National Library of Energy BETA

Sample records for dynamic phase angle

  1. Dynamic Power Flow Controller: Compact Dynamic Phase Angle Regulators for Transmission Power Routing

    SciTech Connect (OSTI)

    2012-01-03

    GENI Project: Varentec is developing compact, low-cost transmission power controllers with fractional power rating for controlling power flow on transmission networks. The technology will enhance grid operations through improved use of current assets and by dramatically reducing the number of transmission lines that have to be built to meet increasing contributions of renewable energy sources like wind and solar. The proposed transmission controllers would allow for the dynamic control of voltage and power flow, improving the grid’s ability to dispatch power in real time to the places where it is most needed. The controllers would work as fail-safe devices whereby the grid would be restored to its present operating state in the event of a controller malfunction instead of failing outright. The ability to affordably and dynamically control power flow with adequate fail-safe switchgear could open up new competitive energy markets which are not possible under the current regulatory structure and technology base.

  2. An engine with means for changing the phase angle between displacer and working pistons: Its thermo dynamic cycle compared to the ideal Stirling cycle

    SciTech Connect (OSTI)

    Ayala V., E.

    1984-08-01

    This paper describes a heat engine comprising a displacer piston actuated by the pressure changes accomplished by the working piston combined with the force exerted by the pressure of a spring against the piston which can be changed to modify the phase angle between the displacer and working pistons. A gas cooler is arranged in an independent closed loop circuit that is put into operation between the end of the expansion stroke and the beginning of the compression stroke. The working cylinder is connected to the cold end of the displacer cylinder through an auxiliary cooler and to the end of the displacer cylinder through the heat regenerator and the heater.

  3. Gas-phase chemical dynamics

    SciTech Connect (OSTI)

    Weston, R.E. Jr.; Sears, T.J.; Preses, J.M.

    1993-12-01

    Research in this program is directed towards the spectroscopy of small free radicals and reactive molecules and the state-to-state dynamics of gas phase collision, energy transfer, and photodissociation phenomena. Work on several systems is summarized here.

  4. Geometric phase for collinear conical intersections. I. Geometric phase angle and vector potentials

    SciTech Connect (OSTI)

    Li Xuan; Brue, Daniel A.; Blandon, Juan D.; Parker, Gregory A.; Kendrick, Brian K.

    2011-02-14

    We present a method for properly treating collinear conical intersections in triatomic systems. The general vector potential (gauge theory) approach for including the geometric phase effects associated with collinear conical intersections in hyperspherical coordinates is presented. The current study develops an introductory method in the treatment of collinear conical intersections by using the phase angle method. The geometric phase angle, {eta}, in terms of purely internal coordinates is derived using the example of a spin-aligned quartet lithium triatomic system. A numerical fit and thus an analytical form for the associated vector potentials are explicitly derived for this triatomic A{sub 3} system. The application of this methodology to AB{sub 2} and ABC systems is also discussed.

  5. Shock dynamics of phase diagrams

    SciTech Connect (OSTI)

    Moro, Antonio

    2014-04-15

    A thermodynamic phase transition denotes a drastic change of state of a physical system due to a continuous change of thermodynamic variables, as for instance pressure and temperature. The classical van der Waals equation of state is the simplest model that predicts the occurrence of a critical point associated with the gasliquid phase transition. Nevertheless, below the critical temperature theoretical predictions of the van der Waals theory significantly depart from the observed physical behaviour. We develop a novel approach to classical thermodynamics based on the solution of Maxwell relations for a generalised family of nonlocal entropy functions. This theory provides an exact mathematical description of discontinuities of the order parameter within the phase transition region, it explains the universal form of the equations of state and the occurrence of triple points in terms of the dynamics of nonlinear shock wave fronts. -- Highlights: A new generalisation of van der Waals equation of state. Description of phase transitions in terms of shock dynamics of state curves. Proof of the universality of equations of state for a general class of models. Interpretation of triple points as confluence of classical shock waves. Correspondence table between thermodynamics and nonlinear conservation laws.

  6. Berry phase and Hannays angle in the BornOppenheimer hybrid systems

    SciTech Connect (OSTI)

    Liu, H.D. [National Laboratory of Science and Technology on Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing 100088 (China)] [National Laboratory of Science and Technology on Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing 100088 (China); Yi, X.X. [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China)] [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); Fu, L.B., E-mail: lbfu.iapcm@gmail.com [National Laboratory of Science and Technology on Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing 100088 (China); HEDPS, Center for Applied Physics and Technology, Peking University, Beijing 100084 (China)

    2013-12-15

    In this paper, we investigate the Berry phase and Hannays angle in the BornOppenheimer (BO) hybrid systems and obtain their algebraic expressions in terms of one form connection. The semiclassical relation of Berry phase and Hannays angle is discussed. We find that, besides the usual connection term, the Berry phase of quantum BO composite system also contains a novel term brought forth by the coupling induced effective gauge potential. This quantum modification can be viewed as an effective AharonovBohm effect. Moreover, the similar phenomenon is founded in Hannays angle of classical BO composite system, which indicates that the Berry phase and Hannays angle possess the same relation as the usual one. An example is used to illustrate our theory. This scheme can be used to generate artificial gauge potentials for neutral atoms. Besides, the quantumclassical hybrid BO system is also studied to compare with the results in full quantum and full classical composite systems. -- Highlights: We have derived the Berry phase and Hannays angle in BO hybrid systems. The Berry phase contains a novel term brought by the effective gauge potential. This mechanism can be used to generate artificial gauge potentials for neutral atoms. The relation between Hannays angles and Berry phases is established.

  7. Analog quadrature signal to phase angle data conversion by a quadrature digitizer and quadrature counter

    DOE Patents [OSTI]

    Buchenauer, C.J.

    1981-09-23

    The quadrature phase angle phi (t) of a pair of quadrature signals S/sub 1/(t) and S/sub 2/(t) is digitally encoded on a real time basis by a quadrature digitizer for fractional phi (t) rotational excursions and by a quadrature up/down counter for full phi (t) rotations. The pair of quadrature signals are of the form S/sub 1/(t) = k(t) sin phi (t) and S/sub 2/(t) = k(t) cos phi (t) where k(t) is a signal common to both. The quadrature digitizer and the quadrature up/down counter may be used together or singularly as desired or required. Optionally, a digital-to-analog converter may follow the outputs of the quadrature digitizer and the quadrature up/down counter to provide an analog signal output of the quadrature phase angle phi (t).

  8. Analog quadrature signal to phase angle data conversion by a quadrature digitizer and quadrature counter

    DOE Patents [OSTI]

    Buchenauer, C. Jerald

    1984-01-01

    The quadrature phase angle .phi.(t) of a pair of quadrature signals S.sub.1 (t) and S.sub.2 (t) is digitally encoded on a real time basis by a quadrature digitizer for fractional .phi.(t) rotational excursions and by a quadrature up/down counter for full .phi.(t) rotations. The pair of quadrature signals are of the form S.sub.1 (t)=k(t) sin .phi.(t) and S.sub.2 (t)=k(t) cos .phi.(t) where k(t) is a signal common to both. The quadrature digitizer and the quadrature up/down counter may be used together or singularly as desired or required. Optionally, a digital-to-analog converter may follow the outputs of the quadrature digitizer and the quadrature up/down counter to provide an analog signal output of the quadrature phase angle .phi.(t).

  9. Calculation of contact angles at triple phase boundary in solid oxide fuel cell anode using the level set method

    SciTech Connect (OSTI)

    Sun, Xiaojun; Hasegawa, Yosuke; Kohno, Haruhiko; Jiao, Zhenjun; Hayakawa, Koji; Okita, Kohei; Shikazono, Naoki

    2014-10-15

    A level set method is applied to characterize the three dimensional structures of nickel, yttria stabilized zirconia and pore phases in solid oxide fuel cell anode reconstructed by focused ion beam-scanning electron microscope. A numerical algorithm is developed to evaluate the contact angles at the triple phase boundary based on interfacial normal vectors which can be calculated from the signed distance functions defined for each of the three phases. Furthermore, surface tension force is estimated from the contact angles by assuming the interfacial force balance at the triple phase boundary. The average contact angle values of nickel, yttria stabilized zirconia and pore are found to be 143156, 83138 and 82123, respectively. The mean contact angles remained nearly unchanged after 100 hour operation. However, the contact angles just after reduction are different for the cells with different sintering temperatures. In addition, standard deviations of the contact angles are very large especially for yttria stabilized zirconia and pore phases. The calculated surface tension forces from mean contact angles were close to the experimental values found in the literature. Slight increase of surface tensions of nickel/pore and nickel/yttria stabilized zirconia were observed after operation. Present data are expected to be used not only for the understanding of the degradation mechanism, but also for the quantitative prediction of the microstructural temporal evolution of solid oxide fuel cell anode. - Highlights: A level set method is applied to characterize the 3D structures of SOFC anode. A numerical algorithm is developed to evaluate the contact angles at the TPB. Surface tension force is estimated from the contact angles. The average contact angle values are found to be 143o-156o, 83o-138o and 82o-123o. Present data are expected to understand degradation and predict evolution of SOFC.

  10. High energy x-ray phase contrast CT using glancing-angle grating interferometers

    SciTech Connect (OSTI)

    Sarapata, A.; Stayman, J. W.; Siewerdsen, J. H.; Finkenthal, M.; Stutman, D.; Pfeiffer, F.

    2014-02-15

    Purpose: The authors present initial progress toward a clinically compatible x-ray phase contrast CT system, using glancing-angle x-ray grating interferometry to provide high contrast soft tissue images at estimated by computer simulation dose levels comparable to conventional absorption based CT. Methods: DPC-CT scans of a joint phantom and of soft tissues were performed in order to answer several important questions from a clinical setup point of view. A comparison between high and low fringe visibility systems is presented. The standard phase stepping method was compared with sliding window interlaced scanning. Using estimated dose values obtained with a Monte-Carlo code the authors studied the dependence of the phase image contrast on exposure time and dose. Results: Using a glancing angle interferometer at high x-ray energy (∼45 keV mean value) in combination with a conventional x-ray tube the authors achieved fringe visibility values of nearly 50%, never reported before. High fringe visibility is shown to be an indispensable parameter for a potential clinical scanner. Sliding window interlaced scanning proved to have higher SNRs and CNRs in a region of interest and to also be a crucial part of a low dose CT system. DPC-CT images of a soft tissue phantom at exposures in the range typical for absorption based CT of musculoskeletal extremities were obtained. Assuming a human knee as the CT target, good soft tissue phase contrast could be obtained at an estimated absorbed dose level around 8 mGy, similar to conventional CT. Conclusions: DPC-CT with glancing-angle interferometers provides improved soft tissue contrast over absorption CT even at clinically compatible dose levels (estimated by a Monte-Carlo computer simulation). Further steps in image processing, data reconstruction, and spectral matching could make the technique fully clinically compatible. Nevertheless, due to its increased scan time and complexity the technique should be thought of not as

  11. Identifying ferroelectric phase and domain structure using angle-resolved piezoresponse force microscopy

    SciTech Connect (OSTI)

    Kim, K. L.; Huber, J. E.

    2014-03-24

    We used angle-resolved piezoresponse force microscopy (AR-PFM), vertical PFM (VPFM), and electron backscatter diffraction (EBSD) to provide a systematic interpretation of domain patterns in polycrystalline, near-morphotropic lead zirconate titanate. This material was used to illustrate the power of AR-PFM methods in resolving complex domain patterns where multiple phases may be present. AR-PFM was carried out with a 30° rotation interval, and the resulting data were analysed to identify the orientation of the underlying axis of piezoelectricity. The additional information provided by AR-PFM was studied, comparing its capabilities to those of 3-dimensional PFM, consisting of one VPFM image and two orthogonal lateral PFM (LPFM) images. We show that, in certain conditions, using AR-PFM can identify the phases present at the sub-grain scale. This was confirmed using VPFM and EBSD data. Furthermore, the method can discriminate laminated domain patterns that appear similar in VPFM and can reliably expose domain patterns that may not be seen in LPFM data from a single orientation, or even in 3D PFM data.

  12. Dynamic failure in two-phase materials

    SciTech Connect (OSTI)

    Fensin, S. J.; Walker, E. K.; Cerreta, E. K.; Trujillo, C. P.; Martinez, D. T.; Gray, G. T.

    2015-12-21

    Previous experimental research has shown that microstructural features such as interfaces, inclusions, vacancies, and heterogeneities can all act as voidnucleation sites. However, it is not well understood how important these interfaces are to damage evolution and failure as a function of the surrounding parentmaterials. In this work, we present results on three different polycrystallinematerials: (1) Cu, (2) Cu-24 wt. %Ag, and (3) Cu-15 wt. %Nb which were studied to probe the influence of bi-metal interfaces onvoidnucleation and growth. These materials were chosen due to the range of difference in structure and bulk properties between the two phases. The initial results suggest that when there are significant differences between the bulk properties (for example: stacking fault energy, melting temperature, etc.) the type of interface between the two parent materials does not principally control the damage nucleation and growth process. Rather, it is the “weaker” material that dictates the dynamic spall strength of the overall two-phase material.

  13. Dynamic failure in two-phase materials

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Fensin, S. J.; Walker, E. K.; Cerreta, E. K.; Trujillo, C. P.; Martinez, D. T.; Gray, G. T.

    2015-12-21

    Previous experimental research has shown that microstructural features such as interfaces, inclusions, vacancies, and heterogeneities can all act as voidnucleation sites. However, it is not well understood how important these interfaces are to damage evolution and failure as a function of the surrounding parentmaterials. In this work, we present results on three different polycrystallinematerials: (1) Cu, (2) Cu-24 wt. %Ag, and (3) Cu-15 wt. %Nb which were studied to probe the influence of bi-metal interfaces onvoidnucleation and growth. These materials were chosen due to the range of difference in structure and bulk properties between the two phases. The initial resultsmore » suggest that when there are significant differences between the bulk properties (for example: stacking fault energy, melting temperature, etc.) the type of interface between the two parent materials does not principally control the damage nucleation and growth process. Rather, it is the “weaker” material that dictates the dynamic spall strength of the overall two-phase material.« less

  14. Confined martensitic phase transformation kinetics and lattice dynamics in

    Office of Scientific and Technical Information (OSTI)

    Ni-Co-Fe-Ga shape memory alloys (Journal Article) | SciTech Connect Confined martensitic phase transformation kinetics and lattice dynamics in Ni-Co-Fe-Ga shape memory alloys Citation Details In-Document Search Title: Confined martensitic phase transformation kinetics and lattice dynamics in Ni-Co-Fe-Ga shape memory alloys Here we describe insights into the phase transformation kinetics and lattice dynamics associated with the newly discovered confined martensitic transformation, which are

  15. Effects of Contact Angle Hysteresis on Ice Adhesion and Growth over Superhydrophobic Surfaces under Dynamic Flow Conditions

    SciTech Connect (OSTI)

    Sarshar, Mohammad Amin; Swarctz, Christopher; Hunter, Scott Robert; Simpson, John T; Choi, Chang-Hwan

    2012-01-01

    In this paper, the iceophobic properties of superhydrophobic surfaces are investigated under dynamic flow conditions by using a closed loop low-temperature wind tunnel. Superhydrophobic surfaces were prepared by coating the substrates of aluminum and steel plates with nano-structured hydrophobic particles. The superhydrophobic plates along with uncoated control ones were exposed to an air flow of 12 m/s and 20 F accompanying micron-sized water droplets in the icing wind tunnel and the ice formation and accretion were probed by high-resolution CCD cameras. Results show that the superhydrophobic coatings significantly delay the ice formation and accretion even under the dynamic flow condition of the highly energetic impingement of accelerated super-cooled water droplets. It is found that there is a time scale for this phenomenon (delay of the ice formation) which has a clear correlation with the contact angle hysteresis and the length scale of surface roughness of the superhydrophobic surface samples, being the highest for the plate with the lowest contact angle hysteresis and finer surface roughness. The results suggest that the key parameter for designing iceophobic surfaces is to retain a low contact angle hysteresis (dynamic property) and the non-wetting superhydrophobic state under the hydrodynamic pressure of impinging droplets, rather than to only have a high contact angle (static property), in order to result in efficient anti-icing properties under dynamic conditions such as forced flows.

  16. Mountain-induced Dynamics Influence Cloud Phase

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2010-2011 via coordinated projects targeting clouds, precipitation, and dynamics in the Park Range of Colorado. The National Science Foundation sponsored aircraft measurements as...

  17. Dynamic pathway of the photoinduced magnetic phase transition...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dynamic pathway of the photoinduced magnetic phase transition of multiferroic TbMnO3 Wednesday, November 25, 2015 - 3:00pm SLAC, Redtail Hawk Conference Room 108A Speaker:...

  18. Optimization of the phase angle in ideal Stirling engines using the concept of tidal and ancillary domains

    SciTech Connect (OSTI)

    Finkelstein, T.

    1996-12-31

    In a parallel publication (Finkelstein, 1996), a new analysis of the ideal loss-less Stirling Cycle Machine was presented based upon the concept of overlapping Tidal and Ancillary domains. This has led to the definition of the following two dimensionless parameters: (1) the specific performance {Pi} for the unified measure of output for engines, refrigerators and heat pumps, and (2) the Tidal Compression Ratio {Kappa}, which is akin to the Compression Ratio in internal combustion machines and uniquely defines the operational characteristics of any Stirling Cycle Machine. An analysis to replace the alternative traditional Schmidt equation was presented and a new expression for the general performance of practical Stirling engines was derived from the first principles. An analytical optimization of the volumes of the three internal heat exchangers was also included. In this present paper, which is an extension of the above analysis, these new equations for the performance are utilized for an analytical optimization of the phase angles. It is shown that the optimum phase lead of the expansion space and the optimum phase lag of the compression space for an ideal isothermal machine is precisely {pi}/4 for all possible machines. This is independent of the previous conclusion that the pressure vector should have a zero phase lag or lead.

  19. Method and apparatus of wide-angle optical beamsteering from a nanoantenna phased array

    DOE Patents [OSTI]

    Davids, Paul; DeRose, Christopher; Rakich, Peter Thomas

    2015-08-11

    An optical beam-steering apparatus is provided. The apparatus includes one or more optical waveguides and at least one row of metallic nanoantenna elements overlying and electromagnetically coupled to a respective waveguide. In each such row, individual nanoantenna elements are spaced apart along an optical propagation axis of the waveguide so that there is an optical propagation phase delay between successive pairs of nanoantenna elements along the row. The apparatus also includes a respective single electric heating element in thermal contact with each of the waveguides. Each heating element is arranged to heat, substantially uniformly, at least that portion of its waveguide that directly underlies the corresponding row of nanoantenna elements.

  20. A new hydrocarbon empirical potential in angle bending calculation for the molecular dynamics simulation

    SciTech Connect (OSTI)

    Ping, Tan Ai; Hoe, Yeak Su

    2014-07-10

    Typically, short range potential only depends on neighbouring atoms and its parameters function can be categorized into bond stretching, angle bending and bond rotation potential. In this paper, we present our work called Angle Bending (AB) potential, whereas AB potential is the extension of our previous work namely Bond Stretching (BS) potential. Basically, potential will tend to zero after truncated region, potential in specific region can be represented by different piecewise polynomial. We proposed the AB piecewise potential which is possible to solve a system involving three atoms. AB potential able to handle the potential of covalent bonds for three atoms as well as two atoms cases due to its degeneracy properties. Continuity for the piecewise polynomial has been enforced by coupling with penalty methods. There are still plenty of improvement spaces for this AB potential. The improvement for three atoms AB potential will be studied and further modified into torsional potential which are the ongoing current research.

  1. Dependence of Berry's phase on the sign of the g factor for conical rotation of a magnetic field, measured without any dynamical phase shift

    SciTech Connect (OSTI)

    Morinaga, Atsuo; Toriyama, Koichi; Narui, Hirotaka; Aoki, Takatoshi; Imai, Hiromitsu

    2011-05-15

    Berry's phase for a whole turn in a conical rotation of the magnetic field with a semiangle {theta} has been clearly manifested free from the dynamical phase shift using the magnetic-field-insensitive two-photon transitions between sodium-ground hyperfine states having different signs of the g factors. The solid angles for states with a positive g factor and with a negative g factor are verified to be 2{pi}(1-cos{theta}) and -2{pi}(1+cos{theta}), respectively, for a right-handed rotation of a magnetic field and a semiangle of 0{<=}{theta}{<=}{pi}/2.

  2. Geometric phase of a qubit driven by a phase noise laser under non-Markovian dynamics

    SciTech Connect (OSTI)

    Berrada, K.

    2014-01-15

    Robustness of the geometric phase (GP) with respect to the environmental effects is a basic condition for an effective quantum computation. Here, we study quantitatively the GP of a two-level atom system driven by a phase noise laser under non-Markovian dynamics in terms of different parameters involved in the whole system. We find that with the change of the damping coupling, the GP is very sensitive to its properties exhibiting long collapse and revival phenomena, which play a significant role in enhancing the stabilization and control of the system dynamics. Moreover, we show that the GP can be considered as a tool for testing and characterizing the nature of the qubitenvironment coupling. Due to the significance of how a system is quantum correlated with its environment in the construction of a scalable quantum computer, the entanglement dynamics between the qubit with its environment under external classical noise is evaluated and investigated during the time evolution. -- Highlights: Geometric phase under noise phase laser. Dynamics of the geometric phase under non-Markovian dynamics in the presence of classical noise. Solution of master equation of the system in terms atomic inversion. Nonlocal correlation between the system and its environment under non-Markovianity.

  3. Protein Folding Dynamics Detected By Time-Resolved Synchrotron X-ray Small-Angle Scattering Technique

    SciTech Connect (OSTI)

    Fujisawa, Tetsuro; Takahashi, Satoshi [RIKEN Harima Institute, SPring-8 Center, Laboratory for Biometal Science, Hyogo 679-5148 (Japan); Institute for Protein Research, Osaka University Suita Osaka 565-0871/CREST, JST (Japan)

    2007-03-30

    The polypeptide collapse is an essential dynamics in protein folding. To understand the mechanism of the collapse, in situ observation of folding by various probes is necessary. The changes in secondary and tertiary structures in the folding process of globular proteins, whose chain lengths are less than 300 polypeptides, were observed by circular dichrosim and intrinsic fluorescence spectroscopies, respectively. On the other hand, those in protein compactness could be only detected by using time-resolved synchrotron x-ray small-angle scattering technique. The observed dynamics for several proteins with different topologies suggested a common folding mechanism termed 'collapse and search' dynamics, in which the polypeptide collapse precedes the formation of the native contact formation. In 'collapse and search' dynamics, the most outstanding feature lied in the compactness of the initial intermediates. The collapsed intermediates demonstrated the scaling relationship between radius of gyration (Rg) and chain length with a scaling exponent of 0.35 {+-} 0.11, which is close to the value (1/3) predicted by mechano-statistical theory for the collapsed globules of polymers in poor solvent. Thus, it was suggested that the initial collapse is caused by the coil-globule transition of polymers. Since the collapse is essential to the folding of larger proteins, further investigations on the collapse likely lead to an important insight into the protein folding phenomena.

  4. Ultra-small-angle X-ray scattering study of second- phase particles in heat-treated Zircaloy-4

    SciTech Connect (OSTI)

    Srirangam, Prakash; Idrees, Yasir; Ilavsky, Jan; Daymond, Mark R.

    2015-01-01

    The ultra-small-angle X-ray scattering (USAXS) technique has been used to investigate and to quantify the morphology and size distribution of secondphase particles in Zircaloy-4 under various heat-treatment conditions. The alloy samples were solutionized in the phase field at 1293 K for 15 min and then cooled at different rates, including water quenching, air cooling and furnace cooling. The water-quenched samples were subsequently subjected to a thermal aging treatment at 873 K for different aging times (30, 60, 120 and 300 min). The USAXS results show that water quenching and air cooling from the phase field produces a narrow size distribution of fine-size precipitates with an average diameter of 300–800 A ° , while furnace cooling resulted in coarsening of the particles, with a broad size distribution having an average precipitate size of 600–1200 A ° . Further, the furnace-cooled sample shows a higher volume fraction of particles than the water-quenched or air-cooled sample. The USAXS results on the quenched then aged samples show that aging at 873 K for 10 min resulted in very fine size precipitates with an average diameter of 200–350 A ° . A rapid precipitation with the highest number density of second-phase particles amongst all the heat-treated samples (4.3 1020 m3) was observed in the sample aged for 10 min at 873 K. Particles of larger size and with a broad size distribution were observed in the sample aged at 873 K for 300 min. A bimodal type of particle size distribution was observed in all the heat-treated samples. Important parameters in the characterization of second-phase particles, such as the average size, size distribution, volume fraction and number density, were evaluated and quantified. These parameters are discussed for both heat-treated and aged specimens. Transmission and scanning transmission electron microscopy characterization were carried out on all heat-treated samples, to assist in interpretation and to substantiate the

  5. UNIVERSALITY OF PHASE TRANSITION DYNAMICS: TOPOLOGICAL DEFECTS FROM SYMMETRY BREAKING

    SciTech Connect (OSTI)

    Zurek, Wojciech H.; Del Campo, Adolfo

    2014-02-13

    In the course of a non-equilibrium continuous phase transition, the dynamics ceases to be adiabatic in the vicinity of the critical point as a result of the critical slowing down (the divergence of the relaxation time in the neighborhood of the critical point). This enforces a local choice of the broken symmetry and can lead to the formation of topological defects. The Kibble-Zurek mechanism (KZM) was developed to describe the associated nonequilibrium dynamics and to estimate the density of defects as a function of the quench rate through the transition. During recent years, several new experiments investigating formation of defects in phase transitions induced by a quench both in classical and quantum mechanical systems were carried out. At the same time, some established results were called into question. We review and analyze the Kibble-Zurek mechanism focusing in particular on this surge of activity, and suggest possible directions for further progress.

  6. Isomorphic phase transformation in shocked cerium using molecular dynamics

    SciTech Connect (OSTI)

    Dupont, Virginie; Germann, Timothy C; Chen, Shao - Ping

    2010-08-12

    Cerium (Ce) undergoes a significant ({approx}16%) volume collapse associated with an isomorphic fcc-fcc phase transformation when subject to compressive loading. We present here a new Embedded Atom Method (EAM) potential for Cerium that models two minima for the two fcc phases. We show results from its use in Molecular Dynamics (MD) simulations of Ce samples subjected to shocks with pressures ranging from 0.5 to 25 GPa. A split wave structure is observed, with an elastic precursor followed by a plastic wave. The plastic wave causes the expected fcc-fcc phase transformation. Comparisons to experiments and MD simulations on Cesium (Cs) indicate that three waves could be observed. The construction of the EAM potential may be the source of the difference.

  7. Anomalous small-angle X-ray scattering of nanoporous two-phase atomistic models for amorphous silicon–germanium alloys

    SciTech Connect (OSTI)

    Chehaidar, A.

    2015-09-15

    The present work deals with a detailed analysis of the anomalous small-angle X-ray scattering in amorphous silicon–germanium alloy using the simulation technique. We envisage the nanoporous two-phase alloy model consisting in a mixture of Ge-rich and Ge-poor domains and voids at the nanoscale. By substituting Ge atoms for Si atoms in nanoporous amorphous silicon network, compositionally heterogeneous alloys are generated with various composition-contrasts between the two phases. After relaxing the as-generated structure, we compute its radial distribution function, and then we deduce by the Fourier transform technique its anomalous X-ray scattering pattern. Using a smoothing procedure, the computed X-ray scattering patterns are corrected for the termination errors due to the finite size of the model, allowing so a rigorous quantitative analysis of the anomalous small-angle scattering. Our simulation shows that, as expected, the anomalous small-angle X-ray scattering technique is a tool of choice for characterizing compositional heterogeneities coexisting with structural inhomogeneities in an amorphous alloy. Furthermore, the sizes of the compositional nanoheterogeneities, as measured by anomalous small-angle X-ray scattering technique, are X-ray energy independent. A quantitative analysis of the separated reduced anomalous small-angle X-ray scattering, as defined in this work, provided a good estimate of their size.

  8. Dynamic Studies of Lung Fluid Clearance with Phase Contrast Imaging

    SciTech Connect (OSTI)

    Kitchen, Marcus J.; Williams, Ivan; Irvine, Sarah C.; Morgan, Michael J.; Paganin, David M.; Lewis, Rob A.; Pavlov, Konstantin; Hooper, Stuart B.; Wallace, Megan J.; Siu, Karen K. W.; Yagi, Naoto; Uesugi, Kentaro

    2007-01-19

    Clearance of liquid from the airways at birth is a poorly understood process, partly due to the difficulties of observing and measuring the distribution of air within the lung. Imaging dynamic processes within the lung in vivo with high contrast and spatial resolution is therefore a major challenge. However, phase contrast X-ray imaging is able to exploit inhaled air as a contrast agent, rendering the lungs of small animals visible due to the large changes in the refractive index at air/tissue interfaces. In concert with the high spatial resolution afforded by X-ray imaging systems (<100 {mu}m), propagation-based phase contrast imaging is ideal for studying lung development. To this end we have utilized intense, monochromatic synchrotron radiation, together with a fast readout CCD camera, to study fluid clearance from the lungs of rabbit pups at birth. Local rates of fluid clearance have been measured from the dynamic sequences using a single image phase retrieval algorithm.

  9. Structural phase transition of ternary dielectric SmGdO{sub 3}: Evidence from angle dispersive x-ray diffraction and Raman spectroscopic studies

    SciTech Connect (OSTI)

    Sharma, Yogesh E-mail: satya504@gmail.com Sahoo, Satyaprakash E-mail: satya504@gmail.com Misra, Pankaj; Pavunny, Shojan P.; Katiyar, Ram S. E-mail: satya504@gmail.com; Mishra, A. K.; Dwivedi, Abhilash; Sharma, S. M.

    2015-03-07

    High-pressure synchrotron based angle dispersive x-ray diffraction (ADXRD) studies were carried out on SmGdO{sub 3} (SGO) up to 25.7 GPa at room temperature. ADXRD results indicated a reversible pressure-induced phase transition from ambient monoclinic to hexagonal phase at ∼8.9 GPa. The observed pressure-volume data were fitted with the third order Birch-Murnaghan equation of state yielding zero pressure bulk modulus B{sub 0} = 132(22) and 177(9) GPa for monoclinic (B-type) and hexagonal (A-type) phases, respectively. Pressure dependent micro-Raman spectroscopy further confirmed the monoclinic to hexagonal phase transition at about 5.24 GPa. The mode Grüneisen parameters and pressure coefficients for different Raman modes corresponding to each individual phases of SGO were calculated using pressure dependent Raman mode analysis.

  10. Average dynamics of a finite set of coupled phase oscillators

    SciTech Connect (OSTI)

    Dima, Germn C. Mindlin, Gabriel B.

    2014-06-15

    We study the solutions of a dynamical system describing the average activity of an infinitely large set of driven coupled excitable units. We compared their topological organization with that reconstructed from the numerical integration of finite sets. In this way, we present a strategy to establish the pertinence of approximating the dynamics of finite sets of coupled nonlinear units by the dynamics of its infinitely large surrogate.

  11. Mapping and uncertainty analysis of energy and pitch angle phase space in the DIII-D fast ion loss detector

    SciTech Connect (OSTI)

    Pace, D. C. Fisher, R. K.; Van Zeeland, M. A.; Pipes, R.

    2014-11-15

    New phase space mapping and uncertainty analysis of energetic ion loss data in the DIII-D tokamak provides experimental results that serve as valuable constraints in first-principles simulations of energetic ion transport. Beam ion losses are measured by the fast ion loss detector (FILD) diagnostic system consisting of two magnetic spectrometers placed independently along the outer wall. Monte Carlo simulations of mono-energetic and single-pitch ions reaching the FILDs are used to determine the expected uncertainty in the measurements. Modeling shows that the variation in gyrophase of 80 keV beam ions at the FILD aperture can produce an apparent measured energy signature spanning across 50-140 keV. These calculations compare favorably with experiments in which neutral beam prompt loss provides a well known energy and pitch distribution.

  12. Small-angle neutron scattering study of magnetic ordering and inhomogeneity across the martensitic phase transformation in Ni50–xCoxMn₄₀Sn₁₀ alloys

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bhatti, Kanwal Preet; El-Khatib, S.; Srivastava, Vijay; James, R. D.; Leighton, C.

    2012-04-27

    The Heusler-derived multiferroic alloy Ni50–xCoxMn₄₀Sn₁₀ has recently been shown to exhibit, at just above room temperature, a highly reversible martensitic phase transformation with an unusually large magnetization change. In this work the nature of the magnetic ordering above and below this transformation has been studied in detail in the critical composition range x = 6–8 via temperature-dependent (5–600 K) magnetometry and small-angle neutron scattering (SANS). We observe fairly typical paramagnetic to long-range-ordered ferromagnetic phase transitions on cooling to 420–430 K, with the expected critical spin fluctuations, followed by first-order martensitic phase transformations to a nonferromagnetic state below 360–390 K. Themore » static magnetization reveals complex magnetism in this low-temperature nonferromagnetic phase, including a Langevin-like field dependence, distinct spin freezing near 60 K, and significant exchange bias effects, consistent with superparamagnetic blocking of ferromagnetic clusters of nanoscopic dimensions. We demonstrate that these spin clusters, whose existence has been hypothesized in a variety of martensitic alloys exhibiting competition between ferromagnetic and antiferromagnetic exchange interactions, can be directly observed by SANS. The scattering data are consistent with a liquidlike spatial distribution of interacting magnetic clusters with a mean center-to-center spacing of 12 nm. Considering the behavior of the superparmagnetism, cooling-field and temperature-dependent exchange bias, and magnetic SANS, we discuss in detail the physical form and origin of these spin clusters, their intercluster interactions, the nature of the ground-state magnetic ordering in the martensitic phase, and the implications for our understanding of such alloy systems.« less

  13. Heterogeneous nucleation and growth dynamics in the light-induced phase transition in vanadium dioxide

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Brady, Nathaniel F.; Appavoo, Kannatassen; Seo, Minah; Nag, Joyeeta; Prasankumar, Rohit P.; Haglund, Richard F.; Hilton, David J.

    2016-03-02

    Here we report on ultrafast optical investigations of the light-induced insulator-to-metal phase transition in vanadium dioxide with controlled disorder generated by substrate mismatch. These results reveal common dynamics of this optically-induced phase transition that are independent of this disorder. Lastly, above the fluence threshold for completing the transition to the rutile crystalline phase, we find a common time scale, independent of sample morphology, of 40.5 ± 2 ps that is consistent with nucleation and growth dynamics of the R phase from the parent M1 ground state.

  14. Structural and phase transition changes of sodium dodecyl sulfate micellar solution in alcohols probed by small-angle neutron scattering (SANS)

    SciTech Connect (OSTI)

    Putra, Edy Giri Rachman; Patriati, Arum

    2015-04-16

    Small-angle neutron scattering (SANS) measurements on 0.3M sodium dodecyl sulfate (SDS) micellar solutions have been performed in the presence of n-alcohols, from ethanol to decanol at different alcohol concentrations, 2–10 wt%. The ellipsoid micellar structure which occurred in the 0.3M SDS in aqueous solution with the size range of 30–50 Å has different behavior at various hydrocarbon chain length and concentration of alcohols. At low concentration and short chain-length of alcohols, such as ethanol, propanol, and butanol, the size of micelles reduced and had a spherical-like structure. The opposite effect occurred as medium to long chain alcohols, such as hexanol, octanol and decanol was added into the 0.3M SDS micellar solutions. The micelles structure changed to be more elongated in major axis and then crossed the critical phase transition from micellar solution into liquid crystal phase as lamellar structure emerged by further addition of alcohols. The inter-lamellar distances were also depending on the hydrocarbon chain length and concentration of alcohols. In the meantime, the persistent micellar structures occurred in addition of medium chain of n-alcohol, pentanol at all concentrations.

  15. Technology verification phase. Dynamic isotope power system. Final report

    SciTech Connect (OSTI)

    Halsey, D.G.

    1982-03-10

    The Phase I requirements of the Kilowatt Isotope Power System (KIPS) program were to make a detailed Flight System Conceptual Design (FSCD) for an isotope fueled organic Rankine cycle power system and to build and test a Ground Demonstration System (GDS) which simulated as closely as possible the operational characteristics of the FSCD. The activities and results of Phase II, the Technology Verification Phase, of the program are reported. The objectives of this phase were to increase system efficiency to 18.1% by component development, to demonstrate system reliability by a 5000 h endurance test and to update the flight system design. During Phase II, system performance was improved from 15.1% to 16.6%, an endurance test of 2000 h was performed while the flight design analysis was limited to a study of the General Purpose Heat Source, a study of the regenerator manufacturing technique and analysis of the hardness of the system to a laser threat. It was concluded from these tests that the GDS is basically prototypic of a flight design; all components necessary for satisfactory operation were demonstrated successfully at the system level; over 11,000 total h of operation without any component failure attested to the inherent reliability of this type of system; and some further development is required, specifically in the area of performance. (LCL)

  16. Dynamically Driven Phase Transformations in Damaged Composite Materials

    SciTech Connect (OSTI)

    Plohr, JeeYeon N.; Clements, Brad E.; Addessio, Frank L

    2006-07-28

    A model developed for composite materials undergoing dynamicaly driven phase transitions in its constituents has been extended to allow for complex material micro-structure and evolution of damage. In this work, damage is described by interfacial debonding and micro-crack growth. We have applied the analysis to silicon carbide-titanium (SiC-Ti) unidirectional metal matrix composites. In these composites, Ti can undergo a low pressure and temperature solid-solid phase transition. With these extensions we have carried out simulations to study the complex interplay between loading rates, micro-structure, damage, and the thermo-mechanical response of the system as it undergoes a solid-solid phase transitions.

  17. Effect of Protein Incorporation on the Nanostructure of the Bicontinuous Microemulsion Phase of Winsor-III Systems: A Small-Angle Neutron Scattering Study

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hayes, Douglas G.; Gomez del Rio, Javier A.; Ye, Ran; Urban, Volker S.; Pingali, Sai Venkatesh; O’Neill, Hugh M.

    2015-01-20

    Small-angle neutron scattering (SANS) analysis using the Teubner₋Strey model has been employed to evaluate the effect of protein incorporation into the middle, bicontinuous microemulsion (BμE) phase of Winsor-III (WIII) systems formed by an aerosol-OT (AOT)/alkyl ethoxylate mixed surfactant system to understand better the extraction of proteins into and out of BμEs and to study the effect of proteins on a system that serves as a biomimetic analog of cell membranes. Under conditions of high salinity, the incorporation of positively charged proteins cytochrome c, lysozyme, and α-chymotrypsin, near their solubilization limit in the BμEs promoted the release of water and oilmore » from the BμEs, a decrease in the quasi-periodic repeat distance (d), an increase in ordering (a decrease in the amphiphilicity factor, fa) for the surfactant monolayers, and a decrease in the surface area per surfactant headgroup, suggesting that the proteins affected the self-assembly of components in the BμE phase and produced Debye shielding of AOTs sulfonate headgroup. For WIII systems possessing lower salinity, cytochrome c reduced the efficiency of surfactant in the BμE phase, noted by increases in d and fa, suggesting that the enzyme and AOT underwent ion pairing. We find that the results of this study demonstrate the importance of ionic strength to modulate proteinsurfactant interactions, which in turn will control the release of proteins encapsulated in the BμEs, relevant to WIII-based protein extraction and controlled release from BμE delivery systems, and demonstrate the utility of BμEs as a model system to understand the effect of proteins on biomembranes.« less

  18. Optical phase and the ionization-dissociation dynamics of excited H{sub 2}

    SciTech Connect (OSTI)

    Kirrander, A.; Fielding, H. H.; Jungen, Ch.

    2010-01-14

    We investigate the influence of optical phase on the dynamics of hydrogen molecules excited to a spectral region with competition between predominantly rotational ionization, and dissociation. We show that an appropriate choice of optical phase changes the relative timing of the ionization and dissociation. Furthermore, the temporal width of the ionization and dissociation fluxes can also be controlled, in a matter-wave analogy of transform-limited optical pulses. The close link between the optical phase and the photoinduced electronic and molecular dynamics has important implications for femtochemistry.

  19. Dynamic interplay between uranyl phosphate precipitation, sorption, and phase evolution

    SciTech Connect (OSTI)

    Munasinghe, P. Sumudu; Elwood Madden, Megan E.; Brooks, Scott C.; Elwood Madden, Andrew S.

    2015-04-17

    We report that natural examples demonstrate uranyl-phosphate minerals can maintain extremely low levels of aqueous uranium in groundwaters due to their low solubility. Thus, greater understanding of the geochemical factors leading to uranyl phosphate precipitation may lead to successful application of phosphate-based remediation methods. However, the solubility of uranyl phosphate phases varies over >3 orders of magnitude, with the most soluble phases typically observed in lab experiments. To understand the role of common soil/sediment mineral surfaces in the nucleation and transformation of uranyl phosphate minerals under environmentally relevant conditions, we carried out batch experiments with goethite and mica at pH 6 in mixed electrolyte solutions ranging from 1–800 μM U and 1–800 μM P. All experiments ended with uranium concentrations below the USEPA MCL for U, but with 2–3 orders of magnitude difference in uranium concentrations.

  20. Dynamic interplay between uranyl phosphate precipitation, sorption, and phase evolution

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Munasinghe, P. Sumudu; Elwood Madden, Megan E.; Brooks, Scott C.; Elwood Madden, Andrew S.

    2015-04-17

    We report that natural examples demonstrate uranyl-phosphate minerals can maintain extremely low levels of aqueous uranium in groundwaters due to their low solubility. Thus, greater understanding of the geochemical factors leading to uranyl phosphate precipitation may lead to successful application of phosphate-based remediation methods. However, the solubility of uranyl phosphate phases varies over >3 orders of magnitude, with the most soluble phases typically observed in lab experiments. To understand the role of common soil/sediment mineral surfaces in the nucleation and transformation of uranyl phosphate minerals under environmentally relevant conditions, we carried out batch experiments with goethite and mica at pHmore » 6 in mixed electrolyte solutions ranging from 1–800 μM U and 1–800 μM P. All experiments ended with uranium concentrations below the USEPA MCL for U, but with 2–3 orders of magnitude difference in uranium concentrations.« less

  1. Quasiparticle dynamics across the full Brillouin zone of Bi2Sr2CaCu2O8+δ traced with ultrafast time and angle-resolved photoemission spectroscopy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dakovski, Georgi L.; Durakiewicz, Tomasz; Zhu, Jian-Xin; Riseborough, Peter S.; Gu, Genda; Gilbertson, Steve M.; Taylor, Antoinette; Rodriguez, George

    2015-10-12

    A hallmark in the cuprate family of high-temperature superconductors is the nodal-antinodal dichotomy. In this regard, angle-resolved photoemission spectroscopy (ARPES) has proven especially powerful, providing band structure information directly in energy-momentum space. Time-resolved ARPES (trARPES) holds great promise of adding ultrafast temporal information, in an attempt to identify different interaction channels in the time domain. Previous studies of the cuprates using trARPES were handicapped by the low probing energy which significantly limits the accessible momentum space. Using 20.15eV, 12 fs pulses we show for the first time the evolution of quasiparticles in the antinodal region of Bi2Sr2CaCu2O8+δ and demonstrate thatmore » nonmonotonic relaxation dynamics dominates above a certain fluence threshold. The dynamics is heavily influenced by transient modification of the electron-phonon interaction and phase space restrictions, in severe contrast to the monotonic relaxation in the nodal and off-nodal regions.« less

  2. Quasiparticle dynamics across the full Brillouin zone of Bi2Sr2CaCu2O8+δ traced with ultrafast time and angle-resolved photoemission spectroscopy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dakovski, Georgi L.; Durakiewicz, Tomasz; Zhu, Jian-Xin; Riseborough, Peter S.; Gu, Genda; Gilbertson, Steve M.; Taylor, Antoinette; Rodriguez, George

    2015-10-12

    A hallmark in the cuprate family of high-temperature superconductors is the nodal-antinodal dichotomy. In this regard, angle-resolved photoemission spectroscopy (ARPES) has proven especially powerful, providing band structure information directly in energy-momentum space. Time-resolved ARPES (trARPES) holds great promise of adding ultrafast temporal information, in an attempt to identify different interaction channels in the time domain. Previous studies of the cuprates using trARPES were handicapped by the low probing energy which significantly limits the accessible momentum space. Using 20.15eV, 12 fs pulses we show for the first time the evolution of quasiparticles in the antinodal region of Bi2Sr2CaCu2O8+δ and demonstrate thatmore »nonmonotonic relaxation dynamics dominates above a certain fluence threshold. The dynamics is heavily influenced by transient modification of the electron-phonon interaction and phase space restrictions, in severe contrast to the monotonic relaxation in the nodal and off-nodal regions.« less

  3. Ring magnet firing angle control

    DOE Patents [OSTI]

    Knott, M.J.; Lewis, L.G.; Rabe, H.H.

    1975-10-21

    A device is provided for controlling the firing angles of thyratrons (rectifiers) in a ring magnet power supply. A phase lock loop develops a smooth ac signal of frequency equal to and in phase with the frequency of the voltage wave developed by the main generator of the power supply. A counter that counts from zero to a particular number each cycle of the main generator voltage wave is synchronized with the smooth AC signal of the phase lock loop. Gates compare the number in the counter with predetermined desired firing angles for each thyratron and with coincidence the proper thyratron is fired at the predetermined firing angle.

  4. Structural Phase Transitions and Water Dynamics in Uranyl Fluoride Hydrates

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Miskowiec, Andrew J.; Kirkegaard, Marie C.; Huq, Ashfia; Mamontov, Eugene; Herwig, Kenneth W.; Trowbridge, Lee D.; Rondinone, Adam Justin; Anderson, Brian B.

    2015-11-17

    We report a novel production method for uranium oxy uoride [(UO2)7F14(H2O)7] 4H2O, referred to as structure D. Structure D is produced as a product of hydrating anhydrous uranyl uoride, UO2F2, through the gas phase at ambient temperatures fol- lowed by desiccation by equilibration with a dry environment. We follow the structure of [(UO2)7F14(H2O)7] 4H2O through an intermediate, liquid-like phase, wherein the coordination number of the uranyl ion is reduced to 5 (from 6 in the anhydrous struc- ture), and a water molecule binds as an equatorial ligand to the uranyl ion. Quasielas- tic neutron scattering results compare well with previousmore » measurements of mineral hydrates. The two groups of structurally distinct water molecules in D perform re- stricted motion on a length scale commensurate with the O{H bond (r = 0.92 A). The more tightly bound equatorial ligand waters rotate slower (Dr = 2.2 ps-1) than their hydrogen-bonded partners (Dr = 28.7 ps-1).« less

  5. Structural Phase Transitions and Water Dynamics in Uranyl Fluoride Hydrates

    SciTech Connect (OSTI)

    Miskowiec, Andrew J.; Kirkegaard, Marie C.; Huq, Ashfia; Mamontov, Eugene; Herwig, Kenneth W.; Trowbridge, Lee D.; Rondinone, Adam Justin; Anderson, Brian B.

    2015-11-17

    We report a novel production method for uranium oxy uoride [(UO2)7F14(H2O)7] 4H2O, referred to as structure D. Structure D is produced as a product of hydrating anhydrous uranyl uoride, UO2F2, through the gas phase at ambient temperatures fol- lowed by desiccation by equilibration with a dry environment. We follow the structure of [(UO2)7F14(H2O)7] 4H2O through an intermediate, liquid-like phase, wherein the coordination number of the uranyl ion is reduced to 5 (from 6 in the anhydrous struc- ture), and a water molecule binds as an equatorial ligand to the uranyl ion. Quasielas- tic neutron scattering results compare well with previous measurements of mineral hydrates. The two groups of structurally distinct water molecules in D perform re- stricted motion on a length scale commensurate with the O{H bond (r = 0.92 A). The more tightly bound equatorial ligand waters rotate slower (Dr = 2.2 ps-1) than their hydrogen-bonded partners (Dr = 28.7 ps-1).

  6. Space and time renormalization in phase transition dynamics

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Francuz, Anna; Dziarmaga, Jacek; Gardas, Bartłomiej; Zurek, Wojciech H.

    2016-02-18

    Here, when a system is driven across a quantum critical point at a constant rate, its evolution must become nonadiabatic as the relaxation time τ diverges at the critical point. According to the Kibble-Zurek mechanism (KZM), the emerging post-transition excited state is characterized by a finite correlation length ξˆ set at the time tˆ=τˆ when the critical slowing down makes it impossible for the system to relax to the equilibrium defined by changing parameters. This observation naturally suggests a dynamical scaling similar to renormalization familiar from the equilibrium critical phenomena. We provide evidence for such KZM-inspired spatiotemporal scaling by investigatingmore » an exact solution of the transverse field quantum Ising chain in the thermodynamic limit.« less

  7. FINAL REPORT: An Investigation of the Microphysical, Radiative, and Dynamical Properties of Mixed-Phase Clouds

    SciTech Connect (OSTI)

    Shupe, Matthew D

    2007-10-01

    This final report summarizes the major accomplishments and products resulting from a three-year grant funded by the DOE, Office of Science, Atmospheric Radiation Measurement Program titled: An Investigation of the Microphysical, Radiative, and Dynamical Properties of Mixed-Phase Clouds. Accomplishments are listed under the following subcategories: Mixed-phase cloud retrieval method development; Mixed-phase cloud characterization; ARM mixed-phase cloud retrieval review; and New ARM MICROBASE product. In addition, lists are provided of service to the Atmospheric Radiation Measurement Program, data products provided to the broader research community, and publications resulting from this grant.

  8. Performance monitoring for new phase dynamic optimization of instruction dispatch cluster configuration

    DOE Patents [OSTI]

    Balasubramonian, Rajeev; Dwarkadas, Sandhya; Albonesi, David

    2012-01-24

    In a processor having multiple clusters which operate in parallel, the number of clusters in use can be varied dynamically. At the start of each program phase, the configuration option for an interval is run to determine the optimal configuration, which is used until the next phase change is detected. The optimum instruction interval is determined by starting with a minimum interval and doubling it until a low stability factor is reached.

  9. Analysis of nanoscale two-phase flow of argon using molecular dynamics

    SciTech Connect (OSTI)

    Verma, Abhishek Kumar; Kumar, Rakesh

    2014-12-09

    Two phase flows through micro and nanochannels have attracted a lot of attention because of their immense applicability to many advanced fields such as MEMS/NEMS, electronic cooling, bioengineering etc. In this work, a molecular dynamics simulation method is employed to study the condensation process of superheated argon vapor force driven flow through a nanochannel combining fluid flow and heat transfer. A simple and effective particle insertion method is proposed to model phase change of argon based on non-periodic boundary conditions in the simulation domain. Starting from a crystalline solid wall of channel, the condensation process evolves from a transient unsteady state where we study the influence of different wall temperatures and fluid wall interactions on interfacial and heat transport properties of two phase flows. Subsequently, we analyzed transient temperature, density and velocity fields across the channel and their dependency on varying wall temperature and fluid wall interaction, after a dynamic equilibrium is achieved in phase transition. Quasi-steady nonequilibrium temperature profile, heat flux and interfacial thermal resistance were analyzed. The results demonstrate that the molecular dynamics method, with the proposed particle insertion method, effectively solves unsteady nonequilibrium two phase flows at nanoscale resolutions whose interphase between liquid and vapor phase is typically of the order of a few molecular diameters.

  10. Nanoscopic dynamics of phospholipid in unilamellar vesicles: Effect of gel to fluid phase transition

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sharma, V. K.; Mamontov, E.; Anunciado, D. B.; O’Neill, H.; Urban, V.

    2015-03-04

    Dynamics of phospholipids in unilamellar vesicles (ULV) is of interest in biology, medical, and food sciences since these molecules are widely used as biocompatible agents and a mimic of cell membrane systems. We have investigated the nanoscopic dynamics of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) phospholipid in ULV as a function of temperature using elastic and quasielastic neutron scattering (QENS). The dependence of the signal on the scattering momentum transfer, which is a critical advantage of neutron scattering techniques, allows the detailed analysis of the lipid motions that cannot be carried out by other means. In agreement with a differential scanning calorimetry measurement, amore » sharp rise in the elastic scattering intensity below ca. 296 K indicates a phase transition from the high-temperature fluid phase to the low-temperature solid gel phase. The microscopic lipid dynamics exhibits qualitative differences between the solid gel phase (in a measurement at 280 K) and the fluid phase (in a measurement at a physiological temperature of 310 K). The data analysis invariably shows the presence of two distinct motions: the whole lipid molecule motion within a monolayer, or lateral diffusion, and the relatively faster internal motion of the DMPC molecule. The lateral diffusion of the whole lipid molecule is found to be Fickian in character, whereas the internal lipid motions are of localized character, consistent with the structure of the vesicles. The lateral motion slows down by an order of magnitude in the solid gel phase, whereas for the internal motion not only the time scale, but also the character of the motion changes upon the phase transition. In the solid gel phase, the lipids are more ordered and undergo uniaxial rotational motion. However, in the fluid phase, the hydrogen atoms of the lipid tails undergo confined translation diffusion rather than uniaxial rotational diffusion. The localized translational diffusion of the hydrogen

  11. Nanoscopic Dynamics of Phospholipid in Unilamellar Vesicles: Effect of Gel to Fluid Phase Transition

    SciTech Connect (OSTI)

    Sharma, Veerendra K [ORNL; Mamontov, Eugene [ORNL; Anunciado, Divina B [ORNL; O'Neill, Hugh Michael [ORNL; Urban, Volker S [ORNL

    2015-01-01

    Dynamics of phospholipids in unilamellar vesicles (ULV) is of interest in biology, medical, and food sciences since these molecules are widely used as biocompatible agents and a mimic of cell membrane systems. We have investigated the nanoscopic dynamics of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) phospholipid in ULV as a function of temperature using elastic and quasielastic neutron scattering (QENS). The dependence of the signal on the scattering momentum transfer, which is a critical advantage of neutron scattering techniques, allows the detailed analysis of the lipid motions that cannot be carried out by other means. In agreement with a differential scanning calorimetry measurement, a sharp rise in the elastic scattering intensity below ca. 296 K indicates a phase transition from the high-temperature fluid phase to the low-temperature solid gel phase. The microscopic lipid dynamics exhibits qualitative differences between the solid gel phase (in a measurement at 280 K) and the fluid phase (in a measurement at a physiological temperature of 310 K). The data analysis invariably shows the presence of two distinct motions: the whole lipid molecule motion within a monolayer, or lateral diffusion, and the relatively faster internal motion of the DMPC molecule. The lateral diffusion of the whole lipid molecule is found to be Fickian in character, whereas the internal lipid motions are of localized character, consistent with the structure of the vesicles. The lateral motion slows down by an order of magnitude in the solid gel phase, whereas for the internal motion not only the time scale, but also the character of the motion changes upon the phase transition. In the solid gel phase, the lipids are more ordered and undergo uniaxial rotational motion. However, in the fluid phase, the hydrogen atoms of the lipid tails undergo confined translation diffusion rather than uniaxial rotational diffusion. The localized translational diffusion of the hydrogen atoms of

  12. Dynamical generation of phase-squeezed states in two-component Bose-Einstein condensates

    SciTech Connect (OSTI)

    Jin, G. R.; An, Y.; Yan, T.; Lu, Z. S. [Department of Physics, Beijing Jiaotong University, Beijing 100044 (China)

    2010-12-15

    As an ''input'' state of a linear (Mach-Zehnder or Ramsey) interferometer, the phase-squeezed state proposed by Berry and Wiseman exhibits the best sensitivity approaching to the Heisenberg limit [Phys. Rev. Lett. 85, 5098 (2000)]. Similar with the Berry and Wiseman's state, we find that two kinds of phase-squeezed states can be generated dynamically with atomic Bose-Einstein condensates confined in a symmetric double-well potential, which shows squeezing along spin operator S{sub y} and antisqueezing along S{sub z}, leading to subshot-noise phase estimation.

  13. DYNAMIC MODELING STRATEGY FOR FLOW REGIME TRANSITION IN GAS-LIQUID TWO-PHASE FLOWS

    SciTech Connect (OSTI)

    X. Wang; X. Sun; H. Zhao

    2011-09-01

    In modeling gas-liquid two-phase flows, the concept of flow regime has been used to characterize the global interfacial structure of the flows. Nearly all constitutive relations that provide closures to the interfacial transfers in two-phase flow models, such as the two-fluid model, are often flow regime dependent. Currently, the determination of the flow regimes is primarily based on flow regime maps or transition criteria, which are developed for steady-state, fully-developed flows and widely applied in nuclear reactor system safety analysis codes, such as RELAP5. As two-phase flows are observed to be dynamic in nature (fully-developed two-phase flows generally do not exist in real applications), it is of importance to model the flow regime transition dynamically for more accurate predictions of two-phase flows. The present work aims to develop a dynamic modeling strategy for determining flow regimes in gas-liquid two-phase flows through the introduction of interfacial area transport equations (IATEs) within the framework of a two-fluid model. The IATE is a transport equation that models the interfacial area concentration by considering the creation and destruction of the interfacial area, such as the fluid particle (bubble or liquid droplet) disintegration, boiling and evaporation; and fluid particle coalescence and condensation, respectively. For the flow regimes beyond bubbly flows, a two-group IATE has been proposed, in which bubbles are divided into two groups based on their size and shape (which are correlated), namely small bubbles and large bubbles. A preliminary approach to dynamically identifying the flow regimes is provided, in which discriminators are based on the predicted information, such as the void fraction and interfacial area concentration of small bubble and large bubble groups. This method is expected to be applied to computer codes to improve their predictive capabilities of gas-liquid two-phase flows, in particular for the applications in

  14. Avalanching strain dynamics during the hydriding phase transformation in individual palladium nanoparticles

    SciTech Connect (OSTI)

    Ulvestad, A.; Welland, M. J.; Collins, S. S. E.; Harder, R.; Maxey, E.; Wingert, J.; Singer, A.; Hy, S.; Mulvaney, P.; Zapol, P.; Shpyrko, O. G.

    2015-12-11

    Phase transitions in reactive environments are crucially important in energy and information storage, catalysis and sensors. Nanostructuring active particles can yield faster charging/ discharging kinetics, increased lifespan and record catalytic activities. However, establishing the causal link between structure and function is challenging for nanoparticles, as ensemble measurements convolve intrinsic single-particle properties with sample diversity. Here we study the hydriding phase transformation in individual palladium nanocubes in situ using coherent X-ray diffractive imaging. The phase transformation dynamics, which involve the nucleation and propagation of a hydrogen-rich region, are dependent on absolute time (aging) and involve intermittent dynamics (avalanching). A hydrogen-rich surface layer dominates the crystal strain in the hydrogen-poor phase, while strain inversion occurs at the cube corners in the hydrogen-rich phase. A three-dimensional phase-field model is used to interpret the experimental results. In conclusion, our experimental and theoretical approach provides a general framework for designing and optimizing phase transformations for single nanocrystals in reactive environments.

  15. Dynamic characterization of crystalline and glass phases of deuterated 1,1,2,2 tetrachloroethane

    SciTech Connect (OSTI)

    Pérez, Silvina C. Zuriaga, Mariano Serra, Pablo Wolfenson, Alberto; Negrier, Philippe; Tamarit, Josep Lluis

    2015-10-07

    A thorough characterization of the γ, β, and glass phases of deuterated 1,1,2,2 tetrachloroethane (C{sub 2}D{sub 2}Cl{sub 4}) via nuclear quadrupole resonance and Molecular Dynamic Simulations (MDSs) is reported. The presence of molecular reorientations was experimentally observed in the glass phase and in the β phase. In the β phase, and from MDS, these reorientations are attributed to two possible movements, i.e., a 180°  reorientation around the C{sub 2} molecular symmetry axis and a reorientation of the molecule between two non-equivalent positions. In the glass phase, the spin-lattice relaxation time T{sub 1} is of the order of 16 times lower than in the crystalline phase and varies as T{sup −1} below 100 K in good agreement with the strong quadrupolar relaxation observed in amorphous materials and in the glassy state of molecular organic systems. The activation energy of molecular reorientations in the glass phase (19 kJ/mol) is comparable to that observed in the glassy crystal of a “molecular cousin” compound, Freon 112 (C{sub 2}F{sub 2}Cl{sub 4}), for the secondary β-relaxation. Moreover, the on-site orientational motion of tetrachloroethane molecules offers a new indirect evidence of the prominent role of such orientational disorder in glassy dynamics.

  16. Avalanching strain dynamics during the hydriding phase transformation in individual palladium nanoparticles

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ulvestad, A.; Welland, M. J.; Collins, S. S. E.; Harder, R.; Maxey, E.; Wingert, J.; Singer, A.; Hy, S.; Mulvaney, P.; Zapol, P.; et al

    2015-12-11

    Phase transitions in reactive environments are crucially important in energy and information storage, catalysis and sensors. Nanostructuring active particles can yield faster charging/ discharging kinetics, increased lifespan and record catalytic activities. However, establishing the causal link between structure and function is challenging for nanoparticles, as ensemble measurements convolve intrinsic single-particle properties with sample diversity. Here we study the hydriding phase transformation in individual palladium nanocubes in situ using coherent X-ray diffractive imaging. The phase transformation dynamics, which involve the nucleation and propagation of a hydrogen-rich region, are dependent on absolute time (aging) and involve intermittent dynamics (avalanching). A hydrogen-rich surfacemore » layer dominates the crystal strain in the hydrogen-poor phase, while strain inversion occurs at the cube corners in the hydrogen-rich phase. A three-dimensional phase-field model is used to interpret the experimental results. In conclusion, our experimental and theoretical approach provides a general framework for designing and optimizing phase transformations for single nanocrystals in reactive environments.« less

  17. Empirical signatures of quantum phase transitions and universal properties of critical point descriptions and dynamical symmetries

    SciTech Connect (OSTI)

    Casten, R. F.; Bonatsos, Dennis; McCutchan, E. A.

    2009-01-28

    Recently, a new signature for quantum phase transitional regions has been discussed. This signature, based on degeneracies of yrast and intrinsic excitations, can distinguish first and second order phase transitions, and is valid not only at or near the analytic critical points described by X(5) and E(5), but along the phase transitional line connecting them as well. In addition, a study of a number of recent analytic solutions to the Bohr Hamiltonian and of the dynamical symmetries of the IBA Hamiltonian has revealed a set of extremely simple and general analytic formulas that describe the energies of 0{sup +} states. For the case of flat-bottomed geometrical potentials, the formula depends solely on the number of relevant dimensions. For the IBA (large boson number limit) a single formula describes all three dynamical symmetries.

  18. Integrability and nonintegrability of quantum systems. II. Dynamics in quantum phase space

    SciTech Connect (OSTI)

    Zhang, Weimin (Department of Physics, FM-15, University of Washington, Seattle, WA (USA) Department of Physics and Atmospheric Science, Drexel University, Philadelphia, PA (USA)); Feng, D.H.; Yuan, Jianmin (Department of Physics and Atmospheric Science, Drexel University, Philadelphia, PA (USA))

    1990-12-15

    Based on the concepts of integrability and nonintegrability of a quantum system presented in a previous paper (Zhang, Feng, Yuan, and Wang, Phys. Rev. A 40, 438 (1989)), a realization of the dynamics in the quantum phase space is now presented. For a quantum system with dynamical group {ital G-script} and in one of its unitary irreducible-representation carrier spaces {ital h-german}{sub {Lambda}}, the quantum phase space is a 2{ital M}{sub {Lambda}}-dimensional topological space, where {ital M}{sub {Lambda}} is the quantum-dynamical degrees of freedom. This quantum phase space is isomorphic to a coset space {ital G-script}/{ital H-script} via the unitary exponential mapping of the elementary excitation operator subspace of {ital g-script} (algebra of {ital G-script}), where {ital H-script} ({contained in}{ital G-script}) is the maximal stability subgroup of a fixed state in {ital h-german}{sub {Lambda}}. The phase-space representation of the system is realized on {ital G-script}/{ital H-script}, and its classical analogy can be obtained naturally. It is also shown that there is consistency between quantum and classical integrability. Finally, a general algorithm for seeking the manifestation of quantum chaos'' via the classical analogy is provided. Illustrations of this formulation in several important quantum systems are presented.

  19. Dynamic Modeling Strategy for Flow Regime Transition in Gas-Liquid Two-Phase Flows

    SciTech Connect (OSTI)

    Xia Wang; Xiaodong Sun; Benjamin Doup; Haihua Zhao

    2012-12-01

    In modeling gas-liquid two-phase flows, the concept of flow regimes has been widely used to characterize the global interfacial structure of the flows. Nearly all constitutive relations that provide closures to the interfacial transfers in two-phase flow models, such as the two-fluid model, are flow regime dependent. Current nuclear reactor safety analysis codes, such as RELAP5, classify flow regimes using flow regime maps or transition criteria that were developed for steady-state, fully-developed flows. As twophase flows are dynamic in nature, it is important to model the flow regime transitions dynamically to more accurately predict the two-phase flows. The present work aims to develop a dynamic modeling strategy to determine flow regimes in gas-liquid two-phase flows through introduction of interfacial area transport equations (IATEs) within the framework of a two-fluid model. The IATE is a transport equation that models the interfacial area concentration by considering the creation of the interfacial area, fluid particle (bubble or liquid droplet) disintegration, boiling and evaporation, and the destruction of the interfacial area, fluid particle coalescence and condensation. For flow regimes beyond bubbly flows, a two-group IATE has been proposed, in which bubbles are divided into two groups based on their size and shapes, namely group-1 and group-2 bubbles. A preliminary approach to dynamically identify the flow regimes is discussed, in which discriminator s are based on the predicted information, such as the void fraction and interfacial area concentration. The flow regime predicted with this method shows good agreement with the experimental observations.

  20. Phase dynamics after connection of two separate Bose-Einstein condensates

    SciTech Connect (OSTI)

    Zapata, I.; Sols, F.; Leggett, A.J.

    2003-02-01

    We study the dynamics of the relative phase following the connection of the two independently formed Bose-Einstein condensates. Dissipation is assumed to be due to the creation of quasiparticles induced by a fluctuating condensate particle number. The coherence between different values of the phase, which is characteristic of the initial Fock state, is quickly lost after the net exchange of a few atoms has taken place. This process effectively measures the phase and marks the onset of a semiclassical regime in which the system undergoes Bloch oscillations around the initial particle number. These fast oscillations excite quasiparticles within each condensate and the system relaxes at a longer time scale until it displays low-energy, damped, Josephson plasma oscillations, eventually coming to a halt when the equilibrium configuration is finally reached.

  1. Phase-field investigation on the non-equilibrium interface dynamics of rapid alloy solidification

    SciTech Connect (OSTI)

    Choi, Jeong

    2011-08-15

    The research program reported here is focused on critical issues that represent conspicuous gaps in current understanding of rapid solidification, limiting our ability to predict and control microstructural evolution (i.e. morphological dynamics and microsegregation) at high undercooling, where conditions depart significantly from local equilibrium. More specifically, through careful application of phase-field modeling, using appropriate thin-interface and anti-trapping corrections and addressing important details such as transient effects and a velocity-dependent (i.e. adaptive) numerics, the current analysis provides a reasonable simulation-based picture of non-equilibrium solute partitioning and the corresponding oscillatory dynamics associated with single-phase rapid solidification and show that this method is a suitable means for a self-consistent simulation of transient behavior and operating point selection under rapid growth conditions. Moving beyond the limitations of conventional theoretical/analytical treatments of non-equilibrium solute partitioning, these results serve to substantiate recent experimental findings and analytical treatments for single-phase rapid solidification. The departure from the equilibrium solid concentration at the solid-liquid interface was often observed during rapid solidification, and the energetic associated non-equilibrium solute partitioning has been treated in detail, providing possible ranges of interface concentrations for a given growth condition. Use of these treatments for analytical description of specific single-phase dendritic and cellular operating point selection, however, requires a model for solute partitioning under a given set of growth conditions. Therefore, analytical solute trapping models which describe the chemical partitioning as a function of steady state interface velocities have been developed and widely utilized in most of the theoretical investigations of rapid solidification. However, these

  2. Ab initio molecular dynamics simulation of pressure-induced phase transformation of BeO

    SciTech Connect (OSTI)

    Xiao, H. Y.; Duan, G.; Zu, X. T.; Weber, W. J.

    2011-05-05

    Ab initio molecular dynamics (MD) method has been used to study high pressure-induced phase transformation in BeO based on the local density approximation (LDA) and the generalized gradient approximation (GGA). Both methods show that the wurtzite (WZ) and zinc blende (ZB) BeO transforms to the rocksalt (RS) structure smoothly at high pressure. The transition pressures obtained from the LDA method are about 40 GPa larger than the GGA result for both WZ ? RS and ZB ? RS phase transformations, and the phase transformation mechanisms revealed by the LDA and GGA methods are different. For WZ ? RS phase transformations both mechanisms obtained from the LDA and GGA methods are not comparable to the previous ab initio MD simulations of WZ BeO at 700 GPa based on the GGA method. It is suggested that the phase transformation mechanisms of BeO revealed by the ab initio MD simulations are affected remarkably by the exchangecorrelation functional employed and the way of applying pressure.

  3. Liquid phase fluid dynamic (methanol) run in the LaPorte alternative fuels development unit

    SciTech Connect (OSTI)

    Bharat L. Bhatt

    1997-05-01

    A fluid dynamic study was successfully completed in a bubble column at DOE's Alternative Fuels Development Unit (AFDU) in LaPorte, Texas. Significant fluid dynamic information was gathered at pilot scale during three weeks of Liquid Phase Methanol (LPMEOJP) operations in June 1995. In addition to the usual nuclear density and temperature measurements, unique differential pressure data were collected using Sandia's high-speed data acquisition system to gain insight on flow regime characteristics and bubble size distribution. Statistical analysis of the fluctuations in the pressure data suggests that the column was being operated in the churn turbulent regime at most of the velocities considered. Dynamic gas disengagement experiments showed a different behavior than seen in low-pressure, cold-flow work. Operation with a superficial gas velocity of 1.2 ft/sec was achieved during this run, with stable fluid dynamics and catalyst performance. Improvements included for catalyst activation in the design of the Clean Coal III LPMEOH{trademark} plant at Kingsport, Tennessee, were also confirmed. In addition, an alternate catalyst was demonstrated for LPMEOH{trademark}.

  4. Dynamical bifurcation as a semiclassical counterpart of a quantum phase transition

    SciTech Connect (OSTI)

    Buonsante, P.; Vezzani, A.

    2011-12-15

    We illustrate how dynamical transitions in nonlinear semiclassical models can be recognized as phase transitions in the corresponding--inherently linear--quantum model, where, in a statistical-mechanics framework, the thermodynamic limit is realized by letting the particle population go to infinity at fixed size. We focus on lattice bosons described by the Bose-Hubbard (BH) model and discrete self-trapping (DST) equations at the quantum and semiclassical levels, respectively. After showing that the Gaussianity of the quantum ground states is broken at the phase transition, we evaluate finite-population effects by introducing a suitable scaling hypothesis; we work out the exact value of the critical exponents and provide numerical evidence confirming our hypothesis. Our analytical results rely on a general scheme obtained from a large-population expansion of the eigenvalue equation of the BH model. In this approach the DST equations resurface as solutions of the zeroth-order problem.

  5. Dynamic density field measurements of an explosively driven ????? phase transition in iron

    SciTech Connect (OSTI)

    Hull, L. M.; Gray, G. T.; Warthen, B. J.

    2014-07-28

    We provide a unique set of observations of the behavior of the ??? phase transition under a complex axially symmetric loading path created by sweeping a detonation wave along the end surface of a cylindrical sample. The primary data sets are the measured mass density distributions acquired at 5 independent times during the sweep of the detonation along the surface. Shocked regions and boundaries are measured, as well as regions and boundaries of elevated density (presumed to be the ??phase iron). The formation and dynamics of these regions were captured and are available for comparisons to material descriptions. We also applied 16 Photon Doppler Velocimetry probes to capture the free surface velocity along a discrete set of radially distributed points in order to compare and correlate the density measurements with previous shock wave studies. The velocimetry data are in nearly exact agreement with previous shock wave studies of the ??? phase transition, the density distributions, while generally in agreement with expectations evolved from the shock wave studies, show that the epsilon phase is generated in regions of high shear stress but at hydrostatic stresses below the typically quoted 13?GPa value. The density field measurements are particularly useful for observing the effects of the forward and reverse transformation kinetics, as well as the reverse transformation hysteresis.

  6. Dynamical and phase behavior of a phospholipid membrane altered by an antimicrobial peptide at low concentration

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mamontov, Eugene; Tyagi, M.; Qian, Shuo; Rai, Durgesh K.; Urban, Volker S.; Sharma, V. K.

    2016-05-27

    Here we discuss that the mechanism of action of antimicrobial peptides is traditionally attributed to the formation of pores in the lipid cell membranes of pathogens, which requires a substantial peptide to lipid ratio. However, using incoherent neutron scattering, we show that even at a concentration too low for pore formation, an archetypal antimicrobial peptide, melittin, disrupts the regular phase behavior of the microscopic dynamics in a phospholipid membrane, dimyristoylphosphatidylcholine (DMPC). At the same time, another antimicrobial peptide, alamethicin, does not exert a similar effect on the DMPC microscopic dynamics. The melittin-altered lateral motion of DMPC at physiological temperature nomore » longer resembles the fluid-phase behavior characteristic of functional membranes of the living cells. The disruptive effect demonstrated by melittin even at low concentrations reveals a new mechanism of antimicrobial action relevant in more realistic scenarios, when peptide concentration is not as high as would be required for pore formation, which may facilitate treatment with antimicrobial peptides.« less

  7. Computational Particle Dynamic Simulations on Multicore Processors (CPDMu) Final Report ?? Phase I

    SciTech Connect (OSTI)

    Mark S. Schmalz

    2011-07-24

    Statement of Problem - Department of Energy has many legacy codes for simulation of computational particle dynamics and computational fluid dynamics applications that are designed to run on sequential processors and are not easily parallelized. Emerging high-performance computing architectures employ massively parallel multicore architectures (e.g., graphics processing units) to increase throughput. Parallelization of legacy simulation codes is a high priority, to achieve compatibility, efficiency, accuracy, and extensibility. General Statement of Solution - A legacy simulation application designed for implementation on mainly-sequential processors has been represented as a graph G. Mathematical transformations, applied to G, produce a graph representation {und G} for a high-performance architecture. Key computational and data movement kernels of the application were analyzed/optimized for parallel execution using the mapping G {yields} {und G}, which can be performed semi-automatically. This approach is widely applicable to many types of high-performance computing systems, such as graphics processing units or clusters comprised of nodes that contain one or more such units. Phase I Accomplishments - Phase I research decomposed/profiled computational particle dynamics simulation code for rocket fuel combustion into low and high computational cost regions (respectively, mainly sequential and mainly parallel kernels), with analysis of space and time complexity. Using the research team's expertise in algorithm-to-architecture mappings, the high-cost kernels were transformed, parallelized, and implemented on Nvidia Fermi GPUs. Measured speedups (GPU with respect to single-core CPU) were approximately 20-32X for realistic model parameters, without final optimization. Error analysis showed no loss of computational accuracy. Commercial Applications and Other Benefits - The proposed research will constitute a breakthrough in solution of problems related to efficient

  8. First principles analysis of lattice dynamics for Fe-based superconductors and entropically-stabilized phases

    SciTech Connect (OSTI)

    Hahn, Steven

    2012-07-20

    Modern calculations are becoming an essential, complementary tool to inelastic x-ray scattering studies, where x-rays are scattered inelastically to resolve meV phonons. Calculations of the inelastic structure factor for any value of Q assist in both planning the experiment and analyzing the results. Moreover, differences between the measured data and theoretical calculations help identify important new physics driving the properties of novel correlated systems. We have used such calculations to better and more e#14;ciently measure the phonon dispersion and elastic constants of several iron pnictide superconductors. This dissertation describes calculations and measurements at room temperature in the tetragonal phase of CaFe{sub 2}As{sub 2} and LaFeAsO. In both cases, spin-polarized calculations imposing the antiferromagnetic order present in the low-temperature orthorhombic phase dramatically improves the agreement between theory and experiment. This is discussed in terms of the strong antiferromagnetic correlations that are known to persist in the tetragonal phase. In addition, we discuss a relatively new approach called self-consistent ab initio lattice dynamics (SCAILD), which goes beyond the harmonic approximation to include phonon-phonon interactions and produce a temperature-dependent phonon dispersion. We used this technique to study the HCP to BCC transition in beryllium.

  9. Dynamic and spectroscopic characteristics of atmospheric gliding arc in gas-liquid two-phase flow

    SciTech Connect (OSTI)

    Tu, X.; Yu, L.; Yan, J. H.; Cen, K. F.; Cheron, B. G.

    2009-11-15

    In this study, an atmospheric alternating-current gliding arc device in gas-liquid two-phase flow has been developed for the purpose of waste water degradation. The dynamic behavior of the gas-liquid gliding arc is investigated through the oscillations of electrical signals, while the spatial evolution of the arc column is analyzed by high speed photography. Different arc breakdown regimes are reported, and the restrike mode is identified as the typical fluctuation characteristic of the hybrid gliding arc in air-water mixture. Optical emission spectroscopy is employed to investigate the active species generated in the gas-liquid plasma. The axial evolution of the OH (309 nm) intensity is determined, while the rotational and vibrational temperatures of the OH are obtained by a comparison between the experimental and simulated spectra. The significant discrepancy between the rotational and translational temperatures has also been discussed.

  10. Geometric phase effects in low-energy dynamics near conical intersections: A study of the multidimensional linear vibronic coupling model

    SciTech Connect (OSTI)

    Joubert-Doriol, Loc; Ryabinkin, Ilya G.; Izmaylov, Artur F.; Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6

    2013-12-21

    In molecular systems containing conical intersections (CIs), a nontrivial geometric phase (GP) appears in the nuclear and electronic wave functions in the adiabatic representation. We study GP effects in nuclear dynamics of an N-dimensional linear vibronic coupling (LVC) model. The main impact of GP on low-energy nuclear dynamics is reduction of population transfer between the local minima of the LVC lower energy surface. For the LVC model, we proposed an isometric coordinate transformation that confines non-adiabatic effects within a two-dimensional subsystem interacting with an N ? 2 dimensional environment. Since environmental modes do not couple electronic states, all GP effects originate from nuclear dynamics within the subsystem. We explored when the GP affects nuclear dynamics of the isolated subsystem, and how the subsystem-environment interaction can interfere with GP effects. Comparing quantum dynamics with and without GP allowed us to devise simple rules to determine significance of the GP for nuclear dynamics in this model.

  11. When do we need to account for the geometric phase in excited state dynamics?

    SciTech Connect (OSTI)

    Ryabinkin, Ilya G.; Joubert-Doriol, Loc; Izmaylov, Artur F.

    2014-06-07

    We investigate the role of the geometric phase (GP) in an internal conversion process when the system changes its electronic state by passing through a conical intersection (CI). Local analysis of a two-dimensional linear vibronic coupling (LVC) model Hamiltonian near the CI shows that the role of the GP is twofold. First, it compensates for a repulsion created by the so-called diagonal BornOppenheimer correction. Second, the GP enhances the non-adiabatic transition probability for a wave-packet part that experiences a central collision with the CI. To assess the significance of both GP contributions we propose two indicators that can be computed from parameters of electronic surfaces and initial conditions. To generalize our analysis to N-dimensional systems we introduce a reduction of a general N-dimensional LVC model to an effective 2D LVC model using a mode transformation that preserves short-time dynamics of the original N-dimensional model. Using examples of the bis(methylene) adamantyl and butatriene cations, and the pyrazine molecule we have demonstrated that their effective 2D models reproduce the short-time dynamics of the corresponding full dimensional models, and the introduced indicators are very reliable in assessing GP effects.

  12. Dynamical mean-field theory and weakly non-linear analysis for the phase separation of active Brownian particles

    SciTech Connect (OSTI)

    Speck, Thomas; Menzel, Andreas M.; Bialké, Julian; Löwen, Hartmut

    2015-06-14

    Recently, we have derived an effective Cahn-Hilliard equation for the phase separation dynamics of active Brownian particles by performing a weakly non-linear analysis of the effective hydrodynamic equations for density and polarization [Speck et al., Phys. Rev. Lett. 112, 218304 (2014)]. Here, we develop and explore this strategy in more detail and show explicitly how to get to such a large-scale, mean-field description starting from the microscopic dynamics. The effective free energy emerging from this approach has the form of a conventional Ginzburg-Landau function. On the coarsest scale, our results thus agree with the mapping of active phase separation onto that of passive fluids with attractive interactions through a global effective free energy (motility-induced phase transition). Particular attention is paid to the square-gradient term necessary for the phase separation kinetics. We finally discuss results from numerical simulations corroborating the analytical results.

  13. ANGLE Plc | Open Energy Information

    Open Energy Info (EERE)

    ANGLE Plc Jump to: navigation, search Name: ANGLE Plc Place: United Kingdom Sector: Services Product: General Financial & Legal Services ( Quoted company ) References: ANGLE Plc1...

  14. Metallic phase-change materials for solar dynamic energy storage systems

    SciTech Connect (OSTI)

    Lauf, R.J.; Hamby, C. Jr.

    1990-12-01

    Solar (thermal) dynamic power systems for satellites require a heat storage system that is capable of operating the engine during eclipse. The conventional approach to this thermal storage problem is to use the latent heat of fluoride salts, which would melt during insolation and freeze during eclipse. Although candidate fluorides have large heats of fusion per unit mass, their poor thermal conductivity limits the rate at which energy can be transferred to and from the storage device. System performance is further limited by the high parasitic mass of the superalloy canisters needed to contain the salt. This report describes a new thermal storage system in which the phase-change material (PCM) is a metal (typically germanium) contained in modular graphite canisters. These modules exhibit good thermal conductivity and low parasitic mass, and they are physically and chemically stable. Prototype modules have survived over 600 melt/freeze cycles without degradation. Advanced concepts to further improve performance are described. These concepts include the selection of ternary eutectic alloys to provide a wider range of useful melting temperatures and the use of infiltration to control the location of liquid alloy and to compensate for differences in thermal expansion. 13 refs., 18 figs.

  15. Phase matching of high order harmonic generation using dynamic phase modulation caused by a non-collinear modulation pulse

    DOE Patents [OSTI]

    Cohen, Oren; Kapteyn, Henry C.; Mumane, Margaret M.

    2010-02-16

    Phase matching high harmonic generation (HHG) uses a single, long duration non-collinear modulating pulse intersecting the driving pulse. A femtosecond driving pulse is focused into an HHG medium (such as a noble gas) to cause high-harmonic generation (HHG), for example in the X-ray region of the spectrum, via electrons separating from and recombining with gas atoms. A non-collinear pulse intersects the driving pulse within the gas, and modulates the field seen by the electrons while separated from their atoms. The modulating pulse is low power and long duration, and its frequency and amplitude is chosen to improve HHG phase matching by increasing the areas of constructive interference between the driving pulse and the HHG, relative to the areas of destructive interference.

  16. Quasiparticle dynamics across the full Brillouin zone of Bi2Sr2CaCu2O8+δ traced with ultrafast time and angle-resolved photoemission spectroscopy

    SciTech Connect (OSTI)

    Dakovski, Georgi L.; Durakiewicz, Tomasz; Zhu, Jian-Xin; Riseborough, Peter S.; Gu, Genda; Gilbertson, Steve M.; Taylor, Antoinette; Rodriguez, George

    2015-10-12

    A hallmark in the cuprate family of high-temperature superconductors is the nodal-antinodal dichotomy. In this regard, angle-resolved photoemission spectroscopy (ARPES) has proven especially powerful, providing band structure information directly in energy-momentum space. Time-resolved ARPES (trARPES) holds great promise of adding ultrafast temporal information, in an attempt to identify different interaction channels in the time domain. Previous studies of the cuprates using trARPES were handicapped by the low probing energy which significantly limits the accessible momentum space. Using 20.15eV, 12 fs pulses we show for the first time the evolution of quasiparticles in the antinodal region of Bi2Sr2CaCu2O8+δ and demonstrate that nonmonotonic relaxation dynamics dominates above a certain fluence threshold. The dynamics is heavily influenced by transient modification of the electron-phonon interaction and phase space restrictions, in severe contrast to the monotonic relaxation in the nodal and off-nodal regions.

  17. Mesoporous Silica Nanoparticles Loaded with Surfactant: Low Temperature Magic Angle Spinning 13C and 29Si NMR Enhanced by Dynamic Nuclear Polarization

    SciTech Connect (OSTI)

    Lafon, Olivier; Thankamony, Aany S. Lilly; Kokayashi, Takeshi; Carnevale, Diego; Vitzthum, Veronika; Slowing, Igor I.; Kandel, Kapil; Vezin, Herve; Amoureux, Jean-Paul; Bodenhausen, Geoffrey; Pruski, Marek

    2012-12-21

    We show that dynamic nuclear polarization (DNP) can be used to enhance NMR signals of 13C and 29Si nuclei located in mesoporous organic/inorganic hybrid materials, at several hundreds of nanometers from stable radicals (TOTAPOL) trapped in the surrounding frozen disordered water. The approach is demonstrated using mesoporous silica nanoparticles (MSN), functionalized with 3-(N-phenylureido)propyl (PUP) groups, filled with the surfactant cetyltrimethylammonium bromide (CTAB). The DNP-enhanced proton magnetization is transported into the mesopores via 1H1H spin diffusion and transferred to rare spins by cross-polarization, yielding signal enhancements ?on/off of around 8. When the CTAB molecules are extracted, so that the radicals can enter the mesopores, the enhancements increase to ?on/off ? 30 for both nuclei. A quantitative analysis of the signal enhancements in MSN with and without surfactant is based on a one-dimensional proton spin diffusion model. The effect of solvent deuteration is also investigated.

  18. Structural dynamics and ssDNA binding activity of the three N-terminal domains of the large subunit of Replication Protein A from small angle X-ray scattering

    SciTech Connect (OSTI)

    Pretto, Dalyir I.; Tsutakawa, Susan; Brosey, Chris A.; Castillo, Amalchi; Chagot, Marie-Eve; Smith, Jarrod A.; Tainer, John A.; Chazin, Walter J.

    2010-03-11

    Replication Protein A (RPA) is the primary eukaryotic ssDNA binding protein utilized in diverse DNA transactions in the cell. RPA is a heterotrimeric protein with seven globular domains connected by flexible linkers, which enable substantial inter-domain motion that is essential to its function. Small angle X-ray scattering (SAXS) experiments on two multi-domain constructs from the N-terminus of the large subunit (RPA70) were used to examine the structural dynamics of these domains and their response to the binding of ssDNA. The SAXS data combined with molecular dynamics simulations reveal substantial interdomain flexibility for both RPA70AB (the tandem high affinity ssDNA binding domains A and B connected by a 10-residue linker) and RPA70NAB (RPA70AB extended by a 70-residue linker to the RPA70N protein interaction domain). Binding of ssDNA to RPA70NAB reduces the interdomain flexibility between the A and B domains, but has no effect on RPA70N. These studies provide the first direct measurements of changes in orientation of these three RPA domains upon binding ssDNA. The results support a model in which RPA70N remains structurally independent of RPA70AB in the DNA bound state and therefore freely available to serve as a protein recruitment module.

  19. Computational fluid dynamics modeling of two-phase flow in a BWR fuel assembly. Final CRADA Report.

    SciTech Connect (OSTI)

    Tentner, A.; Nuclear Engineering Division

    2009-10-13

    A direct numerical simulation capability for two-phase flows with heat transfer in complex geometries can considerably reduce the hardware development cycle, facilitate the optimization and reduce the costs of testing of various industrial facilities, such as nuclear power plants, steam generators, steam condensers, liquid cooling systems, heat exchangers, distillers, and boilers. Specifically, the phenomena occurring in a two-phase coolant flow in a BWR (Boiling Water Reactor) fuel assembly include coolant phase changes and multiple flow regimes which directly influence the coolant interaction with fuel assembly and, ultimately, the reactor performance. Traditionally, the best analysis tools for this purpose of two-phase flow phenomena inside the BWR fuel assembly have been the sub-channel codes. However, the resolution of these codes is too coarse for analyzing the detailed intra-assembly flow patterns, such as flow around a spacer element. Advanced CFD (Computational Fluid Dynamics) codes provide a potential for detailed 3D simulations of coolant flow inside a fuel assembly, including flow around a spacer element using more fundamental physical models of flow regimes and phase interactions than sub-channel codes. Such models can extend the code applicability to a wider range of situations, which is highly important for increasing the efficiency and to prevent accidents.

  20. Evidence of Photo-induced Dynamic Competition of Metallic and Insulating Phase in a Layered Manganite.

    SciTech Connect (OSTI)

    Li, Yuelin; Walko, Donald A.; Li, Qing'an; Liu, Yaohua; Rosenkranz, Stephan; Zheng, Hong; Mitchell, J. F.

    2015-12-16

    We show evidence that the competition between the antiferromagetic metallic phase and the charge- and orbital-ordered insulating phase at the reentrant phase boundary of a layered manganite, LaSr2Mn2O7, can be manipulated using ultrafast optical excitation. The time- dependent evolution of the Jahn-Teller superlattice reflection, which indicates the formation of the charge and orbital order, was measured at different laser fluences. The laser-induced enhancement and reduction the Jahn-Teller reflection intensity shows a reversal of sign between earlier (~10 ns) and later (~150 ns) time delays during the relaxation after photo excitation. This effect is consistent with a scenario whereby the laser excitation modulates the local competition between the metallic and the insulating phases.

  1. In-situ Monitoring of Dynamic Phenomena during Solidification and Phase Transformation Processing

    SciTech Connect (OSTI)

    Clarke, Amy J.; Cooley, Jason C.; Morris, Christopher; Merrill, Frank E.; Hollander, Brian J.; Mariam, Fesseha G.; Patterson, Brian M.; Imhoff, Seth D.; Lee, Wah Keat; Fezzaa, Kamel; Deriy, Alex; Tucker, Tim J.; Clarke, Kester D.; Field, Robert D.; Thoma, Dan J.; Teter, David F.; Beard, Timothy V.; Hudson, Richard W.; Freibert, Franz J.; Korzekwa, Deniece R.; Farrow, Adam M.; Cross, Carl E.; Mihaila, Bogdan; Lookman, Turab; Hunter, Abigail; Choudhury, Samrat; Karma, Alain; Ott, Thomas J. Jr.; Barker, Martha R.; O'Neill, Finian; Hill, Joshua; Emigh, Megan G.

    2012-07-30

    The purpose of this project is to: (1) Directly observe phase transformations and microstructure evolution using proton (and synchrotron x-ray) radiography and tomography; (2) Constrain phase-field models for microstructure evolution; (3) Experimentally control microstructure evolution during processing to enable co-design; and (4) Advance toward the MaRIE vision. Understand microstructure evolution and chemical segregation during solidification {yields} solid-state transformations in Pu-Ga.

  2. Chemical dynamics in the gas phase: Time-dependent quantum mechanics of chemical reactions

    SciTech Connect (OSTI)

    Gray, S.K.

    1993-12-01

    A major goal of this research is to obtain an understanding of the molecular reaction dynamics of three and four atom chemical reactions using numerically accurate quantum dynamics. This work involves: (i) the development and/or improvement of accurate quantum mechanical methods for the calculation and analysis of the properties of chemical reactions (e.g., rate constants and product distributions), and (ii) the determination of accurate dynamical results for selected chemical systems, which allow one to compare directly with experiment, determine the reliability of the underlying potential energy surfaces, and test the validity of approximate theories. This research emphasizes the use of recently developed time-dependent quantum mechanical methods, i.e. wave packet methods.

  3. Solving kinetic equations with adaptive mesh in phase space for rarefied gas dynamics and plasma physics (Invited)

    SciTech Connect (OSTI)

    Kolobov, Vladimir; Arslanbekov, Robert; Frolova, Anna

    2014-12-09

    The paper describes an Adaptive Mesh in Phase Space (AMPS) technique for solving kinetic equations with deterministic mesh-based methods. The AMPS technique allows automatic generation of adaptive Cartesian mesh in both physical and velocity spaces using a Tree-of-Trees data structure. We illustrate advantages of AMPS for simulations of rarefied gas dynamics and electron kinetics on low temperature plasmas. In particular, we consider formation of the velocity distribution functions in hypersonic flows, particle kinetics near oscillating boundaries, and electron kinetics in a radio-frequency sheath. AMPS provide substantial savings in computational cost and increased efficiency of the mesh-based kinetic solvers.

  4. Dynamic evolution of liquid–liquid phase separation during continuous cooling

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Imhoff, Seth D.; Gibbs, Paul J.; Katz, Martha R.; Ott, Thomas J.; Patterson, Brian M.; Lee, Wah-Keat; Fezzaa, Kamel; Cooley, Jason C.; Clarke, Amy J.

    2015-01-06

    Solidification from a multiphase fluid involves many unknown quantities due to the difficulty of predicting the impact of fluid flow on chemical partitioning. Real-time x-ray radiography was used to observe liquid-liquid phase separation in Al90In10 prior to solidification. Quantitative image analysis was used to measure the motion and population characteristics of the dispersed indium-rich liquid phase during cooling. Here we determine that the droplet growth characteristics resemble well known steady-state coarsening laws with likely enhancement by concurrent growth due to supersaturation. Simplistic views of droplet motion are found to be insufficient until late in the reaction due to a hydrodynamicmore » instability caused by the large density difference between the dispersed and matrix liquid phases.« less

  5. High-order continuum kinetic method for modeling plasma dynamics in phase space

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Vogman, G. V.; Colella, P.; Shumlak, U.

    2014-12-15

    Continuum methods offer a high-fidelity means of simulating plasma kinetics. While computationally intensive, these methods are advantageous because they can be cast in conservation-law form, are not susceptible to noise, and can be implemented using high-order numerical methods. Advances in continuum method capabilities for modeling kinetic phenomena in plasmas require the development of validation tools in higher dimensional phase space and an ability to handle non-cartesian geometries. To that end, a new benchmark for validating Vlasov-Poisson simulations in 3D (x,vx,vy) is presented. The benchmark is based on the Dory-Guest-Harris instability and is successfully used to validate a continuum finite volumemore » algorithm. To address challenges associated with non-cartesian geometries, unique features of cylindrical phase space coordinates are described. Preliminary results of continuum kinetic simulations in 4D (r,z,vr,vz) phase space are presented.« less

  6. Dynamic evolution of liquid–liquid phase separation during continuous cooling

    SciTech Connect (OSTI)

    Imhoff, Seth D.; Gibbs, Paul J.; Katz, Martha R.; Ott, Thomas J.; Patterson, Brian M.; Lee, Wah-Keat; Fezzaa, Kamel; Cooley, Jason C.; Clarke, Amy J.

    2015-01-06

    Solidification from a multiphase fluid involves many unknown quantities due to the difficulty of predicting the impact of fluid flow on chemical partitioning. Real-time x-ray radiography was used to observe liquid-liquid phase separation in Al90In10 prior to solidification. Quantitative image analysis was used to measure the motion and population characteristics of the dispersed indium-rich liquid phase during cooling. Here we determine that the droplet growth characteristics resemble well known steady-state coarsening laws with likely enhancement by concurrent growth due to supersaturation. Simplistic views of droplet motion are found to be insufficient until late in the reaction due to a hydrodynamic instability caused by the large density difference between the dispersed and matrix liquid phases.

  7. Study of the nanobubble phase of aqueous NaCl solutions by dynamic light scattering

    SciTech Connect (OSTI)

    Bunkin, N F; Shkirin, A V [A M Prokhorov General Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation); Burkhanov, I S; Chaikov, L L [P N Lebedev Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation); Lomkova, A K [N.E. Bauman Moscow State Technical University, Moscow (Russian Federation)

    2014-11-30

    Aqueous NaCl solutions with different concentrations have been investigated by dynamic scattering of laser radiation. It is experimentally shown that these solutions contain scattering particles with a wide size distribution in a range of ?10 100 nm. The experimental results indirectly confirm the existence of quasi-stable gas nanobubbles in the bulk of aqueous ionic solutions. (light scattering)

  8. Spatially Resolved Photoexcited Charge-Carrier Dynamics in Phase-Engineered Monolayer MoS2

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yamaguchi, Hisato; Blancon, Jean-Christophe; Kappera, Rajesh; Lei, Sidong; Najmaei, Sina; Mangum, Benjamin D.; Gupta, Gautam; Ajayan, Pulickel M.; Lou, Jun; Chhowalla, Manish; et al

    2015-01-27

    A fundamental understanding of the intrinsic optoelectronic properties of atomically thin transition metal dichalcogenides (TMDs) is crucial for its integration into high performance semiconductor devices. We investigate the transport properties of chemical vapor deposition (CVD) grown monolayer molybdenum disulfide (MoS2) under photo-excitation using correlated scanning photocurrent microscopy and photoluminescence imaging. We examined the effect of local phase transformation underneath the metal electrodes on the generation of photocurrent across the channel length with diffraction-limited spatial resolution. While maximum photocurrent generation occurs at the Schottky contacts of semiconducting (2H-phase) MoS2, after the metallic phase transformation (1T-phase), the photocurrent peak is observed towardsmore » the center of the device channel, suggesting a strong reduction of native Schottky barriers. Analysis using the bias and position dependence of the photocurrent indicates that the Schottky barrier heights are few meV for 1T- and ~200 meV for 2H-contacted devices. We also demonstrate that a reduction of native Schottky barriers in a 1T device enhances the photo responsivity by more than one order of magnitude, a crucial parameter in achieving high performance optoelectronic devices. The obtained results pave a pathway for the fundamental understanding of intrinsic optoelectronic properties of atomically thin TMDs where Ohmic contacts are necessary for achieving high efficiency devices with low power consumption.« less

  9. Phonon coupling to dynamic short-range polar order in a relaxor ferroelectric near the morphotropic phase boundary

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    John A. Schneeloch; Xu, Zhijun; Winn, B.; Stock, C.; Gehring, P. M.; Birgeneau, R. J.; Xu, Guangyong

    2015-12-28

    We report neutron inelastic scattering experiments on single-crystal PbMg1/3Nb2/3O3 doped with 32% PbTiO3, a relaxor ferroelectric that lies close to the morphotropic phase boundary. When cooled under an electric field E∥ [001] into tetragonal and monoclinic phases, the scattering cross section from transverse acoustic (TA) phonons polarized parallel to E weakens and shifts to higher energy relative to that under zero-field-cooled conditions. Likewise, the scattering cross section from transverse optic (TO) phonons polarized parallel to E weakens for energy transfers 4 ≤ ℏω ≤ 9 meV. However, TA and TO phonons polarized perpendicular to E show no change. This anisotropicmore » field response is similar to that of the diffuse scattering cross section, which, as previously reported, is suppressed when polarized parallel to E but not when polarized perpendicular to E. Lastly, our findings suggest that the lattice dynamics and dynamic short-range polar correlations that give rise to the diffuse scattering are coupled.« less

  10. Phonon coupling to dynamic short-range polar order in a relaxor ferroelectric near the morphotropic phase boundary

    SciTech Connect (OSTI)

    John A. Schneeloch; Xu, Zhijun; Winn, B.; Stock, C.; Gehring, P. M.; Birgeneau, R. J.; Xu, Guangyong

    2015-12-28

    We report neutron inelastic scattering experiments on single-crystal PbMg1/3Nb2/3O3 doped with 32% PbTiO3, a relaxor ferroelectric that lies close to the morphotropic phase boundary. When cooled under an electric field E∥ [001] into tetragonal and monoclinic phases, the scattering cross section from transverse acoustic (TA) phonons polarized parallel to E weakens and shifts to higher energy relative to that under zero-field-cooled conditions. Likewise, the scattering cross section from transverse optic (TO) phonons polarized parallel to E weakens for energy transfers 4 ≤ ℏω ≤ 9 meV. However, TA and TO phonons polarized perpendicular to E show no change. This anisotropic field response is similar to that of the diffuse scattering cross section, which, as previously reported, is suppressed when polarized parallel to E but not when polarized perpendicular to E. Lastly, our findings suggest that the lattice dynamics and dynamic short-range polar correlations that give rise to the diffuse scattering are coupled.

  11. Three-Phase Unbalanced Transient Dynamics and Powerflow for Modeling Distribution Systems With Synchronous Machines

    SciTech Connect (OSTI)

    Elizondo, Marcelo A.; Tuffner, Francis K.; Schneider, Kevin P.

    2016-01-01

    Unlike transmission systems, distribution feeders in North America operate under unbalanced conditions at all times, and generally have a single strong voltage source. When a distribution feeder is connected to a strong substation source, the system is dynamically very stable, even for large transients. However if a distribution feeder, or part of the feeder, is separated from the substation and begins to operate as an islanded microgrid, transient dynamics become more of an issue. To assess the impact of transient dynamics at the distribution level, it is not appropriate to use traditional transmission solvers, which generally assume transposed lines and balanced loads. Full electromagnetic solvers capture a high level of detail, but it is difficult to model large systems because of the required detail. This paper proposes an electromechanical transient model of synchronous machine for distribution-level modeling and microgrids. This approach includes not only the machine model, but also its interface with an unbalanced network solver, and a powerflow method to solve unbalanced conditions without a strong reference bus. The presented method is validated against a full electromagnetic transient simulation.

  12. Finite temperature spin-dynamics and phase transitions in spin-orbital models

    SciTech Connect (OSTI)

    Chen, C.-C.

    2010-04-29

    We study finite temperature properties of a generic spin-orbital model relevant to transition metal compounds, having coupled quantum Heisenberg-spin and Ising-orbital degrees of freedom. The model system undergoes a phase transition, consistent with that of a 2D Ising model, to an orbitally ordered state at a temperature set by short-range magnetic order. At low temperatures the orbital degrees of freedom freeze-out and the model maps onto a quantum Heisenberg model. The onset of orbital excitations causes a rapid scrambling of the spin spectral weight away from coherent spin-waves, which leads to a sharp increase in uniform magnetic susceptibility just below the phase transition, reminiscent of the observed behavior in the Fe-pnictide materials.

  13. Super energy saver heat pump with dynamic hybrid phase change material

    DOE Patents [OSTI]

    Ally, Moonis Raza [Oak Ridge, TN; Tomlinson, John Jager [Knoxville, TN; Rice, Clifford Keith [Clinton, TN

    2010-07-20

    A heat pump has a refrigerant loop, a compressor in fluid communication with the refrigerant loop, at least one indoor heat exchanger in fluid communication with the refrigerant loop, and at least one outdoor heat exchanger in fluid communication with the refrigerant loop. The at least one outdoor heat exchanger has a phase change material in thermal communication with the refrigerant loop and in fluid communication with an outdoor environment. Other systems, devices, and methods are described.

  14. The phase topology of a special case of Goryachev integrability in rigid body dynamics

    SciTech Connect (OSTI)

    Ryabov, P. E.

    2014-07-31

    The phase topology of a special case of Goryachev integrability in the problem of motion of a rigid body in a fluid is investigated using the method of Boolean functions, which was developed by Kharlamov for algebraically separated systems. The bifurcation diagram of the moment map is found and the Fomenko invariant, which classifies the systems up to rough Liouville equivalence, is specified. Bibliography: 15 titles. (paper)

  15. High-order continuum kinetic method for modeling plasma dynamics in phase space

    SciTech Connect (OSTI)

    Vogman, G. V.; Colella, P.; Shumlak, U.

    2014-12-15

    Continuum methods offer a high-fidelity means of simulating plasma kinetics. While computationally intensive, these methods are advantageous because they can be cast in conservation-law form, are not susceptible to noise, and can be implemented using high-order numerical methods. Advances in continuum method capabilities for modeling kinetic phenomena in plasmas require the development of validation tools in higher dimensional phase space and an ability to handle non-cartesian geometries. To that end, a new benchmark for validating Vlasov-Poisson simulations in 3D (x,vx,vy) is presented. The benchmark is based on the Dory-Guest-Harris instability and is successfully used to validate a continuum finite volume algorithm. To address challenges associated with non-cartesian geometries, unique features of cylindrical phase space coordinates are described. Preliminary results of continuum kinetic simulations in 4D (r,z,vr,vz) phase space are presented.

  16. Anisotropy of the solid–liquid interface properties of the Ni–Zr B33 phase from molecular dynamics simulation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wilson, S. R.; Mendelev, M. I.

    2015-01-08

    Solid–liquid interface (SLI) properties of the Ni–Zr B33 phase were determined from molecular dynamics simulations. In order to perform these measurements, a new semi-empirical potential for Ni–Zr alloy was developed that well reproduces the material properties required to model SLIs in the Ni50.0Zr50.0 alloy. In particular, the developed potential is shown to provide that the solid phase emerging from the liquid Ni50.0Zr50.0alloy is B33 (apart from a small fraction of point defects), in agreement with the experimental phase diagram. The SLI properties obtained using the developed potential exhibit an extraordinary degree of anisotropy. It is observed that anisotropies in bothmore » the interfacial free energy and mobility are an order of magnitude larger than those measured to date in any other metallic compound. Moreover, the [0 1 0] interface is shown to play a significant role in the observed anisotropy. Our data suggest that the [0 1 0] interface simultaneously corresponds to the lowest mobility, the lowest free energy and the highest stiffness of all inclinations in B33 Ni–Zr. This finding can be understood by taking into account a rather complicated crystal structure in this crystallographic direction.« less

  17. Dynamic properties of micro-particles in ultrasonic transportation using phase-controllable standing waves

    SciTech Connect (OSTI)

    Jia, Kun; Mei, Deqing Meng, Jianxin; Yang, Keji

    2014-10-28

    Ultrasonic manipulation has become an attractive method for surface-sensitive objects in micro-technology. Related phenomena, such as radiation force, multiple scattering, and acoustic streaming, have been widely studied. However, in current studies, the behavior of micro-particles in potential force fields is always analyzed in a quasi-static manner. We developed a dynamic model of a dilute micro-particle in the commonly used two-dimensional ultrasonic manipulation system to provide a systemic and quantitative analysis of the transient properties of particle movement. In this model, the acoustic streaming and hydrodynamic forces, omitted in previous work, were both considered. The trajectory of a spherical silica particle with different initial conditions was derived by numerically solving the established nonlinear differential integral equation system, which was then validated experimentally. The envelope of the experimental data on the x-axis showed good agreement with the theoretical calculation, and the greater influence on the y-axis of the deviation between the actual sound field and the ideal distribution employed in our dynamic model could account for the differences in displacement in that direction. Finally, the influence of particle size on its movement and the effect of acoustic streaming on calculating the hydrodynamic forces for an isolated particle with motion relative to the fluid were analyzed theoretically. It was found that the ultrasonic manipulation system will translate from an under-damped system to an over-damped system with a decrease in particle size and the micro-scale acoustic streaming velocity was negligible when calculating the hydrodynamic forces on the particle in the ultrasonic manipulation system.

  18. Picosecond dynamics of reactions in the liquid phase: studies of iodine photodissociation and development of new laser techniques

    SciTech Connect (OSTI)

    Berg, M.A.

    1985-09-01

    Iodine photodissociation and recombination was studied as a model for processes common to chemical reaction in the liquid phase. Picosecond transient absorption measurements from 1000 to 295 nm were used to monitor the dynamics in a variety of solvents. Most of the atoms which undergo geminate recombination were found to do so in less than or equal to 15 ps, in agreement with the results of existing molecular dynamics simulations. Vibrational relaxation times vary from approx.15 ps near the middle of the ground state well to approx.150 ps for complete relaxation to v = 0. The prediction of strong resonant vibrational energy transfer to chlorinated methane solvents was not supported, but some evidence for this mechanism was found for alkane solvents. Current theory is unable to explain the large variation (65 to 2700 ps) of the excited A'-state lifetime in various solvents. The 10-Hz amplified, synchronously-pumped dye laser which was used in these studies is described and characterized. SERS (Stimulated Electronic Raman Scattering) and difference frequency mixing were used in the generation of the infrared and far-infrared, respectively. 54 refs., 38 figs., 3 tabs. (WRF)

  19. A molecular dynamics study of nuclear quantum effect on the diffusion of hydrogen in condensed phase

    SciTech Connect (OSTI)

    Nagashima, Hiroki; Tokumasu, Takashi; Tsuda, Shin-ichi; Tsuboi, Nobuyuki; Koshi, Mitsuo; Hayashie, A. Koichi

    2014-10-06

    In this paper, the quantum effect of hydrogen molecule on its diffusivity is analyzed using Molecular Dynamics (MD) method. The path integral centroid MD (CMD) method is applied for the reproduction method of time evolution of the molecules. The diffusion coefficient of liquid hydrogen is calculated using the Green-Kubo method. The simulation is performed at wide temperature region and the temperature dependence of the quantum effect of hydrogen molecule is addressed. The calculation results are compared with those of classical MD results. As a result, it is confirmed that the diffusivity of hydrogen molecule is changed depending on temperature by the quantum effect. It is clarified that this result can be explained that the dominant factor by quantum effect on the diffusivity of hydrogen changes from the swollening the potential to the shallowing the potential well around 30 K. Moreover, it is found that this tendency is related to the temperature dependency of the ratio of the quantum kinetic energy and classical kinetic energy.

  20. Fully-Implicit Orthogonal Reconstructed Discontinuous Galerkin for Fluid Dynamics with Phase Change

    SciTech Connect (OSTI)

    Nourgaliev, R.; Luo, H.; Weston, B.; Anderson, A.; Schofield, S.; Dunn, T.; Delplanque, J. -P.

    2015-11-11

    A new reconstructed Discontinuous Galerkin (rDG) method, based on orthogonal basis/test functions, is developed for fluid flows on unstructured meshes. Orthogonality of basis functions is essential for enabling robust and efficient fully-implicit Newton-Krylov based time integration. The method is designed for generic partial differential equations, including transient, hyperbolic, parabolic or elliptic operators, which are attributed to many multiphysics problems. We demonstrate the method’s capabilities for solving compressible fluid-solid systems (in the low Mach number limit), with phase change (melting/solidification), as motivated by applications in Additive Manufacturing (AM). We focus on the method’s accuracy (in both space and time), as well as robustness and solvability of the system of linear equations involved in the linearization steps of Newton-based methods. The performance of the developed method is investigated for highly-stiff problems with melting/solidification, emphasizing the advantages from tight coupling of mass, momentum and energy conservation equations, as well as orthogonality of basis functions, which leads to better conditioning of the underlying (approximate) Jacobian matrices, and rapid convergence of the Krylov-based linear solver.

  1. Fully-Implicit Orthogonal Reconstructed Discontinuous Galerkin for Fluid Dynamics with Phase Change

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Nourgaliev, R.; Luo, H.; Weston, B.; Anderson, A.; Schofield, S.; Dunn, T.; Delplanque, J. -P.

    2015-11-11

    A new reconstructed Discontinuous Galerkin (rDG) method, based on orthogonal basis/test functions, is developed for fluid flows on unstructured meshes. Orthogonality of basis functions is essential for enabling robust and efficient fully-implicit Newton-Krylov based time integration. The method is designed for generic partial differential equations, including transient, hyperbolic, parabolic or elliptic operators, which are attributed to many multiphysics problems. We demonstrate the method’s capabilities for solving compressible fluid-solid systems (in the low Mach number limit), with phase change (melting/solidification), as motivated by applications in Additive Manufacturing (AM). We focus on the method’s accuracy (in both space and time), as wellmore » as robustness and solvability of the system of linear equations involved in the linearization steps of Newton-based methods. The performance of the developed method is investigated for highly-stiff problems with melting/solidification, emphasizing the advantages from tight coupling of mass, momentum and energy conservation equations, as well as orthogonality of basis functions, which leads to better conditioning of the underlying (approximate) Jacobian matrices, and rapid convergence of the Krylov-based linear solver.« less

  2. Phase-Locked Loop Noise Reduction via Phase Detector Implementation for Single-Phase Systems

    SciTech Connect (OSTI)

    Thacker, Timothy; Boroyevich, Dushan; Burgos, Rolando; Wang, Fei

    2011-01-01

    A crucial component of grid-connected converters is the phase-locked loop (PLL) control subsystem that tracks the grid voltage's frequency and phase angle. Therefore, accurate fast-responding PLLs for control and protection purposes are required to provide these measurements. This paper proposes a novel feedback mechanism for single-phase PLL phase detectors using the estimated phase angle. Ripple noise appearing in the estimated frequency, most commonly the second harmonic under phase-lock conditions, is reduced or eliminated without the use of low-pass filters, which can cause delays to occur and limits the overall performance of the PLL response to dynamic changes in the system. The proposed method has the capability to eliminate the noise ripple entirely and, under extreme line distortion conditions, can reduce the ripple by at least half. Other modifications implemented through frequency feedback are shown to decrease the settling time of the PLL up to 50%. Mathematical analyses with the simulated and experimental results are provided to confirm the validity of the proposed methods.

  3. Dynamic

    Office of Legacy Management (LM)

    Dynamic , and Static , Res.ponse of the Government Oil Shale Mine at ' , . , Rifle, ... AND STATIC RESPONSE 'OF THE GOVERNMENT OIL SHALE MINE A T RIFLE, COLORADO, T O THE, ...

  4. Investigations of surface structural, dynamical, and magnetic properties of systems exhibiting multiferroicity, and topological phases by helium scattering spectroscopies

    SciTech Connect (OSTI)

    El-Batanouny, Maged

    2015-08-03

    We propose to investigate the surface structural, dynamics and magnetic properties of the novel class of topological insulator crystals, as well as crystals that exhibit multiferroicity, magnetoelectricity and thermoelectricity. Topological insulators (TIs) are a new class of insulators in which a bulk gap for electronic excitations is generated because of the strong spin-orbit coupling inherent to these systems. These materials are distinguished from ordinary insulators by the presence of gapless metallic surface states, resembling chiral edge modes in quantum Hall systems, but with unconventional spin textures. These exotic metallic states are formed by topological conditions that also render the electrons travelling on such surfaces insensitive to scattering by impurities. The electronic quasi-particles populating the topological surface state are Dirac fermions; they have a linear dispersion and thus are massless just like photons. We propose to investigate the interaction of these massless Dirac fermions with the massive lattice in the newly discovered crystals, Bi2Se3, Bi2Te3 and Sb2Te3. We shall use inelastic helium beam scattering from surfaces to search for related signatures in surface phonon dispersions mappings that cover the entire surface Brillouin zone of these materials. Our recent investigations of the (001) surface of the multiferroic crystals (Li/Na)Cu2O2 revealed an anomalous surface structural behavior where surface Cu$^{2+}$ row rise above the surface plane as the crystal was cooled. Subsequent worming revealed the onset of a thermally activated incommensurate surface phase, driven by the elevated rows. We are currently investigating the structure of the magnetic phases in these quasi-one-dimensional magnetic rows. Multiferroics are excellent candidates for large magnetoelectric response. We propose to extend this investigation to the class of delafossites which are also multiferroics and have been investigated as good candidates for

  5. Spinning angle optical calibration apparatus

    DOE Patents [OSTI]

    Beer, Stephen K.; Pratt, II, Harold R.

    1991-01-01

    An optical calibration apparatus is provided for calibrating and reproducing spinning angles in cross-polarization, nuclear magnetic resonance spectroscopy. An illuminated magnifying apparatus enables optical setting an accurate reproducing of spinning "magic angles" in cross-polarization, nuclear magnetic resonance spectroscopy experiments. A reference mark scribed on an edge of a spinning angle test sample holder is illuminated by a light source and viewed through a magnifying scope. When the "magic angle" of a sample material used as a standard is attained by varying the angular position of the sample holder, the coordinate position of the reference mark relative to a graduation or graduations on a reticle in the magnifying scope is noted. Thereafter, the spinning "magic angle" of a test material having similar nuclear properties to the standard is attained by returning the sample holder back to the originally noted coordinate position.

  6. Properties of the Langevin and Fokker-Planck equations for scalar fields and their application to the dynamics of second order phase transitions

    SciTech Connect (OSTI)

    Bettencourt, Luis M. A.

    2001-02-15

    I consider several Langevin and Fokker-Planck classes of dynamics for scalar field theories in contact with a thermal bath at temperature T. These models have been applied recently in the numerical description of the dynamics of second order phase transitions and associated topological defect formation as well as in other studies of the dynamics of critical phenomena. Closed form solutions of the Fokker-Planck equation are given for a harmonic potential and a dynamical mean-field approximation is developed. These methods allow for an analytical discussion of the behavior of the theories in several circumstances of interest such as critical slowing down at a second order transition and the development of spinodal instabilities.

  7. Influence of the Torsion Angle ...

    Office of Scientific and Technical Information (OSTI)

    ... rings, usually reported as the N C C N angle, obtained from solid-state crystal structures. ... Synthesis and Physical Properties. The preparation o f C p*2Y b(3,3'-M b ip y ) ...

  8. Low Wind Speed Technology Phase II: Offshore Floating Wind Turbine Concepts: Fully Coupled Dynamic Response Simulations; Massachusetts Institute of Technology

    SciTech Connect (OSTI)

    Not Available

    2006-03-01

    This fact sheet describes a subcontract with Massachusetts Institute of Technology to study dynamic response simulations to evaluate floating platform concepts for offshore wind turbines.

  9. Dynamic density functional theory with hydrodynamic interactions: Theoretical development and application in the study of phase separation in gas-liquid systems

    SciTech Connect (OSTI)

    Kikkinides, E. S.; Monson, P. A.

    2015-03-07

    Building on recent developments in dynamic density functional theory, we have developed a version of the theory that includes hydrodynamic interactions. This is achieved by combining the continuity and momentum equations eliminating velocity fields, so the resulting model equation contains only terms related to the fluid density and its time and spatial derivatives. The new model satisfies simultaneously continuity and momentum equations under the assumptions of constant dynamic or kinematic viscosity and small velocities and/or density gradients. We present applications of the theory to spinodal decomposition of subcritical temperatures for one-dimensional and three-dimensional density perturbations for both a van der Waals fluid and for a lattice gas model in mean field theory. In the latter case, the theory provides a hydrodynamic extension to the recently studied dynamic mean field theory. We find that the theory correctly describes the transition from diffusive phase separation at short times to hydrodynamic behaviour at long times.

  10. Experimental signatures of phase interference and subfemtosecond...

    Office of Scientific and Technical Information (OSTI)

    Experimental signatures of phase interference and subfemtosecond time dynamics on the ... Title: Experimental signatures of phase interference and subfemtosecond time dynamics on ...

  11. Mira, another angle | Argonne Leadership Computing Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mira, another angle Download original image « Back to galleryItem 2

  12. OPENING ANGLES OF COLLAPSAR JETS

    SciTech Connect (OSTI)

    Mizuta, Akira; Ioka, Kunihito

    2013-11-10

    We investigate the jet propagation and breakout from the stellar progenitor for gamma-ray burst (GRB) collapsars by performing two-dimensional relativistic hydrodynamic simulations and analytical modeling. We find that the jet opening angle is given by θ{sub j} ∼ 1/5Γ{sub 0} and infer the initial Lorentz factor of the jet at the central engine, Γ{sub 0}, is a few for existing observations of θ{sub j}. The jet keeps the Lorentz factor low inside the star by converging cylindrically via collimation shocks under the cocoon pressure and accelerates at jet breakout before the free expansion to a hollow-cone structure. In this new picture, the GRB duration is determined by the sound crossing time of the cocoon, after which the opening angle widens, reducing the apparent luminosity. Some bursts violating the maximum opening angle θ{sub j,{sub max}} ∼ 1/5 ∼ 12° imply the existence of a baryon-rich sheath or a long-acting jet. We can explain the slopes in both Amati and Yonetoku spectral relations using an off-centered photosphere model, if we make only one assumption that the total jet luminosity is proportional to the initial Lorentz factor of the jet. We also numerically calibrate the pre-breakout model (Bromberg et al.) for later use.

  13. Optimization of the phase angle in ideal Stirling engines using...

    Office of Scientific and Technical Information (OSTI)

    Country of Publication: United States Language: English Subject: 42 ENGINEERING NOT INCLUDED IN OTHER CATEGORIES; STIRLING ENGINES; OPTIMIZATION; HEAT EXCHANGERS; CALCULATION ...

  14. Excited-state quantum phase transitions in systems with two degrees of freedom: Level density, level dynamics, thermal properties

    SciTech Connect (OSTI)

    Strnsk, Pavel; Macek, Michal; Cejnar, Pavel

    2014-06-15

    Quantum systems with a finite number of freedom degrees f develop robust singularities in the energy spectrum of excited states as the systems size increases to infinity. We analyze the general form of these singularities for low f, particularly f=2, clarifying the relation to classical stationary points of the corresponding potential. Signatures in the smoothed energy dependence of the quantum state density and in the flow of energy levels with an arbitrary control parameter are described along with the relevant thermodynamical consequences. The general analysis is illustrated with specific examples of excited-state singularities accompanying the first-order quantum phase transition. -- Highlights: ESQPTs found in infinite-size limit of systems with low numbers of freedom degrees f. ESQPTs related to non-analytical evolutions of classical phasespace properties. ESQPT signatures analyzed for general f, particularly f=2, extending known case f=1. ESQPT signatures identified in smoothened density and flow of energy spectrum. ESQPTs shown to induce a new type of thermodynamic anomalies.

  15. The phase-lock dynamics of the laser wakefield acceleration with an intensity-decaying laser pulse

    SciTech Connect (OSTI)

    Li, Wentao; Liu, Jiansheng Wang, Wentao; Zhang, Zhijun; Chen, Qiang; Tian, Ye; Qi, Rong; Yu, Changhai; Wang, Cheng; Li, Ruxin Xu, Zhizhan; Tajima, T.

    2014-03-03

    An electron beam with the maximum energy extending up to 1.8?GeV, much higher than the dephasing limit, is experimentally obtained in the laser wakefield acceleration with the plasma density of 3.5??10{sup 18}?cm{sup ?3}. With particle in cell simulations and theoretical analysis, we find that the laser intensity evolution plays a major role in the enhancement of the electron energy gain. While the bubble length decreases due to the intensity-decay of the laser pulse, the phase of the electron beam in the wakefield can be locked, which contributes to the overcoming of the dephasing. Moreover, the laser intensity evolution is described for the phase-lock acceleration of electrons in the uniform plasma, confirmed with our own simulation. Since the decaying of the intensity is unavoidable in the long distance propagation due to the pump depletion, the energy gain of the high energy laser wakefield accelerator can be greatly enhanced if the current process is exploited.

  16. Methods for magnetic resonance analysis using magic angle technique

    DOE Patents [OSTI]

    Hu, Jian Zhi; Wind, Robert A.; Minard, Kevin R.; Majors, Paul D.

    2011-11-22

    Methods of performing a magnetic resonance analysis of a biological object are disclosed that include placing the object in a main magnetic field (that has a static field direction) and in a radio frequency field; rotating the object at a frequency of less than about 100 Hz around an axis positioned at an angle of about 54.degree.44' relative to the main magnetic static field direction; pulsing the radio frequency to provide a sequence that includes a phase-corrected magic angle turning pulse segment; and collecting data generated by the pulsed radio frequency. In particular embodiments the method includes pulsing the radio frequency to provide at least two of a spatially selective read pulse, a spatially selective phase pulse, and a spatially selective storage pulse. Further disclosed methods provide pulse sequences that provide extended imaging capabilities, such as chemical shift imaging or multiple-voxel data acquisition.

  17. Integrated experimental setup for angle resolved photoemission...

    Office of Scientific and Technical Information (OSTI)

    Integrated experimental setup for angle resolved photoemission spectroscopy of transuranic materials Citation Details In-Document Search Title: Integrated experimental setup for...

  18. A phase field dislocation dynamics model for a bicrystal interface system: An investigation into dislocation slip transmission across cube-on-cube interfaces

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zeng, Y.; Hunter, A.; Beyerlein, I. J.; Koslowski, M.

    2015-09-14

    In this study, we present a phase field dislocation dynamics formulation designed to treat a system comprised of two materials differing in moduli and lattice parameters that meet at a common interface. We apply the model to calculate the critical stress τcrit required to transmit a perfect dislocation across the bimaterial interface with a cube-on-cube orientation relationship. The calculation of τcrit accounts for the effects of: 1) the lattice mismatch (misfit or coherency stresses), 2) the elastic moduli mismatch (Koehler forces or image stresses), and 3) the formation of the residual dislocation in the interface. Our results show that themore » value of τcrit associated with the transmission of a dislocation from material 1 to material 2 is not the same as that from material 2 to material 1. Dislocation transmission from the material with the lower shear modulus and larger lattice parameter tends to be easier than the reverse and this apparent asymmetry in τcrit generally increases with increases in either lattice or moduli mismatch or both. In efforts to clarify the roles of lattice and moduli mismatch, we construct an analytical model for τcrit based on the formation energy of the residual dislocation. We show that path dependence in this energetic barrier can explain the asymmetry seen in the calculated τcrit values.« less

  19. A phase field dislocation dynamics model for a bicrystal interface system: An investigation into dislocation slip transmission across cube-on-cube interfaces

    SciTech Connect (OSTI)

    Zeng, Y.; Hunter, A.; Beyerlein, I. J.; Koslowski, M.

    2015-09-14

    In this study, we present a phase field dislocation dynamics formulation designed to treat a system comprised of two materials differing in moduli and lattice parameters that meet at a common interface. We apply the model to calculate the critical stress τcrit required to transmit a perfect dislocation across the bimaterial interface with a cube-on-cube orientation relationship. The calculation of τcrit accounts for the effects of: 1) the lattice mismatch (misfit or coherency stresses), 2) the elastic moduli mismatch (Koehler forces or image stresses), and 3) the formation of the residual dislocation in the interface. Our results show that the value of τcrit associated with the transmission of a dislocation from material 1 to material 2 is not the same as that from material 2 to material 1. Dislocation transmission from the material with the lower shear modulus and larger lattice parameter tends to be easier than the reverse and this apparent asymmetry in τcrit generally increases with increases in either lattice or moduli mismatch or both. In efforts to clarify the roles of lattice and moduli mismatch, we construct an analytical model for τcrit based on the formation energy of the residual dislocation. We show that path dependence in this energetic barrier can explain the asymmetry seen in the calculated τcrit values.

  20. Realizing in-plane surface diffraction by x-ray multiple-beam diffraction with large incidence angle

    SciTech Connect (OSTI)

    Huang, Xian-Rong Gog, Thomas; Assoufid, Lahsen; Peng, Ru-Wen; Siddons, D. P.

    2014-11-03

    Based on rigorous dynamical-theory calculations, we demonstrate the principle of an x-ray multiple-beam diffraction (MBD) scheme that overcomes the long-lasting difficulties of high-resolution in-plane diffraction from crystal surfaces. This scheme only utilizes symmetric reflection geometry with large incident angles but activates the out-of-plane and in-plane diffraction processes simultaneously and separately in the continuous MBD planes. The in-plane diffraction is realized by detoured MBD, where the intermediate diffracted waves propagate parallel to the surface, which corresponds to an absolute Bragg surface diffraction configuration that is extremely sensitive to surface structures. A series of MBD diffraction and imaging techniques may be developed from this principle to study surface/interface (misfit) strains, lateral nanostructures, and phase transitions of a wide range of (pseudo)cubic crystal structures, including ultrathin epitaxial films and multilayers, quantum dots, strain-engineered semiconductor or (multi)ferroic materials, etc.

  1. Monitoring phase behavior of hydrogen confined in carbon nanopores...

    Office of Scientific and Technical Information (OSTI)

    of hydrogen confined in carbon nanopores by in-situ small angle neutron scattering technique Citation Details In-Document Search Title: Monitoring phase behavior of hydrogen ...

  2. Long range correlations and folding angle with applications to ?-helical proteins

    SciTech Connect (OSTI)

    Krokhotin, Andrey, E-mail: Andrei.Krokhotine@cern.ch [Department of Physics and Astronomy, Uppsala University, P.O. Box 803, S-75108, Uppsala (Sweden)] [Department of Physics and Astronomy, Uppsala University, P.O. Box 803, S-75108, Uppsala (Sweden); Nicolis, Stam, E-mail: Stam.Nicolis@lmpt.univ-tours.fr [Laboratoire de Mathematiques et Physique Theorique CNRS UMR 6083, Fdration Denis Poisson, Universit de Tours, Parc de Grandmont, F37200 Tours (France)] [Laboratoire de Mathematiques et Physique Theorique CNRS UMR 6083, Fdration Denis Poisson, Universit de Tours, Parc de Grandmont, F37200 Tours (France); Niemi, Antti J., E-mail: Antti.Niemi@physics.uu.se [Department of Physics and Astronomy, Uppsala University, P.O. Box 803, S-75108, Uppsala (Sweden); Laboratoire de Mathematiques et Physique Theorique CNRS UMR 6083, Fdration Denis Poisson, Universit de Tours, Parc de Grandmont, F37200 Tours (France); Department of Physics, Beijing Institute of Technology, Haidian District, Beijing 100081 (China)

    2014-03-07

    The conformational complexity of chain-like macromolecules such as proteins and other linear polymers is much larger than that of point-like atoms and molecules. Unlike particles, chains can bend, twist, and even become knotted. Thus chains might also display a much richer phase structure. Unfortunately, it is not very easy to characterize the phase of a long chain. Essentially, the only known attribute is the radius of gyration. The way how it changes when the degree of polymerization becomes different, and how it evolves when the ambient temperature and solvent properties change, is commonly used to disclose the phase. But in any finite length chain there are corrections to scaling that complicate the detailed analysis of the phase structure. Here we introduce a quantity that we call the folding angle to identify and scrutinize the phase structure, as a complement to the radius of gyration. We argue for a mean-field level relationship between the folding angle and the scaling exponent in the radius of gyration. We then estimate the value of the folding angle in the case of crystallographic ?-helical protein structures in the Protein Data Bank. We also show how the experimental value of the folding angle can be obtained computationally, using a semiclassical Born-Oppenheimer description of ?-helical chiral chains.

  3. Small Angle X-Ray Scattering Detector

    DOE Patents [OSTI]

    Hessler, Jan P.

    2004-06-15

    A detector for time-resolved small-angle x-ray scattering includes a nearly constant diameter, evacuated linear tube having an end plate detector with a first fluorescent screen and concentric rings of first fiber optic bundles for low angle scattering detection and an annular detector having a second fluorescent screen and second fiber optic bundles concentrically disposed about the tube for higher angle scattering detection. With the scattering source, i.e., the specimen under investigation, located outside of the evacuated tube on the tube's longitudinal axis, scattered x-rays are detected by the fiber optic bundles, to each of which is coupled a respective photodetector, to provide a measurement resolution, i.e., dq/q, where q is the momentum transferred from an incident x-ray to an x-ray scattering specimen, of 2% over two (2) orders of magnitude in reciprocal space, i.e., qmax/qmin approx=lO0.

  4. PRECISE ANGLE MONITOR BASED ON THE CONCEPT OF PENCIL-BEAM INTERFEROMETRY

    SciTech Connect (OSTI)

    QIAN,S.; TAKACS,P.

    2000-07-30

    The precise angle monitoring is a very important metrology task for research, development and industrial applications. Autocollimator is one of the most powerful and widely applied instruments for small angle monitoring, which is based on the principle of geometric optics. In this paper the authors introduce a new precise angle monitoring system, Pencil-beam Angle Monitor (PAM), base on pencil beam interferometry. Its principle of operation is a combination of physical and geometrical optics. The angle calculation method is similar to the autocollimator. However, the autocollimator creates a cross image but the precise pencil-beam angle monitoring system produces an interference fringe on the focal plane. The advantages of the PAM are: high angular sensitivity, long-term stability character making angle monitoring over long time periods possible, high measurement accuracy in the order of sub-microradian, simultaneous measurement ability in two perpendicular directions or on two different objects, dynamic measurement possibility, insensitive to the vibration and air turbulence, automatic display, storage and analysis by use of the computer, small beam diameter making the alignment extremely easy and longer test distance. Some test examples are presented.

  5. Photo-induced isomerization of ethylene-bridged azobenzene explored by ab initio based non-adiabatic dynamics simulation: A comparative investigation of the isomerization in the gas and solution phases

    SciTech Connect (OSTI)

    Cao Jun; Liu Lihong; Fang Weihai; Xie Zhizhong; Zhang Yong

    2013-04-07

    Azobenzene is one of the most widely used photoactive units and recently an ethylene-bridged azobenzene (BAB) was reported to have greatly enhanced conversion efficiency, quantum yield, and other favorable properties. As the first step towards exploring its photo-switchable character in real systems, we report here a systematic study on the photoisomerization dynamics between trans (E) and cis (Z) isomers in the gas phase and the CH{sub 3}OH solution, using ab initio based surface hopping and molecular dynamics, which is the first report of dynamics simulation to reveal the environmental effects on BAB photoreactions. Results show that while the relatively faster S{sub 1} relaxation of the photo-induced E{yields}Z process is only mildly affected by the solvent effect, the relatively slower S{sub 1} relaxation of the reverse reaction becomes even slower in the solution compared to the gas phase. The subsequent S{sub 0} dynamics from the conical intersection between S{sub 1} and S{sub 0} (CI{sub E}) to Z is accelerated in solution compared to the gas phase because of avoided re-crossing to the S{sub 1} state, while the S{sub 0} dynamics from the conical intersection between S{sub 1} and S{sub 0} (CI{sub Z}) to E are basically the same in both phases. Overall, the solvent effect was found to enhance the back-and-forth photo-switch efficiency between the Z and E isomers compared to the gas phase, while the quantum yields are reduced. But the solution yields of both the forward and backward photoreactions are still around 0.4. Therefore, BAB may have good photo-responsive properties if used as a photoactive unit in real systems. These results will facilitate future experimental and theoretical studies in this area to help design new azobenzene derivatives as photoactive units in biological processes, nanoscale devices, and photo-responsive materials.

  6. Process and apparatus for measuring degree of polarization and angle of major axis of polarized beam of light

    DOE Patents [OSTI]

    Decker, Derek E.; Toeppen, John S.

    1994-01-01

    Apparatus and process are disclosed for calibrating measurements of the phase of the polarization of a polarized beam and the angle of the polarized optical beam's major axis of polarization at a diagnostic point with measurements of the same parameters at a point of interest along the polarized beam path prior to the diagnostic point. The process is carried out by measuring the phase angle of the polarization of the beam and angle of the major axis at the point of interest, using a rotatable polarizer and a detector, and then measuring these parameters again at a diagnostic point where a compensation apparatus, including a partial polarizer, which may comprise a stack of glass plates, is disposed normal to the beam path between a rotatable polarizer and a detector. The partial polarizer is then rotated both normal to the beam path and around the axis of the beam path until the detected phase of the beam polarization equals the phase measured at the point of interest. The rotatable polarizer at the diagnostic point may then be rotated manually to determine the angle of the major axis of the beam and this is compared with the measured angle of the major axis of the beam at the point of interest during calibration. Thereafter, changes in the polarization phase, and in the angle of the major axis, at the point of interest can be monitored by measuring the changes in these same parameters at the diagnostic point.

  7. Mira, an angle shot | Argonne Leadership Computing Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    an angle shot Download original image « Back to galleryItem 1 of 9Next

  8. IR OPTICS MEASUREMENT WITH LINEAR COUPLING'S ACTION-ANGLE PARAMETERIZATION.

    SciTech Connect (OSTI)

    LUO, Y.; BAI, M.; PILAT, R.; SATOGATA, T.; TRBOJEVIC, D.

    2005-05-16

    A parameterization of linear coupling in action-angle coordinates is convenient for analytical calculations and interpretation of turn-by-turn (TBT) beam position monitor (BPM) data. We demonstrate how to use this parameterization to extract the twiss and coupling parameters in interaction regions (IRs), using BPMs on each side of the long IR drift region. The example of TBT BPM analysis was acquired at the Relativistic Heavy Ion Collider (RHIC), using an AC dipole to excite a single eigenmode. Besides the full treatment, a fast estimate of beta*, the beta function at the interaction point (IP), is provided, along with the phase advance between these BPMs. We also calculate and measure the waist of the beta function and the local optics.

  9. Multi-Angle Snowflake Camera Instrument Handbook

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8 Multi-Angle Snowflake Camera Instrument Handbook July 2016 M Stuefer J Bailey DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe

  10. Solar concentrator with restricted exit angles

    DOE Patents [OSTI]

    Rabl, Arnulf; Winston, Roland

    1978-12-19

    A device is provided for the collection and concentration of radiant energy and includes at least one reflective side wall. The wall directs incident radiant energy to the exit aperture thereof or onto the surface of energy absorber positioned at the exit aperture so that the angle of incidence of radiant energy at the exit aperture or on the surface of the energy absorber is restricted to desired values.

  11. Angle sensitive single photon avalanche diode

    SciTech Connect (OSTI)

    Lee, Changhyuk Johnson, Ben Molnar, Alyosha

    2015-06-08

    An ideal light sensor would provide exact information on intensity, timing, location, and angle of incoming photons. Single photon avalanche diodes (SPADs) provide such desired high (single photon) sensitivity with precise time information and can be implemented at a pixel-scale to form an array to extract spatial information. Furthermore, recent work has demonstrated photodiode-based structures (combined with micro-lenses or diffraction gratings) that are capable of encoding both spatial and angular information of incident light. In this letter, we describe the implementation of such a grating structure on SPADs to realize a pixel-scale angle-sensitive single photon avalanche diode (A-SPAD) built in a standard CMOS process. While the underlying SPAD structure provides high sensitivity, the time information of the two layers of diffraction gratings above offers angle-sensitivity. Such a unique combination of SPAD and diffraction gratings expands the sensing dimensions to pave a path towards lens-less 3-D imaging and light-field time-of-flight imaging.

  12. Small Angle X-Ray Scattering Detector

    DOE Patents [OSTI]

    Hessler, Jan P.

    2004-06-15

    A detector for time-resolved small-angle x-ray scattering includes a nearly constant diameter, evacuated linear tube having an end plate detector with a first fluorescent screen and concentric rings of first fiber optic bundles for low angle scattering detection and an annular detector having a second fluorescent screen and second fiber optic bundles concentrically disposed about the tube for higher angle scattering detection. With the scattering source, i.e., the specimen under investigation, located outside of the evacuated tube on the tube's longitudinal axis, scattered x-rays are detected by the fiber optic bundles, to each of which is coupled a respective photodetector, to provide a measurement resolution, i.e., dq/q, where q is the momentum transferred from an incident x-ray to an x-ray scattering specimen, of 2% over two (2) orders of magnitude in reciprocal space, i.e., q.sub.max /q.sub.min.congruent.100.

  13. Relativistic kinetic theory of pitch angle scattering, slowing down, and energy deposition in a plasma

    SciTech Connect (OSTI)

    Robiche, J.; Rax, J.M.

    2004-10-01

    The collisional dynamics of a relativistic electron population in a Lorentzian plasma are investigated and analyzed within the framework of kinetic theory. The relativistic Fokker-Planck equation describing both slowing down and pitch angle scattering is derived, analyzed, and solved. The analytical Green function is used to express the electron range, the range straggling, and the mean radial dispersion as a function of the plasma parameters. Compared to standard slowing down theories, the inclusion of the pitch angle scattering without any Gaussian approximation appears to be essential to calculate these quantities.

  14. Pair Creation at Large Inherent Angles

    SciTech Connect (OSTI)

    Chen, P.; Tauchi, T.; Schroeder, D.V.; /SLAC

    2007-04-25

    In the next-generation linear colliders, the low-energy e{sup +}e{sup -} pairs created during the collision of high-energy e{sup +}e{sup -} beams would cause potential deleterious background problems to the detectors. At low collider energies, the pairs are made essentially by the incoherent process, where the pair is created by the interaction of beamstrahlung photons on the individual particles in the oncoming beam. This problem was first identified by Zolotarev, et al[1]. At energies where the beamstrahlung parameter {Upsilon} lies approximately in the range 0.6 {approx}< {Upsilon} {approx}< 100, pair creation from the beamstrahlung photons is dominated by a coherent process, first noted by Chen[2]. The seriousness of this pair creation problem lies in the transverse momenta that the pair particles carry when leaving the interaction point (IP) with large angles. One source of transverse momentum is from the kick by the field of the oncoming beam which results in an outcoming angle {theta} {proportional_to} 1/{radical}x, where x is the fractional energy of the particle relative to the initial beam particle energy[2,3]. As was shown in Ref. 131, there in fact exists an energy threshold for the coherent pairs, where x{sub th} {approx}> 1/2{Upsilon}. Thus within a tolerable exiting angle, there exists an upper limit for {Upsilon} where all coherent pairs would leave the detector through the exhaust port[4]. A somewhat different analysis has been done by Schroeder[5]. In the next generation of linear colliders, as it occurs, the coherent pairs can be exponentially suppressed[2] by properly choosing the {Upsilon}({approx}< 0.6). When this is achieved, the incoherent pairs becomes dominant. Since the central issue is the transverse momentum for particles with large angles, we notice that there is another source for it. Namely, when the pair particles are created at low energies, the intrinsic angles of these pairs when produced may already be large. This issue was

  15. Impact of the In-medium Nucleon-nucleon Cross Section Modification on Early-reaction-phase Dynamics Below 100 A MeV

    SciTech Connect (OSTI)

    Basrak, Z.; Zoric, M.; Eudes, P.; Sebille, F.

    2009-08-26

    With a semi-classical transport model studied is the impact of the in-medium NN cross section modifications on the early energy transformation, dynamical emission and quasiprojectile properties of the Ar+Ni and Ni+Ni reactions at 52, 74 and 95(90) A MeV.

  16. LHC luminosity upgrade with large Piwinski angle scheme: a recent look

    SciTech Connect (OSTI)

    Bhat, C.M.; Zimmermann, f.; /CERN

    2011-09-01

    Luminosity upgrade at the LHC collider using longitudinally flat bunches in combination with the large crossing angle (large Piwinski angle scheme) is being studied with renewed interest in recent years. By design, the total beam-beam tune shift at the LHC is less than 0.015 for two interaction points together. But the 2010-11 3.5 TeV collider operation and dedicated studies indicated that the beam-beam tune shift is >0.015 per interaction point. In view of this development we have revisited the requirements for the Large Piwinski Angle scheme at the LHC. In this paper we present a new set of parameters and luminosity calculations for the desired upgrade by investigating: (1) current performance of the LHC injectors, (2) e-cloud issues on nearly flat bunches and (3) realistic beam particle distributions from longitudinal beam dynamics simulations. We also make some remarks on the needed upgrades on the LHC injector accelerators.

  17. Method for high resolution magnetic resonance analysis using magic angle technique

    DOE Patents [OSTI]

    Wind, Robert A.; Hu, Jian Zhi

    2004-12-28

    A method of performing a magnetic resonance analysis of a biological object that includes placing the object in a main magnetic field (that has a static field direction) and in a radio frequency field; rotating the object at a frequency of less than about 100 Hz around an axis positioned at an angle of about 54.degree.44' relative to the main magnetic static field direction; pulsing the radio frequency to provide a sequence that includes a phase-corrected magic angle turning pulse segment; and collecting data generated by the pulsed radio frequency. The object may be reoriented about the magic angle axis between three predetermined positions that are related to each other by 120.degree.. The main magnetic field may be rotated mechanically or electronically. Methods for magnetic resonance imaging of the object are also described.

  18. Method for high resolution magnetic resonance analysis using magic angle technique

    DOE Patents [OSTI]

    Wind, Robert A.; Hu, Jian Zhi

    2003-12-30

    A method of performing a magnetic resonance analysis of a biological object that includes placing the object in a main magnetic field (that has a static field direction) and in a radio frequency field; rotating the object at a frequency of less than about 100 Hz around an axis positioned at an angle of about 54.degree.44' relative to the main magnetic static field direction; pulsing the radio frequency to provide a sequence that includes a phase-corrected magic angle turning pulse segment; and collecting data generated by the pulsed radio frequency. The object may be reoriented about the magic angle axis between three predetermined positions that are related to each other by 120.degree.. The main magnetic field may be rotated mechanically or electronically. Methods for magnetic resonance imaging of the object are also described.

  19. Ponderomotive phase plate for transmission electron microscopes

    DOE Patents [OSTI]

    Reed, Bryan W. (Livermore, CA)

    2012-07-10

    A ponderomotive phase plate system and method for controllably producing highly tunable phase contrast transfer functions in a transmission electron microscope (TEM) for high resolution and biological phase contrast imaging. The system and method includes a laser source and a beam transport system to produce a focused laser crossover as a phase plate, so that a ponderomotive potential of the focused laser crossover produces a scattering-angle-dependent phase shift in the electrons of the post-sample electron beam corresponding to a desired phase contrast transfer function.

  20. Two-lens, anamorphic, Brewster-angle, Fourier-transform relay

    SciTech Connect (OSTI)

    Berggren, R.R.

    1987-01-01

    A two-lens system provides a simple and versatile means to relay a laser beam. The pair of lenses can provide true volume imaging, reproducing both amplitude and phase of the input beam. By using cylindrical lenses it is possible to change the aspect ratio of the beam. By adjusting the cylindrical curvatures, it is possible to minimize reflections by tilting the lenses at the Brewster angle.

  1. Multiaxial deformation of polyethylene and polyethylene/clay nanocomposites: In situ synchrotron small angle and wide angle X-ray scattering study

    SciTech Connect (OSTI)

    Gurun, Bilge; Bucknall, David G.; Thio, Yonathan S.; Teoh, Chin Ching; Harkin-Jones, Eileen

    2013-01-10

    A unique in situ multiaxial deformation device has been designed and built specifically for simultaneous synchrotron small angle X-ray scattering (SAXS) and wide angle X-ray scattering (WAXS) measurements. SAXS and WAXS patterns of high-density polyethylene (HDPE) and HDPE/clay nanocomposites were measured in real time during in situ multiaxial deformation at room temperature and at 55 C. It was observed that the morphological evolution of polyethylene is affected by the existence of clay platelets as well as the deformation temperature and strain rate. Martensitic transformation of orthorhombic into monoclinic crystal phases was observed under strain in HDPE, which is delayed and hindered in the presence of clay nanoplatelets. From the SAXS measurements, it was observed that the thickness of the interlamellar amorphous region increased with increasing strain, which is due to elongation of the amorphous chains. The increase in amorphous layer thickness is slightly higher for the nanocomposites compared to the neat polymer.

  2. Role of Nucleation and Growth in Two-Phase Microstructure Formation

    SciTech Connect (OSTI)

    Jong Ho Shin

    2008-05-01

    During the directional solidification of peritectic alloys, a rich variety of two-phase microstructures develop, and the selection process of a specific microstructure is complicated due to the following two considerations. (1) In contrast to many single phase and eutectic microstructures that grow under steady state conditions, two-phase microstructures in a peritectic system often evolve under non-steady-state conditions that can lead to oscillatory microstructures, and (2) the microstructure is often governed by both the nucleation and the competitive growth of the two phases in which repeated nucleation can occur due to the change in the local conditions during growth. In this research, experimental studies in the Sn-Cd system were designed to isolate the effects of nucleation and competitive growth on the dynamics of complex microstructure formation. Experiments were carried out in capillary samples to obtain diffusive growth conditions so that the results can be analyzed quantitatively. At high thermal gradient and low velocity, oscillatory microstructures were observed in which repeated nucleation of the two phases was observed at the wall-solid-liquid junction. Quantitative measurements of nucleation undercooling were obtained for both the primary and the peritectic phase nucleation, and three different ampoule materials were used to examine the effect of different contact angles at the wall on nucleation undercooling. Nucleation undercooling for each phase was found to be very small, and the experimental undercooling values were orders of magnitude smaller than that predicted by the classical theory of nucleation. A new nucleation mechanism is proposed in which the clusters of atoms at the wall ahead of the interface can become a critical nucleus when the cluster encounters the triple junction. Once the nucleation of a new phase occurs, the microstructure is found to be controlled by the relative growth of the two phases that give rise to different

  3. Moderate positive spin Hall angle in uranium

    SciTech Connect (OSTI)

    Singh, Simranjeet; Anguera, Marta; Barco, Enrique del E-mail: cwmsch@rit.edu; Springell, Ross; Miller, Casey W. E-mail: cwmsch@rit.edu

    2015-12-07

    We report measurements of spin pumping and the inverse spin Hall effect in Ni{sub 80}Fe{sub 20}/uranium bilayers designed to study the efficiency of spin-charge interconversion in a super-heavy element. We employ broad-band ferromagnetic resonance on extended films to inject a spin current from the Ni{sub 80}Fe{sub 20} (permalloy) into the uranium layer, which is then converted into an electric field by the inverse spin Hall effect. Surprisingly, our results suggest a spin mixing conductance of order 2 × 10{sup 19} m{sup −2} and a positive spin Hall angle of 0.004, which are both merely comparable with those of several transition metals. These results thus support the idea that the electronic configuration may be at least as important as the atomic number in governing spin pumping across interfaces and subsequent spin Hall effects. In fact, given that both the magnitude and the sign are unexpected based on trends in d-electron systems, materials with unfilled f-electron orbitals may hold additional exploration avenues for spin physics.

  4. Electron energy spectrum and maximum disruption angle under multi...

    Office of Scientific and Technical Information (OSTI)

    Conference: Electron energy spectrum and maximum disruption angle under multi-photon beamstrahlung Citation Details In-Document Search Title: Electron energy spectrum and maximum ...

  5. Electron energy spectrum and maximum disruption angle under multi...

    Office of Scientific and Technical Information (OSTI)

    Electron energy spectrum and maximum disruption angle under multi-photon beamstrahlung Citation Details In-Document Search Title: Electron energy spectrum and maximum disruption ...

  6. Ligand Bridging-Angle-Driven Assembly of Molecular Architectures...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    angles of 0, 60, 90, and 120 while incorporating a variety of nonbridging functional groups, and these ligands were used as linkers. These dicarboxylate linkers assemble with...

  7. Angle-Resolved Photoemission Studies of Quantum Materials (Journal...

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Search Results Journal Article: Angle-Resolved Photoemission Studies of Quantum Materials Citation ... Cond. Mat. Phys. 3, 129, 2012 Research Org: SLAC National ...

  8. Flow in porous media, phase and ultralow interfacial tensions: Mechanisms of enhanced petroleum recovery

    SciTech Connect (OSTI)

    Davis, H.T.; Scriven, L.E.

    1991-07-01

    A major program of university research, longer-ranged and more fundamental in approach than industrial research, into basic mechanisms of enhancing petroleum recovery and into underlying physics, chemistry, geology, applied mathematics, computation, and engineering science has been built at Minnesota. The original focus was surfactant-based chemical flooding, but the approach taken was sufficiently fundamental that the research, longer-ranged than industrial efforts, has become quite multidirectional. Topics discussed are volume controlled porosimetry; fluid distribution and transport in porous media at low wetting phase saturation; molecular dynamics of fluids in ultranarrow pores; molecular dynamics and molecular theory of wetting and adsorption; new numerical methods to handle initial and boundary conditions in immiscible displacement; electron microscopy of surfactant fluid microstructure; low cost system for animating liquid crystallites viewed with polarized light; surfaces of constant mean curvature with prescribed contact angle.

  9. 1/2 l angle 100 r angle l brace 100 r brace dislocation loops in a zinc blende structure

    SciTech Connect (OSTI)

    Chu, S.N.G.; Nakahara, S. )

    1990-01-29

    We report, for the first time, the identification of extrinsic dislocation loops lying on the {l brace}100{r brace} planes with {1/2}{l angle}100{r angle} types of Burgers vectors in a zinc blende structure in InGaAsP lattice matched to InP. These dislocation loops generated only in nonradiative recombination assisted point-defect motion process under intensed laser light, and form the {l angle}100{r angle} type dark line defects in degraded 1.3 {mu}m wavelength laser diodes.

  10. Unitarity Triangle Angle Measurements at BaBar

    SciTech Connect (OSTI)

    Latham, Thomas E.; /SLAC

    2005-06-30

    We present recent results of measurements of the Unitarity Triangle angles alpha, beta and gamma made with the BaBar detector at the PEP-II asymmetric B factory. We present recent results of measurements of the Unitarity Triangle angles alpha, beta and gamma made with the BaBar detector at the PEP-II asymmetric B factory.

  11. PHASE DETECTOR

    DOE Patents [OSTI]

    Kippenhan, D.O.

    1959-09-01

    A phase detector circuit is described for use at very high frequencies of the order of 50 megacycles. The detector circuit includes a pair of rectifiers inverted relative to each other. One voltage to be compared is applied to the two rectifiers in phase opposition and the other voltage to be compared is commonly applied to the two rectifiers. The two result:ng d-c voltages derived from the rectifiers are combined in phase opposition to produce a single d-c voltage having amplitude and polarity characteristics dependent upon the phase relation between the signals to be compared. Principal novelty resides in the employment of a half-wave transmission line to derive the phase opposing signals from the first voltage to be compared for application to the two rectifiers in place of the transformer commonly utilized for such purpose in phase detector circuits for operation at lower frequency.

  12. Magic angle spinning nuclear magnetic resonance apparatus and process for high-resolution in situ investigations

    SciTech Connect (OSTI)

    Hu, Jian Zhi; Sears, Jr., Jesse A.; Hoyt, David W.; Mehta, Hardeep S.; Peden, Charles H. F.

    2015-11-24

    A continuous-flow (CF) magic angle sample spinning (CF-MAS) NMR rotor and probe are described for investigating reaction dynamics, stable intermediates/transition states, and mechanisms of catalytic reactions in situ. The rotor includes a sample chamber of a flow-through design with a large sample volume that delivers a flow of reactants through a catalyst bed contained within the sample cell allowing in-situ investigations of reactants and products. Flow through the sample chamber improves diffusion of reactants and products through the catalyst. The large volume of the sample chamber enhances sensitivity permitting in situ .sup.13C CF-MAS studies at natural abundance.

  13. The dynamics of two-phase (gas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    rod power production, prediction of local boiling rates and bulk boiling effects in nuclear reactors is key in achiev- ing a ... capability to assess safety margins and the impact ...

  14. Enhancing Condensers for Geothermal Systems: the Effect of High Contact Angles on Dropwise Condensation Heat Transfer

    SciTech Connect (OSTI)

    Kennedy, John M.; Kim, Sunwoo; Kim, Kwang J.

    2009-10-06

    Phase change heat transfer is notorious for increasing the irreversibility of, and therefore decreasing the efficiency of, geothermal power plants. Its significant contribution to the overall irreversibility of the plant makes it the most important source of inefficiency in the process. Recent studies here have shown the promotion of drop wise condensation in the lab by means of increasing the surface energy density of a tube with nanotechnology. The use of nanotechnology has allowed the creation of surface treatments which discourage water from wetting a tube surface during a static test. These surface treatments are unique in that they create high- contact angles on the condensing tube surfaces to promote drop wise condensation.

  15. SANS (small angle neutron scattering) measurement of deuterium-dislocation correlation in palladium

    SciTech Connect (OSTI)

    Heuser, B.J.; Summerfield, G.C.; King, J.S. ); Epperson, J.E. )

    1989-11-01

    Small angle neutron scattering (SANS) measurements have been made on deformed polycrystal palladium samples with and without deuterium dissolved in the solution phase ({alpha}) at room temperature. Concentrations were held constant during SANS experiments by an equilibrium gas pressure cell. The difference scattering cross section for the same sample with and without deuterium loading has a 1/Q behavior (Q=4{pi}/{lambda} sin{theta}/2) at intermediate values of Q. At very low values of Q the dependence is much stronger than 1/Q. The 1/Q behavior is attributed to deuterium trapping close to long dislocation cores forming rod-like scattering structures.

  16. Dynamics of skyrmions in chiral magnets: Dynamic phase transitions...

    Office of Scientific and Technical Information (OSTI)

    Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United ... Country of input: International Atomic Energy Agency (IAEA) Country of Publication: ...

  17. General Compression Looks at Energy Storage from a Different Angle |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy General Compression Looks at Energy Storage from a Different Angle General Compression Looks at Energy Storage from a Different Angle February 3, 2011 - 3:36pm Addthis Image of the General Compression CAES system | courtesy of General Compression, Inc. Image of the General Compression CAES system | courtesy of General Compression, Inc. April Saylor April Saylor Former Digital Outreach Strategist, Office of Public Affairs Earlier this week, we told you about a new company

  18. Boundary layer modeling of reactive flow over a porous surface with angled injection

    SciTech Connect (OSTI)

    Liu, Shiling; Fotache, Catalin G.; Hautman, Donald J.; Ochs, Stuart S. [United Technologies Research Center, MS 129-29, 411 Silver Lane, East Hartford, CT 06108 (United States); Chao, Beei-Huan [Department of Mechanical Engineering, University of Hawaii at Manoa, Honolulu, HI 96822 (United States)

    2008-08-15

    An analytical model was developed to investigate the dynamics of nonpremixed flames in a shear layer established between a mainstream flow of fuel-rich combustion products and a porous surface with an angled injection of air. In the model, a one-step overall chemical reaction was employed, together with boundary layer conservation equations solved using similarity solutions. Parametric studies were performed to understand the effects of equivalence ratio, temperature, and mass flow rate of the fuel and air streams on the flame standoff distance, surface temperature, and heat flux at the surface. The analytical model predictions were compared with computational fluid dynamics results obtained using the FLUENT commercial code for both the laminar and the turbulent flow models. Qualitative agreement in surface temperature was observed. Finally, the flame stability limits predicted by the model were compared with available experimental data and found to agree qualitatively, as well. (author)

  19. Tracking interface and common curve dynamics for two-fluid flow in porous media

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mcclure, James E.; Miller, Cass T.; Gray, W. G.; Berrill, Mark A.

    2016-04-29

    Pore-scale studies of multiphase flow in porous medium systems can be used to understand transport mechanisms and quantitatively determine closure relations that better incorporate microscale physics into macroscale models. Multiphase flow simulators constructed using the lattice Boltzmann method provide a means to conduct such studies, including both the equilibrium and dynamic aspects. Moving, storing, and analyzing the large state space presents a computational challenge when highly-resolved models are applied. We present an approach to simulate multiphase flow processes in which in-situ analysis is applied to track multiphase flow dynamics at high temporal resolution. We compute a comprehensive set of measuresmore » of the phase distributions and the system dynamics, which can be used to aid fundamental understanding and inform closure relations for macroscale models. The measures computed include microscale point representations and macroscale averages of fluid saturations, the pressure and velocity of the fluid phases, interfacial areas, interfacial curvatures, interface and common curve velocities, interfacial orientation tensors, phase velocities and the contact angle between the fluid-fluid interface and the solid surface. Test cases are studied to validate the approach and illustrate how measures of system state can be obtained and used to inform macroscopic theory.« less

  20. Detachment faults: Evidence for a low-angle origin

    SciTech Connect (OSTI)

    Scott, R.J.; Lister, G.S. )

    1992-09-01

    The origin of low-angle normal faults or detachment faults mantling metamorphic core complexes in the southwestern United States remains controversial. If [sigma][sub 1] is vertical during extension, the formation of, or even slip along, such low-angle normal faults is mechanically implausible. No records exist of earthquakes on low-angle normal faults in areas currently undergoing continental extension, except from an area of actively forming core complexes in the Solomon Sea, Papua New Guinea. In light of such geophysical and mechanical arguments, W.R. Buck and B. Wernicke and G.J. Axen proposed models in which detachment faults originate as high-angle normal faults, but rotate to low angles and become inactive as extension proceeds. These models are inconsistent with critical field relations in several core complexes. The Rawhide fault, an areally extensive detachment fault in western Arizona, propagated at close to its present subhorizontal orientation late in the Tertiary extension of the region. Neither the Wernicke and Axen nor Buck models predict such behavior; in fact, both models preclude the operation of low-angle normal faults. The authors recommend that alternative explanations or modifications of existing models are needed to explain the evidence that detachment faults form and operate with gentle dips.

  1. Ultrathin metal-semiconductor-metal resonator for angle invariant visible band transmission filters

    SciTech Connect (OSTI)

    Lee, Kyu-Tae; Seo, Sungyong; Yong Lee, Jae; Jay Guo, L.

    2014-06-09

    We present transmission visible wavelength filters based on strong interference behaviors in an ultrathin semiconductor material between two metal layers. The proposed devices were fabricated on 2?cm??2?cm glass substrate, and the transmission characteristics show good agreement with the design. Due to a significantly reduced light propagation phase change associated with the ultrathin semiconductor layer and the compensation in phase shift of light reflecting from the metal surface, the filters show an angle insensitive performance up to 70, thus, addressing one of the key challenges facing the previously reported photonic and plasmonic color filters. This principle, described in this paper, can have potential for diverse applications ranging from color display devices to the image sensors.

  2. Toroidal Precession as a Geometric Phase

    SciTech Connect (OSTI)

    J.W. Burby and H. Qin

    2012-09-26

    Toroidal precession is commonly understood as the orbit-averaged toroidal drift of guiding centers in axisymmetric and quasisymmetric configurations. We give a new, more natural description of precession as a geometric phase effect. In particular, we show that the precession angle arises as the holonomy of a guiding center's poloidal trajectory relative to a principal connection. The fact that this description is physically appropriate is borne out with new, manifestly coordinate-independent expressions for the precession angle that apply to all types of orbits in tokamaks and quasisymmetric stellarators alike. We then describe how these expressions may be fruitfully employed in numerical calculations of precession.

  3. Discriminating electromagnetic radiation based on angle of incidence

    DOE Patents [OSTI]

    Hamam, Rafif E.; Bermel, Peter; Celanovic, Ivan; Soljacic, Marin; Yeng, Adrian Y. X.; Ghebrebrhan, Michael; Joannopoulos, John D.

    2015-06-16

    The present invention provides systems, articles, and methods for discriminating electromagnetic radiation based upon the angle of incidence of the electromagnetic radiation. In some cases, the materials and systems described herein can be capable of inhibiting reflection of electromagnetic radiation (e.g., the materials and systems can be capable of transmitting and/or absorbing electromagnetic radiation) within a given range of angles of incidence at a first incident surface, while substantially reflecting electromagnetic radiation outside the range of angles of incidence at a second incident surface (which can be the same as or different from the first incident surface). A photonic material comprising a plurality of periodically occurring separate domains can be used, in some cases, to selectively transmit and/or selectively absorb one portion of incoming electromagnetic radiation while reflecting another portion of incoming electromagnetic radiation, based upon the angle of incidence. In some embodiments, one domain of the photonic material can include an isotropic dielectric function, while another domain of the photonic material can include an anisotropic dielectric function. In some instances, one domain of the photonic material can include an isotropic magnetic permeability, while another domain of the photonic material can include an anisotropic magnetic permeability. In some embodiments, non-photonic materials (e.g., materials with relatively large scale features) can be used to selectively absorb incoming electromagnetic radiation based on angle of incidence.

  4. Wide-angle point-to-point x-ray imaging with almost arbitrarily...

    Office of Scientific and Technical Information (OSTI)

    Wide-angle point-to-point x-ray imaging with almost arbitrarily large angles of incidence Citation Details In-Document Search Title: Wide-angle point-to-point x-ray imaging with ...

  5. Phase-space jets drive transport and anomalous resistivity (Journal...

    Office of Scientific and Technical Information (OSTI)

    transport and anomalous resistivity In the presence of wave dissipation, phase-space structures spontaneously emerge in nonlinear Vlasov dynamics. These structures include not only...

  6. On the Euler angles for SU(N)

    SciTech Connect (OSTI)

    Cerchiai, Bianca L; Bertini, S.; Cacciatori, Sergio L.

    2005-10-20

    In this paper we reconsider the problem of the Euler parametrization for the unitary groups. After constructing the generic group element in terms of generalized angles, we compute the invariant measure on SU(N) and then we determine the full range of the parameters, using both topological and geometrical methods. In particular, we show that the given parametrization realizes the group SU(N+1) as a fibration of U(N) over the complex projective space CP{sup n}. This justifies the interpretation of the parameters as generalized Euler angles.

  7. Evidence for fast positronium formation in glancing angle positron scattering

    SciTech Connect (OSTI)

    Gidley, D.W.; Frieze, W.E.; Mayer, R.; Lynn, K.G.

    1985-01-01

    We have evidence for fast (10-100 eV) positronium formation when 30 to 300 eV positrons scatter off an Al(110) surface at glancing angles as low as 6/sup 0/ with respect to the surface. A doubly remoderated, brightness enhanced positron beam of 1 mm diameter and 1/sup 0/ opening angle is used. A position sensitive CEMA is biased to detect only neutral particles. As evidence of fast Ps formation, we will present incident beam energy scans of the neutral particle counting rate as well as position sensitive plots of the angular formation probability.

  8. Wide-angle point-to-point x-ray imaging with almost arbitrarily large angles of incidence

    SciTech Connect (OSTI)

    Bitter, M.; Hill, K. W.; Scott, S.; Feder, R.; Ko, Jinseok; Ince-Cushman, A.; Rice, J. E.

    2008-10-15

    The paper describes a new scheme for wide-angle point-to-point x-ray imaging with almost arbitrarily large angles of incidence by a matched pair of spherically bent crystals to eliminate the astigmatism, which is a well-known imaging error of spherical mirrors. In addition to x rays, the scheme should be applicable to a very broad spectrum of the electromagnetic radiation, including microwaves, infrared and visible light, as well as UV and extreme UV radiation, if the crystals are replaced with appropriate spherical reflectors. The scheme may also be applicable to the imaging with ultrasound.

  9. Multi-angle nuclear imaging apparatus and method

    DOE Patents [OSTI]

    Anger, Hal O. [Berkeley, CA

    1980-04-08

    Nuclear imaging apparatus for obtaining multi-plane readouts of radioactive material in a human or animal subject. A probe disposed in the vicinity of the subject is provided for receiving radiation from radiating sources in the subject and for forming a probe radiation image. The probe has a collimator with different portions thereof having holes disposed at different angles. A single scintillation crystal overlies the collimator for receiving radiation passing through the collimator and producing scintillations to provide the probe image. An array of photomultiplier tubes overlie the single crystal for observing the probe image and providing electrical outputs. Conversion apparatus is provided for converting the electrical outputs representing the probe image into optical images displayed on the screen of a cathode ray tube. Divider apparatus is provided for dividing the probe radiation image into a plurality of areas with the areas corresponding to different portions of the collimator having holes disposed at different angles. A light sensitive medium is provided for receiving optical images. Apparatus is provided for causing relative movement between the probe and the subject. Apparatus is also provided for causing relative movement between the optical image on the screen and the light sensitive medium which corresponds to the relative movement between the probe and the subject whereby there is produced on the light sensitive medium a plurality of images that portray the subject as seen from different angles corresponding to the portions of the collimator having holes at different angles.

  10. Multi-angle nuclear imaging apparatus and method

    DOE Patents [OSTI]

    Anger, H.O.

    1980-04-08

    A nuclear imaging apparatus is described for obtaining multi-plane readouts of radioactive material in a human or animal subject. A probe disposed in the vicinity of the subject is provided for receiving radiation from radiating sources in the subject and for forming a probe radiation image. The probe has a collimator with different portions having holes disposed at different angles. A single scintillation crystal overlies the collimator for receiving radiation passing through the collimator and producing scintillations to provide the probe image. An array of photomultiplier tubes overlie the single crystal for observing the probe image and providing electrical outputs. Conversion apparatus is provided for converting the electrical outputs representing the probe image into optical images displayed on the screen of a cathode ray tube. Divider apparatus is provided for dividing the probe radiation image into a plurality of areas with the areas corresponding to different portions of the collimator having holes disposed at different angles. A light sensitive medium is provided for receiving optical images. Apparatus is provided for causing relative movement between the probe and the subject. Apparatus is also provided for causing relative movement between the optical image on the screen and the light sensitive medium which corresponds to the relative movement between the probe and the subject whereby there is produced on the light sensitive medium a plurality of images that portray the subject as seen from different angles corresponding to the portions of the collimator having holes at different angles. 11 figs.

  11. Dynamical analysis of highly excited molecular spectra

    SciTech Connect (OSTI)

    Kellman, M.E.

    1993-12-01

    The goal of this program is new methods for analysis of spectra and dynamics of highly excited vibrational states of molecules. In these systems, strong mode coupling and anharmonicity give rise to complicated classical dynamics, and make the simple normal modes analysis unsatisfactory. New methods of spectral analysis, pattern recognition, and assignment are sought using techniques of nonlinear dynamics including bifurcation theory, phase space classification, and quantization of phase space structures. The emphasis is chaotic systems and systems with many degrees of freedom.

  12. Magnetic resonance imaging of DNP enhancements in a rotor spinning at the magic angle

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Perras, Frederic A.; Kobayashi, Takeshi; Pruski, Marek

    2016-02-23

    Simulations performed on model, static, samples have shown that the microwave power is non-uniformly distributed in the magic angle spinning (MAS) rotor when using conventional dynamic nuclear polarization (DNP) instrumentation. Here, we applied the stray-field magic angle spinning imaging (STRAFI–MAS) experiment to generate a spatial map of the DNP enhancements in a full rotor, which is spun at a low rate in a commercial DNP–MAS NMR system. Notably, we observed that the enhancement factors produced in the center of the rotor can be twice as large as those produced at the top of the rotor. Surprisingly, we observed that themore » largest enhancement factors are observed along the axis of the rotor as opposed to against its walls, which are most directly irradiated by the microwave beam. We lastly observed that the distribution of enhancement factors can be moderately improved by degassing the sample and increasing the microwave power. The inclusion of dielectric particles greatly amplifies the enhancement factors throughout the rotor. Furthermore, the STRAFI–MAS approach can provide useful guidance for optimizing the access of microwave power to the sample, and thereby lead to further increases in sensitivity of DNP–MAS NMR.« less

  13. A unified heteronuclear decoupling strategy for magic-angle-spinning solid-state NMR spectroscopy

    SciTech Connect (OSTI)

    Equbal, Asif; Bjerring, Morten; Nielsen, Niels Chr. E-mail: ncn@inano.au.dk; Madhu, P. K. E-mail: ncn@inano.au.dk

    2015-05-14

    A unified strategy of two-pulse based heteronuclear decoupling for solid-state magic-angle spinning nuclear magnetic resonance is presented. The analysis presented here shows that different decoupling sequences like two-pulse phase-modulation (TPPM), X-inverse-X (XiX), and finite pulse refocused continuous wave (rCW{sup A}) are basically specific solutions of a more generalized decoupling scheme which incorporates the concept of time-modulation along with phase-modulation. A plethora of other good decoupling conditions apart from the standard, TPPM, XiX, and rCW{sup A} decoupling conditions are available from the unified decoupling approach. The importance of combined time- and phase-modulation in order to achieve the best decoupling conditions is delineated. The consequences of different indirect dipolar interactions arising from cross terms comprising of heteronuclear and homonuclear dipolar coupling terms and also those between heteronuclear dipolar coupling and chemical-shift anisotropy terms are presented in order to unfold the effects of anisotropic interactions under different decoupling conditions. Extensive numerical simulation results are corroborated with experiments on standard amino acids.

  14. Advanced slow-magic angle spinning probe for magnetic resonance imaging and spectroscopy

    DOE Patents [OSTI]

    Wind, Robert A.; Hu, Jian Zhi; Minard, Kevin R.; Rommereim, Donald N.

    2006-01-24

    The present invention relates to a probe and processes useful for magnetic resonance imaging and spectroscopy instruments. More particularly, the invention relates to a MR probe and processes for obtaining resolution enhancements of fluid objects, including live specimens, using an ultra-slow (magic angle) spinning (MAS) of the specimen combined with a modified phase-corrected magic angle turning (PHORMAT) pulse sequence. Proton NMR spectra were measured of the torso and the top part of the belly of a female BALBc mouse in a 2T field, while spinning the animal at a speed of 1.5 Hz. Results show that even in this relatively low field with PHORMAT, an isotropic spectrum is obtained with line widths that are a factor 4.6 smaller than those obtained in a stationary mouse. Resolution of 1H NMR metabolite spectra are thus significantly enhanced. Results indicate that PHORMAT has the potential to significantly increase the utility of 1H NMR spectroscopy for in vivo biochemical, biomedical and/or medical applications involving large-sized biological objects such as mice, rats and even humans within a hospital setting. For small-sized objects, including biological objects, such as excised tissues, organs, live bacterial cells, and biofilms, use of PASS at a spinning rate of 30 Hz and above is preferred.

  15. galpy: A python LIBRARY FOR GALACTIC DYNAMICS

    SciTech Connect (OSTI)

    Bovy, Jo

    2015-02-01

    I describe the design, implementation, and usage of galpy, a python package for galactic-dynamics calculations. At its core, galpy consists of a general framework for representing galactic potentials both in python and in C (for accelerated computations); galpy functions, objects, and methods can generally take arbitrary combinations of these as arguments. Numerical orbit integration is supported with a variety of Runge-Kutta-type and symplectic integrators. For planar orbits, integration of the phase-space volume is also possible. galpy supports the calculation of action-angle coordinates and orbital frequencies for a given phase-space point for general spherical potentials, using state-of-the-art numerical approximations for axisymmetric potentials, and making use of a recent general approximation for any static potential. A number of different distribution functions (DFs) are also included in the current release; currently, these consist of two-dimensional axisymmetric and non-axisymmetric disk DFs, a three-dimensional disk DF, and a DF framework for tidal streams. I provide several examples to illustrate the use of the code. I present a simple model for the Milky Way's gravitational potential consistent with the latest observations. I also numerically calculate the Oort functions for different tracer populations of stars and compare them to a new analytical approximation. Additionally, I characterize the response of a kinematically warm disk to an elliptical m = 2 perturbation in detail. Overall, galpy consists of about 54,000 lines, including 23,000 lines of code in the module, 11,000 lines of test code, and about 20,000 lines of documentation. The test suite covers 99.6% of the code. galpy is available at http://github.com/jobovy/galpy with extensive documentation available at http://galpy.readthedocs.org/en/latest.

  16. Energetic deposition of metal ions: Observation of self-sputtering and limited sticking for off-normal angles of incidence

    SciTech Connect (OSTI)

    Wu, Hongchen; Anders, Andre

    2009-09-15

    The deposition of films under normal and off-normal angle of incidence has been investigated to show the relevance of non-sticking of and self-sputtering by energetic ions, leading to the formation of neutral atoms. The flow of energetic ions was obtained using a filtered cathodic arc system in high vacuum and therefore the ion flux had a broad energy distribution of typically 50-100 eV per ion. The range of materials included Cu, Ag, Au, Ti, and Ni. Consistent with molecular dynamics simulations published in the literature, the experiments show, for all materials, that the combined effects of non-sticking and self-sputtering are very significant, especially for large off-normal angles. Modest heating and intentional introduction of oxygen background affect the results.

  17. Phase and birefringence aberration correction

    DOE Patents [OSTI]

    Bowers, M.; Hankla, A.

    1996-07-09

    A Brillouin enhanced four wave mixing phase conjugate mirror corrects phase aberrations of a coherent electromagnetic beam and birefringence induced upon that beam. The stimulated Brillouin scattering (SBS) phase conjugation technique is augmented to include Brillouin enhanced four wave mixing (BEFWM). A seed beam is generated by a main oscillator which arrives at the phase conjugate cell before the signal beams in order to initiate the Brillouin effect. The signal beam which is being amplified through the amplifier chain is split into two perpendicularly polarized beams. One of the two beams is chosen to be the same polarization as some component of the seed beam, the other orthogonal to the first. The polarization of the orthogonal beam is then rotated 90{degree} such that it is parallel to the other signal beam. The three beams are then focused into cell containing a medium capable of Brillouin excitation. The two signal beams are focused such that they cross the seed beam path before their respective beam waists in order to achieve BEFWM or the two signal beams are focused to a point or points contained within the focused cone angle of the seed beam to achieve seeded SBS, and thus negate the effects of all birefringent and material aberrations in the system. 5 figs.

  18. Phase and birefringence aberration correction

    DOE Patents [OSTI]

    Bowers, Mark; Hankla, Allen

    1996-01-01

    A Brillouin enhanced four wave mixing phase conjugate mirror corrects phase aberrations of a coherent electromagnetic beam and birefringence induced upon that beam. The stimulated Brillouin scattering (SBS) phase conjugation technique is augmented to include Brillouin enhanced four wave mixing (BEFWM). A seed beam is generated by a main oscillator which arrives at the phase conjugate cell before the signal beams in order to initiate the Brillouin effect. The signal beam which is being amplified through the amplifier chain is split into two perpendicularly polarized beams. One of the two beams is chosen to be the same polarization as some component of the seed beam, the other orthogonal to the first. The polarization of the orthogonal beam is then rotated 90.degree. such that it is parallel to the other signal beam. The three beams are then focused into cell containing a medium capable of Brillouin excitation. The two signal beams are focused such that they cross the seed beam path before their respective beam waists in order to achieve BEFWM or the two signal beams are focused to a point or points contained within the focused cone angle of the seed beam to achieve seeded SBS, and thus negate the effects of all birefringent and material aberrations in the system.

  19. Guidance system for low angle silicon ribbon growth

    DOE Patents [OSTI]

    Jewett, David N.; Bates, Herbert E.; Milstein, Joseph B.

    1986-07-08

    In a low angle silicon sheet growth process, a puller mechanism advances a seed crystal and solidified ribbon from a cooled growth zone in a melt at a low angle with respect to the horizontal. The ribbon is supported on a ramp adjacent the puller mechanism. Variations in the vertical position of the ribbon with respect to the ramp are isolated from the growth end of the ribbon by (1) growing the ribbon so that it is extremely thin, preferably less than 0.7 mm, (2) maintaining a large growth zone, preferably one whose length is at least 5.0 cm, and (3) spacing the ramp from the growth zone by at least 15 cm.

  20. A SMALL-ANGLE DRILL-HOLE WHIPSTOCK

    DOE Patents [OSTI]

    Nielsen, D.E.; Olsen, J.L.; Bennett, W.P.

    1963-01-29

    A small angle whipstock is described for accurately correcting or deviating a drill hole by a very small angle. The whipstock is primarily utilized when drilling extremely accurate, line-of-slight test holes as required for diagnostic studies related to underground nuclear test shots. The invention is constructed of a length of cylindrical pipe or casing, with a whipstock seating spike extending from the lower end. A wedge-shaped segment is secured to the outer circumference of the upper end of the cylinder at a position diametrically opposite the circumferential position of the spike. Pin means are provided for affixing the whipstock to a directional drill bit and stem to alloy orienting and setting the whipstock properly in the drill hole. (AEC)

  1. The 2mrad Crossing Angle Interaction Region and Extraction Line

    SciTech Connect (OSTI)

    Appleby, R.; U., Manchester; Angal-Kalinin, D.; Dadoun, O.; Bambade, P.; Parker, B.; Keller, L.; Moffeit, K.; Nosochkov, Y.; Seryi, A.; Spencer, C.; Carter, J.; Royal Holloway, U.of London; Napoly, O.; /DAPNIA, Saclay

    2006-07-12

    A complete optics design for the 2mrad crossing angle interaction region and extraction line was presented at Snowmass 2005. Since this time, the design task force has been working on developing and improving the performance of the extraction line. The work has focused on optimizing the final doublet parameters and on reducing the power losses resulting from the disrupted beam transport. In this paper, the most recent status of the 2mrad layout and the corresponding performance are presented.

  2. Angle amplifying optics using plane and ellipsoidal reflectors

    DOE Patents [OSTI]

    Glass, Alexander J.

    1977-01-01

    An optical system for providing a wide angle input beam into ellipsoidal laser fusion target illumination systems. The optical system comprises one or more pairs of centrally apertured plane and ellipsoidal mirrors disposed to accept the light input from a conventional lens of modest focal length and thickness, to increase the angular divergence thereof to a value equivalent to that of fast lenses, and to direct the light into the ellipsoidal target illumination system.

  3. Applications of Trajectory Solid Angle for Probabilistic Safety Assessment

    SciTech Connect (OSTI)

    Wong, Po Kee; Wong, Adam E.; Wong, Anita

    2002-07-01

    In 1974, a well-known research problem in Statistical Mechanics entitled 'To determine and define the probability function P.sub.2 of a particle hitting a predetermined area, given all its parameters of generation and ejection' was openly solicited for its solution from research and development organizations in U.S.A. One of many proposed solutions of the problem, initiated at that time, is by means of the Trajectory Solid Angle (TSA). TSA is defined as the integral of the dot product of the unit tangent of the particle's trajectory to the vector area divided by the square of the position vector connecting between the point of ejection and that of the surface to be hit. The invention provides: (1) The precise and the unique solution of a previously unsolved P.sub.2 problem: (2) Impacts to the governmental NRC safety standards and DOD weapon systems and many activities in the Department of Energy; (3) Impacts to update the contents of text books of physics and mathematics of all levels; (4) Impacts to the scientific instruments with applications in high technologies. The importance of Trajectory Solid Angle can be quoted from a letter by the late Institute Professor P. M. Morse of MIT who reviewed the DOE proposal P7900450 (reference No. 7) in 1979 and addressed to the inventor. 'If the Trajectory Solid Angle is correct it will provide a revolutionary concept in physics'. (authors)

  4. ARM - Measurement - Hydrometeor phase

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    : Hydrometeor phase Hydrometeor phase such as liquid ice or mixed phase Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the...

  5. ALIGNMENT OF PROTOSTARS AND CIRCUMSTELLAR DISKS DURING THE EMBEDDED PHASE

    SciTech Connect (OSTI)

    Spalding, Christopher; Batygin, Konstantin; Adams, Fred C. E-mail: kbatygin@gps.caltech.edu

    2014-12-20

    Star formation proceeds via the collapse of a molecular cloud core over multiple dynamical timescales. Turbulence within cores results in a spatially non-uniform angular momentum of the cloud, causing a stochastic variation in the orientation of the disk forming from the collapsing material. In the absence of star-disk angular momentum coupling, such disk-tilting would provide a natural mechanism for the production of primordial spin-orbit misalignments in the resulting planetary systems. However, owing to high accretion rates in the embedded phase of star formation, the inner edge of the circumstellar disk extends down to the stellar surface, resulting in efficient gravitational and accretional angular momentum transfer between the star and the disk. Here, we demonstrate that the resulting gravitational coupling is sufficient to suppress any significant star-disk misalignment, with accretion playing a secondary role. The joint tilting of the star-disk system leads to a stochastic wandering of star-aligned bipolar outflows. Such wandering widens the effective opening angle of stellar outflows, allowing for more efficient clearing of the remainder of the protostar's gaseous envelope. Accordingly, the processes described in this work provide an additional mechanism responsible for sculpting the stellar initial mass function.

  6. Phase-space localization: Topological aspects of quantum chaos

    SciTech Connect (OSTI)

    Leboeuf, P. (Division de Physique Theorique, Institut de Physique Nucleire, 91406 Orsay CEDEX (France)); Kurchan, J. (Nuclear Physics Department, Weizmann Institute of Science, Rehovot 76100 (Israel)); Feingold, M. (Lawrence Berkeley Laboratory, University of California, Berkeley, CA (USA) Department of Physics, University of California, Berkeley, CA (USA)); Arovas, D.P. (Department of Physics, B-019, University of California at San Diego, La Jolla, CA (USA))

    1990-12-17

    We study quantized classically chaotic maps on a toroidal two-diensional phase space. A discrete, topological criterion for phase-space localization is presented. To each eigenfunction an integer is associated, analogous to a quantized Hall conductivity, which when nonzero reflects phase-space delocalization. A model system is studied, and a correspondence between delocalization and chaotic classical dynamics is discussed.

  7. Atomic-scale dynamics of a model glass-forming metallic liquid: Dynamical crossover, dynamical decoupling, and dynamical clustering

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jaiswal, Abhishek; Egami, Takeshi; Zhang, Yang

    2015-04-01

    The phase behavior of multi-component metallic liquids is exceedingly complex because of the convoluted many-body and many-elemental interactions. Herein, we present systematic studies of the dynamic aspects of such a model ternary metallic liquid Cu40Zr51Al9 using molecular dynamics simulation with embedded atom method. We observed a dynamical crossover from Arrhenius to super-Arrhenius behavior in the transport properties (diffusion coefficient, relaxation times, and shear viscosity) bordered at Tx ~1300K. Unlike in many molecular and macromolecular liquids, this crossover phenomenon occurs in the equilibrium liquid state well above the melting temperature of the system (Tm ~ 900K), and the crossover temperature ismore » roughly twice of the glass-transition temperature (Tg). Below Tx, we found the elemental dynamics decoupled and the Stokes-Einstein relation broke down, indicating the onset of heterogeneous spatially correlated dynamics in the system mediated by dynamic communications among local configurational excitations. To directly characterize and visualize the correlated dynamics, we employed a non-parametric, unsupervised machine learning technique and identified dynamical clusters of atoms with similar atomic mobility. The revealed average dynamical cluster size shows an accelerated increase below Tx and mimics the trend observed in other ensemble averaged quantities that are commonly used to quantify the spatially heterogeneous dynamics such as the non-Gaussian parameter and the four-point correlation function.« less

  8. First-principles molecular dynamics simulations of condensed...

    Office of Scientific and Technical Information (OSTI)

    phase V-type nerve agent reaction pathways and energy barriers Citation Details In-Document Search Title: First-principles molecular dynamics simulations of condensed phase V-type ...

  9. Phase slips and dissipation of Alfvenic intermediate shocks and solitons

    SciTech Connect (OSTI)

    Laveder, D.; Passot, T.; Sulem, P. L.

    2012-09-15

    The time evolution of a rotational discontinuity, characterized by a change of the magnetic-field direction by an angle {Delta}{theta} such that {pi}<|{Delta}{theta}|<2{pi} and no amplitude variation, is considered in the framework of asymptotic models that, through reductive perturbative expansions, isolate the dynamics of parallel or quasi-parallel Alfven waves. In the presence of viscous and Ohmic dissipation, and for a zero or sufficiently weak dispersion (originating from the Hall effect), an intermediate shock rapidly forms, steepens and undergoes reconnection through a quasi gradient collapse, leading to a reduction of |{Delta}{theta}| by an amount of 2{pi}, which can be viewed as the breaking of a topological constraint. Afterwards, as |{Delta}{theta}|<{pi}, the intermediate shock broadens and slowly dissipates. In the case of a phase jump |{Delta}{theta}|>3{pi}, which corresponds to a wave train limited on both sides by uniform fields, a sequence of such reconnection processes takes place. Differently, in the presence of a strong enough dispersion, the rotational discontinuity evolves, depending on the sign of {Delta}{theta}, to a dark or bright soliton displaying a 2{pi} phase variation. The latter is then eliminated, directly by reconnection in the case of a dark soliton, or through a more complex process involving a quasi amplitude collapse in that of a bright soliton. Afterwards, the resulting structure is progressively damped. For a prescribed initial rotational discontinuity, both quasi gradient and amplitude collapses lead to a sizeable energy decay that in the collisional regime is independent of the diffusion coefficient {eta} but requires a time scaling like 1/{eta}. In the non-collisional regime where dissipation originates from Landau resonance, the amount of dissipated energy during the event is independent of the plasma {beta}, but the process becomes slower for smaller {beta}.

  10. Slowing-Down Dynamics of Fast Particles in Plasmas via the Fokker-Planck Equation

    SciTech Connect (OSTI)

    Anderson, D.; Lisak, M.; Andersson, F.; Fueloep, T.

    2004-01-15

    A detailed discussion is given of the effects of energy diffusion and pitch-angle scattering on the slowing-down dynamics of a beam of monoenergetic particles being released with unidirectional velocity. Approximate solutions are given for characteristic averaged quantities like the pitch-angle averaged distribution function and different physically relevant velocity moments. The relation to previous exact investigations is discussed.

  11. Angle Resolved Thermal Conductivity of CeCoIn5 along the Nodal...

    Office of Scientific and Technical Information (OSTI)

    Angle Resolved Thermal Conductivity of CeCoIn5 along the Nodal Direction Citation Details In-Document Search Title: Angle Resolved Thermal Conductivity of CeCoIn5 along the Nodal ...

  12. Small-Angle X-Ray Scattering From RNA, Proteins, And Protein...

    Office of Scientific and Technical Information (OSTI)

    Small-Angle X-Ray Scattering From RNA, Proteins, And Protein Complexes Citation Details In-Document Search Title: Small-Angle X-Ray Scattering From RNA, Proteins, And Protein ...

  13. Small-angle X-ray scattering: a bridge between RNA secondary...

    Office of Scientific and Technical Information (OSTI)

    Small-angle X-ray scattering: a bridge between RNA secondary structures and three-dimensional topological structures Prev Next Title: Small-angle X-ray scattering: a bridge ...

  14. HOPE Release 3 Pitch Angle Sneak Peak (Technical Report) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: HOPE Release 3 Pitch Angle Sneak Peak Citation Details In-Document Search Title: HOPE Release 3 Pitch Angle Sneak Peak This report describes how the HOPE ...

  15. B Decay and CP Violation: CKM Angles and Sides at the BABAR and...

    Office of Scientific and Technical Information (OSTI)

    Conference: B Decay and CP Violation: CKM Angles and Sides at the BABAR and BELLE B-Factories Citation Details In-Document Search Title: B Decay and CP Violation: CKM Angles and ...

  16. Code System to Calculate Transient 2-Dimensional 2-Fluid Flow Dynamics.

    Energy Science and Technology Software Center (OSTI)

    1999-07-19

    Version 00 The transient dynamics of two-dimensional, two-phase flow with interfacial exchange are calculated at all flow speeds. Each phase is described in terms of its own density, velocity, and temperature. Separate sets of field equations govern the gas and liquid phase dynamics. The six field equations for the two phases couple through mass, momentum, and energy exchange.

  17. Phase locking of vortex cores in two coupled magnetic nanopillars

    SciTech Connect (OSTI)

    Zhu, Qiyuan; Liu, Xianyin; Zheng, Qi; Zhang, Senfu; Wang, Jianbo; Liu, Qingfang

    2014-11-15

    Phase locking dynamics of the coupled vortex cores in two identical magnetic spin valves induced by spin-polarized current are studied by means of micromagnetic simulations. Our results show that the available current range of phase locking can be expanded significantly by the use of constrained polarizer, and the vortices undergo large orbit motions outside the polarization areas. The effects of polarization areas and dipolar interaction on the phase locking dynamics are studied systematically. Phase locking parameters extracted from simulations are discussed by theoreticians. The dynamics of vortices influenced by spin valve geometry and vortex chirality are discussed at last. This work provides deeper insights into the dynamics of phase locking and the results are important for the design of spin-torque nano-oscillators.

  18. Rotation Angle for the Optimum Tracking of One-Axis Trackers

    SciTech Connect (OSTI)

    Marion, W. F.; Dobos, A. P.

    2013-07-01

    An equation for the rotation angle for optimum tracking of one-axis trackers is derived along with equations giving the relationships between the rotation angle and the surface tilt and azimuth angles. These equations are useful for improved modeling of the solar radiation available to a collector with tracking constraints and for determining the appropriate motor revolutions for optimum tracking.

  19. The solid angle (geometry factor) for a spherical surface source and an arbitrary detector aperture

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Favorite, Jeffrey A.

    2016-01-13

    It is proven that the solid angle (or geometry factor, also called the geometrical efficiency) for a spherically symmetric outward-directed surface source with an arbitrary radius and polar angle distribution and an arbitrary detector aperture is equal to the solid angle for an isotropic point source located at the center of the spherical surface source and the same detector aperture.

  20. Small-angle x-ray scattering measurements of the microstructure of liquid helium mixtures adsorbed in aerogel

    SciTech Connect (OSTI)

    Lurio, L. B.; Mulders, N.; Paetkau, M.; Chan, M. H. W.; Mochrie, S. G. J. [Department of Physics, Northern Illinois University, DeKalb, Illinois 60115 (United States); Department of Physics, University of Delaware, Newark, Delaware 19716 (United States); Department of Physics and Astronomy, Okanagan College, British Columbia V1Y4X8 (Canada); Department of Physics, Pennsylvania State University, University Park, Pennsylvania 16802 (United States); Department of Physics, Yale University, New Haven, Connecticut 06511 (United States)

    2007-07-15

    Small-angle x-ray scattering (SAXS) was used to measure the microstructure of isotopic mixtures of {sup 3}He and {sup 4}He adsorbed into silica aerogels as a function of temperature and {sup 3}He concentration. The SAXS measurements could be well described by the formation of a nearly pure film of {sup 4}He which separates from the bulk mixture onto the aerogel strands and which thickens with decreasing temperature. Previous observations of a superfluid {sup 3}He-rich phase are consistent with superfluidity existing within this film phase. Observed differences between different density aerogels are explained in terms of the depletion of {sup 4}He from the bulk mixture due to film formation.

  1. Cantera Aerosol Dynamics Simulator

    Energy Science and Technology Software Center (OSTI)

    2004-09-01

    The Cantera Aerosol Dynamics Simulator (CADS) package is a general library for aerosol modeling to address aerosol general dynamics, including formation from gas phase reactions, surface chemistry (growth and oxidation), bulk particle chemistry, transport by Brownian diffusion, thermophoresis, and diffusiophoresis with linkage to DSMC studies, and thermal radiative transport. The library is based upon Cantera, a C++ Cal Tech code that handles gas phase species transport, reaction, and thermodynamics. The method uses a discontinuous galerkinmore » formulation for the condensation and coagulation operator that conserves particles, elements, and enthalpy up to round-off error. Both O-D and 1-D time dependent applications have been developed with the library. Multiple species in the solid phase are handled as well. The O-D application, called Tdcads (Time Dependent CADS) is distributed with the library. Tdcads can address both constant volume and constant pressure adiabatic homogeneous problems. An extensive set of sample problems for Tdcads is also provided.« less

  2. Compact nanomechanical plasmonic phase modulators

    SciTech Connect (OSTI)

    Dennis, B. S.; Haftel, M. I.; Czaplewski, D. A.; Lopez, D.; Blumberg, G.; Aksyuk, V. A.

    2015-03-30

    Highly confined optical energy in plasmonic devices is advancing miniaturization in photonics. However, for mode sizes approaching ≈10 nm, the energy increasingly shifts into the metal, raising losses and hindering active phase modulation. Here, we propose a nanoelectromechanical phase-modulation principle exploiting the extraordinarily strong dependence of the phase velocity of metal–insulator–metal gap plasmons on dynamically variable gap size. We experimentally demonstrate a 23-μm-long non-resonant modulator having a 1.5π rad range, with 1.7 dB excess loss at 780 nm. Analysis shows that by simultaneously decreasing the gap, length and width, an ultracompact-footprint π rad phase modulator can be realized. This is achieved without incurring the extra loss expected for plasmons confined in a decreasing gap, because the increasing phase-modulation strength from a narrowing gap offsets rising propagation losses. Such small, high-density electrically controllable components may find applications in optical switch fabrics and reconfigurable plasmonic optics.

  3. Lower hybrid instability driven by mono-energy {alpha}-particles with finite pitch angle spread in a plasma

    SciTech Connect (OSTI)

    Kumar, Pawan; Singh, Vishwesh; Tripathi, V. K.

    2013-02-15

    A kinetic formalism of lower hybrid wave instability, driven by mono-energy {alpha}-particles with finite pitch angle spread, is developed. The instability arises through cyclotron resonance interaction with high cyclotron harmonics of {alpha}-particles. The {alpha}-particles produced in D-T fusion reactions have huge Larmor radii ({approx}10 cm) as compared to the wavelength of the lower hybrid wave, whereas their speed is an order of magnitude smaller than the speed of light in vacuum. As a result, large parallel phase velocity lower hybrid waves, suitable for current drive in tokamak, are driven unstable via coupling to high cyclotron harmonics. The growth rate decreases with increase in pitch angle spread of the beam. At typical electron density of {approx}10{sup 19} m{sup -3}, magnetic field {approx}4 Tesla and {alpha}-particle concentration {approx}0.1%, the large parallel phase velocity lower hybrid wave grows on the time scale of 20 ion cyclotron periods. The growth rate decreases with plasma density.

  4. Dynamics of the magneto structural phase transition in La(Fe{sub 0.9}Co{sub 0.015}Si{sub 0.085}){sub 13} observed by magneto-optical imaging

    SciTech Connect (OSTI)

    Kuepferling, M. Basso, V.; Bennati, C.; Laviano, F.; Ghigo, G.

    2014-05-07

    We investigate the temperature induced ferromagnetic to paramagnetic phase transition in Co substituted La(Fe{sub x}Co{sub y}Si{sub 1−x−y}){sub 13} with x = 0.9 and low Co content of y = 0.015 (T{sub c}≃200 K) by means of magneto-optical imaging with indicator film and by calorimetry at very low temperature rates. We were able to visualize the motion of the ferromagnetic (FM)/paramagnetic (PM) front which is forming reproducible patterns independently of the temperature rate. The average velocity of the FM/PM front was calculated to be 10{sup −4} m/s during the continuous propagation and 4×10{sup −3} m/s during an avalanche. The heat flux was measured at low temperature rates by a differential scanning calorimeter and shows a reproducible sequence of individual and separated avalanches which occurs independently of the rate. We interpret the observed effects as the result of the athermal character of the phase transition.

  5. Finite ballooning angle effects on ion temperature gradient driven mode in gyrokinetic flux tube simulations

    SciTech Connect (OSTI)

    Singh, Rameswar, E-mail: rameswar.singh@lpp.polytechnique.fr [Institute for Plasma Research, Bhat Gandhinagar, Gujarat 2382 428 (India) [Institute for Plasma Research, Bhat Gandhinagar, Gujarat 2382 428 (India); Laboratoire de Physique des Plasmas, Ecole Polytechnique, Route de Saclay, 91128 Palaiseau Cedex (France); Brunner, S. [CRPP, Ecole Polytechnique Federale de Lausanne, CH-1015 Lausanne (Switzerland)] [CRPP, Ecole Polytechnique Federale de Lausanne, CH-1015 Lausanne (Switzerland); Ganesh, R. [Institute for Plasma Research, Bhat Gandhinagar, Gujarat 2382 428 (India)] [Institute for Plasma Research, Bhat Gandhinagar, Gujarat 2382 428 (India); Jenko, F. [Max-Planck-Institut fur Plasmaphysik, EURATOM Association, D-85748 Garching (Germany)] [Max-Planck-Institut fur Plasmaphysik, EURATOM Association, D-85748 Garching (Germany)

    2014-03-15

    This paper presents effects of finite ballooning angles on linear ion temperature gradient (ITG) driven mode and associated heat and momentum flux in Gyrokinetic flux tube simulation GENE. It is found that zero ballooning angle is not always the one at which the linear growth rate is maximum. The ITG mode acquires a short wavelength (SW) branch (k{sub ?}?{sub i}?>?1) when growth rates maximized over all ballooning angles are considered. However, the SW branch disappears on reducing temperature gradient showing characteristics of zero ballooning angle SWITG in case of extremely high temperature gradient. Associated heat flux is even with respect to ballooning angle and maximizes at nonzero ballooning angle while the parallel momentum flux is odd with respect to the ballooning angle.

  6. Laser Driven Dynamic Loading of Condensed Matter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laser Driven Dynamic Loading of Condensed Matter Laser Driven Dynamic Loading of Condensed Matter Advanced diagnostics of experiments covering many orders of magnitude in strain rate Contact Eric Loomis (505) 665-3196 Email Dynamic materials experiments over a wide range of strain rates are essential to studying constitutive relations (e.g., plasticity), damage (e.g., spall), equations of state, phase transitions and kinetics, and novel materials. The Trident laser facility supplies unique,

  7. NGNP PHASE I REVIEW

    Broader source: Energy.gov (indexed) [DOE]

    NGNP PHASE I REVIEW NEAC REACTOR TECHNOLOGY SUBCOMMITTEE CURRENT STATUS DECEMBER 9, 2010 EPACT 2005 REQUIREMENTS * FIRST PROJECT PHASE REVIEW-On a determination by the Secretary...

  8. Temperature-insensitive phase-matched optical harmonic conversion crystal

    DOE Patents [OSTI]

    Barker, Charles E.; Eimerl, David; Velsko, Stephan P.; Roberts, David

    1993-01-01

    Temperature-insensitive, phase-matched harmomic frequency conversion of laser light at a preferred wavelength of 1.064 microns can be achieved by use of a crystal of deuterated l-arginine phosphate. The crystal is cut and oriented so that the laser light propagates inside the crystal along one of several required directions, which correspond to a temperature-insensitive, phase-matching locus. The method of measuring and calculating the temperature-insensitive, phase-matching angles can be extended to other fundamental wavelengths and other crystal compositions.

  9. Temperature-insensitive phase-matched optical harmonic conversion crystal

    DOE Patents [OSTI]

    Barker, C.E.; Eimerl, D.; Velsko, S.P.; Roberts, D.

    1993-11-23

    Temperature-insensitive, phase-matched harmonic frequency conversion of laser light at a preferred wavelength of 1.064 microns can be achieved by use of a crystal of deuterated l-arginine phosphate. The crystal is cut and oriented so that the laser light propagates inside the crystal along one of several required directions, which correspond to a temperature-insensitive, phase-matching locus. The method of measuring and calculating the temperature-insensitive, phase-matching angles can be extended to other fundamental wavelengths and other crystal compositions. 12 figures.

  10. Parallel Molecular Dynamics Program for Molecules

    Energy Science and Technology Software Center (OSTI)

    1995-03-07

    ParBond is a parallel classical molecular dynamics code that models bonded molecular systems, typically of an organic nature. It uses classical force fields for both non-bonded Coulombic and Van der Waals interactions and for 2-, 3-, and 4-body bonded (bond, angle, dihedral, and improper) interactions. It integrates Newton''s equation of motion for the molecular system and evaluates various thermodynamical properties of the system as it progresses.

  11. CrowdPhase: crowdsourcing the phase problem

    SciTech Connect (OSTI)

    Jorda, Julien; Sawaya, Michael R.; Yeates, Todd O.

    2014-06-01

    The idea of attacking the phase problem by crowdsourcing is introduced. Using an interactive, multi-player, web-based system, participants work simultaneously to select phase sets that correspond to better electron-density maps in order to solve low-resolution phasing problems. The human mind innately excels at some complex tasks that are difficult to solve using computers alone. For complex problems amenable to parallelization, strategies can be developed to exploit human intelligence in a collective form: such approaches are sometimes referred to as ‘crowdsourcing’. Here, a first attempt at a crowdsourced approach for low-resolution ab initio phasing in macromolecular crystallography is proposed. A collaborative online game named CrowdPhase was designed, which relies on a human-powered genetic algorithm, where players control the selection mechanism during the evolutionary process. The algorithm starts from a population of ‘individuals’, each with a random genetic makeup, in this case a map prepared from a random set of phases, and tries to cause the population to evolve towards individuals with better phases based on Darwinian survival of the fittest. Players apply their pattern-recognition capabilities to evaluate the electron-density maps generated from these sets of phases and to select the fittest individuals. A user-friendly interface, a training stage and a competitive scoring system foster a network of well trained players who can guide the genetic algorithm towards better solutions from generation to generation via gameplay. CrowdPhase was applied to two synthetic low-resolution phasing puzzles and it was shown that players could successfully obtain phase sets in the 30° phase error range and corresponding molecular envelopes showing agreement with the low-resolution models. The successful preliminary studies suggest that with further development the crowdsourcing approach could fill a gap in current crystallographic methods by making it

  12. Pitch angle and velocity diffusions of newborn ions by turbulence in the solar wind

    SciTech Connect (OSTI)

    Ziebell, L.F.; Yoon, P.H. )

    1990-12-01

    The present study is dedicated to the analysis of dynamical processes relevant to the interaction of newborn ions with turbulence in the solar wind, when the level of turbulence is moderately low so that quasi-linear theory is applicable. It is assumed that the low-frequency turbulence is at saturation level and not affected by the newborn ions. In order to follow the time evolution of the ion distribution, the quasi-linear diffusion equation is derived and numerically solved, starting from a ring-beam initial distribution. A simplified treatment of the resonance broadening effect is included in the diffusion equation, and its role in the pickup process is discussed. Two different configurations of wave polarization and direction of propagation are considered, using model turbulence spectra. The conditions that lead either to the formation of anisotropic shells as a long-duration transient state or to rapid isotropization of the ion pitch angle distribution are discussed, as well as the conditions leading to significant acceleration of the ions.

  13. Estimation and modeling of coal pore accessibility using small angle neutron scattering

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Rui; Liu, Shimin; Bahadur, Jitendra; Elsworth, Derek; Melnichenko, Yuri; He, Lilin; Wang, Yi

    2015-09-04

    Gas diffusion in coal is controlled by nano-structure of the pores. The interconnectivity of pores not only determines the dynamics of gas transport in the coal matrix but also influences the mechanical strength. In this study, small angle neutron scattering (SANS) was employed to quantify pore accessibility for two coal samples, one of sub-bituminous rank and the other of anthracite rank. Moreover, a theoretical pore accessibility model was proposed based on scattering intensities under both vacuum and zero average contrast (ZAC) conditions. Our results show that scattering intensity decreases with increasing gas pressure using deuterated methane (CD4) at low Qmore » values for both coals. Pores smaller than 40 nm in radius are less accessible for anthracite than sub-bituminous coal. On the contrary, when the pore radius is larger than 40 nm, the pore accessibility of anthracite becomes larger than that of sub-bituminous coal. Only 20% of pores are accessible to CD4 for anthracite and 37% for sub-bituminous coal, where the pore radius is 16 nm. For these two coals, pore accessibility and pore radius follows a power-law relationship.« less

  14. Correlation of Oil-Water and Air-Water Contact Angles of Diverse Silanized Surfaces and Relationship to Fluid Interfacial Tensions

    SciTech Connect (OSTI)

    Grate, Jay W.; Dehoff, Karl J.; Warner, Marvin G.; Pittman, Jonathan W.; Wietsma, Thomas W.; Zhang, Changyong; Oostrom, Martinus

    2012-02-24

    The use of air-water, {Theta}{sub wa}, or air-liquid contact angles is customary in surface science, while oil-water contact angles {Theta}{sub ow}, are of paramount importance in subsurface multiphase flow phenomena including petroleum reocovery, nonaqueous phase liquid fate and transport, and geological carbon sequestration. In this paper we determine both the air-water and oil-water contact angles of silica surfaces modified with a diverse selection of silanes, using hexadecane as the oil. The silanes included alkylsilanes, alkylarylsilanes, and silanes with alkyl or aryl groups that are functionalized with heteroatoms such as N, O, and S. These silanes yielded surfaces with wettabilities from water-wet to oil wet, including specific silanized surfaces functionalized with heteroatoms that yield intermediate wet surfaces. The oil-water contact angles for clean and silanized surfaces, excluding one partially fluorinated surface, correlate linearly with air-water contact angles with a slope of 1.41 (R = 0.981, n = 13). These data were used to examine a previously untested theoretical treatment relating air-water and oil-water contact angles in terms of fluid interfacial energies. Plotting the cosines of these contact angles against one another, we obtain a linear relationship in excellent agreement with the theoretical treatment; the data fit cos {Theta}{sub ow} = 0.667 cos {Theta}{sub ow} + 0.384 (R = 0.981, n = 13), intercepting cos {Theta}{sub ow} = -1 at -0.284. The theoretical slope, based on the fluid interfacial tensions {Theta}{sub wa}, {Theta}{sub ow}, and {Theta}{sub oa}, is 0.67. We also demonstrate how silanes can be used to alter the wettability of the interior of a pore network micromodel device constructed in silicon/silica with a glass cover plate. Such micromodels are used to study multiphase flow phenomena. The contact angle of the resulting interior was determined in situ. An intermediate wet micromodel gave a contact angle in excellent agreement

  15. Modeling dynamic stall on wind turbine blades under rotationally augmented flow fields

    SciTech Connect (OSTI)

    Guntur, S.; Schreck, S.; Sorensen, N. N.; Bergami, L.

    2015-04-22

    It is well known that airfoils under unsteady flow conditions with a periodically varying angle of attack exhibit aerodynamic characteristics different from those under steady flow conditions, a phenomenon commonly known as dynamic stall. It is also well known that the steady aerodynamic characteristics of airfoils in the inboard region of a rotating blade differ from those under steady two-dimensional (2D) flow conditions, a phenomenon commonly known as rotational augmentation. This paper presents an investigation of these two phenomena together in the inboard parts of wind turbine blades. This analysis is carried out using data from three sources: (1) the National Renewable Energy Laboratory’s Unsteady Aerodynamics Experiment Phase VI experimental data, including constant as well as continuously pitching blade conditions during axial operation, (2) data from unsteady Delayed Detached Eddy Simulations (DDES) carried out using the Technical University of Denmark’s in-house flow solver Ellipsys3D, and (3) data from a simplified model based on the blade element momentum method with a dynamic stall subroutine that uses rotationally augmented steady-state polars obtained from steady Phase VI experimental sequences, instead of the traditional 2D nonrotating data. The aim of this work is twofold. First, the blade loads estimated by the DDES simulations are compared to three select cases of the N sequence experimental data, which serves as a validation of the DDES method. Results show reasonable agreement between the two data in two out of three cases studied. Second, the dynamic time series of the lift and the moment polars obtained from the experiments are compared to those from the dynamic stall subroutine that uses the rotationally augmented steady polars. This allowed the differences between the stall phenomenon on the inboard parts of harmonically pitching blades on a rotating wind turbine and the classic dynamic stall representation in 2D flow to be

  16. Effect of MLC leaf position, collimator rotation angle, and gantry rotation angle errors on intensity-modulated radiotherapy plans for nasopharyngeal carcinoma

    SciTech Connect (OSTI)

    Bai, Sen; Li, Guangjun; Wang, Maojie; Jiang, Qinfeng; Zhang, Yingjie; Wei, Yuquan

    2013-07-01

    The purpose of this study was to investigate the effect of multileaf collimator (MLC) leaf position, collimator rotation angle, and accelerator gantry rotation angle errors on intensity-modulated radiotherapy plans for nasopharyngeal carcinoma. To compare dosimetric differences between the simulating plans and the clinical plans with evaluation parameters, 6 patients with nasopharyngeal carcinoma were selected for simulation of systematic and random MLC leaf position errors, collimator rotation angle errors, and accelerator gantry rotation angle errors. There was a high sensitivity to dose distribution for systematic MLC leaf position errors in response to field size. When the systematic MLC position errors were 0.5, 1, and 2 mm, respectively, the maximum values of the mean dose deviation, observed in parotid glands, were 4.63%, 8.69%, and 18.32%, respectively. The dosimetric effect was comparatively small for systematic MLC shift errors. For random MLC errors up to 2 mm and collimator and gantry rotation angle errors up to 0.5°, the dosimetric effect was negligible. We suggest that quality control be regularly conducted for MLC leaves, so as to ensure that systematic MLC leaf position errors are within 0.5 mm. Because the dosimetric effect of 0.5° collimator and gantry rotation angle errors is negligible, it can be concluded that setting a proper threshold for allowed errors of collimator and gantry rotation angle may increase treatment efficacy and reduce treatment time.

  17. Azimuthal angle dependence of dijet production in unpolarized hadron scattering

    SciTech Connect (OSTI)

    Lu Zhun; Schmidt, Ivan [Departamento de Fisica, Universidad Tecnica Federico Santa Maria, Casilla 110-V, Valparaiso (Chile) and Center of Subatomic Physics, Valparaiso (Chile)

    2008-08-01

    We study the azimuthal angular dependence of back-to-back dijet production in unpolarized hadron scattering H{sub A}+H{sub B}{yields}J{sub 1}+J{sub 2}+X, arising from the product of two Boer-Mulders functions, which describe the transverse spin distribution of quarks inside an unpolarized hadron. We find that when the dijet is of two identical quarks (J{sub q}+J{sub q}) or a quark-antiquark pair (J{sub q}+J{sub q}), there is a cos{delta}{phi} angular dependence of the dijet, with {delta}{phi}={phi}{sub 1}-{phi}{sub 2}, and {phi}{sub 1} and {phi}{sub 2} are the azimuthal angles of the two individual jets. In the case of J{sub q}+J{sub q} production, we find that there is a color factor enhancement in the gluonic cross section, compared with the result from the standard generalized parton model. We estimate the cos{delta}{phi} asymmetry of dijet production at RHIC, showing that the color factor enhancement in the angular dependence of J{sub q}+J{sub q} production will reverse the sign of the asymmetry.

  18. Ultrasonic estimation of the contact angle of a sessile droplet

    SciTech Connect (OSTI)

    Quintero, R.; Simonetti, F.

    2014-02-18

    Radiation of energy by large amplitude leaky Rayleigh waves is regarded as one of the key physical mechanisms regulating the actuation and manipulation of droplets in surface acoustic wave (SAW) microfluidic devices. The interaction between a SAW and a droplet is highly complex and is presently the subject of extensive research. This paper investigates the existence of an additional interaction mechanism based on the propagation of quasi-Stoneley waves inside sessile droplets deposited on a solid substrate. In contrast with the leaky Rayleigh wave, the energy of the Stoneley wave is confined within a thin fluid layer in contact with the substrate. The hypothesis is confirmed by three-dimensional finite element simulations and ultrasonic scattering experiments measuring the reflection of Rayleigh waves from droplets of different diameters. Moreover, real-time monitoring of the droplet evaporation process reveals a clear correlation between the droplet contact angle and the spectral information of the reflected Rayleigh signal, thus paving the way for ultrasonic measurements of surface tension.

  19. Angle stations in or for endless conveyor belts

    DOE Patents [OSTI]

    Steel, Alan

    1987-04-07

    In an angle station for an endless conveyor belt, there are presented to each incoming run of the belt stationary curved guide members (18, 19) of the shape of a major segment of a right-circular cylinder and having in the part-cylindrical portion (16 or 17) thereof rectangular openings (15) arranged in parallel and helical paths and through which project small freely-rotatable rollers (14), the continuously-changing segments of the curved surfaces of which projecting through said openings (15) are in attitude to change the direction of travel of the belt (13) through 90.degree. during passage of the belt about the part-cylindrical portion (16 or 17) of the guide member (18 or 19). The rectangular openings (15) are arranged with their longer edges lengthwise of the diagonals representing the mean of the helix but with those of a plurality of the rows nearest to each end of the part-cylindrical portion (16 or 17) slightly out of axial symmetry with said diagonals, being slightly inclined in a direction about the intersections (40) of the diagonals of the main portion of the openings, to provide a "toe-in" attitude in relation to the line of run of the endless conveyor belt.

  20. Measurements of the CKM Angle Alpha at BaBar

    SciTech Connect (OSTI)

    Stracka, Simone; /Milan U. /INFN, Milan

    2012-04-04

    The authors present improved measurements of the branching fractions and CP-asymmetries fin the B{sup 0} {yields} {pi}{sup +}{pi}{sup -}, B{sup 0} {yields} {pi}{sup 0}{pi}{sup 0}, and B{sup +} {yields} {rho}{sup +}{rho}{sup 0} decays, which impact the determination of {alpha}. The combined branching fractions of B {yields} K{sub 1}(1270){pi} and B {yields} K{sub 1}(1400){pi} decays are measured for the first time and allow a novel determination of {alpha} in the B{sup 0} {yields} {alpha}{sub 1}(1260){sup {+-}}{pi}{sup {-+}} decay channel. These measurements are performed using the final dataset collected by the BaBar detector at the PEP-II B-factory. The primary goal of the experiments based at the B factories is to test the Cabibbo-Kobayashi-Maskawa (CKM) picture of CP violation in the standard model of electroweak interactions. This can be achieved by measuring the angles and sides of the Unitarity Triangle in a redundant way.

  1. Open Heavy Flavor Production at Forward Angles in PHENIX

    SciTech Connect (OSTI)

    Read Jr, Kenneth F; PHENIX, Collaboration

    2012-01-01

    Measurement of the production of heavy quarks in heavy ion collisions can be used to probe the early stages of the created medium, study hot and cold nuclear matter effects, and test theoretical predictions concerning quark energy loss and initial-state effects. This is a current area of active research in the field and it is important to extend such measurements to the forward region. PHENIX can measure the production of open heavy flavor at forward angles with subsequent semi-leptonic decay of heavy flavor mesons into muons. We report the nuclear modification factor for the production of muon from heavy flavor decay in Cu+Cu collisions at s_NN = 200 GeV for three centrality intervals and compare to theoretical predictions concerning the suppression of heavy quark production which incorporate heavy quark energy loss and in-medium heavy meson disassociation. Additionally, we report the charm production cross section for p+p collisions at s = 200 GeV and compare results to Fixed Order plus Next-to-Leading Log predictions Research sponsored by the Office of Nuclear Physics, U.S. Department of Energy.

  2. Small Angle Neutron Scattering (SANS) Studies on the Structural Evolution of Pyromellitamide Self-assembled Gels

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Scott, Jamieson; Tong, Katie; William, Hamilton; He, Lilin; James, Michael; Thordarson, Pall; Boukhalfa, Sofiane

    2014-10-31

    The kinetics of aggregation of two pyromellitamide gelators; tetrabutyl- (C4) and tetrahexylpyromellitamide (C6), in deuterated cyclohexane has been investigated by small angle neutron scattering (SANS) for up to six days. The purpose of this study was to improve our understanding of how self-assembled gels are formed. Short-term (< 3 hour) time scales revealed multiple phases with the data for the tetrabutylpyromellitamide C4 indicating one dimensional stacking and aggregation corresponding to a multi-fiber braided cluster arrangement that is about 35 Å in diameter. The corresponding tetrahexylpyromellitamide C6 data suggests that the C6 also forms one-dimensional stacks but that these aggregate tomore » a thicker multi-fiber braided cluster that have a diameter of 61.8 Å. Over a longer period of time, the radius, persistence length and contour length all continue to increase in 6 days after cooling. This data suggests that structural changes in self-assembled gels occur over a period exceeding several days and that fairly subtle changes in the structure (e.g. tail-length) can influence the packing of molecules in self-assembled gels on the single-to-few fiber bundle stage.« less

  3. Effect of surface free energies on the heterogeneous nucleation of water droplet: A molecular dynamics simulation approach

    SciTech Connect (OSTI)

    Xu, W.; Lan, Z.; Peng, B. L.; Wen, R. F.; Ma, X. H.

    2015-02-07

    Heterogeneous nucleation of water droplet on surfaces with different solid-liquid interaction intensities is investigated by molecular dynamics simulation. The interaction potentials between surface atoms and vapor molecules are adjusted to obtain various surface free energies, and the nucleation process and wetting state of nuclei on surfaces are investigated. The results indicate that near-constant contact angles are already established for nano-scale nuclei on various surfaces, with the contact angle decreasing with solid-liquid interaction intensities linearly. Meanwhile, noticeable fluctuation of vapor-liquid interfaces can be observed for the nuclei that deposited on surfaces, which is caused by the asymmetric forces from vapor molecules. The formation and growth rate of nuclei are increasing with the solid-liquid interaction intensities. For low energy surface, the attraction of surface atoms to water molecules is comparably weak, and the pre-existing clusters can depart from the surface and enter into the bulk vapor phase. The distribution of clusters within the bulk vapor phase becomes competitive as compared with that absorbed on surface. For moderate energy surfaces, heterogeneous nucleation predominates and the formation of clusters within bulk vapor phase is suppressed. The effect of high energy particles that embedded in low energy surface is also discussed under the same simulation system. The nucleation preferably initiates on the high energy particles, and the clusters that formed on the heterogeneous particles are trapped around their original positions instead of migrating around as that observed on smooth surfaces. This feature makes it possible for the heterogeneous particles to act as fixed nucleation sites, and simulation results also suggest that the number of nuclei increases monotonously with the number of high energy particles. The growth of nuclei on high energy particles can be divided into three sub-stages, beginning with the formation

  4. Method and apparatus for controlling pitch and flap angles of a wind turbine

    DOE Patents [OSTI]

    Deering, Kenneth J.; Wohlwend, Keith P.

    2009-05-12

    A wind turbine with improved response to wind conditions is provided. Blade flap angle motion is accompanied by a change in pitch angle by an amount defining a pitch/flap coupling ratio. The coupling ratio is non-constant as a function of a flap angle and is preferably a substantially continuous, non-linear function of flap angle. The non-constant coupling ratio can be provided by mechanical systems such as a series of linkages or by configuring electronic or other control systems and/or angle sensors. A link with a movable proximal end advantageously is part of the mechanical system. The system can provide relatively large coupling ratios and relatively large rates of coupling ratio changes especially for near-feather pitches and low flap angles.

  5. High-resolution NMR spectroscopy of biological tissues usingprojected Magic Angle Spinning

    SciTech Connect (OSTI)

    Martin, Rachel W.; Jachmann, Rebecca C.; Sakellariou, Dimitris; Nielsen, Ulla Gro; Pines, Alexander

    2005-01-27

    High-resolution NMR spectra of materials subject toanisotropic broadening are usually obtained by rotating the sample aboutthe magic angle, which is 54.7 degrees to the static magnetic field. Inprojected Magic Angle Spinning (p-MAS), the sample is spun about twoangles, neither of which is the magic angle. This provides a method ofobtaining isotropic spectra while spinning at shallow angles. The p-MASexperiment may be used in situations where spinning the sample at themagic angle is not possible due to geometric or other constraints,allowing the choice of spinning angle to be determined by factors such asthe shape of the sample, rather than by the spin physics. The applicationof this technique to bovine tissue samples is demonstrated as a proof ofprinciple for future biological or medical applications.

  6. Photodissociation Dynamics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photodissociation Dynamics - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced

  7. Atomic-scale dynamics of a model glass-forming metallic liquid: Dynamical crossover, dynamical decoupling, and dynamical clustering

    SciTech Connect (OSTI)

    Jaiswal, Abhishek; Egami, Takeshi; Zhang, Yang

    2015-04-01

    The phase behavior of multi-component metallic liquids is exceedingly complex because of the convoluted many-body and many-elemental interactions. Herein, we present systematic studies of the dynamic aspects of such a model ternary metallic liquid Cu40Zr51Al9 using molecular dynamics simulation with embedded atom method. We observed a dynamical crossover from Arrhenius to super-Arrhenius behavior in the transport properties (diffusion coefficient, relaxation times, and shear viscosity) bordered at Tx ~1300K. Unlike in many molecular and macromolecular liquids, this crossover phenomenon occurs in the equilibrium liquid state well above the melting temperature of the system (Tm ~ 900K), and the crossover temperature is roughly twice of the glass-transition temperature (Tg). Below Tx, we found the elemental dynamics decoupled and the Stokes-Einstein relation broke down, indicating the onset of heterogeneous spatially correlated dynamics in the system mediated by dynamic communications among local configurational excitations. To directly characterize and visualize the correlated dynamics, we employed a non-parametric, unsupervised machine learning technique and identified dynamical clusters of atoms with similar atomic mobility. The revealed average dynamical cluster size shows an accelerated increase below Tx and mimics the trend observed in other ensemble averaged quantities that are commonly used to quantify the spatially heterogeneous dynamics such as the non-Gaussian parameter and the four-point correlation function.

  8. Structural analysis of flexible proteins in solution by SmallAngle...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Structural analysis of flexible proteins in solution by SmallAngle X-ray ... Combining SAXS results with atomic resolution structures enables detailed ...

  9. Ray tracing flux calculation for the small and wide angle x-ray...

    Office of Scientific and Technical Information (OSTI)

    Ray tracing flux calculation for the small and wide angle x-ray scattering diffraction station at the SESAME synchrotron radiation facility Citation Details In-Document Search ...

  10. Economic Recovery of Oil Trapped at Fan Margins Using Hig Angle Wells Multiple Hydraulic Fractures

    SciTech Connect (OSTI)

    Laue, M.L.

    1997-11-21

    The Yowlumne field is a giant field in the southern San Joaquin basin, Kern County, California. It is a deep (13,000 ft) waterflood operation that produces from the Miocene- aged Stevens Sand. The reservoir is interpreted as a layered, fan-shaped, prograding turbidite complex containing several lobe-shaped sand bodies that represent distinct flow units. A high ultimate recovery factor is expected, yet significant quantities of undrained oil remain at the fan margins. The fan margins are not economic to develop using vertical wells because of thinning pay, deteriorating rock quality, and depth. This project attempts to demonstrate the effectiveness of exploiting the northeast distal fan margin through the use of a high- angle well completed with multiple hydraulic- fracture treatments. A high-angle well offers greater pay exposure than can be achieved with a vertical well. Hydraulic-fracture treatments will establish vertical communication between thin interbedded layers and the wellbore. The equivalent production rate and reserves of three vertical wells are anticipated at a cost of approximately two vertical wells. The near-horizontal well penetrated the Yowlumne sand; a Stevens sand equivalent, in the distal fan margin in the northeast area of the field. The well was drilled in a predominately westerly direction towards the interior of the field, in the direction of improving rock quality. Drilling and completion operations proved to be very challenging, leading to a number of adjustments to original plans. Hole conditions resulted in obtaining less core material than desired and setting intermediate casing 1200 ft too high. The 7 in. production liner stuck 1000 ft off bottom, requiring a 5 in. liner to be run the rest of the way. The cement job on the 5 in. liner resulted in a very poor bond, which precluded one of three hydraulic fracture treatments originally planned for the well. Openhole logs confirmed most expectations going into the project about basic

  11. SU-E-T-618: Dosimetric Comparison of Manual and Beam Angle Optimization of Gantry Angles in IMRT for Cervical Cancer

    SciTech Connect (OSTI)

    Lin, X; Sun, T; Liu, T; Zhang, G; Yin, Y

    2014-06-01

    Purpose: To evaluate the dosimetric characteristics of intensity-modulated radiotherapy (IMRT) treatment plan with beam angle optimization. Methods: Ten post-operation patients with cervical cancer were included in this analysis. Two IMRT plans using seven beams were designed in each patient. A standard coplanar equi-space beam angles were used in the first plan (plan 1), whereas the selection of beam angle was optimized by beam angle optimization algorithm in Varian Eclipse treatment planning system for the same number of beams in the second plan (plan 2). Two plans were designed for each patient with the same dose-volume constraints and prescription dose. All plans were normalized to the mean dose to PTV. The dose distribution in the target, the dose to the organs at risk and total MU were compared. Results: For conformity and homogeneity in PTV, no statistically differences were observed in the two plans. For the mean dose in bladder, plan 2 were significantly lower than plan 1(p<0.05). No statistically significant differences were observed between two plans for the mean doses in rectum, left and right femur heads. Compared with plan1, the average monitor units reduced 16% in plan 2. Conclusion: The IMRT plan based on beam angle optimization for cervical cancer could reduce the dose delivered to bladder and also reduce MU. Therefore there were some dosimetric advantages in the IMRT plan with beam angle optimization for cervical cancer.

  12. Dynamical impurity problems

    SciTech Connect (OSTI)

    Emery, V.J.; Kivelson, S.A.

    1993-12-31

    In the past few years there has been a resurgence of interest in dynamical impurity problems, as a result of developments in the theory of correlated electron systems. The general dynamical impurity problem is a set of conduction electrons interacting with an impurity which has internal degrees of freedom. The simplest and earliest example, the Kondo problem, has attracted interest since the mid-sixties not only because of its physical importance but also as an example of a model displaying logarithmic divergences order by order in perturbation theory. It provided one of the earliest applications of the renormalization group method, which is designed to deal with just such a situation. As we shall see, the antiferromagnetic Kondo model is controlled by a strong-coupling fixed point, and the essence of the renormalization group solution is to carry out the global renormalization numerically starting from the original (weak-coupling) Hamiltonian. In these lectures, we shall describe an alternative route in which we identify an exactly solvable model which renormalizes to the same fixed point as the original dynamical impurity problem. This approach is akin to determining the critical behavior at a second order phase transition point by solving any model in a given universality class.

  13. Theoretical studies of combustion dynamics

    SciTech Connect (OSTI)

    Bowman, J.M.

    1993-12-01

    The basic objectives of this research program are to develop and apply theoretical techniques to fundamental dynamical processes of importance in gas-phase combustion. There are two major areas currently supported by this grant. One is reactive scattering of diatom-diatom systems, and the other is the dynamics of complex formation and decay based on L{sup 2} methods. In all of these studies, the authors focus on systems that are of interest experimentally, and for which potential energy surfaces based, at least in part, on ab initio calculations are available.

  14. ARM: Shortwave Array Spectroradiometer-Hemispheric, VISible channel, low-sun angles [a0 data is uncalibrated

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Albert Mendoza; Yan Shi; Connor Flynn

    1990-01-01

    Shortwave Array Spectroradiometer-Hemispheric, VISible channel, low-sun angles [a0 data is uncalibrated

  15. ARM: Shortwave Array Spectroradiometer-Hemispheric, VISible channel, high-sun angles [a0 data is uncalibrated

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Albert Mendoza; Yan Shi; Connor Flynn

    2011-03-22

    Shortwave Array Spectroradiometer-Hemispheric, VISible channel, high-sun angles [a0 data is uncalibrated

  16. ARM: Shortwave Array Spectroradiometer-Hemispheric, VISible channel, low-sun angles [a0 data is uncalibrated

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Albert Mendoza; Yan Shi; Connor Flynn

    Shortwave Array Spectroradiometer-Hemispheric, VISible channel, low-sun angles [a0 data is uncalibrated

  17. ARM: Shortwave Array Spectroradiometer-Hemispheric, VISible channel, high-sun angles [a0 data is uncalibrated

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Albert Mendoza; Yan Shi; Connor Flynn

    Shortwave Array Spectroradiometer-Hemispheric, VISible channel, high-sun angles [a0 data is uncalibrated

  18. Three-phase uninterruptible power supply maintaining reserve energy sources in idling condition with unbalanced loads

    SciTech Connect (OSTI)

    Boettcher, C.W.; Hamilton, B.H.; Zweig, W.L.

    1980-12-09

    A control arrangement for a three-phase, uninterruptible power supply generates timing signals to drive the static switches of inverters located in each phase. This control arrangement precisely controls the phase differences of the inverter signals with relation to each other so that while the overall three-phase power supplied by the inverters is nulled, power circulation through the inverters compensates for unbalanced output loads thereby maintaining balanced phase angles between the output voltage and a balanced input impedance at the input of the power supply.

  19. Scattering Dynamics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scattering Dynamics - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear

  20. Time-domain detection of current controlled magnetization damping in Pt/Ni{sub 81}Fe{sub 19} bilayer and determination of Pt spin Hall angle

    SciTech Connect (OSTI)

    Ganguly, A.; Haldar, A.; Sinha, J.; Barman, A. E-mail: del.atkinson@durham.ac.uk; Rowan-Robinson, R. M.; Jaiswal, S.; Hindmarch, A. T.; Atkinson, D. A. E-mail: del.atkinson@durham.ac.uk

    2014-09-15

    The effect of spin torque from the spin Hall effect in Pt/Ni{sub 81}Fe{sub 19} rectangular bilayer film was investigated using time-resolved magneto-optical Kerr microscopy. Current flow through the stack resulted in a linear variation of effective damping up to ±7%, attributed to spin current injection from the Pt into the Ni{sub 81}Fe{sub 19}. The spin Hall angle of Pt was estimated as 0.11 ± 0.03. The modulation of the damping depended on the angle between the current and the bias magnetic field. These results demonstrate the importance of optical detection of precessional magnetization dynamics for studying spin transfer torque due to spin Hall effect.

  1. RACEE Phase 2 Documents

    Office of Energy Efficiency and Renewable Energy (EERE)

    In Phase 2 of the Remote Alaskan Communities Energy Efficiency (RACEE) Competition, the U.S. Department of Energy provided targeted technical assistance to up to 20 selected Community Efficiency Champions. The documents below are resources for Phase 2.

  2. Digital quadrature phase detection

    DOE Patents [OSTI]

    Smith, James A.; Johnson, John A.

    1992-01-01

    A system for detecting the phase of a frequency of phase modulated signal that includes digital quadrature sampling of the frequency or phase modulated signal at two times that are one quarter of a cycle of a reference signal apart, determination of the arctangent of the ratio of a first sampling of the frequency or phase modulated signal to the second sampling of the frequency or phase modulated signal, and a determination of quadrant in which the phase determination is increased by 2.pi. when the quadrant changes from the first quadrant to the fourth quadrant and decreased by 2.pi. when the quadrant changes from the fourth quadrant to the first quadrant whereby the absolute phase of the frequency or phase modulated signal can be determined using an arbitrary reference convention.

  3. Digital quadrature phase detection

    DOE Patents [OSTI]

    Smith, J.A.; Johnson, J.A.

    1992-05-26

    A system for detecting the phase of a frequency or phase modulated signal that includes digital quadrature sampling of the frequency or phase modulated signal at two times that are one quarter of a cycle of a reference signal apart, determination of the arctangent of the ratio of a first sampling of the frequency or phase modulated signal to the second sampling of the frequency or phase modulated signal, and a determination of quadrant in which the phase determination is increased by 2[pi] when the quadrant changes from the first quadrant to the fourth quadrant and decreased by 2[pi] when the quadrant changes from the fourth quadrant to the first quadrant whereby the absolute phase of the frequency or phase modulated signal can be determined using an arbitrary reference convention. 6 figs.

  4. Discovery of a metastable Al20Sm4 phase

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ye, Z.; Zhang, F.; Sun, Y.; Mendelev, M. I.; Ott, R. T.; Park, E.; Besser, M. F.; Kramer, M. J.; Ding, Z.; Wang, C. -Z.; et al

    2015-03-09

    In this study, we present an efficient genetic algorithm, integrated with experimental diffraction data, to solve a nanoscale metastable Al20Sm4 phase that evolves during crystallization of an amorphous magnetron sputtered Al90Sm10 alloy. The excellent match between calculated and experimental X-ray diffraction patterns confirms an accurate description of this metastable phase. Molecular dynamic simulations of crystal growth from the liquid phase predict the formation of disordered defects in the devitrified crystal.

  5. Gravitational waves from global second order phase transitions

    SciTech Connect (OSTI)

    Jr, John T. Giblin; Price, Larry R.; Siemens, Xavier; Vlcek, Brian E-mail: larryp@caltech.edu E-mail: bvlcek@uwm.edu

    2012-11-01

    Global second-order phase transitions are expected to produce scale-invariant gravitational wave spectra. In this manuscript we explore the dynamics of a symmetry-breaking phase transition using lattice simulations. We explicitly calculate the stochastic gravitational wave background produced during the transition and subsequent self-ordering phase. We comment on this signal as it compares to the scale-invariant spectrum produced during inflation.

  6. An acceleration of the characteristics by a space-angle two-level method using surface discontinuity factors

    SciTech Connect (OSTI)

    Grassi, G.

    2006-07-01

    We present a non-linear space-angle two-level acceleration scheme for the method of the characteristics (MOC). To the fine level on which the MOC transport calculation is performed, we associate a more coarsely discretized phase space in which a low-order problem is solved as an acceleration step. Cross sections on the coarse level are obtained by a flux-volume homogenisation technique, which entails the non-linearity of the acceleration. Discontinuity factors per surface are introduced as additional degrees of freedom on the coarse level in order to ensure the equivalence of the heterogeneous and the homogenised problem. After each fine transport iteration, a low-order transport problem is iteratively solved on the homogenised grid. The solution of this problem is then used to correct the angular moments of the flux resulting from the previous free transport sweep. Numerical tests for a given benchmark have been performed. Results are discussed. (authors)

  7. Predissociation dynamics of lithium iodide

    SciTech Connect (OSTI)

    Schmidt, H.; Vangerow, J. von; Stienkemeier, F.; Mudrich, M.; Bogomolov, A. S.; Baklanov, A. V.; Reich, D. M.; Skomorowski, W.; Koch, C. P.

    2015-01-28

    The predissociation dynamics of lithium iodide (LiI) in the first excited A-state is investigated for molecules in the gas phase and embedded in helium nanodroplets, using femtosecond pump-probe photoionization spectroscopy. In the gas phase, the transient Li{sup +} and LiI{sup +} ion signals feature damped oscillations due to the excitation and decay of a vibrational wave packet. Based on high-level ab initio calculations of the electronic structure of LiI and simulations of the wave packet dynamics, the exponential signal decay is found to result from predissociation predominantly at the lowest avoided X-A potential curve crossing, for which we infer a coupling constant V{sub XA} = 650(20) cm{sup −1}. The lack of a pump-probe delay dependence for the case of LiI embedded in helium nanodroplets indicates fast droplet-induced relaxation of the vibrational excitation.

  8. Simulation-guided optimization of small-angle analyzer geometry in the neutron backscattering spectrometer SPHERES

    SciTech Connect (OSTI)

    Wuttke, Joachim; Zamponi, Michaela [Forschungszentrum Jlich GmbH, Jlich Centre for Neutron Science at MLZ, Lichtenbergstrae 1, 85747 Garching (Germany)] [Forschungszentrum Jlich GmbH, Jlich Centre for Neutron Science at MLZ, Lichtenbergstrae 1, 85747 Garching (Germany)

    2013-11-15

    The resolution of neutron backscattering spectrometers deteriorates at small scattering angles where analyzers deviate from exact backscattering. By reducing the azimuth angle range of the analyzers, the resolution can be improved with little loss of peak intensity. Measurements at the spectrometer SPHERES are in excellent agreement with simulations, which proves the dominance of geometric effects.

  9. Clustering versus non-clustering phase synchronizations

    SciTech Connect (OSTI)

    Liu, Shuai; University of Chinese Academy of Sciences, Beijing 100049 ; Zhan, Meng

    2014-03-15

    Clustering phase synchronization (CPS) is a common scenario to the global phase synchronization of coupled dynamical systems. In this work, a novel scenario, the non-clustering phase synchronization (NPS), is reported. It is found that coupled systems do not transit to the global synchronization until a certain sufficiently large coupling is attained, and there is no clustering prior to the global synchronization. To reveal the relationship between CPS and NPS, we further analyze the noise effect on coupled phase oscillators and find that the coupled oscillator system can change from CPS to NPS with the increase of noise intensity or system disorder. These findings are expected to shed light on the mechanism of various intriguing self-organized behaviors in coupled systems.

  10. Raman spectroscopy measurement of bilayer graphene's twist angle to boron nitride

    SciTech Connect (OSTI)

    Cheng, Bin; Wang, Peng; Pan, Cheng; Miao, Tengfei; Wu, Yong; Lau, C. N.; Bockrath, M.; Taniguchi, T.; Watanabe, K.

    2015-07-20

    When graphene is placed on hexagonal boron nitride with a twist angle, new properties develop due to the resulting moiré superlattice. Here, we report a method using Raman spectroscopy to make rapid, non-destructive measurements of the twist angle between bilayer graphene and hexagonal boron nitride. The lattice orientation is determined by using flakes with both bilayer and monolayer regions, and using the known Raman signature for the monolayer to measure the twist angle of the entire flake. The widths of the second order Raman peaks are found to vary linearly in the superlattice period and are used to determine the twist angle. The results are confirmed by using transport measurements to infer the superlattice period by the charge density required to reach the secondary resistance peaks. Small twist angles are also found to produce a significant modification of the first order Raman G band peak.

  11. Sandia National Laboratories: Dynamic Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dynamic Materials Compressing materials under extreme conditions Pushing forward the frontiers of high-energy-density science Sandia Physicist, Marcus Knudson Sandia scientists are investigating the behavior of a wide-range of materials under the extreme conditions of very high pressures and densities. They seek the answers to such questions as: When do insulators become a metal? How strong do materials become when they are compressed? How and when do materials change their phase at very high

  12. MATHEMATICAL MODELS OF HYSTERESIS (DYNAMIC PROBLEMS IN HYSTERESIS)

    SciTech Connect (OSTI)

    Professor Isaak Mayergoyz

    2006-08-21

    This research has further advanced the current state of the art in the areas of dynamic aspects of hysteresis and nonlinear large scale magnetization dynamics. The results of this research will find important engineering applications in the areas of magnetic data storage technology and the emerging technology of “spintronics”. Our research efforts have been focused on the following tasks: • Study of fast (pulse) precessional switching of magnetization in magnetic materials. • Analysis of critical fields and critical angles for precessional switching of magnetization. • Development of inverse problem approach to the design of magnetic field pulses for precessional switching of magnetization. • Study of magnetization dynamics induced by spin polarized current injection. • Construction of complete stability diagrams for spin polarized current induced magnetization dynamics. • Development of the averaging technique for the analysis of the slow time scale magnetization dynamics. • Study of thermal effects on magnetization dynamics by using the theory of stochastic processes on graphs.

  13. SU-E-T-195: Gantry Angle Dependency of MLC Leaf Position Error

    SciTech Connect (OSTI)

    Ju, S; Hong, C; Kim, M; Chung, K; Kim, J; Han, Y; Ahn, S; Chung, S; Shin, E; Shin, J; Kim, H; Kim, D; Choi, D

    2014-06-01

    Purpose: The aim of this study was to investigate the gantry angle dependency of the multileaf collimator (MLC) leaf position error. Methods: An automatic MLC quality assurance system (AutoMLCQA) was developed to evaluate the gantry angle dependency of the MLC leaf position error using an electronic portal imaging device (EPID). To eliminate the EPID position error due to gantry rotation, we designed a reference maker (RM) that could be inserted into the wedge mount. After setting up the EPID, a reference image was taken of the RM using an open field. Next, an EPID-based picket-fence test (PFT) was performed without the RM. These procedures were repeated at every 45° intervals of the gantry angle. A total of eight reference images and PFT image sets were analyzed using in-house software. The average MLC leaf position error was calculated at five pickets (-10, -5, 0, 5, and 10 cm) in accordance with general PFT guidelines using in-house software. This test was carried out for four linear accelerators. Results: The average MLC leaf position errors were within the set criterion of <1 mm (actual errors ranged from -0.7 to 0.8 mm) for all gantry angles, but significant gantry angle dependency was observed in all machines. The error was smaller at a gantry angle of 0° but increased toward the positive direction with gantry angle increments in the clockwise direction. The error reached a maximum value at a gantry angle of 90° and then gradually decreased until 180°. In the counter-clockwise rotation of the gantry, the same pattern of error was observed but the error increased in the negative direction. Conclusion: The AutoMLCQA system was useful to evaluate the MLC leaf position error for various gantry angles without the EPID position error. The Gantry angle dependency should be considered during MLC leaf position error analysis.

  14. Small-angle neutron scattering measurement of deuterium trapping at dislocations and grain boundaries in palladium

    SciTech Connect (OSTI)

    Heuser, B.J.

    1991-01-01

    Small angle neutron scattering measurements have been performed on deformed single and polycrystalline palladium with and without deuterium dissolved in the solution phase at room temperature. The purpose of these experiments was to directly measure the spatial distribution of trapped deuterium at dislocations in the deformed metal. The net scattering cross section for the same smaple with and without deuterium shows a behavior expected from deuterium correlation with dislocations froming rod-like scattering structures. The measured cross sections indicate the trapped deuterium is within 2 to 3 Burgers vectors of the dislocation core. On average 1 to 3 deuterons per {angstrom} are trapped at the dislocations in the deformed samples. The measurements also indicate the straight, rod-like correlation geometry extends on average 50 to 100 {angstrom} along the dislocations. Dislocation densities on the order of 5 {times} 10{sup 11} cm/cm{sup 3} were found for all samples investigated. Net scattering from a well annealed polycrystalline palladium sample exhibiting a behavior expected from spherical shells has been observed. This net scattering is attributed to deuterium trapping at grain boundaries in the polycrystalline sample. net scattering in excess of that expected from deuterium correlated at dislocations was also observed in a deformed polycrystalline measurement. This too is attributed to deuterium trapping at grain boundaries. The dislocation substructure of the deformed palladium samples was characterized by transmission electron microscopy (TEM). This analysis illustrated the cellular arrangement that evolved in palladium during cold working. The presence of MnO particles also was confirmed by TEM analysis.

  15. Real-Time Dynamics Monitoring System with Synchronized Phasor Measurements

    Energy Science and Technology Software Center (OSTI)

    2005-01-01

    The Real-Time Dynamics Monitoring System is designed to monitor the dynamics within the power grid and assess the system behavior during normal and disturbance conditions. The RTDMS application was built on the Grid-3P technology platform and takes real-time information collected by Synchronized Phasor Measurement Units (PMU5) or other collection devices and transmitted to a central Phasor Data Concentrator (PDC) for monitoring grid dynamics. The data is sampled 30 times per second and is time-synchronized. Thismore » data is processed to create graphical and geographical displays to provide visualization for frequency/frequency response, voltage magnitudes and angles, voltage angle differences across critical paths as well as real and reactive power-flows on a sub-second and second basis. Software allows for monitoring, tracking, historical data archiving and electric system troubleshooting for reliability management.« less

  16. Development of EEM based siliconwater and silicawater wall potentials for non-reactive molecular dynamics simulations

    SciTech Connect (OSTI)

    Kim, Junghan; Iype, Eldhose; Frijns, Arjan J.H.; Nedea, Silvia V.; Steenhoven, Anton A. van

    2014-07-01

    Molecular dynamics simulations of heat transfer in gases are computationally expensive when the wall molecules are explicitly modeled. To save computational time, an implicit boundary function is often used. Steele's potential has been used in studies of fluidsolid interface for a long time. In this work, the conceptual idea of Steele's potential was extended in order to simulate watersilicon and watersilica interfaces. A new wall potential model is developed by using the electronegativity-equalization method (EEM), a ReaxFF empirical force field and a non-reactive molecular dynamics package PumMa. Contact angle simulations were performed in order to validate the wall potential model. Contact angle simulations with the resulting tabulated wall potentials gave a siliconwater contact angle of 129, a quartzwater contact angle of 0, and a cristobalitewater contact angle of 40, which are in reasonable agreement with experimental values.

  17. Phase-field Modeling of Displacive Phase Transformations in Elasticall...

    Office of Scientific and Technical Information (OSTI)

    Phase-field Modeling of Displacive Phase Transformations in Elastically Anisotropic and Inhomogeneous Polycrystals Citation Details In-Document Search Title: Phase-field Modeling...

  18. Achromatic phase matching at third orders of dispersion

    DOE Patents [OSTI]

    Richman, Bruce

    2003-10-21

    Achromatic phase-matching (APM) is used for efficiently multiplying the frequency of broad bandwidth light by using a nonlinear optical medium comprising a second-harmonic generation (SHG) crystal and stationary optical elements whose configuration, properties, and arrangement have been optimized to match the angular dispersion characteristics of the SHG crystal to at least the third order. These elements include prisms and diffraction gratings for directing an input light beam onto the SHG crystal such that each ray wavelength is aligned to match the phase-matching angle for the crystal at each wavelength of light to at least the third order and such that every ray wavelength overlap within the crystal.

  19. Dynamics of Block Copolymer Nanocomposites

    SciTech Connect (OSTI)

    Mochrie, Simon G. J.

    2014-09-09

    A detailed study of the dynamics of cadmium sulfide nanoparticles suspended in polystyrene homopolymer matrices was carried out using X-ray photon correlation spectroscopy for temperatures between 120 and 180 C. For low molecular weight polystyrene homopolymers, the observed dynamics show a crossover from diffusive to hyper-diffusive behavior with decreasing temperatures. For higher molecular weight polystyrene, the nanoparticle dynamics appear hyper-diffusive at all temperatures studied. The relaxation time and characteristic velocity determined from the measured hyper-diffusive dynamics reveal that the activation energy and underlying forces determined are on the order of 2.14 10?19 J and 87 pN, respectively. We also carried out a detailed X-ray scattering study of the static and dynamic behavior of a styrene isoprene diblock copolymer melt with a styrene volume fraction of 0.3468. At 115 and 120 C, we observe splitting of the principal Bragg peak, which we attribute to phase coexistence of hexagonal cylindrical and cubic double- gyroid structure. In the disordered phase, above 130 C, we have characterized the dynamics of composition fluctuations via X-ray photon correlation spectroscopy. Near the peak of the static structure factor, these fluctuations show stretched-exponential relaxations, characterized by a stretching exponent of about 0.36 for a range of temperatures immediately above the MST. The corresponding characteristic relaxation times vary exponentially with temperature, changing by a factor of 2 for each 2 C change in temperature. At low wavevectors, the measured relaxations are diffusive with relaxation times that change by a factor of 2 for each 8 C change in temperature.

  20. Fluid Phase Lipid Areas and Bilayer Thicknesses of Commonly Used Phosphatidylcholines as a Function of Temperature

    SciTech Connect (OSTI)

    Kucerka, Norbert; Nieh, Mu-Ping; Katsaras, John

    2011-01-01

    The structural parameters of fluid phase bilayers composed of phosphatidylcholines with fully saturated, mixed, and branched fatty acid chains, at several temperatures, have been determined by simultaneously analyzing small-angle neutron and X-ray scattering data. Bilayer parameters, such as area per lipid and overall bilayer thickness have been obtained in conjunction with intrabilayer structural parameters (e.g. hydrocarbon region thickness). The results have allowed us to assess the effect of temperature and hydrocarbon chain composition on bilayer structure. For example, we found that for all lipids there is, not surprisingly, an increase in fatty acid chain trans-gauche isomerization with increasing temperature. Moreover, this increase in trans-gauche isomerization scales with fatty acid chain length in mixed chain lipids. However, in the case of lipids with saturated fatty acid chains, trans-gauche isomerization is increasingly tempered by attractive chain-chain van der Waals interactions with increasing chain length. Finally, our results confirm a strong dependence of lipid chain dynamics as a function of double bond position along fatty acid chains.

  1. Crystal phase identification

    DOE Patents [OSTI]

    Michael, Joseph R.; Goehner, Raymond P.; Schlienger, Max E.

    2001-01-01

    A method and apparatus for determining the crystalline phase and crystalline characteristics of a sample. This invention provides a method and apparatus for unambiguously identifying and determining the crystalline phase and crystalline characteristics of a sample by using an electron beam generator, such as a scanning electron microscope, to obtain a backscattered electron Kikuchi pattern of a sample, and extracting crystallographic and composition data that is matched to database information to provide a quick and automatic method to identify crystalline phases.

  2. Associative memory in phasing neuron networks

    SciTech Connect (OSTI)

    Nair, Niketh S; Bochove, Erik J.; Braiman, Yehuda

    2014-01-01

    We studied pattern formation in a network of coupled Hindmarsh-Rose model neurons and introduced a new model for associative memory retrieval using networks of Kuramoto oscillators. Hindmarsh-Rose Neural Networks can exhibit a rich set of collective dynamics that can be controlled by their connectivity. Specifically, we showed an instance of Hebb's rule where spiking was correlated with network topology. Based on this, we presented a simple model of associative memory in coupled phase oscillators.

  3. The dynamical crossover in attractive colloidal systems

    SciTech Connect (OSTI)

    Mallamace, Francesco; Corsaro, Carmelo; Stanley, H. Eugene; Mallamace, Domenico; Chen, Sow-Hsin

    2013-12-07

    We study the dynamical arrest in an adhesive hard-sphere colloidal system. We examine a micellar suspension of the Pluronic-L64 surfactant in the temperature (T) and volume fraction (ϕ) phase diagram. According to mode-coupling theory (MCT), this system is characterized by a cusp-like singularity and two glassy phases: an attractive glass (AG) phase and a repulsive glass (RG) phase. The T − ϕ phase diagram of this system as confirmed by a previous series of scattering data also exhibits a Percolation Threshold (PT) line, a reentrant behavior (AG-liquid-RG), and a glass-to-glass transition. The AG phase can be generated out of the liquid phase by using T and ϕ as control parameters. We utilize viscosity and nuclear magnetic resonance (NMR) techniques. NMR data confirm all the characteristic properties of the colloidal system phase diagram and give evidence of the onset of a fractal-like percolating structure at a precise threshold. The MCT scaling laws used to study the shear viscosity as a function of ϕ and T show in both cases a fragile-to-strong liquid glass-forming dynamic crossover (FSC) located near the percolation threshold where the clustering process is fully developed. These results suggest a larger thermodynamic generality for this phenomenon, which is usually studied only as a function of the temperature. We also find that the critical values of the control parameters, coincident with the PT line, define the locus of the FSC. In the region between the FSC and the glass transition lines the system dynamics are dominated by clustering effects. We thus demonstrate that it is possible, using the conceptual framework provided by extended mode-coupling theory, to describe the way a system approaches dynamic arrest, taking into account both cage and hopping effects.

  4. Cori Phase I

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Phase 1 system provides approximately 750 GBsecond of IO performance and about 750TB of storage. > 12 logininteractive nodes SLURM workload manager Better support for ...

  5. Cori Phase II Preparations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Announcements » Cori Phase II Preparations Cori Phase II Preparations May 9, 2016 by Rebecca Hartman-Baker We expect the first cabinets of Cori Phase II to arrive in CRT/Wang Hall on the LBL campus in July. NERSC personnel will immediately get to work on bringing the machine into production. Before the machine can be released to the NERSC user community, a number of tasks must be completed, some of which will have a direct impact on NERSC users. We've created the Cori Phase II Schedule page to

  6. Quantum Dynamics of Elementary Reactions in the Gas Phase and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a promising route for producing hydrogen from primary fuels is via steam reforming of methanol. Thus, future studies will concentrate on HO + CO --> H + CO2, which is also the...

  7. Spin dynamics in pressure-induced magnetically ordered phases...

    Office of Scientific and Technical Information (OSTI)

    Country of Publication: United States Language: English Word Cloud More Like This Free Publicly Accessible Full Text This content will become publicly available on August 6, 2016 ...

  8. Gas phase ion-molecule reactions, spectroscopy and dynamics

    SciTech Connect (OSTI)

    Rinden, E.

    1989-01-01

    The chemical reactivity of nitric oxide anion (NO{sup {minus}}) with a variety of organic neurals at ambient and in argon bath gas has been probed using the flowing afterglow technique. The reactions fall into four main classes: electron transfer, dissociative electron transfer and/or displacement, collisional detachment and clustering. Electron transfer can occur when the neutral reactant possesses a positive electron affinity greater than the electron affinity of NO{center dot}, but does not always do so. Bimolecular substitution at sulfur is shown to occur with dimethyl disulfide, but for other substrates, distinguishing between displacement and dissociative electron transfer is not possible. Collisional detachment is the exclusive reaction channel observed for a few of the molecules examined, and occurs to some extent with many of the neutrals tested. Cluster ion formation between NO{sup {minus}} and a number of the reactant neutrals which possess permanent dipole moments is observed. The collected observations are discussed in the general theory of ion-molecule reactions. Cross sections for vibrational relaxation in small ionic systems (Li{sup +}-H{sub 2},Li{sup +}-D{sub 2}, ArH{sup +}-Ar and ArD{sup +}-Ar) have been calculated numerically using the j{sub z}-conserving coupled states approximation (CSA), and contrasted with cross sections calculated by methods which exclude the effects of attractive forces and/or rotation. Both attractive forces and rotations are found to be extremely important contributors to relaxation in ions; in the Li{sup +}-H{sub 2}/D{sub 2} systems these effects are separable whereas in ArH{sup +}/D{sup +}-Ar they are not. Attractive forces substantially enhance the cross sections at all collision energies and are responsible for the general collisional energy dependence of the cross sections. Molecular rotation is found to enhance cross sections most strongly at low collision energies in each system.

  9. Theoretical aspects of gas-phase molecular dynamics

    SciTech Connect (OSTI)

    Muckerman, J.T.

    1993-12-01

    Research in this program is focused on the development and application of time-dependent quantum mechanical and semiclassical methods for treating inelastic and reactive molecular collisions, and the photochemistry and photophysics of atoms and molecules in laser fields. Particular emphasis is placed on the development and application of grid methods based on discrete variable representations, on time-propagation methods, and, in systems with more that a few degrees of freedom, on the combined use of quantal wavepackets and classical trajectories.

  10. Spatially Resolved Photoexcited Charge-Carrier Dynamics in Phase...

    Office of Scientific and Technical Information (OSTI)

    ... Additional Journal Information: Journal Volume: 9; Journal Issue: 1; Journal ID: ISSN 1936-0851 Publisher: American Chemical Society Research Org: Los Alamos National Laboratory ...

  11. Small-Angle Shubnikov-de Haas Measurements in a 2D Electron System...

    Office of Scientific and Technical Information (OSTI)

    Small-Angle Shubnikov-de Haas Measurements in a 2D Electron System: The Effect of a Strong ... Country of Publication: United States Language: English Subject: 36 MATERIALS SCIENCE; ...

  12. High-harmonic XUV source for time- and angle-resolved photoemission...

    Office of Scientific and Technical Information (OSTI)

    We present a laser-based apparatus for visible pumpXUV probe time- and angle-resolved ... from insulators (UOsub 2) and ultrafast pumpprobe processes in semiconductors (GaAs). ...

  13. Sputter deposition of Al-doped ZnO films with various incident angles

    SciTech Connect (OSTI)

    Sato, Yasushi; Yanagisawa, Kei; Oka, Nobuto; Nakamura, Shin-ichi; Shigesato, Yuzo

    2009-09-15

    Al-doped ZnO (AZO) films were sputter deposited on glass substrates heated at 200 degree sign C under incident angles of sputtered particles at 0 degree sign (incidence normal to substrate), 20 deg., 40 deg., 60 deg., and 80 deg. In the case of normal incidence, x-ray diffraction pole figures show a strong [001] preferred orientation normal to the film surface. In contrast, in the case wherein the incident angles were higher than 60 degree sign , the [001] orientation inclined by 25 deg. - 35 deg. toward the direction of sputtered particles. Transmission electron microscopy revealed that the tilt angle of the [001] orientation increased with increasing angle of the incident sputtered particles, whereas the columnar structure did not show any sign of inclination with respect to the substrate plane.

  14. CORPES 11: International Workshop on Strong Correlations and Angle-Resolved

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photoemission Spectroscopy CORPES 11: International Workshop on Strong Correlations and Angle-Resolved Photoemission Spectroscopy July 18-22, 2011 Lawrence Berkeley National Laboratory, California More information Attendees participated in a poster session Thursday on the ALS patio, engaging in conversations over lunch and at the posters. An international workshop entitled "Strong Correlations and Angle-Resolved Photoemission Spectroscopy", or CORPES11 , was held at Berkeley Lab

  15. UPVG phase 2 report

    SciTech Connect (OSTI)

    1995-08-01

    The Utility PhotoVoltaic Group (UPVG), supported by member dues and a grant from the US Department of Energy, has as its mission the acceleration of the use of cost-effective small-scale and emerging large-scale applications of photovoltaics for the benefit of electric utilities and their customers. Formed in October, 1992, with the support of the American Public Power Association, Edison Electric Institute, and the National Rural Electric Cooperative Association, the UPVG currently has 90 members from all sectors of the electric utility industry. The UPVG`s efforts as conceived were divided into four phases: Phase 0--program plan; Phase 1--organization and strategy development; Phase 2--creating market assurance; and Phase 3--higher volume purchases. The Phase 0 effort developed the program plan and was completed early in 1993. The Phase 1 goal was to develop the necessary background information and analysis to lead to a decision as to which strategies could be undertaken by utilities to promote greater understanding of PV markets and achieve increased volumes of PV purchases. This report provides the details of the UPVG`s Phase 2 efforts to initiate TEAM-UP, its multiyear, 50-MW hardware initiative.

  16. Tidal evolution of the spin-orbit angle in exoplanetary systems

    SciTech Connect (OSTI)

    Xue, Yuxin; Suto, Yasushi; Taruya, Atsushi; Hirano, Teruyuki; Fujii, Yuka; Masuda, Kento

    2014-03-20

    The angle between the stellar spin and the planetary orbit axes (the spin-orbit angle) is supposed to carry valuable information concerning the initial condition of planetary formation and subsequent migration history. Indeed, current observations of the Rossiter-McLaughlin effect have revealed a wide range of spin-orbit misalignments for transiting exoplanets. We examine in detail the tidal evolution of a simple system comprising a Sun-like star and a hot Jupiter adopting the equilibrium tide and the inertial wave dissipation effects simultaneously. We find that the combined tidal model works as a very efficient realignment mechanism; it predicts three distinct states of the spin-orbit angle (i.e., parallel, polar, and antiparallel orbits) for a while, but the latter two states eventually approach the parallel spin-orbit configuration. The intermediate spin-orbit angles as measured in recent observations are difficult to obtain. Therefore the current model cannot reproduce the observed broad distribution of the spin-orbit angles, at least in its simple form. This indicates that the observed diversity of the spin-orbit angles may emerge from more complicated interactions with outer planets and/or may be the consequence of the primordial misalignment between the protoplanetary disk and the stellar spin, which requires future detailed studies.

  17. Rf phase measurement at PHERMEX (Pulsed High Energy Radiographic Machine Emitting X-Rays) using time-to-digital converters

    SciTech Connect (OSTI)

    Watson, S.A.; Jennings, G.R.; Moir, D.C.

    1989-01-01

    Recent advances in time-to-digital converters (TDCs) have made 50-MHz rf phase measurement possible without the use of double-balanced mixers. These advances allow zero crossing discriminators to be used in conjunction with fast CAMAC TDCs to make amplitude-independent phase measurements. This method uses a time interval proportional to the phase angle, thus eliminating any of the calculations and calibration required with double-balanced mixers. 4 refs., 1 fig., 1 tab.

  18. Methods, systems and apparatus for optimization of third harmonic current injection in a multi-phase machine

    DOE Patents [OSTI]

    Gallegos-Lopez, Gabriel

    2012-10-02

    Methods, system and apparatus are provided for increasing voltage utilization in a five-phase vector controlled machine drive system that employs third harmonic current injection to increase torque and power output by a five-phase machine. To do so, a fundamental current angle of a fundamental current vector is optimized for each particular torque-speed of operating point of the five-phase machine.

  19. Co-GISAXS technique for investigating surface growth dynamics

    SciTech Connect (OSTI)

    Rainville, Meliha G.; Hoskin, Christa; Ulbrandt, Jeffrey G.; Narayanan, Suresh; Sandy, Alec R.; Zhou, Hua; Headrick, Randall L.; Ludwig, Jr., Karl F.

    2015-12-08

    Detailed quantitative measurement of surface dynamics during thin film growth is a major experimental challenge. Here X-ray Photon Correlation Spectroscopy with coherent hard X-rays is used in a Grazing-Incidence Small-Angle X-ray Scattering (i.e. Co-GISAXS) geometry as a new tool to investigate nanoscale surface dynamics during sputter deposition of a-Si and a-WSi2 thin films. For both films, kinetic roughening during surface growth reaches a dynamic steady state at late times in which the intensity autocorrelation function g2(q,t) becomes stationary. The g2(q,t) functions exhibit compressed exponential behavior at all wavenumbers studied. The overall dynamics are complex, but the most surface sensitive sections of the structure factor and correlation time exhibit power law behaviors consistent with dynamical scaling.

  20. Measurement of carbon condensates using small-angle x-ray scattering during detonation of the high explosive hexanitrostilbene

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bagge-Hansen, M.; Lauderbach, L.; Hodgin, R.; Bastea, S.; Fried, L.; Jones, A.; van Buuren, T.; Hansen, D.; Benterou, J.; May, C.; et al

    2015-06-24

    In this study, the dynamics of carbon condensation in detonating high explosives remains controversial. Detonation model validation requires data for processes occurring at nanometer length scales on time scales ranging from nanoseconds to microseconds. A new detonation end station has been commissioned to acquire and provide time-resolved small-angle x-ray scattering (SAXS) from detonating explosives. Hexanitrostilbene (HNS) was selected as the first to investigate due to its ease of initiation using exploding foils and flyers, vacuum compatibility, high thermal stability, and stoichiometric carbon abundance that produces high carbon condensate yields. The SAXS data during detonation, collected with 300 ns time resolution,more » provide unprecedented signal fidelity over a broad q-range. This fidelity permits the first analysis of both the Guinier and Porod/power-law regions of the scattering profile during detonation, which contains information about the size and morphology of the resultant carbon condensate nanoparticles. To bolster confidence in these data, the scattering angle and intensity were additionally cross-referenced with a separate, highly calibrated SAXS beamline. The data show that HNS produces carbon particles with a radius of gyration of 2.7 nm in less than 400 ns after the detonation front has passed, and this size and morphology are constant over the next several microseconds. These data directly contradict previous pioneering work on RDX/TNT mixtures and TATB, where observations indicate significant particle growth (50% or more) continues over several microseconds. The power-law slope is about -3, which is consistent with a complex disordered, irregular, or folded sp2 sub-arrangement within a relatively monodisperse structure possessing radius of gyration of 2.7 nm after the detonation of HNS.« less

  1. Measurement of carbon condensation using small-angle x-ray scattering during detonation of the high explosive hexanitrostilbene

    SciTech Connect (OSTI)

    Bagge-Hansen, M.; Lauderbach, L. M.; Hodgin, R.; Bastea, S.; Fried, L.; Jones, A.; van Buuren, T.; Hansen, D.; Benterou, J.; May, C.; Graber, T.; Jensen, B. J.; Ilavsky, J.; Willey, T. M.

    2015-06-24

    The dynamics of carboncondensation in detonating high explosives remains controversial. Detonation model validation requires data for processes occurring at nanometer length scales on time scales ranging from nanoseconds to microseconds. A new detonation endstation has been commissioned to acquire and provide time-resolved small-angle x-ray scattering (SAXS) from detonating explosives. Hexanitrostilbene (HNS) was selected as the first to investigate due to its ease of initiation using exploding foils and flyers, vacuum compatibility, high thermal stability, and stoichiometric carbon abundance that produces high carbon condensate yields. The SAXS data during detonation, collected with 300 ns time resolution, provide unprecedented signal fidelity over a broad q-range. This fidelity permits the first analysis of both the Guinier and Porod/power-law regions of the scattering profile during detonation, which contains information about the size and morphology of the resultant carbon condensate nanoparticles. To bolster confidence in these data, the scattering angle and intensity were additionally cross-referenced with a separate, highly calibrated SAXS beamline. The data show that HNS produces carbon particles with a radius of gyration of 2.7 nm in less than 400 ns after the detonation front has passed, and this size and morphology are constant over the next several microseconds. These data directly contradict previous pioneering work on RDX/TNT mixtures and TATB, where observations indicate significant particle growth (50% or more) continues over several microseconds. As a result, the power-law slope is about –3, which is consistent with a complex disordered, irregular, or folded sp2 sub-arrangement within a relatively monodisperse structure possessing radius of gyration of 2.7 nm after the detonation of HNS.

  2. ARM: Shortwave Array Spectroradiometer-Hemispheric, Near-InfraRed channel, low-sun angles [a0 data is uncalibrated

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Albert Mendoza; Yan Shi; Connor Flynn

    1990-01-01

    Shortwave Array Spectroradiometer-Hemispheric, Near-InfraRed channel, low-sun angles [a0 data is uncalibrated

  3. ARM: Shortwave Array Spectroradiometer-Hemispheric, Near-InfraRed channel, high-sun angles [a0 data is uncalibrated

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Albert Mendoza; Yan Shi; Connor Flynn

    2011-03-22

    Shortwave Array Spectroradiometer-Hemispheric, Near-InfraRed channel, high-sun angles [a0 data is uncalibrated

  4. ARM: Shortwave Array Spectroradiometer-Hemispheric, Near-InfraRed channel, high-sun angles [a0 data is uncalibrated

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Albert Mendoza; Yan Shi; Connor Flynn

    Shortwave Array Spectroradiometer-Hemispheric, Near-InfraRed channel, high-sun angles [a0 data is uncalibrated

  5. ARM: Shortwave Array Spectroradiometer-Hemispheric, Near-InfraRed channel, low-sun angles [a0 data is uncalibrated

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Albert Mendoza; Yan Shi; Connor Flynn

    Shortwave Array Spectroradiometer-Hemispheric, Near-InfraRed channel, low-sun angles [a0 data is uncalibrated

  6. Detailed characterization of the dynamics of thermoacoustic pulsations in a lean premixed swirl flame

    SciTech Connect (OSTI)

    Meier, W.; Weigand, P.; Duan, X.R.; Giezendanner-Thoben, R.

    2007-07-15

    A nozzle configuration for technically premixed gas turbine flames was operated with CH{sub 4} and air at atmospheric pressure. The flames were confined by a combustion chamber with large quartz windows, allowing the application of optical and laser diagnostics. In a distinct range of operating conditions the flames exhibited strong self-excited thermoacoustic pulsations at a frequency around 290 Hz. A flame with P=25kW thermal power and an equivalence ratio of {phi}=0.7 was chosen as a target flame in order to analyze the dynamics and the feedback mechanism of the periodic instability in detail. The velocity field was measured by three-component laser Doppler velocimetry, the flame structures were measured by chemiluminescence imaging and planar laser-induced fluorescence of OH, and the joint probability density functions of major species concentrations, mixture fraction, and temperature were measured by laser Raman scattering. All measuring techniques were applied in a phase-locked mode with respect to the phase angle of the periodic pulsation. In addition to the pulsating flame, a nonpulsating flame with increased fuel flow rate (P=30kW, {phi}=0.83) was studied for comparison. The measurements revealed significant differences between the structures of the pulsating and the nonpulsating (or ''quiet'') flame. Effects of finite-rate chemistry and unmixedness were observed in both flames but were more pronounced in the pulsating flame. The phase-locked measurements revealed large variations of all measured quantities during an oscillation cycle. This yielded a clear picture of the sequence of events and allowed the feedback mechanism of the instability to be identified and described quantitatively. The data set presents a very good basis for the verification of numerical combustion simulations because the boundary conditions of the experiment were well-defined and the most important quantities were measured with a high accuracy. (author)

  7. Small-angle Compton Scattering to Determine the Depth of a Radioactive Source in Matter

    SciTech Connect (OSTI)

    Oberer, R. B.; Gunn, C. A.; Chiang, L. G.; Valiga, R. E.; Cantrell, J. A.

    2011-04-01

    A gamma-ray peak in a spectrum is often accompanied by a discontinuity in the Compton continuum at the peak. The Compton continuum results from Compton scattering in the detector. The discontinuity at a peak results from small-angle Compton scattering by the gamma rays in matter situated directly between the gamma-ray source and the detector. The magnitude of this discontinuity with respect to the gamma-ray peak is therefore an indicator of the amount of material or shielding between the gamma-ray source and the detector. This small-angle scattering was used to determine the depth of highly-enriched uranium (HEU) solution standards in a concrete floor mockup. The empirical results of the use of this small-angle scattering discontinuity in a concrete floor experiment will be described. A Monte Carlo calculation of the experiment will also be described. In addition, the depth determined from small-angle scattering was used in conjunction with differential attenuation to more accurately measure the uranium content of the mockup. Following these empirical results, the theory of small-angle scattering will be discussed. The magnitude of the discontinuity compared to the peak count rate is directly related to the depth of the gamma-ray source in matter. This relation can be described by relatively simple mathematical expressions. This is the first instance that we are aware of in which the small-angle Compton scattering has been used to determine the depth of a radioactive source. Furthermore this is the first development of the theoretical expressions for the magnitude of the small-angle scattering discontinuity.

  8. RE-EXAMINING SUNSPOT TILT ANGLE TO INCLUDE ANTI-HALE STATISTICS

    SciTech Connect (OSTI)

    McClintock, B. H.; Norton, A. A.; Li, J. E-mail: aanorton@stanford.edu

    2014-12-20

    Sunspot groups and bipolar magnetic regions (BMRs) serve as an observational diagnostic of the solar cycle. We use Debrecen Photohelographic Data (DPD) from 1974-2014 that determined sunspot tilt angles from daily white light observations, and data provided by Li and Ulrich that determined sunspot magnetic tilt angle using Mount Wilson magnetograms from 1974-2012. The magnetograms allowed for BMR tilt angles that were anti-Hale in configuration, so tilt values ranged from 0 to 360° rather than the more common ±90°. We explore the visual representation of magnetic tilt angles on a traditional butterfly diagram by plotting the mean area-weighted latitude of umbral activity in each bipolar sunspot group, including tilt information. The large scatter of tilt angles over the course of a single cycle and hemisphere prevents Joy's law from being visually identified in the tilt-butterfly diagram without further binning. The average latitude of anti-Hale regions does not differ from the average latitude of all regions in both hemispheres. The distribution of anti-Hale sunspot tilt angles are broadly distributed between 0 and 360° with a weak preference for east-west alignment 180° from their expected Joy's law angle. The anti-Hale sunspots display a log-normal size distribution similar to that of all sunspots, indicating no preferred size for anti-Hale sunspots. We report that 8.4% ± 0.8% of all bipolar sunspot regions are misclassified as Hale in traditional catalogs. This percentage is slightly higher for groups within 5° of the equator due to the misalignment of the magnetic and heliographic equators.

  9. FORGE Phase Infographic | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Phase Infographic FORGE Phase Infographic FORGE Phase Infographic More Documents & Publications FORGE Infographic FORGE Phase Infographic EERE Strategic Plan Infographic FORGE Phase Infographic Milford, Utah FORGE Map

  10. Phases of N=1 Supersymmetric Chiral Gauge Theories

    SciTech Connect (OSTI)

    Craig, Nathaniel; Essig, Rouven; Hook, Anson; Torroba, Gonzalo; /SLAC /Stanford U., Phys. Dept.

    2012-02-17

    We analyze the phases of supersymmetric chiral gauge theories with an antisymmetric tensor and (anti)fundamental flavors, in the presence of a classically marginal superpotential deformation. Varying the number of flavors that appear in the superpotential reveals rich infrared chiral dynamics and novel dualities. The dualities are characterized by an infinite family of magnetic duals with arbitrarily large gauge groups describing the same fixed point, correlated with arbitrarily large classical global symmetries that are truncated nonperturbatively. At the origin of moduli space, these theories exhibit a phase with confinement and chiral symmetry breaking, an interacting nonabelian Coulomb phase, and phases where an interacting sector coexists with a sector that either s-confines or is in a free magnetic phase. Properties of these intriguing 'mixed phases' are studied in detail using duality and a-maximization, and the presence of superpotential interactions provides further insights into their formation.

  11. ELECTRONIC PHASE CONTROL CIRCUIT

    DOE Patents [OSTI]

    Salisbury, J.D.; Klein, W.W.; Hansen, C.F.

    1959-04-21

    An electronic circuit is described for controlling the phase of radio frequency energy applied to a multicavity linear accelerator. In one application of the circuit two cavities are excited from a single radio frequency source, with one cavity directly coupled to the source and the other cavity coupled through a delay line of special construction. A phase detector provides a bipolar d-c output signal proportional to the difference in phase between the voltage in the two cavities. This d-c signal controls a bias supply which provides a d-c output for varying the capacitnce of voltage sensitive capacitors in the delay line. The over-all operation of the circuit is completely electronic, overcoming the time response limitations of the electromechanical control systems, and the relative phase relationship of the radio frequency voltages in the two caviiies is continuously controlled to effect particle acceleration.

  12. PHYSICAL SCIENCES, Physics Phase

    Office of Scientific and Technical Information (OSTI)

    SCIENCES, Physics Phase competition in trisected superconducting dome I. M. Vishik, 1, 2 M Hashimoto, 3 R.-H. He, 4 W. S. Lee, 1, 2 F. Schmitt, 1, 2 D. H. Lu, 3 R. G. Moore, 1...

  13. Non-Equilibrium Pathways during Electrochemical Phase Transformations in

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Single Crystals Revealed by Dynamic Chemical Imaging at Nanoscale Resolution | Stanford Synchrotron Radiation Lightsource Non-Equilibrium Pathways during Electrochemical Phase Transformations in Single Crystals Revealed by Dynamic Chemical Imaging at Nanoscale Resolution Friday, February 27, 2015 The energy density of current batteries is limited by the practical capacity of the positive electrode, which is the determined by the properties of the active material and its concentration in the

  14. Electron microscope phase enhancement

    DOE Patents [OSTI]

    Jin, Jian; Glaeser, Robert M.

    2010-06-15

    A microfabricated electron phase shift element is used for modifying the phase characteristics of an electron beam passing though its center aperture, while not affecting the more divergent portion of an incident beam to selectively provide a ninety-degree phase shift to the unscattered beam in the back focal plan of the objective lens, in order to realize Zernike-type, in-focus phase contrast in an electron microscope. One application of the element is to increase the contrast of an electron microscope for viewing weakly scattering samples while in focus. Typical weakly scattering samples include biological samples such as macromolecules, or perhaps cells. Preliminary experimental images demonstrate that these devices do apply a ninety degree phase shift as expected. Electrostatic calculations have been used to determine that fringing fields in the region of the scattered electron beams will cause a negligible phase shift as long as the ratio of electrode length to the transverse feature-size aperture is about 5:1. Calculations are underway to determine the feasibility of aspect smaller aspect ratios of about 3:1 and about 2:1.

  15. Dynamic imaging with electron microscopy

    ScienceCinema (OSTI)

    Campbell, Geoffrey; McKeown, Joe; Santala, Melissa

    2014-05-30

    Livermore researchers have perfected an electron microscope to study fast-evolving material processes and chemical reactions. By applying engineering, microscopy, and laser expertise to the decades-old technology of electron microscopy, the dynamic transmission electron microscope (DTEM) team has developed a technique that can capture images of phenomena that are both very small and very fast. DTEM uses a precisely timed laser pulse to achieve a short but intense electron beam for imaging. When synchronized with a dynamic event in the microscope's field of view, DTEM allows scientists to record and measure material changes in action. A new movie-mode capability, which earned a 2013 R&D 100 Award from R&D Magazine, uses up to nine laser pulses to sequentially capture fast, irreversible, even one-of-a-kind material changes at the nanometer scale. DTEM projects are advancing basic and applied materials research, including such areas as nanostructure growth, phase transformations, and chemical reactions.

  16. Ion energy-angle distribution functions at the plasma-material interface in oblique magnetic fields

    SciTech Connect (OSTI)

    Khaziev, Rinat; Curreli, Davide

    2015-04-15

    The ion energy-angle distribution (IEAD) at the wall of a magnetized plasma is of fundamental importance for the determination of the material processes occurring at the plasma-material interface, comprising secondary emissions and material sputtering. Here, we present a numerical characterization of the IEAD at the wall of a weakly collisional magnetized plasma with the magnetic field inclined at an arbitrary angle with respect to the wall. The analysis has been done using two different techniques: (1) a fluid-Monte Carlo method, and (2) particle-in-cell simulations, the former offering a fast but approximate method for the determination of the IEADs, the latter giving a computationally intensive but self-consistent treatment of the plasma behavior from the quasi-neutral region to the material boundary. The two models predict similar IEADs, whose similarities and differences are discussed. Data are presented for magnetic fields inclined at angles from normal to grazing incidence (0°–85°). We show the scaling factors of the average and peak ion energy and trends of the pitch angle at the wall as a function of the magnetic angle, for use in the correlation of fluid plasma models to material models.

  17. Computational models for the berry phase in semiconductor quantum dots

    SciTech Connect (OSTI)

    Prabhakar, S. Melnik, R. V. N.; Sebetci, A.

    2014-10-06

    By developing a new model and its finite element implementation, we analyze the Berry phase low-dimensional semiconductor nanostructures, focusing on quantum dots (QDs). In particular, we solve the Schrdinger equation and investigate the evolution of the spin dynamics during the adiabatic transport of the QDs in the 2D plane along circular trajectory. Based on this study, we reveal that the Berry phase is highly sensitive to the Rashba and Dresselhaus spin-orbit lengths.

  18. Code System to Calculate Transient 2-Dimensional 2-Phase Flow.

    Energy Science and Technology Software Center (OSTI)

    1999-10-18

    Version: 00 SOLA-DF is a numerical solution algorithm for gas-liquid mixture dynamics in two space dimensions and time. The two-phase system is described by a set of mixture equations plus a relation describing the relative flow of one phase with respect to the other. The algorithm contains models to represent the interphase exchange rates of mass, momentum, and energy for water-steam mixtures.

  19. Dynamics of gauge field inflation

    SciTech Connect (OSTI)

    Alexander, Stephon; Jyoti, Dhrubo; Kosowsky, Arthur; Marcianò, Antonino

    2015-05-05

    We analyze the existence and stability of dynamical attractor solutions for cosmological inflation driven by the coupling between fermions and a gauge field. Assuming a spatially homogeneous and isotropic gauge field and fermion current, the interacting fermion equation of motion reduces to that of a free fermion up to a phase shift. Consistency of the model is ensured via the Stückelberg mechanism. We prove the existence of exactly one stable solution, and demonstrate the stability numerically. Inflation arises without fine tuning, and does not require postulating any effective potential or non-standard coupling.

  20. Combustion 2000: Phase II

    SciTech Connect (OSTI)

    Unknown

    1999-11-01

    The goals of the program are to develop a coal-fired high performance power generation system (HIPPS) that is capable of: thermal efficiency (HHV) {ge} 47%; NOx, SOx, and particulates {le} 10% NSPS (New Source Performance Standard); coal providing {ge} 65% of heat input; all solid wastes benign; and cost of electricity {le} 90% of present plants. Phase 1, which began in 1992, focused on the analysis of various configurations of indirectly fired cycles and on technical assessments of alternative plant subsystems and components, including performance requirements, developmental status, design options, complexity and reliability, and capital and operating costs. Phase 1 also included preliminary R and D and the preparation of designs for HIPPS commercial plants approximately 300 MWe in size. This Phase, Phase 2, had as its initial objective the development of a complete design base for the construction and operation of a HIPPS prototype plant to be constructed in Phase 3. As part of a descoping initiative, the Phase 3 program has been eliminated and work related to the commercial plant design has been ended. The rescoped program retained a program of engineering research and development focusing on high temperature heat exchangers, e.g. HITAF development (Task 2); a rescoped Task 6 that is pertinent to Vision 21 objectives and focuses on advanced cycle analysis and optimization, integration of gas turbines into complex cycles, and repowering designs; and preparation of the Phase 2 Technical Report (Task 8). This rescoped program deleted all subsystem testing (Tasks 3, 4,and 5) and the development of a site-specific engineering design and test plan for the HIPPS prototype plant (Task 7). Work reported herein is from: Task 2.1 HITAF Combustors; Task 2.2 HITAF Air Heaters; and Task 6 HIPPS Commercial Plant Design Update.

  1. Self-consistent inclusion of classical large-angle Coulomb collisions in plasma Monte Carlo simulations

    SciTech Connect (OSTI)

    Turrell, A.E. Sherlock, M.; Rose, S.J.

    2015-10-15

    Large-angle Coulomb collisions allow for the exchange of a significant proportion of the energy of a particle in a single collision, but are not included in models of plasmas based on fluids, the Vlasov–Fokker–Planck equation, or currently available plasma Monte Carlo techniques. Their unique effects include the creation of fast ‘knock-on’ ions, which may be more likely to undergo certain reactions, and distortions to ion distribution functions relative to what is predicted by small-angle collision only theories. We present a computational method which uses Monte Carlo techniques to include the effects of large-angle Coulomb collisions in plasmas and which self-consistently evolves distribution functions according to the creation of knock-on ions of any generation. The method is used to demonstrate ion distribution function distortions in an inertial confinement fusion (ICF) relevant scenario of the slowing of fusion products.

  2. Laser warning receiver to identify the wavelength and angle of arrival of incident laser light

    DOE Patents [OSTI]

    Sinclair; Michael B.; Sweatt, William C.

    2010-03-23

    A laser warning receiver is disclosed which has up to hundreds of individual optical channels each optically oriented to receive laser light from a different angle of arrival. Each optical channel has an optical wedge to define the angle of arrival, and a lens to focus the laser light onto a multi-wavelength photodetector for that channel. Each multi-wavelength photodetector has a number of semiconductor layers which are located in a multi-dielectric stack that concentrates the laser light into one of the semiconductor layers according to wavelength. An electrical signal from the multi-wavelength photodetector can be processed to determine both the angle of arrival and the wavelength of the laser light.

  3. CHANGES IN POLARIZATION POSITION ANGLE ACROSS THE ECLIPSE IN THE DOUBLE PULSAR SYSTEM

    SciTech Connect (OSTI)

    Yuen, R.; Manchester, R. N.; Burgay, M.; Camilo, F.; Kramer, M.; Melrose, D. B.; Stairs, I. H.

    2012-06-20

    We investigate the changes in polarization position angle in radiation from pulsar A around the eclipse in the Double Pulsar system PSR J0737-3039A/B at the 20 cm and 50 cm wavelengths using the Parkes 64 m telescope. The changes are {approx}2{sigma} during and shortly after the eclipse at 20 cm but less significant at 50 cm. We show that the changes in position angle during the eclipse can be modeled by differential synchrotron absorption in the eclipse regions. Position angle changes after the eclipse are interpreted as Faraday rotation in the magnetotail of pulsar B. Implied charge densities are consistent with the Goldreich-Julian density, suggesting that the particle energies in the magnetotail are mildly relativistic.

  4. THE DISTRIBUTION OF QUIET-SUN MAGNETIC FIELDS AT DIFFERENT HELIOCENTRIC ANGLES

    SciTech Connect (OSTI)

    Orozco Suarez, D.; Katsukawa, Y.

    2012-02-20

    This paper presents results from the analysis of high signal-to-noise ratio spectropolarimetric data taken at four heliocentric angles in quiet-Sun internetwork regions with the Hinode satellite. First, we find that the total circular and total linear polarization signals vary with heliocentric angle, at least for fields with large polarization signals. We also report changes on the Stokes V amplitude asymmetry histograms with viewing angle for fields weaker than 200 G. Then, we subject the data to a Milne-Eddington inversion and analyze the variation of the field vector probability density functions with heliocentric angle. Weak, highly inclined fields permeate the internetwork at all heliocentric distances. For fields weaker than 200 G, the distributions of field inclinations peak at 90 Degree-Sign and do not vary with viewing angle. The inclination distributions change for fields stronger than 200 G. We argue that the shape of the inclination distribution for weak fields partly results from the presence of coherent, loop-like magnetic features at all heliocentric distances and not from tangled fields within the field of view. We also find that the average magnetic field strength is about 180 G (for 75% of the pixels) and is constant with heliocentric angle. The average vertical and horizontal magnetic field components are 70 and 150 G. The latter (former) is slightly greater (smaller) near the limb. Finally, the ratio between the horizontal and vertical components of the fields ranges from {approx}1 for strong fields to {approx}3.5 for weak fields, suggesting that the magnetic field vector is not isotropically distributed within the field of view.

  5. Experimental methods in the study of neutron scattering at small angles

    SciTech Connect (OSTI)

    Dragolici, Cristian A.

    2014-11-24

    Small angle scattering (SAS) is the collective name given to the techniques of small angle neutron (SANS) and X-ray (SAXS) scattering. They offer the possibility to analyze particles without disturbing their natural environment. In each of these techniques radiation is elastically scattered by a sample and the resulting scattering pattern is analyzed to provide information about the size, shape and orientation of some component of the sample. Accordingly, a large number of methods and experimental patterns have been developed to ease the investigation of condensed matter by use of these techniques. Some of them are the discussed in this paper.

  6. Transient stability enhancement of electric power generating systems by 120-degree phase rotation

    DOE Patents [OSTI]

    Cresap, Richard L.; Taylor, Carson W.; Kreipe, Michael J.

    1982-01-01

    A method and system for enhancing the transient stability of an intertied three-phase electric power generating system. A set of power exporting generators (10) is connected to a set of power importing generators (20). When a transient cannot be controlled by conventional stability controls, and imminent loss of synchronism is detected (such as when the equivalent rotor angle difference between the two generator sets exceeds a predetermined value, such as 150 degrees), the intertie is disconnected by circuit breakers. Then a switch (30) having a 120-degree phase rotation, or a circuit breaker having a 120-degree phase rotation is placed in the intertie. The intertie is then reconnected. This results in a 120-degree reduction in the equivalent rotor angle difference between the two generator sets, making the system more stable and allowing more time for the conventional controls to stabilize the transient.

  7. Cirrus Microphysical Properties from Stellar Aureole Measurements, Phase I

    SciTech Connect (OSTI)

    DeVore, J. G.; Kristl, J. A.; Rappaport, S. A.

    2012-04-20

    While knowledge of the impact of aerosols on climate change has improved significantly due to the routine, ground-based, sun photometer measurements of aerosols made at AERONET sites world-wide, the impact of cirrus clouds remains much less certain because they occur high in the atmosphere and are more difficult to measure. This report documents work performed on a Phase I SBIR project to retrieve microphysical properties of cirrus ice crystals from stellar aureole imagery. The Phase I work demonstrates that (1) we have clearly measured stellar aureole profiles; (2) we can follow the aureole profiles out to ~1/4 degree from stars (~1/2 degree from Jupiter); (3) the stellar aureoles from cirrus have very distinctive profiles, being flat out to a critical angle, followed by a steep power-law decline with a slope of ~-3; (4) the profiles are well modeled using exponential size distributions; and (5) the critical angle in the profiles is ~0.12 degrees, (6) indicating that the corresponding critical size ranges from ~150 to ~200 microns. The stage has been set for a Phase II project (1) to proceed to validating the use of stellar aureole measurements for retrieving cirrus particle size distributions using comparisons with optical property retrievals from other, ground-based instruments and (2) to develop an instrument for the routine, automatic measurement of thin cirrus microphysical properties.

  8. Linear phase compressive filter

    DOE Patents [OSTI]

    McEwan, Thomas E.

    1995-01-01

    A phase linear filter for soliton suppression is in the form of a laddered series of stages of non-commensurate low pass filters with each low pass filter having a series coupled inductance (L) and a reverse biased, voltage dependent varactor diode, to ground which acts as a variable capacitance (C). L and C values are set to levels which correspond to a linear or conventional phase linear filter. Inductance is mapped directly from that of an equivalent nonlinear transmission line and capacitance is mapped from the linear case using a large signal equivalent of a nonlinear transmission line.

  9. Linear phase compressive filter

    DOE Patents [OSTI]

    McEwan, T.E.

    1995-06-06

    A phase linear filter for soliton suppression is in the form of a laddered series of stages of non-commensurate low pass filters with each low pass filter having a series coupled inductance (L) and a reverse biased, voltage dependent varactor diode, to ground which acts as a variable capacitance (C). L and C values are set to levels which correspond to a linear or conventional phase linear filter. Inductance is mapped directly from that of an equivalent nonlinear transmission line and capacitance is mapped from the linear case using a large signal equivalent of a nonlinear transmission line. 2 figs.

  10. Liquid crystal terahertz phase shifters with functional indium-tin-oxide nanostructures for biasing and alignment

    SciTech Connect (OSTI)

    Yang, Chan-Shan; Tang, Tsung-Ta; Pan, Ru-Pin; Yu, Peichen; Pan, Ci-Ling

    2014-04-07

    Indium Tin Oxide (ITO) nanowhiskers (NWhs) obliquely evaporated by electron-beam glancing-angle deposition can serve simultaneously as transparent electrodes and alignment layer for liquid crystal (LC) devices in the terahertz (THz) frequency range. To demonstrate, we constructed a THz LC phase shifter with ITO NWhs. Phase shift exceeding ?/2 at 1.0 THz was achieved in a ?517??m-thick cell. The phase shifter exhibits high transmittance (?78%). The driving voltage required for quarter-wave operation is as low as 5.66?V (rms), compatible with complementary metal-oxide-semiconductor (CMOS) and thin-film transistor (TFT) technologies.

  11. The effect of power line phase current correlation on magnetic field statistics

    SciTech Connect (OSTI)

    Dabkowski, J. [Electro Sciences, Inc., Crystal Lake, IL (United States)

    1995-09-01

    Due to normally occurring line currents unbalance, the magnetic field strength will fluctuate in time. The minimum field occurs when the phase currents are balanced, i.e. equal in magnitude and equally spaced in angle. The maximum field levels are obtained when the line currents` fluctuations are statistically independent, and hence, uncorrelated. It is shown that the earth return current due to the unbalance, and therefore, the strength of the magnetic field variations are a function of the line`s phase currents correlation. Power lines whose phase currents are highly correlated will produce a smaller increase in the magnetic field levels for a given percentage of current unbalance.

  12. Spreading dynamics of a partially wetting water film atop a MHz substrate vibration

    SciTech Connect (OSTI)

    Altshuler, Gennady; Manor, Ofer

    2015-10-15

    A MHz vibration, or an acoustic wave, propagating in a solid substrate may support the convective spreading of a liquid film. Previous studies uncovered this ability for fully wetting silicon oil films under the excitation of a MHz Rayleigh surface acoustic wave (SAW), propagating in a lithium niobate substrate. Partially wetting de-ionized water films, however, appeared immune to this spreading mechanism. Here, we use both theory and experiment to reconsider this situation and show partially wetting water films may spread under the influence of a propagating MHz vibration. We demonstrate distinct capillary and convective (vibrational/acoustic) spreading regimes that are governed by a balance between convective and capillary mechanisms, manifested in the non-dimensional number θ{sup 3}/We, where θ is the three phase contact angle of the liquid with the solid substrate and We ≡ ρU{sup 2}H/γ; ρ, γ, H, and U are the liquid density, liquid/vapour surface tension, characteristic film thickness, and the characteristic velocity amplitude of the propagating vibration on the solid surface, respectively. Our main finding is that the vibration will support a continuous spreading motion of the liquid film out of a large reservoir if the convective mechanism prevails (θ{sup 3}/We < 1); otherwise (θ{sup 3}/We > 1), the dynamics of the film is governed by the capillary mechanism.

  13. Small-Angle Neutron Scattering Studies of a-Si:H and a-Si:D

    SciTech Connect (OSTI)

    Williamson, D. L.; Marr, D. W. M.; Nelson, B. P.; Iwaniczko, E.; Yang, J.; Yan, B.; Guha, S.

    2000-01-01

    The heterogeneity of hydrogen and deuterium on the nanometer scale has been probed by samll-angle neutron scattering (SANS) from a-Si:H and a-Si:D films. Films were depsoited by two techniques, plasma-enhanced chemical vapor deposition (PECVD) and hot-wire chemical vapor deposition (HWCVD) using conditions that yield high quality films and devices.

  14. Evaluating Radiometric Measurements Using a Fixed 45 Degrees Responsivity and Zenith Angle Dependent Responsivities (Poster)

    SciTech Connect (OSTI)

    Dooraghi, M.; Habte, A.; Reda, I.; Sengupta, M.; Gotseff, P.; Andreas, A.; Anderberg, M.

    2014-03-01

    This poster seeks to demonstrate the importance and application of an existing but unused approach that ultimately reduces the uncertainty of radiometric measurements. Current radiometric data is based on a single responsivity value that introduces significant uncertainty to the data, however, through using responsivity as a function of solar zenith angle, the uncertainty could be decreased by 50%.

  15. Discrete magic angle turning system, apparatus, and process for in situ magnetic resonance spectroscopy and imaging

    DOE Patents [OSTI]

    Hu, Jian Zhi; Sears, Jr., Jesse A.; Hoyt, David W.; Wind, Robert A.

    2009-05-19

    Described are a "Discrete Magic Angle Turning" (DMAT) system, devices, and processes that combine advantages of both magic angle turning (MAT) and magic angle hopping (MAH) suitable, e.g., for in situ magnetic resonance spectroscopy and/or imaging. In an exemplary system, device, and process, samples are rotated in a clockwise direction followed by an anticlockwise direction of exactly the same amount. Rotation proceeds through an angle that is typically greater than about 240 degrees but less than or equal to about 360 degrees at constant speed for a time applicable to the evolution dimension. Back and forth rotation can be synchronized and repeated with a special radio frequency (RF) pulse sequence to produce an isotropic-anisotropic shift 2D correlation spectrum. The design permits tubes to be inserted into the sample container without introducing plumbing interferences, further allowing control over such conditions as temperature, pressure, flow conditions, and feed compositions, thus permitting true in-situ investigations to be carried out.

  16. Sealed magic angle spinning nuclear magnetic resonance probe and process for spectroscopy of hazardous samples

    DOE Patents [OSTI]

    Cho, Herman M.; Washton, Nancy M.; Mueller, Karl T.; Sears, Jr., Jesse A.; Townsend, Mark R.; Ewing, James R.

    2016-06-14

    A magic-angle-spinning (MAS) nuclear magnetic resonance (NMR) probe is described that includes double containment enclosures configured to seal and contain hazardous samples for analysis. The probe is of a modular design that ensures containment of hazardous samples during sample analysis while preserving spin speeds for superior NMR performance and convenience of operation.

  17. Devices and process for high-pressure magic angle spinning nuclear magnetic resonance

    DOE Patents [OSTI]

    Hoyt, David W; Sears, Jr., Jesse A; Turcu, Romulus V.F.; Rosso, Kevin M; Hu, Jian Zhi

    2014-04-08

    A high-pressure magic angle spinning (MAS) rotor is detailed that includes a high-pressure sample cell that maintains high pressures exceeding 150 bar. The sample cell design minimizes pressure losses due to penetration over an extended period of time.

  18. Influence of the Torsion Angle in 3,3'-Dimethyl-2,2'-bipyridine...

    Office of Scientific and Technical Information (OSTI)

    Title: Influence of the Torsion Angle in 3,3'-Dimethyl-2,2'-bipyridine on the Intermediate Valence of Yb in (C5Me5)2 Yb(3,3'-Me2-bipy) The synthesis and X-ray crystal structures of ...

  19. Stochastic Inversion of Seismic Amplitude-Versus-Angle Data (Stinv-AVA)

    Energy Science and Technology Software Center (OSTI)

    2008-04-03

    The software was developed to invert seismic amplitude-versus-angle (AVA) data using a Bayesian framework. The posterior probability distribution function is sampled by effective Markov chain Monte Carlo (MCMC) methods. The software could provide not only estimates of unknown variables but also varieties of information about uncertainty, such as the mean, mode, median, variance, and even probability density of each unknown.

  20. Phase change compositions

    DOE Patents [OSTI]

    Salyer, Ival O.; Griffen, Charles W.

    1986-01-01

    Compositions containing crystalline, long chain, alkyl hydrocarbons as phase change materials including cementitious compositions containing the alkyl hydrocarbons neat or in pellets or granules formed by incorporating the alkyl hydrocarbons in polymers or rubbers; and polymeric or elastomeric compositions containing alkyl hydrocarbons.

  1. Phase change compositions

    DOE Patents [OSTI]

    Salyer, Ival O.

    1989-01-01

    Compositions containing crystalline, straight chain, alkyl hydrocarbons as phase change materials including cementitious compositions containing the alkyl hydrocarbons neat or in pellets or granules formed by incorporating the alkyl hydrocarbons in polymers or rubbers; and polymeric or elastomeric compositions containing alkyl hydrocarbons.

  2. DELTA PHASE PLUTONIUM ALLOYS

    DOE Patents [OSTI]

    Cramer, E.M.; Ellinger, F.H.; Land. C.C.

    1960-03-22

    Delta-phase plutonium alloys were developed suitable for use as reactor fuels. The alloys consist of from 1 to 4 at.% zinc and the balance plutonium. The alloys have good neutronic, corrosion, and fabrication characteristics snd possess good dimensional characteristics throughout an operating temperature range from 300 to 490 deg C.

  3. Phase II Final Report

    SciTech Connect (OSTI)

    Schuknecht, Nate; White, David; Hoste, Graeme

    2014-09-11

    The SkyTrough DSP will advance the state-of-the-art in parabolic troughs for utility applications, with a larger aperture, higher operating temperature, and lower cost. The goal of this project was to develop a parabolic trough collector that enables solar electricity generation in the 2020 marketplace for a 216MWe nameplate baseload power plant. This plant requires an LCOE of 9¢/kWhe, given a capacity factor of 75%, a fossil fuel limit of 15%, a fossil fuel cost of $6.75/MMBtu, $25.00/kWht thermal storage cost, and a domestic installation corresponding to Daggett, CA. The result of our optimization was a trough design of larger aperture and operating temperature than has been fielded in large, utility scale parabolic trough applications: 7.6m width x 150m SCA length (1,118m2 aperture), with four 90mm diameter × 4.7m receivers per mirror module and an operating temperature of 500°C. The results from physical modeling in the System Advisory Model indicate that, for a capacity factor of 75%: The LCOE will be 8.87¢/kWhe. SkyFuel examined the design of almost every parabolic trough component from a perspective of load and performance at aperture areas from 500 to 2,900m2. Aperture-dependent design was combined with fixed quotations for similar parts from the commercialized SkyTrough product, and established an installed cost of $130/m2 in 2020. This project was conducted in two phases. Phase I was a preliminary design, culminating in an optimum trough size and further improvement of an advanced polymeric reflective material. This phase was completed in October of 2011. Phase II has been the detailed engineering design and component testing, which culminated in the fabrication and testing of a single mirror module. Phase II is complete, and this document presents a summary of the comprehensive work.

  4. Small-Angle and Ultrasmall-Angle Neutron Scattering (SANS/USANS) Study of New Albany Shale: A Treatise on Microporosity

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bahadur, Jitendra; Radlinski, Andrzej P.; Melnichenko, Yuri B.; Mastalerz, Maria; Schimmelmann, Arndt

    2014-12-17

    We applied small-angle neutron scattering (SANS) and ultrasmall-angle neutron scattering (USANS) techniques to study the microstructure of several New Albany shales of different maturity. It has been established that the total porosity decreases with maturity and increases somewhat for post-mature samples. A new method of SANS data analysis was developed, which allows the extraction of information about the size range and number density of micropores from the relatively flat scattering intensity observed in the limit of the large scattering vector Q. Macropores and significant number of mesopores are surface fractals, and their structure can be described in terms of themore » polydisperse spheres (PDSP) model. The model-independent Porod invariant method was employed to estimate total porosity, and the results were compared with the PDSP model results. It has been demonstrated that independent evaluation of incoherent background is crucial for accurate interpretation of the scattering data in the limit of large Q-values. Moreover, pore volumes estimated by the N2 and CO2 adsorption, as well as via the mercury intrusion technique, have been compared with those measured by SANS/USANS, and possible reasons for the observed discrepancies are discussed.« less

  5. Dynamics-based selective 2D {sup 1}H/{sup 1}H chemical shift correlation spectroscopy under ultrafast MAS conditions

    SciTech Connect (OSTI)

    Zhang, Rongchun; Ramamoorthy, Ayyalusamy

    2015-05-28

    Dynamics plays important roles in determining the physical, chemical, and functional properties of a variety of chemical and biological materials. However, a material (such as a polymer) generally has mobile and rigid regions in order to have high strength and toughness at the same time. Therefore, it is difficult to measure the role of mobile phase without being affected by the rigid components. Herein, we propose a highly sensitive solid-state NMR approach that utilizes a dipolar-coupling based filter (composed of 12 equally spaced 90° RF pulses) to selectively measure the correlation of {sup 1}H chemical shifts from the mobile regions of a material. It is interesting to find that the rotor-synchronized dipolar filter strength decreases with increasing inter-pulse delay between the 90° pulses, whereas the dipolar filter strength increases with increasing inter-pulse delay under static conditions. In this study, we also demonstrate the unique advantages of proton-detection under ultrafast magic-angle-spinning conditions to enhance the spectral resolution and sensitivity for studies on small molecules as well as multi-phase polymers. Our results further demonstrate the use of finite-pulse radio-frequency driven recoupling pulse sequence to efficiently recouple weak proton-proton dipolar couplings in the dynamic regions of a molecule and to facilitate the fast acquisition of {sup 1}H/{sup 1}H correlation spectrum compared to the traditional 2D NOESY (Nuclear Overhauser effect spectroscopy) experiment. We believe that the proposed approach is beneficial to study mobile components in multi-phase systems, such as block copolymers, polymer blends, nanocomposites, heterogeneous amyloid mixture of oligomers and fibers, and other materials.

  6. Phase shifting diffraction interferometer

    DOE Patents [OSTI]

    Sommargren, Gary E.

    1996-01-01

    An interferometer which has the capability of measuring optical elements and systems with an accuracy of .lambda./1000 where .lambda. is the wavelength of visible light. Whereas current interferometers employ a reference surface, which inherently limits the accuracy of the measurement to about .lambda./50, this interferometer uses an essentially perfect spherical reference wavefront generated by the fundamental process of diffraction. This interferometer is adjustable to give unity fringe visibility, which maximizes the signal-to-noise, and has the means to introduce a controlled prescribed relative phase shift between the reference wavefront and the wavefront from the optics under test, which permits analysis of the interference fringe pattern using standard phase extraction algorithms.

  7. Phase shifting interferometer

    DOE Patents [OSTI]

    Sommargren, G.E.

    1999-08-03

    An interferometer is disclosed which has the capability of measuring optical elements and systems with an accuracy of {lambda}/1000 where {lambda} is the wavelength of visible light. Whereas current interferometers employ a reference surface, which inherently limits the accuracy of the measurement to about {lambda}/50, this interferometer uses an essentially perfect spherical reference wavefront generated by the fundamental process of diffraction. Whereas current interferometers illuminate the optic to be tested with an aberrated wavefront which also limits the accuracy of the measurement, this interferometer uses an essentially perfect spherical measurement wavefront generated by the fundamental process of diffraction. This interferometer is adjustable to give unity fringe visibility, which maximizes the signal-to-noise, and has the means to introduce a controlled prescribed relative phase shift between the reference wavefront and the wavefront from the optics under test, which permits analysis of the interference fringe pattern using standard phase extraction algorithms. 11 figs.

  8. Phase shifting diffraction interferometer

    DOE Patents [OSTI]

    Sommargren, G.E.

    1996-08-29

    An interferometer which has the capability of measuring optical elements and systems with an accuracy of {lambda}/1000 where {lambda} is the wavelength of visible light. Whereas current interferometers employ a reference surface, which inherently limits the accuracy of the measurement to about {lambda}/50, this interferometer uses an essentially perfect spherical reference wavefront generated by the fundamental process of diffraction. This interferometer is adjustable to give unity fringe visibility, which maximizes the signal-to-noise, and has the means to introduce a controlled prescribed relative phase shift between the reference wavefront and the wavefront from the optics under test, which permits analysis of the interference fringe pattern using standard phase extraction algorithms. 8 figs.

  9. Phase shifting interferometer

    DOE Patents [OSTI]

    Sommargren, Gary E.

    1999-01-01

    An interferometer which has the capability of measuring optical elements and systems with an accuracy of .lambda./1000 where .lambda. is the wavelength of visible light. Whereas current interferometers employ a reference surface, which inherently limits the accuracy of the measurement to about .lambda./50, this interferometer uses an essentially perfect spherical reference wavefront generated by the fundamental process of diffraction. Whereas current interferometers illuminate the optic to be tested with an aberrated wavefront which also limits the accuracy of the measurement, this interferometer uses an essentially perfect spherical measurement wavefront generated by the fundamental process of diffraction. This interferometer is adjustable to give unity fringe visibility, which maximizes the signal-to-noise, and has the means to introduce a controlled prescribed relative phase shift between the reference wavefront and the wavefront from the optics under test, which permits analysis of the interference fringe pattern using standard phase extraction algorithms.

  10. Shared and Dynamic Libraries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Shared and Dynamic Libraries Shared and Dynamic Libraries The Edison system can support applications that use dynamic shared libraries (DSL) on the compute nodes. Some "out-of-the-box" applications require DSLs and some popular applications like Python use DSLs as well. Using System Shared and Dynamic Libraries "System" DSLs include those that support software packages found in "typical" Linux distributions, e.g. Python and Perl. To build an application that will

  11. Shared and Dynamic Libraries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Shared and Dynamic Libraries Shared and Dynamic Libraries The Hopper system can support applications that use dynamic shared libraries (DSL) on the compute nodes. Some "out-of-the-box" applications require DSLs and some popular applications like Python use DSLs as well. Using System Shared and Dynamic Libraries "System" DSLs include those that support software packages found in "typical" Linux distributions, e.g. Python and Perl. To build an application that will

  12. Phase Field Fracture Mechanics.

    SciTech Connect (OSTI)

    Robertson, Brett Anthony

    2015-11-01

    For this assignment, a newer technique of fracture mechanics using a phase field approach, will be examined and compared with experimental data for a bend test and a tension test. The software being used is Sierra Solid Mechanics, an implicit/explicit finite element code developed at Sandia National Labs in Albuquerque, New Mexico. The bend test experimental data was also obtained at Sandia Labs while the tension test data was found in a report online from Purdue University.

  13. Gas-Phase Diagnostics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Phase Diagnostics - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear

  14. Solid phase extraction membrane

    DOE Patents [OSTI]

    Carlson, Kurt C [Nashville, TN; Langer, Roger L [Hudson, WI

    2002-11-05

    A wet-laid, porous solid phase extraction sheet material that contains both active particles and binder and that possesses excellent wet strength is described. The binder is present in a relatively small amount while the particles are present in a relatively large amount. The sheet material is sufficiently strong and flexible so as to be pleatable so that, for example, it can be used in a cartridge device.

  15. Intramolecular and nonlinear dynamics

    SciTech Connect (OSTI)

    Davis, M.J.

    1993-12-01

    Research in this program focuses on three interconnected areas. The first involves the study of intramolecular dynamics, particularly of highly excited systems. The second area involves the use of nonlinear dynamics as a tool for the study of molecular dynamics and complex kinetics. The third area is the study of the classical/quantum correspondence for highly excited systems, particularly systems exhibiting classical chaos.

  16. Adsorption of Supercritical CO2 in Aeroglass Studied by Small--Angle Neutron Scattering and Neutron Transmission Techniques

    SciTech Connect (OSTI)

    Melnichenko, Yuri B [ORNL; Wignall, George D [ORNL; Cole, David R [ORNL; Frielinghaus, H. [Forschungszentrum Julich, Julich, Germany

    2006-01-01

    Small-angle neutron scattering (SANS) has been used to study the adsorption behavior of supercritical carbon dioxide (CO{sub 2}) in porous Vycor glass and silica aerogels. Measurements were performed along two isotherms (T = 35 and 80 C) as a function of pressure (P) ranging from atmospheric up to 25 MPa, which corresponds to the bulk fluid densities ranging from {rho}CO{sub 2} - 0 to 0.9 g/cm{sup 3}. The intensity of scattering from CO{sub 2}-saturated Vycor porous glass can be described by a two-phase model which suggests that CO{sub 2} does not adsorb on the pore walls and fills the pore space uniformly. In CO{sub 2}-saturated aerogels an adsorbed phase is formed with a density substantially higher that of the bulk fluid, and neutron transmission data were used to monitor the excess adsorption at different pressures. The results indicate that adsorption of CO{sub 2} is significantly stronger in aerogels than in activated carbons, zeolites, and xerogels due to the extremely high porosity and optimum pore size of these materials. SANS data revealed the existence of a compressed adsorbed phase with the average density - 1.07 g/cm{sup 3}, close to the density corresponding to closely packed van der Waals volume of CO{sub 2}. A three-phase model [W. L. Wu, Polymer 23, 1907 (1982)] was used to estimate the volume fraction {phi}{sub 3} of the adsorbed phase as a function of the fluid density, and gave {phi}{sub 3} - 0.78 in the maximum adsorption regime around {rho}CO{sub 2} - 0.374 g/cm{sup 3}. The results presented in this work demonstrate the utility of SANS combined with the transmission measurements to study the adsorption of supercritical fluids in porous materials.

  17. Dual-Color Auto-Calibration Scanning-Angle Evanescent Field Microscope...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    that can be used for live cell imaging as well as for examining single molecule dynamics. Total internal reflection fluorescence microscopy (TIRFM) is a mode of...

  18. Strong spin-orbit coupling and Zeeman spin splitting in angle dependent magnetoresistance of Bi{sub 2}Te{sub 3}

    SciTech Connect (OSTI)

    Dey, Rik Pramanik, Tanmoy; Roy, Anupam; Rai, Amritesh; Guchhait, Samaresh; Sonde, Sushant; Movva, Hema C. P.; Register, Leonard F.; Banerjee, Sanjay K.; Colombo, Luigi

    2014-06-02

    We have studied angle dependent magnetoresistance of Bi{sub 2}Te{sub 3} thin film with field up to 9 T over 2–20 K temperatures. The perpendicular field magnetoresistance has been explained by the Hikami-Larkin-Nagaoka theory alone in a system with strong spin-orbit coupling, from which we have estimated the mean free path, the phase coherence length, and the spin-orbit relaxation time. We have obtained the out-of-plane spin-orbit relaxation time to be small and the in-plane spin-orbit relaxation time to be comparable to the momentum relaxation time. The estimation of these charge and spin transport parameters are useful for spintronics applications. For parallel field magnetoresistance, we have confirmed the presence of Zeeman effect which is otherwise suppressed in perpendicular field magnetoresistance due to strong spin-orbit coupling. The parallel field data have been explained using both the contributions from the Maekawa-Fukuyama localization theory for non-interacting electrons and Lee-Ramakrishnan theory of electron-electron interactions. The estimated Zeeman g-factor and the strength of Coulomb screening parameter agree well with the theory. Finally, the anisotropy in magnetoresistance with respect to angle has been described by the Hikami-Larkin-Nagaoka theory. This anisotropy can be used in anisotropic magnetic sensor applications.

  19. Method for high resolution magnetic resonance analysis using magic angle technique

    DOE Patents [OSTI]

    Wind, Robert A.; Hu, Jian Zhi

    2003-11-25

    A method of performing a magnetic resonance analysis of a biological object that includes placing the biological object in a main magnetic field and in a radio frequency field, the main magnetic field having a static field direction; rotating the biological object at a rotational frequency of less than about 100 Hz around an axis positioned at an angle of about 54.degree.44' relative to the main magnetic static field direction; pulsing the radio frequency to provide a sequence that includes a magic angle turning pulse segment; and collecting data generated by the pulsed radio frequency. According to another embodiment, the radio frequency is pulsed to provide a sequence capable of producing a spectrum that is substantially free of spinning sideband peaks.

  20. BIOISIS: Biological Macromolecules by Small Angle X-ray Scattering (SAXS)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Tainer, John [Scripps Research Institute; Hura, Greg [LBNL; Rambo, Robert P. [LBNL

    BIOISIS is an open access database dedicated to the study of biological macromolecules by small angle X-ray scattering (SAXS). BIOISIS aims to become the complete source for the deposition, distribution and maintenance of small angle X-ray scattering data and technologies. The database is designed around the concept of an ôexperimentö and relates a specific experiment to a set of genes, organisms, computational models and experimental data. As of May 2012, BIOSIS contains 7,118 genes covering four different organisms. Forty-two modeled structures are available. Clicking on a structures reveals scattering curves, experimental conditions, and experimental values. The data are collected at Beamline 12.3.1 of the Advanced Light Source (ALS).[Copied with editing from http://www.bioisis.net/about

  1. Economic Recovery of Oil Trapped at Fan Margins Using High Angle Wells and Multiple Hydraulic Fractures

    SciTech Connect (OSTI)

    Mike L. Laue

    1997-05-30

    The distal fan margin in the northeast portion of the Yowlumne field contains significant reserves but is not economical to develop using vertical wells. Numerous interbedded shales and deteriorating rock properties limit producibility. In addition, extreme depths (13,000 ft) present a challenging environment for hydraulic fracturing and artificial lift. Lastly, a mature waterflood increases risk because of the uncertainty with size and location of flood fronts. This project attempts to demonstrate the effectiveness of exploiting the distal fan margin of this slope-basin clastic reservoir through the use of a high-angle well completed with multiple hydraulic-fracture treatments. The combination of a high-angle (or horizontal) well and hydraulic fracturing will allow greater pay exposure than can be achieved with conventional vertical wells while maintaining vertical communication between thin interbedded layers and the wellbore. The equivalent production rate and reserves of three vertical wells are anticipated at one-half to two-thirds the cost.

  2. BIOISIS: Biological Macromolecules by Small Angle X-ray Scattering (SAXS)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Tainer, John [Scripps Research Institute; Hura, Greg [LBNL; Rambo, Robert P. [LBNL

    BIOISIS is an open access database dedicated to the study of biological macromolecules by small angle X-ray scattering (SAXS). BIOISIS aims to become the complete source for the deposition, distribution and maintenance of small angle X-ray scattering data and technologies. The database is designed around the concept of an experiment and relates a specific experiment to a set of genes, organisms, computational models and experimental data. As of May 2012, BIOSIS contains 7,118 genes covering four different organisms. Forty-two modeled structures are available. Clicking on a structures reveals scattering curves, experimental conditions, and experimental values. The data are collected at Beamline 12.3.1 of the Advanced Light Source (ALS).[Copied with editing from http://www.bioisis.net/about

  3. Polarization transfer in wide-angle Compton scattering and single-pion photoproduction from the proton

    SciTech Connect (OSTI)

    Fanelli, Cristiano V.

    2015-10-06

    Wide-angle exclusive Compton scattering and single-pion photoproduction from the proton have been investigated via measurement of the polarization transfer from a circularly polarized photon beam to the recoil proton. The WACS polarization transfer was analyzed at an incident photon energy of 3.7 GeV at a proton scattering angle of θPcm = 70°. The longitudinal transfer KLL, measured to be 0.645 ± 0.059 ± 0.048, where the first error is statistical and the second is systematic, has the same sign as predicted for the reaction mechanism in which the photon interacts with a single quark carrying the spin of the proton. However, the observed value is ~3 times larger than predicted by the GPD-based calculations, which indicates a significant unknown contribution to the scattering amplitude.

  4. Visible wide angle view imaging system of KTM tokamak based on multielement image fiber bundle

    SciTech Connect (OSTI)

    Chektybayev, B. Shapovalov, G.; Kolodeshnikov, A.

    2015-05-15

    In the paper, new visible wide angle view imaging system of KTM tokamak is described. The system has been designed to observe processes inside of plasma and the processes occurring due to plasma-wall interactions through the long equatorial port. Imaging system is designed based on special image fiber bundle and entrance wide angle lens, which provide image of large section of the vacuum chamber, both poloidal half-section and divertor through the sufficiently long equatorial port. The system also consists of two video cameras: slow and fast with image intensifier. Commercial equipment had been used in design of the system that allowed reducing the cost and time for research and development. The paper also discusses advantages and disadvantages of the system in comparison with conventional endoscopes based on a lens system and considers its promising utilization in future tokamaks and future steady state fusion reactors.

  5. Characterization of porous materials using combined small-angle X-ray and neutron scattering techniques

    SciTech Connect (OSTI)

    Hu, Naiping; Borkar, Neha; Kohls, Doug; Schaefer, Dale W. (UCIN)

    2014-09-24

    A combination of ultra small angle X-ray scattering (USAXS) and ultra small angle neutron scattering (USANS) is used to characterize porous materials. The analysis methods yield quantitative information, including the mean skeletal chord length, mean pore chord length, skeletal density, and composition. A mixed cellulose ester (MCE) membrane with a manufacturer-labeled pore size of 0.1 {mu}m was used as a model to elucidate the specifics of the method. Four approaches describing four specific scenarios (different known parameters and form of the scattering data) are compared. Pore chords determined using all four approaches are in good agreement with the scanning electron microscopy estimates but are larger than the manufacturer's nominal pore size. Our approach also gives the average chord of the skeletal solid (struts) of the membrane, which is also consistent for all four approaches. Combined data from USAXS and USANS gives the skeletal density and the strut composition.

  6. Trailing edge cooling using angled impingement on surface enhanced with cast chevron arrangements

    DOE Patents [OSTI]

    Lee, Ching-Pang; Heneveld, Benjamin E.; Brown, Glenn E.; Klinger, Jill

    2015-05-26

    A gas turbine engine component, including: a pressure side (12) having an interior surface (34); a suction side (14) having an interior surface (36); a trailing edge portion (30); and a plurality of suction side and pressure side impingement orifices (24) disposed in the trailing edge portion (30). Each suction side impingement orifice is configured to direct an impingement jet (48) at an acute angle (52) onto a target area (60) that encompasses a tip (140) of a chevron (122) within a chevron arrangement (120) formed in the suction side interior surface. Each pressure side impingement orifice is configured to direct an impingement jet at an acute angle onto an elongated target area that encompasses a tip of a chevron within a chevron arrangement formed in the pressure side interior surface.

  7. Identification of sub-grains and low angle boundaries beyond the angular resolution of EBSD maps

    SciTech Connect (OSTI)

    Germain, L.; Kratsch, D.; Salib, M.; Gey, N.

    2014-12-15

    A new method called ALGrId (Anti-Leak GRain IDentification) is proposed for the detection of sub-grains beyond the relative angular resolution of Electron Backscatter Diffraction maps. It does not use any additional information such as Kikuchi Pattern Quality map nor need data filtering. It uses a modified Dijkstra algorithm which seeks the continuous set of boundaries having the highest average disorientation angle. - Highlights: ALGrId is a new method to identify sub-grains and low angle boundaries in EBSD maps. Unlike classical methods, ALGrId works even beyond the relative angular resolution. If the orientation noise peaks at 0.7, ALGrid detects 0.4-boundaries correctly. In the same example, the classical algorithm identifies 1.1-boundaries only.

  8. Polarization transfer in wide-angle Compton scattering and single-pion photoproduction from the proton

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Fanelli, Cristiano V.

    2015-10-06

    Wide-angle exclusive Compton scattering and single-pion photoproduction from the proton have been investigated via measurement of the polarization transfer from a circularly polarized photon beam to the recoil proton. The WACS polarization transfer was analyzed at an incident photon energy of 3.7 GeV at a proton scattering angle of θPcm = 70°. The longitudinal transfer KLL, measured to be 0.645 ± 0.059 ± 0.048, where the first error is statistical and the second is systematic, has the same sign as predicted for the reaction mechanism in which the photon interacts with a single quark carrying the spin of the proton.more » However, the observed value is ~3 times larger than predicted by the GPD-based calculations, which indicates a significant unknown contribution to the scattering amplitude.« less

  9. Phase-field modeling of diffusional phase behaviors of solid...

    Office of Scientific and Technical Information (OSTI)

    case study of phase-separating LiXFePO4 electrode particles Citation Details In-Document ... case study of phase-separating LiXFePO4 electrode particles You are accessing a ...

  10. Phi ({Phi}) and psi ({Psi}) angles involved in malarial peptide bonds determine sterile protective immunity

    SciTech Connect (OSTI)

    Patarroyo, Manuel E.; Moreno-Vranich, Armando; Bermudez, Adriana

    2012-12-07

    Highlights: Black-Right-Pointing-Pointer Phi ({Phi}) and psi ({Psi}) angles determine sterile protective immunity. Black-Right-Pointing-Pointer Modified peptide's tendency to assume a regular conformation related to a PPII{sub L}. Black-Right-Pointing-Pointer Structural modifications in mHABPs induce Ab and protective immunity. Black-Right-Pointing-Pointer mHABP backbone atom's interaction with HLA-DR{beta}1{sup Asterisk-Operator} is stabilised by H-bonds. -- Abstract: Modified HABP (mHABP) regions interacting with HLA-DR{beta}1{sup Asterisk-Operator} molecules have a more restricted conformation and/or sequence than other mHABPs which do not fit perfectly into their peptide binding regions (PBR) and do not induce an acceptable immune response due to the critical role of their {Phi} and {Psi} torsion angles. These angle's critical role was determined in such highly immunogenic, protection-inducing response against experimental malaria using the conformers (mHABPs) obtained by {sup 1}H-NMR and superimposed into HLA-DR{beta}1{sup Asterisk-Operator }-like Aotus monkey molecules; their phi ({Phi}) and psi ({Psi}) angles were measured and the H-bond formation between these molecules was evaluated. The aforementioned mHABP propensity to assume a regular conformation similar to a left-handed polyproline type II helix (PPII{sub L}) led to suggesting that favouring these conformations according to their amino acid sequence would lead to high antibody titre production and sterile protective immunity induction against malaria, thereby adding new principles or rules for vaccine development, malaria being one of them.

  11. Mass and mixing angle patterns in the Standard Model and its material Supersymmetric Extension

    SciTech Connect (OSTI)

    Ramond, P.

    1992-01-01

    Using renormalization group techniques, we examine several interesting relations among masses and mixing angles of quarks and lepton in the Standard Model of Elementary Particle Interactions as a functionof scale. We extend the analysis to the minimal Supersymmetric Extension to determine its effect on these mass relations. For a heavy to quark, and minimal supersymmetry, most of these relations, can be made to agree at one unification scale.

  12. X-ray small-angle scattering from sputtered CeO{sub 2}/C bilayers

    SciTech Connect (OSTI)

    Haviar, S.; Dubau, M.; Khalakhan, I.; Vorokhta, M.; Matolinova, I.; Matolin, V.; Vales, V.; Endres, J.; Holy, V.; Buljan, M.; Bernstorff, S.

    2013-01-14

    Surface and interface morphology of cerium oxide/carbon bilayers used as thin-film catalysts is studied by grazing-incidence small-angle x-ray scattering, scanning electron microscopy, and atomic-force microscopy, and the dependence of the structural parameters on the thicknesses of the constituting layers is investigated. The applicability of x-ray scattering and its advantages over standard analytical methods are discussed.

  13. Small-angle X-ray Scattering from Magnetic Clusters and Structural Grains

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in Magnetic Recording Media | Stanford Synchrotron Radiation Lightsource Small-angle X-ray Scattering from Magnetic Clusters and Structural Grains in Magnetic Recording Media Friday, July 31, 2015 Historically, areal density increases in longitudinal hard disk drive media technology have been driven by reduction of grain size. However, since its introduction in 2006, the perpendicular magnetic recording media grain size has remained more or less constant at around 9 nm. Perpendicular

  14. Large-angle elastic and inelastic scattering of Pi(+) and Pi(-) from (28)Si and (40)Ca. Master's thesis

    SciTech Connect (OSTI)

    Snell, M.P.

    1989-05-01

    Differential cross sections were measured for Pi(+) and Pi(-) elastic scattering of Calcium 40 and Silicon 28 at incident pion energies ranging from 100 to 260 MeV at a scattering angle of 175 degs. Differential cross sections were also measured for Pi(+) and Pi(-) inelastic scattering to the 2(+), 1.78 MeV, 4(+), 4.62 MeV, and 3(-) 6.88 MeV states of 28Si at incident pion energies of 130, 180, and 226 MeV and scattering angles between 115 and 175{degrees} in 6{degrees} increments. The data are compared to previously obtained forward angle data through 120{degrees} and agree quite well. The data show a generally flat angular dependence for angles greater than 100{degrees}. Several theoretical codes are reviewed for their ability to predict large angle scattering. Coordinate-space and momentum-space models generally thought to be sufficient for predicting forward angle scattering have proved to be inappropriate for use at large angles. A new phenomenological delta-hole model, currently under modification, shows a greatly enhanced ability to predict scattering at back angles.

  15. Broadband wide-angle dispersion measurements: Instrumental setup, alignment, and pitfalls

    SciTech Connect (OSTI)

    Farhang, A.; Abasahl, B.; Dutta-Gupta, S.; Lovera, A.; Martin, O. J. F.; Mandracci, P.; Descrovi, E.

    2013-03-15

    The construction, alignment, and performance of a setup for broadband wide-angle dispersion measurements, with emphasis on surface plasmon resonance (SPR) measurements, are presented in comprehensive detail. In contrast with most SPR instruments working with a monochromatic source, this setup takes advantage of a broadband/white light source and has full capability for automated angle vs. wavelength dispersion measurements for any arbitrary nanostructure array. A cylindrical prism is used rather than a triangular one in order to mitigate refraction induced effects and allow for such measurements. Although seemingly simple, this instrument requires use of many non-trivial methods in order to achieve proper alignment over all angles of incidence. Here we describe the alignment procedure for such a setup, the pitfalls introduced from the finite beam width incident onto the cylindrical prism, and deviations in the reflected/transmitted beam resulting from the finite thickness of the sample substrate. We address every one of these issues and provide experimental evidences on the success of this instrument and the alignment procedure used.

  16. Local time variations of high-energy plasmaspheric ion pitch angle distributions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sarno-Smith, Lois K.; Liemohn, Michael W.; Skoug, Ruth M.; Larsen, Brian Arthur; Moldwin, Mark B.; Katus, Roxanne M.; Wygant, John R.

    2016-07-05

    Recent observations from the Van Allen Probes Helium Oxygen Proton Electron (HOPE) instrument revealed a persistent depletion in the 1–10 eV ion population in the postmidnight sector during quiet times in the 2 < L < 3 region. This study explores the source of this ion depletion by developing an algorithm to classify 26 months of pitch angle distributions measured by the HOPE instrument. We correct the HOPE low energy fluxes for spacecraft potential using measurements from the Electric Field and Waves (EFW) instrument. A high percentage of low count pitch angle distributions is found in the postmidnight sector coupledmore » with a low percentage of ion distributions peaked perpendicular to the field line. A peak in loss cone distributions in the dusk sector is also observed. Here, these results characterize the nature of the dearth of the near 90° pitch angle 1–10 eV ion population in the near-Earth postmidnight sector. This study also shows, for the first time, low-energy HOPE differential number fluxes corrected for spacecraft potential and 1–10 eV H+ fluxes at different levels of geomagnetic activity.« less

  17. Near IR Scanning Angle Total Internal Reflection Raman Spectroscopy at Smooth Gold Films

    SciTech Connect (OSTI)

    McKee, Kristopher; Meyer, Matthew; Smith, Emily

    2012-04-13

    Total internal reflection (TIR) Raman and reflectivity spectra were collected for nonresonant analytes as a function of incident angle at sapphire or sapphire/smooth 50 nm gold interfaces using 785 nm excitation. For both interfaces, the Raman signal as a function of incident angle is well-modeled by the calculated interfacial mean square electric field (MSEF) relative to the incident field times the thickness of the layer being probed in the Raman measurement (D{sub RS}). The Raman scatter was reproducibly enhanced at the interface containing a gold film relative to the sapphire interface by a factor of 4.34.6 for aqueous pyridine or 2.23.7 for neat nitrobenzene, depending on the analyzed vibrational mode. The mechanism for the increased Raman signal is the enhanced MSEF at incident angles where propagating surface plasmons are excited in the metal film. The background from the TIR prism was reduced by 8995% with the addition of the gold film, and the percent relative uncertainty in peak area was reduced from 15 to 1.7% for the 1347 cm1 mode of nitrobenzene. Single monolayers of benzenethiol (S/N = 6.8) and 4-mercaptopyridine (S/N = 16.5) on gold films were measured by TIR Raman spectroscopy with 785 nm excitation (210 mW) without resonant enhancement in 1 min.

  18. Imaging beneath an opaque basaltic layer using densely sampled wide-angle OBS data

    SciTech Connect (OSTI)

    Samson, C.; Barton, P.J.; Karwatowski, J.

    1995-05-01

    A combined reflection/refraction (wide-angle) seismic survey was conducted on the continental shelf north-west of Britain, using a conventional streamer with an air gun source, and static ocean-bottom seismometers (OBS) to record wide-angle energy. The shallow structure down to a basaltic layer was reasonably well imaged on the stacked reflection section. The basalts, however, proved to be opaque to the conventional reflection method and prevented the imaging of deeper horizons, where an important velocity inversion was anticipated. This paper reports on the processing, modeling and interpretation of the densely sampled wide-angle OBS data that were coincident with the reflection profile. Eleven OBS instruments were deployed along a 75 km line and recorded signal from a powerful 149 liter (9100 in.{sup 3}) air gun array fired every 50 m. Data processing was performed using a standard industrial reflection seismic software package prior to first-arrival picking. Processing steps included geometry definition, trace summation and display of the data using various scaling algorithms. An initial model was constructed from 1D velocity-time profiles digitized every 4 km along the stacked section. First arrival travel time modeling rapidly converged to a detailed model of the structure of the top 5 km of the crust. Modeling revealed the existence of a buried low-velocity Mesozoic sedimentary basin, of a prominent basement horst and of a normal fault penetrating to the basement.

  19. Thermal evolution of antiferromagnetic correlations and tetrahedral bond angles in superconducting FeTe1-xSex

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Xu, Zhijun; Xu, Guangyong; Schneeloch, J. A.; Wen, Jinsheng; Bozin, E. S.; Granroth, G. E.; Winn, B. L.; Feygenson, M.; Birgeneau, R. J.; Gu, Genda; et al

    2016-03-14

    It has recently been demonstrated that dynamical magnetic correlations measured by neutron scattering in iron chalcogenides can be described with models of short-range correlations characterized by particular choices of four-spin plaquettes, where the appropriate choice changes as the parent material is doped towards superconductivity. Here we apply such models to describe measured maps of magnetic scattering as a function of two-dimensional wave vectors obtained for optimally superconducting crystals of FeTe1–xSex. We show that the characteristic antiferromagnetic wave vector evolves from that of the bicollinear structure found in underdoped chalcogenides (at high temperature) to that associated with the stripe structure ofmore » antiferromagnetic iron arsenides (at low temperature); these can both be described with the same local plaquette, but with different interplaquette correlations. While the magnitude of the low-energy magnetic spectral weight is substantial at all temperatures, it actually weakens somewhat at low temperature, where the charge carriers become more itinerant. The observed change in spin correlations is correlated with the dramatic drop in the electronic scattering rate and the growth of the bulk nematic response upon cooling. Lastly, we also present powder neutron diffraction results for lattice parameters in FeTe1–xSex indicating that the tetrahedral bond angle tends to increase towards the ideal value upon cooling, in agreement with the increased screening of the crystal field by more itinerant electrons and the correspondingly smaller splitting of the Fe 3d orbitals.« less

  20. Nonlinear, noniterative, single-distance phase retrieval and developmental biology

    SciTech Connect (OSTI)

    Moosmann, Julian; Altapova, Venera; Haenschke, Daniel; Hofmann, Ralf; Baumbach, Tilo

    2012-05-17

    For coherent X-ray imaging, based on phase contrast through free-space Fresnel propagation, we discuss two noniterative, nonlinear approaches to the phase-retrieval problem from a single-distance intensity map of a pure-phase object. On one hand, a perturbative set-up is proposed where nonlinear corrections to the linearized transport-of-intensity situation are expanded in powers of the object-detector distance z and are evaluated in terms of the linear estimate. On the other hand, a nonperturbative projection algorithm, which is based on the (linear and local) contrast-transfer function (CTF), works with an effective phase in Fourier space. This effective phase obeys a modified CTF relation between intensity contrast at z > 0 and phase contrast at z= 0: Unphysical singularities of the local CTF model are cut off to yield 'quasiparticles' in analogy to the theory of the Fermi liquid. By identifying the positions of the zeros of the Fourier transformed intensity contrast as order parameters for the dynamical breaking of scaling symmetry we investigate the phase structure of the forward-propagation problem when interpreted as a statistical system. Results justify the quasiparticle approach for a wide range of intermediary phase variations. The latter algorithm is applied to data from biological samples recorded at the beamlines TopoTomo and ID19 at ANKA and ESRF, respectively.

  1. SPIDERS Phase III

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SPIDERS Phase III John Bothof Burns & McDonnell Definition The U.S. Department of Energy's official definition of a microgrid is "a group of interconnected loads and distributed energy resources within clearly defined electrical boundaries that acts as a single controllable entity with respect to the grid [and can] connect and disconnect from the grid to enable it to operate in both grid-connected or island-mode." Definition The U.S. Department of Energy's official definition of a

  2. Rotational Brownian Dynamics simulations of clathrin cage formation

    SciTech Connect (OSTI)

    Ilie, Ioana M.; Briels, Wim J.; Otter, Wouter K. den

    2014-08-14

    The self-assembly of nearly rigid proteins into ordered aggregates is well suited for modeling by the patchy particle approach. Patchy particles are traditionally simulated using Monte Carlo methods, to study the phase diagram, while Brownian Dynamics simulations would reveal insights into the assembly dynamics. However, Brownian Dynamics of rotating anisotropic particles gives rise to a number of complications not encountered in translational Brownian Dynamics. We thoroughly test the Rotational Brownian Dynamics scheme proposed by Naess and Elsgaeter [Macromol. Theory Simul. 13, 419 (2004); Naess and Elsgaeter Macromol. Theory Simul. 14, 300 (2005)], confirming its validity. We then apply the algorithm to simulate a patchy particle model of clathrin, a three-legged protein involved in vesicle production from lipid membranes during endocytosis. Using this algorithm we recover time scales for cage assembly comparable to those from experiments. We also briefly discuss the undulatory dynamics of the polyhedral cage.

  3. Gas Phase Chemical Physics | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gas Phase Chemical Physics Chemical Sciences, Geosciences, & Biosciences (CSGB) Division CSGB Home About Research Areas Energy Frontier Research Centers (EFRCs) DOE Energy Innovation Hubs Reports and Activities Science Highlights Principal Investigators' Meetings BES Home Research Areas Gas Phase Chemical Physics Print Text Size: A A A FeedbackShare Page Gas Phase Chemical Physics (GPCP) research emphasizes studies of the dynamics and rates of chemical reactions at energies characteristic of

  4. Process for phase separation

    DOE Patents [OSTI]

    Comolli, Alfred G.

    1979-01-01

    This invention provides a continuous process for separating a gaseous phase from a hydrocarbon liquid containing carbonaceous particulates and gases. The liquid is fed to a cylindrical separator, with the gaseous phase being removed therefrom as an overhead product, whereas the hydrocarbon liquid and the particulates are withdrawn as a bottoms product. By feeding the liquid tangentially to the separator and maintaining a particulate-liquid slurry downward velocity of from about 0.01 to about 0.25 fps in the separator, a total solids weight percent in the slurry of from about 0.1 to about 30%, a slurry temperature of from about 550.degree. to about 900.degree. F., a slurry residence time in the separator of from about 30 to about 360 seconds, and a length/diameter ratio for the separator of from about 20/1 to about 50/1, so that the characterization factor, .alpha., defined as ##STR1## DOES NOT EXCEED ABOUT 48 (.degree.R sec.sup.2)/ft, the deposit of carbonaceous materials on the interior surface of the separator may be substantially eliminated.

  5. Achromatic phase-matching second harmonic generation for a tunable laser

    DOE Patents [OSTI]

    Jacobson, A.G.; Bisson, S.; Trebino, R.

    1998-01-20

    An optical system uses a nonlinear optical medium to alter the frequency of a relatively narrow band light source tunable over a plurality of different frequencies using an optical system for passively directing light to the nonlinear medium at a correct phase matching angle. In this manner, the light from the tunable light source can be efficiently frequency-doubled or frequency-tripled without the need of moving parts. An all prism design provides a system of optimal efficiency. 6 figs.

  6. Achromatic phase-matching second harmonic generation for a tunable laser

    DOE Patents [OSTI]

    Jacobson, Alexander Gerson; Bisson, Scott; Trebino, Rick

    1998-01-01

    An optical system uses a nonlinear optical medium to alter the frequency of a relatively narrow band light source tunable over a plurality of different frequencies using an optical system for passively directing light to the nonlinear medium at a correct phase matching angle. In this manner, the light from the tunable light source can be efficiently frequency-doubled or frequency-tripled without the need of moving parts. An all prism design provides a system of optimal efficiency.

  7. Phasing surface emitting diode laser outputs into a coherent laser beam

    DOE Patents [OSTI]

    Holzrichter, John F.

    2006-10-10

    A system for generating a powerful laser beam includes a first laser element and at least one additional laser element having a rear laser mirror, an output mirror that is 100% reflective at normal incidence and <5% reflective at an input beam angle, and laser material between the rear laser mirror and the output mirror. The system includes an injector, a reference laser beam source, an amplifier and phase conjugater, and a combiner.

  8. CO/sub 2/ gas dynamic laser with flow rate of 10 Kg/sec

    SciTech Connect (OSTI)

    Haitao, C.

    1982-08-01

    Using a supersonic technique in a 10 Kg/sec flow rate carbon dioxide gas dynamic laser unit to create a population inversion of the carbon dioxide particles, a 33,000 watt multiple mode continuous output was obtained. The power ratio reached 3000 watt sec/Kg. Single mode output was the P(20) branch with power of 11,200 watts and a beam diffuse angle of 4 seconds of radian. After eliminating the effect of stock wave, the diffuse angle can be reduced to 3 seconds of a radian. The results were below standards compared to those in foreign countries.

  9. Dynamical principles in neuroscience

    SciTech Connect (OSTI)

    Rabinovich, Mikhail I.; Varona, Pablo; Selverston, Allen I.; Abarbanel, Henry D. I.

    2006-10-15

    Dynamical modeling of neural systems and brain functions has a history of success over the last half century. This includes, for example, the explanation and prediction of some features of neural rhythmic behaviors. Many interesting dynamical models of learning and memory based on physiological experiments have been suggested over the last two decades. Dynamical models even of consciousness now exist. Usually these models and results are based on traditional approaches and paradigms of nonlinear dynamics including dynamical chaos. Neural systems are, however, an unusual subject for nonlinear dynamics for several reasons: (i) Even the simplest neural network, with only a few neurons and synaptic connections, has an enormous number of variables and control parameters. These make neural systems adaptive and flexible, and are critical to their biological function. (ii) In contrast to traditional physical systems described by well-known basic principles, first principles governing the dynamics of neural systems are unknown. (iii) Many different neural systems exhibit similar dynamics despite having different architectures and different levels of complexity. (iv) The network architecture and connection strengths are usually not known in detail and therefore the dynamical analysis must, in some sense, be probabilistic. (v) Since nervous systems are able to organize behavior based on sensory inputs, the dynamical modeling of these systems has to explain the transformation of temporal information into combinatorial or combinatorial-temporal codes, and vice versa, for memory and recognition. In this review these problems are discussed in the context of addressing the stimulating questions: What can neuroscience learn from nonlinear dynamics, and what can nonlinear dynamics learn from neuroscience?.

  10. Computational Fluid Dynamics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    scour-tracc-cfd TRACC RESEARCH Computational Fluid Dynamics Computational Structural Mechanics Transportation Systems Modeling Computational Fluid Dynamics Overview of CFD: Video Clip with Audio Computational fluid dynamics (CFD) research uses mathematical and computational models of flowing fluids to describe and predict fluid response in problems of interest, such as the flow of air around a moving vehicle or the flow of water and sediment in a river. Coupled with appropriate and prototypical

  11. Protein Dynamics and Biocatalysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Protein Dynamics and Biocatalysis Protein Dynamics and Biocatalysis 1998 Annual Report Grand Challenge Projects biocatalysis.gif A model of the Michaelis complex for the TEM-1/penicillin system from molecular dynamics simulations. Investigators: P. A. Bash, Northwestern University Medical School and M. Karplus, Harvard University Research Objectives A guiding principle of molecular biology is that the structure of a biomolecule defines its function. This principle is especially true in the case

  12. Model based control of dynamic atomic force microscope

    SciTech Connect (OSTI)

    Lee, Chibum; Salapaka, Srinivasa M.

    2015-04-15

    A model-based robust control approach is proposed that significantly improves imaging bandwidth for the dynamic mode atomic force microscopy. A model for cantilever oscillation amplitude and phase dynamics is derived and used for the control design. In particular, the control design is based on a linearized model and robust H{sub ∞} control theory. This design yields a significant improvement when compared to the conventional proportional-integral designs and verified by experiments.

  13. NREL: Measurements and Characterization - Dynamic Secondary Ion Mass

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Spectrometry Dynamic Secondary Ion Mass Spectrometry SIMS Depth profile SIMS depth profiles of hydrogen for a series of a-Si films undergoing solid-phase recrystallization at different temperatures. Hydrogen loss is greater for higher temperatures; however, the rate of loss for a given temperature is also affected by the type of dopant and proximity to the surface. Dynamic Secondary Ion Mass Spectrometry (SIMS) uses a continuous, focused beam of primary ions to remove material from the

  14. Entropy of Liquid Water from Ab Initio Molecular Dynamics | Argonne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Leadership Computing Facility Entropy of Liquid Water from Ab Initio Molecular Dynamics Authors: Zhang, C., Spanu,L., Galli, G. We have computed the entropy of liquid water using a two-phase thermodynamic model and trajectories generated by ab initio molecular dynamics simulations. We present the results obtained with semilocal, hybrid, and van der Waals density functionals. We show that in all cases, at the experimental equilibrium density and at temperatures in the vicinity of 300 K, the

  15. Enhancement of the photocatalytic property of TiO{sub 2} columnar nanostructured films by changing deposition angle

    SciTech Connect (OSTI)

    Li, Zhengcao Teng, Yi; Xing, Liping; Zhang, Na; Zhang, Zhengjun

    2014-02-01

    Highlights: • Isolated and inclined columnar TiO{sub 2} nanostructures were obtained by sputtering Ti, and subsequently annealing. • The film performed photocatalytic decolorization effectively under UV irradiation. • The photocatalytic efficiency increased with deposition angle, which results in a more porous micro structure of the films. - Abstract: Isolated and inclined columnar nanostructured TiO{sub 2} films were obtained by sputtering titanium with glancing angle deposition method and subsequently annealing in air. Compared with flat film, TiO{sub 2} film fabricated with this method has higher porosity; compared with TiO{sub 2} powder, it overcomes the obstacles of immobilization and recycling. The TiO{sub 2} photocatalysis was evaluated by the degradation of methyl orange under UV light. It was indicated that the photocatalytic performance increased with deposition angle, which changed the porosity of the films. The relationship between deposition angle (the angle between the target and substrate surface) and the TiO{sub 2} columnar inclination angle (the angle between TiO{sub 2} columnar and substrate normal) was discussed.

  16. Dynamic ray tracing and traveltime corrections for global seismic tomography

    SciTech Connect (OSTI)

    Tian Yue Hung, S.-H.; Nolet, Guust; Montelli, Raffaella; Dahlen, F.A.

    2007-09-10

    We present a dynamic ray tracing program for a spherically symmetric Earth that may be used to compute Frechet kernels for traveltime and amplitude anomalies at finite frequency. The program works for arbitrarily defined phases and background models. The numerical precisions of kinematic and dynamic ray tracing are optimized to produce traveltime errors under 0.1 s, which is well below the data uncertainty in global seismology. This tolerance level is obtained for an integration step size of about 20 km for the most common seismic phases. We also give software to compute ellipticity, crustal and topographic corrections and attenuation.

  17. Helical Nanofilament Phases

    SciTech Connect (OSTI)

    L Hough; H Jung; D Kruerke; M Heberling; M Nakata; C Jones; D Chen; D Link; N Clark; et al.

    2011-12-31

    In the formation of chiral crystals, the tendency for twist in the orientation of neighboring molecules is incompatible with ordering into a lattice: Twist is expelled from planar layers at the expense of local strain. We report the ordered state of a neat material in which a local chiral structure is expressed as twisted layers, a state made possible by spatial limitation of layering to a periodic array of nanoscale filaments. Although made of achiral molecules, the layers in these filaments are twisted and rigorously homochiral - a broken symmetry. The precise structural definition achieved in filament self-assembly enables collective organization into arrays in which an additional broken symmetry - the appearance of macroscopic coherence of the filament twist-produces a liquid crystal phase of helically precessing layers.

  18. Shared and Dynamic Libraries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Some "out-of-the-box" applications require DSLs and some popular applications like Python use DSLs as well. Using System Shared and Dynamic Libraries "System" DSLs include...

  19. Accelerated Molecular Dynamics Methods

    Broader source: Energy.gov [DOE]

    This presentation on Accelerated Molecular Dynamics Methods was given at the DOE Theory Focus Session on Hydrogen Storage Materials on May 18, 2006.

  20. The Many Faces - and Phases - of Neutron Stars

    SciTech Connect (OSTI)

    Piekarewicz, J.

    2007-10-26

    Understanding the equation of state (EOS) of nuclear matter is a central goal of nuclear physics that cuts across a variety of disciplines. Indeed, the limits of nuclear existence, the collision of heavy ions, the structure of neutron stars, and the dynamics of core-collapse supernova, all depend critically on the equation of state of hadronic matter. In this contribution I will concentrate on the EOS of cold baryonic matter with special emphasis on its impact on the structure and dynamics of neutron stars. In particular, I will discuss the many fascinating phases that one encounters as one travels from the low-density crust to the high-density core.

  1. Dynamic Testing of Gasifier Refractory

    SciTech Connect (OSTI)

    Michael D. Mann; Devdutt Shukla; John P. Hurley

    2003-09-27

    The University of North Dakota (UND) Chemical Engineering Department in conjunction with the UND Energy & Environmental Research Center (EERC) have initiated a program to thoroughly examine the combined chemical (reaction and phase change) and physical (erosion) effects experienced by a variety of refractory materials during both normal operation and thermal cycling under slagging coal gasification conditions. The goal of this work is to devise a mechanism of refractory loss under these conditions. The controlled-atmospheric dynamic corrodent application furnace (CADCAF) is being utilized to simulate refractory/slag interactions under dynamic conditions that more realistically simulate the environment in a slagging coal gasifier than any of the static tests used previously by refractory manufacturers and researchers. Shakedown testing of the CADCAF is in progress. Samples of slag and refractory from the Tampa Electric Polk Power Station have been obtained for testing in the CADCAF. The slag has been dried and sieved to the size needed for our flowing slag corrosion tests. Testing is expected to begin in October.

  2. Dynamic Testing of Gasifier Refractory

    SciTech Connect (OSTI)

    Michael D. Mann; Devdutt Shukla; Xi Hong; John P. Hurley

    2004-09-27

    The University of North Dakota (UND) Chemical Engineering Department in conjunction with the UND Energy & Environmental Research Center (EERC) have initiated a program to thoroughly examine the combined chemical (reaction and phase change) and physical (erosion) effects experienced by a variety of refractory materials during both normal operation and thermal cycling under slagging coal gasification conditions. The goal of this work is to devise a mechanism of refractory loss under these conditions. The controlled-atmospheric dynamic corrodent application furnace (CADCAF) is being utilized to simulate refractory/slag interactions under dynamic conditions that more realistically simulate the environment in a slagging coal gasifier than any of the static tests used previously by refractory manufacturers and researchers. Shakedown testing of the CADCAF has been completed. Samples of slag and refractory from the Tampa Electric Polk Power Station have been obtained for testing in the CADCAF. The slag has been dried and sieved to the size needed for our flowing slag corrosion tests. Screening tests are in currently in progress. Detailed analysis of corrosion rates from the first tests is in progress.

  3. Growth direction of oblique angle electron beam deposited silicon monoxide thin films identified by optical second-harmonic generation

    SciTech Connect (OSTI)

    Vejling Andersen, Søren; Lund Trolle, Mads; Pedersen, Kjeld

    2013-12-02

    Oblique angle deposited (OAD) silicon monoxide (SiO) thin films forming tilted columnar structures have been characterized by second-harmonic generation. It was found that OAD SiO leads to a rotationally anisotropic second-harmonic response, depending on the optical angle of incidence. A model for the observed dependence of the second-harmonic signal on optical angle of incidence allows extraction of the growth direction of OAD films. The optically determined growth directions show convincing agreement with cross-sectional scanning electron microscopy images. In addition to a powerful characterization tool, these results demonstrate the possibilities for designing nonlinear optical devices through SiO OAD.

  4. Apparatus and methods for using achromatic phase matching at high orders of dispersion

    DOE Patents [OSTI]

    Richman, Bruce; Trebino, Rick; Bisson, Scott; Sidick, Erkin

    2001-01-01

    Achromatic phase-matching (APM) is used for efficiently multiplying the frequency of broad bandwidth light by using a nonlinear optical medium comprising a second-harmonic generation (SHG) crystal. Stationary optical elements whose configuration, properties, and arrangement have been optimized to match the dispersion characteristics of the SHG crystal to at least the second order. These elements include a plurality of prismatic elements for directing an input light beam onto the SHG crystal such that each ray wavelength is aligned to match the phase-matching angle for the crystal at each wavelength of light to at least the second order and such that every ray wavelength overlap within the crystal.

  5. Scanning angle Raman spectroscopy: Investigation of Raman scatter enhancement techniques for chemical analysis

    SciTech Connect (OSTI)

    Meyer, Matthew W.

    2013-03-14

    This thesis outlines advancements in Raman scatter enhancement techniques by applying evanescent fields, standing-waves (waveguides) and surface enhancements to increase the generated mean square electric field, which is directly related to the intensity of Raman scattering. These techniques are accomplished by employing scanning angle Raman spectroscopy and surface enhanced Raman spectroscopy. A 1064 nm multichannel Raman spectrometer is discussed for chemical analysis of lignin. Extending dispersive multichannel Raman spectroscopy to 1064 nm reduces the fluorescence interference that can mask the weaker Raman scattering. Overall, these techniques help address the major obstacles in Raman spectroscopy for chemical analysis, which include the inherently weak Raman cross section and susceptibility to fluorescence interference.

  6. Drilling a high-angle exploration sidetrack downdip along bedding, Gobe main prospect, Papua New Guinea

    SciTech Connect (OSTI)

    Jordan, J.A.; Valenti, G.L.

    1994-12-31

    The Gobe 4X sidetrack exploration well was drilled in a remote area of the Southern Highlands Province of Papua New Guinea using an innovative sidetrack technique for delineating hydrocarbons. After gas was encountered in the Gobe 4X straight hole, a nonconventional sidetrack was drilled down dip along the bedding plane of the reservoir sand and determined the gas-oil contact and the oil-water contact with a single wellbore thereby establishing the limits of the oil band. This was accomplished despite a difficult well trajectory, high deviation angle, large stepout and limited structural information.

  7. Combined in-situ dilatometer and contact angle studies of interfacial reaction kinetics in brazing.

    SciTech Connect (OSTI)

    Dave, V. R.; Javernick, D. A.; Thoma, D. J.; Cola, M. J.; Hollis, K. J.; Smith, F. M.; Dauelsberg, L. B.

    2001-01-01

    Multi-component dissimilar material braze joints as shown in Figure 1 consisting of dissimilar base materials, filler materials and wetting agents are of tantamount importance in a wide variely of applications. This work combines dilatometry and contact angle measurements to characterize in-situ the multiple interfacial reaction pathways that occur in such systems. Whereas both of these methods are commonly used tools in metallurgical investigation, their combined use within the context of brazing studies is new and offers considerable additional insight. Applications are discussed to joints made between Beryllium and Monel with TiH{sub 2} as the wetting agent and Cu-28%Ag as the filler material.

  8. Time Resolved Collapse of a Folding Protein Observed with Small Angle X-Ray Scattering

    SciTech Connect (OSTI)

    Pollack, L.; Tate, M. W.; Finnefrock, A. C.; Kalidas, C.; Trotter, S.; Darnton, N. C.; Lurio, L.; Austin, R. H.; Batt, C. A.; Gruner, S. M. (and others)

    2001-05-21

    High-intensity, ''pink'' beam from an undulator was used in conjunction with microfabricated rapid-fluid mixing devices to monitor the early events in protein folding with time resolved small angle x-ray scattering. This Letter describes recent work on the protein bovine {beta} -lactoglobulin where collapse from an expanded to a compact set of states was directly observed on the millisecond time scale. The role of chain collapse, one of the initial stages of protein folding, is not currently understood. The characterization of transient, compact states is vital in assessing the validity of theories and models of the folding process.

  9. Imaging method based on attenuation, refraction and ultra-small-angle-scattering of x-rays

    DOE Patents [OSTI]

    Wernick, Miles N.; Chapman, Leroy Dean; Oltulu, Oral; Zhong, Zhong

    2005-09-20

    A method for detecting an image of an object by measuring the intensity at a plurality of positions of a transmitted beam of x-ray radiation emitted from the object as a function of angle within the transmitted beam. The intensity measurements of the transmitted beam are obtained by a crystal analyzer positioned at a plurality of angular positions. The plurality of intensity measurements are used to determine the angular intensity spectrum of the transmitted beam. One or more parameters, such as an attenuation property, a refraction property and a scatter property, can be obtained from the angular intensity spectrum and used to display an image of the object.

  10. Simple surface structure determination from Fourier transforms of angle-resolved photoemission extended fine structure

    SciTech Connect (OSTI)

    Zheng, Y. |; Shirley, D.A.

    1995-02-01

    The authors show by Fourier analyses of experimental data, with no further treatment, that the positions of all the strong peaks in Fourier transforms of angle-resolved photoemission extended fine structure (ARPEFS) from adsorbed surfaces can be explicitly predicted from a trial structure with an accuracy of about {+-} 0.3 {angstrom} based on a single-scattering cluster model together with the concept of a strong backscattering cone, and without any additional analysis. This characteristic of ARPEFS Fourier transforms can be developed as a simple method for determining the structures of adsorbed surfaces to an accuracy of about {+-} 0.1 {angstrom}.

  11. Phase transition and possible metallization in CeVO{sub 4} under pressure

    SciTech Connect (OSTI)

    Garg, Alka B.; Shanavas, K.V.; Wani, B.N.; Sharma, Surinder M.

    2013-07-15

    Phase stability of CeVO{sub 4} under pressure has been investigated using synchrotron based angle dispersive x-ray diffraction (ADXRD), electrical resistance and first principles calculations. The results indicate that the ambient zircon structure of the compound transforms to a low symmetry monoclinic monazite phase beyond 3.8 GPa with nearly 8.6% volume discontinuity. Beyond 11 GPa, the pattern could be fitted to a similar monazite structure which is about 12.7% denser and has a much larger monoclinic beta angle. On pressure release the first monoclinic phase is recovered. The electrical resistance data show a large drop in resistance with pressure indicating substantial narrowing down of the band gap. Electronic structure calculations support these observations and suggest possible pressure induced metallization in this material. - Pressure induced structural phase transition in CeVO{sub 4} as observed by x- ray diffraction (pressure vs. volume) and possible metallization in CeVO{sub 4} through electrical resistance and first principles electronic structure calculations. - Highlights: Structural and electrical behavior of CeVO{sub 4} under pressure studied using x-ray diffraction and electrical resistance measurements and first principles calculations. Two successive structural transitions confirmed by experiment and theory: zirconmonazite Imonazite II. Band gap collapse and possible metallization is indicated by electrical resistance measurements and electronic structure calculations under pressure. Novel observation of lower bulk modulus in the high pressure phase (both by experiment and calculations) explained through structural analysis.

  12. Phase-shifting point diffraction interferometer phase grating designs

    DOE Patents [OSTI]

    Naulleau, Patrick (Oakland, CA)

    2001-01-01

    Diffraction phase gratings are employed in phase-shifting point diffraction interferometers to improve the interferometric fringe contrast. The diffraction phase grating diffracts a zeroth-order diffraction of light at a first power level to the test-beam window of a mask that is positioned at the image plane and a first-order diffraction at a second power to the reference-beam pinhole. The diffraction phase grating is preferably selected to yield a desired ratio of the first power level to second power level.

  13. Cleveland Project Phase 2 | Open Energy Information

    Open Energy Info (EERE)

    Project Phase 2 Jump to: navigation, search Name Cleveland Project Phase 2 Facility Cleveland Project Phase 2 Sector Wind energy Facility Type Offshore Wind Facility Status...

  14. Tillamook Windfloat Phase 1 | Open Energy Information

    Open Energy Info (EERE)

    Windfloat Phase 1 Jump to: navigation, search Name Tillamook Windfloat Phase 1 Facility Tillamook Windfloat Phase 1 Sector Wind energy Facility Type Offshore Wind Facility Status...

  15. Windy Flats Phase III | Open Energy Information

    Open Energy Info (EERE)

    Phase III Jump to: navigation, search Name Windy Flats Phase III Facility Windy Flats Phase III Sector Wind energy Facility Type Commercial Scale Wind Facility Status Proposed...

  16. Solano Phase 3 | Open Energy Information

    Open Energy Info (EERE)

    Phase 3 Jump to: navigation, search Name Solano Phase 3 Facility Solano Phase 3 Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Sacramento...

  17. Real Time Selective Harmonic Minimization for Multilevel Inverters Connected to Solar Panels Using Artificial Neural Network Angle Generation

    SciTech Connect (OSTI)

    Tolbert, Leon M; Ozpineci, Burak; Filho, Faete; Cao, Yue

    2011-01-01

    This work approximates the selective harmonic elimination problem using artificial neural networks (ANNs) to generate the switching angles in an 11-level full-bridge cascade inverter powered by five varying dc input sources. Each of the five full bridges of the cascade inverter was connected to a separate 195-W solar panel. The angles were chosen such that the fundamental was kept constant and the low-order harmonics were minimized or eliminated. A nondeterministic method is used to solve the system for the angles and to obtain the data set for the ANN training. The method also provides a set of acceptable solutions in the space where solutions do not exist by analytical methods. The trained ANN is a suitable tool that brings a small generalization effect on the angles' precision and is able to perform in real time (50-/60-Hz time window).

  18. Sensitivity of fenestration solar gain to source spectrum and angle of incidence

    SciTech Connect (OSTI)

    McCluney, W.R.

    1996-12-31

    The solar heat gain coefficient (SHGC) is the fraction of solar radiant flux incident on a fenestration system entering a building as heat gain. In general it depends on both the angle of incidence and the spectral distribution of the incident solar radiation. In attempts to improve energy performance and user acceptance of high-performance glazing systems, manufacturers are producing glazing systems with increasing spectral selectivity. This poses potential difficulties for calculations of solar heat gain through windows based upon the use of a single solar spectral weighting function. The sensitivity of modern high-performance glazing systems to both the angle of incidence and the shape of the incident solar spectrum is examined using a glazing performance simulation program. It is found that as the spectral selectivity of the glazing system increases, the SHGC can vary as the incident spectral distribution varies. The variations can be as great as 50% when using several different representative direct-beam spectra. These include spectra having low and high air masses and a standard spectrum having an air mass of 1.5. The variations can be even greater if clear blue diffuse skylight is considered. It is recommended that the current broad-band shading coefficient method of calculating solar gain be replaced by one that is spectral based.

  19. Wide angle x-ray scattering of proteins : effect of beam exposure on protein integrity.

    SciTech Connect (OSTI)

    Fischetti, R. F.; Rodi, D. J.; Mirza, A.; Makowski, L.; Illinois Inst. of Tech.

    2003-01-01

    Wide-angle X-ray scattering patterns from proteins in solution contain information relevant to the determination of protein fold. At relevant scattering angles, however, these data are weak, and the degree to which they might be used to categorize the fold of a protein is unknown. Preliminary work has been performed at the BioCAT insertion-device beamline at the Advanced Photon Source which demonstrates that one can collect X-ray scattering data from proteins in solution to spacings of at least 2.2 {angstrom} (q = 2.8 {angstrom}-1). These data are sensitive to protein conformational states, and are in good agreement with the scattering predicted by the program CRYSOL using the known three-dimensional atomic coordinates of the protein. An important issue in the exploitation of this technique as a tool for structural genomics is the extent to which the high intensity of X-rays available at third-generation synchrotron sources chemically or structurally damage proteins. Various data-collection protocols have been investigated demonstrating conditions under which structural degradation of even sensitive proteins can be minimized, making this technique a viable tool for protein fold categorization, the study of protein folding, unfolding, protein-ligand interactions and domain movement.

  20. Glassy carbon as an absolute intensity calibration standard for small-angle scattering.

    SciTech Connect (OSTI)

    Zhang, F.; Ilavsky, J.; Long, G.; Allen, A.; Quintana, J.; Jemian, P.; NIST

    2010-05-01

    Absolute calibration of small-angle scattering (SAS) intensity data (measured in terms of the differential scattering cross section per unit sample volume per unit solid angle) is essential for many important aspects of quantitative SAS analysis, such as obtaining the number density, volume fraction, and specific surface area of the scatterers. It also enables scattering data from different instruments (light, X-ray, or neutron scattering) to be combined, and it can even be useful to detect the existence of artifacts in the experimental data. Different primary or secondary calibration methods are available. In the latter case, absolute intensity calibration requires a stable artifact with the necessary scattering profile. Glassy carbon has sometimes been selected as this intensity calibration standard. Here we review the spatial homogeneity and temporal stability of one type of commercially available glassy carbon that is being used as an intensity calibration standard at a number of SAS facilities. We demonstrate that glassy carbon is sufficiently homogeneous and stable during routine use to be relied upon as a suitable standard for absolute intensity calibration of SAS data.

  1. In situ small angle x-ray studies of coal gasification

    SciTech Connect (OSTI)

    Jensen, K F

    1983-01-01

    This report summarizes the progress made the first 12 months of a planned 36 month project on small angle x-ray studies of coal and char pore structure. Model carbon studies have been employed to demonstrate the usefulness of small angle x-ray scattering (SAXS) in monitoring the structural changes in porous carbonaceous materials during gasification. Scattering data from particles gasified to varying levels of conversion show increases in the micropore sizes with conversion. This is also supported by surface area measurements by SAXS showing a maximum at intermediate conversion in agreements with previous studies by conventional means. The application of SAXS to PSOC coal samples is also demonstrated. Existing models for the porous structure have been reviewed and percolation theory has been selected as a consistent framework for both the modelling and the data analysis. This theory will make it possible to describe the porous structure in terms of its geometry and connectivity, rather than being limited to a fixed geometry as in conventional approaches. Two graduate students and the PI have been trained in SAXS and the associated theory. Results from the model carbon studies have been published. 18 references, 9 figures, 2 tables.

  2. Active probing of cloud thickness and optical depth using wide-angle imaging LIDAR.

    SciTech Connect (OSTI)

    Love, Steven P.; Davis, A. B.; Rohde, C. A.; Tellier, L. L.; Ho, Cheng,

    2002-01-01

    At most optical wavelengths, laser light in a cloud lidar experiment is not absorbed but merely scattered out of the beam, eventually escaping the cloud via multiple scattering. There is much information available in this light scattered far from the input beam, information ignored by traditional 'on-beam' lidar. Monitoring these off-beam returns in a fully space- and time-resolved manner is the essence of our unique instrument, Wide Angle Imaging Lidar (WAIL). In effect, WAIL produces wide-field (60{sup o} full-angle) 'movies' of the scattering process and records the cloud's radiative Green functions. A direct data product of WAIL is the distribution of photon path lengths resulting from multiple scattering in the cloud. Following insights from diffusion theory, we can use the measured Green functions to infer the physical thickness and optical depth of the cloud layer. WAIL is notable in that it is applicable to optically thick clouds, a regime in which traditional lidar is reduced to ceilometry. Section 2 covers the up-to-date evolution of the nighttime WAIL instrument at LANL. Section 3 reports our progress towards daytime capability for WAIL, an important extension to full diurnal cycle monitoring by means of an ultra-narrow magneto-optic atomic line filter. Section 4 describes briefly how the important cloud properties can be inferred from WAIL signals.

  3. Digitally controlled distributed phase shifter

    DOE Patents [OSTI]

    Hietala, V.M.; Kravitz, S.H.; Vawter, G.A.

    1993-08-17

    A digitally controlled distributed phase shifter is comprised of N phase shifters. Digital control is achieved by using N binary length-weighted electrodes located on the top surface of a waveguide. A control terminal is attached to each electrode thereby allowing the application of a control signal. The control signal is either one or two discrete bias voltages. The application of the discrete bias voltages changes the modal index of a portion of the waveguide that corresponds to a length of the electrode to which the bias voltage is applied, thereby causing the phase to change through the underlying portion of the waveguide. The digitally controlled distributed phase shift network has a total phase shift comprised of the sum of the individual phase shifters.

  4. Digitally controlled distributed phase shifter

    DOE Patents [OSTI]

    Hietala, Vincent M.; Kravitz, Stanley H.; Vawter, Gregory A.

    1993-01-01

    A digitally controlled distributed phase shifter is comprised of N phase shifters. Digital control is achieved by using N binary length-weighted electrodes located on the top surface of a waveguide. A control terminal is attached to each electrode thereby allowing the application of a control signal. The control signal is either one or two discrete bias voltages. The application of the discrete bias voltages changes the modal index of a portion of the waveguide that corresponds to a length of the electrode to which the bias voltage is applied, thereby causing the phase to change through the underlying portion of the waveguide. The digitally controlled distributed phase shift network has a total phase shift comprised of the sum of the individual phase shifters.

  5. Water Usage for In-Situ Oil Shale Retorting - A Systems Dynamics...

    Office of Scientific and Technical Information (OSTI)

    A system dynamic model was construction to evaluate the water balance for in-situ oil ... and a remediation phase water to remove heat and solutes from the subsurface as well as ...

  6. Effects of the scatter in sunspot group tilt angles on the large-scale magnetic field at the solar surface

    SciTech Connect (OSTI)

    Jiang, J.; Cameron, R. H.; Schüssler, M.

    2014-08-10

    The tilt angles of sunspot groups represent the poloidal field source in Babcock-Leighton-type models of the solar dynamo and are crucial for the build-up and reversals of the polar fields in surface flux transport (SFT) simulations. The evolution of the polar field is a consequence of Hale's polarity rules, together with the tilt angle distribution which has a systematic component (Joy's law) and a random component (tilt-angle scatter). We determine the scatter using the observed tilt angle data and study the effects of this scatter on the evolution of the solar surface field using SFT simulations with flux input based upon the recorded sunspot groups. The tilt angle scatter is described in our simulations by a random component according to the observed distributions for different ranges of sunspot group size (total umbral area). By performing simulations with a number of different realizations of the scatter we study the effect of the tilt angle scatter on the global magnetic field, especially on the evolution of the axial dipole moment. The average axial dipole moment at the end of cycle 17 (a medium-amplitude cycle) from our simulations was 2.73 G. The tilt angle scatter leads to an uncertainty of 0.78 G (standard deviation). We also considered cycle 14 (a weak cycle) and cycle 19 (a strong cycle) and show that the standard deviation of the axial dipole moment is similar for all three cycles. The uncertainty mainly results from the big sunspot groups which emerge near the equator. In the framework of Babcock-Leighton dynamo models, the tilt angle scatter therefore constitutes a significant random factor in the cycle-to-cycle amplitude variability, which strongly limits the predictability of solar activity.

  7. Phase Chemistry of Tank Sludge Residual Components

    SciTech Connect (OSTI)

    KRUMHANSL,JAMES L.; LIU,JUN; NAGY,KATHRYN L.; BRADY,PATRICK V.

    1999-11-29

    We are attempting to understand the solid phase chemistry of the high level nuclear waste (HLW) stored in tanks at Hanford. Because this waste is compositionally complex, our approach is to study experimentally the aging dynamics of simplified systems whose bulk chemistry approximates that of the tank sludges. After a basic understanding of these dynamics has been attained we plan to increase the compositional complexities one component at a time, in order to assess the influence of each component. Results will allow for reliable prediction of sludge phase chemistry over a range of sludge compositions. Iron and aluminum comprise the bulk of most HLW sludges, so we chose to begin by studying the behavior of iron-aluminum systems. Fe/Al ratios were chosen to approximate those relevant to the solutions that produced the sludge. Aluminum and iron concentrations in the various process fluids are summarized and compared to our experimental starting solutions in Table 1 (process solution data from Krumhansl, personal communication, 1998). Our low aluminum experiments serve as direct analogues to both Bismuth Phosphate and low-Fe PUREX waste. Cornell and Giovanoli (1985) found that, in a pure iron system at 70 C, a 10-fold or even 50-fold increase in suspension concentration had only very slight effects on the final aged products. Since our experiments have similar Al/Fe ratios to some high Fe-PUREX process solutions our results are probably relevant to those wastes as well. However, our results may not apply to the high-Fe and high-Al PUREX wastes, as discussed below. The high Al experiments were designed specifically to simulate REDOX waste.

  8. Method for aqueous phase reactions

    DOE Patents [OSTI]

    Elliott, Douglas C.; Hart, Todd R.

    2000-01-01

    A method for converting liquid organic material in a mixture into a product utilizing a catalyst in the form of a plurality of porous particles wherein each particle is a support having nickel metal catalytic phase or reduced nickel deposited thereon in a first dispersed phase and an additional metal deposited onto the support in a second dispersed phase. The additional metal is effective in retarding or reducing agglomeration or sintering of the nickel metal catalytic phase without substantially affecting the catalytic activity, thereby increasing the life time of the catalyst.

  9. Project Home Again Phase II

    SciTech Connect (OSTI)

    2010-01-30

    Phase II is a continuation of a charitable residential community project in New Orleans that builds affordable and energy efficient single detached residences that are storm resistant.

  10. Phase-locked loop with controlled phase slippage

    DOE Patents [OSTI]

    Mestha, L.K.

    1994-03-29

    A system for synchronizing a first subsystem controlled by a changing frequency sweeping from a first frequency to a second frequency, with a second subsystem operating at a steady state second frequency is described. Trip plan parameters are calculated in advance to determine the phase relationship between the frequencies of the first subsystem and second subsystem in order to obtain synchronism at the end of the frequency sweep of the first subsystem. During the time in which the frequency of the first subsystem is sweeping from the first frequency to the second frequency, the phase locked system compares the actual phase difference with the trip plan phase difference and incrementally changes the sweep frequency in a manner so that phase lock is achieved when the first subsystem reaches a frequency substantially identical to that of the second subsystem. 10 figures.

  11. Phase-locked loop with controlled phase slippage

    DOE Patents [OSTI]

    Mestha, Lingappa K. (Cedar Hill, TX)

    1994-01-01

    A system for synchronizing a first subsystem controlled by a changing frequency sweeping from a first frequency to a second frequency, with a second subsystem operating at a steady state second frequency. Trip plan parameters are calculated in advance to determine the phase relationship between the frequencies of the first subsystem and second subsystem in order to obtain synchronism at the end of the frequency sweep of the first subsystem. During the time in which the frequency of the first subsystem is sweeping from the first frequency to the second frequency, the phase locked system compares the actual phase difference with the trip plan phase difference and incrementally changes the sweep frequency in a manner so that phase lock is achieved when the first subsystem reaches a frequency substantially identical to that of the second subsystem.

  12. Structure and Dynamics of Colliding Plasma Jets

    SciTech Connect (OSTI)

    Li, C.; Ryutov, D.; Hu, S.; Rosenberg, M.; Zylstra, A.; Seguin, F.; Frenje, J.; Casey, D.; Gatu Johnson, M.; Manuel, M.; Rinderknecht, H.; Petrasso, R.; Amendt, P.; Park, H.; Remington, B.; Wilks, S.; Betti, R.; Froula, D.; Knauer, J.; Meyerhofer, D.; Drake, R.; Kuranz, C.; Young, R.; Koenig, M.

    2013-12-01

    Monoenergetic-proton radiographs of laser-generated, high-Mach-number plasma jets colliding at various angles shed light on the structures and dynamics of these collisions. The observations compare favorably with results from 2D hydrodynamic simulations of multistream plasma jets, and also with results from an analytic treatment of electron flow and magnetic field advection. In collisions of two noncollinear jets, the observed flow structure is similar to the analytic model’s prediction of a characteristic feature with a narrow structure pointing in one direction and a much thicker one pointing in the opposite direction. Spontaneous magnetic fields, largely azimuthal around the colliding jets and generated by the well-known ∇Te ×∇ne Biermann battery effect near the periphery of the laser spots, are demonstrated to be “frozen in” the plasma (due to high magnetic Reynolds number RM ~5×10⁴) and advected along the jet streamlines of the electron flow. These studies provide novel insight into the interactions and dynamics of colliding plasma jets.

  13. Structure and Dynamics of Colliding Plasma Jets

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Li, C.; Ryutov, D.; Hu, S.; Rosenberg, M.; Zylstra, A.; Seguin, F.; Frenje, J.; Casey, D.; Gatu Johnson, M.; Manuel, M.; et al

    2013-12-01

    Monoenergetic-proton radiographs of laser-generated, high-Mach-number plasma jets colliding at various angles shed light on the structures and dynamics of these collisions. The observations compare favorably with results from 2D hydrodynamic simulations of multistream plasma jets, and also with results from an analytic treatment of electron flow and magnetic field advection. In collisions of two noncollinear jets, the observed flow structure is similar to the analytic model’s prediction of a characteristic feature with a narrow structure pointing in one direction and a much thicker one pointing in the opposite direction. Spontaneous magnetic fields, largely azimuthal around the colliding jets and generatedmore » by the well-known ∇Te ×∇ne Biermann battery effect near the periphery of the laser spots, are demonstrated to be “frozen in” the plasma (due to high magnetic Reynolds number RM ~5×10⁴) and advected along the jet streamlines of the electron flow. These studies provide novel insight into the interactions and dynamics of colliding plasma jets.« less

  14. Two-phase flow modeling with discrete particles

    SciTech Connect (OSTI)

    Mortensen, G.A.; Trapp, J.A. |

    1992-03-23

    The design of efficient heat exchangers in which the working fluid changes phase requires accurate modeling of two-phase fluid flow. The local Navier-Stokes equations form the basic continuum equations for this flow situation. However, the local instantaneous model using these equations is intractable for afl but the simplest problems. AH the practical models for two-phase flow analysis are based on equations that have been averaged over control volumes. These models average out the detailed description within the control volumes and rely on flow regime maps to determine the distribution of the two phases within a control volume. Flow regime maps depend on steady state models and probably are not correct for dynamic models. Numerical simulations of the averaged two-phase flow models are usually performed using a two-fluid Eulerian description for the two phases. Eulerian descriptions have the advantage of having simple boundary conditions, but the disadvantage of introducing numerical diffusion, i.e., sharp interfaces are not maintained as the flow develops, but are diffused. Lagrangian descriptions have the advantage of being able to track sharp interfaces without diffusion, but they have the disadvantage of requiring more complicated boundary conditions. This paper describes a numerical scheme and attendant computer program, DISCON2, for the calculation of two-phase flows that does not require the use of flow regime maps. This model is intermediate between the intractable local instantaneous and the averaged two-fluid model. This new model uses a combination of an Eulerian and a Lagrangian representation of the two phases. The dispersed particles (bubbles or drops) are modeled individually using a large representative number of particles, each with their own Lagrangian description. The continuous phases (liquid or gas) use an Eulerian description.

  15. JETS AND WIDE-ANGLE OUTFLOWS IN CEPHEUS E: NEW EVIDENCE FROM SPITZER

    SciTech Connect (OSTI)

    Velusamy, T.; Langer, W. D.; Kumar, M. S. N.; Grave, J. M. C. E-mail: William.D.Langer@jpl.nasa.gov E-mail: jgrave@astro.up.pt

    2011-11-01

    Outflows and jets are believed to play a crucial role in determining the mass of the central protostar and its planet-forming disk by virtue of their ability to transport energy, mass, and momentum of the surrounding material, and thus terminate the infall stage in star and disk formation. In some protostellar objects both wide-angle outflows and collimated jets are seen, while in others only one is observed. Spitzer provides unprecedented sensitivity in the infrared to study both the jet and outflow features. Here, we use HiRes deconvolution to improve the visualization of spatial morphology by enhancing resolution (to subarcsecond levels in the Infrared Array Camera (IRAC) bands) and removing the contaminating sidelobes from bright sources. We apply this approach to study the jet and outflow features in Cep E, a young, energetic Class 0 protostar. In the reprocessed images we detect (1) wide-angle outflow seen in scattered light, (2) morphological details on at least 29 jet-driven bow shocks and jet heads or knots, (3) three compact features in 24 {mu}m continuum image as atomic/ionic line emission coincident with the jet heads, and (4) a flattened {approx}35'' size protostellar envelope seen against the interstellar background polycyclic aromatic hydrocarbon emission as an absorption band across the protostar at 8 {mu}m. By separating the protostellar photospheric scattered emission in the wide-angle cavity from the jet emission we show that we can study directly the scattered light spectrum. We present the H{sub 2} emission line spectra, as observed in all IRAC bands, for 29 knots in the jets and bow shocks and use them in the IRAC color-color space as a diagnostic of the thermal gas in the shocks driven by the jets. The data presented here will enable detailed modeling of the individual shocks retracing the history of the episodic jet activity and the associated accretion on to the protostar. The Spitzer data analysis presented here shows the richness of its

  16. Solar Dynamics | Open Energy Information

    Open Energy Info (EERE)

    Dynamics Jump to: navigation, search Name: Solar Dynamics Place: Ottumwa, Iowa Zip: IA 52501 Sector: Solar Product: Solar Dynamics is a US-based solar powered attic roof vents...

  17. Two-phase uninterruptible power supply

    SciTech Connect (OSTI)

    Severinsky, A.J.; Rajagopalan, S.

    1991-12-24

    This patent describes a two-phase AC power supply. It comprises AC systems; connectors; electric currents; and phase shift.

  18. Improved thermal storage module for solar dynamic receivers

    SciTech Connect (OSTI)

    Beatty, R.L.; Lauf, R.J.

    1990-12-31

    This invention relates to a thermal storage apparatus and more particularly to an apparatus for use in conjunction with solar dynamic energy storage systems. The invention is comprised of a thermal energy storage system comprising a germanium phase change material and a graphite container.

  19. Measurement of CP observables in B__ ->D_CPK__ decays and constraints on the CKM angle gamma

    SciTech Connect (OSTI)

    del Amo Sanchez, P.; Lees, J.P.; Poireau, V.; Prencipe, E.; Tisserand, V.; Garra Tico, J.; Grauges, E.; Martinelli, M.; Palano, A.; Pappagallo, M.; Eigen, G.; Stugu, B.; Sun, L.; Battaglia, M.; Brown, D.N.; Hooberman, B.; Kerth, L.T.; Kolomensky, Yu.G.; Lynch, G.; Osipenkov, I.L.; Tanabe, T.; /UC, Berkeley /Birmingham U. /Ruhr U., Bochum /British Columbia U. /Brunel U. /Novosibirsk, IYF /UC, Irvine /UC, Riverside /UC, Santa Barbara /UC, Santa Cruz /Caltech /Cincinnati U. /Colorado U. /Colorado State U. /Dortmund U. /Dresden, Tech. U. /Ecole Polytechnique /Edinburgh U. /INFN, Ferrara /Ferrara U. /INFN, Ferrara /INFN, Ferrara /Ferrara U. /INFN, Ferrara /Frascati /INFN, Genoa /Genoa U. /INFN, Genoa /INFN, Genoa /Genoa U. /INFN, Genoa /INFN, Genoa /Genoa U. /Indian Inst. Tech., Guwahati /Harvard U. /Heidelberg U. /Humboldt U., Berlin /Imperial Coll., London /Iowa State U. /Iowa State U. /Johns Hopkins U. /Paris U., VI-VII /LLNL, Livermore /Liverpool U. /Queen Mary, U. of London /Royal Holloway, U. of London /Royal Holloway, U. of London /Louisville U. /Mainz U., Inst. Kernphys. /Manchester U. /Maryland U. /Massachusetts U., Amherst /MIT /McGill U. /INFN, Milan /Milan U. /INFN, Milan /INFN, Milan /Milan U. /Mississippi U. /Montreal U. /INFN, Naples /Naples U. /NIKHEF, Amsterdam /NIKHEF, Amsterdam /Notre Dame U. /Ohio State U. /Oregon U. /INFN, Padua /Padua U. /INFN, Padua /INFN, Padua /Padua U. /Paris U., VI-VII /INFN, Perugia /Perugia U. /INFN, Pisa /Pisa U. /INFN, Pisa /Pisa, Scuola Normale Superiore /INFN, Pisa /Pisa U. /INFN, Pisa /Princeton U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /INFN, Rome /Rome U. /Rostock U. /Rutherford /DAPNIA, Saclay /SLAC /South Carolina U. /Southern Methodist U. /Stanford U., Phys. Dept. /SUNY, Albany /Tel Aviv U. /Tennessee U. /Texas U. /Texas U., Dallas /INFN, Turin /Turin U. /INFN, Trieste /Trieste U. /Valencia U. /Victoria U. /Warwick U. /Wisconsin U., Madison

    2010-08-25

    Using the entire sample of 467 million {Upsilon}(4S) {yields} B{bar B} decays collected with the BABAR detector at the PEP-II asymmetric-energy B factory at SLAC, we perform a 'GLW' analysis of B{sup {+-}} {yields} D{sup {+-}} decays, using decay modes in which the neutral D meson decays to either CP-eigenstates or non-CP-eigenstates. We measure the partial decay rate charge asymmetries for CP-even and CP-odd D final states to be A{sub CP+} = 0.25 {+-} 0.06 {+-} 0.02 and A{sub CP-} = -0.09 {+-} 0.07 {+-} 0.02, respectively, where the first error is the statistical and the second is the systematic uncertainty. The parameter A{sub CP+} is different from zero with a significance of 3.6 standard deviations, constituting evidence for direct CP violation. We also measure the ratios of the charged-averaged B partial decay rates in CP and non-CP decays, R{sub CP+} = 1.18 {+-} 0.09 {+-} 0.05 and R{sub CP-} = 1.07 {+-} 0.08 {+-} 0.04. We infer frequentist confidence intervals for the angle {gamma} of the (db) unitarity triangle, for the strong phase difference {delta}{sub B}, and for the amplitude ratio r{sub B}, which are related to the B{sup -} {yields} D{sup -} decay amplitude by r{sub B}e{sup i({delta}{sub b-{gamma}})} = A(B{sup -} {yields} {bar D}{sup 0}K{sup -})/A(B{sup -} {yields} D{sup 0}K{sup 0-}). Including statistical and systematic uncertainties, they obtain 0.24 < r{sub B} < 0.45 (0.06 < r{sub B} < 0.51) and, modulo 180{sup o}, 11.3{sup o} < {gamma} < 22.7{sup o} or 80.9{sup o} < {gamma} < 99.1{sup o} or 157.3{sup o} < {gamma} 168.7{sup o} (7.0{sup o} < {gamma} < 173.0{sup o}) at the 68% (95%) confidence level.

  20. Three phase downhole separator process

    DOE Patents [OSTI]

    Cognata, Louis John (Baytown, TX)

    2008-06-24

    Three Phase Downhole Separator Process (TPDSP) is a process which results in the separation of all three phases, (1) oil, (2) gas, and (3) water, at the downhole location in the well bore, water disposal injection downhole, and oil and gas production uphole.

  1. Structural phase transitions and topological defects in ion Coulomb crystals

    SciTech Connect (OSTI)

    Partner, Heather L.; Nigmatullin, Ramil; Burgermeister, Tobias; Keller, Jonas; Pyka, Karsten; Plenio, Martin B.; Retzker, Alex; Zurek, Wojciech Hubert; del Campo, Adolfo; Mehlstaubler, Tanja E.

    2014-11-19

    We use laser-cooled ion Coulomb crystals in the well-controlled environment of a harmonic radiofrequency ion trap to investigate phase transitions and defect formation. Topological defects in ion Coulomb crystals (kinks) have been recently proposed for studies of nonlinear physics with solitons and as carriers of quantum information. Defects form when a symmetry breaking phase transition is crossed non-adiabatically. For a second order phase transition, the Kibble-Zurek mechanism predicts that the formation of these defects follows a power law scaling in the rate of the transition. We demonstrate a scaling of defect density and describe kink dynamics and stability. We further discuss the implementation of mass defects and electric fields as first steps toward controlled kink preparation and manipulation.

  2. Phase stable RF transport system

    DOE Patents [OSTI]

    Curtin, Michael T.; Natter, Eckard F.; Denney, Peter M.

    1992-01-01

    An RF transport system delivers a phase-stable RF signal to a load, such as an RF cavity of a charged particle accelerator. A circuit generates a calibration signal at an odd multiple frequency of the RF signal where the calibration signal is superimposed with the RF signal on a common cable that connects the RF signal with the load. Signal isolating diplexers are located at both the RF signal source end and load end of the common cable to enable the calibration to be inserted and extracted from the cable signals without any affect on the RF signal. Any phase shift in the calibration signal during traverse of the common cable is then functionally related to the phase shift in the RF signal. The calibration phase shift is used to control a phase shifter for the RF signal to maintain a stable RF signal at the load.

  3. Phase-sensitive flow cytometer

    DOE Patents [OSTI]

    Steinkamp, J.A.

    1993-12-14

    A phase-sensitive flow cytometer (FCM) provides additional FCM capability to use the fluorescence lifetime of one or more fluorochromes bound to single cells to provide additional information regarding the cells. The resulting fluorescence emission can be resolved into individual fluorescence signals if two fluorochromes are present or can be converted directly to a decay lifetime from a single fluorochrome. The excitation light for the fluorochromes is modulated to produce an amplitude modulated fluorescence pulse as the fluorochrome is excited in the FCM. The modulation signal also forms a reference signal that is phase-shifted a selected amount for subsequent mixing with the output modulated fluorescence intensity signal in phase-sensitive detection circuitry. The output from the phase-sensitive circuitry is then an individual resolved fluorochrome signal or a single fluorochrome decay lifetime, depending on the applied phase shifts. 15 figures.

  4. Phase-sensitive flow cytometer

    DOE Patents [OSTI]

    Steinkamp, John A.

    1993-01-01

    A phase-sensitive flow cytometer (FCM) provides additional FCM capability to use the fluorescence lifetime of one or more fluorochromes bound to single cells to provide additional information regarding the cells. The resulting fluorescence emission can be resolved into individual fluorescence signals if two fluorochromes are present or can be converted directly to a decay lifetime from a single fluorochrome. The excitation light for the fluorochromes is modulated to produce an amplitude modulated fluorescence pulse as the fluorochrome is excited in the FCM. The modulation signal also forms a reference signal that is phase-shifted a selected amount for subsequent mixing with the output modulated fluorescence intensity signal in phase-sensitive detection circuitry. The output from the phase-sensitive circuitry is then an individual resolved fluorochrome signal or a single fluorochrome decay lifetime, depending on the applied phase shifts.

  5. A tunable low-energy photon source for high-resolution angle-resolved photoemission spectroscopy

    SciTech Connect (OSTI)

    Harter, John W.; Monkman, Eric J.; Shai, Daniel E.; Nie Yuefeng; Uchida, Masaki; Burganov, Bulat; Chatterjee, Shouvik; King, Philip D. C.; Shen, Kyle M.

    2012-11-15

    We describe a tunable low-energy photon source consisting of a laser-driven xenon plasma lamp coupled to a Czerny-Turner monochromator. The combined tunability, brightness, and narrow spectral bandwidth make this light source useful in laboratory-based high-resolution photoemission spectroscopy experiments. The source supplies photons with energies up to {approx}7 eV, delivering under typical conditions >10{sup 12} ph/s within a 10 meV spectral bandwidth, which is comparable to helium plasma lamps and many synchrotron beamlines. We first describe the lamp and monochromator system and then characterize its output, with attention to those parameters which are of interest for photoemission experiments. Finally, we present angle-resolved photoemission spectroscopy data using the light source and compare its performance to a conventional helium plasma lamp.

  6. Ultrasmall-angle X-ray scattering analysis of photonic crystal structure

    SciTech Connect (OSTI)

    Abramova, V. V.; Sinitskii, A. S.; Grigor'eva, N. A.; Grigor'ev, S. V.; Belov, D. V.; Petukhov, A. V.; Mistonov, A. A.; Vasil'eva, A. V.; Tret'yakov, Yu. D.

    2009-07-15

    The results of an ultrasmall-angle X-ray scattering study of iron(III) oxide inverse opal thin films are presented. The photonic crystals examined are shown to have fcc structure with amount of stacking faults varying among the samples. The method used in this study makes it possible to easily distinguish between samples with predominantly twinned fcc structure and nearly perfect fcc stacking. The difference observed between samples fabricated under identical conditions is attributed to random layer stacking in the self-assembled colloidal crystals used as templates for fabricating the inverse opals. The present method provides a versatile tool for analyzing photonic crystal structure in studies of inverse opals made of various materials, colloidal crystals, and three-dimensional photonic crystals of other types.

  7. Substrate interactions with suspended and supported monolayer MoS2: Angle-resolved photoemission spectroscopy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jin, Wencan; Yeh, Po -Chun; Zaki, Nader; Zhang, Datong; Liou, Jonathan T.; Dadap, Jerry I.; Barinov, Alexey; Yablonskikh, Mikhail; Sadowski, Jerzy T.; Sutter, Peter; et al

    2015-03-17

    We report the directly measured electronic structure of exfoliated monolayer molybdenum disulfide (MoS₂) using micrometer-scale angle-resolved photoemission spectroscopy. Measurements of both suspended and supported monolayer MoS₂ elucidate the effects of interaction with a substrate. Thus, a suggested relaxation of the in-plane lattice constant is found for both suspended and supported monolayer MoS₂ crystals. For suspended MoS₂, a careful investigation of the measured uppermost valence band gives an effective mass at Γ¯ and Κ¯ of 2.00m₀ and 0.43m₀, respectively. We also measure an increase in the band linewidth from the midpoint of Γ¯Κ¯ to the vicinity of Κ¯ and briefly discussmore » its possible origin.« less

  8. Electron mean free path from angle-dependent photoelectron spectroscopy of aerosol particles

    SciTech Connect (OSTI)

    Goldmann, Maximilian; Miguel-Sánchez, Javier; West, Adam H. C.; Yoder, Bruce L.; Signorell, Ruth

    2015-06-14

    We propose angle-resolved photoelectron spectroscopy of aerosol particles as an alternative way to determine the electron mean free path of low energy electrons in solid and liquid materials. The mean free path is obtained from fits of simulated photoemission images to experimental ones over a broad range of different aerosol particle sizes. The principal advantage of the aerosol approach is twofold. First, aerosol photoemission studies can be performed for many different materials, including liquids. Second, the size-dependent anisotropy of the photoelectrons can be exploited in addition to size-dependent changes in their kinetic energy. These finite size effects depend in different ways on the mean free path and thus provide more information on the mean free path than corresponding liquid jet, thin film, or bulk data. The present contribution is a proof of principle employing a simple model for the photoemission of electrons and preliminary experimental data for potassium chloride aerosol particles.

  9. Measurement of the absolute differential cross section of proton–proton elastic scattering at small angles

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mchedlishvili, D.; Chiladze, D.; Dymov, S.; Bagdasarian, Z.; Barsov, S.; Gebel, R.; Gou, B.; Hartmann, M.; Kacharava, A.; Keshelashvili, I.; et al

    2016-02-03

    The differential cross section for proton-proton elastic scattering has been measured at a beam kinetic energy of 1.0 GeV and in 200 MeV steps from 1.6 to 2.8 GeV for centre-of-mass angles in the range from 12°-16° to 25°-30°, depending on the energy. A precision in the overall normalisation of typically 3% was achieved by studying the energy losses of the circulating beam of the COSY storage ring as it passed repeatedly through the windowless hydrogen target of the ANKE magnetic spectrometer. It is shown that the data have a significant impact upon the results of a partial wave analysis.more » Furthermore, after extrapolating the differential cross sections to the forward direction, the results are broadly compatible with the predictions of forward dispersion relations.« less

  10. AN ANGLE-DEPENDENT SYNCHROTRON SELF-COMPTON MODEL FOR RELATIVISTIC JET SOURCES

    SciTech Connect (OSTI)

    Jamil, O.; Boettcher, M.

    2012-11-01

    We report on the development of a numerical code to calculate the angle-dependent synchrotron + synchrotron self-Compton radiation from relativistic jet sources with partially ordered magnetic fields and anisotropic particle distributions. Using a multi-zone radiation transfer approach, we can simulate magnetic-field configurations ranging from perfectly ordered (unidirectional) to randomly oriented (tangled). We demonstrate that synchrotron self-Compton model fits to the spectral energy distributions (SEDs) of extragalactic jet sources may be possible with a wide range of magnetic-field values, depending on their orientation with respect to the jet axis and the observer. This is illustrated with the example of a spectral fit to the SED of Mrk 421 from multiwavelength observations in 2006, where acceptable fits are possible with magnetic-field values varying within a range of an order of magnitude for different degrees of B-field alignment and orientation.

  11. Toward a Taxonomy of the Denatured State: Small Angle Scattering Studies of Unfolded Proteins

    SciTech Connect (OSTI)

    Millett, I.S.; Doniach, S.; Plaxco, K.W. (Stanford); (UCSB)

    2005-02-15

    Despite the critical role the unfolded state plays in defining protein folding kinetics and thermodynamics (Berg et al., 2002; Dunker, 2002; Shortle, 2002; Wright and Dyson, 2002), our understanding of its detailed structure remains rather rudimentary; the heterogeneity of the unfolded ensemble renders difficult or impossible its study by traditional, atomic-level structural methods. Consequently, recent years have seen a significant expansion of small-angle X-ray and neutron scattering (SAXS and SANS, respectively) techniques that provide direct, albeit rotationally and time-averaged, measures of the geometric properties of the unfolded ensemble. These studies have reached a critical mass, allowing us for the first time to define general observations regarding the nature of the geometry - and possibly the chemistry and physics - of unfolded proteins.

  12. Tunable and angle-insensitive plasmon resonances in graphene ribbon arrays with multispectral diffraction response

    SciTech Connect (OSTI)

    Li, Kangwen; Ma, Xunpeng; Zhang, Zuyin; Xu, Yun, E-mail: xuyun@semi.ac.cn; Song, Guofeng [Institute of Semiconductors, Chinese Academy of Sciences, Beijing (China)

    2014-03-14

    Plasmon resonances in graphene ribbon arrays are investigated numerically by means of the Finite Element Method. Numerical analysis shows that a series of multipolar resonances take place when graphene ribbon arrays are illuminated by a TM polarized electromagnetic wave. Moreover, these resonances are angle-independent, and can be tuned greatly by the width and the doping level of the graphene ribbons. Specifically, we demonstrate that for graphene arrays with several sets of graphene ribbons, which have different widths or doping levels, each of these multipolar resonances will be split into several ones. In addition, as plasmon resonances can confine electromagnetic field at the ribbon edges, graphene ribbons with different widths or doping levels offer intriguing application for electrically tunable spectral imaging.

  13. Small angle neutron scattering as fingerprinting of ancient potteries from Sicily (Southern Italy)

    SciTech Connect (OSTI)

    Barone, G.; Mazzoleni, P.; Crupi, V.; Majolino, D.; Venuti, V.; Teixeira, J.

    2009-09-01

    Small angle neutron scattering measurements have been carried out in order to investigate, in microdestructive way, the mesoscopic structure of a variety of potteries of relevance to cultural heritage coming from different Sicilian (Southern Italy) archeological sites belonging to the 'Strait of Messina' area and dated back to 7th-3rd century B.C. Data have been compared with the mesoscopic parameters extracted for two series of clayey sediments typical of the Strait of Messina area and fired under controlled conditions. The observed agreement between the features of reference and archeological samples allowed us to estimate the maximum firing temperature of the latter. Information on the pore sizes was obtained by the use of the concept of fractal surface, and compared with porosimetry results.

  14. Incident angle insensitive tunable multichannel perfect absorber consisting of nonlinear plasma and matching metamaterials

    SciTech Connect (OSTI)

    Kong, Xiang-kun; Liu, Shao-Bin Bian, Bo-rui; Chen, Chen; Zhang, Hai-feng

    2014-12-15

    A novel, compact, and multichannel nonreciprocal absorber through a wave tunneling mechanism in epsilon-negative and matching metamaterials is theoretically proposed. Nonreciprocal absorption properties are acquired via the coupling together of evanescent and propagating waves in an asymmetric configuration, constituted of nonlinear plasma alternated with matching metamaterial. The absorption channel number can be adjusted by changing the periodic number. Due to the positive feedback between nonlinear permittivity of plasma and the inner electric field, bistable absorption and reflection are achieved. Moreover, compared with some truncated photonic crystal or multilayered designs proposed before, our design is more compact and independent of incident angle or polarization. This kind of multilayer structure offers additional opportunities to design novel omnidirectional electromagnetic wave absorbers.

  15. Waveguide detection of right-angle-scattered light in flow cytometry

    DOE Patents [OSTI]

    Mariella, Jr., Raymond P.

    2000-01-01

    A transparent flow cell is used as an index-guided optical waveguide. A detector for the flow cell but not the liquid stream detects the Right-Angle-Scattered (RAS) Light exiting from one end of the flow cell. The detector(s) could view the trapped RAS light from the flow cell either directly or through intermediate optical light guides. If the light exits one end of the flow cell, then the other end of the flow cell can be given a high-reflectivity coating to approximately double the amount of light collected. This system is more robust in its alignment than the traditional flow cytometry systems which use imaging optics, such as microscope objectives.

  16. Large-angle illumination STEM: Toward three-dimensional atom-by-atom imaging

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ishikawa, Ryo; Lupini, Andrew R.; Hinuma, Yoyo; Pennycook, Stephen

    2014-11-26

    To completely understand and control materials and their properties, it is of critical importance to determine their atomic structures in all three dimensions. Recent revolutionary advances in electron optics – the inventions of geometric and chromatic aberration correctors as well as electron source monochromators – have provided fertile ground for performing optical depth sectioning at atomic-scale dimensions. In this study we theoretically demonstrate the imaging of top/sub-surface atomic structures and identify the depth of single dopants, single vacancies and the other point defects within materials by large-angle illumination scanning transmission electron microscopy (LAI-STEM). The proposed method also allows us tomore » measure specimen properties such as thickness or three-dimensional surface morphology using observations from a single crystallographic orientation.« less

  17. Channeling Doping Profiles Studies for Small Incident Angle Implantation into Silicon Wafers

    SciTech Connect (OSTI)

    Guo, B.N.; Variam, N.; Jeong, U.; Mehta, S.; Posselt, M.; Lebedev, A.

    2003-08-26

    Traditional de-channeling dopant profiles in the silicon crystal wafers have been achieved by tilting the wafer away from the incident beam. As feature sizes of device shrink, the advantages for channeled doping profiles for implants with small or near zero degree incident angles are being recognized. For example, high-energy CMOS well spacing limitations caused by shadowing and encroachment of the ion beam by photoresist mask can be avoided for near zero degree incident implants. Accurate models of channeled profiles are essential to predict the device performance. This paper mainly discusses the damage effect on channeled dopant profiles. Especially, damage effects on channeled dopant profiles are correlated to ThermaWave (TW) measurements. It is demonstrated that there is a critical dose at which the damage effects have to be considered for channeled dopant profile evolvements.

  18. Forward-angle neutron-proton scattering at 96 MeV

    SciTech Connect (OSTI)

    Johansson, C.; Blomgren, J.; Atac, A.; Bergenwall, B.; Hildebrand, A.; Klug, J.; Mermod, P.; Pomp, S.; Oesterlund, M.; Dangtip, S.; Tippawan, U.; Elmgren, K.; Jonsson, O.; Prokofiev, A.V.; Renberg, P.-U.; Nadel-Turonski, P.; Nilsson, L.; Olsson, N.

    2005-02-01

    The differential np scattering cross section has been measured at 96 MeV in the angular range {theta}{sub c.m.}=20 deg. -76 deg. Together with an earlier data set at the same energy, covering the angles {theta}{sub c.m.}=74 deg. -180 deg., a new data set has been formed in the angular range {theta}{sub c.m.}=20 deg. - 180 deg. This extended data set has been normalized to the experimental total np cross section, resulting in a renormalization of the earlier data of 0.7%, which is well within the reported normalization uncertainty for that experiment. A novel normalization technique has been investigated. The results on forward np scattering are in reasonable agreement with theory models and partial wave analyses and have been compared with data from the literature.

  19. System Dynamics Model | NISAC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dynamics Model content top Chemical Supply Chain Analysis Posted by Admin on Mar 1, 2012 in | Comments 0 comments Chemical Supply Chain Analysis NISAC has developed a range of...

  20. Accelerated Molecular Dynamics Methods

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Los Alamos Parallel Replica Dynamics Procedure Start clock and run thermostatted MD on ... Sum the trajectory times over all M processors. Advance simulation clock by this t sum Los ...

  1. Geotechnical properties of municipal solid waste at different phases of biodegradation

    SciTech Connect (OSTI)

    Reddy, Krishna R.; Hettiarachchi, Hiroshan; Gangathulasi, Janardhanan; Bogner, Jean E.

    2011-11-15

    Highlights: > Degraded synthetic municipal solid waste (MSW) anaerobically in controlled bench-scale reactors. > Performed laboratory tests to determine geotechnical properties of MSW at different phases of degradation. > Hydraulic conductivity decreased by two orders of magnitude due to degradation. > Compression ratio reduced from 0.34 for initial fresh waste to 0.15 for the mostly degraded waste. > Friction angle reduced, but cohesion increased with degradation. - Abstract: This paper presents the results of laboratory investigation conducted to determine the variation of geotechnical properties of synthetic municipal solid waste (MSW) at different phases of degradation. Synthetic MSW samples were prepared based on the composition of MSW generated in the United States and were degraded in bioreactors with leachate recirculation. Degradation of the synthetic MSW was quantified based on the gas composition and organic content, and the samples exhumed from the bioreactor cells at different phases of degradation were tested for the geotechnical properties. Hydraulic conductivity, compressibility and shear strength of initial and degraded synthetic MSW were all determined at constant initial moisture content of 50% on wet weight basis. Hydraulic conductivity of synthetic MSW was reduced by two orders of magnitude due to degradation. Compression ratio was reduced from 0.34 for initial fresh waste to 0.15 for the mostly degraded waste. Direct shear tests showed that the fresh and degraded synthetic MSW exhibited continuous strength gain with increase in horizontal deformation, with the cohesion increased from 1 kPa for fresh MSW to 16-40 kPa for degraded MSW and the friction angle decreased from 35{sup o} for fresh MSW to 28{sup o} for degraded MSW. During the triaxial tests under CU condition, the total strength parameters, cohesion and friction angle, were found to vary from 21 to 57 kPa and 1{sup o} to 9{sup o}, respectively, while the effective strength parameters

  2. Anastomosing grabens, low-angle faults, and Tertiary thrust( ) faults, western Markagunt Plateau, southwestern Utah

    SciTech Connect (OSTI)

    Maldonado, F.; Sable, E.G. )

    1993-04-01

    A structurally complex terrane composed of grabens and horsts, low-angle faults, Tertiary thrust( ) faults, gravity-slide blocks, and debris deposits has been mapped along the western Markagunt Plateau, east of Parowan and Summit, southwestern Utah. This terrane, structurally situated within the transition between the Basin and Range and Colorado Plateau provinces, contains Tertiary volcanic and sedimentary and Cretaceous sedimentary rocks. The structures are mostly Miocene to Oligocene but some are Pleistocene. The oldest structure is the Red Hills low-angle shear zone, interpreted as a shallow structure that decoupled an upper plate composed of a Miocene-Oligocene volcanic ash-flow tuff and volcaniclastic succession from a lower plate of Tertiary sedimentary rocks. The period of deformation on the shear zone is bracketed from field relationships between 22.5 and 20 Ma. The graben-horst system trends northeast and formed after about 20 Ma (and probably much later) based on displacement of dated dikes and a laccolith. The central part of the system contains many grabens that merge toward its southerly end to become a single graben. Within these grabens, (1) older structures are preserved, (2) debris eroded from horst walls forms lobe-shaped deposits, (3) Pleistocene basaltic cinder cones have localized along graben-bounding faults, and (4) rock units are locally folded suggesting some component of lateral translation along graben-bounding faults. Megabreccia deposits and landslide debris are common. Megabreccia deposits are interpreted as gravity-slide blocks of Miocene-Oligocene( ) age resulting from formation of the Red Hills shear zone, although some may be related to volcanism, and still others to later deformation. The debris deposits are landslides of Pleistocene-Pliocene( ) age possibly caused by continued uplift of the Markagunt Plateau.

  3. Multipulsed dynamic moire interferometer

    DOE Patents [OSTI]

    Deason, Vance A.

    1991-01-01

    An improved dynamic moire interferometer comprised of a lasing medium providing a plurality of beams of coherent light, a multiple q-switch producing multiple trains of 100,000 or more pulses per second, a combining means collimating multiple trains of pulses into substantially a single train and directing beams to specimen gratings affixed to a test material, and a controller, triggering and sequencing the emission of the pulses with the occurrence and recording of a dynamic loading event.

  4. Photochemical reaction dynamics

    SciTech Connect (OSTI)

    Moore, B.C.

    1993-12-01

    The purpose of the program is to develop a fundamental understanding of unimolecular and bimolecular reaction dynamics with application in combustion and energy systems. The energy dependence in ketene isomerization, ketene dissociation dynamics, and carbonyl substitution on organometallic rhodium complexes in liquid xenon have been studied. Future studies concerning unimolecular processes in ketene as well as energy transfer and kinetic studies of methylene radicals are discussed.

  5. Fluid-elastic Instability of Helical Tubes Subjected to Single-Phase External Flow and Two-Phase Internal Flow

    SciTech Connect (OSTI)

    Jong Chull Jo; Myung Jo Jhung; Woong Sik Kim; Hho Jung Kim

    2004-07-01

    This study investigates the fluid-elastic instability characteristics of steam generator helical type tubes in operating nuclear power plants. The thermal-hydraulic conditions of both tube side and shell side flow fields are predicted by a general purpose computational fluid dynamics code employing the finite volume element modeling. To get the natural frequency, corresponding mode shape and participation factor, modal analyses are performed for helical type tubes with various conditions. Investigated are the effects of the helix angle, the number of supports and the status of the inner fluid on the modal, and fluid-elastic instability characteristics of the tubes, which are expressed in terms of the natural frequency, corresponding mode shape, and stability ratio. (authors)

  6. Quantum emitters dynamically coupled to a quantum field

    SciTech Connect (OSTI)

    Acevedo, O. L.; Quiroga, L.; Rodrguez, F. J.; Johnson, N. F.

    2013-12-04

    We study theoretically the dynamical response of a set of solid-state quantum emitters arbitrarily coupled to a single-mode microcavity system. Ramping the matter-field coupling strength in round trips, we quantify the hysteresis or irreversible quantum dynamics. The matter-field system is modeled as a finite-size Dicke model which has previously been used to describe equilibrium (including quantum phase transition) properties of systems such as quantum dots in a microcavity. Here we extend this model to address non-equilibrium situations. Analyzing the systems quantum fidelity, we find that the near-adiabatic regime exhibits the richest phenomena, with a strong asymmetry in the internal collective dynamics depending on which phase is chosen as the starting point. We also explore signatures of the crossing of the critical points on the radiation subsystem by monitoring its Wigner function; then, the subsystem can exhibit the emergence of non-classicality and complexity.

  7. Chaotic dynamics in a periodically driven spin-1 condensate

    SciTech Connect (OSTI)

    Cheng Jing [Department of Physics, South China University of Technology, Guangzhou 510640 (China); Kavli Institute for Theoretical Physics China, CAS, Beijing 100190 (China)

    2010-02-15

    We use periodically modulated magnetic fields to drive spin-1 Bose-Einstein condensates (BECs) and study the corresponding spin-mixing dynamics. Due to the time-dependent driving, this system permits chaotic dynamics depending on the drive parameters, which could not occur in previous studies. From the investigation of the Poincare sections, we find there exist complex trajectories in the phase space, leading to very complicated structures of the phase space with mixed regular and chaotic regions. By calculating the quasienergy levels of the corresponding Floquet operators, the signatures of quantum chaos are also found in this system. The level spacing distribution is very close to the Poisson distribution or Wigner distribution when the corresponding classical dynamics is regular or chaotic.

  8. Identification of phases, symmetries and defects through local crystallography

    SciTech Connect (OSTI)

    Belianinov, Alex; He, Qian; Kravchenko, Mikhail; Jesse, Stephen; Borisevich, Albina; Kalinin, Sergei V.

    2015-07-20

    Here we report that advances in electron and probe microscopies allow 10 pm or higher precision in measurements of atomic positions. This level of fidelity is sufficient to correlate the length (and hence energy) of bonds, as well as bond angles to functional properties of materials. Traditionally, this relied on mapping locally measured parameters to macroscopic variables, for example, average unit cell. This description effectively ignores the information contained in the microscopic degrees of freedom available in a high-resolution image. Here we introduce an approach for local analysis of material structure based on statistical analysis of individual atomic neighbourhoods. Clustering and multivariate algorithms such as principal component analysis explore the connectivity of lattice and bond structure, as well as identify minute structural distortions, thus allowing for chemical description and identification of phases. This analysis lays the framework for building image genomes and structure–property libraries, based on conjoining structural and spectral realms through local atomic behaviour.

  9. Soliton microdynamics of structural phase transitions in crystalline materials and phonons of a new type on phase interfaces

    SciTech Connect (OSTI)

    Orlov, A. V.; Dubovsky, O. A.

    2011-12-15

    It is shown that the generation of nonlinear soliton, breather, and shock waves at high dynamic excitations leads to martensitic phase transformations in crystalline materials of the {alpha}-uranium type. Investigations have been performed by modeling the atomic microdynamics with the use of the modified interaction potential. It is shown that collisions of compression shock waves and rarefaction solitons lead to the generation of nuclei of new phases, which evolve according to the domino principle. The phonon spectra of systems with phase interfaces are investigated. A new effect of the total internal phonon reflection has been discovered. It is shown that surface phonons of radically a new type (different from the Rayleigh surface waves) are excited on interfaces. The results are adapted to materials of the {alpha}-uranium type, where solitons have been found at slow-neutron scattering.

  10. Order-parameter-aided temperature-accelerated sampling for the exploration of crystal polymorphism and solid-liquid phase transitions

    SciTech Connect (OSTI)

    Yu, Tang-Qing Vanden-Eijnden, Eric; Chen, Pei-Yang; Chen, Ming; Samanta, Amit; Tuckerman, Mark

    2014-06-07

    The problem of predicting polymorphism in atomic and molecular crystals constitutes a significant challenge both experimentally and theoretically. From the theoretical viewpoint, polymorphism prediction falls into the general class of problems characterized by an underlying rough energy landscape, and consequently, free energy based enhanced sampling approaches can be brought to bear on the problem. In this paper, we build on a scheme previously introduced by two of the authors in which the lengths and angles of the supercell are targeted for enhanced sampling via temperature accelerated adiabatic free energy dynamics [T. Q. Yu and M. E. Tuckerman, Phys. Rev. Lett. 107, 015701 (2011)]. Here, that framework is expanded to include general order parameters that distinguish different crystalline arrangements as target collective variables for enhanced sampling. The resulting free energy surface, being of quite high dimension, is nontrivial to reconstruct, and we discuss one particular strategy for performing the free energy analysis. The method is applied to the study of polymorphism in xenon crystals at high pressure and temperature using the Steinhardt order parameters without and with the supercell included in the set of collective variables. The expected fcc and bcc structures are obtained, and when the supercell parameters are included as collective variables, we also find several new structures, including fcc states with hcp stacking faults. We also apply the new method to the solid-liquid phase transition in copper at 1300 K using the same Steinhardt order parameters. Our method is able to melt and refreeze the system repeatedly, and the free energy profile can be obtained with high efficiency.

  11. Dynamic simulation gives 20-20 foresight

    SciTech Connect (OSTI)

    Womack, J.W.

    1986-04-07

    Dynamic simulation is being increasingly recognized as a viable tool for system analysis and design. Its use by Mobil Research and Development Corp. (MRDC) has grown steadily. Applications fall into three major categories: Support of major capital projects, mostly in the form of high-fidelity models capable of answering many of the ''what-if'' questions which arise during the engineering design, construction, and commissioning phases of a project; Simulators for operator training, which have been acquired for an increasing fraction of both new and existing facilities over the past 10 years; Solution of operational problems, evaluate process changes, and in debottlenecking studies of existing facilities. A number of dynamic simulations have been done by contractors or system vendors. MRDC involvement was limited to review and/or acceptance of the work. MRDC did not write any of the training simulator programs, for example, although its inputs often influenced their development.

  12. From Entropic Dynamics to Quantum Theory

    SciTech Connect (OSTI)

    Caticha, Ariel

    2009-12-08

    Non-relativistic quantum theory is derived from information codified into an appropriate statistical model. The basic assumption is that there is an irreducible uncertainty in the location of particles so that the configuration space is a statistical manifold. The dynamics then follows from a principle of inference, the method of Maximum Entropy. The concept of time is introduced as a convenient way to keep track of change. The resulting theory resembles both Nelson's stochastic mechanics and general relativity. The statistical manifold is a dynamical entity: its geometry determines the evolution of the probability distribution which, in its turn, reacts back and determines the evolution of the geometry. There is a new quantum version of the equivalence principle: 'osmotic' mass equals inertial mass. Mass and the phase of the wave function are explained as features of purely statistical origin.

  13. Temperature-dependent Raman and ultraviolet photoelectron spectroscopy studies on phase transition behavior of VO{sub 2} films with M1 and M2 phases

    SciTech Connect (OSTI)

    Okimura, Kunio Hanis Azhan, Nurul; Hajiri, Tetsuya; Kimura, Shin-ichi; Zaghrioui, Mustapha; Sakai, Joe

    2014-04-21

    Structural and electronic phase transitions behavior of two polycrystalline VO{sub 2} films, one with pure M1 phase and the other with pure M2 phase at room temperature, were investigated by temperature-controlled Raman spectroscopy and ultraviolet photoelectron spectroscopy (UPS). We observed characteristic transient dynamics in which the Raman modes at 195 cm{sup −1} (V-V vibration) and 616 cm{sup −1} (V-O vibration) showed remarkable hardening along the temperature in M1 phase film, indicating the rearrangements of V-V pairs and VO{sub 6} octahedra. It was also shown that the M1 Raman mode frequency approached those of invariant M2 peaks before entering rutile phase. In UPS spectra with high energy resolution of 0.03 eV for the M2 phase film, narrower V{sub 3d} band was observed together with smaller gap compared to those of M1 phase film, supporting the nature of Mott insulator of M2 phase even in the polycrystalline film. Cooperative behavior of lattice rearrangements and electronic phase transition was suggested for M1 phase film.

  14. The role of entropy in magnetotail dynamics

    SciTech Connect (OSTI)

    Birn, Joachim; Zaharia, Sorin; Hesse, Michael

    2008-01-01

    The role of entropy conservation and loss in magnetospheric dynamics, particularly in relation to substorm phases, is discussed on the basis of MHD theory and simulations, using comparisons with PIC simulations for validation. Entropy conservation appears to be a crucial element leading to the formation of thin embedded current sheets in the late substorm growth phase and the potential loss of equilibrium. Entropy loss (in the form of plasmoids) is essential in the earthward transport of flux tubes (bubbles, bursty bulk flows). Entropy loss also changes the tail stability properties and may render ballooning modes unstable and thus contribute to cross-tail variability. We illustrate these effects through results from theory and simulations. Entropy conservation also governs the accessibility of final states of evolution and the amount of energy that may be released.

  15. Injected Beam Dynamics in SPEAR3

    SciTech Connect (OSTI)

    Corbett, Jeff; Fisher, Alan; Huang, Xiaobiao; Safranek, James; Westerman, Stuart; Cheng, Weixing; Mok, Walter; /Unlisted

    2012-06-21

    For the top-off operation it is important to understand the time evolution of charge injected into the storage ring. The large-amplitude horizontal oscillation quickly filaments and decoheres, and in some cases exhibits non-linear x-y coupling before damping to the stored orbit. Similarly, in the longitudinal dimension, any mismatch in beam arrival time, beam energy or phase-space results in damped, non-linear synchrotron oscillations. In this paper we report on measurements of injection beam dynamics in the transverse and longitudinal planes using turn-by-turn BPMs, a fast-gated, image-intensified CCD camera and a Hamamatsu C5680 streak camera.

  16. Theoretical studies of chemical reaction dynamics

    SciTech Connect (OSTI)

    Schatz, G.C.

    1993-12-01

    This collaborative program with the Theoretical Chemistry Group at Argonne involves theoretical studies of gas phase chemical reactions and related energy transfer and photodissociation processes. Many of the reactions studied are of direct relevance to combustion; others are selected they provide important examples of special dynamical processes, or are of relevance to experimental measurements. Both classical trajectory and quantum reactive scattering methods are used for these studies, and the types of information determined range from thermal rate constants to state to state differential cross sections.

  17. Liquid-phase compositions from vapor-phase analyses

    SciTech Connect (OSTI)

    Davis, W. Jr. ); Cochran, H.D. )

    1990-02-01

    Arsenic normally is not considered to be a contaminant. However, because arsenic was found in many cylinders of UF{sub 6}, including in corrosion products, a study was performed of the distribution of the two arsenic fluorides, AsF{sub 3} and AsF{sub 5}, between liquid and vapor phases. The results of the study pertain to condensation or vaporization of liquid UF{sub 6}. This study includes use of various experimental data plus many extrapolations necessitated by the meagerness of the experimental data. The results of this study provide additional support for the vapor-liquid equilibrium model of J.M. Prausnitz and his coworkers as a means of describing the distribution of various impurities between vapor and liquid phases of UF{sub 6}. Thus, it is concluded that AsF{sub 3} will tend to concentrate in the liquid phase but that the concentration of AsF{sub 5} in the vapor phase will exceed its liquid-phase concentration by a factor of about 7.5, which is in agreement with experimental data. Because the weight of the liquid phase in a condensation operation may be in the range of thousands of times that of the vapor phase, most of any AsF{sub 5} will be in the liquid phase in spite of this separation factor of 7.5. It may also be concluded that any arsenic fluorides fed into a uranium isotope separation plant will either travel with other low-molecular-weight gases or react with materials present in the plant. 25 refs., 3 figs., 6 tabs.

  18. Phase space quantum mechanics - Direct

    SciTech Connect (OSTI)

    Nasiri, S.; Sobouti, Y.; Taati, F.

    2006-09-15

    Conventional approach to quantum mechanics in phase space (q,p), is to take the operator based quantum mechanics of Schroedinger, or an equivalent, and assign a c-number function in phase space to it. We propose to begin with a higher level of abstraction, in which the independence and the symmetric role of q and p is maintained throughout, and at once arrive at phase space state functions. Upon reduction to the q- or p-space the proposed formalism gives the conventional quantum mechanics, however, with a definite rule for ordering of factors of noncommuting observables. Further conceptual and practical merits of the formalism are demonstrated throughout the text.

  19. SNMR pulse sequence phase cycling

    DOE Patents [OSTI]

    Walsh, David O; Grunewald, Elliot D

    2013-11-12

    Technologies applicable to SNMR pulse sequence phase cycling are disclosed, including SNMR acquisition apparatus and methods, SNMR processing apparatus and methods, and combinations thereof. SNMR acquisition may include transmitting two or more SNMR pulse sequences and applying a phase shift to a pulse in at least one of the pulse sequences, according to any of a variety cycling techniques. SNMR processing may include combining SNMR from a plurality of pulse sequences comprising pulses of different phases, so that desired signals are preserved and indesired signals are canceled.

  20. Neutrons measure phase behavior in pores at Angstrom size

    SciTech Connect (OSTI)

    Bardoel, Agatha A; Melnichenko, Yuri B

    2012-01-01

    Researchers have measured the phase behavior of green house gases in pores at the Angstrom-level, using small angle neutron scattering (SANS) at the Oak Ridge National Laboratory's High Flux Isotope Reactor. Yuri Melnichenko, an instrument scientist on the General Purpose Small Angle Neutron Scattering (GP SANS) Diffractometer at ORNL's High Flux Isotope Reactor, his postdoctoral associate Lilin He and collaborators Nidia Gallego and Cristian Contescu from the Material Sciences Division (ORNL) were engaged in the work. They were studying nanoporous carbons to assess their attractiveness as storage media for hydrogen, with a view to potential use for on-board hydrogen storage for transportation applications. Nanoporous carbons can also serve as electrode material for supercapacitors and batteries. The researchers successfully determined that the most efficiently condensing pore size in a carbon nanoporous material for hydrogen storage is less than one nanometer. In a paper recently published by the Journal of the American Chemical Society, the collaborators used small angle neutron scattering to study how hydrogen condenses in small pores at ambient temperature. They discovered that the surface-molecule interactions create internal pressures in pores that may exceed the external gas pressure by a factor of up to 50. 'This is an exciting result,' Melnichenko said, 'as you achieve extreme densification in pores 'for free', i.e. without spending any energy. These results can be used to guide the development of new carbon adsorbents tailored to maximize hydrogen storage capacities.' Another important factor that defines the adsorption capacity of sub-nanometer pores is their shape. In order to get accurate structural information and maximize sorption capacity, it is important that pores are small and of approximately uniform size. In collaboration with Drexel University's Yury Gogotsi who supplied the samples, Melnichenko and his collaborators used the GP SANS

  1. In situ phase transformation of Laves phase from Chi-phase in Mo-containing Fe–Cr–Ni alloys

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tan, L.; Yang, Y.

    2015-11-01

    For an in situ phase transformation of the Chi (χ) phase to the Laves phase we observed in a Fe–Cr–Ni–Mo model alloy. The morphology, composition, and crystal structure of the χ and Laves phases, and their orientation relationship with the matrix austenite phase were investigated. The resulted Laves phase has larger lattice mismatch with the matrix phase than the χ phase, leading to the increase of local strain fields and the formation of dislocations. Moreover, this finding is helpful to understand the precipitation behavior of the intermetallic phases in the Mo-containing austenitic stainless steels.

  2. Structural phase transitions in Bi2Se3 under high pressure

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yu, Zhenhai; Gu, Genda; Wang, Lin; Hu, Qingyang; Zhao, Jinggeng; Yan, Shuai; Yang, Ke; Sinogeikin, Stanislav; Mao, Ho -kwang

    2015-11-02

    Raman spectroscopy and angle dispersive X-ray diffraction (XRD) experiments of bismuth selenide (Bi2Se3) have been carried out to pressures of 35.6 and 81.2 GPa, respectively, to explore its pressure-induced phase transformation. The experiments indicate that a progressive structural evolution occurs from an ambient rhombohedra phase (Space group (SG): R-3m) to monoclinic phase (SG: C2/m) and eventually to a high pressure body-centered tetragonal phase (SG: I4/mmm). Evidenced by our XRD data up to 81.2 GPa, the Bi2Se3 crystallizes into body-centered tetragonal structures rather than the recently reported disordered body-centered cubic (BCC) phase. Furthermore, first principles theoretical calculations favor the viewpoint thatmore » the I4/mmm phase Bi2Se3 can be stabilized under high pressure (>30 GPa). Remarkably, the Raman spectra of Bi2Se3 from this work (two independent runs) are still Raman active up to ~35 GPa. Furthermore, it is worthy to note that the disordered BCC phase at 27.8 GPa is not observed here. The remarkable difference in atomic radii of Bi and Se in Bi2Se3 may explain why Bi2Se3 shows different structural behavior than isocompounds Bi2Te3 and Sb2Te3.« less

  3. Simultaneous investigation of ultrafast structural dynamics and transient electric field by sub-picosecond electron pulses

    SciTech Connect (OSTI)

    Li, Run-Ze; Zhu, Pengfei; Chen, Long; Chen, Jie E-mail: jzhang1@sjtu.edu.cn; Sheng, Zheng-Ming; Zhang, Jie E-mail: jzhang1@sjtu.edu.cn; Cao, Jianming

    2014-05-14

    The ultrafast structure dynamics and surface transient electric field, which are concurrently induced by laser excited electrons of an aluminum nanofilm, have been investigated simultaneously by the same transmission electron diffraction patterns. These two processes are found to be significantly different and distinguishable by tracing the time dependent changes of electron diffraction and deflection angles, respectively. This study also provides a practical means to evaluate simultaneously the effect of transient electric field during the study of structural dynamics under low pump fluence by transmission ultrafast electron diffraction.

  4. Precision digital pulse phase generator

    DOE Patents [OSTI]

    McEwan, Thomas E.

    1996-01-01

    A timing generator comprises a crystal oscillator connected to provide an output reference pulse. A resistor-capacitor combination is connected to provide a variable-delay output pulse from an input connected to the crystal oscillator. A phase monitor is connected to provide duty-cycle representations of the reference and variable-delay output pulse phase. An operational amplifier drives a control voltage to the resistor-capacitor combination according to currents integrated from the phase monitor and injected into summing junctions. A digital-to-analog converter injects a control current into the summing junctions according to an input digital control code. A servo equilibrium results that provides a phase delay of the variable-delay output pulse to the output reference pulse that linearly depends on the input digital control code.

  5. Precision digital pulse phase generator

    DOE Patents [OSTI]

    McEwan, T.E.

    1996-10-08

    A timing generator comprises a crystal oscillator connected to provide an output reference pulse. A resistor-capacitor combination is connected to provide a variable-delay output pulse from an input connected to the crystal oscillator. A phase monitor is connected to provide duty-cycle representations of the reference and variable-delay output pulse phase. An operational amplifier drives a control voltage to the resistor-capacitor combination according to currents integrated from the phase monitor and injected into summing junctions. A digital-to-analog converter injects a control current into the summing junctions according to an input digital control code. A servo equilibrium results that provides a phase delay of the variable-delay output pulse to the output reference pulse that linearly depends on the input digital control code. 2 figs.

  6. APPARATUS FOR LIQUID PHASE EXTRACTION

    DOE Patents [OSTI]

    Hicks, T.R.; Lehman, H.R.; Rubin, B.

    1958-09-16

    operation is described. It comprises a tubular colunm having upper and lower enlarged terminal portions, and a constricted central section containing fluid dispersal packing. Pulsing means are coupled to the upper portion of the column. The inlet for the less dense phase is located above the inlet for the denser phase and both are positioned so that liquids enter the constricted packingfilled central section. The apparatos also includes an interfacing level control, and means fer sensing the level of the interface actuate apparatus for controlling the rate of flow of input or discharge. The outlet for the less dense phase is located in the upper packing free portion of the colunm and that of the denser phase in the lower portion.

  7. Acoustic wave propagation in uniform glow discharge plasma at an arbitrary angle between the electric field and wave vectors

    SciTech Connect (OSTI)

    Soukhomlinov, Vladimir; Gerasimov, Nikolay; Sheverev, Valery A.

    2008-08-15

    This paper extends the recently reported one-dimensional model for sound propagation in glow discharge plasma to arbitrary mutual orientation of the plasma electric field and acoustic wave vectors. The results demonstrate that an acoustic wave in plasma may amplify, attenuate, or remain unchanged depending on the angle between these vectors and on the power input into the discharge. Quantitative evaluations indicate that for glow discharge plasma of a self-sustained discharge in air at the electric current densities of the order of 100 mA cm{sup -2}, a gain of as much as 1 m{sup -1} at 0 deg. angle between the vectors changes to similar strength attenuation for the 90 deg. angle.

  8. Reinforced ceramics employing discontinuous phases

    SciTech Connect (OSTI)

    Becher, P.F.

    1990-01-01

    The fracture toughness of ceramics can be improved by the incorporation of a variety of discontinuous reinforcing phases and microstructures. Observations of crack paths in these systems indicate that these reinforcing phases bridge the crack tip wake region. Recent developments in micromechanics toughening models applicable to such systems are discussed and compared with experimental observations. Because material parameters and microstructural characteristics are considered, the crack bridging models provide a means to optimize the toughening effects. 18 refs., 2 figs.

  9. Cori Phase 1 Training Registration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Optimization » Cori Phase 1 Training Registration Cori Phase 1 Training Registration May 19, 2016: Please register for the event to help us plan for the tutorial. Name Email Your Organization / Affiliation NERSC User Name Phone How do you plan to attend? In person at NERSC/LBNL Remote Citizenship (for in person attendee only) Birth Country (for in person attendee only) Submit Last edited: 2016-05-23 10:44:08

  10. Drama in Dynamics: Boom, Splash, and Speed

    SciTech Connect (OSTI)

    Heather Marie Netzloff

    2004-12-19

    The full nature of chemistry and physics cannot be captured by static calculations alone. Dynamics calculations allow the simulation of time-dependent phenomena. This facilitates both comparisons with experimental data and the prediction and interpretation of details not easily obtainable from experiments. Simulations thus provide a direct link between theory and experiment, between microscopic details of a system and macroscopic observed properties. Many types of dynamics calculations exist. The most important distinction between the methods and the decision of which method to use can be described in terms of the size and type of molecule/reaction under consideration and the type and level of accuracy required in the final properties of interest. These considerations must be balanced with available computational codes and resources as simulations to mimic ''real-life'' may require many time steps. As indicated in the title, the theme of this thesis is dynamics. The goal is to utilize the best type of dynamics for the system under study while trying to perform dynamics in the most accurate way possible. As a quantum chemist, this involves some level of first principles calculations by default. Very accurate calculations of small molecules and molecular systems are now possible with relatively high-level ab initio quantum chemistry. For example, a quantum chemical potential energy surface (PES) can be developed ''on-the-fly'' with dynamic reaction path (DRP) methods. In this way a classical trajectory is developed without prior knowledge of the PES. In order to treat solvation processes and the condensed phase, large numbers of molecules are required, especially in predicting bulk behavior. The Effective Fragment Potential (EFP) method for solvation decreases the cost of a fully quantum mechanical calculation by dividing a chemical system into an ab initio region that contains the solute and an ''effective fragment'' region that contains the remaining solvent

  11. Realizing thin electromagnetic absorbers for wide incidence angles from commercially available planar circuit materials

    SciTech Connect (OSTI)

    Glover, Brian B; Whites, Kieth W; Radway, Matthew J

    2009-01-01

    In this study, recent work on engineering R-card surface resistivity with printed metallic patterns is extended to the design of thin electromagnetic absorbers. Thin electromagnetic absorbers for wide incidence angles and both polarizations have recently been computationally verified by Luukkonen et al.. These absorbers are analytically modeled high-impedance surfaces with capacitive arrays of square patches implemented with relatively high dielectric constant and high loss substrate. However, the advantages provided by the accurate analytical model are largely negated by the need to obtain high dielectric constant material with accurately engineered loss. Fig. I(c) illustrates full-wave computational results for an absorber without vias engineered as proposed by Luukkonen et al.. Unique values for the dielectric loss are required for different center frequencies. Parameters for the capacitive grid are D=5.0 mm and w=O.l mm for a center frequency of 3.36 GHz. The relative permittivity and thickness is 9.20(1-j0.234) and 1=3.048 mm. Consider a center frequency of5.81 GHz and again 1=3.048 mm, the required parameters for the capacitive grid are D=2.0 mm and w=0.2 mm where the required relative permittivity is now 9.20(1-j0.371) Admittedly, engineered dielectrics are themselves a historically interesting and fruitful research area which benefits today from advances in monolithic fabrication using direct-write of dielectrics with nanometer scale inclusions. However, our objective in the present study is to realize the advantages of the absorber proposed by Luukkonen et al. without resort to engineered lossy dielectrics. Specifically we are restricted to commercially available planer circuit materials without use of in-house direct-write technology or materials engineering capability. The materials considered here are TMM 10 laminate with (35 {mu}lm copper cladding with a complex permittivity 9.20-j0.0022) and Ohmegaply resistor conductor material (maximum 250 {Omega

  12. Phase modulation in RF tag

    DOE Patents [OSTI]

    Carrender, Curtis Lee; Gilbert, Ronald W.

    2007-02-20

    A radio frequency (RF) communication system employs phase-modulated backscatter signals for RF communication from an RF tag to an interrogator. The interrogator transmits a continuous wave interrogation signal to the RF tag, which based on an information code stored in a memory, phase-modulates the interrogation signal to produce a backscatter response signal that is transmitted back to the interrogator. A phase modulator structure in the RF tag may include a switch coupled between an antenna and a quarter-wavelength stub; and a driver coupled between the memory and a control terminal of the switch. The driver is structured to produce a modulating signal corresponding to the information code, the modulating signal alternately opening and closing the switch to respectively decrease and increase the transmission path taken by the interrogation signal and thereby modulate the phase of the response signal. Alternatively, the phase modulator may include a diode coupled between the antenna and driver. The modulating signal from the driver modulates the capacitance of the diode, which modulates the phase of the response signal reflected by the diode and antenna.

  13. Experimental estimation of dynamic plastic bending moments by plastic hinge models

    SciTech Connect (OSTI)

    Sogo, T.; Ujihashi, S.; Matsumoto, H.; Adachi, T.

    1995-12-31

    In the present paper, the experimental estimation of dynamic plastic bending moments for metallic materials is investigated. The three-point bending, test under impact and static loads is applied to aluminum alloy (JIS A6063S) and mild steel (JIS SS400). It is confirmed that tile dynamic bending deformations in three-point bending test can be modeled as a plastic hinge, tile experimental results show that the consumed energies of the specimens are proportional to the bending angles. The ratio of the consumed energy to the bending angle is approximately equal to the plastic bending moment. In the case of aluminum alloy, the dynamic plastic bending moments for the different average bending angular velocities coincide with the static plastic bending moments. On the other hand, in the case of mild steel, the dynamic plastic bending moments are proportional to the average bending angular velocities. As a result, we confirm that the present method based on the plastic hinge model and the consumed energy is efficient for determining tile dynamic plastic bending moment.

  14. Tunable effective nonlinear refractive index of graphene dispersions during the distortion of spatial self-phase modulation

    SciTech Connect (OSTI)

    Wang, Gaozhong; Zhang, Saifeng E-mail: jwang@siom.ac.cn; Cheng, Xin; Dong, Ningning; Zhang, Long; Wang, Jun E-mail: jwang@siom.ac.cn; Umran, Fadhil A.; Coghlan, Darragh; Blau, Werner J.; Cheng, Ya

    2014-04-07

    Spatial self-phase modulation (SSPM) was observed directly when a focused He-Ne laser beam at 633 nm went through liquid-phase-exfoliated graphene dispersions. The diffraction pattern of SSPM was found to be distorted rapidly right after the incident beam horizontally passing through the dispersions, while no distortion for the vertically incident geometry. We show that the distortion is originated mainly from the non-axis-symmetrical thermal convections of the graphene nanosheets induced by laser heating, and the relative change of nonlinear refractive index can be determined by the ratio of the distortion angle to the half-cone angle. Therefore, the effective nonlinear refractive index of graphene dispersions can be tuned by changing the incident intensity and the temperature of the dispersions.

  15. Dynamic Transmission Electron Microscopy

    SciTech Connect (OSTI)

    Evans, James E.; Jungjohann, K. L.; Browning, Nigel D.

    2012-10-12

    Dynamic transmission electron microscopy (DTEM) combines the benefits of high spatial resolution electron microscopy with the high temporal resolution of ultrafast lasers. The incorporation of these two components into a single instrument provides a perfect platform for in situ observations of material processes. However, previous DTEM applications have focused on observing structural changes occurring in samples exposed to high vacuum. Therefore, in order to expand the pump-probe experimental regime to more natural environmental conditions, in situ gas and liquid chambers must be coupled with Dynamic TEM. This chapter describes the current and future applications of in situ liquid DTEM to permit time-resolved atomic scale observations in an aqueous environment, Although this chapter focuses mostly on in situ liquid imaging, the same research potential exists for in situ gas experiments and the successful integration of these techniques promises new insights for understanding nanoparticle, catalyst and biological protein dynamics with unprecedented spatiotemporal resolution.

  16. Phase Transformation in Tantalum under Extreme Laser Deformation

    SciTech Connect (OSTI)

    Lu, C. -H.; Hahn, E. N.; Remington, B. A.; Maddox, B. R.; Bringa, E. M.; Meyers, M. A.

    2015-10-19

    The structural and mechanical response of metals is intimately connected to phase transformations. For instance, the product of a phase transformation (martensite) is responsible for the extraordinary range of strength and toughness of steel, making it a versatile and important structural material. Although abundant in metals and alloys, the discovery of new phase transformations is not currently a common event and often requires a mix of experimentation, predictive computations, and luck. High-energy pulsed lasers enable the exploration of extreme pressures and temperatures, where such discoveries may lie. The formation of a hexagonal (omega) phase was observed in recovered monocrystalline body-centered cubic tantalum of four crystallographic orientations subjected to an extreme regime of pressure, temperature, and strain-rate. This was accomplished using high-energy pulsed lasers. The omega phase and twinning were identified by transmission electron microscopy at 70 GPa (determined by a corresponding VISAR experiment). It is proposed that the shear stresses generated by the uniaxial strain state of shock compression play an essential role in the transformation. Lastly, molecular dynamics simulations show the transformation of small nodules from body-centered cubic to a hexagonal close-packed structure under the same stress state (pressure and shear).

  17. Phase Transformation in Tantalum under Extreme Laser Deformation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lu, C. -H.; Hahn, E. N.; Remington, B. A.; Maddox, B. R.; Bringa, E. M.; Meyers, M. A.

    2015-10-19

    The structural and mechanical response of metals is intimately connected to phase transformations. For instance, the product of a phase transformation (martensite) is responsible for the extraordinary range of strength and toughness of steel, making it a versatile and important structural material. Although abundant in metals and alloys, the discovery of new phase transformations is not currently a common event and often requires a mix of experimentation, predictive computations, and luck. High-energy pulsed lasers enable the exploration of extreme pressures and temperatures, where such discoveries may lie. The formation of a hexagonal (omega) phase was observed in recovered monocrystalline body-centeredmore » cubic tantalum of four crystallographic orientations subjected to an extreme regime of pressure, temperature, and strain-rate. This was accomplished using high-energy pulsed lasers. The omega phase and twinning were identified by transmission electron microscopy at 70 GPa (determined by a corresponding VISAR experiment). It is proposed that the shear stresses generated by the uniaxial strain state of shock compression play an essential role in the transformation. Lastly, molecular dynamics simulations show the transformation of small nodules from body-centered cubic to a hexagonal close-packed structure under the same stress state (pressure and shear).« less

  18. Phase transformation in tantalum under extreme laser deformation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lu, C. -H.; Hahn, E. N.; Remington, B. A.; Maddox, B. R.; Bringa, E. M.; Meyers, M. A.

    2015-10-19

    The structural and mechanical response of metals is intimately connected to phase transformations. For instance, the product of a phase transformation (martensite) is responsible for the extraordinary range of strength and toughness of steel, making it a versatile and important structural material. Although abundant in metals and alloys, the discovery of new phase transformations is not currently a common event and often requires a mix of experimentation, predictive computations, and luck. High-energy pulsed lasers enable the exploration of extreme pressures and temperatures, where such discoveries may lie. The formation of a hexagonal (omega) phase was observed in recovered monocrystalline body-centeredmore » cubic tantalum of four crystallographic orientations subjected to an extreme regime of pressure, temperature, and strain-rate. This was accomplished using high-energy pulsed lasers. The omega phase and twinning were identified by transmission electron microscopy at 70 GPa (determined by a corresponding VISAR experiment). It is proposed that the shear stresses generated by the uniaxial strain state of shock compression play an essential role in the transformation. In conclusion, molecular dynamics simulations show the transformation of small nodules from body-centered cubic to a hexagonal close-packed structure under the same stress state (pressure and shear).« less

  19. Phase-field Modeling of Nucleation in Solid-State Phase Transformation...

    Office of Scientific and Technical Information (OSTI)

    of Nucleation in Solid-State Phase Transformations Citation Details In-Document Search Title: Phase-field Modeling of Nucleation in Solid-State Phase Transformations You ...

  20. Chemical Dynamics, Molecular Energetics, and Kinetics at the Synchrotron

    SciTech Connect (OSTI)

    Leone, Stephen R.; Ahmed, Musahid; Wilson, Kevin R.

    2010-03-14

    Scientists at the Chemical Dynamics Beamline of the Advanced Light Source in Berkeley are continuously reinventing synchrotron investigations of physical chemistry and chemical physics with vacuum ultraviolet light. One of the unique aspects of a synchrotron for chemical physics research is the widely tunable vacuum ultraviolet light that permits threshold ionization of large molecules with minimal fragmentation. This provides novel opportunities to assess molecular energetics and reaction mechanisms, even beyond simple gas phase molecules. In this perspective, significant new directions utilizing the capabilities at the Chemical Dynamics Beamline are presented, along with an outlook for future synchrotron and free electron laser science in chemical dynamics. Among the established and emerging fields of investigations are cluster and biological molecule spectroscopy and structure, combustion flame chemistry mechanisms, radical kinetics and product isomer dynamics, aerosol heterogeneous chemistry, planetary and interstellar chemistry, and secondary neutral ion-beam desorption imaging of biological matter and materials chemistry.

  1. A complex systems analysis of stick-slip dynamics of a laboratory fault

    SciTech Connect (OSTI)

    Walker, David M.; Tordesillas, Antoinette; Small, Michael; Behringer, Robert P.; Tse, Chi K.

    2014-03-15

    We study the stick-slip behavior of a granular bed of photoelastic disks sheared by a rough slider pulled along the surface. Time series of a proxy for granular friction are examined using complex systems methods to characterize the observed stick-slip dynamics of this laboratory fault. Nonlinear surrogate time series methods show that the stick-slip behavior appears more complex than a periodic dynamics description. Phase space embedding methods show that the dynamics can be locally captured within a four to six dimensional subspace. These slider time series also provide an experimental test for recent complex network methods. Phase space networks, constructed by connecting nearby phase space points, proved useful in capturing the key features of the dynamics. In particular, network communities could be associated to slip events and the ranking of small network subgraphs exhibited a heretofore unreported ordering.

  2. Dynamic cable analysis models

    SciTech Connect (OSTI)

    Palo, P.A.; Meggitt, D.J.; Nordell, W.J.

    1983-05-01

    This paper presents a summary of the development and validation of undersea cable dynamics computer models by the Naval Civil Engineering Laboratory (NCEL) under the sponsorship of the Naval Facilities Engineering Command. These models allow for the analysis of both small displacement (strumming) and large displacement (static and dynamic) deformations of arbitrarily configured cable structures. All of the large displacement models described in this paper are available to the public. This paper does not emphasize the theoretical development of the models (this information is available in other references) but emphasizes the various features of the models, the comparisons between model output and experimental data, and applications for which the models have been used.

  3. Substructured multibody molecular dynamics.

    SciTech Connect (OSTI)

    Grest, Gary Stephen; Stevens, Mark Jackson; Plimpton, Steven James; Woolf, Thomas B. (Johns Hopkins University, Baltimore, MD); Lehoucq, Richard B.; Crozier, Paul Stewart; Ismail, Ahmed E.; Mukherjee, Rudranarayan M. (Rensselaer Polytechnic Institute, Troy, NY); Draganescu, Andrei I.

    2006-11-01

    We have enhanced our parallel molecular dynamics (MD) simulation software LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator, lammps.sandia.gov) to include many new features for accelerated simulation including articulated rigid body dynamics via coupling to the Rensselaer Polytechnic Institute code POEMS (Parallelizable Open-source Efficient Multibody Software). We use new features of the LAMMPS software package to investigate rhodopsin photoisomerization, and water model surface tension and capillary waves at the vapor-liquid interface. Finally, we motivate the recipes of MD for practitioners and researchers in numerical analysis and computational mechanics.

  4. Optical and infrared properties of glancing angle-deposited nanostructured tungsten films

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ungaro, Craig; Shah, Ankit; Kravchenko, Ivan; Hensley, Dale K.; Gray, Stephen K.; Gupta, Mool C.

    2015-02-06

    For this study, nanotextured tungsten thin films were obtained on a stainless steel (SS) substrate using the glancing-angle-deposition (GLAD) method. It was found that the optical absorption and thermal emittance of the SS substrate can be controlled by varying the parameters used during deposition. Finite-difference time-domain (FDTD) simulations were used to predict the optical absorption and infrared (IR) reflectance spectra of the fabricated samples, and good agreement was found between simulated and measured data. FDTD simulations were also used to predict the effect of changes in the height and periodicity of the nanotextures. These simulations show that good control overmore » the absorption can be achieved by altering the height and periodicity of the nanostructure. These nanostructures were shown to be temperature stable up to 500°C with the addition of a protective HfO2 layer. Finally, applications for this structure are explored, including a promising application for solar thermal energy systems.« less

  5. Temperature threshold for nanorod structuring of metal and oxide films grown by glancing angle deposition

    SciTech Connect (OSTI)

    Deniz, Derya; Lad, Robert J.

    2011-01-15

    Thin films of tin (Sn), aluminum (Al), gold (Au), ruthenium (Ru), tungsten (W), ruthenium dioxide (RuO{sub 2}), tin dioxide (SnO{sub 2}), and tungsten trioxide (WO{sub 3}) were grown by glancing angle deposition (GLAD) to determine the nanostructuring temperature threshold, {Theta}{sub T}, above which adatom surface diffusion becomes large enough such that nanorod morphology is no longer formed during growth. The threshold was found to be lower in metals compared to oxides. Films were grown using both dc and pulsed dc magnetron sputtering with continuous substrate rotation over the temperature range from 291 to 866 K. Film morphologies, structures, and compositions were characterized by high resolution scanning electron microscopy, x-ray diffraction, and x-ray photoelectron spectroscopy. Films were also grown in a conventional configuration for comparison. For elemental metals, nanorod structuring occurs for films with melting points higher than that of Al (933 K) when grown at room temperature with a rotation rate of {approx}5 rpm, corresponding to a value of {Theta}{sub T}{approx_equal}0.33{+-}0.01. For the oxide films, a value of {Theta}{sub T}{approx_equal}0.5 was found, above which GLAD nanorod structuring does not occur. The existence of a nanostructuring temperature threshold in both metal and oxide GLAD films can be attributed to greater adatom mobilities as temperature is increased resulting in nonkinetically limited film nucleation and growth processes.

  6. Wide-angle ITER-prototype tangential infrared and visible viewing system for DIII-D

    SciTech Connect (OSTI)

    Lasnier, C. J. Allen, S. L.; Ellis, R. E.; Fenstermacher, M. E.; McLean, A. G.; Meyer, W. H.; Morris, K.; Seppala, L. G.; Crabtree, K.; Van Zeeland, M. A.

    2014-11-15

    An imaging system with a wide-angle tangential view of the full poloidal cross-section of the tokamak in simultaneous infrared and visible light has been installed on DIII-D. The optical train includes three polished stainless steel mirrors in vacuum, which view the tokamak through an aperture in the first mirror, similar to the design concept proposed for ITER. A dichroic beam splitter outside the vacuum separates visible and infrared (IR) light. Spatial calibration is accomplished by warping a CAD-rendered image to align with landmarks in a data image. The IR camera provides scrape-off layer heat flux profile deposition features in diverted and inner-wall-limited plasmas, such as heat flux reduction in pumped radiative divertor shots. Demonstration of the system to date includes observation of fast-ion losses to the outer wall during neutral beam injection, and shows reduced peak wall heat loading with disruption mitigation by injection of a massive gas puff.

  7. Investigation of the tripoli porous structure by small-angle neutron scattering

    SciTech Connect (OSTI)

    Avdeev, M. V.; Blagoveshchenskii, N. M.; Garamus, V. M.; Novikov, A. G. Puchkov, A. V.

    2011-12-15

    The characteristics of the tripoli porous structure have been investigated by small-angle neutron scattering (SANS). Tripoli is a finely porous sedimentary rock formed by small spherical opal particles. Its main component is aqueous silica SiO{sub 2} {center_dot} nH{sub 2}O (80-90%). Tripoli is widely used in practice as a working medium for sorption filters and in some other commercial and construction technologies. The shape of the experimental SANS curves indicates the presence of small and large pores in tripoli. The small-pore size was estimated to be {approx}100 Angstrom-Sign . The size of large pores turned out to be beyond the range of neutron wave vector transfers Q that are available for the instrument used; however, their size was indirectly estimated to be {approx}(2000-2500) Angstrom-Sign . The pores of both groups behave as surfacetype fractal scatterers with the fractal dimension D {approx} 2.2-2.6. The densities of pores of these two groups differ by approximately three orders of magnitude ({approx}10{sup 16} and {approx}10{sup 13} cm{sup -3} for small and large pores, respectively); the fraction of large pores amounts to 70-80% of the total pore volume. The found pore characteristics (their densities, sizes, and relative volumes) are in satisfactory agreement (when a comparison is possible) with the absorption data.

  8. The accurate assessment of small-angle X-ray scattering data

    SciTech Connect (OSTI)

    Grant, Thomas D.; Luft, Joseph R.; Carter, Lester G.; Matsui, Tsutomu; Weiss, Thomas M.; Martel, Anne; Snell, Edward H.

    2015-01-23

    Small-angle X-ray scattering (SAXS) has grown in popularity in recent times with the advent of bright synchrotron X-ray sources, powerful computational resources and algorithms enabling the calculation of increasingly complex models. However, the lack of standardized data-quality metrics presents difficulties for the growing user community in accurately assessing the quality of experimental SAXS data. Here, a series of metrics to quantitatively describe SAXS data in an objective manner using statistical evaluations are defined. These metrics are applied to identify the effects of radiation damage, concentration dependence and interparticle interactions on SAXS data from a set of 27 previously described targets for which high-resolution structures have been determined via X-ray crystallography or nuclear magnetic resonance (NMR) spectroscopy. Studies show that these metrics are sufficient to characterize SAXS data quality on a small sample set with statistical rigor and sensitivity similar to or better than manual analysis. The development of data-quality analysis strategies such as these initial efforts is needed to enable the accurate and unbiased assessment of SAXS data quality.

  9. The accurate assessment of small-angle X-ray scattering data

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Grant, Thomas D.; Luft, Joseph R.; Carter, Lester G.; Matsui, Tsutomu; Weiss, Thomas M.; Martel, Anne; Snell, Edward H.

    2015-01-23

    Small-angle X-ray scattering (SAXS) has grown in popularity in recent times with the advent of bright synchrotron X-ray sources, powerful computational resources and algorithms enabling the calculation of increasingly complex models. However, the lack of standardized data-quality metrics presents difficulties for the growing user community in accurately assessing the quality of experimental SAXS data. Here, a series of metrics to quantitatively describe SAXS data in an objective manner using statistical evaluations are defined. These metrics are applied to identify the effects of radiation damage, concentration dependence and interparticle interactions on SAXS data from a set of 27 previously described targetsmore » for which high-resolution structures have been determined via X-ray crystallography or nuclear magnetic resonance (NMR) spectroscopy. Studies show that these metrics are sufficient to characterize SAXS data quality on a small sample set with statistical rigor and sensitivity similar to or better than manual analysis. The development of data-quality analysis strategies such as these initial efforts is needed to enable the accurate and unbiased assessment of SAXS data quality.« less

  10. The accurate assessment of small-angle X-ray scattering data

    SciTech Connect (OSTI)

    Grant, Thomas D.; Luft, Joseph R.; Carter, Lester G.; Matsui, Tsutomu; Weiss, Thomas M.; Martel, Anne; Snell, Edward H.

    2015-01-01

    A set of quantitative techniques is suggested for assessing SAXS data quality. These are applied in the form of a script, SAXStats, to a test set of 27 proteins, showing that these techniques are more sensitive than manual assessment of data quality. Small-angle X-ray scattering (SAXS) has grown in popularity in recent times with the advent of bright synchrotron X-ray sources, powerful computational resources and algorithms enabling the calculation of increasingly complex models. However, the lack of standardized data-quality metrics presents difficulties for the growing user community in accurately assessing the quality of experimental SAXS data. Here, a series of metrics to quantitatively describe SAXS data in an objective manner using statistical evaluations are defined. These metrics are applied to identify the effects of radiation damage, concentration dependence and interparticle interactions on SAXS data from a set of 27 previously described targets for which high-resolution structures have been determined via X-ray crystallography or nuclear magnetic resonance (NMR) spectroscopy. The studies show that these metrics are sufficient to characterize SAXS data quality on a small sample set with statistical rigor and sensitivity similar to or better than manual analysis. The development of data-quality analysis strategies such as these initial efforts is needed to enable the accurate and unbiased assessment of SAXS data quality.

  11. Azimuthal angle dependence of di-jet production in unpolarized hadron scattering

    SciTech Connect (OSTI)

    Lu Zhun; Schmidt, Ivan [Departamento de Fisica, Universidad Tecnica Federico Santa Maria, Valparaiso (Chile) and Center of Subatomic Physics, Valparaiso (Chile)

    2009-08-04

    We study the azimuthal asymmetry of back-to-back di-jet production in unpolarized hadron scattering, arising from the product of two Boer-Mulders functions, which describe the transverse spin distribution of quarks inside an unpolarized hadron. We find that there is a cos {delta}{phi} angular dependence of the di-jet, with {delta}{phi} the difference of the azimuthal angle of tow jets respectively. In the case of J{sub q}+J{sub q} production, we find that there is a color factor enhancement in the gluonic cross-section due to the multiple initial-/final-state interactions, compared with the result from the standard generalized parton model. We estimate the cos {delta}{phi} asymmetry of the total di-jet production at RHIC, showing that the color factor enhancement in the azimuthal asymmetric cross section of J{sub q}+J{sub q} production will reverse the sign of the asymmetry.

  12. Density of hydrophobically confined deeply cooled water investigated by small angle X-ray scattering

    SciTech Connect (OSTI)

    Liu, Kao-Hsiang; Zhang, Yang; Jeng, U-Ser; Mou, Chung-Yuan

    2015-09-07

    Water’s behavior near hydrophobic surfaces has attracted great attention due to chemical and geological applications. Here, we report small angle X-ray scattering (SAXS) studies of water confined in the hydrophobic nanoporous carbon material, CMK-1-14, from ambient to deeply cooled temperatures. By monitoring the scattering intensity of the first Bragg peak, which is directly related to the scattering length density contrast between the carbon matrix and the confined water, the average density of the hydrophobically confined water was determined from 300 K to 150 K at ambient pressure. Furthermore, differential scanning calorimetry and X-ray diffraction measurements showed that the majority of such hydrophobically confined water did not crystallize in the investigated temperature range. By exploiting the fast speed of SAXS measurements and the continuous temperature ramping, the average density profile and the deduced thermal expansion coefficient (α{sub p}) were obtained. We found that the well-known density maximum of water at 277 K downshifted to 260 K, and the density minimum which has been observed in hydrophilic confinement disappeared. In addition, the previously measured large density decreasing of 18% at low temperature was recalibrated to a more reasonable 10% instead. Consequently, the recalculated α{sub p} peak was found to be quite similar to that of the water confined in hydrophilic MCM-41-S-15 suggesting an intrinsic property of water, which does not sensitively depend on the confinement surface.

  13. Experimental determination of the complex stiffness tensor and Euler angles in anisotropic media using ultrasonic waves

    SciTech Connect (OSTI)

    Alaoui-Ismaili, N.; Guy, P.; Chassignole, B.

    2014-02-18

    The aim of this work is to measure the complex elastic tensor and Euler angles in very complex anisotropic media like austenitic steel welds, by inverse problem resolution from experimental data. The obtained experimental characteristics of the anisotropic material will be injected in a FE code developed by EDF enabling the simulation of an actual ultrasonic NDE of welds. The present work aims to provide reliable input data to the 3D future development of the code. In particular, this complex elastic tensor will allow to predict by modeling beam skewing ant attenuation in an austenitic weld. The investigation of such anisotropic media is very complex because of the directional dependency of the elastic stiffness tensor. Then we will discuss the use of a hybrid genetic algorithm to overcome this difficulty. The identification method is based on waveforms spectra reconstruction associated to a physical model describing wave propagation in plates, during underwater measurements. The entire procedure is qualified and validated using simulated data. Moreover, a comparison of the estimated elastic coefficients with literature values and ultrasonic measurements obtained in transmission is also given, at the end of the paper.

  14. Density of hydrophobically confined deeply cooled water investigated by small angle X-ray scattering

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Liu, Kao-Hsiang; Zhang, Yang; Jeng, U-Ser; Mou, Chung-Yuan

    2015-09-07

    The behavior of water near hydrophobic surfaces has attracted great attention due to chemical and geological applications. Here, we report small angle X-ray scattering (SAXS) studies of water confined in the hydrophobic nanoporous carbon material, CMK-1-14, from ambient to deeply cooled temperatures. Moreover, by monitoring the scattering intensity of the first Bragg peak, which is directly related to the scattering length density contrast between the carbon matrix and the confined water, the average density of the hydrophobically confined water was determined from 300 K to 150 K at ambient pressure. Furthermore, differential scanning calorimetry and X-ray diffraction measurements showed thatmore » the majority of such hydrophobically confined water did not crystallize in the investigated temperature range. By exploiting the fast speed of SAXS measurements and the continuous temperature ramping, the average density profile and the deduced thermal expansion coefficient (alpha(p)) were obtained. We found that the well-known density maximum of water at 277 K downshifted to 260 K, and the density minimum which has been observed in hydrophilic confinement disappeared. Additionally, the previously measured large density decreasing of 18% at low temperature was recalibrated to a more reasonable 10% instead. Consequently, the recalculated ap peak was found to be quite similar to that of the water confined in hydrophilic MCM-41-S-15 suggesting an intrinsic property of water, which does not sensitively depend on the confinement surface.« less

  15. Density of hydrophobically confined deeply cooled water investigated by small angle X-ray scattering

    SciTech Connect (OSTI)

    Liu, Kao-Hsiang; Zhang, Yang; Jeng, U-Ser; Mou, Chung-Yuan

    2015-09-07

    The behavior of water near hydrophobic surfaces has attracted great attention due to chemical and geological applications. Here, we report small angle X-ray scattering (SAXS) studies of water confined in the hydrophobic nanoporous carbon material, CMK-1-14, from ambient to deeply cooled temperatures. Moreover, by monitoring the scattering intensity of the first Bragg peak, which is directly related to the scattering length density contrast between the carbon matrix and the confined water, the average density of the hydrophobically confined water was determined from 300 K to 150 K at ambient pressure. Furthermore, differential scanning calorimetry and X-ray diffraction measurements showed that the majority of such hydrophobically confined water did not crystallize in the investigated temperature range. By exploiting the fast speed of SAXS measurements and the continuous temperature ramping, the average density profile and the deduced thermal expansion coefficient (alpha(p)) were obtained. We found that the well-known density maximum of water at 277 K downshifted to 260 K, and the density minimum which has been observed in hydrophilic confinement disappeared. Additionally, the previously measured large density decreasing of 18% at low temperature was recalibrated to a more reasonable 10% instead. Consequently, the recalculated ap peak was found to be quite similar to that of the water confined in hydrophilic MCM-41-S-15 suggesting an intrinsic property of water, which does not sensitively depend on the confinement surface.

  16. Multi-satellite simultaneous observations of magnetopause and atmospheric losses of radiation belt electrons during an intense solar wind dynamic pressure pulse

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Xiang, Zheng; Ni, Binbin; Zhou, Chen; Zou, Zhengyang; Gu, Xudong; Zhao, Zhengyu; Zhang, Xianguo; Zhang, Xiaoxin; Zhang, Shenyi; Li, Xinlin; et al

    2016-05-03

    Radiation belt electron flux dropouts are a kind of drastic variation in the Earth's magnetosphere, understanding of which is of both scientific and societal importance. We report multi-satellite simultaneous observations of magnetopause and atmospheric losses of radiation belt electrons during an event of intense solar wind dynamic pressure pulse, using electron flux data from a group of 14 satellites. Moreover, when the pulse occurred, magnetopause and atmospheric loss could take effect concurrently contributing to the electron flux dropout. Losses through the magnetopause were observed to be efficient and significant at L ≳ 5, owing to the magnetopause intrusion into Lmore » ~6 and outward radial diffusion associated with sharp negative gradient in electron phase space density. Losses to the atmosphere were directly identified from the precipitating electron flux observations, for which pitch angle scattering by plasma waves could be mainly responsible. While the convection and substorm injections strongly enhanced the energetic electron fluxes up to hundreds of keV, they could delay other than avoid the occurrence of electron flux dropout at these energies. Finally, we demonstrate that the pulse-time radiation belt electron flux dropout depends strongly on the specific interplanetary and magnetospheric conditions and that losses through the magnetopause and to the atmosphere and enhancements of substorm injection play an essential role in combination, which should be incorporated as a whole into future simulations for comprehending the nature of radiation belt electron flux dropouts.« less

  17. Phase diagram of power law and Lennard-Jones systems: Crystal phases

    SciTech Connect (OSTI)

    Travesset, Alex

    2014-10-28

    An extensive characterization of the low temperature phase diagram of particles interacting with power law or Lennard-Jones potentials is provided from Lattice Dynamical Theory. For power law systems, only two lattice structures are stable for certain values of the exponent (or softness) (A15, body centered cube (bcc)) and two more (face centered cubic (fcc), hexagonal close packed (hcp)) are always stable. Among them, only the fcc and bcc are equilibrium states. For Lennard-Jones systems, the equilibrium states are either hcp or fcc, with a coexistence curve in pressure and temperature that shows reentrant behavior. The hcp solid never coexists with the liquid. In all cases analyzed, for both power law and Lennard-Jones potentials, the fcc crystal has higher entropy than the hcp. The role of anharmonic terms is thoroughly analyzed and a general thermodynamic integration to account for them is proposed.

  18. Correlated lateral phase separations in stacks of lipid membranes

    SciTech Connect (OSTI)

    Hoshino, Takuma; Komura, Shigeyuki; Andelman, David

    2015-12-28

    Motivated by the experimental study of Tayebi et al. [Nat. Mater. 11, 1074 (2012)] on phase separation of stacked multi-component lipid bilayers, we propose a model composed of stacked two-dimensional Ising spins. We study both its static and dynamical features using Monte Carlo simulations with Kawasaki spin exchange dynamics that conserves the order parameter. We show that at thermodynamical equilibrium, due to strong inter-layer correlations, the system forms a continuous columnar structure for any finite interaction across adjacent layers. Furthermore, the phase separation shows a faster dynamics as the inter-layer interaction is increased. This temporal behavior is mainly due to an effective deeper temperature quench because of the larger value of the critical temperature, T{sub c}, for larger inter-layer interaction. When the temperature ratio, T/T{sub c}, is kept fixed, the temporal growth exponent does not increase and even slightly decreases as a function of the increased inter-layer interaction.

  19. Single beam Fourier transform digital holographic quantitative phase microscopy

    SciTech Connect (OSTI)

    Anand, A. Chhaniwal, V. K.; Mahajan, S.; Trivedi, V.; Faridian, A.; Pedrini, G.; Osten, W.; Dubey, S. K.; Javidi, B.

    2014-03-10

    Quantitative phase contrast microscopy reveals thickness or height information of a biological or technical micro-object under investigation. The information obtained from this process provides a means to study their dynamics. Digital holographic (DH) microscopy is one of the most used, state of the art single-shot quantitative techniques for three dimensional imaging of living cells. Conventional off axis DH microscopy directly provides phase contrast images of the objects. However, this process requires two separate beams and their ratio adjustment for high contrast interference fringes. Also the use of two separate beams may make the system more vulnerable to vibrations. Single beam techniques can overcome these hurdles while remaining compact as well. Here, we describe the development of a single beam DH microscope providing whole field imaging of micro-objects. A hologram of the magnified object projected on to a diffuser co-located with a pinhole is recorded with the use of a commercially available diode laser and an arrayed sensor. A Fourier transform of the recorded hologram directly yields the complex amplitude at the image plane. The method proposed was investigated using various phase objects. It was also used to image the dynamics of human red blood cells in which sub-micrometer level thickness variation were measurable.

  20. Relationship between nanocrystalline and amorphous microstructures by molecular dynamics simulation

    SciTech Connect (OSTI)

    Keblinski, P.; Phillpot, S.R.; Wolf, D.; Gleiter, H.

    1996-08-01

    A recent molecular dynamics simulation method for growth of fully dense nanocrystalline materials crystallized from melt was used with the Stillinger-Weber three-body potential to synthesize nanocrystalline Si with a grain size up to 75{Angstrom}. Structures of the highly constrained grain boundaries (GBs), triple lines, and point grain junctions were found to be highly disordered and similar to the structure of amorphous Si. These and earlier results for fcc metals suggest that a nanocrystalline microstructure may be viewed as a two-phase system, namely an ordered crystalline phase in the grain interiors connected by an amorphous, intergranular, glue-like phase. Analysis of the structures of bicrystalline GBs in the same materials reveals the presence of an amorphous intergranular equilibrium phase only in the high-energy but not the low-energy GBs, suggesting that only high-energy boundaries are present in nanocrystalline microstructures.