotenoid responsiblefor the light harvesting of dinoflagellates. This investigation allowsfor a more detailed understanding of the importance of structuraldynamics of carotenoids in light harvesting.
Battery State Estimation for a Single Particle Model with Electrolyte Dynamics
Moura, Scott J; Bribiesca Argomedo, Federico; Klein, Reinhardt; Mirtabatabaei, Anahita; Krstic, Miroslav
2015-01-01
two concatenated UDDS drive cycles simulated on modelsinitial conditions and drive cycle inputs, including US06,
Initial-state dependence of the quench dynamics in integrable quantum systems
Rigol, Marcos [Department of Physics,Georgetown University, Washington, DC 20057 (United States); Fitzpatrick, Mattias [Department of Physics,Georgetown University, Washington, DC 20057 (United States); Department of Physics, Middlebury College, Middlebury, Vermont 05753 (United States)
2011-09-15
We identify and study classes of initial states in integrable quantum systems that, after the relaxation dynamics following a sudden quench, lead to near-thermal expectation values of few-body observables. In the systems considered here, those states are found to be insulating ground states of lattice hard-core boson Hamiltonians. We show that, as a suitable parameter in the initial Hamiltonian is changed, those states become closer to Fock states (products of single site states) as the outcome of the relaxation dynamics becomes closer to the thermal prediction. At the same time, the energy density approaches a Gaussian. Furthermore, the entropy associated with the generalized canonical and generalized grand-canonical ensembles, introduced to describe observables in integrable systems after relaxation, approaches that of the conventional canonical and grand-canonical ensembles. We argue that those classes of initial states are special because a control parameter allows one to tune the distribution of conserved quantities to approach the one in thermal equilibrium. This helps in understanding the approach of all the quantities studied to their thermal expectation values. However, a finite-size scaling analysis shows that this behavior should not be confused with thermalization as understood for nonintegrable systems.
Li, Charles
Dynamic magnetization states of a spin valve in the presence of dc and ac currents: Synchronization and numerical calculations of dynamic magnetization states of a spin valve in the presence of dc and ac currents are expected to appear. In this paper, we consider a simple spin valve as a model system to study the problem
Röder, Beate
Dynamics from Pump-Probe Signals S. Ramakrishna* and F. Willig Hahn-Meitner-Institut, 14109 Berlin, Germany Numerical calculations of pump-probe signals corresponding to excited-state absorption of the molecular to model the pump-probe dynamics. The continuum of semiconductor states, namely, its conduction-band levels
Murphy, Robert F.
1 Robust Data-Driven State Estimation for Smart Grid Yang Weng, Student Member, IEEE, Rohit Negi, a grand challenge to the newly built smart grid is how to "optimally" estimate the state with increasing in the volatile smart grid. Frequent topology changes, poor measurement accuracy, and malicious attack can further
Vermont, University of
Analysis A summary of ISEW and GPI studies at multiple scales and new estimates for Baltimore City, Baltimore County, and the State of Maryland Stephen M. Posner a, , Robert Costanza b a Gund Institute) estimates the GPI for Baltimore, Baltimore County, and the State of Maryland; and (3) compares these results
Johansson, Karl Henrik
Cyber Security Analysis of State Estimators in Electric Power Systems Andr´e Teixeira, Saurabh Amin, Henrik Sandberg, Karl H. Johansson, and Shankar S. Sastry Abstract-- In this paper, we analyze the cyber security of state estimators in Supervisory Control and Data Acquisition (SCADA) systems operating in power
Estimated Value of Service Reliability for Electric Utility Customers in the United States
Sullivan, M.J.; Mercurio, Matthew; Schellenberg, Josh
2009-06-01
Information on the value of reliable electricity service can be used to assess the economic efficiency of investments in generation, transmission and distribution systems, to strategically target investments to customer segments that receive the most benefit from system improvements, and to numerically quantify the risk associated with different operating, planning and investment strategies. This paper summarizes research designed to provide estimates of the value of service reliability for electricity customers in the US. These estimates were obtained by analyzing the results from 28 customer value of service reliability studies conducted by 10 major US electric utilities over the 16 year period from 1989 to 2005. Because these studies used nearly identical interruption cost estimation or willingness-to-pay/accept methods it was possible to integrate their results into a single meta-database describing the value of electric service reliability observed in all of them. Once the datasets from the various studies were combined, a two-part regression model was used to estimate customer damage functions that can be generally applied to calculate customer interruption costs per event by season, time of day, day of week, and geographical regions within the US for industrial, commercial, and residential customers. Estimated interruption costs for different types of customers and of different duration are provided. Finally, additional research and development designed to expand the usefulness of this powerful database and analysis are suggested.
Dynamic states of cells adhering in shear flow: from slipping to rolling
C. B. Korn; U. S. Schwarz
2008-04-02
Motivated by rolling adhesion of white blood cells in the vasculature, we study how cells move in linear shear flow above a wall to which they can adhere via specific receptor-ligand bonds. Our computer simulations are based on a Langevin equation accounting for hydrodynamic interactions, thermal fluctuations and adhesive interactions. In contrast to earlier approaches, our model not only includes stochastic rules for the formation and rupture of bonds, but also fully resolves both receptor and ligand positions. We identify five different dynamic states of motion in regard to the translational and angular velocities of the cell. The transitions between the different states are mapped out in a dynamic state diagram as a function of the rates for bond formation and rupture. For example, as the cell starts to adhere under the action of bonds, its translational and angular velocities become synchronized and the dynamic state changes from slipping to rolling. We also investigate the effect of non-molecular parameters. In particular, we find that an increase in viscosity of the medium leads to a characteristic expansion of the region of stable rolling to the expense of the region of firm adhesion, but not to the expense of the regions of free or transient motion. Our results can be used in an inverse approach to determine single bond parameters from flow chamber data on rolling adhesion.
Oladosu, Gbadebo A; Kline, Keith L
2013-01-01
The global indirect land use change (ILUC) implications of biofuel use in the United States of America (USA) from 2001 to 2010 are evaluated with a dynamic general equilibrium model. The effects of biofuels production on agricultural land area vary by year; from a net expansion of 0.17 ha per 1000 gallons produced (2002) to a net contraction of 0.13 ha per 1000 gallons (2018) in Case 1 of our simulation. In accordance with the general narrative about the implications of biofuel policy, agricultural land area increased in many regions of the world. However, oil-export dependent economies experienced agricultural land contraction because of reductions in their revenues. Reducing crude oil imports is a major goal of biofuel policy, but the land use change implications have received little attention in the literature. Simulations evaluating the effects of doubling supply elasticities for land and fossil resources show that these parameters can significantly influence the land use change estimates. Therefore, research that provides empirically-based and spatially-detailed agricultural land-supply curves and capability to project future fossil energy prices is critical for improving estimates of the effects of biofuel policy on land use.
On the optimal thresholds in remote state estimation with communication costs
Mahajan, Aditya
communication cost and estimation accuracy. This model is motivated by applications in smart grids and environmental monitoring. In smart grids, it is envisioned that smart meters will measure the energy consumption. INTRODUCTION A. Motivation In this paper, we consider a model that captures a funda- mental trade-off between
Los Angeles, California, May 6 -9, 2012 A Behavioral Algorithm for State of Charge Estimation
He, Lei
conditions while producing adequate re- sults with other battery types or discharge con- ditions. Moreover an electrochemical battery. A variety of methods to solve this estimation problem have been proposed in the literature. However, most of these methods either assume equivalent circuit models for the battery and thus
Estimate of Maximum Underground Working Gas Storage Capacity in the United States
Reports and Publications (EIA)
2006-01-01
This report examines the aggregate maximum capacity for U.S. natural gas storage. Although the concept of maximum capacity seems quite straightforward, there are numerous issues that preclude the determination of a definitive maximum volume. The report presents three alternative estimates for maximum capacity, indicating appropriate caveats for each.
Steady-State Dynamics of the Forest Fire Model on Complex Networks
Bancal, Jean-Daniel
2009-01-01
Many sociological networks, as well as biological and technological ones, can be represented in terms of complex networks with a heterogeneous connectivity pattern. Dynamical processes taking place on top of them can be very much influenced by this topological fact. In this paper we consider a paradigmatic model of non-equilibrium dynamics, namely the forest fire model, whose relevance lies in its capacity to represent several epidemic processes in a general parametrization. We study the behavior of this model in complex networks by developing the corresponding heterogeneous mean-field theory and solving it in its steady state. We provide exact and approximate expressions for homogeneous networks and several instances of heterogeneous networks. A comparison of our analytical results with extensive numerical simulations allows to draw the region of the parameter space in which heterogeneous mean-field theory provides an accurate description of the dynamics, and enlights the limits of validity of the mean-field...
Quantitative estimates on the Hydrogen ground state energy in non-relativistic QED
Barbaroux, Jean-Marie; Vugalter, Semjon; Vougalter, Vitali
2009-01-01
We determine the exact expression for the hydrogen ground state energy in the Pauli-Fierz model up to the order $O(\\alpha^5\\log\\alpha^{-1})$, where $\\alpha$ denotes the finestructure constant, and prove rigorous bounds on the remainder term of the order $o(\\alpha^5\\log\\alpha^{-1})$. As a consequence, we prove that the ground state energy is not a real analytic function of $\\alpha$, and verify the existence of logarithmic corrections to the expansion of the ground state energy in powers of $\\alpha$, as conjectured in the recent literature.
Dynamic nuclear polarization solid-state NMR in heterogeneous catalysis research
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Kobayashi, Takeshi; Perras, Frédéric A.; Slowing, Igor I.; Sadow, Aaron D.; Pruski, Marek
2015-10-20
In this study, a revolution in solid-state nuclear magnetic resonance (SSNMR) spectroscopy is taking place, attributable to the rapid development of high-field dynamic nuclear polarization (DNP), a technique yielding sensitivity improvements of 2–3 orders of magnitude. This higher sensitivity in SSNMR has already impacted materials research, and the implications of new methods on catalytic sciences are expected to be profound.
Obaid, Rana; Kinzel, Daniel; Oppel, Markus González, Leticia
2014-10-28
Despite the concept of nuclear spin isomers (NSIs) exists since the early days of quantum mechanics, only few approaches have been suggested to separate different NSIs. Here, a method is proposed to discriminate different NSIs of a quinodimethane derivative using its electronic excited state dynamics. After electronic excitation by a laser field with femtosecond time duration, a difference in the behavior of several quantum mechanical operators can be observed. A pump-probe experimental approach for separating these different NSIs is then proposed.
Hamiltonian approach to the dynamics of Ehrenfest expectation values and Gaussian quantum states
Esther Bonet-Luz; Cesare Tronci
2015-07-09
The dynamics of quantum expectation values is considered in a geometric setting. First, expectation values of the canonical operators are shown to be equivariant momentum maps for the action of the Heisenberg group on quantum states. Then, the Hamiltonian structure of Ehrenfest's theorem is shown to be Lie-Poisson for a semidirect-product Lie group, named the `Ehrenfest group'. In addition, quantum dynamics is expressed in the frame of the expectation values, in which the latter undergo canonical Hamiltonian motion. In the case of Gaussian states, expectation values dynamics couples to second-order moments, which also enjoy a momentum map structure. Eventually, Gaussian states are shown to possess a Lie-Poisson structure associated to a semidirect-product subgroup of the Ehrenfest group, which is called the Jacobi group. This structure produces new energy-conserving terms in a class of Gaussian moment models (previously appeared in the chemical physics literature) that suffer from lack of energy conservation in the general case.
Effects of aging in catastrophe on the steady state and dynamics of a microtubule population
V. Jemseena; Manoj Gopalakrishnan
2015-07-01
Several independent observations have suggested that catastrophe transition in microtubules is not a first-order process, as is usually assumed. Recent {\\it in vitro} observations by Gardner et al.[ M. K. Gardner et al., Cell {\\bf147}, 1092 (2011)] showed that microtubule catastrophe takes place via multiple steps and the frequency increases with the age of the filament. Here, we investigate, via numerical simulations and mathematical calculations, some of the consequences of age dependence of catastrophe on the dynamics of microtubules as a function of the aging rate, for two different models of aging: exponential growth, but saturating asymptotically and purely linear growth. The boundary demarcating the steady state and non-steady state regimes in the dynamics is derived analytically in both cases. Numerical simulations, supported by analytical calculations in the linear model, show that aging leads to non-exponential length distributions in steady state. More importantly, oscillations ensue in microtubule length and velocity. The regularity of oscillations, as characterized by the negative dip in the autocorrelation function, is reduced by increasing the frequency of rescue events. Our study shows that age dependence of catastrophe could function as an intrinsic mechanism to generate oscillatory dynamics in a microtubule population, distinct from hitherto identified ones.
2015-01-01
S, Strik W, et al. Static and Dynamic Characteristics ofpone.0121757 March 27, 2015 Static and Dynamic StateJR, Yan L, Chen JJ. Dynamic and static contributions of the
F. Affouard; M. Descamps
2005-02-15
Slow dynamics of difluorotetrachloroethane in both supercooled plastic crystal and supercooled liquid states have been investigated from Molecular Dynamics simulations. The temperature and wave-vector dependence of collective dynamics in both states are probed using coherent dynamical scattering functions $S(Q,t)$. Our results confirm the strong analogy between molecular liquids and plastic crystals for which $\\alpha$-relaxation times and non-ergodicity parameters are controlled by the non trivial static correlations $S(Q)$ as predicted by the Mode Coupling Theory. The use of infinitely thin needles distributed on a lattice as model of plastic crystals is discussed.
Schwedock, M.J.; Windes, L.C.; Ray, W.H.
1985-01-01
Heterogeneous and pseudohomogeneous models are compared to experimental data from a packed bed reactor for the partical oxidation of methanol to formaldehyde over an iron oxide-molybdenum oxide catalyst. Heat transfer parameters which were successful in matching data from experiments without reaction were not successful in matching temperature data from experiments with reaction. This made it necessary to decrease the fluid radial heat transfer to obtain good fit. A good fit was obtained for steady state composition profiles by optimizing selected frequency factors and the activation energy for methanol. A redox rate expression for the oxidation of formaldehyde to carbon monoxide was proposed since a simple first-order rate expression did not fit the data. The pseudohomogeneous model gave results similar to the heterogeneous model for both steady state and dynamic experiments and has been recommended for future experimental state estimation and control studies. 21 refs., 31 figs., 6 tabs.
Method and system to estimate variables in an integrated gasification combined cycle (IGCC) plant
Kumar, Aditya; Shi, Ruijie; Dokucu, Mustafa
2013-09-17
System and method to estimate variables in an integrated gasification combined cycle (IGCC) plant are provided. The system includes a sensor suite to measure respective plant input and output variables. An extended Kalman filter (EKF) receives sensed plant input variables and includes a dynamic model to generate a plurality of plant state estimates and a covariance matrix for the state estimates. A preemptive-constraining processor is configured to preemptively constrain the state estimates and covariance matrix to be free of constraint violations. A measurement-correction processor may be configured to correct constrained state estimates and a constrained covariance matrix based on processing of sensed plant output variables. The measurement-correction processor is coupled to update the dynamic model with corrected state estimates and a corrected covariance matrix. The updated dynamic model may be configured to estimate values for at least one plant variable not originally sensed by the sensor suite.
Haeyrynen, Teppo; Oksanen, Jani; Tulkki, Jukka [Department of Biomedical Engineering and Computational Science, Aalto University School of Science and Technology, P. O. Box 12200, FI-00076 AALTO (Finland)
2011-01-15
We consider simultaneous dissipative and amplifying coupling of cavity fields to multiple two-state systems. We derive a master equation for optical field in a leaky cavity coupled to a reservoir through multiple two-state systems. In our previous works we have limited our study to systems where the reservoir either solely absorbs energy (detector setup) or adds energy (amplifying setup) to the cavity through a single two-state system. In this work we allow both interactions simultaneously and derive a reduced dynamic model for the optical field. We also generalize our model to cover the coupling of the field to several two state systems and discuss its connection to macroscopic interaction, e.g., in semiconductors. Our model includes four physical parameters: the field two-state system coupling {gamma}, the excitation and deexcitation couplings of the two-state system by the reservoir {lambda}{sub A} and {lambda}{sub D}, respectively, and the mirror losses of the cavity C. We solve the steady-state fields at different regimes of these physical parameters. Furthermore, we show that, depending on the parameters, our model can describe the operation of a detector, a light emitting diode, or a laser.
Jake Iles-Smith; Neill Lambert; Ahsan Nazir
2014-09-25
Quantum systems are invariably open, evolving under surrounding influences rather than in isolation. Standard open quantum system methods eliminate all information on the environmental state to yield a tractable description of the system dynamics. By incorporating a collective coordinate of the environment into the system Hamiltonian, we circumvent this limitation. Our theory provides straightforward access to important environmental properties that would otherwise be obscured, allowing us to quantify the evolving system-environment correlations. As a direct result, we show that the generation of robust system-environment correlations that persist into equilibrium (heralded also by the emergence of non-Gaussian environmental states) renders the canonical system steady-state almost always incorrect. The resulting equilibrium states deviate markedly from those predicted by standard perturbative techniques and are instead fully characterised by thermal states of the mapped system-collective coordinate Hamiltonian. We outline how noncanonical system states could be investigated experimentally to study deviations from canonical thermodynamics, with direct relevance to molecular and solid-state nanosystems.
Estimation of the urban household demand for water in the United States
Foster, Henry Sessam
1977-01-01
Htctec FIi3iiary Academy Chai:man of Advisory Commi. t Lee: Br. iiruce R. B' aItie This research was rnndertai~en to specify;. nd estimat? model rc- 1- ting household demand lor urban water i. o its principal dcLcrImLnun Ls. Feud specif ic objectives... were ustabldshed to guide the analysis: To postulaLo; n srpropriaLc:-c nomic demand mcdcl for house- ho]ds uh To estimate. pam motors of *hc model based. on pcoi cd data re?resent' ng uli. of the U. H, '3. To csc-blish cL ULor:a for a. breawdcwn...
Real-time State Estimation on Micro-grids Ying Hu, Anthony Kuh, Aleksandar Kavcic
Kavcic, Aleksandar
variables. The factor functions are defined for both the circuit elements and the renewable energy. In addition, the proposed graphical model can integrate new models for solar/wind cor- relation that will help with the integration study of renewable energy. Our state-of-art approach provides a robust foundation for the smart
Comparative study of State Estimation of Fuel Cell Hybrid System Using UKF and EKF
Foss, Bjarne A.
Cell (SOFC) combined with Gas Turbine (GT) hybrid system is described and system level modeling of the most promising fuel cell technologies is the Solid Oxide Fuel Cell (SOFC) due to its solid state design and internal reforming of gaseous fuels, in addition to its high efficiency. The SOFC converts the chemical
Quantum dynamics of a two-state system induced by a chirped zero-area pulse
Lee, Han-gyeol; Kim, Hyosub; Jo, Hanlae; Ahn, Jaewook
2015-01-01
We report our theoretical and experimental investigation of chirped zero-area pulse interaction with a two-state system. With femto-second laser pulses shaped to have a frequency chirp and a spectral hole at resonance, we demonstrate three major coherent dynamics in two-state systems: zero-area pulse excitations, Rabi-like oscillations, and rapid adiabatic passage. The underlying mechanism behind these rich coherent phenomena is the interplay between the adiabatic evolution and the Rabi-like evolution, respectively, induced by the chirp and the spectral hole. The result suggests that a Rabi-like oscillation can be embedded in an adiabatic evolution, offering a new control scheme towards selective excitation in multi-state quantum systems.
Guido Tiana; Carlo Camilloni
2012-07-05
The atomistic characterization of the transition state is a fundamental step to improve the understanding of the folding mechanism and the function of proteins. From a computational point of view, the identification of the conformations that build out the transition state is particularly cumbersome, mainly because of the large computational cost of generating a statistically-sound set of folding trajectories. Here we show that a biasing algorithm, based on the physics of the ratchet-and-pawl, can be used to identify efficiently the transition state. The basic idea is that the algorithmic ratchet exerts a force on the protein when it is climbing the free-energy barrier, while it is inactive when it is descending. The transition state can be identified as the point of the trajectory where the ratchet changes regime. Besides discussing this strategy in general terms, we test it within a protein model whose transition state can be studied independently by plain molecular dynamics simulations. Finally, we show its power in explicit-solvent simulations, obtaining and characterizing a set of transition--state conformations for ACBP and CI2.
Torres-Verdín, Carlos
Estimation of dynamic petrophysical properties of water-bearing sands invaded with oil-base mud, capillary pressure, and relative permeability of water-bearing sands invaded with oil-base mud (OBM) from-saturated sands are used for calibration of equivalent properties in hydrocarbon-bearing sands within the same
Mi, Chunting "Chris"
Estimation of Lithium-Ion Batteries Based on a Proportional-Integral Observer Jun Xu, Student Member, IEEE--With the development of electric drive vehicles (EDVs), the state-of-charge (SOC) estimation for lithium-ion (Li of lithium-ion batteries in EDVs. The structure of the proposed PI observer is analyzed, and the con
Quantitative estimates on the Hydrogen ground state energy in non-relativistic QED
Jean-Marie Barbaroux; Thomas Chen; Semjon Vugalter; Vitali Vougalter
2010-06-04
In this paper, we determine the exact expression for the hydrogen binding energy in the Pauli-Fierz model up to the order $O(\\alpha^5\\log\\alpha^{-1})$, where $\\alpha$ denotes the finestructure constant, and prove rigorous bounds on the remainder term of the order $o(\\alpha^5\\log\\alpha^{-1})$. As a consequence, we prove that the binding energy is not a real analytic function of $\\alpha$, and verify the existence of logarithmic corrections to the expansion of the ground state energy in powers of $\\alpha$, as conjectured in the recent literature.
Danel, J.-F.; Blottiau, P.; Kazandjian, L.; Piron, R.; Torrent, M.
2014-10-15
The applicability of quantum molecular dynamics to the calculation of the equation of state of a dense plasma is limited at high temperature by computational cost. Orbital-free molecular dynamics, based on a semiclassical approximation and possibly on a gradient correction, is a simulation method available at high temperature. For a high-Z element such as lutetium, we examine how orbital-free molecular dynamics applied to the equation of state of a dense plasma can be regarded as the limit of quantum molecular dynamics at high temperature. For the normal mass density and twice the normal mass density, we show that the pressures calculated with the quantum approach converge monotonically towards those calculated with the orbital-free approach; we observe a faster convergence when the orbital-free approach includes the gradient correction. We propose a method to obtain an equation of state reproducing quantum molecular dynamics results up to high temperatures where this approach cannot be directly implemented. With the results already obtained for low-Z plasmas, the present study opens the way for reproducing the quantum molecular dynamics pressure for all elements up to high temperatures.
Guallar, V.; Batista, V.S.; Miller, W.H. [Department of Chemistry, University of California, and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)] [Department of Chemistry, University of California, and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)
1999-05-01
An {ital ab initio} excited state potential energy surface is constructed for describing excited state double proton transfer in the tautomerization reaction of photo-excited 7-azaindole dimers, and the ultrafast dynamics is simulated using the semiclassical (SC) initial value representation (IVR). The potential energy surface, determined in a reduced dimensionality, is obtained at the CIS level of quantum chemistry, and an approximate version of the SC-IVR approach is introduced which scales {ital linearly} with the number of degrees of freedom of the molecular system. The accuracy of this approximate SC-IVR approach is verified by comparing our semiclassical results with full quantum mechanical calculations. We find that proton transfer usually occurs during the first intermonomer symmetric-stretch vibration, about 100 fs after photoexcitation of the system, and produces an initial 15 percent population decay of the reactant base-pair, which is significantly reduced by isotopic substitution. {copyright} {ital 1999 American Institute of Physics.} thinsp
Estimated winter 1980-1981 electric demand and supply, contiguous United States. Staff report
None
1980-12-01
This report summarizes the most recent data available concerning projected electrical peak demands and available power resouces for the 1980-1981 winter peak period, as reported by electric utilities in the contiguous United States. The data, grouped by Regional Reliability Council areas and by Electrical Regions within the Council areas, was obtained from the Form 12E-2 reports filed by utilities with the Department of Energy on October 15, 1980 (data as of September 30). In some instances the data were revised or verified by telephone. Considerations affecting reliability, arising from Nuclear Regulatory Commission actions based on lessons learned from the forced outage of Three Mile Island Nuclear Unit No. 2, were factored into the report. No widespread large-scale reliability problems are foreseen for electric power supply this winter, on the basis of the supply and demand projections furnished by the electric utilities. Reserve margins could drop in some electric regions to levels considered inadequate for reliable service, if historical forced-outage magnitudes recur.
van Stokkum, Ivo
Influence of the Crystalline State on Photoinduced Dynamics of Photoactive Yellow Protein Studied these conditions when it progresses through its photocycle. In the crystalline state i), much faster relaxation in crystalline PYP absorbs at 380 nm, rather than at 350360 nm in solution; and iii), for various intermediates
Gusev, Guennady
2006-01-01
Solid State Nuclear Magnetic Resonance 29 (2006) 5265 Dynamic nuclear polarization and nuclear Nuclear magnetic resonance is detected via the in-plane conductivity of a two-dimensional electron system edge states at the perimeter of the 2DES. Interpretation of the electron-nuclear double resonance
Input estimation from measured structural response
Harvey, Dustin [Los Alamos National Laboratory; Cross, Elizabeth [Los Alamos National Laboratory; Silva, Ramon A [Los Alamos National Laboratory; Farrar, Charles R [Los Alamos National Laboratory; Bement, Matt [Los Alamos National Laboratory
2009-01-01
This report will focus on the estimation of unmeasured dynamic inputs to a structure given a numerical model of the structure and measured response acquired at discrete locations. While the estimation of inputs has not received as much attention historically as state estimation, there are many applications where an improved understanding of the immeasurable input to a structure is vital (e.g. validating temporally varying and spatially-varying load models for large structures such as buildings and ships). In this paper, the introduction contains a brief summary of previous input estimation studies. Next, an adjoint-based optimization method is used to estimate dynamic inputs to two experimental structures. The technique is evaluated in simulation and with experimental data both on a cantilever beam and on a three-story frame structure. The performance and limitations of the adjoint-based input estimation technique are discussed.
Ground-state and dynamical properties of two-dimensional dipolar Fermi liquids
Abedinpour, Saeed H.; Asgari, Reza; Tanatar, B.; Polini, Marco
2014-01-15
We study the ground-state properties of a two-dimensional spin-polarized fluid of dipolar fermions within the Euler–Lagrange Fermi-hypernetted-chain approximation. Our method is based on the solution of a scattering Schrödinger equation for the “pair amplitude” ?(g(r)), where g(r) is the pair distribution function. A key ingredient in our theory is the effective pair potential, which includes a bosonic term from Jastrow–Feenberg correlations and a fermionic contribution from kinetic energy and exchange, which is tailored to reproduce the Hartree–Fock limit at weak coupling. Very good agreement with recent results based on quantum Monte Carlo simulations is achieved over a wide range of coupling constants up to the liquid-to-crystal quantum phase transition. Using the fluctuation–dissipation theorem and a static approximation for the effective inter-particle interactions, we calculate the dynamical density–density response function, and furthermore demonstrate that an undamped zero-sound mode exists for any value of the interaction strength, down to infinitesimally weak couplings. -- Highlights: •We have studied the ground state properties of a strongly correlated two-dimensional fluid of dipolar fermions. •We have calculated the effective inter-particle interaction and the dynamical density–density response function. •We have shown that an undamped zero sound mode exists at any value of the interaction strength.
Sanchez, Marla Christine; Sanchez, Marla Christine; Brown, Richard; Homan, Gregory; Webber, Carrie
2008-06-03
ENERGY STAR is a voluntary energy efficiency-labeling program operated jointly by the United States Department of Energy and the United States Environmental Protection Agency (US EPA). Since the program inception in 1992, ENERGY STAR has become a leading international brand for energy efficient products. ENERGY STAR's central role in the development of regional, national, and international energy programs necessitates an open process whereby its program achievements to date as well as projected future savings are shared with committed stakeholders. Through 2006, US EPA?S ENERGY STAR labeled products saved 4.8 EJ of primary energy and avoided 82 Tg C equivalent. We project that US EPA?S ENERGY STAR labeled products will save 12.8 EJ and avoid 203 Tg C equivalent over the period 2007-2015. A sensitivity analysis examining two key inputs (carbon factor and ENERGY STAR unit sales) bounds the best estimate of carbon avoided between 54 Tg C and 107 Tg C (1993 to 2006) and between 132 Tg C and 278 Tg C (2007 to 2015).
Optimizing a dynamical decoupling protocol for solid-state electronic spin ensembles in diamond
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Farfurnik, D.; Jarmola, A.; Pham, L. M.; Wang, Z. H.; Dobrovitski, V. V.; Walsworth, R. L.; Budker, D.; Bar-Gill, N.
2015-08-24
We demonstrate significant improvements of the spin coherence time of a dense ensemble of nitrogen-vacancy (NV) centers in diamond through optimized dynamical decoupling (DD). Cooling the sample down to 77 K suppresses longitudinal spin relaxation T1 effects and DD microwave pulses are used to increase the transverse coherence time T2 from ~0.7ms up to ~30ms. Furthermore, we extend previous work of single-axis (Carr-Purcell-Meiboom-Gill) DD towards the preservation of arbitrary spin states. Following a theoretical and experimental characterization of pulse and detuning errors, we compare the performance of various DD protocols. We also identify that the optimal control scheme for preservingmore »an arbitrary spin state is a recursive protocol, the concatenated version of the XY8 pulse sequence. The improved spin coherence might have an immediate impact on improvements of the sensitivities of ac magnetometry. Moreover, the protocol can be used on denser diamond samples to increase coherence times up to NV-NV interaction time scales, a major step towards the creation of quantum collective NV spin states.« less
John A. Sidles; Joseph L. Garbini; Jonathan P. Jacky; Rico A. R. Picone; Scott A. Harsila
2010-07-12
The practical focus of this work is the dynamical simulation of polarization transport processes in quantum spin microscopy and spectroscopy. The simulation framework is built-up progressively, beginning with state-spaces (configuration manifolds) that are geometrically natural, introducing coordinates that are algebraically natural; and finally specifying dynamical potentials that are physically natural; in each respect explicit criteria are given for "naturality." The resulting framework encompasses Hamiltonian flow (both classical and quantum), quantum Lindbladian processes, and classical thermostatic processes. Constructive validation and verification criteria are given for metric and symplectic flows on classical, quantum, and hybrid state-spaces, with particular emphasis to tensor network state-spaces. Both classical and quantum examples are presented, including dynamic nuclear polarization (DNP). A broad span of applications and challenges is discussed, ranging from the design and simulation of quantum spin microscopes to the design and simulation of quantum oracles.
Sidles, John A; Jacky, Jonathan P; Picone, Rico A R; Harsila, Scott A
2010-01-01
The practical focus of this work is the dynamical simulation of polarization transport processes in quantum spin microscopy and spectroscopy. The simulation framework is built-up progressively, beginning with state-spaces (configuration manifolds) that are geometrically natural, introducing coordinates that are algebraically natural; and finally specifying dynamical potentials that are physically natural; in each respect explicit criteria are given for "naturality." The resulting framework encompasses Hamiltonian flow (both classical and quantum), quantum Lindbladian processes, and classical thermostatic processes. Constructive validation and verification criteria are given for metric and symplectic flows on classical, quantum, and hybrid state-spaces, with particular emphasis to tensor network state-spaces. Both classical and quantum examples are presented, including dynamic nuclear polarization (DNP). A broad span of applications and challenges is discussed, ranging from the design and simulation of quantum...
When do we need to account for the geometric phase in excited state dynamics?
Ryabinkin, Ilya G.; Joubert-Doriol, Loïc; Izmaylov, Artur F.
2014-06-07
We investigate the role of the geometric phase (GP) in an internal conversion process when the system changes its electronic state by passing through a conical intersection (CI). Local analysis of a two-dimensional linear vibronic coupling (LVC) model Hamiltonian near the CI shows that the role of the GP is twofold. First, it compensates for a repulsion created by the so-called diagonal Born–Oppenheimer correction. Second, the GP enhances the non-adiabatic transition probability for a wave-packet part that experiences a central collision with the CI. To assess the significance of both GP contributions we propose two indicators that can be computed from parameters of electronic surfaces and initial conditions. To generalize our analysis to N-dimensional systems we introduce a reduction of a general N-dimensional LVC model to an effective 2D LVC model using a mode transformation that preserves short-time dynamics of the original N-dimensional model. Using examples of the bis(methylene) adamantyl and butatriene cations, and the pyrazine molecule we have demonstrated that their effective 2D models reproduce the short-time dynamics of the corresponding full dimensional models, and the introduced indicators are very reliable in assessing GP effects.
State Energy Production Estimates
Gasoline and Diesel Fuel Update (EIA)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988 1.996Deutsche Bank AG Oil10:Price andEnergy
Distribution System State Estimation
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalentLaboratory |Sector Full report (1.6 mb) Appendix2863[pic] Load
Dynamical state and star formation properties of the merging galaxy cluster Abell 3921
Ferrari, C; Maurogordato, S; Cappi, A; Slezak, E
2004-01-01
We present the results of a new spectroscopic and photometric survey of the central region of the galaxy cluster A3921 (z=0.094). We detect the presence of two dominant clumps of galaxies: a main cluster centred on the BCG (A3921-A), and a NW sub-cluster (A3921-B) hosting the second brightest cluster galaxy. The distorted morphology of the two sub-clusters suggests that they are interacting, while the velocity distribution of 104 confirmed cluster members does not reveal strong signatures of merging. By applying a two-body dynamical formalism to the two sub-clusters of A3921, and by comparing our optical results to the X-ray analysis of A3921 based on XMM observations (Belsole et al. 2004), we conclude that A3921-B is probably tangentially traversing the main cluster along a SW/NE direction. Our estimate of the star formation properties of the cluster members reveals substantial fractions of both emission-line (~13%) and post-star-forming objects (k+a's,~16%). A lack of bright k+a's with respect to higher red...
Stefanopoulou, Anna
PSM: Lithium-Ion Battery State of Charge (SOC) and Critical Surface Charge (CSC) Estimation using. INTRODUCTION Lithium-ion battery is the core of new plug-in hybrid- electrical vehicles (PHEV) as well transient loads [22]. The importance of lithium-ion battery has grown in the past years. Based
.S.), regardless of age, sex, race, or ethnicity. Although the exact cause of asthma is unknown and it cannotAsthma in New York State Asthma is a chronic lung disease that affects an estimated 16.4 million exposure to environmental triggers. The following data provide an overview of the burden of asthma in New
van Stokkum, Ivo
J. Phys. Chem. 1994, 98, 10539-10549 10539 Excited-State Conformational Dynamics of Flexibly and Semirigidly Bridged Electron Donor- Acceptor Systems in Solution. Influence of Temperature and Solvent was either a flexible trimethylene chain or a semirigid piperidine ring. Photoexcitation of the semirigidly
Single-shot spectroscopy of solid-state photoinduced dynamics far from equilibrium
Wolfson, Johanna Wendlandt
2013-01-01
Ultrafast single-shot spectroscopy was developed and improved as a method to observe photoinduced dynamics far from equilibrium. The method was then employed to illuminate material dynamics in platinum-halide quasi-one-dimensional ...
Finding Bugs in Web Applications Using Dynamic Test Generation and Explicit State Model Checking
Tip, Frank
2009-03-26
Web script crashes and malformed dynamically-generated web pages are common errors, and they seriously impact the usability of web applications. Current tools for web-page validation cannot handle the dynamically generated ...
Dynamical state and star formation properties of the merging galaxy cluster Abell 3921
C. Ferrari; C. Benoist; S. Maurogordato; A. Cappi; E. Slezak
2004-09-03
We present the results of a new spectroscopic and photometric survey of the central region of the galaxy cluster A3921 (z=0.094). We detect the presence of two dominant clumps of galaxies: a main cluster centred on the BCG (A3921-A), and a NW sub-cluster (A3921-B) hosting the second brightest cluster galaxy. The distorted morphology of the two sub-clusters suggests that they are interacting, while the velocity distribution of 104 confirmed cluster members does not reveal strong signatures of merging. By applying a two-body dynamical formalism to the two sub-clusters of A3921, and by comparing our optical results to the X-ray analysis of A3921 based on XMM observations (Belsole et al. 2004), we conclude that A3921-B is probably tangentially traversing the main cluster along a SW/NE direction. Our estimate of the star formation properties of the cluster members reveals substantial fractions of both emission-line (~13%) and post-star-forming objects (k+a's,~16%). A lack of bright k+a's with respect to higher redshift clusters is observed, while the fraction of k+a's increases towards fainter magnitudes. The spatial and velocity distributions of k+a's galaxies, their red colours and their moderate Balmer absorption lines suggest that their presence is difficult to relate to the on-going merging event. Star forming galaxies, which are mostly concentrated in A3921-B and between the two sub-clusters, share neither the same kinematics, nor the same projected distribution of the passive cluster members. Their spectral properties may be at least partly realted to the ongoing merger.
A Generic Framework for Reasoning about Dynamic Networks of Infinite-State Processes
Bouajjani, Ahmed; Enea, Constantin; Jurski, Yan; Sighireanu, Mihaela
2009-01-01
We propose a framework for reasoning about unbounded dynamic networks of infinite-state processes. We propose Constrained Petri Nets (CPN) as generic models for these networks. They can be seen as Petri nets where tokens (representing occurrences of processes) are colored by values over some potentially infinite data domain such as integers, reals, etc. Furthermore, we define a logic, called CML (colored markings logic), for the description of CPN configurations. CML is a first-order logic over tokens allowing to reason about their locations and their colors. Both CPNs and CML are parametrized by a color logic allowing to express constraints on the colors (data) associated with tokens. We investigate the decidability of the satisfiability problem of CML and its applications in the verification of CPNs. We identify a fragment of CML for which the satisfiability problem is decidable (whenever it is the case for the underlying color logic), and which is closed under the computations of post and pre images for CP...
Proofs and advice in general physical theories: a trade-off between states and dynamics?
Ciarán M. Lee; Matty J. Hoban
2015-10-15
Quantum theory presents us with the tools for potential computational and communication complexity advantages over classical theory. It has been suggested that this quantum advantage in both tasks is because quantum theory has both entangled states and entangling dynamics. Within a framework of general physical theories, one can construct theories that excel even quantum theory at communication tasks but at the cost of faring worse at computational tasks, and vice versa. So while quantum computation and communication complexity are sub-optimal when considered separately in this framework, quantum theory achieves a trade-off in power between the two. Is such a trade-off a general feature of theories in this framework? In this work we provide strong evidence for the existence of such a trade-off by utilising tools from computational complexity, in particular the tools of computations with advice and proofs. We give general bounds on the complexity of these scenarios and use them to argue that quantum theory achieves an optimal balance in the trade-off. If such a conjecture is borne out, it would provide a reason why nature chose quantum theory over every other theory in this framework. One of our results provides a new proof that QMA is contained in PP which does not make use of any uniquely quantum structure, and thus may be of independent interest.
Hoff, Nicholas R
2007-01-01
Modularity is a promising design concept for space systems. In a modular satellite, the individual subsystems would be broken down into physically distinct modules, which would then dynamically recombine into an aggregate ...
Paris-Sud XI, Université de
SimHydro 2012: Hydraulic modeling and uncertainty, 12-14 September 2012, Sophia Antipolis N. Jean-Baptiste, C. Dorée, P-O. Malaterre, J. Sau - Data assimilation for hydraulic state estimation of a development project Data assimilation for hydraulic state estimation of a development project Assimilation de données
Chen, Min; Zhuang, Qianlai; Cook, David R.; Coulter, Richard L.; Pekour, Mikhail S.; Scott, Russell L.; Munger, J. W.; Bible, Ken
2011-09-21
Satellite remote sensing provides continuous temporal and spatial information of terrestrial 24 ecosystems. Using these remote sensing data and eddy flux measurements and biogeochemical 25 models, such as the Terrestrial Ecosystem Model (TEM), should provide a more adequate 26 quantification of carbon dynamics of terrestrial ecosystems. Here we use Moderate Resolution 27 Imaging Spectroradiometer (MODIS) Enhanced Vegetation Index (EVI), Land Surface Water Index 28 (LSWI) and carbon flux data of AmeriFlux to conduct such a study. We first modify the gross primary 29 production (GPP) modeling in TEM by incorporating EVI and LSWI to account for the effects of the 30 changes of canopy photosynthetic capacity, phenology and water stress. Second, we parameterize and 31 verify the new version of TEM with eddy flux data. We then apply the model to the conterminous 32 United States over the period 2000-2005 at a 0.05o ×0.05o spatial resolution. We find that the new 33 version of TEM generally captured the expected temporal and spatial patterns of regional carbon 34 dynamics. We estimate that regional GPP is between 7.02 and 7.78 Pg C yr-1 and net primary 35 production (NPP) ranges from 3.81 to 4.38 Pg C yr-1 and net ecosystem production (NEP) varies 36 within 0.08-0.73 Pg C yr-1 over the period 2000-2005 for the conterminous United States. The 37 uncertainty due to parameterization is 0.34, 0.65 and 0.18 Pg C yr-1 for the regional estimates of GPP, 38 NPP and NEP, respectively. The effects of extreme climate and disturbances such as severe drought in 39 2002 and destructive Hurricane Katrina in 2005 were captured by the model. Our study provides a 40 new independent and more adequate measure of carbon fluxes for the conterminous United States, 41 which will benefit studies of carbon-climate feedback and facilitate policy-making of carbon 42 management and climate.
Chen, Min; Zhuang, Qianlai; Cook, D.; Coulter, Richard L.; Pekour, Mikhail S.; Scott, Russell L.; Munger, J. W.; Bible, Ken
2011-08-31
Satellite remote sensing provides continuous temporal and spatial information of terrestrial ecosystems. Using these remote sensing data and eddy flux measurements and biogeochemical models, such as the Terrestrial Ecosystem Model (TEM), should provide a more adequate quantification of carbon dynamics of terrestrial ecosystems. Here we use Moderate Resolution Imaging Spectroradiometer (MODIS) Enhanced Vegetation Index (EVI), Land Surface Water Index (LSWI) and carbon flux data of AmeriFlux to conduct such a study. We first modify the gross primary production (GPP) modeling in TEM by incorporating EVI and LSWI to account for the effects of the changes of canopy photosynthetic capacity, phenology and water stress. Second, we parameterize and verify the new version of TEM with eddy flux data. We then apply the model to the conterminous United States over the period 2000-2005 at a 0.05-0.05 spatial resolution. We find that the new version of TEM made improvement over the previous version and generally captured the expected temporal and spatial patterns of regional carbon dynamics. We estimate that regional GPP is between 7.02 and 7.78 PgC yr{sup -1} and net primary production (NPP) ranges from 3.81 to 4.38 Pg Cyr{sup -1} and net ecosystem production (NEP) varies within 0.08- 0.73 PgC yr{sup -1} over the period 2000-2005 for the conterminous United States. The uncertainty due to parameterization is 0.34, 0.65 and 0.18 PgC yr{sup -1} for the regional estimates of GPP, NPP and NEP, respectively. The effects of extreme climate and disturbances such as severe drought in 2002 and destructive Hurricane Katrina in 2005 were captured by the model. Our study provides a new independent and more adequate measure of carbon fluxes for the conterminous United States, which will benefit studies of carbon-climate feedback and facilitate policy-making of carbon management and climate.
Desynchronized Multi-State Abstractions for Open Programs in Dynamic Languages
Rival, Xavier
. Dynamic language library developers face a challenging problem: ensuring that their libraries will behave stems from the common use of two defining features for dynamic languages: callbacks into client code, the second abstraction tracks attribute name/value pairs across the execution of a library. We implement
Evolutionary dynamic optimization: A survey of the state of the art
2012-04-09
in dynamic environments due to their inspiration from natural self-organized sys- ... It is noticeable that in many EDO studies, the terms “dynamic problems/time-. 22 ...... 1151 knapsack problem. In [161], Branke et al. further analyzed the role of
Truong, Thanh N.
of a focusing technique to minimize the number of electronic structure calculations, while still preservingA direct ab inifio dynamics approach for calculating thermal rate constants using variational dynamics, " for calculations of thermal rate constants and related properties from first principles
State-to-state dynamics of the H{sup *}(n) + HD ? D{sup *}(n{sup ?}) + H{sub 2} reactive scattering
Yu, Shengrui; Su, Shu; Dai, Dongxu; Yuan, Kaijun, E-mail: kjyuan@dicp.ac.cn, E-mail: xmyang@dicp.ac.cn; Yang, Xueming, E-mail: kjyuan@dicp.ac.cn, E-mail: xmyang@dicp.ac.cn [State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023 (China)] [State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023 (China)
2014-01-21
The state-to-state dynamics of the H{sup *}(n) + HD ? D{sup *}(n{sup ?}) + H{sub 2} reactive scattering at the collision energy of 0.5 eV have been carried out for the first time by using H-atom Rydberg tagging time-of-flight technique. Experimental results show that the angular distribution of the total H{sub 2} products presents clearly forward-backward asymmetric, which considerably differs from that of the corresponding H{sup +} + HD ? D{sup +} + H{sub 2} reaction predicted by previously theoretical calculations. Such disagreement between these two processes suggests that the Fermi independent-collider model is also not valid in describing the dynamics of isotopic variants of the H{sup *} + H{sub 2} reaction. The rotational state distribution of the H{sub 2} products demonstrates a saw-toothed distribution with odd-j{sup ?} > even-j{sup ?}. This interesting observation is strongly influenced by nuclear spin statistics.
Trattner, Sigal; Cheng, Bin; Pieniazek, Radoslaw L.; Hoffmann, Udo; Douglas, Pamela S.; Einstein, Andrew J.
2014-04-15
Purpose: Effective dose (ED) is a widely used metric for comparing ionizing radiation burden between different imaging modalities, scanners, and scan protocols. In computed tomography (CT), ED can be estimated by performing scans on an anthropomorphic phantom in which metal-oxide-semiconductor field-effect transistor (MOSFET) solid-state dosimeters have been placed to enable organ dose measurements. Here a statistical framework is established to determine the sample size (number of scans) needed for estimating ED to a desired precision and confidence, for a particular scanner and scan protocol, subject to practical limitations. Methods: The statistical scheme involves solving equations which minimize the sample size required for estimating ED to desired precision and confidence. It is subject to a constrained variation of the estimated ED and solved using the Lagrange multiplier method. The scheme incorporates measurement variation introduced both by MOSFET calibration, and by variation in MOSFET readings between repeated CT scans. Sample size requirements are illustrated on cardiac, chest, and abdomen–pelvis CT scans performed on a 320-row scanner and chest CT performed on a 16-row scanner. Results: Sample sizes for estimating ED vary considerably between scanners and protocols. Sample size increases as the required precision or confidence is higher and also as the anticipated ED is lower. For example, for a helical chest protocol, for 95% confidence and 5% precision for the ED, 30 measurements are required on the 320-row scanner and 11 on the 16-row scanner when the anticipated ED is 4 mSv; these sample sizes are 5 and 2, respectively, when the anticipated ED is 10 mSv. Conclusions: Applying the suggested scheme, it was found that even at modest sample sizes, it is feasible to estimate ED with high precision and a high degree of confidence. As CT technology develops enabling ED to be lowered, more MOSFET measurements are needed to estimate ED with the same precision and confidence.
Robertazzi, Thomas G.
computational data that are being gener- ated in the high energy and nuclear physics experiments de- mand new energy and nuclear physi- cists located at 40 institutions in the United States, France, Russia, Germany volume loads) on a Grid environment when the resource availability at sinks varies randomly over time
Johansson, Karl Henrik
estimators in power networks. The focus is on applications in SCADA (Supervisory Control and Data Acquisition of such large-scale systems, SCADA (Supervisory Control and Data Acquisition) systems are used to transmit mea at all times. The technology and the use of the SCADA systems have evolved quite a lot since the 1970s
be heated in a pressure vessel or oil bath, and some temperature-measuring device (e.g., a thermocouple, there is no standard method to estimate kinetic parameters in low-moisture, conduction-heated foods subject and maintain pressure. As temperatures and pressure increase, measuring sample temperature may become
Exploration of Coulomb explosion dynamics through excited vibrational states of molecules
Zhou, Zhongyuan; Chu, Shih-I
2005-01-31
The fragmentation dynamics of H2+ molecular ions in intense laser fields is investigated by means of a high-precision ab initio method beyond the Born-Oppenheimer approximation. Special attention is paid to the detailed ...
High-resolution high-frequency dynamic nuclear polarization for biomolecular solid state NMR
Barnes, Alexander B. (Alexander Benjamin)
2011-01-01
Dynamic Nuclear Polarization (DNP) has exploded in popularity over the last few years, finally realizing its potential to overcome the detrimental lack of sensitivity that has plagued performing NMR experiments. Applied ...
Diegert, Carl F.
2006-12-01
We define a new diagnostic method where computationally-intensive numerical solutions are used as an integral part of making difficult, non-contact, nanometer-scale measurements. The limited scope of this report comprises most of a due diligence investigation into implementing the new diagnostic for measuring dynamic operation of Sandia's RF Ohmic Switch. Our results are all positive, providing insight into how this switch deforms during normal operation. Future work should contribute important measurements on a variety of operating MEMS devices, with insights that are complimentary to those from measurements made using interferometry and laser Doppler methods. More generally, the work opens up a broad front of possibility where exploiting massive high-performance computers enable new measurements.
Dynamics of Nonlocality for A Two-Mode Squeezed State in Thermal Environment
Hyunseok Jeong; Jinhyoung Lee; M. S. Kim
2000-03-18
We investigate the time evolution of nonlocality for a two-mode squeezed state in the thermal environment. The initial two-mode pure squeezed state is nonlocal with a stronger nonlocality for a larger degree of squeezing. It is found that the larger the degree of initial squeezing is, the more rapidly the squeezed state loses its nonlocality. We explain this by the rapid destruction of quantum coherence for the strongly squeezed state.
Ponte, R. M.
This paper presents the ECCO v4 non-linear inverse modeling framework and its baseline solution for the evolving ocean state over the period 1992–2011. Both components are publicly available and subjected to regular, ...
Towards a dynamics-based estimate of the extent of HR 8799's unresolved warm debris belt
Contro, B; Horner, J; Marshall, J P
2015-01-01
In many ways, the HR8799 system resembles our Solar system more closely than any other discovered to date - albeit on a larger, younger, and more dramatic scale - featuring four giant planets and two debris belts. The first belt lies beyond the orbit of the outer planet, and mirrors our Solar system's Edgeworth-Kuiper belt. The second belt lies interior to the orbit of the inner planet, HR8799e, and is analogous to our Asteroid Belt. With such a similar architecture, the system is a valuable laboratory for examining exoplanet dynamics, and the interaction between debris disks and planets. In recent years, HR8799's outer disk has been relatively well characterised, primarily using the Herschel Space Observatory. In contrast, the inner disk, too close to HR8799 to be spatially resolved by Herschel, remains poorly understood. This leaves significant questions over both the location of the planetesimals responsible for producing the observed dust, and the physical properties of those grains. We have performed ext...
? production as a probe for early state dynamics in high energy nuclear collisions at RHIC
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Liu, Yunpeng; Chen, Baoyi; Xu, Nu; Zhuang, Pengfei
2011-02-01
? production in heavy ion collisions at RHIC energy is investigated. While the transverse momentum spectra of the ground state ?(1s) are controlled by the initial state Cronin effect, the excited bb? states are characterized by the competition between the cold and hot nuclear matter effects and sensitive to the dissociation temperatures determined by the heavy quark potential. We emphasize that it is necessary to measure the excited heavy quark states in order to extract the early stage information in high energy nuclear collisions at RHIC.
Xiao, Jingfeng; Zhuang, Qianlai; Baldocchi, Dennis D.; Law, Beverly E.; Richardson, Andrew D.; Chen, Jiquan; Oren, Ram; Starr, Gregory; Noormets, Asko; Ma, Siyan; Verma, Shashi B.; Wharton, Sonia; Wofsy, Steven C.; Bolstad, Paul V.; Burns, Sean P.; Cook, David R.; Curtis, Peter S.; Drake, Bert G.; Falk, Matthias; Fischer, Marc L.; Foster, David R.; Gu, Lianhong; Hadley, Julian L.; Hollinger, David Y.; Katul, Gabriel G.; Litvak, Marcy; Martin, Timothy A.; Matamala, Roser; McNulty, Steve; Meyers, Tilden P.; Monson, Russell K.; Munger, J. William; Oechel, Walter C.; U, Kyaw Tha Paw; Schmid, Hans Peter; Scott, Russell L.; Sun, Ge; Suyker, Andrew E.; Torn, Margaret S.
2009-03-06
Eddy covariance flux towers provide continuous measurements of net ecosystem carbon exchange (NEE) for a wide range of climate and biome types. However, these measurements only represent the carbon fluxes at the scale of the tower footprint. To quantify the net exchange of carbon dioxide between the terrestrial biosphere and the atmosphere for regions or continents, flux tower measurements need to be extrapolated to these large areas. Here we used remotely-sensed data from the Moderate Resolution Imaging Spectrometer (MODIS) instrument on board NASA's Terra satellite to scale up AmeriFlux NEE measurements to the continental scale. We first combined MODIS and AmeriFlux data for representative U.S. ecosystems to develop a predictive NEE model using a regression tree approach. The predictive model was trained and validated using NEE data over the periods 2000-2004 and 2005-2006, respectively. We found that the model predicted NEE reasonably well at the site level. We then applied the model to the continental scale and estimated NEE for each 1 km x 1 km cell across the conterminous U.S. for each 8-day period in 2005 using spatially-explicit MODIS data. The model generally captured the expected spatial and seasonal patterns of NEE. Our study demonstrated that our empirical approach is effective for scaling up eddy flux NEE measurements to the continental scale and producing wall-to-wall NEE estimates across multiple biomes. Our estimates may provide an independent dataset from simulations with biogeochemical models and inverse modeling approaches for examining the spatiotemporal patterns of NEE and constraining terrestrial carbon budgets for large areas.
Xiao, Jingfeng; Zhuang, Qianlai; Baldocchi, Dennis D.; Bolstad, Paul V.; Burns, Sean P.; Chen, Jiquan; Cook, David R.; Curtis, Peter S.; Drake, Bert G.; Foster, David R.; Gu, Lianhong; Hadley, Julian L.; Hollinger, David Y.; Katul, Gabriel G.; Law, Beverly E.; Litvak, Marcy; Ma, Siyan; Martin, Timothy A.; Matamala, Roser; McNulty, Steve; Meyers, Tilden P.; Monson, Russell K.; Munger, J. William; Noormets, Asko; Oechel, Walter C.; Oren, Ram; Richardson, Andrew D.; Schmid, Hans Peter; Scott, Russell L.; Starr, Gregory; Sun, Ge; Suyker, Andrew E.; Torn, Margaret S.; Paw, Kyaw; Verma, Shashi B.; Wharton, Sonia; Wofsy, Steven C.
2008-10-01
Eddy covariance flux towers provide continuous measurements of net ecosystem carbon exchange (NEE) for a wide range of climate and biome types. However, these measurements only represent the carbon fluxes at the scale of the tower footprint. To quantify the net exchange of carbon dioxide between the terrestrial biosphere and the atmosphere for regions or continents, flux tower measurements need to be extrapolated to these large areas. Here we used remotely sensed data from the Moderate Resolution Imaging Spectrometer (MODIS) instrument on board the National Aeronautics and Space Administration's (NASA) Terra satellite to scale up AmeriFlux NEE measurements to the continental scale. We first combined MODIS and AmeriFlux data for representative U.S. ecosystems to develop a predictive NEE model using a modified regression tree approach. The predictive model was trained and validated using eddy flux NEE data over the periods 2000-2004 and 2005-2006, respectively. We found that the model predicted NEE well (r = 0.73, p < 0.001). We then applied the model to the continental scale and estimated NEE for each 1 km x 1 km cell across the conterminous U.S. for each 8-day interval in 2005 using spatially explicit MODIS data. The model generally captured the expected spatial and seasonal patterns of NEE as determined from measurements and the literature. Our study demonstrated that our empirical approach is effective for scaling up eddy flux NEE measurements to the continental scale and producing wall-to-wall NEE estimates across multiple biomes. Our estimates may provide an independent dataset from simulations with biogeochemical models and inverse modeling approaches for examining the spatiotemporal patterns of NEE and constraining terrestrial carbon budgets over large areas.
Laser-induced resonance states as dynamic suppressors of ionization in high-frequency short pulses
Barash, Danny
distorted to a metastable well form; the electron either tunnels through or crosses over a potential barrier of a laser-induced resonance state, which is coupled by the pulse ramp to the ground state and acts to trap ionizing flux. PACS number s : 32.80.Rm I. INTRODUCTION The interaction of atomic electrons with intense
Steady-State and Dynamic Modeling of Commercial Slurry High-Density Polyethylene (HDPE) Processes
Liu, Y. A.
, solvent, and oligomeric species from the polymer. Sol- vent is separated from the oligomer and recycled, Polymers Plus and Aspen Dynamics. The discussion includes thermodynamic properties, phase equilibrium, reaction kinetics, polymer properties, and other modeling issues. We characterize a Ziegler- Natta catalyst
Desynchronized Multi-State Abstractions for Open Programs in Dynamic Languages
Chang, Bor-Yuh Evan
INRIA/CNRS/ENS Paris, xavier.rival@ens.fr Abstract. Dynamic language library developers face a challenging problem: ensuring that their libraries will behave correctly for a wide variety of client programs without having access to those client programs. This problem stems from the common use of two defining
Dynamic Spherical Volumetric Simplex Splines with Applications in Biomedicine Wayne State University
Qin, Hong
Dynamic Spherical Volumetric Simplex Splines with Applications in Biomedicine Yunhao Tan , Jing Hua computational framework based on dy- namic spherical volumetric simplex splines for simulation of genus- zero to reconstruct the high-fidelity digi- tal model of a real-world object with spherical volumetric simplex splines
optimization problem. In penalty function methods, an augmented performance index is introduced by adding to the original cost of the optimal control problem, so-called penalty functions that have some diverging performance index is optimized, in the absence of constraints, yielding a biased estimate of the solution
Nexant Inc.
2006-05-01
This deliverable is for Task 9, Mixed Alcohols from Syngas: State of Technology, as part of National Renewable Energy Laboratory (NREL) Award ACO-5-44027, ''Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup and Oxygen Separation Equipment''. Task 9 supplements the work previously done by NREL in the mixed alcohols section of the 2003 technical report Preliminary Screening--Technical and Economic Assessment of Synthesis Gas to Fuels and Chemicals with Emphasis on the Potential for Biomass-Derived Syngas.
Distributed Estimation Distributed Estimation
Gupta, Vijay
with a Star Topology 2 2.1 Static Sensor Fusion . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.1.1 Combining Estimators . . . . . . . . . . . . . . . . . . . . 3 2.1.2 Static Sensor Fusion for Star Topology;Distributed Estimation 3 Non-Ideal Networks with Star Topology 10 3.1 Sensor Fusion in Presence of Message
The development of short sea shipping in the United States : a dynamic alternative
Connor, Peter H. (Peter Harold)
2004-01-01
Current projections show that U.S. international trade is expected to reach nearly two billion tons by 2020, approximately double today's level. With such a large forecasted growth in trade coming through the United States ...
Faithful Solid State Optical Memory with Dynamically Decoupled Spin Wave Storage
Marko Lovri?; Alban Ferrier; Dieter Suter; Philippe Goldner
2013-02-14
We report an optical memory in a rare earth doped crystal with long storage times, up to 20 ms, together with an optical bandwidth of 1.5 MHz. This is obtained by transferring optical coherences to nuclear spin coherences, which were then protected against environmental noise by dynamical decoupling. With this approach, we achieved a 33 fold increase in spin wave storage time over the intrinsic spin coherence lifetime. Comparison between different decoupling sequences indicates that sequences insensitive to initial spin coherence increase retrieval efficiency. Finally, an interference experiment shows that relative phases of input pulses are preserved through the whole storage process with a visibility close to 1, demonstrating the usefulness of dynamical decoupling for extending the storage time of quantum memories.
Effect of asymmetry parameter on the dynamical states of nonlocally coupled nonlinear oscillators
R. Gopal; V. K. Chandrasekar; D. V. Senthilkumar; A. Venkatesan; M. Lakshmanan
2015-06-17
We show that coexisting domains of coherent and incoherent oscillations can be induced in an ensemble of any identical nonlinear dynamical systems using the nonlocal rotational matrix coupling with an asymmetry parameter. Further, chimera is shown to emerge in a wide range of the asymmetry parameter in contrast to near $\\frac{\\pi}{2}$ values of it employed in the earlier works. We have also corroborated our results using the strength of incoherence in the frequency domain ($S_{\\omega}$) and in the amplitude domain ($S$) thereby distinguishing the frequency and amplitude chimeras. The robust nature of the asymmetry parameter in inducing chimeras in any generic dynamical system is established using ensembles of identical R\\"ossler oscillators, Lorenz systems, and Hindmarsh-Rose (HR) neurons in their chaotic regimes.
Using System Dynamics to Model the Transition to Biofuels in the United States: Preprint
Bush, B.; Duffy, M.; Sandor, D.; Peterson, S.
2008-06-01
Transitioning to a biofuels industry that is expected to displace about 30% of current U.S. gasoline consumption requires a robust biomass-to-biofuels system-of-systems that operates in concert with the existing markets. This paper discusses employing a system dynamics approach to investigate potential market penetration scenarios for cellulosic ethanol and to help government decision makers focus on areas with greatest potential.
Monica De Angelis
2015-09-10
Mathematical models related to some Josephson junctions are pointed out and attention is drawn to the solutions of certain initial boundary problems and to some of their estimates. In addition, results of rigorous analysis of the behaviour of these solutions when the time tends to infinity and when the small parameter tends to zero are cited. These analyses lead us to mention some of the open problems.
H + D2 reaction dynamics. Determination of the product state distributions at a collision energy-photon resonance, three-photon ionization has been used to determine the HD product internal state distribution by a 266 nm laser pulse to dissociate the former, giving a center- of-mass collision energy of about 1
Rusli, S. P.; Thomas, J.; Saglia, R. P.; Fabricius, M.; Erwin, P.; Bender, R.; Nowak, N.; Lee, C. H.; Riffeser, A.; Sharp, R.
2013-09-15
Adaptive optics assisted SINFONI observations of the central regions of 10 early-type galaxies are presented. Based primarily on the SINFONI kinematics, 10 black hole (BH) masses occupying the high-mass regime of the M{sub BH}-{sigma} relation are derived using three-integral Schwarzschild models. The effect of dark matter (DM) inclusion on the BH mass is explored. The omission of a DM halo in the model results in a higher stellar mass-to-light ratio, especially when extensive kinematic data are used in the model. However, when the diameter of the sphere of influence-computed using the BH mass derived without a dark halo-is at least 10 times the point-spread function FWHM during the observations, it is safe to exclude a DM component in the dynamical modeling, i.e., the change in BH mass is negligible. When the spatial resolution is marginal, restricting the mass-to-light ratio to the right value returns the correct M{sub BH} although a dark halo is not present in the model. Compared to the M{sub BH}-{sigma} and M{sub BH}-L relations of McConnell et al., the 10 BHs are all more massive than expected from the luminosities and 7 BH masses are higher than expected from the stellar velocity dispersions of the host bulges. Using new fitted relations, which include the 10 galaxies, we find that the space density of the most massive BHs (M{sub BH} {approx}> 10{sup 9} M{sub Sun }) estimated from the M{sub BH}-L relation is higher than the estimate based on the M{sub BH}-{sigma} relation and the latter is higher than model predictions based on quasar counts, each by about an order of magnitude.
Drewniak, B. A.; Kotamarthi, V. R.; Streets, D.; Kim, M.; Crist, K.; Ohio Univ.
2008-11-01
The sensitivity of Hg concentration and deposition in the United States to emissions in China was investigated by using a global chemical transport model: Model for Ozone and Related Chemical Tracers (MOZART). Two forms of gaseous Hg were included in the model: elemental Hg (HG(0)) and oxidized or reactive Hg (HGO). We simulated three different emission scenarios to evaluate the model's sensitivity. One scenario included no emissions from China, while the others were based on different estimates of Hg emissions in China. The results indicated, in general, that when Hg emissions were included, HG(0) concentrations increased both locally and globally. Increases in Hg concentrations in the United States were greatest during spring and summer, by as much as 7%. Ratios of calculated concentrations of Hg and CO near the source region in eastern Asia agreed well with ratios based on measurements. Increases similar to those observed for HG(0) were also calculated for deposition of HGO. Calculated increases in wet and dry deposition in the United States were 5-7% and 5-9%, respectively. The results indicate that long-range transcontinental transport of Hg has a non-negligible impact on Hg deposition levels in the United States.
Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]
1997-03-28
Based on the project's scope, the purpose of the estimate, and the availability of estimating resources, the estimator can choose one or a combination of techniques when estimating an activity or project. Estimating methods, estimating indirect and direct costs, and other estimating considerations are discussed in this chapter.
A non-degenerate Rao-Blackwellised particle filter for estimating static
SchÃ¶n, Thomas
A non-degenerate Rao-Blackwellised particle filter for estimating static parameters in dynamical some static parameter. This is true also for the RBPF, even if the static states are marginalised analytically by a Kalman filter. The reason is that the posterior density of the static states is computed
Fluid transport properties by equilibrium molecular dynamics. I. Methodology at extreme fluid states
Dysthe, Dag Kristian
precision except for diffusion in gaseous n-butane. The RATTLE algorithm is shown to give accurate transport are too long to obtain representative sampling during a single trajectory by EMD. A recent study1 of n-butane relaxation times for n-butane at the state point used are, however, very short compared with the total
Multiphoton lasing in atomic potassium: Steady-state and dynamic behavior J. L. Font,1
Gauthier, Daniel
University, Box 90305, Durham, North Carolina 27708, USA Received 12 September 2005; published 21 December of the fundamental quantum processes yielding them. Closed-curve laser-emission profiles are obtained for multiphoton energy state and n photons identical to the incident ones are added to the light beam. Such lasers
Dynamical states of the cortico basal ganglia circuits Thesis submitted for the degree of
in these mean discharge rates. It posits that the death of midbrain dopaminergic neurons that occurs in PDDynamical states of the cortico basal ganglia circuits Thesis submitted for the degree of "Doctor variable that represents the mean discharge rate of neurons in that nucleus, and focuses on the gross
Ouyang, Bing, E-mail: ouyangbing.zj@foxmail.com; Xue, Jia-Dan, E-mail: jenniexue@126.com; Zheng, Xuming, E-mail: zhengxuming126@126.com, E-mail: zxm@zstu.edu.cn, E-mail: fangwh@dnu.edu.cn [Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018 (China)] [Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018 (China); Fang, Wei-Hai, E-mail: zxm@zstu.edu.cn, E-mail: fangwh@dnu.edu.cn, E-mail: fangwh@dnu.edu.cn [Department of Chemistry, Beijing Normal University, Beijing 100875 (China)] [Department of Chemistry, Beijing Normal University, Beijing 100875 (China)
2014-05-21
The excited state structural dynamics of phenyl isothiocyanate (PITC) after excitation to the light absorbing S{sub 2}(A?), S{sub 6}(A?), and S{sub 7}(A?) excited states were studied by using the resonance Raman spectroscopy and complete active space self-consistent field method calculations. The UV absorption bands of PITC were assigned. The vibrational assignments were done on the basis of the Fourier transform (FT)-Raman and FT-infrared measurements, the density-functional theory computations, and the normal mode analysis. The A-, B-, and C-bands resonance Raman spectra in cyclohexane, acetonitrile, and methanol solvents were, respectively, obtained at 299.1, 282.4, 266.0, 252.7, 228.7, 217.8, and 208.8 nm excitation wavelengths to probe the corresponding structural dynamics of PITC. The results indicated that the structural dynamics in the S{sub 2}(A?), S{sub 6}(A?), and S{sub 7}(A?) excited states were very different. The conical intersection point CI(S{sub 2}/S{sub 1}) were predicted to play important role in the low-lying excited state decay dynamics. Two major decay channels were predicted for PITC upon excitation to the S{sub 2}(A?) state: the radiative S{sub 2,min} ? S{sub 0} transition and the nonradiative S{sub 2} ? S{sub 1} internal conversion via CI(S{sub 2}/S{sub 1}). The differences in the decay dynamics between methyl isothiocyanate and PITC in the first light absorbing excited state were discussed. The role of the intersystem crossing point ISC(S{sub 1}/T{sub 1}) in the excited state decay dynamics of PITC is evaluated.
Steady-state MreB helices inside bacteria: dynamics without motors
Jun F. Allard; Andrew D. Rutenberg
2007-08-03
Within individual bacteria, we combine force-dependent polymerization dynamics of individual MreB protofilaments with an elastic model of protofilament bundles buckled into helical configurations. We use variational techniques and stochastic simulations to relate the pitch of the MreB helix, the total abundance of MreB, and the number of protofilaments. By comparing our simulations with mean-field calculations, we find that stochastic fluctuations are significant. We examine the quasi-static evolution of the helical pitch with cell growth, as well as timescales of helix turnover and denovo establishment. We find that while the body of a polarized MreB helix treadmills towards its slow-growing end, the fast-growing tips of laterally associated protofilaments move towards the opposite fast-growing end of the MreB helix. This offers a possible mechanism for targeted polar localization without cytoplasmic motor proteins.
Felker, P.M.
1993-12-01
First, the author aims to develop methods of nonlinear Raman spectroscopy for application in studies of sparse samples. Second, the author wishes to apply such methods to structural and dynamical studies of species (molecules, complexes, and clusters) in supersonic molecular beams. In the past year, the author has made progress in several areas. The first pertains to the application of mass-selective ionization-detected stimulated Raman spectroscopies (IDSRS) to the size-specific vibrational spectroscopy of solute-solvent{sub n} clusters. The second involves the application of IDSRS methods to studies of jet-cooled benzene clusters. The third pertains to the use of IDSRS methods in the study of intermolecular vibrational transitions in van der Waals complexes.
Belenguer, Ana M.; Lampronti, Giulio Isacco; Wales, David J.; Sanders, Jeremy Keith Morris
2014-10-14
state process is uncertain, even in the neat case, because of the difficulty in control- ling or measuring the exact reaction conditions such as average and local pressure and temperature.13b Some au- thors propose that the heat generated in the course... data obtained from individual experi- ments, each experiment corresponding to a single grind- ing time. This approach avoids disrupting the delicate equilibrium achieved during grinding between the vapor, the liquid and the solid components...
A. N. Ivanov; M. Faber; V. A. Ivanova; J. Marton; N. I. Troitskaya
2005-12-19
Using the experimental data on the energy level shift of kaonic hydrogen in the ground state (the DEAR Collaboration, Phys. Rev. Lett. 94, 212302 (2005)) and the theoretical value of the energy level shift, calculated within the phenomenological quantum field theoretic approach to the description of strong low-energy anti-K N and anti-K NN interactions developed at Stefan Meyer Institut fuer subatomare Physik in Vienna, we estimate the value of the sigma^(I = 1)_(KN)(0)-term of low-energy anti-K N scattering. We get sigma^(I = 1)_(KN)(0) = (433 +/- 85) MeV. This testifies the absence of strange quarks in the proton structure.
Stefano Zippilli; Fabrizio Illuminati
2014-02-16
When two chains of quantum systems are driven at their ends by a two-mode squeezed reservoir, they approach a steady state characterized by the formation of many entangled pairs. Each pair is made of one element of the first and one of the second chain. This effect has been already predicted under the assumption of broadband squeezing. Here we investigate the situation of finite-bandwidth reservoirs. This is done by modeling the driving bath as the output field of a non-degenerate parametric oscillator. The resulting non-Markovian dynamics is studied within the theoretical framework of cascade open quantum systems. It is shown that the formation of pair-entangled structures occurs as long as the normal-mode splitting of the arrays does not overcome the squeezing bandwidth of the reservoir.
Joseph W. Nielsen; Akira Tokurio; Robert Hiromoto; Jivan Khatry
2014-06-01
Traditional Probabilistic Risk Assessment (PRA) methods have been developed and are quite effective in evaluating risk associated with complex systems, but lack the capability to evaluate complex dynamic systems. These time and energy scales associated with the transient may vary as a function of transition time to a different physical state. Dynamic PRA (DPRA) methods provide a more rigorous analysis of complex dynamic systems, while complete, results in issues associated with combinatorial explosion. In order to address the combinatorial complexity arising from the number of possible state configurations and discretization of transition times, a characteristic scaling metric (LENDIT – length, energy, number, distribution, information and time) is proposed as a means to describe systems uniformly and thus provide means to describe relational constraints expected in the dynamics of a complex (coupled) systems. Thus when LENDIT is used to characterize four sets – ‘state, system, resource and response’ (S2R2) – describing reactor operations (normal and off-normal), LENDIT and S2R2 in combination have the potential to ‘branch and bound’ the state space investigated by DPRA. In this paper we introduce the concept of LENDIT scales and S2R2 sets applied to a branch-and-bound algorithm and apply the methods to a station black out transient (SBO).
Turro, Claudia
Excited State Dynamics of Two New Ru(II) Cyclometallated Dyes: Relation to Cells for Solar Energy, are reported. Related complexes have been used as efficient dyes in dye- sensitized solar cells (DSSCs of ruthenium dyes used in DSSCs to lower energies, it is evident from this work, that for cyclometallated phpy
Distributed Road Grade Estimation
Johansson, Karl Henrik
Distributed Road Grade Estimation for Heavy Duty Vehicles PER SAH LHOLM Doctoral Thesis in Automatic Control Stockholm, Sweden 2011 #12;Distributed Road Grade Estimation for Heavy Duty Vehicles PER state-of-charge control decrease the energy consumption of vehicles and increase the safety
Ozkale, Aslihan
2007-04-25
Predicting correct pore-pressure is important for drilling applications. Wellbore stability problems, kicks, or even blow-outs can be avoided with a good estimate of porepressure. Conventional pore-pressure estimation methods are based on one...
Mohan, S; Kim, Y; Siegel, JB; Samad, NA; Stefanopoulou, AG
2014-09-19
A phenomenological model of the bulk force exerted by a lithium ion cell during various charge, discharge, and temperature operating conditions is developed. The measured and modeled force resembles the carbon expansion behavior associated with the phase changes during intercalation, as there are ranges of state of charge (SOC) with a gradual force increase and ranges of SOC with very small change in force. The model includes the influence of temperature on the observed force capturing the underlying thermal expansion phenomena. Moreover the model is capable of describing the changes in force during thermal transients, when internal battery heating due to high C-rates or rapid changes in the ambient temperature, which create a mismatch in the temperature of the cell and the holding fixture. It is finally shown that the bulk force model can be very useful for a more accurate and robust SOC estimation based on fusing information from voltage and force (or pressure) measurements. (C) The Author(s) 2014. Published by ECS. This is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives 4.0 License (CC BY-NC-ND, http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial reuse, distribution, and reproduction in any medium, provided the original work is not changed in any way and is properly cited. For permission for commercial reuse, please email oa@electrochem.org. All rights reserved.
Aldrich, Matthew (Matthew Henry)
2010-01-01
Energy conservation concerns will mandate near-future environments to regulate themselves to accommodate occupants' objectives and best tend to their comfort while minimizing energy consumption. Accordingly, smart energy ...
Research progress in dynamic security assessment
Not Available
1982-12-01
Areas discussed are power system modeling, state estimation, structure decomposition, state forecasting, clustering and security measure development. A detailed dynamic model of a multi-machine power system has been developed. A process state estimator was developed to estimate the long-term dynamic behavior of the power system. The algorithm is identical to the extended Kalman filter but has a modified process noise driving term. A two-stage structure estimation technique was proposed for identifying the power system network configuration. Two approaches to structure decomposition were investigated. A time-scale decomposition of the system equations, based on a singular perturbation approach, was evaluated using a detailed model of a generating system. Spatial decomposition was examined by applying an optimal network decomposition technique to a 39-bus test system. Stochastic approximation based approaches to estimator simplification were examined. Explicit expressions were obtained for the evolution of the first and second moments of the system state. Research into security measures proceeded in three directions. The first area involves viewing the security assessment problem as a hyperplane crossing problem for a stochastic process. The second approach examined the stability of an unforced linear system where the system coefficients are subject to future jumps. The third area of research has led to the formulation of a security measure suitable for on-line assessment of transient stability.
Adjoint Error Estimation for Elastohydrodynamic Lubrication
Jimack, Peter
Adjoint Error Estimation for Elastohydrodynamic Lubrication by Daniel Edward Hart Submitted elastohydro- dynamic lubrication (EHL) problems. A functional is introduced, namely the friction
Excited-state dynamics of the Tm3+ ions and Tm3+ ~ Ho3+ energy transfers in LiYF4
Boyer, Edmond
1463 Excited-state dynamics of the Tm3+ ions and Tm3+ ~ Ho3+ energy transfers in LiYF4 A. Brenier considérant deux types de sites. Plus compliquée, la dynamique de fluorescence anti-Stokes est décrite désexcitation à l'intérieur d'un même centre Tm3 +, une relaxation croisée entre ions Tm3+ adjacents du type 3H4
Improving earthquake source spectrum estimation using multitaper techniques
Prieto, Germán A.
2007-01-01
65 Uncertainties in earthquake source spectrum estimation1. Earthquake physics . . . . . . . . . . . . . . .1. Static and dynamic earthquake parameters 2. Scaling of
Chaudhry, Charu; Horwich, Arthur L.; Brunger, Axel T.; Adams, Paul D.
2004-08-12
Large rigid-body domain movements are critical to GroEL-mediated protein folding, especially apical domain elevation and twist associated with the formation of a folding chamber upon binding ATP and co-chaperonin GroES. Here, we have modeled the anisotropic displacements of GroEL domains from various crystallized states, unliganded GroEL, ATP?S-bound, ADP-AlFx/GroES-bound, and ADP/GroES bound, using translation-libration-screw (TLS) analysis. Remarkably, the TLS results show that the inherent motions of unliganded GroEL, a polypeptide-accepting state, are biased along the transition pathway that leads to the folding-active state. In the ADP-AlFx/GroES-bound folding-active state the dynamic modes of the apical domains become reoriented and coupled to the motions of bound GroES. The ADP/GroES complex exhibits these same motions, but they are increased in magnitude, potentially reflecting the decreased stability of the complex after nucleotide hydrolysis. Our results have allowed the visualization of the anisotropic molecular motions that link the static conformations previously observed by X-ray crystallography. Application of the same analyses to other macromolecules where rigid body motions occur may give insight into the large scale dynamics critical for function and thus has the potential to extend our fundamental understanding of molecular machines.
United States Department of Agriculture Forest Service Intermountain Research Station General acrossthe United States provide estimates of the amount of erosion reductionon forest roadsfrom
Snyder, Jared; Binder, Jonathan
2009-01-01
a productive national climate change program that implementsnership needed to address climate change the United States.Strategy to Combat Climate Change Jared Snyder* and Jonathan
Mi, Chunting "Chris"
Estimation of Lithium-Ion Batteries in Electric Drive Vehicles Using Extended Kalman Filtering Zheng Chen. Index Terms--Extended Kalman filter (EKF), hardware-in- the-loop, lithium-ion battery, nonlinear battery], a modeling approach for the scale-up of a lithium- ion polymer battery (LIPB) is reported. A comparison
Schofield, Jeremy
in the article. Reuse of AIP content is subject to the terms at: http of a stochastic model of the dynamics of bond formation. Finally, the Markov model is studied by analyzing profile as the temperature is lowered can be understood in terms of the number of relaxation modes
Xuanchun Dong
2011-09-04
In a recent paper we proposed and compared various approaches to compute the ground state and dynamics of the Schr\\"{o}dinger--Poisson--Slater (SPS) system for general external potential and initial condition, concluding that the methods based on sine pseudospectral discretization in space are the best candidates. This note is concerned with the case that the external potential and initial condition are spherically symmetric. For the SPS system with spherical symmetry, via applying a proper change of variables into the reduced quasi-1D model we simplify the methods proposed for the general 3D case such that both the memory and computational load are significantly reduced.
Xie, Wenbo; Liu, Lan; Sun, Zhigang; Guo, Hua; Dawes, Richard
2015-02-14
The title isotope exchange reaction was studied by converged time-dependent wave packet calculations, where an efficient 4th order split operator was applied to propagate the initial wave packet. State-to-state differential and integral cross sections up to the collision energy of 0.35 eV were obtained with {sup 32}O{sub 2} in the hypothetical j{sub 0} = 0 state. It is discovered that the differential cross sections are largely forward biased in the studied collision energy range, due to the fact that there is a considerable part of the reaction occurring with large impact parameter and short lifetime relative to the rotational period of the intermediate complex. The oscillations of the forward scattering amplitude as a function of collision energy, which result from coherent contribution of adjacent resonances, may be a sensitive probe for examining the quality of the underlying potential energy surface. A good agreement between the theoretical and recent experimental integral and differential cross sections at collision energy of 7.3 kcal/mol is obtained. However, the theoretical results predict slightly too much forward scattering and colder rotational distributions than the experimental observations at collision energy of 5.7 kcal/mol.
Roberto, Baccoli; Ubaldo, Carlini; Stefano, Mariotti; Roberto, Innamorati; Elisa, Solinas; Paolo, Mura
2010-06-15
This paper deals with the development of methods for non steady state test of solar thermal collectors. Our goal is to infer performances in steady-state conditions in terms of the efficiency curve when measures in transient conditions are the only ones available. We take into consideration the method of identification of a system in dynamic conditions by applying a Graybox Identification Model and a Dynamic Adaptative Linear Neural Network (ALNN) model. The study targets the solar collector with evacuated pipes, such as Dewar pipes. The mathematical description that supervises the functioning of the solar collector in transient conditions is developed using the equation of the energy balance, with the aim of determining the order and architecture of the two models. The input and output vectors of the two models are constructed, considering the measures of 4 days of solar radiation, flow mass, environment and heat-transfer fluid temperature in the inlet and outlet from the thermal solar collector. The efficiency curves derived from the two models are detected in correspondence to the test and validation points. The two synthetic simulated efficiency curves are compared with the actual efficiency curve certified by the Swiss Institute Solartechnik Puffung Forschung which tested the solar collector performance in steady-state conditions according to the UNI-EN 12975 standard. An acquisition set of measurements of only 4 days in the transient condition was enough to trace through a Graybox State Space Model the efficiency curve of the tested solar thermal collector, with a relative error of synthetic values with respect to efficiency certified by SPF, lower than 0.5%, while with the ALNN model the error is lower than 2.2% with respect to certified one. (author)
Dharmasena, Kalu Arachchillage Senarath
2011-08-08
There are many different types of non-alcoholic beverages (NAB) available in the United States today compared to a decade ago. Additionally, the needs of beverage consumers have evolved over the years centering attention ...
Snyder, Jared; Binder, Jonathan
2009-01-01
the allowances to the New York State Energy Research andVol. 27:231 of New York's renewable energy task force. In19. See Energy Conservation Construction Code of New York
Transition dynamics for Mu acceptor states in Si{sub 1–x}Ge{sub x} alloys
Jayarathna, G.; Lichti, R. L.; Mengyan, P. W.; Baker, B. B. [Texas Tech University, Lubbock, TX 79409-1051 (United States); Celebi, Y. G. [Istanbul University, Istanbul (Turkey); Carroll, B. R. [Arkansas State University, Jonesboro, AR 72410 (United States); Yonenaga, I. [Institute of Materials Research, Tohoku University (Japan)
2014-02-21
We use the longitudinal field muon spin relaxation technique to observe charge-state and site-change transitions of muonium in Si{sub 1–x}Ge{sub x} alloys. In this project, we examine the temperature and magnetic field dependences of the relaxation rates for Si{sub 1–x}Ge{sub x} samples (x = 0.77, 0.81, and 0.84), in the composition range where the acceptor level lies within the band gap. This study particularly focuses on the relaxation rates for Si{sub 0.19}Ge{sub 0.81} to identify various cyclic charge-state and site-change processes as a function of both temperature and magnetic field. We extract the paramagnetic hyperfine constant and the relevant transition rate parameters for site changes and charge-state transitions involving Mu acceptor states for this sample. At small x, a site change dominates the transition out of the neutral T-site acceptor state, while in higher Ge content alloys hole ionization becomes the dominant transition out of the Mu{sub T}{sup 0}.
Transition State Theory Approach to Polymer Escape from a One Dimensional Potential Well
Mökkönen, Harri; Ala-Nissila, Tapio; Jónsson, Hannes
2015-01-01
The rate of escape of an ideal bead-spring polymer in a symmetric double-well potential is calculated using transition state theory (TST) and the results compared with direct dynamical simulations. The minimum energy path of the transitions becomes flat and the dynamics diffusive for long polymers making the Kramers-Langer estimate poor. However, TST with dynamical corrections based on short time trajectories started at the transition state gives rate constant estimates that agree within a factor of two with the molecular dynamics simulations over a wide range of bead coupling constants and polymer lengths. The computational effort required by the TST approach does not depend on the escape rate and is much smaller than that required by molecular dynamics simulations.
, a non-collocated power measurement can be corrected through calculation rather than a costly is a widely used tool in power system energy management systems. The essence of state esti- mation market it is increasingly important to find cost effective ways to improve system visibility and account
North, Simon W.
branching ratios and spatial anisotropy of each dissociation channel permitted the extraction of relative) products,15 is crossed by 17 electronic states correlating to Cl(2 PJ) þ O(3 PJ) products. Several theoretical studies have attempted to elucidate the nature of the predissociation mechanism, i.e. determining
Sharma, Veerendra K [ORNL; Mamontov, Eugene [ORNL; Anunciado, Divina B [ORNL; O'Neill, Hugh Michael [ORNL; Urban, Volker S [ORNL
2015-01-01
Antimicrobial peptides are universal in all forms of life and are well known for their strong interaction with the cell membrane. This makes them a popular target for investigation of peptide-lipid interactions. Here we report the effect of melittin, an important antimicrobial peptide, on the dynamics of membranes based on 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) lipid in both the solid gel and fluid phases. To probe the phase transition, elastic neutron intensity temperature scans have been carried out on DMPC-based unilamellar vesicles (ULV) with and without melittin. We have found that addition of a small amount (0.2 mol%) melittin eliminates the steep fall in the elastic intensity at 296 K associated with the solid gel to fluid phase transition, which is observed for pure DMPC vesicles. Quasielastic neutron scattering (QENS) experiments have been carried out on DMPC ULV in the solid gel and fluid phases with and without 0.2 mol % melittin. The data analysis invariably shows the presence of lateral and internal motions of the DMPC molecule. We found that melittin does have a profound effect on the dynamics of lipid molecules, especially on the lateral motion, and affects it in a different way, depending on the phase of the bilayers. In the solid gel phase, it acts as a plasticizer, enhancing the lateral motion of DMPC. However, in the fluid phase it acts as a stiffening agent, restricting the lateral motion of the lipid molecules. These observations are consistent with the mean squared displacements extracted from the elastic intensity temperature scans. Cholesterol is a vital component of eukaryotic membrane, which is a natural target for melittin. To investigate the effect of melittin on vesicles supplemented with cholesterol, QENS experiments have also been carried out on DMPC ULV with 20 mol% cholesterol in the presence and absence of 0.2 mol% melittin. Remarkably, the effects of melittin on the membrane dynamics disappear in the presence of 20 mol % cholesterol. Thus, our measurements indicate that the destabilizing effect of the peptide melittin on membranes can be mitigated by the presence of cholesterol.
Not Available
1993-08-01
Reports in this Record of Proceedings explore a wide variety of issues related to the regulation of natural gas and its future role as one of the critical fuels that powers the economy of the United States. The focus is mainly on problems, obstacles, barriers, and the incredibly complex system created to bring a fuel from wellhead to burner tip. Individual papers have been cataloged separately.
Stránský, Pavel; Macek, Michal; Cejnar, Pavel
2014-06-15
Quantum systems with a finite number of freedom degrees f develop robust singularities in the energy spectrum of excited states as the system’s size increases to infinity. We analyze the general form of these singularities for low f, particularly f=2, clarifying the relation to classical stationary points of the corresponding potential. Signatures in the smoothed energy dependence of the quantum state density and in the flow of energy levels with an arbitrary control parameter are described along with the relevant thermodynamical consequences. The general analysis is illustrated with specific examples of excited-state singularities accompanying the first-order quantum phase transition. -- Highlights: •ESQPTs found in infinite-size limit of systems with low numbers of freedom degrees f. •ESQPTs related to non-analytical evolutions of classical phase–space properties. •ESQPT signatures analyzed for general f, particularly f=2, extending known case f=1. •ESQPT signatures identified in smoothened density and flow of energy spectrum. •ESQPTs shown to induce a new type of thermodynamic anomalies.
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Ko Kyaw, Aung Ko; Gehrig, Dominik; Zhang, Jie; Huang, Ye; Bazan, Guillermo C.; Laquai, Frédéric; Nguyen, Thuc -Quyen
2014-11-27
The photovoltaic performance of bulk heterojunction solar cells using the solution-processable small molecule donor 7,7'-(4,4-bis(2-ethylhexyl)-4H-silolo[3,2-b:4,5-b']dithiophene-2,6-diyl)bis(6-fluoro-4-(5'-hexyl-[2,2'-bithiophene]-5-yl)benzo[c][1,2,5]thiadiazole) (p-DTS(FBTTh2)2 in combination with indene-C60 bis-adduct (ICBA) as an acceptor is systematically optimized by altering the processing conditions. A high open-circuit voltage of 1 V, more than 0.2 V higher than that of a p-DTS(FBTTh2)2:PC70BM blend, is achieved. However, the power conversion efficiency remains around 5% and thus is lower than ~8% previously reported for p-DTS(FBTTh2)2:PC70BM. Transient absorption (TA) pump–probe spectroscopy over a wide spectral (Vis-NIR) and dynamic (fs to ?s) range in combination with multivariate curve resolution analysis of the TA data reveals thatmore »generation of free charges is more efficient in the blend with PC70BM as an acceptor. In contrast, blends with ICBA create more coulombically bound interfacial charge transfer (CT) states, which recombine on the sub-nanosecond timescale by geminate recombination. Furthermore, the ns to ?s charge carrier dynamics in p-DTS(FBTTh2)2:ICBA blends are only weakly intensity dependent implying a significant contribution of recombination from long-lived CT states and trapped charges, while those in p-DTS(FBTTh2)2:PC70BM decay via an intensity-dependent recombination mechanism indicating that spatially separated (free) charge carriers are observed, which can be extracted as photocurrent from the device.« less
Mabuchi, Takuya, E-mail: mabuchi@nanoint.ifs.tohoku.ac.jp [Graduate School of Engineering, Tohoku University, Sendai, Miyagi 980-8577 (Japan); Tokumasu, Takashi [Institute of Fluid Science, Tohoku University, Sendai, Miyagi 980-8577 (Japan)
2014-09-14
We have performed a detailed analysis of the structural properties of the sulfonate groups in terms of isolated and overlapped solvation shells in the nanostructure of hydrated Nafion membrane using classical molecular dynamics simulations. Our simulations have demonstrated the correlation between the two different areas in bound water region, i.e., the first solvation shell, and the vehicular transport of hydronium ions at different water contents. We have employed a model of the Nafion membrane using the improved force field, which is newly modified and validated by comparing the density and water diffusivity with those obtained experimentally. The first solvation shells were classified into the two types, the isolated area and the overlapped area. The mean residence times of solvent molecules explicitly showed the different behaviors in each of those areas in terms of the vehicular transport of protons: the diffusivity of classical hydronium ions in the overlapped area dominates their total diffusion at lower water contents while that in the isolated area dominates for their diffusion at higher water contents. The results provided insights into the importance role of those areas in the solvation shells for the diffusivity of vehicular transport of hydronium ions in hydrated Nafion membrane.
Vimmerstedt, Laura J.; Bush, Brian W.; Peterson, Steven O.
2015-09-03
This paper (and its supplemental model) presents novel approaches to modeling interactions and related policies among investment, production, and learning in an emerging competitive industry. New biomass-to-biofuels pathways are being developed and commercialized to support goals for U.S. advanced biofuel use, such as those in the Energy Independence and Security Act of 2007. We explore the impact of learning rates and techno-economics in a learning model excerpted from the Biomass Scenario Model (BSM), developed by the U.S. Department of Energy and the National Renewable Energy Laboratory to explore the impact of biofuel policy on the evolution of the biofuels industry. The BSM integrates investment, production, and learning among competing biofuel conversion options that are at different stages of industrial development. We explain the novel methods used to simulate the impact of differing assumptions about mature industry techno-economics and about learning rates while accounting for the different maturity levels of various conversion pathways. A sensitivity study shows that the parameters studied (fixed capital investment, process yield, progress ratios, and pre-commercial investment) exhibit highly interactive effects, and the system, as modeled, tends toward market dominance of a single pathway due to competition and learning dynamics.
Pace, Michael L.
. 2013. Nonlinear dynamics and alternative stable states in shallow coastal systems. Oceanography 26 al i S Su e O N cOa S tal lO N g t e r m e cO lO g i c al r e Se a rch Nonlinear Dynamics and alternative Stable States in Shallow coastal Systems By K a r e N J . m c g l at h e ry, m at t h e w a . r e
Gobet, Mallory [Hunter College of the City University of New York] [Hunter College of the City University of New York; Greenbaum, Steve [Hunter College of the City University of New York] [Hunter College of the City University of New York; Sahu, Gayatri [ORNL] [ORNL; Liang, Chengdu [ORNL] [ORNL
2014-01-01
The ceramic lithium ion conductor -Li3PS4 has a disordered and nanoporous structure that leads to an enhancement in ionic conductivity by some three orders of magnitude compared to the crystalline phase. The phase is prepared by thermal treatment of an inorganic-organic complex based on Li3PS4 and THF. Multinuclear (1H, 6,7Li, 31P) solid state NMR spectroscopy is used to characterize the structural phase evolution of the starting material at various steps in the thermal treatment. The phase formed after high temperature treatment is recognized as spectroscopically distinct from the bulk -Li3PS4 compound. Also formed is an amorphous lithium thiophosphate phase that is metastable as verified by annealing over an extended period. Lithium ion self-diffusion coefficients are measurable by standard pulsed gradient NMR methods at 100oC and with values consistent with the high ionic conductivity previously reported for this material.
Gadd, S.E.
1995-08-01
This dissertation discusses studies of the electron-hole pair dynamics of CdS{sub x}Se{sub 1-x} semiconductor alloys for the entire compositional range from x = 1 to x = 0 as examined by the ultrafast fluorescence techniques of time correlated single photon counting and fluorescence upconversion. Specifically, samples with x = 1, .75, .5, .25, and 0 were studied each at a spread of wavelengths about its respective emission maximum which varies according to {lambda} = 718nm - 210x nm. The decays of these samples were found to obey a Kohlrausch distribution, exp [(t/{tau}){sup {beta}}], with the exponent 3 in the range .5-.7 for the alloys. These results are in agreement with those expected for localization due to local potential variations resulting from the random distribution of sulfur and selenium atoms on the element VI A sub-lattice. This localization can be understood in terms of Anderson localization of the holes in states whose energy distribution tails into the forbidden energy band-gap. Because these states have energy dependent lifetimes, the carriers can decay via many parallel channels. This distribution of channels is the ultimate source of the Kohlrausch form of the fluorescence decays.
Origin State Destination State STB EIA STB EIA Alabama
Gasoline and Diesel Fuel Update (EIA)
20. Estimated rail transportation rates for coal, state to state, 2009 Percent transportation cost is of total delivered cost EIA Percent difference EIA vs. STB Shipments...
Origin State Destination State STB EIA STB EIA Alabama
Gasoline and Diesel Fuel Update (EIA)
19. Estimated rail transportation rates for coal, state to state, 2008 Percent transportation cost is of total delivered cost EIA Percent difference EIA vs. STB Shipments...
Dionne, B.; Tzanos, C. P.
2011-05-23
To support the safety analyses required for the conversion of the Belgian Reactor 2 (BR2) from highly-enriched uranium (HEU) to low-enriched uranium (LEU) fuel, the simulation of a number of loss-of-flow tests, with or without loss of pressure, has been undertaken. These tests were performed at BR2 in 1963 and used instrumented fuel assemblies (FAs) with thermocouples (TC) imbedded in the cladding as well as probes to measure the FAs power on the basis of their coolant temperature rise. The availability of experimental data for these tests offers an opportunity to better establish the credibility of the RELAP5-3D model and methodology used in the conversion analysis. In order to support the HEU to LEU conversion safety analyses of the BR2 reactor, RELAP simulations of a number of loss-of-flow/loss-of-pressure tests have been undertaken. Preliminary analyses showed that the conservative power distributions used historically in the BR2 RELAP model resulted in a significant overestimation of the peak cladding temperature during the transient. Therefore, it was concluded that better estimates of the steady-state and decay power distributions were needed to accurately predict the cladding temperatures measured during the tests and establish the credibility of the RELAP model and methodology. The new approach ('best estimate' methodology) uses the MCNP5, ORIGEN-2 and BERYL codes to obtain steady-state and decay power distributions for the BR2 core during the tests A/400/1, C/600/3 and F/400/1. This methodology can be easily extended to simulate any BR2 core configuration. Comparisons with measured peak cladding temperatures showed a much better agreement when power distributions obtained with the new methodology are used.
How EIA Estimates Natural Gas Production
Reports and Publications (EIA)
2004-01-01
The Energy Information Administration (EIA) publishes estimates monthly and annually of the production of natural gas in the United States. The estimates are based on data EIA collects from gas producing states and data collected by the U. S. Minerals Management Service (MMS) in the Department of Interior. The states and MMS collect this information from producers of natural gas for various reasons, most often for revenue purposes. Because the information is not sufficiently complete or timely for inclusion in EIA's Natural Gas Monthly (NGM), EIA has developed estimation methodologies to generate monthly production estimates that are described in this document.
REPORT NO. 4 ESTIMATES AND EVALUATION OF
REPORT NO. 4 ESTIMATES AND EVALUATION OF FALLOUT IN THE UNITED STATES FROM NUCLEAR WEAPONS ESTIMATES AND EVALUATION OF FALLOUT IN THE UNITED STATES FROM NUCLEAR WEAPONS TESTING CONDUCTED THROUGH 1962 Section II History of Nuclear Weapons Testing. . . . . . . . . . . . . . . . 4 Section III Atmospheric
Parlitz, Ulrich; Luther, Stefan
2015-01-01
Features of the Jacobian matrix of the delay coordinates map are exploited for quantifying the robustness and reliability of state and parameter estimations for a given dynamical model using an observed time series. Relevant concepts of this approach are introduced and illustrated for discrete and continuous time systems employing a filtered H\\'enon map and a R\\"ossler system.
Li, Y. Q.; Zhang, P. Y.; Han, K. L.
2015-03-28
A global many-body expansion potential energy surface is reported for the electronic ground state of CH{sub 2}{sup +} by fitting high level ab initio energies calculated at the multireference configuration interaction level with the aug-cc-pV6Z basis set. The topographical features of the new global potential energy surface are examined in detail and found to be in good agreement with those calculated directly from the raw ab initio energies, as well as previous calculations available in the literature. In turn, in order to validate the potential energy surface, a test theoretical study of the reaction CH{sup +}(X{sup 1}?{sup +})+H({sup 2}S)?C{sup +}({sup 2}P)+H{sub 2}(X{sup 1}?{sub g}{sup +}) has been carried out with the method of time dependent wavepacket on the title potential energy surface. The total integral cross sections and the rate coefficients have been calculated; the results determined that the new potential energy surface can both be recommended for dynamics studies of any type and as building blocks for constructing the potential energy surfaces of larger C{sup +}/H containing systems.
Crichton, John Alston
1953-01-01
A CRITICAL REVIEW OF METHODS USED IN THE ESTIMATION OF NATURAL GAS RESERVES NATURAL GAS RESERVES IN THE SI'AT. S OF TEXAS SOME EDUCATIONAL PREREQUISITES IN THE FIELD OF PETROLEUM ECONOMICS AND EVAI UATION Sy John Alston Crichton... ENGINEERING TABLE of CONTENTS ~Pa e A CRITICAL REVIEW OF METHODS USED IN THE ESTIMATION OF NATURAL GAS RESERVES Abstract Introdu=tion History of the Estimation of Gas Reserves Present Methods of Estimating Gas Reserves Meth& ds of Estimating Non...
Analysis of Power System Dynamics Subject to Stochastic Power Injections
DeVille, Lee
of the system dynamic states, e.g., synchronous machines angles and speeds, and algebraic states, e.g., bus
Demagnetization using a determined estimated magnetic state
Denis, Ronald J; Makowski, Nathanael J
2015-01-13
A method for demagnetizing comprising positioning a core within the electromagnetic field generated by a first winding until the generated first electrical current is not substantially increasing, thereby determining a saturation current. A second voltage, having the opposite polarity, is then applied across the first winding until the generated second electrical current is approximately equal to the magnitude of the determined saturation current. The maximum magnetic flux within the core is then determined using the voltage across said first winding and the second current. A third voltage, having the opposite polarity, is then applied across the first winding until the core has a magnetic flux equal to approximately half of the determined maximum magnetic flux within the core.
Discrete and Hybrid Stochastic State Estimation Algorithms
Johansson, Karl Henrik
oper- ation and reduce cost of installation and maintenance, potentially at the price of increasing, and in the control system maintenance, since the control unit can be deployed far from the plant, that often operates constant statistical properties has
Parameter Estimation Through Ignorance
Hailiang Du; Leonard A. Smith
2012-06-06
Dynamical modelling lies at the heart of our understanding of physical systems. Its role in science is deeper than mere operational forecasting, in that it allows us to evaluate the adequacy of the mathematical structure of our models. Despite the importance of model parameters, there is no general method of parameter estimation outside linear systems. A new relatively simple method of parameter estimation for nonlinear systems is presented, based on variations in the accuracy of probability forecasts. It is illustrated on the Logistic Map, the Henon Map and the 12-D Lorenz96 flow, and its ability to outperform linear least squares in these systems is explored at various noise levels and sampling rates. As expected, it is more effective when the forecast error distributions are non-Gaussian. The new method selects parameter values by minimizing a proper, local skill score for continuous probability forecasts as a function of the parameter values. This new approach is easier to implement in practice than alternative nonlinear methods based on the geometry of attractors or the ability of the model to shadow the observations. New direct measures of inadequacy in the model, the "Implied Ignorance" and the information deficit are introduced.
Estimated UseofWaterintheUnitedStatesin2005 Trends in estimated water use in the United States.L., Hutson, S.S., Linsey, K.S., Lovelace, J.K., and Maupin, M.A., 2009, Estimated use of water in the United
Ensemble Kalman filters for dynamical systems with unresolved turbulence
Grooms, Ian; Lee, Yoonsang; Majda, Andrew J.
2014-09-15
Ensemble Kalman filters are developed for turbulent dynamical systems where the forecast model does not resolve all the active scales of motion. Coarse-resolution models are intended to predict the large-scale part of the true dynamics, but observations invariably include contributions from both the resolved large scales and the unresolved small scales. The error due to the contribution of unresolved scales to the observations, called ‘representation’ or ‘representativeness’ error, is often included as part of the observation error, in addition to the raw measurement error, when estimating the large-scale part of the system. It is here shown how stochastic superparameterization (a multiscale method for subgridscale parameterization) can be used to provide estimates of the statistics of the unresolved scales. In addition, a new framework is developed wherein small-scale statistics can be used to estimate both the resolved and unresolved components of the solution. The one-dimensional test problem from dispersive wave turbulence used here is computationally tractable yet is particularly difficult for filtering because of the non-Gaussian extreme event statistics and substantial small scale turbulence: a shallow energy spectrum proportional to k{sup ?5/6} (where k is the wavenumber) results in two-thirds of the climatological variance being carried by the unresolved small scales. Because the unresolved scales contain so much energy, filters that ignore the representation error fail utterly to provide meaningful estimates of the system state. Inclusion of a time-independent climatological estimate of the representation error in a standard framework leads to inaccurate estimates of the large-scale part of the signal; accurate estimates of the large scales are only achieved by using stochastic superparameterization to provide evolving, large-scale dependent predictions of the small-scale statistics. Again, because the unresolved scales contain so much energy, even an accurate estimate of the large-scale part of the system does not provide an accurate estimate of the true state. By providing simultaneous estimates of both the large- and small-scale parts of the solution, the new framework is able to provide accurate estimates of the true system state.
Entangled quantum probes for dynamical environmental noise
Matteo A. C. Rossi; Matteo G. A. Paris
2015-03-11
We address the use of entangled qubits as quantum probes to characterize the dynamical noise induced by complex environments. In particular, we show that entangled probes improve estimation of the correlation time for a broad class of environmental noises compared to any sequential strategy involving single qubit preparation. The effect is present when the noise is faster than a threshold value, a regime which may always be achieved by tuning the coupling between the quantum probe and the environment inducing the noise. Our scheme exploits time-dependent sensitivity of quantum systems to decoherence and does not require dynamical control on the probes. We derive the optimal interaction time and the optimal probe preparation, showing that it corresponds to multiqubit GHZ states when entanglement is useful. We also show robustness of the scheme against depolarization or dephasing of the probe, and discuss simple measurements approaching optimal precision.
Weston, R.E. Jr.; Sears, T.J.; Preses, J.M. [Brookhaven National Laboratory, Upton, NY (United States)
1993-12-01
Research in this program is directed towards the spectroscopy of small free radicals and reactive molecules and the state-to-state dynamics of gas phase collision, energy transfer, and photodissociation phenomena. Work on several systems is summarized here.
Adaptive Distributed Parameter and Input Estimation in Plasma Tokamak Heat
Boyer, Edmond
. Keywords: Thermonuclear fusion, distributed parameter systems, input state and parameter estimation, adaptive infinite-dimensional estimation, Galerkin method 1. INTRODUCTION In a controlled thermonuclear fusion reactor, the plasma thermal diffusivity and heating energy play an important role
Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]
1997-03-28
This chapter focuses on the components (or elements) of the cost estimation package and their documentation.
L. P. Karakatsanis; G. P. Pavlos; M. N. Xenakis
2012-04-03
In the second part of this study and similarly with part one, the nonlinear analysis of the solar flares index is embedded in the non-extensive statistical theory of Tsallis [1]. The triplet of Tsallis, as well as the correlation dimension and the Lyapunov exponent spectrum were estimated for the SVD components of the solar flares timeseries. Also the multifractal scaling exponent spectrum, the generalized Renyi dimension spectrum and the spectrum of the structure function exponents were estimated experimentally and theoretically by using the entropy principle included in Tsallis non extensive statistical theory, following Arimitsu and Arimitsu [2]. Our analysis showed clearly the following: a) a phase transition process in the solar flare dynamics from high dimensional non Gaussian SOC state to a low dimensional also non Gaussian chaotic state, b) strong intermittent solar corona turbulence and anomalous (multifractal) diffusion solar corona process, which is strengthened as the solar corona dynamics makes phase transition to low dimensional chaos: c) faithful agreement of Tsallis non equilibrium statistical theory with the experimental estimations of i) non-Gaussian probability distribution function, ii) multifractal scaling exponent spectrum and generalized Renyi dimension spectrum, iii) exponent spectrum of the structure functions estimated for the sunspot index and its underlying non equilibrium solar dynamics. e) The solar flare dynamical profile is revealed similar to the dynamical profile of the solar convection zone as far as the phase transition process from SOC to chaos state. However the solar low corona (solar flare) dynamical characteristics can be clearly discriminated from the dynamical characteristics of the solar convection zone.
United States Department of Agriculture Forest Service Northeastern Research Station General Estimates for Forest Types of the United States James E. Smith Linda S. Heath Kenneth E. Skog Richard A forest types within 10 regions of the United States. Separate tables were developed for afforestation
United States Department of Agriculture Forest Service Northeastern Research Station General reported in USDA Forest Service surveys for forests of the conterminous United States. Developed for use estimates are provided for regional tree-mass totals using summary forest statistics for the United States
A priori estimates for relativistic liquid bodies
Todd A. Oliynyk
2014-12-30
We demonstrate that a sufficiently smooth solution of the relativistic Euler equations that represents a dynamical compact liquid body, when expressed in Lagrangian coordinates, determines a solution to a system of non-linear wave equations with acoustic boundary conditions. Using this wave formulation, we prove that these solutions satisfy energy estimates without loss of derivatives. Importantly, our wave formulation does not require the liquid to be irrotational, and the energy estimates do not rely on divergence and curl type estimates employed in previous works.
A priori estimates for relativistic liquid bodies
Oliynyk, Todd A
2015-01-01
We demonstrate that a sufficiently smooth solution of the relativistic Euler equations that represents a dynamical compact liquid body, when expressed in Lagrangian coordinates, determines a solution to a system of non-linear wave equations with acoustic boundary conditions. Using this wave formulation, we prove that these solutions satisfy energy estimates without loss of derivatives. Importantly, our wave formulation does not require the liquid to be irrotational, and the energy estimates do not rely on divergence and curl type estimates employed in previous works.
Check Estimates and Independent Costs
Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]
1997-03-28
Check estimates and independent cost estimates (ICEs) are tools that can be used to validate a cost estimate. Estimate validation entails an objective review of the estimate to ensure that estimate criteria and requirements have been met and well documented, defensible estimate has been developed. This chapter describes check estimates and their procedures and various types of independent cost estimates.
Modeling, Estimation, and Control of Waste Heat Recovery Systems
Luong, David
2013-01-01
State Estimation for Open Organic Rankine Cycle (ORC)138optimization of an organic Rankine cycle waste heat powerand Simulation of an Organic Rankine Cycle (ORC) System for
Antsaklis, Panos
. of Electrical and Computer Engineering, University of Notre Dame, August 1987. #12;P. J. Antsaklis, "On Dynamic," Control Systems Technical Report #55, Dept. of Electrical and Computer Engineering, University of Notre Report #55, Dept. of Electrical and Computer Engineering, University of Notre Dame, August 1987. #12;P. J
Paris-Sud XI, Université de
1 · R. Onanena, L. Oukhellou, D. Candusso, F. Harel, D. Hissel, P. Aknin. Fuel cells static Journal of Hydrogen Energy le 22/10/2010. Ed. Elsevier. Fuel cells static and dynamic characterizations), patrice.aknin@inrets.fr (Patrice Aknin), daniel.hissel@univ-fcomte.fr (Daniel Hissel). Keywords: Fuel cell
2013-01-01
model in southern states of Kerala and Tamil Nadu for non-JHARKHAND (19) KARNATAKA (26) KERALA (28) MADHYA PRADESH (
Origin State Destination State
Gasoline and Diesel Fuel Update (EIA)
rates for coal, state to state, STB data Origin State Destination State 2001 2002 2003 2004 2005 2006 2007 2008 2009 2001-2009 2008-2009 Alabama Alabama W W W W W W W W W W W...
Discrimination between pure states and mixed states
Chi Zhang; Guoming Wang; Mingsheng Ying
2007-02-09
In this paper, we discuss the problem of determining whether a quantum system is in a pure state, or in a mixed state. We apply two strategies to settle this problem: the unambiguous discrimination and the maximum confidence discrimination. We also proved that the optimal versions of both strategies are equivalent. The efficiency of the discrimination is also analyzed. This scheme also provides a method to estimate purity of quantum states, and Schmidt numbers of composed systems.
Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]
1997-03-28
The chapter describes the estimates required on government-managed projects for both general construction and environmental management.
Look, Wesley Allen
2013-01-01
The political economy of US climate policy has revolved around state- and district- level distributional economics, and to a lesser extent household-level distribution questions. Many politicians and analysts have suggested ...
Multi-rate Estimation of Coloured Noise Models in Graph-Based Estimation Algorithms
Nelson, James
Multi-rate Estimation of Coloured Noise Models in Graph-Based Estimation Algorithms Simon J. Julier. In this paper, we consider how coloured noise models can be efficiently incorporated within graph position, three velocity, three orientation). The GPS noise model introduces an extra six states (second
Estimated Costs of Crop Production in Iowa 2000
Duffy, Michael D.
Estimated Costs of Crop Production in Iowa 2000 The estimated costs of corn, corn silage. They include the annual Iowa Farm Business Association record summaries, production and costs data from and a survey of selected agriculture cooperatives around the state. These costs estimates are representative
Estimated Costs of Crop Production in Iowa 2001
Duffy, Michael D.
Estimated Costs of Crop Production in Iowa 2001 The estimated costs of corn, corn silage. They include the annual Iowa Farm Business Association record summaries, production and costs data from and a survey of selected agriculture cooperatives around the state. These costs estimates are representative
Neil Dobbs; Mikko Stenlund
2015-04-08
We introduce the notion of a quasistatic dynamical system, which generalizes that of an ordinary dynamical system. Quasistatic dynamical systems are inspired by the namesake processes in thermodynamics, which are idealized processes where the observed system transforms (infinitesimally) slowly due to external influence, tracing out a continuous path of thermodynamic equilibria over an (infinitely) long time span. Time-evolution of states under a quasistatic dynamical system is entirely deterministic, but choosing the initial state randomly renders the process a stochastic one. In the prototypical setting where the time-evolution is specified by strongly chaotic maps on the circle, we obtain a description of the statistical behaviour as a stochastic diffusion process, under surprisingly mild conditions on the initial distribution, by solving a well-posed martingale problem. We also consider various admissible ways of centering the process, with the curious conclusion that the "obvious" centering suggested by the initial distribution sometimes fails to yield the expected diffusion.
Estimates of US biomass energy consumption 1992
Not Available
1994-05-06
This report is the seventh in a series of publications developed by the Energy Information Administration (EIA) to quantify the biomass-derived primary energy used by the US economy. It presents estimates of 1991 and 1992 consumption. The objective of this report is to provide updated estimates of biomass energy consumption for use by Congress, Federal and State agencies, biomass producers and end-use sectors, and the public at large.
Stochastic Wireless Channel Modeling, Estimation and Identification from Measurements
Olama, Mohammed M [ORNL; Djouadi, Seddik M [ORNL; Li, Yanyan [ORNL
2008-07-01
This paper is concerned with stochastic modeling of wireless fading channels, parameter estimation, and system identification from measurement data. Wireless channels are represented by stochastic state-space form, whose parameters and state variables are estimated using the expectation maximization algorithm and Kalman filtering, respectively. The latter are carried out solely from received signal measurements. These algorithms estimate the channel inphase and quadrature components and identify the channel parameters recursively. The proposed algorithm is tested using measurement data, and the results are presented.
Continetti, Robert E.
to their potential importance as intermediates in catalytic reduction processes1,2 and as potential energetic materials.3 The weakly bound ground- state dimer of nitric oxide, (NO)2, has been extensively investigated The oxides of nitrogen play an important role in atmospheric chemistry and have received attention owing
Hans Peter Schmid; Craig Wayson
2009-05-05
The primary objective of this project was to evaluate carbon exchange dynamics across a region of North America between the Great Plains and the East Coast. This region contains about 40 active carbon cycle research (AmeriFlux) sites in a variety of climatic and landuse settings, from upland forest to urban development. The core research involved a scaling strategy that uses measured fluxes of CO{sub 2}, energy, water, and other biophysical and biometric parameters to train and calibrate surface-vegetation-atmosphere models, in conjunction with satellite (MODIS) derived drivers. To achieve matching of measured and modeled fluxes, the ecosystem parameters of the models will be adjusted to the dynamically variable flux-tower footprints following Schmid (1997). High-resolution vegetation index variations around the flux sites have been derived from Landsat data for this purpose. The calibrated models are being used in conjunction with MODIS data, atmospheric re-analysis data, and digital land-cover databases to derive ecosystem exchange fluxes over the study domain.
Observability of Origin-Destination matrices for Dynamic Traffic Assignment
Gupta, Ashish, S.M. Massachusetts Institute of Technology
2005-01-01
The estimation of dynamic Origin-Destination (O-D) matrices from aggregated sensor counts is one of the most important and well-researched problems in Dynamic Traffic Assignment (DTA) systems. In practice, more often than ...
State energy price and expenditure report 1994
1997-06-01
The State Energy Price and Expenditure Report (SEPER) presents energy price and expenditure estimates individually for the 50 States and the District of Columbia and in aggregate for the United States. The price and expenditure estimates developed in the State Energy Price and Expenditure Data System (SEPEDS) are provided by energy source and economic sector and are published for the years 1970 through 1994. Consumption estimates used to calculate expenditures and the documentation for those estimates are taken from the State Energy Data Report 1994, Consumption Estimates (SEDR), published in October 1996. Expenditures are calculated by multiplying the price estimates by the consumption estimates, which are adjusted to remove process fuel; intermediate petroleum products; and other consumption that has no direct fuel costs, i.e., hydroelectric, geothermal, wind, solar, and photovoltaic energy sources. Documentation is included describing the development of price estimates, data sources, and calculation methods. 316 tabs.
Dynamic shape factors for hydox-generated plutonium dioxide-type non-sperical objects
Lohaus, James Harold
1999-01-01
The dynamic shape factors of HYDOX-generated plutonium dioxide-type non-spherical objects were estimated with computational methods. Leith's empirical methods were used to modify classical Stokes's law for aerosol dynamics (1987). The dynamic shape...
Krishtal, Alisa; Genova, Alessandro; Pavanello, Michele
2015-01-01
Subsystem Density-Functional Theory (DFT) is an emerging technique for calculating the electronic structure of complex molecular and condensed phase systems. In this topical review, we focus on some recent advances in this field related to the computation of condensed phase systems, their excited states, and the evaluation of many-body interactions between the subsystems. As subsystem DFT is in principle an exact theory, any advance in this field can have a dual role. One is the possible applicability of a resulting method in practical calculations. The other is the possibility of shedding light on some quantum-mechanical phenomenon which is more easily treated by subdividing a supersystem into subsystems. An example of the latter is many-body interactions. In the discussion, we present some recent work from our research group as well as some new results, casting them in the current state-of-the-art in this review as comprehensively as possible.
Guo, Zhiyong; Kobayashi, Takeshi; Wang, Lin-Lin; Goh, Tian Wei; Xiao, Chaoxian; Caporini, Marc A; Rosay, Melanie; Johnson, Duane D; Pruski, Marek; Huang, Wenyu
2014-10-08
The host–guest interaction between metal ions (Pt2+ and Cu2+) and a zirconium metal–organic framework (UiO-66-NH2) was explored using dynamic nuclear polarization-enhanced 15N{1H} CPMAS NMR spectroscopy supported by X-ray absorption spectroscopy and density functional calculations. The combined experimental results conclude that each Pt2+ coordinates with two NH2 groups from the MOF and two Cl? from the metal precursor, whereas Cu2+ do not form chemical bonds with the NH2 groups of the MOF framework. Density functional calculations reveal that Pt2+ prefers a square-planar structure with the four ligands and resides in the octahedral cage of the MOF in either cis or trans configurations.
Learning Nonlinear Dynamical Systems using an EM Algorithm
Edinburgh, University of
Learning Nonlinear Dynamical Systems using an EM Algorithm Zoubin Ghahramani and Sam T. Roweis present a generalization of the EM algorithm for parameter estimation in nonlinear dynamical systems Nonlinear Dynamical Systems We examine inference and learning in discrete-time dynamical systems with hidden
Dynamic Logics of Dynamical Systems ANDR E PLATZER, Carnegie Mellon University
Platzer, AndrÃ©
. Dynamical systems are mathematical models describing how the state of a system evolves over time. They are important for modeling and understanding many applications, including embedded systems and cyber of differential equations. We explain the dynamical system models, dynamic logics of dynamical systems
Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]
1997-03-28
Specialty costs are those nonstandard, unusual costs that are not typically estimated. Costs for research and development (R&D) projects involving new technologies, costs associated with future regulations, and specialty equipment costs are examples of specialty costs. This chapter discusses those factors that are significant contributors to project specialty costs and methods of estimating costs for specialty projects.
SPACE TECHNOLOGY Actual Estimate
technology readiness of new missions, mitigate their technological risks, improve the quality of cost estimates, and thereby contribute to better overall mission cost management..." Space Technology investmentsSPACE TECHNOLOGY TECH-1 Actual Estimate Budget Authority (in $ millions) FY 2011 FY 2012 FY 2013 FY
Chiral dynamics and peripheral transverse densities Granados...
Office of Scientific and Technical Information (OSTI)
dynamics and peripheral transverse densities Granados, Carlos G. Uppsala University (Sweden); Weiss, Christian JLAB, Newport News, VA (United States) 72 PHYSICS OF ELEMENTARY...
Sandia Energy - Scattering Dynamics
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Scattering Dynamics Home Transportation Energy Predictive Simulation of Engines Combustion Chemistry Chemical Dynamics Scattering Dynamics Scattering DynamicsAshley...
B. R. Webber
1995-10-12
The following aspects of hadronic final states in deep inelastic lepton scattering are reviewed: measuring $alpha_s$ from multi-jet production rates and event shapes; alternative jet algorithms for DIS; power-suppressed corrections to event shapes; comparing jet fragmentation in $e^+e^-$ annihilation and DIS; final states in the BFKL and CCFM formulations of small-$x$ dynamics; exotic (instanton-induced) final states.
Bokarev, Sergey I; Suljoti, Edlira; Kühn, Oliver; Aziz, Emad F
2013-01-01
Non-radiative decay channels in the L-edge fluorescence spectra from transition metal-aqueous solutions give rise to spectral dips in X-ray transmission spectra. Their origin is unraveled here using partial and inverse partial fluorescence yields on the micro-jet combined with multi-reference ab initio electronic structure calculations. Comparing Fe2+, Fe3+, and Co2+ systems we demonstrate unequivocally that spectral dips are due to a state-dependent electron delocalization within the manifold of d-orbitals.
Dynamical Mutation of Dark Energy
L. R. Abramo; R. C. Batista; L. Liberato; R. Rosenfeld
2008-01-03
We discuss the intriguing possibility that dark energy may change its equation of state in situations where large dark energy fluctuations are present. We show indications of this dynamical mutation in some generic models of dark energy.
Dynamical mutation of dark energy
Abramo, L. R.; Batista, R. C. [Instituto de Fisica, Universidade de Sao Paulo, CP 66318, 05315-970, Sao Paulo (Brazil); Liberato, L.; Rosenfeld, R. [Instituto de Fisica Teorica, Universidade Estadual Paulista, R. Pamplona 145, 01405-900, Sao Paulo (Brazil)
2008-03-15
We discuss the intriguing possibility that dark energy may change its equation of state in situations where large dark energy fluctuations are present. We show indications of this dynamical mutation in some generic models of dark energy.
G. P. Pavlos; L. P. Karakatsanis; M. N. Xenakis
2012-01-31
In this study, the nonlinear analysis of the sunspot index is embedded in the non-extensive statistical theory of Tsallis. The triplet of Tsallis, as well as the correlation dimension and the Lyapunov exponent spectrum were estimated for the SVD components of the sunspot index timeseries. Also the multifractal scaling exponent spectrum, the generalized Renyi dimension spectrum and the spectrum of the structure function exponents were estimated experimentally and theoretically by using the entropy principle included in Tsallis non extensive statistical theory, following Arimitsu and Arimitsu. Our analysis showed clearly the following: a) a phase transition process in the solar dynamics from high dimensional non Gaussian SOC state to a low dimensional non Gaussian chaotic state, b) strong intermittent solar turbulence and anomalous (multifractal) diffusion solar process, which is strengthened as the solar dynamics makes phase transition to low dimensional chaos in accordance to Ruzmaikin, Zeleny and Milovanov studies c) faithful agreement of Tsallis non equilibrium statistical theory with the experimental estimations of i) non-Gaussian probability distribution function, ii) multifractal scaling exponent spectrum and generalized Renyi dimension spectrum, iii) exponent spectrum of the structure functions estimated for the sunspot index and its underlying non equilibrium solar dynamics.
Peterson, Steve; Bush, Brian; Vimmerstedt, Laura
2015-07-19
This paper (and its supplemental model) presents novel approaches to modeling interactions and related policies among investment, production, and learning in an emerging competitive industry. New biomass-to-biofuels pathways are being developed and commercialized to support goals for U.S. advanced biofuel use, such as those in the Energy Independence and Security Act of 2007. We explore the impact of learning rates and techno-economics in a learning model excerpted from the Biomass Scenario Model (BSM), developed by the U.S. Department of Energy and the National Renewable Energy Laboratory to explore the impact of biofuel policy on the evolution of the biofuels industry. The BSM integrates investment, production, and learning among competing biofuel conversion options that are at different stages of industrial development. We explain the novel methods used to simulate the impact of differing assumptions about mature industry techno-economics and about learning rates while accounting for the different maturity levels of various conversion pathways. A sensitivity study shows that the parameters studied (fixed capital investment, process yield, progress ratios, and pre-commercial investment) exhibit highly interactive effects, and the system, as modeled, tends toward market dominance of a single pathway due to competition and learning dynamics.
Free energy reconstruction from steered dynamics without post-processing
Manuel Athènes; Mihai-Cosmin Marinica
2010-06-30
Various methods achieving importance sampling in ensembles of nonequilibrium trajectories enable to estimate free energy differences and, by maximum-likelihood post-processing, to reconstruct free energy landscapes. Here, based on Bayes theorem, we propose a more direct method in which a posterior likelihood function is used both to construct the steered dynamics and to infer the contribution to equilibrium of all the sampled states. The method is implemented with two steering schedules. First, using non-autonomous steering, we calculate the migration barrier of the vacancy in Fe-alpha. Second, using an autonomous scheduling related to metadynamics and equivalent to temperature-accelerated molecular dynamics, we accurately reconstruct the two-dimensional free energy landscape of the 38-atom Lennard-Jones cluster as a function of an orientational bond-order parameter and energy, down to the solid-solid structural transition temperature of the cluster and without maximum-likelihood post-processing.
Fisher Information and entanglement of non-Gaussian spin states
Strobel, Helmut; Linnemann, Daniel; Zibold, Tilman; Hume, David B; Pezzè, Luca; Smerzi, Augusto; Oberthaler, Markus K
2015-01-01
Entanglement is the key quantum resource for improving measurement sensitivity beyond classical limits. However, the production of entanglement in mesoscopic atomic systems has been limited to squeezed states, described by Gaussian statistics. Here we report on the creation and characterization of non-Gaussian many-body entangled states. We develop a general method to extract the Fisher information, which reveals that the quantum dynamics of a classically unstable system creates quantum states that are not spin squeezed but nevertheless entangled. The extracted Fisher information quantifies metrologically useful entanglement which we confirm by Bayesian phase estimation with sub shot-noise sensitivity. These methods are scalable to large particle numbers and applicable directly to other quantum systems.
: Helmholtz machine estimation .
: Helmholtz machine density estimation . . : . . . (supervised learning) , (active learning) (query learning) [1, 3]. . (unsupervised learning), . , [5]. . Helmholtz machine , . Helmholtz machine : Helmholtz machine [2] . Helmholtz machine (generative network) (recognition network) . , , . Helmholtz machine (self
Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]
2011-05-09
This Guide provides uniform guidance and best practices that describe the methods and procedures that could be used in all programs and projects at DOE for preparing cost estimates. No cancellations.
Estimation of food consumption
Callaway, J.M. Jr.
1992-04-01
The research reported in this document was conducted as a part of the Hanford Environmental Dose Reconstruction (HEDR) Project. The objective of the HEDR Project is to estimate the radiation doses that people could have received from operations at the Hanford Site. Information required to estimate these doses includes estimates of the amounts of potentially contaminated foods that individuals in the region consumed during the study period. In that general framework, the objective of the Food Consumption Task was to develop a capability to provide information about the parameters of the distribution(s) of daily food consumption for representative groups in the population for selected years during the study period. This report describes the methods and data used to estimate food consumption and presents the results developed for Phase I of the HEDR Project.
U.S. Energy Information Administration | State Energy Data 2013...
Gasoline and Diesel Fuel Update (EIA)
7: Hydroelectric Power Consumption Estimates, 2013 State Hydroelectric Power Commercial Industrial Electric Power Total Commercial Industrial Electric Power Total Million...
Robustness of Controlled Quantum Dynamics
Andy Koswara; Raj Chakrabarti
2014-09-29
Control of multi-level quantum systems is sensitive to implementation errors in the control field and uncertainties associated with system Hamiltonian parameters. A small variation in the control field spectrum or the system Hamiltonian can cause an otherwise optimal field to deviate from controlling desired quantum state transitions and reaching a particular objective. An accurate analysis of robustness is thus essential in understanding and achieving model-based quantum control, such as in control of chemical reactions based on ab initio or experimental estimates of the molecular Hamiltonian. In this paper, theoretical foundations for quantum control robustness analysis are presented from both a distributional perspective - in terms of moments of the transition amplitude, interferences, and transition probability - and a worst-case perspective. Based on this theory, analytical expressions and a computationally efficient method for determining the robustness of coherently controlled quantum dynamics are derived. The robustness analysis reveals that there generally exists a set of control pathways that are more resistant to destructive interferences in the presence of control field and system parameter uncertainty. These robust pathways interfere and combine to yield a relatively accurate transition amplitude and high transition probability when uncertainty is present.
Stationary States of Dissipative Quantum Systems
Vasily E. Tarasov
2011-07-29
In this Letter we consider stationary states of dissipative quantum systems. We discuss stationary states of dissipative quantum systems, which coincide with stationary states of Hamiltonian quantum systems. Dissipative quantum systems with pure stationary states of linear harmonic oscillator are suggested. We discuss bifurcations of stationary states for dissipative quantum systems which are quantum analogs of classical dynamical bifurcations.
Solid-State Lighting Technical Reports
None
2011-12-16
A page that contains links to technical reports of studies estimating the energy savings potential of solid-state lighting in numerous applications.
State energy price and expenditure report 1991
Not Available
1993-09-01
The State Energy Price and Expenditure Report (SEPER) presents energy price and expenditure estimates individually for the 50 States and the District of Columbia and in aggregate for the United States. The price and expenditure estimates are provided by energy source and economic sector and are published for the years 1970, 1975, 1980, and 1985 through 1991. Data for all years, 1970 through 1991, are available on personal computer diskettes. Documentation in Appendix A describes how the price estimates are developed, including sources of data, methods of estimation, and conversion factors applied. This report is an update of the State Energy Price and Expenditure Report 1990, published in September 1992.
Ko Kyaw, Aung Ko; Gehrig, Dominik; Zhang, Jie; Huang, Ye; Bazan, Guillermo C.; Laquai, Frédéric; Nguyen, Thuc -Quyen
2014-11-27
The photovoltaic performance of bulk heterojunction solar cells using the solution-processable small molecule donor 7,7'-(4,4-bis(2-ethylhexyl)-4H-silolo[3,2-b:4,5-b']dithiophene-2,6-diyl)bis(6-fluoro-4-(5'-hexyl-[2,2'-bithiophene]-5-yl)benzo[c][1,2,5]thiadiazole) (p-DTS(FBTTh_{2})_{2} in combination with indene-C60 bis-adduct (ICBA) as an acceptor is systematically optimized by altering the processing conditions. A high open-circuit voltage of 1 V, more than 0.2 V higher than that of a p-DTS(FBTTh_{2})_{2}:PC_{70}BM blend, is achieved. However, the power conversion efficiency remains around 5% and thus is lower than ~8% previously reported for p-DTS(FBTTh_{2})_{2}:PC_{70}BM. Transient absorption (TA) pump–probe spectroscopy over a wide spectral (Vis-NIR) and dynamic (fs to ?s) range in combination with multivariate curve resolution analysis of the TA data reveals that generation of free charges is more efficient in the blend with PC_{70}BM as an acceptor. In contrast, blends with ICBA create more coulombically bound interfacial charge transfer (CT) states, which recombine on the sub-nanosecond timescale by geminate recombination. Furthermore, the ns to ?s charge carrier dynamics in p-DTS(FBTTh_{2})_{2}:ICBA blends are only weakly intensity dependent implying a significant contribution of recombination from long-lived CT states and trapped charges, while those in p-DTS(FBTTh_{2})_{2}:PC_{70}BM decay via an intensity-dependent recombination mechanism indicating that spatially separated (free) charge carriers are observed, which can be extracted as photocurrent from the device.
Thermodynamic estimation: Ionic materials
Glasser, Leslie, E-mail: l.glasser@curtin.edu.au
2013-10-15
Thermodynamics establishes equilibrium relations among thermodynamic parameters (“properties”) and delineates the effects of variation of the thermodynamic functions (typically temperature and pressure) on those parameters. However, classical thermodynamics does not provide values for the necessary thermodynamic properties, which must be established by extra-thermodynamic means such as experiment, theoretical calculation, or empirical estimation. While many values may be found in the numerous collected tables in the literature, these are necessarily incomplete because either the experimental measurements have not been made or the materials may be hypothetical. The current paper presents a number of simple and relible estimation methods for thermodynamic properties, principally for ionic materials. The results may also be used as a check for obvious errors in published values. The estimation methods described are typically based on addition of properties of individual ions, or sums of properties of neutral ion groups (such as “double” salts, in the Simple Salt Approximation), or based upon correlations such as with formula unit volumes (Volume-Based Thermodynamics). - Graphical abstract: Thermodynamic properties of ionic materials may be readily estimated by summation of the properties of individual ions, by summation of the properties of ‘double salts’, and by correlation with formula volume. Such estimates may fill gaps in the literature, and may also be used as checks of published values. This simplicity arises from exploitation of the fact that repulsive energy terms are of short range and very similar across materials, while coulombic interactions provide a very large component of the attractive energy in ionic systems. Display Omitted - Highlights: • Estimation methods for thermodynamic properties of ionic materials are introduced. • Methods are based on summation of single ions, multiple salts, and correlations. • Heat capacity, entropy, lattice energy, enthalpy, Gibbs energy values are available.
Mesoscale predictability and background error convariance estimation through ensemble forecasting
Ham, Joy L
2002-01-01
Over the past decade, ensemble forecasting has emerged as a powerful tool for numerical weather prediction. Not only does it produce the best estimate of the state of the atmosphere, it also could quantify the uncertainties ...
State energy price and expenditure report, 1995
1998-08-01
The State Energy Price and Expenditure Report (SEPER) presents energy price and expenditure estimates individually for the 50 States and the District of Columbia and in aggregate for the US. The estimates developed in the State Energy Price and Expenditure Data System (SEPEDS) are provided by energy source and economic sector and are published for the years 1970 through 1995. Data for all years are available on a CD-ROM and via Internet. Consumption estimates used to calculate expenditures and the documentation for those estimates are taken from the State Energy Data Report 1995, Consumption Estimates (SEDR), published in December 1997. Expenditures are calculated by multiplying the price estimates by the consumption estimates, which are adjusted to remove process fuel; intermediate petroleum products; and other consumption that has no direct fuel costs, i.e., hydroelectric, geothermal, wind, solar, and photovoltaic energy sources.
Quantum enhanced estimation of a multi-dimensional field
Tillmann Baumgratz; Animesh Datta
2015-07-10
We present a framework for the quantum enhanced estimation of multiple parameters corresponding to non-commuting unitary generators. Our formalism provides a recipe for the simultaneous estimation of all three components of a magnetic field. We propose a probe state that surpasses the precision of estimating the three components individually and discuss measurements that come close to attaining the quantum limit. Our study also reveals that too much quantum entanglement may be detrimental to attaining the Heisenberg scaling in quantum metrology.
Battery Calendar Life Estimator Manual Modeling and Simulation
Jon P. Christophersen; Ira Bloom; Ed Thomas; Vince Battaglia
2012-10-01
The Battery Life Estimator (BLE) Manual has been prepared to assist developers in their efforts to estimate the calendar life of advanced batteries for automotive applications. Testing requirements and procedures are defined by the various manuals previously published under the United States Advanced Battery Consortium (USABC). The purpose of this manual is to describe and standardize a method for estimating calendar life based on statistical models and degradation data acquired from typical USABC battery testing.
DAMAGE ESTIMATION USING MULTI-OBJECTIVE GENETIC ALGORITHMS Faisal Shabbir
Boyer, Edmond
DAMAGE ESTIMATION USING MULTI-OBJECTIVE GENETIC ALGORITHMS Faisal Shabbir 1 , Piotr Omenzetter 2 1.omenzetter@abdn.ac.uk ABSTRACT It is common to estimate structural damage severity by updating a structural model against experimental responses at different damage states. When experimental results from the healthy and damaged
Estimated Costs of Crop Production in Iowa 2002
Duffy, Michael D.
Estimated Costs of Crop Production in Iowa 2002 The estimated costs of corn, corn silage. They include the annual Iowa Farm Business Association record summaries, production and costs data from and a survey of selected agricultural cooperatives and other input suppliers around the state. These costs
Estimated Costs of Crop Production in Iowa 2006
Duffy, Michael D.
Estimated Costs of Crop Production in Iowa 2006 The estimated costs of corn, corn silage. They include the annual Iowa Farm Business Association record summaries, production and costs data from and a survey of selected agricultural cooperatives and other input suppliers around the state. These costs
Estimated Costs of Crop Production in Iowa 2005
Duffy, Michael D.
Estimated Costs of Crop Production in Iowa 2005 The estimated costs of corn, corn silage. They include the annual Iowa Farm Business Association record summaries, production and costs data from and a survey of selected agricultural cooperatives and other input suppliers around the state. These costs
Tyre curve estimation in slip-controlled braking
Miller, Jonathan I.; Cebon, David
2015-06-09
identifying a Kalman filter observer for vehicle handling dynamics. IMECHE Part D – J. of Auto. Eng. 2006; 220: 1063–1072. 27. Yi J et al. Emergency braking control with an observer-based dynamic tire/road friction model and wheel angular velocity... also used by Shim et al.15, and Hong et al.16 Unsal and Kachroo17 compared an EKF with a sliding mode observer to estimate vehicle velocity, using this estimated velocity with a nominal slip-friction curve to determine the braking force. The authors...
Bruce Turkington; Petr Plechac
2010-10-21
A new method of deriving reduced models of Hamiltonian dynamical systems is developed using techniques from optimization and statistical estimation. Given a set of resolved variables that define a model reduction, the quasi-equilibrium ensembles associated with the resolved variables are employed as a family of trial probability densities on phase space. The residual that results from submitting these trial densities to the Liouville equation is quantified by an ensemble-averaged cost function related to the information loss rate of the reduction. From an initial nonequilibrium state, the statistical state of the system at any later time is estimated by minimizing the time integral of the cost function over paths of trial densities. Statistical closure of the underresolved dynamics is obtained at the level of the value function, which equals the optimal cost of reduction with respect to the resolved variables, and the evolution of the estimated statistical state is deduced from the Hamilton-Jacobi equation satisfied by the value function. In the near-equilibrium regime, or under a local quadratic approximation in the far-from-equilibrium regime, this best-fit closure is governed by a differential equation for the estimated state vector coupled to a Riccati differential equation for the Hessian matrix of the value function. Since memory effects are not explicitly included in the trial densities, a single adjustable parameter is introduced into the cost function to capture a time-scale ratio between resolved and unresolved motions. Apart from this parameter, the closed equations for the resolved variables are completely determined by the underlying deterministic dynamics.
MULTIVARIATE REGRESSION S-ESTIMATORS FOR ROBUST ESTIMATION AND INFERENCE
Van Aelst, Stefan
1 MULTIVARIATE REGRESSION S-ESTIMATORS FOR ROBUST ESTIMATION AND INFERENCE Stefan Van Aelst-estimators for multivariate regression. We study the robustness of the estimators in terms of their breakdown point and in and multivariate location and scatter. Furthermore we develop a fast and robust bootstrap method
Unbiased Robust Template Estimation
Reuter, Martin
Unbiased Robust Template Estimation for Longitudinal Analysis in FreeSurfer Compared with cross-sectional may have a profound clinical impact. The current methods that utilize cross-sectional approaches, R. & Maguire, P. & Rosas, D. & Makris, N. & Dale, A. & Dickerson, B. & Fischl, B. (2006
Symmetries in open quantum dynamics
Thomas F. Jordan
2014-08-20
Simple examples are used to introduce and examine a Heisenberg picture of symmetries of open quantum dynamics that can be described by unitary operators. When the symmetries are for Hamiltonian dynamics of an entire system, and the spectrum of the Hamiltonian operator has a lower bound, the symmetry operators commute with the Hamiltonian operator. An example shows that symmetry operators need not commute with the Hamiltonian operator when the spectrum of the Hamiltonian does not have a lower bound. There are many more symmetries that are only for the open dynamics of a subsystem and are described by unitary operators that do not commute with the Hamiltonian for the dynamics of the entire system. Examples show how these symmetries alone can reveal properties of the dynamics and reduce what needs to be done to work out the dynamics. A symmetry of the open dynamics of a subsystem can imply properties of the dynamics for the entire system that are not implied by the symmetries of the dynamics of the entire system. The symmetries are generally not related to constants of the motion for the open dynamics of the subsystem. There are symmetries of the open dynamics of a subsystem that depend only on the dynamics. In the simplest examples, these are also symmetries of the dynamics of the entire system. There are many more symmetries, of a new kind, that also depend on correlations, or absence of correlations, between the subsystem and the rest of the entire system, or on the state of the rest of the entire system. Symmetries that depend on correlations generally cannot be seen in the Schr\\"{o}dinger picture as symmetries of dynamical maps of density matrices for the subsystem.
State observer for synchronous motors
Lang, Jeffrey H. (Waltham, MA)
1994-03-22
A state observer driven by measurements of phase voltages and currents for estimating the angular orientation of a rotor of a synchronous motor such as a variable reluctance motor (VRM). Phase voltages and currents are detected and serve as inputs to a state observer. The state observer includes a mathematical model of the electromechanical operation of the synchronous motor. The characteristics of the state observer are selected so that the observer estimates converge to the actual rotor angular orientation and velocity, winding phase flux linkages or currents.
Dynamic analysis of policy drivers for bioenergy commodity markets
Robert F. Jeffers; Jacob J. Jacobson; Erin M. Searcy
2001-01-01
Biomass is increasingly being considered as a feedstock to provide a clean and renewable source of energy in the form of both liquid fuels and electric power. In the United States, the biofuels and biopower industries are regulated by different policies and have different drivers which impact the maximum price the industries are willing to pay for biomass. This article describes a dynamic computer simulation model that analyzes future behavior of bioenergy feedstock markets given policy and technical options. The model simulates the long-term dynamics of these markets by treating advanced biomass feedstocks as a commodity and projecting the total demand of each industry as well as the market price over time. The model is used for an analysis of the United States bioenergy feedstock market that projects supply, demand, and market price given three independent buyers: domestic biopower, domestic biofuels, and foreign exports. With base-case assumptions, the biofuels industry is able to dominate the market and meet the federal Renewable Fuel Standard (RFS) targets for advanced biofuels. Further analyses suggest that United States bioenergy studies should include estimates of export demand in their projections, and that GHG-limiting policy would partially shield both industries from exporter dominance.
Use of Cost Estimating Relationships
Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]
1997-03-28
Cost Estimating Relationships (CERs) are an important tool in an estimator's kit, and in many cases, they are the only tool. Thus, it is important to understand their limitations and characteristics. This chapter discusses considerations of which the estimator must be aware so the Cost Estimating Relationships can be properly used.
Magnetic nanoparticle temperature estimation
Weaver, John B.; Rauwerdink, Adam M.; Hansen, Eric W.
2009-05-15
The authors present a method of measuring the temperature of magnetic nanoparticles that can be adapted to provide in vivo temperature maps. Many of the minimally invasive therapies that promise to reduce health care costs and improve patient outcomes heat tissue to very specific temperatures to be effective. Measurements are required because physiological cooling, primarily blood flow, makes the temperature difficult to predict a priori. The ratio of the fifth and third harmonics of the magnetization generated by magnetic nanoparticles in a sinusoidal field is used to generate a calibration curve and to subsequently estimate the temperature. The calibration curve is obtained by varying the amplitude of the sinusoidal field. The temperature can then be estimated from any subsequent measurement of the ratio. The accuracy was 0.3 deg. K between 20 and 50 deg. C using the current apparatus and half-second measurements. The method is independent of nanoparticle concentration and nanoparticle size distribution.
Estimating the Attractor Dimension of the Equatorial Weather System
Melvin Leok Boon Tiong
1995-10-25
The correlation dimension and limit capacity serve theoretically as lower and upper bounds, respectively, of the fractal dimension of attractors of dynamic systems. In this paper, we show that estimates of the correlation dimension grow rapidly with increasing noise level in the time-series, while estimates of the limit capacity remain relatively unaffected. It is therefore proposed that the limit capacity be used in studies of noisy data, despite its heavier computational requirements. An analysis of Singapore wind data with the limit capacity estimate revealed a surprisingly low dimension (~2.5). It is suggested that further studies be made with comprehensive equatorial weather data.
State energy price and expenditure report 1989
Not Available
1991-09-30
The State Energy Price and Expenditure Report (SEPER) presents energy price and expenditure estimates for the 50 States, the District of Columbia, and the United States. The estimates are provided by energy source (e.g., petroleum, natural gas, coal, and electricity) and by major consuming or economic sector. This report is an update of the State Energy Price and Expenditure Report 1988 published in September 1990. Changes from the last report are summarized in a section of the documentation. Energy price and expenditure estimates are published for the years 1970, 1975, 1980, and 1985 through 1989. Documentation follows the tables and describes how the price estimates are developed, including sources of data, methods of estimation, and conversion factors applied. Consumption estimates used to calculate expenditures, and the documentation for those estimates, are from the State Energy Data Report, Consumption Estimates, 1960--1989 (SEDR), published in May 1991. Expenditures are calculated by multiplying the price estimates by the consumption estimates, adjusted to remove process fuel and intermediate product consumption. All expenditures are consumer expenditures, that is, they represent estimates of money directly spent by consumers to purchase energy, generally including taxes. 11 figs., 43 tabs.
Capture into Rydberg states and momentum distributions of ionized electrons
Shvetsov-Shilovski, N I; Popruzhenko, S V; Becker, W
2009-01-01
The yield of neutral excited atoms and low-energy photoelectrons generated by the electron dynamics in the combined Coulomb and laser field after tunneling is investigated. We present results of Monte-Carlo simulations built on the two-step semiclassical model, as well as analytic estimates and scaling relations for the population trapping into the Rydberg states. It is shown that mainly those electrons are captured into bound states of the neutral atom that due to their initial conditions (i) have moderate drift momentum imparted by the laser field and (ii) avoid strong interaction ("hard" collision) with the ion. In addition, it is demonstrated that the channel of capture, when accounted for in semiclassical calculations, has a pronounced effect on the momentum distribution of electrons with small positive energy. For the parameters that we investigated its presence leads to a dip at zero momentum in the longitudinal momentum distribution of the ionized electrons.
Optimal Estimation of Dynamically Evolving Di usivities Kurt S. Riedel
equations to account for model error [15]. Researchers attempt to model the e#11;ect of microscopic turbulence in plasmas and uids with anomalous di#11;usion coeÆcients. These e#11;ective equations for uid ow are only an approximation of the actual evolution equations, and in many cases the model error
Estimation of parameters governing the transmission dynamics of
humans is assessed using prevalence of morbidity as a measure of the level of ... Schistosomes are dioecious, helminth parasites with indirect life cycles.
Terrain sensing and estimation for dynamic outdoor mobile robots
Ward, Christopher Charles
2007-01-01
In many applications, mobile robots are required to travel on outdoor terrain at high speed. Compared to traditional low-speed, laboratory-based robots, outdoor scenarios pose increased perception and mobility challenges ...
The effects of incorporating dynamic data on estimates of uncertainty
Mulla, Shahebaz Hisamuddin
2004-09-30
analysis. The results were compared with the uncertainty predicted using only static data. We also investigated approaches for best selecting a smaller number of models from a larger set of realizations to be history matched for quantification...
Estimating the Wind Resource in Uttarakhand: Comparison of Dynamic...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
More Documents & Publications U.S. Virgin Islands Wind Resources Update 2014 The Wind Forecast Improvement Project (WFIP): A PublicPrivate Partnership for Improving Short...
Estimating the Wind Resource in Uttarakhand: Comparison of Dynamic...
Broader source: Energy.gov (indexed) [DOE]
may be useful if the variation in the wind resource is such that turbines can generate power at times of high demand (Hart et al. 2012). Spectral analysis (not shown) of the...
Gossip-based density estimation in dynamic heterogeneous sensor networks
Langendoen, Koen
, introduce new challenges. Moreover, churn makes the problem even more complicated. In this paper we networks. The devised method supports node mobility and churn, as well as redeployment of new nodes/exit a cluster and they do not have fixed neighbors. One of the other challenges is churn caused by either nodes
Decisionmetrices : dynamic structural estimation of shipping investment decisions
Dikos, George
2004-01-01
This dissertation develops structural models for analyzing shipping investment decisions, namely ordering, scrapping and lay-up decisions in the tanker industry. We develop models, based on a microeconomic specification, ...
Estimating the Wind Resource in Uttarakhand: Comparison of Dynamic
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015 InfographiclighbulbsDepartment ofServices3ErnestCorporate
Broader source: Energy.gov [DOE]
State policymakers and various stakeholders frequently have need to estimate the emissions impacts of particular renewable energy and energy efficiency policies. However, it can be challenging and...
Optimal estimation of free energies and stationary densities from multiple biased simulations
Wu, Hao
2013-01-01
When studying high-dimensional dynamical systems such as macromolecules, quantum systems and polymers, a prime concern is the identification of the most probable states and their stationary probabilities or free energies. Often, these systems have metastable regions or phases, prohibiting to estimate the stationary probabilities by direct simulation. Efficient sampling methods such as umbrella sampling, metadynamics and conformational flooding have developed that perform a number of simulations where the system's potential is biased such as to accelerate the rare barrier crossing events. A joint free energy profile or stationary density can then be obtained from these biased simulations with weighted histogram analysis method (WHAM). This approach (a) requires a few essential order parameters to be defined in which the histogram is set up, and (b) assumes that each simulation is in global equilibrium. Both assumptions make the investigation of high-dimensional systems with previously unknown energy landscape ...
Horn, Berthold Klaus Paul
Dynamic reconstruction is a method for generating images or image sequences from data obtained using moving radiation detection systems. While coded apertures are used as examples of the underlying information collection ...
Eigen-Inference for Energy Estimation of Multiple Sources
1 Eigen-Inference for Energy Estimation of Multiple Sources Romain Couillet, Student Member, IEEE, the transmission policy in the secondary network can be accurately and dynamically adapted. An example of use on Flexible Radio, SUP´ELEC, Gif sur Yvette, 91192, Plateau de Moulon, 3, Rue Joliot- Curie, France e
Dynamic nuclear polarization for NMR : applications and hardware development
Casey, Andrew (Andrew Byron)
2008-01-01
solid State NMR (SSNMR) can determine molecular as well as supermolecular structure and dynamics. The low signal intensities make many of these experiments prohibitively long. Dynamic Nuclear Polarization provides a method ...
Nonlinear Dynamic Data Reconciliation: In-depth Case Study
Taylor, James H.
categories of DR are prominent, steady-state or static DR (SDR) and dynamic DR (DDR). Note that the main difference between DDR and other filtering techniques is that DDR explicitly uses the process dynamic model
Behavioral/Systems/Cognitive Inhibition Determines Membrane Potential Dynamics and
Destexhe, Alain
with computational models to investi- gate subthreshold dynamics of conductances and how conductance dynamics contribution to membrane potential fluctuations. Computational models predict that in such inhibition and unconscious cortical states. Key words: intracellular recordings; conductance analysis; cerebral cortex
Origin State Destination State
Gasoline and Diesel Fuel Update (EIA)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan FebCubic Feet) YearYear JanFeet)0.9 0.9 1.07. Estimated
Origin State Destination State
Gasoline and Diesel Fuel Update (EIA)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan FebCubic Feet) YearYear JanFeet)0.9 0.9 1.07. Estimated8.
Origin State Destination State
Gasoline and Diesel Fuel Update (EIA)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan FebCubic Feet) YearYear JanFeet)0.9 0.9 1.07.4. Estimated
Origin State Destination State
Gasoline and Diesel Fuel Update (EIA)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan FebCubic Feet) YearYear JanFeet)0.9 0.9 1.07.4.6.Estimated
BLITZ: Wireless Link Quality Estimation in the Dark Michael Spuhler1
Lenders, Vincent
in real-life wireless networks remains a challenge. Partic- ularly in dynamic link environments, where, the measured metrics are biased towards an estimation of good channel conditions since only successful packets
Word, Daniel Paul
2013-07-09
The development of infectious disease models remains important to provide scientists with tools to better understand disease dynamics and develop more effective control strategies. In this work we focus on the estimation of seasonally varying...
Hydrocarbon Reservoir Parameter Estimation Using
van Vliet, Lucas J.
Hydrocarbon Reservoir Parameter Estimation Using Production Data and Time-Lapse Seismic #12;#12;Hydrocarbon Reservoir Parameter Estimation Using Production Data and Time-Lapse Seismic PROEFSCHRIFT ter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Recovery process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.3 Field
Cost Estimating, Analysis, and Standardization
Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]
1984-11-02
To establish policy and responsibilities for: (a) developing and reviewing project cost estimates; (b) preparing independent cost estimates and analysis; (c) standardizing cost estimating procedures; and (d) improving overall cost estimating and analytical techniques, cost data bases, cost and economic escalation models, and cost estimating systems. Cancels DOE O 5700.2B, dated 8-5-1983; DOE O 5700.8, dated 5-27-1981; and HQ 1130.1A, dated 12-30-1981. Canceled by DOE O 5700.2D, dated 6-12-1992
State energy price and expenditure report 1992
Not Available
1994-12-01
The State Energy Price and Expenditure Report (SEPER) presents energy price and expenditure estimates individually for the 50 States and the District of Columbia and in aggregate for the United States. The price and expenditure estimates are provided by energy source and economic sector and are published for the years 1970, 1980, and 1985 through 1992. Data for all years, 1970 through 1992, are available on personal computer diskettes.
Residential water use and landscape vegetation dynamics in Los Angeles
Mini, Caroline
2013-01-01
Reidy, K. (2008). Residential Water Demand Management:Estimation of residential water demand: a state-of-the-art2009, Determinants of residential water demand in Germany,
IEEE SIGNAL PROCESSING LETTERS, VOL. 20, NO. 6, JUNE 2013 575 Joint Frequency and Phasor Estimation
Tong, Lang
, constrained maximum likelihood estimation, frequency estimation, phasor measurement unit (PMU), power system in the context of power system state estimation using phasor measurement units (PMUs). A key feature of PMU meters period. PMU provides syn- chronized direct measurements of bus voltages and currents. Under normal
Estimated Costs of Crop Production in Iowa -2007 File A1-20
Duffy, Michael D.
Estimated Costs of Crop Production in Iowa - 2007 File A1-20 T he estimated costs of corn, corn sources. They include the annual Iowa Farm Business Asso- ciation record summaries, production and costs the state. These costs estimates are representative of average costs for farms in Iowa. Very large or small
Estimated Costs of Crop Production in Iowa -2009 File A1-20
Duffy, Michael D.
Estimated Costs of Crop Production in Iowa - 2009 File A1-20 T he estimated costs of corn, corn sources. They include the annual Iowa Farm Business Asso- ciation record summaries, production and costs the state. These costs estimates are representative of average costs for farms in Iowa. Very large or small
Estimated Costs of Crop Production in Iowa -2008 File A1-20
Duffy, Michael D.
Estimated Costs of Crop Production in Iowa - 2008 File A1-20 T he estimated costs of corn, corn sources. They include the annual Iowa Farm Business Asso- ciation record summaries, production and costs the state. These costs estimates are representative of average costs for farms in Iowa. Very large or small
Bayesian Linear State Estimation using Smart Meters and PMUs Measurements
Schenato, Luca
Arghandeh, CIEE Calif. Inst. for Ener. and Envir. #12;Can we bring PMU to distribution grids ? ! Develop a ultra-high-resolution micro- PMU for measuring voltage angles ! develop a wireless network optimized unbalanced #12;Can we measure voltage phasors? Phasor Measurement Unit (PMU) · GPS timestamps · Measure
Phasor Measurement Unit Data in Power System State Estimation
weighted least squares with significant weight on the PMU measurements; and 2) eliminating the equations associated with the voltage phase angle measurements made by the PMU. The PMU measurements would be done by supervisory control and data acquisition (SCADA) devices. The incorporation of PMU measurements
OPTIMAL PLACEMENT AND UTILIZATION OF PHASOR MEASUREMENTS FOR STATE ESTIMATION
presents a procedure by which new PMU locations can be systematically determined in order to render measurement unit (PMU). Buses with zero and non- zero injections, and branches with power flow measure- ments- tor based on strictly PMU measurements and investigates the computational performance as well
A Nonstochastic Information Theory for Communication and State Estimation
Nair, Girish N
2011-01-01
In communications, unknown variables are usually modelled as random variables, and concepts such as independence, entropy and information are defined in terms of the underlying probability distributions. In contrast, control theory often treats uncertainties and disturbances as bounded unknowns having no statistical structure. The area of networked control combines both fields, raising the question of whether it is possible to construct meaningful analogues of stochastic concepts such as independence, Markovness, entropy and information without assuming a probability space. This paper introduces a framework for doing so, leading to the construction of a "maximin information" functional for nonstochastic variables. It is shown that the largest maximin information rate through a memoryless, error-prone channel in this framework coincides with the block-coding zero-error capacity of the channel. Maximin information is then used to derive a tight condition for achieving exponential uniform convergence when estima...
Linear and Nonlinear State Estimation in the Czochralski Process
Gravdahl, Jan Tommy
Morten Hovd Jan Tommy Gravdahl Dept. of Engineering Cybernetics, Norwegian Univ. of Science and Technology (NTNU), NO-7491 Trondheim, Norway. (e-mail: parsa.rahmanpour@itk.ntnu.no). SINTEF, Materials and Chemistry, Trondheim, Norway Dept. of Engineering Cybernetics, (NTNU) Abstract: The Czochralski process
Monte Carlo approaches to hidden Markov model state estimation
Sollberger, Derek
2011-01-01
Results with Sample Size T = 100 Energy Prices and B =with Sample Size T = 100 Energy Prices and B = 50 . . . . .is in metric tons. 3. Energy Prices: California Independent
Real-time state estimation of laboratory flows
Stransky, Scott (Scott M.)
2007-01-01
In this project, we use a real time computer model to simulate a differentially heated laboratory annulus. The laboratory annulus allows us to study chaotic flows typical of the atmosphere. Our objective is to bring the ...
Runtime Verification with State Estimation Scott D. Stoller1
Grosu, Radu
. Recently, a number of techniques have been developed to mitigate the over- head due to RV [12, 9, 1, 13, 5 by sampling. In such situations, there may be gaps in the observed program executions, thus making ac- curate demonstrate high prediction accuracy for the probabilities computed by our algorithm. They also show that our
Constrained model predictive control, state estimation and coordination
Yan, Jun
2006-01-01
of a formation of unmanned aerial vehicles’, Automatica 40,Kumar 2001), unmanned aerial vehicles ( Stipanovi´ ,Kumar 2001), unmanned aerial vehicles (Stipanovi´ , Inalhan,
ARM Site Atmospheric State Best Estimates for AIRS Validation
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsicloudden Documentation Data Management Facility009 ARM Orientation 1
State Energy Profiles and Estimates (SEDS) report Archives
Gasoline and Diesel Fuel Update (EIA)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices Global Crude Oil Prices Brent crude
Correlated exciton dynamics in semiconductor nanostructures
Wen, Patrick, Ph. D. Massachusetts Institute of Technology
2013-01-01
The absorption and dissipation of energy in semiconductor nanostructures are often determined by excited electron dynamics. In semiconductors, one fundamentally important electronic state is an exciton, an excited electron ...
Dynamical analysis of highly excited molecular spectra
Kellman, M.E. [Univ. of Oregon, Eugene (United States)
1993-12-01
The goal of this program is new methods for analysis of spectra and dynamics of highly excited vibrational states of molecules. In these systems, strong mode coupling and anharmonicity give rise to complicated classical dynamics, and make the simple normal modes analysis unsatisfactory. New methods of spectral analysis, pattern recognition, and assignment are sought using techniques of nonlinear dynamics including bifurcation theory, phase space classification, and quantization of phase space structures. The emphasis is chaotic systems and systems with many degrees of freedom.
On Estimating the Scale of National Deep Web Denis Shestakov and Tapio Salakoski
Hammerton, James
On Estimating the Scale of National Deep Web Denis Shestakov and Tapio Salakoski Turku Centre. With the advances in web technologies, more and more in- formation on the Web is contained in dynamically-generated web pages. Among several types of web "dynamism" the most important one is the case when web pages
Management and Conservation Note Direct Estimation of Early Survival and Movements in
movements of wolf pups should also be important from the standpoint of understanding social dynamicsManagement and Conservation Note Direct Estimation of Early Survival and Movements in Eastern Wolf survival and movements, with rigorous estimation of survival and dispersal rates and quantification
Heuristic for estimation of multiqubit genuine multipartite entanglement
Paulo E. M. F. Mendonca; Marcelo A. Marchiolli; Gerard J. Milburn
2015-01-28
For every N-qubit density matrix written in the computational basis, an associated "X-density matrix" can be obtained by vanishing all entries out of the main- and anti-diagonals. It is very simple to compute the genuine multipartite (GM) concurrence of this associated N-qubit X-state, which, moreover, lower bounds the GM-concurrence of the original (non-X) state. In this paper, we rely on these facts to introduce and benchmark a heuristic for estimating the GM-concurrence of an arbitrary multiqubit mixed state. By explicitly considering two classes of mixed states, we illustrate that our estimates are usually very close to the standard lower bound on the GM-concurrence, being significantly easier to compute. In addition, while evaluating the performance of our proposed heuristic, we provide the first characterization of GM-entanglement in the steady states of the driven Dicke model at zero temperature.
Biosensor Arrays for Estimating Molecular Concentration in Fluid Flows
Abolfath-Beygi, Maryam
2011-01-01
This paper constructs dynamical models and estimation algorithms for the concentration of target molecules in a fluid flow using an array of novel biosensors. Each biosensor is constructed out of protein molecules embedded in a synthetic cell membrane. The concentration evolves according to an advection-diffusion partial differential equation which is coupled with chemical reaction equations on the biosensor surface. By using averaging theory methods and the divergence theorem, an approximate model is constructed that describes the asymptotic behaviour of the concentration as a system of ordinary differential equations. The estimate of target molecules is then obtained by solving a nonlinear least squares problem. It is shown that the estimator is strongly consistent and asymptotically normal. An explicit expression is obtained for the asymptotic variance of the estimation error. As an example, the results are illustrated for a novel biosensor built out of protein molecules.
The time to reach pseudosteady-state in horizontal wells
Al-Kahtani, Abdulghafour
1998-01-01
Engineers need to estimate the expected productivity of horizontal wells. We need to know how long it takes to reach pseudosteady-state to accept that estimation. When all boundaries influence the pressure distribution in the drainage area...
Dynamical approach to heavy-ion induced fusion using actinide target
Aritomo, Y.; Hagino, K.; Chiba, S.; Nishio, K.
2012-10-20
To treat heavy-ion reactions using actinide target nucleus, we propose a model which takes into account the coupling to the collective states of interacting nuclei in the penetration of the Coulomb barrier and the dynamical evolution of nuclear shape from the contact configuration. A fluctuation-dissipation model (Langevin equation) was applied in the dynamical calculation, where effect of nuclear orientation at the initial impact on the prolately deformed target nucleus was considered. Using this model, we analyzed the experimental data for the mass distribution of fission fragments (MDFF) in the reaction of {sup 36}S+{sup 238}U at several incident energies. Fusion-fission, quasifission and deep-quasi-fission are separated as different trajectories on the potential energy surface. We estimated the fusion cross section of the reaction.
A multivariate phase distribution and its estimation
Charles F. Cadieu; Kilian Koepsell
2009-06-21
Circular variables such as phase or orientation have received considerable attention throughout the scientific and engineering communities and have recently been quite prominent in the field of neuroscience. While many analytic techniques have used phase as an effective representation, there has been little work on techniques that capture the joint statistics of multiple phase variables. In this paper we introduce a distribution that captures empirically observed pair-wise phase relationships. Importantly, we have developed a computationally efficient and accurate technique for estimating the parameters of this distribution from data. We show that the algorithm performs well in high-dimensions (d=100), and in cases with limited data (as few as 100 samples per dimension). We also demonstrate how this technique can be applied to electrocorticography (ECoG) recordings to investigate the coupling of brain areas during different behavioral states. This distribution and estimation technique can be broadly applied to any setting that produces multiple circular variables.
Residential Lighting End-Use Consumption Study: Estimation Framework and Initial Estimates
Gifford, Will R.; Goldberg, Miriam L.; Tanimoto, Paulo M.; Celnicker, Dane R.; Poplawski, Michael E.
2012-12-01
The U.S. DOE Residential Lighting End-Use Consumption Study is an initiative of the U.S. Department of Energy’s (DOE’s) Solid-State Lighting Program that aims to improve the understanding of lighting energy usage in residential dwellings. The study has developed a regional estimation framework within a national sample design that allows for the estimation of lamp usage and energy consumption 1) nationally and by region of the United States, 2) by certain household characteristics, 3) by location within the home, 4) by certain lamp characteristics, and 5) by certain categorical cross-classifications (e.g., by dwelling type AND lamp type or fixture type AND control type).
Learned, Edmund Philip
1925-03-15
of one cent per gallon on gasoline and naptha would yield at the present estimated production, $10,000,000.,>1 At that time the United States Government was having heavy expenses to meet. The European war had begun and there was a great deal... Report 767, 65th Congress, 2nd Session. 4. Laws of Oregon, 1919, Chapter 159. 5. Engineering News-Record, 91:967. (December 13, 1923.) 287] Learned: State Gasoline Taxes 9 registered 7,580,105 automobiles and motor trucks. At pres ent, there are over...
Duffy, Michael D.
The estimated costs of corn, corn silage, soybeans, al- falfa, and pasture maintenance record summaries, production and costs data from the Departments of Economics, Agricultural cooperatives and other input suppliers around the state. These costs estimates are representative of average
Population dynamics, production, and prey consumption of fathead minnows (Pimephales
) in prairie wetlands: a bioenergetics approach W.G. Duffy Abstract: I assessed the population dynamics of fathead minnows (Pimephales promelas) in prairie wetlands and developed a bioenergetics model to estimate
Robust and intelligent bearing estimation
Claassen, John P. (Albuquerque, NM)
2000-01-01
A method of bearing estimation comprising quadrature digital filtering of event observations, constructing a plurality of observation matrices each centered on a time-frequency interval, determining for each observation matrix a parameter such as degree of polarization, linearity of particle motion, degree of dyadicy, or signal-to-noise ratio, choosing observation matrices most likely to produce a set of best available bearing estimates, and estimating a bearing for each observation matrix of the chosen set.
Different approaches to estimating transition costs in the electric- utility industry
Baxter, L.W.
1995-10-01
The term ``transition costs`` describes the potential revenue shortfall (or welfare loss) a utility (or other actor) may experience through government-initiated deregulation of electricity generation. The potential for transition costs arises whenever a regulated industry is subject to competitive market forces as a result of explicit government action. Federal and state proposals to deregulate electricity generation sparked a national debate on transition costs in the electric-utility industry. Industry-wide transition cost estimates range from about $20 billion to $500 billion. Such disparate estimates raise important questions on estimation methods for decision makers. This report examines different approaches to estimating transition costs. The study has three objectives. First, we discuss the concept of transition cost. Second, we identify the major cost categories included in transition cost estimates and summarize the current debate on which specific costs are appropriately included in these estimates. Finally, we identify general and specific estimation approaches and assess their strengths and weaknesses. We relied primarily on the evidentiary records established at the Federal Energy Regulatory Commission and the California Public Utilities Commission to identify major cost categories and specific estimation approaches. We also contacted regulatory commission staffs in ten states to ascertain estimation activities in each of these states. We refined a classification framework to describe and assess general estimation options. We subsequently developed and applied criteria to describe and assess specific estimation approaches proposed by federal regulators, state regulators, utilities, independent power companies, and consultants.
Bioenergy market competition for biomass: A system dynamics review of current policies
Jacob J. Jacobson; Robert Jeffers
2013-07-01
There is growing interest in the United States and abroad to increase the use of biomass as an energy source due to environmental and energy security benefits. In the United States, the biofuel and biopower industries are regulated by different policies and different agencies and have different drivers, which impact the maximum price the industries are willing to pay for biomass. This article describes a dynamic computer simulation model that analyzes future behavior of bioenergy feedstock markets based on varying policy and technical options. The model simulates the long-term dynamics of these markets by treating advanced biomass feedstocks as a commodity and projecting the total demand of each industry, as well as the market price over time. The model is used for an analysis of the United States bioenergy feedstock market that projects supply, demand, and market price given three independent buyers: domestic biopower, domestic biofuels, and foreign exports. With base-case assumptions, the biofuels industry is able to dominate the market and meet the federal Renewable Fuel Standard (RFS) targets for advanced biofuels. Further analyses suggest that United States bioenergy studies should include estimates of export demand for biomass in their projections, and that GHG-limiting policy would partially shield both industries from export dominance.
Period doubling, information entropy, and estimates for Feigenbaum's constants
Reginald D. Smith
2013-08-03
The relationship between period doubling bifurcations and Feigenbaum's constants has been studied for nearly 40 years and this relationship has helped uncover many fundamental aspects of universal scaling across multiple nonlinear dynamical systems. This paper will combine information entropy with symbolic dynamics to demonstrate how period doubling can be defined using these tools alone. In addition, the technique allows us to uncover some unexpected, simple estimates for Feigenbaum's constants which relate them to log 2 and the golden ratio, phi, as well as to each other.
Pose and Motion Estimation Using Dual Quaternion-Based Extended Kalman Filtering
Goddard, J.S.; Abidi, M.A.
1998-06-01
A solution to the remote three-dimensional (3-D) measurement problem is presented for a dynamic system given a sequence of two-dimensional (2-D) intensity images of a moving object. The 3-D transformation is modeled as a nonlinear stochastic system with the state estimate providing the six-degree-of-freedom motion and position values as well as structure. The stochastic model uses the iterated extended Kalman filter (IEKF) as a nonlinear estimator and a screw representation of the 3-D transformation based on dual quaternions. Dual quaternions, whose elements are dual numbers, provide a means to represent both rotation and translation in a unified notation. Linear object features, represented as dual vectors, are transformed using the dual quaternion transformation and are then projected to linear features in the image plane. The method has been implemented and tested with both simulated and actual experimental data. Simulation results are provided, along with comparisons to a point-based IEKF method using rotation and translation, to show the relative advantages of this method. Experimental results from testing using a camera mounted on the end effector of a robot arm are also given.
TRACKING CODE DEVELOPMENT FOR BEAM DYNAMICS OPTIMIZATION
Yang, L.
2011-03-28
Dynamic aperture (DA) optimization with direct particle tracking is a straight forward approach when the computing power is permitted. It can have various realistic errors included and is more close than theoretical estimations. In this approach, a fast and parallel tracking code could be very helpful. In this presentation, we describe an implementation of storage ring particle tracking code TESLA for beam dynamics optimization. It supports MPI based parallel computing and is robust as DA calculation engine. This code has been used in the NSLS-II dynamics optimizations and obtained promising performance.
Penny, Will
Hierarchical Dynamic Models Will Penny OU Processes Embedding OU(2) process Dynamic Models Hierarchical Dynamic Models Will Penny 26th May 2011 #12;Hierarchical Dynamic Models Will Penny OU Processes Dynamic Models Will Penny OU Processes Embedding OU(2) process Dynamic Models Generalised coordinates
Parameter estimation, nonlinearity and Occam's razor
Leandro M. Alonso
2014-10-30
Nonlinear systems are capable of displaying complex behavior even if this is the result of a small number of interacting time scales. A widely studied case is when complex dynamics emerges out of a nonlinear system being forced by a simple harmonic function. In order to identify if a recorded time series is the result of a nonlinear system responding to a simpler forcing, we develop a discrete nonlinear transformation for time series based on synchronization techniques. This allows a parameter estimation procedure which simultaneously searches for a good fit of the recorded data, and small complexity of a fluctuating driving parameter. We illustrate this procedure using data from respiratory patterns during birdsong production.
RAPID DYNAMICAL CHAOS IN AN EXOPLANETARY SYSTEM
Deck, Katherine M.; Winn, Joshua N. [Department of Physics and Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Holman, Matthew J.; Carter, Joshua A.; Ragozzine, Darin [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Agol, Eric [Department of Astronomy, Box 351580, University of Washington, Seattle, WA 98195 (United States); Lissauer, Jack J. [NASA Ames Research Center, Moffet Field, CA 94035 (United States)
2012-08-10
We report on the long-term dynamical evolution of the two-planet Kepler-36 system, which consists of a super-Earth and a sub-Neptune in a tightly packed orbital configuration. The orbits of the planets, which we studied through numerical integrations of initial conditions that are consistent with observations of the system, are chaotic with a Lyapunov time of only {approx}10 years. The chaos is a consequence of a particular set of orbital resonances, with the inner planet orbiting 34 times for every 29 orbits of the outer planet. The rapidity of the chaos is due to the interaction of the 29:34 resonance with the nearby first-order 6:7 resonance, in contrast to the usual case in which secular terms in the Hamiltonian play a dominant role. Only one contiguous region of phase space, accounting for {approx}4.5% of the sample of initial conditions studied, corresponds to planetary orbits that do not show large-scale orbital instabilities on the timescale of our integrations ({approx}200 million years). Restricting the orbits to this long-lived region allows a refinement of estimates of the masses and radii of the planets. We find that the long-lived region consists of the initial conditions that satisfy the Hill stability criterion by the largest margin. Any successful theory for the formation of this system will need to account for why its current state is so close to unstable regions of phase space.
Examples of Cost Estimation Packages
Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]
1997-03-28
Estimates can be performed in a variety of ways. Some of these are for projects for an undefined scope, a conventional construction project, or where there is a level of effort required to complete the work. Examples of cost estimation packages for these types of projects are described in this appendix.
Quantifying the Level of Cross-State Renewable Energy Transactions...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
methods for data collection are Renewable Energy Certificate (REC) tracking and power flow estimates. Data from regional REC tracking systems, state agencies, and utility...
U.S. Energy Information Administration | State Energy Data 2013...
Gasoline and Diesel Fuel Update (EIA)
3: Nuclear Energy Consumption, Price, and Expenditure Estimates, 2013 State Nuclear Electric Power Nuclear Fuel Consumption Prices Expenditures Million Kilowatthours Trillion Btu...
U.S. Energy Information Administration | State Energy Data 2013...
Gasoline and Diesel Fuel Update (EIA)
4: Wood and Biomass Waste Consumption Estimates, 2013 State Wood Wood and Biomass Waste a Residential Commercial Industrial Electric Power Total b Thousand Cords Trillion Btu...
U.S. Energy Information Administration | State Energy Data 2013...
Gasoline and Diesel Fuel Update (EIA)
6: Geothermal Energy Consumption Estimates, 2013 State Geothermal Energy Electric Power Residential Commercial Industrial Electric Power Total Million Kilowatthours Trillion Btu...
U.S. Energy Information Administration | State Energy Data 2013...
Gasoline and Diesel Fuel Update (EIA)
9: Wind Energy Consumption Estimates, 2013 State Commercial Industrial Electric Power Total Commercial Industrial Electric Power Total Million Kilowatthours Trillion Btu Alabama 0...
Magnetostrophic balance as the optimal state for turbulent magnetoconvection
King, EM; Aurnou, JM
2015-01-01
that the magnetostrophic balance is no longer attained (Magnetostrophic balance as the optimal state for turbulentLorentz and Coriolis forces balance. One can estimate the
Vortex-Based Aero- and Hydrodynamic Estimation
Hemati, Maziar Sam
2013-01-01
Vortex-Based Aero- and Hydrodynamic Estimation . . . . . .2 Aero- andbenefit from vortex-based aero- and hydrodynamic estimation.
DYNAMIC DELAMINATION IN THROUGH-THICKNESS REINFORCED DCB SPECIMEN
N. SRIDHAR; ET AL
2001-02-01
Bridged crack models using beam theory formulation have proved to be effective in the modeling of quasistatic delamination crack growth in through thickness reinforced structures. In this paper, we model dynamic crack propagation in these structures with the beam theory formulation. Steady state crack propagation characteristics unique to the dynamic case are first identified. Dynamic crack propagation and the energetics of steady state dynamic crack growth for a Double Cantilever beam (DCB) configuration loaded with a flying wedge is examined next. We find that steady state crack growth is attainable for this loading configuration provided certain conditions are satisfied.
Mitchell, Mike
. This data was supplemented with data from known locations of radio-collared wolves. We found that occupancy), focusing on the case where certainty can be assumed for a subset of detections. We demonstrate how
Boyer, Edmond
natural gases containing hydrogen sulfide H2S and/or carbon dioxide CO2) are often encountered properties are very scarce because of the very high toxicity of H2S which leads to very complicated safety procedures for the experimentalists. This is especially true for the high pressures and temperatures
Non-equilibrium isothermal transformations in a temperature gradient from a microscopic dynamics
Stefano Olla; Viviana Letizia
2015-05-19
We consider a chain of anharmonic oscillators immersed in a heat bath with a temperature gradient and a time varying tension applied to one end of the chain while the other side is fixed to a point. We prove that under diffusive space-time rescaling the volume strain distribution of the chain evolves following a non-linear diffusive equation. The stationary states of the dynamics are of non-equilibrium and have a positive entropy production, so the classical relative entropy methods cannot be used. We develop new estimates based on entropic hypocoercivity, that allows to control the distribution of the positions configurations of the chain. The macroscopic limit can be used to model isothermal thermodynamic transformations between non-equilibrium stationary states.
Numerical estimation of the relative entropy of entanglement
Zinchenko, Yuriy; Friedland, Shmuel; Gour, Gilad
2010-11-15
We propose a practical algorithm for the calculation of the relative entropy of entanglement (REE), defined as the minimum relative entropy between a state and the set of states with positive partial transpose. Our algorithm is based on a practical semidefinite cutting plane approach. In low dimensions the implementation of the algorithm in matlab provides an estimation for the REE with an absolute error smaller than 10{sup -3}.
Quantum optical device accelerating dynamic programming
D. Grigoriev; A. Kazakov; S. Vakulenko
2010-11-23
In this paper we discuss analogue computers based on quantum optical systems accelerating dynamic programming for some computational problems. These computers, at least in principle, can be realized by actually existing devices. We estimate an acceleration in resolving of some NP-hard problems that can be obtained in such a way versus deterministic computers
State Energy Overview. [Contains glossary
Not Available
1983-10-01
An overview of selected energy-related data for the United States, for each state, and for the District of Columbia is presented. Included are the quantities of energy produced and consumed, estimates of fuel reserves, the value of nonrenewable fuels produced by type, energy expenditures, and consumer prices. Also provided for each state are selected demographic and energy-related information that have been ranked and expressed as a percent of the national total. This overview provides a ready reference and a quick access to selected state energy information and state rankings for various socioeconomic and energy items. The State Energy Overview is arranged in five sections. The first section presents United States totals and an overview of state rankings. The second depicts data for the 50 states and the District of Columbia. The glossary presents definitions germane to this publication and the fourth section describes methodology and includes remarks concerning the information and methods used to estimate 1982 consumption numbers. The fifth section presents sources of data and information for this publication. A summary of each section is included.
State coal profiles, January 1994
Not Available
1994-02-02
The purpose of State Coal Profiles is to provide basic information about the deposits, production, and use of coal in each of the 27 States with coal production in 1992. Although considerable information on coal has been published on a national level, there is a lack of a uniform overview for the individual States. This report is intended to help fill that gap and also to serve as a framework for more detailed studies. While focusing on coal output, State Coal Profiles shows that the coal-producing States are major users of coal, together accounting for about three-fourths of total US coal consumption in 1992. Each coal-producing State is profiled with a description of its coal deposits and a discussion of the development of its coal industry. Estimates of coal reserves in 1992 are categorized by mining method and sulfur content. Trends, patterns, and other information concerning production, number of mines, miners, productivity, mine price of coal, disposition, and consumption of coal are detailed in statistical tables for selected years from 1980 through 1992. In addition, coal`s contribution to the State`s estimated total energy consumption is given for 1991, the latest year for which data are available. A US summary of all data is provided for comparing individual States with the Nation as a whole. Sources of information are given at the end of the tables.
Dynamics of skyrmions in chiral magnets: Dynamic phase transitions and equation of motion
Lin, Shi-Zeng, E-mail: szl@lanl.gov; Reichhardt, Charles; Batista, Cristian D.; Saxena, Avadh [Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)
2014-05-07
We study the dynamics of skyrmions in a metallic chiral magnet. First, we show that skyrmions can be created dynamically by destabilizing the ferromagnetic background state through a spin polarized current. We then treat skyrmions as rigid particles and derive the corresponding equation of motion. The dynamics of skyrmions is dominated by the Magnus force, which accounts for the weak pinning of skyrmions observed in experiments. Finally, we discuss the quantum motion of skyrmions.
Risk Estimation Methodology for Launch Accidents.
Clayton, Daniel James; Lipinski, Ronald J.; Bechtel, Ryan D.
2014-02-01
As compact and light weight power sources with reliable, long lives, Radioisotope Power Systems (RPSs) have made space missions to explore the solar system possible. Due to the hazardous material that can be released during a launch accident, the potential health risk of an accident must be quantified, so that appropriate launch approval decisions can be made. One part of the risk estimation involves modeling the response of the RPS to potential accident environments. Due to the complexity of modeling the full RPS response deterministically on dynamic variables, the evaluation is performed in a stochastic manner with a Monte Carlo simulation. The potential consequences can be determined by modeling the transport of the hazardous material in the environment and in human biological pathways. The consequence analysis results are summed and weighted by appropriate likelihood values to give a collection of probabilistic results for the estimation of the potential health risk. This information is used to guide RPS designs, spacecraft designs, mission architecture, or launch procedures to potentially reduce the risk, as well as to inform decision makers of the potential health risks resulting from the use of RPSs for space missions.
Simulation and sequential dynamical systems
Mortveit, H.S.; Reidys, C.M.
1999-06-01
Computer simulations have a generic structure. Motivated by this the authors present a new class of discrete dynamical systems that captures this structure in a mathematically precise way. This class of systems consists of (1) a loopfree graph {Upsilon} with vertex set {l_brace}1,2,{hor_ellipsis},n{r_brace} where each vertex has a binary state, (2) a vertex labeled set of functions (F{sub i,{Upsilon}}:F{sub 2}{sup n} {yields} F{sub 2}{sup n}){sub i} and (3) a permutation {pi} {element_of} S{sub n}. The function F{sub i,{Upsilon}} updates the state of vertex i as a function of the states of vertex i and its {Upsilon}-neighbors and leaves the states of all other vertices fixed. The permutation {pi} represents the update ordering, i.e., the order in which the functions F{sub i,{Upsilon}} are applied. By composing the functions F{sub i,{Upsilon}} in the order given by {pi} one obtains the dynamical system (equation given in paper), which the authors refer to as a sequential dynamical system, or SDS for short. The authors will present bounds for the number of functionally different systems and for the number of nonisomorphic digraphs {Gamma}[F{sub {Upsilon}},{pi}] that can be obtained by varying the update order and applications of these to specific graphs and graph classes.
Turchin, Peter
2005-01-01
social, and political structures of agrarian societies), weinstability in agrarian states. Structure and Dynamics 1(1):
State energy price and expenditure report 1993
1995-12-01
The State Energy Price and Expenditure Report (SEPER) presents energy price and expenditure estimates individually for the 50 states and the District of Columbia and in aggregate for the US. The five economic sectors used in SEPER correspond to those used in SEDR and are residential, commercial, industrial, transportation, and electric utility. Documentation in appendices describe how the price estimates are developed, provide conversion factors for measures used in the energy analysis, and include a glossary. 65 tabs.
Road Grade Estimation for Look-ahead Vehicle Control
Johansson, Karl Henrik
power comsumption scheduling over time can improve total energy efficiency, as explored in Pettersson the longitudinal dynamics and energy flow in a heavy duty vehicle. It is used in engine and gearbox controllers determining if a gearshift should be performed or the state of some energy buffer changed. In order to reap
Measurement Noise versus Process Noise in Ionosphere Estimation for WAAS
Stanford University
Measurement Noise versus Process Noise in Ionosphere Estimation for WAAS Juan Blanch, Todd Walter of several parameters: the geometry of the measurements, the measurement noise, and the state of the ionosphere, which yields the process noise. It is very important to distinguish carefully between measurement
Automatic Parameter Estimation in a Mesoscale Model Without Ensembles
Duane, Gregory S.
. Hacker National Center for Atmospheric Research, Boulder, CO gduane,hacker@ucar.edu In numerical as extra state variables, and applying standard data assimilation methods that use ensembles to rep- resent, it is argued that the approach to parameter estimation can be extended to a more general scheme for machine
Harlim, John; Mahdi, Adam; Majda, Andrew J.
2014-01-15
A central issue in contemporary science is the development of nonlinear data driven statistical–dynamical models for time series of noisy partial observations from nature or a complex model. It has been established recently that ad-hoc quadratic multi-level regression models can have finite-time blow-up of statistical solutions and/or pathological behavior of their invariant measure. Recently, a new class of physics constrained nonlinear regression models were developed to ameliorate this pathological behavior. Here a new finite ensemble Kalman filtering algorithm is developed for estimating the state, the linear and nonlinear model coefficients, the model and the observation noise covariances from available partial noisy observations of the state. Several stringent tests and applications of the method are developed here. In the most complex application, the perfect model has 57 degrees of freedom involving a zonal (east–west) jet, two topographic Rossby waves, and 54 nonlinearly interacting Rossby waves; the perfect model has significant non-Gaussian statistics in the zonal jet with blocked and unblocked regimes and a non-Gaussian skewed distribution due to interaction with the other 56 modes. We only observe the zonal jet contaminated by noise and apply the ensemble filter algorithm for estimation. Numerically, we find that a three dimensional nonlinear stochastic model with one level of memory mimics the statistical effect of the other 56 modes on the zonal jet in an accurate fashion, including the skew non-Gaussian distribution and autocorrelation decay. On the other hand, a similar stochastic model with zero memory levels fails to capture the crucial non-Gaussian behavior of the zonal jet from the perfect 57-mode model.
Criticality of environmental information obtainable by dynamically controlled quantum probes
Analia Zwick; Gonzalo A. Alvarez; Gershon Kurizki
2015-09-22
A universal approach to decoherence control combined with quantum estimation theory reveals a critical behavior, akin to a phase transition, of the information obtainable by a qubit probe concerning the memory time of environmental fluctuations. This criticality emerges only when the probe is subject to dynamical control. It gives rise to a sharp transition between two dynamical phases characterized by either a short or long memory time compared to the probing time. This phase-transition of the environmental information is a fundamental feature that facilitates the attainment of the highest estimation precision of the environment memory-time and the characterization of probe dynamics.
Motion Estimation from Disparity Images
Demirdjian, D.
2001-05-07
A new method for 3D rigid motion estimation from stereo is proposed in this paper. The appealing feature of this method is that it directly uses the disparity images obtained from stereo matching. We assume that the stereo ...
Estimation of resources and reserves
Massachusetts Institute of Technology. Energy Laboratory.
1982-01-01
This report analyzes the economics of resource and reserve estimation. Current concern about energy problems has focused attention on how we measure available energy resources. One reads that we have an eight-year oil ...
Gennady P. Berman; Fausto Borgonovi; Diego A. R. Dalvit
2008-01-29
We review our results on a mathematical dynamical theory for observables for open many-body quantum nonlinear bosonic systems for a very general class of Hamiltonians. We show that non-quadratic (nonlinear) terms in a Hamiltonian provide a singular "quantum" perturbation for observables in some "mesoscopic" region of parameters. In particular, quantum effects result in secular terms in the dynamical evolution, that grow in time. We argue that even for open quantum nonlinear systems in the deep quasi-classical region, these quantum effects can survive after decoherence and relaxation processes take place. We demonstrate that these quantum effects in open quantum systems can be observed, for example, in the frequency Fourier spectrum of the dynamical observables, or in the corresponding spectral density of noise. Estimates are presented for Bose-Einstein condensates, low temperature mechanical resonators, and nonlinear optical systems prepared in large amplitude coherent states. In particular, we show that for Bose-Einstein condensate systems the characteristic time of deviation of quantum dynamics for observables from the corresponding classical dynamics coincides with the characteristic time-scale of the well-known quantum nonlinear effect of phase diffusion.
Estimate product quality with ANNs
Brambilla, A. [Univ. of Pisa (Italy); Trivella, F. [Adicon Advanced Distillation Control SrL, Pisa (Italy)
1996-09-01
Artificial neural networks (ANNs) have been applied to predict catalytic reformer octane number (ON) and gasoline splitter product qualities. Results show that ANNs are a valuable tool to derive fast and accurate product quality measurements, and offer a low-cost alternative to online analyzers or rigorous mathematical models. The paper describes product quality measurements, artificial neural networks, ANN structure, estimating gasoline octane numbers, and estimating naphtha splitter product qualities.
Temperature estimates from zircaloy oxidation kinetics and microstructures. [PWR
Olsen, C.S.
1982-10-01
This report reviews state-of-the-art capability to determine peak zircaloy fuel rod cladding temperatures following an abnormal temperature excursion in a nuclear reactor, based on postirradiation metallographic analysis of zircaloy microstructural and oxidation characteristics. Results of a comprehensive literature search are presented to evaluate the suitability of available zircaloy microstructural and oxidation data for estimating anticipated reactor fuel rod cladding temperatures. Additional oxidation experiments were conducted to evaluate low-temperature zircaloy oxidation characteristics for postirradiation estimation of cladding temperature by metallographic examination. Results of these experiments were used to calculate peak cladding temperatures of electrical heater rods and nuclear fuel rods that had been subjected to reactor temperature transients. Comparison of the calculated and measured peak cladding temperatures for these rods indicates that oxidation kinetics is a viable technique for estimating peak cladding temperatures over a broad temperature range. However, further improvement in zircaloy microstructure technology is necessary for precise estimation of peak cladding temperatures by microstructural examination.
Kim, Gunwoo; Griffin, John M.; Blanc, Frédéric; Haile, Sossina M.; Grey, Clare P.
2015-03-03
in the superprotonic phase, proton conductivity arising from structural and dynamic disorder of hydrogen bonds and phosphate anions.6 Understanding this is key to engineering novel, improved electrolytic materials for these applications. In this context, mixed... Hz. Powder averaging was achieved using the ZCW6765 scheme. For all oxygen sites, ?iso, CQ, ?Q, and the Euler angles describing the relative orientations of the electric field gradient (EFG) tensors for the oxygen sites were used as input parameters, the data...
Tonn, B.; Hwang, Ho-Ling; Elliot, S.; Peretz, J.; Bohm, R.; Hendrucko, B.
1994-04-01
This report contains descriptions of methodologies to be used to estimate the one-time generation of hazardous waste associated with five different types of remediation programs: Superfund sites, RCRA Corrective Actions, Federal Facilities, Underground Storage Tanks, and State and Private Programs. Estimates of the amount of hazardous wastes generated from these sources to be shipped off-site to commercial hazardous waste treatment and disposal facilities will be made on a state by state basis for the years 1993, 1999, and 2013. In most cases, estimates will be made for the intervening years, also.