Estimating Power System Dynamic States Using Extended Kalman Filter
Huang, Zhenyu; Schneider, Kevin P.; Nieplocha, Jaroslaw; Zhou, Ning
2014-10-31T23:59:59.000Z
Abstract—The state estimation tools which are currently deployed in power system control rooms are based on a steady state assumption. As a result, the suite of operational tools that rely on state estimation results as inputs do not have dynamic information available and their accuracy is compromised. This paper investigates the application of Extended Kalman Filtering techniques for estimating dynamic states in the state estimation process. The new formulated “dynamic state estimation” includes true system dynamics reflected in differential equations, not like previously proposed “dynamic state estimation” which only considers the time-variant snapshots based on steady state modeling. This new dynamic state estimation using Extended Kalman Filter has been successfully tested on a multi-machine system. Sensitivity studies with respect to noise levels, sampling rates, model errors, and parameter errors are presented as well to illustrate the robust performance of the developed dynamic state estimation process.
Transition state theory: Variational formulation, dynamical corrections, and error estimates
Van Den Eijnden, Eric
Transition state theory: Variational formulation, dynamical corrections, and error estimates Eric, Brazil Received 18 February 2005; accepted 9 September 2005; published online 7 November 2005 Transition which aim at computing dynamical corrections to the TST transition rate constant. The theory
Distributed Dynamic State Estimation with Extended Kalman Filter
Du, Pengwei; Huang, Zhenyu; Sun, Yannan; Diao, Ruisheng; Kalsi, Karanjit; Anderson, Kevin K.; Li, Yulan; Lee, Barry
2011-08-04T23:59:59.000Z
Increasing complexity associated with large-scale renewable resources and novel smart-grid technologies necessitates real-time monitoring and control. Our previous work applied the extended Kalman filter (EKF) with the use of phasor measurement data (PMU) for dynamic state estimation. However, high computation complexity creates significant challenges for real-time applications. In this paper, the problem of distributed dynamic state estimation is investigated. One domain decomposition method is proposed to utilize decentralized computing resources. The performance of distributed dynamic state estimation is tested on a 16-machine, 68-bus test system.
Dynamic State Estimation Utilizing High Performance Computing Methods
Schneider, Kevin P.; Huang, Zhenyu; Yang, Bo; Hauer, Matthew L.; Nieplocha, Jaroslaw
2009-03-18T23:59:59.000Z
The state estimation tools which are currently deployed in power system control rooms are based on a quasi-steady-state assumption. As a result, the suite of operational tools that rely on state estimation results as inputs do not have dynamic information available and their accuracy is compromised. This paper presents an overview of the Kalman Filtering process and then focuses on the implementation of the predication component on multiple processors.
Reduced Measurement-space Dynamic State Estimation (ReMeDySE) for Power Systems
Zhang, Jinghe; Welch, Greg; Bishop, Gary; Huang, Zhenyu
2011-06-19T23:59:59.000Z
Abstract- Applying Kalman filtering techniques to dynamic state estimation is a developing research area in modern power systems.
Zhou, Ning; Huang, Zhenyu; Meng, Da; Elbert, Stephen T.; Wang, Shaobu; Diao, Ruisheng
2014-03-31T23:59:59.000Z
With the increasing complexity resulting from uncertainties and stochastic variations introduced by intermittent renewable energy sources, responsive loads, mobile consumption of plug-in vehicles, and new market designs, more and more dynamic behaviors are observed in everyday power system operation. To operate a power system efficiently and reliably, it is critical to adopt a dynamic paradigm so that effective control actions can be taken in time. The dynamic paradigm needs to include three fundamental components: dynamic state estimation; look-ahead dynamic simulation; and dynamic contingency analysis (Figure 1). These three components answer three basic questions: where the system is; where the system is going; and how secure the system is against accidents. The dynamic state estimation provides a solid cornerstone to support the other 2 components and is the focus of this study.
Feasibility Studies of Applying Kalman Filter Techniques to Power System Dynamic State Estimation
Huang, Zhenyu; Schneider, Kevin P.; Nieplocha, Jarek
2007-08-01T23:59:59.000Z
Abstract—Lack of dynamic information in power system operations mainly attributes to the static modeling of traditional state estimation, as state estimation is the basis driving many other operations functions. This paper investigates the feasibility of applying Kalman filter techniques to enable the inclusion of dynamic modeling in the state estimation process and the estimation of power system dynamic states. The proposed Kalman-filter-based dynamic state estimation is tested on a multi-machine system with both large and small disturbances. Sensitivity studies of the dynamic state estimation performance with respect to measurement characteristics – sampling rate and noise level – are presented as well. The study results show that there is a promising path forward to implementation the Kalman-filter-based dynamic state estimation with the emerging phasor measurement technologies.
Meliopoulos, Sakis; Cokkinides, George; Fardanesh, Bruce; Hedrington, Clinton
2013-12-31T23:59:59.000Z
This is the final report for this project that was performed in the period: October1, 2009 to June 30, 2013. In this project, a fully distributed high-fidelity dynamic state estimator (DSE) that continuously tracks the real time dynamic model of a wide area system with update rates better than 60 times per second is achieved. The proposed technology is based on GPS-synchronized measurements but also utilizes data from all available Intelligent Electronic Devices in the system (numerical relays, digital fault recorders, digital meters, etc.). The distributed state estimator provides the real time model of the system not only the voltage phasors. The proposed system provides the infrastructure for a variety of applications and two very important applications (a) a high fidelity generating unit parameters estimation and (b) an energy function based transient stability monitoring of a wide area electric power system with predictive capability. Also the dynamic distributed state estimation results are stored (the storage scheme includes data and coincidental model) enabling an automatic reconstruction and “play back” of a system wide disturbance. This approach enables complete play back capability with fidelity equal to that of real time with the advantage of “playing back” at a user selected speed. The proposed technologies were developed and tested in the lab during the first 18 months of the project and then demonstrated on two actual systems, the USVI Water and Power Administration system and the New York Power Authority’s Blenheim-Gilboa pumped hydro plant in the last 18 months of the project. The four main thrusts of this project, mentioned above, are extremely important to the industry. The DSE with the achieved update rates (more than 60 times per second) provides a superior solution to the “grid visibility” question. The generator parameter identification method fills an important and practical need of the industry. The “energy function” based transient stability monitoring opens up new ways to protect the power grid, better manage disturbances, confine their impact and in general improve the reliability and security of the system. Finally, as a by-product of the proposed research project, the developed system is able to “play back” disturbances by a click of a mouse. The importance of this by-product is evident by considering the tremendous effort exerted after the August 2003 blackout to piece together all the disturbance recordings, align them and recreate the sequence of events. This project has moved the state of art from fault recording by individual devices to system wide disturbance recording with “play back” capability.
Estimation of the Dynamic States of Synchronous Machines Using an Extended Particle Filter
Zhou, Ning; Meng, Da; Lu, Shuai
2013-11-11T23:59:59.000Z
In this paper, an extended particle filter (PF) is proposed to estimate the dynamic states of a synchronous machine using phasor measurement unit (PMU) data. A PF propagates the mean and covariance of states via Monte Carlo simulation, is easy to implement, and can be directly applied to a non-linear system with non-Gaussian noise. The extended PF modifies a basic PF to improve robustness. Using Monte Carlo simulations with practical noise and model uncertainty considerations, the extended PF’s performance is evaluated and compared with the basic PF and an extended Kalman filter (EKF). The extended PF results showed high accuracy and robustness against measurement and model noise.
Marius Buibas; Gabriel A. Silva
2010-06-22T23:59:59.000Z
We present a framework for simulating signal propagation in geometric networks (i.e. networks that can be mapped to geometric graphs in some space) and for developing algorithms that estimate (i.e. map) the state and functional topology of complex dynamic geometric net- works. Within the framework we define the key features typically present in such networks and of particular relevance to biological cellular neural networks: Dynamics, signaling, observation, and control. The framework is particularly well-suited for estimating functional connectivity in cellular neural networks from experimentally observable data, and has been implemented using graphics processing unit (GPU) high performance computing. Computationally, the framework can simulate cellular network signaling close to or faster than real time. We further propose a standard test set of networks to measure performance and compare different mapping algorithms.
Measurement enhancement for state estimation
Chen, Jian
2009-05-15T23:59:59.000Z
in the power system. A robust state estimation should have the capability of keeping the system observable during different contingencies, as well as detecting and identifying the gross errors in measurement set and network topology. However, this capability...
Efficient Power System State Estimation
Lavaei, Javad
monitoring of power systems. 2. Background Power systems have four main components: transmission, sub-transmissionEfficient Power System State Estimation Zafirah Baksh Expected BS, Department of Electrical Engineering May 2013 ELEN E4511 Power Systems Analysis Professor Javad Lavaeiyanesi #12;1. Introduction Power
Enhanced State Estimators Final Project Report
. State estimators, integrated into control center energy management systems, provide estimates of varying magnitude. As a result, a state estimator is an essential tool for system monitoring becauseEnhanced State Estimators Final Project Report Power Systems Engineering Research Center A National
State energy data report 1994: Consumption estimates
NONE
1996-10-01T23:59:59.000Z
This document provides annual time series estimates of State-level energy consumption by major economic sector. The estimates are developed in the State Energy Data System (SEDS), operated by EIA. SEDS provides State energy consumption estimates to members of Congress, Federal and State agencies, and the general public, and provides the historical series needed for EIA`s energy models. Division is made for each energy type and end use sector. Nuclear electric power is included.
Compressing measurements in quantum dynamic parameter estimation
Magesan, Easwar
We present methods that can provide an exponential savings in the resources required to perform dynamic parameter estimation using quantum systems. The key idea is to merge classical compressive sensing techniques with ...
Uncertainty Quantification in ocean state estimation
Kalmikov, Alexander G
2013-01-01T23:59:59.000Z
Quantifying uncertainty and error bounds is a key outstanding challenge in ocean state estimation and climate research. It is particularly difficult due to the large dimensionality of this nonlinear estimation problem and ...
State energy data report 1993: Consumption estimates
NONE
1995-07-01T23:59:59.000Z
The State Energy Data Report (SEDR) provides annual time series estimates of State-level energy consumption by major economic sector. The estimates are developed in the State Energy Data System (SEDS), which is maintained and operated by the Energy Information Administration (EIA). The goal in maintaining SEDS is to create historical time series of energy consumption by State that are defined as consistently as possible over time and across sectors. SEDS exists for two principal reasons: (1) to provide State energy consumption estimates to Members of Congress, Federal and State agencies, and the general public; and (2) to provide the historical series necessary for EIA`s energy models.
State energy data report 1995 - consumption estimates
NONE
1997-12-01T23:59:59.000Z
The State Energy Data Report (SEDR) provides annual time series estimates of State-level energy consumption by major economic sectors. The estimates are developed in the State Energy Data System (SEDS), which is maintained and operated by the Energy Information Administration (EIA). The goal in maintaining SEDS exists for two principal reasons: (1) to provide State energy consumption estimates to Members of Congress, Federal and State agencies, and the general public, and (2) to provide the historical series necessary for EIA`s energy models.
State Energy Data Report, 1991: Consumption estimates
Not Available
1993-05-01T23:59:59.000Z
The State Energy Data Report (SEDR) provides annual time series estimates of State-level energy consumption by major economic sector. The estimates are developed in the State Energy Data System (SEDS), which is maintained and operated by the Energy Information Administration (EIA). The goal in maintaining SEDS is to create historical time series of energy consumption by State that are defined as consistently as possible over time and across sectors. SEDS exists for two principal reasons: (1) to provide State energy consumption estimates to the Government, policy makers, and the public; and (2) to provide the historical series necessary for EIA`s energy models.
Frequency tracking and parameter estimation for robust quantum state estimation
Ralph, Jason F. [Department of Electrical Engineering and Electronics, University of Liverpool, Brownlow Hill, Liverpool L69 3GJ (United Kingdom); Jacobs, Kurt [Department of Physics, University of Massachusetts at Boston, 100 Morrissey Blvd, Boston, Massachusetts 02125 (United States); Hill, Charles D. [Centre for Quantum Computation and Communication Technology, School of Physics, University of Melbourne, Victoria 3010 (Australia)
2011-11-15T23:59:59.000Z
In this paper we consider the problem of tracking the state of a quantum system via a continuous weak measurement. If the system Hamiltonian is known precisely, this merely requires integrating the appropriate stochastic master equation. However, even a small error in the assumed Hamiltonian can render this approach useless. The natural answer to this problem is to include the parameters of the Hamiltonian as part of the estimation problem, and the full Bayesian solution to this task provides a state estimate that is robust against uncertainties. However, this approach requires considerable computational overhead. Here we consider a single qubit in which the Hamiltonian contains a single unknown parameter. We show that classical frequency estimation techniques greatly reduce the computational overhead associated with Bayesian estimation and provide accurate estimates for the qubit frequency.
Parallel State Estimation Assessment with Practical Data
Chen, Yousu; Jin, Shuangshuang; Rice, Mark J.; Huang, Zhenyu
2014-10-31T23:59:59.000Z
This paper presents a full-cycle parallel state estimation (PSE) implementation using a preconditioned conjugate gradient algorithm. The developed code is able to solve large-size power system state estimation within 5 seconds using real-world data, comparable to the Supervisory Control And Data Acquisition (SCADA) rate. This achievement allows the operators to know the system status much faster to help improve grid reliability. Case study results of the Bonneville Power Administration (BPA) system with real measurements are presented. The benefits of fast state estimation are also discussed.
Estimating the uncertainty in underresolved nonlinear dynamics
Chorin, Alelxandre; Hald, Ole
2013-06-12T23:59:59.000Z
The Mori-Zwanzig formalism of statistical mechanics is used to estimate the uncertainty caused by underresolution in the solution of a nonlinear dynamical system. A general approach is outlined and applied to a simple example. The noise term that describes the uncertainty turns out to be neither Markovian nor Gaussian. It is argued that this is the general situation.
State energy data report 1996: Consumption estimates
NONE
1999-02-01T23:59:59.000Z
The State Energy Data Report (SEDR) provides annual time series estimates of State-level energy consumption by major economic sectors. The estimates are developed in the Combined State Energy Data System (CSEDS), which is maintained and operated by the Energy Information Administration (EIA). The goal in maintaining CSEDS is to create historical time series of energy consumption by State that are defined as consistently as possible over time and across sectors. CSEDS exists for two principal reasons: (1) to provide State energy consumption estimates to Members of Congress, Federal and State agencies, and the general public and (2) to provide the historical series necessary for EIA`s energy models. To the degree possible, energy consumption has been assigned to five sectors: residential, commercial, industrial, transportation, and electric utility sectors. Fuels covered are coal, natural gas, petroleum, nuclear electric power, hydroelectric power, biomass, and other, defined as electric power generated from geothermal, wind, photovoltaic, and solar thermal energy. 322 tabs.
PMU Deployment for Optimal State Estimation Performance
Roy, Sumit
the observability of candidate deployments at each step and improves the convergence speed of the search. In [5PMU Deployment for Optimal State Estimation Performance Yue Yang, Student Member IEEE, and Sumit electronic devices (IED), that sense the grid state variables so as to support enhanced, real-time monitoring
Sub-Second Parallel State Estimation
Chen, Yousu; Rice, Mark J.; Glaesemann, Kurt R.; Wang, Shaobu; Huang, Zhenyu
2014-10-31T23:59:59.000Z
This report describes the performance of Pacific Northwest National Laboratory (PNNL) sub-second parallel state estimation (PSE) tool using the utility data from the Bonneville Power Administrative (BPA) and discusses the benefits of the fast computational speed for power system applications. The test data were provided by BPA. They are two-days’ worth of hourly snapshots that include power system data and measurement sets in a commercial tool format. These data are extracted out from the commercial tool box and fed into the PSE tool. With the help of advanced solvers, the PSE tool is able to solve each BPA hourly state estimation problem within one second, which is more than 10 times faster than today’s commercial tool. This improved computational performance can help increase the reliability value of state estimation in many aspects: (1) the shorter the time required for execution of state estimation, the more time remains for operators to take appropriate actions, and/or to apply automatic or manual corrective control actions. This increases the chances of arresting or mitigating the impact of cascading failures; (2) the SE can be executed multiple times within time allowance. Therefore, the robustness of SE can be enhanced by repeating the execution of the SE with adaptive adjustments, including removing bad data and/or adjusting different initial conditions to compute a better estimate within the same time as a traditional state estimator’s single estimate. There are other benefits with the sub-second SE, such as that the PSE results can potentially be used in local and/or wide-area automatic corrective control actions that are currently dependent on raw measurements to minimize the impact of bad measurements, and provides opportunities to enhance the power grid reliability and efficiency. PSE also can enable other advanced tools that rely on SE outputs and could be used to further improve operators’ actions and automated controls to mitigate effects of severe events on the grid. The power grid continues to grow and the number of measurements is increasing at an accelerated rate due to the variety of smart grid devices being introduced. A parallel state estimation implementation will have better performance than traditional, sequential state estimation by utilizing the power of high performance computing (HPC). This increased performance positions parallel state estimators as valuable tools for operating the increasingly more complex power grid.
Estimating the Wind Resource in Uttarakhand: Comparison of Dynamic...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Estimating the Wind Resource in Uttarakhand: Comparison of Dynamic Downscaling with Doppler Lidar Wind Measurements Estimating the Wind Resource in Uttarakhand: Comparison of...
State energy data report 1992: Consumption estimates
Not Available
1994-05-01T23:59:59.000Z
This is a report of energy consumption by state for the years 1960 to 1992. The report contains summaries of energy consumption for the US and by state, consumption by source, comparisons to other energy use reports, consumption by energy use sector, and describes the estimation methodologies used in the preparation of the report. Some years are not listed specifically although they are included in the summary of data.
Communication Capacity Requirement for Reliable and Secure State Estimation in Smart Grid
Qiu, Robert Caiming
1 Communication Capacity Requirement for Reliable and Secure State Estimation in Smart Grid Husheng, Cookeville, TN Abstract-- Secure system state estimation is an important issue in smart grid to assure the information the- oretic perspective. The smart grid is modeled as a linear dynamic system. Then, the channel
Estimated Water Flows in 2005: United States
Smith, C A; Belles, R D; Simon, A J
2011-03-16T23:59:59.000Z
Flow charts depicting water use in the United States have been constructed from publicly available data and estimates of water use patterns. Approximately 410,500 million gallons per day of water are managed throughout the United States for use in farming, power production, residential, commercial, and industrial applications. Water is obtained from four major resource classes: fresh surface-water, saline (ocean) surface-water, fresh groundwater and saline (brackish) groundwater. Water that is not consumed or evaporated during its use is returned to surface bodies of water. The flow patterns are represented in a compact 'visual atlas' of 52 state-level (all 50 states in addition to Puerto Rico and the Virgin Islands) and one national water flow chart representing a comprehensive systems view of national water resources, use, and disposition.
Parallel State Estimation Assessment with Practical Data
Chen, Yousu; Jin, Shuangshuang; Rice, Mark J.; Huang, Zhenyu
2013-07-31T23:59:59.000Z
This paper presents a parallel state estimation (PSE) implementation using a preconditioned gradient algorithm and an orthogonal decomposition-based algorithm. The preliminary tests against a commercial Energy Management System (EMS) State Estimation (SE) tool using real-world data are performed. The results show that while the precondition gradient algorithm can solve the SE problem quicker with the help of parallel computing techniques, it might not be good for real-world data due to the large condition number of gain matrix introduced by the wide range of measurement weights. With the help of PETSc package and considering one iteration of the SE process, the orthogonal decomposition-based PSE algorithm can achieve 5-20 times speedup comparing against the commercial EMS tool. It is very promising that the developed PSE can solve the SE problem for large power systems at the SCADA rate, to improve grid reliability.
Estimated United States Transportation Energy Use 2005
Smith, C A; Simon, A J; Belles, R D
2011-11-09T23:59:59.000Z
A flow chart depicting energy flow in the transportation sector of the United States economy in 2005 has been constructed from publicly available data and estimates of national energy use patterns. Approximately 31,000 trillion British Thermal Units (trBTUs) of energy were used throughout the United States in transportation activities. Vehicles used in these activities include automobiles, motorcycles, trucks, buses, airplanes, rail, and ships. The transportation sector is powered primarily by petroleum-derived fuels (gasoline, diesel and jet fuel). Biomass-derived fuels, electricity and natural gas-derived fuels are also used. The flow patterns represent a comprehensive systems view of energy used within the transportation sector.
Dynamic Bayesian Networks model to estimate process availability.
Paris-Sud XI, Université de
Dynamic Bayesian Networks model to estimate process availability. Weber P. Centre de Recherche en reported here explores a new methodology to develop Dynamic Bayesian Network-based Availability of the system availability estimation comparing DBN model with the classical Markov chain model. Keywords
Numerical Estimation of Frictional Torques with Rate and State Friction
Arun K. Singh; T. N. Singh
2015-01-20T23:59:59.000Z
In this paper, numerical estimation of frictional torques is carried out of a rotary elastic disc on a hard and rough surface under different rotating conditions. A one dimensional spring- mass rotary system is numerically solved under the quasistatic condition with the rate and state dependent friction model. It is established that torque of frictional strength as well as torque of steady dynamic stress increases with radius and found to be maximum at the periphery of the disc. Torque corresponding to frictional strength estimated using the analytical solution matches closely with the simulation only in the case of high stiffness of the connecting spring. In steady relaxation simulation, a steadily rotating disc is suddenly stopped and relaxational angular velocity and corresponding frictional torque decreases with both steady angular velocity and stiffness of the connecting spring in the velocity strengthening regime. In velocity weakening regime, in contrast, torque of relaxation stress deceases but relaxation velocity increases. The reason for the contradiction is explained.
Back-and-forth Operation of State Observers and Norm Estimation of Estimation Error
Back-and-forth Operation of State Observers and Norm Estimation of Estimation Error Hyungbo Shim with the plant, this paper proposes a state estimation algorithm that executes Luenberger observers in a back in the past have employed time-varying gains to over- come this problem [1], where the basic idea is to obtain
aided state estimation: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
estimated from the information content Szilagyi, Jozsef 7 STATE AID TO ENTERPRISES IN CROATIA IN 2001 CiteSeer Summary: State aid to enterprises is a form of government...
Quantum phase estimation using a multi-headed cat state
Su-Yong Lee; Chang-Woo Lee; Hyunchul Nha; Dagomir Kaszlikowski
2015-05-16T23:59:59.000Z
It was recently shown that an entangled coherent state, which is a superposition of two different coherent states, can surpass the performance of noon state in estimating an unknown phase-shift. This may hint at further enhancement in phase estimation by incorporating more component states in the superposition of resource state. We here introduce a four-headed cat state (4HCS), a superposition of four different coherent states, and propose its application to quantum phase estimation. We demonstrate the enhanced performance in phase estimation by employing an entangled state via the 4HCS, which can surpass that of the two-headed cat state (2HCS), particularly in the regime of small average photon numbers. Moreover, we show that an entangled state modified from the 4HCS can further enhance the phase estimation, even in the regime of large average photon number under a photon-loss channel. Our investigation further extends to incorporate an increasingly large number of component states in the resource superposition state and clearly show its merit in phase estimation.
Equilibrium free energy estimates based on nonequilibrium work relations and extended dynamics
Sun, Sean
Equilibrium free energy estimates based on nonequilibrium work relations and extended dynamics the equilibrium free energy and the nonequilibrium work is useful for computer simulations. In this paper, we exploit the fact that the free energy is a state function, independent of the pathway taken to change
Quantum phase estimation using a multi-headed cat state
Su-Yong Lee; Chang-Woo Lee; Hyunchul Nha; Dagomir Kaszlikowski
2015-03-12T23:59:59.000Z
It was recently shown that an entangled coherent state, which is a superposition of two different coherent states, can surpass the performance of N00N state in estimating an unknown phase-shift. This may hint at further enhancement in phase estimation by incorporating more component states in the superposition of resource state. We here study a four-headed cat state (4HCS), a superposition of four different coherent states, and propose its application to quantum phase estimation. We first investigate how the 4HCS is more nonclassical than a 2HCS in view of some nonclassical measures including sub-Poissonian statistics, negativity of Wigner distribution, and entanglement potential. We then demonstrate the enhanced performance in phase estimation by employing an entangled state via the 4HCS, which can surpass that of the 2HCS particularly in the regime of small average photon number. Moreover, we show that an entangled state modified from the 4HCS can further enhance the phase estimation even in the regime of large average photon number under a photon-loss channel. Our investigation further extends to incorporate an increasingly large number of component states in the resource superposition state and clearly show its merit in phase estimation.
State energy data report: Consumption estimates, 1960--1987
Not Available
1989-04-20T23:59:59.000Z
The State Energy Data Report presents estimates of annual energy consumption at the state and national levels by major economic sector and by principal energy type for 1960 through 1987. Included in the report are documentation describing how the estimates were made for each energy source, sources of all input data, and a summary of changes from the State Energy Data Report published in April 1988.
State-to-state dynamics of molecular energy transfer
Gentry, W.R.; Giese, C.F. [Univ. of Minnesota, Minneapolis (United States)
1993-12-01T23:59:59.000Z
The goal of this research program is to elucidate the elementary dynamical mechanisms of vibrational and rotational energy transfer between molecules, at a quantum-state resolved level of detail. Molecular beam techniques are used to isolate individual molecular collisions, and to control the kinetic energy of collision. Lasers are used both to prepare specific quantum states prior to collision by stimulated-emission pumping (SEP), and to measure the distribution of quantum states in the collision products by laser-induced fluorescence (LIF). The results are interpreted in terms of dynamical models, which may be cast in a classical, semiclassical or quantum mechanical framework, as appropriate.
Dynamics of Noncommutative Solitons I: Spectral Theory and Dispersive Estimates
August J. Krueger; Avy Soffer
2014-11-16T23:59:59.000Z
We consider the Schr\\"odinger equation with a Hamiltonian given by a second order difference operator with nonconstant growing coefficients, on the half one dimensional lattice. This operator appeared first naturally in the construction and dynamics of noncommutative solitons in the context of noncommutative field theory. We prove pointwise in time decay estimates, with the optimal decay rate $t^{-1}\\log^{-2}t$ generically. We use a novel technique involving generating functions of orthogonal polynomials to achieve this estimate.
SWOT Satellite Mission: Combined State Parameter Estimation
Washington at Seattle, University of
-parameter estimation problem Data assimilation experiments Water depth Discharge Channel width Roughness coefficient #12;3 Need for a surface water mission Importance to hydrology gauge measurements insufficient hydraulics Amazon Siberia Ohio #12;4 Global gauge measurements #12;5 SWOT Technology These surface water
Dynamically defined measures and equilibrium states
Ivan Werner
2014-11-09T23:59:59.000Z
A technique of dynamically defined measures is developed and its relation to the theory of equilibrium states is shown. The technique uses Caratheodory's method and the outer measure introduced in (I. Werner, Math. Proc. Camb. Phil. Soc. 140 (2) (2006) 333-347). As an application, equilibrium states for contractive Markov systems (I. Werner, J. London Math. Soc. 71 (2005), no. 1, 236-258) are obtained.
Electric Grid State Estimators for Distribution Systems with Microgrids
Gupta, Vijay
46556 Emails: {jhuang6,vgupta2,huang}@nd.edu Abstract--In the development of smart grid, state] into the distribution systems of the power grid. Such integration complicates the operation of distribution systemsElectric Grid State Estimators for Distribution Systems with Microgrids Jing Huang, Vijay Gupta
The effects of incorporating dynamic data on estimates of uncertainty
Mulla, Shahebaz Hisamuddin
2004-09-30T23:59:59.000Z
in production forecasts will help in assessing risk and making good economic decisions. This study investigates the effect of combining dynamic data with the uncertainty in static data to see the effect on estimates of uncertainty in production forecasting... combined with linear uncertainty analysis. The results were compared with the uncertainty predicted using only static data. We also investigated approaches for best selecting a smaller number of models from a larger set of realizations to be history...
Dynamics of Noncommutative Solitons II: Spectral Theory, Dispersive Estimates and Stability
August J. Krueger; Avy Soffer
2014-11-21T23:59:59.000Z
We consider the Schr\\"odinger equation with a (matrix) Hamiltonian given by a second order difference operator with nonconstant growing coefficients, on the half one dimensional lattice. This operator appeared first naturally in the construction and dynamics of noncommutative solitons in the context of noncommutative field theory. We completely determine the spectrum of the Hamiltonian linearized around a ground state soliton and prove the optimal decay rate of $t^{-1}\\log^{-2}t$ for the associated time decay estimate. We use a novel technique involving generating functions of orthogonal polynomials to achieve this estimate.
Current (2009) State-of-the-Art Hydrogen Production Cost Estimate...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Current (2009) State-of-the-Art Hydrogen Production Cost Estimate Using Water Electrolysis Current (2009) State-of-the-Art Hydrogen Production Cost Estimate Using Water...
Bounds on Quantum Multiple-Parameter Estimation with Gaussian State
Yang Gao; Hwang Lee
2014-07-28T23:59:59.000Z
We investigate the quantum Cramer-Rao bounds on the joint multiple-parameter estimation with the Gaussian state as a probe. We derive the explicit right logarithmic derivative and symmetric logarithmic derivative operators in such a situation. We compute the corresponding quantum Fisher information matrices, and find that they can be fully expressed in terms of the mean displacement and covariance matrix of the Gaussian state. Finally, we give some examples to show the utility of our analytical results.
UNSCENTED KALMAN FILTERING FOR SPACECRAFT ATTITUDE STATE AND PARAMETER ESTIMATION
Hall, Christopher D.
AAS-04-115 UNSCENTED KALMAN FILTERING FOR SPACECRAFT ATTITUDE STATE AND PARAMETER ESTIMATION Matthew C. VanDyke , Jana L. Schwartz , Christopher D. Hall An Unscented Kalman Filter (UKF) is derived with an Extended Kalman Filter (EKF). The EKF is an extension of the linear Kalman Filter for nonlinear systems
Estimation of steady-state basic parameters of stars
B. V. Vasiliev
2000-03-30T23:59:59.000Z
From a minimum of total energy of celestial bodies, their basic parameters are obtained. The steady-state values of the mass, radius, and temperature of stars and white dwarfs, as well as masses of pulsars are calculated. The luminosity and giromagnetic ratio of celestial bodies are estimated. All the obtained values are in a satisfactory agreement with observation data.
Optimal Estimation of States in Quantum Image Processing
Mario Mastriani
2014-06-19T23:59:59.000Z
An optimal estimator of quantum states based on a modified Kalman Filter is presented in this work. Such estimator acts after state measurement, allowing to obtain an optimal estimation of quantum state resulting in the output of any quantum image algorithm. Besides, a new criteria, logic, and arithmetic based on projections onto vertical axis of Bloch Sphere exclusively are presented too. This approach will allow us: 1) a simpler development of logic and arithmetic quantum operations, where they will closer to those used in the classical digital image processing algorithms, 2) building simple and robust classical-to-quantum and quantum-to-classical interfaces. Said so far is extended to quantum algorithms outside image processing too. In a special section on metrics and simulations, three new metrics based on the comparison between the classical and quantum versions algorithms for filtering and edge detection of images are presented. Notable differences between the results of classical and quantum versions of such algorithms (outside and inside of quantum computer, respectively) show the need for modeling state and measurement noise inside estimation scheme.
The Lithium-Ion Cell: Model, State Of Charge Estimation
Schenato, Luca
The Lithium-Ion Cell: Model, State Of Charge Estimation and Battery Management System Tutor degradation mechanisms of a Li-ion cell based on LiCoO2", Journal of Power Sources #12;Lithium ions and e and Y. Fuentes. Computer simulations of a lithium-ion polymer battery and implications for higher
Multiple phase estimation for arbitrary pure states under white noise
Yao Yao; Li Ge; Xing Xiao; Xiaoguang Wang; C. P. Sun
2014-09-08T23:59:59.000Z
In any realistic quantum metrology scenarios, the ultimate precision in the estimation of parameters is limited not only by the so-called Heisenberg scaling, but also the environmental noise encountered by the underlying system. In the context of quantum estimation theory, it is of great significance to carefully evaluate the impact of a specific type of noise on the corresponding quantum Fisher information (QFI) or quantum Fisher information matrix (QFIM). Here we investigate the multiple phase estimation problem for a natural parametrization of arbitrary pure states under white noise. We obtain the explicit expression of the symmetric logarithmic derivative (SLD) and hence the analytical formula of QFIM. Moreover, the attainability of the quantum Cram\\'{e}r-Rao bound (QCRB) is confirmed by the commutability of SLDs and the optimal estimators are elucidated for the experimental purpose. These findings generalize previously known partial results and highlight the role of white noise in quantum metrology.
A Two-Stage Kalman Filter Approach for Robust and Real-Time Power System State Estimation
Zhang, Jinghe; Welch, Greg; Bishop, Gary; Huang, Zhenyu
2014-04-01T23:59:59.000Z
As electricity demand continues to grow and renewable energy increases its penetration in the power grid, realtime state estimation becomes essential for system monitoring and control. Recent development in phasor technology makes it possible with high-speed time-synchronized data provided by Phasor Measurement Units (PMU). In this paper we present a two-stage Kalman filter approach to estimate the static state of voltage magnitudes and phase angles, as well as the dynamic state of generator rotor angles and speeds. Kalman filters achieve optimal performance only when the system noise characteristics have known statistical properties (zero-mean, Gaussian, and spectrally white). However in practice the process and measurement noise models are usually difficult to obtain. Thus we have developed the Adaptive Kalman Filter with Inflatable Noise Variances (AKF with InNoVa), an algorithm that can efficiently identify and reduce the impact of incorrect system modeling and/or erroneous measurements. In stage one, we estimate the static state from raw PMU measurements using the AKF with InNoVa; then in stage two, the estimated static state is fed into an extended Kalman filter to estimate the dynamic state. Simulations demonstrate its robustness to sudden changes of system dynamics and erroneous measurements.
Freeman, Matthew A
2006-10-30T23:59:59.000Z
investigates the benefits that stem from utilizing a multi-area state estimator instead of a serial state estimator. These benefits are largely in the form of increased accuracy and decreased processing time. First, the theory behind power system state...
An Exposition of Structural Estimation of Discrete Dynamic Decision Processes1
Provencher, R. William
An Exposition of Structural Estimation of Discrete Dynamic Decision Processes1 Bill Provencher, Springer 2005. 1 #12;An Exposition of Structural Estimation of Discrete Dynamic Decision Processes I economists directly employed their structural dynamic models in the pursuit of the positive question, What
Estimated Carbon Dioxide Emissions in 2008: United States
Smith, C A; Simon, A J; Belles, R D
2011-04-01T23:59:59.000Z
Flow charts depicting carbon dioxide emissions in the United States have been constructed from publicly available data and estimates of state-level energy use patterns. Approximately 5,800 million metric tons of carbon dioxide were emitted throughout the United States for use in power production, residential, commercial, industrial, and transportation applications in 2008. Carbon dioxide is emitted from the use of three major energy resources: natural gas, coal, and petroleum. The flow patterns are represented in a compact 'visual atlas' of 52 state-level (all 50 states, the District of Columbia, and one national) carbon dioxide flow charts representing a comprehensive systems view of national CO{sub 2} emissions. Lawrence Livermore National Lab (LLNL) has published flow charts (also referred to as 'Sankey Diagrams') of important national commodities since the early 1970s. The most widely recognized of these charts is the U.S. energy flow chart (http://flowcharts.llnl.gov). LLNL has also published charts depicting carbon (or carbon dioxide potential) flow and water flow at the national level as well as energy, carbon, and water flows at the international, state, municipal, and organizational (i.e. United States Air Force) level. Flow charts are valuable as single-page references that contain quantitative data about resource, commodity, and byproduct flows in a graphical form that also convey structural information about the system that manages those flows. Data on carbon dioxide emissions from the energy sector are reported on a national level. Because carbon dioxide emissions are not reported for individual states, the carbon dioxide emissions are estimated using published energy use information. Data on energy use is compiled by the U.S. Department of Energy's Energy Information Administration (U.S. EIA) in the State Energy Data System (SEDS). SEDS is updated annually and reports data from 2 years prior to the year of the update. SEDS contains data on primary resource consumption, electricity generation, and energy consumption within each economic sector. Flow charts of state-level energy usage and explanations of the calculations and assumptions utilized can be found at: http://flowcharts.llnl.gov. This information is translated into carbon dioxide emissions using ratios of carbon dioxide emissions to energy use calculated from national carbon dioxide emissions and national energy use quantities for each particular sector. These statistics are reported annually in the U.S. EIA's Annual Energy Review. Data for 2008 (US. EIA, 2010) was updated in August of 2010. This is the first presentation of a comprehensive state-level package of flow charts depicting carbon dioxide emissions for the United States.
Robustness of chimera states in complex dynamical systems
Lai, Ying-Cheng
Robustness of chimera states in complex dynamical systems Nan Yao1,2 , Zi-Gang Huang2,3 , Ying State University, Tempe, Arizona 85287, USA. The remarkable phenomenon of chimera state in systems distinct types of dynamical behaviors, in spite of identity of the oscillators. But how robust are chimera
State Estimation for Force-Controlled Humanoid Balance using Simple Models in the Presence-based control frameworks, such as model predictive control (MPC), use the expected dynamics to generate that requires active balance control in the presence of modeling error. Primus humanoid shown in Figure 1
Griffith, Daniel Todd
2005-02-17T23:59:59.000Z
The main objective of this work is to demonstrate some new computational methods for estimation, optimization and modeling of dynamical systems that use automatic differentiation. Particular focus will be upon dynamical ...
Estimated United States Residential Energy Use in 2005
Smith, C A; Johnson, D M; Simon, A J; Belles, R D
2011-12-12T23:59:59.000Z
A flow chart depicting energy flow in the residential sector of the United States economy in 2005 has been constructed from publicly available data and estimates of national energy use patterns. Approximately 11,000 trillion British Thermal Units (trBTUs) of electricity and fuels were used throughout the United States residential sector in lighting, electronics, air conditioning, space heating, water heating, washing appliances, cooking appliances, refrigerators, and other appliances. The residential sector is powered mainly by electricity and natural gas. Other fuels used include petroleum products (fuel oil, liquefied petroleum gas and kerosene), biomass (wood), and on-premises solar, wind, and geothermal energy. The flow patterns represent a comprehensive systems view of energy used within the residential sector.
Transition state theory and dynamical corrections in ergodic systems
Van Den Eijnden, Eric
Transition state theory and dynamical corrections in ergodic systems Fabio A. Tal and Eric Vanden, New York University, New York, USA Abstract. The results of transition state theory are derived manifold. A new perspective on how to compute the dynamical corrections to the TST transition frequency
Estimating Wind Turbine Parameters and Quantifying Their Effects on Dynamic Behavior
Hiskens, Ian A.
1 Estimating Wind Turbine Parameters and Quantifying Their Effects on Dynamic Behavior Jonathan variable-speed wind turbines in grid stability studies. Often the values for model parameters are poorly parameters on the dynamic behavior of wind turbine generators. A parameter estimation process is then used
Chen Lin [Centre for Quantum Technologies, National University of Singapore, Singapore 117543 (Singapore); Zhu Huangjun [Centre for Quantum Technologies, National University of Singapore, Singapore 117543 (Singapore); Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 117597 (Singapore); Wei, Tzu-Chieh [Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, V6T 1Z1 (Canada)
2011-01-15T23:59:59.000Z
We study the geometric measure of entanglement (GM) of pure symmetric states related to rank 1 positive-operator-valued measures (POVMs) and establish a general connection with quantum state estimation theory, especially the maximum likelihood principle. Based on this connection, we provide a method for computing the GM of these states and demonstrate its additivity property under certain conditions. In particular, we prove the additivity of the GM of pure symmetric multiqubit states whose Majorana points under Majorana representation are distributed within a half sphere, including all pure symmetric three-qubit states. We then introduce a family of symmetric states that are generated from mutually unbiased bases and derive an analytical formula for their GM. These states include Dicke states as special cases, which have already been realized in experiments. We also derive the GM of symmetric states generated from symmetric informationally complete POVMs (SIC POVMs) and use it to characterize all inequivalent SIC POVMs in three-dimensional Hilbert space that are covariant with respect to the Heisenberg-Weyl group. Finally, we describe an experimental scheme for creating the symmetric multiqubit states studied in this article and a possible scheme for measuring the permanence of the related Gram matrix.
An efficient algorithm for real-time estimation and prediction of dynamic OD tables
Bierlaire, Michel
An efficient algorithm for real-time estimation and prediction of dynamic OD tables M. Bierlaire and F. Crittin February, 2002 Abstract The problem of estimating and predicting Origin-Destination (OD more intricate. We consider here a least-square modeling approach for solving the OD estimation
Load estimation and control using learned dynamics models Georgios Petkos and Sethu Vijayakumar
Vijayakumar, Sethu
Load estimation and control using learned dynamics models Georgios Petkos and Sethu Vijayakumar with their robustness in light of imperfect, intermediate dynamic models. I. INTRODUCTION Adaptive control the learned dynamics for control. In Section IV, we see how from a set of learned models with known inertial
Heterophase liquid states: Thermodynamics, structure, dynamics
A. S. Bakai
2015-01-12T23:59:59.000Z
An overview of theoretical results and experimental data on the thermodynamics, structure and dynamics of the heterophase glass-forming liquids is presented. The theoretical approach is based on the mesoscopic heterophase fluctuations model (HPFM) developed within the framework of the bounded partition function approach. The Fischer cluster phenomenon, glass transition, liquid-liquid transformations, parametric phase diagram, cooperative dynamics and fragility of the glass-forming liquids is considered.
Entanglement dynamics of quantum states in a beam splitter
M. Rohith; R. Rajeev; C. Sudheesh
2015-05-11T23:59:59.000Z
We theoretically study the dynamics of entangled states created in a beam splitter with a nonlinear Kerr medium placed into one input arm. Entanglement dynamics of initial classical and nonclassical states are studied and compared. Signatures of revival and fractional revival phenomena exhibited during the time evolution of states in the Kerr medium are captured in the entangled states produced by the beam splitter. Maximum entanglement is obtained at the instants of collapses of wave packets in the medium. Our analysis shows increase in entanglement with increase in the degree of nonclassicality of the initial states considered. We show that the states generated at the output of the beam splitter using initial nonclassical states are more robust against decoherence, due to photon absorption by an environment, than those formed by an initial classical state.
Chaotic Dynamics in Multidimensional Transition States Ali Allahem1, a)
Chaotic Dynamics in Multidimensional Transition States Ali Allahem1, a) and Thomas Bartsch1, b consequences of normal hyperbolicity20,21 : a)Electronic mail: a.allahem@lboro.ac.uk b)Electronic mail: t.bartsch
Estimation of AUV dynamics for sensor fusion Kjell Magne Fauske
Gustafsson, Fredrik
are instrumental for model-based control system design, but also for integrated navigation systems. We motive our is used in control design [3]. The steering dynamics is the most crucial part, since depth is measured, Norway Email: hegrenas@unik.no Abstract--This contribution presents a method to identify dynamic models
Function follows dynamics: state-dependency of directed functional influences
Battaglia, Demian
Function follows dynamics: state-dependency of directed functional influences Demian Battaglia of computations must Demian Battaglia Max Planck Institute for Dynamics and Selforganization and Bernstein Center@nld.ds.mpg.de. 1 #12;2 Demian Battaglia be performed in a way dependent from external context and internal brain
Hierarchical models for estimating state and demographic trends in U.S. death penalty public opinion
Gelman, Andrew
Hierarchical models for estimating state and demographic trends in U.S. death penalty public?" Because the death penalty is governed by state laws rather than federal laws, it is of special interest logistic regression model to estimate support for the death penalty as a function of the year, the state
The dynamics of chimera states in heterogeneous Kuramoto networks
Laing, Carlo R.
The dynamics of chimera states in heterogeneous Kuramoto networks Carlo R. Laing a a. Abstract We study a variety of mixed synchronous/incoherent ("chimera") states in sev- eral heterogeneous with one another, while the remainder are incoherent [7Â15], referred to by Abrams et al. as "chimera
ON THE STATE AGREEMENT PROBLEM FOR MULTIPLE NONLINEAR DYNAMICAL
Maggiore, Manfredi
agreement problem of continuous time nonlinear interconnected systems, which can de- scribe a numberON THE STATE AGREEMENT PROBLEM FOR MULTIPLE NONLINEAR DYNAMICAL SYSTEMS Zhiyun Lin, Bruce Francis, ON Canada M5S 3G4 Abstract: This paper studies the state agreement problem with the objective to ensure
Short communication Real-time estimation of lead-acid battery parameters: A dynamic
Ray, Asok
-charged and over-discharged; similarly, reliable SOH estimates enhance preventive maintenance and life cycle cost situations. Â© 2014 Elsevier B.V. All rights reserved. 1. Introduction Lead-acid batteries provide low-costShort communication Real-time estimation of lead-acid battery parameters: A dynamic data
Optimal PMU Placement Evaluation for Power System Dynamic State Estimation
Bishop, Gary
flow along the transmission lines or transformers. Â· Bus power injection measurements: the real of dis- tribution systems, the line current magnitude measurements (along the transmission lines. Â· Current phasor measurements: the phase angles and mag- nitudes of current phasors along transmission lines
Embedded avionics with Kalman state estimation for a novel micro-scale unmanned aerial vehicle
Tzanetos, Theodore
2013-01-01T23:59:59.000Z
An inertial navigation system leveraging Kalman estimation techniques and quaternion dynamics is developed for deployment to a micro-scale unmanned aerial vehicle (UAV). The capabilities, limitations, and requirements of ...
Numerically Estimating Internal Models of Dynamic Virtual Objects
Sekuler, Robert
human subjects to manipulate a computer-animated virtual object. This virtual object (vO) was a high, human cognition, human information processing, ideal performer, internal model, virtual object, virtual, specifically how humans acquire an internal model of a dynamic virtual object. Our methodology minimizes
Freeman, Matthew A
2006-10-30T23:59:59.000Z
The objective of this thesis is to prove the validity of a multi-area state estimator and investigate the advantages it provides over a serial state estimator. This is done utilizing the IEEE 118 Bus Test System as a sample system. This thesis...
Baldick, Ross
) and the Southwest Power Pool (SPP) systems. I. INTRODUCTION TO HOST SCADA and Energy Management System soft- ware1240 IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 15, NO. 4, NOVEMBER 2000 State Estimation Distributed- rithm to Power Systems State Estimation. We apply the Auxiliary Problem Principle to develop
Trust-aware State Estimation Under False Data Injection in Distributed Sensor Networks
Baras, John S.
1 Trust-aware State Estimation Under False Data Injection in Distributed Sensor Networks Shanshan of nodes and the volatility of the network. In this paper, we focus on robust distributed state estimation Engineering University of Maryland, College Park, MD, 20742 Email: {sszheng,tjiang,baras}@umd.edu Abstract--Distributed
Universal dynamical decoupling of multiqubit states from environment
Liang Jiang; Adilet Imambekov
2011-12-29T23:59:59.000Z
We study the dynamical decoupling of multiqubit states from environment. For a system of m qubits, the nested Uhrig dynamical decoupling (NUDD) sequence can efficiently suppress generic decoherence induced by system-environment interaction to order N using (N+1)^2m pulses. We prove that the NUDD sequence is universal, i.e., it can restore the coherence of m-qubit quantum system independent of the details of system-environment interaction. We also construct a general mapping between dynamical decoupling problems and discrete quantum walks in certain functional spaces.
Some computational aspects of multi-state dynamic programming
Gray, Albert Glen
1970-01-01T23:59:59.000Z
1970 ABSTRACT Some Computational Aspects of Multi-State Dynam1c Progrsmm1ng. (January 1970) Albert G. Gray, B. S. , University of Houston Directed by: Dr. W. L. Neier, Jr. Dynamic programming always has been haunted by the curse of state dimens1... results of a computational comparison of the two approaches along with a discuss1on of the merits of each. A computer code was developed for each in PORTRAN IV and run on the IBM 360/65. An example problem is presented which illustrates the accuracy...
Load Modeling and State Estimation Methods for Power Distribution Systems: Final Report
Tom McDermott
2010-05-07T23:59:59.000Z
The project objective was to provide robust state estimation for distribution systems, comparable to what has been available on transmission systems for decades. This project used an algorithm called Branch Current State Estimation (BCSE), which is more effective than classical methods because it decouples the three phases of a distribution system, and uses branch current instead of node voltage as a state variable, which is a better match to current measurement.
GROUND STATES AND DYNAMICS OF MULTICOMPONENT BOSEEINSTEIN CONDENSATES
Bao, Weizhu
GROUND STATES AND DYNAMICS OF MULTICOMPONENT BOSEÂEINSTEIN CONDENSATES WEIZHU BAO MULTISCALE MODEL a multicomponent BoseÂEinstein condensate (BEC) at zero or a very low temperature. In preparation for the numerics of multicomponent BEC. Key words. multicomponent, BoseÂEinstein condensate, vector GrossÂPitaevskii equations
Lundquist, J. K.; Pukayastha, A.; St. Martin, C.; Newsom, R.
2014-03-01T23:59:59.000Z
Previous estimates of the wind resources in Uttarakhand, India, suggest minimal wind resources in this region. To explore whether or not the complex terrain in fact provides localized regions of wind resource, the authors of this study employed a dynamic down scaling method with the Weather Research and Forecasting model, providing detailed estimates of winds at approximately 1 km resolution in the finest nested simulation.
Uncertainty-based Estimation of the Secure Range for ISO New England Dynamic Interchange Adjustment
Etingov, Pavel V.; Makarov, Yuri V.; Wu, Di; Hou, Zhangshuan; Sun, Yannan; Maslennikov, S.; Luo, Xiaochuan; Zheng, T.; George, S.; Knowland, T.; Litvinov, E.; Weaver, S.; Sanchez, E.
2014-04-14T23:59:59.000Z
The paper proposes an approach to estimate the secure range for dynamic interchange adjustment, which assists system operators in scheduling the interchange with neighboring control areas. Uncertainties associated with various sources are incorporated. The proposed method is implemented in the dynamic interchange adjustment (DINA) tool developed by Pacific Northwest National Laboratory (PNNL) for ISO New England. Simulation results are used to validate the effectiveness of the proposed method.
QUANTITATIVE ESTIMATES ON THE HYDROGEN GROUND STATE ENERGY IN NON-RELATIVISTIC QED
QUANTITATIVE ESTIMATES ON THE HYDROGEN GROUND STATE ENERGY IN NON-RELATIVISTIC QED J.-M. BARBAROUX for the hydrogen ground state energy in the Pauli-Fierz model up to the order O(5 log -1), where denotes). As a consequence, we prove that the ground state energy is not a real analytic function of , and verify
Geometry of quantum dynamics and a time-energy uncertainty relation for mixed states
Ole Andersson; Hoshang Heydari
2013-02-07T23:59:59.000Z
In this paper we establish important relations between Hamiltonian dynamics and Riemannian structures on phase spaces for unitarily evolving finite level quantum systems in mixed states. We show that the energy dispersion (i.e. $1/\\hbar$ times the path integral of the energy uncertainty) of a unitary evolution is bounded from below by the length of the evolution curve. Also, we show that for each curve of mixed states there is a Hamiltonian for which the curve is a solution to the corresponding von Neumann equation, and the energy dispersion equals the curve's length. This allows us to express the distance between two mixed states in terms of a measurable quantity, and derive a time-energy uncertainty relation for mixed states. In a final section we compare our results with an energy dispersion estimate by Uhlmann.
Nonparametric estimation of varying coefficient dynamic panel models
Cai, Zongwu; Li, Qi
2008-10-01T23:59:59.000Z
#1; z% , s1t~Vi1,Vit ! #1; E$ei1eit 6Vi1,Vit % , and G1t ~Zi1,Zit ! #1; E$Wi1Wit' s1t ~Vi1,Vit !6Zi1,Zit %#1; E$Wi1Wit' ei1 eit 6Zi1,Zit %+ Then, it is obvious that V1 #1; G1~z, z! and s 2~v! #1; s11~v,v!+ Set S #1; S~z!#1; #2; V 0 0 V#1; m2~K ! #3... results stated here with their proofs relegated to the Appendix+ PROPOSITION 1+ Under Assumptions A1–A5, we have (i) ESn #1; f ~z!S$1#2; op~1!%, (ii) Bn #1; ~h 202! f ~z!B~z! #2; op~h 2! , and (iii) Rn #1; op~h 2! . PROPOSITION 2+ (i) Under Assumptions A1...
Nonclassical polarization dynamics in classical-like states
Alfredo Luis; Angel S. Sanz
2014-12-23T23:59:59.000Z
Quantum polarization is investigated by means of a trajectory picture based on the Bohmian formulation of quantum mechanics. Relevant examples of classical-like two-mode field states are thus examined, namely Glauber and SU(2) coherent states. Although these states are often regarded as classical, the analysis here shows that the corresponding electric-field polarization trajectories display topologies very different from those expected from classical electrodynamics. Rather than incompatibility with the usual classical model, this result demonstrates the dynamical richness of quantum motions, determined by local variations of the system quantum phase in the corresponding (polarization) configuration space, absent in classical-like models. These variations can be related to the evolution in time of the phase, but also to its dependence on configurational coordinates, which is the crucial factor to generate motion in the case of stationary states like those here considered. In this regard, for completeness these results are compared those obtained from nonclassical N00N states.
State machine analysis of sensor data from dynamic processes
Cook, William R.; Brabson, John M.; Deland, Sharon M.
2003-12-23T23:59:59.000Z
A state machine model analyzes sensor data from dynamic processes at a facility to identify the actual processes that were performed at the facility during a period of interest for the purpose of remote facility inspection. An inspector can further input the expected operations into the state machine model and compare the expected, or declared, processes to the actual processes to identify undeclared processes at the facility. The state machine analysis enables the generation of knowledge about the state of the facility at all levels, from location of physical objects to complex operational concepts. Therefore, the state machine method and apparatus may benefit any agency or business with sensored facilities that stores or manipulates expensive, dangerous, or controlled materials or information.
Efficient Hydraulic State Estimation Technique Using Reduced Models of Urban Water Networks
Preis, Ami
This paper describes and demonstrates an efficient method for online hydraulic state estimation in urban water networks. The proposed method employs an online predictor-corrector (PC) procedure for forecasting future water ...
1 N. Logic, E. Kyriakides, G. T. Heydt, "Lp State Estimators for Power Systems," N. Logic, E. Kyriakides, G. T. Heydt, "Lp state estimators for power systems," Journal of Electric Power Components and Systems, accepted for publication, 2002. #12;2 Lp State Estimators for Power Systems N. Logic E
Yoon, Yeo Jun
2006-04-12T23:59:59.000Z
This thesis will investigate the impact of the use of the Phasor Measurement Units (PMU) on the state estimation problem. First, incorporation of the PMU measurements in a conventional state estimation program will be discussed. Then, the effect...
Cohen, Israel
Simultaneous parameter estimation and state smoothing of complex GARCH process in the presence 2010 Keywords: GARCH Parameter estimation Noisy data Maximum likelihood Recursive maximum likelihood a b s t r a c t ARCH and GARCH models have been used recently in model-based signal processing
Measurement calibration/tuning & topology processing in power system state estimation
Zhong, Shan
2005-02-17T23:59:59.000Z
the implementation of this algorithm. A concise substation model is defined for this purpose. A friendly user interface that incorporates the two-stage algorithm into the conventional state estimator is developed. The performances of the two-stage state... estimation algorithms rely on accurate determination of suspect substations. A comprehensive identification procedure is described in chapter III. In order to evaluate the proposed procedure, a topology error library is created. Several identification...
Wave packet dynamics of entangled two-mode states
C. Sudheesh; S. Lakshmibala; V. Balakrishnan
2006-03-02T23:59:59.000Z
We consider a model Hamiltonian describing the interaction of a single-mode radiation field with the atoms of a nonlinear medium, and study the dynamics of entanglement for specific non-entangled initial states of interest: namely, those in which the field mode is initially in a Fock state, a coherent state, or a photon-added coherent state. The counterparts of near-revivals and fractional revivals are shown to be clearly identifiable in the entropy of entanglement. The ``overlap fidelity'' of the system is another such indicator, and its behaviour corroborates that of the entropy of entanglement in the vicinity of near-revivals. The expectation values and higher moments of suitable quadrature variables are also examined, with reference to possible squeezing and higher-order squeezing.
Survey of State-Level Cost and Benefit Estimates of Renewable Portfolio Standards
Heeter, J.; Barbose, G.; Bird, L.; Weaver, S.; Flores-Espino, F.; Kuskova-Burns, K.; Wiser, R.
2014-05-01T23:59:59.000Z
Most renewable portfolio standards (RPS) have five or more years of implementation experience, enabling an assessment of their costs and benefits. Understanding RPS costs and benefits is essential for policymakers evaluating existing RPS policies, assessing the need for modifications, and considering new policies. This study provides an overview of methods used to estimate RPS compliance costs and benefits, based on available data and estimates issued by utilities and regulators. Over the 2010-2012 period, average incremental RPS compliance costs in the United States were equivalent to 0.8% of retail electricity rates, although substantial variation exists around this average, both from year-to-year and across states. The methods used by utilities and regulators to estimate incremental compliance costs vary considerably from state to state and a number of states are currently engaged in processes to refine and standardize their approaches to RPS cost calculation. The report finds that state assessments of RPS benefits have most commonly attempted to quantitatively assess avoided emissions and human health benefits, economic development impacts, and wholesale electricity price savings. Compared to the summary of RPS costs, the summary of RPS benefits is more limited, as relatively few states have undertaken detailed benefits estimates, and then only for a few types of potential policy impacts. In some cases, the same impacts may be captured in the assessment of incremental costs. For these reasons, and because methodologies and level of rigor vary widely, direct comparisons between the estimates of benefits and costs are challenging.
Chen, Yong
or applying an estimation method that is robust to the error structure assumption in modelling the dynamicsCan a more realistic model error structure improve the parameter estimation in modelling the dynamics of ®sh populations? Y. Chena,* , J.E. Paloheimob a Fisheries Conservation Chair Program, Fisheries
Solid-State Halogen Atom Source for Chemical Dynamics and Etching...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Halogen Atom Source for Chemical Dynamics and Etching. Solid-State Halogen Atom Source for Chemical Dynamics and Etching. Abstract: We describe a solid state Br atom source for...
Improved estimates of the total correlation energy in the ground state of the water molecule
Anderson, James B.
Improved estimates of the total correlation energy in the ground state of the water molecule Arne National Laboratory, Richland, Washington 99352 Received 1 October 1996; accepted 5 February 1997 Two new calculations of the electronic energy of the ground state of the water molecule yield energies lower than those
Estimated Benefits of IBWC Rio Grande Flood-Control Projects in the United States
Sturdivant, Allen W.; Lacewell, Ronald D.; Michelsen, Ari M.; Rister, M. Edward; Assadian, Naomi; Eriksson, Marian; Freeman, Roger; Jacobs, Jennifer H.; Madison, W. Tom; McGuckin, James T.; Morrison, Wendy; Robinson, John R.C.; Staats, Chris; Sheng, Zhuping; Srinivasan, R.; Villalobos, Joshua I.
TR- 275 2004 Estimated Benefits of IBWC Rio Grande Flood-Control Projects in the United States Allen W. Sturdivant Ronald D. Lacewell Ari M. Michelsen M. Edward Rister Naomi Assadian Marian Eriksson Roger Freeman Jennifer H... Flood-Control Projects in the United States Prepared for: INTERNATIONAL BOUNDARY AND WATER COMMISSION, UNITED STATES SECTION EL PASO, TEXAS SEPTEMBER 2004 Prepared by: Texas Agriculture Experiment Station, and Texas Water Resources Institute of the Texas...
Asymptotic Efficiency and Finite Sample Performance of Frequentist Quantum State Estimation
Raj Chakrabarti; Anisha Ghosh
2011-11-15T23:59:59.000Z
We undertake a detailed study of the performance of maximum likelihood (ML) estimators of the density matrix of finite-dimensional quantum systems, in order to interrogate generic properties of frequentist quantum state estimation. Existing literature on frequentist quantum estimation has not rigorously examined the finite sample performance of the estimators and associated methods of hypothesis testing. While ML is usually preferred on the basis of its asymptotic properties - it achieves the Cramer-Rao (CR) lower bound - the finite sample properties are often less than optimal. We compare the asymptotic and finite-sample properties of the ML estimators and test statistics for two different choices of measurement bases: the average case optimal or mutually unbiased bases (MUB) and a representative set of suboptimal bases, for spin-1/2 and spin-1 systems. We show that, in both cases, the standard errors of the ML estimators sometimes do not contain the true value of the parameter, which can render inference based on the asymptotic properties of the ML unreliable for experimentally realistic sample sizes. The results indicate that in order to fully exploit the information geometry of quantum states and achieve smaller reconstruction errors, the use of Bayesian state reconstruction methods - which, unlike frequentist methods, do not rely on asymptotic properties - is desirable, since the estimation error is typically lower due to the incorporation of prior knowledge.
Griffith, Daniel Todd
2005-02-17T23:59:59.000Z
computation and evaluation of partial derivatives with minimal user coding. The key results in this dissertation details the use of OCEA through a number of computational studies in estimation and dynamical modeling. Several prototype problems are studied... Embedding Method), has been recently developed which shows promise for efficient computation and evaluation of partial derivatives. For a rather arbitrary sequentially substituted set of functions, coded in FORTRAN 90, OCEA invokes operator overloading...
Jochem, Warren C [ORNL; Sims, Kelly M [ORNL; Bright, Eddie A [ORNL; Urban, Marie L [ORNL; Rose, Amy N [ORNL; Coleman, Phil R [ORNL; Bhaduri, Budhendra L [ORNL
2013-01-01T23:59:59.000Z
In recent years, uses of high-resolution population distribution databases are increasing steadily for environmental, socioeconomic, public health, and disaster-related research and operations. With the development of daytime population distribution, temporal resolution of such databases has been improved. However, the lack of incorporation of transitional population, namely business and leisure travelers, leaves a significant population unaccounted for within the critical infrastructure networks, such as at transportation hubs. This paper presents two general methodologies for estimating passenger populations in airport and cruise port terminals at a high temporal resolution which can be incorporated into existing population distribution models. The methodologies are geographically scalable and are based on, and demonstrate how, two different transportation hubs with disparate temporal population dynamics can be modeled utilizing publicly available databases including novel data sources of flight activity from the Internet which are updated in near-real time. The airport population estimation model shows great potential for rapid implementation for a large collection of airports on a national scale, and the results suggest reasonable accuracy in the estimated passenger traffic. By incorporating population dynamics at high temporal resolutions into population distribution models, we hope to improve the estimates of populations exposed to or at risk to disasters, thereby improving emergency planning and response, and leading to more informed policy decisions.
Miller, William H.
Semiclassical molecular dynamics simulations of excited state double-proton transfer in 7-azaindole chemical re- action. In this paper we report the first application of molecular dynamics simulation methods to model the excited state double-proton transfer dynamics involved in the tau- tomerization reaction
Using graph theory to resolve state estimator issues faced by deregulated power systems
Lei, Jiansheng
2009-05-15T23:59:59.000Z
) Jiansheng Lei, B.S., Tsinghua University, Beijing, China; M.S., Tsinghua University, Beijing, China Chair of Advisory Committee: Dr. Garng M. Huang Power industry is undergoing a transition from the traditional regulated environment to the competitive... even under a contingency.............................................................................................1 B. Challenge 2: Run state estimator over a grid with extremely large size ...2 1.2 Topic 1: Network observability...
Distributed state estimation and model predictive control of linear interconnected system
Boyer, Edmond
requirements, modern control systems are becoming more and more complex. For these processes, different controlDistributed state estimation and model predictive control of linear interconnected system: In this paper, a distributed and networked control system architecture based on independent Model Predictive
Kalman filtering with unknown inputs via optimal state estimation of singular systems
Paris-Sud XI, Université de
1 Kalman filtering with unknown inputs via optimal state estimation of singular systems M. DAROUACH de Lorraine, 54400 COSNES ET ROMAIN, FRANCE A new method for designing a Kalman filter for linear the Kalman filter, it is generally assumed that all system parameters, noise covariances, and inputs
Cell Equalization In Battery Stacks Through State Of Charge Estimation Polling
Stefanopoulou, Anna
stack storage capacity, shortening the battery lifetime and, eventually, permanently damaging the cellsCell Equalization In Battery Stacks Through State Of Charge Estimation Polling Carmelo Speltino but it reduces the computational load of multiple EKF for every cell in the stack. Keywords: Battery Equalization
False Data Injection Attacks against State Estimation in Electric Power Grids
Ning, Peng
False Data Injection Attacks against State Estimation in Electric Power Grids Yao Liu, Peng Ning@cs.unc.edu ABSTRACT A power grid is a complex system connecting electric power generators to consumers through power using IEEE test systems. Our results indicate that security protection of the electric power grid must
False Data Injection Attacks against State Estimation in Electric Power Grids
Reiter, Michael
the measurements of meters at physically protected locations such as substations, such attacks can introduce13 False Data Injection Attacks against State Estimation in Electric Power Grids YAO LIU and PENG also defeat malicious measurements injected by attackers. In this article, we expose an unknown
False Data Injection Attacks against State Estimation in Electric Power Grids
Ning, Peng
the measurements of meters at physically protected locations such as substations, such attacks can introduceFalse Data Injection Attacks against State Estimation in Electric Power Grids Yao Liu and Peng Ning also defeat malicious measurements injected by attackers. In this paper, we expose an unknown
False Data Injection Attacks against State Estimation in Electric Power Grids
Qiu, Robert Caiming
@cs.unc.edu Abstract--A power grid is a complex system connecting electric power generators to consumers through power estimate the power grid state through analysis of meter measure- ments and power system models. Various malicious attacks. I. INTRODUCTION A power grid is a complex system connecting a variety of electric power
A Biochemical Ocean State Estimate in the Southern1 Ocean Gas Exchange Experiment2
Haine, Thomas W. N.
of the oceanic31 carbon pool. It influences light penetration with consequences for primary productivity1 A Biochemical Ocean State Estimate in the Southern1 Ocean Gas Exchange Experiment2 S. Dwivedi1 , T. W. N. Haine2 and C. E. Del Castillo3 3 1 Department of Atmospheric and Ocean Sciences, University
Bajaj, Vikram Singh
2007-01-01T23:59:59.000Z
Solid state NMR can probe structure and dynamics on length scales from the atomic to the supramolecular. However, low sensitivity limits its application in macromolecules. NMR sensitivity can be improved by dynamic nuclear ...
Brownian Dynamics Model of Excited-State Relaxation in Solutions of Conjugated Oligomers
Yaron, David
1 Brownian Dynamics Model of Excited-State Relaxation in Solutions of Conjugated Oligomers Nicolae, Pittsburgh, Pennsylvania 15213. Excited state relaxation, conjugated polymers, Brownian dynamics. The effects, of the oligomer. A simple molecular mechanical form is used for the ground electronic state. The excitation energy
Paris-Sud XI, Université de
January 1998 Abstract. The mean dynamic topography of the surface of the North Atlantic is estimated using, and it must be subtracted from the altimetric sea surface height to determine the dynamic topography topography of the surface of the ocean over a regular grid (Le Traon and Mercier, 1992). The altimetric
Latchman, Haniph A.
when the system is Gaussian. Index Terms-- Dual control, entropy, Kalman filtering, state estimation. I systems. Fol- lowing the classical work of Gauss on least squares estimation and the modern day approach studies on least squares estimation. When applied to stochastic control systems, Kalman filtering theory
Kirrander, Adam [Laboratoire Aime Cotton du CNRS, Universite de Paris-Sud, Batiment 505, F-91405 Orsay (France); Shalashilin, Dmitrii V. [School of Chemistry, University of Leeds, Leeds LS2 9JT (United Kingdom)
2011-09-15T23:59:59.000Z
We present an alternate version of the coupled-coherent-state method, specifically adapted for solving the time-dependent Schroedinger equation for multielectron dynamics in atoms and molecules. This theory takes explicit account of the exchange symmetry of fermion particles, and it uses fermion molecular dynamics to propagate trajectories. As a demonstration, calculations in the He atom are performed using the full Hamiltonian and accurate experimental parameters. Single- and double-ionization yields by 160-fs and 780-nm laser pulses are calculated as a function of field intensity in the range 10{sup 14}-10{sup 16} W/cm{sup 2}, and good agreement with experiments by Walker et al. is obtained. Since this method is trajectory based, mechanistic analysis of the dynamics is straightforward. We also calculate semiclassical momentum distributions for double ionization following 25-fs and 795-nm pulses at 1.5x10{sup 15} W/cm{sup 2}, in order to compare them with the detailed experiments by Rudenko et al. For this more challenging task, full convergence is not achieved. However, major effects such as the fingerlike structures in the momentum distribution are reproduced.
Paris-Sud XI, Université de
Simultaneous state and unknown inputs estimation with PI and PMI observers for Takagi Sugeno model-- In this paper, a proportional integral (PI) and a proportional multiple integral observer (PMI) are proposed and PMI observers developed for linear systems. The state estimation error is written as a perturbed
Ultrafast Dynamics of 1,3-Cyclohexadiene in Highly Excited States
Minitti, Michael P.
2011-01-01T23:59:59.000Z
The ultrafast dynamics of 1,3-cyclohexadiene has been investigated via structurally sensitive Rydberg electron binding energies and shown to differ upon excitation to the 1B state and the 3p Rydberg state. Excitation of ...
Faraday Discuss., 1997, 108, 115130 Excited state dynamics in clusters of oxygen
Continetti, Robert E.
Faraday Discuss., 1997, 108, 115È130 Excited state dynamics in clusters of oxygen Runjun Li, Karl A clusters of oxygen. Oxygen clusters and liquid oxygen have a com- plicated chemistry due to numerous low) dynamics of small anionic clusters of oxygen. We Ðnd that the dynamics of the neutral DPD pathway
Dynamic Versus Steady-State Modeling of FACTS Controllers in Transmission Congestion
CaÃ±izares, Claudio A.
benchmark system is used to illustrate and compare the effect on locational marginal prices and transmission marginal prices obtained from stability-constrained auction models when dynamic and steady state FACTS discusses the effect on transmission congestion management and pricing of dynamic and steady- state models
Teixeira, André; Sandberg, Henrik; Johansson, Karl H
2010-01-01T23:59:59.000Z
The electrical power network is a critical infrastructure in today's society, so its safe and reliable operation is of major concern. State estimators are commonly used in power networks, for example, to detect faulty equipment and to optimally route power flows. The estimators are often located in control centers, to which large numbers of measurements are sent over unencrypted communication channels. Therefore cyber security for state estimators becomes an important issue. In this paper we analyze the cyber security of state estimators in supervisory control and data acquisition (SCADA) for energy management systems (EMS) operating the power network. Current EMS state estimation algorithms have bad data detection (BDD) schemes to detect outliers in the measurement data. Such schemes are based on high measurement redundancy. Although these methods may detect a set of basic cyber attacks, they may fail in the presence of an intelligent attacker. We explore the latter by considering scenarios where stealthy de...
Peng, Huei
A Unified Open-Circuit-Voltage Model of Lithium-ion Batteries for State-of-Charge Estimation. Keywords: Electric vehicles, Lithium-ion batteries, Open-Circuit-Voltage, State-of-Charge, State is widely used for characterizing battery properties under different conditions. It contains important
Pure-state dynamics of a pair of charge qubits in a random environment
Buric, Nikola [Department of Physics and Mathematics, Faculty of Pharmacy, University of Beograd, Vojvode Stepe 450, Belgrade (Serbia and Montenegro)
2005-10-15T23:59:59.000Z
A pair of charge qubits in a random electromagnetic environment is studied, using the description of the random dynamics of its pure-state vector as given by quantum-state diffusion theory. It is shown by numerical computations that the pure-state dynamics provides a more detailed description than the density-matrix picture of the main effects such as phase dumping and depolarization.
Li, Zhengpeng; Liu, Shuguang; Tan, Zhengxi; Bliss, N.; Young, Claudia J.; West, Tristram O.; Ogle, Stephen
2014-05-06T23:59:59.000Z
Accurately quantifying the spatial and temporal variability of net primary production (NPP) for croplands is essential to understand regional cropland carbon dynamics. We compared three NPP estimates for croplands in the Midwestern United States: inventory-based estimates using crop yield data from the U.S. Department of Agriculture (USDA) National Agricultural Statistics Service (NASS); estimates from the satellite-based Moderate Resolution Imaging Spectroradiometer (MODIS) NPP product; and estimates from the General Ensemble biogeochemical Modeling System (GEMS) process-based model. The three methods estimated mean NPP in the range of 469–687 g C m?2 yr?1 and total NPP in the range of 318–490 Tg C yr?1 for croplands in the Midwest in 2007 and 2008. The NPP estimates from crop yield data and the GEMS model showed the mean NPP for croplands was over 650 g C m?2 yr?1 while the MODIS NPP product estimated the mean NPP was less than 500 g C m?2 yr?1. MODIS NPP also showed very different spatial variability of the cropland NPP from the other two methods. We found these differences were mainly caused by the difference in the land cover data and the crop specific information used in the methods. Our study demonstrated that the detailed mapping of the temporal and spatial change of crop species is critical for estimating the spatial and temporal variability of cropland NPP. We suggest that high resolution land cover data with species–specific crop information should be used in satellite-based and process-based models to improve carbon estimates for croplands.
Quantum process tomography and Linblad estimation of a solid state qubit
M. Howard; J. Twamley; C. Wittmann; T. Gaebel; F. Jelezko; J. Wrachtrup
2006-01-25T23:59:59.000Z
We present an example of quantum process tomography (QPT) performed on a single solid state qubit. The qubit used is two energy levels of the triplet state in the Nitrogen-Vacancy defect in Diamond. Quantum process tomography is applied to a qubit which has been allowed to decohere for three different time periods. In each case the process is found in terms of the chi matrix representation and the affine map representation. The discrepancy between experimentally estimated process and the closest physically valid process is noted. The results of QPT performed after three different decoherence times are used to find the error generators, or Lindblad operators, for the system, using the technique introduced by Boulant et al. [N. Boulant, T.F. Havel, M.A. Pravia and D.G. Cory, Phys. Rev. A 67, 042322 (2003)].
Hammes-Schiffer, Sharon
Nonadiabatic transition state theory and multiple potential energy surface molecular dynamics in the vicinity of the energy barrier, i.e., in the region of the transition state or bottleneck. In general, TST 07974 Received 7 July 1995; accepted 17 August 1995 Classical transition state theory TST provides
Mi, Chunting "Chris"
A robust state-of-charge estimator for multiple types of lithium-ion batteries using adaptive a SOC estimator for suitable for multiple lithium ion battery chemistries. Proved the system robustness of charge (SoC) of multiple types of lithium ion battery (LiB) cells with adaptive extended Kalman filter
Ghosh, Bijoy K.
been numerous attempts to combine the above men- tioned sensors by using different heuristics Line-Based Dynamic Vision and Inertial Sensors Henrik Rehbinder, Member, IEEE, and Bijoy K. Ghosh. Rigid body pose estimation using iner- tial sensors and a monocular camera is considered and it is shown
Estimation of the dynamics of rumen water during the meal in sheep fed lucerne hay ad libitum
Paris-Sud XI, Université de
Estimation of the dynamics of rumen water during the meal in sheep fed lucerne hay ad libitum R-fistulated wethers had free access to lucerne hay for 6 h per day. They were dosed with 300 ml Cr-EDTA 2 h before
Dynamic control of spin states in interacting magnetic elements
Jain, Shikha; Novosad, Valentyn
2014-10-07T23:59:59.000Z
A method for the control of the magnetic states of interacting magnetic elements comprising providing a magnetic structure with a plurality of interacting magnetic elements. The magnetic structure comprises a plurality of magnetic states based on the state of each interacting magnetic element. The desired magnetic state of the magnetic structure is determined. The active resonance frequency and amplitude curve of the desired magnetic state is determined. Each magnetic element of the magnetic structure is then subjected to an alternating magnetic field or electrical current having a frequency and amplitude below the active resonance frequency and amplitude curve of said desired magnetic state and above the active resonance frequency and amplitude curve of the current state of the magnetic structure until the magnetic state of the magnetic structure is at the desired magnetic state.
Esposito, A.; Porro, C.; Augustine, C.; Roberts, B.
2012-09-01T23:59:59.000Z
Because most sedimentary basins have been explored for oil and gas, well logs, temperatures at depth, and reservoir properties such as depth to basement and formation thickness are well known. The availability of this data reduces exploration risk and allows development of geologic exploration models for each basin. This study estimates the magnitude of recoverable geothermal energy from 15 major known U.S. sedimentary basins and ranks these basins relative to their potential. The total available thermal resource for each basin was estimated using the volumetric heat-in-place method originally proposed by (Muffler, 1979). A qualitative recovery factor was determined for each basin based on data on flow volume, hydrothermal recharge, and vertical and horizontal permeability. Total sedimentary thickness maps, stratigraphic columns, cross sections, and temperature gradient information was gathered for each basin from published articles, USGS reports, and state geological survey reports. When published data were insufficient, thermal gradients and reservoir properties were derived from oil and gas well logs obtained on oil and gas commission databases. Basin stratigraphy, structural history, and groundwater circulation patterns were studied in order to develop a model that estimates resource size, temperature distribution, and a probable quantitative recovery factor.
West, Tristram O. [ORNL; Singh, Nagendra [ORNL; Marland, Gregg [ORNL; Bhaduri, Budhendra L [ORNL
2009-01-01T23:59:59.000Z
Carbon dioxide is taken up by agricultural crops and released soon after during the consumption of agricultural commodities. The global net impact of this process on carbon flux to the atmosphere is negligible, but impact on the spatial distribution of carbon dioxide uptake and release across regions and continents is significant. To estimate the consumption and release of carbon by humans over the landscape, we developed a carbon budget for humans in the United States. The budget was derived from food commodity intake data for the US and from algorithms representing the metabolic processing of carbon by humans. Data on consumption, respiration, and waste of carbon by humans were distributed over the US using geospatial population data with a resolution of approximately 450 x 450 m. The average adult in the US contains about 21 kg C and consumes about 67 kg C yr-1 which is balanced by the annual release of about 59 kg C as expired CO2, 7 kg C as feces and urine, and less than 1 kg C as flatus, sweat, and aromatic compounds. In 2000, an estimated 17.2 Tg C were consumed by the US population and 15.2 Tg C were expired to the atmosphere as CO2. Historically, carbon stock in the US human population has increased between 1790-2006 from 0.06 Tg to 5.37 Tg. Displacement and release of total harvested carbon per capita in the US is nearly 12% of per capita fossil fuel emissions. Humans are using, storing, and transporting carbon about the Earth s surface. Inclusion of these carbon dynamics in regional carbon budgets can improve our understanding of carbon sources and sinks.
Wu, Yinghua
Semiclassical Molecular Dynamics Simulations of the Excited State Photodissociation Dynamics of H2O modeled in terms of classical molecular dynamics simulations.9,12 However, the photodissociation from The photodissociation dynamics of H2O in the A1 B1 band is investigated by implementing a recently developed time
Macroscopic description of complex adaptive networks co-evolving with dynamic node states
Wiedermann, Marc; Heitzig, Jobst; Lucht, Wolfgang; Kurths, Jürgen
2015-01-01T23:59:59.000Z
In many real-world complex systems, the time-evolution of the network's structure and the dynamic state of its nodes are closely entangled. Here, we study opinion formation and imitation on an adaptive complex network which is dependent on the individual dynamic state of each node and vice versa to model the co-evolution of renewable resources with the dynamics of harvesting agents on a social network. The adaptive voter model is coupled to a set of identical logistic growth models and we show that in such systems, the rate of interactions between nodes as well as the adaptive rewiring probability play a crucial role for the sustainability of the system's equilibrium state. We derive a macroscopic description of the system which provides a general framework to model and quantify the influence of single node dynamics on the macroscopic state of the network and is applicable to many fields of study, such as epidemic spreading or social modeling.
Structure and dynamics studies by solid-state nuclear magnetic resonance spectroscopy
Itin, Boris
2002-01-01T23:59:59.000Z
The major goal of this work is the development of high resolution solid state 205T1 NMR techniques and their application to the elucidation of the mechanism and dynamics of ion exchange in biological solids. The thesis ...
Prasad, Rajiv; Hibler, Lyle F.; Coleman, Andre M.; Ward, Duane L.
2011-11-01T23:59:59.000Z
The purpose of this document is to describe approaches and methods for estimation of the design-basis flood at nuclear power plant sites. Chapter 1 defines the design-basis flood and lists the U.S. Nuclear Regulatory Commission's (NRC) regulations that require estimation of the design-basis flood. For comparison, the design-basis flood estimation methods used by other Federal agencies are also described. A brief discussion of the recommendations of the International Atomic Energy Agency for estimation of the design-basis floods in its member States is also included.
Dissipative dynamics of a kink state in a Bose-condensed gas
P. O. Fedichev; A. E. Muryshev; G. V. Shlyapnikov
1999-05-18T23:59:59.000Z
We develop a theory of dissipative dynamics of a kink state in a finite-temperature Bose-condensed gas. We find that due to the interaction with the thermal cloud the kink state accelerates towards the velocity of sound and continuously transforms to the ground-state condensate. We calculate the life-time of a kink state in a trapped gas and discuss possible experimental implications.
Femtosecond Transition-State Dynamics of Dissociating OCS on the Excited 1+ Potential Energy Surface
Liu, Shilin
Femtosecond Transition-State Dynamics of Dissociating OCS on the Excited 1+ Potential Energy photodissociation dynamics of OCS on the dissociative potential energy surface (PES) of the electronically excited 1 calculations. The high-resolution PHOFEX spectrum of the entire 1+-1+ transition (63 300-69 350 cm-1
Integrated Scheduling and Dynamic Optimization of Batch Processes Using State Equipment Networks
Grossmann, Ignacio E.
Integrated Scheduling and Dynamic Optimization of Batch Processes Using State Equipment Networks value to existing assets Improving plant reliability 1 J.M. Wassick and J. Ferrio. Extending A batch plant with existing equipment A time horizon to make products Dynamic models of process operations
Ground states and dynamics of multi-component Bose-Einstein condensates
Markowich, Peter A.
Ground states and dynamics of multi-component Bose-Einstein condensates Weizhu Bao #3; Department) an external driven #12;eld for dynamics describing a multi-component Bose- Einstein condensate (BEC) at zero-component Bose-Einstein condensates. Key Words. Multi-component, Bose-Einstein condensate (BEC), Vector Gross
Wu, M.; Peng, J. (Energy Systems); ( NE)
2011-02-24T23:59:59.000Z
Freshwater consumption for electricity generation is projected to increase dramatically in the next couple of decades in the United States. The increased demand is likely to further strain freshwater resources in regions where water has already become scarce. Meanwhile, the automotive industry has stepped up its research, development, and deployment efforts on electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs). Large-scale, escalated production of EVs and PHEVs nationwide would require increased electricity production, and so meeting the water demand becomes an even greater challenge. The goal of this study is to provide a baseline assessment of freshwater use in electricity generation in the United States and at the state level. Freshwater withdrawal and consumption requirements for power generated from fossil, nonfossil, and renewable sources via various technologies and by use of different cooling systems are examined. A data inventory has been developed that compiles data from government statistics, reports, and literature issued by major research institutes. A spreadsheet-based model has been developed to conduct the estimates by means of a transparent and interactive process. The model further allows us to project future water withdrawal and consumption in electricity production under the forecasted increases in demand. This tool is intended to provide decision makers with the means to make a quick comparison among various fuel, technology, and cooling system options. The model output can be used to address water resource sustainability when considering new projects or expansion of existing plants.
Gain dynamics of quantum dot devices for dual-state operation
Kaptan, Y., E-mail: yuecel.kaptan@physik.tu-berlin.de; Herzog, B.; Kolarczik, M.; Owschimikow, N.; Woggon, U. [Institut für Optik und Atomare Physik, Technische Universität Berlin, Berlin (Germany); Schmeckebier, H.; Arsenijevi?, D.; Bimberg, D. [Institut für Festkörperphysik, Technische Universität Berlin, Berlin (Germany); Mikhelashvili, V.; Eisenstein, G. [Technion Institute of Technology, Faculty of Electrical Engineering, Haifa (Israel)
2014-06-30T23:59:59.000Z
Ground state gain dynamics of In(Ga)As-quantum dot excited state lasers are investigated via single-color ultrafast pump-probe spectroscopy below and above lasing threshold. Two-color pump-probe experiments are used to localize lasing and non-lasing quantum dots within the inhomogeneously broadened ground state. Single-color results yield similar gain recovery rates of the ground state for lasing and non-lasing quantum dots decreasing from 6 ps to 2 ps with increasing injection current. We find that ground state gain dynamics are influenced solely by the injection current and unaffected by laser operation of the excited state. This independence is promising for dual-state operation schemes in quantum dot based optoelectronic devices.
Tracking shocked dust: State estimation for a complex plasma during a shock wave
Oxtoby, Neil P.; Ralph, Jason F.; Durniak, Celine; Samsonov, Dmitry [Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool, L69 3GJ (United Kingdom)
2012-01-15T23:59:59.000Z
We consider a two-dimensional complex (dusty) plasma crystal excited by an electrostatically-induced shock wave. Dust particle kinematics in such a system are usually determined using particle tracking velocimetry. In this work we present a particle tracking algorithm which determines the dust particle kinematics with significantly higher accuracy than particle tracking velocimetry. The algorithm uses multiple extended Kalman filters to estimate the particle states and an interacting multiple model to assign probabilities to the different filters. This enables the determination of relevant physical properties of the dust, such as kinetic energy and kinetic temperature, with high precision. We use a Hugoniot shock-jump relation to calculate a pressure-volume diagram from the shocked dust kinematics. Calculation of the full pressure-volume diagram was possible with our tracking algorithm, but not with particle tracking velocimetry.
Time-Dynamic Density and Mode Estimation with Application to Fast Mode Tracking
Müller, Hans-Georg
studied in the recursive density estimation framework (see, for example, Wegman and Davies 1995; Hall; Wegman and Marchette 2003). Real-time density estimation has been treated in Hall and Patil (1994), using
The AMES Wholesale Power Market Test Bed as a Stochastic Dynamic State-Space Game
Tesfatsion, Leigh
The AMES Wholesale Power Market Test Bed as a Stochastic Dynamic State-Space Game Leigh Tesfatsion.econ.iastate.edu/tesfatsi/ tesfatsi@iastate.edu Last Revised: August 5, 2008 Abstract: The AMES Wholesale Power Market Test Bed wholesale power markets. These notes show how AMES can be recast in more standard state-space equation form
Maggiore, Manfredi
Coupled Dynamic Systems: From Structure Towards State Agreement Zhiyun Lin, Bruce Francis, and Manfredi Maggiore Abstract-- The state agreement problem is studied for non- linear continuous-time systems. A general interconnection of nonlinear subsystems is treated, where the vector fields can switch within
Dissipative dynamics of a vortex state in a trapped Bose-condensed gas
P. O. Fedichev; G. V. Shlyapnikov
1999-06-15T23:59:59.000Z
We discuss dissipative dynamics of a vortex state in a trapped Bose-condensed gas at finite temperature and draw a scenario of decay of this state in a static trap. The interaction of the vortex with the thermal cloud transfers energy from the vortex to the cloud and induces the motion of the vortex core to the border of the condensate. Once the vortex reaches the border, it immediately decays through the creation of excitations. We calculate the characteristic life-time of a vortex state and address the question of how the dissipative dynamics of vortices can be studied experimentally.
R. Gopal; V. K. Chandrasekar; A. Venkatesan; M. Lakshmanan
2014-05-15T23:59:59.000Z
By developing the concepts of strength of incoherence and discontinuity measure, we show that a distinct quantitative characterization of chimera and multichimera states which occur in networks of coupled nonlinear dynamical systems admitting nonlocal interactions of finite radius can be made. These measures also clearly distinguish between chimera or multichimera states (both stable and breathing types) and coherent and incoherent as well as cluster states....
Yoshiko Kanada-En'yo; Hisashi Horiuchi
2003-04-28T23:59:59.000Z
The structures of the ground and excited states of 12Be were studied with antisymmetrized molecular dynamics. The ground state was found to be a state with a developed 2-alpha core with two neutrons occupying the intruder orbits. The energy levels of the newly measured spin-assigned states were described well, except for the $1^-_1$ state. The calculations indicated that many exotic cluster structures appear in the low-energy region. The widths concerning alpha and 6He decays were discussed by using reduced width amplitudes.
Kim, Young-Min; Zhou, Ying; Gao, Yang; Fu, Joshua S.; Johnson, Brent; Huang, Cheng; Liu, Yang
2015-01-01T23:59:59.000Z
BACKGROUND: The spatial pattern of the uncertainty in climate air pollution health impact has rarely been studied due to the lack of high-resolution model simulations, especially under the latest Representative Concentration Pathways (RCPs). OBJECTIVES: We estimated county-level ozone (O3) and PM2.5 related excess mortality (EM) and evaluated the associated uncertainties in the continental United States in the 2050s under RCP4.5 and RCP8.5. METHODS: Using dynamically downscaled climate model simulations, we calculated changes in O3 and PM2.5 levels at 12 km resolution between the future (2057-2059) and present (2001-2004) under two RCP scenarios. Using concentration-response relationships in the literature and projected future populations, we estimated EM attributable to the changes in O3 and PM2.5. We finally analyzed the contribution of input variables to the uncertainty in the county-level EM estimation using Monte Carlo simulation. RESULTS: O3-related premature deaths in the continental U.S. were estimated to be 1,082 deaths/year under RCP8.5 (95% confidence interval (CI): -288 to 2,453), and -5,229 deaths/year under RCP4.5 (-7,212 to -3,246). Simulated PM2.5 changes resulted in a significant decrease in EM under the two RCPs. The uncertainty of O3-related EM estimates was mainly caused by RCP scenarios, whereas that of PM2.5-related EMs was mainly from concentration-response functions. CONCLUSION: EM estimates attributable to climate change-induced air pollution change as well as the associated uncertainties vary substantially in space, and so are the most influential input variables. Spatially resolved data is crucial to develop effective mitigation and adaptation policy.
PMU Placement for Dynamic State Tracking of Power Systems
Sun, Yannan; Du, Pengwei; Huang, Zhenyu; Kalsi, Karanjit; Diao, Ruisheng; Anderson, Kevin K.; Li, Yulan; Lee, Barry
2011-08-04T23:59:59.000Z
Accurately tracking the state variables (rotor angle and speed) is a necessity for monitoring system stability conditions and assessing the risks of large-scale system collapse. This paper explores how the number and locations of PMUs installed in the system are determined to ensure satisfactory state tracking performance. A search algorithm is presented for determining PMU placement (location and quantity). The algorithm determines a placement that gives small tracking error in polynomial time. A modified, scalable algorithm is also presented. Observability in the presence of faults is considered. Simulation results for a 16-machine and a 50-machine system are provided.
Wijngaarden, Rinke J.
Extremal Dynamics and the Approach to the Critical State: Experiments on a Three Dimensional Pile in three dimensions. With time, the pile approaches a critical state with a certain slope. Assuming extremal dynamics in the evolution of the pile, the way the critical state is approached is dictated
Ground states and dynamics of spin-orbit-coupled Bose-Einstein condensates
Weizhu Bao; Yongyong Cai
2014-07-22T23:59:59.000Z
We study analytically and asymptotically as well as numerically ground states and dynamics of two-component spin-orbit-coupled Bose-Einstein condensates (BECs) modeled by the coupled Gross-Pitaevskii equations (CGPEs). In fact, due to the appearance of the spin-orbit (SO) coupling in the two-component BEC with a Raman coupling, the ground state structures and dynamical properties become very rich and complicated. For the ground states, we establish the existence and non-existence results under different parameter regimes, and obtain their limiting behaviors and/or structures with different combinations of the SO and Raman coupling strengths. For the dynamics, we show that the motion of the center-of-mass is either non-periodic or with different frequency to the trapping frequency when the external trapping potential is taken as harmonic and the initial data is chosen as a stationary state (e.g. ground state) with a shift, which is completely different from the case of a two-component BEC without the SO coupling, and obtain the semiclassical limit of the CGPEs in the linear case via the Wigner transform method. Efficient and accurate numerical methods are proposed for computing the ground states and dynamics, especially for the case of box potentials. Numerical results are reported to demonstrate the efficiency and accuracy of the numerical methods and show the rich phenomenon in the SO-coupled BECs.
Dynamical control of quantum state transfer within hybrid open systems
B. M. Escher; G. Bensky; J. Clausen; G. Kurizki; L. Davidovich
2010-10-25T23:59:59.000Z
We analyze quantum state-transfer optimization within hybrid open systems, from a "noisy" (write-in) qubit to its "quiet" counterpart (storage qubit). Intriguing interplay is revealed between our ability to avoid bath-induced errors that profoundly depend on the bath-memory time and the limitations imposed by leakage out of the operational subspace. Counterintuitively, under no circumstances is the fastest transfer optimal (for a given transfer energy).
Dynamical control of quantum state transfer within hybrid open systems
Escher, B M; Clausen, J; Kurizki, G; Davidovich, L
2010-01-01T23:59:59.000Z
We analyze quantum state-transfer optimization within hybrid open systems, from a "noisy" (write-in) qubit to its "quiet" counterpart (storage qubit). Intriguing interplay is revealed between our ability to avoid bath-induced errors that profoundly depend on the bath-memory time and the limitations imposed by leakage out of the operational subspace. Counterintuitively, under no circumstances is the fastest transfer optimal (for a given transfer energy).
Molecular dynamics studies of the primary state of radiation damage
Diaz de la Rubia, T.; Averback, R.S.; Robertson, I.M.; Benedek, R.
1988-12-01T23:59:59.000Z
This paper summarizes recent progress in the understanding of energetic displacement cascades in metals achieved with the molecular-dynamics (MD) simulation technique. Recoil events with primary-knock-on-atom (PKA) energies up to 5 keV were simulated in Cu and Ni. The initial development of displacement cascades was similar in both metals, with replacement collision sequences providing the most efficient mechanism for the separation of interstitials and vacancies. The thermal-spike behavior in these metals, however, is quite different; Cu cascades are characterized by lower defect production and greater atomic disordering than those in Ni. The thermal spike significantly influences various other properties of cascades, such as total defect production and defect clustering. 32 refs., 7 figs., 2 tabs.
The Third State of the Schelling Model of Residential Dynamics
Benenson, Itzhak
2009-01-01T23:59:59.000Z
The Schelling model of segregation between two groups of residential agents (Schelling 1971; Schelling 1978) reflects the most abstract view of the non-economic forces of residential migrations: be close to people of 'your own'. The model assumes that the residential agent, located in the neighborhood where the fraction of 'friends' is less than a predefined threshold value F, tries to relocate to a neighborhood for which this fraction is above F. It is well known that for the equal groups, depending on F, Schelling's residential pattern converges either to complete integration (random pattern) or segregation. We investigate Schelling model pattern dynamics as dependent on F, the ratio of the group numbers and the size of the neighborhood and demonstrate that the traditional integrate-segregate dichotomy is incomplete. In case of unequal groups, there exists the wide interval of the F-values that entails the third persistent residential pattern, in which part of the majority population segregates, while the r...
Akinori Isshiki; Kenichi Naito; Akira Ohnishi
2005-07-13T23:59:59.000Z
We have introduced coherent state neutral pion into Antisymmetrized Molecular Dynamics. With the aid of coherent state technique, it becomes possible to calculate transition matrix elements of the pion field operator and to study excited states containing pions. For large pion-nucleon coupling fpiN > 1.6, pions have a finite expectation value and bring large energy gain in 12C. We discuss two aspects of pionic effects in spectroscopy; the LS interaction like effect and the mixing of different nucleon parity states, which would modify low energy nuclear levels.
Dynamics of multi-modes maximum entangled coherent state over amplitude damping channel
A. El Allati; Y. Hassouni; N. Metwally
2012-02-18T23:59:59.000Z
The dynamics of maximum entangled coherent state travels through an amplitude damping channel is investigated. For small values of the transmissivity rate the travelling state is very fragile to this noise channel, where it suffers from the phase flip error with high probability. The entanglement decays smoothly for larger values of the transmissivity rate and speedily for smaller values of this rate. As the number of modes increases, the travelling state over this noise channel loses its entanglement hastily. The odd and even states vanish at the same value of the field intensity.
Quantum Chemical Analysis of the Excited State Dynamics of Hydrated Electrons
P. O. J. Scherer; Sighart F. Fischer
2006-02-01T23:59:59.000Z
Quantum calculations are performed for an anion water cluster representing the first hydration shell of the solvated electron in solution. The absorption spectra from the ground state, the instant excited states and the relaxed excited states are calculated including CI-SD interactions. Analytic expressions for the nonadiabatic relaxation are presented. It is shown that the 50fs dynamics recently observed after s->p excitation is best accounted for if it is identified with the internal conversion, preceded by an adiabatic relaxation within the excited p state. In addition, transient absorptions found in the infrared are qualitatively reproduced by these calculations .
Robust Dynamical Decoupling for Arbitrary Quantum States of a Single NV Center in Diamond
J. H. Shim; I. Niemeyer; J. Zhang; D. Suter
2012-07-24T23:59:59.000Z
Dynamical decoupling is a powerful technique for extending the coherence time (T$_2$) of qubits. We apply this technique to the electron spin qubit of a single nitrogen-vacancy center in type IIa diamond. In a crystal with natural abundance of $^{13}$C nuclear spins, we extend the decoherence time up to 2.2 ms. This is close to the T$_1$ value of this NV center (4 ms). Since dynamical decoupling must perform well for arbitrary initial conditions, we measured the dependence on the initial state and compared the performance of different sequences with respect to initial state dependence and robustness to experimental imperfections.
transposed transmission lines. A three-phase state estimator is first developed in order to verify the actual to be met: Â· Transposition of the transmission lines Â· Even distribution of bus loads Â· Maintaining balanced an uneven distribution among the three phases, or relatively long but non-transposed transmission lines
Stefanopoulou, Anna
Experimental Validation of a Lithium-Ion Battery State of Charge Estimation with an Extended Kalman unobservable conditions as discussed in [3] and allow the application of an extended Kalman Filter (EKF) from Kalman Filter (EKF) based on the averaged model and the performance is shown experimentally in a 10 cell
Robustness analysis of State-of-Charge estimation methods for two types of Li-ion batteries
Peng, Huei
Robustness analysis of State-of-Charge estimation methods for two types of Li-ion batteries i g h l i g h t s battery model parameters are optimized. 2012 Accepted 1 June 2012 Available online 9 June 2012 Keywords: Battery management systems SOC
Lithium-Ion battery State of Charge estimation with a Kalman Filter based on a electrochemical model
Stefanopoulou, Anna
Lithium-Ion battery State of Charge estimation with a Kalman Filter based on a electrochemical model Domenico Di Domenico, Giovanni Fiengo and Anna Stefanopoulou Abstract-- Lithium-ion battery hybrid electric vehicles (HEV). In most cases the lithium-ion battery performance plays an important role
Baldick, Ross
data detection. In this analysis, to make the problem manageable, we use the 1-norm to calculateIEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 16, NO. 2, MAY 2001 273 State Estimator Condition Number is related to available finite precision arithmetic. The more precision in the calculations, the higher
North Carolina at Chapel Hill, University of
A Passive State-Machine Based Approach for Reliable Estimation of TCP Losses Sushant Rewaskar Technical report No. TR06-002 January 20, 2006 Abstract - While it is well-known that TCP performance degrades significantly on experiencing packet losses, not much is known about the way in which TCP losses
Electronic Structure and Excited State Dynamics in Biological and Nanoscale
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContractElectron-State Hybridization in Heavy-FermionSystems | MIT-Harvard
Structure of excited states of Be-11 studied with Antisymmetrized Molecular Dynamics
Y. Kanada-En'yo; H. Horiuchi
2002-04-15T23:59:59.000Z
The structures of the ground and excited states of Be-11 were studied with a microscopic method of antisymmetrized molecular dynamics. The theoretical results reproduce the abnormal parity of the ground state and predict various kinds of excited states. We suggest a new negative-parity band with a well-developed clustering structure which reaches high-spin states. Focusing on a $2\\alpha$ clustering structure, we investigated structure of the ground and excited states. We point out that molecular orbits play important roles for the intruder ground state and the low-lying $2\\hbar \\omega$ states. The features of the breaking of $\\alpha$ clusters were also studied with the help of data for Gamow-Teller transitions.
Melanoma costs: A dynamic model comparing estimated overall costs of various clinical stages
Alexandrescu, Doru Traian
2009-01-01T23:59:59.000Z
AL. Trends in treatment costs for localized prostate cancer:R, Elkin EP, et al. Cumulative cost pattern comparison ofAn estimate of the annual direct cost of treating cutaneous
Dynamic estimation of specific growth rates and concentrations of bacteria for the
Paris-Sud XI, Université de
at- tractive method for the treatment and recycling of organic wastes. Successful combination. Keywords: Waste treatment, Biotechnology, Observer, Estimation theory, Algebraic systems theory 1 out in continuously stirred tank bioreactors, the organic matter is depolluted by mi- croorganisms
Berry, L.
1997-01-01T23:59:59.000Z
The DOE Weatherization Assistance Program is one of the largest energy conservation programs in the nation. To obtain an updated estimate of national Program savings, an approach of metaevaluation was selected, which involved locating, assembling, and summarizing the results of all state-level evaluations of the Program that have become available since 1990. All of the savings estimates that are presented in this report are for dwellings that heat primarily with natural gas.This review of the state-level evaluations conducted since 1990 concluded that Program performance has improved significantly in the last seven years. The finding that savings are increasing are supported by a literature review, within-state comparisons of savings over time, and regression modeling results.
A STEADY-STATE FEL: PARTICLE DYNAMICS IN THE FEL PORTION OF A TWO-BEAM ACCELERATOR
Sternbach, E.
2008-01-01T23:59:59.000Z
September 8-13, 1985 A STEADY-STATE FEL: PARTICLE DYNAMICSIN THE FEL PORTION OF A TWO-BEAM ACCELERATOR E. SternbachLBL-19939 A STEADY-STATE FEL: PARTICLE DYNAMICS IN THE FEL
Estimated Value of Service Reliability for Electric Utility Customers in the United States
Sullivan, M.J.
2009-01-01T23:59:59.000Z
Goods: The Contingent Valuation Method. Resources for theare called contingent valuation methods or stated preference
Design of penalty functions for optimal control of linear dynamical systems under state and input of solving a constrained optimal control for a general single-input single output linear time varying system dimensional (functional optimization) case. The main novelty is that both the bounds on the control variable
StatetoState Quantum Dynamics of O + O2 Isotope Exchange
Maccabe, Barney
StatetoState Quantum Dynamics of O + O2 Isotope Exchange Reactions Reveals Non body (M). An in depth understanding of the bimolecular isotope exchange reactions will shed light on the surprising and significant enrichment of heavy ozone isotopomers discovered in the stratosphere more than
Laser-induced resonance states as dynamic suppressors of ionization in high-frequency short pulses
Baer, Roi
Laser-induced resonance states as dynamic suppressors of ionization in high-frequency short pulses is used to study the suppression of ionization in short laser pulses. In the high-frequency limit the adiabatic equations involve only the pulse envelope where transitions are purely ramp effects. For a short
From "Stages" of Business Growth to a Dynamic States Model of Entrepreneurial Growth and Change
Mottram, Nigel
From "Stages" of Business Growth to a Dynamic States Model of Entrepreneurial Growth and Change and Gumpert, 1985), and virtually all economic models of business creation follow firm birth with firm growth models of new business growth assume a limited number of distinct stages through #12;3 which businesses
The Dynamic State of Transportation Finance A white paper for participants of the
Minnesota, University of
The Dynamic State of Transportation Finance A white paper for participants of the 2005 James L. Oberstar Forum The Future of Transportation Finance: `Gas Tax Plus' and Beyond April 17-18, 2005 Minneapolis, Minnesota Sponsored by Center for Transportation Studies University of Minnesota Prepared
Population Dynamics and Tropical Deforestation: State of the Debate and Conceptual Challenges
Lopez-Carr, David
Population Dynamics and Tropical Deforestation: State of the Debate and Conceptual Challenges David is the role of population in driving deforestation? This question was put forth as a discussion topic diverse backgrounds weighed in on the discussion, citing key factors in the population-deforestation nexus
Droegemeier, Kelvin K.
1 Draft Chapter from Mesoscale Dynamic Meteorology By Prof. Yu-lang Lin, North Carolina State University Chapter 1 Overview 1.1 Introduction The so-called mesometeorology or mesoscale meteorology as mesoscale phenomena by others (e.g. Orlanski 1975; Thunis and Bornstein 1996). Therefore, a more precise
Photoexcited breathers in conjugated polyenes: An excited-state molecular dynamics study
Tretiak, Sergei
for the simulation of excited- state molecular dynamics in extended molecular systems with sizes up to hundreds cells (9), display panels (10Â12), photovoltaic cells (13Â15), photodetectors (16Â18), transistors (19 of -conjugated molecular systems is challenging because of electronic correlation effects and strong electron
absorption dicke-state dynamics: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
absorption dicke-state dynamics First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Multiatom cooperative...
Bouaynaya, Nidhal
estimated, the neural drive can be used to control upper- extremity myoelectric prosthesis. Commonly prosthesis control problem [1]. Such algorithms are based on the assumption that there exist distinguishable the hypothesis of muscle synergies to estimate the neural drive from the surface myoelectric signal. Once
Convolution particle filtering for parameter estimation in general state-space models
Paris-Sud XI, UniversitÃ© de
of these aspects [6] [4]. The second approach takes place in a classical Bayesian framework, a prior probability suited, given the context of parameter estimation. Firstly the usual non Bayesian statistical estimates results in practice but suffer from an absence of theoretical backing. The particle filters propose a good
Excited State Structural Dynamics of Carotenoids and ChargeTransfer Systems
Van Tassle, Aaron Justin
2006-09-01T23:59:59.000Z
This dissertation describes the development andimplementation of a visible/near infrared pump/mid-infrared probeapparatus. Chapter 1 describes the background and motivation ofinvestigating optically induced structural dynamics, paying specificattention to solvation and the excitation selection rules of highlysymmetric molecules such as carotenoids. Chapter 2 describes thedevelopment and construction of the experimental apparatus usedthroughout the remainder of this dissertation. Chapter 3 will discuss theinvestigation of DCM, a laser dye with a fluorescence signal resultingfrom a charge transfer state. By studying the dynamics of DCM and of itsmethyl deuterated isotopomer (an otherwise identical molecule), we areable to investigate the origins of the charge transfer state and provideevidence that it is of the controversial twisted intramolecular (TICT)type. Chapter 4 introduces the use of two-photon excitation to the S1state, combined with one-photon excitation to the S2 state of thecarotenoid beta-apo-8'-carotenal. These 2 investigations show evidencefor the formation of solitons, previously unobserved in molecular systemsand found only in conducting polymers Chapter 5 presents an investigationof the excited state dynamics of peridinin, the carotenoid responsiblefor the light harvesting of dinoflagellates. This investigation allowsfor a more detailed understanding of the importance of structuraldynamics of carotenoids in light harvesting.
Closser, Kristina D.; Head-Gordon, Martin, E-mail: mhg@cchem.berkeley.edu [Department of Chemistry, University of California Berkeley, Berkeley, California 94720 (United States) [Department of Chemistry, University of California Berkeley, Berkeley, California 94720 (United States); Ultrafast X-Ray Science Laboratory, Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Gessner, Oliver [Ultrafast X-Ray Science Laboratory, Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)] [Ultrafast X-Ray Science Laboratory, Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)
2014-04-07T23:59:59.000Z
The dynamics resulting from electronic excitations of helium clusters were explored using ab initio molecular dynamics. The simulations were performed with configuration interaction singles and adiabatic classical dynamics coupled to a state-following algorithm. 100 different configurations of He{sub 7} were excited into the 2s and 2p manifold for a total of 2800 trajectories. While the most common outcome (90%) was complete fragmentation to 6 ground state atoms and 1 excited state atom, 3% of trajectories yielded bound, He {sub 2}{sup *}, and <0.5% yielded an excited helium trimer. The nature of the dynamics, kinetic energy release, and connections to experiments are discussed.
Li, Charles
Dynamic magnetization states of a spin valve in the presence of dc and ac currents: Synchronization and numerical calculations of dynamic magnetization states of a spin valve in the presence of dc and ac currents are expected to appear. In this paper, we consider a simple spin valve as a model system to study the problem
Paris-Sud XI, UniversitÃ© de
Solvent effect on the singlet excited state dynamics of 5-fluorouracil in acetonitrile as compared in acetonitrile a Permanent Address : Department of Chemistry, Indian Institute of Technology, Kharagpur, PIN 721 302, WB, India. #12;Abstract. The excited state dynamics of 5-fluorouracil in acetonitrile has been
Paris-Sud XI, UniversitÃ© de
Â the dilution rate and the flow rates of methane and carbon dioxide in the biogas. I. Introduction Before it may. The dynamics of this process are the ones of standard anaerobic digestion, and depend on the type of organic quantities such as the dilution rate and the flow rates of methane and carbon dioxide in the biogas. In [1, 2
.e., the `states') are estimated. The process usually uses minimum least squares methods. Power system measurements to information loss through analog to digital conver- sion. State estimation methods can flag and smooth out bad into a digital signal by an analog / digital converter
Johansson, Karl Henrik
Cyber Security Analysis of State Estimators in Electric Power Systems AndrÂ´e Teixeira, Saurabh Amin security of state estimators in Supervisory Control and Data Acquisition (SCADA) systems operating in power random outliers in the measurement data. Such schemes are based on high measurement redundancy. Although
Discrete State Estimators for Systems on a Lattice D. Del Vecchio
Murray, Richard M.
to be final state determinable are given [4]. In Alessandri et al., Luenberger-like observers are proposed
Current (2009) State-of-the-Art Hydrogen Production Cost Estimate Using Water Electrolysis
Fuel Cell Technologies Publication and Product Library (EERE)
This independent review examines DOE cost targets for state-of-the art hydrogen production using water electrolysis.
ESTIMATING THE ECONOMIC IMPACT OF UNIVERSITIES: THE CASE OF BOWLING GREEN STATE UNIVERSITY
Michael C. Carroll; Bruce W. Smith
study of Bowling Green State University, Ohio. The most widely cited finding of the study was that for
Not Available
2009-09-01T23:59:59.000Z
This independent review examines DOE cost targets for state-of-the art hydrogen production using water electrolysis.
Loss of coherence in dynamical networks: spatial chaos and chimera states
Iryna Omelchenko; Yuri Maistrenko; Philipp Hövel; Eckehard Schöll
2011-05-19T23:59:59.000Z
We discuss the breakdown of spatial coherence in networks of coupled oscillators with nonlocal interaction. By systematically analyzing the dependence of the spatio-temporal dynamics on the range and strength of coupling, we uncover a dynamical bifurcation scenario for the coherence-incoherence transition which starts with the appearance of narrow layers of incoherence occupying eventually the whole space. Our findings for coupled chaotic and periodic maps as well as for time-continuous R\\"ossler systems reveal that intermediate, partially coherent states represent characteristic spatio-temporal patterns at the transition from coherence to incoherence.
Dynamic State Estimation in Distributed Aircraft Electric Control Systems via Adaptive Submodularity
Murray, Richard M.
for the international space station, [10] for an aircraft electric system, and [7] for a marine vehicle power system industry signifies progress in the direction of more energy efficient vehicles. Electric systems are replac on electric power, the flight-criticality of an aircraft becomes more dependent on the electric power system
Dynamic State Estimation in Distributed Aircraft Electric Control Systems via Adaptive Submodularity
Xu , Huan
exists on diagnostics of electric power systems focusing on AC systems [5], as well as large vehicle industry signifies progress in the direction of more energy efficient vehicles. Electric systems are replac, the flight-criticality of an aircraft becomes more dependent on the electric power system as well. Because
Oladosu, Gbadebo A [ORNL] [ORNL; Kline, Keith L [ORNL] [ORNL
2013-01-01T23:59:59.000Z
The global indirect land use change (ILUC) implications of biofuel use in the United States of America (USA) from 2001 to 2010 are evaluated with a dynamic general equilibrium model. The effects of biofuels production on agricultural land area vary by year; from a net expansion of 0.17 ha per 1000 gallons produced (2002) to a net contraction of 0.13 ha per 1000 gallons (2018) in Case 1 of our simulation. In accordance with the general narrative about the implications of biofuel policy, agricultural land area increased in many regions of the world. However, oil-export dependent economies experienced agricultural land contraction because of reductions in their revenues. Reducing crude oil imports is a major goal of biofuel policy, but the land use change implications have received little attention in the literature. Simulations evaluating the effects of doubling supply elasticities for land and fossil resources show that these parameters can significantly influence the land use change estimates. Therefore, research that provides empirically-based and spatially-detailed agricultural land-supply curves and capability to project future fossil energy prices is critical for improving estimates of the effects of biofuel policy on land use.
Kalman Filter Constraint Switching for Turbofan Engine Health Estimation
Simon, Dan
Kalman Filter Constraint Switching for Turbofan Engine Health Estimation Dan Simon Cleveland State Cleveland, Ohio, 44135 Abstract Kalman filters are often used to estimate the state variables of a dynamic system. However, in the application of Kalman filters some known signal information is often either
Estimated Value of Service Reliability for Electric Utility Customers in the United States
Sullivan, M.J.; Mercurio, Matthew; Schellenberg, Josh
2009-06-01T23:59:59.000Z
Information on the value of reliable electricity service can be used to assess the economic efficiency of investments in generation, transmission and distribution systems, to strategically target investments to customer segments that receive the most benefit from system improvements, and to numerically quantify the risk associated with different operating, planning and investment strategies. This paper summarizes research designed to provide estimates of the value of service reliability for electricity customers in the US. These estimates were obtained by analyzing the results from 28 customer value of service reliability studies conducted by 10 major US electric utilities over the 16 year period from 1989 to 2005. Because these studies used nearly identical interruption cost estimation or willingness-to-pay/accept methods it was possible to integrate their results into a single meta-database describing the value of electric service reliability observed in all of them. Once the datasets from the various studies were combined, a two-part regression model was used to estimate customer damage functions that can be generally applied to calculate customer interruption costs per event by season, time of day, day of week, and geographical regions within the US for industrial, commercial, and residential customers. Estimated interruption costs for different types of customers and of different duration are provided. Finally, additional research and development designed to expand the usefulness of this powerful database and analysis are suggested.
Longhi, Stefano, E-mail: stefano.longhi@fisi.polimi.it
2014-06-15T23:59:59.000Z
Quantum recurrence and dynamic localization are investigated in a class of ac-driven tight-binding Hamiltonians, the Krawtchouk quantum chain, which in the undriven case provides a paradigmatic Hamiltonian model that realizes perfect quantum state transfer and mirror inversion. The equivalence between the ac-driven single-particle Krawtchouk Hamiltonian H{sup -hat} (t) and the non-interacting ac-driven bosonic junction Hamiltonian enables to determine in a closed form the quasi energy spectrum of H{sup -hat} (t) and the conditions for exact wave packet reconstruction (dynamic localization). In particular, we show that quantum recurrence, which is predicted by the general quantum recurrence theorem, is exact for the Krawtchouk quantum chain in a dense range of the driving amplitude. Exact quantum recurrence provides perfect wave packet reconstruction at a frequency which is fractional than the driving frequency, a phenomenon that can be referred to as fractional dynamic localization.
Dynamics of a two-state system through a real level crossing
Militello, Benedetto D
2015-01-01T23:59:59.000Z
The dynamics of a two-state system whose energies undergo a real crossing at some instant of time is studied. At this instant, both the coupling and the detuning vanish simultaneously, which leads to an exact degeneracy of the eigenenergies of the system. It is found that the dynamics of the system is primarily determined by the manner in which the degeneracy occurs. This interesting behavior is reminiscent of a symmetry breaking process, since the totally symmetric situation occurring at the crossing is significantly altered by infinitesimal quantities, which remove the degeneracy, with very important dynamical implications from there on. A very simple analytical formula is derived, which is found to describe the population changes very accurately.
Light-Front Dynamic Analysis of Bound States in Scalar Field Model
Chueng-Ryong Ji; Yukihisa Tokunaga
2012-05-16T23:59:59.000Z
The light-front dynamics (LFD) of the scalar field model theory is analyzed to solve the two-body bound-state problem. The light-front two-body bound-state equation is extended to the full LFD kernel including the ladder, cross-ladder, stretched-box, and particle-antiparticle creation/annihilation effects to study the contributions of higher Fock-states. The light-front two-body equation is also modified by the term corresponding to the self-energy corrections and counter-terms. Using the variational principle, we obtain the numerical result of the binding energy B versus the coupling constant \\alpha\\ for various mass ratios of the constituent particles including the cases of non-zero exchange particle mass. We also discuss the correlation between the mass spectrum and the corresponding bound-state wavefunction.
Combustion Process in a Spark Ignition Engine: Dynamics and Noise Level Estimation
T. Kaminski; M. Wendeker; K. Urbanowicz; G. Litak
2003-12-28T23:59:59.000Z
We analyse the experimental time series of internal pressure in a four cylinder spark ignition engine. In our experiment, performed for different spark advance angles, apart from usual cyclic changes of engine pressure we observed oscillations. These oscillations are with longer time scales ranging from one to several hundred engine cycles depending on engine working conditions. Basing on the pressure time dependence we have calculated the heat released per cycle. Using the time series of heat release to calculate the correlation coarse-grained entropy we estimated the noise level for internal combustion process. Our results show that for a smaller spark advance angle the system is more deterministic.
Shape mixing dynamics in the low-lying states of proton-rich Kr isotopes
Koichi Sato; Nobuo Hinohara
2010-06-18T23:59:59.000Z
We study the oblate-prolate shape mixing in the low-lying states of proton-rich Kr isotopes using the five-dimensional quadrupole collective Hamiltonian. The collective Hamiltonian is derived microscopically by means of the CHFB (constrained Hartree-Fock-Bogoliubov) + Local QRPA (quasiparticle random phase approximation) method, which we have developed recently on the basis of the adiabatic self-consistent collective coordinate method. The results of the numerical calculation show the importance of large-amplitude collective vibrations in the triaxial shape degree of freedom and rotational effects on the oblate-prolate shape mixing dynamics in the low-lying states of these isotopes.
Structure of Excited States of 10Be studied with Antisymmetrized Molecular Dynamics
Y. Kanada-En'yo; H. Horiuchi; A. Dote
1999-05-21T23:59:59.000Z
We study structure of excited states of 10Be with the method of variation after spin parity projection in the framework of antisymmetrized molecular dynamics. Present calculations describe many excited states and reproduce the experimental data of E2 and E1 transitions and the new data of the $\\beta$ transition strength successfully. We make systematic discussions on the molecule-like structures of light unstable nuclei and the important role of the valence neutrons based on the results obtained with the framework which is free from such model assumptions as the existence of inert cores and clusters.
Y. Kanada-En'yo
2002-04-15T23:59:59.000Z
In order to study the structure of excited states we perform a variational calculation after spin parity projection (VAP) within the framework of Antisymmetrized Molecular Dynamics (AMD). The framework is proven to be a new powerful approach for the study of the various structures of excited states because it is free from model assumptions such as inert cores, existence of clusters, and the axial symmetry. By using finite range interactions with a density dependent term we reproduce well all the energy levels below 15 MeV in $^{12}$C. This is the first theoretical model that reproduces many $E2$ transition rates and $\\beta$ decays to $^{12}$C successfully.
Many-body state engineering using measurements and fixed unitary dynamics
Mads Kock Pedersen; Jens Jakob W. H. Sørensen; Malte C. Tichy; Jacob F. Sherson
2014-11-20T23:59:59.000Z
We develop a scheme to prepare a desired state or subspace in high-dimensional Hilbert-spaces using repeated applications of a single static projection operator onto the desired target and fixed unitary dynamics. Benchmarks against other control schemes, performed on generic Hamiltonians and on Bose-Hubbard systems, establish the competitiveness of the method. As a concrete application of the control of mesoscopic atomic samples in optical lattices we demonstrate the near deterministic preparation of Schr\\"{o}dinger cat states of all atoms residing on either the odd or the even sites.
Method and system to estimate variables in an integrated gasification combined cycle (IGCC) plant
Kumar, Aditya; Shi, Ruijie; Dokucu, Mustafa
2013-09-17T23:59:59.000Z
System and method to estimate variables in an integrated gasification combined cycle (IGCC) plant are provided. The system includes a sensor suite to measure respective plant input and output variables. An extended Kalman filter (EKF) receives sensed plant input variables and includes a dynamic model to generate a plurality of plant state estimates and a covariance matrix for the state estimates. A preemptive-constraining processor is configured to preemptively constrain the state estimates and covariance matrix to be free of constraint violations. A measurement-correction processor may be configured to correct constrained state estimates and a constrained covariance matrix based on processing of sensed plant output variables. The measurement-correction processor is coupled to update the dynamic model with corrected state estimates and a corrected covariance matrix. The updated dynamic model may be configured to estimate values for at least one plant variable not originally sensed by the sensor suite.
Estimated Value of Service Reliability for Electric Utility Customers in the United States
Sullivan, M.J.
2009-01-01T23:59:59.000Z
kW demand and costs per annual kWh sales. Cost estimates arePer Un-served kWh Cost Per Annual kWh Small C&I Cost PerPer Un-served kWh Cost Per Annual kWh Residential Cost Per
Real-time State Estimation on Micro-grids Ying Hu, Anthony Kuh, Aleksandar Kavcic
Kavcic, Aleksandar
. In addition, the proposed graphical model can integrate new models for solar/wind cor- relation that will help been made on the individual feeder circuit estimating the customer load characteristics. One reason for this lack of study is that there is hardly any real-time load measure- ments for individual customers
Los Angeles, California, May 6 -9, 2012 A Behavioral Algorithm for State of Charge Estimation
He, Lei
conditions while producing adequate re- sults with other battery types or discharge con- ditions. Moreover an electrochemical battery. A variety of methods to solve this estimation problem have been proposed in the literature. However, most of these methods either assume equivalent circuit models for the battery and thus
Two liquid states of matter: A new dynamic line on a phase diagram
V. V. Brazhkin; Yu. D. Fomin; A. G. Lyapin; V. N. Ryzhov; Kostya Trachenko
2011-07-29T23:59:59.000Z
It is generally agreed that the supercritical region of a liquid consists of one single state (supercritical fluid). On the other hand, we show here that liquids in this region exist in two qualitatively different states: "rigid" and "non-rigid" liquid. Rigid to non-rigid transition corresponds to the condition {\\tau} ~ {\\tau}0, where {\\tau}is liquid relaxation time and {\\tau}0 is the minimal period of transverse quasi-harmonic waves. This condition defines a new dynamic line on the phase diagram, and corresponds to the loss of shear stiffness of a liquid at all available frequencies, and consequently to the qualitative change of many important liquid properties. We analyze the dynamic line theoretically as well as in real and model liquids, and show that the transition corresponds to the disappearance of high-frequency sound, qualitative changes of diffusion and viscous flow, increase of particle thermal speed to half of the speed of sound and reduction of the constant volume specific heat to 2kB per particle. In contrast to the Widom line that exists near the critical point only, the new dynamic line is universal: it separates two liquid states at arbitrarily high pressure and temperature, and exists in systems where liquid - gas transition and the critical point are absent overall.
Haeyrynen, Teppo; Oksanen, Jani; Tulkki, Jukka [Department of Biomedical Engineering and Computational Science, Aalto University School of Science and Technology, P. O. Box 12200, FI-00076 AALTO (Finland)
2011-01-15T23:59:59.000Z
We consider simultaneous dissipative and amplifying coupling of cavity fields to multiple two-state systems. We derive a master equation for optical field in a leaky cavity coupled to a reservoir through multiple two-state systems. In our previous works we have limited our study to systems where the reservoir either solely absorbs energy (detector setup) or adds energy (amplifying setup) to the cavity through a single two-state system. In this work we allow both interactions simultaneously and derive a reduced dynamic model for the optical field. We also generalize our model to cover the coupling of the field to several two state systems and discuss its connection to macroscopic interaction, e.g., in semiconductors. Our model includes four physical parameters: the field two-state system coupling {gamma}, the excitation and deexcitation couplings of the two-state system by the reservoir {lambda}{sub A} and {lambda}{sub D}, respectively, and the mirror losses of the cavity C. We solve the steady-state fields at different regimes of these physical parameters. Furthermore, we show that, depending on the parameters, our model can describe the operation of a detector, a light emitting diode, or a laser.
Jake Iles-Smith; Neill Lambert; Ahsan Nazir
2014-09-25T23:59:59.000Z
Quantum systems are invariably open, evolving under surrounding influences rather than in isolation. Standard open quantum system methods eliminate all information on the environmental state to yield a tractable description of the system dynamics. By incorporating a collective coordinate of the environment into the system Hamiltonian, we circumvent this limitation. Our theory provides straightforward access to important environmental properties that would otherwise be obscured, allowing us to quantify the evolving system-environment correlations. As a direct result, we show that the generation of robust system-environment correlations that persist into equilibrium (heralded also by the emergence of non-Gaussian environmental states) renders the canonical system steady-state almost always incorrect. The resulting equilibrium states deviate markedly from those predicted by standard perturbative techniques and are instead fully characterised by thermal states of the mapped system-collective coordinate Hamiltonian. We outline how noncanonical system states could be investigated experimentally to study deviations from canonical thermodynamics, with direct relevance to molecular and solid-state nanosystems.
Dynamic environment coupling induce synchronized states in coupled time-delayed electronic circuits
R. Suresh; K. Srinivasan; D. V. Senthilkumar; K. Murali; M. Lakshmanan; J. Kurths
2014-01-27T23:59:59.000Z
We experimentally demonstrate the occurrence of various synchronized states in coupled piece-wise linear time-delayed electronic circuits using dynamic environment coupling where the environment has its own intrinsic dynamics via feedback from the circuits. We carry out these experiments in two different coupling configurations, namely mutual and subsystem coupling configurations. Depending upon the coupling strength and the nature of feedback, we observe a transition from nonsynchronization to complete synchronization via phase synchronization and from nonsynchronization to inverse synchronization via inverse-phase synchronization between the circuits in hyperchaotic regime. Snapshots of the time evolution, phase projection plots and localized sets of the circuits as observed experimentally from the oscilloscope, along with supporting numerical simulations confirm the existence of different synchronized states. Further, the transition to different synchronized states can be verified from the changes in the largest Lyapunov exponents, Correlation of Probability of Recurrence and Correlation Coefficient as a function of the coupling strength. We present a detailed linear stability analysis and obtain conditions for different synchronized states.
Guido Tiana; Carlo Camilloni
2012-07-05T23:59:59.000Z
The atomistic characterization of the transition state is a fundamental step to improve the understanding of the folding mechanism and the function of proteins. From a computational point of view, the identification of the conformations that build out the transition state is particularly cumbersome, mainly because of the large computational cost of generating a statistically-sound set of folding trajectories. Here we show that a biasing algorithm, based on the physics of the ratchet-and-pawl, can be used to identify efficiently the transition state. The basic idea is that the algorithmic ratchet exerts a force on the protein when it is climbing the free-energy barrier, while it is inactive when it is descending. The transition state can be identified as the point of the trajectory where the ratchet changes regime. Besides discussing this strategy in general terms, we test it within a protein model whose transition state can be studied independently by plain molecular dynamics simulations. Finally, we show its power in explicit-solvent simulations, obtaining and characterizing a set of transition--state conformations for ACBP and CI2.
Tennessee, University of
Quantum distillation: Dynamical generation of low-entropy states of strongly correlated fermions of double occupancies. We promote the notion of quantum distillation: during the expansion and in the case
Geothermal -- The Energy Under Our Feet: Geothermal Resource Estimates for the United States
Green, B. D.; Nix, R. G.
2006-11-01T23:59:59.000Z
On May 16, 2006, the National Renewable Energy Laboratory (NREL) in Golden, Colorado hosted a geothermal resources workshop with experts from the geothermal community. The purpose of the workshop was to re-examine domestic geothermal resource estimates. The participating experts were organized into five working groups based on their primary area of expertise in the following types of geothermal resource or application: (1) Hydrothermal, (2) Deep Geothermal Systems, (3) Direct Use, (4) Geothermal Heat Pumps (GHPs), and (5) Co-Produced and Geopressured. The workshop found that the domestic geothermal resource is very large, with significant benefits.
A Biochemical Upper Ocean State Estimate in the Southern Ocean GasEx Region
Haine, Thomas W. N.
Methods: Data Sources: In-situ: T, S, CDOM (350, 380, 400 nm), SF6 from SO GasEx cruise. Satellite: Sea. CDOM photodegradation model (del Vecchio & Blough, 2002). SF6 model including deliberate release multipliers ("4DVAR" method). Controls are Initial conditions for T, S, (u, v), CDOM,& SF6 . The state
Chan, Kung-Sik
Kalman Filter Kwang Woo Ahn Division of Biostatistics Medical College of Wisconsin, Milwaukee, WI 53226 function computed approximately via unscented Kalman filter (UKF). We derive conditions 1 #12;under which. ---------------------------- Keywords: Nonlinear time series; State-space model; Unscented Kalman filter; SIR model. 1. INTRODUCTION
Dynamics and BPS states of AdS5 supergravity with a Gauss-Bonnet term
Olivera Miskovic; Ricardo Troncoso; Jorge Zanelli
2006-03-23T23:59:59.000Z
Some dynamical aspects of five-dimensional supergravity as a Chern-Simons theory for the SU(2,2|N) group, are analyzed. The gravitational sector is described by the Einstein-Hilbert action with negative cosmological constant and a Gauss-Bonnet term with a fixed coupling. The interaction between matter and gravity is characterized by intricate couplings which give rise to dynamical features not present in standard theories. Depending on the location in phase space, the dynamics can possess different number of propagating degrees of freedom, including purely topological sectors. This inhomogeneity of phase space requires special care in the analysis. Background solutions in the canonical sectors, which have regular dynamics with maximal number of degrees of freedom, are shown to exist. Within this class, explicit solutions given by locally AdS spacetimes with nontrivial gauge fields are constructed, and BPS states are identified. It is shown that the charge algebra acquires a central extension due to the presence of the matter fields. The Bogomol'nyi bound for these charges is discussed. Special attention is devoted to the N=4 case since then the gauge group has a U(1) central charge and the phase space possesses additional irregular sectors.
Mi, Chunting "Chris"
Estimation of Lithium-Ion Batteries in Electric Drive Vehicles Using Extended Kalman Filtering Zheng Chen. Index Terms--Extended Kalman filter (EKF), hardware-in- the-loop, lithium-ion battery, nonlinear battery accurate battery state of charge (SOC) estimation method for electric drive vehicles is developed based
Mi, Chunting "Chris"
Estimation of Lithium-Ion Batteries Based on a Proportional-Integral Observer Jun Xu, Student Member, IEEE--With the development of electric drive vehicles (EDVs), the state-of-charge (SOC) estimation for lithium-ion (Li of lithium-ion batteries in EDVs. The structure of the proposed PI observer is analyzed, and the con
Danel, J.-F.; Blottiau, P.; Kazandjian, L.; Piron, R.; Torrent, M. [CEA, DAM, DIF, 91297 Arpajon (France)
2014-10-15T23:59:59.000Z
The applicability of quantum molecular dynamics to the calculation of the equation of state of a dense plasma is limited at high temperature by computational cost. Orbital-free molecular dynamics, based on a semiclassical approximation and possibly on a gradient correction, is a simulation method available at high temperature. For a high-Z element such as lutetium, we examine how orbital-free molecular dynamics applied to the equation of state of a dense plasma can be regarded as the limit of quantum molecular dynamics at high temperature. For the normal mass density and twice the normal mass density, we show that the pressures calculated with the quantum approach converge monotonically towards those calculated with the orbital-free approach; we observe a faster convergence when the orbital-free approach includes the gradient correction. We propose a method to obtain an equation of state reproducing quantum molecular dynamics results up to high temperatures where this approach cannot be directly implemented. With the results already obtained for low-Z plasmas, the present study opens the way for reproducing the quantum molecular dynamics pressure for all elements up to high temperatures.
Dynamics of global ocean heat transport variability
Jayne, Steven Robert
1999-01-01T23:59:59.000Z
A state-of-the-art, high-resolution ocean general circulation model is used to estimate the time-dependent global ocean heat transport and investigate its dynamics. The north-south heat transport is the prime manifestation ...
Quantitative estimates on the Hydrogen ground state energy in non-relativistic QED
Jean-Marie Barbaroux; Thomas Chen; Semjon Vugalter; Vitali Vougalter
2010-06-04T23:59:59.000Z
In this paper, we determine the exact expression for the hydrogen binding energy in the Pauli-Fierz model up to the order $O(\\alpha^5\\log\\alpha^{-1})$, where $\\alpha$ denotes the finestructure constant, and prove rigorous bounds on the remainder term of the order $o(\\alpha^5\\log\\alpha^{-1})$. As a consequence, we prove that the binding energy is not a real analytic function of $\\alpha$, and verify the existence of logarithmic corrections to the expansion of the ground state energy in powers of $\\alpha$, as conjectured in the recent literature.
Two liquid states of matter: A new dynamic line on a phase diagram
Brazhkin, V V; Lyapin, A G; Ryzhov, V N; Trachenko, Kostya
2011-01-01T23:59:59.000Z
It is generally agreed that the supercritical region of a liquid consists of one single state (supercritical fluid). On the other hand, we show here that liquids in this region exist in two qualitatively different states: "rigid" and "non-rigid" liquid. Rigid to non-rigid transition corresponds to the condition {\\tau} ~ {\\tau}0, where {\\tau} is liquid relaxation time and {\\tau}0 is the minimal period of transverse waves. This condition defines a new dynamic line on the phase diagram, and corresponds to the loss of shear stiffness of a liquid at all available frequencies, and consequently to the qualitative change of many important liquid properties. We analyze the dynamic line theoretically as well as in real and model liquids, and show that the transition corresponds to the disappearance of high-frequency sound, qualitative changes of diffusion and viscous flow increase of particle thermal speed to half of the speed of sound and reduction of the constant volume specific heat to 2kB per particle. In contrast ...
Estimating effects of energy planning on environmental impacts in the Western United States
Baechler, M.C.; Cothran, J.N.
1994-12-01T23:59:59.000Z
As part of their long-term planning process, utilities and government agencies are choosing power generation and conservation strategies that will effect environmental interactions for decades to come. In the US, power marketing administrations within the US Department of Energy have a strong influence over the strategies to be implemented in large multi-state regions. Pacific Northwest Laboratories (PNL) prepared environmental impact statements (EIS) for two power marketing agencies, the Western Area Power Administration (Western) and Bonneville Power Administration (Bonneville). The Western EIS assessed the effects of integrated resource planing (IRP) on the public utilities Western serves, while the Bonneville EIS assessed the effects of acquiring new energy resources in the pacific Northwest. The results were found using models that simulated utility systems. In both cases, environmental impacts were reduced when the conservation strategy in question was considered. This paper describes the results of the environmental analyses for the two agencies and compares the results with those of another simplified approach that relies on attributing emissions of new resources based on an extrapolation of existing capacity.
Wernsman, B. [New Mexico Engineering Research Institute Thermionics Evaluation Facility 901 University SE Albuquerque, New Mexico87106 (United States)
1997-01-01T23:59:59.000Z
A comparison between steady-state and dynamic I-V measurements from a single-cell thermionic fuel element (TFE) is made. The single-cell TFE used in this study is the prototype for the 40kW{sub e} space nuclear power system that is similar to the 6kW{sub e} TOPAZ-II. The steady-state I-V measurements influence the emitter temperature due to electron cooling. Therefore, to eliminate the steady-state I-V measurement influence on the TFE and provide a better understanding of the behavior of the thermionic energy converter and TFE characteristics, dynamic I-V measurements are made. The dynamic I-V measurements are made at various input power levels, cesium pressures, collector temperatures, and steady-state current levels. From these measurements, it is shown that the dynamic I-V{close_quote}s do not change the TFE characteristics at a given operating point. Also, the evaluation of the collector work function from the dynamic I-V measurements shows that the collector optimization is not due to a minimum in the collector work function but due to an emission optimization. Since the dynamic I-V measurements do not influence the TFE characteristics, it is believed that these measurements can be done at a system level to understand the influence of TFE placement in the reactor as a function of the core thermal distribution. {copyright} {ital 1997 American Institute of Physics.}
Wernsman, Bernard [New Mexico Engineering Research Institute Thermionics Evaluation Facility 901 University SE Albuquerque, New Mexico 87106 (United States)
1997-01-10T23:59:59.000Z
A comparison between steady-state and dynamic I-V measurements from a single-cell thermionic fuel element (TFE) is made. The single-cell TFE used in this study is the prototype for the 40 kW{sub e} space nuclear power system that is similar to the 6 kW{sub e} TOPAZ-II. The steady-state I-V measurements influence the emitter temperature due to electron cooling. Therefore, to eliminate the steady-state I-V measurement influence on the TFE and provide a better understanding of the behavior of the thermionic energy converter and TFE characteristics, dynamic I-V measurements are made. The dynamic I-V measurements are made at various input power levels, cesium pressures, collector temperatures, and steady-state current levels. From these measurements, it is shown that the dynamic I-V's do not change the TFE characteristics at a given operating point. Also, the evaluation of the collector work function from the dynamic I-V measurements shows that the collector optimization is not due to a minimum in the collector work function but due to an emission optimization. Since the dynamic I-V measurements do not influence the TFE characteristics, it is believed that these measurements can be done at a system level to understand the influence of TFE placement in the reactor as a function of the core thermal distribution.
Hartman, Jelena S. [University of Nevada, Reno; Weisberg, Peter J [University of Nevada, Reno; Pillai, Rekha [University of Nevada, Reno; Ericksen, Joey A. [University of Nevada, Reno; Gustin, Mae S. [University of Nevada, Reno; Kuiken, Todd [Tennessee Technological University; Zhang, Hong [Tennessee Technological University; Lindberg, Steven Eric [ORNL; Rytuba, J. J. [U.S. Geological Survey, Menlo Park, CA
2009-07-01T23:59:59.000Z
Ecosystems that have low mercury (Hg) concentrations (i.e., not enriched or impacted by geologic or anthropogenic processes) cover most of the terrestrial surface area of the earth yet their role as a net source or sink for atmospheric Hg is uncertain. Here we use empirical data to develop a rule-based model implemented within a geographic information system framework to estimate the spatial and temporal patterns of Hg flux for semiarid deserts, grasslands, and deciduous forests representing 45% of the continental United States. This exercise provides an indication of whether these ecosystems are a net source or sink for atmospheric Hg as well as a basis for recommendation of data to collect in future field sampling campaigns. Results indicated that soil alone was a small net source of atmospheric Hg and that emitted Hg could be accounted for based on Hg input by wet deposition. When foliar assimilation and wet deposition are added to the area estimate of soil Hg flux these biomes are a sink for atmospheric Hg.
Origin State Destination State
Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]
5. Estimated rail transportation rates for coal, state to state, STB data Origin State Destination State 2001 2002 2003 2004 2005 2006 2007 2008 2009 2001-2009 2008-2009 Alabama...
Origin State Destination State
Gasoline and Diesel Fuel Update (EIA)
6. Estimated rail transportation rates for coal, state to state, STB data Origin State Destination State 2001 2002 2003 2004 2005 2006 2007 2008 2009 2001-2009 2008-2009 Alabama...
Dynamic dipole polarizabilities for the low-lying triplet states of helium
Zhang, Yong-Hui; Zhang, Xian-Zhou; Shi, Ting-Yun
2015-01-01T23:59:59.000Z
The dynamic dipole polarizabilities for the four lowest triplet states ($2\\,^3S$, $3\\,^3S$, $2\\,^3P$ and $3\\,^3P$) of helium are calculated using the B-spline configuration interaction method. Present values of the static dipole polarizabilities in the length, velocity and acceleration gauges are in good agreement with the best Hylleraas results. Also the tune-out wavelengths in the range from 400 nm to 4.2~$\\mu$m for the four lowest triplet states are identified, and the magic wavelengths in the range from 460~nm to 3.5~$\\mu$m for the $2\\,^3S \\to 3\\,^3S$, $2\\,^3S \\to 2\\,^3P$, and $2\\,^3S \\to 3\\,^3P$ transitions are determined. We show that the tune-out wavelength of $2\\,^3S$ state is 413.038 28(3) nm, which corroborates the value of Mitroy and Tang (Phys. Rev. A 88, 052515 (2013)), and the magic wavelength around 1066 nm for the $2\\,^3S \\to 3\\,^3P$ transition can be expected for precision measurement to determine the ratio of transition matrix elements $(2\\,^3S \\to 2\\,^3P) / (3\\,^3P\\to 6\\,^3S)$.
Antsaklis, Panos
P. J. Antsaklis, "On Dynamic Linear State Feedback," Control Systems Technical Report #55, Dept Linear State Feedback," Control Systems Technical Report #55, Dept. of Electrical and Computer Dame, August 1987. #12;P. J. Antsaklis, "On Dynamic Linear State Feedback," Control Systems Technical
Sanchez, Marla Christine; Sanchez, Marla Christine; Brown, Richard; Homan, Gregory; Webber, Carrie
2008-06-03T23:59:59.000Z
ENERGY STAR is a voluntary energy efficiency-labeling program operated jointly by the United States Department of Energy and the United States Environmental Protection Agency (US EPA). Since the program inception in 1992, ENERGY STAR has become a leading international brand for energy efficient products. ENERGY STAR's central role in the development of regional, national, and international energy programs necessitates an open process whereby its program achievements to date as well as projected future savings are shared with committed stakeholders. Through 2006, US EPA?S ENERGY STAR labeled products saved 4.8 EJ of primary energy and avoided 82 Tg C equivalent. We project that US EPA?S ENERGY STAR labeled products will save 12.8 EJ and avoid 203 Tg C equivalent over the period 2007-2015. A sensitivity analysis examining two key inputs (carbon factor and ENERGY STAR unit sales) bounds the best estimate of carbon avoided between 54 Tg C and 107 Tg C (1993 to 2006) and between 132 Tg C and 278 Tg C (2007 to 2015).
Kalman Filtering with Inequality Constraints for Turbofan Engine Health Estimation
Simon, Dan
Kalman Filtering with Inequality Constraints for Turbofan Engine Health Estimation ¤ Dan Simon, OH 44115 Cleveland, OH 44135 Abstract Kalman ¯lters are often used to estimate the state variables of a dynamic system. However, in the application of Kalman ¯lters some known signal information is often either
Dynamically Controlled Resonance Fluorescence from a Doubly Dressed Solid-State Single Emitter
Yu He; Y. -M. He; J. Liu; Y. -J. Wei; H. Ramirez; M. Atatüre; C. Schneider; M. Kamp; S. Höfling; C. -Y. Lu; J. -W. Pan
2014-11-22T23:59:59.000Z
We report the first experimental demonstration of interference-induced spectral line elimination predicted by Zhu and Scully [Phys. Rev. Lett. 76, 388 (1996)] and Ficek and Rudolph [Phys. Rev. A 60, 4245 (1999)]. We drive an exciton transition of a self-assembled quantum dot in order to realize a two-level system exposed to bichromatic laser field and observe nearly complete elimination of the resonance fluorescence spectral line at the driving laser frequency. This is caused by quantum interference between coupled transitions among the doubly dressed excitonic states, without population trapping. We also demonstrate multiphoton ac Stark effect with shifted subharmonic resonances and dynamical modifications of resonance fluorescence spectra by using double dressing.
Ozkale, Aslihan
2007-04-25T23:59:59.000Z
OVERPRESSURE PREDICTION BY MEAN TOTAL STRESS ESTIMATE USING WELL LOGS FOR COMPRESSIONAL ENVIRONMENTS WITH STRIKE-SLIP OR REVERSE FAULTING STRESS STATE A Thesis by ASLIHAN OZKALE Submitted to the Office of Graduate Studies... of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE December 2006 Major Subject: Petroleum Engineering OVERPRESSURE PREDICTION BY MEAN TOTAL STRESS ESTIMATE USING WELL LOGS...
Paul, P.; Bhattacharyya, D.; Turton, R.; Zitney, S.
2012-01-01T23:59:59.000Z
An accurate estimation of process state variables not only can increase the effectiveness and reliability of process measurement technology, but can also enhance plant efficiency, improve control system performance, and increase plant availability. Future integrated gasification combined cycle (IGCC) power plants with CO2 capture will have to satisfy stricter operational and environmental constraints. To operate the IGCC plant without violating stringent environmental emission standards requires accurate estimation of the relevant process state variables, outputs, and disturbances. Unfortunately, a number of these process variables cannot be measured at all, while some of them can be measured, but with low precision, low reliability, or low signal-to-noise ratio. As a result, accurate estimation of the process variables is of great importance to avoid the inherent difficulties associated with the inaccuracy of the data. Motivated by this, the current paper focuses on the state estimation of an acid gas removal (AGR) process as part of an IGCC plant with CO2 capture. This process has extensive heat and mass integration and therefore is very suitable for testing the efficiency of the designed estimators in the presence of complex interactions between process variables. The traditional Kalman filter (KF) (Kalman, 1960) algorithm has been used as a state estimator which resembles that of a predictor-corrector algorithm for solving numerical problems. In traditional KF implementation, good guesses for the process noise covariance matrix (Q) and the measurement noise covariance matrix (R) are required to obtain satisfactory filter performance. However, in the real world, these matrices are unknown and it is difficult to generate good guesses for them. In this paper, use of an adaptive KF will be presented that adapts Q and R at every time step of the algorithm. Results show that very accurate estimations of the desired process states, outputs or disturbances can be achieved by using the adaptive KF.
Molecular dynamics of excited state intramolecular proton transfer: 3-hydroxyflavone in solution
Bellucci, Michael A.; Coker, David F. [Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215 (United States)
2012-05-21T23:59:59.000Z
The ultrafast enol-keto photoisomerization in the lowest singlet excited state of 3-hydroxyflavone is investigated using classical molecular dynamics in conjunction with empirical valence bond (EVB) potentials for the description of intramolecular interactions, and a molecular mechanics and variable partial charge model, dependent on transferring proton position, for the description of solute-solvent interactions. A parallel multi-level genetic program was used to accurately fit the EVB potential energy surfaces to high level ab initio data. We have studied the excited state intramolecular proton transfer (ESIPT) reaction in three different solvent environments: methylcyclohexane, acetonitrile, and methanol. The effects of the environment on the proton transfer time and the underlying mechanisms responsible for the varied time scales of the ESIPT reaction rates are analyzed. We find that simulations with our EVB potential energy surfaces accurately reproduce experimentally determined reaction rates, fluorescence spectra, and vibrational frequency spectra in all three solvents. Furthermore, we find that the ultrafast ESIPT process results from a combination of ballistic transfer, and intramolecular vibrational redistribution, which leads to the excitation of a set of low frequency promoting vibrational modes. From this set of promoting modes, we find that an O-O in plane bend and a C-H out of plane bend are present in all three solvents, indicating that they are fundamental to the ultrafast proton transfer. Analysis of the slow proton transfer trajectories reveals a solvent mediated proton transfer mechanism, which is diffusion limited.
State Energy Production Estimates
U.S. Energy Information Administration (EIA) Indexed Site
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14TableConference |6: "Regulating
Distribution System State Estimation
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEA : Papers SubfoldersU.S.PV FOR ELECTRICITYExports[pic] Load
Wai Lim Ku; Michelle Girvan; Edward Ott
2014-12-11T23:59:59.000Z
In this paper, we study dynamical systems in which a large number $N$ of identical Landau-Stuart oscillators are globally coupled via a mean-field. Previously, it has been observed that this type of system can exhibit a variety of different dynamical behaviors including clumped states in which each oscillator is in one of a small number of groups for which all oscillators in each group have the same state which is different from group to group, as well as situations in which all oscillators have different states and the macroscopic dynamics of the mean field is chaotic. We argue that this second type of behavior is $^{\\backprime}$extensive$^{\\prime}$ in the sense that the chaotic attractor in the full phase space of the system has a fractal dimension that scales linearly with $N$ and that the number of positive Lyapunov exponents of the attractor also scales with linearly $N$. An important focus of this paper is the transition between clumped states and extensive chaos as the system is subjected to slow adiabatic parameter change. We observe explosive (i.e., discontinuous) transitions between the clumped states (which correspond to low dimensional dynamics) and the extensively chaotic states. Furthermore, examining the clumped state, as the system approaches the explosive transition to extensive chaos, we find that the oscillator population distribution between the clumps continually evolves so that the clumped state is always marginally stable. This behavior is used to reveal the mechanism of the explosive transition. We also apply the Kaplan-Yorke formula to study the fractal structure of the extensively chaotic attractors.
Kalman Filtering with State Equality Constraints
Simon, Dan
Kalman Filtering with State Equality Constraints DAN SIMON, Member, IEEE Cleveland State University TIEN LI CHIA, Member, IEEE ControlSoft, Inc. Kalman filters are commonly used to estimate the states of a dynamic system. However, in the application of Kalman filters there is often known model or signal
Frothy Bloat Mitigation in Grazing Cattle Frothy bloat impacts on cattle production in the United States in 1999 were estimated to be greater than $300 million dollars. Frothy bloat is the major nonpathogenic cause of death loss and depressed weight gains in stocker cattle grazing winter wheat
Cilek, C.M.; Kohout, E.
1992-01-01T23:59:59.000Z
This paper describes the Month and State Current Emission Trends (MSCET) database. It describes the methodology used to estimate NO{sub x}, SO{sub 2}, VOC, and CO{sub 2} emissions and the data sources used by the methodology. Selected emissions results from the database are presented. 2 refs., 6 figs.
Cilek, C.M.; Kohout, E.
1992-07-01T23:59:59.000Z
This paper describes the Month and State Current Emission Trends (MSCET) database. It describes the methodology used to estimate NO{sub x}, SO{sub 2}, VOC, and CO{sub 2} emissions and the data sources used by the methodology. Selected emissions results from the database are presented. 2 refs., 6 figs.
Finding Bugs in Web Applications Using Dynamic Test Generation and Explicit State Model Checking
Tip, Frank
2009-03-26T23:59:59.000Z
Web script crashes and malformed dynamically-generated web pages are common errors, and they seriously impact the usability of web applications. Current tools for web-page validation cannot handle the dynamically generated ...
Single-shot spectroscopy of solid-state photoinduced dynamics far from equilibrium
Wolfson, Johanna Wendlandt
2013-01-01T23:59:59.000Z
Ultrafast single-shot spectroscopy was developed and improved as a method to observe photoinduced dynamics far from equilibrium. The method was then employed to illuminate material dynamics in platinum-halide quasi-one-dimensional ...
Evolutionary dynamic optimization: A survey of the state of the art
2012-04-09T23:59:59.000Z
World Automation Cong., Orlando FL USA,. 1597. 2002, pp. ..... for dynamic vehicle routing, in: Genetic and Evolutionary Computation. 1896. Conference ...
L. Mazzola; S. Maniscalco; J. Piilo; K. -A. Suominen; B. Garraway
2009-11-23T23:59:59.000Z
We investigate the non-Markovian dynamics of two-state systems in structured reservoirs. We establish a connection between two theoretical quantum approaches, the pseudomodes [B. M. Garraway, Phys. Rev. A 55, 2290 (1997)] and the recently developed non-Markovian quantum jump method [J. Piilo et al., Phys. Rev. Lett. 100, 180402 (2008)]. This connection provides a clear physical picture of how the structured reservoir affects the system dynamics, indicating the role of the pseudomodes as an effective description of the environmental memory.
Busby, R.L.; Ward, K.B.
1989-01-01T23:59:59.000Z
A model was devised to estimate the harvest value of unthinned loblolly and slash pine (pinus taeda L. and P. elliottii var. elliottii Englm.) plantations in the west gulf region. The model, MERCHOP, can be used to forecast product volumes and values; the output provided is partitioned into 1-inch tree d.b.h. classes. Using a dynamic programming algorithm, MERCHOP can be used to convert stand tables predicted by USLYCOWG's three-parameter Weibull function into a listing of seven products that maximizes the selling value of the stand, assuming the assumptions used in the analysis are correct.
Bajaj, Vikram S.
Observation and structural studies of reaction intermediates of proteins are challenging because of the mixtures of states usually present at low concentrations. Here, we use a 250 GHz gyrotron (cyclotron resonance maser) ...
Colaiori, Francesca; Cuskley, Christine F; Loreto, Vittorio; Pugliese, Martina; Tria, Francesca
2014-01-01T23:59:59.000Z
Empirical evidence shows that the rate of irregular usage of English verbs exhibits discontinuity as a function of their frequency: the most frequent verbs tend to be totally irregular. We aim to qualitatively understand the origin of this feature by studying simple agent--based models of language dynamics, where each agent adopts an inflectional state for a verb and may change it upon interaction with other agents. At the same time, agents are replaced at some rate by new agents adopting the regular form. In models with only two inflectional states (regular and irregular), we observe that either all verbs regularize irrespective of their frequency, or a continuous transition occurs between a low frequency state where the lemma becomes fully regular, and a high frequency one where both forms coexist. Introducing a third (mixed) state, wherein agents may use either form, we find that a third, qualitatively different behavior may emerge, namely, a discontinuous transition in frequency. We introduce and solve an...
Solid-State Dynamic Nuclear Polarization at 263 GHz: Spectrometer Design and Experimental Results
Rosay, Melanie
Dynamic Nuclear Polarization (DNP) experiments transfer polarization from electron spins to nuclear spins with microwave irradiation of the electron spins for enhanced sensitivity in nuclear magnetic resonance (NMR) ...
Paris-Sud XI, Université de
SimHydro 2012: Hydraulic modeling and uncertainty, 12-14 September 2012, Sophia Antipolis N. Jean-Baptiste, C. Dorée, P-O. Malaterre, J. Sau - Data assimilation for hydraulic state estimation of a development project Data assimilation for hydraulic state estimation of a development project Assimilation de données
Valbuena Olivares, Ernesto
2012-02-14T23:59:59.000Z
Numerical simulation has been used, as common practice, to estimate the CO2 storage capacity of depleted reservoirs. However, this method is time consuming, expensive and requires detailed input data. This investigation proposes an analytical method...
Online Calibration for Dynamic Traffic Constantinos Antoniou
Bertini, Robert L.
Online Calibration for Dynamic Traffic Assignment Constantinos Antoniou October 5, 2007 Seminarline DTA framework Demand simulator Supply simulator State estimation and model calibration Network calibration approaches include subset of these models Seminar at Portland State University 3 #12;Constantinos
Truong, Thanh N.
of a focusing technique to minimize the number of electronic structure calculations, while still preservingA direct ab inifio dynamics approach for calculating thermal rate constants using variational dynamics, " for calculations of thermal rate constants and related properties from first principles
Trattner, Sigal [Department of Medicine, Division of Cardiology, Columbia University Medical Center and New York-Presbyterian Hospital, New York, New York 10032 (United States)] [Department of Medicine, Division of Cardiology, Columbia University Medical Center and New York-Presbyterian Hospital, New York, New York 10032 (United States); Cheng, Bin [Department of Biostatistics, Columbia University Mailman School of Public Health, New York, New York 10032 (United States)] [Department of Biostatistics, Columbia University Mailman School of Public Health, New York, New York 10032 (United States); Pieniazek, Radoslaw L. [Center for Radiological Research, Columbia University Medical Center and New York-Presbyterian Hospital, New York, New York 10032 (United States)] [Center for Radiological Research, Columbia University Medical Center and New York-Presbyterian Hospital, New York, New York 10032 (United States); Hoffmann, Udo [Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114 (United States)] [Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114 (United States); Douglas, Pamela S. [Department of Medicine, Division of Cardiology, Duke University, Durham, North Carolina 27715 (United States)] [Department of Medicine, Division of Cardiology, Duke University, Durham, North Carolina 27715 (United States); Einstein, Andrew J., E-mail: andrew.einstein@columbia.edu [Department of Medicine, Division of Cardiology, Columbia University Medical Center and New York-Presbyterian Hospital, New York, New York and Department of Radiology, Columbia University Medical Center and New York-Presbyterian Hospital, New York, New York (United States)
2014-04-15T23:59:59.000Z
Purpose: Effective dose (ED) is a widely used metric for comparing ionizing radiation burden between different imaging modalities, scanners, and scan protocols. In computed tomography (CT), ED can be estimated by performing scans on an anthropomorphic phantom in which metal-oxide-semiconductor field-effect transistor (MOSFET) solid-state dosimeters have been placed to enable organ dose measurements. Here a statistical framework is established to determine the sample size (number of scans) needed for estimating ED to a desired precision and confidence, for a particular scanner and scan protocol, subject to practical limitations. Methods: The statistical scheme involves solving equations which minimize the sample size required for estimating ED to desired precision and confidence. It is subject to a constrained variation of the estimated ED and solved using the Lagrange multiplier method. The scheme incorporates measurement variation introduced both by MOSFET calibration, and by variation in MOSFET readings between repeated CT scans. Sample size requirements are illustrated on cardiac, chest, and abdomen–pelvis CT scans performed on a 320-row scanner and chest CT performed on a 16-row scanner. Results: Sample sizes for estimating ED vary considerably between scanners and protocols. Sample size increases as the required precision or confidence is higher and also as the anticipated ED is lower. For example, for a helical chest protocol, for 95% confidence and 5% precision for the ED, 30 measurements are required on the 320-row scanner and 11 on the 16-row scanner when the anticipated ED is 4 mSv; these sample sizes are 5 and 2, respectively, when the anticipated ED is 10 mSv. Conclusions: Applying the suggested scheme, it was found that even at modest sample sizes, it is feasible to estimate ED with high precision and a high degree of confidence. As CT technology develops enabling ED to be lowered, more MOSFET measurements are needed to estimate ED with the same precision and confidence.
Chang-hua Zhu; Chang-xing Pei; Dong-xiao Quan; Nan Chen; Yun-hui Yi
2009-08-30T23:59:59.000Z
We investigate the polarization state dynamics of single photon pulse for optical fiber quantum communication channels. On the basis of a birefringence vector model in which amplitude and direction are both stochastic variables, Jones vector is obtained by solving the frequency domain wave equation. The fidelity of output quantum state and degree of polarization of the pulse are also obtained from the density operators. It is shown that the fidelity of quantum state decreases quickly and tends to a stable value along optical fiber, and increases for larger mean fluctuation magnitude of the stochastic fiber birefringence. Degree of polarization is nearly constant for small mean fluctuation magnitude of the birefringence. The fidelity and degree of polarization vary in the same way for Gaussian and rectangular frequency spectrum envelope, while the value of Lorentzian spectrum is smaller.
Native-state dynamics of the ubiquitin family: implications for function
Jackson, Sophie
of Cambridge, Cambridge CB2 1EW, UK Protein dynamics are integral to protein function. In recent years, the use activity (Rasmussen et al. 1992; Vitagliano et al. 2002; Cui et al. 2004) are all determined, in part
Predictable Internal Brain Dynamics in EEG and Its Relation to Conscious States
Yoo, Jaewook; Kwon, Jaewook; Choe, Yoonsuck
2014-06-03T23:59:59.000Z
strategy to investigate objective necessary conditions of consciousness. Our basic hypothesis was that predictive internal dynamics serves as such a condition. This is in line with theories of consciousness that treat retention (memory), protention...
High-resolution high-frequency dynamic nuclear polarization for biomolecular solid state NMR
Barnes, Alexander B. (Alexander Benjamin)
2011-01-01T23:59:59.000Z
Dynamic Nuclear Polarization (DNP) has exploded in popularity over the last few years, finally realizing its potential to overcome the detrimental lack of sensitivity that has plagued performing NMR experiments. Applied ...
Collision-Free State Estimation Lawson L.S. Wong, Leslie Pack Kaelbling, and Tomas Lozano-Perez
Lozano-Perez, Tomas
. For example, for objects within a refrigerator, they cannot interpenetrate each other or the refrigerator inside a refrigerator before planning to pick one up. The state of the problem is the positions and orientations of the objects within the refrigerator; we need a representation of distributions over states
Pei Kemei; Ma Yufang; Zheng Xuming [Department of Chemistry and State Key Laboratory of ATMMT (MOE), Zhejiang Sci-Tech University, Hangzhou 310018 (China)
2008-06-14T23:59:59.000Z
Resonance Raman spectra were obtained for benzamide in methanol and acetonitrile solutions with excitation wavelengths in resonance with the S{sub 3} state. These spectra indicate that the Franck-Condon region photodissociation dynamics have multidimensional character with the motions mainly along the benzene ring C=C stretch {nu}{sub 9}, the Ph-CO-NH{sub 2} and ring benzene stretch {nu}{sub 14}, the CCH in plane bend {nu}{sub 17}, the Ph-CO-NH{sub 2} stretch and NH{sub 2} rock {nu}{sub 19}, the ring trigonal bend {nu}{sub 23}, and the ring deformation and Ph-CO-NH{sub 2} stretch {nu}{sub 29}. A preliminary resonance Raman intensity analysis was done, and the results were compared to those previously reported for acetophenone to examine the substituent effect. Solvent effect on the short-time photodissociation dynamics of benzamide was also examined. A conical intersection point S{sub 2}/S{sub 3} between S{sub 3} and S{sub 2} potential energy surfaces of benzamide was determined by using a complete active space self-consistent field theory computations. The structural differences and similarities between S{sub 3}/S{sub 2} point and S{sub 0} were examined, and the results were used to correlate to the Franck-Condon photodissociation dynamics of benzamide in S{sub 3} state.
A Solid-State NMR Study of Tungsten Methyl Group Dynamics in [W(5-C5Me5)Me4][PF6
Griffin, Robert G.
A Solid-State NMR Study of Tungsten Methyl Group Dynamics in [W(5-C5Me5)Me4][PF6] Douglas C. Maus Spinning (MAS) 13C and static 2H NMR studies of the dynamics of the methyl groups coordinated to tungsten
"The Dynamics of Market Power with Deregulated Electricity Generation Richard E. Schuler,
"The Dynamics of Market Power with Deregulated Electricity Generation Supplies" Richard E. Schuler previously developed models of dynamic oligopoly pricing, estimates are provided of how rapidly and how far of competition in long distance telephone service the United States, where they "predict" AT&T dynamic price
Diegert, Carl F.
2006-12-01T23:59:59.000Z
We define a new diagnostic method where computationally-intensive numerical solutions are used as an integral part of making difficult, non-contact, nanometer-scale measurements. The limited scope of this report comprises most of a due diligence investigation into implementing the new diagnostic for measuring dynamic operation of Sandia's RF Ohmic Switch. Our results are all positive, providing insight into how this switch deforms during normal operation. Future work should contribute important measurements on a variety of operating MEMS devices, with insights that are complimentary to those from measurements made using interferometry and laser Doppler methods. More generally, the work opens up a broad front of possibility where exploiting massive high-performance computers enable new measurements.
Office of Legacy Management (LM)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling7111AWell: Gas productionDynamic , and Static ,
Dynamic Spherical Volumetric Simplex Splines with Applications in Biomedicine Wayne State University
Qin, Hong
Dynamic Spherical Volumetric Simplex Splines with Applications in Biomedicine Yunhao Tan , Jing Hua computational framework based on dy- namic spherical volumetric simplex splines for simulation of genus- zero to reconstruct the high-fidelity digi- tal model of a real-world object with spherical volumetric simplex splines
Konstantin E. Dorfman; Benjamin P. Fingerhut; Shaul Mukamel
2013-05-23T23:59:59.000Z
Vibrational motions in electronically excited states can be observed by either time and frequency resolved infrared absorption or by off resonant stimulated Raman techniques. Multipoint correlation function expressions are derived for both signals. Three representations for the signal which suggest different simulation protocols are developed. These are based on the forward and the backward propagation of the wavefunction, sum over state expansion using an effective vibration Hamiltonian and a semiclassical treatment of a bath. We show that the effective temporal ($\\Delta t$) and spectral ($\\Delta\\omega$) resolution of the techniques is not controlled solely by experimental knobs but also depends on the system dynamics being probed. The Fourier uncertainty $\\Delta\\omega\\Delta t>1$ is never violated.
Xiao, Jingfeng; Zhuang, Qianlai; Baldocchi, Dennis D.; Law, Beverly E.; Richardson, Andrew D.; Chen, Jiquan; Oren, Ram; Starr, Gregory; Noormets, Asko; Ma, Siyan; Verma, Shashi B.; Wharton, Sonia; Wofsy, Steven C.; Bolstad, Paul V.; Burns, Sean P.; Cook, David R.; Curtis, Peter S.; Drake, Bert G.; Falk, Matthias; Fischer, Marc L.; Foster, David R.; Gu, Lianhong; Hadley, Julian L.; Hollinger, David Y.; Katul, Gabriel G.; Litvak, Marcy; Martin, Timothy A.; Matamala, Roser; McNulty, Steve; Meyers, Tilden P.; Monson, Russell K.; Munger, J. William; Oechel, Walter C.; U, Kyaw Tha Paw; Schmid, Hans Peter; Scott, Russell L.; Sun, Ge; Suyker, Andrew E.; Torn, Margaret S.
2009-03-06T23:59:59.000Z
Eddy covariance flux towers provide continuous measurements of net ecosystem carbon exchange (NEE) for a wide range of climate and biome types. However, these measurements only represent the carbon fluxes at the scale of the tower footprint. To quantify the net exchange of carbon dioxide between the terrestrial biosphere and the atmosphere for regions or continents, flux tower measurements need to be extrapolated to these large areas. Here we used remotely-sensed data from the Moderate Resolution Imaging Spectrometer (MODIS) instrument on board NASA's Terra satellite to scale up AmeriFlux NEE measurements to the continental scale. We first combined MODIS and AmeriFlux data for representative U.S. ecosystems to develop a predictive NEE model using a regression tree approach. The predictive model was trained and validated using NEE data over the periods 2000-2004 and 2005-2006, respectively. We found that the model predicted NEE reasonably well at the site level. We then applied the model to the continental scale and estimated NEE for each 1 km x 1 km cell across the conterminous U.S. for each 8-day period in 2005 using spatially-explicit MODIS data. The model generally captured the expected spatial and seasonal patterns of NEE. Our study demonstrated that our empirical approach is effective for scaling up eddy flux NEE measurements to the continental scale and producing wall-to-wall NEE estimates across multiple biomes. Our estimates may provide an independent dataset from simulations with biogeochemical models and inverse modeling approaches for examining the spatiotemporal patterns of NEE and constraining terrestrial carbon budgets for large areas.
Xiao, Jingfeng; Zhuang, Qianlai; Baldocchi, Dennis D.; Bolstad, Paul V.; Burns, Sean P.; Chen, Jiquan; Cook, David R.; Curtis, Peter S.; Drake, Bert G.; Foster, David R.; Gu, Lianhong; Hadley, Julian L.; Hollinger, David Y.; Katul, Gabriel G.; Law, Beverly E.; Litvak, Marcy; Ma, Siyan; Martin, Timothy A.; Matamala, Roser; McNulty, Steve; Meyers, Tilden P.; Monson, Russell K.; Munger, J. William; Noormets, Asko; Oechel, Walter C.; Oren, Ram; Richardson, Andrew D.; Schmid, Hans Peter; Scott, Russell L.; Starr, Gregory; Sun, Ge; Suyker, Andrew E.; Torn, Margaret S.; Paw, Kyaw; Verma, Shashi B.; Wharton, Sonia; Wofsy, Steven C.
2008-10-01T23:59:59.000Z
Eddy covariance flux towers provide continuous measurements of net ecosystem carbon exchange (NEE) for a wide range of climate and biome types. However, these measurements only represent the carbon fluxes at the scale of the tower footprint. To quantify the net exchange of carbon dioxide between the terrestrial biosphere and the atmosphere for regions or continents, flux tower measurements need to be extrapolated to these large areas. Here we used remotely sensed data from the Moderate Resolution Imaging Spectrometer (MODIS) instrument on board the National Aeronautics and Space Administration's (NASA) Terra satellite to scale up AmeriFlux NEE measurements to the continental scale. We first combined MODIS and AmeriFlux data for representative U.S. ecosystems to develop a predictive NEE model using a modified regression tree approach. The predictive model was trained and validated using eddy flux NEE data over the periods 2000-2004 and 2005-2006, respectively. We found that the model predicted NEE well (r = 0.73, p < 0.001). We then applied the model to the continental scale and estimated NEE for each 1 km x 1 km cell across the conterminous U.S. for each 8-day interval in 2005 using spatially explicit MODIS data. The model generally captured the expected spatial and seasonal patterns of NEE as determined from measurements and the literature. Our study demonstrated that our empirical approach is effective for scaling up eddy flux NEE measurements to the continental scale and producing wall-to-wall NEE estimates across multiple biomes. Our estimates may provide an independent dataset from simulations with biogeochemical models and inverse modeling approaches for examining the spatiotemporal patterns of NEE and constraining terrestrial carbon budgets over large areas.
Buckled nano rod - a two state system: quantum effects on its dynamics
Aniruddha Chakraborty
2011-07-18T23:59:59.000Z
We consider a suspended elastic rod under longitudinal compression. The compression can be used to adjust potential energy for transverse displacements from harmonic to double well regime. The two minima in potential energy curve describe two possible buckled states. Using transition state theory (TST) we have calculated the rate of conversion from one state to other. If the strain $\\epsilon = 4 \\epsilon_c$ the simple TST rate diverges. We suggest a method to correct this divergence for quantum calculations. We also find that zero point energy contributions can be quite large so that single mode calculations can lead to large errors in the rate.
The development of short sea shipping in the United States : a dynamic alternative
Connor, Peter H. (Peter Harold)
2004-01-01T23:59:59.000Z
Current projections show that U.S. international trade is expected to reach nearly two billion tons by 2020, approximately double today's level. With such a large forecasted growth in trade coming through the United States ...
System-environment dynamics of X-type states in noninertial frames
Jieci Wang; Jiliang Jing
2012-02-21T23:59:59.000Z
The system-environment dynamics of noninertial systems is investigated. It is shown that for the amplitude damping channel: (i) the biggest difference between the decoherence effect and the Unruh radiation on the dynamics of the entanglement is the former only leads to entanglement transfer in the whole system, but the latter damages all types of entanglement; (ii) the system-environment entanglement increases and then declines, while the environment-environment entanglement always increases as the decay parameter $p$ increases; and (iii) the thermal fields generated by the Unruh effect can promote the sudden death of entanglement between the subsystems while postpone the sudden birth of entanglement between the environments. It is also found that there is no system-environment and environment-environment entanglements when the system coupled with the phase damping environment.
Faithful Solid State Optical Memory with Dynamically Decoupled Spin Wave Storage
Marko Lovri?; Alban Ferrier; Dieter Suter; Philippe Goldner
2013-02-14T23:59:59.000Z
We report an optical memory in a rare earth doped crystal with long storage times, up to 20 ms, together with an optical bandwidth of 1.5 MHz. This is obtained by transferring optical coherences to nuclear spin coherences, which were then protected against environmental noise by dynamical decoupling. With this approach, we achieved a 33 fold increase in spin wave storage time over the intrinsic spin coherence lifetime. Comparison between different decoupling sequences indicates that sequences insensitive to initial spin coherence increase retrieval efficiency. Finally, an interference experiment shows that relative phases of input pulses are preserved through the whole storage process with a visibility close to 1, demonstrating the usefulness of dynamical decoupling for extending the storage time of quantum memories.
Using System Dynamics to Model the Transition to Biofuels in the United States: Preprint
Bush, B.; Duffy, M.; Sandor, D.; Peterson, S.
2008-06-01T23:59:59.000Z
Transitioning to a biofuels industry that is expected to displace about 30% of current U.S. gasoline consumption requires a robust biomass-to-biofuels system-of-systems that operates in concert with the existing markets. This paper discusses employing a system dynamics approach to investigate potential market penetration scenarios for cellulosic ethanol and to help government decision makers focus on areas with greatest potential.
Dynamical hierarchy in transition states: Why and how does a system climb over the mountain?
Berry, R. Stephen
University, Nada, Kobe 657-8501, Japan; and Department of Chemistry and the James Franck Institute Institute of Technology, Pasadena, CA, and approved April 12, 2001 (received for review December 28, 2000 to visualize the stable and unstable invariant manifolds leading to and from the transition state, i
Sampling-based Motion Planning With Dynamic Intermediate State Objectives: Application to Throwing
Indiana University
collision. In order to plan quickly, we designed our planner to exploit knowledge of these problem a larger fraction of states within the small reachable subset of a DISO, we apply a fast filter based into a receptacle (e.g., a basket or trash can) in a known 3D environment. Our tests show that fewer than 2
Dynamical states of the cortico basal ganglia circuits Thesis submitted for the degree of
in these mean discharge rates. It posits that the death of midbrain dopaminergic neurons that occurs in PDDynamical states of the cortico basal ganglia circuits Thesis submitted for the degree of "Doctor variable that represents the mean discharge rate of neurons in that nucleus, and focuses on the gross
Symbolic Dynamic Programming for Continuous State and Action MDPs Zahra Zamani
Sanner, Scott
to uncertain demand, (joint) capacity constraints, and reorder- ing costs; and in RESERVOIR MANAGEMENT problems (La- mond and Boukhtouta 2002), a utility must manage contin- uous reservoir water levels to symbolic constrained optimization subject to unknown state parameters; we further integrate this technique
Ouyang, Bing, E-mail: ouyangbing.zj@foxmail.com; Xue, Jia-Dan, E-mail: jenniexue@126.com; Zheng, Xuming, E-mail: zhengxuming126@126.com, E-mail: zxm@zstu.edu.cn, E-mail: fangwh@dnu.edu.cn [Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018 (China)] [Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018 (China); Fang, Wei-Hai, E-mail: zxm@zstu.edu.cn, E-mail: fangwh@dnu.edu.cn, E-mail: fangwh@dnu.edu.cn [Department of Chemistry, Beijing Normal University, Beijing 100875 (China)] [Department of Chemistry, Beijing Normal University, Beijing 100875 (China)
2014-05-21T23:59:59.000Z
The excited state structural dynamics of phenyl isothiocyanate (PITC) after excitation to the light absorbing S{sub 2}(A?), S{sub 6}(A?), and S{sub 7}(A?) excited states were studied by using the resonance Raman spectroscopy and complete active space self-consistent field method calculations. The UV absorption bands of PITC were assigned. The vibrational assignments were done on the basis of the Fourier transform (FT)-Raman and FT-infrared measurements, the density-functional theory computations, and the normal mode analysis. The A-, B-, and C-bands resonance Raman spectra in cyclohexane, acetonitrile, and methanol solvents were, respectively, obtained at 299.1, 282.4, 266.0, 252.7, 228.7, 217.8, and 208.8 nm excitation wavelengths to probe the corresponding structural dynamics of PITC. The results indicated that the structural dynamics in the S{sub 2}(A?), S{sub 6}(A?), and S{sub 7}(A?) excited states were very different. The conical intersection point CI(S{sub 2}/S{sub 1}) were predicted to play important role in the low-lying excited state decay dynamics. Two major decay channels were predicted for PITC upon excitation to the S{sub 2}(A?) state: the radiative S{sub 2,min} ? S{sub 0} transition and the nonradiative S{sub 2} ? S{sub 1} internal conversion via CI(S{sub 2}/S{sub 1}). The differences in the decay dynamics between methyl isothiocyanate and PITC in the first light absorbing excited state were discussed. The role of the intersystem crossing point ISC(S{sub 1}/T{sub 1}) in the excited state decay dynamics of PITC is evaluated.
Buckled nano rod - a two state system and its dynamics using system plus reservoir model
Aniruddha Chakraborty
2009-12-09T23:59:59.000Z
We consider a suspended elastic rod under longitudinal compression. The compression can be used to adjust potential energy for transverse displacements from harmonic to double well regime. As compressional strain is increased to the buckling instability, the frequency of fundamental vibrational mode drops continuously to zero (first buckling instability). As one tunes the separation between ends of a rod, the system remains stable beyond the instability and develops a double well potential for transverse motion. The two minima in potential energy curve describe two possible buckled states at a particular strain. From one buckled state it can go over to the other by thermal fluctuations or quantum tunnelling. Using a continuum approach and transition state theory (TST) one can calculate the rate of conversion from one state to other. Saddle point for the change from one state to other is the straight rod configuration. The rate, however, diverges at the second buckling instability. At this point, the straight rod configuration, which was a saddle till then, becomes hill top and two new saddles are generated. The new saddles have bent configurations and as rod goes through further instabilities, they remain stable and the rate calculated according to harmonic approximation around saddle point remains finite. In our earlier paper classical rate calculation including friction has been carried out [J. Comput. Theor. Nanosci. {\\bf 4} (2007) {\\it 1}], by assuming that each segment of the rod is coupled to its own collection of harmonic oscillators - our rate expression is well behaved through the second buckling instability. In this paper we have extended our method to calculate quantum rate using the same system plus reservoir model. We find that friction lowers the rate of conversion.
Xing-Gang Wu
2008-12-08T23:59:59.000Z
Main theoretical uncertainties in estimating the indirect production of $(b\\bar{c})$-quarkonium ($B^-_c$ meson and its excited states) via top quark decays, $t\\to (b\\bar{c})+c+W^{+}$, are studied within the non-relativistic QCD framework. It is found that the dimensionless reduced decay width for a particular $(b\\bar{c})$-quarkonium state, $\\bar\\Gamma_{n}=\\Gamma_{n} /\\Gamma_{t\\to W^{+}+b}$, is very sensitive to the $c$-quark mass, while the uncertainties from the $b$-quark and $t$-quark masses are small, where $n$ stands for the eight $(b\\bar{c})$-quarkonium states up to ${\\cal O}(v^4)$: $|(b\\bar{c})(^1S_0)_1>$, $|(b\\bar{c})(^3S_1)_1>$, $|(b\\bar{c})(^1P_1)_1>$, $|(b\\bar{c})(^3P_J)_1>$ (with $J=(1,2,3)$), $|(b\\bar{c})(^1S_0)_{8}g>$ and $|(b\\bar{c})(^3S_1)_{8}g>$ respectively. About $10^8$ $t\\bar{t}$-pairs shall be produced per year at CERN LHC, if adopting the assumption that all the higher Fock states decay to the ground state with 100% probability, then we shall have $(1.038^{+1.353}_{-0.782})\\times 10^5$ $B^-_c $ events per year. So the indirect production provides another important way to study the properties of $B^-_c$ meson in comparison to that of the direct hadronic production at CERN LHC.
Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]
1997-03-28T23:59:59.000Z
Based on the project's scope, the purpose of the estimate, and the availability of estimating resources, the estimator can choose one or a combination of techniques when estimating an activity or project. Estimating methods, estimating indirect and direct costs, and other estimating considerations are discussed in this chapter.
How trehalose protects DNA in the dry state: a molecular dynamics simulation
Fu, Xuebing
2008-10-10T23:59:59.000Z
method, the points along these biased trajectories that are separated by a relatively large time interval (e.g. 100 fs) are considered as independent phase space points of the real system, although, their expected visiting probability in the real... state of a rare event with high barriers is called transition path sampling [5]. This method generates an ensemble of trajectories connecting the reactant to the product using Monte Carlo procedures called shooting and shifting. In an earlier paper [6...
Using System Dynamics to Model the Transition to Biofuels in the United States
Bush, B.; Duffy, M.; Sandor, D.; Peterson, S.
2008-01-01T23:59:59.000Z
Today, the U.S. consumes almost 21 million barrels of crude oil per day; approximately 60% of the U.S. demand is supplied by imports. The transportation sector alone accounts for two-thirds of U.S. petroleum use. Biofuels, liquid fuels produced from domestically-grown biomass, have the potential to displace about 30% of current U.S. gasoline consumption. Transitioning to a biofuels industry on this scale will require the creation of a robust biomass-to-biofuels system-of-systems that operates in concert with the existing agriculture, forestry, energy, and transportation markets. The U.S. Department of Energy is employing a system dynamics approach to investigate potential market penetration scenarios for cellulosic ethanol, and to aid decision makers in focusing government actions on the areas with greatest potential to accelerate the deployment of biofuels and ultimately reduce the nationpsilas dependence on imported oil.
Felker, P.M. [Univ. of California, Los Angeles (United States)
1993-12-01T23:59:59.000Z
First, the author aims to develop methods of nonlinear Raman spectroscopy for application in studies of sparse samples. Second, the author wishes to apply such methods to structural and dynamical studies of species (molecules, complexes, and clusters) in supersonic molecular beams. In the past year, the author has made progress in several areas. The first pertains to the application of mass-selective ionization-detected stimulated Raman spectroscopies (IDSRS) to the size-specific vibrational spectroscopy of solute-solvent{sub n} clusters. The second involves the application of IDSRS methods to studies of jet-cooled benzene clusters. The third pertains to the use of IDSRS methods in the study of intermolecular vibrational transitions in van der Waals complexes.
Stefano Zippilli; Fabrizio Illuminati
2014-02-16T23:59:59.000Z
When two chains of quantum systems are driven at their ends by a two-mode squeezed reservoir, they approach a steady state characterized by the formation of many entangled pairs. Each pair is made of one element of the first and one of the second chain. This effect has been already predicted under the assumption of broadband squeezing. Here we investigate the situation of finite-bandwidth reservoirs. This is done by modeling the driving bath as the output field of a non-degenerate parametric oscillator. The resulting non-Markovian dynamics is studied within the theoretical framework of cascade open quantum systems. It is shown that the formation of pair-entangled structures occurs as long as the normal-mode splitting of the arrays does not overcome the squeezing bandwidth of the reservoir.
Jean-Michel Combes; Peter Hislop; Frédéric Klopp
2006-10-14T23:59:59.000Z
We prove that the integrated density of states (IDS) of random Schr\\"{o}dinger operators with Anderson-type potentials on $L^2 (\\R^d)$, for $d \\geq1$, is locally H\\"{o}lder continuous at all energies with the same H\\"{o}lder exponent $0energies. The single-site potential $u\\in L\\_0^\\infty (\\R^d)$ must be nonnegative and compactly-supported. The unperturbed Hamiltonian must be periodic and satisfy a unique continuation principle. We also prove analogous continuity results for the IDS of random Anderson-type perturbations of the Landau Hamiltonian in two-dimensions. All of these results follow from a new Wegner estimate for local random Hamiltonians with rather general probability measures.
Bichromatic control of dynamical tunneling: influence of the irregular Floquet states
Archana Shukla; Srihari Keshavamurthy
2014-11-27T23:59:59.000Z
Bichromatic control, in terms of the amplitude and relative phase of the second field as control knobs, is an useful approach for controlling a variety of quantum processes. In this context, understanding the features of the control landscape is important to assess the extent and efficiency of the control process. A key question is whether, for a given quantum process, one can have regions wherein there is a complete lack of control. In this work we show that such regions do exist and can be explained on the basis of the phase space nature of the quantum Floquet states. Specifically, we show that robust regions of no control arise due to the phenomenon of chaos-assisted tunneling. We also comment on the possible influence of such regions on the phenomenon of directed transport in quantum Hamiltonian ratchets.
Synchronized states in chaotic systems coupled indirectly through a dynamic environment
V. Resmi; G. Ambika; R. E. Amritkar
2010-05-04T23:59:59.000Z
We consider synchronization of chaotic systems coupled indirectly through a common environmnet where the environment has an intrinsic dynmics of its own modulated via feedback from the systems. We find that a rich vareity of synchronization behavior, such as in-phase, anti-phase,complete and anti- synchronization is possible. We present an approximate stability analysis for the different synchronization behaviors. The transitions to different states of synchronous behaviour are analyzed in the parameter plane of coupling strengths by numerical studies for specific cases such as Rossler and Lorenz systems and are characterized using various indices such as correlation, average phase difference and Lyapunov exponents. The threshold condition obtained from numerical analysis is found to agree with that from the stability analysis.
Turro, Claudia
Excited State Dynamics of Two New Ru(II) Cyclometallated Dyes: Relation to Cells for Solar Energy, are reported. Related complexes have been used as efficient dyes in dye- sensitized solar cells (DSSCs of ruthenium dyes used in DSSCs to lower energies, it is evident from this work, that for cyclometallated phpy
Boxer, Steven G.
Articles Ultrafast Excited-State Dynamics in the Green Fluorescent Protein Variant S65T/ H148D. 1 Kanchanawong,# William Childs,# Steven G. Boxer,# and S. James Remington*,Â§ Institute of Molecular Biology chromophores, respectively. Excitation of either band leads to green emission. In wt-GFP, excitation of band
Boxer, Steven G.
Ultrafast Excited-State Dynamics in the Green Fluorescent Protein Variant S65T/ H148D. 2. Unusual, California 94305-5080, and Institute of Molecular Biology and Department of Physics, UniVersity of Oregon of this variant at pH 5.6 by ultrafast fluorescence upconversion spectroscopy. Following excitation at 400 nm
Proton Dynamics in ZnO Nanorods Quantified by In Situ Solid-State 1H Nuclear Magnetic Resonance
Wang, Li Q.; Zhou, Xiao Dong; Exarhos, Gregory J.; Pederson, Larry R.; Wang, Chong M.; Windisch, Charles F.; Yao, Chunhua
2007-10-22T23:59:59.000Z
Zinc oxide (ZnO) adopts wurtzite structure and possesses a direct wide band gap (Eg ~ 3.3 eV at 300 K), similar to that of GaN (Eg ~ 3.4 eV at 300 K), which enables ZnO as an alternative candidate to replace GaN for use in optoelectronic devices. The present controversy is centered at the microscopic origin of the “native donors”, particularly after ab initio calculations by Van de Walle, which indicate that hydrogen is soluble in ZnO at the interstitial sites, effectively forming a donor level just below the conduction band in ZnO. Hence, the origin of n type conductivity in ZnO is proposed due to the presence of hydrogen. Electron paramagnetic resonance and spectroscopic observations of muons provide experimental evidence of hydrogen presence in ZnO. Whereas, Look et al. suggests that the complex of zinc interstitial and nitrogen defect is a stronger candidate for donor than hydrogen interstitials under N ambient. Hydrogen-oxygen complex is claimed to be stable even at T > 1000°C in the hydrothermally synthesized ZnO. Therefore, the thermodynamic nature of hydrogen characteristics remains controversial, particularly its role on resident defects. In this letter, in situ temperature dependent solid state 1H magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy is employed to probe the local chemical environments of hydrogen in ZnO nanorods. To best knowledge of ours, this is the first time that the presence of hydrogen, its concentration, and local transport dynamics are directly chemically determined. Moreover, in situ NMR allows a new approach to investigate the absorption and desorption of protons from different sites on the ZnO nanorods, thus study of site-specific proton dynamics in ZnO becomes feasible.
Major, III, Walter; Grassley, James M.; Ryding, Kristen E. (University of Washington, Quantitive Ecology Program, Seattle, WA)
2003-05-01T23:59:59.000Z
This report is divided into two chapters. The abstract for chapter one is--Understanding of the abundance and spatial and temporal distributions of piscivorous birds and their potential consumption of fish is an increasingly important aspect of fisheries management. During 1999-2002, we determined the abundance and distribution and estimated the maximum consumption (kg biomass) of fish-eating birds along the length of the Yakima River in Washington State. Sixteen different species were observed during the 4-yr study, but only half of those were observed during all years. Abundance and estimated consumption of fish within the upper and middle sections of the river were dominated by common mergansers (Mergus merganser) which are known to breed in those reaches. Common mergansers accounted for 78 to 94% of the estimated total fish take for the upper river or approximately 28,383 {+-} 1,041 kg over the 4 yrs. A greater diversity of avian piscivores occurred in the lower river and potential impacts to fish populations was more evenly distributed among the species. In 1999-2000, great blue herons potentially accounted for 29 and 36% of the fish consumed, whereas in 2001-2002 American white pelicans accounted for 53 and 55%. We estimated that approximately 75,878 {+-} 6,616 kg of fish were consumed by piscivorous birds in the lower sections of the river during the study. Bird assemblages differed spatially along the river with a greater abundance of colonial nesting species within the lower sections of the river, especially during spring and the nesting season. The abundance of avian piscivores and consumption estimates are discussed within the context of salmonid supplementation efforts on the river and juvenile out-migration. The abstract for chapter two is--Consumption of fish by piscivorous birds may be a significant constraint on efforts to enhance salmonid populations within tributaries to the Columbia River in Washington State. During 1999-2002, we determined the abundance of fish-eating birds, primarily ring-billed (Larus delawarensis) and California (L. californicus) gulls and monitored their behavior at two man-made structures within the Yakima River in eastern Washington: Horn Rapids Dam, a low-head irrigation dam, and the return pipe for the Chandler Juvenile Fish Handling Facility. Earlier observations of congregations of gulls at these structures suggested an increased likelihood of predation of out-migrating juvenile salmonids. We estimated the number of fish consumed and examined the relationship between river flow and gull numbers and fish taken. Numbers of gulls at the structures varied daily between their arrival in Late March-early April and departure in late June (mean ({+-}SE) - Horn Rapids: 11.7 ({+-}2.0), Chandler: 20.1 ({+-}1.5) ). During the 4-yr study, numbers at Horn Rapids peaked dramatically during the last 2 weeks in May (between 132.9 ({+-}4.2) to 36.6 ({+-}2.2) gulls/day) and appeared to the associated with the release of > 1-mil hatchery juvenile fall chinook (Oncorhynchus tshawytscha) above the 2 study sites. A comparable peak in gull abundance was not observed at Chandler. Diurnal patterns of gull abundance also varied among years and sites. The relationship between foraging efficiency and gull numbers was not consistent among years or sites. Gull numbers were not correlated with river flow when year was considered. However, variations in flow among years appeared to be associated with average gull numbers at each site, but trends were not consistent between sites. Low seasonal flows were associated with increased predation at Chandler, whereas high seasonal flows were associated with increased predation at Horn Rapids. Assuming all fish taken were salmonids, we estimate gulls consumed between 0.1-10.3 % of the juvenile salmonids passing or being released from the Chandler Juvenile Fish Monitoring Facility located above the two structures. Staggered releases of hatchery fish, nocturnal releases of fish entrained in the Chandler facility, changes in the orientation of the outflow from the f
Measurement enhancement for state estimation
Chen, Jian
2009-05-15T23:59:59.000Z
........................................................................ 51 3.6.1 IEEE 57-bus System ........................................................... 52 3.6.2 IEEE 118-bus System ......................................................... 54... Test System ............................................................ 80 4.5.2 IEEE 30-bus Test System.................................................... 83 4.5.3 Topology Error...
The Microscopic Linear Dynamics
Penny, Will
The Microscopic Brain Will Penny Linear Dynamics Exponentials Matrix Exponential Eigendecomposition Dynamical Modes Nodes State Space Saddles Oscillations Spirals Centres Offsets Retinal Circuit Nullclines Stability Spiking Neurons Fitzhugh-Nagumo Nonlinear Dynamics Linearization Nonlinear Oscillation Excitable
Research progress in dynamic security assessment
Not Available
1982-12-01T23:59:59.000Z
Areas discussed are power system modeling, state estimation, structure decomposition, state forecasting, clustering and security measure development. A detailed dynamic model of a multi-machine power system has been developed. A process state estimator was developed to estimate the long-term dynamic behavior of the power system. The algorithm is identical to the extended Kalman filter but has a modified process noise driving term. A two-stage structure estimation technique was proposed for identifying the power system network configuration. Two approaches to structure decomposition were investigated. A time-scale decomposition of the system equations, based on a singular perturbation approach, was evaluated using a detailed model of a generating system. Spatial decomposition was examined by applying an optimal network decomposition technique to a 39-bus test system. Stochastic approximation based approaches to estimator simplification were examined. Explicit expressions were obtained for the evolution of the first and second moments of the system state. Research into security measures proceeded in three directions. The first area involves viewing the security assessment problem as a hyperplane crossing problem for a stochastic process. The second approach examined the stability of an unforced linear system where the system coefficients are subject to future jumps. The third area of research has led to the formulation of a security measure suitable for on-line assessment of transient stability.
Aldrich, Matthew (Matthew Henry)
2010-01-01T23:59:59.000Z
Energy conservation concerns will mandate near-future environments to regulate themselves to accommodate occupants' objectives and best tend to their comfort while minimizing energy consumption. Accordingly, smart energy ...
Excited-state dynamics of the Tm3+ ions and Tm3+ ~ Ho3+ energy transfers in LiYF4
Boyer, Edmond
1463 Excited-state dynamics of the Tm3+ ions and Tm3+ ~ Ho3+ energy transfers in LiYF4 A. Brenier considérant deux types de sites. Plus compliquée, la dynamique de fluorescence anti-Stokes est décrite désexcitation à l'intérieur d'un même centre Tm3 +, une relaxation croisée entre ions Tm3+ adjacents du type 3H4
Steady-State and Dynamic Modeling of Gas-Phase Polypropylene Processes Using Stirred-Bed Reactors
Liu, Y. A.
Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061 Ashuraj Sirohi
Hyperbolic Dynamics Todd Fisher
Fisher, Todd
Hyperbolic Dynamics Todd Fisher tfisher@math.umd.edu Department of Mathematics University of Maryland, College Park Hyperbolic Dynamics p. 1/3 #12;What is a dynamical system? Phase space X, elements possible states Hyperbolic Dynamics p. 2/3 #12;What is a dynamical system? Phase space X, elements
Chaudhry, Charu; Horwich, Arthur L.; Brunger, Axel T.; Adams, Paul D.
2004-08-12T23:59:59.000Z
Large rigid-body domain movements are critical to GroEL-mediated protein folding, especially apical domain elevation and twist associated with the formation of a folding chamber upon binding ATP and co-chaperonin GroES. Here, we have modeled the anisotropic displacements of GroEL domains from various crystallized states, unliganded GroEL, ATP?S-bound, ADP-AlFx/GroES-bound, and ADP/GroES bound, using translation-libration-screw (TLS) analysis. Remarkably, the TLS results show that the inherent motions of unliganded GroEL, a polypeptide-accepting state, are biased along the transition pathway that leads to the folding-active state. In the ADP-AlFx/GroES-bound folding-active state the dynamic modes of the apical domains become reoriented and coupled to the motions of bound GroES. The ADP/GroES complex exhibits these same motions, but they are increased in magnitude, potentially reflecting the decreased stability of the complex after nucleotide hydrolysis. Our results have allowed the visualization of the anisotropic molecular motions that link the static conformations previously observed by X-ray crystallography. Application of the same analyses to other macromolecules where rigid body motions occur may give insight into the large scale dynamics critical for function and thus has the potential to extend our fundamental understanding of molecular machines.
Dharmasena, Kalu Arachchillage Senarath
2011-08-08T23:59:59.000Z
marketplace trends ................................................................ 3 1.2 Trend in per capita bottled water consumption in the United States: 1976-2007 ...................................................................... 4 1.3 Trend... in per capita consumption of milk in the United States: 1970-2007 ...................................................................... 5 1.4 Trend in per capita consumption of soft drinks in the United States: 1984...
Jaehne, Bernd
2005 Estimation of air-sea gas and heat fluxes from infrared imagery and surface wave measurements and much higher heat fluxes. In addition, the infrared imagery analysis reveals potentially significant the infrared images. It is also shown that the difference in the surface boundary conditions for heat and gas
Copyright © 2008 IEEE. Reprinted from J. Rose, and I. Hiskens. Estimating Wind Turbine Parameters, July 2008. This material is posted here with permission of the IEEE. Such permission of the IEEE does or services. Internal or personal use of this material is permitted. However, permission to reprint
Calhoun, Benton H.
1504 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 39, NO. 9, SEPTEMBER 2004 Standby Power Reduction. Chandrakasan, Fellow, IEEE Abstract--Lowering during standby mode reduces power by decreasing both voltage where state is lost gives the best power savings. We show that "canary" flip-flops provide a mechanism
Studies of Structure and Dynamics of Light Harvesting Complex 1 of R. Sphaeroides by Solid State NMR
McDermott, Ann E [Columbia University
2014-11-14T23:59:59.000Z
Studies of the structure and dynamics of a light harvesting complex from photosynthetic bacteria are described. Using Nuclear Magnetic Resonance methods, we explored the idea that optical properties are modulated via a conformational switch in the BChl chromophores, in a way that provides benefits for the efficiency of energy conversion.
Boxer, Steven G.
of the high-energy absorption band centered at 398 nm and assigned to the neutral form of the chromophore-resolved emission dynamics and isotope effect appear to be very different from those of wild-type GFP [Chattoraj, M energy neutral chromophore to the lower energy intermediate anionic chromophore is achieved by proton
Pace, Michael L.
uplands (Figure 2; Porter, 2007). For shallow-water soft-sediment coastal systems, positive feedbacks. 2013. Nonlinear dynamics and alternative stable states in shallow coastal systems. Oceanography 26 and alternative Stable States in Shallow coastal Systems By K a r e N J . m c g l at h e ry, m at t h e w a . r e
PMU Placement for Enhancing Dynamic Observability of a Power Grid
Du, Pengwei; Huang, Zhenyu; Diao, Ruisheng; Lee, Barry; Anderson, Kevin K.
2010-09-27T23:59:59.000Z
Power grids are operated in an increasingly complicated environment. However, operators lack effective and accurate tools for real-time monitoring and control of power systems. The U.S. Department of Energy, along with several utilities and system operators, is making a major $108 million investment in the Western Interconnection for phasor measurement unit (PMU) installation and phasor application development. This phasor measurement network opens up many opportunities for the estimation and prediction of power system states in real time, which enable operators to evaluate the system dynamic security in advance and allow them more time to respond to disturbances. Kalman filter based dynamic state estimation offers a solution suitable for this purpose. Our work indicates that the performance of Kalman filters in dynamic state estimation would degrade if PMU measurements cannot adequately capture the system dynamics. This paper develops a framework to identify how to place PMUs to improve dynamic observability of the power grid. Simulation results validate the concept, and the guidelines for PMU placement are derived.
Transition State Theory Approach to Polymer Escape from a One Dimensional Potential Well
Mökkönen, Harri; Ala-Nissila, Tapio; Jónsson, Hannes
2015-01-01T23:59:59.000Z
The rate of escape of an ideal bead-spring polymer in a symmetric double-well potential is calculated using transition state theory (TST) and the results compared with direct dynamical simulations. The minimum energy path of the transitions becomes flat and the dynamics diffusive for long polymers making the Kramers-Langer estimate poor. However, TST with dynamical corrections based on short time trajectories started at the transition state gives rate constant estimates that agree within a factor of two with the molecular dynamics simulations over a wide range of bead coupling constants and polymer lengths. The computational effort required by the TST approach does not depend on the escape rate and is much smaller than that required by molecular dynamics simulations.
Christensen, Ronald L.
Steady-state and ultrafast transient absorption spectra were obtained for a series of conformationally constrained, isomerically pure polyenes with 5–23 conjugated double bonds (N). These data and fluorescence spectra of ...
Snyder, Jared; Binder, Jonathan
2009-01-01T23:59:59.000Z
the allowances to the New York State Energy Research andVol. 27:231 of New York's renewable energy task force. In19. See Energy Conservation Construction Code of New York
Yuan, Jinchao
2007-01-01T23:59:59.000Z
In this study, we investigated the multiple steady state behavior, an important observation in numerical and experimental studies in natural ventilation systems. The-oretical models are developed and their applications in ...
Transition dynamics for Mu acceptor states in Si{sub 1–x}Ge{sub x} alloys
Jayarathna, G.; Lichti, R. L.; Mengyan, P. W.; Baker, B. B. [Texas Tech University, Lubbock, TX 79409-1051 (United States); Celebi, Y. G. [Istanbul University, Istanbul (Turkey); Carroll, B. R. [Arkansas State University, Jonesboro, AR 72410 (United States); Yonenaga, I. [Institute of Materials Research, Tohoku University (Japan)
2014-02-21T23:59:59.000Z
We use the longitudinal field muon spin relaxation technique to observe charge-state and site-change transitions of muonium in Si{sub 1–x}Ge{sub x} alloys. In this project, we examine the temperature and magnetic field dependences of the relaxation rates for Si{sub 1–x}Ge{sub x} samples (x = 0.77, 0.81, and 0.84), in the composition range where the acceptor level lies within the band gap. This study particularly focuses on the relaxation rates for Si{sub 0.19}Ge{sub 0.81} to identify various cyclic charge-state and site-change processes as a function of both temperature and magnetic field. We extract the paramagnetic hyperfine constant and the relevant transition rate parameters for site changes and charge-state transitions involving Mu acceptor states for this sample. At small x, a site change dominates the transition out of the neutral T-site acceptor state, while in higher Ge content alloys hole ionization becomes the dominant transition out of the Mu{sub T}{sup 0}.
Kohout, E.J.; Knudson, D.A.; Saricks, C.L.; Miller, D.J.
1987-11-01T23:59:59.000Z
A listing by source of sulfur dioxide, nitrogen oxides and volatile organic compounds emitted in 48 states of the US is provided. (CBS)
Not Available
1993-08-01T23:59:59.000Z
Reports in this Record of Proceedings explore a wide variety of issues related to the regulation of natural gas and its future role as one of the critical fuels that powers the economy of the United States. The focus is mainly on problems, obstacles, barriers, and the incredibly complex system created to bring a fuel from wellhead to burner tip. Individual papers have been cataloged separately.
Stránský, Pavel [Institute of Particle and Nuclear Physics, Faculty of Mathematics and Physics, Charles University, V Holešovi?kách 2, 18000 Prague (Czech Republic); Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, 04510, México, D.F. (Mexico); Macek, Michal [Racah Institute of Physics, The Hebrew University, 91904 Jerusalem (Israel); Institute of Particle and Nuclear Physics, Faculty of Mathematics and Physics, Charles University, V Holešovi?kách 2, 18000 Prague (Czech Republic); Cejnar, Pavel, E-mail: pavel.cejnar@mff.cuni.cz [Institute of Particle and Nuclear Physics, Faculty of Mathematics and Physics, Charles University, V Holešovi?kách 2, 18000 Prague (Czech Republic)
2014-06-15T23:59:59.000Z
Quantum systems with a finite number of freedom degrees f develop robust singularities in the energy spectrum of excited states as the system’s size increases to infinity. We analyze the general form of these singularities for low f, particularly f=2, clarifying the relation to classical stationary points of the corresponding potential. Signatures in the smoothed energy dependence of the quantum state density and in the flow of energy levels with an arbitrary control parameter are described along with the relevant thermodynamical consequences. The general analysis is illustrated with specific examples of excited-state singularities accompanying the first-order quantum phase transition. -- Highlights: •ESQPTs found in infinite-size limit of systems with low numbers of freedom degrees f. •ESQPTs related to non-analytical evolutions of classical phase–space properties. •ESQPT signatures analyzed for general f, particularly f=2, extending known case f=1. •ESQPT signatures identified in smoothened density and flow of energy spectrum. •ESQPTs shown to induce a new type of thermodynamic anomalies.
Mabuchi, Takuya, E-mail: mabuchi@nanoint.ifs.tohoku.ac.jp [Graduate School of Engineering, Tohoku University, Sendai, Miyagi 980-8577 (Japan); Tokumasu, Takashi [Institute of Fluid Science, Tohoku University, Sendai, Miyagi 980-8577 (Japan)
2014-09-14T23:59:59.000Z
We have performed a detailed analysis of the structural properties of the sulfonate groups in terms of isolated and overlapped solvation shells in the nanostructure of hydrated Nafion membrane using classical molecular dynamics simulations. Our simulations have demonstrated the correlation between the two different areas in bound water region, i.e., the first solvation shell, and the vehicular transport of hydronium ions at different water contents. We have employed a model of the Nafion membrane using the improved force field, which is newly modified and validated by comparing the density and water diffusivity with those obtained experimentally. The first solvation shells were classified into the two types, the isolated area and the overlapped area. The mean residence times of solvent molecules explicitly showed the different behaviors in each of those areas in terms of the vehicular transport of protons: the diffusivity of classical hydronium ions in the overlapped area dominates their total diffusion at lower water contents while that in the isolated area dominates for their diffusion at higher water contents. The results provided insights into the importance role of those areas in the solvation shells for the diffusivity of vehicular transport of hydronium ions in hydrated Nafion membrane.
How accurate is Born-Oppenheimer molecular dynamics for crossings of potential surfaces ?
Hakon Hoel; Ashraful Kadir; Petr Plechac; Mattias Sandberg; Anders Szepessy
2014-06-13T23:59:59.000Z
The difference of the value of observables for the time-independent Schr\\"odinger equation, with matrix valued potentials, and the values of observables for ab initio Born-Oppenheimer molecular dynamics, of the ground state, depends on the probability to be in excited states and the electron/nuclei mass ratio. The paper first proves an error estimate (depending on the electron/nuclei mass ratio and the probability to be in excited states) for this difference of observables, assuming that molecular dynamics space-time averages converge, with a rate related to the maximal Lyapunov exponent. The analysis does not assume a uniform lower bound on the spectral gap and consequently the probability to be in excited states can be large. A numerical method to determine the probability to be in excited states is then presented, based on Ehrenfest molecular dynamics and stability analysis of a perturbed eigenvalue problem.
Gadd, S.E.
1995-08-01T23:59:59.000Z
This dissertation discusses studies of the electron-hole pair dynamics of CdS{sub x}Se{sub 1-x} semiconductor alloys for the entire compositional range from x = 1 to x = 0 as examined by the ultrafast fluorescence techniques of time correlated single photon counting and fluorescence upconversion. Specifically, samples with x = 1, .75, .5, .25, and 0 were studied each at a spread of wavelengths about its respective emission maximum which varies according to {lambda} = 718nm - 210x nm. The decays of these samples were found to obey a Kohlrausch distribution, exp [(t/{tau}){sup {beta}}], with the exponent 3 in the range .5-.7 for the alloys. These results are in agreement with those expected for localization due to local potential variations resulting from the random distribution of sulfur and selenium atoms on the element VI A sub-lattice. This localization can be understood in terms of Anderson localization of the holes in states whose energy distribution tails into the forbidden energy band-gap. Because these states have energy dependent lifetimes, the carriers can decay via many parallel channels. This distribution of channels is the ultimate source of the Kohlrausch form of the fluorescence decays.
Lucas, Matthew Allen
2009-05-15T23:59:59.000Z
.............................................................. 31 Results: ROW Estimation State of Practice ................................... 31 Critical Issues ....................................................................... 32 Overview of Current Practice... ............................................... 35 Analysis: Critical Review of Practices ........................................... 41 General ROW Cost Estimation Procedure ........................... 42 ROW Cost Estimation...
Gobet, Mallory [Hunter College of the City University of New York] [Hunter College of the City University of New York; Greenbaum, Steve [Hunter College of the City University of New York] [Hunter College of the City University of New York; Sahu, Gayatri [ORNL] [ORNL; Liang, Chengdu [ORNL] [ORNL
2014-01-01T23:59:59.000Z
The ceramic lithium ion conductor -Li3PS4 has a disordered and nanoporous structure that leads to an enhancement in ionic conductivity by some three orders of magnitude compared to the crystalline phase. The phase is prepared by thermal treatment of an inorganic-organic complex based on Li3PS4 and THF. Multinuclear (1H, 6,7Li, 31P) solid state NMR spectroscopy is used to characterize the structural phase evolution of the starting material at various steps in the thermal treatment. The phase formed after high temperature treatment is recognized as spectroscopically distinct from the bulk -Li3PS4 compound. Also formed is an amorphous lithium thiophosphate phase that is metastable as verified by annealing over an extended period. Lithium ion self-diffusion coefficients are measurable by standard pulsed gradient NMR methods at 100oC and with values consistent with the high ionic conductivity previously reported for this material.
Probing the Dynamics of a Protein Hydrophobic Core by Deutron...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Dynamics of a Protein Hydrophobic Core by Deutron Solid-State Nuclear Magnetic Resonance Spectroscopy . Probing the Dynamics of a Protein Hydrophobic Core by Deutron Solid-State...
adaptive parameter estimation: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Tokamak Heat Computer Technologies and Information Sciences Websites Summary: . Keywords: Thermonuclear fusion, distributed parameter systems, input state and parameter estimation,...
D. S. Veloso; A. V. Dodonov
2015-04-19T23:59:59.000Z
We consider the nonstationary circuit QED architecture, where a single artificial two-level atom interacts with a cavity field mode under external modulation of one or more system parameters. Two different approaches are employed to study the effects of Markovian dissipation on modulation-induced transitions between the atom-field dressed states: the standard master equation of Quantum Optics and the recently formulated dressed-picture master equation. We estimate the associated transition rates and show that photon generation from vacuum ("dynamical Casimir effect", DCE) and coherent photon annihilation from nonvacuum states ("Anti-DCE") are possible with the current state-of-the-art parameters.
Stochastic dynamic systems fl T. Soderstrom, 1997
Flener, Pierre
Stochastic dynamic systems Chapter 5 c fl T. SÂ¨oderstrÂ¨om, 1997 1 Optimal estimation ffl The conditional mean ffl Best linear estimate ffl ML estimation c fl T. SÂ¨oderstrÂ¨om, 1997 2 Optimal estimation criterion 2. Symmetric cond pdf c fl T. SÂ¨oderstrÂ¨om, 1997 3 Best linear estimate Given Ex = mx ; Ey = my E
ERP SOURCE ESTIMATION BY INTEGRATION OF ANATOMICAL AND
ERP SOURCE ESTIMATION BY INTEGRATION OF ANATOMICAL AND DYNAMICAL CONSTRAINTS Thesis submitted a small EEG signal analysis project under his supervision, in which I applied blind source separation
Roach, David J. [Penn State Univ., State College, PA (United States). Dept. of Chemistry; Dou, Shichen [Penn State Univ., State College, PA (United States). Dept. of Materials Science and Engineering; Colby, Ralph H. [Penn State Univ., State College, PA (United States). Dept. of Materials Science and Engineering; Mueller, Karl T. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Penn State Univ., State College, PA (United States). Dept. of Chemistry
2013-05-21T23:59:59.000Z
Polymer backbone dynamics of single ion conducting poly(ethylene oxide) (PEO)-based ionomer samples with low glass transition temperatures (Tg) have been investigated using solid-state nuclear magnetic resonance (NMR). Experiments detecting 13C with 1H decoupling under magic angle spinning (MAS) conditions identified the different components of the polymer backbone (PEO spacer and isophthalate groups) and their relative mobilities for a suite of lithium- and sodium-containing ionomer samples with varying cation contents. Variable temperature (203-373 K) 1H-13C cross-polarization MAS (CP-MAS) experiments also provided qualitative assessment of the differences in the motions of the polymer backbone components as a function of cation content and identity. Each of the main backbone components exhibit distinct motions, following the trends expected for motional characteristics based on earlier Quasi Elastic Neutron Scattering and 1H spin-lattice relaxation rate measurements. Previous 1H and 7Li spin-lattice relaxation measurements focused on both the polymer backbone and cation motion on the nanosecond timescale. The studies presented here assess the slower timescale motion of the polymer backbone allowing for a more comprehensive understanding of the polymer dynamics. The temperature dependences of 13C linewidths were used to both qualitatively and quantitatively examine the effects of cation content and identity on PEO spacer mobility. Variable contact time 1H-13C CP-MAS experiments were used to further assess the motions of the polymer backbone on the microsecond timescale. The motion of the PEO spacer, reported via the rate of magnetization transfer from 1H to 13C nuclei, becomes similar for T ? 1.1 Tg in all ionic samples, indicating that at similar elevated reduced temperatures the motions of the polymer backbones on the microsecond timescale become insensitive to ion interactions. These results present an improved picture, beyond those of previous findings, for the dependence of backbone dynamics on cation density (and here, cation identity as well) in these amorphous PEO-based ionomer systems.
Zaveri, Rahul A.; Easter, Richard C.; Shilling, John E.; Seinfeld, J. H.
2014-05-27T23:59:59.000Z
Evidence is mounting that the majority of the climatically active aerosols are produced through the growth of smaller particles via secondary organic aerosol (SOA) formation from gas-to-particle conversion of anthropogenic and biogenic volatile organic compounds (VOCs). The timescale of SOA partitioning and the associated size distribution dynamics are expected to depend on the gas-phase oxidation of the precursor VOCs and their products, volatility of these organic solutes, composition and phase state of the pre-existing particles, and diffusivity and reactivity of the solute within the particle phase. This paper describes a new framework for modeling kinetic gas-particle partitioning of SOA, with an analytical treatment for the diffusion-reaction process within the particle phase. The formulation is amenable for eventual use in regional and global climate models, although it currently awaits implementation of the actual particle-phase reactions that are important for SOA formation. In the present work, the model is applied to investigate the competitive growth dynamics of the Aitken and accumulation mode particles while the Kelvin effect and coagulation are neglected for simplicity. The timescale of SOA partitioning and evolution of number and composition size distributions are evaluated for a range of solute volatilities (C*), particle-phase bulk diffusivities (Db), and particle-phase reactivity, as exemplified by a pseudo-first-order rate constant (kc). Results show that irreversible condensation of non-volatile organic vapors (equivalent to ) produces significant narrowing of the size distribution. At the other extreme, non-reactive partitioning of semi-volatile organic vapors is volume-controlled in which the final (equilibrium) size distribution simply shifts to the right on the diameter axis while its shape remains unchanged. However, appreciable narrowing of the size distribution may occur when the pre-existing particles are highly viscous semi-solids such that small particles reach quasi-equilibrium much faster than the large ones. In the case of reactive partitioning (finite ), the size distribution experiences permanent narrowing, which is especially pronounced for Db < 10-13 cm2 s-1 and kc > 0.01 s-1. As a result, both number and composition size distributions are needed to effectively constrain and evaluate the next generation of SOA models that treat phase state thermodynamics, particle-phase diffusion and particle-phase chemical reactions.
Photodissociation Dynamics and Spectroscopy of Free Radical Combustion Intermediates
Osborn, David L.
2010-01-01T23:59:59.000Z
dynamics the coupling occurs to a state with identical spin multiplicity as the initially excited state, the coupling process
Kaprálová-Ž?ánská, Petra Ruth; Šmydke, Jan [J. Heyrovsky Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Dolejškova 3, 182 23 Prague 8 (Czech Republic) [J. Heyrovsky Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Dolejškova 3, 182 23 Prague 8 (Czech Republic); Department of Radiation and Chemical Physics, Institute of Physics, Academy of Sciences of the Czech Republic, Na Slovance 2, 182 21 Prague 8 (Czech Republic); Civiš, Svatopluk [J. Heyrovsky Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Dolejškova 3, 182 23 Prague 8 (Czech Republic)] [J. Heyrovsky Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Dolejškova 3, 182 23 Prague 8 (Czech Republic)
2013-09-14T23:59:59.000Z
Recently optimized exponentially tempered Gaussian basis sets [P. R. Kapralova-Zdanska and J. Smydke, J. Chem. Phys. 138, 024105 (2013)] are employed in quantitative simulations of helium absorption cross-sections and two-photon excitation yields of doubly excited resonances. Linearly polarized half-infinite and Gaussian laser pulses at wavelengths 38–58 nm and large intensities up to 100 TW/cm{sup 2} are considered. The emphasis is laid on convergence of the results with respect to the quality of the Gaussian basis sets (typically limited by a number of partial waves, density, and spatial extent of the basis functions) as well as to the quality of the basis set of field-free states (typically limited by the maximum rotational quantum number and maximum excitation of the lower electron). Particular attention is paid to stability of the results with respect to varying complex scaling parameter. Moreover, the study of the dynamics is preceded by a thorough check of helium energies and oscillator strengths as they are obtained with the exponentially tempered Gaussian basis sets, being also compared with yet unpublished emission wavelengths measured in electric discharge experiments.
Mean-field Evolution of Fermionic Mixed States
Niels Benedikter; Vojkan Jaksic; Marcello Porta; Chiara Saffirio; Benjamin Schlein
2015-02-11T23:59:59.000Z
In this paper we study the dynamics of fermionic mixed states in the mean-field regime. We consider initial states which are close to quasi-free states and prove that, under suitable assumptions on the inital data and on the many-body interaction, the quantum evolution of such initial data is well approximated by a suitable quasi-free state. In particular we prove that the evolution of the reduced one-particle density matrix converges, as the number of particles goes to infinity, to the solution of the time-dependent Hartree-Fock equation. Our result holds for all times, and gives effective estimates on the rate of convergence of the many-body dynamics towards the Hartree-Fock one.
Crichton, John Alston
1953-01-01T23:59:59.000Z
A CRITICAL REVIEW OF METHODS USED IN THE ESTIMATION OF NATURAL GAS RESERVES NATURAL GAS RESERVES IN THE SI'AT. S OF TEXAS SOME EDUCATIONAL PREREQUISITES IN THE FIELD OF PETROLEUM ECONOMICS AND EVAI UATION Sy John Alston Crichton... ENGINEERING TABLE of CONTENTS ~Pa e A CRITICAL REVIEW OF METHODS USED IN THE ESTIMATION OF NATURAL GAS RESERVES Abstract Introdu=tion History of the Estimation of Gas Reserves Present Methods of Estimating Gas Reserves Meth& ds of Estimating Non...
Characterization of majorization monotone quantum dynamics
Haidong Yuan
2015-03-25T23:59:59.000Z
In this article I study the dynamics of open quantum system in Markovian environment. I give necessary and sufficient conditions for such dynamics to be majorization monotone, which are those dynamics always mixing the states.
SDI: Statistical dynamic interactions
Blann, M.; Mustafa, M.G. (Lawrence Livermore National Lab., CA (USA)); Peilert, G.; Stoecker, H.; Greiner, W. (Frankfurt Univ. (Germany, F.R.). Inst. fuer Theoretische Physik)
1991-04-01T23:59:59.000Z
We focus on the combined statistical and dynamical aspects of heavy ion induced reactions. The overall picture is illustrated by considering the reaction {sup 36}Ar + {sup 238}U at a projectile energy of 35 MeV/nucleon. We illustrate the time dependent bound excitation energy due to the fusion/relaxation dynamics as calculated with the Boltzmann master equation. An estimate of the mass, charge and excitation of an equilibrated nucleus surviving the fast (dynamic) fusion-relaxation process is used as input into an evaporation calculation which includes 20 heavy fragment exit channels. The distribution of excitations between residue and clusters is explicitly calculated, as is the further deexcitation of clusters to bound nuclei. These results are compared with the exclusive cluster multiplicity measurements of Kim et al., and are found to give excellent agreement. We consider also an equilibrated residue system at 25% lower initial excitation, which gives an unsatisfactory exclusive multiplicity distribution. This illustrates that exclusive fragment multiplicity may provide a thermometer for system excitation. This analysis of data involves successive binary decay with no compressional effects nor phase transitions. Several examples of primary versus final (stable) cluster decay probabilities for an A = 100 nucleus at excitations of 100 to 800 MeV are presented. From these results a large change in multifragmentation patterns may be understood as a simple phase space consequence, invoking neither phase transitions, nor equation of state information. These results are used to illustrate physical quantities which are ambiguous to deduce from experimental fragment measurements. 14 refs., 4 figs.
State Estimation 1.0 Introduction
McCalley, James D.
also developed spot pricing, the precursor of modern-day locational marginal prices Â LMPs Â a central
Molecular dynamics simulation of threshold displacement energies...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
experimental estimates in ceramics. Citation: Moreira PA, R Devanathan, J Yu, and WJ Weber.2009."Molecular dynamics simulation of threshold displacement energies in...
Estimation of building occupancy levels through environmental signals deconvolution
Johansson, Karl Henrik
, and ventilation actuation signals in order to identify a dynamic model. The building occupancy estimation problem Abstract We address the problem of estimating the occupancy lev- els in rooms using the information is formulated as a regularized deconvolution problem, where the estimated occupancy is the input that, when
Entangled quantum probes for dynamical environmental noise
Matteo A. C. Rossi; Matteo G. A. Paris
2015-03-11T23:59:59.000Z
We address the use of entangled qubits as quantum probes to characterize the dynamical noise induced by complex environments. In particular, we show that entangled probes improve estimation of the correlation time for a broad class of environmental noises compared to any sequential strategy involving single qubit preparation. The effect is present when the noise is faster than a threshold value, a regime which may always be achieved by tuning the coupling between the quantum probe and the environment inducing the noise. Our scheme exploits time-dependent sensitivity of quantum systems to decoherence and does not require dynamical control on the probes. We derive the optimal interaction time and the optimal probe preparation, showing that it corresponds to multiqubit GHZ states when entanglement is useful. We also show robustness of the scheme against depolarization or dephasing of the probe, and discuss simple measurements approaching optimal precision.
Weston, R.E. Jr.; Sears, T.J.; Preses, J.M. [Brookhaven National Laboratory, Upton, NY (United States)
1993-12-01T23:59:59.000Z
Research in this program is directed towards the spectroscopy of small free radicals and reactive molecules and the state-to-state dynamics of gas phase collision, energy transfer, and photodissociation phenomena. Work on several systems is summarized here.
Michael Murray; for the BRAHMS Collaboration
2007-10-24T23:59:59.000Z
The purpose of BRAHMS is to survey the dynamics of relativistic heavy ion (as well as pp and d-A) collisions over a very wide range of rapidity and transverse momentum. The sum of these data may give us a glimpse of the initial state of the system, its transverse and longitudinal evolution and how the nature of the system changes with time. Here I will concentrate on the origin and dynamics of the light flavors, i.e. the creation and transport of the up, down and strange quarks. The results presented here are certainly not the end of the story. It is my hope that in a few years new detectors will reveal the rapidity dependence of the charm and bottom quarks.
REPORT NO. 4 ESTIMATES AND EVALUATION OF
ESTIMATES AND EVALUATION OF FALLOUT IN THE UNITED STATES FROM NUCLEAR WEAPONS TESTING CONDUCTED THROUGH 1962 Section II History of Nuclear Weapons Testing. . . . . . . . . . . . . . . . 4 Section III Atmospheric, "Health Implications of Fallout From Nuclear Weapons Testing Through 1961", May 1962
Adaptive Distributed Parameter and Input Estimation in Plasma Tokamak Heat
Boyer, Edmond
. Keywords: Thermonuclear fusion, distributed parameter systems, input state and parameter estimation, adaptive infinite-dimensional estimation, Galerkin method 1. INTRODUCTION In a controlled thermonuclear fusion reactor, the plasma thermal diffusivity and heating energy play an important role
State-space models and methods for MIMO communication
Zhang, Chengjin
2007-01-01T23:59:59.000Z
Estimation with State-Space Models . . . . . . . . . . . 2.12.2 State-Space Models for MIMO WirelessEqualization via State- Space Deconvolution . . . . . . 4.1
2009 Cost Estimates of Establishing and
Collins, Gary S.
2009 Cost Estimates of Establishing and Producing Gala Apples in Washington WASHINGTON STATE include estimating 1) the costs of the equipment, materials, supplies, and labor required to establish for any particular orchard operation due to case-specific: · Capital, labor, and natural resources · Crop
Statistical Estimation of Quantum Tomography Protocols Quality
Yu. I. Bogdanov; G. Brida; M. Genovese; S. P. Kulik; E. V. Moreva; A. P. Shurupov
2010-02-18T23:59:59.000Z
A novel operational method for estimating the efficiency of quantum state tomography protocols is suggested. It is based on a-priori estimation of the quality of an arbitrary protocol by means of universal asymptotic fidelity distribution and condition number, which takes minimal value for better protocol. We prove the adequacy of the method both with numerical modeling and through the experimental realization of several practically important protocols of quantum state tomography.
Dynamic stall on wind turbine blades
Butterfield, C.P.; Simms, D.; Scott, G. [National Renewable Energy Lab., Golden, CO (United States)] [National Renewable Energy Lab., Golden, CO (United States); Hansen, A.C. [Utah Univ., Salt Lake City, UT (United States)] [Utah Univ., Salt Lake City, UT (United States)
1991-12-01T23:59:59.000Z
Dynamic loads must be predicted accurately in order to estimate the fatigue life of wind turbines operating in turbulent environments. Dynamic stall contributes to increased dynamic loads during normal operation of all types of horizontal-axis wind turbine (HAWTs). This report illustrates how dynamic stall varies throughout the blade span of a 10 m HAWT during yawed and unyawed operating conditions. Lift, drag, and pitching moment coefficients during dynamics stall are discussed. Resulting dynamic loads are presented, and the effects of dynamic stall on yaw loads are demonstrated using a yaw loads dynamic analysis (YAWDYN). 12 refs., 22 figs., 1 tab.
Dynamical friction in modified Newtonian dynamics
C. Nipoti; L. Ciotti; J. Binney; P. Londrillo
2008-03-31T23:59:59.000Z
We have tested a previous analytical estimate of the dynamical friction timescale in Modified Newtonian Dynamics (MOND) with fully non-linear N-body simulations. The simulations confirm that the dynamical friction timescale is significantly shorter in MOND than in equivalent Newtonian systems, i.e. systems with the same phase-space distribution of baryons and additional dark matter. An apparent conflict between this result and the long timescales determined for bars to slow and mergers to be completed in previous N-body simulations of MOND systems is explained. The confirmation of the short dynamical-friction timescale in MOND underlines the challenge that the Fornax dwarf spheroidal poses to the viability of MOND.
Dynamics of genuine multipartite entanglement under local non-Markovian dephasing
Mazhar Ali
2014-11-05T23:59:59.000Z
We study dynamics of genuine entanglement for quantum states of three and four qubits under non-Markovian dephasing. Using a computable entanglement monotone for multipartite systems, we find that GHZ state is quite resilient state whereas the W state is the most fragile. We compare dynamics of chosen quantum states with dynamics of random pure states and weighted graph states.
RPS Collaborative Webinar: Using AVERT to Estimate the Emissions...
Broader source: Energy.gov (indexed) [DOE]
MDT State policymakers and various stakeholders frequently have need to estimate the emissions impacts of particular renewable energy and energy efficiency policies. However, it...
Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]
1997-03-28T23:59:59.000Z
This chapter focuses on the components (or elements) of the cost estimation package and their documentation.
Check Estimates and Independent Costs
Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]
1997-03-28T23:59:59.000Z
Check estimates and independent cost estimates (ICEs) are tools that can be used to validate a cost estimate. Estimate validation entails an objective review of the estimate to ensure that estimate criteria and requirements have been met and well documented, defensible estimate has been developed. This chapter describes check estimates and their procedures and various types of independent cost estimates.
Look, Wesley Allen
2013-01-01T23:59:59.000Z
The political economy of US climate policy has revolved around state- and district- level distributional economics, and to a lesser extent household-level distribution questions. Many politicians and analysts have suggested ...
Coppens, Philip
states of molecules are vehicles for solar energy conversion and storage, photosensitization, Guy Jennings, Klaus Attenkofer, Gerald J. Meyer,*,§ and Philip Coppens*,| Contribution from Chemistry, Department of Chemistry, Johns Hopkins UniVersity, Baltimore, Maryland 21210, and Department of Chemistry
PDE Estimation Techniques for Advanced Battery Management Systems -Part I: SOC Estimation
Krstic, Miroslav
- cles and renewable energy resources is battery energy storage. Advanced battery systems representPDE Estimation Techniques for Advanced Battery Management Systems - Part I: SOC Estimation S. J sensing and actuation exists to monitor and control the internal state of these systems. As such, battery
Quantum discord determines the interferometric power of quantum states
Davide Girolami; Alexandre M. Souza; Vittorio Giovannetti; Tommaso Tufarelli; Jefferson G. Filgueiras; Roberto S. Sarthour; Diogo O. Soares-Pinto; Ivan S. Oliveira; Gerardo Adesso
2014-05-28T23:59:59.000Z
Quantum metrology exploits quantum mechanical laws to improve the precision in estimating technologically relevant parameters such as phase, frequency, or magnetic fields. Probe states are usually tailored on the particular dynamics whose parameters are being estimated. Here we consider a novel framework where quantum estimation is performed in an interferometric configuration, using bipartite probe states prepared when only the spectrum of the generating Hamiltonian is known. We introduce a figure of merit for the scheme, given by the worst case precision over all suitable Hamiltonians, and prove that it amounts exactly to a computable measure of discord-type quantum correlations for the input probe. We complement our theoretical results with a metrology experiment, realized in a highly controllable room-temperature nuclear magnetic resonance setup, which provides a proof-of-concept demonstration for the usefulness of discord in sensing applications. Discordant probes are shown to guarantee a nonzero precision in the estimation procedure for different generating Hamiltonians, while classically correlated probes are unable to accomplish the estimation in a worst case setting. This work establishes a rigorous and direct operational interpretation for general quantum correlations, shedding light on their potential for quantum technology.
Estimated Costs of Crop Production in Iowa 2001
Duffy, Michael D.
Estimated Costs of Crop Production in Iowa 2001 The estimated costs of corn, corn silage. They include the annual Iowa Farm Business Association record summaries, production and costs data from and a survey of selected agriculture cooperatives around the state. These costs estimates are representative
Estimated Costs of Crop Production in Iowa 2000
Duffy, Michael D.
Estimated Costs of Crop Production in Iowa 2000 The estimated costs of corn, corn silage. They include the annual Iowa Farm Business Association record summaries, production and costs data from and a survey of selected agriculture cooperatives around the state. These costs estimates are representative
Spatial Sequence Estimation Based Decoding Algorithm for V-BLAST
Al-Ghadhban, Samir
Spatial Sequence Estimation Based Decoding Algorithm for V-BLAST Maruf Mohammad, Samir Al degrades the performance. A detection algorithm for V-BLAST based on sequence estimation is proposed. The concept of maximum likelihood sequence estimation (MLSE) is applied to combat spatial interference. State
Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]
1997-03-28T23:59:59.000Z
The chapter describes the estimates required on government-managed projects for both general construction and environmental management.
Ballistic dynamics of Dirac particles in electro-magnetic fields
Josef Mehringer; Edgardo Stockmeyer
2014-11-21T23:59:59.000Z
Investigating properties of two-dimensional Dirac operators coupled to an electric and a magnetic field (perpendicular to the plane) requires in general unbounded (vector-) potentials. If the system has a certain symmetry, the fields can be described by one-dimensional potentials $V$ and $A$. Assuming that $|A|<|V|$ outside some arbitrary large ball, we show that absolutely continuous states of the effective Dirac operators spread ballistically. These results are based on well-known methods in spectral dynamics together with certain new Hilbert-Schmidt bounds. We use Lorentz boosts to derive these new estimates.
State energy price and expenditure report 1994
NONE
1997-06-01T23:59:59.000Z
The State Energy Price and Expenditure Report (SEPER) presents energy price and expenditure estimates individually for the 50 States and the District of Columbia and in aggregate for the United States. The price and expenditure estimates developed in the State Energy Price and Expenditure Data System (SEPEDS) are provided by energy source and economic sector and are published for the years 1970 through 1994. Consumption estimates used to calculate expenditures and the documentation for those estimates are taken from the State Energy Data Report 1994, Consumption Estimates (SEDR), published in October 1996. Expenditures are calculated by multiplying the price estimates by the consumption estimates, which are adjusted to remove process fuel; intermediate petroleum products; and other consumption that has no direct fuel costs, i.e., hydroelectric, geothermal, wind, solar, and photovoltaic energy sources. Documentation is included describing the development of price estimates, data sources, and calculation methods. 316 tabs.
Systems Engineering Cost Estimation
Bryson, Joanna J.
on project, human capital impact. 7 How to estimate Cost? Difficult to know what we are building early on1 Systems Engineering Lecture 3 Cost Estimation Dr. Joanna Bryson Dr. Leon Watts University of Bath: Contrast approaches for estimating software project cost, and identify the main sources of cost
Dynamical entanglement versus symmetry and dynamics of classical approximations
Buric, Nikola [Department of Physics and Mathematics, Faculty of Pharmacy, University of Beograd, Vojvode Stepe 450, 11000 Belgrade (Serbia and Montenegro)
2006-05-15T23:59:59.000Z
It is shown that dynamical entanglement between two qubits depends on the symmetry of the quantum model. On the other hand, the latter is reflected in the qualitative properties of the dynamics of a classical approximation of the quantum system. For generic separable pure initial states, the dynamical entanglement is larger if the system is less symmetric and its classical approximation is chaotic. The influence of different types of Markov environments on the established relation between the dynamical entanglement, symmetry and the classical dynamics is also studied.
Quantum molecular dynamics simulation of shock-wave experiments in aluminum
Minakov, D. V.; Khishchenko, K. V.; Fortov, V. E. [Joint Institute for High Temperatures RAS, Izhorskaya 13 Bldg 2, Moscow 125412 (Russian Federation); Moscow Institute of Physics and Technology, Institutskii per. 9, Dolgoprudny, Moscow Region 141700 (Russian Federation); Levashov, P. R. [Joint Institute for High Temperatures RAS, Izhorskaya 13 Bldg 2, Moscow 125412 (Russian Federation); Tomsk State University, 36 Lenin Prospekt, Tomsk 634050 (Russian Federation)
2014-06-14T23:59:59.000Z
We present quantum molecular dynamics calculations of principal, porous, and double shock Hugoniots, release isentropes, and sound velocity behind the shock front for aluminum. A comprehensive analysis of available shock-wave data is performed; the agreement and discrepancies of simulation results with measurements are discussed. Special attention is paid to the melting region of aluminum along the principal Hugoniot; the boundaries of the melting zone are estimated using the self-diffusion coefficient. Also, we make a comparison with a high-quality multiphase equation of state for aluminum. Independent semiempirical and first-principle models are very close to each other in caloric variables (pressure, density, particle velocity, etc.) but the equation of state gives higher temperature on the principal Hugoniot and release isentropes than ab initio calculations. Thus, the quantum molecular dynamics method can be used for calibration of semiempirical equations of state in case of lack of experimental data.
Stochastic Wireless Channel Modeling, Estimation and Identification from Measurements
Olama, Mohammed M [ORNL; Djouadi, Seddik M [ORNL; Li, Yanyan [ORNL
2008-07-01T23:59:59.000Z
This paper is concerned with stochastic modeling of wireless fading channels, parameter estimation, and system identification from measurement data. Wireless channels are represented by stochastic state-space form, whose parameters and state variables are estimated using the expectation maximization algorithm and Kalman filtering, respectively. The latter are carried out solely from received signal measurements. These algorithms estimate the channel inphase and quadrature components and identify the channel parameters recursively. The proposed algorithm is tested using measurement data, and the results are presented.
Hans Peter Schmid; Craig Wayson
2009-05-05T23:59:59.000Z
The primary objective of this project was to evaluate carbon exchange dynamics across a region of North America between the Great Plains and the East Coast. This region contains about 40 active carbon cycle research (AmeriFlux) sites in a variety of climatic and landuse settings, from upland forest to urban development. The core research involved a scaling strategy that uses measured fluxes of CO{sub 2}, energy, water, and other biophysical and biometric parameters to train and calibrate surface-vegetation-atmosphere models, in conjunction with satellite (MODIS) derived drivers. To achieve matching of measured and modeled fluxes, the ecosystem parameters of the models will be adjusted to the dynamically variable flux-tower footprints following Schmid (1997). High-resolution vegetation index variations around the flux sites have been derived from Landsat data for this purpose. The calibrated models are being used in conjunction with MODIS data, atmospheric re-analysis data, and digital land-cover databases to derive ecosystem exchange fluxes over the study domain.
Estimates of US biomass energy consumption 1992
Not Available
1994-05-06T23:59:59.000Z
This report is the seventh in a series of publications developed by the Energy Information Administration (EIA) to quantify the biomass-derived primary energy used by the US economy. It presents estimates of 1991 and 1992 consumption. The objective of this report is to provide updated estimates of biomass energy consumption for use by Congress, Federal and State agencies, biomass producers and end-use sectors, and the public at large.
A TIME ESTIMATE FOR CONSOLIDATION AND DISINTEGRATION OF AN ASTEROID RUBBLE PILE. THE SIMPLEST model shows that an asteroid rubble pile evolves, depending on the parameter V2 d (where V rubble pile to survive for a long time, and on the other hand, even without tidal effects, it prevents
Adaptive Optimal Feedback Control with Learned Internal Dynamics Models
Mitrovic, Djordje; Klanke, Stefan; Vijayakumar, Sethu
2010-01-01T23:59:59.000Z
, have focused on the case of non-linear, but still analytically available, dynamics. For realistic control systems, however, the dynamics may often be unknown, difficult to estimate, or subject to frequent systematic changes. In this chapter, we combine...
Dynamic shape factors for hydox-generated plutonium dioxide-type non-sperical objects
Lohaus, James Harold
1999-01-01T23:59:59.000Z
The dynamic shape factors of HYDOX-generated plutonium dioxide-type non-spherical objects were estimated with computational methods. Leith's empirical methods were used to modify classical Stokes's law for aerosol dynamics (1987). The dynamic shape...
Kuramoto dynamics in Hamiltonian systems
Dirk Witthaut; Marc Timme
2013-05-08T23:59:59.000Z
The Kuramoto model constitutes a paradigmatic model for the dissipative collective dynamics of coupled oscillators, characterizing in particular the emergence of synchrony. Here we present a classical Hamiltonian (and thus conservative) system with 2N state variables that in its action-angle representation exactly yields Kuramoto dynamics on N-dimensional invariant manifolds. We show that the synchronization transition on a Kuramoto manifold emerges where the transverse Hamiltonian action dynamics becomes unstable. The uncovered Kuramoto dynamics in Hamiltonian systems thus distinctly links dissipative to conservative dynamics.
Krishtal, Alisa; Genova, Alessandro; Pavanello, Michele
2015-01-01T23:59:59.000Z
Subsystem Density-Functional Theory (DFT) is an emerging technique for calculating the electronic structure of complex molecular and condensed phase systems. In this topical review, we focus on some recent advances in this field related to the computation of condensed phase systems, their excited states, and the evaluation of many-body interactions between the subsystems. As subsystem DFT is in principle an exact theory, any advance in this field can have a dual role. One is the possible applicability of a resulting method in practical calculations. The other is the possibility of shedding light on some quantum-mechanical phenomenon which is more easily treated by subdividing a supersystem into subsystems. An example of the latter is many-body interactions. In the discussion, we present some recent work from our research group as well as some new results, casting them in the current state-of-the-art in this review as comprehensively as possible.
Crichton, John Alston
1953-01-01T23:59:59.000Z
for oil. In order to make an a- urete determination of the recovery factor, it is necessary to pre-determine the pressure history of the field. by material balance and water influx calculations, or by extra- polatutg a curve cf pressure agatnst...-Associated Gas Reserves Volumetr ic Method Discussion of the Factors in tne Volumetri. Formula The Decline Curve Method 7 7 12 Ie Methods of Estimating Associated Gas Reserves Methods of Estimatmg Dissolved Gas Reserves Water Drive Constant Voluxne...
Maximum Margin Clustering for State Decomposition of Metastable Systems
Wu, Hao
2015-01-01T23:59:59.000Z
When studying a metastable dynamical system, a prime concern is how to decompose the phase space into a set of metastable states. Unfortunately, the metastable state decomposition based on simulation or experimental data is still a challenge. The most popular and simplest approach is geometric clustering which is developed based on the classical clustering technique. However, the prerequisites of this approach are: (1) data are obtained from simulations or experiments which are in global equilibrium and (2) the coordinate system is appropriately selected. Recently, the kinetic clustering approach based on phase space discretization and transition probability estimation has drawn much attention due to its applicability to more general cases, but the choice of discretization policy is a difficult task. In this paper, a new decomposition method designated as maximum margin metastable clustering is proposed, which converts the problem of metastable state decomposition to a semi-supervised learning problem so that...
Free energy reconstruction from steered dynamics without post-processing
Manuel Athènes; Mihai-Cosmin Marinica
2010-06-30T23:59:59.000Z
Various methods achieving importance sampling in ensembles of nonequilibrium trajectories enable to estimate free energy differences and, by maximum-likelihood post-processing, to reconstruct free energy landscapes. Here, based on Bayes theorem, we propose a more direct method in which a posterior likelihood function is used both to construct the steered dynamics and to infer the contribution to equilibrium of all the sampled states. The method is implemented with two steering schedules. First, using non-autonomous steering, we calculate the migration barrier of the vacancy in Fe-alpha. Second, using an autonomous scheduling related to metadynamics and equivalent to temperature-accelerated molecular dynamics, we accurately reconstruct the two-dimensional free energy landscape of the 38-atom Lennard-Jones cluster as a function of an orientational bond-order parameter and energy, down to the solid-solid structural transition temperature of the cluster and without maximum-likelihood post-processing.
Bokarev, Sergey I; Suljoti, Edlira; Kühn, Oliver; Aziz, Emad F
2013-01-01T23:59:59.000Z
Non-radiative decay channels in the L-edge fluorescence spectra from transition metal-aqueous solutions give rise to spectral dips in X-ray transmission spectra. Their origin is unraveled here using partial and inverse partial fluorescence yields on the micro-jet combined with multi-reference ab initio electronic structure calculations. Comparing Fe2+, Fe3+, and Co2+ systems we demonstrate unequivocally that spectral dips are due to a state-dependent electron delocalization within the manifold of d-orbitals.
Kalman filter data assimilation: Targeting observations and parameter estimation
Bellsky, Thomas, E-mail: bellskyt@asu.edu; Kostelich, Eric J.; Mahalov, Alex [School of Mathematical and Statistical Sciences, Arizona State University, Tempe, Arizona 85287 (United States)] [School of Mathematical and Statistical Sciences, Arizona State University, Tempe, Arizona 85287 (United States)
2014-06-15T23:59:59.000Z
This paper studies the effect of targeted observations on state and parameter estimates determined with Kalman filter data assimilation (DA) techniques. We first provide an analytical result demonstrating that targeting observations within the Kalman filter for a linear model can significantly reduce state estimation error as opposed to fixed or randomly located observations. We next conduct observing system simulation experiments for a chaotic model of meteorological interest, where we demonstrate that the local ensemble transform Kalman filter (LETKF) with targeted observations based on largest ensemble variance is skillful in providing more accurate state estimates than the LETKF with randomly located observations. Additionally, we find that a hybrid ensemble Kalman filter parameter estimation method accurately updates model parameters within the targeted observation context to further improve state estimation.
Joint estimation of phase and phase diffusion for quantum metrology
Mihai D. Vidrighin; Gaia Donati; Marco G. Genoni; Xian-Min Jin; W. Steven Kolthammer; M. S. Kim; Animesh Datta; Marco Barbieri; Ian A. Walmsley
2014-10-20T23:59:59.000Z
Phase estimation, at the heart of many quantum metrology and communication schemes, can be strongly affected by noise, whose amplitude may not be known, or might be subject to drift. Here, we investigate the joint estimation of a phase shift and the amplitude of phase diffusion, at the quantum limit. For several relevant instances, this multiparameter estimation problem can be effectively reshaped as a two-dimensional Hilbert space model, encompassing the description of an interferometer phase probed with relevant quantum states -- split single-photons, coherent states or N00N states. For these cases, we obtain a trade-off bound on the statistical variances for the joint estimation of phase and phase diffusion, as well as optimum measurement schemes. We use this bound to quantify the effectiveness of an actual experimental setup for joint parameter estimation for polarimetry. We conclude by discussing the form of the trade-off relations for more general states and measurements.
Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]
1997-03-28T23:59:59.000Z
Specialty costs are those nonstandard, unusual costs that are not typically estimated. Costs for research and development (R&D) projects involving new technologies, costs associated with future regulations, and specialty equipment costs are examples of specialty costs. This chapter discusses those factors that are significant contributors to project specialty costs and methods of estimating costs for specialty projects.
Cooling load estimation methods
McFarland, R.D.
1984-01-01T23:59:59.000Z
Ongoing research on quantifying the cooling loads in residential buildings, particularly buildings with passive solar heating systems, is described. Correlations are described that permit auxiliary cooling estimates from monthly average insolation and weather data. The objective of the research is to develop a simple analysis method, useful early in design, to estimate the annual cooling energy required of a given building.
Herbivore dynamics in an arid environment
Hempson, Gareth Peter
2011-06-27T23:59:59.000Z
This study investigated the effects of a seasonally variable forage resource on herbivore population dynamics. This involved estimating the relative importance of environmental conditions, and the accessible and used ...
Robust quantum parameter estimation: Coherent magnetometry with feedback
Stockton, John K.; Geremia, J.M.; Doherty, Andrew C.; Mabuchi, Hideo [Norman Bridge Laboratory of Physics, Mail Code 12-33, California Institute of Technology, Pasadena, California 91125 (United States)
2004-03-01T23:59:59.000Z
We describe the formalism for optimally estimating and controlling both the state of a spin ensemble and a scalar magnetic field with information obtained from a continuous quantum limited measurement of the spin precession due to the field. The full quantum parameter estimation model is reduced to a simplified equivalent representation to which classical estimation and control theory is applied. We consider both the tracking of static and fluctuating fields in the transient and steady-state regimes. By using feedback control, the field estimation can be made robust to uncertainty about the total spin number.
Hradil, Zdenek
over a complete set of mutually complementary observables (MCO) exhibits invariance with respect to unitary transformations applied to the state of the system and/or to the measured set of MCO. Moreover, namely, when (i) a complete set of MCO is not available, and when (ii) the observables measured
Estimating Bounds for Quadratic Assignment Problems Associated ...
2010-09-17T23:59:59.000Z
?Department of Mathematics and Statistics, Arizona State University, Tempe, AZ 85287-. 1804 ... Department of Industrial and Enterprise System Engineering , ... Malah used the projection method [13] to estimate lower and upper bounds for ...... DIMACS 25 Series in Discrete Mathematics and Theoretical Computer Sci-.
Temperature Dependent Wire Delay Estimation in Floorplanning
Nannarelli, Alberto
Temperature Dependent Wire Delay Estimation in Floorplanning Andreas Thor Winther, Wei Liu, Alberto, Arizona State University, Tempe, USA Abstract--Due to large variations in temperature in VLSI cir- cuits and the linear relationship between metal resistance and temperature, the delay through wires of the same length
REACTOR SAFETY KEYWORDS: best estimate plus
Hoppe, Fred M.
REACTOR SAFETY KEYWORDS: best estimate plus uncertainty analysis, epistemic error and aleatory phe- nomena that underlie the safety analyses. The use of BE codes within the reactor technology in advance and that result from a variety of operating conditions or states. These arise because the reactor
Quantum limits to estimation of photon deformation
Giovanni De Cillis; Matteo G. A. Paris
2014-07-08T23:59:59.000Z
We address potential deviations of radiation field from the bosonic behaviour and employ local quantum estimation theory to evaluate the ultimate bounds to precision in the estimation of these deviations using quantum-limited measurements on optical signals. We consider different classes of boson deformation and found that intensity measurement on coherent or thermal states would be suitable for their detection making, at least in principle, tests of boson deformation feasible with current quantum optical technology. On the other hand, we found that the quantum signal-to-noise ratio (QSNR) is vanishing with the deformation itself for all the considered classes of deformations and probe signals, thus making any estimation procedure of photon deformation inherently inefficient. A partial way out is provided by the polynomial dependence of the QSNR on the average number of photon, which suggests that, in principle, it would be possible to detect deformation by intensity measurements on high-energy thermal states.
State energy price and expenditure report 1991
Not Available
1993-09-01T23:59:59.000Z
The State Energy Price and Expenditure Report (SEPER) presents energy price and expenditure estimates individually for the 50 States and the District of Columbia and in aggregate for the United States. The price and expenditure estimates are provided by energy source and economic sector and are published for the years 1970, 1975, 1980, and 1985 through 1991. Data for all years, 1970 through 1991, are available on personal computer diskettes. Documentation in Appendix A describes how the price estimates are developed, including sources of data, methods of estimation, and conversion factors applied. This report is an update of the State Energy Price and Expenditure Report 1990, published in September 1992.
David Viennot; Lucile Aubourg
2014-11-19T23:59:59.000Z
We study a theoretical model of closed quasi-hermitian chain of spins which exhibits quantum analogues of chimera states, i.e. long life classical states for which a part of an oscillator chain presents an ordered dynamics whereas another part presents a disordered chaotic dynamics. For the quantum analogue, the chimera behavior deals with the entanglement between the spins of the chain. We discuss the entanglement properties, quantum chaos, quantum disorder and semi-classical similarity of our quantum chimera system. The quantum chimera concept is novel and induces new perspectives concerning the entanglement of multipartite systems.
Dynamic simulation of voltage collapses
Deuse, J.; Stubbe, M. (Tractebel, Brussels (Belgium))
1993-08-01T23:59:59.000Z
Most of the time the voltage collapse phenomena are studied by means of computer programs designed for the calculation of steady state conditions. But in the real world, the simultaneous occurrences of losses of synchronism, of AVR dynamics or of transformer tap changes call for a full dynamic simulation of voltage phenomena. The present paper shows some examples of dynamic simulations of voltage phenomena using a new general purpose stability program (EUROSTAG), covering in a continuous way the classical fields of transient, mid-term and long-term stability, and also the quasi steady state conditions of a power system.
State energy price and expenditure report, 1995
NONE
1998-08-01T23:59:59.000Z
The State Energy Price and Expenditure Report (SEPER) presents energy price and expenditure estimates individually for the 50 States and the District of Columbia and in aggregate for the US. The estimates developed in the State Energy Price and Expenditure Data System (SEPEDS) are provided by energy source and economic sector and are published for the years 1970 through 1995. Data for all years are available on a CD-ROM and via Internet. Consumption estimates used to calculate expenditures and the documentation for those estimates are taken from the State Energy Data Report 1995, Consumption Estimates (SEDR), published in December 1997. Expenditures are calculated by multiplying the price estimates by the consumption estimates, which are adjusted to remove process fuel; intermediate petroleum products; and other consumption that has no direct fuel costs, i.e., hydroelectric, geothermal, wind, solar, and photovoltaic energy sources.
Robustness of Controlled Quantum Dynamics
Andy Koswara; Raj Chakrabarti
2014-09-29T23:59:59.000Z
Control of multi-level quantum systems is sensitive to implementation errors in the control field and uncertainties associated with system Hamiltonian parameters. A small variation in the control field spectrum or the system Hamiltonian can cause an otherwise optimal field to deviate from controlling desired quantum state transitions and reaching a particular objective. An accurate analysis of robustness is thus essential in understanding and achieving model-based quantum control, such as in control of chemical reactions based on ab initio or experimental estimates of the molecular Hamiltonian. In this paper, theoretical foundations for quantum control robustness analysis are presented from both a distributional perspective - in terms of moments of the transition amplitude, interferences, and transition probability - and a worst-case perspective. Based on this theory, analytical expressions and a computationally efficient method for determining the robustness of coherently controlled quantum dynamics are derived. The robustness analysis reveals that there generally exists a set of control pathways that are more resistant to destructive interferences in the presence of control field and system parameter uncertainty. These robust pathways interfere and combine to yield a relatively accurate transition amplitude and high transition probability when uncertainty is present.
Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]
2011-05-09T23:59:59.000Z
This Guide provides uniform guidance and best practices that describe the methods and procedures that could be used in all programs and projects at DOE for preparing cost estimates. No cancellations.
Estimation of food consumption
Callaway, J.M. Jr.
1992-04-01T23:59:59.000Z
The research reported in this document was conducted as a part of the Hanford Environmental Dose Reconstruction (HEDR) Project. The objective of the HEDR Project is to estimate the radiation doses that people could have received from operations at the Hanford Site. Information required to estimate these doses includes estimates of the amounts of potentially contaminated foods that individuals in the region consumed during the study period. In that general framework, the objective of the Food Consumption Task was to develop a capability to provide information about the parameters of the distribution(s) of daily food consumption for representative groups in the population for selected years during the study period. This report describes the methods and data used to estimate food consumption and presents the results developed for Phase I of the HEDR Project.
Operated device estimation framework
Rengarajan, Janarthanan
2009-05-15T23:59:59.000Z
Protective device estimation is a challenging task because there are numerous protective devices present in a typical distribution system. Among various protective devices, auto-reclosers and fuses are the main overcurrent protection on distribution...
FY 2015 FY 2016 FY 2017 FY 2013 President's Budget Request 3,821.2 3,712.8 3,932.8 4,076.5 4,076.5 4 Estimate Budget Authority (in $ millions) FY 2011 FY 2012 FY 2013 FY 2014 FY 2015 FY 2016 FY 2017 FY 2013EXPLORATION EXP-1 Actual Estimate Budget Authority (in $ millions) FY 2011 FY 2012 FY 2013 FY 2014
Bruce Turkington; Petr Plechac
2010-10-21T23:59:59.000Z
A new method of deriving reduced models of Hamiltonian dynamical systems is developed using techniques from optimization and statistical estimation. Given a set of resolved variables that define a model reduction, the quasi-equilibrium ensembles associated with the resolved variables are employed as a family of trial probability densities on phase space. The residual that results from submitting these trial densities to the Liouville equation is quantified by an ensemble-averaged cost function related to the information loss rate of the reduction. From an initial nonequilibrium state, the statistical state of the system at any later time is estimated by minimizing the time integral of the cost function over paths of trial densities. Statistical closure of the underresolved dynamics is obtained at the level of the value function, which equals the optimal cost of reduction with respect to the resolved variables, and the evolution of the estimated statistical state is deduced from the Hamilton-Jacobi equation satisfied by the value function. In the near-equilibrium regime, or under a local quadratic approximation in the far-from-equilibrium regime, this best-fit closure is governed by a differential equation for the estimated state vector coupled to a Riccati differential equation for the Hessian matrix of the value function. Since memory effects are not explicitly included in the trial densities, a single adjustable parameter is introduced into the cost function to capture a time-scale ratio between resolved and unresolved motions. Apart from this parameter, the closed equations for the resolved variables are completely determined by the underlying deterministic dynamics.
Mapping densities in a noisy state space
Domenico Lippolis
2013-03-05T23:59:59.000Z
Weak noise smooths out fractals in a chaotic state space and introduces a maximum attainable resolution to its structure. The balance of noise and deterministic stretching/contraction in each neighborhood introduces local invariants of the dynamics that can be used to partition the state space. We study the local discrete-time evolution of a density in a two-dimensional hyperbolic state space, and use the asymptotic eigenfunctions for the noisy dynamics to formulate a new state space partition algorithm.
Control and estimation problems under partially nested information pattern
Gattami, Ather Said
In this paper we study distributed estimation and control problems over graphs under partially nested information patterns. We show a duality result that is very similar to the classical duality result between state ...
Mesoscale predictability and background error convariance estimation through ensemble forecasting
Ham, Joy L
2002-01-01T23:59:59.000Z
Over the past decade, ensemble forecasting has emerged as a powerful tool for numerical weather prediction. Not only does it produce the best estimate of the state of the atmosphere, it also could quantify the uncertainties associated with the best...
New Results in Stability, Control, and Estimation of Fractional Order Systems
Koh, Bong Su
2012-07-16T23:59:59.000Z
of control and estimation, even for systems where fractional order models do not arise “naturally”. This dissertation is aimed at further building of the base methodology with a focus on robust feedback control and state estimation. By setting...
Fourier Analytic Approach to Quantum Estimation of Group Action
Masahito Hayashi
2014-09-08T23:59:59.000Z
This article proposes a unified method to estimation of group action by using the inverse Fourier transform of the input state. The method provides optimal estimation for commutative and non-commutative group with/without energy constraint. The proposed method can be applied to projective representations of non-compact groups as well as of compact groups. This paper addresses the optimal estimation of R, U(1), SU(2), SO(3), and R^2 with Heisenberg representation under a suitable energy constraint.
Battery Calendar Life Estimator Manual Modeling and Simulation
Jon P. Christophersen; Ira Bloom; Ed Thomas; Vince Battaglia
2012-10-01T23:59:59.000Z
The Battery Life Estimator (BLE) Manual has been prepared to assist developers in their efforts to estimate the calendar life of advanced batteries for automotive applications. Testing requirements and procedures are defined by the various manuals previously published under the United States Advanced Battery Consortium (USABC). The purpose of this manual is to describe and standardize a method for estimating calendar life based on statistical models and degradation data acquired from typical USABC battery testing.
Amplitude mediated chimera states
Gautam C Sethia; Abhijit Sen; George L. Johnston
2013-10-04T23:59:59.000Z
We investigate the possibility of obtaining chimera state solutions of the non-local Complex Ginzburg-Landau Equation (NLCGLE) in the strong coupling limit when it is important to retain amplitude variations. Our numerical studies reveal the existence of a variety of amplitude mediated chimera states (including stationary and non-stationary two cluster chimera states), that display intermittent emergence and decay of amplitude dips in their phase incoherent regions. The existence regions of the single-cluster chimera state and both types of two cluster chimera states are mapped numerically in the parameter space of $C_1$ and $C_2$ the linear and nonlinear dispersion coefficients respectively of the NLCGLE. They represent a new domain of dynamical behaviour in the well explored rich phase diagram of this system. The amplitude mediated chimera states may find useful applications in understanding spatio-temporal patterns found in fluid flow experiments and other strongly coupled systems.
Estimated Costs of Crop Production in Iowa 2005
Duffy, Michael D.
Estimated Costs of Crop Production in Iowa 2005 The estimated costs of corn, corn silage. They include the annual Iowa Farm Business Association record summaries, production and costs data from and a survey of selected agricultural cooperatives and other input suppliers around the state. These costs
Estimated Costs of Crop Production in Iowa 2002
Duffy, Michael D.
Estimated Costs of Crop Production in Iowa 2002 The estimated costs of corn, corn silage. They include the annual Iowa Farm Business Association record summaries, production and costs data from and a survey of selected agricultural cooperatives and other input suppliers around the state. These costs
Estimated Costs of Crop Production in Iowa 2006
Duffy, Michael D.
Estimated Costs of Crop Production in Iowa 2006 The estimated costs of corn, corn silage. They include the annual Iowa Farm Business Association record summaries, production and costs data from and a survey of selected agricultural cooperatives and other input suppliers around the state. These costs
Blind subpixel Point Spread Function estimation from scaled image pairs
Paris-Sud XI, Université de
Blind subpixel Point Spread Function estimation from scaled image pairs Mauricio Delbracio§ Andr, causing aliasing effects. This work introduces a blind algorithm for the subpixel estimation of the point shows that the proposed algorithm reaches the accuracy levels of the best non- blind state
Evaluating the complementary relationship for estimating evapotranspiration from arid shrublands
Szilagyi, Jozsef
region using micrometeorological, energy balance, and remote sensing techniques [Malek et al., 1990 supplies, accurate estimates of evapotranspiration (LE) from arid shrublands of the Southwestern United States are needed to develop or refine basin water budgets. In this work, a novel approach to estimating
DAMAGE ESTIMATION USING MULTI-OBJECTIVE GENETIC ALGORITHMS Faisal Shabbir
Boyer, Edmond
DAMAGE ESTIMATION USING MULTI-OBJECTIVE GENETIC ALGORITHMS Faisal Shabbir 1 , Piotr Omenzetter 2 1.omenzetter@abdn.ac.uk ABSTRACT It is common to estimate structural damage severity by updating a structural model against experimental responses at different damage states. When experimental results from the healthy and damaged
Estimates of US biofuels consumption, 1990
Not Available
1991-10-01T23:59:59.000Z
This report is the sixth in the series of publications developed by the Energy Information Administration to quantify the amount of biofuel-derived primary energy used by the US economy. It provides preliminary estimates of 1990 US biofuels energy consumption by sector and by biofuels energy resource type. The objective of this report is to provide updated annual estimates of biofuels energy consumption for use by congress, federal and state agencies, and other groups involved in activities related to the use of biofuels. 5 figs., 10 tabs.
State energy price and expenditure report 1989
Not Available
1991-09-30T23:59:59.000Z
The State Energy Price and Expenditure Report (SEPER) presents energy price and expenditure estimates for the 50 States, the District of Columbia, and the United States. The estimates are provided by energy source (e.g., petroleum, natural gas, coal, and electricity) and by major consuming or economic sector. This report is an update of the State Energy Price and Expenditure Report 1988 published in September 1990. Changes from the last report are summarized in a section of the documentation. Energy price and expenditure estimates are published for the years 1970, 1975, 1980, and 1985 through 1989. Documentation follows the tables and describes how the price estimates are developed, including sources of data, methods of estimation, and conversion factors applied. Consumption estimates used to calculate expenditures, and the documentation for those estimates, are from the State Energy Data Report, Consumption Estimates, 1960--1989 (SEDR), published in May 1991. Expenditures are calculated by multiplying the price estimates by the consumption estimates, adjusted to remove process fuel and intermediate product consumption. All expenditures are consumer expenditures, that is, they represent estimates of money directly spent by consumers to purchase energy, generally including taxes. 11 figs., 43 tabs.
Dynamic analysis of policy drivers for bioenergy commodity markets
Robert F. Jeffers; Jacob J. Jacobson; Erin M. Searcy
2001-01-01T23:59:59.000Z
Biomass is increasingly being considered as a feedstock to provide a clean and renewable source of energy in the form of both liquid fuels and electric power. In the United States, the biofuels and biopower industries are regulated by different policies and have different drivers which impact the maximum price the industries are willing to pay for biomass. This article describes a dynamic computer simulation model that analyzes future behavior of bioenergy feedstock markets given policy and technical options. The model simulates the long-term dynamics of these markets by treating advanced biomass feedstocks as a commodity and projecting the total demand of each industry as well as the market price over time. The model is used for an analysis of the United States bioenergy feedstock market that projects supply, demand, and market price given three independent buyers: domestic biopower, domestic biofuels, and foreign exports. With base-case assumptions, the biofuels industry is able to dominate the market and meet the federal Renewable Fuel Standard (RFS) targets for advanced biofuels. Further analyses suggest that United States bioenergy studies should include estimates of export demand in their projections, and that GHG-limiting policy would partially shield both industries from exporter dominance.
A message-passing approach for recurrent-state epidemic models on networks
Shrestha, Munik; Moore, Cristopher
2015-01-01T23:59:59.000Z
Epidemic processes are common out-of-equilibrium phenomena of broad interdisciplinary interest. Recently, dynamic message-passing (DMP) has been proposed as an efficient algorithm for simulating epidemic models on networks, and in particular for estimating the probability that a given node will become infectious at a particular time. To date, DMP has been applied exclusively to models with one-way state changes, as opposed to models like SIS (susceptible-infectious-susceptible) and SIRS (susceptible-infectious-recovered-susceptible) where nodes can return to previously inhabited states. Because many real-world epidemics can exhibit such recurrent dynamics, we propose a DMP algorithm for complex, recurrent epidemic models on networks. Our approach takes correlations between neighboring nodes into account while preventing causal signals from backtracking to their immediate source, and thus avoids "echo chamber effects" where a pair of adjacent nodes each amplify the probability that the other is infectious. We ...
Symmetries in open quantum dynamics
Thomas F. Jordan
2014-08-20T23:59:59.000Z
Simple examples are used to introduce and examine a Heisenberg picture of symmetries of open quantum dynamics that can be described by unitary operators. When the symmetries are for Hamiltonian dynamics of an entire system, and the spectrum of the Hamiltonian operator has a lower bound, the symmetry operators commute with the Hamiltonian operator. An example shows that symmetry operators need not commute with the Hamiltonian operator when the spectrum of the Hamiltonian does not have a lower bound. There are many more symmetries that are only for the open dynamics of a subsystem and are described by unitary operators that do not commute with the Hamiltonian for the dynamics of the entire system. Examples show how these symmetries alone can reveal properties of the dynamics and reduce what needs to be done to work out the dynamics. A symmetry of the open dynamics of a subsystem can imply properties of the dynamics for the entire system that are not implied by the symmetries of the dynamics of the entire system. The symmetries are generally not related to constants of the motion for the open dynamics of the subsystem. There are symmetries of the open dynamics of a subsystem that depend only on the dynamics. In the simplest examples, these are also symmetries of the dynamics of the entire system. There are many more symmetries, of a new kind, that also depend on correlations, or absence of correlations, between the subsystem and the rest of the entire system, or on the state of the rest of the entire system. Symmetries that depend on correlations generally cannot be seen in the Schr\\"{o}dinger picture as symmetries of dynamical maps of density matrices for the subsystem.
Complex Dynamics Bernardo Da Costa, Koushik Ramachandran, Jingjing Qu, and I had a two semester learning seminar in complex analysis and potential ...
MELE: Maximum Entropy Leuven Estimators
Paris, Quirino
2001-01-01T23:59:59.000Z
of the Generalized Maximum Entropy Estimator of the Generaland Douglas Miller, Maximum Entropy Econometrics, Wiley andCalifornia Davis MELE: Maximum Entropy Leuven Estimators by
Thermodynamic estimation: Ionic materials
Glasser, Leslie, E-mail: l.glasser@curtin.edu.au
2013-10-15T23:59:59.000Z
Thermodynamics establishes equilibrium relations among thermodynamic parameters (“properties”) and delineates the effects of variation of the thermodynamic functions (typically temperature and pressure) on those parameters. However, classical thermodynamics does not provide values for the necessary thermodynamic properties, which must be established by extra-thermodynamic means such as experiment, theoretical calculation, or empirical estimation. While many values may be found in the numerous collected tables in the literature, these are necessarily incomplete because either the experimental measurements have not been made or the materials may be hypothetical. The current paper presents a number of simple and relible estimation methods for thermodynamic properties, principally for ionic materials. The results may also be used as a check for obvious errors in published values. The estimation methods described are typically based on addition of properties of individual ions, or sums of properties of neutral ion groups (such as “double” salts, in the Simple Salt Approximation), or based upon correlations such as with formula unit volumes (Volume-Based Thermodynamics). - Graphical abstract: Thermodynamic properties of ionic materials may be readily estimated by summation of the properties of individual ions, by summation of the properties of ‘double salts’, and by correlation with formula volume. Such estimates may fill gaps in the literature, and may also be used as checks of published values. This simplicity arises from exploitation of the fact that repulsive energy terms are of short range and very similar across materials, while coulombic interactions provide a very large component of the attractive energy in ionic systems. Display Omitted - Highlights: • Estimation methods for thermodynamic properties of ionic materials are introduced. • Methods are based on summation of single ions, multiple salts, and correlations. • Heat capacity, entropy, lattice energy, enthalpy, Gibbs energy values are available.
Parallel algorithm and hybrid regularization for dynamic PET reconstruction
Boyer, Edmond
Parallel algorithm and hybrid regularization for dynamic PET reconstruction N. Pustelnik, Student Abstract--To improve the estimation at the voxel level in dynamic Positron Emission Tomography (PET in the presence of Poisson noise and it is extended here to (dynamic) space + time PET image reconstruction
States from the Ingestion of Food Contaminated with Radionuclides from Nuclear Tests at the Nevada Test of the Continental United States from the Ingestion of Food Contaminated with Radionuclides from High-yield Weapons Tests Conducted by the U.S., U.K., and U.S.S.R. between 1952 and 1963 Final Report Lynn R. Anspaugh Lynn
Electronic Spectroscopy & Dynamics
Mark Maroncelli, Nancy Ryan Gray
2010-06-08T23:59:59.000Z
The Gordon Research Conference (GRC) on Electronic Spectroscopy and Dynamics was held at Colby College, Waterville, NH from 07/19/2009 thru 07/24/2009. The Conference was well-attended with participants (attendees list attached). The attendees represented the spectrum of endeavor in this field coming from academia, industry, and government laboratories, both U.S. and foreign scientists, senior researchers, young investigators, and students. The GRC on Electronic Spectroscopy & Dynamics showcases some of the most recent experimental and theoretical developments in electronic spectroscopy that probes the structure and dynamics of isolated molecules, molecules embedded in clusters and condensed phases, and bulk materials. Electronic spectroscopy is an important tool in many fields of research, and this GRC brings together experts having diverse backgrounds in physics, chemistry, biophysics, and materials science, making the meeting an excellent opportunity for the interdisciplinary exchange of ideas and techniques. Topics covered in this GRC include high-resolution spectroscopy, biological molecules in the gas phase, electronic structure theory for excited states, multi-chromophore and single-molecule spectroscopies, and excited state dynamics in chemical and biological systems.
Olama, Mohammed M [ORNL; Djouadi, Seddik M [ORNL; Charalambous, Prof. Charalambos [University of Cyprus
2009-01-01T23:59:59.000Z
Mobile-to-mobile networks are characterized by node mobility that makes the propagation environment time varying and subject to fading. As a consequence, the statistical characteristics of the received signal vary continuously, giving rise to a Doppler power spectral density (DPSD) which varies from one observation instant to the next. The current models do not capture and track the time varying characteristics. This paper is concerned with dynamical modelling of mobile-to-mobile channels, parameter estimation and identification from received signal measurements. The evolution of the propagation environment is described by stochastic differential equations. In particular, it is shown that the parameters of the models can be determined by approximating the band-limited DPSD using the Gauss-Newton method. However, since the DPSD is not available online, we propose to use a filter-based expectation maximization algorithm and Kalman filter to estimate the channel parameters and states, respectively. The scheme results in a finite dimensional filter which only uses the first and second order statistics. The algorithm is recursive allowing the inphase and quadrature components and parameters to be estimated online from received signal measurements. The algorithms are tested using experimental data collected from moving sensor nodes in indoor and outdoor environments demonstrating the method s viability.
SPACE TECHNOLOGY Actual Estimate
SPACE TECHNOLOGY TECH-1 Actual Estimate Budget Authority (in $ millions) FY 2011 FY 2012 FY 2013 FY.7 247.0 Exploration Technology Development 144.6 189.9 202.0 215.5 215.7 214.5 216.5 Notional SPACE TECHNOLOGY OVERVIEW .............................. TECH- 2 SBIR AND STTR
; - calculated separately for the most important radionuclides produced in nuclear weapons tests. Those would averages for all tests. 2. Provide a list of references regarding: (1) the history of nuclear weapons to the Population of the Continental U.S. from Nevada Weapons Tests and Estimates of Deposition Density
Use of Cost Estimating Relationships
Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]
1997-03-28T23:59:59.000Z
Cost Estimating Relationships (CERs) are an important tool in an estimator's kit, and in many cases, they are the only tool. Thus, it is important to understand their limitations and characteristics. This chapter discusses considerations of which the estimator must be aware so the Cost Estimating Relationships can be properly used.
Comparative Dynamics of Leucine Methyl Groups in FMOC-Leucine...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Dynamics of Leucine Methyl Groups in FMOC-Leucine and in a ProteinHydrophobic Core Probed by Solid-State Deuteron Comparative Dynamics of Leucine Methyl Groups in FMOC-Leucine and...
applied transient dynamic: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
21 22 23 24 25 Next Page Last Page Topic Index 1 Neural networks with transient state dynamics Astrophysics (arXiv) Summary: We investigate dynamical systems characterized by a...
Origin State Destination State
Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial Consumers (NumberThousand Cubic Feet) DecadeYear7. Estimated truck
Origin State Destination State
Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial Consumers (NumberThousand Cubic Feet) DecadeYear7. Estimated truck8.
Origin State Destination State
Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial Consumers (NumberThousand Cubic Feet) DecadeYear7. Estimated
Origin State Destination State
Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial Consumers (NumberThousand Cubic Feet) DecadeYear7. Estimated4.
Origin State Destination State
Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial Consumers (NumberThousand Cubic Feet) DecadeYear7. Estimated4.5.
Origin State Destination State
Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial Consumers (NumberThousand Cubic Feet) DecadeYear7. Estimated4.5.6.
Origin State Destination State
Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial Consumers (NumberThousand Cubic Feet) DecadeYear7.8. Estimated rail
Crop acreage estimators based on satellite imagery
Vidart, Stephane
1983-01-01T23:59:59.000Z
acreages have been pooled during the creation of the two data sets. Each data set refers to a particular part of the state of Texas. The two regions are shown in Figure 1. The partitioning is made according to crop reporting districts (CRD), which... studies are reported: (1) a comparison of sample behavior with theoretical asymptotic behavior, (2) an evaluation using CAMS data and fixed size sampling units of the improvement of the estimators under the new decision process over the old multinomial...
Jikang Chen
2010-03-01T23:59:59.000Z
The carrier or medium of electromagnetic waves has been vainly searched for many years, and now it has been caught after the establishment of the dynamic equations in photon gas. The photon's rest mass has been estimated from the cosmic background temperature in space where the photon gas is at an open state of thermal equilibrium, and the photon's proper magnetic moment is calculated from the dynamic equations of photon gas too. As the carrier of electromagnetic waves, the photon gas is a discrete medium at very high frequency, and then the Bohr's electron is hardly to emit energy in wave form and can be stably rounding the nuclei in discrete orbits at lower temperature.
Dynamics of generalized tachyon field
Rong-Jia Yang; Jingzhao Qi
2012-08-06T23:59:59.000Z
We investigate the dynamics of generalized tachyon field in FRW spacetime. We obtain the autonomous dynamical system for the general case. Because the general autonomous dynamical system cannot be solved analytically, we discuss two cases in detail: $\\beta=1$ and $\\beta=2$. We find the critical points and study their stability. At these critical points, we also consider the stability of the generalized tachyon field, which is as important as the stability of critical points. The possible final states of the universe are discussed.
Monotonic Local Decay Estimates
Avy Soffer
2011-10-29T23:59:59.000Z
For the Hamiltonian operator H = -{\\Delta}+V(x) of the Schr\\"odinger Equation with a repulsive potential, the problem of local decay is considered. It is analyzed by a direct method, based on a new, L^2 bounded, propagation observable. The resulting decay estimate, is in certain cases monotonic in time, with no "Quantum Corrections". This method is then applied to some examples in one and higher dimensions. In particular the case of the Wave Equation on a Schwarzschild manifold is redone: Local decay, stronger than the known ones are proved (minimal loss of angular derivatives and lower order of radial derivatives of initial data). The method developed here can be an alternative in some cases to the Morawetz type estimates, with L^2-multipliers replacing the first order operators. It provides an alternative to Mourre's method, by including thresholds and high energies.
Estimating radiogenic cancer risks
NONE
1994-06-01T23:59:59.000Z
This document presents a revised methodology for EPA`s estimation of cancer risks due to low-LET radiation exposures in light of information that has become available since the publication of BIER III, especially new information on the Japanese atomic bomb survivors. For most cancer sites, the risk model is one in which the age-specific relative risk coefficients are obtained by taking the geometric mean of coefficients derived from the atomic bomb survivor data employing two different methods for transporting risks from Japan to the U.S. (multiplicative and NIH projection methods). Using 1980 U.S. vital statistics, the risk models are applied to estimate organ-specific risks, per unit dose, for a stationary population.
Kampa, Aleksander Edward
1988-01-01T23:59:59.000Z
) December 1988 Extremal Index Estimation (December 1988) Aleksander Edward Kampa, Ecole Centrale de Paris, France Chairman of Advisory Comittee: Dr. Tailen Hsing If (X ) is a strictly stationary sequence satisfying certain n dependence restrictions (e.... g. D or A), then the relationship between the extremal properties of (X ) and its associated independent sequence (X ) n n can. under certain conditions, be summed up by a single constant Be[0. 1]. called the extremal index. Results of extreme...
Blumenthal, Jurg M.; Thompson, Wayne
2009-06-12T23:59:59.000Z
can collect samples from a corn field and use this data to calculate the yield estimate. An interactive grain yield calculator is provided in the Appendix of the pdf version of this publication. The calculator is also located in the publication.... Plan and prepare for sample and data collection. 2. Collect field samples and record data. 3. Analyze the data using the interactive grain yield calculator in the Appendix. Plan and prepare for sample and data collection Predetermine sample locations...
Hindrance of the excitation of the Hoyle state and the ghost of the $2^+_2$ state in $^{12}$C
Dao T. Khoa; Do Cong Cuong; Yoshiko Kanada-En'yo
2010-11-29T23:59:59.000Z
While the Hoyle state (the isoscalar $0^+_2$ excitation at 7.65 MeV in $^{12}$C) has been observed in almost all the electron and $\\alpha$ inelastic scattering experiments, the second $2^+$ excited state of $^{12}$C at $E_{\\rm x}\\approx 10$ MeV, believed to be an excitation of the Hoyle state, has not been clearly observed in these measurements excepting the high-precision \\aap experiments at $E_\\alpha=240$ and 386 MeV. Given the (spin and isospin zero) $\\alpha$-particle as a good probe for the nuclear isoscalar excitations, it remains a puzzle why the peak of the $2^+_2$ state could not be clearly identified in the measured \\aap spectra. To investigate this effect, we have performed a microscopic folding model analysis of the \\ac scattering data at 240 and 386 MeV in both the Distorted Wave Born Approximation (DWBA) and coupled-channel (CC) formalism, using the nuclear transition densities given by the antisymmetrized molecular dynamics (AMD) approach and a complex CDM3Y6 density dependent interaction. Although AMD predicts a very weak transition strength for the direct $(0^+_1\\to 2^+_2)$ excitation, our detailed analysis has shown evidence that a weak \\emph{ghost} of the $2^+_2$ state could be identified in the 240 MeV \\aap data for the $0^+_3$ state at 10.3 MeV, when the CC effects by the indirect excitation of the $2^+_2$ state are taken into account. Based on the same AMD structure input and preliminary \\aap data at 386 MeV, we have estimated relative contributions from the $2^+_2$ and $0^+_3$ states to the excitation of $^{12}$C at $E_{\\rm x}\\approx 10$ MeV as well as possible contamination by $3^-_1$ state.
State energy price and expenditure report 1992
Not Available
1994-12-01T23:59:59.000Z
The State Energy Price and Expenditure Report (SEPER) presents energy price and expenditure estimates individually for the 50 States and the District of Columbia and in aggregate for the United States. The price and expenditure estimates are provided by energy source and economic sector and are published for the years 1970, 1980, and 1985 through 1992. Data for all years, 1970 through 1992, are available on personal computer diskettes.
Hamme, Roberta C; Emerson, Steven R
2006-01-01T23:59:59.000Z
ux estimates and bubble dynamics. Organic carbon export fromcarbon export estimates for the whole euphotic zone. Both bubblebubble ?uxes would have had a much larger effect. Previous observations of organic carbon
Estimation Strategies for Constrained and Hybrid Dynamical Systems
Parish, Julie Marie Jones
2012-10-19T23:59:59.000Z
finite- and infinite-dimensional coordinates. The associated governing equations are integro-partial differential equations. As with constrained systems, these governing equations must be transformed in order to employ the CDEKF. Here, this transformation...
Estimating the Wind Resource in Uttarakhand: Comparison of Dynamic...
Broader source: Energy.gov (indexed) [DOE]
DOE U.S. Department of Energy GVAX Ganges Valley Aerosol Experiment HPC High performance computing MAE Mean absolute error MDE Median absolute error MF Mobile facility NREL...
Decisionmetrices : dynamic structural estimation of shipping investment decisions
Dikos, George
2004-01-01T23:59:59.000Z
This dissertation develops structural models for analyzing shipping investment decisions, namely ordering, scrapping and lay-up decisions in the tanker industry. We develop models, based on a microeconomic specification, ...
Estimation of parameters governing the transmission dynamics of ...
humans is assessed using prevalence of morbidity as a measure of the level of .... squares fits by negative exponentials (solid curves). .... J. Bethony et al., Exposure to Schistosoma mansoni infection in a rural area in Brazil II: Household risk.
Estimating the Wind Resource in Uttarakhand: Comparison of Dynamic
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisoryStandardGeneration |10 DOEGoals DuringMarkets - EAC 2011
Robust Single-Qubit Process Calibration via Robust Phase Estimation
Shelby Kimmel; Guang Hao Low; Theodore J. Yoder
2015-02-09T23:59:59.000Z
An important step in building a quantum computer is calibrating experimentally implemented quantum gates to produce operations that are close to ideal unitaries. The calibration step involves estimating the error in gates and then using controls to correct the implementation. Quantum process tomography is a standard technique for estimating these errors, but is both time consuming, (when one only wants to learn a few key parameters), and requires resources, like perfect state preparation and measurement, that might not be available. With the goal of efficiently estimating specific errors using minimal resources, we develop a parameter estimation technique, which can gauge two key parameters (amplitude and off-resonance errors) in a single-qubit gate with provable robustness and efficiency. In particular, our estimates achieve the optimal efficiency, Heisenberg scaling. Our main theorem making this possible is a robust version of the phase estimation procedure of Higgins et al. [B. L. Higgins, New J. Phys. 11, 073023 (2009)].
Quantitative estimation in Health Impact Assessment: Opportunities and challenges
Bhatia, Rajiv, E-mail: rajiv.bhatia@sfdph.or [San Francisco Department of Public Health, CA (United States); Seto, Edmund [University of California at Berkeley, CA (United States)
2011-04-15T23:59:59.000Z
Health Impact Assessment (HIA) considers multiple effects on health of policies, programs, plans and projects and thus requires the use of diverse analytic tools and sources of evidence. Quantitative estimation has desirable properties for the purpose of HIA but adequate tools for quantification exist currently for a limited number of health impacts and decision settings; furthermore, quantitative estimation generates thorny questions about the precision of estimates and the validity of methodological assumptions. In the United States, HIA has only recently emerged as an independent practice apart from integrated EIA, and this article aims to synthesize the experience with quantitative health effects estimation within that practice. We use examples identified through a scan of available identified instances of quantitative estimation in the U.S. practice experience to illustrate methods applied in different policy settings along with their strengths and limitations. We then discuss opportunity areas and practical considerations for the use of quantitative estimation in HIA.
Zeghib, Abdelghani
Introduction Results Linear Dynamics Lorentz Dynamics Actions of discrete groups on stationary Piccione) Geodeycos Meeting, Lyon, 28-30 April 2010 Abdelghani Zeghib Dynamics on Lorentz manifolds #12;Introduction Results Linear Dynamics Lorentz Dynamics Motivations and questions Examples 1 Introduction
Image-based meteorologic visibility estimation
Graves, Nathan
2011-01-01T23:59:59.000Z
the estimated luminance. . . . . . . . . . . . . . . . . .Nephelometer . . . . . . 3.4.3 Luminance Meter . . . . 4intensity and the estimated luminance. . . . . . . . . .
Estimated Costs of Crop Production in Iowa -2007 File A1-20
Duffy, Michael D.
Estimated Costs of Crop Production in Iowa - 2007 File A1-20 T he estimated costs of corn, corn sources. They include the annual Iowa Farm Business Asso- ciation record summaries, production and costs the state. These costs estimates are representative of average costs for farms in Iowa. Very large or small
Estimated Costs of Crop Production in Iowa -2009 File A1-20
Duffy, Michael D.
Estimated Costs of Crop Production in Iowa - 2009 File A1-20 T he estimated costs of corn, corn sources. They include the annual Iowa Farm Business Asso- ciation record summaries, production and costs the state. These costs estimates are representative of average costs for farms in Iowa. Very large or small
Estimated Costs of Crop Production in Iowa -2008 File A1-20
Duffy, Michael D.
Estimated Costs of Crop Production in Iowa - 2008 File A1-20 T he estimated costs of corn, corn sources. They include the annual Iowa Farm Business Asso- ciation record summaries, production and costs the state. These costs estimates are representative of average costs for farms in Iowa. Very large or small
Correlated exciton dynamics in semiconductor nanostructures
Wen, Patrick, Ph. D. Massachusetts Institute of Technology
2013-01-01T23:59:59.000Z
The absorption and dissipation of energy in semiconductor nanostructures are often determined by excited electron dynamics. In semiconductors, one fundamentally important electronic state is an exciton, an excited electron ...
Reservoir cross-over in entanglement dynamics
L. Mazzola; S. Maniscalco; K. -A. Suominen; B. M. Garraway
2009-08-28T23:59:59.000Z
We study the effects of spontaneous emission on the entanglement dynamics of two qubits interacting with a common Lorentzian structured reservoir. We assume that the qubits are initially prepared in a Bell-like state. We focus on the strong coupling regime and study the entanglement dynamics for different regions of the spontaneous emission decay parameter. This investigation allows us to explore the cross-over between common and independent reservoirs in entanglement dynamics.
Dynamical analysis of highly excited molecular spectra
Kellman, M.E. [Univ. of Oregon, Eugene (United States)
1993-12-01T23:59:59.000Z
The goal of this program is new methods for analysis of spectra and dynamics of highly excited vibrational states of molecules. In these systems, strong mode coupling and anharmonicity give rise to complicated classical dynamics, and make the simple normal modes analysis unsatisfactory. New methods of spectral analysis, pattern recognition, and assignment are sought using techniques of nonlinear dynamics including bifurcation theory, phase space classification, and quantization of phase space structures. The emphasis is chaotic systems and systems with many degrees of freedom.
Dynamical approach to heavy-ion induced fusion using actinide target
Aritomo, Y.; Hagino, K.; Chiba, S.; Nishio, K. [Flerov Laboratory of Nuclear Reactions, JINR, Dubna, 141980 (Russian Federation); Department of Physics, Tohoku University, Sendai 980-8578 (Japan); Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, Tokyo 152-8550 (Japan); Japan Atomic Energy Agency, Tokai, Ibaraki, 319-1195 (Japan)
2012-10-20T23:59:59.000Z
To treat heavy-ion reactions using actinide target nucleus, we propose a model which takes into account the coupling to the collective states of interacting nuclei in the penetration of the Coulomb barrier and the dynamical evolution of nuclear shape from the contact configuration. A fluctuation-dissipation model (Langevin equation) was applied in the dynamical calculation, where effect of nuclear orientation at the initial impact on the prolately deformed target nucleus was considered. Using this model, we analyzed the experimental data for the mass distribution of fission fragments (MDFF) in the reaction of {sup 36}S+{sup 238}U at several incident energies. Fusion-fission, quasifission and deep-quasi-fission are separated as different trajectories on the potential energy surface. We estimated the fusion cross section of the reaction.
ADAPTIVE PDE OBSERVER FOR BATTERY SOC/SOH ESTIMATION Scott J. Moura
Krstic, Miroslav
durability, thereby unlock- ing the full potential of battery energy storage. SOC/SOH esti- mationADAPTIVE PDE OBSERVER FOR BATTERY SOC/SOH ESTIMATION Scott J. Moura Miroslav Krstic Cymer Center develops an adaptive PDE observer for battery state-of-charge (SOC) and state-of-health (SOH) estimation
Energy Expenditure Estimation DEMO Application
Lu?trek, Mitja
and against the SenseWear, a dedicated commercial product for energy expenditure estimation. Keywords: humanEnergy Expenditure Estimation DEMO Application Bozidara Cvetkovi´c1,2 , Simon Kozina1,2 , Bostjan://www.mps.si Abstract. The paper presents two prototypes for the estimation of hu- man energy expenditure during normal
The ideal energy of classical lattice dynamics
Margolus, Norman
2015-01-01T23:59:59.000Z
We define, as local quantities, the least energy and momentum allowed by quantum mechanics and special relativity for physical realizations of some classical lattice dynamics. These definitions depend on local rates of finite-state change. In two example dynamics, we see that these rates evolve like classical mechanical energy and momentum.
Linear and Nonlinear State Estimation in the Czochralski Process
Gravdahl, Jan Tommy
is the only method used commercially for production of monocrystalline silicon for semiconductor and solar decades because of the development of semiconductor engineering and the solar industries. After production process is shown in Figure 1. The solid silicon put in a crucible. Electrical heaters are used both
Robust Vehicle State Estimation for Improved Traffic Sensing and Management
Vu, Anh Quoc
2011-01-01T23:59:59.000Z
31 3. Vehicle Segmentation from Monocular Video38 3.2.2. Vehicle40 3.2.3. Extraction of Vehicle Structure and
State Energy Data System Consumption Estimates Technical Notes
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary900 SpecialNanoparticulate FeS
Estimates of State Energy-Related Carbon Dioxide Emissions
Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688Electricity Use as an IndicatorNatural GasRevenueMay
State Energy Profiles and Estimates (SEDS) Report Archives
Gasoline and Diesel Fuel Update (EIA)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001) -heating oilAll Tables TablesPricesSpot Prices
ARM Site Atmospheric State Best Estimates for AIRS Validation
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP Update Information on new,Scanning Radar Azores1 ARM
Duffy, Michael D.
The estimated costs of corn, corn silage, soybeans, al- falfa, and pasture maintenance record summaries, production and costs data from the Departments of Economics, Agricultural cooperatives and other input suppliers around the state. These costs estimates are representative of average
Run-time Modeling and Estimation of Operating System Power Consumption
John, Lizy Kurian
Run-time Modeling and Estimation of Operating System Power Consumption Tao Li Department computing systems point to the need for power modeling and estimation for all components of a system software power evaluation, as well as power management (e.g. dynamic thermal control and equal energy
Exploring Spatial Correlation for Link Quality Estimation in Wireless Sensor Networks
Lee, Dongwon
Exploring Spatial Correlation for Link Quality Estimation in Wireless Sensor Networks Yingqi Xu in wireless sensor network design. Dynamic network conditions and environmental factors make an on-line, self and accurate estimation of link quality in wireless sensor networks. This algorithm captures the spatial
Estimation of cost synergies from mergers without cost data: Application to U.S. radio
Niebur, Ernst
Estimation of cost synergies from mergers without cost data: Application to U.S. radio Przemyslaw without using actual data on cost. The estimator uses a structural model in which companies play a dynamic for cost data. It turns out that between 1996 and 2006 additional ownership concentration generated $2.5b
On Estimating the Scale of National Deep Web Denis Shestakov and Tapio Salakoski
Hammerton, James
On Estimating the Scale of National Deep Web Denis Shestakov and Tapio Salakoski Turku Centre. With the advances in web technologies, more and more in- formation on the Web is contained in dynamically-generated web pages. Among several types of web "dynamism" the most important one is the case when web pages
Cost Estimating, Analysis, and Standardization
Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]
1984-11-02T23:59:59.000Z
To establish policy and responsibilities for: (a) developing and reviewing project cost estimates; (b) preparing independent cost estimates and analysis; (c) standardizing cost estimating procedures; and (d) improving overall cost estimating and analytical techniques, cost data bases, cost and economic escalation models, and cost estimating systems. Cancels DOE O 5700.2B, dated 8-5-1983; DOE O 5700.8, dated 5-27-1981; and HQ 1130.1A, dated 12-30-1981. Canceled by DOE O 5700.2D, dated 6-12-1992
Bioenergy market competition for biomass: A system dynamics review of current policies
Jacob J. Jacobson; Robert Jeffers
2013-07-01T23:59:59.000Z
There is growing interest in the United States and abroad to increase the use of biomass as an energy source due to environmental and energy security benefits. In the United States, the biofuel and biopower industries are regulated by different policies and different agencies and have different drivers, which impact the maximum price the industries are willing to pay for biomass. This article describes a dynamic computer simulation model that analyzes future behavior of bioenergy feedstock markets based on varying policy and technical options. The model simulates the long-term dynamics of these markets by treating advanced biomass feedstocks as a commodity and projecting the total demand of each industry, as well as the market price over time. The model is used for an analysis of the United States bioenergy feedstock market that projects supply, demand, and market price given three independent buyers: domestic biopower, domestic biofuels, and foreign exports. With base-case assumptions, the biofuels industry is able to dominate the market and meet the federal Renewable Fuel Standard (RFS) targets for advanced biofuels. Further analyses suggest that United States bioenergy studies should include estimates of export demand for biomass in their projections, and that GHG-limiting policy would partially shield both industries from export dominance.
Population dynamics, production, and prey consumption of fathead minnows (Pimephales
) in prairie wetlands: a bioenergetics approach W.G. Duffy Abstract: I assessed the population dynamics of fathead minnows (Pimephales promelas) in prairie wetlands and developed a bioenergetics model to estimate
Residential Lighting End-Use Consumption Study: Estimation Framework and Initial Estimates
Gifford, Will R.; Goldberg, Miriam L.; Tanimoto, Paulo M.; Celnicker, Dane R.; Poplawski, Michael E.
2012-12-01T23:59:59.000Z
The U.S. DOE Residential Lighting End-Use Consumption Study is an initiative of the U.S. Department of Energy’s (DOE’s) Solid-State Lighting Program that aims to improve the understanding of lighting energy usage in residential dwellings. The study has developed a regional estimation framework within a national sample design that allows for the estimation of lamp usage and energy consumption 1) nationally and by region of the United States, 2) by certain household characteristics, 3) by location within the home, 4) by certain lamp characteristics, and 5) by certain categorical cross-classifications (e.g., by dwelling type AND lamp type or fixture type AND control type).
Mapping and Assessment of the United States Ocean Wave Energy...
Mapping and Assessment of the United States Ocean Wave Energy Resource This project estimates the naturally available and technically recoverable U.S. wave energy resources, using...
Demonstration of Entanglement-Enhanced Phase Estimation in Solid
Gang-Qin Liu; Yu-Ran Zhang; Yan-Chun Chang; Jie-Dong Yue; Heng Fan; Xin-Yu Pan
2015-04-08T23:59:59.000Z
Precise parameter estimation plays a central role in science and technology. The statistical error in estimation can be decreased by repeating measurement, leading to that the resultant uncertainty of the estimated parameter is proportional to the square root of the number of repetitions in accordance with the central limit theorem. Quantum parameter estimation, an emerging field of quantum technology, aims to use quantum resources to yield higher statistical precision than classical approaches. Here, we report the first room-temperature implementation of entanglement-enhanced phase estimation in a solid-state system: the nitrogen-vacancy centre in pure diamond. We demonstrate a super-resolving phase measurement with two entangled qubits of different physical realizations: an nitrogen-vacancy centre electron spin and a proximal ${}^{13}$C nuclear spin. The experimental data shows clearly the uncertainty reduction when entanglement resource is used, confirming the theoretical expectation. Our results represent an elemental demonstration of enhancement of quantum metrology against classical procedure.
Neumark, Daniel M.
Decay dynamics of nascent acetonitrile and nitromethane dipole-bound anions produced (2014) Decay dynamics of nascent acetonitrile and nitromethane dipole-bound anions produced 2014; published online 13 May 2014) Decay dynamics of nascent dipole bound states of acetonitrile
State coal profiles, January 1994
Not Available
1994-02-02T23:59:59.000Z
The purpose of State Coal Profiles is to provide basic information about the deposits, production, and use of coal in each of the 27 States with coal production in 1992. Although considerable information on coal has been published on a national level, there is a lack of a uniform overview for the individual States. This report is intended to help fill that gap and also to serve as a framework for more detailed studies. While focusing on coal output, State Coal Profiles shows that the coal-producing States are major users of coal, together accounting for about three-fourths of total US coal consumption in 1992. Each coal-producing State is profiled with a description of its coal deposits and a discussion of the development of its coal industry. Estimates of coal reserves in 1992 are categorized by mining method and sulfur content. Trends, patterns, and other information concerning production, number of mines, miners, productivity, mine price of coal, disposition, and consumption of coal are detailed in statistical tables for selected years from 1980 through 1992. In addition, coal`s contribution to the State`s estimated total energy consumption is given for 1991, the latest year for which data are available. A US summary of all data is provided for comparing individual States with the Nation as a whole. Sources of information are given at the end of the tables.
State Energy Overview. [Contains glossary
Not Available
1983-10-01T23:59:59.000Z
An overview of selected energy-related data for the United States, for each state, and for the District of Columbia is presented. Included are the quantities of energy produced and consumed, estimates of fuel reserves, the value of nonrenewable fuels produced by type, energy expenditures, and consumer prices. Also provided for each state are selected demographic and energy-related information that have been ranked and expressed as a percent of the national total. This overview provides a ready reference and a quick access to selected state energy information and state rankings for various socioeconomic and energy items. The State Energy Overview is arranged in five sections. The first section presents United States totals and an overview of state rankings. The second depicts data for the 50 states and the District of Columbia. The glossary presents definitions germane to this publication and the fourth section describes methodology and includes remarks concerning the information and methods used to estimate 1982 consumption numbers. The fifth section presents sources of data and information for this publication. A summary of each section is included.
Recovery of Dynamic PET Regions via Simultaneous Segmentation and Deconvolution
MÃ¶ller, Torsten
Recovery of Dynamic PET Regions via Simultaneous Segmentation and Deconvolution Benjamin Smith1 and deconvolution of dynamic PET images. By incorporating the PSF of the imaging system into our segmentation model effect. We show improved segmentation results, and outperform two state-of-the-art dynamic PET