National Library of Energy BETA

Sample records for dyk dairy anaerobic

  1. Anaerobic digestion of the liquid fraction of dairy manure

    SciTech Connect (OSTI)

    Haugen, V.; Dahlberg, S.; Lindley, J.A.

    1983-06-01

    The authors tested several solid liquid separation systems suitable for processing dairy manure prior to anaerobic digestion. None of the systems tried have completely satisfied the requirements. Evaluated effects of separation on biogas production. Unseparated dairy manure produced more biogas than the liquid fraction.

  2. A mixed plug flow anaerobic digester for dairy manure

    SciTech Connect (OSTI)

    Cournoyer, M.S.; Delisle, U.; Ferland, D.; Chagnon, R.

    1985-01-01

    In 1982, a ''mixed plug-flow'' anaerobic digester has been built to produce biogas from the manure of 350 dairy cows and, subsequently, to produce electricity for on-farm use only. This paper describes the digester and presents the main results of one year of technical follow-up.

  3. Two-phase anaerobic digestion of screened dairy manure

    SciTech Connect (OSTI)

    Lo, K.V.; Liao, P.H.

    1985-01-01

    The paper describes the operating results of a two-phase process that separate the acid-phase and methane-phase digestion of screened dairy manure under mesophilic temperature. Acidogenesis pretreatment prior to the methanogenic fixed-film reactor phase resulted in a significant increase in methane yield.

  4. Determination of operating conditions in an anaerobic acid-phase reactor treating dairy wastewater

    SciTech Connect (OSTI)

    Kasapgil, B.; Ince, O.; Anderson, G.K.

    1996-11-01

    Anaerobic digestion of organic material is a multistep process. Two groups of bacteria, namely acidogenic and methanogenic bacteria, are responsible for the acidification and for the methane formation, respectively. The growth requirements of the two groups of bacteria are rather different. In order to create optimum conditions for the process, it was first proposed to separate the process into two phases. Operating variables applicable for the selection and enrichment of microbial populations in phased digesters include digester loading, hydraulic retention time (HRT), pH, temperature, reactor design, and operating mode. By proper manipulation of these operating parameters it is possible to prevent any significant growth of methane bacteria and at the same time achieve the required level of acidification in the first reactor. Further enrichment of two cultures is possible by biomass recycle around each phase. Since the 1970s, phase separation has been introduced into anaerobic digestion technology. However, data concerning the optimization of operating conditions in both acidogenic and methanogenic phase reactors are scarce. This study was therefore carried out for the purposes given below. These were: (1) to determine the best combination of pH and temperature within the ranges studied for the pre-acidification of dairy wastewater; (2) to determine the maximum acidogenic conversion from COD to VFAs, and (3) to determine the changes in the distribution of major VFAs being produced during the pre-acidification of dairy wastewater.

  5. Impacts of microwave pretreatments on the semi-continuous anaerobic digestion of dairy waste activated sludge

    SciTech Connect (OSTI)

    Uma Rani, R.; Adish Kumar, S.; Kaliappan, S.; Yeom, IckTae; Rajesh Banu, J.

    2013-05-15

    Highlights: ► Microwave pretreatment of dairy WAS was studied. ► MW pretreatment at 70% intensity for 12 min, COD solubilization was 18.6%. ► Biogas production and SS reduction was 35% and 14% higher than control. ► In digester at 15 days SRT with medium OLR, SS and VS reduction was 67% and 64%. ► Biogas and methane production was 57% and 49% higher than control, in digesters. - Abstract: Microwave (MW) irradiation is one of the new and possible methods used for pretreating the sludge. Following its use in different fields, this MW irradiation method has proved to be more appropriate in the field of environmental research. In this paper, we focused on the effects of MW irradiation at different intensities on solubilization, biodegradation and anaerobic digestion of sludge from the dairy sludge. The changes in the soluble fractions of the organic matter, the biogas yield, the methane content in the biogas were used as control parameters for evaluating the efficiency of the MW pretreatment. Additionally, the energetic efficiency was also examined. In terms of an energetic aspect, the most economical pretreatment of sludge was at 70% intensity for 12 min irradiation time. At this, COD solubilization, SS reduction and biogas production were found to be 18.6%, 14% and 35% higher than the control, respectively. Not only the increase in biogas production was investigated, excluding protein and carbohydrate hydrolysis was also performed successfully by this microwave pretreatment even at low irradiation energy input. Also, experiments were carried out in semi continuous anaerobic digesters, with 3.5 L working volume. Combining microwave pretreatment with anaerobic digestion led to 67%, 64% and 57% of SS reduction, VS reduction and biogas production higher than the control, respectively.

  6. CX-005171: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Van Dyk Dairy Anaerobic DigesterCX(s) Applied: A9, B3.8, B5.1Date: 02/02/2011Location(s): Lynden, WashingtonOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

  7. CX-005219: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Van Dyk Dairy Anaerobic DigesterCX(s) Applied: A9, B3.8, B5.1Date: 02/16/2011Location(s): Lynden, WashingtonOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

  8. Anaerobic Digestion | Open Energy Information

    Open Energy Info (EERE)

    Anaerobic Digestion (Redirected from - Anaerobic Digestion) Jump to: navigation, search TODO: Add description List of Anaerobic Digestion Incentives Retrieved from "http:...

  9. Anaerobic thermophilic culture

    DOE Patents [OSTI]

    Ljungdahl, Lars G.; Wiegel, Jurgen K. W.

    1981-01-01

    A newly discovered thermophilic anaerobe is described that was isolated in a biologically pure culture and designated Thermoanaerobacter ethanolicus ATCC 3/550. T. Ethanolicus is cultured in aqueous nutrient medium under anaerobic, thermophilic conditions and is used in a novel process for producing ethanol by subjecting carbohydrates, particularly the saccharides, to fermentation action of the new microorganism in a biologically pure culture.

  10. Comparison of different liquid anaerobic digestion effluents as inocula and nitrogen sources for solid-state batch anaerobic digestion of corn stover

    SciTech Connect (OSTI)

    Xu Fuqing; Shi Jian; Lv Wen; Yu Zhongtang; Li Yebo

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer Compared methane production of solid AD inoculated with different effluents. Black-Right-Pointing-Pointer Food waste effluent (FWE) had the largest population of acetoclastic methanogens. Black-Right-Pointing-Pointer Solid AD inoculated with FWE produced the highest methane yield at F/E ratio of 4. Black-Right-Pointing-Pointer Dairy waste effluent (DWE) was rich of cellulolytic and xylanolytic bacteria. Black-Right-Pointing-Pointer Solid AD inoculated with DWE produced the highest methane yield at F/E ratio of 2. - Abstract: Effluents from three liquid anaerobic digesters, fed with municipal sewage sludge, food waste, or dairy waste, were evaluated as inocula and nitrogen sources for solid-state batch anaerobic digestion of corn stover in mesophilic reactors. Three feedstock-to-effluent (F/E) ratios (i.e., 2, 4, and 6) were tested for each effluent. At an F/E ratio of 2, the reactor inoculated by dairy waste effluent achieved the highest methane yield of 238.5 L/kgVS{sub feed}, while at an F/E ratio of 4, the reactor inoculated by food waste effluent achieved the highest methane yield of 199.6 L/kgVS{sub feed}. The microbial population and chemical composition of the three effluents were substantially different. Food waste effluent had the largest population of acetoclastic methanogens, while dairy waste effluent had the largest populations of cellulolytic and xylanolytic bacteria. Dairy waste also had the highest C/N ratio of 8.5 and the highest alkalinity of 19.3 g CaCO{sub 3}/kg. The performance of solid-state batch anaerobic digestion reactors was closely related to the microbial status in the liquid anaerobic digestion effluents.

  11. Anaerobic Digestion Basics

    Broader source: Energy.gov [DOE]

    Anaerobic digestion is an alternative to composting for a wide range of organic substances including livestock manure, municipal wastewater solids, food waste, industrial wastewater and residuals, fats, oils and grease, and other organic waste streams.

  12. The anaerobic digestion process

    SciTech Connect (OSTI)

    Rivard, C.J.; Boone, D.R.

    1996-01-01

    The microbial process of converting organic matter into methane and carbon dioxide is so complex that anaerobic digesters have long been treated as {open_quotes}black boxes.{close_quotes} Research into this process during the past few decades has gradually unraveled this complexity, but many questions remain. The major biochemical reactions for forming methane by methanogens are largely understood, and evolutionary studies indicate that these microbes are as different from bacteria as they are from plants and animals. In anaerobic digesters, methanogens are at the terminus of a metabolic web, in which the reactions of myriads of other microbes produce a very limited range of compounds - mainly acetate, hydrogen, and formate - on which the methanogens grow and from which they form methane. {open_quotes}Interspecies hydrogen-transfer{close_quotes} and {open_quotes}interspecies formate-transfer{close_quotes} are major mechanisms by which methanogens obtain their substrates and by which volatile fatty acids are degraded. Present understanding of these reactions and other complex interactions among the bacteria involved in anaerobic digestion is only now to the point where anaerobic digesters need no longer be treated as black boxes.

  13. Anaerobic thermophilic culture system

    DOE Patents [OSTI]

    Ljungdahl, Lars G.; Wiegel, Jurgen K. W.

    1981-01-01

    A mixed culture system of the newly discovered microorganism Thermoanaerobacter ethanolicus ATCC31550 and the microorganism Clostridium thermocellum ATCC31549 is described. In a mixed nutrient culture medium that contains cellulose, these microorganisms have been coupled and cultivated to efficiently ferment cellulose to produce recoverable quantities of ethanol under anaerobic, thermophilic conditions.

  14. Dairy Analytics and Nutrient Analysis (DANA) Prototype System User Manual

    SciTech Connect (OSTI)

    Sam Alessi; Dennis Keiser

    2012-10-01

    This document is a user manual for the Dairy Analytics and Nutrient Analysis (DANA) model. DANA provides an analysis of dairy anaerobic digestion technology and allows users to calculate biogas production, co-product valuation, capital costs, expenses, revenue and financial metrics, for user customizable scenarios, dairy and digester types. The model provides results for three anaerobic digester types; Covered Lagoons, Modified Plug Flow, and Complete Mix, and three main energy production technologies; electricity generation, renewable natural gas generation, and compressed natural gas generation. Additional options include different dairy types, bedding types, backend treatment type as well as numerous production, and economic parameters. DANA’s goal is to extend the National Market Value of Anaerobic Digester Products analysis (informa economics, 2012; Innovation Center, 2011) to include a greater and more flexible set of regional digester scenarios and to provide a modular framework for creation of a tool to support farmer and investor needs. Users can set up scenarios from combinations of existing parameters or add new parameters, run the model and view a variety of reports, charts and tables that are automatically produced and delivered over the web interface. DANA is based in the INL’s analysis architecture entitled Generalized Environment for Modeling Systems (GEMS) , which offers extensive collaboration, analysis, and integration opportunities and greatly speeds the ability construct highly scalable web delivered user-oriented decision tools. DANA’s approach uses server-based data processing and web-based user interfaces, rather a client-based spreadsheet approach. This offers a number of benefits over the client-based approach. Server processing and storage can scale up to handle a very large number of scenarios, so that analysis of county, even field level, across the whole U.S., can be performed. Server based databases allow dairy and digester

  15. Anaerobic digestion process

    SciTech Connect (OSTI)

    Ishida, M.; Haga, R.; Odawara, Y.

    1982-10-19

    An algae culture grown on the water from the digested slurry of a biogasification plant serves as a means of removing CO/sub 2/ from the methane stream while purifying the wastewater and providing more biomass for the anaerobic digestion plant. Tested on a sewage-sludge digestion system, the proposed process improved the methane yield by 32% and methane concentration by 53-98 vol % while lowering the concentration of nitrogen and phosphorus in the final water.

  16. Colorado Dairy Industry Boosts Energy Efficiency | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Through the Colorado Dairy and Irrigation Efficiency Pilot, eight dairies received a free energy audit and energy-saving recommendations. If the farms followed the recommendations, ...

  17. Economic viability of anaerobic digestion

    SciTech Connect (OSTI)

    Wellinger, A.

    1996-01-01

    The industrial application of anaerobic digestion is a relatively new, yet proven waste treatment technology. Anaerobic digestion reduces and upgrades organic waste, and is a good way to control air pollution as it reduces methane and nitrous gas emissions. For environmental and energy considerations, anaerobic digestion is a nearly perfect waste treatment process. However, its economic viability is still in question. A number of parameters - type of waste (solid or liquid), digester system, facility size, product quality and end use, environmental requirements, cost of alternative treatments (including labor), and interest rates - define the investment and operating costs of an anaerobic digestion facility. Therefore, identical facilities that treat the same amount and type of waste may, depending on location, legislation, and end product characteristics, reveal radically different costs. A good approach for evaluating the economics of anaerobic digestion is to compare it to treatment techniques such as aeration or conventional sewage treatment (for industrial wastewater), or composting and incineration (for solid organic waste). For example, the cost (per ton of waste) of in-vessel composting with biofilters is somewhat higher than that of anaerobic digestion, but the investment costs 1 1/2 to 2 times more than either composting or anaerobic digestion. Two distinct advantages of anaerobic digestion are: (1) it requires less land than either composting or incinerating, which translates into lower costs and milder environmental and community impacts (especially in densely populated areas); and (2) it produces net energy, which can be used to operate the facility or sold to nearby industries.

  18. Economic viability of anaerobic digestion

    SciTech Connect (OSTI)

    Wellinger, A.

    1995-11-01

    The industrial application of anaerobic digestion is a relatively new, yet proven waste treatment technology. Anaerobic digestion reduces and upgrades organic waste, and is a good way to control air pollution as it reduces methane and nitrous gas emissions. For environmental and energy considerations, anaerobic digestion is a nearly perfect waste treatment process. However, its economic viability is still in question. A number of parameters-type of waste (solid or liquid), digester system, facility size, product quality and end use, environmental requirements, cost of alternative treatments (including labor), and interest rates-define the investment and operating costs of anaerobic digestion facility. Therefore, identical facilities that treat the same amount and type of waste may, depending on location, legislation, and end product characteristics, reveal radically different costs. A good approach for evaluating the economics of anaerobic digestion is to compare it to treatment techniques such as aeration or conventional sewage treatment (for industrial wastewater), or composting and incineration (for solid organic waste). For example, the cost (per ton of waste) of in-vessel composting with biofilters in somewhat higher than that of anaerobic digestion, but the investment costs 11/2 to 2 times more than either composting or anaerobic digestion. Two distinct advantages of anaerobic digestion are: (1) it requires less land than either composting or incinerating, which translates into lower costs and milder environmental and community impacts (especially in densely populated areas); and (2) it produces net energy, which can be used to operate the facility or sold to nearby industries.

  19. Anaerobic digestion of livestock manures: A current opportunities casebook

    SciTech Connect (OSTI)

    Lusk, P.D.

    1995-08-01

    Growth and concentration of the livestock industry creates new opportunities for proper disposal of the large quantities of manures generated at dairy, swine, and poultry farms. One manure management system provides not only pollution prevention but also converts a problem into a new profit center. Economic evaluations and case studies of operating systems indicate that the anaerobic digestion of livestock manures is a commercially-available bioconversion technology with considerable potential for providing profitable co-products, including a renewable fuel. An introduction to the engineering economies of these technologies is provided, based on estimates of digesters that generate electricity from the recovered methane. Regression models used to estimate digester cost and internal rate of return are developed from the evaluations. Case studies of operating digesters, including project and maintenance histories, and the operator`s {open_quotes}lessons learned{close_quotes}, are provided as a reality check.

  20. Complete genome sequences for the anaerobic, extremely thermophilic...

    Office of Scientific and Technical Information (OSTI)

    Complete genome sequences for the anaerobic, extremely thermophilic plant ... Title: Complete genome sequences for the anaerobic, extremely thermophilic plant ...

  1. Anaerobic treatment of food wastes

    SciTech Connect (OSTI)

    Criner, G. )

    1991-04-01

    This article describes a research project at the University of Maine in which food wastes from the University cafeteria salad bar are processed in the anaerobic facility which normally treats only animal wastes. The project has benefited the University in several ways: avoidance of waste disposal fees; increased electricity co-generated from the biogas process; and use of the residual as fertilizer. An economic analysis indicated that the estimated cost of anaerobic treatment of the salad bar wastes was $4520/yr and benefits were $4793/yr. Since the digester was already in use, this cost was not factored into the analysis. Further studies are being planned.

  2. Aerobic versus anaerobic wastewater treatment

    SciTech Connect (OSTI)

    Robinson, D.G.; White, J.E.; Callier, A.J.

    1997-04-01

    Biological wastewater treatment facilities are designed to emulate the purification process that occurs naturally in rivers, lakes and streams. In the simulated environment, conditions are carefully manipulated to spur the degradation of organic contaminants and stabilize the residual sludge. Whether the treatment process is aerobic or anaerobic is determined by a number of factors, including the composition of the wastewater, the degree of stabilization required for environmental compliance and economic viability. Because anaerobic digestion is accomplished without oxygen in a closed system, it is economical for pretreatment of high-strength organic sludge. Before the effluent can be discharged, however, followup treatment using an aerobic process is required. Though it has the drawback of being energy intensive, aerobic processing, the aeration of organic sludges in an open tank, is the primary method for treatment of industrial and municipal wastewater. Aerobic processes are more stable than anaerobic approaches and can be done rather simply, particularly with trickling filters. Gradually, the commercialization of modular systems that are capable of aerobic and anaerobic digestion will blur the distinctions between the two processes. Systems that boast those capabilities are available now.

  3. Anaerobic pretreatment of pharmaceutical wastewaters

    SciTech Connect (OSTI)

    Not Available

    1990-10-01

    The US Department of Energy's (DOE) Office of Industrial Technologies (OIT) sponsors research and development (R D) to improve the energy efficiency of American industry and to provide for fuel flexibility. The pharmaceutical industry generates considerable amounts of wastewater that require extensive treatment before they are released. A common method of disposal is aerobic biological treatment, but this method is energy intensive and expensive. An alternative process--anaerobic digestion--costs less, saves energy, generates less sludge requiring disposal, and produces a usable fuel--methane. OIT and HydroQual, Inc., with Merck Co. recently completed a joint project that demonstrated the anaerobic biological treatment of wastewaters generated by the pharmaceutical industry. The objectives of the project were to demonstrate how the anaerobic biological process and the resulting energy savings can apply to the pharmaceutical industry and how effective and beneficial the process is to sludge management operations at pharmaceutical plants. This technical case study provides an overview of the DOE-HydroQual-Merck R D project and highlights the field tests done on pilot-scale anaerobic wastewater treatment units at a pharmaceutical plant. This document makes field test and data analysis results available to other researchers and private industry. It discusses project status; summarizes field-test efforts; and reviews potential technology impacts in terms of commercial applications, benefits, and full-scale system economics. 5 figs., 1 tab.

  4. Anaerobic MBR: Challenges and Opportunities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    8-19, 2015 Anaerobic MBR: Challenges & Opportunities Art Umble, PhD, PE, BCEE Americas Wastewater Practice Leader Symposium: Hydrogen, Hydrocarbons, and Bioproduct Precursors from Wastewaters National Renewable Energy Laboratory Washington, DC 2 Outline ■ Challenge for Municipal Wastewater ■ Membrane Fouling ■ Energy Potential ■ System Economics ■ Research Needs Challenges: Municipal Wastewater Treatment Using AnMBR * Low temperatures in municipal wastewaters * Low strength

  5. Alternative Fuels Data Center: Smith Dairy Deploys Natural Gas...

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Smith Dairy Deploys Natural Gas Vehicles and Fueling Infrastructure in the Midwest to someone by E-mail Share Alternative Fuels Data Center: Smith Dairy Deploys Natural Gas ...

  6. Enhanced Anaerobic Digestion and Hydrocarbon Precursor Production...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Enhanced Anaerobic Digestion and Hydrocarbon Precursor Production from Sewage Sludge Breakout Session 2-C: Biogas and Beyond: Challenges and Opportunities for Advanced Biofuels ...

  7. Enhanced Anaerobic Digestion and Hydrocarbon Precursor Production...

    Broader source: Energy.gov (indexed) [DOE]

    ... - Journal Papers 1. An overview of biogas production and utilization at full-scale ... review) 2. Producing pipeline-quality biomethane via anaerobic digestion of sludge ...

  8. A Design-Builder's Perspective: Anaerobic Digestion, Forest County...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A Design-Builder's Perspective: Anaerobic Digestion, Forest County Potawatomi Community - A Case Study A Design-Builder's Perspective: Anaerobic Digestion, Forest County Potawatomi...

  9. Biomass Program Perspectives on Anaerobic Digestion and Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biomass Program Perspectives on Anaerobic Digestion and Fuel Cell Integration at Biorefineries Biomass Program Perspectives on Anaerobic Digestion and Fuel Cell Integration at...

  10. Fair Oaks Dairy Farms Cellulosic Ethanol Technology Review Summary

    SciTech Connect (OSTI)

    Andrew Wold; Robert Divers

    2011-06-23

    At Fair Oaks Dairy, dried manure solids (''DMS'') are currently used as a low value compost. United Power was engaged to evaluate the feasibility of processing these DMS into ethanol utilizing commercially available cellulosic biofuels conversion platforms. The Fair Oaks Dairy group is transitioning their traditional ''manure to methane'' mesophilic anaerobic digester platform to an integrated bio-refinery centered upon thermophilic digestion. Presently, the Digested Manure Solids (DMS) are used as a low value soil amendment (compost). United Power evaluated the feasibility of processing DMS into higher value ethanol utilizing commercially available cellulosic biofuels conversion platforms. DMS was analyzed and over 100 potential technology providers were reviewed and evaluated. DMS contains enough carbon to be suitable as a biomass feedstock for conversion into ethanol by gasification technology, or as part of a conversion process that would include combined heat and power. In the first process, 100% of the feedstock is converted into ethanol. In the second process, the feedstock is combusted to provide heat to generate electrical power supporting other processes. Of the 100 technology vendors evaluated, a short list of nine technology providers was developed. From this, two vendors were selected as finalists (one was an enzymatic platform and one was a gasification platform). Their selection was based upon the technical feasibility of their systems, engineering expertise, experience in commercial or pilot scale operations, the ability or willingness to integrate the system into the Fair Oaks Biorefinery, the know-how or experience in producing bio-ethanol, and a clear path to commercial development.

  11. Biochemically enhanced hybrid anaerobic reactor

    SciTech Connect (OSTI)

    Stover, E.L.

    1993-07-20

    A process is described for treatment of highly contaminated industrial waste waters, comprising: introducing influent wastewater into a lower suspended growth zone of a digestion vessel wherein anaerobic digestion commences; receiving up-flow of digestion product through a middle fixed film zone of the digestion vessel to effect solids/liquids/gas separation; drawing off waste solids from the floor of the digester vessel at a predetermined rate of removal; receiving liquids/gas up-flow through an upper quiescent zone of the digestion vessel; drawing off treated effluent from said quiescent zone; selecting a portion of treated effluent for conduction via recycle line back to said point of introduction for mixture with said influent wastewater; and injecting selected ones of plural process enhancement chemicals in predetermined amounts into said recycle line, which plurality includes preselected amounts of Mg(OH)[sub 2] and iron chloride to effect cleaning of the biogas.

  12. Anaerobic bioprocessing of low rank coals

    SciTech Connect (OSTI)

    Jain, M.K.; Narayan, R.; Han, O.

    1991-01-01

    significant achievements were: (1) Coal decarboxylation was achieved by batch bioreactor systems using adapted anaerobic microbial consortium. (2) Two new isolates with coal decarboxylation potential were obtained from adapted microbial consortia. (3) CHN and TG anaysis of anaerobically biotreated coals have shown an increase in the H/C ratio and evolution rate of volatile carbon which could be a better feedstock for the liquefaction process.

  13. ANAEROBIC BIOLOGICAL TREATMENT OF PRODUCED WATER

    SciTech Connect (OSTI)

    John R. Gallagher

    2001-07-31

    During the production of oil and gas, large amounts of water are brought to the surface and must be disposed of in an environmentally sensitive manner. This is an especially difficult problem in offshore production facilities where space is a major constraint. The chief regulatory criterion for produced water is oil and grease. Most facilities have little trouble meeting this criterion using conventional oil-water separation technologies. However, some operations have significant amounts of naphthenic acids in the water that behave as oil and grease but are not well removed by conventional technologies. Aerobic biological treatment of naphthenic acids in simulated-produced water has been demonstrated by others; however, the system was easily overloaded by the large amounts of low-molecular-weight organic acids often found in produced waters. The objective of this research was to determine the ability of an anaerobic biological system to treat these organic acids in a simulated produced water and to examine the potential for biodegradation of the naphthenic acids in the anaerobic environment. A small fixed-film anaerobic biological reactor was constructed and adapted to treat a simulated produced water. The bioreactor was tubular, with a low-density porous glass packing material. The inocula to the reactor was sediment from a produced-water holding pond from a municipal anaerobic digester and two salt-loving methanogenic bacteria. During start-up, the feed to the reactor contained glucose as well as typical produced-water components. When glucose was used, rapid gas production was observed. However, when glucose was eliminated and the major organic component was acetate, little gas was generated. Methane production from acetate may have been inhibited by the high salt concentrations, by sulfide, or because of the lack, despite seeding, of microbes capable of converting acetate to methane. Toluene, a minor component of the produced water (0.1 g/L) was removed in the

  14. Energy Department Funding Helping Energy-Intensive Dairy Industry |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Funding Helping Energy-Intensive Dairy Industry Energy Department Funding Helping Energy-Intensive Dairy Industry July 17, 2015 - 12:55pm Addthis Energy Department Funding Helping Energy-Intensive Dairy Industry Emiley Mallory Emiley Mallory Communications Specialist, Weatherization Assistance Program John Coggin John Coggin Communications Specialist, Weatherization and Intergovernmental Programs What are the key facts? The Colorado Energy Office implemented a Dairy and

  15. Biochemistry and physiology of anaerobic bacteria

    SciTech Connect (OSTI)

    2000-05-18

    We welcome you to The Power of Anaerobes. This conference serves two purposes. One is to celebrate the life of Harry D. Peck, Jr.,who was born May 18, 1927 and would have celebrated his 73rd birthday at this conference. He died November 20, 1998. The second is to gather investigators to exchange views within the realm of anaerobic microbiology, an area in which tremendous progress has been seen during recent years. It is sufficient to mention discoveries of a new form of life (the archaea), hyper or extreme thermophiles, thermophilic alkaliphiles and anaerobic fungi. With these discoveries has come a new realization about physiological and metabolic properties of microorganisms, and this in turn has demonstrated their importance for the development, maintenance and sustenance of life on Earth.

  16. Anaerobic MBR: Challenges and Opportunities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Anaerobic MBR: Challenges and Opportunities Anaerobic MBR: Challenges and Opportunities Presentation by Art Umble, MWH Americas, during the "Technological State of the Art" panel at the Hydrogen, Hydrocarbons, and Bioproduct Precursors from Wastewaters Workshop held March 18-19, 2015. Anaerobic MBR: Challenges and Opportunities (1.31 MB) More Documents & Publications Hydrogen, Hydrocarbons, and Bioproduct Precursors from Wastewaters Workshop Report The Anaerobic Fluidized Bed

  17. Environmental impacts of anaerobic digestion and the use of anaerobic residues as soil amendment

    SciTech Connect (OSTI)

    Mosey, F.E.

    1996-01-01

    This paper defines the environmental role of anaerobic digestion within the overall objective of recovering energy from renewable biomass resources. Examples and opportunities for incorporating anaerobic digestion into biomass-to-energy schemes are discussed, together with environmental aspects of anaerobic digestion plants. These include visual, public amenity, pathogens and public health, odor control, and gaseous emissions. Digestate disposal and the benefits of restrictions on recycling organic wastes and biomass residues back to the land are discussed, particularly as they relate to American and European codes of practice and environmental legislation. The paper concludes that anaerobic digestion, if performed in purpose-designed reactors that efficiently recover and use biogas, is an environmentally benign process that can enhance energy recovery and aid the beneficial land use of plant residues in many biomass-to-energy schemes.

  18. Environmental impacts of anaerobic digestion and the use of anaerobic residues as soil amendment

    SciTech Connect (OSTI)

    Mosey, F.E.

    1995-11-01

    This paper defines the environmental role of anaerobic digestion with the overall objective of recovering energy from renewable biomass resources. Examples and opportunities for incorporating anaerobic digestion into biomass-to-energy schemes are discussed, together with environmental aspects of anaerobic digestion plants. These include visual, public amenity, pathogens and public health, odor control, and gaseous emissions. Digestate disposal and the benefits of restrictions on recycling organic wastes and biomass residues back to the land are discussed, particularly as they relate to American and European codes of practice and environmental legislation. The paper concludes that anaerobic digestion, if performed in purpose-designed reactors that efficiently recover and use biogas, if performed in purpose-designed reactors that efficiently recover and use biogas, is an environmentally benign process that can enhance energy recovery and aid the beneficial land use of plant residues in many biomass-to-energy schemes.

  19. The anaerobic digestion of organic solid wastes

    SciTech Connect (OSTI)

    Hartung, H.A.

    1996-09-01

    Anaerobic digestion offers many advantages in the processing of organic solid wastes, using a closed system to convert the waste to combustible gas and a stabilized organic residue.Odors are contained while digestion removes their source and gas is collected for energy recovery as heat or electricity. The stabilized residue is less than the starting waste by the mass of gas produced, and it can be disposed of by land application, land filling, incineration or composting. The stimulation of digesters and the phenomenon of co-digestion are two ways the performance of anaerobic digesters can be enhanced. Data from farm digesters and municipal wastewater treatment plants illustrate the present venue of the process; laboratory studies of the anaerobic digestion of a variety of solid wastes show that the process can be applied to these materials as well. About two thirds of municipal solid waste is shown to be amenable to anaerobic digestion in a substrate from an active municipal sewage plant digester.

  20. Anaerobic digestion submarine in Abbey farmyard

    SciTech Connect (OSTI)

    Not Available

    1987-07-01

    An anaerobic digestion system and fiber separation plant installed at Bethlehem Abbey (Northern Ireland) produces biogas for central heating and grain drying, and a compost which is bagged and sold. According to one report, it even keeps the monks warm at night. Designed by James Murcott of Farm Gas Ltd., the digester (shaped like a submarine) receives 10% solids slurry.

  1. FCPP application to utilize anaerobic digester gas

    SciTech Connect (OSTI)

    Nakayama, Yoshio; Kusama, Nobuyuki; Wada, Katsuya

    1996-12-31

    Toshiba and a municipal organization of Yokohama city are jointly conducting a program to utilize ADG (Anaerobic Digester Gas) more effectively. ADG which contains about 60% methane is produced by anaerobic digestion of waste water treatment sludge and has been used as an energy source for heating digestion tanks in sewage treatment plants and/or for combustion engine fuel. This program is focused on operating a commercial Phosphoric Acid Fuel Cell (PAFC) power plant on ADG because of its inherently high fuel efficiency and low emissions characteristics. According to the following joint program, we have successfully demonstrated an ADG fueled FCPP The success of this study promises that the ADG fueled FCPP, an environment-friendly power generation system, will be added to the line-up of PC25{trademark}C applications.

  2. Hog farm in California uses anaerobic digestion

    SciTech Connect (OSTI)

    Swanson, D.

    1995-12-31

    This article describes a system of covered lagoons which help address the waste management problems of hog farmers as well as producing methane used to power generators. Four advantages of anaerobic digestion are described along with the system: energy production from methane; fertilizer for fields; economic development in rural areas; and improved water quality through reduction of nonpoint source pollution. Address for full report is given.

  3. Anaerobic fermentation of agricultural residue: potential for improvement and implementation. Final report, Volume II

    SciTech Connect (OSTI)

    Jewell, W. J.; Dell'orto, S.; Fanfoni, K. J.; Hayes, T. D.; Leuschner, A. P.; Sherman, D. F.

    1980-04-01

    Earlier studies have shown that although large quantities of agricultural residues are generated on small farms, it was difficult to economically justify use of conventional anaerobic digestion technology, such as used for sewage sludge digestion. A simple, unmixed, earthen-supported structure appeared to be capable of producing significant quantities of biogas at a cost that would make it competitive with many existing fuels. The goal of this study was to define and demonstrate a methane fermentation technology that could be practical and economically feasible on small farms. This study provides the first long term, large scale (reactor volumes of 34 m/sup 3/) parallel testing of the major theory, design, construction, and operation of a low cost approach to animal manure fermentation as compared to the more costly and complex designs. The main objectives were to define the lower limits for successful fermentor operation in terms of mixing, insulation, temperature, feed rate, and management requirements in a cold climate with both pilot scale and full scale fermentors. Over a period of four years, innovative fermentation processes for animal manures were developed from theoretical concept to successful full scale demonstration. Reactors were sized for 50 to 65 dairy animals, or for the one-family dairy size. The results show that a small farm biogas generation system that should be widely applicable and economically feasible was operated successfully for nearly two years. Although this low cost system out-performed the completely mixed unit throughout the study, perhaps the greatest advantage of this approach is its ease of modification, operation, and maintenance.

  4. SEP Success Story: Energy Department Funding Helping Energy-Intensive Dairy Industry

    Broader source: Energy.gov [DOE]

    With help from the State Energy Program, eight dairies in Colorado received a free energy audit and energy saving recommendations through the Colorado Dairy and Irrigation Efficiency Pilot.

  5. The Anaerobic Fluidized Bed Membrane Bioreactor for Energy-Efficient

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wastewater Reuse | Department of Energy The Anaerobic Fluidized Bed Membrane Bioreactor for Energy-Efficient Wastewater Reuse The Anaerobic Fluidized Bed Membrane Bioreactor for Energy-Efficient Wastewater Reuse Presentation by Perry McCarty, Stanford University, during the "Targeting High-Value Challenges" panel at the Hydrogen, Hydrocarbons, and Bioproduct Precursors from Wastewaters Workshop held March 18-19, 2015. The Anaerobic Fluidized Bed Membrane Bioreactor for

  6. Biomass Program Perspectives on Anaerobic Digestion and Fuel Cell

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Integration at Biorefineries | Department of Energy Program Perspectives on Anaerobic Digestion and Fuel Cell Integration at Biorefineries Biomass Program Perspectives on Anaerobic Digestion and Fuel Cell Integration at Biorefineries DOE Biomass Program perspective on anaerobic digestion and fuel cell integratin at biorefineries. Presented by Brian Duff, DOE Biomass Program, at the NREL/DOE Biogas and Fuel Cells Workshop held June 11-13, 2012, in Golden, Colorado.

  7. Floodplain Assessment for Installation of a Renewable Energy Anaerobic

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Digester Facility | Department of Energy for Installation of a Renewable Energy Anaerobic Digester Facility Floodplain Assessment for Installation of a Renewable Energy Anaerobic Digester Facility Floodplain Assessment for Installation of a Renewable Energy Anaerobic Digester Facility at the University of California, Davis in Yolo County, California, as posted on the U.S. Department of Energy website. Floodplain Assessment (449.94 KB) More Documents & Publications Floodplain Assessment

  8. EERE Success Story-Colorado Dairy Industry Boosts Energy Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The dairy installed a plate cooler, which greatly enhanced the energy efficiency of its milk cooling process. Water heating, space heating, and lighting upgrades were also made at ...

  9. EERE Success Story-Colorado Dairy Industry Boosts Energy Efficiency |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Dairy Industry Boosts Energy Efficiency EERE Success Story-Colorado Dairy Industry Boosts Energy Efficiency December 21, 2015 - 2:12pm Addthis EERE Success Story—Colorado Dairy Industry Boosts Energy Efficiency Historically, the U.S. dairy industry has been one of the most energy-intensive forms of agriculture. Colorado is at the forefront of the fight to increase energy efficiency in this sector. In 2014, the Colorado Energy Office invested $240,000 of State Energy

  10. The Anaerobic Fluidized Bed Membrane Bioreactor for Energy-Efficient...

    Broader source: Energy.gov (indexed) [DOE]

    from Wastewaters Workshop held March 18-19, 2015. The Anaerobic Fluidized Bed Membrane Bioreactor for Energy-Efficient Wastewater Reuse (2.54 MB) More Documents & ...

  11. Current State of Anaerobic Digestion of Organic Wastes in North...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    10012015 ISSN 2196-3010 Keywords anaerobic digestion, biogas, biosolids, fertilizer, food waste, manure, organic waste, renewable energy Abstract With the large volumes of...

  12. Enhanced Anaerobic Digestion and Hydrocarbon Precursor Production from Sewage Sludge

    Broader source: Energy.gov [DOE]

    Breakout Session 2-C: Biogas and Beyond: Challenges and Opportunities for Advanced Biofuels from Wet-Waste FeedstocksEnhanced Anaerobic Digestion and Hydrocarbon Precursor Production from Sewage...

  13. Variation in energy available to subsurface anaerobes in response...

    Office of Scientific and Technical Information (OSTI)

    Variation in energy available to subsurface anaerobes in response to geological carbon storage. Citation Details In-Document Search Title: Variation in energy available to ...

  14. Enhanced Anaerobic Digestion and Hydrocarbon Precursor Production

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen, Hydrocarbons, and Bioproduct Precursors from Wastewaters Workshop Enhanced Anaerobic Digestion and Hydrocarbon Precursor Production March 18-19, 2015 Meltem Urgun-Demirtas, Ph. D. Argonne National Laboratory Total Potential Energy at Municipal WWTPs Basis Thermal energy (MMBtu/ year) Electric power (kWh/year) Total energy potential (MMBtu /year) Reference 1 MGD wastewater equates 26 kW of electric capacity and 2.4 MMBtu/day of thermal energy 3.52 × 10 7 9.11 × 10 9 6.65 × 10 7 EPA,

  15. Anaerobic digestion of hog wastes: Principles and practice

    SciTech Connect (OSTI)

    Oleszkiewicz, J.A.; Bujoczek, G.

    1996-12-31

    The principles and overview of research, development and implementation of anaerobic digestion for hog wastes are discussed. Based on economic evaluations, an anaerobic technology is cost-effective, especially for a larger herd and becomes more competitive with aerobic treatment. Nevertheless, the rate of treatment is more sensitive and dependent on the particular fraction of manure being processed. Considering the different factors affecting anaerobic digestion, a complete mixed reactor with solids recycle (having high solids retention time and low hydraulic retention time) was found to be the more reliable system with regards to methane generation and manure stabilization. By solids recycle one can obtain significant saving in the reactor volume required, while still achieving the expected degree of treatment. It was also found that even though treatment using advanced anaerobic systems when compared with simple anaerobic systems is more expensive, the rate of return on investment and efficiency of the process are higher.

  16. RENEWABLE ENERGY AND ENVIRONMENTAL SUSTAINABILITY USING BIOMASS FROM DAIRY AND BEEF ANIMAL PRODUCTION

    SciTech Connect (OSTI)

    Sweeten, John M; Annamalai, Kalyan; Auvermann, Brent; Mukhtar, Saqib; Capareda, Sergio C.; Engler, Cady; Harman, Wyatte; Reddy, J N; DeOtte, Robert; Parker, David B.; Stewart, B. A.

    2012-05-03

    -- Renewable Energy Conversion. This category addressed mostly in volume I involves developing. Thermo-chemical conversion technologies including cofiring with coal, reburn to reduce nitrogen oxide (NO, N2O, NOx, etc.) and Hg emissions and gasification to produce low-BTU gas for on-site power production in order to extract energy from waste streams or renewable resources. Category 2 -- Biomass Resource Technology. This category, addressed mostly in Volume II, deals with the efficient and cost-effective use of CB as a renewable energy source (e.g. through and via aqueous-phase, anaerobic digestion or biological gasification). The investigators formed an industrial advisory panel consisting fuel producers (feedlots and dairy farms) and fuel users (utilities), periodically met with them, and presented the research results; apart from serving as dissemination forum, the PIs used their critique to re-direct the research within the scope of the tasks. The final report for the 5 to 7 year project performed by an interdisciplinary team of 9 professors is arranged in three volumes: Vol. I (edited by Kalyan Annamalai) addressing thermo-chemical conversion and direct combustion under Category 1 and Vol. II and Vol. III ( edited by J M Sweeten) addressing biomass resource Technology under Category 2. Various tasks and sub-tasks addressed in Volume I were performed by the Department of Mechanical Engineering (a part of TEES; see Volume I), while other tasks and sub-tasks addressed in Volume II and IIII were conducted by Texas AgriLife Research at Amarillo; the TAMU Biological & Agricultural Engineering Department (BAEN) College Station; and West Texas A&M University (WTAMU) (Volumes II and III). The three volume report covers the following results: fuel properties of low ash and high ash CB (particularly DB) and MB (mortality biomass and coals, non-intrusive visible infrared (NVIR) spectroscopy techniques for ash determination, dairy energy use surveys at 14 dairies in Texas and California

  17. RENEWABLE ENERGY AND ENVIRONMENTAL SUSTAINABILITY USING BIOMASS FROM DAIRY AND BEEF ANIMAL PRODUCTION

    SciTech Connect (OSTI)

    Sweeten, John; Annamalai, Kalyan; Auvermann, Brent; Mukhtar, Saqib; Capareda, Sergio C; Engler, Cady; Harman, Wyatte; Reddy, J N; DeOtte, Robert; Parker, David B; Stewart, B A

    2012-05-02

    Renewable Energy Conversion. This category addressed mostly in volume I involves developing. Thermo-chemical conversion technologies including cofiring with coal, reburn to reduce nitrogen oxide (NO, N2O, NOx, etc.) and Hg emissions and gasification to produce low-BTU gas for on-site power production in order to extract energy from waste streams or renewable resources. Category 2 – Biomass Resource Technology. This category, addressed mostly in Volume II, deals with the efficient and cost-effective use of CB as a renewable energy source (e.g. through and via aqueous-phase, anaerobic digestion or biological gasification). The investigators formed an industrial advisory panel consisting fuel producers (feedlots and dairy farms) and fuel users (utilities), periodically met with them, and presented the research results; apart from serving as dissemination forum, the PIs used their critique to red-direct the research within the scope of the tasks. The final report for the 5 to 7 year project performed by an interdisciplinary team of 9 professors is arranged in three volumes: Vol. I (edited by Kalyan Annamalai) addressing thermo-chemical conversion and direct combustion under Category 1 and Vol. II and Vol. III ( edited by J M Sweeten) addressing biomass resource Technology under Category 2. Various tasks and sub-tasks addressed in Volume I were performed by the Department of Mechanical Engineering (a part of TEES; see Volume I), while other tasks and sub-tasks addressed in Volume II and IIII were conducted by Texas AgriLife Research at Amarillo; the TAMU Biological & Agricultural Engineering Department (BAEN) College Station; and West Texas A&M University (WTAMU) (Volumes II and III). The three volume report covers the following results: fuel properties of low ash and high ash CB (particularly DB) and MB (mortality biomass and coals, non-intrusive visible infrared (NVIR) spectroscopy techniques for ash determination, dairy energy use surveys at 14 dairies in Texas and

  18. RENEWABLE ENERGY AND ENVIRONMENTAL SUSTAINABILITY USING BIOMASS FROM DAIRY AND BEEF ANIMAL PRODUCTION

    SciTech Connect (OSTI)

    Kalyan Annamalai, John M. Sweeten, Brent W. Auvermann, Saqib Mukhtar, Sergio Caperada Cady R. Engler, Wyatte Harman Reddy JN Robert Deotte

    2012-05-03

    - Renewable Energy Conversion. This category addressed mostly in volume I involves developing. Thermo-chemical conversion technologies including cofiring with coal, reburn to reduce nitrogen oxide (NO, N2O, NOx, etc.) and Hg emissions and gasification to produce low-BTU gas for on-site power production in order to extract energy from waste streams or renewable resources. Category 2 - Biomass Resource Technology. This category, addressed mostly in Volume II, deals with the efficient and cost-effective use of CB as a renewable energy source (e.g. through and via aqueous-phase, anaerobic digestion or biological gasification). The investigators formed an industrial advisory panel consisting fuel producers (feedlots and dairy farms) and fuel users (utilities), periodically met with them, and presented the research results; apart from serving as dissemination forum, the PIs used their critique to red-direct the research within the scope of the tasks. The final report for the 5 to 7 year project performed by an interdisciplinary team of 9 professors is arranged in three volumes: Vol. I (edited by Kalyan Annamalai) addressing thermo-chemical conversion and direct combustion under Category 1 and Vol. II and Vol. III ( edited by J M Sweeten) addressing biomass resource Technology under Category 2. Various tasks and sub-tasks addressed in Volume I were performed by the Department of Mechanical Engineering (a part of TEES; see Volume I), while other tasks and sub-tasks addressed in Volume II and IIII were conducted by Texas AgriLife Research at Amarillo; the TAMU Biological and Agricultural Engineering Department (BAEN) College Station; and West Texas A and M University (WTAMU) (Volumes II and III). The three volume report covers the following results: fuel properties of low ash and high ash CB (particularly DB) and MB (mortality biomass) and coals, non-intrusive visible infrared (NVIR) spectroscopy techniques for ash determination, dairy energy use surveys at 14 dairies in Texas and

  19. Photoenhanced anaerobic digestion of organic acids

    DOE Patents [OSTI]

    Weaver, Paul F.

    1990-01-01

    A process is described for rapid conversion of organic acids and alcohols anaerobic digesters into hydrogen and carbon dioxide, the optimal precursor substrates for production of methane. The process includes addition of photosynthetic bacteria to the digester and exposure of the bacteria to radiant energy (e.g., solar energy). The process also increases the pH stability of the digester to prevent failure of the digester. Preferred substrates for photosynthetic bacteria are the organic acid and alcohol waste products of fermentative bacteria. In mixed culture with methanogenic bacteria or in defined co-culture with non-aceticlastic methanogenic bacteria, photosynthetic bacteria are capable of facilitating the conversion or organic acids and alcohols into methane with low levels of light energy input.

  20. Development of a Computer-based Benchmarking and Analytical Tool. Benchmarking and Energy & Water Savings Tool in Dairy Plants (BEST-Dairy)

    SciTech Connect (OSTI)

    Xu, Tengfang; Flapper, Joris; Ke, Jing; Kramer, Klaas; Sathaye, Jayant

    2012-02-01

    The overall goal of the project is to develop a computer-based benchmarking and energy and water savings tool (BEST-Dairy) for use in the California dairy industry – including four dairy processes – cheese, fluid milk, butter, and milk powder.

  1. RENEWABLE ENERGY AND ENVIRONMENTAL SUSTAINABILITY USING BIOMASS FROM DAIRY AND BEEF ANIMAL PRODUCTION

    SciTech Connect (OSTI)

    John M. Sweeten, Kalyan Annamalai Brent Auvermann Saqib Mukhtar Sergio C. Capareda Cady Engler Wyatte Harman J.N. Reddy, Robert DeOtte David B. Parker Dr. B.A. Stewart

    2012-05-03

    - Renewable Energy Conversion. This category addressed mostly in volume I involves developing. Thermo-chemical conversion technologies including cofiring with coal, reburn to reduce nitrogen oxide (NO, N2O, NOx, etc.) and Hg emissions and gasification to produce low-BTU gas for on-site power production in order to extract energy from waste streams or renewable resources. Category 2 - Biomass Resource Technology. This category, addressed mostly in Volume II, deals with the efficient and cost-effective use of CB as a renewable energy source (e.g. through and via aqueous-phase, anaerobic digestion or biological gasification). The investigators formed an industrial advisory panel consisting fuel producers (feedlots and dairy farms) and fuel users (utilities), periodically met with them, and presented the research results; apart from serving as dissemination forum, the PIs used their critique to red-direct the research within the scope of the tasks. The final report for the 5 to 7 year project performed by an interdisciplinary team of 9 professors is arranged in three volumes: Vol. I (edited by Kalyan Annamalai) addressing thermo-chemical conversion and direct combustion under Category 1 and Vol. II and Vol. III ( edited by J M Sweeten) addressing biomass resource Technology under Category 2. Various tasks and sub-tasks addressed in Volume I were performed by the Department of Mechanical Engineering (a part of TEES; see Volume I), while other tasks and sub-tasks addressed in Volume II and IIII were conducted by Texas AgriLife Research at Amarillo; the TAMU Biological and Agricultural Engineering Department (BAEN) College Station; and West Texas A and M University (WTAMU) (Volumes II and III). The three volume report covers the following results: fuel properties of low ash and high ash CB (particularly DB) and MB (mortality biomass) and coals, non-intrusive visible infrared (NVIR) spectroscopy techniques for ash determination, dairy energy use surveys at 14 dairies in Texas and

  2. Anaerobic Digester Gas-to-Electricity Rebate and Performance Incentive

    Broader source: Energy.gov [DOE]

    The Anaerobic Digester Gas-to-Electricity program is designed to support small-sized electricity generation where the energy generated is used primarily at the electric customer's location (third...

  3. Tillamook County PUD- Dairy Lighting Retrofit Rebate Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    Tillamook PUD offers the Dairy Lighting Retrofit Program for its agricultural, commercial, and industrial members to save energy on lighting in eligible barns/facilities. Tillamook PUD completes a...

  4. Modeling for Anaerobic Fixed-Bed Biofilm Reactors

    SciTech Connect (OSTI)

    Liu, B. Y. M.; Pfeffer, J. T.

    1989-06-01

    The specific objectives of this research were: 1. to develop an equilibrium model for chemical aspects of anaerobic reactors; 2. to modify the equilibrium model for non-equilibrium conditions; 3. to incorporate the existing biofilm models into the models above to study the biological and chemical behavior of the fixed-film anaerobic reactors; 4. to experimentally verify the validity of these models; 5. to investigate the biomass-holding ability of difference packing materials for establishing reactor design criteria.

  5. Anaerobic digestion as a waste disposal option for American Samoa

    SciTech Connect (OSTI)

    Rivard, C

    1993-01-01

    Tuna sludge and municipal solid waste (MSW) generated on Tutuila Island, American Samoa, represent an ongoing disposal problem as well as an emerging opportunity for use in renewable fuel production. This research project focuses on the biological conversion of the organic fraction of these wastes to useful products including methane and fertilizer-grade residue through anaerobic high solids digestion. In this preliminary study, the anaerobic bioconversion of tuna sludge with MSW appears promising.

  6. Anaerobic Digestion (AD): not only methane | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Anaerobic Digestion (AD): not only methane Anaerobic Digestion (AD): not only methane Breakout Session 1: New Developments and Hot Topics Session 1-C: Beyond Biofuels Larry Baresi, Professor of Biology, California State University, Northridge b13_baresi_1-C.pdf (980.78 KB) More Documents & Publications Electrobiocommodities from Carbon Dioxide: Enhancing Microbial Electrosynthesis with Synthetic Electromicrobiology and System Design Hydrogen, Hydrocarbons, and Bioproduct Precursors from

  7. Effect of alkaline pretreatment on anaerobic digestion of solid wastes

    SciTech Connect (OSTI)

    Lopez Torres, M. Espinosa Llorens, Ma. del C.

    2008-11-15

    The introduction of the anaerobic digestion for the treatment of the organic fraction of municipal solid waste (OFMSW) is currently of special interest. The main difficulty in the treatment of this waste fraction is its biotransformation, due to the complexity of organic material. Therefore, the first step must be its physical, chemical and biological pretreatment for breaking complex molecules into simple monomers, to increase solubilization of organic material and improve the efficiency of the anaerobic treatment in the second step. This paper describes chemical pretreatment based on lime addition (Ca(OH){sub 2}), in order to enhance chemical oxygen demand (COD) solubilization, followed by anaerobic digestion of the OFMSW. Laboratory-scale experiments were carried out in completely mixed reactors, 1 L capacity. Optimal conditions for COD solubilization in the first step of pretreatment were 62.0 mEq Ca(OH){sub 2}/L for 6.0 h. Under these conditions, 11.5% of the COD was solubilized. The anaerobic digestion efficiency of the OFMSW, with and without pretreatment, was evaluated. The highest methane yield under anaerobic digestion of the pretreated waste was 0.15 m{sup 3} CH{sub 4}/kg volatile solids (VS), 172.0% of the control. Under that condition the soluble COD and VS removal were 93.0% and 94.0%, respectively. The results have shown that chemical pretreatment with lime, followed by anaerobic digestion, provides the best results for stabilizing the OFMSW.

  8. Freeze concentration of dairy products Phase 2. Final report

    SciTech Connect (OSTI)

    Best, D.E.; Vasavada, K.C.

    1993-09-01

    An efficient, electrically driven freeze concentration system offers potential for substantially increasing electricity demand while providing the mature dairy industry with new products for domestic and export markets together with enhanced production efficiencies. Consumer tests indicate that dairy products manufactured from freeze-concentrated ingredients are either preferred or considered equivalent in quality to fresh milk-based products. Economic analyses indicate that this technology should be competitive with thermal evaporation processes on a commercial basis.

  9. SEP Success Story: Turkey Hill Dairy: Where Energy is Not Left...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to Turkey Hill Dairy's ice cream and sweet iced tea plant in Lancaster County, Penn., ... to Turkey Hill Dairy's ice cream and sweet iced tea plant in Lancaster County, Penn., ...

  10. Anaerobic digestion for energy production and environmental protection

    SciTech Connect (OSTI)

    Lettinga, G.; Haandel, A.C. Vaan

    1993-12-31

    Anaerobic digestion is the decomposition of complex molecules into simpler substances by micro-organisms in the absence of oxygen. Anaerobic digestion processes can be employed for resource conservation, for the production of biogas and other useful end products from biomass, and for environmental protection through waste and wastewater treatment. Modern high-rate anaerobic wastewater-treatment processes can effectively remove organic pollutants from wastewater at a cost far below that of conventional aerobic processes. These anaerobic wastewater treatment processes can also be profitably applied for the generation of biogas from energy crops such as sugarcane. In fact, these methods might even be an attractive alternative for the alcohol fermentation extensively employed in Brazil for the production of fuel alcohol from sugarcane. The potential of modern anaerobic processes for this purpose has not yet been widely recognized. This paper describes the principles and use of these processes and demonstrates their prospects for producing energy from sugarcane (1) by treating vinasse, the wastewater generated during the production of ethanol from sugarcane, and (2) as a direct method for producing biogas from sugarcane juice.

  11. Biogas production from anaerobic digestion of Spirulina maxima algal biomass

    SciTech Connect (OSTI)

    Samson, R.; LeDuy, A.

    1982-08-01

    The photosynthetic spectrum of solar energy could be exploited for the production of chemical energy of methane through the combined algal-bacterial process. In this process, the algae are mass produced from light and from carbon in the first step. The algal biomass is then used as a nutrient for feeding the anaerobic digester, in the second step, for the production of methane by anaerobic bacteria. The carbon source for the production of algal biomass could be either organic carbon from wastewaters (for eucaryotic algae), or carbon dioxide from the atmosphere or from the combustion exhaust gases (for both prokaryotic and eukaryotic algae). The technical feasibility data on the anaerobic digestion of algal biomass have been reported for many species of algae including macroscopic algae and microscopic algae. Research being conducted in the authors' laboratory consists of using the semimicroscopic blue-green alga Spirulina maxima as the sole substrate for this combined algal-bacterial process. This species of alga is very attractive for the process because of its capability of using the atmospheric carbon dioxide as carbon source and its simple harvesting methods. Furthermore, it appeared that the fermentability of S. maxima is significantly higher than other microscopic algae. This communication presents the results on the anaerobic inoculum development by the adaptation technique. This inoculum was then used for the semicontinuous anaerobic digestion of S. maxima algal biomass. The evolutions of biogas production and composition, biogas yield, total volatile fatty acids, alkalinity, ammonia nitrogen, pH, and electrode potential were followed.

  12. Anaerobic Biotransformation and Mobility of Pu and PuEDTA

    SciTech Connect (OSTI)

    Xun, Luying

    2005-06-01

    Although our goal is to isolate anaerobic EDTA degraders, we initiated the experiments to include nitrilotriacetate (NTA), which is a structure homologue of EDTA. All the aerobic EDTA degraders can degrade NTA, but the isolated NTA degraders cannot degrade EDTA. Since NTA is a simpler structure homologue, it is likely that EDTA-degrading ability is evolved from NTA degradation. This hypothesis is further supported from our characterization of EDTA and NTA-degrading enzymes and genes (J. Bact. 179:1112-1116; and Appl. Environ. Microbiol. 67:688-695). The EDTA monooxygenase and NTA monooxygenase are highly homologous. EDTA monooxygenase can use both EDTA and NTA as substrates, but NTA monooxygenase can only use NTA as a substrate. Thus, we put our effort to isolate both NTA and EDTA degraders. In case, an anaerobic EDTA degrader is not immediately enriched, we will try to evolve the NTA degraders to use EDTA. Both aerobic and anaerobic enrichment cultures were set.

  13. Microbiology and physiology of anaerobic fermentations of cellulose

    SciTech Connect (OSTI)

    Wiegel, J.

    1991-05-01

    The biochemistry and physiology of four major groups of anaerobic bacteria involved in the conversion of cellulose to methane or chemical feedstocks are examined. Aspects of metabolism which are relevant to the interactions and bioenergetics of consortia are being studied. Properties of the cellulolytic enzyme cluster of Clostridium thermocellum are investigated. Five different hydrogenases have been characterized in detail from anaerobic bacteria. Genes for different hydrogenases are being cloned and sequenced to determine their structural relationships. The role of metal clusters in activation of H{sub 2} is being investigated, as is the structure and role of metal clusters in formate metabolism. The function of formate in the total synthesis of acetate from CO{sub 2} and the role of this primary in anaerobes will be examined as well. Finally, these enzyme studies will be performed on thermophilic bacteria and new, pertinent species will be isolated. 50 refs., 3 figs., 1 tab.

  14. Engineered microorganisms capable of producing target compounds under anaerobic conditions

    DOE Patents [OSTI]

    Buelter, Thomas; Meinhold, Peter; Feldman, Reid M. Renny; Hawkins, Andrew C.; Urano, Jun; Bastian, Sabine; Arnold, Frances

    2012-01-17

    The present invention is generally provides recombinant microorganisms comprising engineered metabolic pathways capable of producing C3-C5 alcohols under aerobic and anaerobic conditions. The invention further provides ketol-acid reductoisomerase enzymes which have been mutated or modified to increase their NADH-dependent activity or to switch the cofactor preference from NADPH to NADH and are expressed in the modified microorganisms. In addition, the invention provides isobutyraldehyde dehydrogenase enzymes expressed in modified microorganisms. Also provided are methods of producing beneficial metabolites under aerobic and anaerobic conditions by contacting a suitable substrate with the modified microorganisms of the present invention.

  15. Biogas production from anaerobic digestion of Spirulina maxima algal biomass

    SciTech Connect (OSTI)

    Rejean Samson; Anh LeDuy

    1982-08-01

    Spirulina maxima algal biomass could be used as the sole nutrient for the production of biogas by anaerobic digestion process. It is relatively simple to adapt the municipal sewage sludge to this new substrate. The adapted sludge is very stable. Under nonoptimal conditions, the methane yield and productivity obtained were 0.26 m/sup 3//(kg VS added day) and 0.26 m/sup 3//(kg VS added day), respectively, with the semicontinuous, daily fed, anaerobic digestion having loading rate of 0.97 kg VS/(m/sup 3/ day), retention time of 33 days and temperature of 30/sup 0/C.

  16. Anaerobic dehalogenation of hydroxylated polychlorinated biphenyls by Desulfitobacterium dehalogenans

    SciTech Connect (OSTI)

    Wiegel, J.; Zhang, X.; Wu, Q.

    1999-05-01

    Ten years after reports on the existence of anaerobic dehalogenation of polychlorinated biphenyls (PCBs) in sediment slurries, the authors report here on the rapid reductive dehalogenation of para-hydroxylated PCBs (HO-PCBs), the excreted main metabolites of PCB in mammals, which can exhibit estrogenic and antiestrogenic activities in humans. The anaerobic bacterium Desulfitobacterium dehalogenans completely dehalogenates all flanking chlorines (chlorines in ortho position to the para-hydroxyl group) from congeners such as 3,3{prime},5,5{prime}-tetrachloro-4,4{prime}-dihydroxybiphenyl.

  17. Economic evaluation of a swine farm covered anaerobic lagoon digester

    SciTech Connect (OSTI)

    Lusk, P.

    1996-12-31

    It is helpful to evaluate anaerobic digestion technologies using objective economic criteria. Options can then be ranked in terms of their relative cost effectiveness, leading to rational deployment decisions. This study presents the results of a hypothetical pro forma economic evaluation of one type of digestion system that could commonly be found on many swine farms; a covered anaerobic lagoon. The digester was assumed to be located in North Carolina, a major swine-producing state. Electricity generation with waste heat recovery was assumed to be the major end-use application of biogas manufactured from this process.

  18. An adaptive strategy to control anaerobic digesters for wastewater treatment

    SciTech Connect (OSTI)

    Monroy, O.; Alvarez-Ramirez, J.; Cuervo, F.; Femat, R.

    1996-10-01

    The design and implementation of a new adaptive controller for anaerobic digesters is presented using a general nonlinear model and an uncertainties estimation scheme. The primary advantage of this controller over standard adaptive controllers is that biogas flow rate measurements are not required. The resulting controller is similar in form to standard adaptive controllers and can be tuned analogously. The adaptive control strategy has been implemented in a pilot-scale anaerobic digester showing good performance and robustness against changes in the feed load.

  19. Anaerobic treatment in a sludge bed system compared with a filter system

    SciTech Connect (OSTI)

    Frostell, B.

    1981-02-01

    In parallel experiments, an anaerobic filter filled with a high-porosity (0.96) plastic material and an anaerobic sludge bed reactor equipped with a specially designed sludge separation system were investigated. The main purpose was to study the sludge bed reactor and to compare the results with those obtained using a well designed anaerobic filter. The experiments are described and the results discussed indicating that the sludge bed reactor should be an economically attractive alternative to the anaerobic filter.

  20. Community Renewable Energy Success Stories: Community-Scale Anaerobic Digesters (text version)

    Office of Energy Efficiency and Renewable Energy (EERE)

    Below is the text version of the webinar titled "Community-Scale Anaerobic Digesters," originally presented on April 16, 2013.

  1. Energy conservation and cost benefits in the dairy processing industry

    SciTech Connect (OSTI)

    none,

    1982-01-01

    Guidance is given on measuring energy consumption in the plant and pinpointing areas where energy-conservation activities can return the most favorable economics. General energy-conservation techniques applicable to most or all segments of the dairy processing industry, including the fluid milk segment, are emphasized. These general techniques include waste heat recovery, improvements in electric motor efficiency, added insulation, refrigeration improvements, upgrading of evaporators, and increases in boiler efficiency. Specific examples are given in which these techniques are applied to dairy processing plants. The potential for energy savings by cogeneration of process steam and electricity in the dairy industry is also discussed. Process changes primarily applicable to specific milk products which have resulted in significant energy cost savings at some facilities or which promise significant contributions in the future are examined. A summary checklist of plant housekeeping measures for energy conservation and guidelines for economic evaluation of conservation alternatives are provided. (MHR)

  2. Anaerobic Biotransformation and Mobility of Pu and PuEDTA

    SciTech Connect (OSTI)

    Xun, Luying

    2005-06-01

    The objective of this report is to isolate anaerobic EDTA-degrading bacteria. Although our goal is to isolate anaerobic EDTA degraders, we initiated the experiments to include nitrilotriacetate (NTA), which is a structure homologue of EDTA. All the aerobic EDTA degraders can degrade NTA, but the isolated NTA degraders cannot degrade EDTA. Since NTA is a simpler structure homologue, it is likely that EDTA-degrading ability is evolved from NTA degradation. This hypothesis is further supported from our characterization of EDTA and NTA-degrading enzymes and genes (J. Bact. 179:1112-1116; and Appl. Environ. Microbiol. 67:688-695). The EDTA monooxygenase and NTA monooxygenase are highly homologous. EDTA monooxygenase can use both EDTA and NTA as substrates, but NTA monooxygenase can only use NTA as a substrate. Thus, we put our effort to isolate both NTA and EDTA degraders. In case, an anaerobic EDTA degrader is not immediately enriched, we will try to evolve the NTA degraders to use EDTA. Both aerobic and anaerobic enrichment cultures were set.

  3. Extractability of heavy metals in wastewater solids undergoing anaerobic digestion

    SciTech Connect (OSTI)

    Chen, D.D.

    1983-01-01

    The extractability of heavy metals in wastewater sludge undergoing anaerobic digestion was investigated. Using batch laboratory digesters, raw wastewater sludge was anaerobically digested at different raw sludge solids loadings and two temperatures. From each of the laboratory digesters, wastewater sludge was sampled at three day intervals and sequentially separated into seven extraction fractions and analyzed for the metals Cu, Cr, Cd, Fe, Ni, and Pb. The seven step sequential extraction was for metal species: (a) soluble, (b) displaced-exchangeable, (c) adsorbed, (d) organic, (e) carbonate, (f) sulfide-acid soluble, and (g) residual. At the 35/sup 0/C digestion temperature the distribution of metals in the extractant fractions between the raw and anaerobically digested sludges were significantly different. For the 45/sup 0/C digestion temperature the distribution of metals in the raw and digested sludge extractant fractions were different and different compared to the 35/sup 0/C system. The 45/sup 0/C raw sludge showed greater percent metal in the organic and sulfide-acid soluble fraction than the digested sludge. At the 45/sup 0/C anaerobic digestion temperature the percent of raw sludge solids loading in the digester had a greater effect on changes in metal extractability and proposed metal species than the 35/sup 0/C.

  4. Pulse power enhancement of the anaerobic digester process

    SciTech Connect (OSTI)

    Greene, H.W.

    1996-12-31

    A pilot study of the effects of Pulse Power Processing on an anaerobic digester system was completed at the Decatur Utilities Dry Creek Wastewater Treatment Plant, in Decatur Alabama, in September, 1995. This patented method generates several significant effects when all biosolids material is treated as it enters the anaerobic system. Intense, high peak-power plasma arcs are created, one at each end of the parabolic processing chamber, to produce an amplified synergy of alterations to the digester sludge flowing between them. The millisecond electric discharges generate localized temperatures as high as 30,000 K{degrees}, followed by a rapid cooling of the flowing liquid, which produces acoustic shock waves with pressures approaching 5,000 atmospheres. This destructive force: ruptures many of the cell walls of the bacteria and other single-cell organisms, releasing their vacuole fluids; breaks carbon bonds to form smaller organic compounds; and pulverizes large particle conglomerates, increasing the overall surface area of the solids. These beneficial results serve to boost the nutrient source for the anaerobes in the digester. In conjunction with LTV radiation, the formation of excited chemical radicals (including OH{sup -}), and the changes in ionic charge through alteration of the zeta potential, the bioreactor system is turbocharged to enhance the conversion of volatile biosolids to methane gas, which is the natural respiratory by-product of anaerobic digestion.

  5. Public Interest Energy Research (PIER) Program Development of a Computer-based Benchmarking and Analytical Tool. Benchmarking and Energy & Water Savings Tool in Dairy Plants (BEST-Dairy)

    SciTech Connect (OSTI)

    Xu, Tengfang; Flapper, Joris; Ke, Jing; Kramer, Klaas; Sathaye, Jayant

    2012-02-01

    The overall goal of the project is to develop a computer-based benchmarking and energy and water savings tool (BEST-Dairy) for use in the California dairy industry - including four dairy processes - cheese, fluid milk, butter, and milk powder. BEST-Dairy tool developed in this project provides three options for the user to benchmark each of the dairy product included in the tool, with each option differentiated based on specific detail level of process or plant, i.e., 1) plant level; 2) process-group level, and 3) process-step level. For each detail level, the tool accounts for differences in production and other variables affecting energy use in dairy processes. The dairy products include cheese, fluid milk, butter, milk powder, etc. The BEST-Dairy tool can be applied to a wide range of dairy facilities to provide energy and water savings estimates, which are based upon the comparisons with the best available reference cases that were established through reviewing information from international and national samples. We have performed and completed alpha- and beta-testing (field testing) of the BEST-Dairy tool, through which feedback from voluntary users in the U.S. dairy industry was gathered to validate and improve the tool's functionality. BEST-Dairy v1.2 was formally published in May 2011, and has been made available for free downloads from the internet (i.e., http://best-dairy.lbl.gov). A user's manual has been developed and published as the companion documentation for use with the BEST-Dairy tool. In addition, we also carried out technology transfer activities by engaging the dairy industry in the process of tool development and testing, including field testing, technical presentations, and technical assistance throughout the project. To date, users from more than ten countries in addition to those in the U.S. have downloaded the BEST-Dairy from the LBNL website. It is expected that the use of BEST-Dairy tool will advance understanding of energy and water

  6. Evaluating anaerobic digestion for reduction of organic wastes

    SciTech Connect (OSTI)

    Hartung, H.A.

    1994-12-31

    A small-scale anaerobic digestion test has been developed for monitoring start-up work with inoperative digesters. The test is described and variables critical to its consistent operation are detailed. The method has been used in many anaerobic digestion studies, including evaluation of the digestibility of various municipal solid wastes like grass and hedge clippings, garbage and newspapers. Digestion rates are expressed in terms of the rate of production of combustible gas and the retention time needed for a fixed degree of volatile solids destruction. An example shows the advantage of digesting selected combined charges, and it is suggested that this approach might be fruitful with many toxic organic materials. Application of this test to find the digestion rates of some high-yield biomass crops is also described.

  7. Discussion of ``The anaerobic digestion of organic waste``

    SciTech Connect (OSTI)

    1996-12-31

    With respect to economics, the presenter indicated that anaerobic digestion of municipal solid waste (MSW) may not be economical based on the value of the energy produced. This will most likely be the case, partly because of the low energy prices in this country. These facilities would have to rely on tipping fees paid for receiving and processing the waste. As stated earlier, the high solids process will help improve the economics. While there are said to be 20 plants operating in Europe on MSW, there seems to be none in the US, and that is the condition this paper addresses. It was hoped that by exploring the benefits of co-digestion and stimulation, and showing how digestible certain components of MSW can be, more operators of existing anaerobic facilities would consider expanding their operations to include at least some elements of MSW.

  8. Material and method for promoting the growth of anaerobic bacteria

    DOE Patents [OSTI]

    Adler, Howard I.

    1984-01-01

    A material and method for promoting the growth of anaerobic bacteria which includes a nutrient media containing a hydrogen donor and sterile membrane fragments of bacteria having an electron transfer system which reduces oxygen to water. Dissolved oxygen in the medium is removed by adding the sterile membrane fragments to the nutrient medium and holding the medium at a temperature of about 10.degree. to about 60.degree. C. until the dissolved oxygen is removed.

  9. Material and method for promoting the growth of anaerobic bacteria

    DOE Patents [OSTI]

    Adler, H.I.

    1984-10-09

    A material and method is disclosed for promoting the growth of anaerobic bacteria which includes a nutrient media containing a hydrogen donor and sterile membrane fragments of bacteria having an electron transfer system which reduces oxygen to water. Dissolved oxygen in the medium is removed by adding the sterile membrane fragments to the nutrient medium and holding the medium at a temperature of about 10 to about 60 C until the dissolved oxygen is removed. No Drawings

  10. Some studies on anaerobic decomposition of leucaena leucocephala leaves

    SciTech Connect (OSTI)

    Torane, J.V.; Lokhande, C.D.; Pawar, S.H. )

    1990-01-01

    Batch type anaerobic decomposition process in leucaena leucocephala plant material (leaves) has been carried out under mesophilic conditions (below 35{degrees}C). The results of studies involving variations in pH, conductivity, temperature, and optical density of digester slurry for four weeks are reported. The gas production rate was also studied which reveals that the use of leucaena leucocephala for biogas production will be helpful.

  11. Single stage anaerobic digester at Tarleton State University. Final report

    SciTech Connect (OSTI)

    Not Available

    1980-01-01

    The design and operation of the demonstration plant facilities at Tarleton State University to produce methane in a single stage anaerobic digester are described. A combination of manures from hogs and poultry are used as feedstock. Uses for the methane, cost of the digester, and value of the energy produced are discussed. During the 21 months of operation, 310 people have visited the project. (DMC)

  12. Factors controlling pathogen destruction during anaerobic digestion of biowastes

    SciTech Connect (OSTI)

    Smith, S.R. . E-mail: s.r.smith@imperial.ac.uk; Lang, N.L.; Cheung, K.H.M.; Spanoudaki, K.

    2005-07-01

    Anaerobic digestion is the principal method of stabilising biosolids from urban wastewater treatment in the UK, and it also has application for the treatment of other types of biowaste. Increasing awareness of the potential risks to human and animal health from environmental sources of pathogens has focused attention on the efficacy of waste treatment processes at destroying pathogenic microorganisms in biowastes recycled to agricultural land. The degree of disinfection achieved by a particular anaerobic digester is influenced by a variety of interacting operational variables and conditions, which can often deviate from the ideal. Experimental investigations demonstrate that Escherichia coli and Salmonella spp. are not damaged by mesophilic temperatures, whereas rapid inactivation occurs by thermophilic digestion. A hydraulic, biokinetic and thermodynamic model of pathogen inactivation during anaerobic digestion showed that a 2 log{sub 10} reduction in E. coli (the minimum removal required for agricultural use of conventionally treated biosolids) is likely to challenge most conventional mesophilic digesters, unless strict maintenance and management practices are adopted to minimise dead zones and by-pass flow. Efficient mixing and organic matter stabilisation are the main factors controlling the rate of inactivation under mesophilic conditions and not a direct effect of temperature per se on pathogenic organisms.

  13. On-farm anaerobic digester and fuel alcohol plant

    SciTech Connect (OSTI)

    Not Available

    1985-01-01

    An anaerobic digestion system was constructed and set up on a southern Illinois farm. The anaerobic digestion system was designed to be coupled with a fuel alcohol plant constructed by the farm family as part of an integrated farm energy system. The digester heating can be done using waste hot water from the alcohol plant and biogas from the digester can be used as fuel for the alcohol production. The anaerobic digestion system is made up of the following components. A hog finishing house, which already had a slotted floor and manure pit beneath it, was fitted with a system to scrape the manure into a feed slurry pit constructed at one end of the hog house. A solids handling pump feeds the manure from the feed slurry pit into the digester, a 13,000 gallon tank car body which has been insulated with styrofoam and buried underground. Another pump transfers effluent (digested manure) from the digester to a 150,000 gallon storage tank. The digested manure is then applied to cropland at appropriate times of the year. The digester temperature is maintained at the required level by automated hot water circulation through an internal heat exchanger. The biogas produced in the digester is pumped into a 32,000 gallon gas storage tank.

  14. Turkey Hill Dairy: Where Energy is Not Left Flapping in the Wind

    Broader source: Energy.gov [DOE]

    Nearly a quarter of the electricity Turkey Hill Dairy uses each year to produce its 26 million gallons of ice cream comes from wind power.

  15. A Design-Builder's Perspective: Anaerobic Digestion, Forest County Potawatomi Community- A Case Study

    Broader source: Energy.gov [DOE]

    Presented by Jason Rieth, Industrial Construction Executive at Miron Construction at the April 16, 2013, Community-Scale Anaerobic Digesters CommRE Webinar.

  16. Anaerobic biodegradation of BTEX in aquifer material. Environmental research brief

    SciTech Connect (OSTI)

    Borden, R.C.; Hunt, M.J.; Shafer, M.B.; Barlaz, M.A.

    1997-08-01

    Laboratory and field experiments were conducted in two petroleum-contaminated aquifers to examine the anaerobic biodegradation of benzene, toluene, ethylbenzene and xylene isomers (BTEX) under ambient conditions. Aquifer material was collected from locations at the source, mid-plume and end-plume at both sites, incubated under ambient conditions, and monitored for disappearance of the test compounds. In the mid-plume location at the second site, in-situ column experiments were also conducted for comparison with the laboratory microscosm and field-scale results. In the end-plume microcosms, biodegradation was variable with extensive biodegradation in some microcosms and little or no biodegradation in others.

  17. EA-1907: Biogas Anaerobic Digester Facility, Oakley, Kansas

    Office of Energy Efficiency and Renewable Energy (EERE)

    This EA evaluates the environmental impacts of a proposal by DOE and USDA to provide funding to Western Plains Energy, LLC (WPE) to construct, purchase equipment, and operate a new Biogas Anaerobic Digester at WPE's existing Ethanol Facility, located at 3022 County Road 18, Grinnell Township (Oakley), Gove County, Kansas. The proposed facility will include a receiving building, digester, and related infrastructure. Based on the analysis in USDA's Final EA and FONSI, DOE has determined that DOE's proposed action does not constitute a major Federal action that would significantly affect the quality of the human or natural environment.

  18. Kinetic model for anaerobic digestion of biogas biological sludge

    SciTech Connect (OSTI)

    Pavlostathis, S.G.; Gossett, J.M.

    1986-10-01

    The principal objective of this study was the development and evaluation of a comprehensive kinetic model capable of predicting digester performance when fed biological sludge. Preliminary conversion mechanisms such as cell deaths, lysis, and hydrolysis responsible for rendering viable biological sludge organisms to available substrate were studied in depth. The results of this study indicate that hydrolysis of the dead, particulate biomass - primarily consisting of protein - is the slowest step, and therefore kinetically controls the overall process of an anaerobic digestion of biological sludge. A kinetic model was developed which could accurately describe digester performance and predict effluent quality.

  19. Clostridiumm ljungdahlii, an anaerobic ethanol and acetate producing microorganism

    DOE Patents [OSTI]

    Gaddy, J.L.; Clausen, E.C.

    1992-12-22

    A newly discovered microorganism was isolated in a biologically pure culture and designated Clostridium ljungdahlii, having the identifying characteristics of ATCC No. 49587. Cultured in an aqueous nutrient medium under anaerobic conditions, this microorganism is capable of producing ethanol and acetate from CO and H[sub 2]O and/or CO[sub 2] and H[sub 2] in synthesis gas. Under optimal growth conditions, the microorganism produces acetate in preference to ethanol. Conversely, under non-growth conditions, ethanol production is favored over acetate. 3 figs.

  20. Clostridiumm ljungdahlii, an anaerobic ethanol and acetate producing microorganism

    DOE Patents [OSTI]

    Gaddy, James L.; Clausen, Edgar C.

    1992-01-01

    A newly discovered microorganism was isolated in a biologically pure culture and designated Clostridium ljungdahlii, having the identifying characteristics of ATCC No. 49587. Cultured in an aqueous nutrient medium under anaerobic conditions, this microorganism is capable of producing ethanol and acetate from CO and H.sub.2 O and/or CO.sub.2 and H.sub.2 in synthesis gas. Under optimal growth conditions, the microorganism produces acetate in preference to ethanol. Conversely, under non-growth conditions, ethanol production is favored over acetate.

  1. A mass transfer model of ammonia volatilisation from anaerobic digestate

    SciTech Connect (OSTI)

    Whelan, M.J.; Everitt, T.; Villa, R.

    2010-10-15

    Anaerobic digestion (AD) is becoming increasingly popular for treating organic waste. The methane produced can be burned to generate electricity and the digestate, which is high in mineral nitrogen, can be used as a fertiliser. In this paper we evaluate potential losses of ammonia via volatilisation from food waste anaerobic digestate using a closed chamber system equipped with a sulphuric acid trap. Ammonia losses represent a pollution source and, over long periods could reduce the agronomic value of the digestate. Observed ammonia losses from the experimental system were linear with time. A simple non-steady-state partitioning model was developed to represent the process. After calibration, the model was able to describe the behaviour of ammonia in the digestate and in the trap very well. The average rate of volatilisation was approximately 5.2 g N m{sup -2} week{sup -1}. The model was used to extrapolate the findings of the laboratory study to a number of AD storage scenarios. The simulations highlight that open storage of digestate could result in significant losses of ammonia to the atmosphere. Losses are predicted to be relatively minor from covered facilities, particularly if depth to surface area ratio is high.

  2. Production of methane by anaerobic fermentation of waste materials

    SciTech Connect (OSTI)

    Hitzman, D.O.

    1989-01-17

    This patent describes an apparatus for producing methane by anaerobic fermentation of waste material, comprising: cavity means in the earth for holding a quantity of the waste material; means for covering a quantity of the waste material in the cavity means and thereby separating the quantity of the waste material from the atmosphere; first conduit means communicating between the waste material in the cavity means and a location remote from the cavity means for conveying gas comprising carbon dioxide and methane from the cavity means to the location; gas separation means communicating with the first conduit means at the location for separating carbon dioxide from methane, the first conduit means including at least one pipe having a plurality of apertures therein and disposed in the cavity means extending into and in fluid flow communication with the waste material for receiving gas liberated by the anaerobic fermentation of the waste material and comprising carbon dioxide and methane, through the apertures therein for conveyance via the first conduit means to the gas separation means; second conduit means communicating between the gas separation means and the waste material in the cavity means for conveying carbon dioxide from the gas separation means to the waste material; and third conduit means communicating with the gas separation means for conveying methane from the gas separation means.

  3. Anaerobic microbial dissolution of lead and production of organic acids

    DOE Patents [OSTI]

    Francis, A.J.; Dodge, C.; Chendrayan, K.; Quinby, H.L.

    1987-04-16

    The present invention related to an anaerobic bacterial culture of Clostridium sp. ATCC No. 53464 which solubilizes lead oxide under anaerobic conditions in coal and industrial wastes and therefore presents a method of removing lead from such wastes before they are dumped into the environment. The rat of lead dissolution during logarithmic growth of the bacteria in 40 ml medium containing 3.32 ..mu..moles of lead as lead oxide was 0.042 ..mu..moles m1/sup /-/1/ hr/sup /-/1/. Dissolution of lead oxide by the bacterial isolate is due to the production of metabolites and acidity in the culture medium. The major metabolites are acetic, butyric and lactic acid. The major metabolites are acetic, butyric and lactic acid. Clostridium sp. ATCC No. 53464 can be used in the recovery of the strategic metals from ores and wastes and also for the production of lactic acid for commercial purposes. The process yields large quantities of lactic acid as well as lead complexed in a stable form with said acids. 4 figs., 3 tabs.

  4. Anaerobic microbial dissolution of lead and production of organic acids

    DOE Patents [OSTI]

    Francis, Arokiasamy J.; Dodge, Cleveland; Chendrayan, Krishnachetty; Quinby, Helen L.

    1988-01-01

    The present invention relates to an anaerobic bacterial culture of Clostridium sp. ATCC No. 53464 which solubilizes lead oxide under anaerobic conditions in coal and industrial wastes and therefore presents a method of removing lead from such wastes before they are dumped into the environment. The rate of lead dissolution during logarithmic growth of the bacteria in 40 ml medium containing 3.32 .mu.moles of lead as lead oxide was 0.042 .mu.moles ml.sup.-1 hr.sup.-1. Dissolution of lead oxide by the bacterial isolate is due to the production of metabolites and acidity in the culture medium. The major metabolites are acetic, butyric and lactic acid. Clostridium sp. ATCC No. 53464 can be used in the recovery of strategic metals from ores and wastes and also for the production of lactic acid for commercial purposes. The process yields large quantities of lactic acid as well as lead complexed in a stable form with said acids.

  5. Anaerobic digestion analysis model: User`s manual

    SciTech Connect (OSTI)

    Ruth, M.; Landucci, R.

    1994-08-01

    The Anaerobic Digestion Analysis Model (ADAM) has been developed to assist investigators in performing preliminary economic analyses of anaerobic digestion processes. The model, which runs under Microsoft Excel{trademark}, is capable of estimating the economic performance of several different waste digestion process configurations that are defined by the user through a series of option selections. The model can be used to predict required feedstock tipping fees, product selling prices, utility rates, and raw material unit costs. The model is intended to be used as a tool to perform preliminary economic estimates that could be used to carry out simple screening analyses. The model`s current parameters are based on engineering judgments and are not reflective of any existing process; therefore, they should be carefully evaluated and modified if necessary to reflect the process under consideration. The accuracy and level of uncertainty of the estimated capital investment and operating costs are dependent on the accuracy and level of uncertainty of the model`s input parameters. The underlying methodology is capable of producing results accurate to within {+-} 30% of actual costs.

  6. Modeling fatty acid relationships in animal waste anaerobic digesters

    SciTech Connect (OSTI)

    Hill, D.T.; Bolte, J.P.

    1987-01-01

    Volatile fatty acid (VFA) relationships are important in the anaerobic digestion of animal wastes as they (acetic, propionic and butyric) are direct precursors of methane, either through direct conversion of acetate or through the intermediate formation of hydrogen and carbon dioxide. Thus, they are essential compounds in the biological conversion of heterogenous wastes to useable products. VFA's are also known inhibitors in the biological conversion process if their concentrations are sufficiently high. Thus, VFA's are simultaneously essential for the process and can be toxic agents should they be present in excess quantities. This relationship makes quantifying VFA's in the modeling studies essential to accurately predicting digester failure or success. A highly correlated relationship between the level of acetic acid and/or the propionic to acetic acid ratio in digesters that were successful and in digesters that failed has been shown. These data have been used to calibrate an original comprehensive methanogenesis model and along with the addition of dual-use substrate kinetics for the simultaneous catalysis of propionate and butyrate, have produced a much improved prediction of the VFA relationships observed in operating anaerobic digesters. This manuscript describes the addition of the dual-use substrate kinetics and the modification of the kinetic parameters of the original methanogenic model and compared the simulated output of the original and modified models to demonstrate the improved predictive ability. (Refs. 12).

  7. Digestion of waste activated sludge by anaerobic rotating biological contactors

    SciTech Connect (OSTI)

    Lee, Chiyuan.

    1990-01-01

    Two parallel, four-stage anaerobic rotating biological contactors (RBC) were continuously operated to evaluate the engineering feasibility of such an attached growth system for digesting sewage sludge. Waste activated sludge was used as the feed which contained 10,000 mg/l of suspended solids and an average total COD of 11,890 mg/l. The effects of three different hydraulic retention times (HRTs: 10, 5, 2.5 days) and three different operating temperatures (35, 30, 25 C) on the digester performance were evaluated. In addition, the maximum methanogenic capability of the RBC system in utilizing acetic, propionic and butyric acids was also assessed. Results indicated that the performance of the anaerobic RBS digester was strongly affected by both the HRT and the operating temperature. A decrease of either HRT or operating temperature would result in a lower stabilization efficiency. At 35 C the digester could stabilize 39.3% of the total sludge COD with a 5-day HRT, and this efficiency was very close to the minimum requirement of 40% in the general engineering practice. The accelerated digestion rate in an RBC system was mainly due to the high methanogenic capability existing in the attached-growths, which also avoid biological washout at a short hydraulic retention condition. Applications of the experimental data to an actual engineering design were also illustrated.

  8. DEVELOPMENT OF IMPROVED ANAEROBIC GROWTH OF BACILLUS MOJAVENSIS STRAIN JF-2 FOR THE PURPOSE OF IMPROVED ANAEROBIC BIOSURFACTANT PRODUCTION FOR ENHANCED OIL RECOVERY

    SciTech Connect (OSTI)

    M.J. McInerney; M. Folmsbee; D. Nagle

    2004-05-31

    Our work focuses on the use of microorganisms to recover petroleum hydrocarbons that remain entrapped after current recovery technologies reach their economic limit. Capillary forces between the hydrocarbon and aqueous phases are largely responsible for trapping the hydrocarbons in the pores of the rock and large reductions in the interfacial tension between the hydrocarbon and aqueous phases are needed for hydrocarbon mobilization (1-3, 10, 11). Microorganisms produce a variety of biosurfactants (4), several of which generate the ultra low interfacial tensions needed for hydrocarbon mobilization (4, 5, 8). In particular, the lipopeptide biosurfactant produced by Bacillus mojavensis strain JF-2 reduces the interfacial tension between hydrocarbon and aqueous phases to very low levels (<0.016 mN/m) (8) (9). B. mojavensis JF-2 grows under the environmental conditions found in many oil reservoirs, i. e., anaerobic, NaCl concentrations up to 80 g l{sup -1}, and temperatures up to 45 C (6, 7), making it ideally suited for in situ applications. However, anaerobic growth of B. mojavensis JF-2 was inconsistent and difficult to replicate, which limited its use for in situ applications. Our initial studies revealed that enzymatic digests, such as Proteose Peptone, were required for anaerobic growth of Bacillus mojavensis JF-2. Subsequent purification of the growth-enhancing factor in Proteose Peptone resulted in the identification of the growth-enhancing factor as DNA or deoxyribonucleosides. The addition of salmon sperm DNA, herring sperm DNA, E. coli DNA or synthetic DNA (single or double stranded) to Medium E all supported anaerobic growth of JF-2. Further, we found that JF-2 required all four deoxyribonucleosides (deoxyadeonosine, deoxyguanosine, deoxycytidine and thymidine) for growth under strict anaerobic conditions. The requirement for the deoxyribonucleosides did not occur under aerobic growth conditions. DNA was not used as a sole energy source; sucrose was required

  9. Biogas production from anaerobic digestion of Spirulina maxima algal biomass

    SciTech Connect (OSTI)

    Samson, R.; LeDuy, A.

    1982-08-01

    The semimicroscopic blue-green alga Spirulina maxima makes an ideal substrate for anaerobic digestion because it is easy to harvest, it can use carbon dioxide from the atmosphere as its carbon source, and its fermentability is higher than that of other small algae. Digestion experiments demonstrated that S. maxima can serve as the sole nutrient for biogas production and that municipal sewage sludge, when adapted to this new substrate, is very stable. During semicontinuous daily-fed trials under non-optimal conditions at an 0.06 lb volatile solids (VS)/ft/sup 3/ (0.97 kg VS/m/sup 3/) loading rate, 33-day retention time, and 86/sup 0/F (30/sup 0/C) digestion temperature, the daily methane yield was 4.2 CF/lb (0.26 m/sup 3//kg) VS added, which represents 47% of the maximum theoretical yield. Studies on optimizing the process are underway.

  10. Anaerobic microbial dissolution of lead and production of organic acids

    DOE Patents [OSTI]

    Francis, A.J.; Dodge, C.; Chendrayan, K.

    1986-02-28

    The present invention relates to a method of solubilizing lead, in the form of lead oxide, found in industrial wastes, before these wastes are dumped into the environment. The lead is solubilized by dissolving the lead oxide in the wastes through contact with an anaerobic bacterial culture containing the bacterium ATCC No. 53464. The solubilized lead can then be removed from the wastes by chemical separation. It could also be removed by extending the contact period with the bacterial culture. As the culture grows, the solubilized lead is removed from the wastes by bioaccumulation by the microorganism or by immobilization by a polymer-like material produced by the microorganism. At this point, the lead is then removed from the wastes when the waste material is separated from the bacterial culture. If desired, the bacterial culture could be digested at this point to yield relatively pure lead for further industrial use.

  11. Effect of particle size reduction on anaerobic sludge digestion

    SciTech Connect (OSTI)

    Koutsospyros, A.D.

    1990-01-01

    The majority of organic pollutants in primary sludge are suspended in the form of particulate rather than soluble matter. Microbial organisms cannot assimilate this material without initial solubilization. In anaerobic digestion, the initial size breakdown is accomplished by hydrolytic bacteria. The extent of solubilization is limited by the size of particulate matter. Thus, size reduction prior to digestion is a sound alternative. Size reduction pretreatment was achieved by means of ultrasonic waves. Sonication proved an effective method for size reduction of particulate matter in primary sludge. In addition, although the method produced relatively high amounts of finely dispered solids, the filtration properties of resulting sludges were not affected. Chemical characteristics of sludge, important in anaerobic digestion, were not affected, at least within the attempted range of sonication time and amplitude. The effect of size reduction of primary sludge solids was studied under batch and semi-continuous feed conditions. Preliminary batch digestion experiments were conducted in five 1.5 liter reactors that accepted sonicated feeds of varying pretreatment at four different feed loads (3.3-13.3% by volume). The digestion efficiency and gas production were increased by as much as 30 percent as a result of sonication without any deterioration in the filtration properties of the digester effluent. At higher feed loads the digester efficiency dropped drastically and significant deterioration of the effluent filtration properties from all reactors was evident. Semi-continuous runs were conducted in four reactors. Solids retention time (SRT) was varied from 8 to 20 days. Process efficiency and gas production were enhanced as a result of sonication. Process improvement was more evident under short SRT (8-10 days).

  12. Liquid-liquid extraction of short-chain organic acids from anaerobic digesters

    SciTech Connect (OSTI)

    Wene, E.G.; Antonopoulos, A.A.

    1989-01-01

    Anaerobic digesters with glucose or municipal solid waste (MSW) feed were operated to maximize production of short-chain organic acids. Digester effluent was extracted by liquid-liquid extraction with trioctylphosphine oxide (TOPO) or trioctylamine (TOA) in heptane or 2-heptanone as the water immiscible phase. Digester effluent was recycled to digesters after extraction. Both TOPO and TOA in organic solvents effectively extract organic acids from anaerobic digester fluid. Longer chain acids have a higher distribution coefficient than shorter-chain acids. Long term extraction of digester fluid with recycle was not toxic to the anaerobic production of short-chain acids.

  13. We Energies- Livestock and Dairy Farm Electrical Re-wiring Program

    Broader source: Energy.gov [DOE]

    Any We Energies dairy farm customer can apply for assistance with a re-wiring project. We Energies would pay the first $1,000 of the project and 50 percent of remaining costs up for a total grant...

  14. SEP Success Story: Turkey Hill Dairy: Where Energy is Not Left Flapping in the Wind

    Office of Energy Efficiency and Renewable Energy (EERE)

    Turkey Hill Dairy, the fourth largest producer of ice cream in the United States, uses wind power to produce its 26 million gallons of ice cream each year. Learn more.

  15. Anaerobic bioprocessing of low rank coals. Quarterly progress report, April 1--June 30, 1991

    SciTech Connect (OSTI)

    Jain, M.K.; Narayan, R.; Han, O.

    1991-12-31

    significant achievements were: (1) Coal decarboxylation was achieved by batch bioreactor systems using adapted anaerobic microbial consortium. (2) Two new isolates with coal decarboxylation potential were obtained from adapted microbial consortia. (3) CHN and TG anaysis of anaerobically biotreated coals have shown an increase in the H/C ratio and evolution rate of volatile carbon which could be a better feedstock for the liquefaction process.

  16. Intrinsic and accelerated anaerobic biodegradation of perchloroethylene in groundwater

    SciTech Connect (OSTI)

    Buchanan, R.J. Jr.; Ellis, D.E.; Odom, J.M.; Lee, M.D.; Mazierski, P.F.

    1995-12-31

    The DuPont Niagara Falls Plant is located in a heavily industrialized area of Niagara Falls, New York, adjacent to the Niagara River. The plant has been in continuous operation since 1898 and manufactured various organic and inorganic chemicals. Chlorinated solvents were produced from 1930 to 1975 at the plant. Numerous hydrogeologic investigations have described the subsurface hydrogeology and indicated that the groundwater underlying the plant was impacted by a variety of chlorinated aliphatic hydrocarbons in a wide range of concentrations. DuPont initiated in-field evaluations to determine whether biological reductive anaerobic dechlorination was occurring naturally and, if so, whether such dechlorination could be enhanced in situ. A field program was subsequently implemented could be enhanced in situ. A field program was subsequently implemented in a preselected area of the plant through use of an in situ borehole bioreactor to attempt to stimulate indigenous biological reductive dechlorination of chlorinated aliphatics by the addition of yeast extract (substrate) and sulfate (electron acceptor). At this location, a very active microbial population developed, which reduced the in situ concentrations of chlorinated aliphatic compounds by more than 94%, but did not increase the typical biological degradation products. This may have been due to an alternative biological degradation pathway or to very rapid biological kinetics. Efforts to elucidate this mechanism have been initiated under a separate laboratory program.

  17. Biogasification of sorghum in a novel anaerobic digester

    SciTech Connect (OSTI)

    Srivastava, V.J.; Biljetina, R.; Isaacson, H.R.; Hayes, T.D.

    1987-01-01

    The Institute of Gas Technology (IGT) conducted pilot-scale anaerobic digestion experiments with ensiled sorghum in a 160 ft/sup 3/ digester at the experimental test unit (ETU) facility at the Walt Disney World Resort Complex in Florida. The study focused on improving bioconversion efficiencies and process stability by employing a novel reactor concept developed at IGT. Steady-state performance data were collected from the ETU as well as from a laboratory-scale conventional stirred tank reactor (CSTR) at loading rates of 0.25 and 0.50 lb organic matter/ft/sup 3/-day at mesophilic and thermophilic temperatures, respectively. This paper will describe the ETU facility, novel digester design and operating techniques, and the results obtained during 12 months of stable and uninterrupted operation of the ETU and the CSTR which showed that methane yields anad rates from the ETU were 20% to 50% higher than those of the CSTR. 10 refs., 7 figs., 5 tabs.

  18. Anaerobic fermentation of woody biomass pretreated with supercritical ammonia

    SciTech Connect (OSTI)

    Weimer, P.J.; Chou, Y.C.T.

    1986-10-01

    The degradability of ground hardwood by thermophilic anaerobic bacteria (Clostridium thermocellum with or without Thermoanaerobacter strain B6A) was greatly enhanced by pretreatment of the substrate with supercritical ammonia. Relative to C. thermocellum monocultures, cocultures of C. thermocellum and Thermoanaerobacter strain B6A degraded 1.5-fold more pretreated soft maple but produced 2- 5-fold more fermentation end products because Thermoanaerobacter sp. removed reducing sugars produced by C. thermocellum during the fermentation. Dry weight losses were not totally accounted for in end products, due to formation of partially degraded material (<0.4 ..mu..m diameter wood particles) during the fermentation. One pretreated hardwood, Southern red oak, was fermented poorly because it released soluble inhibitors at the 60/sup 0/C incubation temperature. Considerable (6- to 11-fold) increases in substrate degradability were also noted for supercritical ammonia-pretreated wood materials fermented in an in vitro rumen digestibility assay. Degradation of pretreated softwoods by either thermophilic or mesophilic fermentation was not measurable under the conditions tested.

  19. Anaerobic digestion of autoclaved and untreated food waste

    SciTech Connect (OSTI)

    Tampio, Elina; Ervasti, Satu; Paavola, Teija; Heaven, Sonia; Banks, Charles; Rintala, Jukka

    2014-02-15

    Highlights: Autoclaving decreased the formation of NH4-N and H{sub 2}S during food waste digestion. Stable digestion was achieved with untreated and autoclaved FW at OLR 6 kg VS/m{sup 3}day. Use of acclimated inoculum allowed very rapid increases in OLR. Highest CH{sub 4} yields were observed at OLR 3 kg VS/m{sup 3}day with untreated FW. Autoclaved FW produced highest CH{sub 4} yields during OLR 4 kgVS/m{sup 3}day. - Abstract: Anaerobic digestion of autoclaved (160 C, 6.2 bar) and untreated source segregated food waste (FW) was compared over 473 days in semi-continuously fed mesophilic reactors with trace elements supplementation, at organic loading rates (OLRs) of 2, 3, 4 and 6 kg volatile solids (VS)/m{sup 3} d. Methane yields at all OLR were 510% higher for untreated FW (maximum 0.483 0.013 m{sup 3} CH{sub 4}/kg VS at 3 kg VS/m{sup 3} d) than autoclaved FW (maximum 0.439 0.020 m{sup 3} CH{sub 4}/kg VS at 4 kg VS/m{sup 3} d). The residual methane potential of both digestates at all OLRs was less than 0.110 m{sup 3} CH{sub 4}/kg VS, indicating efficient methanation in all cases. Use of acclimated inoculum allowed very rapid increases in OLR. Reactors fed on autoclaved FW showed lower ammonium and hydrogen sulphide concentrations, probably due to reduced protein hydrolysis as a result of formation of Maillard compounds. In the current study this reduced biodegradability appears to outweigh any benefit due to thermal hydrolysis of ligno-cellulosic components.

  20. Anaerobic Digestion and Combined Heat and Power Study

    SciTech Connect (OSTI)

    Frank J. Hartz; Rob Taylor; Grant Davies

    2011-12-30

    One of the underlying objectives of this study is to recover the untapped energy in wastewater biomass. Some national statistics worth considering include: (1) 5% of the electrical energy demand in the US is used to treat municipal wastewater; (2) This carbon rich wastewater is an untapped energy resource; (3) Only 10% of wastewater treatment plants (>5mgd) recover energy; (4) Wastewater treatment plants have the potential to produce > 575 MW of energy nationwide; and (5) Wastewater treatment plants have the potential to capture an additional 175 MW of energy from waste Fats, Oils and Grease. The WSSC conducted this study to determine the feasibility of utilizing anaerobic digestion and combined heat and power (AD/CHP) and/or biosolids gasification and drying facilities to produce and utilize renewable digester biogas. Digester gas is considered a renewable energy source and can be used in place of fossil fuels to reduce greenhouse gas emissions. The project focus includes: (1) Converting wastewater Biomass to Electricity; (2) Using innovative technologies to Maximize Energy Recovery; and (3) Enhancing the Environment by reducing nutrient load to waterways (Chesapeake Bay), Sanitary Sewer Overflows (by reducing FOG in sewers) and Greenhouse Gas Emissions. The study consisted of these four tasks: (1) Technology screening and alternative shortlisting, answering the question 'what are the most viable and cost effective technical approaches by which to recover and reuse energy from biosolids while reducing disposal volume?'; (2) Energy recovery and disposal reduction potential verification, answering the question 'how much energy can be recovered from biosolids?'; (3) Economic environmental and community benefit analysis, answering the question 'what are the potential economic, environmental and community benefits/impacts of each approach?'; and (4) Recommend the best plan and develop a concept design.

  1. Microbiology and physiology of anaerobic fermentations of cellulose. Progress report

    SciTech Connect (OSTI)

    Peck, H.D. Jr.; Ljungdahl, L.G.; Mortenson, L.E.; Wiegel, J.K.W.

    1994-11-01

    This project studies the biochemistry and physiology of four major groups (primary, secondary, ancillary and methane bacteria) of anaerobic bacteria, that are involved in the conversion of cellulose to methane or chemical feedstocks. The primary bacterium, Clostridium thermocellum, has a cellulolytic enzyme system capable of hydrolyzing crystalline cellulose and consists of polypeptide complexes attached to the substrate cellulose with the aid of a low molecular yellow affinity substance (YAS) produced by the bacterium in the presence of cellulose. Properties of the complexes and YAS are studied. Aspects of metabolism are being studied which appear to be relevant for the interactions on consortia and their bioenergetics, particularly related to hydrogen, formate, CO, and CO{sub 2}. The roles of metals in the activation of H{sub 2} are being investigated, and genes for the hydrogenases cloned and sequenced to established structural relationships among the hydrogenases. The goals are to understand the roles and regulation of hydrogenases in interspecies H{sub 2} transfer, H{sub 2} cycling and the generation of a proton gradient. The structures of the metal clusters and their role in the metabolism of formate will be investigated with the goal of understanding the function of formate in the total synthesis of acetate from CO{sub 2} and its role in the bioenergetics of these microorganisms. Additionally, the enzyme studies will be performed using thermophiles and also the isolation of some new pertinent species. The project will also include research on the mechanism of extreme thermophily (growth over 70{degrees}) in bacteria that grow over a temperature span of 40{degrees}C or more. These bacteria exhibit a biphasic growth response to temperature and preliminary evidence suggests that the phenomenon is due to the expression of a new set of enzymes. These initial observations will be extended employing techniques of molecular biology.

  2. Long-term anaerobic digestion of food waste stabilized by trace elements

    SciTech Connect (OSTI)

    Zhang Lei; Jahng, Deokjin

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer Korean food waste was found to contain low level of trace elements. Black-Right-Pointing-Pointer Stable anaerobic digestion of food waste was achieved by adding trace elements. Black-Right-Pointing-Pointer Iron played an important role in anaerobic digestion of food waste. Black-Right-Pointing-Pointer Cobalt addition further enhanced the process performance in the presence of iron. - Abstract: The purpose of this study was to examine if long-term anaerobic digestion of food waste in a semi-continuous single-stage reactor could be stabilized by supplementing trace elements. Contrary to the failure of anaerobic digestion of food waste alone, stable anaerobic digestion of food waste was achieved for 368 days by supplementing trace elements. Under the conditions of OLR (organic loading rates) of 2.19-6.64 g VS (volatile solid)/L day and 20-30 days of HRT (hydraulic retention time), a high methane yield (352-450 mL CH{sub 4}/g VS{sub added}) was obtained, and no significant accumulation of volatile fatty acids was observed. The subsequent investigation on effects of individual trace elements (Co, Fe, Mo and Ni) showed that iron was essential for maintaining stable methane production. These results proved that the food waste used in this study was deficient in trace elements.

  3. Degradative capacities and bioaugmentation potential of an anaerobic benzene-degrading bacterium strain DN11

    SciTech Connect (OSTI)

    Yuki Kasai; Yumiko Kodama; Yoh Takahata; Toshihiro Hoaki; Kazuya Watanabe

    2007-09-15

    Azoarcus sp. strain DN11 is a denitrifying bacterium capable of benzene degradation under anaerobic conditions. The present study evaluated strain DN11 for its application to bioaugmentation of benzene-contaminated underground aquifers. Strain DN11 could grow on benzene, toluene, m-xylene, and benzoate as the sole carbon and energy sources under nitrate-reducing conditions, although o- and p-xylenes were transformed in the presence of toluene. Phenol was not utilized under anaerobic conditions. Kinetic analysis of anaerobic benzene degradation estimated its apparent affinity and inhibition constants to be 0.82 and 11 {mu}M, respectively. Benzene-contaminated groundwater taken from a former coal-distillation plant site in Aichi, Japan was anaerobically incubated in laboratory bottles and supplemented with either inorganic nutrients (nitrogen, phosphorus, and nitrate) alone, or the nutrients plus strain DN11, showing that benzene was significantly degraded only when DN11 was introduced. Denaturing gradient gel electrophoresis of PCR-amplified 16S rRNA gene fragments, and quantitative PCR revealed that DN11 decreased after benzene was degraded. Following the decrease in DN11 16S rRNA gene fragments corresponding to bacteria related to Owenweeksia hongkongensis and Pelotomaculum isophthalicum, appeared as strong bands, suggesting possible metabolic interactions in anaerobic benzene degradation. Results suggest that DN11 is potentially useful for degrading benzene that contaminates underground aquifers at relatively low concentrations. 50 refs., 6 figs., 1 tab.

  4. Anaerobic sequencing batch reactor in pilot scale for treatment of tofu industry wastewater

    SciTech Connect (OSTI)

    Rahayu, Suparni Setyowati; Purwanto, Budiyono

    2015-12-29

    The small industry of tofu production process releases the waste water without being processed first, and the wastewater is directly discharged into water. In this study, Anaerobic Sequencing Batch Reactor in Pilot Scale for Treatment of Tofu Industry was developed through an anaerobic process to produce biogas as one kind of environmentally friendly renewable energy which can be developed into the countryside. The purpose of this study was to examine the fundamental characteristics of organic matter elimination of industrial wastewater with small tofu effective method and utilize anaerobic active sludge with Anaerobic Sequencing Bath Reactor (ASBR) to get rural biogas as an energy source. The first factor is the amount of the active sludge concentration which functions as the decomposers of organic matter and controlling selectivity allowance to degrade organic matter. The second factor is that HRT is the average period required substrate to react with the bacteria in the Anaerobic Sequencing Bath Reactor (ASBR).The results of processing the waste of tofu production industry using ASBR reactor with active sludge additions as starter generates cumulative volume of 5814.4 mL at HRT 5 days so that in this study it is obtained the conversion 0.16 L of CH{sub 4}/g COD and produce biogas containing of CH{sub 4}: 81.23% and CO{sub 2}: 16.12%. The wastewater treatment of tofu production using ASBR reactor is able to produce renewable energy that has economic value as well as environmentally friendly by nature.

  5. Evaluating a model of anaerobic digestion of organic wastes through system identification

    SciTech Connect (OSTI)

    Anex, R.P.; Kiely, G.

    1999-07-01

    Anaerobic digestion of the organic fraction of municipal solid waste (MSW), on its own or co-digested with primary sewage sludge (PSS), produces high quality biogas, suitable as renewable energy. Parameter estimation and evaluation of a two-stage mathematical model of the anaerobic co-digestion of the organic fraction of MSW and PSS are described. Measured data are from a bench scale laboratory experiment using a continuously stirred tank reactor and operated at 36 C for 115 days. The two-stage model simulates acidogenesis and methanogenesis, including ammonia inhibition. Model parameters are estimated using an output error, Levenberg-Marquardt (LM) algorithm. Sensitivity of the estimated parameter values and the model outputs to non-estimated model parameters and measurement errors are evaluated. The estimated mathematical model successfully predicts the performance of the anaerobic reactor. Sensitivity results provide guidance for improving the model structure and experimental procedures.

  6. Investigation and field testing of anaerobic biological treatment of pharmaceutical wastewaters

    SciTech Connect (OSTI)

    Not Available

    1990-03-30

    A study has been conducted that investigated and demonstrated the anaerobic biological treatment of wastewaters generated by the pharmaceuticals industry. This report presents the results of the multi-phase program and the conclusions and recommendations which have been derived from an analysis of the experimental data. The program was initiated in October 1985 and was conducted over a period of 26 months, at which point the experimental portions of the study were completed in December 1987. These can be divided to essentially three major tasks: screening assays to assess anaerobic treatability; bench-scale treatability investigations of the Merck Stonewall Plant wastewaters; and, pilot scale demonstration of anaerobic treatment. Each major element is discussed separately, addressing the design of the program (facilities), the experimental procedures, and finally the results of each task. The final section discusses the application of the technology to the pharmaceutical industry and the economic components associated with it. 2 refs., 54 figs., 35 tabs.

  7. Applications of a simulation model to description of anaerobic conversion of complex organic matter into methane

    SciTech Connect (OSTI)

    Vavilin, V.A.; Rytow, S.V.; Lokshina, L.Ya.

    1996-12-31

    Three years passed since the generalized model of anaerobic degradation of complex organic matter has been developed. Now the new modifications were created. Anaerobic degradation was described as a multistep process of series and parallel reactions in which several groups of bacteria take part. Hydrolysis, acidogenesis, acetogenesis and methanogenesis were considered in the model with the various kinetic functions. A two-phase equation describing a particulate substrate degradation as a heterogeneous reaction has been developed. Acetic, butyric, and propionic groups of acidogenic bacteria producing the particular products were considered. The additional group of homoacetogenic bacteria producing acetate from hydrogen and carbon dioxide was involved into new version of the model. Ammonia and hydrogen sulfide inhibition were described previously. In that paper, it was shown by simulation of several case-studies that unionized volatile fatty acids (VFA) are the inhibitors of key stages of anaerobic conversion of complex organic matter: hydrolysis, acetogenesis and methanogenesis.

  8. Kinetic study of treatment of wastewater contains food preservative agent by anaerobic baffled reactor : An overview

    SciTech Connect (OSTI)

    Sumantri, Indro; Purwanto,; Budiyono

    2015-12-29

    The characteristic of wastewater of food industries with preservative substances is high content of organic substances, degradable and high total suspended solid. High organic content in this waste forced the treatment is biologically and pointed out to anaerobic treatment. Anaerobic showed the better performance of degradation than aerobic for high content organic and also for toxic materials. During that day the treatment of food wastewater is aerobically which is high consume of energy required and high volume of sludge produced. The advantage of anaerobic is save high energy, less product of sludge, less requirement of nutrients of microorganism and high efficiency reduction of organic load. The high efficiency of reduction will reduce the load of further treatment, so that, the threshold limit based on the regulation would be easy to achieve. Research of treatment of wastewater of food industries would be utilized by both big scale industries and small industries using addition of preservative substances. The type reactor of anaerobic process is anaerobic baffled reactor that will give better contact between wastewater and microorganism in the sludge. The variables conducted in this research are the baffled configuration, sludge height, preservative agent contents, hydralic retention time and influence of micro nutrients. The respons of this research are the COD effluent, remaining preservative agent, pH, formation of volatile fatty acid and total suspended solid. The result of this research is kinetic model of the anaerobic baffled reactor, reaction kinetic of preservative agent degradation and technology of treatment wastewater contains preservative agent. The benefit of this research is to solve the treatment of wastewater of food industries with preservative substance in order to achieve wastewater limit regulation and also to prevent the environmental deterioration.

  9. A comparative study of leachate quality and biogas generation in simulated anaerobic and hybrid bioreactors

    SciTech Connect (OSTI)

    Xu, Qiyong; Tian, Ying; Wang, Shen; Ko, Jae Hac

    2015-07-15

    Highlights: • Temporary aeration shortened the initial acid inhibition phase for methanogens. • COD decreased faster in the hybrid bioreactor than that in the anaerobic control. • Methane generations from hybrid bioreactors were 133.4 L/kg{sub vs} and 113.2 L/kg{sub vs}. • MSW settlement increased with increasing the frequency of intermittent aeration. - Abstract: Research has been conducted to compare leachate characterization and biogas generation in simulated anaerobic and hybrid bioreactor landfills with typical Chinese municipal solid waste (MSW). Three laboratory-scale reactors, an anaerobic (A1) and two hybrid bioreactors (C1 and C2), were constructed and operated for about 10 months. The hybrid bioreactors were operated in an aerobic–anaerobic mode with different aeration frequencies by providing air into the upper layer of waste. Results showed that the temporary aeration into the upper layer aided methane generation by shortening the initial acidogenic phase because of volatile fatty acids (VFAs) reduction and pH increase. Chemical oxygen demand (COD) decreased faster in the hybrid bioreactors, but the concentrations of ammonia–nitrogen in the hybrid bioreactors were greater than those in the anaerobic control. Methanogenic conditions were established within 75 d and 60 d in C1 and C2, respectively. However, high aeration frequency led to the consumption of organic matters by aerobic degradation and resulted in reducing accumulative methane volume. The temporary aeration enhanced waste settlement and the settlement increased with increasing the frequency of aeration. Methane production was inhibited in the anaerobic control; however, the total methane generations from hybrid bioreactors were 133.4 L/kg{sub vs} and 113.2 L/kg{sub vs}. As for MSW with high content of food waste, leachate recirculation right after aeration stopped was not recommended due to VFA inhibition for methanogens.

  10. Research on Anaerobic Digestion: Optimization and Scalability of Mixed High-strength Food Processing Wastes for Renewable Biogas Energy

    SciTech Connect (OSTI)

    Yu, Zhongtang; Hitzhusen, Fredrick

    2012-12-27

    This research project developed and improved anaerobic digestion technologies, created a comprehensive Inventory of Ohio Biomass and a database of microorganisms of anaerobic digesters, and advanced knowledge and understanding of the underpinning microbiology of the anaerobic digestion process. The results and finding of this research project may be useful for future development and implementation of anaerobic digesters, especially at livestock farms. Policy makers and investors may also find the information on the biomass availability in Ohio and valuation of energy projects useful in policy making and making of investment decisions. The public may benefit from the information on biogas as an energy source and the potential impact of anaerobic digester projects on their neighborhoods.

  11. Anaerobic waste-activated sludge digestion - A bioconversion mechanism and kinetic model

    SciTech Connect (OSTI)

    Shimizu, Tatsuo; Kudo, Kenzo; Nasu, Yoshikazu )

    1993-05-01

    The anaerobic bioconversion of raw and mechanically lysed waste-activated sludge was kinetically investigated. The hydrolysis of the biopolymers, such as protein, which leaked out from the biological sludge with ultrasonic lysis, was a first-order reaction in anaerobic digestion and the rate constant was much higher than the decay rate constant of the raw waste activated sludge. An anaerobic digestion model that is capable of evaluating the effect of the mechanical sludge lysis on digestive performance was developed. The present model includes four major biological processes - the release of intracellular matter with sludge lysis; hydrolysis of biopolymers to volatile acids; the degradation of various volatile acids to acetate; and the conversion of acetate and hydrogen to methane. Each process was assumed to follow first-order kinetics. The model approximately simulated the overall process performance of the anaerobic digestion of waste-activated sludge. The model suggested that when the lysed waste-activated sludge was fed, the overall digestive performance remarkably increased in the two-phase system consisting of an acid forming process and a methanogenic process, which ensured the symbiotic growth of acetogenic and methanogenic bacteria.

  12. Anaerobic digestion of municipal, industrial, and livestock wastes for energy recovery and disposal

    SciTech Connect (OSTI)

    Sax, R.I.; Lusk, P.D.

    1995-11-01

    The degradation of carbonaceous organic material by anaerobic bacteria leads to the production of methane gas (biogas) at the theoretical stoichiometric conversion rate of 0.35-cubic meters of methane per kilogram of Chemical Oxygen Demand (COD) reasonably close proximity to the site of this digestion process. The untreated biogas generated from anaerobic digestion typically contains from 55% to 75% methane content, with the balance consisting mainly of carbon dioxide and a small, but important, amount of hydrogen sulfide. The untreated biogas is normally saturated with water vapor at the temperature of the digestion process which typically is in the mesophilic range 25 to 38 degrees Celsius. This overview paper describes the types of anaerobic technologies which are presently used for the digestion of various type of municipal, industrial and livestock manure wastes, summarizes the principal developments which have taken place in the field during the past several years, and discusses the energy recovery economics for each of the three usage applications. The paper stratifies the use of anaerobic digestion technology for the treatment of wastewaters from industry (an application which has increased dramatically during the past decade) by geographical region, by industry type, very various categories of food processing, and by technology type, in all cases taking account of system size to emphasize the economics of energy production.

  13. Horizontal-flow anaerobic immobilized sludge (HAIS) reactor for paper industry wastewater treatment

    SciTech Connect (OSTI)

    Foresti, E.; Cabral, A.K.A.; Zaiat, M.; Del Nery, V.

    1996-11-01

    Immobilized cell reactors are known to permit the continuous operation without biomass washout and also for increasing the time available for cells` catalytic function in a reaction or in a series of reactions. Several cell immobilization supports have been used in different reactors for anaerobic wastewater treatment, such as: agar gel, acrylamide, porous ceramic, and polyurethane foam besides the self-immobilized biomass from UASB reactors. However, the results are not conclusive as to the advantages of these different reactors with different supports as compared to other anaerobic reactor configurations. This paper describes a new anaerobic attached growth reactor configuration, herein referred as horizontal-flow anaerobic immobilized sludge (HAIS) reactor and presents the results of its performance test treating kraft paper industry wastewater. The reactor configuration was conceived aiming to increase the ratio useful volume/total volume by lowering the volume for gas separation. The HAIS reactor conception would permit also to incorporate the reactor hydrodynamic characteristics in its design criteria if the flow pattern could be approximated as plug-flow.

  14. One carbon metabolism in anaerobic bacteria: Regulation of carbon and electron flow during organic acid production

    SciTech Connect (OSTI)

    Zeikus, J.G.; Jain, M.K.

    1992-01-01

    This reporting period, progress is reported on the following: metabolic pathway of solvent production in B. methylotrophicum; the biochemical mechanism for metabolic regulation of the succinate fermentation; models to understand the physiobiochemical function of formate metabolism in anaerobes and; models for understanding the influence of low pH on one carbon metabolism. (CBS)

  15. Treatment of municipal landfill leachate using a combined anaerobic digester and activated sludge system

    SciTech Connect (OSTI)

    Kheradmand, S.; Karimi-Jashni, A.; Sartaj, M.

    2010-06-15

    The main objective of this study was to assess the feasibility of treating sanitary landfill leachate using a combined anaerobic and activated sludge system. A high-strength leachate from Shiraz municipal landfill site was treated using this system. A two-stage laboratory-scale anaerobic digester under mesophilic conditions and an activated sludge unit were used. Landfill leachate composition and characteristics varied considerably during 8 months experiment (COD concentrations of 48,552-62,150 mg/L). It was found that the system could reduce the COD of the leachate by 94% at a loading rate of 2.25 g COD/L/d and 93% at loading rate of 3.37 g COD/L/d. The anaerobic digester treatment was quite effective in removing Fe, Cu, Mn, and Ni. However, in the case of Zn, removal efficiency was about 50%. For the rest of the HMs the removal efficiencies were in the range 88.8-99.9%. Ammonia reduction did not occur in anaerobic digesters. Anaerobic reactors increased alkalinity about 3.2-4.8% in the 1st digester and 1.8-7.9% in the 2nd digester. In activated sludge unit, alkalinity and ammonia removal efficiency were 49-60% and 48.6-64.7%, respectively. Methane production rate was in the range of 0.02-0.04, 0.04-0.07, and 0.02-0.04 L/g COD{sub rem} for the 1st digester, the 2nd digester, and combination of both digesters, respectively; the methane content of the biogas varied between 60% and 63%.

  16. Mechanism, Kinetics and Microbiology of Inhibition Caused by Long-Chain Fatty Acids in Anaerobic Digestion of Algal Biomass

    SciTech Connect (OSTI)

    Ma, Jingwei; Zhao, Quan-Bao; Laurens, Lieve L.; Jarvis, Eric E.; Nagle, Nick J.; Chen, Shulin; Frear, Craig S.

    2015-09-15

    Oleaginous microalgae contain a high level of lipids, which can be extracted and converted to biofuel. The lipid-extracted residue can then be further utilized through anaerobic digestion to produce biogas. However, long-chain fatty acids (LCFAs) have been identified as the main inhibitory factor on microbial activity of anaerobic consortium. In this study, the mechanism of LCFA inhibition on anaerobic digestion of whole and lipid-extracted algal biomass was investigated with a range of calcium concentrations against various inoculum to substrate ratios as a means to alleviate the LCFA inhibition.

  17. CO{sub 2} level control by anthropogenic peat: The anaerobic digestion of biomass

    SciTech Connect (OSTI)

    Hartung, H.A.

    1995-12-31

    Anthropogenic Peat (AP) has been described as an effective and economical way to control the level of CO{sub 2} in the atmosphere without adverse effect on economic activity and development. All elements of the proposal are separately at work, but one, anaerobic digestion, is not widely known nor has it been applied to biomass as AP requires. Anaerobic digestion is described here, with some of its current large-scale applications. Results of lab studies of the digestion of other materials, including biomass especially grown for this purpose are presented, and the methods used to find them are explained. The preferred biomass source for AP is sugar cane, and extended studies have been run on a close relative, sorghum; preliminary work on cane itself and on various sugar sources is also reported.

  18. On-farm anaerobic digester and fuel-alcohol plant. Final report

    SciTech Connect (OSTI)

    Bengtson, H.H.

    1985-12-01

    An anaerobic-digestion system, coupled with a fuel-alcohol plant, was constructed and set up on a southern Illinois farm as part of an integrated farm-energy system. The digester heating can be done using waste hot water from the alcohol plant and biogas from the digester can be used as fuel for the alcohol production. The anaerobic digestion system is made up of the following components; a hog finishing house with a manure pit; a solids handling pump to feed the manure; and a 13,000-gallon railroad tank car as the main digester vessel and pump to transfer effluent from the digester to a 150,000 gallon storage tank. The digester was operated for sufficient time to demonstrate the use of hot water in an automated digester temperature control system. Sufficient biogas was produced to demonstrate the use of biogas in a converted propane boiler.

  19. The Anaerobic Fluidized Bed Membrane Bioreactor for Energy-Efficient Wastewater Reuse

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Anaerobic Fluidized Bed Membrane Bioreactor for Energy-Efficient Wastewater Reuse Perry L. McCarty Department of Civil and Environmental Engineering Stanford University 2 Compact water recycling systems Distributed treatment system planning Energy-positive wastewater treatment Open water unit process wetlands Ecosystem rehabilitation Re-inventing the Nation's Urban Water Infrastructure NSF Engineering Research Center Research Issues ReNUWIt Leadership Team 3 Stanford, UC Berkeley, New Mexico

  20. Enhanced anaerobic treatment of CSTR-digested effluent from chicken manure: The effect of ammonia inhibition

    SciTech Connect (OSTI)

    Liu Zhanguang; Zhou Xuefei; Zhang Yalei; Zhu Hongguang

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer Enhanced anaerobic treatment of CSTR-digested effluent from chicken manure. Black-Right-Pointing-Pointer The SCOD/TAN (soluble COD/total ammonia nitrogen) ratio was key controlling factor. Black-Right-Pointing-Pointer The threshold of the SCOD/TAN ratio was 2.4 at an influent pH of 8.5-9. - Abstract: The effect of ammonia inhibition was evaluated during the enhanced anaerobic treatment of digested effluent from a 700 m{sup 3} chicken-manure continuous stirred tank reactor (CSTR). A 12.3 L internal circulation (IC) reactor inoculated with an anaerobic granular sludge and operated at 35 {+-} 1 Degree-Sign C was employed for the investigation. With a corresponding organic loading rate of 1.5-3.5 kg-COD/m{sup 3} d over a hydraulic retention time of 1.5 d, a maximum volumetric biogas production rate of 1.2 m{sup 3}/m{sup 3} d and TCOD (total COD) removal efficiency ranging from 70% to 80% was achieved. However, the continual increase in the influent TAN content led to ammonia inhibition in the methanogenesis system. The SCOD/TAN (soluble COD/total ammonia nitrogen) ratio was presented to be the key controlling factor for the anaerobic treatment of semi-digested chicken manure, and further validation through shock loading and ammonia inhibition experiments was conducted. The threshold value of the SCOD/TAN ratio was determined to be 2.4 (corresponding to a TAN of 1250 mg/L) at an influent pH of 8.5-9.

  1. Floodplain Assessment for Installation of a Renewable Energy Anaerobic Digester Facility

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Installation of a Renewable Energy Anaerobic Digester Facility at the University of California, Davis in Yolo County, California January 11, 2013 1.0 Introduction This floodplain assessment has been prepared in accordance with 10 Code of Federal Regulations (CFR) 1022, "Compliance with Floodplain and Wetland Environmental Review Requirements" which were promulgated to implement the requirements of the U.S. Department of Energy's (DOE's) responsibilities under Executive Order 11988,

  2. Digestion of frozen/thawed food waste in the hybrid anaerobic solid-liquid system

    SciTech Connect (OSTI)

    Stabnikova, O. Liu, X.Y.; Wang, J.Y.

    2008-07-01

    The hybrid anaerobic solid-liquid (HASL) system, which is a modified two-phase anaerobic digester, is to be used in an industrial scale operation to minimize disposal of food waste at incineration plants in Singapore. The aim of the present research was to evaluate freezing/thawing of food waste as a pre-treatment for its anaerobic digestion in the HASL system. The hydrolytic and fermentation processes in the acidogenic reactor were enhanced when food waste was frozen for 24 h at -20 deg. C and then thawed for 12 h at 25 deg. C (experiment) in comparison with fresh food waste (control). The highest dissolved COD concentrations in the leachate from the acidogenic reactors were 16.9 g/l on day 3 in the control and 18.9 g/l on day 1 in the experiment. The highest VFA concentrations in the leachate from the acidogenic reactors were 11.7 g/l on day 3 in the control and 17.0 g/l on day 1 in the experiment. The same volume of methane was produced during 12 days in the control and 7 days in the experiment. It gave the opportunity to diminish operational time of batch process by 42%. The effect of freezing/thawing of food waste as pre-treatment for its anaerobic digestion in the HASL system was comparable with that of thermal pre-treatment of food waste at 150 deg. C for 1 h. However, estimation of energy required either to heat the suspended food waste to 150 deg. C or to freeze the same quantity of food waste to -20 deg. C showed that freezing pre-treatment consumes about 3 times less energy than thermal pre-treatment.

  3. Fouling of inorganic membrane and flux enhancement in membrane-coupled anaerobic bioreactor

    SciTech Connect (OSTI)

    Yoon, S.H.; Kang, I.J.; Lee, C.H.

    1999-03-01

    The fouling mechanism of an inorganic membrane was studied during the operation of a membrane-coupled anaerobic bioreactor (MCAB) when alcohol distillery wastewater was used as a digester feed. It was observed that the fouling mechanism of an inorganic membrane was significantly different from that of conventional membrane filtration processes. The main foulant was identified to be an inorganic precipitate, struvite (MgNH{sub 4}PO{sub 4}{center_dot}6H{sub 2}O), rather than anaerobic microbial flocs. Struvite appears to be precipitated not only on the membrane surface but also inside the membrane pores. The amount of struvite generated during the bioreaction was estimated to be about 2 g/L alcohol distillery wastewater. The inorganic foulant was not easily removed by general physical cleaning such as depressurization, lumen flushing, and backflushing. Based on these findings, the membrane fouling was alleviated and thus flux was enhanced by adopting a backfeeding mode which has dual purpose of feeding and backflushing with particle-free acidic wastewater used as the feed for anaerobic digestion.

  4. Anaerobic treatment of sludge from a nitrification-denitrification landfill leachate plant

    SciTech Connect (OSTI)

    Maranon, E. . E-mail: emara@uniovi.es; Castrillon, L.; Fernandez, Y.; Fernandez, E.

    2006-07-01

    The viability of anaerobic digestion of sludge from a MSW landfill leachate treatment plant, with COD values ranging between 15,000 and 19,400 mg O{sub 2} dm{sup -3}, in an upflow anaerobic sludge blanket reactor was studied. The reactor employed had a useful capacity of 9 l, operating at mesophilic temperature. Start-up of the reactor was carried out in different steps, beginning with diluted sludge and progressively increasing the amount of sludge fed into the reactor. The study was carried out over a period of 7 months. Different amounts of methanol were added to the feed, ranging between 6.75 and 1 cm{sup 3} dm{sup -3} of feed in order to favour the growth of methanogenic flora. The achieved biodegradation of the sludge using an upflow anaerobic sludge blanket Reactor was very high for an HRT of 9 days, obtaining decreases in COD of 84-87% by the end of the process. Purging of the digested sludge represented {approx}16% of the volume of the treated sludge.

  5. Anaerobic metabolism of nitroaromatic compounds by sulfate-reducing and methanogenic bacteria

    SciTech Connect (OSTI)

    Boopathy, R.; Kulpa, C.F.

    1994-06-01

    Ecological observations suggest that sulfate-reducing and methanogenic bacteria might metabolize nitroaromatic compounds under anaerobic conditions if appropriate electron donors and electron acceptors are present in the environment, but this ability had not been demonstrated until recently. Most studies on the microbial metabolism of nitroaromatic compounds used aerobic microorganisms. In most cases no mineralization of nitroaromatics occurs, and only superficial modifications of the structures are reported. However, under anaerobic sulfate-reducing conditions, the nitroaromatic compounds reportedly undergo a series of reductions with the formation of amino compounds. For example, trinitrotoluene under sulfate-reducing conditions is reduced to triaminotoluene by the enzyme nitrite reductase, which is commonly found in many Desulfovibrio spp. The removal of ammonia from triaminotoluene is achieved by reductive deamination catalyzed by the enzyme reductive deaminase, with the production of ammonia and toluene. Some sulfate reducers can metabolize toluene to CO{sub 2}. Similar metabolic processes could be applied to other nitroaromatic compounds like nitrobenzene, nitrobenzoic acids, nitrophenols, and aniline. Many methanogenic bacteria can reduce nitroaromatic compounds to amino compounds. In this paper we review the anaerobic metabolic processes of nitroaromatic compounds under sulfate-reducing And methanogenic conditions.

  6. Intrinsic in situ anaerobic biodegradation of chlorinated solvents at an industrial landfill

    SciTech Connect (OSTI)

    Lee, M.D.; Mazierski, P.F.; Buchanan, R.J. Jr.; Ellis, D.E.; Sehayek, L.S.

    1995-12-31

    The DuPont Necco Park Landfill in Niagara Falls, New York, is contaminated with numerous chlorinated solvents at concentrations of up to hundreds of mg/L in the groundwater. An extensive monitoring program was conducted to determine if intrinsic anaerobic biodegradation was occurring at the site, to determine what might limit this activity, and to characterize this activity with depth and distance away from the landfill. It was determined that anaerobic microbial activity was occurring in all zones, based upon the presence of intermediate products of the breakdown of the chlorinated solvents and the presence of final metabolic end products such as ethene and ethane. Aerobic, iron-reducing, manganese-reducing, sulfate-reducing, and methanogenic redox conditions were identified at the site. High levels of nitrogen and biodegradable organic compounds were present in most areas to support cometabolic anaerobic microbial activity against the chlorinated solvents. Intrinsic biodegradation is clearly evident and is effective in reducing the concentrations of chlorinated organic in the groundwater at the site. Groundwater modeling efforts during development of a site conceptual model indicated that microbial degradation was necessary to account for the downgradient reduction of chlorinated volatile organic compounds as compared to chloride, a conservative indicator parameter.

  7. Anaerobic High-Throughput Cultivation Method for Isolation of Thermophiles Using Biomass-Derived Substrates

    SciTech Connect (OSTI)

    Hamilton-Brehm, Scott; Vishnivetskaya, Tatiana A; Allman, Steve L; Mielenz, Jonathan R; Elkins, James G

    2012-01-01

    Flow cytometry (FCM) techniques have been developed for sorting mesophilic organisms, but the difficulty increases if the target microbes are thermophilic anaerobes. We demonstrate a reliable, high-throughput method of screening thermophilic anaerobic organisms using FCM and 96-well plates for growth on biomass-relevant substrates. The method was tested using the cellulolytic thermophiles Clostridium ther- mocellum (Topt = 55 C), Caldicellulosiruptor obsidiansis (Topt = 78 C) and the fermentative hyperthermo- philes, Pyrococcus furiosus (Topt = 100 C) and Thermotoga maritima (Topt = 80 C). Multi-well plates were incubated at various temperatures for approximately 72 120 h and then tested for growth. Positive growth resulting from single cells sorted into individual wells containing an anaerobic medium was verified by OD600. Depending on the growth substrate, up to 80 % of the wells contained viable cultures, which could be transferred to fresh media. This method was used to isolate thermophilic microbes from Rabbit Creek, Yellowstone National Park (YNP), Wyoming. Substrates for enrichment cultures including crystalline cellulose (Avicel), xylan (from Birchwood), pretreated switchgrass and Populus were used to cultivate organisms that may be of interest to lignocellulosic biofuel production.

  8. Anaerobic co-digestion of aquatic flora and quinoa with manures from Bolivian Altiplano

    SciTech Connect (OSTI)

    Alvarez, Rene Liden, Gunnar

    2008-07-01

    Quinoa stalk (Chenopodium quinoa Willd.) from agricultural crop residue, totora (Schoenoplectus tatora) and o-macrophytes (aquatic flora) from Lake Titicaca (on the Bolivian Altiplano) were studied in a wet anaerobic co-digestion process together with manure from llama, cow and sheep. Anaerobic semi-continuous experiments were performed in (10) 2-l reactors at a temperature of 25 deg. C with 30 days of hydraulic retention time (HRT) and an organic loading rate (OLR) of 1.8 kg VS m{sup -3} d{sup -1}. Totora was found to be the best co-substrate. In mixture ratios of 1:1 (VS basis), it increased the biogas productivity by 130% for llama manure, 60% for cow manure, and 40% for sheep manure. It was possible to use up to 58% (VS basis) of totora in the substrate. Higher concentrations (including pure totora) could not be digested, as that caused acidification problems similar to those caused by other lignocellulosic materials. When quinoa and o-macrophytes were used as co-substrates, the increase in biogas productivity was slightly less. However, these co-substrates did not cause any operational problems. An additional advantage of quinoa and o-macrophytes was that they could be used in any proportion (even in pure form) without causing any destabilization problems in the anaerobic digestion process.

  9. Dairy Biomass-Wyoming Coal Blends Fixed Gasification Using Air-Steam for Partial Oxidation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gordillo, Gerardo; Annamalai, Kalyan

    2012-01-01

    Concenmore » trated animal feeding operations such as dairies produce a large amount of manure, termed as dairy biomass (DB), which could serve as renewable feedstock for thermal gasification. DB is a low-quality fuel compared to fossil fuels, and hence the product gases have lower heat content; however, the quality of gases can be improved by blending with coals. This paper deals with air-steam fixed-bed counterflow gasification of dairy biomass-Wyoming coal blend (DBWC). The effects of equivalence ratio ( 1.6 < Φ < 6.4 ) and steam-to-fuel ratio ( 0.4 < S : F < 0.8 ) on peak temperatures, gas composition, gross heating value of the products, and energy recovery are presented. According to experimental results, increasing Φ and ( S : F ) ratios decreases the peak temperature and increases the H 2 and CO 2 production, while CO production decreases. On the other hand, the concentrations of CH 4 and C 2 H 6 were lower compared to those of other gases and almost not affected by Φ.« less

  10. Opportunities for Automated Demand Response in California’s Dairy Processing Industry

    SciTech Connect (OSTI)

    Homan, Gregory K.; Aghajanzadeh, Arian; McKane, Aimee

    2015-08-30

    During periods of peak electrical demand on the energy grid or when there is a shortage of supply, the stability of the grid may be compromised or the cost of supplying electricity may rise dramatically, respectively. Demand response programs are designed to mitigate the severity of these problems and improve reliability by reducing the demand on the grid during such critical times. In 2010, the Demand Response Research Center convened a group of industry experts to suggest potential industries that would be good demand response program candidates for further review. The dairy industry was suggested due to the perception that the industry had suitable flexibility and automatic controls in place. The purpose of this report is to provide an initial description of the industry with regard to demand response potential, specifically automated demand response. This report qualitatively describes the potential for participation in demand response and automated demand response by dairy processing facilities in California, as well as barriers to widespread participation. The report first describes the magnitude, timing, location, purpose, and manner of energy use. Typical process equipment and controls are discussed, as well as common impediments to participation in demand response and automated demand response programs. Two case studies of demand response at dairy facilities in California and across the country are reviewed. Finally, recommendations are made for future research that can enhance the understanding of demand response potential in this industry.

  11. Effects of lipid concentration on anaerobic co-digestion of municipal biomass wastes

    SciTech Connect (OSTI)

    Sun, Yifei; Wang, Dian; Yan, Jiao; Qiao, Wei; Wang, Wei; Zhu, Tianle

    2014-06-01

    Highlights: • Lipid in municipal biomass would not inhibited the anaerobic digestion process. • A lipid concentration of 65% of total VS was the inhibition concentration. • The amount of Brevibacterium decreased with the increasing of the lipid contents. • Long chain fatty acids stacked on the methanogenic bacteria and blocked the mass transfer process. - Abstract: The influence of the lipid concentration on the anaerobic co-digestion of municipal biomass waste and waste-activated sludge was assessed by biochemical methane potential (BMP) tests and by bench-scale tests in a mesophilic semi-continuous stirred tank reactor. The effect of increasing the volatile solid (VS) concentration of lipid from 0% to 75% was investigated. BMP tests showed that lipids in municipal biomass waste could enhance the methane production. The results of bench-scale tests showed that a lipids concentration of 65% of total VS was the inhibition concentration. Methane yields increased with increasing lipid concentration when lipid concentrations were below 60%, but when lipid concentration was set as 65% or higher, methane yields decreased sharply. When lipid concentrations were below 60%, the pH values were in the optimum range for the growth of methanogenic bacteria and the ratios of volatile fatty acid (VFA)/alkalinity were in the range of 0.2–0.6. When lipid concentrations exceeded 65%, the pH values were below 5.2, the reactor was acidized and the values of VFA/alkalinity rose to 2.0. The amount of Brevibacterium decreased with increasing lipid content. Long chain fatty acids stacked on the methanogenic bacteria and blocked the mass transfer process, thereby inhibiting anaerobic digestion.

  12. Optimization of solid state anaerobic digestion of the OFMSW by digestate recirculation: A new approach

    SciTech Connect (OSTI)

    Michele, Pognani; Giuliana, D’Imporzano; Carlo, Minetti; Sergio, Scotti; Fabrizio, Adani

    2015-01-15

    Highlights: • Solid State Anaerobic Digestion (SSAD) of OFMSW can be optimized by irrigation with digestate. • Digestate spreading allows keeping optimal process parameters and high hydrolysis rate. • The 18.4% of CH{sub 4} was produced in the reactor, leaving the 49.7% in the percolate. • Successive CSTR feed with percolate shows a biogas enriched in methane (more than 80%). • The proposed process allow producing the 68% of OFMSW potential CH{sub 4}, getting high quality organic amendment. - Abstract: Dry anaerobic digestion (AD) of OFMSW was optimized in order to produce biogas avoiding the use of solid inoculum. Doing so the dry AD was performed irrigating the solid waste with liquid digestate (flow rate of 1:1.18–1:0.9 w/w waste/digestate; 21 d of hydraulic retention time – HRT) in order to remove fermentation products inhibiting AD process. Results indicated that a high hydrolysis rate of organic matter (OM) and partial biogas production were obtained directly during the dry AD. Hydrolysate OM was removed from digester by the percolate flow and it was subsequently used to feed a liquid anaerobic digester. During dry AD a total loss of 36.9% of total solids was recorded. Methane balance indicated that 18.4% of potential methane can be produced during dry AD and 49.7% by the percolate. Nevertheless results obtained for liquid AD digestion indicated that only 20.4% and 25.7% of potential producible methane was generated by adopting 15 and 20 days of HRT, probably due to the AD inhibition due to high presence of toxic ammonia forms in the liquid medium.

  13. Ammonia and methane dairy emissions in the San Joaquin Valley of California from individual feedlot to regional scale

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Miller, David J.; Sun, Kang; Tao, Lei; Nowak, John B.; Liu, Zhen; Diskin, Glenn; Sasche, Glen; Beyersdorf, Andreas; Ferrare, Richard; Scarino, Amy Jo; et al

    2015-09-27

    Agricultural ammonia (NH3) emissions are highly uncertain, with high spatiotemporal variability and a lack of widespread in situ measurements. Regional NH3 emission estimates using mass balance or emission ratio approaches are uncertain due to variable NH3 sources and sinks as well as unknown plume correlations with other dairy source tracers. We characterize the spatial distributions of NH3 and methane (CH4) dairy plumes using in situ surface and airborne measurements in the Tulare dairy feedlot region of the San Joaquin Valley, California, during the NASA Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality 2013more » field campaign. Surface NH3 and CH4 mixing ratios exhibit large variability with maxima localized downwind of individual dairy feedlots. The geometric mean NH3:CH4 enhancement ratio derived from surface measurements is 0.15 ± 0.03 ppmv ppmv–1. Individual dairy feedlots with spatially distinct NH3 and CH4 source pathways led to statistically significant correlations between NH3 and CH4 in 68% of the 69 downwind plumes sampled. At longer sampling distances, the NH3:CH4 enhancement ratio decreases 20–30%, suggesting the potential for NH3 deposition as a loss term for plumes within a few kilometers downwind of feedlots. Aircraft boundary layer transect measurements directly above surface mobile measurements in the dairy region show comparable gradients and geometric mean enhancement ratios within measurement uncertainties, even when including NH3 partitioning to submicron particles. Individual NH3 and CH4 plumes sampled at close proximity where losses are minimal are not necessarily correlated due to lack of mixing and distinct source pathways. As a result, our analyses have important implications for constraining NH3 sink and plume variability influences on regional NH3 emission estimates and for improving NH3 emission inventory spatial allocations.« less

  14. Coupling between H+ transport and anaerobic glycolysis in turtle urinary bladder: effect of inhibitors of H+ ATPase

    SciTech Connect (OSTI)

    Steinmetz, P.R.; Husted, R.F.; Mueller, A.; Beauwens, R.

    1981-03-15

    The coupling between H+ transport (JH) and anaerobic glycolysis was examined in vitro in an anaerobic preparation of turtle urinary bladder. JH was measured as the short-circuit current after Na+ transport was abolished with ouabain and by pH stat titration. The media were gassed with N2 and 1% CO2 (PO2 less than 0.5 mm Hg) and contained 10 mM glucose. Under these conditions, JH was not inhibited by 3 mM serosal (S) cyanide or by 0.1 mM mucosal (M) dinitrophenol. Control anaerobic lactate production (Jlac) of 47 bladders was plotted as a function of simultaneously measured JH. The slope of Jlac on JH was 0.58

  15. H2A Biomethane Model Documentation and a Case Study for Biogas From Dairy Farms

    SciTech Connect (OSTI)

    Saur, G.; Jalalzadeh, A.

    2010-12-01

    The new H2A Biomethane model was developed to estimate the levelized cost of biomethane by using the framework of the vetted original H2A models for hydrogen production and delivery. For biomethane production, biogas from sources such as dairy farms and landfills is upgraded by a cleanup process. The model also estimates the cost to compress and transport the product gas via the pipeline to export it to the natural gas grid or any other potential end-use site. Inputs include feed biogas composition and cost, required biomethane quality, cleanup equipment capital and operations and maintenance costs, process electricity usage and costs, and pipeline delivery specifications.

  16. Methane enrichment digestion experiments at the anaerobic experimental test unit at Walt Disney World. Final report, March 1989-August 1990

    SciTech Connect (OSTI)

    Srivastava, V.J.; Hill, A.H.

    1993-06-01

    The goal of the project was to determine the technical feasibility of utilizing a novel concept in anaerobic digestion, in-situ methane enrichment digestion or MED for producing utility-grade gas from a pilot-scale anaerobic digester. MED tests conducted during this program consistently achieved digester product gas with a methane (CH4) content of greater than 90% (on a dry-, nitrogen-free basis). The MED concept, because it requires relatively simple equipment and modest energy input, has the potential to simplify gas cleanup requirements and substantially reduce the cost of converting wastes and biomass to pipeline quality gas.

  17. Microbiology and physiology of anaerobic fermentation of cellulose. Annual report for 1990, 1992, 1993 and final report

    SciTech Connect (OSTI)

    Ljungdahl, L.G.; Wiegel, J.; Peck, H.D. Jr.; Mortenson, L.E.

    1993-08-31

    This report focuses on the bioconversion of cellulose to methane by various anaerobes. The structure and enzymatic activity of cellulosome and polycellulosome was studied in Clostridium thermocellum. The extracellular enzymes involved in the degradation of plant material and the physiology of fermentation was investigated in anaerobic fungi. Enzymes dealing with CO, CO{sub 2}, H{sub 2}, CH{sub 3}OH, as well as electron transport and energy generation coupled to the acetyl-CoA autotrophic pathway was studied in acetogenic clostridia.

  18. Data summary of municipal solid waste management alternatives. Volume 10, Appendix H: Anaerobic digestion of MSW

    SciTech Connect (OSTI)

    1992-10-01

    While municipal solid waste (MSW) thermoconversion and recycling technologies have been described in Appendices A through E, this appendix addresses the role of bioconversion technologies in handling the organic fraction in MSW and sewage sludge. Much of the organic matter in MSW, consisting mainly of paper, food waste, and yard waste, has potential for conversion, along with sewage sludge, through biochemical processes to methane and carbon dioxide providing a measurable, renewable energy resource potential. The gas produced may be treated for removal of carbon dioxide and water, leaving pipeline quality gas. The process also has the potential for producing a stabilized solid product that may be suitable as a fuel for combustion or used as a compost fertilizer. Anaerobic digestion can occur naturally in an uncontrolled environment such as a landfill, or it can occur in a controlled environment such as a confined vessel. Landfill gas production is discussed in Appendix F. This appendix provides information on the anaerobic digestion process as it has been applied to produce methane from the organic fraction of MSW in enclosed, controlled reactors.

  19. Study of the operational conditions for anaerobic digestion of urban solid wastes

    SciTech Connect (OSTI)

    Castillo M, Edgar Fernando . E-mail: efcastil@uis.edu.co; Cristancho, Diego Edison; Victor Arellano, A.

    2006-07-01

    This paper describes an experimental evaluation of anaerobic digestion technology as an option for the management of organic solid waste in developing countries. As raw material, a real and heterogeneous organic waste from urban solid wastes was used. In the first experimental phase, seed selection was achieved through an evaluation of three different anaerobic sludges coming from wastewater treatment plants. The methanization potential of these sludges was assessed in three different batch digesters of 500 mL, at two temperature levels. The results showed that by increasing the temperature to 15 deg. C above room temperature, the methane production increases to three times. So, the best results were obtained in the digester fed with a mixed sludge, working at mesophilic conditions (38-40 deg. C). Then, this selected seed was used at the next experimental phase, testing at different digestion times (DT) of 25, 20 and 18 days in a bigger batch digester of 20 L with a reaction volume of 13 L. The conversion rates were registered at the lowest DT (18 days), reaching 44.9 L/kg{sup -1} of wet waste day{sup -1}. Moreover, DT also has a strong influence over COD removal, because there is a direct relationship between solids removal inside the reactor and DT.

  20. Mechanisms, Chemistry, and Kinetics of Anaerobic Biodegradation of cis-Dichloroethene and Vinyl Chloride

    SciTech Connect (OSTI)

    McCarty, P.L.; Spormann, A.M.

    2000-12-01

    Anaerobic biological processes can result in PCE and TCE destruction through conversion to cis-dichloroethene (cDCE) then to vinyl chloride (VC), and finally to ethene. Here, the chlorinated aliphatic hydrocarbons (CAHs) serve as electron acceptors in energy metabolism, requiring electron donors such as hydrogen from an external source. The purpose of this study was to learn more about the biochemistry of cDCE and VC conversion to ethene, to better understand the requirements for electron donors, and to determine factors affecting the rates of CAH degradation and organism growth. The biochemistry of reductive dehalogenation of VC was studied with an anaerobic mixed culture enriched on VC. In other studies on electron donor needs for dehalogenation of cDCE and VC, competition for hydrogen was found to occur between the dehalogenators and other microorganisms such as methanogens and homoacetogens in a benzoate-acclimated dehalogenating methanogenic mixed culture. Factors affecting the relative rates of destruction of the solvents and their intermediate products were evaluated. Studies using a mixed PCE-dehalogenating culture as well as the VC enrichment for biochemical studies suggested that the same species was involved in both cDCE and VC dechlorination, and that cDCE and VC competitively inhibited each other's dechlorination rate.

  1. Intermediate-scale high-solids anaerobic digestion system operational development

    SciTech Connect (OSTI)

    Rivard, C.J.

    1995-02-01

    Anaerobic bioconversion of solid organic wastes represents a disposal option in which two useful products may be produced, including a medium Btu fuel gas (biogas) and a compost-quality organic residue. The application of high-solids technology may offer several advantages over conventional low-solids digester technology. Operation of the anaerobic digestion process at high solids reduces the level of process water and thereby the size and capital costs for the digester system. In addition, by virtue of the lack of available water, the microbial catalysts are more productive in feedstock polymer hydrolysis. The National Renewable Energy Laboratory (NREL) has developed a unique digester system capable of uniformly mixing high-solids materials at low cost. Information gained from laboratory-scale digester research was used to develop die intermediate-scale digester system. This system represents a 50-fold scale-up of the original digester system and includes continuous feed addition and computer monitoring and control. During the first 1.15 years of operation, a variety of modifications and improvements were instituted to increase the safety, reliability, and performance of the system. Those improvements -- which may be critical in further scale-up efforts using the NREL high-solids digester design -- are detailed in this report.

  2. Isolation of cellulolytic anaerobic extreme thermophiles from New Zealand thermal sites

    SciTech Connect (OSTI)

    Sissons, C.H.; Sharrock, K.R.; Daniel, R.M.; Morgan, H.W.

    1987-04-01

    Avicel enrichment cultures from 47 thermal-pool sites in the New Zealand Rotorua-Taupo region were screened for growth and carboxymethyl cellulase activity at 75/sup 0/C. Eight anaerobic cellulolytic cultures were obtained. The effect of temperature on carboxymethyl cellulase activity was measured, and bacteria were isolated from the five best cultures. Bacteria from two sources designated TP8 and TP10 grew at 75/sup 0/C, accumulated reducing sugar in the growth medium and gave free cellulases with avicelase activity. Bacteria from sources designated Tok4, Tok8, and Wai21 grew at 75/sup 0/C, accumulated no free sugars in the medium, and gave free carboxymethyl cellulases with virtually no avicelase activity. All were obligate anaerobic nonsporeforming rods which stained gram pentoses as well as hexoses, and gave ethanol and acetate as major fermentation end products. The isolated strain which produced the most active and stable cellulases had lower rates of free endocellulase accumulation at 75/sup 0/C than did Clostridium thermocellum at 60/sup 0/C, but its cellulase activity against avicel and filter paper in culture supernatants was comparable. Tested at 85/sup 0/C, TP8.T carboxymethyl cellulases included components which were very stable, whereas C. thermocellum carboxymethyl cellulases were all rapidly inactivated. The TP8.T avicelase activity was relatively unaffected by Triton X-100, EDTA, and dithiothreitol. Evidence was obtained for the existence of unisolated, cellulolytic extreme thermophiles producing cellulases which were more stable and active than those from TP8.T.

  3. Industrial landfill leachate characterization and treatment utilizing anaerobic digestion with methane production

    SciTech Connect (OSTI)

    Corbo, P.

    1985-01-01

    Anaerobic digestion of organic compounds found in an industrial landfill leachate originating from a Superfund site was assessed using mixed methanogenic cultures. Leachate was found to contain a dissolved organic content (DOC) of about 16,000 mg/liter, of which 40% was in the form of acetic, propionic and butyric acids. The overall reduction of DOC and the fates of individual volatile fatty acids were studied during batch experiments of 5, 10, and 20% leachate dilutions. Other leachate components were characterized. Two methanogenic cultures were selected. A leachate digesting culture was selected directly with the leachate. A volatile fatty acid digesting culture was selected using acetic, propionic and butyric acids in the ratio found in the leachate. An overall DOC reduction of 64.3% was observed for the leachate digesting culture. A reduction of 69.1% was observed for the volatile fatty acid digesting culture. Specific DOC utilization rates were 0.154 and 0.211 day/sup -1/, for the leachate digesting and volatile fatty acid digesting cultures, respectively. Methane was produced at levels of 0.95-0.99 liters per gram DOC removed. Cell growth could not be observed during batch experiments. Acetate appeared to be the rate-limiting step in the DOC removal. Batch experiments with 20% leachate dilutions did not produce much methane, possibly due to overloading systems with volatile fatty acids. Other leachate components did not appear to effect anaerobic digestion.

  4. Design of a large-scale anaerobic digestion facility for the recovery of energy from municipal solid waste

    SciTech Connect (OSTI)

    Kayhanian, M.; Jones, D.

    1996-12-31

    The California Prison Industry Authority, in conjunction with the City of Folsom, operates a 100 ton/d municipal solid waste (MSW) recovery facility using inmate labor. Through manual sorting, all useful organic and inorganic materials are recycled for marketing. The remaining organic material will be further processed to remove hazardous and inert material and prepared as a feedstock for an anaerobic digestion process. The clean organic waste (approximately 78 ton/d) will then be shredded and completely mixed with sewage water prior feeding to the digester. Off gas from the digester will be collected as a fuel for the steam boiler or combusted in a waste gas burner. Steam will be injected directly into the digester for heating. The anaerobically digested material will be moved to compost area where it will be mixed with wood faction of yard waste and processed aerobically for the production of compost material as a soil amendment. Anaerobic digesters will be constructed in two phases. The first phase consists of the construction of one 26 ton/d digester to confirm the suitability of feeding and mixing equipment. Modifications will be made to the second and third digesters, in the second phase, based on operating experience of the first digester. This paper discusses important design features of the anaerobic digestion facility.

  5. Continuous high-solids anaerobic co-digestion of organic solid wastes under mesophilic conditions

    SciTech Connect (OSTI)

    Kim, Dong-Hoon; Oh, Sae-Eun

    2011-09-15

    Highlights: > High-solids (dry) anaerobic digestion is attracting a lot of attention these days. > One reactor was fed with food waste (FW) and paper waste. > Maximum biogas production rate of 5.0 m{sup 3}/m{sup 3}/d was achieved at HRT 40 d and 40% TS. > The other reactor was fed with FW and livestock waste (LW). > Until a 40% LW content increase, the reactor exhibited a stable performance. - Abstract: With increasing concerns over the limited capacity of landfills, conservation of resources, and reduction of CO{sub 2} emissions, high-solids (dry) anaerobic digestion of organic solid waste (OSW) is attracting a great deal of attention these days. In the present work, two dry anaerobic co-digestion systems fed with different mixtures of OSW were continuously operated under mesophilic conditions. Dewatered sludge cake was used as a main seeding source. In reactor (I), which was fed with food waste (FW) and paper waste (PW), hydraulic retention time (HRT) and solid content were controlled to find the maximum treatability. At a fixed solid content of 30% total solids (TS), stable performance was maintained up to an HRT decrease to 40 d. However, the stable performance was not sustained at 30 d HRT, and hence, HRT was increased to 40 d again. In further operation, instead of decreasing HRT, solid content was increased to 40% TS, which was found to be a better option to increase the treatability. The biogas production rate (BPR), CH{sub 4} production yield (MPY) and VS reduction achieved in this condition were 5.0 m{sup 3}/m{sup 3}/d, 0.25 m{sup 3} CH{sub 4}/g COD{sub added}, and 80%, respectively. Reactor (II) was fed with FW and livestock waste (LW), and LW content was increased during the operation. Until a 40% LW content increase, reactor (II) exhibited a stable performance. A BPR of 1.7 m{sup 3}/m{sup 3}/d, MPY of 0.26 m{sup 3} CH{sub 4}/g COD{sub added}, and VS reduction of 72% was achieved at 40% LW content. However, when the LW content was increased to 60

  6. Microbiological characterization and specific methanogenic activity of anaerobe sludges used in urban solid waste treatment

    SciTech Connect (OSTI)

    Sandoval Lozano, Claudia Johanna Vergara Mendoza, Marisol; Carreno de Arango, Mariela; Castillo Monroy, Edgar Fernando

    2009-02-15

    This study presents the microbiological characterization of the anaerobic sludge used in a two-stage anaerobic reactor for the treatment of organic fraction of urban solid waste (OFUSW). This treatment is one alternative for reducing solid waste in landfills at the same time producing a biogas (CH{sub 4} and CO{sub 2}) and an effluent that can be used as biofertilizer. The system was inoculated with sludge from a wastewater treatment plant (WWTP) (Rio Frio Plant in Bucaramanga-Colombia) and a methanogenic anaerobic digester for the treatment of pig manure (Mesa de los Santos in Santander). Bacterial populations were evaluated by counting groups related to oxygen sensitivity, while metabolic groups were determined by most probable number (MPN) technique. Specific methanogenic activity (SMA) for acetate, formate, methanol and ethanol substrates was also determined. In the acidogenic reactor (R1), volatile fatty acids (VFA) reached values of 25,000 mg L{sup -1} and a concentration of CO{sub 2} of 90%. In this reactor, the fermentative population was predominant (10{sup 5}-10{sup 6} MPN mL{sup -1}). The acetogenic population was (10{sup 5} MPN mL{sup -1}) and the sulphate-reducing population was (10{sup 4}-10{sup 5} MPN mL{sup -1}). In the methanogenic reactor (R2), levels of CH{sub 4} (70%) were higher than CO{sub 2} (25%), whereas the VFA values were lower than 4000 mg L{sup -1}. Substrate competition between sulphate-reducing (10{sup 4}-10{sup 5} MPN mL{sup -1}) and methanogenic bacteria (10{sup 5} MPN mL{sup -1}) was not detected. From the SMA results obtained, acetoclastic (2.39 g COD-CH{sub 4} g{sup -1} VSS{sup -1} day{sup -1}) and hydrogenophilic (0.94 g COD-CH{sub 4} g{sup -1} VSS{sup -1} day{sup -1}) transformations as possible metabolic pathways used by methanogenic bacteria is suggested from the SMA results obtained. Methanotrix sp., Methanosarcina sp., Methanoccocus sp. and Methanobacterium sp. were identified.

  7. Anaerobic oxidation of short-chain alkanes in hydrothermal sediments: potential influences on sulfur cycling and microbial diversity

    SciTech Connect (OSTI)

    Adams, MM; Hoarfrost, AL; Bose, A; Joye, SB; Girguis, PR

    2013-05-14

    Short-chain alkanes play a substantial role in carbon and sulfur cycling at hydrocarbon-rich environments globally, yet few studies have examined the metabolism of ethane (C-2), propane (C-3), and butane (C-4) in anoxic sediments in contrast to methane (C-1). In hydrothermal vent systems, short-chain alkanes are formed over relatively short geological time scales via thermogenic processes and often exist at high concentrations. The sediment-covered hydrothermal vent systems at Middle Valley (MV Juan de Fuca Ridge) are an ideal site for investigating the anaerobic oxidation of C-1-C-4 alkanes, given the elevated temperatures and dissolved hydrocarbon species characteristic of these metalliferous sediments. We examined whether MV microbial communities oxidized C-1-C-4 alkanes under mesophilic to thermophilic sulfate-reducing conditions. Here we present data from discrete temperature (25, 55, and 75 degrees C) anaerobic batch reactor incubations of MV sediments supplemented with individual alkanes. Co-registered alkane consumption and sulfate reduction (SR) measurements provide clear evidence for C-1-C-4 alkane oxidation linked to SR over time and across temperatures. In these anaerobic batch reactor sediments, 16S ribosomal RNA pyrosequencing revealed that Deltaproteobacteria, particularly a novel sulfate-reducing lineage, were the likely phylotypes mediating the oxidation of C-2-C-4 alkanes. Maximum C-1-C-4 alkane oxidation rates occurred at 55 degrees C, which reflects the mid-core sediment temperature profile and corroborates previous studies of rate maxima for the anaerobic oxidation of methane (AOM). Of the alkanes investigated, C-3 was oxidized at the highest rate over time, then C-4, C-2, and C-1, respectively. The implications of these results are discussed with respect to the potential competition between the anaerobic oxidation of C-2-C(4)alkanes with AOM for available oxidants and the influence on the fate of C-1 derived from these hydrothermal systems.

  8. Treatment of VOCs in high strength wastes using an anaerobic expanded-bed GAC reactor

    SciTech Connect (OSTI)

    Narayanian, B.; Suidan, M.T.; Gelderloos, A.B.; Brenner, R.C.

    1993-01-01

    The potential of the expanded-bed granular activated carbon (GAC) anaerobic reactor in treating a high strength waste containing RCRA volatile organic compounds (VOCs) was studied. A total of six VOCs, methylene chloride, chlorobenzene, carbon tetrachloride, chloroform, toluene and tetrachloroethylene, were fed to the reactor in a high strength matrix of background solvents. Performance was evaluated. The reactor was found to effect excellent removal of all VOCs (97%). Chloroform, while itself removed at levels in excess of 97%, was found to inhibit the degradation of acetate and acetone, two of the background solvents. Without any source of chloroform in the feed, excellent COD removals were obtained in addition to near-complete removal of all the VOCs.

  9. Intermediate-Scale High-Solids Anaerobic Digestion System Operational Development

    SciTech Connect (OSTI)

    Rivard, C. J.

    1995-02-01

    Anaerobic bioconversion of solid organic wastes represents a disposal option in which two useful products may be produced, including a medium Btu fuel gas (biogas) and a compost-quality organic residue. The application of high-solids technology may offer several advantages over conventional low-solids digester technology. The National Renewable Energy Laboratory (NREL) has developed a unique digester system capable of uniformly mixing high-solids materials at low cost. During the first 1.5 years of operation, a variety of modifications and improvements were instituted to increase the safety, reliability, and performance of the system. Those improvements, which may be critical in further scale-up efforts using ,the NREL high-solids digester design are detailed in this report.

  10. Anaerobic digestion of pressed off leachate from the organic fraction of municipal solid waste

    SciTech Connect (OSTI)

    Nayono, Satoto E.; Winter, Josef; Gallert, Claudia

    2010-10-15

    A highly polluted liquid ('press water') was obtained from the pressing facility for the organic fraction of municipal solid waste in a composting plant. Methane productivity of the squeezed-off leachate was investigated in batch assays. To assess the technical feasibility of 'press water' as a substrate for anaerobic digestion, a laboratory-scale glass column reactor was operated semi-continuously at 37 {sup o}C. A high methane productivity of 270 m{sup -3} CH{sub 4} ton{sup -1} COD{sub added} or 490 m{sup -3} CH{sub 4} ton{sup -1} VS{sub added} was achieved in the batch experiment. The semi-continuously run laboratory-scale reactor was initially operated at an organic loading rate of 10.7 kg COD m{sup -3} d{sup -1}. The loading was increased to finally 27.7 kg COD m{sup -3} d{sup -1}, corresponding to a reduction of the hydraulic retention time from initially 20 to finally 7.7 days. During the digestion, a stable elimination of organic material (measured as COD elimination) of approximately 60% was achieved. Linearly with the increment of the OLR, the volumetric methane production of the reactor increased from 2.6 m{sup 3} m{sub reactor}{sup -3} d{sup -1} to 7.1 m{sup 3} m{sub reactor}{sup -3} d{sup -1}. The results indicated that 'press water' from the organic fraction of municipal solid waste was a suitable substrate for anaerobic digestion which gave a high biogas yield even at very high loading rates.

  11. Molecular Dynamics Simulation and Analysis of Interfacial Water at Selected Sulfide Mineral Surfaces under Anaerobic Conditions

    SciTech Connect (OSTI)

    Jin, Jiaqi; Miller, Jan D.; Dang, Liem X.

    2014-04-10

    In this paper, we report on a molecular dynamics simulation (MDS) study of the behavior of interfacial water at selected sulfide mineral surfaces under anaerobic conditions. The study revealed the interfacial water structure and wetting characteristics of the pyrite (100) surface, galena (100) surface, chalcopyrite (012) surface, sphalerite (110) surface, and molybdenite surfaces (i.e., the face, armchair-edge, and zigzag-edge surfaces), including simulated contact angles, relative number density profiles, water dipole orientations, hydrogen-bonding, and residence times. For force fields of the metal and sulfur atoms in selected sulfide minerals used in the MDS, we used the universal force field (UFF) and another set of force fields optimized by quantum chemical calculations for interactions with interfacial water molecules at selected sulfide mineral surfaces. Simulation results for the structural and dynamic properties of interfacial water molecules indicate the natural hydrophobic character for the selected sulfide mineral surfaces under anaerobic conditions as well as the relatively weak hydrophobicity for the sphalerite (110) surface and two molybdenite edge surfaces. Part of the financial support for this study was provided by the U.S. Department of Energy (DOE) under Basic Science Grant No. DE-FG-03-93ER14315. The Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences (BES), of the DOE, funded work performed by Liem X. Dang. Battelle operates Pacific Northwest National Laboratory for DOE. The calculations were carried out using computer resources provided by BES. The authors are grateful to Professor Tsun-Mei Chang for valuable discussions.

  12. Characterization of an acetyl xylan esterase from the anaerobic fungus Orpinomyces sp. strain PC-2

    SciTech Connect (OSTI)

    Blum, D.L.; Li, X.L.; Chen, H.; Ljungdahl, L.G.

    1999-09-01

    A 1,067-bp cDNA, designated axeA, coding for an acetyl xylan esterase (AxeA) was cloned from the anaerobic rumen fungus Orpinomyces sp. strain PC-2. The gene had an open reading frame of 939 bp encoding a polypeptide of 313 amino acid residues with a calculated mass of 34,845 Da. An active esterase using the original start codon of the cDNA was synthesized in Escherichia coli. Two active forms of the esterase were purified from recombinant E. coli cultures. The size difference of 8 amino acids was a result of cleavages at two different sites within the signal peptide. The enzyme released acetate from several acetylated substrates, including acetylated xylan. The activity toward acetylated xylan was tripled in the presence of recombinant xylanase A from the same fungus. Using p-nitrophenyl acetate as a substrate, the enzyme had a K{sub m} of 0.9 mM and a V{sub max} of 785 {micro}mol min{sup {minus}} mg{sup {minus}1}. It had temperature and pH optima of 30 C and 9.0, respectively. AxeA had 56% amino acid identity with BnaA, an acetyl xylan esterase of Neocallimastix patriciarum, but the Orpinomyces AxeA was devoid of a noncatalytic repeated peptide domain (NCRPD) found at the carboxy terminus of the Neocallimastix BnaA. The NCRPD found in many glycosyl hydrolases and esterases of anaerobic fungi has been postulated to function as a docking domain for cellulase-hemicellulase complexes, similar to the dockerin of the cellulosome of Clostridium thermocellum.

  13. Ammonia and methane dairy emissions in the San Joaquin Valley of California from individual feedlot to regional scale

    SciTech Connect (OSTI)

    Miller, David J.; Sun, Kang; Tao, Lei; Nowak, John B.; Liu, Zhen; Diskin, Glenn; Sasche, Glen; Beyersdorf, Andreas; Ferrare, Richard; Scarino, Amy Jo; Zondlo, Mark A.; Pan, Da

    2015-09-27

    Agricultural ammonia (NH3) emissions are highly uncertain, with high spatiotemporal variability and a lack of widespread in situ measurements. Regional NH3 emission estimates using mass balance or emission ratio approaches are uncertain due to variable NH3 sources and sinks as well as unknown plume correlations with other dairy source tracers. We characterize the spatial distributions of NH3 and methane (CH4) dairy plumes using in situ surface and airborne measurements in the Tulare dairy feedlot region of the San Joaquin Valley, California, during the NASA Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality 2013 field campaign. Surface NH3 and CH4 mixing ratios exhibit large variability with maxima localized downwind of individual dairy feedlots. The geometric mean NH3:CH4 enhancement ratio derived from surface measurements is 0.15 ± 0.03 ppmv ppmv–1. Individual dairy feedlots with spatially distinct NH3 and CH4 source pathways led to statistically significant correlations between NH3 and CH4 in 68% of the 69 downwind plumes sampled. At longer sampling distances, the NH3:CH4 enhancement ratio decreases 20–30%, suggesting the potential for NH3 deposition as a loss term for plumes within a few kilometers downwind of feedlots. Aircraft boundary layer transect measurements directly above surface mobile measurements in the dairy region show comparable gradients and geometric mean enhancement ratios within measurement uncertainties, even when including NH3 partitioning to submicron particles. Individual NH3 and CH4 plumes sampled at close proximity where losses are minimal are not necessarily correlated due to lack of mixing and distinct source pathways. As a result, our analyses have

  14. Anaerobic U(IV) Bio-oxidation and the Resultant Remobilization of Uranium in Contaminated Sediments

    SciTech Connect (OSTI)

    Coates, John D.

    2005-06-01

    A proposed strategy for the remediation of uranium (U) contaminated sites is based on immobilizing U by reducing the oxidized soluble U, U(VI), to form a reduced insoluble end product, U(IV). Due to the use of nitric acid in the processing of nuclear fuels, nitrate is often a co-contaminant found in many of the environments contaminated with uranium. Recent studies indicate that nitrate inhibits U(VI) reduction in sediment slurries. However, the mechanism responsible for the apparent inhibition of U(VI) reduction is unknown, i.e. preferential utilization of nitrate as an electron acceptor, direct biological oxidation of U(IV) coupled to nitrate reduction, and/or abiotic oxidation by intermediates of nitrate reduction. Recent studies indicates that direct biological oxidation of U(IV) coupled to nitrate reduction may exist in situ, however, to date no organisms have been identified that can grow by this metabolism. In an effort to evaluate the potential for nitrate-dependent bio-oxidation of U(IV) in anaerobic sedimentary environments, we have initiated the enumeration of nitrate-dependent U(IV) oxidizing bacteria. Sediments, soils, and groundwater from uranium (U) contaminated sites, including subsurface sediments from the NABIR Field Research Center (FRC), as well as uncontaminated sites, including subsurface sediments from the NABIR FRC and Longhorn Army Ammunition Plant, Texas, lake sediments, and agricultural field soil, sites served as the inoculum source. Enumeration of the nitrate-dependent U(IV) oxidizing microbial population in sedimentary environments by most probable number technique have revealed sedimentary microbial populations ranging from 9.3 x 101 - 2.4 x 103 cells (g sediment)-1 in both contaminated and uncontaminated sites. Interestingly uncontaminated subsurface sediments (NABIR FRC Background core FB618 and Longhorn Texas Core BH2-18) both harbored the most numerous nitrate-dependent U(IV) oxidizing population 2.4 x 103 cells (g sediment)-1

  15. Benefits of supplementing an industrial waste anaerobic digester with energy crops for increased biogas production

    SciTech Connect (OSTI)

    Nges, Ivo Achu; Escobar, Federico; Fu Xinmei; Bjoernsson, Lovisa

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer This study demonstrates the feasibility of co-digestion food industrial waste with energy crops. Black-Right-Pointing-Pointer Laboratory batch co-digestion led to improved methane yield and carbon to nitrogen ratio as compared to mono-digestion of industrial waste. Black-Right-Pointing-Pointer Co-digestion was also seen as a means of degrading energy crops with nutrients addition as crops are poor in nutrients. Black-Right-Pointing-Pointer Batch co-digestion methane yields were used to predict co-digestion methane yield in full scale operation. Black-Right-Pointing-Pointer It was concluded that co-digestion led an over all economically viable process and ensured a constant supply of feedstock. - Abstract: Currently, there is increasing competition for waste as feedstock for the growing number of biogas plants. This has led to fluctuation in feedstock supply and biogas plants being operated below maximum capacity. The feasibility of supplementing a protein/lipid-rich industrial waste (pig manure, slaughterhouse waste, food processing and poultry waste) mesophilic anaerobic digester with carbohydrate-rich energy crops (hemp, maize and triticale) was therefore studied in laboratory scale batch and continuous stirred tank reactors (CSTR) with a view to scale-up to a commercial biogas process. Co-digesting industrial waste and crops led to significant improvement in methane yield per ton of feedstock and carbon-to-nitrogen ratio as compared to digestion of the industrial waste alone. Biogas production from crops in combination with industrial waste also avoids the need for micronutrients normally required in crop digestion. The batch co-digestion methane yields were used to predict co-digestion methane yield in full scale operation. This was done based on the ratio of methane yields observed for laboratory batch and CSTR experiments compared to full scale CSTR digestion of industrial waste. The economy of crop-based biogas

  16. Performance and kinetic study of semi-dry thermophilic anaerobic digestion of organic fraction of municipal solid waste

    SciTech Connect (OSTI)

    Sajeena Beevi, B.; Madhu, G.; Sahoo, Deepak Kumar

    2015-02-15

    Highlights: • Performance of the reactor was evaluated by the degradation of volatile solids. • Biogas yield at the end of the digestion was 52.9 L/kg VS. • Value of reaction rate constant, k, obtained was 0.0249 day{sup −1}. • During the digestion 66.7% of the volatile solid degradation was obtained. - Abstract: Anaerobic digestion (AD) of the organic fraction of municipal solid waste (OFMSW) is promoted as an energy source and waste disposal. In this study semi dry anaerobic digestion of organic solid wastes was conducted for 45 days in a lab-scale batch experiment for total solid concentration of 100 g/L for investigating the start-up performances under thermophilic condition (50 °C). The performance of the reactor was evaluated by measuring the daily biogas production and calculating the degradation of total solids and the total volatile solids. The biogas yield at the end of the digestion was 52.9 L/kg VS (volatile solid) for the total solid (TS) concentration of 100 g/L. About 66.7% of the volatile solid degradation was obtained during the digestion. A first order model based on the availability of substrate as the limiting factor was used to perform the kinetic studies of batch anaerobic digestion system. The value of reaction rate constant, k, obtained was 0.0249 day{sup −1}.

  17. Strain-resolved microbial community proteomics reveals simultaneous aerobic and anaerobic function during gastrointestinal tract colonization of a preterm infant

    SciTech Connect (OSTI)

    Brooks, Brandon; Mueller, R. S.; Young, Jacque C.; Morowitz, Michael J.; Robert L. Hettich; Banfield, Jillian F.

    2015-07-01

    While there has been growing interest in the gut microbiome in recent years, it remains unclear whether closely related species and strains have similar or distinct functional roles and if organisms capable of both aerobic and anaerobic growth do so simultaneously. To investigate these questions, we implemented a high-throughput mass spectrometry-based proteomics approach to identify proteins in fecal samples collected on days of life 13 21 from an infant born at 28 weeks gestation. No prior studies have coupled strain-resolved community metagenomics to proteomics for such a purpose. Sequences were manually curated to resolve the genomes of two strains of Citrobacter that were present during the later stage of colonization. Proteome extracts from fecal samples were processed via a nano-2D-LC-MS/MS and peptides were identified based on information predicted from the genome sequences for the dominant organisms, Serratia and the two Citrobacter strains. These organisms are facultative anaerobes, and proteomic information indicates the utilization of both aerobic and anaerobic metabolisms throughout the time series. This may indicate growth in distinct niches within the gastrointestinal tract. We uncovered differences in the physiology of coexisting Citrobacter strains, including differences in motility and chemotaxis functions. Additionally, for both Citrobacter strains we resolved a community-essential role in vitamin metabolism and a predominant role in propionate production. Finally, in this case study we detected differences between genome abundance and activity levels for the dominant populations. This underlines the value in layering proteomic information over genetic potential.

  18. Hemicellulases from the ethanologenic thermophile, Thermoanaerobacter ethanolicus and related anaerobic thermophiles. Final report, September 1992--June 1996

    SciTech Connect (OSTI)

    Wiegel, J.

    1998-09-01

    The short term goals of this application were to characterize hemicellulases from anaerobic thermophiles on the biochemical and molecular level to extend the presently limited knowledge of hemicellulases in anaerobic thermophilic bacteria. This objective includes the following tasks: (1) Traditional purification and biochemical/biophysical characterization of xylanases from the newly isolated, slightly alkalitolerant strain NDF190, and the slightly acid-tolerant strain YS485, both with high xylanolytic activities, and of the 4-O-methyl glucuronidase and arabinosidase from strain NDF190 and the acetyl (xylan) esterase from T. ethanolicus. This also includes determining the N-terminal sequences and obtaining gene probes. (2) Elucidation of the regulation of hemicellulolytic enzymes in anaerobic thermophiles. (3) To clone into E. coli and identify the multiplicity of the enzymes involved in hemicellulose degradation by T. ethanolicus and other suitable organisms. (4) To purify and characterize the recombinant enzymes with the goal of identifying the best enzymes for cloning into the ethanologenic T. ethanolicus to obtain an optimized hemicellulose utilization by this bacterium.

  19. Two-phase anaerobic digestion within a solid waste/wastewater integrated management system

    SciTech Connect (OSTI)

    De Gioannis, G.; Diaz, L.F.; Muntoni, A. Pisanu, A.

    2008-07-01

    A two-phase, wet anaerobic digestion process was tested at laboratory scale using mechanically pre-treated municipal solid waste (MSW) as the substrate. The proposed process scheme differs from others due to the integration of the MSW and wastewater treatment cycles, which makes it possible to avoid the recirculation of process effluent. The results obtained show that the supplying of facultative biomass, drawn from the wastewater aeration tank, to the solid waste acidogenic reactor allows an improvement of the performance of the first phase of the process which is positively reflected on the second one. The proposed process performed successfully, adopting mesophilic conditions and a relatively short hydraulic retention time in the methanogenic reactor, as well as high values of organic loading rate. Significant VS removal efficiency and biogas production were achieved. Moreover, the methanogenic reactor quickly reached optimal conditions for a stable methanogenic phase. Studies conducted elsewhere also confirm the feasibility of integrating the treatment of the organic fraction of MSW with that of wastewater.

  20. Natural attenuation of chlorinated ethenes by anaerobic reductive dechlorination coupled with aerobic cometabolism

    SciTech Connect (OSTI)

    Veerkamp, D.D.

    1999-03-01

    Chlorinated solvents and their daughter products are the most common contaminants of groundwater at industrial and military facilities in the United States. Natural attenuation of chlorinated solvents is a promising alternative to traditional pump and treat methods but has not been well understood or widely accepted. This modeling study investigated the ability of TCE to completely degrade under various aquifer conditions and rate order constants. It also examined a case study of a former landfill site at Moody AFB. The author found unusually high flow of ground water by advection or dispersion inhibits the complete degradation of TCE. High concentrations of sulfate or nitrate inhibit the creation of methanogenic conditions and therefore inhibit reductive dechlorination of TCE. He also found an electron donor co-contaminant a critical factor for the complete destruction of TCE because it creates anaerobic conditions. The model illustrated a possible explanation for the lack of down gradient contaminants at the landfill site may be the coupling of reductive dechlorination and cometabolism naturally attenuation the contaminants.

  1. Genome sequence and description of the anaerobic lignin-degrading bacterium Tolumonas lignolytica sp. nov.

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Billings, Andrew F.; Fortney, Julian L.; Hazen, Terry C.; Simmons, Blake; Davenport, Karen W.; Goodwin, Lynne; Ivanova, Natalia; Kyrpides, Nikos C.; Mavromatis, Konstantinos; Woyke, Tanja; et al

    2015-11-19

    Tolumonas lignolytica BRL6-1T sp. nov. is the type strain of T. lignolytica sp. nov., a proposed novel species of the Tolumonas genus. This strain was isolated from tropical rainforest soils based on its ability to utilize lignin as a sole carbon source. Cells of Tolumonas lignolytica BRL6-1T are mesophilic, non-spore forming, Gram-negative rods that are oxidase and catalase negative. The genome for this isolate was sequenced and returned in seven unique contigs totaling 3.6Mbp, enabling the characterization of several putative pathways for lignin breakdown. Particularly, we found an extracellular peroxidase involved in lignin depolymerization, as well as several enzymes involvedmore » in β-aryl ether bond cleavage, which is the most abundant linkage between lignin monomers. We also found genes for enzymes involved in ferulic acid metabolism, which is a common product of lignin breakdown. Finally, by characterizing pathways and enzymes employed in the bacterial breakdown of lignin in anaerobic environments, this work should assist in the efficient engineering of biofuel production from lignocellulosic material.« less

  2. Genome sequence and description of the anaerobic lignin-degrading bacterium Tolumonas lignolytica sp. nov.

    SciTech Connect (OSTI)

    Billings, Andrew F.; Fortney, Julian L.; Hazen, Terry C.; Simmons, Blake; Davenport, Karen W.; Goodwin, Lynne; Ivanova, Natalia; Kyrpides, Nikos C.; Mavromatis, Konstantinos; Woyke, Tanja; DeAngelis, Kristen M.

    2015-11-19

    Tolumonas lignolytica BRL6-1T sp. nov. is the type strain of T. lignolytica sp. nov., a proposed novel species of the Tolumonas genus. This strain was isolated from tropical rainforest soils based on its ability to utilize lignin as a sole carbon source. Cells of Tolumonas lignolytica BRL6-1T are mesophilic, non-spore forming, Gram-negative rods that are oxidase and catalase negative. The genome for this isolate was sequenced and returned in seven unique contigs totaling 3.6Mbp, enabling the characterization of several putative pathways for lignin breakdown. Particularly, we found an extracellular peroxidase involved in lignin depolymerization, as well as several enzymes involved in β-aryl ether bond cleavage, which is the most abundant linkage between lignin monomers. We also found genes for enzymes involved in ferulic acid metabolism, which is a common product of lignin breakdown. Finally, by characterizing pathways and enzymes employed in the bacterial breakdown of lignin in anaerobic environments, this work should assist in the efficient engineering of biofuel production from lignocellulosic material.

  3. Anaerobic cometabolic transformation of polycyclic and heterocyclic aromatic hydrocarbons: evidence from laboratory and field studies

    SciTech Connect (OSTI)

    Michael Safinowski; Christian Griebler; Rainer U. Meckenstock

    2006-07-01

    The sulfate-reducing enrichment culture N47 can grow on naphthalene or 2-methylnaphthalene as the sole carbon and energy source. The study reported shows that the culture can furthermore cometabolically transform a variety of polycyclic and heteroaromatic compounds with naphthalene or methylnaphthalene as the auxiliary substrate. Most of the cosubstrates were converted to the corresponding carboxylic acids, frequently to several isomers. The mass spectra of specific metabolites that were extracted from supernatants of cultures containing the cosubstrates benzothiophene, benzofuran, and 1-methylnaphthalene resembled known intermediates of the anaerobic naphthalene and 2-methylnaphthalene degradation pathways. This indicates that some of the tested compounds were first methylated and then transformed to the corresponding methylsuccinic acids by a fumarate addition to the methyl group. For some of the cosubstrates, a partial or total inhibition of growth on the auxiliary substrate was observed. This was caused by a specific combination of auxiliary substrate and cosubstrate. None of the cosubstrates tested could be utilized as the sole carbon source and electron donor by the enrichment culture N47. Field investigations at the tar-oil-contaminated aquifer (at a former gasworks in southwest Germany), where strain N47 originated, revealed the presence of metabolites similar to the ones identified in batch culture supernatants. The findings suggest that aromatic hydrocarbons and heterocyclic compounds can be converted by aquifer organisms and produce a variety of polar compounds that become mobile in groundwater. 51 refs., 4 figs., 2 tabs.

  4. Flux enhancement with powdered activated carbon addition in the membrane anaerobic bioreactor

    SciTech Connect (OSTI)

    Park, H.; Choo, K.H.; Lee, C.H.

    1999-10-01

    The effect of powdered activated carbon (PAC) addition on the performance of a membrane-coupled anaerobic bioreactor (MCAB) was investigated in terms of membrane filterability and treatability through a series of batch and continuous microfiltration (MF) experiments. In both batch and continuous MF of the digestion broth, a flux improvement with PAC addition was achieved, especially when a higher shear rate and/or a higher PAC dose were applied. Both the fouling and cake layer resistances decreased continuously with increasing the PAC dose up to 5 g/L. PAC played an important role in substantially reducing the biomass cake resistance due to its incompressible nature and higher backtransport velocities. PAC might have a scouring effect for removing the deposited biomass cake from the membrane surface while sorbing and/or coagulating dissolved organics and colloidal particles in the broth. The chemical oxygen demand and color in the effluent were much removed with PAC addition, and the system was also more stable against shock loading.

  5. Thiol-facilitated cell export and desorption of methylmercury by anaerobic bacteria

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lin, Hui; Lu, Xia; Liang, Liyuan; Gu, Baohua

    2015-09-04

    Neurotoxic methylmercury (MeHg), formed by anaerobic bacteria, is shown to be rapidly excreted from the cell, but the mechanism of this process is unclear. Using both Geobacter sulfurreducens PCA and Desulfovibrio desulfuricans ND132 strains, we investigated the factors affecting export and distribution of MeHg in mercury methylation and MeHg sorption-desorption assays. Thiols, such as cysteine, were found to greatly facilitate desorption and export of MeHg, particularly by PCA cells. However, in cysteine-free assays (4 h) >90% of the synthesized MeHg was associated with PCA, among which ~73% was sorbed on the cell surface and 19% remained inside the cells. Inmore » comparison, a majority of the MeHg (70%) was exported by ND132, leaving ~20% of the MeHg sorbed on the surface and 10% inside the cells. When MeHg was added directly to the cell suspensions, ND132 adsorbed much lower MeHg but took up more MeHg inside cells than PCA did. These results demonstrate that MeHg export is bacteria strain-specific, time dependent, and is influenced by thiols, implicating important roles of ligand complexation in facilitating MeHg production and mobilization in the environment.« less

  6. Thiol-facilitated cell export and desorption of methylmercury by anaerobic bacteria

    SciTech Connect (OSTI)

    Lin, Hui; Lu, Xia; Liang, Liyuan; Gu, Baohua

    2015-09-04

    Neurotoxic methylmercury (MeHg), formed by anaerobic bacteria, is shown to be rapidly excreted from the cell, but the mechanism of this process is unclear. Using both Geobacter sulfurreducens PCA and Desulfovibrio desulfuricans ND132 strains, we investigated the factors affecting export and distribution of MeHg in mercury methylation and MeHg sorption-desorption assays. Thiols, such as cysteine, were found to greatly facilitate desorption and export of MeHg, particularly by PCA cells. However, in cysteine-free assays (4 h) >90% of the synthesized MeHg was associated with PCA, among which ~73% was sorbed on the cell surface and 19% remained inside the cells. In comparison, a majority of the MeHg (70%) was exported by ND132, leaving ~20% of the MeHg sorbed on the surface and 10% inside the cells. When MeHg was added directly to the cell suspensions, ND132 adsorbed much lower MeHg but took up more MeHg inside cells than PCA did. These results demonstrate that MeHg export is bacteria strain-specific, time dependent, and is influenced by thiols, implicating important roles of ligand complexation in facilitating MeHg production and mobilization in the environment.

  7. Micro-scale anaerobic digestion of point source components of organic fraction of municipal solid waste

    SciTech Connect (OSTI)

    Chanakya, H.N. Sharma, Isha; Ramachandra, T.V.

    2009-04-15

    The fermentation characteristics of six specific types of the organic fraction of municipal solid waste (OFMSW) were examined, with an emphasis on properties that are needed when designing plug-flow type anaerobic bioreactors. More specifically, the decomposition patterns of a vegetable (cabbage), fruits (banana and citrus peels), fresh leaf litter of bamboo and teak leaves, and paper (newsprint) waste streams as feedstocks were studied. Individual OFMSW components were placed into nylon mesh bags and subjected to various fermentation periods (solids retention time, SRT) within the inlet of a functioning plug-flow biogas fermentor. These were removed at periodic intervals, and their composition was analyzed to monitor decomposition rates and changes in chemical composition. Components like cabbage waste, banana peels, and orange peels fermented rapidly both in a plug-flow biogas reactor (PFBR) as well as under a biological methane potential (BMP) assay, while other OFMSW components (leaf litter from bamboo and teak leaves and newsprint) fermented slowly with poor process stability and moderate biodegradation. For fruit and vegetable wastes (FVW), a rapid and efficient removal of pectins is the main cause of rapid disintegration of these feedstocks, which left behind very little compost forming residues (2-5%). Teak and bamboo leaves and newsprint decomposed only to 25-50% in 30 d. These results confirm the potential for volatile fatty acids accumulation in a PFBR's inlet and suggest a modification of the inlet zone or operation of a PFBR with the above feedstocks.

  8. Fractionation of heavy metals in sludge from anaerobic wastewater stabilization ponds in southern Spain

    SciTech Connect (OSTI)

    Alonso, E.

    2006-07-01

    The analysis of heavy metals is a very important task to assess the potential environmental and health risk associated with the sludge coming from wastewater treatment plants (WWTPs). However, it is necessary to apply sequential extraction techniques to obtain suitable information about their bioavailability or toxicity. In this paper, a sequential extraction scheme according to the Standard, Measurements and Testing Programme of the European Commission was applied to sludge samples collected from ten anaerobic wastewater stabilization ponds (WSPs) located in southern Spain. Al, Cd, Co, Cr, Cu, Fe, Hg, Mn, Mo, Ni, Pb, Ti and Zn were determined in the sludge extracts by inductively coupled plasma atomic emission spectrometry. In relation to current international legislation for the use of sludge for agricultural purposes, none of the metal concentrations exceeded maximum permitted levels. Overall, heavy metals were mainly associated with the two less-available fractions (34% oxidizable metal and 55% residual metal). Only Mn and Zn showed the highest share of the available (exchangeable and reducible) fractions (25-48%)

  9. Differences in xylan degradation by various noncellulolytic thermophilic anaerobes and Clostridium thermocellum

    SciTech Connect (OSTI)

    Wiegel, J.; Mothershed, C.P.; Puls, J.

    1985-03-01

    Hemicellulose fractions with a predetermined distribution of xylose, xylooligomers, and xylan fractions were obtained through steam explosion of wood by the steam explosion-extraction process. A differential utilization of various molecular-weight fractions by several thermophilic anaerobic bacteria was determined during their growth on the hemicellulose preparations. Clostridium thermocellum (60/sup 0/C) first utilized the high-molecular-weight fractions (polymerization degree of 15 to 40 xylose units). Xylose and xylooligomers of n = 2 to 5 accumulated while C. thermocellum was not growing, as evident from the fermentation products formed. Whereas the xylan was hydrolyzed and the small oligoxylans were utilized after more than 100 h of incubation, xylose was not significantly utilized. In contrast to this, C. thermohydrosulfuricum (70/sup 8/C) and Thermoanaerobium brockii (70/sup 8/C) utilized xylose first and then xylooligomers of n = 2 to 5, but xylooligomers of n greater than 6 were only slowly utilized. Thermoanaerobacter ethanolicus (70/sup 0/C), Thermobacteroids acetoethylicus (70/sup 0/C), and C. thermosaccharolyticum (60/sup 0/) utilized xylose preferentially. Xylooligomers of n = 2 to 5 and n = 6 and greater were apparently concomitantly utilized without significant differences. In contrast to C. thermocellum, the non-cellulolytic organisms grew during xylan hydrolysis, producing ethanol, lactate, acetate, CO/sub 2/, and H/sub 2/.

  10. Effect of seasonal changes in quantities of biowaste on full scale anaerobic digester performance

    SciTech Connect (OSTI)

    Illmer, P. Gstraunthaler, G.

    2009-01-15

    A 750,000 l digester located in Roppen/Austria was studied over a 2-year period. The concentrations and amounts of CH{sub 4}, H{sub 2}, CO{sub 2} and H{sub 2}S and several other process parameters like temperature, retention time, dry weight and input of substrate were registered continuously. On a weekly scale the pH and the concentrations of NH{sub 4}{sup +}-N and volatile fatty acids (acetic, butyric, iso-butyric, propionic, valeric and iso-valeric acid) were measured. The data show a similar pattern of seasonal gas production over 2 years of monitoring. The consumption of VFA and not the hydrogenotrophic CH{sub 4} production appeared to be the limiting factor for the investigated digestion process. Whereas the changes in pH and the concentrations of most VFA did not correspond with changes in biogas production, the ratio of acetic to propionic acid and the concentration of H{sub 2} appeared to be useful indicators for reactor performance. However, the most influential factors for the anaerobic digestion process were the amount and the quality of input material, which distinctly changed throughout the year.

  11. IN-SITU CHEMICAL STABILIZATION OF METALS AND RADIONUCLIDES THROUGH ENHANCED ANAEROBIC REDUCTIVE PRECIPITATION

    SciTech Connect (OSTI)

    Christopher C. Lutes; Angela Frizzell, PG; Todd A. Thornton; James M. Harrington

    2003-08-01

    The objective of this NETL sponsored bench-scale study was to demonstrate the efficacy of enhanced anaerobic reductive precipitation (EARP) technology for precipitating uranium using samples from contaminated groundwater at the Fernald Closure Project (FCP) in Cincinnati, Ohio. EARP enhances the natural biological reactions in the groundwater through addition of food grade substrates (typically molasses) to drive the oxidative-reductive potential of the groundwater to a lower, more reduced state, thereby precipitating uranium from solution. In order for this in-situ technology to be successful in the long term, the precipitated uranium must not be re-dissolved at an unacceptable rate once groundwater geochemical conditions return to their pretreatment, aerobic state. The approach for this study is based on the premise that redissolution of precipitated uranium will be slowed by several mechanisms including the presence of iron sulfide precipitates and coatings, and sorption onto fresh iron oxides. A bench-scale study of the technology was performed using columns packed with site soil and subjected to a continuous flow of uranium-contaminated site groundwater (476 {micro}g/L). The ''treated'' column received a steady stream of dilute food grade molasses injected into the contaminated influent. Upon attainment of a consistently reducing environment and demonstrated removal of uranium, an iron sulfate amendment was added along with the molasses in the influent solution. After a month long period of iron addition, the treatments were halted, and uncontaminated, aerobic, unamended water was introduced to the treated column to assess rebound of uranium concentrations. In the first two months of treatment, the uranium concentration in the treated column decreased to the clean-up level (30 {micro}g/L) or below, and remained there for the remainder of the treatment period. A brief period of resolubilization of uranium was observed as the treated column returned to aerobic

  12. Biogas management by controlled feeding and heating of a dairy manure digester

    SciTech Connect (OSTI)

    Chayovan, S.

    1984-01-01

    Gas production dynamics were investigated using laboratory scale digesters fed daily with dairy manure and operated both at constant temperature and with imposed temperature fluctuations of +/-3.3/sup 0/C about a mean of 35.8/sup 0/C. At constant temperature, a 14-liter control digester with a detention time of 19 days, fed with manure diluted to 25% and blended, behaved similarly to two 3-liter digesters fed hole manure at a detection time of 15 days. A second 14-liter digester fed with the diluted manure was operated with three phase relations between the 24 hour temperature cycle and the pulse feeding time. The higher the temperature at the time of feeding, the higher the peak gas production, up to 1.8 times the control. Gradually increasing the temperature after feeding results in sustained high gas production until the most rapidly degradable material is consumed. In all cases digester operation was stable as indicated by pH, alkalinity and total daily gas production. A mathematical model based on three substrate fractions having each first order kinetics and the Arrhenius temperature relationship successfully predicted gas production dynamics as long as hydrolysis remained the rate limiting step and the volatile acid pool did not change rapidly. Results show that gas storage can be reduced as much as 52% using managed heating and feeding for a situation in which gas is productively utilized for only eight hours of the day.

  13. Pathways of anaerobic organic matter decomposition in tundra soils from Barrow, Alaska

    SciTech Connect (OSTI)

    Herndon, Elizabeth M.; Mann, Benjamin F.; Chowdhury, Taniya Roy; Wullschleger, Stan D.; Graham, David E.; Liang, Liyuan; Gu, Baohua; Yang, Ziming

    2015-11-23

    Arctic tundra soils store a large quantity of organic carbon that is susceptible to decomposition and release to the atmosphere as methane (CH4) and carbon dioxide (CO2) under a warming climate. Anaerobic processes that generate CH4 and CO2 remain unclear because previous studies have focused on aerobic decomposition pathways. To predict releases of CO2 and CH4 from tundra soils, it is necessary to identify pathways of soil organic matter decomposition under the anoxic conditions that are prevalent in Arctic ecosystems. Here molecular and spectroscopic techniques were used to monitor biological degradation of water-extractable organic carbon (WEOC) during anoxic incubation of tundra soils from a region of continuous permafrost in northern Alaska. Organic and mineral soils from the tundra active layer were incubated at –2, +4, or +8°C for up to 60 days to mimic the short-term thaw season. Results suggest that, under anoxic conditions, fermentation converted complex organic molecules into simple organic acids that were used in concomitant Fe-reduction and acetoclastic methanogenesis reactions. Nonaromatic compounds increased over time as WEOC increased. Organic acid metabolites initially accumulated in soils but were mostly depleted by day 60 because organic acids were consumed to produce Fe(II), CO2, and CH4. We conclude that fermentation of nonprotected organic matter facilitates methanogenesis and Fe reduction reactions, and that the proportion of organic acids consumed by methanogenesis increases relative to Fe reduction with increasing temperature. As a result, the decomposition pathways observed in this study are important to consider in numerical modeling of greenhouse gas production in the Arctic.

  14. Chemical and microbiological hazards associated with recycling of anaerobic digested residue intended for agricultural use

    SciTech Connect (OSTI)

    Govasmark, Espen; Staeb, Jessica; Holen, Borge; Hoornstra, Douwe; Nesbakk, Tommy; Salkinoja-Salonen, Mirja

    2011-12-15

    In the present study, three full-scale biogas plants (BGP) were investigated for the concentration of heavy metals, organic pollutants, pesticides and the pathogenic bacteria Bacillus cereus and Escherichia coli in the anaerobically digested residues (ADR). The BGPs mainly utilize source-separated organic wastes and industrial food waste as energy sources and separate the ADR into an ADR-liquid and an ADR-solid fraction by centrifugation at the BGP. According to the Norwegian standard for organic fertilizers, the ADR were classified as quality 1 mainly because of high zinc (132-422 mg kg{sup -1} DM) and copper (23-93 mg kg{sup -1} DM) concentrations, but also because of high cadmium (0.21-0.60 mg kg{sup -1} DM) concentrations in the liquid-ADR. In the screening of organic pollutants, only DEHP (9.7-62.1 mg kg{sup -1}) and {Sigma} PAH 16 (0.2-1.98 mg kg{sup -1} DM) were detected in high concentrations according to international regulations. Of the 250 pesticides analyzed, 11 were detected, but only imazalil (<0.30-5.77 mg kg{sup -1} DM) and thiabendazol (<0.14-0.73 mg kg{sup -1} DM) were frequently detected in the ADR-fiber. Concentrations of imazalil and thiabendazol were highest during the winter months, due to a high consumption of citrus fruits in Norway in this period. Ten percent of the ADR-liquid samples contained cereulide-producing B. cereus, whereas no verotoxigenic E. coli was detected. The authors conclude that the risk of chemical and bacterial contamination of the food chain or the environment from agricultural use of ADR seems low.

  15. Kinetics and dynamic modelling of batch anaerobic digestion of municipal solid waste in a stirred reactor

    SciTech Connect (OSTI)

    Nopharatana, Annop; Pullammanappallil, Pratap C.; Clarke, William P.

    2007-07-01

    A series of batch, slurry anaerobic digestion experiments were performed where the soluble and insoluble fractions, and unwashed MSW were separately digested in a 200 l stirred stainless steel vessel at a pH of 7.2 and a temperature of 38 deg. C. It was found that 7% of the total MSW COD was readily soluble, of which 80% was converted to biogas; 50% of the insoluble fraction was solubilised, of this only 80% was converted to biogas. The rate of digesting the insoluble fraction was about four times slower than the rate of digesting the soluble fraction; 48% of the total COD was converted to biogas and 40% of the total nitrogen was converted to ammonia. Soluble and insoluble fractions were broken down simultaneously. The minimum time to convert 95% of the degradable fraction to biogas was 20 days. The lag phase for the degradation of insoluble fraction of MSW can be overcome by acclimatising the culture with the soluble fraction. The rate of digestion and the methane yield was not affected by particle size (within the range of 2-50 mm). A dynamic model was developed to describe batch digestion of MSW. The parameters of the model were estimated using data from the separate digestion of soluble and insoluble fractions and validated against data from the digestion of unwashed MSW. Trends in the specific aceticlastic and formate-utilising methanogenic activity were used to estimate initial methanogenic biomass concentration and bacterial death rate coefficient. The kinetics of hydrolysis of insoluble fraction could be adequately described by a Contois equation and the kinetics of acidogenesis, and aceticlastic and hydrogen utilising methanogenesis by Monod equations.

  16. Archaeal community composition affects the function of anaerobic co-digesters in response to organic overload

    SciTech Connect (OSTI)

    Lerm, S.; Kleyboecker, A.; Miethling-Graff, R.; Alawi, M.; Kasina, M.; Liebrich, M.; Wuerdemann, H.

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer Two types of methanogens are necessary to respond successfully to perturbation. Black-Right-Pointing-Pointer Diversity of methanogens correlates with the VFA concentration and methane yield. Black-Right-Pointing-Pointer Aggregates indicate tight spatial relationship between minerals and microorganisms. - Abstract: Microbial community diversity in two thermophilic laboratory-scale and three full-scale anaerobic co-digesters was analysed by genetic profiling based on PCR-amplified partial 16S rRNA genes. In parallel operated laboratory reactors a stepwise increase of the organic loading rate (OLR) resulted in a decrease of methane production and an accumulation of volatile fatty acids (VFAs). However, almost threefold different OLRs were necessary to inhibit the gas production in the reactors. During stable reactor performance, no significant differences in the bacterial community structures were detected, except for in the archaeal communities. Sequencing of archaeal PCR products revealed a dominance of the acetoclastic methanogen Methanosarcina thermophila, while hydrogenotrophic methanogens were of minor importance and differed additionally in their abundance between reactors. As a consequence of the perturbation, changes in bacterial and archaeal populations were observed. After organic overload, hydrogenotrophic methanogens (Methanospirillum hungatei and Methanoculleus receptaculi) became more dominant, especially in the reactor attributed by a higher OLR capacity. In addition, aggregates composed of mineral and organic layers formed during organic overload and indicated tight spatial relationships between minerals and microbial processes that may support de-acidification processes in over-acidified sludge. Comparative analyses of mesophilic stationary phase full-scale reactors additionally indicated a correlation between the diversity of methanogens and the VFA concentration combined with the methane yield. This study

  17. Anaerobic treatment of aircraft de-icing agent using the SNC-LAVALIN Multiplate Reactor

    SciTech Connect (OSTI)

    Mulligan, C.; Chebib, J.; Safi, B.

    1997-12-31

    A system for the anaerobic treatment of aircraft de-icing agent has been developed by SNC Research Corp., a subsidiary of the SNC-LAVALIN Group (Montreal, Canada). The de-icing agent used in the evaluation contains 54% ethylene glycol, 46% water and trace additives such as surfactants and colorants. The process is comprised of a buffer tank and the SNC-LAVALIN Multiplate Reactor and is as follows. The effluent containing the aircraft de-icing agent with ethylene glycol as the major component enters the buffer tank where the temperature and pH adjustment and the addition of nutrients takes place. The water is then sent to the SNC-LAVALIN Multiplate Reactor. Here, the de-icing agent is converted to biogas which contains 80% methane and the liquid effluent which is essentially ethylene glycol free is discharged. The biogas can be either burned in a flare or used for heating purposes. The following results are typical for the aircraft de-icing agent: Greater than 90% total COD and 99% ethylene glycol removal at an organic load of 15 kg COD/m{sup 3}-day. The de-icing agent can be collected and subsequently treated on-site using the SNC-LAVALIN system. The advantages of the SNC-LAVALIN system are low capital and operating costs, possibility of treating a wide range of de-icing agent concentrations and other liquid effluents unlike evaporation processes, potential recuperation of the biogas and a gentle technology for the environment without generation of VOCs.

  18. Pathways of anaerobic organic matter decomposition in tundra soils from Barrow, Alaska

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Herndon, Elizabeth M.; Mann, Benjamin F.; Chowdhury, Taniya Roy; Wullschleger, Stan D.; Graham, David E.; Liang, Liyuan; Gu, Baohua; Yang, Ziming

    2015-11-23

    Arctic tundra soils store a large quantity of organic carbon that is susceptible to decomposition and release to the atmosphere as methane (CH4) and carbon dioxide (CO2) under a warming climate. Anaerobic processes that generate CH4 and CO2 remain unclear because previous studies have focused on aerobic decomposition pathways. To predict releases of CO2 and CH4 from tundra soils, it is necessary to identify pathways of soil organic matter decomposition under the anoxic conditions that are prevalent in Arctic ecosystems. Here molecular and spectroscopic techniques were used to monitor biological degradation of water-extractable organic carbon (WEOC) during anoxic incubation ofmore » tundra soils from a region of continuous permafrost in northern Alaska. Organic and mineral soils from the tundra active layer were incubated at –2, +4, or +8°C for up to 60 days to mimic the short-term thaw season. Results suggest that, under anoxic conditions, fermentation converted complex organic molecules into simple organic acids that were used in concomitant Fe-reduction and acetoclastic methanogenesis reactions. Nonaromatic compounds increased over time as WEOC increased. Organic acid metabolites initially accumulated in soils but were mostly depleted by day 60 because organic acids were consumed to produce Fe(II), CO2, and CH4. We conclude that fermentation of nonprotected organic matter facilitates methanogenesis and Fe reduction reactions, and that the proportion of organic acids consumed by methanogenesis increases relative to Fe reduction with increasing temperature. As a result, the decomposition pathways observed in this study are important to consider in numerical modeling of greenhouse gas production in the Arctic.« less

  19. Genomic expansion of Domain Archaea highlights roles for organisms from new phyla in anaerobic carbon cycling

    SciTech Connect (OSTI)

    Castelle, Cindy; Wrighton, Kelly C.; Thomas, Brian C.; Hug, Laura A.; Brown, Christopher T.; Wilkins, Michael J.; Frischkorn, Kyle R.; Tringe, Susannah G.; Singh, Andrea; Markillie, Lye Meng; Taylor, Ronald C.; Williams, Kenneth H.; Banfield, Jillian F.

    2015-03-01

    cultivated representatives, the biogeochemical impacts of this major radiation of archaea are primarily through anaerobic carbon and hydrogen cycling.

  20. The effects of different mixing intensities during anaerobic digestion of the organic fraction of municipal solid waste

    SciTech Connect (OSTI)

    Lindmark, Johan Eriksson, Per; Thorin, Eva

    2014-08-15

    Highlights: • Effects of mixing on the anaerobic digestion of municipal solid waste. • Digestion of fresh substrate and post-digestion at three mixing intensities were evaluated. • Mixing performed at 150 RPM, 25 RPM and minimally intermittently. • Increased biogas production rates and yields at lower mixing intensities. - Abstract: Mixing inside an anaerobic digester is often continuous and is not actively controlled. The selected mixing regime can however affect both gas production and the energy efficiency of the biogas plant. This study aims to evaluate these effects and compare three different mixing regimes, 150 RPM and 25 RPM continuous mixing and minimally intermittent mixing for both digestion of fresh substrate and post-digestion of the organic fraction of municipal solid waste. The results show that a lower mixing intensity leads to a higher biogas production rate and higher total biogas production in both cases. 25 RPM continuous mixing and minimally intermittent mixing resulted in similar biogas production after process stabilization, while 150 RPM continuous mixing resulted in lower production throughout the experiment. The lower gas production at 150 RPM could not be explained by the inhibition of volatile fatty acids. Cumulative biogas production until day 31 was 295 ± 2.9, 317 ± 1.9 and 304 ± 2.8 N ml/g VS added during digestion of fresh feed and 113 ± 1.3, 134 ± 1.1 and 130 ± 2.3 N ml/g VS added during post digestion for the 150 RPM, 25 RPM and minimally mixed intensities respectively. As well as increasing gas production, optimal mixing can improve the energy efficiency of the anaerobic digestion process.

  1. Differences in volatile methyl siloxane (VMS) profiles in biogas from landfills and anaerobic digesters and energetics of VMS transformations

    SciTech Connect (OSTI)

    Tansel, Berrin Surita, Sharon C.

    2014-11-15

    Highlights: • In the digester gas, D4 and D5 comprised the 62% and 27% if siloxanes, respectively. • In landfill gas, the bulk of siloxanes were TMSOH (58%) followed by D4 (17%). • Methane utilization may be a possible mechanism for TMSOH formation in the landfills. • The geometric configurations of D4 and D5 molecules make them very stable. - Abstract: The objectives of this study were to compare the types and levels of volatile methyl siloxanes (VMS) present in biogas generated in the anaerobic digesters and landfills, evaluate the energetics of siloxane transformations under anaerobic conditions, compare the conditions in anaerobic digesters and municipal solid waste (MSW) landfills which result in differences in siloxane compositions. Biogas samples were collected at the South District Wastewater Treatment Plant and South Dade Landfill in Miami, Florida. In the digester gas, D4 and D5 comprised the bulk of total siloxanes (62% and 27%, respectively) whereas in the landfill gas, the bulk of siloxanes were trimethylsilanol (TMSOH) (58%) followed by D4 (17%). Presence of high levels of TMSOH in the landfill gas indicates that methane utilization may be a possible reaction mechanism for TMSOH formation. The free energy change for transformation of D5 and D4 to TMSOH either by hydrogen or methane utilization are thermodynamically favorable. Either hydrogen or methane should be present at relatively high concentrations for TMSOH formation which explains the high levels present in the landfill gas. The high bond energy and bond distance of the Si–O bond, in view of the atomic sizes of Si and O atoms, indicate that Si atoms can provide a barrier, making it difficult to break the Si–O bonds especially for molecules with specific geometric configurations such as D4 and D5 where oxygen atoms are positioned inside the frame formed by the large Si atoms which are surrounded by the methyl groups.

  2. Farming Out Heat and Electricity through Biopower | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    processes dairy manure and other organic wastes in an oxygen-free environment designed to ... Anaerobic digestion of agricultural waste is a proven and rapidly growing source of ...

  3. Dry-thermophilic anaerobic digestion of organic fraction of municipal solid waste: Methane production modeling

    SciTech Connect (OSTI)

    Fdez-Gueelfo, L.A.; Alvarez-Gallego, C.; Sales, D.; Romero Garcia, L.I.

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer Methane generation may be modeled by means of modified product generation model of Romero Garcia (1991). Black-Right-Pointing-Pointer Organic matter content and particle size influence the kinetic parameters. Black-Right-Pointing-Pointer Higher organic matter content and lower particle size enhance the biomethanization. - Abstract: The influence of particle size and organic matter content of organic fraction of municipal solid waste (OFMSW) in the overall kinetics of dry (30% total solids) thermophilic (55 Degree-Sign C) anaerobic digestion have been studied in a semi-continuous stirred tank reactor (SSTR). Two types of wastes were used: synthetic OFMSW (average particle size of 1 mm; 0.71 g Volatile Solids/g waste), and OFMSW coming from a composting full scale plant (average particle size of 30 mm; 0.16 g Volatile Solids/g waste). A modification of a widely-validated product-generation kinetic model has been proposed. Results obtained from the modified-model parameterization at steady-state (that include new kinetic parameters as K, Y{sub pMAX} and {theta}{sub MIN}) indicate that the features of the feedstock strongly influence the kinetics of the process. The overall specific growth rate of microorganisms ({mu}{sub max}) with synthetic OFMSW is 43% higher compared to OFMSW coming from a composting full scale plant: 0.238 d{sup -1} (K = 1.391 d{sup -1}; Y{sub pMAX} = 1.167 L CH{sub 4}/gDOC{sub c}; {theta}{sub MIN} = 7.924 days) vs. 0.135 d{sup -1} (K = 1.282 d{sup -1}; Y{sub pMAX} = 1.150 L CH{sub 4}/gDOC{sub c}; {theta}{sub MIN} = 9.997 days) respectively. Finally, it could be emphasized that the validation of proposed modified-model has been performed successfully by means of the simulation of non-steady state data for the different SRTs tested with each waste.

  4. Performance evaluation of an anaerobic/aerobic landfill-based digester using yard waste for energy and compost production

    SciTech Connect (OSTI)

    Yazdani, Ramin; Barlaz, Morton A.; Augenstein, Don; Kayhanian, Masoud; Tchobanoglous, George

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer Biochemical methane potential decreased by 83% during the two-stage operation. Black-Right-Pointing-Pointer Net energy produced was 84.3 MWh or 46 kWh per million metric tons (Mg). Black-Right-Pointing-Pointer The average removal efficiency of volatile organic compounds (VOCs) was 96-99%. Black-Right-Pointing-Pointer The average removal efficiency of non-methane organic compounds (NMOCs) was 68-99%. Black-Right-Pointing-Pointer The two-stage batch digester proved to be simple to operate and cost-effective. - Abstract: The objective of this study was to evaluate a new alternative for yard waste management by constructing, operating and monitoring a landfill-based two-stage batch digester (anaerobic/aerobic) with the recovery of energy and compost. The system was initially operated under anaerobic conditions for 366 days, after which the yard waste was aerated for an additional 191 days. Off gas generated from the aerobic stage was treated by biofilters. Net energy recovery was 84.3 MWh, or 46 kWh per million metric tons of wet waste (as received), and the biochemical methane potential of the treated waste decreased by 83% during the two-stage operation. The average removal efficiencies of volatile organic compounds and non-methane organic compounds in the biofilters were 96-99% and 68-99%, respectively.

  5. Investigation into the effect of high concentrations of volatile fatty acids in anaerobic digestion on methanogenic communities

    SciTech Connect (OSTI)

    Franke-Whittle, Ingrid H.; Walter, Andreas; Ebner, Christian; Insam, Heribert

    2014-11-15

    Highlights: • Different methanogenic communities in mesophilic and thermophilic reactors. • High VFA levels do not cause major changes in archaeal communities. • Real-time PCR indicated greater diversity than ANAEROCHIP microarray. - Abstract: A study was conducted to determine whether differences in the levels of volatile fatty acids (VFAs) in anaerobic digester plants could result in variations in the indigenous methanogenic communities. Two digesters (one operated under mesophilic conditions, the other under thermophilic conditions) were monitored, and sampled at points where VFA levels were high, as well as when VFA levels were low. Physical and chemical parameters were measured, and the methanogenic diversity was screened using the phylogenetic microarray ANAEROCHIP. In addition, real-time PCR was used to quantify the presence of the different methanogenic genera in the sludge samples. Array results indicated that the archaeal communities in the different reactors were stable, and that changes in the VFA levels of the anaerobic digesters did not greatly alter the dominating methanogenic organisms. In contrast, the two digesters were found to harbour different dominating methanogenic communities, which appeared to remain stable over time. Real-time PCR results were inline with those of microarray analysis indicating only minimal changes in methanogen numbers during periods of high VFAs, however, revealed a greater diversity in methanogens than found with the array.

  6. A pilot-scale field study on the anaerobic biotreatment of soil impacted with highly chlorinated benzenes

    SciTech Connect (OSTI)

    Ramanand, K.; Foulke, B.; Delnicki, W.A.; Ying, A.C.; Baek, N.H.; Coats, M.L.; Duffy, J.J.

    1995-12-31

    An on-site pilot-scale demonstration of anaerobic biodegradation of highly chlorinated benzenes was successfully performed at a chemical manufacturing industrial facility in Niagara Falls, New York. The field investigation was conducted in 6-yd{sup 3} capacity soil boxes. Approximately 4 yd{sup 3} of soil impacted with chlorinated compounds was placed in each soil box. Chlorinated benzenes with 3 or more chlorines accounted for about 85% of the total chemistry in the soil. The soil box amended with water, nutrients, and acclimated soil microbial inoculum exhibited greater than 78% reduction in the levels of highly chlorinated compounds after one year of field study. The total concentrations of hexa-, penta-, tetra-, and trichlorobenzenes decreased from 920 mg/kg to less than 190 mg/kg, while the total concentrations of di-, and monochlorobenzene increased from 8 mg/kg to greater than 400 mg/kg during one year of field operation. The control soil that did not receive any external nutrient or microbial amendments maintained the same percentage of the highly chlorinated benzenes after one year and di-, and monochlorobenzene never exceeded more than 4 mg/kg at any given time period. The anaerobic activity was further confirmed by monitored parameters such as nutrient consumption (butyrate, nitrogen, organic matter), sulfate depletion, and methane production.

  7. Fate of Zinc Oxide Nanoparticles during Anaerobic Digestion of Wastewater and Post-Treatment Processing of Sewage Sludge

    SciTech Connect (OSTI)

    Lombi, Enzo; Donner, Erica; Tavakkoli, Ehsan; Turney, Terence W.; Naidu, Ravi; Miller, Bradley W.; Scheckel, Kirk G.

    2013-01-14

    The rapid development and commercialization of nanomaterials will inevitably result in the release of nanoparticles (NPs) to the environment. As NPs often exhibit physical and chemical properties significantly different from those of their molecular or macrosize analogs, concern has been growing regarding their fate and toxicity in environmental compartments. The wastewater-sewage sludge pathway has been identified as a key release pathway leading to environmental exposure to NPs. In this study, we investigated the chemical transformation of two ZnO-NPs and one hydrophobic ZnO-NP commercial formulation (used in personal care products), during anaerobic digestion of wastewater. Changes in Zn speciation as a result of postprocessing of the sewage sludge, mimicking composting/stockpiling, were also assessed. The results indicated that 'native' Zn and Zn added either as a soluble salt or as NPs was rapidly converted to sulfides in all treatments. The hydrophobicity of the commercial formulation retarded the conversion of ZnO-NP. However, at the end of the anaerobic digestion process and after postprocessing of the sewage sludge (which caused a significant change in Zn speciation), the speciation of Zn was similar across all treatments. This indicates that, at least for the material tested, the risk assessment of ZnO-NP through this exposure pathway can rely on the significant knowledge already available in regard to other 'conventional' forms of Zn present in sewage sludge.

  8. Metabolic potential of fatty acid oxidation and anaerobic respiration by abundant members of Thaumarchaeota and Thermoplasmata in deep anoxic peat

    SciTech Connect (OSTI)

    Lin, Xueju; Handley, Kim M.; Gilbert, Jack A.; Kostka, Joel E.

    2015-05-22

    To probe the metabolic potential of abundant Archaea in boreal peats, we reconstructed two near-complete archaeal genomes, affiliated with Thaumarchaeota group 1.1c (bin Fn1, 8% abundance), which was a genomically unrepresented group, and Thermoplasmata (bin Bg1, 26% abundance), from metagenomic data acquired from deep anoxic peat layers. Each of the near-complete genomes encodes the potential to degrade long-chain fatty acids (LCFA) via β-oxidation. Fn1 has the potential to oxidize LCFA either by syntrophic interaction with methanogens or by coupling oxidation with anaerobic respiration using fumarate as a terminal electron acceptor (TEA). Fn1 is the first Thaumarchaeota genome without an identifiable carbon fixation pathway, indicating that this mesophilic phylum encompasses more diverse metabolisms than previously thought. Furthermore, we report genetic evidence suggestive of sulfite and/or organosulfonate reduction by Thermoplasmata Bg1. In deep peat, inorganic TEAs are often depleted to extremely low levels, yet the anaerobic respiration predicted for two abundant archaeal members suggests organic electron acceptors such as fumarate and organosulfonate (enriched in humic substances) may be important for respiration and C mineralization in peatlands.

  9. Energy recovery from the effluent of plants anaerobically digesting cellulosic urban solid waste. Final technical report, September 1978-September 1980

    SciTech Connect (OSTI)

    Doerr-Bullock, L.; Higgins, G.M.; Long, K.; Smith, R.B.; Swartzbaugh, J.T.

    1981-06-03

    The program objective was to study the parameters of concentration, time, temperature, and pH to find optimum conditions for enzymatically converting unreacted cellulose in the effluent of an anaerobic digester to glucose for ultimate conversion to methane, and then to project the economics to a 100 tons per day (TPD) plant. The data presented illustrate the amount of cellulose hydrolysis (in percent solubilized mass) for enzyme concentrations from 5 to 1000 C/sub 1/U/gram of substrate using either filter paper or anaerobically digested municipal solid waste (MSW) reacted over periods of time of from 0 to 72 hours. With an active bacterial culture present, the optimum temperature for the hydrolysis reaction was found to be 40/sup 0/C. The feasibility of recycling enzymes by ultrafilter capture was studied and shows that the recovered enzyme is not denatured by any of several possible enzyme loss mechanisms, either chemical, physical, or biological. Although rather stable enzyme-substrate complexes seem to be formed, various techniques permit a 55% enzyme recovery. Posttreatment of digested MSW by cellulase enzymes produces nearly a three-fold increase in biomethanation. However, the value of the additional methane produced in the process as studied is not sufficient to support the cost of enzymes. The feasibility of enzymatic hydrolysis as a biomethanation process step requires further process optimization or an entirely different process concept.

  10. Nitrogen availability and indirect measurements of greenhouse gas emissions from aerobic and anaerobic biowaste digestates applied to agricultural soils

    SciTech Connect (OSTI)

    Rigby, H.; Smith, S.R.

    2013-12-15

    Highlights: • Nitrogen release in digestate-amended soil depends on the digestate type. • Overall N release is modulated by digestate mineral and mineralisable N contents. • Microbial immobilisation does not influence overall release of digestate N in soil. • Digestate physical properties and soil type interact to affect overall N recovery. • High labile C inputs in digestate may promote denitrification in fine-textured soil. - Abstract: Recycling biowaste digestates on agricultural land diverts biodegradable waste from landfill disposal and represents a sustainable source of nutrients and organic matter (OM) to improve soil for crop production. However, the dynamics of nitrogen (N) release from these organic N sources must be determined to optimise their fertiliser value and management. This laboratory incubation experiment examined the effects of digestate type (aerobic and anaerobic), waste type (industrial, agricultural and municipal solid waste or sewage sludge) and soil type (sandy loam, sandy silt loam and silty clay) on N availability in digestate-amended soils and also quantified the extent and significance of the immobilisation of N within the soil microbial biomass, as a possible regulatory mechanism of N release. The digestate types examined included: dewatered, anaerobically digested biosolids (DMAD); dewatered, anaerobic mesophilic digestate from the organic fraction of municipal solid waste (DMADMSW); liquid, anaerobic co-digestate of food and animal slurry (LcoMAD) and liquid, thermophilic aerobic digestate of food waste (LTAD). Ammonium chloride (NH{sub 4}Cl) was included as a reference treatment for mineral N. After 48 days, the final, maximum net recoveries of mineral N relative to the total N (TN) addition in the different digestates and unamended control treatments were in the decreasing order: LcoMAD, 68%; LTAD, 37%, DMAD, 20%; and DMADMSW, 11%. A transient increase in microbial biomass N (MBN) was observed with LTAD application

  11. One carbon metabolism in anaerobic bacteria: Regulation of carbon and electron flow during organic acid production. Progress report, June 1990--May 1992

    SciTech Connect (OSTI)

    Zeikus, J.G.; Jain, M.K.

    1992-04-01

    This reporting period, progress is reported on the following: metabolic pathway of solvent production in B. methylotrophicum; the biochemical mechanism for metabolic regulation of the succinate fermentation; models to understand the physiobiochemical function of formate metabolism in anaerobes and; models for understanding the influence of low pH on one carbon metabolism. (CBS)

  12. Composting, anaerobic digestion and biochar production in Ghana. Environmental–economic assessment in the context of voluntary carbon markets

    SciTech Connect (OSTI)

    Galgani, Pietro; Voet, Ester van der; Korevaar, Gijsbert

    2014-12-15

    Highlights: • Economic–environmental assessment of combining composting with biogas and biochar in Ghana. • These technologies can save greenhouse gas emissions for up to 0.57 t CO{sub 2} eq/t of waste treated. • Labor intensive, small-scale organic waste management is not viable without financial support. • Carbon markets would make these technologies viable with carbon prices in the range of 30–84 EUR/t. - Abstract: In some areas of Sub-Saharan Africa appropriate organic waste management technology could address development issues such as soil degradation, unemployment and energy scarcity, while at the same time reducing emissions of greenhouse gases. This paper investigates the role that carbon markets could have in facilitating the implementation of composting, anaerobic digestion and biochar production, in the city of Tamale, in the North of Ghana. Through a life cycle assessment of implementation scenarios for low-tech, small scale variants of the above mentioned three technologies, the potential contribution they could give to climate change mitigation was assessed. Furthermore an economic assessment was carried out to study their viability and the impact thereon of accessing carbon markets. It was found that substantial climate benefits can be achieved by avoiding landfilling of organic waste, producing electricity and substituting the use of chemical fertilizer. Biochar production could result in a net carbon sequestration. These technologies were however found not to be economically viable without external subsidies, and access to carbon markets at the considered carbon price of 7 EUR/ton of carbon would not change the situation significantly. Carbon markets could help the realization of the considered composting and anaerobic digestion systems only if the carbon price will rise above 75–84 EUR/t of carbon (respectively for anaerobic digestion and composting). Biochar production could achieve large climate benefits and, if approved as a land

  13. High rate mesophilic, thermophilic, and temperature phased anaerobic digestion of waste activated sludge: A pilot scale study

    SciTech Connect (OSTI)

    Bolzonella, David; Cavinato, Cristina; Fatone, Francesco; Pavan, Paolo; Cecchi, Franco

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer High temperatures were tested in single and two-stage anaerobic digestion of waste activated sludge. Black-Right-Pointing-Pointer The increased temperature demonstrated the possibility of improving typical yields of the conventional mesophilic process. Black-Right-Pointing-Pointer The temperature phased anaerobic digestion process (65 + 55 Degree-Sign C) showed the best performances with yields of 0.49 m{sup 3}/kgVS{sub fed}. Black-Right-Pointing-Pointer Ammonia and phosphate released from solids destruction determined the precipitation of struvite in the reactor. - Abstract: The paper reports the findings of a two-year pilot scale experimental trial for the mesophilic (35 Degree-Sign C), thermophilic (55 Degree-Sign C) and temperature phased (65 + 55 Degree-Sign C) anaerobic digestion of waste activated sludge. During the mesophilic and thermophilic runs, the reactor operated at an organic loading rate of 2.2 kgVS/m{sup 3}d and a hydraulic retention time of 20 days. In the temperature phased run, the first reactor operated at an organic loading rate of 15 kgVS/m{sup 3}d and a hydraulic retention time of 2 days while the second reactor operated at an organic loading rate of 2.2 kgVS/m{sup 3}d and a hydraulic retention time of 18 days (20 days for the whole temperature phased system). The performance of the reactor improved with increases in temperature. The COD removal increased from 35% in mesophilic conditions, to 45% in thermophilic conditions, and 55% in the two stage temperature phased system. As a consequence, the specific biogas production increased from 0.33 to 0.45 and to 0.49 m{sup 3}/kgVS{sub fed} at 35, 55, and 65 + 55 Degree-Sign C, respectively. The extreme thermophilic reactor working at 65 Degree-Sign C showed a high hydrolytic capability and a specific yield of 0.33 gCOD (soluble) per gVS{sub fed}. The effluent of the extreme thermophilic reactor showed an average concentration of soluble COD and volatile

  14. Controlling the pH of acid cheese whey in a two-stage anaerobic digester with sodium hydroxide

    SciTech Connect (OSTI)

    Ghaly, A.E.; Ramkumar, D.R.

    1999-07-01

    Anaerobic digestion of cheese whey offers a two-fold benefit: pollution potential reduction and biogas production. The biogas, as an energy source, could be used to reduce the consumption of traditional fuels in the cheese plant. However, as a result of little or no buffering capacity of whey, the pH of the anaerobic digester drops drastically and the process is inhibited. In this study, the effect of controlling the pH of the second chamber of a two-stage, 150 L anaerobic digester operating on cheese whey on the quality and quantity of biogas and the pollution potential reduction, was investigated using sodium hydroxide. The digester was operated at a temperature of 35 C and a hydraulic retention time of 15 days for three runs (no pH control, pH control with no reseeding, and ph control with reseeding) each lasting 50 days. The results indicated that operating the digester without pH control resulted in a low pH (3.3) which inhibited the methanogenic bacteria. The inhibition was irreversible and the digester did not recover (no methane production) when the pH was restored to 7.0 without reseeding, as the observed increased gas production was a false indication of recovery because the gas was mainly carbon dioxide. The addition of base resulted in a total alkalinity of 12,000 mg/L as CaCO{sub 3}. When the system was reseeded and the pH controlled, the total volatile acid concentration was 15,100 mg/L (as acetic acid), with acetic (28%), propionic (21%), butyric (25%), valeric (8%), and caproic (15%) acids as the major constituents. The biogas production was 62.6 L/d (0.84 m{sup 3}/m{sup 3}/d) and the methane content was 60.7%. Reductions of 27.3, 30.4 and 23.3% in the total solids, chemical oxygen demand and total kjeldahl nitrogen were obtained, respectively. The ammonium nitrogen content increased significantly (140%).

  15. Complete genome sequence of the bile-resistant pigment- producing anaerobe Alistipes finegoldii type strain (AHN2437T)

    SciTech Connect (OSTI)

    Mavromatis, K; Stackebrandt, Erko; Munk, Christine; Lapidus, Alla L.; Nolan, Matt; Lucas, Susan; Hammon, Nancy; Deshpande, Shweta; Cheng, Jan-Fang; Tapia, Roxanne; Goodwin, Lynne A.; Pitluck, Sam; Liolios, Konstantinos; Pagani, Ioanna; Ivanova, N; Mikhailova, Natalia; Huntemann, Marcel; Pati, Amrita; Chen, Amy; Palaniappan, Krishna; Land, Miriam L; Hauser, Loren John; Rohde, Manfred; Gronow, Sabine; Goker, Markus; Detter, J. Chris; Bristow, James; Eisen, Jonathan; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C; Klenk, Hans-Peter; Woyke, Tanja

    2013-01-01

    Alistipes finegoldii Rautio et al. 2003 is one of five species of Alistipes with a validly pub- lished name: family Rikenellaceae, order Bacteroidetes, class Bacteroidia, phylum Bacteroidetes. This rod-shaped and strictly anaerobic organism has been isolated mostly from human tissues. Here we describe the features of the type strain of this species, together with the complete genome sequence, and annotation. A. finegoldii is the first member of the genus Alistipes for which the complete genome sequence of its type strain is now available. The 3,734,239 bp long single replicon genome with its 3,302 protein-coding and 68 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.

  16. Effect of ammoniacal nitrogen on one-stage and two-stage anaerobic digestion of food waste

    SciTech Connect (OSTI)

    Ariunbaatar, Javkhlan; Scotto Di Perta, Ester; Panico, Antonio; Frunzo, Luigi; Esposito, Giovanni; Lens, Piet N.L.; Pirozzi, Francesco

    2015-04-15

    Highlights: • Almost 100% of the biomethane potential of food waste was recovered during AD in a two-stage CSTR. • Recirculation of the liquid fraction of the digestate provided the necessary buffer in the AD reactors. • A higher OLR (0.9 gVS/L·d) led to higher accumulation of TAN, which caused more toxicity. • A two-stage reactor is more sensitive to elevated concentrations of ammonia. • The IC{sub 50} of TAN for the AD of food waste amounts to 3.8 g/L. - Abstract: This research compares the operation of one-stage and two-stage anaerobic continuously stirred tank reactor (CSTR) systems fed semi-continuously with food waste. The main purpose was to investigate the effects of ammoniacal nitrogen on the anaerobic digestion process. The two-stage system gave more reliable operation compared to one-stage due to: (i) a better pH self-adjusting capacity; (ii) a higher resistance to organic loading shocks; and (iii) a higher conversion rate of organic substrate to biomethane. Also a small amount of biohydrogen was detected from the first stage of the two-stage reactor making this system attractive for biohythane production. As the digestate contains ammoniacal nitrogen, re-circulating it provided the necessary alkalinity in the systems, thus preventing an eventual failure by volatile fatty acids (VFA) accumulation. However, re-circulation also resulted in an ammonium accumulation, yielding a lower biomethane production. Based on the batch experimental results the 50% inhibitory concentration of total ammoniacal nitrogen on the methanogenic activities was calculated as 3.8 g/L, corresponding to 146 mg/L free ammonia for the inoculum used for this research. The two-stage system was affected by the inhibition more than the one-stage system, as it requires less alkalinity and the physically separated methanogens are more sensitive to inhibitory factors, such as ammonium and propionic acid.

  17. Greenhouse gas emissions from the enteric fermentation and manure storage of dairy and beef cattle in China during 1961–2010

    SciTech Connect (OSTI)

    Gao, Zhiling; Lin, Zhi; Yang, Yuanyuan; Ma, Wenqi; Liao, Wenhua; Li, Jianguo; Cao, Yufeng; Roelcke, Marco

    2014-11-15

    Due to the expanding dairy and beef population in China and their contribution to global CH{sub 4} and N{sub 2}O budgets, a framework considering changes in feed, manure management and herd structure was established to indicate the trends of CH{sub 4} and N{sub 2}O emissions from the enteric formation and manure storage in China's beef and dairy production and the underlying driving forces during the period 1961–2010. From 1961 to 2010, annual CH{sub 4} and N{sub 2}O emissions from beef cattle in China increased from 2.18 Mt to 5.86 Mt and from 7.93 kt–29.56 kt, respectively, while those from dairy cattle increased from 0.023 to 1.09 Mt and 0.12 to 7.90 kt, respectively. These increases were attributed to the combined changes in cattle population and management practices in feeds and manure storage. Improvement in cattle genetics during the period increased the bodyweight, required dry matter intake and gross energy and thus resulted in increased enteric CH{sub 4} EFs for each category of beef and dairy cattle as well as the overall enteric EFs (i.e., Tier 1 in IPCC). However, for beef cattle, such an impact on the overall enteric EFs was largely offset by the herd structure transition from draft animal-oriented to meat animal-oriented during 1961–2010. Although the CO{sub 2}-eq of CH{sub 4} and N{sub 2}O from manure storage was less than the enteric emissions during 1961–2010 in China, it tended to increase both in beef and dairy cattle, which was mainly driven by the changes in manure management practices. - Highlights: • CH{sub 4} emissions dominated the CO{sub 2}-eq emissions from dairy and beef cattle in China. • Beef herd transition played an important role in CH{sub 4} emissions. • Changes of manure managements increased the manure EFs of CH{sub 4} and N{sub 2}O. • Manure contributed very less to the total CO{sub 2}-eq emissions but tended to grow.

  18. Optimization of micro-aeration intensity in acidogenic reactor of a two-phase anaerobic digester treating food waste

    SciTech Connect (OSTI)

    Xu, Suyun; Selvam, Ammaiyappan; Wong, Jonathan W.C.

    2014-02-15

    Highlights: Effect of micro-aeration on acidogenesis and hydrolysis of food waste was investigated. Micro-aeration at 258 L-air/kg TS/d increased the VFAs production 3-fold. High aeration leads to loss of substrate through microbial biomass and respiration. Optimum aeration increased methane recovery while high aeration intensity reduced methane yield. - Abstract: Micro-aeration is known to promote the activities of hydrolytic exo-enzymes and used as a strategy to improve the hydrolysis of particulate substrate. The effect of different micro-aeration rates, 0, 129, 258, and 387 L-air/kg TS/d (denoted as LBR-AN, LBR-6h, LBR-3h and LBR-2h, respectively) on the solubilization of food waste was evaluated at 35 C in four leach bed reactors (LBR) coupled with methanogenic upflow anaerobic sludge blanket (UASB) reactor. Results indicate that the intensity of micro-aeration influenced the hydrolysis and methane yield. Adequate micro-aeration intensity in LBR-3h and LBR-2h significantly enhanced the carbohydrate and protein hydrolysis by 2127% and 3864% respectively. Due to the accelerated acidogenesis, more than 3-fold of acetic acid and butyric acid were produced in LBR-3h as compared to the anaerobic treatment LBR-AN resulting in the maximum methane yield of 0.27 L CH{sub 4}/g VS{sub added} in the UASB. The performance of LBR-6h with inadequate aeration was similar to that of LBR-AN with a comparable hydrolysis degree. Nevertheless, higher aeration intensity in LBR-2h was also unfavorable for methane yield due to significant biomass generation and CO{sub 2} respiration of up to 18.5% and 32.8% of the total soluble hydrolysate, respectively. To conclude, appropriate micro-aeration rate can promote the hydrolysis of solid organic waste and methane yield without undesirable carbon loss and an aeration intensity of 258 L-air/kg TS/d is recommended for acidogenic LBR treating food waste.

  19. In situ capping for size control of monochalcogenides (ZnS, CdS, and SnS) nanocrystals produced by anaerobic metal-reducing bacteria

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jang, Gyoung Gug; Jacobs, Christopher B.; Ivanov, Ilia N.; Joshi, Pooran C.; Meyer, III, Harry M.; Kidder, Michelle; Armstrong, Beth L.; Datskos, Panos G.; Graham, David E.; Moon, Ji -Won

    2015-07-24

    Metal monochalcogenide quantum dot nanocrystals of ZnS, CdS and SnS were prepared by anaerobic, metal-reducing bacteria using in situ capping by oleic acid or oleylamine. Furthermore, the capping agent preferentially adsorbs on the surface of the nanocrystal, suppressing the growth process in the early stages, thus leading to production of nanocrystals with a diameter of less than 5 nm.

  20. In situ capping for size control of monochalcogenides (ZnS, CdS, and SnS) nanocrystals produced by anaerobic metal-reducing bacteria

    SciTech Connect (OSTI)

    Jang, Gyoung Gug; Jacobs, Christopher B; Ivanov, Ilia N; Joshi, Pooran C; Meyer III, Harry M; Kidder, Michelle; Armstrong, Beth L; Datskos, Panos G; Graham, David E; Moon, Ji Won

    2015-01-01

    Metal monochalcogenide quantum dot nanocrystals of ZnS, CdS and SnS were prepared by anaerobic, metal-reducing bacteria using in situ capping by oleic acid or oleylamine. The capping agent preferentially adsorbs on the surface of the nanocrystal, suppressing the growth process in the early stages, thus leading to production of nanocrystals with a diameter of less than 5 nm.

  1. Anaerobic thermophilic bacteria isolated from a Venezuelan oil field and its potential use in microbial improved oil recovery

    SciTech Connect (OSTI)

    Trebbau, G.; Fernandez, B.; Marin, A.

    1995-12-31

    The objective of this work is to determine the ability of indigenous bacteria from a Venezuelan oil field to grow under reservoir conditions inside a porous media, and to produce metabolites capable of recovering residual crude oil. For this purpose, samples of formation waters from a central-eastern Venezuelan oil reservoir were enriched with different carbon sources and a mineral basal media. Formation water was used as a source of trace metals. The enrichments obtained were incubated at reservoir temperature (71{degrees}C), reservoir pressure (1,200 psi), and under anaerobic conditions for both outside and inside porous media (Berea core). Growth and metabolic activity was followed outside porous media by measuring absorbance at 660 nm, increases in pressure, and decreases in pH. Inside porous media bacterial activity was determined by visual examination of the produced waters (gas bubbles and bacterial cells). All the carbohydrates tested outside porous media showed good growth at reservoir conditions. The pH was lowered, gases such as CO{sub 2} and CH{sub 4} were identified by GC. Surface tension was lowered in some enrichments by 30% when compared to controls. Growth was decreased inside porous media, but gases were produced and helped displace oil. In addition, 10% residual oil was recovered from the Berea core. Mathematical modeling was applied to the laboratory coreflood experiment to evaluate the reproducibility of the results obtained.

  2. Semi-continuous anaerobic co-digestion of thickened waste activated sludge and fat, oil and grease

    SciTech Connect (OSTI)

    Wan Caixia; Zhou Quancheng; Fu Guiming

    2011-08-15

    Highlights: > Co-digestion of thickened waste activated sludge (TWAS) with fat, oil and grease (FOG). > Co-digestion of TWAS and FOG at 64% VS increased biogas production by 137%. > FOG addition ratio at 74% of total VS caused inhibition of the anaerobic digestion process. > Micronutrients addition did not significantly improve the biogas production and digestion stabilization. - Abstract: Co-digestion of thickened waste activated sludge (TWAS) and fat, oil and grease (FOG) was conducted semi-continuously under mesophilic conditions. The results showed that daily methane yield at the steady state was 598 L/kg VS{sub added} when TWAS and FOG (64% of total VS) were co-digested, which was 137% higher than that obtained from digestion of TWAS alone. The biogas composition was stabilized at a CH{sub 4} and CO{sub 2} content of 66.8% and 29.5%, respectively. Micronutrients added to co-digestion did not improve the biogas production and digestion stabilization. With a higher addition of FOG (74% of total VS), the digester initially failed but was slowly self-recovered; however, the methane yield was only about 50% of a healthy reactor with the same organic loading rate.

  3. Pilot-scale anaerobic co-digestion of municipal biomass waste and waste activated sludge in China: Effect of organic loading rate

    SciTech Connect (OSTI)

    Liu Xiao; Wang Wei; Shi Yunchun; Zheng Lei; Gao Xingbao; Qiao Wei; Zhou Yingjun

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer Co-digestion of municipal biomass waste (MBW) and waste activated sludge (WAS) was examined on a pilot-scale reactor. Black-Right-Pointing-Pointer System performance and stability under OLR of 1.2, 2.4, 3.6, 4.8, 6.0 and 8.0 kg VS (m{sup 3} d){sup -1} were analyzed. Black-Right-Pointing-Pointer A maximum methane production rate of 2.94 m{sup 3} (m{sup 3} d){sup -1} was achieved at OLR of 8.0 kg VS (m{sup 3} d){sup -1} and HRT of 15d. Black-Right-Pointing-Pointer With the increasing OLRs, pH values, VS removal rate and methane concentration decreased and VFA increased. Black-Right-Pointing-Pointer The changing of biogas production rate can be a practical approach to monitor and control anaerobic digestion system. - Abstract: The effects of organic loading rate on the performance and stability of anaerobic co-digestion of municipal biomass waste (MBW) and waste activated sludge (WAS) were investigated on a pilot-scale reactor. The results showed that stable operation was achieved with organic loading rates (OLR) of 1.2-8.0 kg volatile solid (VS) (m{sup 3} d){sup -1}, with VS reduction rates of 61.7-69.9%, and volumetric biogas production of 0.89-5.28 m{sup 3} (m{sup 3} d){sup -1}. A maximum methane production rate of 2.94 m{sup 3} (m{sup 3} d){sup -1} was achieved at OLR of 8.0 kg VS (m{sup 3} d){sup -1} and hydraulic retention time of 15 days. With increasing OLRs, the anaerobic reactor showed a decrease in VS removal rate, average pH value and methane concentration, and a increase of volatile fatty acid concentration. By monitoring the biogas production rate (BPR), the anaerobic digestion system has a higher acidification risk under an OLR of 8.0 kg VS (m{sup 3} d){sup -1}. This result remarks the possibility of relating bioreactor performance with BPR in order to better understand and monitor anaerobic digestion process.

  4. Inhibitory effect of high NH{sub 4}{sup +}–N concentration on anaerobic biotreatment of fresh leachate from a municipal solid waste incineration plant

    SciTech Connect (OSTI)

    Liu, Zhao; Dang, Yan; Li, Caihua; Sun, Dezhi

    2015-09-15

    Highlights: • High NH{sub 4}{sup +}–N concentrations inhibit anaerobic treatment of leachate. • Inhibitory effect of NH{sub 4}{sup +}–N concentrations on anaerobic granular sludge is reversible. • High NH{sub 4}{sup +}–N concentrations inhibit bioactivities of microorganisms instead of survival. - Abstract: Fresh leachate from municipal solid waste (MSW) incineration plants generally contains extremely high NH{sub 4}{sup +}–N concentration which could inhibit the bioactivity of microorganisms. The inhibitory effect of high NH{sub 4}{sup +}–N concentration on anaerobic biotreatment of fresh leachate from a MSW incineration plant in China has been investigated in this study. The inhibition processes was studied by both static tests and a laboratory-scale expanded granular sludge bed (EGSB) reactor. The specific methanogenic activity (SMA) of the microorganisms in anaerobic granular sludge was inhibited with the NH{sub 4}{sup +}–N concentration increasing to 1000 mg/L in static tests. As well the chemical oxygen demand (COD) removal efficiency and the methane yield decreased in the EGSB reactor, while the volatile fatty acids (VFAs) accumulated and extracellular polymeric substances (EPS) of the anaerobic granular sludge increased with NH{sub 4}{sup +}–N concentration rising to 1000 mg/L, without any rebounding during 30 days of operation. Decreasing NH{sub 4}{sup +}–N concentration to 500 mg/L in influent, the COD removal efficiency recovered to about 85% after 26 days. 1000 mg/L of NH{sub 4}{sup +}–N in leachate was suggested to be the inhibition threshold in EGSB reactor. High-throughput sequencing results showed little changes in microbial communities of the sludge for a high NH{sub 4}{sup +}–N concentration, indicating that the survival of most microorganisms was not affected under such a condition. It inhibited the bioactivity of the microorganisms, resulting in decrease of the COD removal efficiency.

  5. Anaerobic digestion of organic fraction of municipal solid waste combining two pretreatment modalities, high temperature microwave and hydrogen peroxide

    SciTech Connect (OSTI)

    Shahriari, Haleh; Warith, Mostafa; Hamoda, Mohamed; Kennedy, Kevin J.

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer Microwave and H{sub 2}O{sub 2} pretreatment were studied to enhance anaerobic digestion of organic waste. Black-Right-Pointing-Pointer The whole waste pretreated at 115 Degree-Sign C or 145 Degree-Sign C had the highest biogas production. Black-Right-Pointing-Pointer Biogas production of the whole waste decreased at 175 Degree-Sign C due to formation of refractory compounds. Black-Right-Pointing-Pointer Pretreatment to 145 Degree-Sign C and 175 Degree-Sign C were the best when considering only the free liquid fraction. Black-Right-Pointing-Pointer H{sub 2}O{sub 2} pretreatment had a lag phase and the biogas production was not higher than MW pretreated samples. - Abstract: In order to enhance anaerobic digestion (AD) of the organic fraction of municipal solid waste (OFMSW), pretreatment combining two modalities, microwave (MW) heating in presence or absence of hydrogen peroxide (H{sub 2}O{sub 2}) were investigated. The main pretreatment variables affecting the characteristics of the OFMSW were temperature (T) via MW irradiation and supplemental water additions of 20% and 30% (SWA20 and SW30). Subsequently, the focus of this study was to evaluate mesophilic batch AD performance in terms of biogas production, as well as changes in the characteristics of the OFMSW post digestion. A high MW induced temperature range (115-175 Degree-Sign C) was applied, using sealed vessels and a bench scale MW unit equipped with temperature and pressure controls. Biochemical methane potential (BMP) tests were conducted on the whole OFMSW as well as the liquid fractions. The whole OFMSW pretreated at 115 Degree-Sign C and 145 Degree-Sign C showed 4-7% improvement in biogas production over untreated OFMSW (control). When pretreated at 175 Degree-Sign C, biogas production decreased due to formation of refractory compounds, inhibiting the digestion. For the liquid fraction of OFMSW, the effect of pretreatment on the cumulative biogas production (CBP

  6. Performance evaluation of a completely stirred anaerobic reactor treating pig manure at a low range of mesophilic conditions

    SciTech Connect (OSTI)

    Guo, Jianbin; Dong, Renjie; Clemens, Joachim; Wang, Wei

    2013-11-15

    Highlights: • The biogas process can run stably at 20 °C at extremely low OLR after long-term acclimation of bacteria. • A biogas plant running at 28 °C seems as efficient as that operated at 38 °C at low OLR of 1.3 g ODM L{sup −1} d{sup −1}. • Lower temperature operation is inadvisable for the commercial biogas plant running at rather high OLR. • The estimated sludge yield at 28 °C is higher than that at 38 °C. - Abstract: Many Chinese biogas plants run in the lower range of mesophilic conditions. This study evaluated the performance of a completely stirred anaerobic reactor treating pig manure at different temperatures (20, 28 and 38 °C). The start-up phase of the reactor at 20 °C was very long and extremely poor performance was observed with increasing organic loading rate (OLR). At an OLR of 4.3 g ODM L{sup −1} d{sup −1}, methane production at 28 °C was comparable (3% less) with that at 38 °C, but the risk of acidification was high at 28 °C. At low OLR (1.3 g ODM L{sup −1} d{sup −1}), the biogas process appeared stable at 28 °C and gave same methane yields as compared to the reactor operating at 38 °C. The estimated sludge yield at 28 °C was 0.065 g VSS g{sup −1} COD{sub removed,} which was higher than that at 38 °C (0.016 g VSS g{sup −1} COD{sub removed})

  7. Optimisation of sewage sludge anaerobic digestion through co-digestion with OFMSW: Effect of collection system and particle size

    SciTech Connect (OSTI)

    Silvestre, Gracia; Bonmatí, August; Fernández, Belén

    2015-09-15

    Highlights: • Methane production rate increased between 56% and 208% during OFMSW–SS codigestion. • The OFMSW particle size reduction from 20 to 8 mm did not affect the methane yield. • OFMSW–SS codigestion promoted β-oxidation and acetoclastic methanogenic activity. • The evolution of specific activity was a feasible tool to control the process. - Abstract: The effect of organic fraction of municipal solid waste (OFMSW) loading rate and particulate size on the sewage sludge (SS) mesophilic anaerobic co-digestion was assessed in continuous stirred tank reactor at hydraulic retention time of 20 days. The SS–OFMSW mixture composed by 54% of the volatile solids fed (inlet-VS), at OLR of 3.1 kg{sub COD} m{sup −3} d{sup −1} (1.9 kg{sub VS} m{sup −3} d{sup −1}), showed the highest increment on the volumetric methane production and yield of +200% and +59% respectively, under stable conditions. The effect of particulate size was assessed with the same mixture and same operational conditions but reducing the OFMSW particulate size from 20 mm to 8 mm with the aim to improve the hydrolysis step, but the results showed any influence in the OFMSW particulate size range analysed. In addition, specific biomass activity was assessed at the end of each co-digestion period. Results showed that OFMSW promoted β-oxidation syntrophic acetogens and the acetoclastic methanogens activity; although the last increase of the OFMSW percentage (from 47% to 54% inlet-VS) affected negatively the specific substrate activity, but not inhibitory effect was observed. Therefore, the results obtained in the continuous experiment could be related with some inhibitory or toxic effect and not due to hydrolysis limitation. The specific biomass activity test was demonstrated to be an interesting tool to evaluate and control the co-digestion process, especially when conventional parameters did not explain the behaviour of the biological system.

  8. Enhanced hydrolysis and methane yield by applying microaeration pretreatment to the anaerobic co-digestion of brown water and food waste

    SciTech Connect (OSTI)

    Lim, Jun Wei; Wang, Jing-Yuan

    2013-04-15

    Highlights: ? Microaeration pretreatment was effective for brown water and food waste mixture. ? The added oxygen was consumed fully by facultative microorganisms. ? Enhanced solubilization, acidification and breakdown of SCFAs to acetate. ? Microaeration pretreatment improved methane yield by 1021%. ? Nature of inoculum influenced the effects of microaeration. - Abstract: Microaeration has been used conventionally for the desulphurization of biogas, and recently it was shown to be an alternative pretreatment to enhance hydrolysis of the anaerobic digestion (AD) process. Previous studies on microaeration pretreatment were limited to the study of substrates with complex organic matter, while little has been reported on its effect on substrates with higher biodegradability such as brown water and food waste. Due to the lack of consistent microaeration intensities, previous studies were not comparable and thus inconclusive in proving the effectiveness of microaeration to the overall AD process. In this study, the role of microaeration pretreatment in the anaerobic co-digestion of brown water and food waste was evaluated in batch-tests. After a 4-day pretreatment with 37.5 mL-O{sub 2}/L{sub R}-d added to the liquid phase of the reactor, the methane production of substrates were monitored in anaerobic conditions over the next 40 days. The added oxygen was consumed fully by facultative microorganisms and a reducing environment for organic matter degradation was maintained. Other than higher COD solubilization, microaeration pretreatment led to greater VFA accumulation and the conversion of other short chain fatty acids to acetate. This could be due to enhanced activities of hydrolytic and acidogenic bacteria and the degradation of slowly biodegradable compounds under microaerobic conditions. This study also found that the nature of inoculum influenced the effects of microaeration as a 21% and 10% increase in methane yield was observed when pretreatment was applied to

  9. Waste-to-wheel analysis of anaerobic-digestion-based renewable natural gas pathways with the GREET model.

    SciTech Connect (OSTI)

    Han, J.; Mintz, M.; Wang, M.

    2011-12-14

    In 2009, manure management accounted for 2,356 Gg or 107 billion standard cubic ft of methane (CH{sub 4}) emissions in the United States, equivalent to 0.5% of U.S. natural gas (NG) consumption. Owing to the high global warming potential of methane, capturing and utilizing this methane source could reduce greenhouse gas (GHG) emissions. The extent of that reduction depends on several factors - most notably, how much of this manure-based methane can be captured, how much GHG is produced in the course of converting it to vehicular fuel, and how much GHG was produced by the fossil fuel it might displace. A life-cycle analysis was conducted to quantify these factors and, in so doing, assess the impact of converting methane from animal manure into renewable NG (RNG) and utilizing the gas in vehicles. Several manure-based RNG pathways were characterized in the GREET (Greenhouse gases, Regulated Emissions, and Energy use in Transportation) model, and their fuel-cycle energy use and GHG emissions were compared to petroleum-based pathways as well as to conventional fossil NG pathways. Results show that despite increased total energy use, both fossil fuel use and GHG emissions decline for most RNG pathways as compared with fossil NG and petroleum. However, GHG emissions for RNG pathways are highly dependent on the specifics of the reference case, as well as on the process energy emissions and methane conversion factors assumed for the RNG pathways. The most critical factors are the share of flared controllable CH{sub 4} and the quantity of CH{sub 4} lost during NG extraction in the reference case, the magnitude of N{sub 2}O lost in the anaerobic digestion (AD) process and in AD residue, and the amount of carbon sequestered in AD residue. In many cases, data for these parameters are limited and uncertain. Therefore, more research is needed to gain a better understanding of the range and magnitude of environmental benefits from converting animal manure to RNG via AD.

  10. Separate collection of household food waste for anaerobic degradation - Comparison of different techniques from a systems perspective

    SciTech Connect (OSTI)

    Bernstad, A.; Cour Jansen, J. la

    2012-05-15

    Highlight: Black-Right-Pointing-Pointer Four modern and innovative systems for household food waste collection are compared. Black-Right-Pointing-Pointer Direct emissions and resource use were based on full-scale data. Black-Right-Pointing-Pointer Conservation of nutrients/energy content over the system was considered. Black-Right-Pointing-Pointer Systems with high energy/nutrient recovery are most environmentally beneficial. - Abstract: Four systems for household food waste collection are compared in relation the environmental impact categories eutrophication potential, acidification potential, global warming potential as well as energy use. Also, a hotspot analysis is performed in order to suggest improvements in each of the compared collection systems. Separate collection of household food waste in paper bags (with and without drying prior to collection) with use of kitchen grinders and with use of vacuum system in kitchen sinks were compared. In all cases, food waste was used for anaerobic digestion with energy and nutrient recovery in all cases. Compared systems all resulted in net avoidance of assessed environmental impact categories; eutrophication potential (-0.1 to -2.4 kg NO{sub 3}{sup -}eq/ton food waste), acidification potential (-0.4 to -1.0 kg SO{sub 2}{sup -}eq/ton food waste), global warming potential (-790 to -960 kg CO{sub 2}{sup -}eq/ton food waste) and primary energy use (-1.7 to -3.6 GJ/ton food waste). Collection with vacuum system results in the largest net avoidance of primary energy use, while disposal of food waste in paper bags for decentralized drying before collection result in a larger net avoidance of global warming, eutrophication and acidification. However, both these systems not have been taken into use in large scale systems yet and further investigations are needed in order to confirm the outcomes from the comparison. Ranking of scenarios differ largely if considering only emissions in the foreground system, indicating the

  11. Metabolic analysis of the soil microbe Dechloromonas aromatica str. RCB: indications of a surprisingly complex life-style and cryptic anaerobic pathways for aromatic degradation

    SciTech Connect (OSTI)

    Salinero, Kennan Kellaris; Keller, Keith; Feil, William S.; Feil, Helene; Trong, Stephan; Di Bartolo, Genevieve; Lapidus, Alla

    2008-11-17

    Initial interest in Dechloromonas aromatica strain RCB arose from its ability to anaerobically degrade benzene. It is also able to reduce perchlorate and oxidize chlorobenzoate, toluene, and xylene, creating interest in using this organism for bioremediation. Little physiological data has been published for this microbe. It is considered to be a free-living organism. The a priori prediction that the D. aromatica genome would contain previously characterized 'central' enzymes involved in anaerobic aromatic degradation proved to be false, suggesting the presence of novel anaerobic aromatic degradation pathways in this species. These missing pathways include the benzyl succinyl synthase (bssABC) genes (responsible for formate addition to toluene) and the central benzoylCoA pathway for monoaromatics. In depth analyses using existing TIGRfam, COG, and InterPro models, and the creation of de novo HMM models, indicate a highly complex lifestyle with a large number of environmental sensors and signaling pathways, including a relatively large number of GGDEF domain signal receptors and multiple quorum sensors. A number of proteins indicate interactions with an as yet unknown host, as indicated by the presence of predicted cell host remodeling enzymes, effector enzymes, hemolysin-like proteins, adhesins, NO reductase, and both type III and type VI secretory complexes. Evidence of biofilm formation including a proposed exopolysaccharide complex with the somewhat rare exosortase (epsH), is also present. Annotation described in this paper also reveals evidence for several metabolic pathways that have yet to be observed experimentally, including a sulphur oxidation (soxFCDYZAXB) gene cluster, Calvin cycle enzymes, and nitrogen fixation (including RubisCo, ribulose-phosphate 3-epimerase, and nif gene families, respectively). Analysis of the D. aromatica genome indicates there is much to be learned regarding the metabolic capabilities, and life-style, for this microbial species

  12. Parameters affecting the stability of the digestate from a two-stage anaerobic process treating the organic fraction of municipal solid waste

    SciTech Connect (OSTI)

    Trzcinski, Antoine P.; Stuckey, David C.

    2011-07-15

    This paper focused on the factors affecting the respiration rate of the digestate taken from a continuous anaerobic two-stage process treating the organic fraction of municipal solid waste (OFMSW). The process involved a hydrolytic reactor (HR) that produced a leachate fed to a submerged anaerobic membrane bioreactor (SAMBR). It was found that a volatile solids (VS) removal in the range 40-75% and an operating temperature in the HR between 21 and 35 {sup o}C resulted in digestates with similar respiration rates, with all digestates requiring 17 days of aeration before satisfying the British Standard Institution stability threshold of 16 mg CO{sub 2} g VS{sup -1} day{sup -1}. Sanitization of the digestate at 65 {sup o}C for 7 days allowed a mature digestate to be obtained. At 4 g VS L{sup -1} d{sup -1} and Solid Retention Times (SRT) greater than 70 days, all the digestates emitted CO{sub 2} at a rate lower than 25 mg CO{sub 2} g VS{sup -1} d{sup -1} after 3 days of aeration, while at SRT lower than 20 days all the digestates displayed a respiration rate greater than 25 mg CO{sub 2} g VS{sup -1} d{sup -1}. The compliance criteria for Class I digestate set by the European Commission (EC) and British Standard Institution (BSI) could not be met because of nickel and chromium contamination, which was probably due to attrition of the stainless steel stirrer in the HR.

  13. A study of the kinetics and mechanism of the adsorption and anaerobic partial oxidation of n-butane over a vanadyl pyrophosphate catalyst

    SciTech Connect (OSTI)

    Sakakini, B.H.; Taufiq-Yap, Y.H.; Waugh, K.C.

    2000-01-25

    The interaction of n-butane with a ((VO){sub 2}P{sub 2}O{sub 7}) catalyst has been investigated by temperature-programmed desorption and anaerobic temperature-programmed reaction. n-Butane has been shown to adsorb on the (VO){sub 2}P{sub 2}O{sub 7} to as a butyl-hydroxyl pair. When adsorption is carried out at 223 K, upon temperature programming some of the butyl-hydroxyl species recombine resulting in butane desorption at 260 K. However, when adsorption is carried out at 423 K, the hydroxyl species of the butyl-hydroxyl pair migrate away from the butyl species during the adsorption, forming water which is detected in the gas phase. Butane therefore is not observed to desorb at 260 K after the authors lowered the temperature to 223 K under the butane/helium from the adsorption temperature of 423 K prior to temperature programming from that temperature to 1100 K under a helium stream. Anaerobic temperature-programmed oxidation of n-butane produces butene and butadiene at a peak maximum temperature of 1000 K; this is exactly the temperature at which, upon temperature programming, oxygen evolves from the lattice and desorbs as O{sub 2}. This, and the fact that the amount of oxygen desorbing from the (VO){sub 2}P{sub 2}O{sub 7} at {approximately}1000 K is the same as that required for the oxidation of the n-butane to butene and butadiene, strongly suggests (1) that lattice oxygen as it emerges at the surface is the selective oxidant and (2) that its appearance at the surface is the rate-determining step in the selective oxidation of n-butane. The surface of the (VO){sub 2}P{sub 2}O{sub 7} catalyst on which this selective oxidation takes place has had approximately two monolayers of oxygen removed from it by unselective oxidation of the n-butane to CO, CO{sub 2}, and H{sub 2}O between 550 and 950 K and has had approximately one monolayer of carbon deposited on it at {approximately}1000 K. It is apparent, therefore, that the original crystallography of the (VO){sub 2}P

  14. Anaerobic co-digestion of the organic fraction of municipal solid waste with FOG waste from a sewage treatment plant: Recovering a wasted methane potential and enhancing the biogas yield

    SciTech Connect (OSTI)

    Martin-Gonzalez, L.; Colturato, L.F.; Font, X.; Vicent, T.

    2010-10-15

    Anaerobic digestion is applied widely to treat the source collected organic fraction of municipal solid wastes (SC-OFMSW). Lipid-rich wastes are a valuable substrate for anaerobic digestion due to their high theoretical methane potential. Nevertheless, although fat, oil and grease waste from sewage treatment plants (STP-FOGW) are commonly disposed of in landfill, European legislation is aimed at encouraging more effective forms of treatment. Co-digestion of the above wastes may enhance valorisation of STP-FOGW and lead to a higher biogas yield throughout the anaerobic digestion process. In the present study, STP-FOGW was evaluated as a co-substrate in wet anaerobic digestion of SC-OFMSW under mesophilic conditions (37 {sup o}C). Batch experiments carried out at different co-digestion ratios showed an improvement in methane production related to STP-FOGW addition. A 1:7 (VS/VS) STP-FOGW:SC-OFMSW feed ratio was selected for use in performing further lab-scale studies in a 5 L continuous reactor. Biogas yield increased from 0.38 {+-} 0.02 L g VS{sub feed}{sup -1} to 0.55 {+-} 0.05 L g VS{sub feed}{sup -1} as a result of adding STP-FOGW to reactor feed. Both VS reduction values and biogas methane content were maintained and inhibition produced by long chain fatty acid (LCFA) accumulation was not observed. Recovery of a currently wasted methane potential from STP-FOGW was achieved in a co-digestion process with SC-OFMSW.

  15. Early-warning process/control for anaerobic digestion and biological nitrogen transformation processes: Batch, semi-continuous, and/or chemostat experiments. Final report

    SciTech Connect (OSTI)

    Hickey, R.

    1992-09-01

    The objective of this project was to develop and test an early-warning/process control model for anaerobic sludge digestion (AD). The approach was to use batch and semi-continuously fed systems and to assemble system parameter data on a real-time basis. Specific goals were to produce a real-time early warning control model and computer code, tested for internal and external validity; to determine the minimum rate of data collection for maximum lag time to predict failure with a prescribed accuracy and confidence in the prediction; and to determine and characterize any trends in the real-time data collected in response to particular perturbations to feedstock quality. Trends in the response of trace gases carbon monoxide and hydrogen in batch experiments, were found to depend on toxicant type. For example, these trace gases respond differently for organic substances vs. heavy metals. In both batch and semi-continuously feed experiments, increased organic loading lead to proportionate increases in gas production rates as well as increases in CO and H{sub 2} concentration. An analysis of variance of gas parameters confirmed that CO was the most sensitive indicator variable by virtue of its relatively larger variance compared to the others. The other parameters evaluated including gas production, methane production, hydrogen, carbon monoxide, carbon dioxide and methane concentration. In addition, a relationship was hypothesized between gaseous CO concentration and acetate concentrations in the digester. The data from semicontinuous feed experiments were supportive.

  16. Feasibility Study of Anaerobic Digestion of Food Waste in St. Bernard, Louisiana. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites

    SciTech Connect (OSTI)

    Moriarty, K.

    2013-01-01

    The U.S. Environmental Protection Agency (EPA) developed the RE-Powering America's Land initiative to re-use contaminated sites for renewable energy generation when aligned with the community's vision for the site. The former Kaiser Aluminum Landfill in St. Bernard Parish, Louisiana, was selected for a feasibility study under the program. Preliminary work focused on selecting a biomass feedstock. Discussions with area experts, universities, and the project team identified food wastes as the feedstock and anaerobic digestion (AD) as the technology.

  17. Anaerobic Digestion | Open Energy Information

    Open Energy Info (EERE)

    Contact needs updating Image needs updating Reference needed Missing content Broken link Other Additional Comments Cancel Submit Category: Articles with outstanding TODO tasks...

  18. ON THE PROGENITOR SYSTEM OF THE TYPE Iax SUPERNOVA 2014dt IN...

    Office of Scientific and Technical Information (OSTI)

    Authors: Foley, Ryan J. 1 ; Van Dyk, Schuyler D. 2 ; Jha, Saurabh W. 3 ; Clubb, Kelsey I. ; Filippenko, Alexei V. ; Mauerhan, Jon C. 4 ; Miller, Adam A. 5 ; Smith, Nathan ...

  19. Microbiology and physiology of anaerobic fermentation of cellulose. Progress report (4/30/91--4/30/92) and outline of work for the period 9/1/92--9/1/93

    SciTech Connect (OSTI)

    Ljungdahl, L.G.

    1992-12-31

    The authors are continuing their efforts to partly dissociate the cellulolytic enzyme complex of C. thermocellum. This complex named cellulosome (also existing as polycellulosome) consists of perhaps as many as 26 different subunits. It is extremely resistant to dissociation and denaturation. Treatments with urea and SDS have little effect unless the latter treatment is at high temperature. Significantly, some of the subunits after SDS dissociation have CMCase (endoglucanase) activity but no activity toward crystalline cellulose. The only reported success of hydrolysis of crystalline cellulose by cellulosomal subunits is by Wu et al. who isolated two protein fractions labeled SL and SS which when combined exhibit a low (about 1% of the original cellulosome) activity toward crystalline cellulose. The long standing goal is still to determine the activities of the individual subunits, to characterize them, to find out how they are associated in the cellulosome, and to establish the minimum number of subunits needed for efficient hydrolysis of crystalline cellulose. This report also presents the results of experiments on cellulose hydrolysis in aerobic fungi, as well as other anaerobic bacteria.

  20. CX-007434: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    State Energy Program- American Recovery and Reinvestment Act · Washington State University Anaerobic Digester - Nutrient Recovery Technology - Vander Haak Dairy CX(s) Applied: A9, B1.7, B3.9 Date: 12/07/2011 Location(s): Washington Offices(s): Golden Field Office

  1. Enhanced Anaerobic Digestion and Hydrocarbon Precursor Production

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation by Meltem Urgun-Demirtas, Argonne National Laboratory, during the "Targeting High-Value Challenges" panel at the Hydrogen, Hydrocarbons, and Bioproduct Precursors from Wastewaters Workshop held March 18–19, 2015.

  2. Enhanced Anaerobic Digestion and Hydrocarbon Precursor Production...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... to 7 days to minimize the biogas production. Summary Renewable Methane Production We developed a novel process using biochar for producing biomethane at pipeline quality ...

  3. Enhanced Anaerobic Digestion and Hydrocarbon Precursor Production

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ANL's process (U.S. Patent Serial No. 14540,393) 55-70 % CH 4 30-45% CO 2 Conventional biogas upgrading: 20-72% of overall production cost 1. Producing pipeline-quality biomethane ...

  4. Enhanced Anaerobic Digestion and Hydrocarbon Precursor Production...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presentation by Meltem Urgun-Demirtas, Argonne National Laboratory, during the "Targeting High-Value Challenges" panel at the Hydrogen, Hydrocarbons, and Bioproduct Precursors from ...

  5. Anaerobic microbial remobilization of coprecipitated metals

    DOE Patents [OSTI]

    Francis, A.J.; Dodge, C.J.

    1994-10-11

    A process is provided for solubilizing coprecipitated metals. Metals in waste streams are concentrated by treatment with an iron oxide coprecipitating agent. The coprecipitated metals are solubilized by contacting the coprecipitate with a bacterial culture of a Clostridium species ATCC 53464. The remobilized metals can then be recovered and recycled. 4 figs.

  6. Anaerobic microbial remobilization of coprecipitated metals

    DOE Patents [OSTI]

    Francis, Arokiasamy J.; Dodge, Cleveland J.

    1994-10-11

    A process is provided for solubilizing coprecipitated metals. Metals in wastestreams are concentrated by treatment with an iron oxide coprecipitating agent. The coprecipitated metals are solubilized by contacting the coprecipitate with a bacterial culture of a Clostridium species ATCC 53464. The remobilized metals can then be recovered and recycled.

  7. On-farm biogas systems information dissemination project. Final report

    SciTech Connect (OSTI)

    Campbell, J.K.; Koelsch, R.K.; Guest, R.W.; Fabian, E.

    1997-03-01

    The purpose of this project was to study how farmers manage anaerobic digesters on three New York State dairy farms. Two years of data collected were from both plug-flow and tower-type mixed-flow digesters at regular intervals over a three-year period revealed that the financial return from the energy produced by a biogass system in the late 1980`s is marginal. Little difficulty was experienced in operation of the anaerobic digester; however, several farms utilizing congeneration to convert biogas into electricity and heat suffered from not applying maintenance to the congenerator in a timely fashion.

  8. Final Technical Report

    SciTech Connect (OSTI)

    Shayya, Walid

    2007-03-20

    The state of New York through the New York State Energy Research and Development Authority (NYSERDA) has developed a suite of digester projects throughout the state to assess the potential for anaerobic digestion systems to improve manure management and concurrently produce energy through the production of heat and electrical power using the biogas produced from the digesters. Dairies comprise a significant part of the agribusiness and economy of the state of New York. Improving the energy efficiency and environmental footprint of dairies is a goal of NYSERDA. SUNY Morrisville State College (MSC) is part of a collection of state universities, dairy farms, cooperatives, and municipalities examining anaerobic digestion systems to achieve the goals of NYSERDA, the improvement of manure management, and reducing emissions to local dairy animal sites. The process for siting a digester system at the MSC’s free-stall Dairy Complex was initiated in 2002. The project involved the construction of an anaerobic digester that can accommodate the organic waste generated at Dairy complex located about a mile southeast of the main campus. Support for the project was provided through funding from the New York State Energy Research and Development Authority (NYSERDA) and the New York State Department of Agriculture and Markets. The DOE contribution to the project provided additional resources to construct an expanded facility to handle waste generated from the existing free-stall dairy and the newly-constructed barns. Construction on the project was completed in 2006 and the production of biogas started soon after the tanks were filled with the effluent generated at the Dairy Complex. The system has been in operation since December 17, 2006. The generated biogas was consistently flared starting from December 20, 2006, and until the operation of the internal combustion engine/generator set were first tested on the 9th of January, 2007. Flaring the biogas continued until the

  9. Determination of biogas generation potential as a renewable energy source from supermarket wastes

    SciTech Connect (OSTI)

    Alkanok, Gizem; Demirel, Burak Onay, Turgut T.

    2014-01-15

    Highlights: Disposal of supermarket wastes in landfills may contribute to environmental pollution. High methane yields can be obtained from supermarket wastes by anaerobic co-digestion. Fruit and vegetable wastes or dairy products wastes could individually be handled by a two-stage anaerobic process. Buffering capacity, trace metal and C/N ratio are essential for digestion of supermarket wastes. - Abstract: Fruit, vegetable, flower waste (FVFW), dairy products waste (DPW), meat waste (MW) and sugar waste (SW) obtained from a supermarket chain were anaerobically digested, in order to recover methane as a source of renewable energy. Batch mesophilic anaerobic reactors were run at total solids (TS) ratios of 5%, 8% and 10%. The highest methane yield of 0.44 L CH{sub 4}/g VS{sub added} was obtained from anaerobic digestion of wastes (FVFW + DPW + MW + SW) at 10% TS, with 66.4% of methane (CH{sub 4}) composition in biogas. Anaerobic digestion of mixed wastes at 5% and 8% TS provided slightly lower methane yields of 0.41 and 0.40 L CH{sub 4}/g VS{sub added}, respectively. When the wastes were digested alone without co-substrate addition, the highest methane yield of 0.40 L CH{sub 4}/g VS{sub added} was obtained from FVFW at 5% TS. Generally, although the volatile solids (VS) conversion percentages seemed low during the experiments, higher methane yields could be obtained from anaerobic digestion of supermarket wastes. A suitable carbon/nitrogen (C/N) ratio, proper adjustment of the buffering capacity and the addition of essential trace nutrients (such as Ni) could improve VS conversion and biogas production yields significantly.

  10. Microbial Ecology of Thermophilic Anaerobic Digestion. Final Report

    DOE R&D Accomplishments [OSTI]

    Zinder, Stephen H.

    2000-04-15

    This grant supported research on methanogenic archaea. The two major areas that were supported were conversion of acetic acid to methane and nitrogen fixation by Methanosarcina. Among the achievements of this research were the isolation of novel methanogenic cultures, elucidation of the pathways from acetate to methane, description of a specific DNA-binding complex in nitrogen fixing methanogens, and demonstration of an alternative nitrogenase in Methanosarcina.