Sample records for dust particles gas

  1. FROM DUST TO PLANETESIMALS: CRITERIA FOR GRAVITATIONAL INSTABILITY OF SMALL PARTICLES IN GAS

    SciTech Connect (OSTI)

    Shi, Ji-Ming; Chiang, Eugene, E-mail: jmshi@berkeley.edu [Department of Astronomy, UC Berkeley, Hearst Field Annex B-20, Berkeley, CA 94720-3411 (United States)] [Department of Astronomy, UC Berkeley, Hearst Field Annex B-20, Berkeley, CA 94720-3411 (United States)

    2013-02-10T23:59:59.000Z

    Dust particles sediment toward the midplanes of protoplanetary disks, forming dust-rich sublayers encased in gas. What densities must the particle sublayer attain before it can fragment by self-gravity? We describe various candidate threshold densities. One of these is the Roche density, which is that required for a strengthless satellite to resist tidal disruption by its primary. Another is the Toomre density, which is that required for de-stabilizing self-gravity to defeat the stabilizing influences of pressure and rotation. We show that for sublayers containing aerodynamically well-coupled dust, the Toomre density exceeds the Roche density by many (up to about four) orders of magnitude. We present three-dimensional shearing box simulations of self-gravitating, stratified, dust-gas mixtures to test which of the candidate thresholds is relevant for collapse. All of our simulations indicate that the larger Toomre density is required for collapse. This result is sensible because sublayers are readily stabilized by pressure. Sound-crossing times for thin layers are easily shorter than free-fall times, and the effective sound speed in dust-gas suspensions decreases only weakly with the dust-to-gas ratio (as the inverse square root). Our findings assume that particles are small enough that their stopping times in gas are shorter than all other timescales. Relaxing this assumption may lower the threshold for gravitational collapse back down to the Roche criterion. In particular, if the particle stopping time becomes longer than the sound-crossing time, then sublayers may lose pressure support and become gravitationally unstable.

  2. Transport of dust particles in inductively coupled discharges

    SciTech Connect (OSTI)

    Hwang, H.H.; Ventzek, P.L.G.; Hoekstra, R.; Kushner, M.J. [Univ. of Illinois, Urbana, IL (United States). Dept. of Electrical and Computer Engineering

    1994-12-31T23:59:59.000Z

    Contamination by particulates, or ``dust``, in plasma processing reactors decreases the yield of microelectronic components. In low temperature plasmas, such as those used in etching or deposition reactors to fabricate semiconductor devices, the particles can form to appreciable densities. These particles can be trapped or expelled from the reactor, depending on which forces dominate their transport. Quantities that affect dust motion in Inductively Coupled Plasma (ICP) discharges are the charge of the dust particles (electrostatic forces), momentum transfer with ions (viscous ion-drag forces), temperature gradients from heated electrodes (thermophoretic forces), and gas flow (fluid drag forces). The authors have developed a 2-D Monte Carlo simulation to investigate the trajectories of dust particles in ICP reactors. The model may have an arbitrary number and variety of dust species, and different gas mixtures may be used. The self-consistent electric fields, ion energy distributions, and species densities are imported from a companion Monte Carlo-fluid hybrid model. A semi-analytic model is used to determine the dust charge as well as the momentum transfer cross sections between dust and ions. The electrode topography can also affect the trapping locations of dust. Grooves on the electrodes perturb electrical forces and heated washers can change the thermophoretic forces; hence the spatial dust density varies from the case with a smooth, nonheated electrode. These effects on particle trapping will be presented. Other factors on trapping locations, such as dust particle size and varying power flow with time, will also be discussed.

  3. Dust-regulated galaxy formation and evolution:A new chemodynamical model with live dust particles

    E-Print Network [OSTI]

    Bekki, Kenji

    2015-01-01T23:59:59.000Z

    Interstellar dust plays decisive roles in the conversion of neutral to molecular hydrogen (H_2), the thermodynamical evolution of interstellar medium (ISM), and the modification of spectral energy distributions (SEDs) of galaxies. These important roles of dust have not been self-consistently included in previous numerical simulations of galaxy formation and evolution. We have therefore developed a new model by which one can investigate whether and how galaxy formation and evolution can be influenced by dust-related physical processes such as photo-electric heating, H_2 formation on dust, and stellar radiation pressure on dust in detail. A novel point of the model is that different dust species in a galaxy are represented by `live dust' particles (i.e., not test particles). Therefore, dust particles in a galaxy not only interact gravitationally with all four components of the galaxy (i.e., dark matter, stars, gas, and dust) but also are grown and destroyed through physical processes of ISM. First we describe a...

  4. Radiation and Dynamics of Dust Particle

    E-Print Network [OSTI]

    Jozef Klacka

    2002-09-23T23:59:59.000Z

    Relativistically covariant form of equation of motion for arbitrarily shaped dust particle (neutral in charge) under the action of electromagnetic radiation is derived -- emission, scattering and absorption of radiation is considered. The result is presented in the form of optical quantities used in optics of dust particles. The obtained equation of motion represents a generalization of the Poynting-Robertson (P-R) effect, which is standardly used in orbital evolution of dust particles in astrophysics. Simultaneous action of electromagnetic radiation and gravitational fields of the central body -- star -- on the motion of the particle is discussed.

  5. Characterization of jovian plasma embedded dust particles

    E-Print Network [OSTI]

    Amara L. Graps

    2006-09-12T23:59:59.000Z

    As the data from space missions and laboratories improve, a research domain combining plasmas and charged dust is gaining in prominence. Our solar system provides many natural laboratories such as planetary rings, comet comae and tails, ejecta clouds around moons and asteroids, and Earth's noctilucent clouds for which to closely study plasma-embedded cosmic dust. One natural laboratory to study electromagnetically-controlled cosmic dust has been provided by the Jovian dust streams and the data from the instruments which were on board the Galileo spacecraft. Given the prodigious quantity of dust poured into the Jovian magnetosphere by Io and its volcanoes resulting in the dust streams, the possibility of dusty plasma conditions exist. This paper characterizes the main parameters for those interested in studying dust embedded in a plasma with a focus on the Jupiter environment. I show how to distinguish between dust-in-plasma and dusty-plasma and how the Havnes parameter P can be used to support or negate the possibility of collective behavior of the dusty plasma. The result of applying these tools to the Jovian dust streams reveals mostly dust-in-plasma behavior. In the orbits displaying the highest dust stream fluxes, portions of orbits E4, G7, G8, C21 satisfy the minimum requirements for a dusty plasma. However, the P parameter demonstrates that these mild dusty plasma conditions do not lead to collective behavior of the dust stream particles.

  6. Saharan dust particles nucleate droplets in eastern Atlantic clouds Cynthia H. Twohy,1

    E-Print Network [OSTI]

    Collett Jr., Jeffrey L.

    as CCN. Given the dual nature of Saharan dust particles as CCN and ice nuclei, this infusion of dust

  7. The Differential Lifetimes of Protostellar Gas and Dust Disks

    E-Print Network [OSTI]

    Taku Takeuchi; C. J. Clarke; D. N. C. Lin

    2005-03-22T23:59:59.000Z

    We construct a protostellar disk model that takes into account the combined effect of viscous evolution, photoevaporation and the differential radial motion of dust grains and gas. For T Tauri disks, the lifetimes of dust disks that are mainly composed of millimeter sized grains are always shorter than the gas disks' lifetimes, and become similar only when the grains are fluffy (density 10 AU), without strong signs of gas accretion nor of millimeter thermal emission from the dust. For Herbig AeBe stars, the strong photoevaporation clears the inner disks in 10^6 yr, before the dust grains in the outer disk migrate to the inner region. In this case, the grains left behind in the outer gas disk accumulate at the disk inner edge (at 10-100 AU from the star). The dust grains remain there even after the entire gas disk has been photoevaporated, and form a gas-poor dust ring similar to that observed around HR 4796A. Hence, depending on the strength of the stellar ionizing flux, our model predicts opposite types of products around young stars. For low mass stars with a low photoevaporation rate, dust-poor gas disks with an inner hole would form, whereas for high mass stars with a high photoevaporation rate, gas-poor dust rings would form. This prediction should be examined by observations of gas and dust around weak line T Tauri stars and evolved Herbig AeBe stars.

  8. Heterogeneous chemistry of atmospheric mineral dust particles and their resulting cloud-nucleation properties

    E-Print Network [OSTI]

    Sullivan, Ryan Christopher

    2008-01-01T23:59:59.000Z

    of completely processed calcium carbonate dust particles,of completely processed calcium carbonate dust particles,and Solubility of Calcium-Carbonate Monohydrate, Colloid

  9. Heterogeneous Chemistry of Individual Mineral Dust Particles from Different Dust Source Regions: The Importance of Particle Mineralogy

    SciTech Connect (OSTI)

    Krueger, Brenda J.; Grassian, Vicki H.; Cowin, James P.; Laskin, Alexander

    2004-11-01T23:59:59.000Z

    The heterogeneous chemistry of individual dust particles from four different dust source regions is investigated on a particle-by-particle basis using state-of-the-art scanning electron microscopy techniques including computer-controlled scanning electron microscopy/computer-controlled X-ray analysis (CCSEM/EDX). Morphology and compositional changes of individual particles as they react with nitric acid are observed. Clear differences in the reactivity of mineral dusts from these four different dust regions with nitric acid could be observed. Mineral dust from source regions containing high levels of calcium, such as those found in parts of China and Saudi Arabia, are found to react to the greatest extent. Calcium containing minerals, such as calcite (CaCO3) and dolomite (CaMg(CO3)2), react to form nitrate salt whereas other calcium containing minerals such as gypsum (CaSO4?2H2O) do not react. The importance of particle chemical composition and mineralogy in the heterogeneous chemistry of mineral dust aerosols is definitively borne out in this study of individual dust particles.

  10. ENRICHMENT OF THE DUST-TO-GAS MASS RATIO IN BONDI/JEANS ACCRETION/CLOUD SYSTEMS DUE TO UNEQUAL CHANGES IN DUST AND GAS INCOMING VELOCITIES

    E-Print Network [OSTI]

    Bellan, Paul M.

    ENRICHMENT OF THE DUST-TO-GAS MASS RATIO IN BONDI/JEANS ACCRETION/CLOUD SYSTEMS DUE TO UNEQUAL velocity profile from gas so that the dust-to-gas ratio is substantially enriched above the 1% interstellar of motion that the dust-to-gas ratio can become substantially enriched during Bondi- type accretion. Star

  11. Heterogeneous Chemistry of Individual Mineral Dust Particles with Nitric Acid. A Combined CCSEM/EDX, ESEM AND ICP-MS Study

    SciTech Connect (OSTI)

    Laskin, Alexander; Wietsma, Thomas W.; Krueger, Brenda J.; Grassian, Vicki H.

    2005-05-26T23:59:59.000Z

    The heterogeneous chemistry of individual dust particles from four authentic dust samples with gas-phase nitric acid was investigated in this study. Morphology and compositional changes of individual particles as they react with nitric acid were observed using conventional scanning electron microscopy with energy dispersive analysis of X-rays (SEM/EDX) and computer controlled SEM/EDX. Environmental Scanning Electron Microscopy (ESEM) was utilized to investigate the hygroscopic behavior of mineral dust particles reacted with nitric acid. Differences in the reactivity of mineral dust particles from these four different dust source regions with nitric acid were observed. Mineral dust from source regions containing high levels of calcium, namely China loess dust and Saudi coastal dust, were found to react to the greatest extent.

  12. Coulomb interactions between dust particles in plasma etching reactors

    SciTech Connect (OSTI)

    Hwang, H.H.; Kushner, M.J. [Univ. of Illinois, Urbana, IL (United States). Dept. of Electrical and Computer Engineering

    1996-12-31T23:59:59.000Z

    Wafer contamination by particles, or dust, in plasma processing reactors remains a continuing concern in the microelectronics industry. Particles charge negatively in low temperature plasmas and resemble electrically floating bodies. The transport of these particles in plasma processing reactors is dominated by electrostatic, ion-drag, fluid-drag, and thermophoretic forces. Under conditions where the particle density is large, Debye shielding may be insufficient to isolate the particles, leading to particle-particle Coulomb interactions. Such interactions are likely to occur in trapping locations, which are typically near the plasma-sheath boundaries in Reactive Ion Etching (RIE) discharges. Particles that experience Coulomb interactions may display collective behavior, an extreme example being a Coulomb liquid or solid. Particle transport in plasma processing reactors has been studied extensively to predict rates of wafer contamination thought to date particle-particle interactions have not been addressed. In this paper, the authors discuss results from a computer model for dust particle transport in RIE discharges where particle-particle Coulomb interactions are included.

  13. FRAGMENTATION AND EVOLUTION OF MOLECULAR CLOUDS. III. THE EFFECT OF DUST AND GAS ENERGETICS

    SciTech Connect (OSTI)

    Martel, Hugo [Departement de Physique, de Genie Physique et d'Optique, Universite Laval, Quebec, QC, G1V 0A6 (Canada); Urban, Andrea [Sapling Learning, Inc., 2815 Exposition Blvd, Austin, TX 78703 (United States); Evans, Neal J. II [Department of Astronomy, University of Texas, 2515 Speedway, Stop C1400, Austin, TX 78712-1205 (United States)

    2012-09-20T23:59:59.000Z

    Dust and gas energetics are incorporated into a cluster-scale simulation of star formation in order to study the effect of heating and cooling on the star formation process. We build on our previous work by calculating separately the dust and gas temperatures. The dust temperature is set by radiative equilibrium between heating by embedded stars and radiation from dust. The gas temperature is determined using an energy-rate balance algorithm which includes molecular cooling, dust-gas collisional energy transfer, and cosmic-ray ionization. The fragmentation proceeds roughly similarly to simulations in which the gas temperature is set to the dust temperature, but there are differences. The structure of regions around sink particles has properties similar to those of Class 0 objects, but the infall speeds and mass accretion rates are, on average, higher than those seen for regions forming only low-mass stars. The gas and dust temperature have complex distributions not well modeled by approximations that ignore the detailed thermal physics. There is no simple relationship between density and kinetic temperature. In particular, high-density regions have a large range of temperatures, determined by their location relative to heating sources. The total luminosity underestimates the star formation rate at these early stages, before ionizing sources are included, by an order of magnitude. As predicted in our previous work, a larger number of intermediate-mass objects form when improved thermal physics is included, but the resulting initial mass function (IMF) still has too few low-mass stars. However, if we consider recent evidence on core-to-star efficiencies, the match to the IMF is improved.

  14. The dust and gas content of the Crab Nebula

    E-Print Network [OSTI]

    Owen, P J

    2015-01-01T23:59:59.000Z

    We have constructed MOCASSIN photoionization plus dust radiative transfer models for the Crab Nebula core-collapse supernova (CCSN) remnant, using either smooth or clumped mass distributions, in order to determine the chemical composition and masses of the nebular gas and dust. We computed models for several different geometries suggested for the nebular matter distribution but found that the observed gas and dust spectra are relatively insensitive to these geometries, being determined mainly by the spectrum of the pulsar wind nebula which ionizes and heats the nebula. Smooth distribution models are ruled out since they require 16-49 Msun of gas to fit the integrated optical nebular line fluxes, whereas our clumped models require 7.0 Msun of gas. neither of which can be matched by current CCSN yield predictions. A global gas-phase C/O ratio of 1.65 by number is derived, along with a He/H number ratio of 1.85, A carbonaceous dust composition is favoured by the observed gas-phase C/O ratio: amorphous carbon clu...

  15. Direct Observation of Completely Processed Calcium Carbonate Dust Particles

    SciTech Connect (OSTI)

    Laskin, Alexander; Iedema, Martin J.; Ichkovich, Aviad; Graber, Ellen R.; Taraniuk, Ilya; Rudich, Yinon

    2005-05-27T23:59:59.000Z

    This study presents, for the first time, field evidence of complete, irreversible processing of solid calcium carbonate (calcite)-containing particles and quantitative formation of liquid calcium nitrate particles apparently as a result of heterogeneous reaction of calcium carbonate-containing mineral dust particles with gaseous nitric acid. Formation of nitrates from individual calcite and sea salt particles was followed as a function of time in aerosol samples collected at Shoresh, Israel. Morphology and compositional changes of individual particles were observed using conventional scanning electron microscopy with energy dispersive analysis of X-rays (SEM/EDX) and computer controlled SEM/EDX. Environmental scanning electron microscopy (ESEM) was utilized to determine and demonstrate the hygroscopic behavior of calcium nitrate particles found in some of the samples. Calcium nitrate particles are exceptionally hygroscopic and deliquesce even at very low relative humidity (RH) of 9 -11% which is lower than typical atmospheric environments. Transformation of non-hygroscopic dry mineral dust particles into hygroscopic wet aerosol may have substantial impacts on light scattering properties, the ability to modify clouds and heterogeneous chemistry.

  16. Effects of plasma particle trapping on dust-acoustic solitary waves in an opposite polarity dust-plasma medium

    SciTech Connect (OSTI)

    Ahmad, Zulfiqar [Institute of Physics and Electronics, University of Peshawar, 25000 Peshawar (Pakistan); Mushtaq, A. [Department of Physics, Abdul Wali Khan University, Mardan 23200 (Pakistan); National Center for Physics, Shahdrah Valley Road, Islamabad 44000 (Pakistan); Mamun, A. A. [Department of Physics, Jahangirnagar University Savar, Dhaka 1342 (Bangladesh)

    2013-03-15T23:59:59.000Z

    Dust acoustic solitary waves in a dusty plasma containing dust of opposite polarity (adiabatic positive and negative dust), non-isothermal electrons and ions (following vortex like distribution) are theoretically investigated by employing pseudo-potential approach, which is valid for arbitrary amplitude structures. The propagation of small but finite amplitude solitary structures is also examined by using the reductive perturbation method. The basic properties of large (small) amplitude solitary structures are investigated by analyzing the energy integral (modified Korteweg-de Vries equation). It is shown that the effects of dust polarity, trapping of plasma particles (electrons and ions), and temperatures of dust fluids significantly modify the basic features of the dust-acoustic solitary structures that are found to exist in such an opposite polarity dust-plasma medium. The relevance of the work in opposite polarity dust-plasma, which may occur in cometary tails, upper mesosphere, Jupiter's magnetosphere, is briefly discussed.

  17. Consequences of three-dimensional physical and electromagnetic structures on dust particle trapping in high plasma density

    E-Print Network [OSTI]

    Kushner, Mark

    gradients are present, which introduce fluid drag and thermophoretic forces, dust particle traps may

  18. Color-based tracking of plasma dust particles

    SciTech Connect (OSTI)

    Villamayor, Michelle Marie S., E-mail: mvillamayor@nip.upd.edu.ph; Soriano, Maricor N.; Ramos, Henry J. [National Institute of Physics, University of the Philippines, Diliman, Quezon City 1101 (Philippines)] [National Institute of Physics, University of the Philippines, Diliman, Quezon City 1101 (Philippines); Kato, Shuichi; Wada, Motoi [Graduate School of Engineering, Doshisha University, Kyotanabe, Kyoto 610-0321 (Japan)] [Graduate School of Engineering, Doshisha University, Kyotanabe, Kyoto 610-0321 (Japan)

    2014-02-15T23:59:59.000Z

    Color-based tracking to observe agglomeration of deposited particles inside a compact planar magnetron during plasma discharge was done by creating high dynamic range (HDR) images of photos captured by a Pentax K10D digital camera. Carbon erosion and redeposition was also monitored using the technique. The HDR images were subjected to a chromaticity-based constraint discoloration inside the plasma chamber indicating film formation or carbon redeposition. Results show that dust deposition occurs first near the evacuation pumps due to the pressure gradient and then accumulates at the positively charged walls of the chamber. This method can be applied to monitor dust formation during dusty plasma experiments without major modification of plasma devices, useful especially for large fusion reactors.

  19. Optical Investigations of Dust Particles Distribution in RF and DC Discharges

    SciTech Connect (OSTI)

    Ramazanov, T. S.; Dosbolayev, M. K.; Jumabekov, A. N.; Amangaliyeva, R. Zh. [Al-Farabi Kazakh National University, IETP, 96a Tole Bi St., Almaty 050012 (Kazakhstan); Filatova, I. I.; Azharonok, V. V. [B. I. Stepanov Institute of Physics NAS of Belarus, Nezavisimosti Ave., 68, 220072, Minsk (Belarus)

    2008-09-07T23:59:59.000Z

    Optical emission spectroscopy is used to study dust particles movement and conditions of a formation of ordered plasma-dust structures in a capacitively coupled RF discharge. 3D binocular diagnostics of plasma-dust structures in dc discharge was made.

  20. Ice Nuclei in Marine Air: Biogenic Particles or Dust?

    SciTech Connect (OSTI)

    Burrows, Susannah M.; Hoose, C.; Poschl, U.; Lawrence, M.

    2013-01-11T23:59:59.000Z

    Ice nuclei impact clouds, but their sources and distribution in the atmosphere are still not well known. Particularly little attention has been paid to IN sources in marine environments, although evidence from field studies suggests that IN populations in remote marine regions may be dominated by primary biogenic particles associated with sea spray. In this exploratory model study, we aim to bring attention to this long-neglected topic and identify promising target regions for future field campaigns. We assess the likely global distribution of marine biogenic ice nuclei using a combination of historical observations, satellite data and model output. By comparing simulated marine biogenic immersion IN distributions and dust immersion IN distributions, we predict strong regional differences in the importance of marine biogenic IN relative to dust IN. Our analysis suggests that marine biogenic IN are most likely to play a dominant role in determining IN concentrations in near-surface-air over the Southern Ocean, so future field campaigns aimed at investigating marine biogenic IN should target that region. Climate related changes in the abundance and emission of biogenic marine IN could affect marine cloud properties, thereby introducing previously unconsidered feedbacks that influence the hydrological cycle and the Earth’s energy balance. Furthermore, marine biogenic IN may be an important aspect to consider in proposals for marine cloud brightening by artificial sea spray production.

  1. Sensitivity Study of the Effects of Mineral Dust Particle Nonsphericity and Thin Cirrus Clouds on MODIS Dust Optical Depth Retrievals and Direct Radiative Forcing Calculations

    E-Print Network [OSTI]

    Feng, Qian

    2011-10-21T23:59:59.000Z

    A special challenge posed by mineral dust aerosols is associated with their predominantly nonspherical particle shapes. In the present study, the scattering and radiative properties for nonspherical mineral dust aerosols at violet-to-blue (0.412, 0...

  2. APS/123-QED Influence of the ambipolar-to-free diffusion transition on dust particle charge in a

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    and the thermophoretic force [10, 11]. Dust particle charge is a key parameter in a complex plasma. It determines

  3. Study of dust particle charging in weakly ionized inert gases taking into account the nonlocality of the electron energy distribution function

    SciTech Connect (OSTI)

    Filippov, A. V., E-mail: fav@triniti.ru; Dyatko, N. A. [Troitsk Institute for Innovation and Fusion Research, Russian State Research Center (Russian Federation); Kostenko, A. S. [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation)

    2014-11-15T23:59:59.000Z

    The charging of dust particles in weakly ionized inert gases at atmospheric pressure has been investigated. The conditions under which the gas is ionized by an external source, a beam of fast electrons, are considered. The electron energy distribution function in argon, krypton, and xenon has been calculated for three rates of gas ionization by fast electrons: 10{sup 13}, 10{sup 14}, and 10{sup 15} cm{sup ?1}. A model of dust particle charging with allowance for the nonlocal formation of the electron energy distribution function in the region of strong plasma quasi-neutrality violation around the dust particle is described. The nonlocality is taken into account in an approximation where the distribution function is a function of only the total electron energy. Comparative calculations of the dust particle charge with and without allowance for the nonlocality of the electron energy distribution function have been performed. Allowance for the nonlocality is shown to lead to a noticeable increase in the dust particle charge due to the influence of the group of hot electrons from the tail of the distribution function. It has been established that the screening constant virtually coincides with the smallest screening constant determined according to the asymptotic theory of screening with the electron transport and recombination coefficients in an unperturbed plasma.

  4. Effects of radiofrequency on dust particle dynamics in a plasma reactor

    SciTech Connect (OSTI)

    Horn, C.; Shotorban, B. [Department of Mechanical and Aerospace Engineering, University of Alabama in Huntsville, Huntsville, Alabama 35899 (United States); Davoudabadi, M. [ANSYS, Inc., Evanston, Illinois 60201 (United States)

    2011-12-01T23:59:59.000Z

    A numerical solution is obtained for the electron and ion number densities, and electric field of an rf argon plasma in a low pressure reactor utilizing a one-dimensional model. These variables are used to solve the equations describing the dynamical behavior of a dust particle under the influence of the electrical, gravity, and ion and neutral drag forces. The effects of the rf oscillations of the plasma on the dust particle are investigated through comparisons made between two sets of results. The first set is generated by a model in which the rf-period-averaged plasma variables are used in the dust particle equations while the second set is generated using the instantaneous plasma variables, without rf-period averaging. These two sets of results including the positions and charges of, and the various forces acting on the dust particles with different sizes and densities, are compared and significant differences are found.

  5. Can Composite Fluffy Dust Particles Solve the Interstellar Carbon Crisis?

    E-Print Network [OSTI]

    E. Dwek

    1997-01-16T23:59:59.000Z

    Interstellar dust models are facing a "carbon crisis", so called because recent observations suggest that the abundance of carbon available for dust in the interstellar medium is less than half of the amount required to be tied up in graphite grains in order to explain the interstellar extinction curve. This paper presents an detailed assessment of a newly-proposed dust model (Mathis 1996), in which the majority of the interstellar carbon is contained in composite and fluffy dust (CFD) grains. Per unit mass, these grains produce more UV extinction, and can therefore account for the interstellar extinction curve with about half the carbon required in traditional dust models. The results of our analysis show that the CFD model falls short in solving the carbon crisis, in providing a fit to the UV-optical interstellar extinction curve. It also predicts a far-infrared emissivity in excess of that observed with the COBE/DIRBE and FIRAS instruments from the diffuse interstellar medium. The failure of the new model highlights the interrelationships between the various dust properties and their observational consequences, and the need to satisfy them all simultaneously in any comprehensive interstellar dust model. In light of these problems, the paper examines other possible solutions to the carbon crisis.

  6. Electrical time resolved metrology of dust particles growing in low pressure cold plasmas

    SciTech Connect (OSTI)

    Wattieaux, Gaeetan [PRISME, Orleans University, 12 rue de Blois BP 6744, 45067 Orleans cedex 2 (France); Mezeghrane, Abdelaziz [LPCQ, Mouloud Mammeri University, Tizi-Ouzou (Algeria); Boufendi, Laiefa [GREMI, Orleans University, 14 rue d'Issoudun BP 6744, 45067 Orleans cedex 2 (France)

    2011-09-15T23:59:59.000Z

    The electrical parameters of a capacitively coupled radiofrequency (CCRF) discharge change significantly when dust arises in the discharge. This work demonstrates the ability to follow in real time the evolution of the size and of the concentration of dust particles forming in a CCRF discharge from the variation of the electron density and of the self-bias voltage of the active electrode. According to experimental findings, it appears that the variation of this self-bias voltage depends on the surface of the dust particles. This trend is confirmed by an analytical modelling considering the low frequency behaviour of the phenomenon.

  7. Note: Electrostatic detection of stainless steel dust particles for fusion applications

    SciTech Connect (OSTI)

    Landy, P. [Mechanical and Aerospace Engineering Department, Cornell University, Ithaca, New York 14853 (United States)] [Mechanical and Aerospace Engineering Department, Cornell University, Ithaca, New York 14853 (United States); Skinner, C. H.; Schneider, H. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)] [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)

    2014-03-15T23:59:59.000Z

    Dust accumulation inside next-step fusion devices poses a significant safety concern and dust diagnostics will be needed to assure safe operations. An electrostatic dust detection device has been successfully demonstrated in the National Spherical Torus Experiment, Tore Supra, and the Large Helical Device, and the detector's response to carbon particles was previously characterized in laboratory experiments. This paper presents laboratory results showing that detection of stainless steel particles at levels as low as several ?g/cm{sup 2} is also possible.

  8. Gas turbine engines with particle traps

    DOE Patents [OSTI]

    Boyd, Gary L. (Tempe, AZ); Sumner, D. Warren (Phoenix, AZ); Sheoran, Yogendra (Scottsdale, AZ); Judd, Z. Daniel (Phoenix, AZ)

    1992-01-01T23:59:59.000Z

    A gas turbine engine (10) incorporates a particle trap (46) that forms an entrapment region (73) in a plenum (24) which extends from within the combustor (18) to the inlet (32) of a radial-inflow turbine (52, 54). The engine (10) is thereby adapted to entrap particles that originate downstream from the compressor (14) and are otherwise propelled by combustion gas (22) into the turbine (52, 54). Carbonaceous particles that are dislodged from the inner wall (50) of the combustor (18) are incinerated within the entrapment region (73) during operation of the engine (10).

  9. The gas temperature in circumstellar disks: effects of dust settling

    E-Print Network [OSTI]

    Zadelhoff, Gerd-Jan van

    Example of the cooling and heating terms for a model with dust depletion in the surface Work in progress systems. One of the central questions concerning these disks are their density and temperature temperature is calculated solving the heating-cooling balance. Dust temperature Density distribution [cm ] -3

  10. Quantifying the gas inside dust cavities in transitional disks: implications for young planets

    E-Print Network [OSTI]

    van Dishoeck, E F; Bruderer, S; Pinilla, P

    2015-01-01T23:59:59.000Z

    ALMA observations of a small sample of transitional disks with large dust cavities observed in Cycle 0 and 1 are summarized. The gas and dust surface density structures are inferred from the continuum and 12CO, 13CO and C18O line data using the DALI physical-chemical code. Thanks to its ability to self-shield, CO can survive inside dust cavities in spite of being exposed to intense UV radiation and can thus be used as a probe of the gas structure. Modeling of the existing data shows that gas is present inside the dust cavities in all cases, but at a reduced level compared with the gas surface density profile of the outer disk. The gas density decrease inside the dust cavity radius by factors of up to 10^4 suggests clearing by one or more planetary-mass companions. The accompanying pressure bumps naturally lead to trapping of the mm-sized dust grains observed in the ALMA images.

  11. A representative particle approach to coagulation and fragmentation of dust aggregates and fluid droplets

    E-Print Network [OSTI]

    A. Zsom; C. P. Dullemond

    2008-07-31T23:59:59.000Z

    Context: There is increasing need for good algorithms for modeling the aggregation and fragmentation of solid particles (dust grains, dust aggregates, boulders) in various astrophysical settings, including protoplanetary disks, planetary- and sub-stellar atmospheres and dense molecular cloud cores. Here we describe a new algorithm that combines advantages of various standard methods into one. Aims: The aim is to develop a method that 1) can solve for aggregation and fragmentation, 2) can easily include the effect and evolution of grain properties such as compactness, composition, etc., and 3) can be built as a coagulation/fragmentation module into a hydrodynamics simulations. Methods: We develop a Monte-Carlo method in which we follow the 'life' of a limited number of representative particles. Each of these particles is associated with a certain fraction of the total dust mass and thereby represents a large number of true particles which all are assumed to have the same properties as their representative particle. Under the assumption that the total number of true particles vastly exceeds the number of representative particles, the chance of a representative particle colliding with another representative particle is negligibly small, and we therefore ignore this possibility. This now makes it possible to employ a statistical approach to the evolution of the representative particles. Results: The method reproduces the known analytic solutions of simplified coagulation kernels, and compares well to numerical results for Brownian motion using other methods. For reasonably well-behaved kernels it produces good results even for moderate number of swarms.

  12. Investigation of plasma-dust structures in He-Ar gas mixture

    SciTech Connect (OSTI)

    Maiorov, S. A. [A.M. Prokhorov General Physics Institute of Russian Academy of Sciences, Moscow (Russian Federation); Ramazanov, T. S.; Dzhumagulova, K. N.; Jumabekov, A. N.; Dosbolayev, M. K. [Al Farabi Kazakh National University, IETP, Tole bi 96a, Almaty, 050012 (Kazakhstan)

    2008-09-15T23:59:59.000Z

    The paper reports on the first experiments with plasma-dust formations in dc gas discharge plasma for a He-Ar mixture. It is shown that the choice of light and heavy gases for the mixture suppresses ion heating in electric field under the conventional conditions of experiments and results in a supersonic jet with high Mach numbers. Distribution functions for drifting ions in the gas mixture are calculated for various mixture concentrations, electric field strengths, and gas pressures.

  13. Numerical study of an electrostatic plasma sheath containing two species of charged dust particles

    SciTech Connect (OSTI)

    Foroutan, G. [Physics Department, Faculty of Science, Sahand University of Technology, 51335-1996 Tabriz (Iran, Islamic Republic of); Akhoundi, A. [Nanostructure Material Research Center, Sahand University of Technology, 51335-1996 Tabriz (Iran, Islamic Republic of)

    2012-10-01T23:59:59.000Z

    A multi-fluid model is used to study the dynamics of a dusty plasma sheath consists of electrons, ions, and two species of charged dust particles, i.e., nano-size and micron-size particles. It is found that, when the sheath is dominated by the nano-size dust grains, spatially periodic fluctuations are developed in the profiles of the sheath potential, and the number density and velocity of the plasma and dust particles. Due to inertial effects, the fluctuations in the parameters of the micron-size grains are much lower than those of the other parameters. The competition between the electric and ion drag forces plays the primary role in development of the fluctuations. The spatial period of the fluctuations is approximately a few Debye lengths and their amplitude depends on the plasma and dust parameters. The fluctuations are reduced by the increase in the radius, mass density, and Mach number of the nano-size particles, as well as the density and Mach number of the ions. But, they are enhanced by the increase in the plasma number density and the electron temperature. The sheath thickness demonstrates a non-monotonic behavior against variation of the nanoparticle parameters, i.e., it first decreases quickly, shows a minimum, and then increases. However, the sheath width always decreases with the plasma number density and ion Mach number, while grows linearly with the electron temperature.

  14. Collection strategy, inner morphology, and size distribution of dust particles in ASDEX Upgrade

    SciTech Connect (OSTI)

    M. Balden; N. Endstrasser; P. W. Humrickhouse; V. Rohde; M. Rasinski; U. von Toussaint; S. Elgeti; R. Neu

    2014-04-01T23:59:59.000Z

    The dust collection and analysis strategy in ASDEX Upgrade (AUG) is described. During five consecutive operation campaigns (2007–2011), Si collectors were installed, which were supported by filtered vacuum sampling and collection with adhesive tapes in 2009. The outer and inner morphology (e.g. shape) and elemental composition of the collected particles were analysed by scanning electron microscopy. The majority of the ~50?000 analysed particles on the Si collectors of campaign 2009 contain tungsten—the plasma-facing material in AUG—and show basically two different types of outer appearance: spheroids and irregularly shaped particles. By far most of the W-dominated spheroids consist of a solid W core, i.e. solidified W droplets. A part of these particles is coated with a low-Z material; a process that seems to happen presumably in the far scrape-off layer plasma. In addition, some conglomerates of B, C and W appear as spherical particles after their contact with plasma. By far most of the particles classified as B-, C- and W-dominated irregularly shaped particles consist of the same conglomerate with varying fraction of embedded W in the B–C matrix and some porosity, which can exceed 50%. The fragile structures of many conglomerates confirm the absence of intensive plasma contact. Both the ablation and mobilization of conglomerate material and the production of W droplets are proposed to be triggered by arcing. The size distribution of each dust particle class is best described by a log-normal distribution allowing an extrapolation of the dust volume and surface area. The maximum in this distribution is observed above the resolution limit of 0.28 µm only for the W-dominated spheroids, at around 1 µm. The amount of W-containing dust is extrapolated to be less than 300 mg on the horizontal areas of AUG.

  15. Comparison of dust-to-gas ratios in luminous, ultraluminous, and hyperluminous infrared galaxies

    E-Print Network [OSTI]

    M. Contini; T. Contini

    2007-05-24T23:59:59.000Z

    The dust-to-gas ratios in three different samples of luminous, ultraluminous, and hyperluminous infrared galaxies are calculated by modelling their radio to soft X-ray spectral energy distributions using composite models which account for the photoionizing radiation from HII regions, starbursts, or AGNs, and for shocks. The models are limited to a set which broadly reproduces the mid-IR fine structure line ratios of local, IR bright, starburst galaxies. The results show that two types of clouds contribute to the IR emission. Those characterized by low shock velocities and low preshock densities explain the far-IR dust emission, while those with higher velocities and densities contribute to mid-IR dust emission. An AGN is found in nearly all of the ultraluminous IR galaxies and in half of the luminous IR galaxies of the sample. High IR luminosities depend on dust-to-gas ratios of about 0.1 by mass, however, most hyperluminous IR galaxies show dust-to-gas ratios much lower than those calculated for the luminous and ultraluminous IR galaxies.

  16. Method for removing undesired particles from gas streams

    DOE Patents [OSTI]

    Durham, Michael Dean (Castle Rock, CO); Schlager, Richard John (Aurora, CO); Ebner, Timothy George (Westminster, CO); Stewart, Robin Michele (Arvada, CO); Hyatt, David E. (Denver, CO); Bustard, Cynthia Jean (Littleton, CO); Sjostrom, Sharon (Denver, CO)

    1998-01-01T23:59:59.000Z

    The present invention discloses a process for removing undesired particles from a gas stream including the steps of contacting a composition containing an adhesive with the gas stream; collecting the undesired particles and adhesive on a collection surface to form an aggregate comprising the adhesive and undesired particles on the collection surface; and removing the agglomerate from the collection zone. The composition may then be atomized and injected into the gas stream. The composition may include a liquid that vaporizes in the gas stream. After the liquid vaporizes, adhesive particles are entrained in the gas stream. The process may be applied to electrostatic precipitators and filtration systems to improve undesired particle collection efficiency.

  17. Statistical charge distribution over dust particles in a non-Maxwellian Lorentzian plasma

    SciTech Connect (OSTI)

    Mishra, S. K. [Institute for Plasma Research (IPR), Gandhinagar-382428 (India); Misra, Shikha, E-mail: shikhamish@gmail.com [Centre for Energy Studies (CES), Indian Institute of Technology Delhi (IITD), New Delhi-110016 (India)

    2014-07-15T23:59:59.000Z

    On the basis of statistical mechanics and charging kinetics, the charge distribution over uniform size spherical dust particles in a non-Maxwellian Lorentzian plasma is investigated. Two specific situations, viz., (i) the plasma in thermal equilibrium and (ii) non-equilibrium state where the plasma is dark (no emission) or irradiated by laser light (including photoemission) are taken into account. The formulation includes the population balance equation for the charged particles along with number and energy balance of the complex plasma constituents. The departure of the results for the Lorentzian plasma, from that in case of Maxwellian plasma, is graphically illustrated and discussed; it is shown that the charge distribution tends to results corresponding to Maxwellian plasma for large spectral index. The charge distribution predicts the opposite charging of the dust particles in certain cases.

  18. Generation of concentration density maxima of small dispersive coal dust particles in horizontal iodine air filter at air-dust aerosol blow

    E-Print Network [OSTI]

    I. M. Neklyudov; O. P. Ledenyov; L. I. Fedorova; P. Ya. Poltinin

    2013-06-11T23:59:59.000Z

    The spatial distributions of the small dispersive coal dust particles with the nano and micro sizes in the granular filtering medium with the cylindrical coal granules in the absorber in the horizontal iodine air filter during its long term operation at the nuclear power plant are researched. It is shown that the concentration density maxima of the small dispersive coal dust particles appear in the granular filtering medium with the cylindrical coal absorbent granules in the horizontal iodine air filter at an action by the air dust aerosol blow. The comparison of the measured aerodynamic resistances of the horizontal and vertical iodine air filters is conducted. The main conclusion is that the magnitude of the aerodynamic resistance of the horizontal iodine air filters is much smaller in comparison with the magnitude of the aerodynamic resistance of the vertical iodine air filters at the same loads of the air dust aerosol volumes. It is explained that the direction of the air dust aerosol blow and the direction of the gravitation force in the horizontal iodine air filter are orthogonal, hence the effective accumulation of the small dispersive coal dust particles takes place at the bottom of absorber in the horizontal iodine air filter. It is found that the air dust aerosol stream flow in the horizontal iodine air filter is not limited by the appearing structures, made of the precipitated small dispersive coal dust particles, in distinction from the vertical iodine air filter, in the process of long term operation of the iodine air filters at the nuclear power plant.

  19. Extraplanar Dust: a Tracer of Cold Dense Gas in the Thick Disks of Spiral Galaxies

    E-Print Network [OSTI]

    J. Christopher Howk

    2004-10-15T23:59:59.000Z

    The interstellar thick disks of galaxies contain not only gas, but significant quantities of dust. Most of our knowledge of extraplanar dust in disk galaxies comes from direct broadband optical imaging of these systems, wherein the dust is identified due to the irregular extinction it produces against the thick disk and bulge stars. This observational technique is sensitive to only the most dense material, and we argue much of the material identified in this way traces a cold phase of the interstellar thick disks in galaxies. The presence of a cold, dense phase likely implies the interstellar pressures in the thick disks of spiral galaxies can be quite high. This dense phase of the interstellar medium may also fueling thick disk star formation, and H-alpha observations are now revealing H II regions around newly-formed OB stars associations in several galaxies. We argue that the large quantities of dust and the morphologies of the structures traced by the dust imply that much of the extraplanar material in disk galaxies must have been expelled from the underlying thin disk.

  20. Charging and de-charging of dust particles in bulk region of a radio frequency discharge plasma

    SciTech Connect (OSTI)

    Mishra, S. K. [Institute for Plasma Research, Gandhinagar 382428 (India); Misra, Shikha; Sodha, M. S. [Centre for Energy Studies, Indian Institute of Technology Delhi, New Delhi 110016 (India)

    2013-03-15T23:59:59.000Z

    An analysis to investigate the effect of the dust particle size and density on the floating potential of the dust particles of uniform radius and other plasma parameters in the bulk region plasma of a RF-discharge in collisionless/collisional regime has been presented herein. For this purpose, the average charge theory based on charge balance on dust and number balance of plasma constituents has been utilized; a derivation for the accretion rate of electrons corresponding to a drifting Maxwellian energy distribution in the presence of an oscillatory RF field has been given and the resulting expression has been used to determine the floating potential of the dust grains. Further, the de-charging of the dust grains after switching off the RF field has also been discussed.

  1. It is well known that a rigid body impacting on a bed of fine particles or dust may resuspend some of this dust into

    E-Print Network [OSTI]

    Dalziel, Stuart

    again at a different location. The traditional view is that the resuspension is the result an impacts on the bed. The interaction of the wake with the particles on the bed may lead to resuspension. 1. INTRODUCTION Resuspension of dust and sediments is important in a wide variety of contexts

  2. NARROW DUST JETS IN A DIFFUSE GAS COMA: A NATURAL PRODUCT OF SMALL ACTIVE REGIONS ON COMETS

    SciTech Connect (OSTI)

    Combi, M. R.; Tenishev, V. M.; Rubin, M.; Fougere, N.; Gombosi, T. I., E-mail: mcombi@umich.edu [Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, 2455 Hayward Street, Ann Arbor, MI 48109-2143 (United States)

    2012-04-10T23:59:59.000Z

    Comets often display narrow dust jets but more diffuse gas comae when their eccentric orbits bring them into the inner solar system and sunlight sublimates the ice on the nucleus. Comets are also understood to have one or more active areas covering only a fraction of the total surface active with sublimating volatile ices. Calculations of the gas and dust distribution from a small active area on a comet's nucleus show that as the gas moves out radially into the vacuum of space it expands tangentially, filling much of the hemisphere centered on the active region. The dust dragged by the gas remains more concentrated over the active area. This explains some puzzling appearances of comets having collimated dust jets but more diffuse gaseous atmospheres. Our test case is 67P/Churyumov-Gerasimenko, the Rosetta mission target comet, whose activity is dominated by a single area covering only 4% of its surface.

  3. DUST PROPERTIES AND DISK STRUCTURE OF EVOLVED PROTOPLANETARY DISKS IN Cep OB2: GRAIN GROWTH, SETTLING, GAS AND DUST MASS, AND INSIDE-OUT EVOLUTION

    SciTech Connect (OSTI)

    Sicilia-Aguilar, Aurora; Henning, Thomas; Dullemond, Cornelis P.; Bouwman, Jeroen; Sturm, Bernhard [Max-Planck-Institut fuer Astronomie, Koenigstuhl 17, 69117 Heidelberg (Germany); Patel, Nimesh [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Juhasz, Attila, E-mail: sicilia@mpia.de, E-mail: aurora.sicilia@uam.es [Leiden Observatory, Niels Bohrweg 2, NL-2333 CA Leiden (Netherlands)

    2011-11-20T23:59:59.000Z

    We present Spitzer/Infrared Spectrograph spectra of 31 T Tauri stars (TTS) and IRAM/1.3 mm observations for 34 low- and intermediate-mass stars in the Cep OB2 region. Including our previously published data, we analyze 56 TTS and 3 intermediate-mass stars with silicate features in Tr 37 ({approx}4 Myr) and NGC 7160 ({approx}12 Myr). The silicate emission features are well reproduced with a mixture of amorphous (with olivine, forsterite, and silica stoichiometry) and crystalline grains (forsterite, enstatite). We explore grain size and disk structure using radiative transfer disk models, finding that most objects have suffered substantial evolution (grain growth, settling). About half of the disks show inside-out evolution, with either dust-cleared inner holes or a radially dependent dust distribution, typically with larger grains and more settling in the innermost disk. The typical strong silicate features nevertheless require the presence of small dust grains, and could be explained by differential settling according to grain size, anomalous dust distributions, and/or optically thin dust populations within disk gaps. M-type stars tend to have weaker silicate emission and steeper spectral energy distributions than K-type objects. The inferred low dust masses are in a strong contrast with the relatively high gas accretion rates, suggesting global grain growth and/or an anomalous gas-to-dust ratio. Transition disks in the Cep OB2 region display strongly processed grains, suggesting that they are dominated by dust evolution and settling. Finally, the presence of rare but remarkable disks with strong accretion at old ages reveals that some very massive disks may still survive to grain growth, gravitational instabilities, and planet formation.

  4. Generation of concentration density maxima of small dispersive coal dust particles in horizontal iodine air filter at air-dust aerosol blow

    E-Print Network [OSTI]

    Neklyudov, I M; Fedorova, L I; Poltinin, P Ya

    2013-01-01T23:59:59.000Z

    The spatial distributions of the small dispersive coal dust particles with the nano and micro sizes in the granular filtering medium with the cylindrical coal granules in the absorber in the horizontal iodine air filter during its long term operation at the nuclear power plant are researched. It is shown that the concentration density maxima of the small dispersive coal dust particles appear in the granular filtering medium with the cylindrical coal absorbent granules in the horizontal iodine air filter at an action by the air dust aerosol blow. The comparison of the measured aerodynamic resistances of the horizontal and vertical iodine air filters is conducted. The main conclusion is that the magnitude of the aerodynamic resistance of the horizontal iodine air filters is much smaller in comparison with the magnitude of the aerodynamic resistance of the vertical iodine air filters at the same loads of the air dust aerosol volumes. It is explained that the direction of the air dust aerosol blow and the directi...

  5. Transport mechanisms and experimental evidence of positively charged dust particles in an argon plasma

    SciTech Connect (OSTI)

    Brown, D.A.; Hareland, W.A. [Sandia National Labs., Albuquerque, NM (United States); Collins, S.M. [Univ. of Arizona, Tucson, AZ (United States)

    1995-12-31T23:59:59.000Z

    It is well known that dense particle clouds often reside within the steady-state plasma; however, particle transport in the critical post-plasma period has not yet been fully explored. To better understand and characterize particle behavior, charge and transport properties of dust particles in an argon plasma, contained within a Gaseous Electronics Conference (GEC) reference cell, were studied in the steady-state and post-plasma regimes of a 500 mTorr, 25 W argon discharge. Using separate water chillers to control independently the temperatures of the upper and lower electrodes, various temperature gradients were imposed on the plasma and thermophoretic transport of the particle clouds observed for both steady and decaying discharges. Next, using a pulsed rf power supply and a tuned Langmuir probe, the decay times of electrons and ions were measured in the afterglow. Finally, utilizing high-speed video in concert with 10 mW He-Ne laser light, post-plasma particle trajectories were observed for various electric fields and electrode temperatures. Results were then compared to calculations from a net force model that included gravity, the electric field, fluid flow, ion drag, and thermophoresis. It was found that temperature gradients greater than {approximately} 10 C/cm significantly altered particle cloud configurations in steady plasmas, and provided a strong transport mechanism in the afterglow. Electrically, the measured ion density decay time was approximately equal to that of the electrons, consistent with ambipolar diffusion.

  6. Dust cluster explosion

    SciTech Connect (OSTI)

    Saxena, Vikrant [School of Mathematics and Physics, Queen's University Belfast, Belfast, Northern Ireland (United Kingdom); Institute for Plasma Research, Bhat, Gandhinagar (India); Avinash, K. [Department of Physics and Astrophysics, University of Delhi, New Delhi (India); Sen, A. [Institute for Plasma Research, Bhat, Gandhinagar (India)

    2012-09-15T23:59:59.000Z

    A model for the dust cluster explosion where micron/sub-micron sized particles are accelerated at the expense of plasma thermal energy, in the afterglow phase of a complex plasma discharge is proposed. The model is tested by molecular dynamics simulations of dust particles in a confining potential. The nature of the explosion (caused by switching off the discharge) and the concomitant dust acceleration is found to depend critically on the pressure of the background neutral gas. At low gas pressure, the explosion is due to unshielded Coulomb repulsion between dust particles and yields maximum acceleration, while in the high pressure regime it is due to shielded Yukawa repulsion and yields much feebler acceleration. These results are in agreement with experimental findings. Our simulations also confirm a recently proposed electrostatic (ES) isothermal scaling relation, P{sub E}{proportional_to}V{sub d}{sup -2} (where P{sub E} is the ES pressure of the dust particles and V{sub d} is the confining volume).

  7. Method for removing undesired particles from gas streams

    DOE Patents [OSTI]

    Durham, M.D.; Schlager, R.J.; Ebner, T.G.; Stewart, R.M.; Hyatt, D.E.; Bustard, C.J.; Sjostrom, S.

    1998-11-10T23:59:59.000Z

    The present invention discloses a process for removing undesired particles from a gas stream including the steps of contacting a composition containing an adhesive with the gas stream; collecting the undesired particles and adhesive on a collection surface to form an aggregate comprising the adhesive and undesired particles on the collection surface; and removing the agglomerate from the collection zone. The composition may then be atomized and injected into the gas stream. The composition may include a liquid that vaporizes in the gas stream. After the liquid vaporizes, adhesive particles are entrained in the gas stream. The process may be applied to electrostatic precipitators and filtration systems to improve undesired particle collection efficiency. 11 figs.

  8. Thermophoretic separation of aerosol particles from a sampled gas stream

    SciTech Connect (OSTI)

    Postma, Arlin K. (Halfway, OR)

    1986-01-01T23:59:59.000Z

    A method for separating gaseous samples from a contained atmosphere that includes aerosol particles uses the step of repelling particles from a gas permeable surface or membrane by heating the surface to a temperature greater than that of the surrounding atmosphere. The resulting thermophoretic forces maintain the gas permeable surface clear of aerosol particles. The disclosed apparatus utilizes a downwardly facing heated plate of gas permeable material to combine thermophoretic repulsion and gravity forces to prevent particles of any size from contacting the separating plate surfaces.

  9. Maximizing Ion Current by Space Charge Neutralization using Negative Ions and Dust Particles

    SciTech Connect (OSTI)

    A. Smirnov; Y. Raitses; N.J. Fisch

    2005-01-25T23:59:59.000Z

    Ion current extracted from an ion source (ion thruster) can be increased above the Child-Langmuir limit if the ion space charge is neutralized. Similarly, the limiting kinetic energy density of the plasma flow in a Hall thruster might be exceeded if additional mechanisms of space charge neutralization are introduced. Space charge neutralization with high-mass negative ions or negatively charged dust particles seems, in principle, promising for the development of a high current or high energy density source of positive light ions. Several space charge neutralization schemes that employ heavy negatively charged particles are considered. It is shown that the proposed neutralization schemes can lead, at best, only to a moderate but nonetheless possibly important increase of the ion current in the ion thruster and the thrust density in the Hall thruster.

  10. Discharge source with gas curtain for protecting optics from particles

    DOE Patents [OSTI]

    Fornaciari, Neal R.; Kanouff, Michael P.

    2004-03-30T23:59:59.000Z

    A gas curtain device is employed to deflect debris that is generated by an extreme ultraviolet and soft x-ray radiation discharge source such as an electric discharge plasma source. The gas curtain device projects a stream of gas over the path of the radiation to deflect debris particles into a direction that is different from that of the path of the radiation. The gas curtain can be employed to prevent debris accumulation on the optics used in photolithography.

  11. The response of a capacitively coupled discharge to the formation of dust particles: Experiments and modeling

    SciTech Connect (OSTI)

    Denysenko, I.; Berndt, J.; Kovacevic, E.; Stefanovic, I.; Selenin, V.; Winter, J. [School of Physics and Technology, V. N. Karazin Kharkiv National University, Svobody sq. 4, 61077 Kharkiv (Ukraine); Institute of Experimental Physics II, Ruhr-University Bochum, D-44780 Bochum (Germany); Institute of Experimental Physics II, Ruhr-University Bochum, D-44780 Bochum, Germany and Institute of Physics, POB 57, 11001 Belgrade (Serbia and Montenegro); Institute of Experimental Physics II, Ruhr-University Bochum, D-44780 Bochum (Germany)

    2006-07-15T23:59:59.000Z

    The influence of dust particles on the properties of a capacitively coupled Ar-C{sub 2}H{sub 2} discharge is studied both experimentally and theoretically. The results of measurements of the intensity and spatial distribution of the emitted light, the line width of the fast component of H{sub {alpha}} line and of the electron density during the particle growth are presented. To analyze the experimental results a one-dimensional discharge model is developed. Using the model the effects of dust grains on the power absorption (taking into account stochastic and Ohmic heating in the plasma sheaths), the optical emission intensity profile, the sheath size, the rf electric field and on the energy of positive ions bombarding the electrodes are investigated. In particular, it is shown that the decrease of the power absorption in the sheaths of complex plasmas is due to the dependence of the stochastic and Ohmic heating in the plasma sheaths on the electron temperature and the current flowing across the discharge plates. The results of the calculations are compared with the available experimental data and found to be in good agreement.

  12. Dust-to-Gas Ratios in Early-type Galaxies A. F. Crocker (University of Massachusetts Amherst), L. M. Young (New Mex-

    E-Print Network [OSTI]

    Bureau, Martin

    Dust-to-Gas Ratios in Early-type Galaxies A. F. Crocker (University of Massachusetts Amherst), L. M. Bureau, (University of Oxford, United Kingdom), Atlas3D Team We present dust-to-gas ratios for all mass. Cold gas masses are combined molecular and atomic masses, determined from single- dish CO

  13. Dust and gas in luminous proto-cluster galaxies at z=4.05: the case for different cosmic dust evolution in normal and starburst galaxies

    E-Print Network [OSTI]

    Tan, Q; Magdis, G; Pannella, M; Sargent, M; Riechers, D; Béthermin, M; Bournaud, F; Carilli, C; da Cunha, E; Dannerbauer, H; Dickinson, M; Elbaz, D; Gao, Y; Hodge, J; Owen, F; Walter, F

    2014-01-01T23:59:59.000Z

    We measure the dust and gas content of the three sub-millimeter galaxies (SMGs) in the GN20 proto-cluster at $z=4.05$ using new IRAM Plateau de Bure interferometer (PdBI) CO(4-3) and 1.2-3.3mm continuum observations. All these three SMGs are heavily dust obscured, with UV-based star formation rate (SFR) estimates significantly smaller than the ones derived from the bolometric IR, consistent with the spatial offsets revealed by HST and CO imaging. Based also on evaluations of the specific SFR, CO-to-H$_2$ conversion factor and gas depletion timescale, we classify all the three galaxies as starbursts (SBs), although with a lower confidence for GN20.2b that might be a later stage merging event. We place our measurements in the context of the evolutionary properties of main sequence (MS) and SB galaxies. ULIRGs have 3-5 times larger $L'_{\\rm CO}/M_{\\rm dust}$ and $M_{\\rm dust}/M_\\star$ ratios than $z=0$ MS galaxies, but by $z\\sim2$ the difference appears to be blurred, probably due to differential metallicity evo...

  14. A HIGH TEMPERATURE GAS RECEIVER UTILIZING SMALL PARTICLES

    E-Print Network [OSTI]

    Hunt, Arlon

    2012-01-01T23:59:59.000Z

    of Energy under Arlon Hunt, "A New Solar Thermal Receiversolar thermal receiver that utilizes a dispersion of very small particles sus£e2ded in a gas to absorb the radiant energy

  15. From discs to planetesimals I: evolution of gas and dust discs

    E-Print Network [OSTI]

    Richard Alexander

    2007-12-03T23:59:59.000Z

    I review the processes that shape the evolution of protoplanetary discs around young, solar-mass stars. I first discuss observations of protoplanetary discs, and note in particular the constraints these observations place on models of disc evolution. The processes that affect the evolution of gas discs are then discussed, with the focus in particular on viscous accretion and photoevaporation, and recent models which combine the two. I then discuss the dynamics and growth of dust grains in discs, considering models of grain growth, the gas-grain interaction and planetesimal formation, and review recent research in this area. Lastly, I consider the so-called "transitional" discs, which are thought to be observed during disc dispersal. Recent observations and models of these systems are reviewed, and prospects for using statistical surveys to distinguish between the various proposed models are discussed.

  16. N-Body Simulation of Planetesimal Formation through Gravitational Instability of a Dust Layer in Laminar Gas Disk

    E-Print Network [OSTI]

    Michikoshi, Shugo; Inutsuka, Shu-ichiro

    2010-01-01T23:59:59.000Z

    We investigate the formation process of planetesimals from the dust layer by the gravitational instability in the gas disk using local $N$-body simulations. The gas is modeled as a background laminar flow. We study the formation process of planetesimals and its dependence on the strength of the gas drag. Our simulation results show that the formation process is divided into three stages qualitatively: the formation of wake-like density structures, the creation of planetesimal seeds, and their collisional growth. The linear analysis of the dissipative gravitational instability shows that the dust layer is secularly unstable although Toomre's $Q$ value is larger than unity. However, in the initial stage, the growth time of the gravitational instability is longer than that of the dust sedimentation and the decrease in the velocity dispersion. Thus, the velocity dispersion decreases and the disk shrinks vertically. As the velocity dispersion becomes sufficiently small, the gravitational instability finally become...

  17. Observation of plasma instabilities related to dust particle growth mechanisms in electron cyclotron resonance plasmas

    SciTech Connect (OSTI)

    Drenik, A. [Jožef Stefan Institute, Jamova 39, 1000 Ljubljana (Slovenia) [Jožef Stefan Institute, Jamova 39, 1000 Ljubljana (Slovenia); CNRS, LAPLACE, 31062 Toulouse/Université de Toulouse, UPS, INPT, LAPLACE, 118 rte de Narbonne, 31062 Toulouse Cedex 9 (France); Yuryev, P.; Clergereaux, R. [CNRS, LAPLACE, 31062 Toulouse/Université de Toulouse, UPS, INPT, LAPLACE, 118 rte de Narbonne, 31062 Toulouse Cedex 9 (France)] [CNRS, LAPLACE, 31062 Toulouse/Université de Toulouse, UPS, INPT, LAPLACE, 118 rte de Narbonne, 31062 Toulouse Cedex 9 (France); Vesel, A. [Jožef Stefan Institute, Jamova 39, 1000 Ljubljana (Slovenia)] [Jožef Stefan Institute, Jamova 39, 1000 Ljubljana (Slovenia); Margot, J. [Groupe de Physique des Plasmas, Département de Physique, Université de Montréal, CP 6128, Succursale Centre-ville, Montréal, Québec H3C 3J7 (Canada)] [Groupe de Physique des Plasmas, Département de Physique, Université de Montréal, CP 6128, Succursale Centre-ville, Montréal, Québec H3C 3J7 (Canada)

    2013-10-15T23:59:59.000Z

    Instabilities are observed in the self-bias voltage measured on a probe immersed in microwave plasma excited at Electron Cyclotron Resonance (ECR). Observed in the MHz range, they were systematically measured in dust-free or dusty plasmas (obtained for different conditions of applied microwave powers and acetylene flow rates). Two characteristic frequencies, well described as lower hybrid oscillations, can be defined. The first one, in the 60–70 MHz range, appears as a sharp peak in the frequency spectra and is observed in every case. Attributed to ions, its position shift observed with the output power highlights that nucleation process takes place in the dusty plasma. Attributed to lower hybrid oscillation of powders, the second broad peak in the 10–20 MHz range leads to the characterization of dust particles growth mechanisms: in the same way as in capacitively coupled plasmas, accumulation of nucleus confined near the probe in the magnetic field followed by aggregation takes place. Then, the measure of electrical instabilities on the self-bias voltage allows characterizing the discharge as well as the chemical processes that take place in the magnetic field region and their kinetics.

  18. Use of a directional spray system design to control respirable dust and free gas concentrations around a continuous mining machine

    SciTech Connect (OSTI)

    Goodman, G.V.R.; Pollock, D.E. [NIOSH, Pittsburgh, PA (US). Pittsburgh Research Lab.

    2004-12-15T23:59:59.000Z

    A laboratory study assessed the impacts of water spray pressure, face ventilation quantity, and line brattice setback distance on respirable dust and SF6 tracer gas concentrations around a continuous mining machine using a sprayfan or directional spray system. Dust levels were measured at locations representing the mining machine operator and the standard and off standard shuttle car operators, and in the return airway. The results showed that changes in all three independent variables significantly affected log-transformed dust levels at the three operator sampling locations. Changes in setback distance impacted return airway dust levels. Laboratory testing also identified numerous variable interactions affecting dust levels. Tracer gas levels were measured on the left and right sides of the cutting drum and in the return. Untransformed gas levels around the cutting drum were significantly affected by changes in water pressure, face ventilation quantity, and setback distance. Return gas levels measured at the low curtain quantity were generally unaffected by changes in water pressure or curtain setback distance. At the high curtain quantity, return airway gas levels were affected by curtain setback distance. A field study was conducted to assess the impact of these parameters in an actual mining operation. These data showed that respirable dust levels may have been impacted by a change in water pressure and, to a lesser extent, by an increase in curtain setback distance. A series of tracer gas pulse tests were also conducted during this study. The results showed that effectiveness of the face ventilation was impacted by changes in curtain flow quantity and setback distance.

  19. Transient beam losses in the LHC injection kickers from micron scale dust particles

    E-Print Network [OSTI]

    Goddard, B; Baer, T; Barnes, M J; Cerutti, F; Ferrari, A; Garrel, N; Gerardin, A; Guinchard, M; Lechner, A; Masi, A; Mertens, V; Morón Ballester, R; Redaelli, S; Uythoven, J; Vlachoudis, V; Zimmermann, F

    2012-01-01T23:59:59.000Z

    Transient beam losses on a time scale of a few ms have been observed in the LHC injection kickers, occurring mainly shortly after beam injection with a strong correlation in time to the kicker pulsing. The beam losses, which have at times affected LHC availability, are attributed to micron scale ceramic dust particles detached from the alumina beam pipe and accelerated into the beam. The beam related observations are described, together with laboratory measurements of beam pipe contamination and kicker vibration, simulations of electric field in the beam pipe and the basic dynamic model. Energy deposition simulations modelling the beam losses are presented and compared to measurement. Extrapolations to future LHC operation at higher intensities and energies are made, and prospects for mitigation are discussed.

  20. Influence by small dispersive coal dust particles of different fractional consistence on characteristics of iodine air filter at nuclear power plant

    E-Print Network [OSTI]

    Neklyudov, I M; Fedorova, L I; Poltinin, P Ya

    2013-01-01T23:59:59.000Z

    The main purpose of research is to determine the influence by the small dispersive coal dust particles of the different fractional consistence on the technical characteristics of the vertical iodine air filter at nuclear power plant. The research on the transport properties of the small dispersive coal dust particles in the granular filtering medium of absorber in the vertical iodine air filter is completed in the case, when the modeled aerodynamic conditions are similar to the real aerodynamic conditions. It is shown that the appearance of the different fractional consistence of small dispersive coal dust particles with the decreasing dimensions down to the micro and nano sizes at the action of the air dust aerosol stream normally results in a significant change of distribution of the small dispersive coal dust particles masses in the granular filtering medium of an absorber in the vertical iodine air filter, changing the vertical iodine air filter aerodynamic characteristics. The precise characterization of...

  1. Nanomaterials from Aerosols Aerosols are suspensions of liquid or solid particles in a gas. Aerosol particles

    E-Print Network [OSTI]

    Beaucage, Gregory

    1 Nanomaterials from Aerosols Aerosols are suspensions of liquid or solid particles in a gas. Aerosol particles can range in size from molecular-scale to hundreds of microns with a typical example be synthesized by aerosol routes where precursor species are dispersed either in a vapor or in micron

  2. Thermophoretic separation of aerosol particles from a sampled gas stream

    SciTech Connect (OSTI)

    Poztman, A.K.

    1986-02-25T23:59:59.000Z

    A method is described for separating aerosol particles from a gas sample being withdrawn from a contained atmosphere, comprising the following steps: placing within the contained atmosphere a covering gas impermeable enclosure have an interior chamber partly defined by a bottom metal plate that is permeable to gas; fixing the position of the enclosure with the plate facing downwardly and directly exposed to the contained atmosphere; heating the metal plate to a temperature greater than that of the contained atmosphere, whereby aerosol particles are repelled to the resulting thermophoretic forces applied to them by the temperature gradient produced in the atmosphere immediately under the plate; and sampling gas within the interior chamber of the enclosure.

  3. Quantum Master Equation of Particle in Gas Environment

    E-Print Network [OSTI]

    Lajos Diosi

    1994-03-23T23:59:59.000Z

    The evolution of the reduced density operator $\\rho$ of Brownian particle is discussed in single collision approach valid typically in low density gas environments. This is the first succesful derivation of quantum friction caused by {\\it local} environmental interactions. We derive a Lindblad master equation for $\\rho$, whose generators are calculated from differential cross section of a single collision between Brownian and gas particles, respectively. The existence of thermal equilibrium for $\\rho$ is proved. Master equations proposed earlier are shown to be particular cases of our one.

  4. Westinghouse hot gas particle filter system

    SciTech Connect (OSTI)

    Lippert, T.E.; Bruck, G.J.; Newby, R.A.; Bachovchin, D.M. [Westinghouse Electric Corp., Pittsburgh, PA (United States). Science and Technology Center; Debski, V.L.; Morehead, H.T. [Westinghouse Electric Corp., Orlando, FL (United States). Power Generation Business Unit

    1997-12-31T23:59:59.000Z

    Integrated Gasification Combined Cycles (IGCC) and Pressurized Circulating Fluidized Bed Cycles (PCFB) are being developed and demonstrated for commercial power generation applications. Hot gas particulate filters (HGPF) are key components for the successful implementation of IGCC and PCFB in power generation gas turbine cycles. The objective is to develop and qualify through analysis and testing a practical HGPF system that meets the performance and operational requirements of PCFB and IGCC systems. This paper reports on the status of Westinghouse`s HGPF commercialization programs including: A quick summary of past gasification based HGPF test programs; A summary of the integrated HGPF operation at the American Electric Power, Tidd Pressurized Fluidized Bed Combustion (PFBC) Demonstration Project with approximately 6000 hours of HGPF testing completed; A summary of approximately 3200 hours of HGPF testing at the Foster Wheeler (FW) 10 MW{sub e} facility located in Karhula, Finland; A summary of over 700 hours of HGPF operation at the FW 2 MW{sub e} topping PCFB facility located in Livingston, New Jersey; A summary of the design of the HGPFs for the DOE/Southern Company Services, Power System Development Facility (PSDF) located in Wilsonville, Alabama; A summary of the design of the commercial-scale HGPF system for the Sierra Pacific, Pinon Pine IGCC Project; A review of completed testing and a summary of planned testing of Westinghouse HGPFs in Biomass IGCC applications; and A brief summary of the HGPF systems for the City of Lakeland, McIntosh Unit 4 PCFB Demonstration Project.

  5. "Dust, Ice, and Gas In Time" (DIGIT) Herschel Observations of GSS30-IRS1 in Ophiuchus

    E-Print Network [OSTI]

    Je, Hyerin; Lee, Seokho; Green, Joel D; Evans, Neal J

    2015-01-01T23:59:59.000Z

    As a part of the "Dust, Ice, and Gas In Time" (DIGIT) key program on Herschel, we observed GSS30-IRS1, a Class I protostar located in Ophiuchus (d = 120 pc), with Herschel/Photodetector Array Camera and Spectrometer (PACS). More than 70 lines were detected within a wavelength range from 50 micron to 200 micron, including CO, H2O, OH, and two atomic [O I] lines at 63 and 145 micron. The [C II] line, known as a tracer of externally heated gas by the interstellar radiation field, is also detected at 158 micron. All lines, except [O I] and [C II], are detected only at the central spaxel of 9.4" X 9.4". The [O I] emissions are extended along a NE-SW orientation, and the [C II] line is detected over all spaxels, indicative of external PDR. The total [C II] intensity around GSS30 reveals that the far-ultraviolet radiation field is in the range of 3 to 20 G0, where G0 is in units of the Habing Field, 1.6 X 10^{-3} erg cm^{-2} s^{-1}. This enhanced external radiation field heats the envelope of GSS30-IRS1, causing the...

  6. The Relationship Between the Dust and Gas-Phase CO Across the California Molecular Cloud

    E-Print Network [OSTI]

    Kong, S; Lada, E A; Román-Zúñiga, C; Bieging, J H; Lombardi, M; Forbrich, J; Alves, J F

    2015-01-01T23:59:59.000Z

    A deep, wide-field, near-infrared imaging survey was used to construct an extinction map of the southeastern part of the California Molecular Cloud (CMC) with $\\sim$ 0.5 arc min resolution. The same region was also surveyed in the $^{12}$CO(2-1), $^{13}$CO(2-1), C$^{18}$O(2-1) emission lines at the same angular resolution. Strong spatial variations in the abundances of $^{13}$CO and C$^{18}$O were found to be correlated with variations in gas temperature, consistent with temperature dependent CO depletion/desorption on dust grains. The $^{13}$CO to C$^{18}$O abundance ratio was found to increase with decreasing extinction, suggesting selective photodissociation of C$^{18}$O by the ambient UV radiation field. The cloud averaged X-factor is found to be $$ $=$ 2.53 $\\times$ 10$^{20}$ ${\\rm cm}^{-2}~({\\rm K~km~s}^{-1})^{-1}$, somewhat higher than the Milky Way average. On sub-parsec scales we find no single empirical value of the X-factor that can characterize the molecular gas in cold (T$_{\\rm k}$ $\\lesssim$ 15 ...

  7. Particle trap for compressed gas insulated transmission systems

    DOE Patents [OSTI]

    Cookson, A.H.

    1984-04-26T23:59:59.000Z

    A particle trap is provided for gas insulated transmission lines having a central high voltage conductor supported within an outer coaxial conductive sheath by a dielectric support member. A cavity between the inner conductor and outer sheath is filled with a dielectric insulating gas. A cone-like particle deflector, mounted to the inner conductor, deflects moving particles away from the support member, to radially outer portions of the cavity. A conductive shield is disposed adjacent the outer sheath to form a field-free region in radially outer portions of the cavity, between the shield and the sheath. Particles traveling along the cavity are deflected by the cone-like deflector into the field-free region where they are held immobile. In a vertical embodiment, particles enter the field-free region through an upper end of a gap formed between shield and sheath members. In a horizontal embodiment, the deflector cone has a base which is terminated radially internally of the shield. Apertures in the shield located adjacent the deflector allow passage of deflected particles into the field-free region. The dielectric support member is thereby protected from contaminating particles that may otherwise come to rest thereon.

  8. Particle trap for compressed gas insulated transmission systems

    DOE Patents [OSTI]

    Cookson, Alan H. (Pittsburgh, PA)

    1985-01-01T23:59:59.000Z

    A particle trap is provided for gas insulated transmission lines having a central high voltage conductor supported within an outer coaxial conductive sheath by a dielectric support member. A cavity between the inner conductor and outer sheath is filled with a dielectric insulating gas. A cone-like particle deflector, mounted to the inner conductor, deflects moving particles away from the support member, to radially outer portions of the cavity. A conductive shield is disposed adjacent the outer sheath to form a field-free region in radially outer portions of the cavity, between the shield and the sheath. Particles traveling along the cavity are deflected by the cone-like deflector into the field-free region where they are held immobile. In a vertical embodiment, particles enter the field-free region through an upper end of a gap formed between shield and sheath members. In a horizontal embodiment, the deflector cone has a base which is terminated radially internally of the shield. Apertures in the shield located adjacent the deflector allow passage of deflected particles into the field-free region. The dielectric support member is thereby protected from contaminating particles that may otherwise come to rest thereon.

  9. Dust Measurements in Tokamaks

    SciTech Connect (OSTI)

    Rudakov, D; Yu, J; Boedo, J; Hollmann, E; Krasheninnikov, S; Moyer, R; Muller, S; Yu, A; Rosenberg, M; Smirnov, R; West, W; Boivin, R; Bray, B; Brooks, N; Hyatt, A; Wong, C; Fenstermacher, M; Groth, M; Lasnier, C; McLean, A; Stangeby, P; Ratynskaia, S; Roquemore, A; Skinner, C; Solomon, W M

    2008-04-23T23:59:59.000Z

    Dust production and accumulation impose safety and operational concerns for ITER. Diagnostics to monitor dust levels in the plasma as well as in-vessel dust inventory are currently being tested in a few tokamaks. Dust accumulation in ITER is likely to occur in hidden areas, e.g. between tiles and under divertor baffles. A novel electrostatic dust detector for monitoring dust in these regions has been developed and tested at PPPL. In DIII-D tokamak dust diagnostics include Mie scattering from Nd:YAG lasers, visible imaging, and spectroscopy. Laser scattering resolves size of particles between 0.16-1.6 {micro}m in diameter; the total dust content in the edge plasmas and trends in the dust production rates within this size range have been established. Individual dust particles are observed by visible imaging using fast-framing cameras, detecting dust particles of a few microns in diameter and larger. Dust velocities and trajectories can be determined in 2D with a single camera or 3D using multiple cameras, but determination of particle size is problematic. In order to calibrate diagnostics and benchmark dust dynamics modeling, pre-characterized carbon dust has been injected into the lower divertor of DIII-D. Injected dust is seen by cameras, and spectroscopic diagnostics observe an increase of carbon atomic, C2 dimer, and thermal continuum emissions from the injected dust. The latter observation can be used in the design of novel dust survey diagnostics.

  10. Hot gas particle filter systems: Commercialization status

    SciTech Connect (OSTI)

    Morehead, H.T.; Adams, V.L. [Westinghouse Electric Corp., Orlando, FL (United States). Power Generation Business Unit; Yang, W.C.; Lippert, T.E. [Westinghouse Electric Corp., Pittsburgh, PA (United States). Science and Technology Center

    1997-12-31T23:59:59.000Z

    Integrated Gasification Combined Cycles (IGCCs) and Pressurized Circulating Fluidized Bed Cycles (PCFBs) are being developed and demonstrated for commercial power generation applications. Hot gas particulate filters (HGPFs) are key components for the successful implementation of advanced IGCC and PCFB power generation cycles. The objective is to develop and qualify through analysis and testing a practical HGPF system that meets the performance and operational requirements of PCFB and IGCC systems. This paper reports on the status of Westinghouse`s HGPF commercialization programs including: A quick summary of past gasification based HGPF test programs; A summary of the integrated HGPF operation at the American Electric Power, Tidd Pressurized Fluidized Bed Combustion (PFBC) Demonstration Project with approximately 6,000 hours of HGPF testing completed; A summary of approximately 3,200 hours of HGPF testing at the Foster Wheeler (FW) 10 MWe PCFB facility located in Karhula, Finland; A summary of over 700 hours of HGPF operation at the FW 2 MWe topping PCFB facility located in Livingston, New Jersey; A summary of the design of the HGPFs for the DOE/Southern Company Services, Power System Development Facility (PSDF) located in Wilsonville, Alabama; A summary of the design of the commercial-scale HGPF system for the Sierra Pacific, Pinon Pine IGCC Project; A review of completed testing and a summary of planned testing of Westinghouse HGPFs in Biomass IGCC applications; and A brief summary of the HGPF systems for the City of Lakeland, McIntosh Unit 4 PCFB Demonstration Project.

  11. Method for minimizing contaminant particle effects in gas-insulated electrical apparatus

    DOE Patents [OSTI]

    Pace, Marshall O. (Knoxville, TN); Adcock, James L. (Knoxville, TN); Christophorou, Loucas G. (Oak Ridge, TN)

    1984-01-01T23:59:59.000Z

    Electrical breakdown of a gas insulator in high voltage apparatus is preved by placing an electrical insulative coating on contaminant particles in the gas insulator.

  12. Modified theory of secondary electron emission from spherical particles and its effect on dust charging in complex plasma

    SciTech Connect (OSTI)

    Misra, Shikha [Centre for Energy Studies, Indian Institute of Technology Delhi, New Delhi-110016 (India); Mishra, S. K. [Institute for Plasma Research, Gandhinagar-382428 (India); Sodha, M. S. [Department of Education Building, University of Lucknow, Lucknow-226007 (India)

    2013-01-15T23:59:59.000Z

    The authors have modified Chow's theory of secondary electron emission (SEE) to take account of the fact that the path length of a primary electron in a spherical particle varies between zero to the diameter or x{sub m} the penetration depth depending on the distance of the path from the centre of the particle. Further by including this modified expression for SEE efficiency, the charging kinetics of spherical grains in a Maxwellian plasma has been developed; it is based on charge balance over dust particles and number balance of electrons and ionic species. It is seen that this effect is more pronounced for smaller particles and higher plasma temperatures. Desirable experimental work has also been discussed.

  13. Erratum To "Heterogeneous Chemistry of Individual Mineral Dust Particles From Different Dust Source Regions: The Importance of Particle Mineralogy" [Atmos.Environ.38 (36)(2004)6253 –6261

    SciTech Connect (OSTI)

    Krueger, Brenda J.; Grassian, Vicki H.; Cowin, James P.; Laskin, Alexander

    2005-01-01T23:59:59.000Z

    The publisher regrets that there was an error in the information in Table 1 incorrectly identifies the mineral dust and their corresponding composition. The corrected table is given below. In addition, the second full sentence below the table should read “Smaller amounts ?1% of other elements such as V and Ti were also observed but are not listed in Table 1 and is the reason why the percentages do not total to 100 in Table 1.” In the original article it states that K was not included in Table 1 but clearly it is.

  14. Thermophoretic separation of aerosol particles from a sampled gas stream

    SciTech Connect (OSTI)

    Postma, A.K.

    1984-09-07T23:59:59.000Z

    This disclosure relates to separation of aerosol particles from gas samples withdrawn from within a contained atmosphere, such as containment vessels for nuclear reactors or other process equipment where remote gaseous sampling is required. It is specifically directed to separation of dense aerosols including particles of any size and at high mass loadings and high corrosivity. The United States Government has rights in this invention pursuant to Contract DE-AC06-76FF02170 between the US Department of Energy and Westinghouse Electric Corporation.

  15. Heterogeneous chemistry of atmospheric mineral dust particles and their resulting cloud-nucleation properties

    E-Print Network [OSTI]

    Sullivan, Ryan Christopher

    2008-01-01T23:59:59.000Z

    2001). The Gobi Deserts in Mongolia and northern China, andare from the North China and Mongolia dust region (Bates et2001). The Gobi Deserts in Mongolia and northern China, and

  16. Sub-micrometer scale minor element mapping in interplanetary dust particles: a test for stratospheric contamination

    SciTech Connect (OSTI)

    Flynn, G.J.; Keller, L.P.; Sutton, S.R. (SUNYP); (NASA); (UC)

    2006-12-11T23:59:59.000Z

    We mapped the spatial distribution of minor elements including K, Mn, and Zn in 3 IDPs and found no evidence for the surface coatings (rims) of these elements that would be expected if the enrichments previously reported were due to contamination. Combined X-ray microprobe (XRM), energy dispersive x-ray fluorescence using a Transmission Electron Microscope (TEM), and electron microprobe measurements have determined that the average bulk chemical composition of the interplanetary dust particles (IDPs) collected from the Earth's stratosphere is enriched relative to the CI meteorite composition by a factor of 2 to 4 for carbon and for the moderately volatile elements Na, K, P, Mn, Cu, Zn, Ga, Ge, and Se, and enriched to {approx}30 times CI for Br. However, Jessberger et al., who have reported similar bulk enrichments using Proton Induced X-ray Emission (PIXE), attribute the enrichments to contamination by meteor-derived atmospheric aerosols during the several weeks these IDPs reside in the Earth's atmosphere prior to collection. Using scanning Auger spectroscopy, a very sensitive surface analysis technique, Mackinnon and Mogk have observed S contamination on the surface of IDPs, presumably due to the accretion of sulfate aerosols during stratospheric residence. But the S-rich layer they detected was so thin ({approx}100 angstroms thick) that the total amount of S on the surface was too small to significantly perturb the bulk S-content of a chondritic IDP. Stephan et al. provide support for the contamination hypothesis by reporting the enrichment of Br on the edges of the IDPs using Time-of-Flight Secondary-Ion Mass-Spectrometry (TOF-SIMS), but TOF-SIMS is notorious for producing false edge-effects, particularly on irregularly-shaped samples like IDPs. Sutton et al. mapped the spatial distribution of Fe, Ni, Zn, Br, and Sr, at the {approx}2 {micro}m scale, in four IDPs using element-specific x-ray fluorescence (XRF) computed microtomography. They found the moderately volatile elements Zn and Br, although spatially inhomogeneous, were not concentrated on the surface of any of the IDPs they examined, suggesting that the Zn and the Br enrichments in the IDPs are not due to contamination during stratospheric residence.

  17. Method and apparatus for decreased undesired particle emissions in gas streams

    DOE Patents [OSTI]

    Durham, Michael Dean (Castle Rock, CO); Schlager, Richard John (Aurora, CO); Ebner, Timothy George (Westminster, CO); Stewart, Robin Michele (Arvada, CO); Bustard, Cynthia Jean (Littleton, CO)

    1999-01-01T23:59:59.000Z

    The present invention discloses a process for removing undesired particles from a gas stream including the steps of contacting a composition containing an adhesive with the gas stream; collecting the undesired particles and adhesive on a collection surface to form an aggregate comprising the adhesive and undesired particles on the collection surface; and removing the agglomerate from the collection zone. The composition may then be atomized and injected into the gas stream. The composition may include a liquid that vaporizes in the gas stream. After the liquid vaporizes, adhesive particles are entrained in the gas stream. The process may be applied to electrostatic precipitators and filtration systems to improve undesired particle collection efficiency.

  18. Distribution of small dispersive coal dust particles and absorbed radioactive chemical elements in conditions of forced acoustic resonance in iodine air filter at nuclear power plant

    E-Print Network [OSTI]

    Ledenyov, Oleg P

    2013-01-01T23:59:59.000Z

    The physical features of distribution of the small dispersive coal dust particles and the adsorbed radioactive chemical elements and their isotopes in the absorber with the granular filtering medium with the cylindrical coal granules were researched in the case of the intensive air dust aerosol stream flow through the iodine air filter (IAF). It was shown that, at the certain aerodynamic conditions in the IAF, the generation of the acoustic oscillations is possible. It was found that the acoustic oscillations generation results in an appearance of the standing acoustic waves of the air pressure (density) in the IAF. In the case of the intensive blow of the air dust aerosol, it was demonstrated that the standing acoustic waves have some strong influences on both: 1) the dynamics of small dispersive coal dust particles movement and their accumulation in the IAF; 2) the oversaturation of the cylindrical coal granules by the adsorbed radioactive chemical elements and their isotopes in the regions, where the antin...

  19. Bousso entropy bound for ideal gas of massive particles

    E-Print Network [OSTI]

    Jan Gersl

    2008-04-13T23:59:59.000Z

    The Bousso entropy bound is investigated for static spherically symmetric configurations of ideal gas with Bose-Einstein and Fermi-Dirac distribution function. Gas of massive particles is considered. The paper is continuation of the previous work concerning the massless case. Special attention is devoted to lightsheets generated by spheres. Conditions under which the Bousso bound can be violated are discussed and it is shown that a possible violating region cannot be arbitrarily large and that it is contained inside a sphere of unit Planck radius if the number of independent spin states $g_s$ is small enough. It is also shown that the central temperature must exceed the Planck temperature in order to get a violation of the Bousso bound for $g_s$ not too large. The situation for higher-dimensional spacetimes is also discussed and the FMW conditions are investigated.

  20. Influence by small dispersive coal dust particles of different fractional consistence on characteristics of iodine air filter at nuclear power plant

    E-Print Network [OSTI]

    I. M. Neklyudov; O. P. Ledenyov; L. I. Fedorova; P. Ya. Poltinin

    2013-02-18T23:59:59.000Z

    The main purpose of research is to determine the influence by the small dispersive coal dust particles of the different fractional consistence on the technical characteristics of the vertical iodine air filter at nuclear power plant. The research on the transport properties of the small dispersive coal dust particles in the granular filtering medium of absorber in the vertical iodine air filter is completed in the case, when the modeled aerodynamic conditions are similar to the real aerodynamic conditions. It is shown that the appearance of the different fractional consistence of small dispersive coal dust particles with the decreasing dimensions down to the micro and nano sizes at the action of the air dust aerosol stream normally results in a significant change of distribution of the small dispersive coal dust particles masses in the granular filtering medium of an absorber in the vertical iodine air filter, changing the vertical iodine air filter aerodynamic characteristics. The precise characterization of the aerodynamic resistance of a model of the vertical iodine air filter is completed. The comparative analysis of the technical characteristics of the vertical and horizontal iodine air filters is also made.

  1. Heterogeneous chemistry of atmospheric mineral dust particles and their resulting cloud-nucleation properties

    E-Print Network [OSTI]

    Sullivan, Ryan Christopher

    2008-01-01T23:59:59.000Z

    chemical kinetics of N2O5 on CaCO3 and other atmosphericheterogeneous reaction of CaCO3 particles with gaseous HNO3heterogeneous reaction of CaCO3 particles with gaseous HNO3

  2. Molecular and atomic gas in dust lane early-type galaxies - I: Low star-formation efficiencies in minor merger remnants

    E-Print Network [OSTI]

    Davis, Timothy A; Allison, James R; Shabala, Stanislav S; Ting, Yuan-Sen; Lagos, Claudia del P; Kaviraj, Sugata; Bourne, Nathan; Dunne, Loretta; Eales, Steve; Ivison, Rob J; Maddox, Steve; Smith, Daniel J B; Smith, Matthew W L; Temi, Pasquale

    2015-01-01T23:59:59.000Z

    In this work we present IRAM-30m telescope observations of a sample of bulge-dominated galaxies with large dust lanes, which have had a recent minor merger. We find these galaxies are very gas rich, with H2 masses between 4x10^8 and 2x10^10 Msun. We use these molecular gas masses, combined with atomic gas masses from an accompanying paper, to calculate gas-to-dust and gas-to-stellar mass ratios. The gas-to-dust ratios of our sample objects vary widely (between ~50 and 750), suggesting many objects have low gas-phase metallicities, and thus that the gas has been accreted through a recent merger with a lower mass companion. We calculate the implied minor companion masses and gas fractions, finding a median predicted stellar mass ratio of ~40:1. The minor companion likely had masses between ~10^7 - 10^10 Msun. The implied merger mass ratios are consistent with the expectation for low redshift gas-rich mergers from simulations. We then go on to present evidence that (no matter which star-formation rate indicator ...

  3. Electrostatic Dust Detection and Removal for ITER

    SciTech Connect (OSTI)

    C.H. Skinner; A. Campos; H. Kugel; J. Leisure; A.L. Roquemore; S. Wagner

    2008-09-01T23:59:59.000Z

    We present some recent results on two innovative applications of microelectronics technology to dust inventory measurement and dust removal in ITER. A novel device to detect the settling of dust particles on a remote surface has been developed in the laboratory. A circuit board with a grid of two interlocking conductive traces with 25 ?m spacing is biased to 30 – 50 V. Carbon particles landing on the energized grid create a transient short circuit. The current flowing through the short circuit creates a voltage pulse that is recorded by standard nuclear counting electronics and the total number of counts is related to the mass of dust impinging on the grid. The particles typically vaporize in a few seconds restoring the previous voltage standoff. Experience on NSTX however, showed that in a tokamak environment it was still possible for large particles or fibers to remain on the grid causing a long term short circuit. We report on the development of a gas puff system that uses helium to clear such particles. Experiments with varying nozzle designs, backing pressures, puff durations, and exit flow orientations have given an optimal configuration that effectively removes particles from an area up to 25 cm² with a single nozzle. In a separate experiment we are developing an advanced circuit grid of three interlocking traces that can generate a miniature electrostatic traveling wave for transporting dust to a suitable exit port. We have fabricated such a 3-pole circuit board with 25 micron insulated traces that operates with voltages up to 200 V. Recent results showed motion of dust particles with the application of only 50 V bias voltage. Such a device could potentially remove dust continuously without dedicated interventions and without loss of machine availability for plasma operations.

  4. Comparison of the Coulter Multisizer and Aerodynamic Particle Sizer for obtaining the aerodynamic particle size of irregularly shaped dust

    E-Print Network [OSTI]

    McClure, Joshua Wayne

    2002-01-01T23:59:59.000Z

    When studying air quality it is often necessary to measure the aerodynamic size distribution of particles. True aerodynamic diameter must be measured using a gravitational settling method, which is impractical. Other methods exist that use other...

  5. Recovering the Elemental Composition of Comet Wild 2 Dust in Five Stardust Impact Tracks and Terminal Particles in Aerogel

    SciTech Connect (OSTI)

    Ishii, H A; Brennan, S; Bradley, J P; Luening, K; Ignatyev, K; Pianetta, P

    2007-01-04T23:59:59.000Z

    The elemental (non-volatile) composition of five Stardust impact tracks and terminal particles left from capture of Comet 81P/Wild 2 dust were mapped in a synchrotron x-ray scanning microprobe with full fluorescence spectra at each pixel. Because aerogel includes background levels of several elements of interest, we employ a novel 'dual threshold' approach to discriminate against background contaminants: an upper threshold, above which a spectrum contains cometary material plus aerogel and a lower threshold below which it contains only aerogel. The difference between normalized cometary-plus-background and background-only spectra is attributable to cometary material. The few spectra in between are discarded since misallocation is detrimental: cometary material incorrectly placed in the background spectrum is later subtracted from the cometary spectrum, doubling the loss of reportable cometary material. This approach improves precision of composition quantification. We present the refined whole impact track and terminal particle elemental abundances for the five impact tracks. One track shows mass increases in Cr and Mn (1.4x), Cu, As and K (2x), Zn (4x) and total mass (13%) by dual thresholds compared to a single threshold. Major elements Fe and Ni are not significantly affected. The additional Cr arises from cometary material containing little Fe. We exclude Au intermixed with cometary material because it is found to be a localized surface contaminant carried by comet dust into an impact track. The dual threshold technique can be used in other situations where elements of interest in a small sample embedded in a matrix are also present in the matrix itself.

  6. Comparison of 13CO Line and Far-Infrared Continuum Emission as a Diagnostic of Dust and Molecular Gas Physical Conditions: I. Motivation and Modeling

    E-Print Network [OSTI]

    W. F. Wall

    2006-05-25T23:59:59.000Z

    Determining temperatures in molecular clouds from ratios of CO rotational lines or from ratios of continuum emission in different wavelength bands suffers from reduced temperature sensitivity in the high-temperature limit. In theory, the ratio of far-IR, submillimeter, or millimeter continuum to that of a 13CO (or C18O) rotational line can place reliable upper limits on the temperature of the dust and molecular gas. Consequently, far-infrared continuum data from the {\\it COBE}/{\\it DIRBE} instrument and Nagoya 4-m $\\cOone$ spectral line data were used to plot 240$\\um$/13CO J=1-0 intensity ratios against 140$\\um$/240$\\um$ dust color temperatures, allowing us to constrain the multiparsec-scale physical conditions in the Orion$ $A and B molecular clouds. The best-fitting models to the Orion clouds consist of two components: a component near the surface of the clouds that is heated primarily by a very large-scale (i.e. $\\sim 1 $kpc) interstellar radiation field and a component deeper within the clouds. The former has a fixed temperature and the latter has a range of temperatures that varies from one sightline to another. The models require a dust-gas temperature difference of 0$\\pm 2 $K and suggest that 40-50% of the Orion clouds are in the form of dust and gas with temperatures between 3 and 10$ $K. These results have a number implications that are discussed in detail in later papers. These include stronger dust-gas thermal coupling and higher Galactic-scale molecular gas temperatures than are usually accepted, an improved explanation for the N(H$_2$)/I(CO) conversion factor, and ruling out one dust grain alignment mechanism.

  7. Silica aerogel for capturing intact interplanetary dust particles for the Tanpopo experiment

    E-Print Network [OSTI]

    Tabata, Makoto; Kawai, Hideyuki; Imai, Eiichi; Kawaguchi, Yuko; Hashimoto, Hirofumi; Yamagishi, Akihiko

    2015-01-01T23:59:59.000Z

    In this paper, we report the progress in developing a silica-aerogel-based cosmic dust capture panel for use in the Tanpopo experiment on the International Space Station (ISS). Previous studies revealed that ultralow-density silica aerogel tiles comprising two layers with densities of 0.01 and 0.03 g/cm$^3$ developed using our production technique were suitable for achieving the scientific objectives of the astrobiological mission. A special density configuration (i.e., box framing) aerogel with a holder was designed to construct the capture panels. Qualification tests for an engineering model of the capture panel as an instrument aboard the ISS were successful. Sixty box-framing aerogel tiles were manufactured in a contamination-controlled environment.

  8. Heterogeneous chemistry of atmospheric mineral dust particles and their resulting cloud-nucleation properties

    E-Print Network [OSTI]

    Sullivan, Ryan Christopher

    2008-01-01T23:59:59.000Z

    Aerosol size distribution The size of an aerosol particle is an important parameter that controls the rates of diffusion, coagulation,coagulation into the larger ultrafine and accumulation Figure 1.1. Typical size distribution of atmospheric aerosols and

  9. Applications and Progress of Dust Injection to Fusion Energy

    SciTech Connect (OSTI)

    Wang Zhehui; Wurden, Glen A. [Los Alamos National Laboratory (United States); Mansfield, Dennis K.; Roquemore, Lane A. [Princeton Plasma Physics Laboratory (United States); Ticos, Catalin M. [National Institute for Laser, Plasma, and Radiation Physics, Bucharest (Romania)

    2008-09-07T23:59:59.000Z

    Three regimes of dust injection are proposed for different applications to fusion energy. In the 'low-speed' regime (<5 km/s), basic dust transport study, edge plasma diagnostics, edge-localized-mode (ELM) pacing in magnetic fusion devices can be realized by injecting dust of known properties into today's fusion experiments. ELM pacing, as an alternative to mini-pellet injection, is a promising scheme to prevent disruptions and type I ELM's that can cause catastrophic damage to fusion devices. Different schemes are available to inject dust. In the 'intermediate-speed' regime (10-200 km/s), possible applications of dust injection include fueling of the next-step fusion devices, core-diagnostics of the next-step fusion devices, and compression of plasma and solid targets to aid fusion energy production. Promising laboratory results of dust moving at 10-50 km/s do exist. Significant advance in this regime may be expected in the near term to achieve higher dust speeds. In the 'high-speed' regime (>500 km/s), dust injection can potentially be used to directly produce fusion energy through impact. Ideas on how to achieve these extremely high speeds are mostly on paper. No plan exists today to realize them in laboratory. Some experimental results, including electrostatic, electromagnetic, gas-dragged, plasma-dragged, and laser-ablation-based acceleration, are summarized and compared. Some features and limitations of the different acceleration methods will be discussed. A necessary component of all dust injectors is the dust dropper (also known as dust dispenser). A computer-controlled piezoelectric crystals has been developed to dropped dust in a systematic and reproducible manner. Particle fluxes ranges from a few tens of particles per second up to thousands of particles per second by this simple device.

  10. Applications of high-speed dust injection to magnetic fusion

    SciTech Connect (OSTI)

    Wang, Zhehui [Los Alamos National Laboratory; Li, Yangfang [Max Planck Institute for Extraterrestrial Physics, Germany

    2012-08-08T23:59:59.000Z

    It is now an established fact that a significant amount of dust is produced in magnetic fusion devices due to plasma-wall interactions. Dust inventory must be controlled, in particular for the next-generation steady-state fusion machines like ITER, as it can pose significant safety hazards and degrade performance. Safety concerns are due to tritium retention, dust radioactivity, toxicity, and flammability. Performance concerns include high-Z impurities carried by dust to the fusion core that can reduce plasma temperature and may even induce sudden termination of the plasma. We have recognized that dust transport, dust-plasma interactions in magnetic fusion devices can be effectively studied experimentally by injection of dust with known properties into fusion plasmas. Other applications of injected dust include diagnosis of fusion plasmas and edge localized mode (ELM)'s pacing. In diagnostic applications, dust can be regarded as a source of transient neutrals before complete ionization. ELM's pacing is a promising scheme to prevent disruptions and type I ELM's that can cause catastrophic damage to fusion machines. Different implementation schemes are available depending on applications of dust injection. One of the simplest dust injection schemes is through gravitational acceleration of dust in vacuum. Experiments at Los Alamos and Princeton will be described, both of which use piezoelectric shakers to deliver dust to plasma. In Princeton experiments, spherical particles (40 micron) have been dropped in a systematic and reproducible manner using a computer-controlled piezoelectric bending actuator operating at an acoustic (0,2) resonance. The circular actuator was constructed with a 2.5 mm diameter central hole. At resonance ({approx} 2 kHz) an applied sinusoidal voltage has been used to control the flux of particles exiting the hole. A simple screw throttle located {approx}1mm above the hole has been used to set the magnitude of the flux achieved for a given voltage. Particle fluxes ranging from a few tens of particle per second up to thousands of particles per second have been achieved using this simple device. To achieve higher dust injection speed, another key consideration is how to accelerate dust at controlled amount. In addition to gravity, other possible acceleration mechanisms include electrostatic, electromagnetic, gas-dragged, plasma-dragged, and laser-ablation-based acceleration. Features and limitations of the different acceleration methods will be discussed. We will also describe laboratory experiments on dust acceleration.

  11. Kinetic simulation of neutral/ionized gas and electrically charged dust in the coma of comet 67P/Churyumov-Gerasimenko

    SciTech Connect (OSTI)

    Tenishev, Valeriy; Rubin, Martin; Combi, Michael R. [University of Michigan, 2455 Hayward St., Ann Arbor, MI 48109 (United States)

    2011-05-20T23:59:59.000Z

    The cometary coma is a unique phenomenon in the solar system being a planetary atmosphere influenced by little or no gravity. As a comet approaches the sun, the water vapor with some fraction of other gases sublimate, generating a cloud of gas, ice and other refractory materials (rocky and organic dust) ejected from the surface of the nucleus. Sublimating gas molecules undergo frequent collisions and photochemical processes in the near-nucleus region. Owing to its negligible gravity, comets produce a large and highly variable extensive dusty coma with a size much larger than the characteristic size of the cometary nucleus.The Rosetta spacecraft is en route to comet 67P/Churyumov-Gerasimenko for a rendezvous, landing, and extensive orbital phase beginning in 2014. Both, interpretation of measurements and safety consideration of the spacecraft require modeling of the comet's dusty gas environment.In this work we present results of a numerical study of multispecies gaseous and electrically charged dust environment of comet Chyuryumov-Gerasimenko. Both, gas and dust phases of the coma are simulated kinetically. Photolytic reactions are taken into account. Parameters of the ambient plasma as well as the distribution of electric/magnetic fields are obtained from an MHD simulation of the coma connected to the solar wind. Trajectories of ions and electrically charged dust grains are simulated by accounting for the Lorentz force and the nucleus gravity.

  12. Method and apparatus for decreased undesired particle emissions in gas streams

    DOE Patents [OSTI]

    Durham, M.D.; Schlager, R.J.; Ebner, T.G.; Stewart, R.M.; Bustard, C.J.

    1999-04-13T23:59:59.000Z

    The present invention discloses a process for removing undesired particles from a gas stream including the steps of contacting a composition containing an adhesive with the gas stream; collecting the undesired particles and adhesive on a collection surface to form an aggregate comprising the adhesive and undesired particles on the collection surface; and removing the agglomerate from the collection zone. The composition may then be atomized and injected into the gas stream. The composition may include a liquid that vaporizes in the gas stream. After the liquid vaporizes, adhesive particles are entrained in the gas stream. The process may be applied to electrostatic precipitators and filtration systems to improve undesired particle collection efficiency. 5 figs.

  13. Detection of energetic particles and gamma rays Gas detectors

    E-Print Network [OSTI]

    Peletier, Reynier

    particles · electrons ­ neutral particles · neutrons · neutrinos · General radiation detection concepts radiation) ­ excitation (decay light can be the basis of radiation detection) ­ ionisation (electron

  14. On-line gas chromatographic analysis of airborne particles

    DOE Patents [OSTI]

    Hering, Susanne V. (Berkeley, CA); Goldstein, Allen H. (Orinda, CA)

    2012-01-03T23:59:59.000Z

    A method and apparatus for the in-situ, chemical analysis of an aerosol. The method may include the steps of: collecting an aerosol; thermally desorbing the aerosol into a carrier gas to provide desorbed aerosol material; transporting the desorbed aerosol material onto the head of a gas chromatography column; analyzing the aerosol material using a gas chromatograph, and quantizing the aerosol material as it evolves from the gas chromatography column. The apparatus includes a collection and thermal desorption cell, a gas chromatograph including a gas chromatography column, heated transport lines coupling the cell and the column; and a quantization detector for aerosol material evolving from the gas chromatography column.

  15. Numerical simulations of gas-particle flows with combustion Julien NUSSBAUM

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Numerical simulations of gas-particle flows with combustion Julien NUSSBAUM French-german Research. At the initial time, the mixture of gas-powder grains is contained in the combustion chamber, limited gas species. The pressure increases in the combustion chamber, while the front flame propagates

  16. Design of a High Temperature Small Particle Solar Receiver for Powering a Gas Turbine Engine

    E-Print Network [OSTI]

    Ponce, V. Miguel

    Design of a High Temperature Small Particle Solar Receiver for Powering a Gas Turbine Engine Dr will describe the design of a high temperature solar receiver capable of driving a gas turbine for power conclusions regarding the best way to operate a solar powered gas turbine have been obtained

  17. Oil and Gas CDT What happens inside a frack? Particle-laden fluid transport in

    E-Print Network [OSTI]

    Henderson, Gideon

    Oil and Gas CDT What happens inside a frack? Particle-laden fluid transport in fracture networks, or fracking, for shale gas or other unconventional gas sources involves inducing and propagating fractures, and the productivity of the fracked well will be lower. However proppants can jam inside fractures preventing

  18. Natural Gas Hydrate Particles in Oil-Free Systems with Kinetic Inhibition and Slurry Viscosity Reduction

    E-Print Network [OSTI]

    Firoozabadi, Abbas

    Natural Gas Hydrate Particles in Oil-Free Systems with Kinetic Inhibition and Slurry Viscosity, reduction of slurry viscosity, and corrosion inhibition. INTRODUCTION Water often forms gas hydrates antiagglomeration (AA) in the natural gas hydrate literature. The main limitation to application has been the need

  19. Secondary dust density waves excited by nonlinear dust acoustic waves

    SciTech Connect (OSTI)

    Heinrich, J. R.; Kim, S.-H.; Meyer, J. K.; Merlino, R. L. [Department of Physics and Astronomy, University of Iowa, Iowa City, Iowa 52242 (United States); Rosenberg, M. [Department of Electrical and Computer Engineering, University of California, San Diego, California 92093 (United States)

    2012-08-15T23:59:59.000Z

    Secondary dust density waves were observed in conjunction with high amplitude (n{sub d}/n{sub d0}>2) dust acoustic waves (DAW) that were spontaneously excited in a dc glow discharge dusty plasma in the moderately coupled, {Gamma}{approx}1, state. The high amplitude dust acoustic waves produced large dust particle oscillations, displacements, and trapping. Secondary dust density waves were excited in the wave troughs of the high amplitude DAWs. The waveforms, amplitudes, wavelengths, and wave speeds of the primary DAWs and the secondary waves were measured. A dust-dust streaming instability is discussed as a possible mechanism for the production of the secondary waves.

  20. Comparison of 13CO Line and Far-Infrared Continuum Emission as a Diagnostic of Dust and Molecular Gas Physical Conditions: III. Systematic Effects and Scientific Implications

    E-Print Network [OSTI]

    W. F. Wall

    2007-03-26T23:59:59.000Z

    Far-infrared continuum data from the {\\it COBE}/{\\it DIRBE} instrument were combined with Nagoya 4-m $\\cOone$ spectral line data to infer the multiparsec-scale physical conditions in the Orion$ $A and B molecular clouds, using 140$\\um$/240$\\um$ dust color temperatures and the 240$\\um$/$\\cOone$ intensity ratios. In theory, the ratio of far-IR, submillimeter, or millimeter continuum to that of a $\\cO$ (or $\\Co$) rotational line can place reliable upper limits on the temperature of the dust and molecular gas on multi-parsec scales; on such scales, both the line and continuum emission are optically thin, resulting in a continuum-to-line ratio that suffers no loss of temperature sensitivity in the high-temperature limit as occurs for ratios of CO rotational lines or ratios of continuum emission in different wavelength bands. Two-component models fit the Orion data best, where one has a fixed-temperature and the other has a spatially varying temperature. The former represents gas and dust towards the surface of the clouds that are heated primarily by a very large-scale (i.e. $\\sim 1 $kpc) interstellar radiation field. The latter represents gas and dust at greater depths into the clouds and are shielded from this interstellar radiation field and heated by local stars. The inferred physical conditions are consistent with those determined from previously observed maps of $\\COone$ and $\\Jtwo$ that cover the entire Orion$ $A and B molecular clouds. The models require that the dust-gas temperature difference is 0$\\pm 2 $K. If this surprising result applies to much of the Galactic ISM, except in unusual regions such as the Galactic Center, then there are a number implications.

  1. Preliminary analysis of graphite dust releasing behavior in accident for HTR

    SciTech Connect (OSTI)

    Peng, W.; Yang, X. Y.; Yu, S. Y.; Wang, J. [Inst. of Nuclear and New Energy Technology, Tsinghua Univ., Beijing100084 (China)

    2012-07-01T23:59:59.000Z

    The behavior of the graphite dust is important to the safety of High Temperature Gas-cooled Reactors. This study investigated the flow of graphite dust in helium mainstream. The analysis of the stresses acting on the graphite dust indicated that gas drag played the absolute leading role. Based on the understanding of the importance of gas drag, an experimental system is set up for the research of dust releasing behavior in accident. Air driven by centrifugal fan is used as the working fluid instead of helium because helium is expensive, easy to leak which make it difficult to seal. The graphite particles, with the size distribution same as in HTR, are added to the experiment loop. The graphite dust releasing behavior at the loss-of-coolant accident will be investigated by a sonic nozzle. (authors)

  2. Feasibility of an alpha particle gas densimeter for stack sampling applications

    E-Print Network [OSTI]

    Johnson, Randall Mark

    1983-01-01T23:59:59.000Z

    FEASIBILITY OF AN ALPHA PARTICLE GAS DENSIMETER FOR STACK SAMPLING APPLICATIONS A Thesis by RANDALL ~ JOHNSON Submitted to the Graduate College of Texas ASM University in partial fulfillment of the requirement for the degree of MASTER... OF SCIENCE May l983 Major Subject: Nuclear Engineering FEASIBILITY OF AN ALPHA PARTICLE GAS DENSIMETER FOR STACK SAMPLING APPLICATIONS A Thesis by RANDALL MARK JO HN SON Approved as to style and content by: Ro ert A. F3e d (Ch irman of Committee...

  3. TWO INTERSTELLAR DUST CANDIDATES FROM THE STARDUST AEROGEL INTERSTELLAR DUST

    E-Print Network [OSTI]

    TWO INTERSTELLAR DUST CANDIDATES FROM THE STARDUST AEROGEL INTERSTELLAR DUST COLLECTOR A. J, and is expected to have collected several dozen contemporary interstellar dust particles in aerogel and aluminum@home, we have so far identified 28 tracks in the aerogel collectors. We report on the results

  4. Properties of potential eco-friendly gas replacements for particle detectors in high-energy physics

    E-Print Network [OSTI]

    Benussi, L; Piccolo, D; Saviano, G; Colafranceschi, S; Kjølbro, J; Sharma, A; Yang, D; Chen, G; Ban, Y; Li, Q

    2015-01-01T23:59:59.000Z

    Modern gas detectors for detection of particles require F-based gases for optimal performance. Recent regulations demand the use of environmentally unfriendly F-based gases to be limited or banned. This review studies properties of potential eco-friendly gas candidate replacements.

  5. Properties of potential eco-friendly gas replacements for particle detectors in high-energy physics

    E-Print Network [OSTI]

    Benussi, L; Piccolo, D; Saviano, G; Colafranceschi, S; Kjølbro, J; Yang, D; Chen, G; Ban, Y; Li, Q; Sharma, A

    2015-01-01T23:59:59.000Z

    Modern gas detectors for detection of particles require F-based gases for op- timal performance. Recent regulations demand the use of environmentally un- friendly Freon-based gases to be limited or banned. This review studies properties of potential eco-friendly gas candidate replacements.

  6. Images of Vega Dust Ring at 350 and 450 microns: New Clues to the Trapping of Multiple-Sized Dust Particles in Planetary Resonances

    E-Print Network [OSTI]

    K. A. Marsh; C. D. Dowell; T. Velusamy; K. Grogan; C. A. Beichman

    2006-06-14T23:59:59.000Z

    We have used the SHARC II camera at Caltech Submillimeter Observatory to make 350 and 450 micron images of the Vega dust disk at spatial resolutions (FWHM) of 9.7" and 11.1", respectively. The images show a ring-like morphology (radius \\~ 100 AU) with inhomogeneous structure that is qualitatively different from that previously reported at 850 microns and longer wavelengths. We attribute the 350/450 micron emission to a grain population whose characteristic size (~ 1 mm) is intermediate between that of the cm-sized grains responsible for emission longward of 850 microns and the much smaller grains (< 18 microns) in the extensive halo, visible at 70 microns, discussed by Su et al. (2005). We have combined our submillimeter images with Spitzer data at 70 microns to produce 2-d maps of line-of-sight optical depth (relative column density). These "tau maps" suggest that the mm-sized grains are located preferentially in three symmetrically-located concentrations. If so, then this structure could be understood in terms of the Wyatt (2003) model in which planetesimals are trapped in the mean motion resonances of a Neptune-mass planet at 65 AU, provided allowance is made for the spatial distribution of dust grains to differ from that of the parent planetesimals. The peaks of the tau maps are, in fact, located near the expected positions corresponding to the 4:3 resonance. If this identification is confirmed by future observations, it would resolve an ambiguity with regard to the location of the planet.

  7. Vertically aligned gas-insulated transmission line having particle traps at the inner conductor

    DOE Patents [OSTI]

    Dale, Steinar J. (Monroeville, PA)

    1984-01-01T23:59:59.000Z

    Gas insulated electrical apparatus having first and second conductors separated by an insulating support within an insulating gas environment, and particle traps disposed along the surface of the high potential conductor for trapping and inactivating foreign particles which may be present within the insulating gas medium. Several embodiments of the invention were developed which are particularly suited for vertically aligned gas insulated transmission lines. The particle traps are grooves or cavities formed into the walls of the tubular inner conductor, without extending into the hollow portion of the conductor. In other embodiments, the traps are appendages or insert flanges extending from the inner conductor, with the insulator supports contacting the appendages instead of the inner conductor.

  8. PARTICLE TRANSPORTATION AND DEPOSITION IN HOT GAS FILTER VESSELS - A COMPUTATIONAL AND EXPERIMENTAL MODELING APPROACH

    SciTech Connect (OSTI)

    Goodarz Ahmadi

    2002-07-01T23:59:59.000Z

    In this project, a computational modeling approach for analyzing flow and ash transport and deposition in filter vessels was developed. An Eulerian-Lagrangian formulation for studying hot-gas filtration process was established. The approach uses an Eulerian analysis of gas flows in the filter vessel, and makes use of the Lagrangian trajectory analysis for the particle transport and deposition. Particular attention was given to the Siemens-Westinghouse filter vessel at Power System Development Facility in Wilsonville in Alabama. Details of hot-gas flow in this tangential flow filter vessel are evaluated. The simulation results show that the rapidly rotation flow in the spacing between the shroud and the vessel refractory acts as cyclone that leads to the removal of a large fraction of the larger particles from the gas stream. Several alternate designs for the filter vessel are considered. These include a vessel with a short shroud, a filter vessel with no shroud and a vessel with a deflector plate. The hot-gas flow and particle transport and deposition in various vessels are evaluated. The deposition patterns in various vessels are compared. It is shown that certain filter vessel designs allow for the large particles to remain suspended in the gas stream and to deposit on the filters. The presence of the larger particles in the filter cake leads to lower mechanical strength thus allowing for the back-pulse process to more easily remove the filter cake. A laboratory-scale filter vessel for testing the cold flow condition was designed and fabricated. A laser-based flow visualization technique is used and the gas flow condition in the laboratory-scale vessel was experimental studied. A computer model for the experimental vessel was also developed and the gas flow and particle transport patterns are evaluated.

  9. Distribution of small dispersive coal dust particles and absorbed radioactive chemical elements in conditions of forced acoustic resonance in iodine air filter at nuclear power plant

    E-Print Network [OSTI]

    Oleg P. Ledenyov; Ivan M. Neklyudov

    2013-06-14T23:59:59.000Z

    The physical features of distribution of the small dispersive coal dust particles and the adsorbed radioactive chemical elements and their isotopes in the absorber with the granular filtering medium with the cylindrical coal granules were researched in the case of the intensive air dust aerosol stream flow through the iodine air filter (IAF). It was shown that, at the certain aerodynamic conditions in the IAF, the generation of the acoustic oscillations is possible. It was found that the acoustic oscillations generation results in an appearance of the standing acoustic waves of the air pressure (density) in the IAF. In the case of the intensive blow of the air dust aerosol, it was demonstrated that the standing acoustic waves have some strong influences on both: 1) the dynamics of small dispersive coal dust particles movement and their accumulation in the IAF; 2) the oversaturation of the cylindrical coal granules by the adsorbed radioactive chemical elements and their isotopes in the regions, where the antinodes of the acoustic waves are positioned. Finally, we completed the comparative analysis of the theoretical calculations with the experimental results, obtained for the cases of: 1) the experimental aerodynamic modeling of physical processes of the absorbed radioactive chemical elements and their isotopes distribution in the IAF; and 2) the gamma-activation spectroscopy analysis of the absorbed radioactive chemical elements and their isotopes distribution in the IAF. We made the innovative propositions on the necessary technical modifications with the purpose to improve the IAF technical characteristics and increase its operational time at the nuclear power plant (NPP), going from the completed precise characterization of the IAF parameters at the long term operation.

  10. ADVANCES IN DUST DETECTION AND REMOVAL FOR TOKAMAKS

    SciTech Connect (OSTI)

    Campos, A.; Skinner, C.H.

    2009-01-01T23:59:59.000Z

    Dust diagnostics and removal techniques are vital for the safe operation of next step fusion devices such as ITER. In the tokamak environment, large particles or fi bers can fall on the electrostatic detector potentially causing a permanent short. An electrostatic dust detector developed in the laboratory is being applied to the National Spherical Torus Experiment (NSTX). We report on the development of a gas puff system that uses helium to clear such particles from the detector. Experiments at atmospheric pressure with varying nozzle designs, backing pressures, puff durations and exit fl ow orientations have given an optimal confi guration that effectively removes particles from a 25 cm² area. Similar removal effi ciencies were observed under a vacuum base pressure of 1 mTorr. Dust removal from next step tokamaks will be required to meet regulatory dust limits. A tri-polar grid of fi ne interdigitated traces has been designed that generates an electrostatic traveling wave for conveying dust particles to a “drain.” First trials with only two working electrodes have shown particle motion in optical microscope images.

  11. EMBEDDED PROTOSTARS IN THE DUST, ICE, AND GAS IN TIME (DIGIT) HERSCHEL KEY PROGRAM: CONTINUUM SEDs, AND AN INVENTORY OF CHARACTERISTIC FAR-INFRARED LINES FROM PACS SPECTROSCOPY

    SciTech Connect (OSTI)

    Green, Joel D.; Evans, Neal J. II; Rascati, Michelle R. [Department of Astronomy, University of Texas at Austin, 2515 Speedway, Stop C1400, Austin, TX 78712-1205 (United States); Jorgensen, Jes K.; Dionatos, Odysseas; Lindberg, Johan E. [Niels Bohr Institute, University of Copenhagen, DK-2100 Copenhagen (Denmark); Herczeg, Gregory J. [Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100871 (China); Kristensen, Lars E.; Yildiz, Umut A.; Van Kempen, Tim A. [Leiden Observatory, Leiden University, P.O. Box 9513, 2300-RA Leiden (Netherlands); Lee, Jeong-Eun [Department of Astronomy and Space Science, Kyung Hee University, Gyeonggi 446-701 (Korea, Republic of); Salyk, Colette [National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); Meeus, Gwendolyn [Dpt. Fisica Teorica, Universidad Autonoma de Madrid, Campus Cantoblanco, E-28049 Madrid (Spain); Bouwman, Jeroen [Max Planck Institute for Astronomy, D-69117 Heidelberg (Germany); Visser, Ruud; Bergin, Edwin A. [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109-1042 (United States); Van Dishoeck, Ewine F.; Karska, Agata; Fedele, Davide [Max-Planck Institute for Extraterrestrial Physics, Postfach 1312, D-85741 Garching (Germany); Dunham, Michael M., E-mail: joel@astro.as.utexas.edu [Department of Astronomy, Yale University, New Haven, CT 06511 (United States); Collaboration: DIGIT Team1

    2013-06-20T23:59:59.000Z

    We present 50-210 {mu}m spectral scans of 30 Class 0/I protostellar sources, obtained with Herschel-PACS, and 0.5-1000 {mu}m spectral energy distributions, as part of the Dust, Ice, and Gas in Time Key Program. Some sources exhibit up to 75 H{sub 2}O lines ranging in excitation energy from 100 to 2000 K, 12 transitions of OH, and CO rotational lines ranging from J = 14 {yields} 13 up to J = 40 {yields} 39. [O I] is detected in all but one source in the entire sample; among the sources with detectable [O I] are two very low luminosity objects. The mean 63/145 {mu}m [O I] flux ratio is 17.2 {+-} 9.2. The [O I] 63 {mu}m line correlates with L{sub bol}, but not with the time-averaged outflow rate derived from low-J CO maps. [C II] emission is in general not local to the source. The sample L{sub bol} increased by 1.25 (1.06) and T{sub bol} decreased to 0.96 (0.96) of mean (median) values with the inclusion of the Herschel data. Most CO rotational diagrams are characterized by two optically thin components ( = (0.70 {+-} 1.12) x 10{sup 49} total particles). N{sub CO} correlates strongly with L{sub bol}, but neither T{sub rot} nor N{sub CO}(warm)/N{sub CO}(hot) correlates with L{sub bol}, suggesting that the total excited gas is related to the current source luminosity, but that the excitation is primarily determined by the physics of the interaction (e.g., UV-heating/shocks). Rotational temperatures for H{sub 2}O ( = 194 +/- 85 K) and OH ( = 183 +/- 117 K) are generally lower than for CO, and much of the scatter in the observations about the best fit is attributed to differences in excitation conditions and optical depths among the detected lines.

  12. Feasibility of an alpha particle gas densimeter for stack sampling applications 

    E-Print Network [OSTI]

    Johnson, Randall Mark

    1983-01-01T23:59:59.000Z

    , for conceivable ranges of flue gas composition, the maximum error in density due to the uncertainty in gas composition is less than 2%. ACKNOWLEDGEMENTS I wish to express my appreciation to Dr. R. A. Fjeld and Dr. A. R. McFarland for their patience... LISTING APPENDIX C TABULATED RESULTS 58 60 72 VI TA 84 Vi LIST OF TABLES TABLE P age I Typical Flue Gas Compositions II Model Flue Gas Compositions 35 Coeff icients for Alpha particle Stopping Power Functions 59 Computed and Experimental...

  13. Photophoretic contribution to the transport of absorbing particles across combustion gas boundary layers

    SciTech Connect (OSTI)

    Castillo, J.L. (U.N.E.D., Madrid (Spain)); Mackowski, D.W.; Rosner, D.E. (Yale Univ., New Haven, CT (USA))

    1989-01-01T23:59:59.000Z

    Since radiation energy fluxes can be comparable to convective (Fourier) fluxes in large fossil-fuel-fired power stations and furnaces, the authors have examined particle drift (phoresis) induced by nonuniform photon-particle heating in a host gas. The authors analysis of the photophoretic velocity includes the important slipflow regime, and the numerical results show that photophoresis is a significant transport mechanism for micron-sized absorbing particles in high radiative transfer combustion environments, with equivalent photophoretic diffusivities (dimensionless photophoretic velocities) being as large as 10% of the better-known thermophoretic diffusivity (Rosner, 1980, 1985). Since previous experimental results (Rosner and Kim, 1984) demonstrated that thermophoresis causes over a 3-decade increase in particle deposition rates by convective diffusion, clearly, for small, absorbing particles, photophoresis will also be an important contributor to observed deposition rates. Accordingly, they present mass transfer coefficients for particle transport across laminar gaseous boundary layers, including both particle thermophoresis and photophoresis.

  14. airborne dust samples: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    which best describe the dust environment: dust loss rates, ejection velocities, and size distribution of particles. On the other hand, we use a numerical integrator to study...

  15. Using DSMC to compute the force on a particle in a rarefied gas flow.

    SciTech Connect (OSTI)

    Gallis, Michail A.; Rader, Daniel John; Torczynski, John Robert

    2002-06-01T23:59:59.000Z

    An approach is presented to compute the force on a spherical particle in a rarefied flow of a monatomic gas. This approach relies on the development of a Green's function that describes the force on a spherical particle in a delta-function molecular velocity distribution function. The gas-surface interaction model in this development allows incomplete accommodation of energy and tangential momentum. The force from an arbitrary molecular velocity distribution is calculated by computing the moment of the force Green's function in the same way that other macroscopic variables are determined. Since the molecular velocity distribution function is directly determined in the DSMC method, the force Green's function approach can be implemented straightforwardly in DSMC codes. A similar approach yields the heat transfer to a spherical particle in a rarefied gas flow. The force Green's function is demonstrated by application to two problems. First, the drag force on a spherical particle at arbitrary temperature and moving at arbitrary velocity through an equilibrium motionless gas is found analytically and numerically. Second, the thermophoretic force on a motionless particle in a motionless gas with a heat flux is found analytically and numerically. Good agreement is observed in both situations.

  16. Means and method for the destruction of particles entrained in a gas stream

    DOE Patents [OSTI]

    Botts, Thomas E. (Wading River, NY); Powell, James R. (Shoreham, NY)

    1980-01-01T23:59:59.000Z

    An apparatus and method for the destruction of particles entrained in a gas stream are disclosed. Destruction in the context of the subject invention means the fragmentation and/or vaporization of particles above a certain size limit. The subject invention contemplates destroying such particles by exposing them to intense bursts of laser light, such light having a frequency approximately equal to or less than the mean size of such particles. This invention is particularly adopted to the protection of turbine blades in open cycle coal-fired turbine systems. Means for introducing various chemical species and activating them by exposure to laser light are also disclosed.

  17. Infrared Spectroscopy of Wild 2 Particle Hypervelocity Tracks in Stardust Aerogel: Evidence for the presence of Volatile Organics in Comet Dust

    SciTech Connect (OSTI)

    Bajt, S; Sandford, S A; Flynn, G J; Matrajt, G; Snead, C J; Westphal, A J; Bradley, J P

    2007-08-28T23:59:59.000Z

    Infrared spectroscopy maps of some tracks, made by cometary dust from 81P/Wild 2 impacting Stardust aerogel, reveal an interesting distribution of volatile organic material. Out of six examined tracks three show presence of volatile organic components possibly injected into the aerogel during particle impacts. When particle tracks contained excess volatile organic material, they were found to be -CH{sub 2}-rich. Off-normal particle tracks could indicate impacts by lower velocity particles that could have bounced off the Whipple shield, therefore carry off some contamination from it. However, this theory is not supported by data that show excess organic-rich material in normal and off-normal particle tracks. It is clear that the population of cometary particles impacting the Stardust aerogel collectors also include grains that contained little or none of this volatile organic component. This observation is consistent with the highly heterogeneous nature of the collected grains, as seen by a multitude of other analytical techniques. We propose that at least some of the volatile organic material might be of cometary origin based on supporting data shown in this paper. However, we also acknowledge the presence of carbon (primarily as -CH{sub 3}) in the original aerogel, which complicates interpretation of these results.

  18. Investigation of Gas Solid Fluidized Bed Dynamics with Non-Spherical Particles

    SciTech Connect (OSTI)

    Choudhuri, Ahsan

    2013-06-30T23:59:59.000Z

    One of the largest challenges for 21st century is to fulfill global energy demand while also reducing detrimental impacts of energy generation and use on the environment. Gasification is a promising technology to meet the requirement of reduced emissions without compromising performance. Coal gasification is not an incinerating process; rather than burning coal completely a partial combustion takes place in the presence of steam and limited amounts of oxygen. In this controlled environment, a chemical reaction takes place to produce a mixture of clean synthetic gas. Gas-solid fluidized bed is one such type of gasification technology. During gasification, the mixing behavior of solid (coal) and gas and their flow patterns can be very complicated to understand. Many attempts have taken place in laboratory scale to understand bed hydrodynamics with spherical particles though in actual applications with coal, the particles are non-spherical. This issue drove the documented attempt presented here to investigate fluidized bed behavior using different ranges of non-spherical particles, as well as spherical. For this investigation, various parameters are controlled that included particle size, bed height, bed diameter and particle shape. Particles ranged from 355 µm to 1180 µm, bed diameter varied from 2 cm to 7 cm, two fluidized beds with diameters of 3.4 cm and 12.4 cm, for the spherical and non-spherical shaped particles that were taken into consideration. Pressure drop was measured with increasing superficial gas velocity. The velocity required in order to start to fluidize the particle is called the minimum fluidization velocity, which is one of the most important parameters to design and optimize within a gas-solid fluidized bed. This minimum fluidization velocity was monitored during investigation while observing variables factors and their effect on this velocity. From our investigation, it has been found that minimum fluidization velocity is independent of bed height for both spherical and non-spherical particles. Further, it decrease with decreasing particle size and decreases with decreasing bed diameter. Shadow sizing, a non-intrusive imaging and diagnostic technology, was also used to visualize flow fields inside fluidized beds for both spherical and non- spherical particles and to detect the particle sizes.

  19. Single-particle spectral density of a Bose gas in the two-fluid hydrodynamic regime

    SciTech Connect (OSTI)

    Arahata, Emiko; Nikuni, Tetsuro; Griffin, Allan [Department of Physics, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601 (Japan); Department of Physics, University of Toronto, Toronto, Ontario, M5S 1A7 (Canada)

    2011-11-15T23:59:59.000Z

    In Bose superfluids, the single-particle Green's function can be directly related to the superfluid velocity-velocity correlation function in the hydrodynamic regime. An explicit expression for the single-particle spectral density was originally written down by Hohenberg and Martin in 1965, starting from the two-fluid equations for a superfluid. We give a simple derivation of their results. Using these results, we calculate the relative weights of first and second sound modes in the single-particle spectral density as a function of temperature in a uniform Bose gas. We show that the second sound mode makes a dominant contribution to the single-particle spectrum in a relatively high-temperature region. We also discuss the possibility of experimental observation of the second sound mode in a Bose gas by photoemission spectroscopy.

  20. The effect of particle shape on pressure drop in a turbulent gas-solid suspension

    E-Print Network [OSTI]

    Coughran, Mark Thomas

    1984-01-01T23:59:59.000Z

    THE EFFECT OF PARTICLE SHAPE ON PRESSURE DROP IN A TURBULENT GAS-SOLID SUSPENSION A Thesis by MARK THOMAS COUGHRAN Submitted to the Graduate College of Texas A6M University in partial fulfillment of the requirements for the degree of MASTER.... Chan (Member) S. C. Lau (Member) P. Hopkins ead i Depart menr) May 1984 ABSTRACT The Effect of Particle Shape on Pressure Drop in a Turbulent Gas-Solid Suspension. ', (Nay 1984) Mark Thomas Coughran, B. S. , Texas AsM University Chairman...

  1. Particle trap with dielectric barrier for use in gas insulated transmission lines

    DOE Patents [OSTI]

    Dale, Steinar J. (Monroeville, PA)

    1982-01-01T23:59:59.000Z

    A gas-insulated transmission line includes an outer sheath, an inner conductor within the outer sheath, insulating supports supporting the inner conductor within the outer sheath, and an insulating gas electrically insulating the inner conductor from the outer sheath. An apertured particle trapping electrode is disposed within the outer sheath, and the electrode has a pair of dielectric members secured at each longitudinal end thereof, with the dielectric members extending outwardly from the apertured electrode.

  2. Particle trap with dielectric barrier for use in gas insulated transmission lines

    DOE Patents [OSTI]

    Dale, S.J.

    1982-06-15T23:59:59.000Z

    A gas-insulated transmission line includes an outer sheath, an inner conductor within the outer sheath, insulating supports supporting the inner conductor within the outer sheath, and an insulating gas electrically insulating the inner conductor from the outer sheath. An apertured particle trapping electrode is disposed within the outer sheath, and the electrode has a pair of dielectric members secured at each longitudinal end thereof, with the dielectric members extending outwardly from the apertured electrode. 7 figs.

  3. Observation of the spatial growth of self-excited dust-density waves T. M. Flanagan and J. Goree

    E-Print Network [OSTI]

    Goree, John

    Department of Physics and Astronomy, The University of Iowa, Iowa City, Iowa 52242, USA Received 12 October rate increases as gas pressure decreases. At a critical gas pressure, which is observed, a balance are comparatively much longer and easily observed. If a dust particle's Coulomb potential energy is larger than its

  4. Combined Analysis of Two- and Three-Particle Correlations in q,p-Bose Gas Model

    E-Print Network [OSTI]

    Alexandre M. Gavrilik

    2006-11-07T23:59:59.000Z

    q-deformed oscillators and the q-Bose gas model enable effective description of the observed non-Bose type behavior of the intercept ("strength") $\\lambda^{(2)}\\equiv C^{(2)}(K,K)-1$ of two-particle correlation function $C^{(2)}(p_1,p_2)$ of identical pions produced in heavy-ion collisions. Three- and n-particle correlation functions of pions (or kaons) encode more information on the nature of the emitting sources in such experiments. And so, the q-Bose gas model was further developed: the intercepts of n-th order correlators of q-bosons and the n-particle correlation intercepts within the q,p-Bose gas model have been obtained, the result useful for quantum optics, too. Here we present the combined analysis of two- and three-pion correlation intercepts for the q-Bose gas model and its q,p-extension, and confront with empirical data (from CERN SPS and STAR/RHIC) on pion correlations. Similar to explicit dependence of $\\lambda^{(2)}$ on mean momenta of particles (pions, kaons) found earlier, here we explore the peculiar behavior, versus mean momentum, of the 3-particle correlation intercept $\\lambda^{(3)}(K)$. The whole approach implies complete chaoticity of sources, unlike other joint descriptions of two- and three-pion correlations using two phenomenological parameters (e.g., core-halo fraction plus partial coherence of sources).

  5. Dust Filtration by Planet-Induced Gap Edges: Implications for Transitional Disks

    E-Print Network [OSTI]

    Zhu, Zhaohuan; Dong, Ruobing; Espaillat, Catherine; Hartmann, Lee

    2012-01-01T23:59:59.000Z

    By carrying out two-dimensional two-fluid global simulations, we have studied the response of dust to gap formation by a single planet in the gaseous component of a protoplanetary disk - the so-called "dust filtration" mechanism. We have found that a gap opened by a giant planet at 20 AU in a \\alpha=0.01, \\dot{M}=10^{-8} Msun/yr disk can effectively stop dust particles larger than 0.1 mm drifting inwards, leaving a sub-millimeter dust cavity/hole. However, smaller particles are difficult to filter by a planet-induced gap due to 1) dust diffusion, and 2) a high gas accretion velocity at the gap edge. An analytic model is also derived to understand what size particles can be filtered by the gap edge. Finally, with our updated understanding of dust filtration, we have computed Monte-Carlo radiative transfer models with variable dust size distributions to generate the spectral energy distributions (SEDs) of disks with gaps. By comparing with transitional disk observations (e.g. GM Aur), we have found that dust fi...

  6. Two-dimensional imaging of gas-to-particle transition in flames by laser-induced nanoplasmas

    SciTech Connect (OSTI)

    Zhang, Yiyang [Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Thermal Engineering, Tsinghua University, Beijing 100084 (China); Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China); Li, Shuiqing, E-mail: lishuiqing@tsinghua.edu.cn; Ren, Yihua; Yao, Qiang [Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Thermal Engineering, Tsinghua University, Beijing 100084 (China); Law, Chung K. [Center for Combustion Energy, Tsinghua University, Beijing 100084 (China); Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544-5263 (United States)

    2014-01-13T23:59:59.000Z

    Two-dimensional imaging of gas/particle phase transition of metal oxides in their native high-temperature flow conditions, using laser-driven localized nanoplasmas, was obtained by utilizing the gap between the excitation energies of the gas and particle phases such that only the Ti atoms in the particle phase were selectively excited without detectable Bremsstrahlung background. These in situ images of the particle phase Ti distribution allow the quantitative visualization of the transition of the gas precursors to the nanoparticle phase across the flame sheet as well as diffusion of the particle concentration in the post-flame zone.

  7. Deformed Bose gas models aimed at taking into account both compositeness of particles and their interaction

    E-Print Network [OSTI]

    Gavrilik, A M

    2013-01-01T23:59:59.000Z

    We consider the deformed Bose gas model with the deformation structure function that is the combination of a q-deformation and a quadratically polynomial deformation. Such a choice of the unifying deformation structure function enables us to describe the interacting gas of composite (two-fermionic or two-bosonic) bosons. Using the relevant generalization of the Jackson derivative, we derive a two-parametric expression for the total number of particles, from which the deformed virial expansion of the equation of state is obtained. The latter is interpreted as the virial expansion for the effective description of a gas of interacting composite bosons with some interaction potential.

  8. Development and initial evaluation of a dynamic species-resolved model for gas phase chemistry and size-resolved gas//particle

    E-Print Network [OSTI]

    Dabdub, Donald

    condensed products of gas phase oxidation, the present model can be viewed as the most detailed SOA of the semivolatile or nonvolatile products of VOC oxidation between the gas and particle phases. Chem- ical analysis of the SOA identifies many products that condense, thereby allowing formulation of gas phase path- ways

  9. A theoretical study on gas-phase coating of aerosol particles

    SciTech Connect (OSTI)

    Jain, S.; Fotou, G.P.; Kodas, T.T. [Univ. of New Mexico, Albuquerque, MN (United States)] [Univ. of New Mexico, Albuquerque, MN (United States)

    1997-01-01T23:59:59.000Z

    In situ coating of aerosol particles by gas-phase and surface reaction in a flow reactor is modeled accounting for scavenging (capture of small particles by large particles) and simultaneous surface reaction along with the finite sintering rate of the scavenged particles. A log-normal size distribution is assumed for the host and coating particles to describe coagulation and a monodisperse size distribution is used for the coating particles to describe sintering. As an example, coating of titania particles with silica in a continuous flow hot-wall reactor was modeled. High temperatures, low reactant concentrations, and large host particle surface areas favored smoother coatings in the parameter range: temperature 1,700--1,800 K, host particle number concentration 1 {times} 10{sup 5}--1 {times} 10{sup 7} No./cm{sup 3}, average host particle size 1 {micro}m, inlet coating reactant concentration (SiCl{sub 4}) 2 {times} 10{sup {minus}7}--2 {times} 10{sup {minus}10} mol/cm{sup 3}, and various surface reaction rates. The fraction of silica deposited on the TiO{sub 2} particles decreased by more than seven times with a hundredfold increase in SiCl{sub 4} inlet concentration because of the resulted increase in the average SiO{sub 2} particle size under the assumed coating conditions. Increasing the TiO{sub 2} particle number concentration resulted in higher scavenging efficiency of SiO{sub 2}. In the TiO{sub 2}/SiO{sub 2} system it is likely that surface reaction as well as scavenging play important roles in the coating process. The results agree qualitatively with experimental observations of TiO{sub 2} particles coated in situ with silica.

  10. Gas Generation from K East Basin Sludges and Irradiated Metallic Uranium Fuel Particles Series III Testing

    SciTech Connect (OSTI)

    Schmidt, Andrew J.; Delegard, Calvin H.; Bryan, Samuel A.; Elmore, Monte R.; Sell, Rachel L.; Silvers, Kurt L.; Gano, Susan R.; Thornton, Brenda M.

    2003-08-01T23:59:59.000Z

    The path forward for managing of Hanford K Basin sludge calls for it to be packaged, shipped, and stored at T Plant until final processing at a future date. An important consideration for the design and cost of retrieval, transportation, and storage systems is the potential for heat and gas generation through oxidation reactions between uranium metal and water. This report, the third in a series (Series III), describes work performed at the Pacific Northwest National Laboratory (PNNL) to assess corrosion and gas generation from irradiated metallic uranium particles (fuel particles) with and without K Basin sludge addition. The testing described in this report consisted of 12 tests. In 10 of the tests, 4.3 to 26.4 g of fuel particles of selected size distribution were placed into 60- or 800-ml reaction vessels with 0 to 100 g settled sludge. In another test, a single 3.72-g fuel fragment (i.e., 7150-mm particle) was placed in a 60 ml reaction vessel with no added sludge. The twelfth test contained only sludge. The fuel particles were prepared by crushing archived coupons (samples) from an irradiated metallic uranium fuel element. After loading the sludge materials (whether fuel particles, mixtures of fuel particles and sludge, or sludge-only) into reaction vessels, the solids were covered with an excess of K Basin water, the vessels closed and connected to a gas measurement manifold, and the vessels back-flushed with inert neon cover gas. The vessels were then heated to a constant temperature. The gas pressures and temperatures were monitored continuously from the times the vessels were purged. Gas samples were collected at various times during the tests, and the samples analyzed by mass spectrometry. Data on the reaction rates of uranium metal fuel particles with water as a function of temperature and particle size were generated. The data were compared with published studies on metallic uranium corrosion kinetics. The effects of an intimate overlying sludge layer (''blanket'') on the uranium metal corrosion rates were also evaluated.

  11. Experimental and theoretical studies of particle generation afterlaser ablation of copper with background gas at atmosphericpressure

    SciTech Connect (OSTI)

    Wen, Sy-Bor; Mao, Xianglei; Greif, Ralph; Russo, Richard E.

    2007-05-31T23:59:59.000Z

    Laser ablation has proven to be an effective method for generating nanoparticles; particles are produced in the laser induced vapor plume during the cooling stage. To understand the in-situ condensation process, a series of time resolved light scattering images were recorded and analyzed. Significant changes in the condensation rate and the shape of the condensed aerosol plume were observed in two background gases, helium and argon. The primary particle shape and size distribution were measured using a transmission electron microscope (TEM), a scanning electron microscope (SEM) and a differential mobility analyzer (DMA). The gas dynamics simulation included nucleation and coagulation within the vapor plume, heat and mass transfer from the vapor plume to the background gas, and heat transfer to the sample. The experimental data and the calculated evolution of the shape of the vapor plume showed the same trend for the spatial distribution of the condensed particles in both background gases. The simulated particle size distribution also qualitatively agreed with the experimental data. It was determined that the laser energy, the physical properties of the background gas (conductivity, diffusivity and viscosity), and the shape of the ablation system (ablation chamber and the layout of the sample) have strong effects on the condensation process and the subsequent sizes, shapes and degree of aggregation of the particles.

  12. Closures for Course-Grid Simulation of Fluidized Gas-Particle Flows

    SciTech Connect (OSTI)

    Sankaran Sundaresan

    2010-02-14T23:59:59.000Z

    Gas-particle flows in fluidized beds and riser reactors are inherently unstable, and they manifest fluctuations over a wide range of length and time scales. Two-fluid models for such flows reveal unstable modes whose length scale is as small as ten particle diameters. Yet, because of limited computational resources, gas-particle flows in large fluidized beds are invariably simulated by solving discretized versions of the two-fluid model equations over a coarse spatial grid. Such coarse-grid simulations do not resolve the small-scale spatial structures which are known to affect the macroscale flow structures both qualitatively and quantitatively. Thus there is a need to develop filtered two-fluid models which are suitable for coarse-grid simulations and capturing the effect of the small-scale structures through closures in terms of the filtered variables. The overall objective of the project is to develop validated closures for filtered two-fluid models for gas-particle flows, with the transport gasifier as a primary, motivating example. In this project, highly resolved three-dimensional simulations of a kinetic theory based two-fluid model for gas-particle flows have been performed and the statistical information on structures in the 100-1000 particle diameters length scale has been extracted. Based on these results, closures for filtered two-fluid models have been constructed. The filtered model equations and closures have been validated against experimental data and the results obtained in highly resolved simulations of gas-particle flows. The proposed project enables more accurate simulations of not only the transport gasifier, but also many other non-reacting and reacting gas-particle flows in a variety of chemical reactors. The results of this study are in the form of closures which can readily be incorporated into existing multi-phase flow codes such as MFIX (www.mfix.org). Therefore, the benefits of this study can be realized quickly. The training provided by this project has prepared a PhD student to enter research and development careers in DOE laboratories or chemicals/energy-related industries.

  13. The Impact of Dust Evolution and Photoevaporation on Disk Dispersal

    E-Print Network [OSTI]

    Gorti, Uma; Dullemond, Cornelis

    2015-01-01T23:59:59.000Z

    Protoplanetary disks are dispersed by viscous evolution and photoevaporation in a few million years; in the interim small, sub-micron sized dust grains must grow and form planets. The time-varying abundance of small grains in an evolving disk directly affects gas heating by far-ultraviolet photons, while dust evolution affects photoevaporation by changing the disk opacity and resulting penetration of FUV photons in the disk. Photoevaporative flows, in turn, selectively carry small dust grains leaving the larger particles---which decouple from the gas---behind in the disk. We study these effects by investigating the evolution of a disk subject to viscosity, photoevaporation by EUV, FUV and X-rays, dust evolution, and radial drift using a 1-D multi-fluid approach (gas + different dust grain sizes) to solve for the evolving surface density distributions. The 1-D evolution is augmented by 1+1D models constructed at each epoch to obtain the instantaneous disk structure and determine photoevaporation rates. The imp...

  14. Particle trap to sheath contact for a gas-insulated transmission line having a corrugated outer conductor

    DOE Patents [OSTI]

    Fischer, William H. (Pittsburgh, PA); Cookson, Alan H. (Pittsburgh, PA); Yoon, Kue H. (Pittsburgh, PA)

    1984-04-10T23:59:59.000Z

    A particle trap to outer elongated conductor or sheath contact for gas-insulated transmission lines. The particle trap to outer sheath contact of the invention is applicable to gas-insulated transmission lines having either corrugated or non-corrugated outer sheaths. The contact of the invention includes an electrical contact disposed on a lever arm which in turn is rotatably disposed on the particle trap and biased in a direction to maintain contact between the electrical contact and the outer sheath.

  15. Gas accumulation in particle-rich suspensions and implications for bubble populations in crystal-rich magma

    E-Print Network [OSTI]

    Rempel, Alan W.

    Gas accumulation in particle-rich suspensions and implications for bubble populations in crystal Stromboli degassing Gas mobility plays an important role in driving volcanic eruptions and controlling eruption style. The explosivity of an eruption depends, among other factors, on how easily gas can escape

  16. The Transformation of Solid Atmospheric Particles into Liquid Droplets Through Heterogeneous Chemistry: Laboratory Insights into the Processing of Calcium Containing Mineral Dust Aerosol in the Troposphere

    SciTech Connect (OSTI)

    Krueger, Brenda J.; Grassian, Vicki H.; Laskin, Alexander; Cowin, James P.

    2003-02-15T23:59:59.000Z

    [1] Individual calcium carbonate particles reacted with gas- phase nitric acid at 293 K have been followed using Scanning Electron Microscopy (SEM) and Energy Dispersive X-Ray (EDX) analysis as a function of time and relative humidity (RH). The rate of calcium carbonate to calcium nitrate conversion is significantly enhanced in the presence of water vapor. The SEM images clearly show that solid CaCO3 particles are converted to spherical droplets as the reaction proceeds. The process occurs through a two-step mechanism involving the conversion of calcium carbonate into calcium nitrate followed by the deliquescence of the calcium nitrate product. The change in phase of the particles and the significant reactivity of nitric acid and CaCO3 at low RH are a direct result of the deliquescence of the product at low RH. This is the first laboratory study to show the phase transformation of solid particles into liquid droplets through heterogeneous chemistry.

  17. Iron Speciation in Urban Dust

    SciTech Connect (OSTI)

    E Elzinga; Y Gao; J Fitts; R Tappero

    2011-12-31T23:59:59.000Z

    An improved understanding of anthropogenic impacts on ocean fertility requires knowledge of anthropogenic dust mineralogy and associated Fe speciation as a critical step toward developing Fe solubility models constrained by mineralogical composition. This study explored the utility of micro-focused X-ray absorption spectroscopy ({mu}-XAS) in characterizing the speciation of Fe in urban dust samples. A micro-focused beam of 10 x 7 {micro}m made possible the measurement of the Fe K edge XAS spectra of individual dust particles in the PM5.6 size fraction collected in Newark, New Jersey, USA. Spectral analysis indicated the presence of mixtures of Fe-containing minerals within individual dust particles; we observed significant magnetite content along with other Fe(III)-(hydr)oxide minerals which could not be conclusively identified. Our data indicate that detailed quantitative determination of Fe speciation requires extended energy scans to constrain the types and relative abundance of Fe species present. We observe heterogeneity in Fe speciation at the dust particle level, which underscores the importance of analyzing a statistically adequate number of particles within each dust sample. Where possible, {mu}-XAS measurements should be complemented with additional characterization techniques such as {mu}-XRD and bulk XAS to obtain a comprehensive picture of the Fe speciation in dust materials. X-ray microprobes should be used to complement bulk methods used to determine particle composition, methods that fail to record particle heterogeneity.

  18. Herschel Key Program, "Dust, Ice, and Gas In Time" (DIGIT): the origin of molecular and atomic emission in low-mass protostars in Taurus

    E-Print Network [OSTI]

    Lee, Jeong-Eun; Lee, Seokho; Evans, Neal J; Green, Joel D

    2014-01-01T23:59:59.000Z

    Six low-mass embedded sources (L1489, L1551-IRS5, TMR1, TMC1-A, L1527, and TMC1) in Taurus have been observed with Herschel-PACS to cover the full spectrum from 50 to 210 $\\mu$m as part of the Herschel key program, "Dust, Ice, and Gas In Time (DIGIT)". The relatively low intensity of the interstellar radiation field surrounding Taurus minimizes contamination of the [C II] emission associated with the sources by diffuse emission from the cloud surface, allowing study of the [C II] emission from the source. In several sources, the [C II] emission is distributed along the outflow, as is the [O I] emission. The atomic line luminosities correlate well with each other, as do the molecular lines, but the atomic and molecular lines correlate poorly. The relative contribution of CO to the total gas cooling is constant at $\\sim$30 %, while the cooling fraction by H$_2$O varies from source to source, suggesting different shock properties resulting in different photodissociation levels of H$_2$O. The gas with a power-law...

  19. Comparison of the oxidation state of Fe in comet 81P/Wild 2 and chondritic-porous interplanetary dust particles

    SciTech Connect (OSTI)

    Ogliore, Ryan C.; Butterworth, Anna L.; Fakra, Sirine C.; Gainsforth, Zack; Marcus, Matthew A.; Westphal, Andrew J.

    2010-07-16T23:59:59.000Z

    The fragile structure of chondritic-porous interplanetary dust particles (CP-IDPs) and their minimal parent-body alteration have led researchers to believe these particles originate in comets rather than asteroids where aqueous and thermal alterations have occurred. The solar elemental abundances and atmospheric entry speed of CP-IDPs also suggest a cometary origin. With the return of the Stardust samples from Jupiter-family comet 81P/Wild 2, this hypothesis can be tested. We have measured the Fe oxidation state of 15 CP-IDPs and 194 Stardust fragments using a synchrotron-based x-ray microprobe. We analyzed {approx}300 ng of Wild 2 material - three orders of magnitude more material than other analyses comparing Wild 2 and CP-IDPs. The Fe oxidation state of these two samples of material are > 2{sigma} different: the CP-IDPs are more oxidized than the Wild 2 grains. We conclude that comet Wild 2 contains material that formed at a lower oxygen fugacity than the parent-body, or parent bodies, of CP-IDPs. If all Jupiter-family comets are similar, they do not appear to be consistent with the origin of CP-IDPs. However, comets that formed from a different mix of nebular material and are more oxidized than Wild 2 could be the source of CP-IDPs.

  20. Self-consistent three-dimensional model of dust particle transport and formation of Coulomb crystals in plasma processing reactors

    E-Print Network [OSTI]

    Kushner, Mark

    , New Mexico 87185-1423 Mark J. Kushnerc) Department of Electrical and Computer Engineering, University, thermophoresis, gravity and electrical ion drag, electro- static forces. Ion drag forces accelerate particles in the di- rection of the net ion momentum, usually towards bound- aries. Electrostatic forces accelerate

  1. Molecular Hydrogen Emission from Protoplanetary Disks II. Effects of X-ray Irradiation and Dust Evolution

    E-Print Network [OSTI]

    H. Nomura; Y. Aikawa; M. Tsujimoto; Y. Nakagawa; T. J. Millar

    2007-02-01T23:59:59.000Z

    Detailed models for the density and temperature profiles of gas and dust in protoplanetary disks are constructed by taking into account X-ray and ultraviolet (UV) irradiation from a central T Tauri star, as well as dust size growth and settling toward the disk midplane. The spatial and size distributions of dust grains in the disks are numerically computed by solving the coagulation equation for settling dust particles. The level populations and line emission of molecular hydrogen are calculated using the derived physical structure of the disks. X-ray irradiation is the dominant heating source of the gas in the inner disk region and in the surface layer, while the far UV heating dominates otherwise. If the central star has strong X-ray and weak UV radiation, the H2 level populations are controlled by X-ray pumping, and the X-ray induced transition lines could be observable. If the UV irradiation is strong, the level populations are controlled by thermal collisions or UV pumping, depending on the properties of the dust grains in the disks. As the dust particles evolve in the disks, the gas temperature at the disk surface drops because the grain photoelectric heating becomes less efficient, while the UV radiation fields become stronger due to the decrease of grain opacity. This makes the H2 level populations change from local thermodynamic equilibrium (LTE) to non-LTE distributions, which results in changes to the line ratios of H2 emission. Our results suggest that dust evolution in protoplanetary disks could be observable through the H2 line ratios. The emission lines are strong from disks irradiated by strong UV and X-rays and possessing small dust grains; such disks will be good targets in which to observe H2 emission.

  2. Gas Absorption in the KH 15D System: Further Evidence for Dust Settling in the Circumbinary Disk

    E-Print Network [OSTI]

    Lawler, S. M.

    Na I D lines in the spectrum of the young binary KH 15D have been analyzed in detail. We find an excess absorption component that may be attributed to foreground interstellar absorption, and to gas possibly associated with ...

  3. Hybrid particle traps and conditioning procedure for gas insulated transmission lines

    DOE Patents [OSTI]

    Dale, Steinar J. (Monroeville, PA); Cookson, Alan H. (Churchill, PA)

    1982-01-01T23:59:59.000Z

    A gas insulated transmission line includes an outer sheath, an inner condor within the outer sheath, insulating supports supporting the inner conductor within the outer sheath, and an insulating gas electrically insulating the inner conductor from the outer sheath. An apertured particle trapping ring is disposed within the outer sheath, and the trapping ring has a pair of dielectric members secured at each longitudinal end thereof, with the dielectric members extending outwardly from the trapping ring along an arc. A support sheet having an adhesive coating thereon is secured to the trapping ring and disposed on the outer sheath within the low field region formed between the trapping ring and the outer sheath. A conditioning method used to condition the transmission line prior to activation in service comprises applying an AC voltage to the inner conductor in a plurality of voltage-time steps, with the voltage-time steps increasing in voltage magnitude while decreasing in time duration.

  4. Comparison of 13CO Line and Far-Infrared Continuum Emission as a Diagnostic of Dust and Molecular Gas Physical Conditions: II. The Simulations: Testing the Method

    E-Print Network [OSTI]

    W. F. Wall

    2006-01-24T23:59:59.000Z

    The reliability of modeling the far-IR continuum to 13CO J=1-0 spectral line ratios applied to the Orion clouds (Wall 2006) is tested by applying the models to simulated data. The two-component models are found to give the dust-gas temperature difference, $\\DT$, to within 1 or 2$ $K. However, other parameters like the column density per velocity interval and the gas density can be wrong by an order of magnitude or more. In particular, the density can be systematically underestimated by an order of magnitude or more. The overall mass of the clouds is estimated correctly to within a few percent. The one-component models estimate the column density per velocity interval and density within factors of 2 or 3, but their estimates of $\\DT$ can be wrong by 20$ $K. They also underestimate the mass of the clouds by 40-50%. These results may permit us to reliably constrain estimates of the Orion clouds' physical parameters, based on the real observations of the far-IR continuum and 13CO J=1-0 spectral line. Nevertheless, other systematics must be treated first. These include the effects of background/foreground subtraction, effects of the HI component of the ISM, and others. These will be discussed in a future paper (Wall 2006a).

  5. Dust-Plasma Sheath in an Oblique Magnetic Field

    SciTech Connect (OSTI)

    Foroutan, G.; Mehdipour, H. [Physics Department, Faculty of Science, Sahand University of Technology, Tabriz (Iran, Islamic Republic of)

    2008-09-07T23:59:59.000Z

    Using numerical simulations of the multi fluid equations the structure of the magnetized sheath near a plasma boundary is studied in the presence of charged dust particles. The dependence of the electron, ion, and dust densities as well as the electrostatic potential, dust charge, and ion normal velocity, on the magnetic field strength and the edge dust number density is investigated.

  6. Particle trap to sheath non-binding contact for a gas-insulated transmission line having a corrugated outer conductor

    DOE Patents [OSTI]

    Fischer, William H. (Pittsburgh, PA)

    1984-04-24T23:59:59.000Z

    A non-binding particle trap to outer sheath contact for use in gas insulated transmission lines having a corrugated outer conductor. The non-binding feature of the contact according to the teachings of the invention is accomplished by having a lever arm rotatably attached to a particle trap by a pivot support axis disposed parallel to the direction of travel of the inner conductor/insulator/particle trap assembly.

  7. Iron speciation in urban dust

    SciTech Connect (OSTI)

    Elzinga, E.J.; Fitts, J.; Gao, Y.; Tappero, R.

    2011-08-01T23:59:59.000Z

    An improved understanding of anthropogenic impacts on ocean fertility requires knowledge of anthropogenic dust mineralogy and associated Fe speciation as a critical step toward developing Fe solubility models constrained by mineralogical composition. This study explored the utility of micro-focused X-ray absorption spectroscopy ({mu}-XAS) in characterizing the speciation of Fe in urban dust samples. A micro-focused beam of 10 x 7 {mu}m made possible the measurement of the Fe K edge XAS spectra of individual dust particles in the PM5.6 size fraction collected in Newark, New Jersey, USA. Spectral analysis indicated the presence of mixtures of Fe-containing minerals within individual dust particles; we observed significant magnetite content along with other Fe(III)-(hydr)oxide minerals which could not be conclusively identified. Our data indicate that detailed quantitative determination of Fe speciation requires extended energy scans to constrain the types and relative abundance of Fe species present. We observe heterogeneity in Fe speciation at the dust particle level, which underscores the importance of analyzing a statistically adequate number of particles within each dust sample. Where possible, {mu}-XAS measurements should be complemented with additional characterization techniques such as {mu}-XRD and bulk XAS to obtain a comprehensive picture of the Fe speciation in dust materials. X-ray microprobes should be used to complement bulk methods used to determine particle composition, methods that fail to record particle heterogeneity. Keywords - Urban dust; Iron; Speciation; Micro-focused X-ray absorption spectroscopy.

  8. Dust trapping by spiral arms in gravitationally unstable protostellar discs

    E-Print Network [OSTI]

    Dipierro, Giovanni; Lodato, Giuseppe; Testi, Leonardo

    2015-01-01T23:59:59.000Z

    In this paper we discuss the influence of gravitational instabilities in massive protostellar discs on the dynamics of dust grains. Starting from a Smoothed Particle Hydrodynamics (SPH) simulation, we have computed the evolution of the dust in a quasi-static gas density structure typical of self-gravitating disc. For different grain size distributions we have investigated the capability of spiral arms to trap particles. We have run 3D radiative transfer simulations in order to construct maps of the expected emission at (sub-)millimetre and near-infrared wavelengths. Finally, we have simulated realistic observations of our disc models at (sub-)millimetre and near-infrared wavelengths as they may appear with the Atacama Large Millimetre/sub-millimetre Array (ALMA) and the High-Contrast Coronographic Imager for Adaptive Optics (HiCIAO) in order to investigate whether there are observational signatures of the spiral structure. We find that the pressure inhomogeites induced by gravitational instabilities produce a...

  9. Dust Formation in Milky Way-like Galaxies

    E-Print Network [OSTI]

    McKinnon, Ryan; Vogelsberger, Mark

    2015-01-01T23:59:59.000Z

    We introduce a dust model for cosmological simulations implemented in the moving-mesh code AREPO and present a suite of cosmological hydrodynamical zoom-in simulations to study dust formation within galactic haloes. Our model accounts for the stellar production of dust, accretion of gas-phase metals onto existing grains, destruction of dust through local supernova activity, and dust driven by winds from star-forming regions. We find that accurate stellar and active galactic nuclei feedback is needed to reproduce the observed dust-metallicity relation and that dust growth largely dominates dust destruction. Our simulations predict a dust content of the interstellar medium which is consistent with observed scaling relations at $z = 0$, including scalings between dust-to-gas ratio and metallicity, dust mass and gas mass, dust-to-gas ratio and stellar mass, and dust-to-stellar mass ratio and gas fraction. We find that roughly two-thirds of dust at $z = 0$ originated from Type II supernovae, with the contribution ...

  10. An efficient particle Fokker–Planck algorithm for rarefied gas flows

    SciTech Connect (OSTI)

    Gorji, M. Hossein; Jenny, Patrick

    2014-04-01T23:59:59.000Z

    This paper is devoted to the algorithmic improvement and careful analysis of the Fokker–Planck kinetic model derived by Jenny et al. [1] and Gorji et al. [2]. The motivation behind the Fokker–Planck based particle methods is to gain efficiency in low Knudsen rarefied gas flow simulations, where conventional direct simulation Monte Carlo (DSMC) becomes expensive. This can be achieved due to the fact that the resulting model equations are continuous stochastic differential equations in velocity space. Accordingly, the computational particles evolve along independent stochastic paths and thus no collision needs to be calculated. Therefore the computational cost of the solution algorithm becomes independent of the Knudsen number. In the present study, different computational improvements were persuaded in order to augment the method, including an accurate time integration scheme, local time stepping and noise reduction. For assessment of the performance, gas flow around a cylinder and lid driven cavity flow were studied. Convergence rates, accuracy and computational costs were compared with respect to DSMC for a range of Knudsen numbers (from hydrodynamic regime up to above one). In all the considered cases, the model together with the proposed scheme give rise to very efficient yet accurate solution algorithms.

  11. COARSE-GRID SIMULATION OF REACTING AND NON-REACTING GAS-PARTICLE FLOWS

    SciTech Connect (OSTI)

    Sankaran Sundaresan

    2004-03-01T23:59:59.000Z

    The principal goal of this project, funded under the ''DOE Vision 21 Virtual Demonstration Initiative'' is virtual demonstration of circulating fluidized bed performance. We had proposed a ''virtual demonstration tool'', which is based on the open-domain CFD code MFIX. The principal challenge funded through this grant is to devise and implement in this CFD code sound physical models for the rheological characteristics of the gas-particle mixtures. Within the past year, which was the third year of the project, we have made the following specific advances. (a) We have completed a study of the impact of sub-grid models of different levels of detail on the results obtained in coarse-grid simulations of gas-particle flow. (b) We have also completed a study of a model problem to understand the effect of wall friction, which was proved in our earlier work to be very important for stable operation of standpipes in a circulating fluidized bed circuit. These are described in a greater detail in this report.

  12. Radiative Effects of Dust Aerosols, Natural Cirrus Clouds and Contrails: Broadband Optical Properties and Sensitivity Studies

    E-Print Network [OSTI]

    Yi, Bingqi

    2013-07-09T23:59:59.000Z

    This dissertation aims to study the broadband optical properties and radiative effects of dust aerosols and ice clouds. It covers three main topics: the uncertainty of dust optical properties and radiative effects from the dust particle shape...

  13. Radiative Effects of Dust Aerosols, Natural Cirrus Clouds and Contrails: Broadband Optical Properties and Sensitivity Studies 

    E-Print Network [OSTI]

    Yi, Bingqi

    2013-07-09T23:59:59.000Z

    This dissertation aims to study the broadband optical properties and radiative effects of dust aerosols and ice clouds. It covers three main topics: the uncertainty of dust optical properties and radiative effects from the dust particle shape...

  14. DEVELOPMENT OF A NEW HIGH TEMPERATURE GAS RECEIVER UTILIZING SMALL PARTICLES

    E-Print Network [OSTI]

    Hunt, Arlon J.

    2012-01-01T23:59:59.000Z

    for powering a gas turbine or to supply industrial processin conjunetion with a gas turbine system providing severalincluding heating a gas to operate a turbine (4), providing

  15. Residual dust charges in discharge afterglow

    SciTech Connect (OSTI)

    Coueedel, L.; Mikikian, M.; Boufendi, L.; Samarian, A. A. [GREMI - Groupe de Recherches sur l'Energetique des Milieux Ionises, CNRS/Universite d'Orleans, 14 rue d'Issoudun, 45067 Orleans Cedex 2 (France); School of Physics A28, University of Sydney, NSW 2006 (Australia)

    2006-08-15T23:59:59.000Z

    An on-ground measurement of dust-particle residual charges in the afterglow of a dusty plasma was performed in a rf discharge. An upward thermophoretic force was used to balance the gravitational force. It was found that positively charged, negatively charged, and neutral dust particles coexisted for more than 1 min after the discharge was switched off. The mean residual charge for 200-nm-radius particles was measured. The dust particle mean charge is about -5e at a pressure of 1.2 mbar and about -3e at a pressure of 0.4 mbar.

  16. Dust takes detour on ice-cloud journey | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dust takes detour on ice-cloud journey Dust takes detour on ice-cloud journey Pollution-coated particles bypass ice formation, but influence clouds Cirrus clouds are composed of...

  17. Dust collector

    SciTech Connect (OSTI)

    Lynch, G.; Mc Lukie, P.; Mark, D.; Vincent, J.H.

    1987-06-23T23:59:59.000Z

    This patent describes a personal dust sampler comprising: a sampler body having an entry aperture exposed to ambient air and an air exit sealably attachable to pump means; a removable filter cassette mounted with the body; means for removably holding cassette in position; the filter cassette having an internal filter and comprises an entry for air which may be contaminated with dust; the entry having a cylindrical upstanding wall open to the air at one end and communicating with a first side of the internal filter at the other end; a cassette air exit communicating with the other side of the internal filter and sealably connecting with the air exit of the sampler body; the cylindrical upstanding wall of the cassette air entry protruding through the entry aperture to form a lip cooperating with the sampler body to provide an aspiration efficiency with respect to dust of approximately unity.

  18. Astrophysics of Dust in Cold Clouds

    E-Print Network [OSTI]

    B. T. Draine

    2003-04-28T23:59:59.000Z

    Nine lectures reviewing the astrophysics of dust in interstellar clouds. Topics include: (1) Summary of observational evidence concerning interstellar dust: broadband extinction, scattering of starlight, polarization of starlight, spectroscopy of dust, IR and FIR emission, and depletions of grain-forming elements. (2) Optics of interstellar dust grains: dielectric functions of nonconducting and conducting materials, calculational techniques, formulae valid in the Rayleigh limit, Kramers-Kronig relations, microwave emission mechanisms, and X-ray scattering. (3) IR and FIR emission: heating of interstellar dust, including single-photon heating, and resulting IR emission spectrum. (4) Charging of dust grains: collisional charging, photoelectric emission, and resulting charge distribution functions. (5) Dynamics: gas drag, Lorentz force, forces due to anisotropic radiation, and resulting drift velocities. (6) Rotational dynamics: brownian rotation, suprathermal rotation, and effects of starlight torques. (7) Alignment of interstellar dust: observations and theories. (8) Evolution of the grain population: dust formation in outflows, grain growth in the ISM, photodesorption, and grain destruction in shock waves. (9) Effects of dust grains: photoelectric heating, H2 formation, ion recombination, coupling of gas to magnetic fields, and dust grains as indicators of magnetic field direction.

  19. NEBULAR FORMATION OF FAYALITIC OLIVINE: INEFFECTIVENESS OF DUST ENRICHMENT. A. V. Fedkin1

    E-Print Network [OSTI]

    Grossman, Lawrence

    NEBULAR FORMATION OF FAYALITIC OLIVINE: INEFFECTIVENESS OF DUST ENRICHMENT. A. V. Fedkin1 and L temperature, and thus in a nebular region more oxidized than solar gas, pre- sumably due to enrichment in dust of regions enriched in dust relative to its complementary gas yields systems more oxidizing than a solar gas

  20. anhydrous interplanetary dust: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    J. A. M. McDonnell; Kalle Bunte; Hakan Svedhem; Gerhard Drolshagen 2006-09-13 3 Fractal Signatures in Analogs of Interplanetary Dust Particles CERN Preprints Summary:...

  1. aeolian dust experiment: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    core relative to ambient, facilitating dust lifting by reducing the threshold wind speed for particle elevation. Finally, radial velocity profiles constructed from our...

  2. Gas flow driven by thermal creep in dusty plasma

    SciTech Connect (OSTI)

    Flanagan, T. M.; Goree, J. [Department of Physics and Astronomy, University of Iowa, Iowa City, Iowa 52242 (United States)

    2009-10-15T23:59:59.000Z

    Thermal creep flow (TCF) is a flow of gas driven by a temperature gradient along a solid boundary. Here, TCF is demonstrated experimentally in a dusty plasma. Stripes on a glass box are heated by laser beam absorption, leading to both TCF and a thermophoretic force. The design of the experiment allows isolating the effect of TCF. A stirring motion of the dust particle suspension is observed. By eliminating all other explanations for this motion, we conclude that TCF at the boundary couples by drag to the bulk gas, causing the bulk gas to flow, thereby stirring the suspension of dust particles. This result provides an experimental verification, for the field of fluid mechanics, that TCF in the slip-flow regime causes steady-state gas flow in a confined volume.

  3. Apparatus to collect, classify, concentrate, and characterize gas-borne particles

    DOE Patents [OSTI]

    Rader, Daniel J.; Torczynski, John R.; Wally, Karl; Brockmann, John E.

    2003-12-16T23:59:59.000Z

    An aerosol lab-on-a-chip (ALOC) integrates one or more of a variety of particle collection, classification, concentration (enrichment), an characterization processes onto a single substrate or layered stack of such substrates. By mounting a UV laser diode laser light source on the substrate, or substrates tack, so that it is located down-stream of the sample inlet port and at right angle the sample particle stream, the UV light source can illuminate individual particles in the stream to induce a fluorescence response in those particles having a fluorescent signature such as biological particles, some of said particles. An illuminated particle having a fluorescent signal above a threshold signal would trigger a sorter module that would separate that particle from the particle stream.

  4. Glass Frit Clumping And Dusting

    SciTech Connect (OSTI)

    Steimke, J. L.

    2013-09-26T23:59:59.000Z

    DWPF mixes a slurry of glass frit (Frit 418) and dilute (1.5 wt%) formic acid solution with high level waste in the Slurry Mix Evaporator (SME). There would be advantages to introducing the frit in a non-slurry form to minimize water addition to the SME, however, adding completely dry frit has the potential to generate dust which could clog filters or condensers. Prior testing with another type of frit, Frit 320, and using a minimal amount of water reduced dust generation, however, the formation of hard clumps was observed. To examine options and behavior, a TTQAP [McCabe and Stone, 2013] was written to initiate tests that would address these concerns. Tests were conducted with four types of glass frit; Frit 320, DWPF Frit 418, Bekeson Frit 418 and Multi-Aspirator Frit 418. The last two frits are chemically identical to DWPF Frit 418 but smaller particles were removed by the respective vendors. Test results on Frit Clumping and Dusting are provided in this report. This report addresses the following seven questions. Short answers are provided below with more detailed answers to follow. 1. Will the addition of a small amount of water, 1.5 wt%, to dry DWPF Frit 418 greatly reduce the dust generation during handling at DWPF? a. Yes, a small scale test showed that adding a little water to the frit greatly reduced dust generation during handling. 2. Will the addition of small amounts of water to the frit cause clumping that will impair frit handling at DWPF? a. No, not with Frit 418. Although clumps were observed to form when 1.5 wt% water was mixed with DWPF Frit 418, then compressed and air-dried overnight, the clumps were easily crushed and did not form the hardened material noted when Frit 320 was tested. 3. What is the measured size distribution of dust generated when dry frit is handled? (This affects the feasibility and choice of processing equipment for removing the dust generating fraction of the frit before it is added to the SME.) a. The size distribution for the dust removed from fresh DWPF Frit 418 while it was being shaken in a small scale LabRAM test was measured. The median size on a volume basis was 7.6 ?m and 90% of the frit particles were between 1.6 and 28 ?m. The mass of dust collected using this test protocol was much less than 1% of the original frit. 4. Can the dust be removed in a small number of processing steps and without the larger frit particles continuing to spall additional dust sized particles? a. Test results using a LabRAM were inconclusive. The LaRAM performs less efficient particle size separation than the equipment used by Bekeson and Multi-Aspirator. 5. What particle size of frit is expected to create a dust problem? a. The original criterion for creating a dusting problem was those particle sizes that were readily suspended when being shaken. For that criterion calculations and Microtrac size analyses indicated that particles smaller than 37 ?m are likely dust generators. Subsequently a more sophisticated criterion for dust problem was considered, particle sizes that would become suspended in the air flow patterns inside the SME and possibly plug the condenser. That size may be larger than 37 ?m but has not yet been determined. 6. If particles smaller than 37 ?m are removed will bulk dust generation be eliminated? a. Video-taped tests were performed using three gallons each of three types of frit 418, DWPF frit, Bekeson frit and Multi-Aspirator frit. Frit was poured through air from a height of approximately eight feet into a container half filled with water. Pouring Bekeson frit or Multi-Aspirator frit generated markedly less visible dust, but there was still a significant amount, which still has the potential of causing a dust problem. 7. Can completely dry frit be poured into the SME without having dust plug the condenser at the top of the vessel? a. Because of the complexity of air currents inside the SME and the difficulty of defensible size scaling a more prototypical test will be required to answer this question. We recommend construction of a full scale

  5. Flow Mapping in a Gas-Solid Riser via Computer Automated Radioactive Particle Tracking (CARPT)

    SciTech Connect (OSTI)

    Muthanna Al-Dahhan; Milorad P. Dudukovic; Satish Bhusarapu; Timothy J. O'hern; Steven Trujillo; Michael R. Prairie

    2005-06-04T23:59:59.000Z

    Statement of the Problem: Developing and disseminating a general and experimentally validated model for turbulent multiphase fluid dynamics suitable for engineering design purposes in industrial scale applications of riser reactors and pneumatic conveying, require collecting reliable data on solids trajectories, velocities ? averaged and instantaneous, solids holdup distribution and solids fluxes in the riser as a function of operating conditions. Such data are currently not available on the same system. Multiphase Fluid Dynamics Research Consortium (MFDRC) was established to address these issues on a chosen example of circulating fluidized bed (CFB) reactor, which is widely used in petroleum and chemical industry including coal combustion. This project addresses the problem of lacking reliable data to advance CFB technology. Project Objectives: The objective of this project is to advance the understanding of the solids flow pattern and mixing in a well-developed flow region of a gas-solid riser, operated at different gas flow rates and solids loading using the state-of-the-art non-intrusive measurements. This work creates an insight and reliable database for local solids fluid-dynamic quantities in a pilot-plant scale CFB, which can then be used to validate/develop phenomenological models for the riser. This study also attempts to provide benchmark data for validation of Computational Fluid Dynamic (CFD) codes and their current closures. Technical Approach: Non-Invasive Computer Automated Radioactive Particle Tracking (CARPT) technique provides complete Eulerian solids flow field (time average velocity map and various turbulence parameters such as the Reynolds stresses, turbulent kinetic energy, and eddy diffusivities). It also gives directly the Lagrangian information of solids flow and yields the true solids residence time distribution (RTD). Another radiation based technique, Computed Tomography (CT) yields detailed time averaged local holdup profiles at various planes. Together, these two techniques can provide the needed local solids flow dynamic information for the same setup under identical operating conditions, and the data obtained can be used as a benchmark for development, and refinement of the appropriate riser models. For the above reasons these two techniques were implemented in this study on a fully developed section of the riser. To derive the global mixing information in the riser, accurate solids RTD is needed and was obtained by monitoring the entry and exit of a single radioactive tracer. Other global parameters such as Cycle Time Distribution (CTD), overall solids holdup in the riser, solids recycle percentage at the bottom section of the riser were evaluated from different solids travel time distributions. Besides, to measure accurately and in-situ the overall solids mass flux, a novel method was applied.

  6. Dust filtration at gap edges: Implications for the spectral energy distributions of discs with embedded planets

    E-Print Network [OSTI]

    W. K. M. Rice; Philip J. Armitage; Kenneth Wood; Giuseppe Lodato

    2006-09-29T23:59:59.000Z

    The spectral energy distributions (SEDs) of some T Tauri stars display a deficit of near-IR flux that could be a consequence of an embedded Jupiter-mass planet partially clearing an inner hole in the circumstellar disc. Here, we use two-dimensional numerical simulations of the planet-disc interaction, in concert with simple models for the dust dynamics, to quantify how a planet influences the dust at different radii within the disc. We show that pressure gradients at the outer edge of the gap cleared by the planet act as a filter - letting particles smaller than a critical size through to the inner disc while holding back larger particles in the outer disc. The critical particle size depends upon the disc properties, but is typically of the order of 10 microns. This filtration process will lead to discontinuous grain populations across the planet's orbital radius, with small grains in the inner disc and an outer population of larger grains. We show that this type of dust population is qualitatively consistent with SED modelling of systems that have optically thin inner holes in their circumstellar discs. This process can also produce a very large gas-to-dust ratio in the inner disc, potentially explaining those systems with optically thin inner cavities that still have relatively high accretion rates.

  7. Effects of thermal radiation heat transfer on flame acceleration and transition to detonation in dust cloud flames: Origins of dust explosion

    E-Print Network [OSTI]

    Ivanov, Michael A Liberman M F

    2015-01-01T23:59:59.000Z

    We examines regimes of the hydrogen flames propagation and ignition of mixtures heated by the radiation emitted from the flame. The gaseous phase is assumed to be transparent for radiation, while the suspended particles of the dust cloud ahead of the flame absorb and reemit the radiation. The radiant heat absorbed by the particles is then lost by conduction to the surrounding unreacted gaseous phase so that the gas phase temperature lags that of the particles. The direct numerical simulations solve the full system of two phase gas dynamic time-dependent equations with a detailed chemical kinetics for a plane flames propagating through a dust cloud. Depending on the spatial distribution of the dispersed particles and on the value of radiation absorption length the consequence of the radiative preheating of the unreacted mixture can be either the increase of the flame velocity for uniformly dispersed particles or ignition deflagration or detonation ahead of the flame via the Zel'dovich gradient mechanism in the...

  8. An improved multiscale model for dilute turbulent gas particle flows based on the equilibration of energy concept

    SciTech Connect (OSTI)

    Xu, Ying

    2005-05-01T23:59:59.000Z

    Many particle-laden flows in engineering applications involve turbulent gas flows. Modeling multiphase turbulent flows is an important research topic with applications in fluidized beds and particle conveying. A predictive multiphase turbulence model can help CFD codes to be more useful for engineering applications, such as the scale-up in the design of circulating fluidized combustor and coal gasifications. In engineering applications, the particle volume fraction can vary from dilute (<10{sup -4}) to dense ({approx} 50%). It is reasonable to expect that multiphase turbulence models should at least satisfy some basic modeling and performance criteria and give reasonable predictions for the canonical problems in dilute particle-laden turbulent flows. In this research, a comparative assessment of predictions from Simonin and Ahmadi's turbulence models is performed with direct numerical simulation (DNS) for two canonical problems in particle-laden turbulent flows. Based on the comparative assessment, some criteria and the areas for model improvement are identified: (1) model for interphase TKE transfer, especially the time scale of interphase TKE transfer, and (2) correct prediction of TKE evolution with variation of particle Stokes number. Some deficiencies that are identified in the Simonin and Ahmadi models, limit the applicability. A new multiphase turbulence model, the Equilibration of Energy Model (EEM), is proposed in this work. In EEM, a multiscale interaction time scale is proposed to account for the interaction of a particle with a range of eddy sizes. EEM shows good agreement with the DNS results for particle-laden isotropic turbulence. For particle-laden homogeneous shear flows, model predictions from EEM can be further improved if the dissipation rate in fluid phase is modeled with more accuracy.

  9. Mars Exploration Rover (MER) Panoramic Camera (Pancam) Twilight Image Analysis for Determination of Planetary Boundary Layer and Dust Particle Size Parameters

    E-Print Network [OSTI]

    Grounds, Stephanie Beth

    2012-02-14T23:59:59.000Z

    to take surface-based measurements to offer support for dust and boundary layer measurements made from remote sensors (Lemmon et al., 2004a). Mars has different atmospheric characteristics from those on Earth. For example, the solar constant for Mars... is approximately 44% of the value for Earth (varying by approximately 20%), and the temperature ranges on Mars (- 125?C to +25?C) slightly ____________ This thesis follows the style of the Journal of Geophysical Research. 2 overlap those on Earth (- 80?C...

  10. Dust Studies in DIII-D and TEXTOR

    SciTech Connect (OSTI)

    Rudakov, D L; Litnovsky, A; West, W P; Yu, J H; Boedo, J A; Bray, B D; Brezinsek, S; Brooks, N H; Fenstermacher, M E; Groth, M; Hollmann, E M; Huber, A; Hyatt, A W; Krasheninnikov, S I; Lasnier, C J; Moyer, R A; Pigarov, A Y; Philipps, V; Pospieszczyk, A; Smirnov, R D; Sharpe, J P; Solomon, W M; Watkins, J G; Wong, C C

    2009-02-17T23:59:59.000Z

    Studies of naturally occurring and artificially introduced carbon dust are conducted in DIII-D and TEXTOR. In DIII-D, dust does not present operational concerns except immediately after entry vents. Submicron sized dust is routinely observed using Mie scattering from a Nd:Yag laser. The source is strongly correlated with the presence of Type I edge localized modes (ELMs). Larger size (0.005-1 mm diameter) dust is observed by optical imaging, showing elevated dust levels after entry vents. Inverse dependence of the dust velocity on the inferred dust size is found from the imaging data. Direct heating of the dust particles by the neutral beam injection (NBI) and acceleration of dust particles by the plasma flows are observed. Energetic plasma disruptions produce significant amounts of dust. Large flakes or debris falling into the plasma may result in a disruption. Migration of pre-characterized carbon dust is studied in DIII-D and TEXTOR by introducing micron-size dust in plasma discharges. In DIII-D, a sample holder filled with {approx}30 mg of dust is introduced in the lower divertor and exposed to high-power ELMing H-mode discharges with strike points swept across the divertor floor. After a brief exposure ({approx}0.1 s) at the outer strike point, part of the dust is injected into the plasma, raising the core carbon density by a factor of 2-3 and resulting in a twofold increase of the radiated power. In TEXTOR, instrumented dust holders with 1-45 mg of dust are exposed in the scrape-off layer 0-2 cm radially outside of the last closed flux surface in discharges heated with neutral beam injection (NBI) power of 1.4 MW. At the given configuration of the launch, the dust did not penetrate the core plasma and only moderately perturbed the edge plasma, as evidenced by an increase of the edge carbon content.

  11. Development of Improved Models and Designs for Coated-Particle Gas Reactor Fuels -- Final Report under the International Nuclear Energy Research Initiative (I-NERI)

    SciTech Connect (OSTI)

    David Petti; Philippe Martin; Mayeul Phélip; Ronald Ballinger; Petti does not have NT account

    2004-12-01T23:59:59.000Z

    The objective of this INERI project was to develop improved fuel behavior models for gas reactor coated-particle fuels and to explore improved coated-particle fuel designs that could be used reliably at very high burnups and potentially in gas-cooled fast reactors. Project participants included the Idaho National Engineering Laboratory (INEEL), Centre Étude Atomique (CEA), and the Massachusetts Institute of Technology (MIT). To accomplish the project objectives, work was organized into five tasks.

  12. Measurements of ultrafine particles from a gas-turbine burning biofuels

    SciTech Connect (OSTI)

    Allouis, C.; Beretta, F.; Minutolo, P.; Pagliara, R. [Istituto di Ricerche sulla Combustione, CNR, Piazzale V. Tecchio, 80, 80125 Napoli (Italy); Sirignano, M.; Sgro, L.A.; D'Anna, A. [Dipartimento di Ingegneria Chimica, Universita di Napoli Federico II, Piazzale V. Tecchio, 80, 80125 Napoli (Italy)

    2010-04-15T23:59:59.000Z

    Measurements of ultrafine particles have been performed at the exhaust of a low emission microturbine for power generation. This device has been fuelled with liquid fuels, including a commercial diesel oil, a mixture of the diesel oil with a biodiesel and kerosene, and tested under different loads. Primarily attention has been focused on the measurements of the size distribution functions of the particles emitted from the system by using particle differential mobility analysis. A bimodal size distribution function of the particle emitted has been found in all the examined conditions. Burning diesel oil, the first mode of the size distribution function of the combustion-formed particles is centered at around 2-3 nm, whereas the second mode is centered at about 20-30 nm. The increase of the turbine load and the addition of 50% of biodiesel has not caused changes in the shape of size distribution of the particles. A slightly decrease of the amount of particle formed has been found. By using kerosene the amount of emitted particles increases of more than one order of magnitude. Also the shape of the size distribution function changes with the first mode shifted towards larger particles of the order of 8-10 nm but with a lower emission of larger 20-30 nm particles. Overall, in this conditions, the mass concentration of particles is increased respect to the diesel oil operation. Particle sizes measured with the diesel oil have been compared with the results on a diesel engine operated in the same power conditions and with the same fuel. Measurements have showed that the mean sizes of the formed particles do not change in the two combustion systems. However, diesel engine emits a number concentration of particles more than two orders of magnitude higher in the same conditions of power and with the same fuel. By running the engine in more premixed-like conditions, the size distribution function of the particles approaches that measured by burning kerosene in the microturbine indicating that the distribution function of the sizes of the emitted particles can be strongly affected by combustion conditions. (author)

  13. Development of submicron particle size classification and collection techniques for nuclear facility off-gas streams. [Diffusion battery and electrofluidized bed

    SciTech Connect (OSTI)

    Hohorst, F.A.; Fernandez, S.J.

    1981-02-01T23:59:59.000Z

    High efficiency particulate air (HEPA) filters are an essential part of nuclear facility off-gas cleanup systems. However, HEPA-rated sampling filters are not the most appropriate samplers for the particle penetrating off-gas cleanup systems. Previous work at the Idaho Chemical Processing Plant (ICPP) estimated perhaps 5% of the radioactivity that challenged sampling filters penetrated them in the form of submicron particles - typically less than 0.2 microns. Accordingly, to evaluate these penetrating aerosols more fully, a suitable robust monitoring system for size differentiation and measurement of submicron particles was developed. A literature survey revealed that the diffusion battery was the best choice for particle size classification and that the electrofluidized bed was the best method for particle collection in ICPP off-gas streams. This report describes the laboratory study and in-plant demonstration of these two techniques.

  14. Effect of Synthesis Condition and Annealing on the Sensitivity and Stability of Gas Sensors Made of Zn-Doped y-Fe2O3 Particles 

    E-Print Network [OSTI]

    Kim, Taeyang

    2010-10-12T23:59:59.000Z

    In this study, the effect of synthesis conditions and annealing process on the sensitivity and stability of gas sensors made of flame-synthesized Zn-doped ?-Fe2O3 particles was investigated. Zn-doped ?-Fe2O3 particles were synthesized by flame...

  15. Effect of Synthesis Condition and Annealing on the Sensitivity and Stability of Gas Sensors Made of Zn-Doped y-Fe2O3 Particles

    E-Print Network [OSTI]

    Kim, Taeyang

    2010-10-12T23:59:59.000Z

    In this study, the effect of synthesis conditions and annealing process on the sensitivity and stability of gas sensors made of flame-synthesized Zn-doped ?-Fe2O3 particles was investigated. Zn-doped ?-Fe2O3 particles were synthesized by flame...

  16. Molecular Hydrogen Emission from Protoplanetary Disks II. Effects of X-ray Irradiation and Dust Evolution

    E-Print Network [OSTI]

    Nomura, H; Tsujimoto, M; Nakagawa, Y; Millar, T J

    2007-01-01T23:59:59.000Z

    Detailed models for the density and temperature profiles of gas and dust in protoplanetary disks are constructed by taking into account X-ray and ultraviolet (UV) irradiation from a central T Tauri star, as well as dust size growth and settling toward the disk midplane. The spatial and size distributions of dust grains in the disks are numerically computed by solving the coagulation equation for settling dust particles. The level populations and line emission of molecular hydrogen are calculated using the derived physical structure of the disks. X-ray irradiation is the dominant heating source of the gas in the inner disk region and in the surface layer, while the far UV heating dominates otherwise. If the central star has strong X-ray and weak UV radiation, the H2 level populations are controlled by X-ray pumping, and the X-ray induced transition lines could be observable. If the UV irradiation is strong, the level populations are controlled by thermal collisions or UV pumping, depending on the properties of...

  17. GRAIN SORTING IN COMETARY DUST FROM THE OUTER SOLAR NEBULA

    SciTech Connect (OSTI)

    Wozniakiewicz, P. J.; Bradley, J. P.; Ishii, H. A. [Institute of Geophysics and Planetary Physics, Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Brownlee, D. E. [Department of Astronomy, University of Washington, Seattle, WA (United States); Kearsley, A. T. [Department of Mineralogy, Natural History Museum, London SW7 5BD (United Kingdom); Burchell, M. J.; Price, M. C., E-mail: P.Wozniakiewicz@kent.ac.uk [School of Physical Sciences, University of Kent, Canterbury, Kent CT2 7NH (United Kingdom)

    2012-12-01T23:59:59.000Z

    Most young stars are surrounded by a disk of gas and dust. Close to the hot stars, amorphous dust grains from the parent molecular cloud are reprocessed into crystals that are then distributed throughout the accretion disk. In some disks, there is a reduction in crystalline grain size with heliocentric distance from the star. We investigated crystalline grain size distributions in chondritic porous (CP) interplanetary dust particles (IDPs) believed to be from small, icy bodies that accreted in outer regions of the solar nebula. The grains are Mg-rich silicates and Fe-rich sulfides, the two most abundant minerals in CP IDPs. We find that they are predominantly <0.25 {mu}m in radius with a mean grain size that varies from one CP IDP to another. We report a size-density relationship between the silicates and sulfides. A similar size-density relationship between much larger silicate and sulfide grains in meteorites from the asteroid belt is ascribed to aerodynamic sorting. Since the silicate and sulfide grains in CP IDPs are theoretically too small for aerodynamic sorting, their size-density relationship may be due to another process capable of sorting small grains.

  18. Studies on hydrogen plasma and dust charging in low-pressure filament discharge

    SciTech Connect (OSTI)

    Kakati, B., E-mail: bharatkakati15@gmail.com; Kalita, D.; Kausik, S. S.; Saikia, B. K. [Centre of Plasma Physics, Institute for Plasma Research, Nazirakhat, Sonapur 782 402, Kamrup, Assam (India); Bandyopadhyay, M. [ITER-India, Institute for Plasma Research, Bhat, Gandhinagar 382 428 (India)

    2014-08-15T23:59:59.000Z

    The effect of working gas pressure and dust charging on electron energy probability function has been studied for hydrogen plasma in a multi-dipole dusty plasma device. A cylindrical Langmuir probe is used to evaluate the plasma parameters and electron energy probability function (EEPF) for different working pressures. For lower energy range (below 10?eV), the EEPF follows a bi-Maxwellian shape at very low pressure (6 × 10{sup ?5}?mbar), while elevating the working pressure up to ?2 × 10{sup ?3} mbar, the shape of the EEPF transforms into a single Maxwellian. Some dip structures are observed at high energy range (??>?10?eV) in the EEPF of hydrogen plasma at all the working conditions. In presence of dust particles, it is observed that the shape of the EEPF changes due to the redistribution of the high and low-energy electron populations. Finally, the effect of working pressure on charge accumulation on dust particles is studied with the help of a Faraday cup and electrometer. From the observations, a strong influence of working pressure on plasma parameters, EEPF and dust charging is observed.

  19. DEVELOPMENT OF A NEW HIGH TEMPERATURE GAS RECEIVER UTILIZING SMALL PARTICLES

    E-Print Network [OSTI]

    Hunt, Arlon J.

    2012-01-01T23:59:59.000Z

    Symposium on Solar Thermal Power and Energy Systems,solar to thermal conversion is accomplished by a dispersion of ultra~fine partlcles suspended in a gas to absorb radlant energy

  20. Solar wind driven dust acoustic instability with Lorentzian kappa distribution

    SciTech Connect (OSTI)

    Arshad, Kashif [National Center for Physics (NCP), Quaid-i-Azam University Campus, Shahdra Valley Road, Islamabad 44000 (Pakistan) [National Center for Physics (NCP), Quaid-i-Azam University Campus, Shahdra Valley Road, Islamabad 44000 (Pakistan); Pakistan Institute of Engineering and Applied Sciences, P.O. Nilore, Islamabad and University of Wah, Wah Cantt 47040 (Pakistan); Ehsan, Zahida, E-mail: Ehsan.zahida@gmail.com [National Center for Physics (NCP), Quaid-i-Azam University Campus, Shahdra Valley Road, Islamabad 44000 (Pakistan) [National Center for Physics (NCP), Quaid-i-Azam University Campus, Shahdra Valley Road, Islamabad 44000 (Pakistan); Universita degli Studi del Molise, 86090 Pesche - IS (Italy); INFN Sezione di Napoli, 80126 Napoli (Italy); Department of Physics, COMSATS Institute of Information Technology (CIIT), Defence Road, Off Raiwind Road, Lahore 86090 (Pakistan); Khan, S. A. [National Center for Physics (NCP), Quaid-i-Azam University Campus, Shahdra Valley Road, Islamabad 44000 (Pakistan)] [National Center for Physics (NCP), Quaid-i-Azam University Campus, Shahdra Valley Road, Islamabad 44000 (Pakistan); Mahmood, S. [Theoretical Plasma Physics Division, PINSTEC, PO Box Nilore, Islamabad 44000 (Pakistan)] [Theoretical Plasma Physics Division, PINSTEC, PO Box Nilore, Islamabad 44000 (Pakistan)

    2014-02-15T23:59:59.000Z

    In a three species electron-ion-dust plasma following a generalized non-Maxwellian distribution function (Lorentzian or kappa), it is shown that a kinetic instability of dust-acoustic mode exists. The instability threshold is affected when such (quasineutral) plasma permeates through another static plasma. Such case is of interest when the solar wind is streaming through the cometary plasma in the presence of interstellar dust. In the limits of phase velocity of the waves larger and smaller than the thermal velocity of dust particles, the dispersion properties and growth rate of dust-acoustic mode are investigated analytically with validation via numerical analysis.

  1. The effect of PdZn particle size on reverse-water-gas-shift reaction...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    RWGS activity is consistent with that previously observed for the steam reforming of methanol, i.e., higher CO selectivity on smaller PdZn particles. Thus, RWGS has been...

  2. The Development of Measurement Techniques to Identify and Characterize Dusts and Ice Nuclei in the Atmosphere

    E-Print Network [OSTI]

    Glen, Andrew

    2014-01-15T23:59:59.000Z

    Mineral dusts and ice crystals directly influence the Earth's radiative budget through radiative scattering and absorption. The interaction of spherical particles on the radiative budget are well known, however mineral dusts and ice crystals...

  3. Global estimates of mineral dust aerosol iron and aluminum solubility that account for particle size using diffusion-controlled and surface-area-controlled approximations

    E-Print Network [OSTI]

    2012-01-01T23:59:59.000Z

    state dissolution kinetics of goethite in the presence of= 3 [Wehrli et al. , 1990]. Goethite/hematite are thought toFor laboratory- ground goethite and hematite particles, an

  4. Secondary Electron Emission from Dust and Its Effect on Charging

    SciTech Connect (OSTI)

    Saikia, B. K.; Kakati, B.; Kausik, S. S. [Centre of Plasma Physics, Institute for Plasma Research, Nazirakhat, Sonapur-782402, Assam (India); Bandyopadhyay, M. [ITER-India, Institute for Plasma Research, Bhat, Gandhinagar-382 428 (India)

    2011-11-29T23:59:59.000Z

    Hydrogen plasma is produced in a plasma chamber by striking discharge between incandescent tungsten filaments and the permanent magnetic cage [1], which is grounded. The magnetic cage has a full line cusped magnetic field geometry used to confine the plasma elements. A cylindrical Langmuir probe is used to study the plasma parameters in various discharge conditions. The charge accumulated on the dust particles is calculated using the capacitance model and the dust current is measured by the combination of a Faraday cup and an electrometer at different discharge conditions. It is found Secondary electron emission from dust having low emission yield effects the charging of dust particles in presence of high energetic electrons.

  5. Development of Improved Models and Designs for Coated-Particle Gas Reactor Fuels (I-NERI Annual Report)

    SciTech Connect (OSTI)

    Petti, David Andrew; Maki, John Thomas; Languille, Alain; Martin, Philippe; Ballinger, Ronald

    2002-11-01T23:59:59.000Z

    The objective of this INERI project is to develop improved fuel behavior models for gas reactor coated particle fuels and to develop improved coated-particle fuel designs that can be used reliably at very high burnups and potentially in fast gas-cooled reactors. Thermomechanical, thermophysical, and physiochemical material properties data were compiled by both the US and the French and preliminary assessments conducted. Comparison between U.S. and European data revealed many similarities and a few important differences. In all cases, the data needed for accurate fuel performance modeling of coated particle fuel at high burnup were lacking. The development of the INEEL fuel performance model, PARFUME, continued from earlier efforts. The statistical model being used to simulate the detailed finite element calculations is being upgraded and improved to allow for changes in fuel design attributes (e.g. thickness of layers, dimensions of kernel) as well as changes in important material properties to increase the flexibility of the code. In addition, modeling of other potentially important failure modes such as debonding and asphericity was started. A paper on the status of the model was presented at the HTR-2002 meeting in Petten, Netherlands in April 2002, and a paper on the statistical method was submitted to the Journal of Nuclear Material in September 2002. Benchmarking of the model against Japanese and an older DRAGON irradiation are planned. Preliminary calculations of the stresses in a coated particle have been calculated by the CEA using the ATLAS finite element model. This model and the material properties and constitutive relationships will be incorporated into a more general software platform termed Pleiades. Pleiades will be able to analyze different fuel forms at different scales (from particle to fuel body) and also handle the statistical variability in coated particle fuel. Diffusion couple experiments to study Ag and Pd transport through SiC were conducted. Analysis and characterization of the samples continues. Two active transport mechanisms are proposed: diffusion in SiC and release through SiC cracks or another, as yet undetermined, path. Silver concentration profiles determined by XPS analysis suggest diffusion within the SiC layer, most likely dominated by grain boundary diffusion. However, diffusion coefficients calculated from mass loss measurements suggest a much faster release path, postulated as small cracks or flaws that provide open paths with little resistance to silver migration. Work is ongoing to identify and characterize this path. Work on Pd behavior has begun and will continue next year.

  6. Transparent self-cleaning dust shield

    DOE Patents [OSTI]

    Mazumder, Malay K.; Sims, Robert A.; Wilson, James D.

    2005-06-28T23:59:59.000Z

    A transparent electromagnetic shield to protect solar panels and the like from dust deposition. The shield is a panel of clear non-conducting (dielectric) material with embedded parallel electrodes. The panel is coated with a semiconducting film. Desirably the electrodes are transparent. The electrodes are connected to a single-phase AC signal or to a multi-phase AC signal that produces a travelling electromagnetic wave. The electromagnetic field produced by the electrodes lifts dust particles away from the shield and repels charged particles. Deposited dust particles are removed when the electrodes are activated, regardless of the resistivity of the dust. Electrostatic charges on the panel are discharged by the semiconducting film. When used in conjunction with photovoltaic cells, the power for the device may be obtained from the cells themselves. For other surfaces, such as windshields, optical windows and the like, the power must be derived from an external source. One embodiment of the invention employs monitoring and detection devices to determine when the level of obscuration of the screen by dust has reached a threshold level requiring activation of the dust removal feature.

  7. Size distributions of ionic aerosols measured at Waliguan Observatory: Implication for nitrate gas-to-particle

    E-Print Network [OSTI]

    Jacobson, Mark

    Size distributions of ionic aerosols measured at Waliguan Observatory: Implication for nitrate gas Plateau. Size-resolved ionic aerosols (NH4 + , Na+ , K+ , Ca2+ , Mg2+ , SO4 2À , ClÀ , NO3 À CO3 2À , formate, acetate and oxalate), organic aerosols, black carbon and gaseous HNO3 and SO2 were measured

  8. Ejecta Particle-Size Measurements in Vacuum and Helium Gas using Ultraviolet In-Line Fraunhofer Holography

    SciTech Connect (OSTI)

    Sorenson, Danny S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Pazuchanics, Peter [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Johnson, Randall P. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Malone, R. M. [National Security Technologies, LLC. (NSTec), Los Alamos, NM (United States); Kaufman, M. I. [National Security Technologies, LLC. (NSTec), Los Alamos, NM (United States); Tibbitts, A. [National Security Technologies, LLC. (NSTec), Los Alamos, NM (United States); Tunnell, T. [National Security Technologies, LLC. (NSTec), Los Alamos, NM (United States); Marks, D. [National Security Technologies, LLC. (NSTec), Los Alamos, NM (United States); Capelle, G. A. [National Security Technologies, LLC. (NSTec), Santa Barbara, CA (United States); Grover, M. [National Security Technologies, LLC. (NSTec), Santa Barbara, CA (United States); Marshall, B. [National Security Technologies, LLC. (NSTec), Santa Barbara, CA (United States); Stevens, G. D. [National Security Technologies, LLC. (NSTec), Santa Barbara, CA (United States); Turley, W. D. [National Security Technologies, LLC. (NSTec), Santa Barbara, CA (United States); LaLone, B. [National Security Technologies, LLC. (NSTec), Santa Barbara, CA (United States)

    2014-06-25T23:59:59.000Z

    An Ultraviolet (UV) in-line Fraunhofer holography diagnostic has been developed for making high-resolution spatial measurements of ejecta particles traveling at many mm/?sec. This report will discuss the development of the diagnostic including the high-powered laser system and high-resolution optical relay system. In addition, the system required to reconstruct the images from the hologram and the corresponding analysis of those images to extract particles will also be described. Finally, results from six high-explosive (HE), shock-driven Sn ejecta experiments will be presented. Particle size distributions will be shown that cover most of the ejecta velocities for experiments conducted in a vacuum, and helium gas environments. In addition, a modification has been made to the laser system that produces two laser pulses separated by 6.8 ns. This double-pulsed capability allows a superposition of two holograms to be acquired at two different times, thus allowing ejecta velocities to be measured directly. Results from this double pulsed experiment will be described.

  9. Ejecta Particle-Size Measurements in Vacuum and Helium Gas using Ultraviolet In-Line Fraunhofer Holography

    SciTech Connect (OSTI)

    Sorenson, D. S. [LANL; Pazuchanics, P. [LANL; Johnson, R. [LANL; Malone, R. M. [NSTec; Kaufman, M. I. [NSTec; Tibbitts, A. [NSTec; Tunnell, T. [NSTec; Marks, D. [NSTec; Capelle, G. A. [NSTec; Grover, M. [NSTec; Marshall, B. [NSTec; Stevens, G. D. [NSTec; Turley, W. D. [NSTec; LaLone, B. [NSTec

    2014-06-30T23:59:59.000Z

    An ultraviolet (UV) in-line Fraunhofer holography diagnostic has been developed for making high-resolution spatial measurements of ejecta particles traveling at many mm/?sec. This report will discuss the development of the diagnostic, including the high-powered laser system and high-resolution optical relay system. In addition, we will also describe the system required to reconstruct the images from the hologram and the corresponding analysis of those images to extract particles. Finally, we will present results from six high-explosive (HE), shock-driven Sn-ejecta experiments. Particle-size distributions will be shown that cover most of the ejecta velocities for experiments conducted in a vacuum, and helium gas environments. In addition, a modification has been made to the laser system that produces two laser pulses separated by 6.8 ns. This double-pulsed capability allows a superposition of two holograms to be acquired at two different times, thus allowing ejecta velocities to be measured directly. Results from this double-pulsed experiment will be described.

  10. The large scale dust lanes of the Galactic bar

    E-Print Network [OSTI]

    D. J. Marshall; R. Fux; A. C. Robin; C. Reyle

    2007-11-15T23:59:59.000Z

    (abridged) By comparing the distribution of dust and gas in the central regions of the Galaxy, we aim to obtain new insights into the properties of the offset dust lanes leading the bar's major axis in the Milky Way. On the one hand, the molecular emission of the dust lanes is extracted from the observed CO l-b-V distribution according to the interpretation of a dynamical model. On the other hand, a three dimensional extinction map of the Galactic central region constructed from near-infrared observations is used as a tracer of the dust itself and clearly reveals dust lanes in its face-on projection. Comparison of the position of both independent detections of the dust lanes is performed in the (l, b) plane. These two completely independent methods are used to provide a coherent picture of the dust lanes in the Milky Way bar. In both the gas and dust distributions, the dust lanes are found to be out of the Galactic plane, appearing at negative latitudes for l > 0 deg and at positive latitudes for l reformation downstream. Due to the decrease in velocity caused by the shock, this occurs at lower z. The second assumes that the gas and dust remain on a common tilted plane, but that the molecular gas decouples from the Milky Way's magnetic field, itself strong enough to resist the shear of the bar's shock. The diffuse gas and dust remain coupled to the field and are carried further downstream. This second scenario has recently been suggested in order to explain observations of the barred galaxy NGC 1097.

  11. Niamey Dust Observations

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Flynn, Connor

    Niamey aerosol are composed of two main components: dust due to the proximity of the Sahara Desert, and soot from local and regional biomass burning. The purpose of this data product is to identify when the local conditions are dominated by the dust component so that the properties of the dust events can be further studied.

  12. Dust Combustion Safety Issues for Fusion Applications

    SciTech Connect (OSTI)

    L. C. Cadwallader

    2003-05-01T23:59:59.000Z

    This report summarizes the results of a safety research task to identify the safety issues and phenomenology of metallic dust fires and explosions that are postulated for fusion experiments. There are a variety of metal dusts that are created by plasma erosion and disruptions within the plasma chamber, as well as normal industrial dusts generated in the more conventional equipment in the balance of plant. For fusion, in-vessel dusts are generally mixtures of several elements; that is, the constituent elements in alloys and the variety of elements used for in-vessel materials. For example, in-vessel dust could be composed of beryllium from a first wall coating, tungsten from a divertor plate, copper from a plasma heating antenna or diagnostic, and perhaps some iron and chromium from the steel vessel wall or titanium and vanadium from the vessel wall. Each of these elements has its own unique combustion characteristics, and mixtures of elements must be evaluated for the mixture’s combustion properties. Issues of particle size, dust temperature, and presence of other combustible materials (i.e., deuterium and tritium) also affect combustion in air. Combustion in other gases has also been investigated to determine if there are safety concerns with “inert” atmospheres, such as nitrogen. Several coolants have also been reviewed to determine if coolant breach into the plasma chamber would enhance the combustion threat; for example, in-vessel steam from a water coolant breach will react with metal dust. The results of this review are presented here.

  13. Single-particle spectral density of the unitary Fermi gas: Novel approach based on the operator product expansion, sum rules and the maximum entropy method

    E-Print Network [OSTI]

    Philipp Gubler; Naoki Yamamoto; Tetsuo Hatsuda; Yusuke Nishida

    2015-01-24T23:59:59.000Z

    Making use of the operator product expansion, we derive a general class of sum rules for the imaginary part of the single-particle self-energy of the unitary Fermi gas. The sum rules are analyzed numerically with the help of the maximum entropy method, which allows us to extract the single-particle spectral density as a function of both energy and momentum. These spectral densities contain basic information on the properties of the unitary Fermi gas, such as the dispersion relation and the superfluid pairing gap, for which we obtain reasonable agreement with the available results based on quantum Monte-Carlo simulations.

  14. Single-particle spectral density of the unitary Fermi gas: Novel approach based on the operator product expansion, sum rules and the maximum entropy method

    E-Print Network [OSTI]

    Gubler, Philipp; Hatsuda, Tetsuo; Nishida, Yusuke

    2015-01-01T23:59:59.000Z

    Making use of the operator product expansion, we derive a general class of sum rules for the imaginary part of the single-particle self-energy of the unitary Fermi gas. The sum rules are analyzed numerically with the help of the maximum entropy method, which allows us to extract the single-particle spectral density as a function of both energy and momentum. These spectral densities contain basic information on the properties of the unitary Fermi gas, such as the dispersion relation and the superfluid pairing gap, for which we obtain reasonable agreement with the available results based on quantum Monte-Carlo simulations.

  15. Transport and deposition of particles in gas turbines: Effects of convection, diffusion, thermophoresis, inertial impaction and coagulation

    SciTech Connect (OSTI)

    Brown, D.P.; Biswas, P.; Rubin, S.G. [Univ. of Cincinnati, OH (United States)

    1994-12-31T23:59:59.000Z

    Aerosols are produced in a large number of industrial processes over a wide range of sizes. Of particular importance is deposition of coal and oil combustion aerosols in turbines. A model coupling the transport and the dynamics of aerosols to flow characteristics in gas turbines is presented. An order of magnitude analysis is carried out based on typical operational conditions for coal and oil combustion (neglecting coagulation) to determine the relative importance of various mechanisms on particle behavior. A scheme is then developed to incorporate a moment model of a log normally distributed aerosol to predict aerosol transport and dynamics in turbine flows. The proposed moment model reflects the contributions from convection, inertia, diffusion and thermophoresis. Aerosol behavior in various laminar 2-D and axisymmetric flows is considered in this study. Results are compared to published work in 1-D and 2-D planar and axisymmetric.

  16. age-dependent dust heating: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    correlations. Zeljko Ivezic; Moshe Elitzur 1996-12-17 17 Spatial distribution of Far infrared emission in spiral galaxies II. Heating sources and gas-to-dust ratio...

  17. Learn about the dangers of breathing silica dust

    E-Print Network [OSTI]

    Knowles, David William

    dust builds up in your lungs, you are at risk of developing a serious and irreversible lung disease silica dust. The fine particles are deposited in the lungs, causing thickening and scarring of the lung tissue. Crystalline silica exposure has also been linked to lung cancer. A worker may develop any

  18. HIGH FIDELITY STUDIES OF INTERSTELLAR DUST ANALOGUE IMPACTS IN STARDUST

    E-Print Network [OSTI]

    HIGH FIDELITY STUDIES OF INTERSTELLAR DUST ANALOGUE IMPACTS IN STARDUST AEROGEL AND FOILS F://www.ssl.berkeley.edu/~westphal/ISPE/. In 2000 and 2002 the Stardust Mission exposed aerogel collector panels for a total of about 200 days/s] interstellar dust (ISD) analogues onto Stardust aerogel and foil flight spares. Particle impact speeds up to 50

  19. Residual electric charges on dust grains at plasma extinction L. Coudel1, M. Mikikian1, Y. Tessier1, L. Boufendi1, A. A. Samarian2

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    . An upward thermophoretic force was thus applied to dust particles to balance gravity [4] when the plasma

  20. Electric Dipole Radiation from Spinning Dust Grains

    E-Print Network [OSTI]

    B. T. Draine; A. Lazarian

    1998-02-18T23:59:59.000Z

    We discuss the rotational excitation of small interstellar grains and the resulting electric dipole radiation from spinning dust. Attention is given to excitation and damping of rotation by: collisions with neutrals; collisions with ions; plasma drag; emission of infrared radiation; emission of microwave radiation; photoelectric emission; and formation of H_2 on the grain surface. We introduce dimensionless functions F and G which allow direct comparison of the contributions of different mechanisms to rotational drag and excitation. Emissivities are estimated for dust in different phases of the interstellar medium, including diffuse HI, warm HI, low-density photoionized gas, and cold molecular gas. Spinning dust grains can explain much, and perhaps all, of the 14-50 GHz background component recently observed in CBR studies. It should be possible to detect rotational emission from small grains by ground-based observations of molecular clouds.

  1. SPARCLE: Electrostatic Tool for Lunar Dust Control

    SciTech Connect (OSTI)

    Clark, P. E.; Curtis, S. A.; Minetto, F.; Cheung, C. Y.; Keller, J. F.; Moore, M.; Calle, C. I. [Catholic University of America Washington DC located at Code 695 NASA/GSFC Greenbelt, MD 20771 (United States); NASA/GSFC Greenbelt, MD 20771 (United States); Code KT-E NASA/KSC Cape Kennedy, FL 32899 (United States)

    2009-03-16T23:59:59.000Z

    Successful exploration of most planetary surfaces, with their impact-generated dusty regoliths, will depend on the capabilities to keep surfaces free of the dust which could compromise performance and to collect dust for characterization. Solving the dust problem is essential before we return to the Moon. During the Apollo missions, the discovery was made that regolith fines, or dust, behaved like abrasive velcro, coating surfaces, clogging mechanisms, and making movement progressively more difficult as it was mechanically stirred up during surface operations, and abrading surfaces, including spacesuits, when attempts were made to remove it manually. In addition, some of the astronauts experienced breathing difficulties when exposed to dust that got into the crew compartment. The successful strategy will deal with dust dynamics resulting from interaction between mechanical and electrostatic forces. Here we will describe the surface properties of dust particles, the basis for their behavior, and an electrostatically-based approach and methodology for addressing this issue confirmed by our preliminary results. Our device concept utilizes a focused electron beam to control the electrostatic potential of the surface. A plate of the opposite potential is then used to induce dust migration in the presence of an electrical field. Our goal is a compact device of <5 kg mass and using <5 watts of power to be operational in <5 years with heritage from ionic sweepers for active spacecraft potential control (e.g., on POLAR). Rovers could be fitted with devices that could harness the removal of dust for sampling as part of the extended exploration process on Mercury, Mars, asteroids or outer solar system satellites, as well as the Moon.

  2. Migration of Artificially Introduced Micron Size Carbon Dust in the DIII-D Divertor

    SciTech Connect (OSTI)

    Rudakov, D; West, W; Wong, C; Brooks, N; Evans, T; Fenstermacher, M; Groth, M; Krasheninnikov, S; Lasnier, C; McLean, A; Pigarov, A Y; Solomon, W; Antar, G; Boedo, J; Doerner, R; Hollmann, E; Hyatt, A; Maingi, R; Moyer, R; Nagy, A; Nishino, N; Roquemore, L; Stangeby, P; Watkins, J

    2006-05-15T23:59:59.000Z

    Migration of pre-characterized carbon dust in a tokamak environment was studied by introducing about 30 milligrams of dust flakes 5-10 {micro}m in diameter in the lower divertor of DIII-D using the DiMES sample holder. The dust was exposed to high power ELMing Hmode discharges in lower-single-null magnetic configuration with the strike points swept across the divertor floor. When the outer strike point (OSP) passed over the dust holder exposing it to high particle and heat fluxes, part of the dust was injected into the plasma. In about 0.1 sec following the OSP pass over the dust, 1-2% of the total dust carbon content (2-4 x 10{sup 19} carbon atoms, equivalent to a few million dust particles) penetrated the core plasma, raising the core carbon density by a factor of 2-3. When the OSP was inboard of the dust holder, the dust injection continued at a lower rate. Individual dust particles were observed moving at velocities of 10-100 m/s, predominantly in the toroidal direction for deuteron flow to the outer divertor target, consistent with the ion drag force. The observed behavior of the dust is in qualitative agreement with modeling by the 3D DustT code.

  3. Effects of dry bulk density and particle size fraction on gas transport parameters in variably saturated landfill cover soil

    SciTech Connect (OSTI)

    Wickramarachchi, Praneeth, E-mail: praneeth1977@yahoo.co.uk [Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570 (Japan); Kawamoto, Ken; Hamamoto, Shoichiro [Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570 (Japan); Institute for Environmental Science and Technology, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570 (Japan); Nagamori, Masanao [Center for Environmental Science in Saitama, 914 Kamitanadare, Kazo, Saitama 347-0115 (Japan); Moldrup, Per [Environmental Engineering Section, Dept. of Biotechnology, Chemistry and Environmental Engineering, Aalborg University, Sohngaardsholmsvej 57, DK-9000 Aalborg (Denmark); Komatsu, Toshiko [Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570 (Japan); Institute for Environmental Science and Technology, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570 (Japan)

    2011-12-15T23:59:59.000Z

    Highlights: > The effects of soil physical properties on gas transport parameters were investigated. > Higher values of D{sub p} and k{sub a} exhibited in the '+gravel' than the '-gravel' fraction at same soil-air content ({epsilon}). > Recent power law models for D{sub p} (WLR) and k{sub a} (RPL) were modified. > Model parameters were linearly related to easily measurable dry bulk density ({rho}{sub b}). - Abstract: Landfill sites are emerging in climate change scenarios as a significant source of greenhouse gases. The compacted final soil cover at landfill sites plays a vital role for the emission, fate and transport of landfill gases. This study investigated the effects of dry bulk density, {rho}{sub b}, and particle size fraction on the main soil-gas transport parameters - soil-gas diffusivity (D{sub p}/D{sub o}, ratio of gas diffusion coefficients in soil and free air) and air permeability (k{sub a}) - under variably-saturated moisture conditions. Soil samples were prepared by three different compaction methods (Standard and Modified Proctor compaction, and hand compaction) with resulting {rho}{sub b} values ranging from 1.40 to 2.10 g cm{sup -3}. Results showed that D{sub p} and k{sub a} values for the '+gravel' fraction (<35 mm) became larger than for the '-gravel' fraction (<2 mm) under variably-saturated conditions for a given soil-air content ({epsilon}), likely due to enhanced gas diffusion and advection through less tortuous, large-pore networks. The effect of dry bulk density on D{sub p} and k{sub a} was most pronounced for the '+gravel' fraction. Normalized ratios were introduced for all soil-gas parameters: (i) for gas diffusivity D{sub p}/D{sub f}, the ratio of measured D{sub p} to D{sub p} in total porosity (f), (ii) for air permeability k{sub a}/k{sub a,pF4.1}, the ratio of measured k{sub a} to k{sub a} at 1235 kPa matric potential (=pF 4.1), and (iii) for soil-air content, the ratio of soil-air content ({epsilon}) to total porosity (f) (air saturation). Based on the normalized parameters, predictive power-law models for D{sub p}({epsilon}/f) and k{sub a}({epsilon}/f) models were developed based on a single parameter (water blockage factor M for D{sub p} and P for k{sub a}). The water blockage factors, M and P, were found to be linearly correlated to {rho}{sub b} values, and the effects of dry bulk density on D{sub p} and k{sub a} for both '+gravel' and '-gravel' fractions were well accounted for by the new models.

  4. Dust Studies in DIII-D and TEXTOR

    SciTech Connect (OSTI)

    Rudakov, D; Litnovsky, A; West, W; Yu, J; Boedo, J; Bray, B; Brezinsek, S; Brooks, N; Fenstermacher, M; Groth, M; Hollmann, E; Huber, A; Hyatt, A; Krasheninnikov, S; Lasnier, C; Moyer, R; Pigarov, A; Philipps, V; Pospieszezyk, A; Smirnov, R; Sharpe, J; Solomon, W; Watkins, J; Wong, C

    2008-10-14T23:59:59.000Z

    Studies of naturally occurring and artificially introduced carbon dust are conducted in DIII-D and TEXTOR. In DIII-D, dust does not present operational concerns except immediately after entry vents. Energetic plasma disruptions produce significant amounts of dust. However, dust production by disruptions alone is insufficient to account for the estimated in-vessel dust inventory in DIII-D. Submicron sized dust is routinely observed using Mie scattering from a Nd:Yag laser. The source is strongly correlated with the presence of Type I edge localized modes (ELMs). Larger size (0.005-1 mm diameter) dust is observed by optical imaging, showing elevated dust levels after entry vents. Inverse dependence of the dust velocity on the inferred dust size is found from the imaging data. Migration of pre-characterized carbon dust is studied in DIII-D and TEXTOR by injecting micron-size dust in plasma discharges. In DIII-D, a sample holder filled with {approx}30 mg of dust is introduced in the lower divertor and exposed to high-power ELMing H-mode discharges with strike points swept across the divertor floor. After a brief exposure ({approx}0.1 s) at the outer strike point, part of the dust is injected into the plasma, raising the core carbon density by a factor of 2-3 and resulting in a twofold increase of the radiated power. Individual dust particles are observed moving at velocities of 10-100 m/s, predominantly in the toroidal direction, consistent with the drag force from the deuteron flow and in agreement with modeling by the 3D DustT code. In TEXTOR, instrumented dust holders with 1-45 mg of dust are exposed in the scrape-off layer 0-2 cm radially outside of the last closed flux surface in discharges heated with neutral beam injection (NBI) power of 1.4 MW. Dust is launched either in the beginning of a discharge or at the initiation of NBI, preferentially in a direction perpendicular to the toroidal magnetic field. At the given configuration of the launch, the dust did not penetrate the core plasma and only moderately perturbed the edge plasma, as evidenced by an increase of the edge carbon content.

  5. Haul road dust control

    SciTech Connect (OSTI)

    Reed, W.R.; Organiscak, J.A. [NIOSH-PRL, Pittsburgh, PA (United States)

    2007-10-15T23:59:59.000Z

    A field study was conducted to measure dust from haul trucks at a limestone quarry and a coal preparation plant waste hauling operation. The study found that primarily wind, distance and road treatment conditions notably affected the dust concentrations at locations next to, 50 ft from, and 100 ft away from the unpaved haulage road. Airborne dust measured along the unpaved haul road showed that high concentrations of fugitive dust can be generated with these concentrations rapidly decreasing to nearly background levels within 100 ft of the road. Instantaneous respirable dust measurements illustrated that the trucks generate a real-time dust cloud that has a peak concentration with a time-related decay rate as the dust moves past the sampling locations. The respirable dust concentrations and peak levels were notably diminished as the dust cloud was transported, diluted, and diffused by the wind over the 100 ft distance from the road. Individual truck concentrations and peak levels measured next to the dry road surface test section were quite variable and dependent on wind conditions, particularly wind direction, with respect to reaching the sampling location. The vast majority of the fugitive airborne dust generated from unpaved and untreated haulage roads was non-respirable. 6 figs.

  6. Apparatus to collect, classify, concentrate, and characterize gas-borne particles

    DOE Patents [OSTI]

    Rader, Daniel J. (Albuquerque, NM); Torczynski, John R. (Albuquerque, NM); Wally, Karl (Lafayette, CA); Brockmann, John E. (Albuquerque, NM)

    2002-01-01T23:59:59.000Z

    An aerosol lab-on-a-chip (ALOC) integrates one or more of a variety of aerosol collection, classification, concentration (enrichment), and characterization processes onto a single substrate or layered stack of such substrates. By taking advantage of modern micro-machining capabilities, an entire suite of discrete laboratory aerosol handling and characterization techniques can be combined in a single portable device that can provide a wealth of data on the aerosol being sampled. The ALOC offers parallel characterization techniques and close proximity of the various characterization modules helps ensure that the same aerosol is available to all devices (dramatically reducing sampling and transport errors). Micro-machine fabrication of the ALOC significantly reduces unit costs relative to existing technology, and enables the fabrication of small, portable ALOC devices, as well as the potential for rugged design to allow operation in harsh environments. Miniaturization also offers the potential of working with smaller particle sizes and lower pressure drops (leading to reduction of power consumption).

  7. PERFORMANCE ANALYSIS OF A WINDOWED HIGH TEMPERATURE GAS RECEIVER USING A SUSPENSION OF ULTRAFINE CARBON PARTICLES AS THE SOLAR ABSORBER

    E-Print Network [OSTI]

    Fisk, William J.

    2012-01-01T23:59:59.000Z

    with a regenerated gas turbine sys- tem providing severaltemperature for powering a gas turbine or to supply indus-from the compressor of a gas turbine and passes on to the

  8. PERFORMANCE ANALYSIS OF A WINDOWED HIGH TEMPERATURE GAS RECEIVER USING A SUSPENSION OF ULTRAFINE CARBON PARTICLES AS THE SOLAR ABSORBER

    E-Print Network [OSTI]

    Fisk, William J.

    2012-01-01T23:59:59.000Z

    from the compressor of a gas turbine and passes on to thewith a regenerated gas turbine sys- tem providing severaltemperature for powering a gas turbine or to supply indus-

  9. Floating potential of large dust grains with electron emission

    SciTech Connect (OSTI)

    Bacharis, M., E-mail: minas.bacharis03@imperial.ac.uk [Blackett Laboratory, Imperial College, Prince Consort Road, London SW7 2BW (United Kingdom)

    2014-07-15T23:59:59.000Z

    Electron emission from the surface of solid particles plays an important role in many dusty plasma phenomena and applications. Examples of such cases include fusion plasmas and dusty plasma systems in our solar system. Electron emission complicates the physics of the plasma-dust interaction. One of the most important aspects of the physics of the dust plasma interaction is the calculation of the particle's floating potential. This is the potential a dust particle acquires when it is in contact with a plasma and it plays a very important role for determining its dynamical behaviour. The orbital motion limited (OML) approach is used in most cases in the literature to model the dust charging physics. However, this approach has severe limitations when the size of the particles is larger than the electron Debye length ?{sub De}. Addressing this shortcoming for cases without electron emission, a modified version of OML (MOML) was developed for modelling the charging physics of dust grains larger than the electron Debye length. In this work, we will focus on extending MOML in cases where the particles emit electrons. Furthermore, a general method for calculating the floating potential of dust particles with electron emission will be presented for a range of grain sizes.

  10. Dust suppression results using mineral oil applications on corn and milo

    E-Print Network [OSTI]

    Wardlaw, Herman Douglas

    1987-01-01T23:59:59.000Z

    grain dust explosion, grain dust (less than 100 microns (pm) In aerodynamic diameter) must be in suspension at or above the minimum explosive concentration (MEC). The MEC for grain dust will vary depending upon moisture context, particle size... will be present in any grain handling facility. Containment restricts grain dust from dispersing, which allows for the development of the MEC. The NEC is so highly concentrated that without containment, it is unlikely to occur in a grain handling facility...

  11. Dust resuspension as a contaminant source and transport pathway

    SciTech Connect (OSTI)

    Loosmore, G.A,; Hunt, J.R.

    1999-07-01T23:59:59.000Z

    Numerous environmental contaminants sorb to dust particles or exist as particles, including metals, hydrophobic organic compounds, asbestos, pollens, and microbial pathogens. Wind resuspension of dust and other particulate matter provides a dust source for the atmosphere and a contaminant transport pathway. Not only do these materials pose a risk to human health, but also, resuspended dust particles are believed to play a role in global climate change and chemical reactions in the atmosphere. The conditions under which contaminated sites are vulnerable to wind resuspension are not generally known, as the basic physics of the problem are poorly understood. Field data show tremendous variability. Conventional dust flux models assume that dust resuspension occurs only for high winds and then only temporarily, with a transient dust flux occurring only when the bed is first exposed to the high wind. The surface is then assumed to stabilize such that no further dust moves until the surface is disturbed or a higher wind occurs. Recent wind tunnel experiments demonstrate that surfaces yield continuous steady dust fluxes under steady wind conditions well beyond the initial high transient flux, even when no erosion is visible and the velocity is below the predicted threshold velocity for movement. This average steady-state dust flux increases with average wind speed. Ongoing work is investigating the influence of air relative humidity on these processes. Contaminant resuspension models capture trends only and fail to predict sporadic high flux events that may control doses. Successful modeling of contaminant resuspension will depend on development of better dust flux predictions. Risk analyses require better predictive modeling, necessitating a deeper understanding of the underlying phenomena.

  12. Microchemical investigations of dust emitted by a lead smelter

    SciTech Connect (OSTI)

    Sobanska, S.; Ricq, N. [Ecole des Mines de Douai (France). Dept. Chimie et Environnement] [Ecole des Mines de Douai (France). Dept. Chimie et Environnement; [Univ. de Lille I, Villeneuve d`Ascq (France); Laboudigue, A.; Guillermo, R. [Ecole des Mines de Douai (France). Dept. Chimie et Environnement] [Ecole des Mines de Douai (France). Dept. Chimie et Environnement; Bremard, C.; Laureyns, J.; Merlin, J.C.; Wignacourt, J.P. [Univ. de Lille I, Villeneuve d`Ascq (France)] [Univ. de Lille I, Villeneuve d`Ascq (France)

    1999-05-01T23:59:59.000Z

    Dusts emitted by an important pyrometallurgical lead smelter have been sampled within the pipes of the grilling and furnace working units before and after the filtering systems, respectively. Particle size distribution, elementary analyses, and X-ray powder diffraction analysis indicate PbS, PbSO{sub 4}, PbSO{sub 4}{center_dot}PbO, Pb, ZnS small particles less than 5 {micro}m in size to contribute mainly to the current atmospheric pollution. Although at least 90% of dust are retained on the filters, the amounts of the respirable smaller particles are significantly larger in the current emission. The average chemical speciation was found to be analogous for the dust samples collected before and after the filters. The scanning electron microscopy associated with energy-dispersive X-ray analysis and Raman microspectrometry established the morphology and chemical composition at the level of individual particles. A lot of minor compounds were found as small heterogeneous individual particles in the heterogeneous particles of grilling dust. Among the homogeneous particles of furnace dust, amorphous C, {beta}-PbO, PbO-PbCl{sub 2}, FeO, CdS, CdSO{sub 4} were often detected as homogeneous mixtures with the major compounds within the particles.

  13. Air quality model evaluation data for organics. 1. Bulk chemical composition and gas/particle distribution factors

    SciTech Connect (OSTI)

    Fraser, M.P.; Cass, G.R. [California Inst. of Technology, Pasadena, CA (United States)] [California Inst. of Technology, Pasadena, CA (United States); Grosjean, D.; Grosjean, E. [DGA, Inc., Ventura, CA (United States)] [DGA, Inc., Ventura, CA (United States); Rasmussen, R.A. [Oregon Graduate Inst. of Science and Technology, Beaverton, OR (United States)] [Oregon Graduate Inst. of Science and Technology, Beaverton, OR (United States)

    1996-05-01T23:59:59.000Z

    During the period of September 8-9, 1993, the South Coast Air Basin that surrounds Los Angeles experienced the worst photochemical smog episode in recent years; ozone concentrations exceeded 0.29 ppm 1-h average, and NO{sub 2} concentrations peaked at 0.21 ppm 1-h average. Field measurements were conducted at a five-station air monitoring network to obtain comprehensive data on the identity and concentration of the individual organic compounds present in both the gas and particle phases during that episode. The data will also serve to support future tests of air quality models designed to study organic air pollutant transport and reaction. Air samples taken in stainless steel canisters were analyzed for 141 volatile organic compounds by GC/ECD, GC/FID, and GC/MS; PAN and PPN were measured by GC/ECD; particulate organics collected by filtration were analyzed for total organics and elemental carbon by thermal evolution and combustion and for individual organic compounds by GC/ MS; semivolatile organics were analyzed by GC/MS after collection on polyurethane foam cartridges. The present paper describes this experiment and present the concentrations of major organic compound classes and their relationship to the inorganic pollutants present. 104 refs., 9 figs.

  14. THE CHEMICAL IMPRINT OF SILICATE DUST ON THE MOST METAL-POOR STARS

    E-Print Network [OSTI]

    Bromm, Volker

    We investigate the impact of dust-induced gas fragmentation on the formation of the first low-mass, metal-poor stars (<1 M[subscript ?]) in the early universe. Previous work has shown the existence of a critical dust-to-gas ...

  15. ON THE INITIAL MASS FUNCTION OF LOW-METALLICITY STARS: THE IMPORTANCE OF DUST COOLING

    SciTech Connect (OSTI)

    Dopcke, Gustavo [Member of the International Max Planck Research School for Astronomy and Cosmic Physics at the University of Heidelberg, IMPRS-HD, Germany. (Germany)] [Member of the International Max Planck Research School for Astronomy and Cosmic Physics at the University of Heidelberg, IMPRS-HD, Germany. (Germany); Glover, Simon C. O.; Clark, Paul C.; Klessen, Ralf S., E-mail: gustavo@uni-hd.de [Zentrum fuer Astronomie, Institut fuer Theoretische Astrophysik, Universitaet Heidelberg, Albert-Ueberle-Str. 2, D-69120 Heidelberg (Germany)

    2013-04-01T23:59:59.000Z

    The first stars to form in the universe are believed to have distribution of masses biased toward massive stars. This contrasts with the present-day initial mass function, which has a predominance of stars with masses lower than 1 M{sub Sun }. Therefore, the mode of star formation must have changed as the universe evolved. Such a transition is attributed to a more efficient cooling provided by increasing metallicity. Especially dust cooling can overcome the compressional heating, which lowers the gas temperature thus increasing its instability to fragmentation. The purpose of this paper is to verify if dust cooling can efficiently cool the gas, and enhance the fragmentation of gas clouds at the early stages of the universe. To confirm that, we calculate a set of hydrodynamic simulations that include sink particles, which represent contracting protostars. The thermal evolution of the gas during the collapse is followed by making use of a primordial chemical network and also a recipe for dust cooling. We model four clouds with different amounts of metals (10{sup -4}, 10{sup -5}, 10-6 Z{sub Sun }, and 0), and analyze how this property affect the fragmentation of star-forming clouds. We find evidence for fragmentation in all four cases, and hence conclude that there is no critical metallicity below which fragmentation is impossible. Nevertheless, there is a clear change in the behavior of the clouds at Z {approx}< 10{sup -5} Z{sub Sun }, caused by the fact that at this metallicity, fragmentation takes longer to occur than accretion, leading to a flat mass function at lower metallicities.

  16. VOLUME 78, NUMBER 8 P H Y S I C A L R E V I E W L E T T E R S 24 FEBRUARY 1997 Debye Shielding and Particle Correlations in Strongly Coupled Dusty Plasmas

    E-Print Network [OSTI]

    Otani, Niels F.

    in dusty plasma research, while fully aware that the dust particles are strongly coupled, have continued

  17. Dust around Type Ia supernovae

    E-Print Network [OSTI]

    Wang, Lifan

    2005-01-01T23:59:59.000Z

    Dust around Type Ia supernovae Lifan Wang 1,2 LawrenceIa. Subject headings: Supernovae: General, Dust, Extinctionline) bands for Type Ia supernovae. (a), upper panel, shows

  18. Charged particle's $p_T$ spectra and elliptic flow in $\\sqrt{s_{NN}}$=200 GeV Au+Au collisions: QGP vs. hadronic resonance gas

    E-Print Network [OSTI]

    Chaudhuri, A K

    2010-01-01T23:59:59.000Z

    We show that if the hadronic resonance gas (HRG), with viscosity to entropy ratio $\\eta/s\\approx$0.24, is physical at temperature $T\\approx$220 MeV, charged particles $p_T$ spectra and elliptic flow in Au+Au collisions at RHIC, over a wide range of collision centrality do not distinguish between initial QGP fluid and initial hadronic resonance gas. Unambiguous identification of bulk of the matter produced in Au+Au collisions require clear demonstration that HRG is unphysical at temperature $T<$200 MeV. It calls for precise lattice simulations with realistic boundary conditions.

  19. Inorganic hazardous air pollutants before and after a limestone flue gas desulfurization system as a function of <10 micrometer particle sizes and unit load

    SciTech Connect (OSTI)

    Maxwell, D.P.; Williams, W.A.; Flora, H.B. II [Radian Corp., Austin, TX (United States)

    1995-12-31T23:59:59.000Z

    Radian Corporation collected size-fractionated particulate samples from stack gas at a unit burning high sulfur coal with a venturi scrubber FGD system. Independent sample fractions were collected under high-load and low-load operating conditions and subjected to various techniques designed to measure the total composition and surface-extractable concentrations of selected trace elements. The relationships between unit load, particle-size distribution, total composition, and surface-extractable inorganic species are reported and compared to show the availability of trace elements relevant to potential health risks from flue gas particulate emissions.

  20. Chaotic dust dynamics and implications for the hemispherical color asymmetries of the Uranian satellites

    E-Print Network [OSTI]

    Hamilton, Douglas P.

    system Cook and Franklin, 1970), (ii) interstellar dust particles (ISDPs) (Landgraf, 2000), (iii) solar of fast incoming particles like solar photons and cosmic rays cannot generate a hemispherical leading

  1. ISM dust feedback from low to high mass stars

    E-Print Network [OSTI]

    Falceta-Goncalves; D.

    2007-10-26T23:59:59.000Z

    The dust component of the interstellar medium (ISM) has been extensively studied in the past decades. Late-type stars have been assumed as the main source of dust to the ISM, but recent observations show that supernova remnants may play a role on the ISM dust feedback. In this work, I study the importance of low and high mass stars, as well as their evolutionary phase, on the ISM dust feedback process. I also determine the changes on the obtained results considering different mass distribution functions and star formation history. We describe a semi-empirical calculation of the relative importance of each star at each evolutionary phase in the dust ejection to the ISM. I compare the obtained results for two stellar mass distribution functions, the classic Salpeter initial mass function and the present day mass function. I used the evolutionary track models for each stellar mass, and the empirical mass-loss rates and dust-to-gas ratio. The relative contribution of each stellar mass depends on the used distribution. Ejecta from massive stars represent the most important objects for the ISM dust replenishment using the Salpeter IMF. On the other hand, for the present day mass function low and intermediate mass stars are dominant. Late-type giant and supergiant stars dominate the ISM dust feedback in our actual Galaxy, but this may not the case of galaxies experiencing high star formation rates, or at high redshifts. In those cases, SNe are dominant in the dust feedback process.

  2. Effect of argon addition on plasma parameters and dust charging in hydrogen plasma

    SciTech Connect (OSTI)

    Kakati, B., E-mail: bharatkakati15@gmail.com; Kausik, S. S.; Saikia, B. K. [Centre of Plasma Physics-Institute for Plasma Research, Nazirakhat, Sonapur, Kamrup 782402, Assam (India); Bandyopadhyay, M.; Saxena, Y. C. [Institute for Plasma Research, Bhat, Gandhinagar 382 428 (India)

    2014-10-28T23:59:59.000Z

    Experimental results on effect of adding argon gas to hydrogen plasma in a multi-cusp dusty plasma device are reported. Addition of argon modifies plasma density, electron temperature, degree of hydrogen dissociation, dust current as well as dust charge. From the dust charging profile, it is observed that the dust current and dust charge decrease significantly up to 40% addition of argon flow rate in hydrogen plasma. But beyond 40% of argon flow rate, the changes in dust current and dust charge are insignificant. Results show that the addition of argon to hydrogen plasma in a dusty plasma device can be used as a tool to control the dust charging in a low pressure dusty plasma.

  3. Benchmarking of the MIT High Temperature Gas-cooled Reactor TRISO-coated particle fuel performance model

    E-Print Network [OSTI]

    Stawicki, Michael A

    2006-01-01T23:59:59.000Z

    MIT has developed a Coated Particle Fuel Performance Model to study the behavior of TRISO nuclear fuels. The code, TIMCOAT, is designed to assess the mechanical and chemical condition of populations of coated particles and ...

  4. Electrostatic dust detector

    DOE Patents [OSTI]

    Skinner, Charles H. (Lawrenceville, NJ)

    2006-05-02T23:59:59.000Z

    An apparatus for detecting dust in a variety of environments which can include radioactive and other hostile environments both in a vacuum and in a pressurized system. The apparatus consists of a grid coupled to a selected bias voltage. The signal generated when dust impacts and shorts out the grid is electrically filtered, and then analyzed by a signal analyzer which is then sent to a counter. For fine grids a correlation can be developed to relate the number of counts observed to the amount of dust which impacts the grid.

  5. Tracking shocked dust: State estimation for a complex plasma during a shock wave

    SciTech Connect (OSTI)

    Oxtoby, Neil P.; Ralph, Jason F.; Durniak, Celine; Samsonov, Dmitry [Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool, L69 3GJ (United Kingdom)

    2012-01-15T23:59:59.000Z

    We consider a two-dimensional complex (dusty) plasma crystal excited by an electrostatically-induced shock wave. Dust particle kinematics in such a system are usually determined using particle tracking velocimetry. In this work we present a particle tracking algorithm which determines the dust particle kinematics with significantly higher accuracy than particle tracking velocimetry. The algorithm uses multiple extended Kalman filters to estimate the particle states and an interacting multiple model to assign probabilities to the different filters. This enables the determination of relevant physical properties of the dust, such as kinetic energy and kinetic temperature, with high precision. We use a Hugoniot shock-jump relation to calculate a pressure-volume diagram from the shocked dust kinematics. Calculation of the full pressure-volume diagram was possible with our tracking algorithm, but not with particle tracking velocimetry.

  6. MODEL FOR DETERMINING THE EFFECTIVE THERMAL CONDUCTIVITY OF PARTICLE BEDS WITH HIGH SOLID-TO-GAS THERMAL

    E-Print Network [OSTI]

    Abdou, Mohamed

    -TO-GAS THERMAL CONDUCTIVITY RATIO A.R. Raffray, Z. Gorbis, A. Badawi, M.S. Tillack, A.Y. Ying, and M. A. Abdou

  7. Spatiotemporal evolution of dielectric driven cogenerated dust density waves

    SciTech Connect (OSTI)

    Sarkar, Sanjib; Bose, M. [Department of Physics, Jadavpur University, Kolkata 700032 (India)] [Department of Physics, Jadavpur University, Kolkata 700032 (India); Mukherjee, S. [FCIPT, Institute for Plasma Research, Gandhinagar 382428 (India)] [FCIPT, Institute for Plasma Research, Gandhinagar 382428 (India); Pramanik, J. [Kharagpur College, Kharagpur 721305, West Bengal (India)] [Kharagpur College, Kharagpur 721305, West Bengal (India)

    2013-06-15T23:59:59.000Z

    An experimental observation of spatiotemporal evolution of dust density waves (DDWs) in cogenerated dusty plasma in the presence of modified field induced by glass plate is reported. Various DDWs, such as vertical, oblique, and stationary, were detected simultaneously for the first time. Evolution of spatiotemporal complexity like bifurcation in propagating wavefronts is also observed. As dust concentration reaches extremely high value, the DDW collapses. Also, the oblique and nonpropagating mode vanishes when we increase the number of glass plates, while dust particles were trapped above each glass plates showing only vertical DDWs.

  8. Intergalactic dust and its photoelectric heating

    E-Print Network [OSTI]

    Akio K. Inoue; Hideyuki Kamaya

    2008-10-31T23:59:59.000Z

    We have examined the dust photoelectric heating in the intergalactic medium (IGM). The heating rate in a typical radiation field of the IGM is represented by $\\Gamma_{\\rm pe} = 1.2\\times10^{-34}$ erg s$^{-1}$ cm$^{-3}$ $({\\cal D}/10^{-4})(n_{\\rm H}/10^{-5} {\\rm cm^{-3}})^{4/3} (J_{\\rm L}/10^{-21} {\\rm erg s^{-1} cm^{-2} Hz^{-1} sr^{-1}})^{2/3} (T/10^4 {\\rm K})^{-1/6}$, where ${\\cal D}$ is the dust-to-gas mass ratio, $n_{\\rm H}$ is the hydrogen number density, $J_{\\rm L}$ is the mean intensity at the hydrogen Lyman limit of the background radiation, and $T$ is the gas temperature, if we assume the new X-ray photoelectric yield model by Weingartner et al. (2006) and the dust size distribution in the Milky Way by Mathis, Rumpl, & Nordsieck (1977). This heating rate dominates the HI and HeII photoionization heating rates when the hydrogen number density is less than $\\sim10^{-6}$ cm$^{-3}$ if ${\\cal D}=10^{-4}$ which is 1% of that in the Milky Way, although the heating rate is a factor of 2--4 smaller than that with the old yield model by Weingartner & Draine (2001). The grain size distribution is very important. If only large ($\\ge0.1$ $\\mu$m) grains exist in the IGM, the heating rate is reduced by a factor of $\\simeq5$. Since the dust heating is more efficient in a lower density medium relative to the photoionization heating, it may cause an inverted temperature--density relation in the low density IGM suggested by Bolton et al. (2008). Finally, we have found that the dust heating is not very important in the mean IGM before the cosmic reionization.

  9. Dust acoustic solitary and shock excitations in a Thomas-Fermi magnetoplasma

    SciTech Connect (OSTI)

    Rahim, Z.; Qamar, A. [Institute of Physics and Electronics, University of Peshawar, Peshawar 25000 (Pakistan); National Center for Physics (NCP) at QAU Campus, Shahdra Valley Road, Islamabad 44000 (Pakistan); Ali, S. [National Center for Physics (NCP) at QAU Campus, Shahdra Valley Road, Islamabad 44000 (Pakistan)

    2014-07-15T23:59:59.000Z

    The linear and nonlinear properties of dust-acoustic waves are investigated in a collisionless Thomas-Fermi magnetoplasma, whose constituents are electrons, ions, and negatively charged dust particles. At dust time scale, the electron and ion number densities follow the Thomas-Fermi distribution, whereas the dust component is described by the classical fluid equations. A linear dispersion relation is analyzed to show that the wave frequencies associated with the upper and lower modes are enhanced with the variation of dust concentration. The effect of the latter is seen more strongly on the upper mode as compared to the lower mode. For nonlinear analysis, we obtain magnetized Korteweg-de Vries (KdV) and Zakharov-Kuznetsov (ZK) equations involving the dust-acoustic solitary waves in the framework of reductive perturbation technique. Furthermore, the shock wave excitations are also studied by allowing dissipation effects in the model, leading to the Korteweg-de Vries-Burgers (KdVB) and ZKB equations. The analysis reveals that the dust-acoustic solitary and shock excitations in a Thomas-Fermi plasma are strongly influenced by the plasma parameters, e.g., dust concentration, dust temperature, obliqueness, magnetic field strength, and dust fluid viscosity. The present results should be important for understanding the solitary and shock excitations in the environments of white dwarfs or supernova, where dust particles can exist.

  10. Method and apparatus for measuring surface density of explosive and inert dust in stratified layers

    DOE Patents [OSTI]

    Sapko, Michael J. (Finleyville, PA); Perlee, Henry E. (Bethel Park, PA)

    1988-01-01T23:59:59.000Z

    A method for determining the surface density of coal dust on top of rock dust or rock dust on top of coal dust is disclosed which comprises directing a light source at either a coal or rock dust layer overlaying a substratum of the other, detecting the amount of light reflected from the deposit, generating a signal from the reflected light which is converted into a normalized output (V), and calculating the surface density from the normalized output. The surface density S.sub.c of coal dust on top of rock dust is calculated according to the equation: S.sub.c =1/-a.sub.c ln(V) wherein a.sub.c is a constant for the coal dust particles, and the surface density S.sub.r of rock dust on top of coal dust is determined by the equation: ##EQU1## wherein a.sub.r is a constant based on the properties of the rock dust particles. An apparatus is also disclosed for carrying out the method of the present invention.

  11. Development of Criteria and Identification of Particle Cluster Size Based on Measurements of Void Fraction in Gas-Solid Systems

    SciTech Connect (OSTI)

    David Roelant; Seckin Gokaltun

    2009-06-30T23:59:59.000Z

    A circulating fluidized bed (CFB) built at FIU was used to study particle motion in the riser in order to simulate flow regimes in a cold gasifier. High speed imaging was used in order to capture the dynamics of the particles flowing in the riser. The imaging method used here is called the shadow sizing technique which allowed the determination of particle areas and trajectories at various flow rates in the riser. The solid volume fraction and particle velocities calculated using the images acquired during the experiments can be related to granular temperature in order to detect formations of clusters in the riser section of the CFB. The shadow sizing technique was observed to be an effective method in detecting dynamics of particles in motion and formation of clusters when supported with high-speed imaging.

  12. Interpretation of Wild 2 Dust Fine Structure: Comparison of Stardust Aluminium Foil Craters to the Three-Dimensional Shape of Experimental Impacts by Artificial Aggregate Particles and Meteorite Powders

    SciTech Connect (OSTI)

    Kearsley, A T; Burchell, M J; Price, M C; Graham, G A; Wozniakiewicz, P J; Cole, M J; Foster, N J; Teslich, N

    2009-12-10T23:59:59.000Z

    New experimental results show that Stardust crater morphology is consistent with interpretation of many larger Wild 2 dust grains being aggregates, albeit most of low porosity and therefore relatively high density. The majority of large Stardust grains (i.e. those carrying most of the cometary dust mass) probably had density of 2.4 g cm{sup -3} (similar to soda-lime glass used in earlier calibration experiments) or greater, and porosity of 25% or less, akin to consolidated carbonaceous chondrite meteorites, and much lower than the 80% suggested for fractal dust aggregates. Although better size calibration is required for interpretation of the very smallest impacting grains, we suggest that aggregates could have dense components dominated by {micro}m-scale and smaller sub-grains. If porosity of the Wild 2 nucleus is high, with similar bulk density to other comets, much of the pore-space may be at a scale of tens of micrometers, between coarser, denser grains. Successful demonstration of aggregate projectile impacts in the laboratory now opens the possibility of experiments to further constrain the conditions for creation of bulbous (Type C) tracks in aerogel, which we have observed in recent shots. We are also using mixed mineral aggregates to document differential survival of pristine composition and crystalline structure in diverse fine-grained components of aggregate cometary dust analogues, impacted onto both foil and aerogel under Stardust encounter conditions.

  13. Research on thermophoretic and inertial aspects of ash particle deposition on heat exchanger surfaces in coal-fired equipment

    SciTech Connect (OSTI)

    Rosner, D.E.

    1989-03-01T23:59:59.000Z

    Little is yet known (theoretically or experimentally) about the simultaneous effects of particle inertia, particle thermophoresis and high mass loading on the important engineering problem of predicting deposition rates from flowing dusty'' gases. For this reason, we investigate the motion of particles present at nonnegligible mass loading in a flowing nonisothermal gaseous medium and their deposition on strongly cooled or heated solid objects by examining the instructive case of steady axisymmetric dusty gas'' flow between two infinite disks: an inlet (porous) disk and the impermeable target'' disk -- a flow not unlike that encountered in recent seeded-flame experiments. Since this stagnation flow/geometry admits interesting self-similar solutions at all Reynolds numbers, we are able to predict laminar flow mass-, momentum- and energy-transfer rate coefficients over a wide range of particle mass loadings, dimensionless particle relaxation times (Stokes numbers), dimensionless thermophoretic diffusivities, and gas Reynolds numbers. As a by-product, we illustrate the accuracy and possible improvement of our previous diffusion model'' for tightly coupled dusty gas systems. Moreover, we report new results illustrating the dependence of the important critical'' Stokes number (for incipient particle impaction) on particle mass loading and wall/gas temperature ratio for dust-laden gas motion towards overheated'' solid surfaces. The present formulation and insulating transport coefficients should not only be useful in explaining/predicting recent deposition rate trends in seeded'' flame experiments, but also highly mass-loaded systems of technological interest.

  14. Dust-acoustic waves in nonuniform dusty plasma in presence of polarization force

    SciTech Connect (OSTI)

    Asaduzzaman, M.; Mamun, A. A.; Ashrafi, K. S. [Department of Physics, Jahangirnagar University, Savar, Dhaka-1342 (Bangladesh)

    2011-11-15T23:59:59.000Z

    The effects of the dust density nonuniformity and the polarization force on linear propagation of the dust-acoustic waves in a nonuniform dusty plasma (consisting of electrons, ions, and arbitrarily charged dust particles) have been theoretically investigated. It has been shown that the linear dispersion properties of the dust-acoustic (DA) waves have been significantly modified by the dust density nonuniformity, dust polarity, and the polarization force. It is also found here that the phase speed of the DA waves is decreased by the effects of polarization force, and that their amplitude increases with the decrease of equilibrium dust number density. The different situations, which are relevant to different space and laboratory dusty plasmas, have been briefly discussed.

  15. Effect of energetic electrons on dust charging in hot cathode filament discharge

    SciTech Connect (OSTI)

    Kakati, B.; Kausik, S. S.; Saikia, B. K. [Centre of Plasma Physics, Institute for Plasma Research, Nazirakhat, Sonapur 782 402, Kamrup, Assam (India); Bandyopadhyay, M. [ITER-India, Institute for Plasma Research, Bhat, Gandhinagar 382 428 (India)

    2011-03-15T23:59:59.000Z

    The effect of energetic electrons on dust charging for different types of dust is studied in hydrogen plasma. The hydrogen plasma is produced by hot cathode filament discharge method in a dusty plasma device. A full line cusped magnetic field cage is used to confine the plasma elements. To study the plasma parameters for various discharge conditions, a cylindrical Langmuir probe having 0.15 mm diameter and 10.0 mm length is used. An electronically controlled dust dropper is used to drop the dust particles into the plasma. For different discharge conditions, the dust current is measured using a Faraday cup connected to an electrometer. The effect of secondary emission as well as discharge voltage on charging of dust grains in hydrogen plasma is studied with different dust.

  16. Extraplanar Dust in Spiral Galaxies: Observations and Implications

    E-Print Network [OSTI]

    J. Christopher Howk

    1999-10-05T23:59:59.000Z

    Recent optical and submillimeter observations have begun to probe the existence of dust grains in the halos of spiral galaxies. I review our own work in this area which employs high-resolution optical images of edge-on spiral galaxies to trace high-z dust in absorption against the background stellar light of the galaxies. We have found that a substantial fraction of such galaxies (>50%) show extensive webs of dust-bearing clouds to heights z>2 kpc. Extraplanar dust in galaxies is statistically correlated with extraplanar diffuse ionized gas, though there is no evidence for a direct, physical relationship between these two phases of the high-z interstellar medium. The dense high-z clouds individually have masses estimated to be >10^5} to 10^6 solar masses. The detailed properties of the observed dust structures suggest the clouds seen in our images may represent the dense phase of a multiphase ISM at high-z. Such dense clouds can have an important effect on the observed light distribution in spiral galaxies. I discuss the effects such high-z dust can have on quantitative measures of the vertical structure of stars and ionized gas in edge-on systems.

  17. Study of Particle Rotation Effect in Gas-Solid Flows using Direct Numerical Simulation with a Lattice Boltzmann Method

    SciTech Connect (OSTI)

    Kwon, Kyung; Fan, Liang-Shih; Zhou, Qiang; Yang, Hui

    2014-09-30T23:59:59.000Z

    A new and efficient direct numerical method with second-order convergence accuracy was developed for fully resolved simulations of incompressible viscous flows laden with rigid particles. The method combines the state-of-the-art immersed boundary method (IBM), the multi-direct forcing method, and the lattice Boltzmann method (LBM). First, the multi-direct forcing method is adopted in the improved IBM to better approximate the no-slip/no-penetration (ns/np) condition on the surface of particles. Second, a slight retraction of the Lagrangian grid from the surface towards the interior of particles with a fraction of the Eulerian grid spacing helps increase the convergence accuracy of the method. An over-relaxation technique in the procedure of multi-direct forcing method and the classical fourth order Runge-Kutta scheme in the coupled fluid-particle interaction were applied. The use of the classical fourth order Runge-Kutta scheme helps the overall IB-LBM achieve the second order accuracy and provides more accurate predictions of the translational and rotational motion of particles. The preexistent code with the first-order convergence rate is updated so that the updated new code can resolve the translational and rotational motion of particles with the second-order convergence rate. The updated code has been validated with several benchmark applications. The efficiency of IBM and thus the efficiency of IB-LBM were improved by reducing the number of the Lagragian markers on particles by using a new formula for the number of Lagrangian markers on particle surfaces. The immersed boundary-lattice Boltzmann method (IBLBM) has been shown to predict correctly the angular velocity of a particle. Prior to examining drag force exerted on a cluster of particles, the updated IB-LBM code along with the new formula for the number of Lagrangian markers has been further validated by solving several theoretical problems. Moreover, the unsteadiness of the drag force is examined when a fluid is accelerated from rest by a constant average pressure gradient toward a steady Stokes flow. The simulation results agree well with the theories for the short- and long-time behavior of the drag force. Flows through non-rotational and rotational spheres in simple cubic arrays and random arrays are simulated over the entire range of packing fractions, and both low and moderate particle Reynolds numbers to compare the simulated results with the literature results and develop a new drag force formula, a new lift force formula, and a new torque formula. Random arrays of solid particles in fluids are generated with Monte Carlo procedure and Zinchenko's method to avoid crystallization of solid particles over high solid volume fractions. A new drag force formula was developed with extensive simulated results to be closely applicable to real processes over the entire range of packing fractions and both low and moderate particle Reynolds numbers. The simulation results indicate that the drag force is barely affected by rotational Reynolds numbers. Drag force is basically unchanged as the angle of the rotating axis varies.

  18. Dust Cooling in Supernova Remnants in the Large Magellanic Cloud

    E-Print Network [OSTI]

    Seok, Ji Yeon; Hirashita, Hiroyuki

    2015-01-01T23:59:59.000Z

    The infrared-to-X-ray (IRX) flux ratio traces the relative importance of dust cooling to gas cooling in astrophysical plasma such as supernova remnants (SNRs). We derive IRX ratios of SNRs in the LMC using Spitzer and Chandra SNR survey data and compare them with those of Galactic SNRs. IRX ratios of all the SNRs in the sample are found to be moderately greater than unity, indicating that dust grains are a more efficient coolant than gas although gas cooling may not be negligible. The IRX ratios of the LMC SNRs are systematically lower than those of the Galactic SNRs. As both dust cooling and gas cooling pertain to the properties of the interstellar medium, the lower IRX ratios of the LMC SNRs may reflect the characteristics of the LMC, and the lower dust-to- gas ratio (a quarter of the Galactic value) is likely to be the most significant factor. The observed IRX ratios are compared with theoretical predictions that yield IRX ratios an order of magnitude larger. This discrepancy may originate from the dearth ...

  19. Electromagnetic Radiation and Motion of Real Particle

    E-Print Network [OSTI]

    Jozef Klacka

    2001-06-21T23:59:59.000Z

    Relativistically covariant equation of motion for real dust particle under the action of electromagnetic radiation is derived. The particle is neutral in charge. Equation of motion is expressed in terms of particle's optical properties, standardly used in optics for stationary particles.

  20. Dynamical modeling of the Deep Impact dust ejecta cloud

    E-Print Network [OSTI]

    Tanyu Bonev; Nancy Ageorges; Stefano Bagnulo; Luis Barrera; Hermann B{ö}hnhardt; Olivier Hainaut; Emmanuel Jehin; Hans-Ullrich K{ä}ufl; Florian Kerber; Gaspare LoCurto; Jean Manfroid; Olivier Marco; Eric Pantin; Emanuela Pompei; Ivo Saviane; Fernando Selman; Chris Sterken; Heike Rauer; Gian Paolo Tozzi; Michael Weiler

    2007-03-21T23:59:59.000Z

    The collision of Deep Impact with comet 9P/Tempel 1 generated a bright cloud of dust which dissipated during several days after the impact. The brightness variations of this cloud and the changes of its position and shape are governed by the physical properties of the dust grains. We use a Monte Carlo model to describe the evolution of the post-impact dust plume. The results of our dynamical simulations are compared to the data obtained with FORS2, the FOcal Reducer and low dispersion Spectrograph for the VLT of the European Southern Observatory (ESO), to derive the particle size distribution and the total amount of material contained in the dust ejecta cloud.

  1. The dusty MOCASSIN: fully self-consistent 3D photoionisation and dust radiative transfer models

    E-Print Network [OSTI]

    B. Ercolano; M. J. Barlow; P. J. Storey

    2005-07-02T23:59:59.000Z

    We present the first 3D Monte Carlo (MC) photoionisation code to include a fully self-consistent treatment of dust radiative transfer (RT) within a photoionised region. This is the latest development (Version 2.0) of the gas-only photoionisation code MOCASSIN (Ercolano et al., 2003a), and employs a stochastic approach to the transport of radiation, allowing both the primary and secondary components of the radiation field to be treated self-consistently, whilst accounting for the scattering of radiation by dust grains mixed with the gas, as well as the absorption and emission of radiation by both the gas and the dust components. A set of rigorous benchmark tests have been carried out for dust-only spherically symmetric geometries and 2D disk configurations. MOCASSIN's results are found to be in agreement with those obtained by well established dust-only RT codes that employ various approaches to the solution of the RT problem. A model of the dust and of the photoionised gas components of the planetary nebula (PN) NGC 3918 is also presented as a means of testing the correct functioning of the RT procedures in a case where both gas and dust opacities are present. The two components are coupled via the heating of dust grains by the absorption of both UV continuum photons and resonance line photons emitted by the gas. The MOCASSIN results show agreement with those of a 1D dust and gas model of this nebula published previously, showing the reliability of the new code, which can be applied to a variety of astrophysical environments.

  2. Dynamics of the electric current in an ideal electron gas: a sound mode inside the quasi-particles

    E-Print Network [OSTI]

    Sašo Grozdanov; Janos Polonyi

    2015-01-26T23:59:59.000Z

    We study the equation of motion for the Noether current in an electron gas within the framework of the Schwinger-Keldysh Closed-Time-Path formalism. The equation is shown to be highly non-linear and irreversible even for a non-interacting, ideal gas of electrons at non-zero density. We truncate the linearised equation of motion, written as the Laurent series in Fourier space, so that the resulting expressions are local in time, both at zero and at small finite temperatures. Furthermore, we show that the one-loop Coulomb interactions only alter the physical picture quantitatively, while preserving the characteristics of the dynamics that the electric current exhibits in the absence of interactions. As a result of the composite nature of the Noether current, composite sound waves are found to be the dominant IR collective excitations at length scales between the inverse Fermi momentum and the mean free path that would exist in an interacting electron gas. We also discuss the difference and the transition between the hydrodynamical regime of an ideal gas, defined in this work, and the hydrodynamical regime in phenomenological hydrodynamics, which is normally used for the description of interacting gases.

  3. Evaluation of an Electrostatic Dust Removal System with Potential Application in Next-Step Fusion Devices

    SciTech Connect (OSTI)

    Friesen, F. QL. [Grinnell College, 1115 8th Avenue, Grinnell, IA 50112-1616

    2011-01-20T23:59:59.000Z

    The ability to manage inventories of carbon, tritium, and high-Z elements in fusion plasmas depends on means for effective dust removal. A dust conveyor, based on a moving electrostatic potential well, was tested with particles of tungsten, carbon, glass and sand. A digital microscope imaged a representative portion of the conveyor, and dust particle size and volume distributions were derived before and after operation. About 10 mm3 volume of carbon and tungsten particles were moved in under 5 seconds. The highest driving amplitude tested of 3 kV was the most effective. The optimal driving frequency was 210 Hz (maximum tested) for tungsten particles, decreasing to below 60 Hz for the larger sand particles. Measurements of particle size and volume distributions after 10 and 100 cycles show the breaking apart of agglomerated carbon, and the change in particle distribution over short timescales (<1 s).

  4. Method of removing SO.sub.2, NO.sub.X and particles from gas mixtures using streamer corona

    DOE Patents [OSTI]

    Mizuno, Akira (Toyohashi, JP); Clements, Judson S. (Tallahassee, FL)

    1987-01-01T23:59:59.000Z

    A method for converting sulfur dioxide and/or nitrogen oxide gases to acid mist and or particle aerosols is disclosed in which the gases are passed through a streamer corona discharge zone having electrodes of a wire-cylinder or wire-plate geometry.

  5. Dynamics of the electric current in an ideal electron gas: a sound mode inside the quasi-particles

    E-Print Network [OSTI]

    Grozdanov, Sašo

    2015-01-01T23:59:59.000Z

    We study the equation of motion for the Noether current in an electron gas within the framework of the Schwinger-Keldysh Closed-Time-Path formalism. The equation is shown to be highly non-linear and irreversible even for a non-interacting, ideal gas of electrons at non-zero density. We truncate the linearised equation of motion, written as the Laurent series in Fourier space, so that the resulting expressions are local in time, both at zero and at small finite temperatures. Furthermore, we show that the one-loop Coulomb interactions only alter the physical picture quantitatively, while preserving the characteristics of the dynamics that the electric current exhibits in the absence of interactions. As a result of the composite nature of the Noether current, composite sound waves are found to be the dominant IR collective excitations at length scales between the inverse Fermi momentum and the mean free path that would exist in an interacting electron gas. We also discuss the difference and the transition betwee...

  6. Light Scattering by Ice Crystals and Mineral Dust Aerosols in the Atmosphere

    E-Print Network [OSTI]

    Bi, Lei

    2012-07-16T23:59:59.000Z

    Modeling the single-scattering properties of nonspherical particles in the atmo¬sphere (in particular, ice crystals and dust aerosols) has important applications to climate and remote sensing studies. The ?rst part of the dissertation (Chapters II...

  7. Modelling of mineral dust for interglacial and glacial climate conditions with a focus on Antarctica

    SciTech Connect (OSTI)

    Sudarchikova, Natalia; Mikolajewicz, Uwe; Timmreck, C.; O'Donnell, D.; Schurgers, G.; Sein, Dmitry; Zhang, Kai

    2015-01-01T23:59:59.000Z

    Mineral dust cycle responds to insolation-induced climate change and plays an important role in the climate system by affecting the radiative balance of the atmosphere. Polar ice cores provide unique information about deposition of aeolian dust particles in the past which indicates climate variability. In the current study the dust cycle in different climate conditions simulated by ECHAM5-HAM is analyzed. The study is focused on the Southern Hemisphere with emphasis on the Antarctic region. The investigated periods include four interglacial time-slices: the pre-industrial control (CTRL), mid-Holocene (6,000 years BP), Eemian (126,000 years BP), last glacial inception (115,000 years BP) and one glacial time interval: Last Glacial Maximum (LGM) (21,000 years BP). This study is a first attempt to simulate past interglacial dust cycles and to understand the quantitative contribution of different processes, such as emission, atmospheric transport and precipitation to the total dust deposition in Antarctica. Results suggest increased deposition of mineral dust globally and in Antarctica in the past interglacial periods relative to the preindustrial CTRL simulation. Maximum dust deposition in Antarctica was simulated for the glacial period. One of the major factors responsible for the increase of dust deposition in the mid-Holocene and Eemian is enhanced Southern Hemisphere dust emissions. The moderate change of dust deposition in Antarctica in the last glacial inception period is caused by the slightly stronger poleward atmospheric transport efficiency compared to the pre-industrial. In the LGM simulation, dust deposition over Antarctica is substantially increased due to 2.6 times higher Southern Hemisphere dust emissions, 2 times stronger atmospheric transport towards Antarctica, and 30% weaker precipitation over the Southern Ocean. The model is able to reproduce the order of magnitude of dust deposition globally and in Antarctica for the pre-industrial and LGM climate. However more records are needed to validate simulated dust deposition for the past interglacial time-slices.

  8. Proxies and Measurement Techniques for Mineral Dust in

    E-Print Network [OSTI]

    Howat, Ian M.

    and laser-sensing particle detector), soluble ion analysis (ion chromatography and continuous flow analysis. All methods correlate very well among each other, but the ratios of glacial age to Holocene fluxes. Projects dedicated to this, such as DIRTMAP (7), rely on modeling studies and on dust

  9. Development of an Electrostatic Dust Detector for use in a Tokamak Reactor

    SciTech Connect (OSTI)

    A. Bader; C.H. Skinner, A.L. Roquemore; S. Langish

    2003-09-10T23:59:59.000Z

    Initial results from a novel device to detect dust particles settling on remote surfaces are presented. Dust particle inventories are a concern in next-step fusion devices. The increase in duty cycle will lead to a scale-up in the amount of particles generated by plasma material interactions. These particles will be chemically and radiologically hazardous and it will be important to establish that the in-vessel particle inventory is within regulatory limits. The detection device consists of two interlocking combs of closely spaced conductive traces on a Teflon circuit board. When a DC bias is applied impinging dust creates a transient short circuit between the traces. The increase in bias current generates a signal pulse that is counted by standard nuclear counting electronics. We present data on the response of the device in air and vacuum to carbon particles.

  10. A preliminary assessment of beryllium dust oxidation during a wet bypass accident in a fusion reactor

    SciTech Connect (OSTI)

    Brad J. Merrill; Richard L. Moore; J. Phillip Sharp

    2008-09-01T23:59:59.000Z

    A beryllium dust oxidation model has been developed at the Idaho National Laboratory (INL) by the Fusion Safety Program (FSP) for the MELCOR safety computer code. The purpose of this model is to investigate hydrogen production from beryllium dust layers on hot surfaces inside a fusion reactor vacuum vessel (VV) during in-vessel loss-of-cooling accidents (LOCAs). This beryllium dust oxidation model accounts for the diffusion of steam into a beryllium dust layer, the oxidation of the dust particles inside this layer based on the beryllium-steam oxidation equations developed at the INL, and the effective thermal conductivity of this beryllium dust layer. This paper details this oxidation model and presents the results of the application of this model to a wet bypass accident scenario in the ITER device.

  11. Measurement of work function in CF? gas

    E-Print Network [OSTI]

    Wolfe, Ian C

    2010-01-01T23:59:59.000Z

    CF4 gas is useful in many applications, especially as a drift gas in particle detection chambers. In order to make accurate measurements of incident particles the properties of the drift gas must be well understood. An ...

  12. The dust mass in z > 6 normal star forming galaxies

    E-Print Network [OSTI]

    Mancini, Mattia; Graziani, Luca; Valiante, Rosa; Dayal, Pratika; Maio, Umberto; Ciardi, Benedetta; Hunt, Leslie K

    2015-01-01T23:59:59.000Z

    We interpret recent ALMA observations of z > 6 normal star forming galaxies by means of a semi-numerical method, which couples the output of a cosmological hydrodynamical simulation with a chemical evolution model which accounts for the contribution to dust enrichment from supernovae, asymptotic giant branch stars and grain growth in the interstellar medium. We find that while stellar sources dominate the dust mass of small galaxies, the higher level of metal enrichment experienced by galaxies with Mstar > 10^9 Msun allows efficient grain growth, which provides the dominant contribution to the dust mass. Even assuming maximally efficient supernova dust production, the observed dust mass of the z = 7.5 galaxy A1689-zD1 requires very efficient grain growth. This, in turn, implies that in this galaxy the average density of the cold and dense gas, where grain growth occurs, is comparable to that inferred from observations of QSO host galaxies at similar redshifts. Although plausible, the upper limits on the dust ...

  13. HTGR Dust Safety Issues and Needs for Research and Development

    SciTech Connect (OSTI)

    Paul W. Humrickhouse

    2011-06-01T23:59:59.000Z

    This report presents a summary of high temperature gas-cooled reactor dust safety issues. It draws upon a literature review and the proceedings of the Very High Temperature Reactor Dust Assessment Meeting held in Rockville, MD in March 2011 to identify and prioritize the phenomena and issues that characterize the effect of carbonaceous dust on high temperature reactor safety. It reflects the work and input of approximately 40 participants from the U.S. Department of Energy and its National Labs, the U.S. Nuclear Regulatory Commission, industry, academia, and international nuclear research organizations on the topics of dust generation and characterization, transport, fission product interactions, and chemical reactions. The meeting was organized by the Idaho National Laboratory under the auspices of the Next Generation Nuclear Plant Project, with support from the U.S. Nuclear Regulatory Commission. Information gleaned from the report and related meetings will be used to enhance the fuel, graphite, and methods technical program plans that guide research and development under the Next Generation Nuclear Plant Project. Based on meeting discussions and presentations, major research and development needs include: generating adsorption isotherms for fission products that display an affinity for dust, investigating the formation and properties of carbonaceous crust on the inside of high temperature reactor coolant pipes, and confirming the predominant source of dust as abrasion between fuel spheres and the fuel handling system.

  14. Dust Masses, PAH Abundances, and Starlight Intensities in the SINGS Galaxy Sample

    E-Print Network [OSTI]

    B. T. Draine; D. A. Dale; G. Bendo; K. D. Gordon; J. D. T. Smith; L. Armus; C. W. Engelbracht; G. Helou; R. C. Kennicutt; A. Li; H. Roussel; F. Walter; D. Calzetti; J. Moustakas; E. J. Murphy; G. H. Rieke; C. Bot; D. J. Hollenbach; K. Sheth; H. I. Teplitz

    2007-03-09T23:59:59.000Z

    Physical dust models are presented for 65 galaxies in the SINGS survey that are strongly detected in the four IRAC bands and three MIPS bands. For each galaxy we estimate (1) the total dust mass, (2) the fraction of the dust mass contributed by PAHs, and (3) the intensity of the starlight heating the dust grains. We find that spiral galaxies have dust properties resembling the dust in the local region of the Milky Way, with similar dust-to-gas ratio, and similar PAH abundance. The observed SEDs, including galaxies with SCUBA photometry, can be reproduced by dust models that do not require "cold" (Tmedia of galaxies with A_O=12+log(O/H)>8.1, grains contain a substantial fraction of interstellar Mg, Si and Fe. Galaxies with A_O8.1 have a median q_PAH=3.55%. The derived dust masses favor a value X_CO approx 4e20 cm^{-2}(K kms)^{-1} for the CO to H_2 conversion factor. Except for some starbursting systems (Mrk33, Tolo89, NGC3049), dust in the diffuse ISM dominates the IR power.

  15. Dust Masses, PAH Abundances, and Starlight Intensities in the SINGS Galaxy Sample

    E-Print Network [OSTI]

    Draine, B T; Bendo, G; Gordon, K D; Smith, J D T; Armus, L; Engelbracht, C W; Helou, G; Kennicutt, R C; Li, A; Roussel, H; Walter, F; Calzetti, D; Moustakas, J; Murphy, E J; Rieke, G H; Bot, C; Hollenbach, D J; Sheth, K; Teplitz, H I

    2007-01-01T23:59:59.000Z

    Physical dust models are presented for 65 galaxies in the SINGS survey that are strongly detected in the four IRAC bands and three MIPS bands. For each galaxy we estimate (1) the total dust mass, (2) the fraction of the dust mass contributed by PAHs, and (3) the intensity of the starlight heating the dust grains. We find that spiral galaxies have dust properties resembling the dust in the local region of the Milky Way, with similar dust-to-gas ratio, and similar PAH abundance. The observed SEDs, including galaxies with SCUBA photometry, can be reproduced by dust models that do not require "cold" (T8.1, grains contain a substantial fraction of interstellar Mg, Si and Fe. Galaxies with A_O8.1 have a median q_PAH=3.55%. The derived dust masses favor a value X_CO approx 4e20 cm^{-2}(K kms)^{-1} for the CO to H_2 conversion factor. Except for some starbursting systems (Mrk33, Tolo89, NGC3049), dust in the diffuse ISM dominates the IR power.

  16. Uncertainty in Modeling Dust Mass Balance and Radiative Forcing from Size Parameterization

    SciTech Connect (OSTI)

    Zhao, Chun; Chen, Siyu; Leung, Lai-Yung R.; Qian, Yun; Kok, Jasper; Zaveri, Rahul A.; Huang, J.

    2013-11-05T23:59:59.000Z

    This study examines the uncertainties in simulating mass balance and radiative forcing of mineral dust due to biases in the aerosol size parameterization. Simulations are conducted quasi-globally (180oW-180oE and 60oS-70oN) using the WRF24 Chem model with three different approaches to represent aerosol size distribution (8-bin, 4-bin, and 3-mode). The biases in the 3-mode or 4-bin approaches against a relatively more accurate 8-bin approach in simulating dust mass balance and radiative forcing are identified. Compared to the 8-bin approach, the 4-bin approach simulates similar but coarser size distributions of dust particles in the atmosphere, while the 3-mode pproach retains more fine dust particles but fewer coarse dust particles due to its prescribed og of each mode. Although the 3-mode approach yields up to 10 days longer dust mass lifetime over the remote oceanic regions than the 8-bin approach, the three size approaches produce similar dust mass lifetime (3.2 days to 3.5 days) on quasi-global average, reflecting that the global dust mass lifetime is mainly determined by the dust mass lifetime near the dust source regions. With the same global dust emission (~6000 Tg yr-1), the 8-bin approach produces a dust mass loading of 39 Tg, while the 4-bin and 3-mode approaches produce 3% (40.2 Tg) and 25% (49.1 Tg) higher dust mass loading, respectively. The difference in dust mass loading between the 8-bin approach and the 4-bin or 3-mode approaches has large spatial variations, with generally smaller relative difference (<10%) near the surface over the dust source regions. The three size approaches also result in significantly different dry and wet deposition fluxes and number concentrations of dust. The difference in dust aerosol optical depth (AOD) (a factor of 3) among the three size approaches is much larger than their difference (25%) in dust mass loading. Compared to the 8-bin approach, the 4-bin approach yields stronger dust absorptivity, while the 3-mode approach yields weaker dust absorptivity. Overall, on quasi-global average, the three size parameterizations result in a significant difference of a factor of 2~3 in dust surface cooling (-1.02~-2.87 W m-2) and atmospheric warming (0.39~0.96 W m-2) and in a tremendous difference of a factor of ~10 in dust TOA cooling (-0.24~-2.20 W m-2). An uncertainty of a factor of 2 is quantified in dust emission estimation due to the different size parameterizations. This study also highlights the uncertainties in modeling dust mass and number loading, deposition fluxes, and radiative forcing resulting from different size parameterizations, and motivates further investigation of the impact of size parameterizations on modeling dust impacts on air quality, climate, and ecosystem.

  17. Cotton Gin Dust Explosibility Determinations 

    E-Print Network [OSTI]

    Vanderlick, Francis Jerome

    2014-01-06T23:59:59.000Z

    COTTON GIN DUST EXPLOSIBILITY DETERMINATIONS A Thesis by FRANCIS JEROME VANDERLICK Submitted to the Office of Graduate and Professional Studies of Texas A&M University in partial fulfillment of the requirements for the degree... Francis Jerome Vanderlick ii ABSTRACT Following the recent Imperial sugar dust explosion in 2008, a comprehensive survey of past dust explosions was conducted by the Occupational Safety and Health Administration (OSHA) to determine potential...

  18. Particle Concentration At Planet Induced Gap Edges and Vortices: I. Inviscid 3-D Hydro Disks

    E-Print Network [OSTI]

    Zhu, Zhaohuan; Rafikov, Roman R; Bai, Xuening

    2013-01-01T23:59:59.000Z

    We perform a systematic study of the dynamics of dust particles in protoplanetary disks with embedded planets using global 2-D and 3-D inviscid hydrodynamic simulations. We implement Lagrangian particles into magnetohydrodynamic code Athena with cylindrical coordinates and explore the behavior of dust grains with sizes spanning more than 6 orders of magnitude --- from the well-coupled to decoupled limits. We find two distinct outcomes depending on the mass of the embedded planet, which is varied between 8 M_earth to 9 M_{J}. In the presence of a low mass planet (8 M_earth), two narrow gaps start to open in the gas on each side of the planet where the density waves shock. Although these gaps are quite shallow, they dramatically affect particle drift speed and cause significant, axisymmetric dust depletion near the planet. On the other hand, a more massive planet (>0.1 M_{J}) carves out a deeper gap with sharp edges, which are unstable to the formation of vortices that later merge into a single vortex. The vort...

  19. Composition and Reactions of Atmospheric Aerosol Particles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    large portion of the microscopic particles floating in the air originate from incomplete combustion of coal and oil and from dust storms. Once in the atmosphere, they can have...

  20. PROPERTIES AND SPATIAL DISTRIBUTION OF DUST EMISSION IN THE CRAB NEBULA

    SciTech Connect (OSTI)

    Temim, Tea; Sonneborn, George; Dwek, Eli; Arendt, Richard G. [Observational Cosmology Lab, Code 665, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Gehrz, Robert D. [Minnesota Institute for Astrophysics, University of Minnesota, 116 Church Street SE, Minneapolis, MN 55455 (United States); Slane, Patrick [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Roellig, Thomas L., E-mail: tea.temim@nasa.gov [NASA Ames Research Center, MS 245-6, Moffett Field, CA 94035-1000 (United States)

    2012-07-01T23:59:59.000Z

    Recent infrared (IR) observations of freshly formed dust in supernova remnants have yielded significantly lower dust masses than predicted by theoretical models and measured from high-redshift observations. The Crab Nebula's pulsar wind is thought to be sweeping up freshly formed supernova (SN) dust along with the ejected gas. The evidence for this dust was found in the form of an IR excess in the integrated spectrum of the Crab and in extinction against the synchrotron nebula that revealed the presence of dust in the filament cores. We present the first spatially resolved emission spectra of dust in the Crab Nebula acquired with the Infrared Spectrograph on board the Spitzer Space Telescope. The IR spectra are dominated by synchrotron emission and show forbidden line emission from S, Si, Ne, Ar, O, Fe, and Ni. We derived a synchrotron spectral map from the 3.6 and 4.5 {mu}m images, and subtracted this contribution from our data to produce a map of the residual continuum emission from dust. The dust emission appears to be concentrated along the ejecta filaments and is well described by an amorphous carbon or silicate grain compositions. We find a dust temperature of 55 {+-} 4 K for silicates and 60 {+-} 7 K for carbon grains. The total estimated dust mass is (1.2-12) Multiplication-Sign 10{sup -3} M{sub Sun }, well below the theoretical dust yield predicted for a core-collapse supernova. Our grain heating model implies that the dust grain radii are relatively small, unlike what is expected for dust grains formed in a Type IIP SN.

  1. Cotton Gin Dust Explosibility Determinations

    E-Print Network [OSTI]

    Vanderlick, Francis Jerome

    2014-01-06T23:59:59.000Z

    test method was found to be flawed. It used pressure as the only criterion for a dust explosion, utilized high energy ignition sources, limited the amount of oxygen, and had no requirement for a dust to have a minimum explosible concentration (MEC...

  2. Cyborg Bugs... and Neural Dust

    E-Print Network [OSTI]

    California at Irvine, University of

    Cyborg Bugs... and Neural Dust Michel M. Maharbiz © 2014 D.J. Seo Elad Alon system Seo D, et al. "Neural Dust: An Ultrasonic, Low Power SoluNon for Chronic Brain-Machine Interfaces," arXiv, Jul. 2013 Seo D, et al. "In Vitro Characteriza

  3. Raman Spectroscopy of Carbon Dust Samples from NSTX

    SciTech Connect (OSTI)

    Y. Raitses, C.H. Skinner, F. Jiang and T.S. Duffy

    2008-02-21T23:59:59.000Z

    The Raman spectrum of dust particles exposed to the NSTX plasma is different from the spectrum of unexposed particles scraped from an unused graphite tile. For the unexposed particles, the high energy G-mode peak (Raman shift ~1580 cm-1) is much stronger than the defect-induced D-mode peak (Raman shift ~ 1350 cm-1), a pattern that is consistent with Raman spectrum for commercial graphite materials. For dust particles exposed to the plasma, the ratio of G-mode to D-mode peaks is lower and becomes even less than 1. The Raman measurements indicate that the production of carbon dust particles in NSTX involves modifications of the physical and chemical structure of the original graphite material. These modifications are shown to be similar to those measured for carbon deposits from atmospheric pressure helium arc discharge with an ablating anode electrode made from a graphite tile material. We also demonstrate experimentally that heating to 2000-2700 K alone can not explain the observed structural modifications indicating that they must be due to higher temperatures needed for graphite vaporization, which is followed either by condensation or some plasma-induced processes leading to the formation of more disordered forms of carbon material than the original graphite.

  4. VARIABLE WINDS AND DUST FORMATION IN R CORONAE BOREALIS STARS

    SciTech Connect (OSTI)

    Clayton, Geoffrey C.; Zhang Wanshu [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803 (United States); Geballe, T. R., E-mail: gclayton@fenway.phys.lsu.edu, E-mail: wzhan21@lsu.edu, E-mail: tgeballe@gemini.edu [Gemini Observatory, 670 N. A'ohoku Place, Hilo, HI 96720 (United States)

    2013-08-01T23:59:59.000Z

    We have observed P-Cygni and asymmetric, blue-shifted absorption profiles in the He I {lambda}10830 lines of 12 R Coronae Borealis stars over short (1 month) and long (3 yr) timescales to look for variations linked to their dust-formation episodes. In almost all cases, the strengths and terminal velocities of the line vary significantly and are correlated with dust formation events. Strong absorption features with blue-shifted velocities {approx}400 km s{sup -1} appear during declines in visible brightness and persist for about 100 days after recovery to maximum brightness. Small residual winds of somewhat lower velocity are present outside of the decline and recovery periods. The correlations support models in which recently formed dust near the star is propelled outward at high speed by radiation pressure and drags the gas along with it.

  5. LUNAR DUST GRAIN CHARGING BY ELECTRON IMPACT: COMPLEX ROLE OF SECONDARY ELECTRON EMISSIONS IN SPACE ENVIRONMENTS

    SciTech Connect (OSTI)

    Abbas, M. M.; Craven, P. D.; LeClair, A. C.; Spann, J. F. [NASA-Marshall Space Flight Center, Huntsville, AL 35812 (United States); Tankosic, D., E-mail: Mian.M.Abbas@nasa.go [USRA/NASA-Marshall Space Flight Center, Huntsville, AL 35805 (United States)

    2010-08-01T23:59:59.000Z

    Dust grains in various astrophysical environments are generally charged electrostatically by photoelectric emissions with radiation from nearby sources, or by electron/ion collisions by sticking or secondary electron emissions (SEEs). The high vacuum environment on the lunar surface leads to some unusual physical and dynamical phenomena involving dust grains with high adhesive characteristics, and levitation and transportation over long distances. Knowledge of the dust grain charges and equilibrium potentials is important for understanding a variety of physical and dynamical processes in the interstellar medium, and heliospheric, interplanetary/planetary, and lunar environments. It has been well recognized that the charging properties of individual micron-/submicron-size dust grains are expected to be substantially different from the corresponding values for bulk materials. In this paper, we present experimental results on the charging of individual 0.2-13 {mu}m size dust grains selected from Apollo 11 and 17 dust samples, and spherical silica particles by exposing them to mono-energetic electron beams in the 10-200 eV energy range. The dust charging process by electron impact involving the SEEs discussed is found to be a complex charging phenomenon with strong particle size dependence. The measurements indicate substantial differences between the polarity and magnitude of the dust charging rates of individual small-size dust grains, and the measurements and model properties of corresponding bulk materials. A more comprehensive plan of measurements of the charging properties of individual dust grains for developing a database for realistic models of dust charging in astrophysical and lunar environments is in progress.

  6. 1014 IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. 36, NO. 4, AUGUST 2008 Dust-Cloud Dynamics in a Complex

    E-Print Network [OSTI]

    Boyer, Edmond

    is proposed. Index Terms--Charge, dust cloud, dusty plasma. ACOMPLEX (dusty) plasma is a partially ionized gas research program (FAST) under Contract FR060169. L. Couëdel is with the School of Physics, The University of the plasma are lost by diffusion to the walls of the reactor and by recombination on the dust

  7. Evaluation of Alternate Materials for Coated Particle Fuels for the Gas-Cooled Fast Reactor. Laboratory Directed Research and Development Program FY 2006 Final Report

    SciTech Connect (OSTI)

    Paul A. Demkowicz; Karen Wright; Jian Gan; David Petti; Todd Allen; Jake Blanchard

    2006-09-01T23:59:59.000Z

    Candidate ceramic materials were studied to determine their suitability as Gas-Cooled Fast Reactor particle fuel coatings. The ceramics examined in this work were: TiC, TiN, ZrC, ZrN, AlN, and SiC. The studies focused on (i) chemical reactivity of the ceramics with fission products palladium and rhodium, (ii) the thermomechanical stresses that develop in the fuel coatings from a variety of causes during burnup, and (iii) the radiation resiliency of the materials. The chemical reactivity of TiC, TiN, ZrC, and ZrN with Pd and Rh were all found to be much lower than that of SiC. A number of important chemical behaviors were observed at the ceramic-metal interfaces, including the formation of specific intermetallic phases and a variation in reaction rates for the different ceramics investigated. Based on the data collected in this work, the nitride ceramics (TiN and ZrN) exhibit chemical behavior that is characterized by lower reaction rates with Pd and Rh than the carbides TiC and ZrC. The thermomechanical stresses in spherical fuel particle ceramic coatings were modeled using finite element analysis, and included contributions from differential thermal expansion, fission gas pressure, fuel kernel swelling, and thermal creep. In general the tangential stresses in the coatings during full reactor operation are tensile, with ZrC showing the lowest values among TiC, ZrC, and SiC (TiN and ZrN were excluded from the comprehensive calculations due to a lack of available materials data). The work has highlighted the fact that thermal creep plays a critical role in the development of the stress state of the coatings by relaxing many of the stresses at high temperatures. To perform ion irradiations of sample materials, an irradiation beamline and high-temperature sample irradiation stage was constructed at the University of Wisconsin’s 1.7MV Tandem Accelerator Facility. This facility is now capable of irradiating of materials to high dose while controlling sample temperature up to 800ºC.

  8. Far Infrared Spitzer Observations of Elliptical Galaxies: Evidence for Extended Diffuse Dust

    E-Print Network [OSTI]

    Pasquale Temi; Fabrizio Brighenti; William G. Mathews

    2007-01-15T23:59:59.000Z

    Far-infrared Spitzer observations of elliptical galaxies are inconsistent with simple steady state models of dust creation in red giant stars and destruction by grain sputtering in the hot interstellar gas at T ~ 10^7 K. The flux at 24 microns correlates with optical fluxes, suggesting that this relatively hot dust is largely circumstellar. But fluxes at 70 and 160 microns do not correlate with optical fluxes. Elliptical galaxies with similar L_B have luminosities at 70 and 160 microns (L_70 and L_160) that vary over a factor ~ 100, implying an additional source of dust unrelated to that produced by ongoing local stellar mass loss. Neither L_70/L_B nor L_160/L_B correlate with the stellar age or metallicity. Optical line fluxes from warm gas at T ~ 10^4 K correlate weakly with L_70 and L_160, suggesting that the dust may be responsible for cooling this gas. Many normal elliptical galaxies have emission at 70 microns that is extended to 5-10 kpc. Extended far-infrared emission with sputtering lifetimes of ~10^8 yrs is difficult to maintain by mergers with gas-rich galaxies. Instead, we propose that this cold dust is buoyantly transported from reservoirs of dust in the galactic cores which is supplied by mass loss from stars in the core. Intermittent energy outbursts from AGNs can drive the buoyant outflow.

  9. Research on thermophoretic and inertial aspects of ash particle deposition on heat exchanger surfaces in coal-fired equipment. Quarterly technical report No. 10, December 1, 1988--February 28, 1989

    SciTech Connect (OSTI)

    Rosner, D.E.

    1989-03-01T23:59:59.000Z

    Little is yet known (theoretically or experimentally) about the simultaneous effects of particle inertia, particle thermophoresis and high mass loading on the important engineering problem of predicting deposition rates from flowing ``dusty`` gases. For this reason, we investigate the motion of particles present at nonnegligible mass loading in a flowing nonisothermal gaseous medium and their deposition on strongly cooled or heated solid objects by examining the instructive case of steady axisymmetric ``dusty gas`` flow between two infinite disks: an inlet (porous) disk and the impermeable ``target`` disk -- a flow not unlike that encountered in recent seeded-flame experiments. Since this stagnation flow/geometry admits interesting self-similar solutions at all Reynolds numbers, we are able to predict laminar flow mass-, momentum- and energy-transfer rate coefficients over a wide range of particle mass loadings, dimensionless particle relaxation times (Stokes numbers), dimensionless thermophoretic diffusivities, and gas Reynolds numbers. As a by-product, we illustrate the accuracy and possible improvement of our previous ``diffusion model`` for tightly coupled dusty gas systems. Moreover, we report new results illustrating the dependence of the important ``critical`` Stokes number (for incipient particle impaction) on particle mass loading and wall/gas temperature ratio for dust-laden gas motion towards ``overheated`` solid surfaces. The present formulation and insulating transport coefficients should not only be useful in explaining/predicting recent deposition rate trends in ``seeded`` flame experiments, but also highly mass-loaded systems of technological interest.

  10. On the dust environment of Main-Belt Comet 313P/Gibbs

    E-Print Network [OSTI]

    Pozuelos, F J; Licandro, J; Moreno, F

    2015-01-01T23:59:59.000Z

    We present observations carried out using the 10.4 m Gran Telescopio Canarias and an interpretative model of the dust environment of activated asteroid 313P/Gibbs. We discuss three different models relating to different values of the dust parameters, i.e, dust loss rate, maximum and minimum sizes of particles, power index of the size distribution, and emission pattern. The best model corresponds with an isotropic emission of particles which started on August 1st. The size of grains were in the range of $0.1-2000$ $\\mu$m, with velocities for 100 $\\mu$m particles between $0.4-1.9$ m$~$s$^{-1}$, with a dust production rate in the range of $0.2-0.8$ kg$~$s$^{-1}$. The dust tails' brightness and morphology are best interpreted in terms of a model of sustained and low dust emission driven by water-ice sublimation, spanning since 2014 August 1st, and triggered by a short impulsive event. This event produced an emission of small particles of about 0.1 $\\mu$m with velocities of $\\sim$4 m$~$s$^{-1}$. From our model we ...

  11. Fragmentation and Evolution of Molecular Clouds. II: The Effect of Dust Heating

    E-Print Network [OSTI]

    Urban, Andrea; Evans, Neal J

    2009-01-01T23:59:59.000Z

    We investigate the effect of heating by luminosity sources in a simulation of clustered star formation. Our heating method involves a simplified continuum radiative transfer method that calculates the dust temperature. The gas temperature is set by the dust temperature. We present the results of four simulations, two simulations assume an isothermal equation of state and the two other simulations include dust heating. We investigate two mass regimes, i.e., 84 Msun and 671 Msun, using these two different energetics algorithms. The mass functions for the isothermal simulations and simulations which include dust heating are drastically different. In the isothermal simulation, we do not form any objects with masses above 1 Msun. However, the simulation with dust heating, while missing some of the low-mass objects, forms high-mass objects (~20 Msun) which have a distribution similar to the Salpeter IMF. The envelope density profiles around the stars formed in our simulation match observed values around isolated, l...

  12. NASA Contractor Re Lunar Dust T

    E-Print Network [OSTI]

    Rathbun, Julie A.

    Photovoltaic Array Performance ..................................................................... 24 Correlation of Dust Accumulation and Power Component Performance ....................................... 22 Radiator Performance ............................................................................. 22

  13. EFFECT OF DUST ENRICHMENT ON SOLID AND LIQUID COMPOSITIONS IN EQUILIBRIUM WITH COSMIC GASES. D.S. Ebel1 and and L. Grossman1,2, 1Department of the Geophysical Sciences, 5734 South Ellis Ave.,

    E-Print Network [OSTI]

    Grossman, Lawrence

    EFFECT OF DUST ENRICHMENT ON SOLID AND LIQUID COMPOSITIONS IN EQUILIBRIUM WITH COSMIC GASES. D is that chondrule liquids formed by direct condensa- tion from nebular gas enriched in precondensed dust [4]. Both is enrichment in precon- densed dust [10, 11]. We have mapped equilibrium com- positions of liquid

  14. Dust kinetic Alfvén waves and streaming instability in a non-Maxwellian magnetoplasma

    SciTech Connect (OSTI)

    Rubab, N.; Jaffer, G. [Department of Space Science, Institute of Space Technology (IST), Islamabad Expressway, Islamabad 44000 (Pakistan); Ali, S. [National Centre for Physics (NCP) at Quaid-i-Azam University Campus, Shahdra Valley Road, Islamabad 44000 (Pakistan)

    2014-06-15T23:59:59.000Z

    The dust kinetic Alfvén wave (DKAW) instability is studied in a uniform dusty magnetoplasma by incorporating the superthermality effects of the electrons and perpendicularly streaming ?-distributed ions. The dispersion relation of the DKAW instability is investigated in the low-?{sub d} Lorentzian plasma limit. The solutions are analyzed for various scenarios of dusty and dusty-free plasmas. It is shown that the presence of dust particles and the cross-field superthermal ions sensibly modify the dispersion characteristics of the low-frequency DKAW. The present results are only valid for a frequency regime well below the dust cyclotron frequency. Numerical calculations are carried out for the growth rates by taking different dust parameters into account. It is found that the nonthermality is more effective for the dust kinetic Alfvén waves in the perpendicular direction as compared to the parallel one. The relevance of the results to the low-?{sub d} regions of space and astrophysical plasmas is highlighted.

  15. On the Evolution of Dust Mineralogy, From Protoplanetary Disks to Planetary Systems

    E-Print Network [OSTI]

    Oliveira, Isa; Pontoppidan, Klaus M; van Dishoeck, Ewine F; Augereau, Jean-Charles; Merin, Bruno

    2011-01-01T23:59:59.000Z

    Mineralogical studies of silicate features emitted by dust grains in protoplanetary disks and Solar System bodies can shed light on the progress of planet formation. The significant fraction of crystalline material in comets, chondritic meteorites and interplanetary dust particles indicates a modification of the almost completely amorphous ISM dust from which they formed. The production of crystalline silicates thus must happen in protoplanetary disks, where dust evolves to build planets and planetesimals. Different scenarios have been proposed, but it is still unclear how and when this happens. This paper presents dust grain mineralogy of a complete sample of protoplanetary disks in the young Serpens cluster. These results are compared to those in the young Taurus region and to sources that have retained their protoplanetary disks in the older Upper Scorpius and Eta Chamaeleontis stellar clusters, using the same analysis technique for all samples. This comparison allows an investigation of the grain mineralo...

  16. DIII-D Dust Particulate Characterization (June 1998 Vent)

    SciTech Connect (OSTI)

    Carmack, William Jonathan

    1999-01-01T23:59:59.000Z

    Dust is a key component of fusion power device accident source term. Understanding the amount of dust expected in fusion power devices and its physical and chemical characteristics is needed to verify assumptions currently used in safety analyses. An important part of this safety research and development work is to characterize dust from existing experimental tokamaks. In this report, we present the collection, data analysis methods used, and the characterization of dust particulate collected from various locations inside the General Atomics DIII-D vacuum vessel following the June 1998 vent. The collected particulate was analyzed at the Idaho National Engineering and Environmental Laboratory (INEEL). Two methods were used to collect particulate with the goal of preserving the particle size distribution and physical characteristics of the particulate. Choice of collection technique is important because the sampling method used can bias the particle size distribution collected. Vacuum collection on substrates and adhesion removal with metallurgical replicating tape were chosen as non-intrusive sampling methods. Seventeen samples were collected including plasma facing surfaces in lower, upper, and horizontal locations, surfaces behind floor tiles, surfaces behind divertor tiles, and surfaces behind ceiling tiles. The results of the analysis are presented.

  17. DIII-D dust particulate characterization (June 1998 Vent)

    SciTech Connect (OSTI)

    Carmack, W.J.

    1999-01-01T23:59:59.000Z

    Dust is a key component of fusion power device accident source term. Understanding the amount of dust expected in fusion power devices and its physical and chemical characteristics is needed to verify assumptions currently used in safety analyses. An important part of this safety research and development work is to characterize dust from existing experimental tokamaks. In this report, the authors present the collection, data analysis methods used, and the characterization of dust particulate collected from various locations inside the General Atomics DIII-D vacuum vessel following the June 1998 vent. The collected particulate was analyzed at the Idaho National Engineering and Environmental Laboratory (INEEL). Two methods were used to collect particulate with the goal of preserving the particle size distribution and physical characteristics of the particulate. Choice of collection technique is important because the sampling method used can bias the particle size distribution collected. Vacuum collection on substrates and adhesion removal with metallurgical replicating tape were chosen as non-intrusive sampling methods. Seventeen samples were collected including plasma facing surfaces in lower, upper, and horizontal locations, surfaces behind floor tiles, surfaces behind divert or tiles, and surfaces behind ceiling tiles. The results of the analysis are presented.

  18. Dust and Molecules at High Redshift

    E-Print Network [OSTI]

    F. Combes

    1998-12-23T23:59:59.000Z

    In the last years, progress has been very rapid in the domain of molecules at high redshift, and we know in better detail now the molecular and dust content in several systems beyond z=1 and up to z = 5. The first discovery in 1992 by Brown and van den Bout of CO lines at z=2.28 in a gravitationally lensed starburst galaxy, strongly stimulated searches of other systems, but these were harder than foreseen, and less than 10 other systems have been discovered in CO emission. Redshifts range between 2 and 5, the largest being BR1202-0725 at z=4.69. Most of these systems, if not all, are gravitationally amplified objects. Some have been discovered first through their dust emission, relatively easy to detect because of the negative K-correction effect. The detection of all these systems could give an answer about the debated question of the star-formation rate as a function of redshift. The maximum of star-formation rate, found around z=2 from optical studies, could shift to higher z if the most remote objects are hidden by dust. Absorption in front of quasars can also probe cold gas at high redshift, taking advantage of very high spatial (milli arcsec) and spectral (30m/s) resolutions. From the diffuse components, one can measure the cosmic black body temperature as a function of redshift. All these preliminary studies will be carried out at large scales with future millimeter instruments, and some perspectives are given.

  19. PROPERTIES OF NEWLY FORMED DUST GRAINS IN THE LUMINOUS TYPE IIn SUPERNOVA 2010jl

    SciTech Connect (OSTI)

    Maeda, K.; Nozawa, T.; Folatelli, G.; Moriya, T. J.; Nomoto, K.; Bersten, M.; Quimby, R. [Kavli Institute for the Physics and Mathematics of the Universe (WPI), Todai Institutes for Advanced Study, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8583 (Japan); Sahu, D. K.; Anupama, G. C. [Indian Institute of Astrophysics, Koramangala, Bangalore 560 034 (India); Minowa, Y.; Pyo, T.-S. [Subaru Telescope, National Astronomical Observatory of Japan, 650 North A'ohoku Place, Hilo, HI 96720 (United States); Motohara, K.; Kitagawa, Y. [Institute of Astronomy, University of Tokyo, 2-21-1 Osawa, Mitaka, Tokyo 181-0015 (Japan); Ueno, I.; Kawabata, K. S.; Yamanaka, M. [Hiroshima Astrophysical Science Center, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526 (Japan); Kozasa, T. [Department of Cosmosciences, Graduate School of Science, Hokkaido University, Sapporo 060-0810 (Japan); Iye, M., E-mail: keiichi.maeda@ipmu.jp [National Astronomical Observatory, Mitaka, Tokyo (Japan)

    2013-10-10T23:59:59.000Z

    Supernovae (SNe) have been proposed to be the main production sites of dust grains in the universe. However, our knowledge of their importance to dust production is limited by observationally poor constraints on the nature and amount of dust particles produced by individual SNe. In this paper, we present a spectrum covering optical through near-Infrared (NIR) light of the luminous Type IIn supernova 2010jl around one and a half years after the explosion. This unique data set reveals multiple signatures of newly formed dust particles. The NIR portion of the spectrum provides a rare example where thermal emission from newly formed hot dust grains is clearly detected. We determine the main population of the dust species to be carbon grains at a temperature of ?1350-1450 K at this epoch. The mass of the dust grains is derived to be ?(7.5-8.5) × 10{sup –4} M{sub ?}. Hydrogen emission lines show wavelength-dependent absorption, which provides a good estimate of the typical size of the newly formed dust grains (?< 0.1 ?m, and most likely ?< 0.01 ?m). We believe the dust grains were formed in a dense cooling shell as a result of a strong SN-circumstellar media (CSM) interaction. The dust grains occupy ?10% of the emitting volume, suggesting an inhomogeneous, clumpy structure. The average CSM density must be ?> 3 × 10{sup 7} cm{sup –3}, corresponding to a mass loss rate of ?> 0.02 M{sub ?} yr{sup –1} (for a mass loss wind velocity of ?100 km s{sup –1}). This strongly supports a scenario in which SN 2010jl and probably other luminous SNe IIn are powered by strong interactions within very dense CSM, perhaps created by Luminous-Blue-Variable-like eruptions within the last century before the explosion.

  20. Tanpopo cosmic dust collector: Silica aerogel production and bacterial DNA contamination analysis

    E-Print Network [OSTI]

    Tabata, Makoto; Yokobori, Shin-ichi; Kawai, Hideyuki; Takahashi, Jun-ichi; Yano, Hajime; Yamagishi, Akihiko

    2011-01-01T23:59:59.000Z

    Hydrophobic silica aerogels with ultra-low densities have been designed and developed as cosmic dust capture media for the Tanpopo mission which is proposed to be carried out on the International Space Station. Glass particles as a simulated cosmic dust with 30 \\mu m in diameter and 2.4 g/cm^3 in density were successfully captured by the novel aerogel at a velocity of 6 km/s. Background levels of contaminated DNA in the ultra-low density aerogel were lower than the detection limit of a polymerase chain reaction assay. These results show that the manufactured aerogel has good performance as a cosmic dust collector and sufficient quality in respect of DNA contamination. The aerogel is feasible for the biological analyses of captured cosmic dust particles in the astrobiological studies.

  1. Spitzer Observations of Transient, Extended Dust in Two Elliptical Galaxies: New Evidence of Recent Feedback Energy Release in Galactic Cores

    E-Print Network [OSTI]

    Pasquale Temi; Fabrizio Brighenti; William G. Mathews

    2007-07-25T23:59:59.000Z

    Spitzer observations of extended dust in two optically normal elliptical galaxies provide a new confirmation of buoyant feedback outflow in the hot gas atmospheres around these galaxies. AGN feedback energy is required to prevent wholesale cooling and star formation in these group-centered galaxies. In NGC 5044 we observe interstellar (presumably PAH) emission at 8 microns out to about 5 kpc. Both NGC 5044 and 4636 have extended 70 microns emission from cold dust exceeding that expected from stellar mass loss. The sputtering lifetime of this extended dust in the ~1keV interstellar gas, ~10^7 yrs, establishes the time when the dust first entered the hot gas. Evidently the extended dust originated in dusty disks or clouds, commonly observed in elliptical galaxy cores, that were disrupted, heated and buoyantly transported outward. The surviving central dust in NGC 5044 and 4636 has been disrupted into many small filaments. It is remarkable that the asymmetrically extended 8 micron emission in NGC 5044 is spatially coincident with Halpha+[NII] emission from warm gas. A calculation shows that dust-assisted cooling in buoyant hot gas moving out from the galactic core can cool within a few kpc in about ~10^7 yrs, explaining the optical line emission observed. The X-ray images of both galaxies are disturbed. All timescales for transient activity - restoration of equilibrium and buoyant transport in the hot gas, dynamics of surviving dust fragments, and dust sputtering - are consistent with a central release of feedback energy in both galaxies about 10^7 yrs ago.

  2. Filamentation instability of current-driven dust ion-acoustic waves in a collisional dusty plasma

    SciTech Connect (OSTI)

    Niknam, A. R. [Laser and Plasma Research Institute, Shahid Beheshti University, G.C., Tehran 19839-63113 (Iran, Islamic Republic of); Haghtalab, T.; Khorashadizadeh, S. M. [Physics Department, Birjand University, Birjand 97179-63384 (Iran, Islamic Republic of)

    2011-11-15T23:59:59.000Z

    A theoretical investigation has been made of the dust ion-acoustic filamentation instability in an unmagnetized current-driven dusty plasma by using the Lorentz transformation formulas. The effect of collision between the charged particles with neutrals and their thermal motion on this instability is considered. Developing the filamentation instability of the current-driven dust ion-acoustic wave allows us to determine the period and the establishment time of the filamentation structure and threshold for instability development.

  3. aluminum dust explosion: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    dust are investigated in order to study their potential Aste, Andreas 369 EFFECT OF COAL DUST ONEFFECT OF COAL DUST ON RAILROAD BALLAST STRENGTHRAILROAD BALLAST STRENGTH...

  4. acute coal dust: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    galaxies, a method for the dust mass evaluation, which accounts for the dust temperature distribution, is here presented and discussed. The derived dust masses turn out to...

  5. autogenous bone dust: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    galaxies, a method for the dust mass evaluation, which accounts for the dust temperature distribution, is here presented and discussed. The derived dust masses turn out to...

  6. airborne respirable dust: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Summary: Interstellar Medium: dust Interstellar dust Dust grains (silicatecarbon cores, ice mantles , 1-2 Thermal emission: mm, submm, FIR (optically thin) 12;Interstellar...

  7. Vacuum friction in rotating particles

    E-Print Network [OSTI]

    A. Manjavacas; F. J. García de Abajo

    2010-09-21T23:59:59.000Z

    We study the frictional torque acting on particles rotating in empty space. At zero temperature, vacuum friction transforms mechanical energy into light emission and produces particle heating. However, particle cooling relative to the environment occurs at finite temperatures and low rotation velocities. Radiation emission is boosted and its spectrum significantly departed from a hot-body emission profile as the velocity increases. Stopping times ranging from hours to billions of years are predicted for materials, particle sizes, and temperatures accessible to experiment. Implications for the behavior of cosmic dust are discussed.

  8. Techniques For Injection Of Pre-Charaterized Dust Into The Scrape Off Layer Of Fusion Plasma

    SciTech Connect (OSTI)

    Roquemore, A. L.; John, B.; Friesen, F.; Hartzfeld, K.; Mansfield, D. K.

    2011-07-21T23:59:59.000Z

    Introduction of micron-sized dust into the scrape-off layer (SOL) of a plasma has recently found many applications aimed primarily at determining dust behavior in future fusion reactors. The dust particles are typically composed of materials intrinsic to a fusion reactor. On DIII-D and TEXTOR carbon dust has been introduced into the SOL using a probe inserted from below into the divertor region. On NSTX, both Li and tungsten dust have been dropped from the top of the machine into the SOL throughout the duration of a discharge, by utilizing a vibrating piezoelectric based particle dropper. The original particle dropper was developed to inject passivated Li powder {approx} 40 {mu}m in diameter into the SOL to enhance plasma performance. A simplified version of the dropper was developed to introduce trace amounts of tungsten powder for only a few discharges, thus not requiring a large powder reservoir. The particles emit visible light from plasma interactions and can be tracked by either spectroscopic means or by fast frame rate visible cameras. This data can then be compared with dust transport codes such as DUSTT to make predictions of dust behavior in next-step devices such as ITER. For complete modeling results, it is desired to be able to inject pre-characterized dust particles in the SOL at various known poloidal locations, including near the vessel midplane. Purely mechanical methods of injecting particles are presently being studied using a modified piezoelectric-based powder dropper as a particle source and one of several piezo-based transducers to deflect the particles into the SOL. Vibrating piezo fans operating at 60 Hz with a deflection of {+-}2.5 cm can impart a significant horizontal boost in velocity. The highest injection velocities are expected from rotating paddle wheels capable of injecting particles at 10's of meters per second depending primarily on the rotation velocity and diameter of the wheel. Several injection concepts have been tested and will be discussed below.

  9. Anisotropic collective flow of a Lorentz gas

    E-Print Network [OSTI]

    Nicolas Borghini; Clement Gombeaud

    2011-06-30T23:59:59.000Z

    Analytical results for the anisotropic collective flow of a Lorentz gas of massless particles scattering on fixed centres are presented.

  10. A SEARCH FOR DUST EMISSION IN THE LEO INTERGALACTIC CLOUD

    SciTech Connect (OSTI)

    Bot, Caroline; Helou, George; Puget, Jeremie [California Institute of Technology, Pasadena, CA 91125 (United States); Latter, William B. [NASA Herschel Science Center, California Institute of Technology, Pasadena, CA 91125 (United States); Schneider, Stephen [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States); Terzian, Yervant [Department of Astronomy/NAIC, Cornell University, Ithaca, NY 14853 (United States)], E-mail: bot@astro.u-strasbg.fr

    2009-08-15T23:59:59.000Z

    We present a search for infrared dust emission associated with the Leo cloud, a large intergalactic cloud in the M96 group. Mid-infrared and far-infrared images were obtained with the InfraRed Array Camera and the Multiband Imaging Photometer for Spitzer on the Spitzer Space Telescope. Our analysis of these maps is done at each wavelength relative to the H I spatial distribution. We observe a probable detection at 8 {mu}m and a marginal detection at 24 {mu}m associated with the highest H I column densities in the cloud. At 70 and 160 {mu}m, upper limits on the dust emission are deduced. The level of the detection is low so that the possibility of a fortuitous cirrus clump or of an overdensity of extragalactic sources along the line of sight cannot be excluded. If this detection is confirmed, the quantities of dust inferred imply a dust-to-gas ratio in the intergalactic cloud up to a few times solar but no less than 1/20 solar. A confirmed detection would therefore exclude the possibility that the intergalactic cloud has a primordial origin. Instead, this large intergalactic cloud could therefore have been formed through interactions between galaxies in the group.

  11. DUST EMISSION AND STAR FORMATION IN STEPHAN'S QUINTET

    SciTech Connect (OSTI)

    Natale, G.; Tuffs, R. J. [Max Planck Institute fuer Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg (Germany); Xu, C. K.; Lu, N. [Infrared Processing and Analysis Center, California Institute of Technology 100-22, Pasadena, CA 91125 (United States); Popescu, C. C. [University of Central Lancashire, Preston, PR1 2HE (United Kingdom); Fischera, J. [Canadian Institute for Theoretical Astrophysics, University of Toronto, 60 Saint George Street, Toronto, ON, M5S 3H8 (Canada); Lisenfeld, U. [Department de Fisica Teorica y del Cosmos, Universidad de Granada, Granada (Spain); Appleton, P. [NASA Herschel Science Center, IPAC, California Institute of Technology, Pasadena, CA 91125 (United States); Dopita, M. [Research School of Astronomy and Astrophysics, The Australian National University, Cotter Road, Weston Creek, ACT 2611 (Australia); Duc, P.-A. [Laboratoire AIM, CEA/DSM-CNRS-Universite Paris Diderot, Dapnia/Service d'Astrophysique, CEA-Saclay, 91191 Gif-sur-Yvette Cedex (France); Gao, Y. [Purple Mountain Observatory, Chinese Academy of Sciences, 2 West Beijing Road, Nanjing 210008 (China); Reach, W. [Spitzer Science Center, IPAC, California Institute of Technology, Pasadena, CA 91125 (United States); Sulentic, J. [Instituto de Astrofisica de AndalucIa, CSIC, Apdo. 3004, 18080, Granada (Spain); Yun, M., E-mail: giovanni.natale@mpi-hd.mpg.d, E-mail: richard.buffs@mpi-hd.mpg.d [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States)

    2010-12-10T23:59:59.000Z

    We analyze a comprehensive set of MIR/FIR observations of Stephan's Quintet (SQ), taken with the Spitzer Space Telescope. Our study reveals the presence of a luminous (L{sub IR} {approx} 4.6 x 10{sup 43} erg s{sup -1}) and extended component of infrared dust emission, not connected with the main bodies of the galaxies, but roughly coincident with the X-ray halo of the group. We fitted the inferred dust emission spectral energy distribution of this extended source and the other main infrared emission components of SQ, including the intergalactic shock, to elucidate the mechanisms powering the dust and polycyclic aromatic hydrocarbon emission, taking into account collisional heating by the plasma and heating through UV and optical photons. Combining the inferred direct and dust-processed UV emission to estimate the star formation rate (SFR) for each source we obtain a total SFR for SQ of 7.5 M{sub sun} yr{sup -1}, similar to that expected for non-interacting galaxies with stellar mass comparable to the SQ galaxies. Although star formation in SQ is mainly occurring at, or external to the periphery of the galaxies, the relation of SFR per unit physical area to gas column density for the brightest sources is similar to that seen for star formation regions in galactic disks. We also show that available sources of dust in the group halo can provide enough dust to produce up to L{sub IR} {approx} 10{sup 42} erg s{sup -1} powered by collisional heating. Though a minority of the total infrared emission (which we infer to trace distributed star-formation), this is several times higher than the X-ray luminosity of the halo, so could indicate an important cooling mechanism for the hot intergalactic medium (IGM) and account for the overall correspondence between FIR and X-ray emission. We investigate two potential modes of star formation in SQ consistent with the data, fueled either by gas from a virialized hot IGM continuously accreting onto the group, whose cooling is enhanced by grains injected from an in situ population of intermediate mass stars, or by interstellar gas stripped from the galaxies. The former mode offers a natural explanation for the observed baryon deficiency in the IGM of SQ as well as for the steep L{sub X}-T{sub X} relation of groups such as SQ with lower velocity dispersions.

  12. DUST GRAIN EVOLUTION IN SPATIALLY RESOLVED T TAURI BINARIES

    SciTech Connect (OSTI)

    Skemer, Andrew J.; Close, Laird M.; Hinz, Philip M.; Hoffmann, William F.; Males, Jared R. [Steward Observatory, Department of Astronomy, University of Arizona, Tucson, AZ 85721 (United States); Greene, Thomas P. [NASA Ames Research Center, Moffett Field, CA 94035 (United States)

    2011-10-10T23:59:59.000Z

    Core-accretion planet formation begins in protoplanetary disks with the growth of small, interstellar medium dust grains into larger particles. The progress of grain growth, which can be quantified using 10 {mu}m silicate spectroscopy, has broad implications for the final products of planet formation. Previous studies have attempted to correlate stellar and disk properties with the 10 {mu}m silicate feature in an effort to determine which stars are efficient at grain growth. Thus far there does not appear to be a dominant correlated parameter. In this paper, we use spatially resolved adaptive optics spectroscopy of nine T Tauri binaries as tight as 0.''25 to determine if basic properties shared between binary stars, such as age, composition, and formation history, have an effect on dust grain evolution. We find with 90%-95% confidence that the silicate feature equivalent widths of binaries are more similar than those of randomly paired single stars, implying that shared properties do play an important role in dust grain evolution. At lower statistical significance, we find with 82% confidence that the secondary has a more prominent silicate emission feature (i.e., smaller grains) than the primary. If confirmed by larger surveys, this would imply that spectral type and/or binarity are important factors in dust grain evolution.

  13. Method of producing carbon coated nano- and micron-scale particles

    DOE Patents [OSTI]

    Perry, W. Lee; Weigle, John C; Phillips, Jonathan

    2013-12-17T23:59:59.000Z

    A method of making carbon-coated nano- or micron-scale particles comprising entraining particles in an aerosol gas, providing a carbon-containing gas, providing a plasma gas, mixing the aerosol gas, the carbon-containing gas, and the plasma gas proximate a torch, bombarding the mixed gases with microwaves, and collecting resulting carbon-coated nano- or micron-scale particles.

  14. Nonlinear dust acoustic waves and shocks

    SciTech Connect (OSTI)

    Merlino, R. L.; Heinrich, J. R.; Hyun, S.-H.; Meyer, J. K. [Department of Physics and Astronomy, University of Iowa, Iowa City, Iowa 52242 (United States)

    2012-05-15T23:59:59.000Z

    We describe experiments on (1) nonlinear dust acoustic waves and (2) dust acoustic shocks performed in a direct current (DC) glow discharge dusty plasma. First, we describe experiments showing nonlinear dust acoustic waves characterized by waveforms of the dust density that are typically sharper in the wave crests and flatter in the wave troughs (compared to sinusoidal waves), indicating the development of wave harmonics. We discuss this behavior in terms of a second-order fluid theory for dust acoustic waves. Second, experimental observations of the propagation and steepening of large-amplitude dust acoustic waves into dust acoustic shock waves are presented. The observed shock wave evolution is compared with numerical calculations based on the Riemann solution of the fully nonlinear fluid equations for dust acoustic waves.

  15. Dust Settling in Magnetorotationally-Driven Turbulent Discs I: Numerical Methods and Evidence for a Vigorous Streaming Instability

    E-Print Network [OSTI]

    Dinshaw S. Balsara; David A. Tilley; Terrence Rettig; Sean A. Brittain

    2008-10-01T23:59:59.000Z

    (Abridged) In this paper we have used the RIEMANN code for computational astrophysics to study the interaction of a realistic distribution of dust grains with gas in a vertically stratified protostellar accretion disc. The disc was modeled to have the density and temperature of a minimum mass solar nebula, and was driven to a fully-developed turbulence via the magnetorotational instability (MRI). We find that the inclusion of standard dust to gas ratios does not have any significant effect on the MRI even when the dust sediments to the midplane of the accretion disc. The density distribution of the dust reaches a Gaussian profile, and the scale heights for the dust that we derive are shown to be proportional to the reciprocal of the square root of the dust radius. The largest dust shows a strong tendency to settle to the midplane of the accretion disc, and tends to organize itself into elongated clumps of high density. The dynamics of these clumps is shown to be consistent with a streaming instability. The streaming instability is seen to be very vigorous and persistent once it forms. Each stream of high density dust displays a reduced RMS velocity dispersion, and the densest clumpings of large dust are shown to form where the streams intersect. We have also shown that the mean free path and collision time for the dust that participates in the streaming instability is reduced by almost two orders of magnitude relative to the average mean free paths and collision times. We show that some of the large dust in our 10 au simulations should have a propensity for grain coalescence.

  16. EFFECT OF COAL DUST ONEFFECT OF COAL DUST ON RAILROAD BALLAST STRENGTHRAILROAD BALLAST STRENGTH

    E-Print Network [OSTI]

    Barkan, Christopher P.L.

    1 EFFECT OF COAL DUST ONEFFECT OF COAL DUST ON RAILROAD BALLAST STRENGTHRAILROAD BALLAST STRENGTH for Laboratory StudyFouling Mechanism / Need for Laboratory Study Mechanical Properties of Coal DustMechanical Properties of Coal Dust Grain Size AnalysisGrain Size Analysis AtterbergAtterberg LimitsLimits Specific

  17. Adding coal dust to coal batch

    SciTech Connect (OSTI)

    V.S. Shved; A.V.Berezin [OAO Koks, Kemerovo (Russian Federation)

    2009-05-15T23:59:59.000Z

    The granulometric composition of coke dust from the dry-slaking machine is determined. The influence of additions of 3-7% coke dust on the quality of industrial coking batch and the coke obtained by box coking is estimated. Adding 1% coke dust to coking batch does not markedly change the coke quality. Industrial equipment for the supply of dry-slaking dust to the batch is described.

  18. TITLE: Identification of Possible Interstellar Dust Impact Craters on Stardust Foil I033N,1 P43A. Extraterrestrial Dust: Laboratory Analysis of Mission-Returned Samples and

    E-Print Network [OSTI]

    a particle that impacted the spacecraft's solar panels. TEM/EDS analysis determined the presence of solar on Stardust Foil I033N,1 SESSION TYPE: Poster; SESSION TITLE: P43A. Extraterrestrial Dust: Laboratory Analysis. Contamination was monitored according to the ISPE protocol: four 4 µm ! 3 µm areas of C layers of different

  19. Effect of confining wall potential on charged collimated dust beam in low-pressure plasma

    SciTech Connect (OSTI)

    Kausik, S. S.; Kakati, B.; Saikia, B. K. [Centre of Plasma Physics, Institute for Plasma Research, Sonapur 782 402 (India)] [Centre of Plasma Physics, Institute for Plasma Research, Sonapur 782 402 (India)

    2013-05-15T23:59:59.000Z

    The effect of confining wall potential on charged collimated dust beam in low-pressure plasma has been studied in a dusty plasma experimental setup by applying electrostatic field to each channel of a multicusp magnetic cage. Argon plasma is produced by hot cathode discharge method at a pressure of 5×10{sup ?4} millibars and is confined by a full line cusped magnetic field confinement system. Silver dust grains are produced by gas-evaporation technique and move upward in the form of a collimated dust beam due to differential pressure maintained between the dust and plasma chambers. The charged grains in the beam after coming out from the plasma column enter into the diagnostic chamber and are deflected by a dc field applied across a pair of deflector plates at different confining potentials. Both from the amount of deflection and the floating potential, the number of charges collected by the dust grains is calculated. Furthermore, the collimated dust beam strikes the Faraday cup, which is placed above the deflector plates, and the current (?pA) so produced is measured by an electrometer at different confining potentials. The experimental results demonstrate the significant effect of confining wall potential on charging of dust grains.

  20. A Search for Extraplanar Dust in Nearby Edge-On Spirals

    E-Print Network [OSTI]

    J. Christopher Howk; Blair D. Savage

    1999-02-04T23:59:59.000Z

    We present high resolution BV images of 12 edge-on spiral galaxies observed with the WIYN 3.5-m telescope. These images were obtained to search for extraplanar (|z| > 0.4 kpc) absorbing dust structures similar to those previously found in NGC 891 (Howk & Savage 1997). Our imaged galaxies include a sample of seven massive L_*-like spiral galaxies within D 87 deg from the plane of the sky. We find that five of these seven systems show extraplanar dust, visible as highly-structured absorbing clouds against the background stellar light of the galaxies. The more prominent structures are estimated to have associated gas masses >10^5 M_sun; the implied potential energies are > 10^(52) ergs. All of the galaxies in our sample that show detectable halpha emission at large z also show extraplanar dust structures. None of those galaxies for which extraplanar halpha searches were negative show evidence for extensive high-z dust. The existence of extraplanar dust is a common property of massive spiral galaxies. We discuss several mechanisms for shaping the observed dust features, emphasizing the possibility that these dusty clouds represent the dense phase of a multiphase medium at high-z in spiral galaxies. The correlation between high-z dust and extraplanar Halpha emission may simply suggest that both trace the high-z interstellar medium in its various forms (or phases), the existence of which may ultimately be driven by vigorous star formation in the underlying disk. (Abstract abridged)

  1. Gas Filled Detectors counting & tracking of

    E-Print Network [OSTI]

    Peletier, Reynier

    Gas Filled Detectors counting & tracking of particles energy loss generation of electron-ion+ pairs #12;Gas Filled Detectors Primary and Total Ionization fast charged particles ionize the atoms of a gas fraction of resulting primary electrons have enough kinetic energy to ionize other atoms #12;Gas Filled

  2. Prediction of the In-Situ Dust Measurements of the Stardust Mission to Comet 81P/Wild 2

    E-Print Network [OSTI]

    Markus Landgraf; Michael Müller; Eberhard Grün

    1999-04-15T23:59:59.000Z

    We predict the amount of cometary, interplanetary, and interstellar cosmic dust that is to be measured by the Cometary and Interstellar Dust Analyzer (CIDA) and the aerogel collector on-board the Stardust spacecraft during its fly-by of comet P/Wild 2 and during the interplanetary cruise phase. We give the dust flux on the spacecraft during the encounter with the comet using both, a radially symmetric and an axially symmetric coma model. At closest approach, we predict a total dust flux of $10^{6.0} m^{-2} s^{-1}$ for the radially symmetric case and $10^{6.5} m^{-2} s^{-1}$ for the axially symmetric case. This prediction is based on an observation of the comet at a heliocentric distance of $1.7 {\\rm AU}$. We reproduce the measurements of the Giotto and VEGA missions to comet P/Halley using the same model as for the Stardust predictions. The planned measurements of {\\em interstellar} dust by Stardust have been triggered by the discovery of interstellar dust impacts in the data collected by the Ulysses and Galileo dust detector. Using the Ulysses and Galileo measurements we predict that 25 interstellar particles, mainly with masses of about $10^{-12} g$, will hit the target of the CIDA experiment. The interstellar side of the aerogel collector will contain 120 interstellar particles, 40 of which with sizes greater than $1 \\mu m$. We furthermore investigate the ``contamination'' of the CIDA and collector measurements by interplanetary particles during the cruise phase.

  3. First optical images of circumstellar dust surrounding the debris disk candidate HD 32297

    E-Print Network [OSTI]

    P. Kalas

    2005-11-08T23:59:59.000Z

    Near-infrared imaging with the Hubble Space Telescope recently revealed a circumstellar dust disk around the A star HD 32297. Dust scattered light is detected as far as 400 AU radius and the linear morphology is consistent with a disk ~10 degrees away from an edge-on orientation. Here we present the first optical images that show the dust scattered light morphology from 560 to 1680 AU radius. The position angle of the putative disk midplane diverges by 31 degrees and the color of dust scattering is most likely blue. We associate HD 32297 with a wall of interstellar gas and the enigmatic region south of the Taurus molecular cloud. We propose that the extreme asymmetries and blue disk color originate from a collision with a clump of interstellar material as HD 32297 moves southward, and discuss evidence consistent with an age of 30 Myr or younger.

  4. Dispersion relation for pure dust Bernstein waves in a non-Maxwellian magnetized dusty plasma

    SciTech Connect (OSTI)

    Deeba, F. [National Tokamak Fusion Program, PAEC, P.O. Box 3329, Islamabad 44000 (Pakistan); Department of Physics, G.C. University, Lahore 54000 (Pakistan); Ahmad, Zahoor [National Tokamak Fusion Program, PAEC, P.O. Box 3329, Islamabad 44000 (Pakistan); Murtaza, G. [Salam Chair in Physics, G.C. University, Lahore 54000 (Pakistan)

    2011-07-15T23:59:59.000Z

    Pure dust Bernstein waves are investigated using non-Maxwellian kappa and (r,q) distribution functions in a collisionless, uniform magnetized dusty plasma. Dispersion relations for both the distributions are derived by considering waves whose frequency is of the order of dust cyclotron frequency, and dispersion curves are plotted. It is observed that the propagation band for dust Bernstein waves is rather narrow as compared with that of the electron Bernstein waves. However, the band width increases for higher harmonics, for both kappa and (r,q) distributions. Effect of dust charge on dispersion curves is also studied, and one observes that with increasing dust charge, the dispersion curves shift toward the lower frequencies. Increasing the dust to ion density ratio ((n{sub d0}/n{sub i0})) causes the dispersion curve to shift toward the higher frequencies. It is also found that for large values of spectral index kappa ({kappa}), the dispersion curves approach to the Maxwellian curves. The (r,q) distribution approaches the kappa distribution for r = 0, whereas for r > 0, the dispersion curves show deviation from the Maxwellian curves as expected. Relevance of this work can be found in astrophysical plasmas, where non-Maxwellian velocity distributions as well as dust particles are commonly observed.

  5. Role of positively charged dust grains on dust acoustic wave propagation in presence of nonthermal ions

    SciTech Connect (OSTI)

    Sarkar, Susmita; Maity, Saumyen [Department of Applied Mathematics, University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata 700009 (India)] [Department of Applied Mathematics, University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata 700009 (India)

    2013-08-15T23:59:59.000Z

    An expression for ion current flowing to the dust grains is proposed, when dust charge is positive and the ions are nonthermal. Secondary electron emission has been considered as the source of positive charging of the dust grains. Investigation shows that presence of positively charged dust grains along with thermal electrons and nonthermal ions generate purely growing dust acoustic waves for both the cases of ion nonthermal parameter greater than one and less than one. In the later case, the growth is conditional.

  6. Dust dynamics and evolution in expanding HII regions. I. Radiative drift of neutral and charged grains

    E-Print Network [OSTI]

    Akimkin, V V; Pavlyuchenkov, Ya N; Wiebe, D S

    2015-01-01T23:59:59.000Z

    We consider dust drift under the influence of stellar radiation pressure during the pressure-driven expansion of an HII region using the chemo-dynamical model MARION. Dust size distribution is represented by four dust types: conventional polycyclic aromatic hydrocarbons (PAHs), very small grains (VSGs), big grains (BGs) and also intermediate-sized grains (ISGs), which are larger than VSGs and smaller than BGs. The dust is assumed to move at terminal velocity determined locally from the balance between the radiation pressure and gas drag. As Coulomb drag is an important contribution to the overall gas drag, we evaluate a grain charge evolution within the HII region for each dust type. BGs are effectively swept out of the HII region. The spatial distribution of ISGs within the HII region has a double peak structure, with a smaller inner peak and a higher outer peak. PAHs and VSGs are mostly coupled to the gas. The mean charge of PAHs is close to zero, so they can become neutral from time to time because of char...

  7. Dust transport: Wind blown and mechanical resuspension, July 1983 to December 1984

    SciTech Connect (OSTI)

    Langer, G.

    1986-09-20T23:59:59.000Z

    This study defines the processes that resuspend plutonium (Pu) particles from Pu-contaminated soil at Rocky Flats. Such knowledge can predict the transport of Pu particles from the site and the population dose. A vertical dust flux tower profiled the plume of Pu particles from the site. The data show a 70% reduction between 1 and 10 m in the concentration of coarse and inhalable Pu particles. The respirable particle concentration remained steady at both heights, slightly above background levels. High winds visually resuspend large amounts of dust for short periods, but we suspected that present sampling devices do not function properly above 50 km/h. During a windstorm reaching 80 km/h, the size-selective sampler used seriously underestimated the dust(Pu) concentration. Wind tunnel studies measured resuspension versus wind speed from our prairie grass covered, arid soil. We failed to find a good correlation between resuspension and wind speed. This led to a search for alternative mechanisms of resuspension besides wind erosion. Resuspension of dust(Pu) from grass proved to be important, as well as resuspension from rain splash.

  8. Effect of dust models on global nuclear winter. Master's thesis

    SciTech Connect (OSTI)

    Pontier, P.Q.

    1986-03-01T23:59:59.000Z

    A series of optical-depth calculations were accomplished to assess the effects of various existing dust and soot models on the transmission of incident sunlight. A change in the standard deviation of the particle-size distribution from two to four, assuming constant total density, resulted in a decrease in the visible optical depth by a factor of ten. A technique using a method of direct integration was developed for the calculation of the effective optical depth of nuclear-induced dust and soot clouds. Contributions from directly transmitted photons, first scattered photons using anisotropic cross sections, and all subsequently scattered photons were used to calculate the amount of light transmitted through the cloud. Absorption effects were also included. The results of this study were comparable to the results of several recent nuclear winter studies.

  9. Temperature fluctuations of interstellar dust grains

    E-Print Network [OSTI]

    Kobi Horn; Hagai B. Perets; Ofer Biham

    2007-09-20T23:59:59.000Z

    The temperatures of interstellar dust grains are analyzed using stochastic simulations, taking into account the grain composition and size and the discreteness of the photon flux. [...] The distribution of grain temperatures is calculated for a broad range of grain sizes and for different intensities of the interstellar radiation field, relevant to diffuse clouds and to PDRs. The dependence of the average grain temperature on its size is shown for different irradiation intensities. It is found that the average temperatures of grains with radii smaller than about 0.02 $\\mu$m are reduced due to the fluctuations. The average temperatures of grains of radii larger than about 0.35 $\\mu$m are also slightly reduced due to their more efficient emission of infrared radiation, particularly when exposed to high irradiation intensities. The average temperatures of silicate and carbonaceous grains are found to depend on the radiation field intensity X_MMP according to ~X_MMP^gamma, where the exponent gamma depends on the grain size and composition. This fitting formula is expected to be useful in simulations of interstellar processes, and can replace commonly used approximations which do not account for the grain temperature fluctuations and for the detailed properties of interstellar dust particles. The implications of the results on molecular hydrogen formation are also discussed. It is concluded that grain-temperature fluctuations tend to reduce the formation rate of molecular hydrogen, and cannot account for the observations of H_2 in photon dominated regions, even in the presence of chemisorption sites.

  10. THE REBOUND CONDITION OF DUST AGGREGATES REVEALED BY NUMERICAL SIMULATION OF THEIR COLLISIONS

    SciTech Connect (OSTI)

    Wada, Koji [Planetary Exploration Research Center, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, Chiba 275-0016 (Japan); Tanaka, Hidekazu; Yamamoto, Tetsuo [Institute of Low Temperature Science, Hokkaido University, Sapporo 060-0819 (Japan); Suyama, Toru [Nagano City Museum, Hachimanpara Historic Park, Oshimada, Nagano 381-2212 (Japan); Kimura, Hiroshi, E-mail: wada@perc.it-chiba.ac.jp [Center for Planetary Science (CPS), Chuo-ku Minatojima Minamimachi 7-1-48, Kobe 650-0047 (Japan)

    2011-08-10T23:59:59.000Z

    Collisional growth of dust aggregates is a plausible root of planetesimals forming in protoplanetary disks. However, a rebound of colliding dust aggregates prevents dust from growing into planetesimals. In fact, rebounding aggregates are observed in laboratory experiments but not in previous numerical simulations. Therefore, the condition of rebound between dust aggregates should be clarified to better understand the processes of dust growth and planetesimal formation. We have carried out numerical simulations of aggregate collisions for various types of aggregates and succeeded in reproducing a rebound of colliding aggregates under specific conditions. Our finding is that in the rebound process, the key factor of the aggregate structure is the coordination number, namely, the number of particles in contact with a particle. A rebound is governed by the energy dissipation along with restructuring of the aggregates and a large coordination number inhibits the restructuring at collisions. Results of our numerical simulation for various aggregates indicate that they stick to each other when the mean coordination number is less than 6, regardless of their materials and structures, as long as their collision velocity is less than the critical velocity for fragmentation. This criterion of the coordination number would correspond to a filling factor of {approx}0.3, which is somewhat larger than that reported in laboratory experiments. In protoplanetary disks, dust aggregates are expected to have low bulk densities (<0.1 g cm{sup -3}) during their growth, which would prevent dust aggregates from rebounding. This result supports the formation of planetesimals with direct dust growth in protoplanetary disks.

  11. ORIGIN OF DUST AROUND V1309 SCO

    SciTech Connect (OSTI)

    Zhu, Chunhua; Lü, Guoliang; Wang, Zhaojun, E-mail: guolianglv@gmail.com [School of Physical Science and Technology, Xinjiang University, Urumqi, 830046 (China)

    2013-11-01T23:59:59.000Z

    The origin of dust grains in the interstellar medium is still an unanswered problem. Nicholls et al. found the presence of a significant amount of dust around V1309 Sco, which may originate from the merger of a contact binary. We investigate the origin of dust around V1309 Sco and suggest that these dust grains are produced in the binary-merger ejecta. By means of the AGBDUST code, we estimate that ?5.2 × 10{sup –4} M{sub ?} dust grains are produced with a radii of ?10{sup –5} cm. These dust grains are mainly composed of silicate and iron grains. Because the mass of the binary merger ejecta is very small, the contribution of dust produced by binary merger ejecta to the overall dust production in the interstellar medium is negligible. However, it is important to note that the discovery of a significant amount of dust around V1309 Sco offers a direct support for the idea that common-envelope ejecta provides an ideal environment for dust formation and growth. Therefore, we confirm that common envelope ejecta can be important source of cosmic dust.

  12. aerosol particles collected: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Saller 2002-05-07 6 Nanomaterials from Aerosols Aerosols are suspensions of liquid or solid particles in a gas. Aerosol particles Materials Science Websites Summary: being clouds...

  13. Does variation in mineral composition alter the short-wave light scattering properties of desert dust aerosol?

    E-Print Network [OSTI]

    Oxford, University of

    retrievals of mineral dust aerosol from space by visible and near-infrared radiometers. Errors in aerosol depth in deserts and the surrounding regions during periods of high wind. Long range transport of desert particles into the air [6] (wind alone does not have sufficient energy to remove particles from the surface

  14. PII S0016-7037(99)00284-7 Condensation in dust-enriched systems

    E-Print Network [OSTI]

    Grossman, Lawrence

    of the resulting condensates. The computations included 23 elements and 374 gas species, and were done over a rangePII S0016-7037(99)00284-7 Condensation in dust-enriched systems DENTON S. EBEL 1 and LAWRENCE--Full equilibrium calculations of the sequence of condensation of the elements from cosmic gases made by total

  15. GEOMETRIC CROSS SECTIONS OF DUST AGGREGATES AND A COMPRESSION MODEL FOR AGGREGATE COLLISIONS

    SciTech Connect (OSTI)

    Suyama, Toru [Nagano City Museum, Hachimanpara Historical Park Ojimada-machi, Nagano 381-2212 (Japan); Wada, Koji [Planetary Exploration Research Center, Chiba Institute of Technology, Tsudanuma 2-17-1, Narashino, Chiba 275-0016 (Japan); Tanaka, Hidekazu [Institute of Low Temperature Science, Hokkaido University, N19-W8, Sapporo 060-0819 (Japan); Okuzumi, Satoshi, E-mail: museum@city.nagano.lg.jp [Department of Physics, Nagoya University, Nagoya, Aichi 464-8602 (Japan)

    2012-07-10T23:59:59.000Z

    Geometric cross sections of dust aggregates determine their coupling with disk gas, which governs their motions in protoplanetary disks. Collisional outcomes also depend on geometric cross sections of initial aggregates. In a previous paper, we performed three-dimensional N-body simulations of sequential collisions of aggregates composed of a number of sub-micron-sized icy particles and examined radii of gyration (and bulk densities) of the obtained aggregates. We showed that collisional compression of aggregates is not efficient and that aggregates remain fluffy. In the present study, we examine geometric cross sections of the aggregates. Their cross sections decrease due to compression as well as to their gyration radii. It is found that a relation between the cross section and the gyration radius proposed by Okuzumi et al. is valid for the compressed aggregates. We also refine the compression model proposed in our previous paper. The refined model enables us to calculate the evolution of both gyration radii and cross sections of growing aggregates and reproduces well our numerical results of sequential aggregate collisions. The refined model can describe non-equal-mass collisions as well as equal-mass cases. Although we do not take into account oblique collisions in the present study, oblique collisions would further hinder compression of aggregates.

  16. SIMS ISOTOPIC ANALYSIS OF INTERPLANETARY DUST FROM SPACE-EXPOSED AEROGEL. F. J. Stadermann

    E-Print Network [OSTI]

    SIMS ISOTOPIC ANALYSIS OF INTERPLANETARY DUST FROM SPACE-EXPOSED AEROGEL. F. J. Stadermann 1: Aerogel is the medium of choice for the intact capture of small particles in space, because it is capable materials [1, 2]. After space-exposed aerogel is returned to the laboratory, the first step of analysis

  17. asian dust particles: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and meteorological parameters in the Gobi region indicated that invasion of polar cold air played an important role climate indices that are appropriate for the scale of...

  18. Cold Gas in Cluster Cores

    E-Print Network [OSTI]

    Megan Donahue

    2006-11-26T23:59:59.000Z

    I review the literature's census of the cold gas in clusters of galaxies. Cold gas here is defined as the gas that is cooler than X-ray emitting temperatures (~10^7 K) and is not in stars. I present new Spitzer IRAC and MIPS observations of Abell 2597 (PI: Sparks) that reveal significant amounts of warm dust and star formation at the level of 5 solar masses per year. This rate is inconsistent with the mass cooling rate of 20 +/- 5 solar masses per year inferred from a FUSE [OVI] detection.

  19. Volumetric measurements of a spatially growing dust acoustic wave

    SciTech Connect (OSTI)

    Williams, Jeremiah D. [Physics Department, Wittenberg University, Springfield, Ohio 45504 (United States)

    2012-11-15T23:59:59.000Z

    In this study, tomographic particle image velocimetry (tomo-PIV) techniques are used to make volumetric measurements of the dust acoustic wave (DAW) in a weakly coupled dusty plasma system in an argon, dc glow discharge plasma. These tomo-PIV measurements provide the first instantaneous volumetric measurement of a naturally occurring propagating DAW. These measurements reveal over the measured volume that the measured wave mode propagates in all three spatial dimensional and exhibits the same spatial growth rate and wavelength in each spatial direction.

  20. A METHODOLOGICAL APPROACH TO THE SPONTANEOUS COMBSTION OF AGRICULTURAL DUSTS

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    to the characterization of combustible dusts with respect tp self-heating and give results for certain agricultural dusts can be started by an extemal ignition source or by self-heating. Combustion of dust can occur associated with agricultural dusts. 3. SELF-HEATING OF AGRICULTURAL DUSTS The physical mechanism of self

  1. Optical Properties of Saharan Dust and Asian Dust: Application to Radiative Transfer Simulations

    E-Print Network [OSTI]

    Fang, Guangyang

    2012-07-16T23:59:59.000Z

    Because the bulk optical properties of dust are largely dependent on their chemical composition, published reports from numerous dust field studies enabled us to compile observation data sets to derive the effective complex refractive indices...

  2. Characterization of secondary grain dust explosions

    E-Print Network [OSTI]

    Schulman, Cheryl Wendler

    1983-01-01T23:59:59.000Z

    explosion These include& an ignition source; oxygeni s confined space; and fuel, which 1n most instances is grain dust held. in suspension at concentration levels in excess of the minimum explosive concentration (MEC) (Palmer, 197$). The MEC is defined.... as the minimum concentration of dust in a cloud. necessary for sustained flame propagation. The MEC is also sometimes referred to as the lower explosive limit (LZL). The lower level of explosibility for most dusts ranges from 20 to 70 This thesis follows...

  3. The dust, planetesimals and planets of HD 38529

    E-Print Network [OSTI]

    Amaya Moro-Martin; Renu Malhotra; John M. Carpenter; Lynne A. Hillenbrand; Sebastian Wolf; Michael R. Meyer; David Hollenbach; Joan Najita; Thomas Henning

    2007-06-22T23:59:59.000Z

    HD 38529 is a post-main sequence G8III/IV star (3.5 Gyr old) with a planetary system consisting of at least two planets having Msin(i) of 0.8 MJup and 12.2 MJup, semimajor axes of 0.13 AU and 3.74 AU, and eccentricities of 0.25 and 0.35, respectively. Spitzer observations show that HD 38529 has an excess emission above the stellar photosphere, with a signal-to-noise ratio (S/N) at 70 micron of 4.7, a small excess at 33 micron (S/N=2.6) and no excess model the spectral energy distribution of HD 38529 to find out which of these niches show signs of harboring dust-producing plantesimals. The secular analysis, together with the SED modeling resuls, suggest that the planetesimals responsible for most of the dust emission are likely located within 20-50 AU, a configuration that resembles that of the Jovian planets + Kuiper Belt in our Solar System. Finally, we place upper limits (8E-6 lunar masses of 10 micron particles) to the amount of dust that could be located in the dynamically stable region that exists between the two planets (0.25--0.75 AU).

  4. Impact of Particle Generation Method on the Apparent Hygroscopicity of Insoluble Mineral Particles

    SciTech Connect (OSTI)

    Sullivan, Ryan; Moore, Meagan J.; Petters, Markus D.; Kreidenweis, Sonia M.; Qafoku, Odeta; Laskin, Alexander; Roberts, Greg C.; Prather, Kimberly A.

    2010-07-28T23:59:59.000Z

    Atmospheric mineral dust particles represent a major component of tropospheric aerosol mass and provide a reactive surface for heterogeneous reactions with trace atmospheric gases (Dentener et al. 1996).Heterogeneous processes alter the chemical balance of the atmosphere and also modify the physicochemical properties of mineral dust particles (Bauer et al. 2004). Organic and inorganic vapors can react with or partition to dust particles and alter their chemical composition (Al-Hosney et al. 2005; Laskin et al. 2005a, 2005b; Liu et al. 2008; Sullivan et al. 2007, 2009a; Sullivan and Prather 2007; Usher et al. 2003). Calcite (CaCO3) is one of the most reactive components of mineral dust, readily reacting with acidic gases. The fraction of CaCO3 in total dust mineralogy displays large variations between desert regions and other regions of the world as well as between individual mineral particles (Claquin et al. 1999; Jeong 2008; Laskin et al. 2005b; Sullivan et al. 2007). Through reactions with acidic gases CaCO3 can be converted to soluble hygroscopic products including CaCl2 and Ca(NO3)2, and sparingly soluble, non-hygroscopic products including CaSO4 and CaC2O4 (Krueger et al. 2004; Liu et al. 2008; Sullivan et al. 2009a, 2009b).

  5. The Microwave Thermal Emission from the Zodiacal Dust Cloud Predicted with Contemporary Meteoroid Models

    E-Print Network [OSTI]

    Dikarev, Valery V

    2015-01-01T23:59:59.000Z

    Predictions of the microwave thermal emission from the interplanetary dust cloud are made using several contemporary meteoroid models to construct the distributions of cross-section area of dust in space, and applying the Mie light-scattering theory to estimate the temperatures and emissivities of dust particles in broad size and heliocentric distance ranges. In particular, the model of the interplanetary dust cloud by Kelsall et al. (1998, ApJ 508: 44-73), the five populations of interplanetary meteoroids of Divine (1993, JGR 98(E9): 17,029-17,048) and the Interplanetary Meteoroid Engineering Model (IMEM) by Dikarev et al. (2004, EMP 95: 109-122) are used in combination with the optical properties of olivine, carbonaceous and iron spherical particles. The Kelsall model has been widely accepted by the Cosmic Microwave Background (CMB) community. We show, however, that it predicts the microwave emission from interplanetary dust remarkably different from the results of application of the meteoroid engineering m...

  6. Production of polystyrene particles via aerosolization

    E-Print Network [OSTI]

    Norasetthekul, Somchintana

    1995-01-01T23:59:59.000Z

    found that particles were pure, amorphous, and not hollow. Average size decreased with increasing furnace temperature, but it increased with polymer concentration and solution viscosity. Carrier gas flow rate did not influence particle size. Unlike...

  7. Method and apparatus for cutting and abrading with sublimable particles

    DOE Patents [OSTI]

    Bingham, D.N.

    1995-10-10T23:59:59.000Z

    A gas delivery system provides a first gas as a liquid under extreme pressure and as a gas under intermediate pressure. Another gas delivery system provides a second gas under moderate pressure. The second gas is selected to solidify at a temperature at or above the temperature of the liquefied gas. A nozzle assembly connected to the gas delivery systems produces a stream containing a liquid component, a solid component, and a gas component. The liquid component of the stream consists of a high velocity jet of the liquefied first gas. The high velocity jet is surrounded by a particle sheath that consists of solid particles of the second gas which solidifies in the nozzle upon contact with the liquefied gas of the high velocity jet. The gas component of the stream is a high velocity flow of the first gas that encircles the particle sheath, forming an outer jacket. 6 figs.

  8. Method and apparatus for cutting and abrading with sublimable particles

    DOE Patents [OSTI]

    Bingham, Dennis N. (Idaho Falls, ID)

    1995-01-01T23:59:59.000Z

    A gas delivery system provides a first gas as a liquid under extreme pressure and as a gas under intermediate pressure. Another gas delivery system provides a second gas under moderate pressure. The second gas is selected to solidify at a temperature at or above the temperature of the liquified gas. A nozzle assembly connected to the gas delivery systems produces a stream containing a liquid component, a solid component, and a gas component. The liquid component of the stream consists of a high velocity jet of the liquified first gas. The high velocity jet is surrounded by a particle sheath that consists of solid particles of the second gas which solidifies in the nozzle upon contact with the liquified gas of the high velocity jet. The gas component of the stream is a high velocity flow of the first gas that encircles the particle sheath, forming an outer jacket.

  9. Oil shale retorting with steam and produced gas

    SciTech Connect (OSTI)

    Merrill, L.S. Jr.; Wheaton, L.D.

    1991-08-20T23:59:59.000Z

    This patent describes a process for retorting oil shale in a vertical retort. It comprises introducing particles of oil shale into the retort, the particles of oil shale having a minimum size such that the particles are retained on a screen having openings 1/4 inch in size; contacting the particles of oil shale with hot gas to heat the particles of oil shale to a state of pyrolysis, thereby producing retort off-gas; removing the off-gas from the retort; cooling the off-gas; removing oil from the cooled off-gas; separating recycle gas from the off-gas, the recycle gas comprising steam and produced gas, the steam being present in amount, by volume, of at least 50% of the recycle gas so as to increase the yield of sand oil; and heating the recycle gas to form the hot gas.

  10. asian sand dust: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    that trigger dust storms, and the lifting of dust by dust devils and other small-scale vortices. We also discuss the physics of wind-blown sand and dune formation on Venus...

  11. Dust-acoustic filamentation of a current-driven dusty plasma

    SciTech Connect (OSTI)

    Khorashadizadeh, S. M.; Haghtalab, T. [Physics Department, Birjand University, Birjand, 97179-63384 (Iran, Islamic Republic of); Niknam, A. R. [Laser and Plasma Research Institute, Shahid Beheshti University, G.C., Tehran, 19839-63113 (Iran, Islamic Republic of)

    2011-06-15T23:59:59.000Z

    The thermal motion effect of charged particles in the filamentation of a current-driven dusty plasma in the dust-acoustic frequency region is investigated by using the Lorentz transformed conductivity of the dusty plasma components and the total dielectric permittivity tensor of the dusty plasma in the laboratory frame. Obtaining the dispersion relation for dust-acoustic waves and considering the filamentation instability, the establishment time of the filamentation structure and the instability development threshold are derived. Moreover, it is shown that the current layer divides into separate current filaments.

  12. A New Facility for Studying Shock Wave Passage over Dust Layers 

    E-Print Network [OSTI]

    Marks, Brandon

    2013-05-30T23:59:59.000Z

    (Abbasi & Abbasi, 2007). Often, dust explosions are secondary explosions triggered by some other initial event. A primary event may lead the agitation of dust particles and lift them into the air. Air is often the primary oxidizer in these reactions... to be easily removable and is secured by six, T-handle, 1/2?-13 screws. The T-handles are threaded through 1/2-inch stainless steel plate which is secured to the shock tube window weld pads. The T-handles only need to be hand-tight to provide enough clamping...

  13. Effect of a polynomial arbitrary dust size distribution on dust acoustic solitons

    SciTech Connect (OSTI)

    Ishak-Boushaki, M.; Djellout, D.; Annou, R. [Faculty of Physics, USTHB, P.B. 32 El Alia, Bab-ezzouar, Algiers (Algeria)

    2012-07-15T23:59:59.000Z

    The investigation of dust-acoustic solitons when dust grains are size-distributed and ions adiabatically heated is conducted. The influence of an arbitrary dust size-distribution described by a polynomial function on the properties of dust acoustic waves is investigated. An energy-like integral equation involving Sagdeev potential is derived. The solitary solutions are shown to undergo a transformation into cnoidal ones under some physical conditions. The dust size-distribution can significantly affect both lower and upper critical Mach numbers for both solitons and cnoidal solutions.

  14. Features of coal dust dynamics at action of differently oriented forces in granular filtering medium

    E-Print Network [OSTI]

    I. M. Neklyudov; L. I. Fedorova; P. Ya. Poltinin; O. P. Ledenyov

    2013-01-24T23:59:59.000Z

    The process of the coal dust particles transportation and structurization in the experimental horizontal model of air filter with the cylindrical coal adsorbent granules as in the iodine air filter at the nuclear power plant is researched. In the investigated case the vector of carrying away force of air flow and the vector of gravitation force are mutually perpendicular, and the scattering of the dust particles on the granules occurs in the normal directions. It is found that the phenomenon of non controlled spontaneous sharp increase of aerodynamic resistance in the iodine air filter under the big integral volumes of filtered air and the big masses of introduced coal dust particles is not observed at the described experimental conditions in distinction from the case of the parallel orientation of this forces as in the vertical iodine air filters at the nuclear power plant. The quantitative measurements of the main parameters of the process of the dust masses transportation and structurization are made on a developed experimental model of the iodine air filter with the cylindrical coal adsorbent granules.

  15. Features of coal dust dynamics at action of differently oriented forces in granular filtering medium

    E-Print Network [OSTI]

    Neklyudov, I M; Poltinin, P Ya; Ledenyov, O P

    2013-01-01T23:59:59.000Z

    The process of the coal dust particles transportation and structurization in the experimental horizontal model of air filter with the cylindrical coal adsorbent granules as in the iodine air filter at the nuclear power plant is researched. In the investigated case the vector of carrying away force of air flow and the vector of gravitation force are mutually perpendicular, and the scattering of the dust particles on the granules occurs in the normal directions. It is found that the phenomenon of non controlled spontaneous sharp increase of aerodynamic resistance in the iodine air filter under the big integral volumes of filtered air and the big masses of introduced coal dust particles is not observed at the described experimental conditions in distinction from the case of the parallel orientation of this forces as in the vertical iodine air filters at the nuclear power plant. The quantitative measurements of the main parameters of the process of the dust masses transportation and structurization are made on a ...

  16. Methods of forming a fluidized bed of circulating particles

    DOE Patents [OSTI]

    Marshall, Douglas W. (Blackfoot, ID)

    2011-05-24T23:59:59.000Z

    There is disclosed an apparatus for forming a fluidized bed of circulating particles. In an embodiment, the apparatus includes a bottom portion having a sidewall, the sidewall defining a curvilinear profile, and the bottom portion configured to contain a bed of particles; and a gas inlet configured to produce a column of gas to carry entrained particles therein. There is disclosed a method of forming a fluidized bed of circulating particles. In an embodiment, the method includes positioning particles within a bottom portion having a sidewall, the sidewall defining a curvilinear profile; producing a column of gas directed upwardly through a gas inlet; carrying entrained particles in the column of gas to produce a fountain of particles over the fluidized bed of circulating particles and subside in the particle bed until being directed inwardly into the column of gas within the curvilinear profile.

  17. Dust from Comet 209P/LINEAR during its 2014 Return: Parent Body of a New Meteor Shower, the May Camelopardalids

    E-Print Network [OSTI]

    Ishiguro, Masateru; Hanayama, Hidekazu; Takahashi, Jun; Hasegawa, Sunao; Sarugaku, Yuki; Watanabe, Makoto; Imai, Masataka; Goda, Shuhei; Akitaya, Hiroshi; Takagi, Yuhei; Morihana, Kumiko; Honda, Satoshi; Arai, Akira; Sekiguchi, Kazuhiro; Oasa, Yumiko; Saito, Yoshihiko; Morokuma, Tomoki; Murata, Katsuhiro; Nogami, Daisaku; Nagayama, Takahiro; Yanagisawa, Kenshi; Yoshida, Michitoshi; Ohta, Kouji; Kawai, Nobuyuki; Miyaji, Takeshi; Fukushima, Hideo; Watanabe, Jun-ichi; Opitom, Cyrielle; Jehin, Emmanuel; Gillon, Michael; Vaubaillon, Jeremie J

    2014-01-01T23:59:59.000Z

    We report a new observation of the Jupiter-family comet 209P/LINEAR during its 2014 return. The comet is recognized as a dust source of a new meteor shower, the May Camelopardalids. 209P/LINEAR was apparently inactive at a heliocentric distance rh = 1.6 au and showed weak activity at rh nuclear surface during the comet's dormant phase. An edge-on image suggests that particles up to 1 cm in size (with an uncertainty of factor 3-5) were ejected following a differential power-law size distribution with index q=-3.25+-0.10. We derived a mass loss rate of 2-10 kg/s during the active phase and a total mass of ~5x10^7 kg during the 2014 return. The ejection terminal velocity of millimeter- to centimeter-sized particles was 1-4 m/s, which is comparable to the escape velocity from the nucleus (1.4 m/s). These results imply that such large meteoric particles marginally escaped from the highly dormant comet nucleus via the gas drag force only within a fe...

  18. Rigidly rotating cylinders of charged dust

    E-Print Network [OSTI]

    B. V. Ivanov

    2002-07-02T23:59:59.000Z

    The gravitational field of a rigidly rotating cylinder of charged dust is found analytically. The general and all regular solutions are divided into three classes. The acceleration and the vorticity of the dust are given, as well as the conditions for the appearance of closed timelike curves.

  19. asian dust source: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Natural dust sources globally account for 75 % of emissions; anthropogenic, 25%. North Africa accounts for 55 % of global dust emissions with only 8% being anthropogenic,...

  20. african mineral dust: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laurent 19 Does the size distribution of mineral dust aerosols depend on the wind speed at emission? CERN Preprints Summary: The size distribution of mineral dust aerosols...

  1. Dust Emission from the Perseus Molecular Cloud

    E-Print Network [OSTI]

    S. Schnee; J. Li; A. A. Goodman; A. I. Sargent

    2008-05-27T23:59:59.000Z

    Using far-infrared emission maps taken by IRAS and Spitzer and a near-infrared extinction map derived from 2MASS data, we have made dust temperature and column density maps of the Perseus molecular cloud. We show that the emission from transiently heated very small grains and the big grain dust emissivity vary as a function of extinction and dust temperature, with higher dust emissivities for colder grains. This variable emissivity can not be explained by temperature gradients along the line of sight or by noise in the emission maps, but is consistent with grain growth in the higher density and lower temperature regions. By accounting for the variations in the dust emissivity and VSG emission, we are able to map the temperature and column density of a nearby molecular cloud with better accuracy than has previously been possible.

  2. Determination of Dusty Particle Charge Taking into Account Ion Drag

    SciTech Connect (OSTI)

    Ramazanov, T. S.; Dosbolayev, M. K.; Jumabekov, A. N.; Amangaliyeva, R. Zh.; Orazbayev, S. A. [al-Farabi Kazakh National University, IETP, 96a Tole Bi St., Almaty 050012 (Kazakhstan); Petrov, O. F.; Antipov, S. N. [Joint Institute for High Temperatures of RAS, 13/19 Izhorskaya, Moscow 125412 (Russian Federation)

    2008-09-07T23:59:59.000Z

    This work is devoted to the experimental estimation of charge of dust particle that levitates in the stratum of dc glow discharge. Particle charge is determined on the basis of the balance between ion drag force, gravitational and electric forces. Electric force is obtained from the axial distribution of the light intensity of strata.

  3. COAL CLEANING BY GAS AGGLOMERATION

    SciTech Connect (OSTI)

    MEIYU SHEN; ROYCE ABBOTT; T.D. WHEELOCK

    1998-09-30T23:59:59.000Z

    The agglomeration of ultrafine-size coal particles in an aqueous suspension by means of microscopic gas bubbles was demonstrated in numerous experiments with a scale model mixing system. Coal samples from both the Pittsburgh No. 8 Seam and the Upper Freeport Seam were used for these experiments. A small amount of i-octane was added to facilitate the process. Microscopic gas bubbles were generated by saturating the water used for suspending coal particles with gas under pressure and then reducing the pressure. Microagglomerates were produced which appeared to consist of gas bubbles encapsulated in coal particles. Since dilute particle suspensions were employed, it was possible to monitor the progress of agglomeration by observing changes in turbidity. By such means it became apparent that the rate of agglomeration depends on the concentration of microscopic gas bubbles and to a lesser extent on the concentration of i-octane. Similar results were obtained with both Pittsburgh No. 8 coal and Upper Freeport coal.

  4. Linear and nonlinear dust acoustic waves in an inhomogeneous magnetized dusty plasma with nonextensive electrons

    SciTech Connect (OSTI)

    El-Taibany, W. F., E-mail: eltaibany@du.edu.eg, E-mail: eltaibany@hotmail.com; Selim, M. M.; Al-Abbasy, O. M. [Department of Physics, Faculty of Science, Damietta University, New Damietta P. O. 34517 (Egypt); El-Bedwehy, N. A., E-mail: nab-elbedwehy@yahoo.com [Department of Mathematics, Faculty of Science, Damietta University, New Damietta P. O. 34517 (Egypt)

    2014-07-15T23:59:59.000Z

    The propagation of both linear and nonlinear dust acoustic waves (DAWs) in an inhomogeneous magnetized collisional and warm dusty plasma (DP) consisting of Boltzmann ions, nonextensive electrons, and inertial dust particles is investigated. The number density gradients of all DP components besides the inhomogeneities of electrostatic potential and the initial dust fluid velocity are taken into account. The linear dispersion relation and a nonlinear modified Zakharov-Kusnetsov (MZK) equation governing the propagation of the three-dimensional DAWs are derived. The analytical solution of the MZK reveals the creation of both compressive and rarefactive DAW solitons in the proposed model. It is found that the inhomogeneity dimension parameter and the electron nonextensive parameter affect significantly the nonlinear DAW's amplitude, width, and Mach number. The relations of our findings with some astrophysical situations have been given.

  5. Mercury sorbent delivery system for flue gas

    SciTech Connect (OSTI)

    Klunder; ,Edgar B. (Bethel Park, PA)

    2009-02-24T23:59:59.000Z

    The invention presents a device for the removal of elemental mercury from flue gas streams utilizing a layer of activated carbon particles contained within the filter fabric of a filter bag for use in a flue gas scrubbing system.

  6. Revamping AK-Ashland gas cleaning system

    SciTech Connect (OSTI)

    Brandes, H.; Koerbel, R. [Mannesmann Demag Corp., Coraopolis, PA (United States); Haberkamp, K. [Mannesmann Demag Huttentechnik, Duisburg (Germany); Keeton, S. [AK Steel Corp., Ashland, KY (United States)

    1995-07-01T23:59:59.000Z

    AK Steel`s (formerly Armco) BOF shop was using a static precipitator for the primary collection. The system was designed for full combustion in the gas collecting hoods. No secondary dust collection was in place. A detailed study on alternative solutions led to a completely different system in 1990, and an order was awarded to Mannesmann Demag Corp. (MDC) in Dec. 1990. The new gas collection system is using suppressed combustion with the capability to collect Co at a later stage. The gas cleaning uses the Mannesmann Demag Baumco scrubber with a venturi throat for gas flow control. All auxiliary components, water treatment plant, electric substations and sludge handling were designed and supplied by MDC. The secondary dust collection covers the hot metal and scrap charging into the BOF`s, reladling, desulfurization and deslagging by a pulse jet baghouse. All emission limits set by the EPA and guaranteed by MDC have been met by the systems installed.

  7. FRAGMENTATION AND EVOLUTION OF MOLECULAR CLOUDS. II. THE EFFECT OF DUST HEATING

    SciTech Connect (OSTI)

    Urban, Andrea; Evans, Neal J. [Department of Astronomy, University of Texas, Austin, TX 78712 (United States); Martel, Hugo [Departement de Physique, genie physique et optique, Universite Laval, Quebec, QC G1K 7P4 (Canada)

    2010-02-20T23:59:59.000Z

    We investigate the effect of heating by luminosity sources in a simulation of clustered star formation. Our heating method involves a simplified continuum radiative transfer method that calculates the dust temperature. The gas temperature is set by the dust temperature. We present the results of four simulations; two simulations assume an isothermal equation of state and the two other simulations include dust heating. We investigate two mass regimes, i.e., 84 M{sub sun} and 671 M{sub sun}, using these two different energetics algorithms. The mass functions for the isothermal simulations and simulations that include dust heating are drastically different. In the isothermal simulation, we do not form any objects with masses above 1 M{sub sun}. However, the simulation with dust heating, while missing some of the low-mass objects, forms high-mass objects ({approx}20 M{sub sun}) which have a distribution similar to the Salpeter initial mass function. The envelope density profiles around the stars formed in our simulation match observed values around isolated, low-mass star-forming cores. We find the accretion rates to be highly variable and, on average, increasing with final stellar mass. By including radiative feedback from stars in a cluster-scale simulation, we have determined that it is a very important effect which drastically affects the mass function and yields important insights into the formation of massive stars.

  8. Dust in the Radio Galaxy and Merger Remnant NGC 1316 (Fornax A)

    E-Print Network [OSTI]

    Asabere, Bernard Duah; Winkler, Hartmut; Jarrett, Thomas; Leeuw, Lerothodi

    2014-01-01T23:59:59.000Z

    We present dust maps of NGC 1316 (Fornax A), a well-studied early-type galaxy located in the outskirts of the Fornax cluster. We used the Large APEX BOlometer CAmera (LABOCA), operating at 870 micron with an angular resolution of 19.5 arcseconds on the Atacama Pathfinder EXperiment (APEX) 12m submillimeter telescope in Chile and the Wide-field Infrared Survey Explorer (WISE). WISE observes in four mid-infrared bands centered at 3.4, 4.6, 12 and 22 micron with angular resolutions ranging from 6 to 12 arcseconds. The WISE and LABOCA maps reveal emission from dust in the central 2 arcminutes of NGC 1316. The disturbed optical morphology with many shells and loops, the complex distribution of molecular gas and our dust maps are evidences of past merger activity or gas accretion in the galaxy. Combining the LABOCA flux measurement with existing mid- and far-infrared measurements, we estimate the temperature of the cold (~20 K) and warm (~55 K) dust components in the galaxy. This study will be extended to other sou...

  9. Dust-Acoustic Waves: Visible Sound Waves Robert L. Merlino

    E-Print Network [OSTI]

    Merlino, Robert L.

    Dust-Acoustic Waves: Visible Sound Waves Robert L. Merlino Department of Physics and Astronomy with their announcement that: "We find that a new type of sound wave, namely, the dust-acoustic waves, can appear" [1 and experimental work on dust acoustic waves is given. The basic physics of the dust acoustic wave and some

  10. Silica dust control when drilling concrete Page 1 of 2

    E-Print Network [OSTI]

    Knowles, David William

    Silica dust control when drilling concrete Page 1 of 2 Drilling into concrete releases a fine sandy and routinely drill into concrete are at risk of developing this disease. Controlling the dust Hammer drills are available with attached dust removal systems. These draw dust from the drill end, down the attachment

  11. GLOBAL SCALE ATTRIBUTION OF ANTHROPOGENIC AND NATURAL DUST

    E-Print Network [OSTI]

    -scale convective processes producing dust via cold pool (ha- boob) events frequent in monsoon regimes. 1

  12. Morphological Investigations of Fibrogenic Action of Estonian Oil Shale Dust

    E-Print Network [OSTI]

    V. A. Kung

    dust produced in the mining and processing of Estonian oil shale is given. Histological examination of

  13. Inhomogeneous cloud coverage through the Coulomb explosion of dust in substellar atmospheres

    E-Print Network [OSTI]

    Stark, Craig R; Diver, Declan A

    2015-01-01T23:59:59.000Z

    Recent observations of brown dwarf spectroscopic variability in the infrared infer the presence of patchy cloud cover. This paper proposes a mechanism for producing inhomogeneous cloud coverage due to the depletion of cloud particles through the Coulomb explosion of dust in atmospheric plasma regions. Charged dust grains Coulomb-explode when the electrostatic stress of the grain exceeds its mechanical tensile stress, which results in grains below a critical radius $adust clouds in substellar atmospheres, the effect on the dust particle size distribution function, and the resulting radiative properties of the atmospheric regions. Our results show that for an atmospheric plasma region with an electron temperature of $T_{e}=10$~eV ($\\approx10^{5}$~K), the critical grain radius varies from $10^{-7}$ to $10^{-4}$~cm, depending on the grains' tensile strength. Higher critical radii up to $10^{-3}$~cm ...

  14. Coal Fly Ash as a Source of Iron in Atmospheric Dust

    SciTech Connect (OSTI)

    Chen, Haihan; Laskin, Alexander; Baltrusaitis, Jonas; Gorski, Christopher A.; Scherer, Michelle; Grassian, Vicki H.

    2012-01-18T23:59:59.000Z

    Anthropogenic coal fly ash aerosols may represent a significant source of bioavailable iron in the open ocean. Few measurements have been made to compare the solubility of atmospheric iron from anthropogenic aerosols and other sources. We report an investigation of the iron dissolution of three fly ash samples in acidic aqueous solutions and compare the solubilities with that of Arizona test dust, a reference material of mineral dust. The effects of pH, cloud processing, and solar irradiation on Fe solubility were explored. Similar to previously reported results on mineral dust, iron in aluminosilicate phases provide predominant dissolved iron compared with iron in oxides. Iron solubility of fly ash is higher than Arizona test dust, especially at the higher pH conditions investigated. Simulated atmospheric processing elevates iron solubility due to significant changes in the morphology aluminosilicate glass, a dominantly material in fly ash particle. Iron continuously releases into the aqueous solution as fly ash particles break up into smaller fragments. The assessment of dissolved atmospheric iron deposition fluxes, and their effect on the biogeochemistry at ocean surface should be constrained by taking into account the source, environment pH, Fe speciation, and solar radiation.

  15. Collection of submicron particles with cloud droplets using the new MIT-CFC

    E-Print Network [OSTI]

    Ardon-Dryer, K.

    2013-01-01T23:59:59.000Z

    Collection efficiency of submicron mineral dust particles by cloud droplets will be examined using the new Massachusetts Institute of Technology-Contact Freezing Chamber (MIT-CFC). Comparison of the collection efficiency ...

  16. Molecular Gas in Galaxies

    E-Print Network [OSTI]

    F. Combes

    2000-07-21T23:59:59.000Z

    Knowledge of the molecular component of the ISM is fundamental to understand star formation. The H2 component appears to dominate the gas mass in the inner parts of galaxies, while the HI component dominates in the outer parts. Observation of the CO and other lines in normal and starburst galaxies have questioned the CO-to-H2 conversion factor, and detection of CO in dwarfs have shown how sensitive the conversion f actor is to metallicity. Our knowledge has made great progress in recent years, because of sensitivity and spatial resolution improvements. Large-scale CO maps of nearby galaxies are now available, which extend our knowledge on global properties, radial gradients, and spiral structure of the molecular ISM. Millimetric interferometers reveal high velocity gradients in galaxy nuclei, and formation of embedded structures, like bars within bars. Galaxy interactions are very effective to enhance gas concentrations and trigger starbursts. Nuclear disks or rings are frequently observed, that concentrate the star formation activity. Since the density of starbursting galaxies is strongly increasing with redshift, the CO lines and the mm dust emission are a privileged tool to follow evolution of galaxies and observe the ISM dynamics at high redshift: they could give an answer about the debated question of the star-formation history, since many massive remote starbursts could be dust-enshrouded.

  17. Extraplanar Dust and Star Formation in Nearby Edge-On Galaxies

    E-Print Network [OSTI]

    J. Christopher Howk; Blair D. Savage

    1998-10-27T23:59:59.000Z

    We present high-resolution ( 0.5 - 2.0. If Milky Way gas-to-dust relationships are appropriate, then these structures have gaseous column densities N_H > 10(21) cm(-2), with very large masses (>10(5) - 10(6) solar masses) and gravitational potential energies (> 10(51) - 10(52) ergs relative to z=0). The estimated column densities suggest molecular gas may be present, and with the estimated masses allows for the possibility of star formation in these dusty clouds. Recent star formation is the likely cause of the discrete H II regions, in some cases associated with relatively blue continuum sources, observed at heights 0.6 < |z| < 0.8 kpc above the disks of these galaxies. The presence of early-type stars at high-z in these galaxies may be related to the extraplanar dust structures seen in our images.

  18. Global coherence of dust density waves

    SciTech Connect (OSTI)

    Killer, Carsten; Melzer, André [Institut für Physik, Ernst-Moritz-Arndt-Universität Greifswald, 17489 Greifswald (Germany)

    2014-06-15T23:59:59.000Z

    The coherence of self-excited three-dimensional dust density waves has been experimentally investigated by comparing global and local wave properties. For that purpose, three-dimensional dust clouds have been confined in a radio frequency plasma with thermophoretic levitation. Global wave properties have been measured from the line-of-sight integrated dust density obtained from homogenous light extinction measurements. Local wave properties have been obtained from thin, two-dimensional illuminated laser slices of the cloud. By correlating the simultaneous global and local wave properties, the spatial coherence of the waves has been determined. We find that linear waves with small amplitudes tend to be fragmented, featuring an incoherent wave field. Strongly non-linear waves with large amplitudes, however, feature a strong spatial coherence throughout the dust cloud, indicating a high level of synchronization.

  19. The interstellar cold dust observed by COBE

    E-Print Network [OSTI]

    G. Lagache; A. Abergel; F. Boulanger; J. L. Puget

    1998-12-30T23:59:59.000Z

    Using DIRBE and FIRAS maps at high latitude ($|b|>10^{\\circ}$) we derive the spatial distribution of the dust temperature associated with the diffuse cirrus and the dense molecular clouds. For a $\

  20. Surface acoustic wave dust deposition monitor

    DOE Patents [OSTI]

    Fasching, G.E.; Smith, N.S. Jr.

    1988-02-12T23:59:59.000Z

    A system is disclosed for using the attenuation of surface acoustic waves to monitor real time dust deposition rates on surfaces. The system includes a signal generator, a tone-burst generator/amplifier connected to a transmitting transducer for converting electrical signals into acoustic waves. These waves are transmitted through a path defining means adjacent to a layer of dust and then, in turn, transmitted to a receiving transducer for changing the attenuated acoustic wave to electrical signals. The signals representing the attenuated acoustic waves may be amplified and used in a means for analyzing the output signals to produce an output indicative of the dust deposition rates and/or values of dust in the layer. 8 figs.

  1. Particle density distributions in Fermi gas superfluids: Differences between one- and two-channel models in the Bose-Einstein-condensation limit

    SciTech Connect (OSTI)

    Stajic, Jelena; Levin, K. [James Franck Institute and Department of Physics, University of Chicago, Chicago, Illinois 60637 (United States); Chen Qijin [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland 21218 (United States)

    2005-03-01T23:59:59.000Z

    We discuss the differences between one- and two-channel descriptions of fermionic gases with arbitrarily tunable attractive interactions; these two cases correspond to whether molecular bosonic degrees of freedom are omitted or included. We adopt the standard ground state wave function for the fermionic component associated with the BCS to BEC crossover problem: for weak attraction the system is in the BCS state while it crosses over continuously to a Bose-Einstein-condensed (BEC) state as the interaction strength is increased. Our analysis focuses on the BEC and near-BEC limit where the differences between the one- and two-channel descriptions are most notable, and where analytical calculations are most tractable. Among the differences we elucidate are the equations of state at general T below T{sub c} and related particle density profiles. We find a narrowing of the density profile in the two-channel problem relative to the one-channel analog. Importantly, we infer that the ratio between bosonic and fermionic scattering lengths depends on the magnetic detuning and is generally smaller than its one-channel counterpart. Future experiments will be required to determine to what extent this ratio varies with magnetic fields, as predicted here.

  2. Boll Weevil Control by Airplane Dusting.

    E-Print Network [OSTI]

    Thomas, F. L. (Frank Lincoln)

    1929-01-01T23:59:59.000Z

    EXPERIMENT STATIGH LiBRl BUILDINC XAS AGRICULTURAL EXPERIMENT STATION A. B. CONNER, DIRECTOR COLLEGE STATION, BRAZOS COUNTY. TEXAS FIN NO. 394 APRIL, 1929 DIVISION OF ENTOMOLOGY BOLL WEEVIL CONTROL BY AIR- PLANE DUSTING - A...~on with the School of Agriculture. rrjshand. unty: tv: SYNOPSIS The cotton acreage in Texas which has been protected against insects by airplane dusting increased from 3,000 acres in 1925 to approximateljr 50,000 acres in 1928, according to information...

  3. Particle dispersing system and method for testing semiconductor manufacturing equipment

    DOE Patents [OSTI]

    Chandrachood, Madhavi (Sunnyvale, CA); Ghanayem, Steve G. (Sunnyvale, CA); Cantwell, Nancy (Milpitas, CA); Rader, Daniel J. (Albuquerque, NM); Geller, Anthony S. (Albuquerque, NM)

    1998-01-01T23:59:59.000Z

    The system and method prepare a gas stream comprising particles at a known concentration using a particle disperser for moving particles from a reservoir of particles into a stream of flowing carrier gas. The electrostatic charges on the particles entrained in the carrier gas are then neutralized or otherwise altered, and the resulting particle-laden gas stream is then diluted to provide an acceptable particle concentration. The diluted gas stream is then split into a calibration stream and the desired output stream. The particles in the calibration stream are detected to provide an indication of the actual size distribution and concentration of particles in the output stream that is supplied to a process chamber being analyzed. Particles flowing out of the process chamber within a vacuum pumping system are detected, and the output particle size distribution and concentration are compared with the particle size distribution and concentration of the calibration stream in order to determine the particle transport characteristics of a process chamber, or to determine the number of particles lodged in the process chamber as a function of manufacturing process parameters such as pressure, flowrate, temperature, process chamber geometry, particle size, particle charge, and gas composition.

  4. Thermo-Oxidation of Tokamak Carbon Dust

    SciTech Connect (OSTI)

    J.W. Davis; B.W.N. Fitzpatrick; J.P. Sharpe; A.A. Haasz

    2008-04-01T23:59:59.000Z

    The oxidation of dust and flakes collected from the DIII-D tokamak, and various commercial dust specimens, has been measured at 350 ºC and 2.0 kPa O2 pressure. Following an initial small mass loss, most of the commercial dust specimens showed very little effect due to O2 exposure. Similarly, dust collected from underneath DIII-D tiles, which is thought to comprise largely Grafoil™ particulates, also showed little susceptibility to oxidation at this temperature. However, oxidation of the dust collected from tile surfaces has led to ~ 18% mass loss after 8 hours; thereafter, little change in mass was observed. This suggests that the surface dust includes some components of different composition and/or structure – possibly fragments of codeposited layers. The oxidation of codeposit flakes scraped form DIII-D upper divertor tiles showed an initial 25% loss in mass due to heating in vacuum, and the gradual loss of 30-38% mass during the subsequent 24 hours exposure to O2. This behavior is significantly different from that observed for the oxidation of thinner DIII-D codeposit specimens which were still adhered to tile surfaces, and this is thought to be related to the low deuterium content (D/C ~ 0.03 – 0.04) of the flakes.

  5. Volcanic loading: The dust veil index

    SciTech Connect (OSTI)

    Lamb, H.H. [Univ. of East Anglia, Norwich (United Kingdom). Climatic Research Unit

    1985-09-01T23:59:59.000Z

    Dust ejected into the high atmosphere during explosive volcanic eruptions has been considered as a possible cause for climatic change. Dust veils created by volcanic eruptions can reduce the amount of light reaching the Earth`s surface and can cause reductions in surface temperatures. These climatic effects can be seen for several years following some eruptions and the magnitude and duration of the effects depend largely on the density or amount of tephra (i.e. dust) ejected, the latitude of injection, and atmospheric circulation patterns. Lamb (1970) formulated the Dust Veil Index (DVI) in an attempt to quantify the impact on the Earth`s energy balance of changes in atmospheric composition due to explosive volcanic eruptions. The DVI is a numerical index that quantifies the impact on the Earth`s energy balance of changes in atmospheric composition due to explosive volcanic eruptions. The DVI is a numerical index that quantifies the impact of a particular volcanic eruptions release of dust and aerosols over the years following the event. The DVI for any volcanic eruptions are available and have been used in estimating Lamb`s dust veil indices.

  6. Structural features of bicomponent dust Coulomb balls formed by the superposition of fields of different origin in plasma

    SciTech Connect (OSTI)

    Psakhie, S. G.; Zolnikov, K. P.; Kryzhevich, D. S.; Abdrashitov, A. V. [Institute of Strength Physics and Materials Science SB RAS, 634021, Tomsk, pr. Akademicheskii, 2/1 (Russian Federation); Skorentsev, L. F. [Siberian Physico-Technical Institute, 634050, Tomsk, pl. Novosobornaya, 1 (Russian Federation)

    2008-05-15T23:59:59.000Z

    A binary mixture of dust particles in plasma which are in an external electrostatic harmonic confining field as well as in the field consisting of gravitational, thermophoretic, and electrostatic force is simulated. The interparticle interaction is described by the Yukawa isotropic pair potential. The structural properties of the binary mixture of particles depending on composition are investigated. The segregation features of a system of particles of two species under the conditions of recent experiments on Coulomb ball formation are studied. It is shown that particles form a shell structure in which every shell contains only its own species of particles; in so doing, smaller-sized particles make up outer shells with respect to larger-sized particles. When the size difference between the particles becomes more and more pronounced, they are spatially separated up to the formation of two independent Coulomb balls.

  7. Electrostatic charging of lunar dust

    SciTech Connect (OSTI)

    Walch, Bob [Department of Physics, University of Northern Colorado, Greeley, Colorado 80639 (United States); Horanyi, Mihaly [LASP, University of Colorado, Boulder, Colorado 80309-0392 (United States); Robertson, Scott [Department of Physics, University of Colorado, Boulder, Colorado 80309-0391 (United States)

    1998-10-21T23:59:59.000Z

    Transient dust clouds suspended above the lunar surface were indicated by the horizon glow observed by the Surveyor spacecrafts and the Lunar Ejecta and Meteorite Experiment (Apollo 17), for example. The theoretical models cannot fully explain these observations, but they all suggest that electrostatic charging of the lunar surface due to exposure to the solar wind plasma and UV radiation could result in levitation, transport and ejection of small grains. We report on our experimental studies of the electrostatic charging properties of an Apollo-17 soil sample and two lunar simulants MLS-1 and JSC-1. We have measured their charge after exposing individual grains to a beam of fast electrons with energies in the range of 20{<=}E{<=}90 eV. Our measurements indicate that the secondary electron emission yield of the Apollo-17 sample is intermediate between MLS-1 and JSC-1, closer to that of MLS-1. We will also discuss our plans to develop a laboratory lunar surface model, where time dependent illumination and plasma bombardment will closely emulate the conditions on the surface of the Moon.

  8. Spectral solar irradiance before and during a Harmattan dust spell

    SciTech Connect (OSTI)

    Adeyefa, Z.D. [Federal Univ. of Technology, Akure (Nigeria)] [Federal Univ. of Technology, Akure (Nigeria); Holmgren, B. [Uppsala Univ. (Sweden)] [Uppsala Univ. (Sweden)

    1996-09-01T23:59:59.000Z

    Measurements of the ground-level spectral distributions of the direct, diffuse and global solar irradiance between 300 and 1100 nm were made at Akure (7.15{degree}N, 5.5{degree}E), Nigeria, in December 1991 before and during a Harmattan dust spell employing a spectroradiometer (LICOR LI-1800) with 6 nm resolution. The direct spectral solar irradiance which was initially reduced before the dust storm was further attenuated by about 50% after the spell. Estimated values of the Angstrom turbidity coefficient {beta} indicated an increase of about 146% of this parameter while the Angstrom wavelength-exponent {alpha} decreased by about 65% within the 2-day study period. The spectral diffuse-to-direct and diffuse-to-global ratios suggest that the main cause of the significant reduction in solar irradiance at the surface was the scattering by the aerosol which led to an increase in the diffuse component. The global irradiance though reduced, was less sensitive to changing Harmattan conditions. It is recommended that solar energy devices that use radiation from Sun and sky be used under fluctuating Harmattan conditions. There are some deviations from the Angstrom formula under very turbid Harmattan conditions which could be explained by the relative increase of the particle sizes. 31 refs., 12 figs., 3 tabs.

  9. Void formation and dust cloud structure in (a)symmetric RF discharges

    SciTech Connect (OSTI)

    Goedheer, W.J.; Akdim, M.R.; Land, V. [FOM Institute for Plasma Physics Rijnhuizen, Association EURATOM-FOM, Trilateral Euregio Cluster, P.O. Box 1207, 3430 BE Nieuwegein (Netherlands)

    2005-10-31T23:59:59.000Z

    The behaviour of dust particles in a discharge is the result of the concerted action of the charging process and forces like gravity, the ion and neutral drag force, and the thermophoretic force. Since the ion drag force plays a major role, the reactor geometry and the ion density profile are important parameters. In this paper we study the influence of the geometrical features of a radio-frequency discharge, such as asymmetry, ring electrodes, and a depression in the electrodes.

  10. Quantitative organic vapor-particle sampler

    DOE Patents [OSTI]

    Gundel, Lara (Berkeley, CA); Daisey, Joan M. (Walnut Creek, CA); Stevens, Robert K. (Cary, NC)

    1998-01-01T23:59:59.000Z

    A quantitative organic vapor-particle sampler for sampling semi-volatile organic gases and particulate components. A semi-volatile organic reversible gas sorbent macroreticular resin agglomerates of randomly packed microspheres with the continuous porous structure of particles ranging in size between 0.05-10 .mu.m for use in an integrated diffusion vapor-particle sampler.

  11. Particle separation

    DOE Patents [OSTI]

    Moosmuller, Hans (Reno, NV); Chakrabarty, Rajan K. (Reno, NV); Arnott, W. Patrick (Reno, NV)

    2011-04-26T23:59:59.000Z

    Embodiments of a method for selecting particles, such as based on their morphology, is disclosed. In a particular example, the particles are charged and acquire different amounts of charge, or have different charge distributions, based on their morphology. The particles are then sorted based on their flow properties. In a specific example, the particles are sorted using a differential mobility analyzer, which sorts particles, at least in part, based on their electrical mobility. Given a population of particles with similar electrical mobilities, the disclosed process can be used to sort particles based on the net charge carried by the particle, and thus, given the relationship between charge and morphology, separate the particles based on their morphology.

  12. Hot Coal for Christmas: Dust Formation in the Swept-Up Shell Around The Peculiar Type Ib Supernova 2006jc

    E-Print Network [OSTI]

    Smith, Nathan; Filippenko, Alexei V

    2007-01-01T23:59:59.000Z

    We present evidence for the formation of dust grains in an unusual Type Ib SN based on late-time spectra of SN 2006jc. The progenitor suffered a giant outburst qualitatively similar to those seen in LBVs just 2 years prior to the SN, and we speculate that the dust formation we observe is an indirect consequence of that event. The key evidence for dust formation seen in our optical spectra is (1) the appearance of a strong continuum emission source at red wavelengths, and (2) fading of the redshifted sides of narrow HeI emission lines. These two observed characteristics provide the strongest case yet for dust formation in any Type Ib/c SN. Both developments occurred simultaneously between 51 and 75 days after peak brightness, which is quick compared to other dusty SNe. The high temperature of the dust implies carbon and not silicates, and we describe how infrared photometry may test this conjecture. Geometric considerations indicate dust formation occurring in the dense gas swept-up by the forward shock, and n...

  13. The SCUBA Local Universe Galaxy Survey II. 450 micron data - evidence for cold dust in bright IRAS Galaxies

    E-Print Network [OSTI]

    Loretta Dunne; Stephen Eales

    2001-06-20T23:59:59.000Z

    This is the second in a series of papers presenting results from the SCUBA Local Universe Galaxy Survey. In our first paper we provided 850 micron flux densities for 104 galaxies selected from the IRAS Bright Galaxy Sample and we found that the 60, 100 micron (IRAS) and 850 micron (SCUBA) fluxes could be adequately fitted by emission from dust at a single temperature. In this paper we present 450 micron data for the galaxies. With the new data, the spectral energy distributions of the galaxies can no longer be fitted with an isothermal dust model - two temperature components are now required. Using our 450 micron data and fluxes from the literature, we find that the 450/850 micron flux ratio for the galaxies is remarkably constant and this holds from objects in which the star formation rate is similar to our own Galaxy, to ultraluminous infrared galaxies (ULIRGS) such as Arp 220. The only possible explanation for this is if the dust emissivity index for all of the galaxies is ~2 and the cold dust component has a similar temperature in all galaxies (20-21 K). The dust masses estimated using the new temperatures are higher by a factor ~2 than those determined previously using a single temperature. This brings the gas-to-dust ratios of the IRAS galaxies into agreement with those of the Milky Way and other spiral galaxies which have been intensively studied in the submm.

  14. Nonlinear dust acoustic waves in inhomogeneous four-component dusty plasma with opposite charge polarity dust grains

    SciTech Connect (OSTI)

    El-Taibany, W. F. [Department of Physics, Faculty of Science, Damietta University, New Damietta P. O. 34517 (Egypt)] [Department of Physics, Faculty of Science, Damietta University, New Damietta P. O. 34517 (Egypt)

    2013-09-15T23:59:59.000Z

    The reductive perturbation technique is employed to investigate the propagation properties of nonlinear dust acoustic (DA) waves in a four-component inhomogeneous dusty plasma (4CIDP). The 4CIDP consists of both positive- and negative-charge dust grains, characterized by different mass, temperature, and density, in addition to a background of Maxwellian electrons and ions. The inhomogeneity caused by nonuniform equilibrium values of particle densities, fluid velocities, and electrostatic potential leads to a significant modification to the nature of nonlinear DA solitary waves. It is found that this model reveals two DA wave velocities, one slow, ?{sub s}, and the other is fast, ?{sub f}. The nonlinear wave evolution is governed by a modified Kortweg-de Vries equation, whose coefficients are space dependent. Both the two soliton types; compressive and rarefactive are allowed corresponding to ?{sub s}. However, only compressive soliton is created corresponding to ?{sub f}. The numerical investigations illustrate the dependence of the soliton amplitude, width, and velocity on the plasma inhomogeneities in each case. The relevance of these theoretical results with 4CIDPs observed in a multi-component plasma configurations in the polar mesosphere is discussed.

  15. Large amplitude dust-acoustic solitary waves in electron-positron-ion plasma with dust grains

    SciTech Connect (OSTI)

    Esfandyari-Kalejahi, A.; Afsari-Ghazi, M.; Noori, K.; Irani, S. [Department of Physics, Faculty of Science, Azarbaijan University of Shahid Madani, 51745-406, Tabriz (Iran, Islamic Republic of)

    2012-08-15T23:59:59.000Z

    Propagation of large amplitude dust-acoustic (DA) solitary waves is investigated in electron-positron-ion plasmas in the presence of dust grains using Sagdeev potential method. It is shown that acceptable values of Mach number for propagation of the large amplitude DA solitary waves depend strongly on plasma parameters. It is also observed that the amplitude of DA solitary waves increases as both the Mach number M and dust charge Z{sub d} are increased. Furthermore, it is found that a dusty plasma with inertial dust fluid and Boltzmann distributed electrons, positrons, and ions admits only negative solitary potentials associated with nonlinear dust-acoustic waves. In addition, it is remarked that the formation of double layers is not possible in this plasma system.

  16. DUST IN A TYPE Ia SUPERNOVA PROGENITOR: SPITZER SPECTROSCOPY OF KEPLER'S SUPERNOVA REMNANT

    SciTech Connect (OSTI)

    Williams, Brian J.; Borkowski, Kazimierz J.; Reynolds, Stephen P. [Physics Department, North Carolina State University, Raleigh, NC 27695-8202 (United States); Ghavamian, Parviz [Department of Physics, Astronomy, and Geosciences, Towson University, Towson, MD 21252 (United States); Blair, William P. [Department of Physics and Astronomy, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218-2686 (United States); Long, Knox S. [STScI, 3700 San Martin Dr., Baltimore, MD 21218 (United States); Sankrit, Ravi, E-mail: brian.j.williams@nasa.gov [SOFIA/USRA, NASA Ames Research Center, M/S N211-3, Moffett Field, CA 94035 (United States)

    2012-08-10T23:59:59.000Z

    Characterization of the relatively poorly understood progenitor systems of Type Ia supernovae is of great importance in astrophysics, particularly given the important cosmological role that these supernovae play. Kepler's supernova remnant, the result of a Type Ia supernova, shows evidence for an interaction with a dense circumstellar medium (CSM), suggesting a single-degenerate progenitor system. We present 7.5-38 {mu}m infrared (IR) spectra of the remnant, obtained with the Spitzer Space Telescope, dominated by emission from warm dust. Broad spectral features at 10 and 18 {mu}m, consistent with various silicate particles, are seen throughout. These silicates were likely formed in the stellar outflow from the progenitor system during the asymptotic giant branch stage of evolution, and imply an oxygen-rich chemistry. In addition to silicate dust, a second component, possibly carbonaceous dust, is necessary to account for the short-wavelength Infrared Spectrograph and Infrared Array Camera data. This could imply a mixed chemistry in the atmosphere of the progenitor system. However, non-spherical metallic iron inclusions within silicate grains provide an alternative solution. Models of collisionally heated dust emission from fast shocks (>1000 km s{sup -1}) propagating into the CSM can reproduce the majority of the emission associated with non-radiative filaments, where dust temperatures are {approx}80-100 K, but fail to account for the highest temperatures detected, in excess of 150 K. We find that slower shocks (a few hundred km s{sup -1}) into moderate density material (n{sub 0} {approx} 50-250 cm{sup -3}) are the only viable source of heating for this hottest dust. We confirm the finding of an overall density gradient, with densities in the north being an order of magnitude greater than those in the south.

  17. Flammability limits of dusts: Minimum inerting concentrations

    SciTech Connect (OSTI)

    Dastidar, A.G.; Amyotte, P.R. [Dalhousie Univ., Halifax, Nova Scotia (Canada). Dept. of Chemical Engineering] [Dalhousie Univ., Halifax, Nova Scotia (Canada). Dept. of Chemical Engineering; Going, J.; Chatrathi, K. [Fike Corp., Blue Springs, MO (United States)] [Fike Corp., Blue Springs, MO (United States)

    1999-05-01T23:59:59.000Z

    A new flammability limit parameter has been defined as the Minimum Inerting Concentration (MIC). This is the concentration of inertant required to prevent a dust explosion regardless of fuel concentration. Previous experimental work at Fike in a 1-m{sup 3} spherical chamber has shown this flammability limit to exist for pulverized coal dust and cornstarch. In the current work, inerting experiments with aluminum, anthraquinone and polyethylene dusts as fuels were performed, using monoammonium phosphate and sodium bicarbonate as inertants. The results show that an MIC exists only for anthraquinone inerted with sodium bicarbonate. The other combustible dust and inertant mixtures did not show a definitive MIC, although they did show a strong dependence between inerting level and suspended fuel concentration. As the fuel concentration increased, the amount of inertant required to prevent an explosion decreased. Even though a definitive MIC was not found for most of the dusts an effective MIC can be estimated from the data. The use of MIC data can aid in the design of explosion suppression schemes.

  18. Extended silicate dust emission in PG QSOs

    E-Print Network [OSTI]

    M. Schweitzer; B. Groves; H. Netzer; D. Lutz; E. Sturm; A. Contursi; R. Genzel; L. J. Tacconi; S. Veilleux; D. -C. Kim; D. Rupke; A. J. Baker

    2008-01-30T23:59:59.000Z

    This paper addresses the origin of the silicate emission observed in PG QSOs, based on observations with the Spitzer Space Telescope. Scenarios based on the unified model suggest that silicate emission in AGN arises mainly from the illuminated faces of the clouds in the torus at temperatures near sublimation. However, detections of silicate emission in Type 2 QSOs, and the estimated cool dust temperatures, argue for a more extended emission region.To investigate this issue we present the mid-infrared spectra of 23 QSOs. These spectra, and especially the silicate emission features at ~10 and ~18 mu can be fitted using dusty narrow line region (NLR) models and a combination of black bodies. The bolometric luminosities of the QSOs allow us to derive the radial distances and covering factors for the silicate-emitting dust. The inferred radii are 100-200 times larger than the dust sublimation radius, much larger than the expected dimensions of the inner torus. Our QSO mid-IR spectra are consistent with the bulk of the silicate dust emission arising from the dust in the innermost parts of the NLR.

  19. Structure and trapping of three-dimensional dust clouds in a capacitively coupled rf-discharge

    SciTech Connect (OSTI)

    Arp, O.; Block, D.; Piel, A. [IEAP, Christian-Albrechts-University, D-24098 Kiel (Germany)

    2005-10-31T23:59:59.000Z

    In this survey the recently found 'Coulomb balls' are discussed, which show an unusual kind of crystalline order. These three-dimensional dust clouds consisting of hundreds or thousands of micrometer-sized dust particles have a spherical shape and exist in a wide range of plasma conditions. Coulomb balls are optically highly transparent and have macroscopic dimensions of several millimeters in diameter. The clouds allow for the observation of each single particle and thus the complete reconstruction of the crystal structure by means of video microscopy techniques. The particles are arranged in distinct nested shells in which they form patterns with mostly five and six neighbors. The confinement of Coulomb balls by dielectric walls involves electric forces, surface charges, ion drag forces, and thermophoretic levitation. The thermophoretic force field is measured with tracer particles and particle image velocimetry (PIV). The electric forces are derived from simulations with the two-dimensional SIGLO-2D code. It is shown the the sum of all confining forces results in a stable potential well that describes levitation and spherical confinement of the Coulomb ball.

  20. Real-time airborne particle analyzer

    DOE Patents [OSTI]

    Reilly, Peter T.A.

    2012-10-16T23:59:59.000Z

    An aerosol particle analyzer includes a laser ablation chamber, a gas-filled conduit, and a mass spectrometer. The laser ablation chamber can be operated at a low pressure, which can be from 0.1 mTorr to 30 mTorr. The ablated ions are transferred into a gas-filled conduit. The gas-filled conduit reduces the electrical charge and the speed of ablated ions as they collide and mix with buffer gases in the gas-filled conduit. Preferably, the gas filled-conduit includes an electromagnetic multipole structure that collimates the nascent ions into a beam, which is guided into the mass spectrometer. Because the gas-filled conduit allows storage of vast quantities of the ions from the ablated particles, the ions from a single ablated particle can be analyzed multiple times and by a variety of techniques to supply statistically meaningful analysis of composition and isotope ratios.

  1. Mass production of multi-wall carbon nanotubes by metal dusting process with high yield

    SciTech Connect (OSTI)

    Ghorbani, H. [School of Metallurgy and Materials Engineering, Iran University of Science and Technology, Narmak, Tehran (Iran, Islamic Republic of)] [School of Metallurgy and Materials Engineering, Iran University of Science and Technology, Narmak, Tehran (Iran, Islamic Republic of); Rashidi, A.M., E-mail: Rashidiam@ripi.ir [Nanotechnology Research Center, Research Institute of Petroleum Industry (RIPI), West Blvd. Azadi Sport Complex, P.O. Box 14665-1998, Tehran (Iran, Islamic Republic of); Rastegari, S.; Mirdamadi, S. [School of Metallurgy and Materials Engineering, Iran University of Science and Technology, Narmak, Tehran (Iran, Islamic Republic of)] [School of Metallurgy and Materials Engineering, Iran University of Science and Technology, Narmak, Tehran (Iran, Islamic Republic of); Alaei, M. [Nanotechnology Research Center, Research Institute of Petroleum Industry (RIPI), West Blvd. Azadi Sport Complex, P.O. Box 14665-1998, Tehran (Iran, Islamic Republic of)] [Nanotechnology Research Center, Research Institute of Petroleum Industry (RIPI), West Blvd. Azadi Sport Complex, P.O. Box 14665-1998, Tehran (Iran, Islamic Republic of)

    2011-05-15T23:59:59.000Z

    Research highlights: {yields} Synthesis of carbon nanotubes over Fe-Ni nanoparticles supported alloy 304L. {yields} Production of carbon nanotubes with high yield (700-1000%) and low cost catalyst. {yields} Optimum growth condition is CO/H{sub 2} = 1/1, 100 cm{sup 3}/min, at 620 {sup o}C under long term repetitive thermal cycling. {yields} Possibility of the mass production by metal dusting process with low cost. -- Abstract: Carbon nanotube materials were synthesized over Fe-Ni nanoparticles generated during disintegration of the surface of alloy 304L under metal dusting environment. The metal dusting condition was simulated and optimized through exposing stainless steel samples during long term repetitive thermal cycling in CO/H{sub 2} = 1/1, total gas flow rate 100 cm{sup 3}/min, at 620 {sup o}C for 300 h. After reaction, surface morphology of the samples and also carbonaceous deposition which had grown on sample surfaces were examined by stereoscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Results revealed that multi-wall carbon nanotubes could be formed over nanocatalyst generated on the alloy surface by exploiting metal dusting process. By optimization of reaction parameters the yields of carbon nanotube materials obtained were 700-1000%. Also it has been shown herein that the amount of carbon nanotube materials remarkably increases when the reaction time is extended up to 300 h, indicating a possibility of the mass production by this easy method.

  2. Cold condensation of dust in the ISM

    E-Print Network [OSTI]

    Rouillé, Gaël; Krasnokutski, Serge A; Krebsz, Melinda; Henning, Thomas

    2015-01-01T23:59:59.000Z

    The condensation of complex silicates with pyroxene and olivine composition at conditions prevailing in molecular clouds has been experimentally studied. For this purpose, molecular species comprising refractory elements were forced to accrete on cold substrates representing the cold surfaces of surviving dust grains in the interstellar medium. The efficient formation of amorphous and homogeneous magnesium iron silicates at temperatures of about 12 K has been monitored by IR spectroscopy. The gaseous precursors of such condensation processes in the interstellar medium are formed by erosion of dust grains in supernova shock waves. In the laboratory, we have evaporated glassy silicate dust analogs and embedded the released species in neon ice matrices that have been studied spectroscopically to identify the molecular precursors of the condensing solid silicates. A sound coincidence between the 10 micron band of the interstellar silicates and the 10 micron band of the low-temperature siliceous condensates can be...

  3. Oblique interactions of dust density waves

    SciTech Connect (OSTI)

    Wang, Zhelchui [Los Alamos National Laboratory; Li, Yang - Fang [MAX-PLANCK INSTITUTE; Hou, Lujing [MAX-PLANCK INSTITUTE; Jiang, Ke [MAX-PLANCK INSTITUTE; Wu, De - Jin [CHINA; Thomas, Hubertus M [MAX-PLANCK INSTITUTE; Morfill, Gregor E [MAX-PLANCK INSTITUTE

    2010-01-01T23:59:59.000Z

    Self-excited dust density waves (DDWs) are studied in a striped electrode device. In addition to the usual perpendicularly (with respect to the electrode) propagating DDWs, which have been frequently observed in dusty plasma experiments on the ground, a low-frequency oblique mode is also observed. This low-frequency oblique DDW has a frequency much lower than the dust plasma frequency and its spontaneous excitation is observed even with a very low dust density. It is found that the low-frequency oblique mode can exist either separately or together with the usual perpendicular mode. In the latter case, a new mode arises as a result of the interactions between the perpendicular and the oblique modes. The experiments show that these three modes satisfy the wave coupling conditions in both the frequencies and the wave-vectors.

  4. THE DUST PROPERTIES OF z {approx} 3 MIPS-LBGs FROM PHOTOCHEMICAL MODELS

    SciTech Connect (OSTI)

    Fan, X. L. [School of Physics and Electronics Information, Hubei University of Education, 430205 Wuhan (China); Pipino, A. [Institut fur Astronomie, ETH Zurich, CH-8093 Zurich (Switzerland); Matteucci, F., E-mail: fan@oats.inaf.it [Dipartimento di Fisica, Sezione di Astronomia, Universit a di Trieste, via G.B. Tiepolo 11, I-34131 Trieste (Italy)

    2013-05-10T23:59:59.000Z

    The stacked spectral energy distribution (SED) 24 {mu}m Lyman break galaxies (MIPS-LBGs) detected by the Multiband Imaging Photometer for Spitzer (MIPS) is fitted by means of the spectrophotometric model GRASIL with an ''educated'' fitting approach which benefits from the results of chemical evolution models. The star formation rate-age-metallicity degeneracies of SED modeling are broken by using star formation history (SFH) and chemical enrichment history suggested by chemical models. The dust mass, dust abundance, and chemical pattern of elements locked in the dust component are also directly provided by chemical models. Using our new ''fitting'' approach, we derive the total mass M{sub tot}, stellar mass M{sub *}, gas mass M{sub g} , dust mass M{sub d} , age, and star formation rate (SFR) of the stacked MIPS-LBG in a self-consistent way. Our estimate of M{sub *} = 8 Multiplication-Sign 10{sup 10} of the stacked MIPS-LBG agrees with other works based on UV-optical SED fitting. We suggest that the MIPS-LBGs at z {approx} 3 are young (0.3-0.6 Gyr), massive (M{sub tot} {approx} 10{sup 11} M{sub Sun }), dusty (M{sub d} {approx} 10{sup 8} M{sub Sun }), and metal-rich (Z {approx} Z{sub Sun }) progenitors of elliptical galaxies undergoing a strong burst of star formation (SFR {approx} 200 M{sub Sun} yr{sup -1}). Our estimate of M{sub d} = 7 Multiplication-Sign 10{sup 7} M{sub Sun} of the stacked MIPS-LBG is about a factor of eight lower than the estimated value based on single temperature graybody fitting, suggesting that self-consistent SED models are needed to estimate dust mass. By comparing with Milky Way molecular cloud and dust properties, we suggest that denser and dustier environments and flatter dust size distribution are likely in high-redshift massive star-forming galaxies. These dust properties, as well as the different types of SFHs, can cause different SED shapes between high-redshift star-forming ellipticals and local starburst templates. This discrepancy of SED shapes could in turn explain the non-detection at submillimeter wavelengths of IR luminous (L{sub IR} Succeeds-Above-Single-Line-Equals-Sign 10{sup 12} L{sub Sun }) MIPS-LBGs.

  5. Dispersion relations for the dust-acoustic wave under experimental conditions

    SciTech Connect (OSTI)

    Suranga Ruhunusiri, W. D., E-mail: suranga-ruhunusiri@uiowa.edu; Goree, J. [Department of Physics and Astronomy, The University of Iowa, Iowa City, Iowa 52242 (United States)

    2014-05-15T23:59:59.000Z

    The dust acoustic wave dispersion relation is tested to quantify its sensitivity to many physical processes that are important in laboratory dusty plasmas. It is found that inverse Landau damping and ion-neutral collisions contribute about equally to the growth rate ?{sub i}, pointing to the advantage of using a kinetic model for the instability. The growth rate ?{sub i} increases the most with an increase of dust number density, followed by an increase in ion-drift speed. The quantities that cause ?{sub i} to decrease the most when they are increased are the dust-neutral collision rate followed by the ion-neutral collision rate, ion collection current onto dust particles, and the ion thermal speed. In general, ?{sub i} is affected more than ?{sub r} by the choice of processes that are included. Strong Coulomb-coupling effects can be included in a compressibility term. The susceptibilities derived here can be combined in various ways in a dispersion relation to account for different combinations of physical processes.

  6. Design of a new cotton dust sampler

    E-Print Network [OSTI]

    Hickman, Phillip Dean

    1985-01-01T23:59:59.000Z

    DESIGN OF A NEW COTTON DUST SAMPLER A Thesis by PHILLIP DEAN HICKMAN Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May 1985 Major Subject...: Agricultural Engineering DESIGN OF A NEW COTTON DUST SAMPLER A Thesis by PHILLIP DEAN HICKMAN Approved as to style and content by: Calvin B. Parnell, Jr. (Chairman of Committee) 0. R. Kunze (Member) Andrew R. McFarland (Member) Ric ard B. nz (Memb...

  7. Algebraically general, gravito-electric rotating dust

    E-Print Network [OSTI]

    Lode Wylleman

    2008-06-17T23:59:59.000Z

    The class of gravito-electric, algebraically general, rotating `silent' dust space-times is studied. The main invariant properties are deduced. The number $t_0$ of functionally independent zero-order Riemann invariants satisfies $1\\leq t_0\\leq 2$ and special attention is given to the subclass $t_0=1$. Whereas there are no $\\Lambda$-term limits comprised in the class, the limit for vanishing vorticity leads to two previously derived irrotational dust families with $\\Lambda>0$, and the shear-free limit is the G\\"{o}del universe.

  8. Global observations of desert dust and biomass burning aerosols

    E-Print Network [OSTI]

    Graaf, Martin de

    Global observations of desert dust and biomass burning aerosols Martin de Graaf KNMI #12; Outline · Absorbing Aerosol Index - Theory · Absorbing Aerosol Index - Reality · Biomass burning and desert dust observations from GOME and SCIAMACHY · Conclusions and Outlook #12; · Absorbing Aerosol

  9. aeolian dust climate: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of dust deposition, grain size, and mineralogical and chemical composition relative to climate and to type and lithology of dust source. The average silt and clay flux (rate of...

  10. High Temperature Gas Reactors The Next Generation ?

    E-Print Network [OSTI]

    -Proof Advanced Reactor and Gas Turbine #12;Flow through Power Conversion Vessel 8 #12;9 TRISO Fuel Particle1 High Temperature Gas Reactors The Next Generation ? Professor Andrew C Kadak Massachusetts of Brayton vs. Rankine Cycle · High Temperature Helium Gas (900 C) · Direct or Indirect Cycle · Originally

  11. High Temperature Gas Reactors Briefing to

    E-Print Network [OSTI]

    Meltdown-Proof Advanced Reactor and Gas Turbine #12;TRISO Fuel Particle -- "Microsphere" · 0.9mm diameter · Utilizes gas turbine technology · Lower Power Density · Less Complicated Design (No ECCS) #12;AdvantagesHigh Temperature Gas Reactors Briefing to by Andrew C. Kadak, Ph.D. Professor of the Practice

  12. Information Circular 9465 Handbook for Dust Control in Mining

    E-Print Network [OSTI]

    Saylor, John R.

    .......................................................................... 11 2-1. Machine-mounted scrubber design................................................................................................................... 24 2-2. Dust scrubber used with blowing ventilation ..............................................................................

  13. Using Hubble Space Telescope Imaging of Nuclear Dust Morphology to Rule Out Bars Fueling Seyfert Nuclei

    E-Print Network [OSTI]

    Michael W. Regan; John S. Mulchaey

    1999-03-03T23:59:59.000Z

    If AGN are powered by the accretion of matter onto massive black holes, how does the gas in the host galaxy lose the required angular momentum to approach the black hole? Gas easily transfers angular momentum to stars in strong bars, making them likely candidates. Although ground-based searches for bars in active galaxies using both optical and near infrared surface brightness have not found any excess of bars relative to quiescent galaxies, the searches have not been able to rule out small-scale nuclear bars. To look for these nuclear bars we use HST WFPC2-NICMOS color maps to search for the straight dust lane signature of strong bars. Of the twelve Seyfert galaxies in our sample, only three have dust lanes consistent with a strong nuclear bar. Therefore, strong nuclear bars cannot be the primary fueling mechanism for Seyfert nuclei. We do find that a majority of the galaxies show an spiral morphology in their dust lanes. These spiral arms may be a possible fueling mechanism.

  14. PARTICLES OF DIFFERENCE.

    SciTech Connect (OSTI)

    SCHWARTZ,S.E.

    2000-09-21T23:59:59.000Z

    It is no longer appropriate, if it ever was, to think of atmospheric aerosols as homogeneous spheres of uniform composition and size. Within the United States, and even more globally, not only the mass loading but also the composition, morphology, and size distribution of atmospheric aerosols are highly variable, as a function of location, and at a given location as a function of time. Particles of a given aerodynamic size may differ from one another, and even within individual particles material may be inhomogeneously distributed, as for example, carbon spherules imbedded in much larger sulfate particles. Some of the particulate matter is primary, that is, introduced into the atmosphere directly as particles, such as carbon particles in diesel exhaust. Some is secondary, that is, formed in the atmosphere by gas-to-particle conversion. Much of the material is inorganic, mainly sulfates and nitrates resulting mainly from energy-related emissions. Some of the material is carbonaceous, in part primary, in part secondary, and of this material some is anthropogenic and some biogenic. While the heterogeneity of atmospheric aerosols complicates the problem of understanding their loading and distribution, it may well be the key to its solution. By detailed examination of the materials comprising aerosols it is possible to infer the sources of these materials. It may be possible as well to identify specific health impairing agents. The heterogeneity of aerosol particles is thus the key to identifying their sources, to understanding the processes that govern their loading and properties, and to devising control strategies that are both effective and efficient. Future research must therefore take cognizance of differences among aerosol particles and use these differences to advantage.

  15. SUNLIGHT TRANSMISSION THROUGH DESERT DUST AND MARINE AEROSOLS: DIFFUSE LIGHT

    E-Print Network [OSTI]

    SUNLIGHT TRANSMISSION THROUGH DESERT DUST AND MARINE AEROSOLS: DIFFUSE LIGHT CORRECTIONS TO SUN transmission through desert dust and marine aerosols: Diffuse light corrections to Sun photometry 2004; published 27 April 2004. [1] Desert dust and marine aerosols are receiving increased scientific

  16. Online Supplement S1.0 Dust/Climate Interactions

    E-Print Network [OSTI]

    Mahowald, Natalie

    of the dust, its vertical distribution, cloud cover, and the albedo of the underlying surface [e.g., Liao the content and mixing state of iron oxides (hematite, goethite) in dust affects its radiative effect [Sokolik radiative effect. The presence of dust in the atmosphere changes the radiation balance, with the surface

  17. USING THE X-RAY DUST SCATTERING HALO OF CYGNUS X-1 TO DETERMINE DISTANCE AND DUST DISTRIBUTIONS

    E-Print Network [OSTI]

    Xiang, Jingen

    We present a detailed study of the X-ray dust scattering halo of the black hole candidate Cygnus X-1 based on two Chandra High Energy Transmission Gratings Spectrometer observations. Using 18 different dust models, including ...

  18. Modeling of the Terminal Velocities of the Dust Ejected Material by the Impact

    E-Print Network [OSTI]

    M. Rengel; M. Kueppers; H. U. Keller; P. Gutierrez

    2007-01-03T23:59:59.000Z

    We compute the distribution of velocities of the particles ejected by the impact of the projectile released from NASA Deep Impact spacecraft on the nucleus of comet 9P/Tempel 1 on the successive 20 hours following the collision. This is performed by the development and use of an ill-conditioned inverse problem approach, whose main ingredients are a set of observations taken by the Narrow Angle Camera (NAC) of OSIRIS onboard the Rosetta spacecraft, and a set of simple models of the expansion of the dust ejecta plume for different velocities. Terminal velocities are derived using a maximum likelihood estimator. We compare our results with published estimates of the expansion velocity of the dust cloud. Our approach and models reproduce well the velocity distribution of the ejected particles. We consider these successful comparisons of the velocities as an evidence for the appropriateness of the approach. This analysis provides a more thorough understanding of the properties of the Deep Impact dust cloud.

  19. Optical Properties of Saharan Dust and Asian Dust: Application to Radiative Transfer Simulations 

    E-Print Network [OSTI]

    Fang, Guangyang

    2012-07-16T23:59:59.000Z

    properties for radiative transfer simulations. Using a Rapid Radiative Transfer Model (RRTM), the radiative forcing of mineral dust was computed at both the top of the atmosphere and the surface. By analyzing samples from various in-situ measurements, we...

  20. Three-dimensional stability of dust-ion acoustic solitary waves in a magnetized multicomponent dusty plasma with negative ions

    SciTech Connect (OSTI)

    El-Taibany, W. F.; El-Shamy, E. F. [Department of Physics, Faculty of Science, Mansoura University, Damietta Branch, P.O. 34517, Damietta El-Gedida (Egypt); El-Bedwehy, N. A. [Department of Mathematics, Faculty of Science, Mansoura University, Damietta Branch, P.O. 34517, Damietta El-Gedida (Egypt)

    2011-03-15T23:59:59.000Z

    Using the small-k expansion perturbation method, the three-dimensional stability of dust-ion acoustic solitary waves (DIASWs) in a magnetized multicomponent dusty plasma containing negative heavy ions and stationary variable-charge dust particles is analyzed. A nonlinear Zakharov-Kuznetsov equation adequate for describing these solitary structures is derived. Moreover, the basic features of the DIASWs are studied. The determination of the stability region leads to two different cases depending on the oblique propagation angle. In addition, the growth rate of the produced waves is estimated. The increase of either the negative ion number density or their temperatures or even the number density of the dust grains results in reducing the wave growth rate. Finally, the present results should elucidate the properties of DIASWs in a multicomponent plasma with negative ions, particularly in laboratory experiment and plasma process.

  1. Recycling of electric-arc-furnace dust

    SciTech Connect (OSTI)

    Sresty, G.C.

    1990-05-01T23:59:59.000Z

    Electric arc furnace (EAF) dust is one of the largest solid waste streams produced by steel mills, and is classified as a waste under the Resource Conservation and Recovery Act (RCRA) by the U.S. Environmental Protection Agency (EPA). Successful recycle of the valuable metals (iron, zinc, and lead) present in the dust will result in resource conservation while simultaneously reducing the disposal problems. Technical feasibility of a novel recycling method based on using hydrogen as the reductant was established under this project through laboratory experiments. Sponge iron produced was low in zinc, cadmium, and lead to permit its recycle, and nontoxic to permit its safe disposal as an alternative to recycling. Zinc oxide was analyzed to contain 50% to 58% zinc by weight, and can be marketed for recovering zinc and lead. A prototype system was designed to process 2.5 tons per day (600 tons/year) of EAF dust, and a preliminary economic analysis was conducted. The cost of processing dust by this recycling method was estimated to be comparable to or lower than existing methods, even at such low capacities.

  2. HOT DEBRIS DUST AROUND HD 106797

    SciTech Connect (OSTI)

    Fujiwara, Hideaki; Onaka, Takashi [Department of Astronomy, School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033 (Japan); Yamashita, Takuya [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-0015 (Japan); Ishihara, Daisuke; Kataza, Hirokazu; Ootsubo, Takafumi; Murakami, Hiroshi; Nakagawa, Takao; Hirao, Takanori; Enya, Keigo [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Sagamihara, Kanagawa 229-8510 (Japan); Fukagawa, Misato [Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka 560-0043, Osaka (Japan); Marshall, Jonathan P.; White, Glenn J. [Department of Physics and Astronomy, The Open University, Walton Hall, Milton Keynes, MK7 6AA (United Kingdom)], E-mail: fujiwara@astron.s.u-tokyo.ac.jp

    2009-04-10T23:59:59.000Z

    Photometry of the A0 V main-sequence star HD 106797 with AKARI and Gemini/T-ReCS is used to detect excess emission over the expected stellar photospheric emission between 10 and 20 {mu}m, which is best attributed to hot circumstellar debris dust surrounding the star. The temperature of the debris dust is derived as T {sub d} {approx} 190 K by assuming that the excess emission is approximated by a single temperature blackbody. The derived temperature suggests that the inner radius of the debris disk is {approx}14 AU. The fractional luminosity of the debris disk is 1000 times brighter than that of our own zodiacal cloud. The existence of such a large amount of hot dust around HD 106797 cannot be accounted for by a simple model of the steady state evolution of a debris disk due to collisions, and it is likely that transient events play a significant role. Our data also show a narrow spectral feature between 11 and 12 {mu}m attributable to crystalline silicates, suggesting that dust heating has occurred during the formation and evolution of the debris disk of HD 106797.

  3. The general double-dust solution

    E-Print Network [OSTI]

    B. V. Ivanov

    2003-02-04T23:59:59.000Z

    The gravitational field of two identical rotating and counter-moving dust beams is found in full generality. The solution depends on an arbitrary function and a parameter. Some of its properties are studied. Previous particular solutions are derived as subcases.

  4. HIGH-RESOLUTION FINITE VOLUME METHODS FOR DUSTY GAS JETS AND MARICA PELANTI AND RANDALL J. LEVEQUE

    E-Print Network [OSTI]

    LeVeque, Randy

    (since the sound speed is zero in the absence of pressure) and have a degenerate structure in which delta is lower than the sound speed of the pure gas phase, and can be substantially lower at high dust densities" (though in some contexts it could represent liquid droplets) and the mixture as a "dusty gas". Dusty gas

  5. Electromagnetic Radiation and Motion of Really Shaped Particle

    E-Print Network [OSTI]

    Jozef Klacka

    2001-08-13T23:59:59.000Z

    Relativistically covariant form of equation of motion for real particle (neutral in charge) under the action of electromagnetic radiation is derived. Various formulations of the equation of motion in the proper frame of reference of the particle are used. Main attention is devoted to the reformulation of the equation of motion in the general frame of reference, e. g., in the frame of reference of the source of electromagnetic radiation. This is the crucial form of equation of motion in applying it to motion of particles (cosmic dust, asteroids, ...) in the Universe if electromagnetic radiation acts on the particles. General relativistic equation of motion is presented.

  6. Quantifying the Heating Sources for Mid-infrared Dust Emissions in Galaxies: The Case of M 81

    E-Print Network [OSTI]

    Lu, Nanyao; Boselli, A; Baes, M; Wu., H; Madden, S C; De Looze, I; Rémy-Ruyer, A; Boquien, M; Wilson, C D; Galametz, M; Lam, M I; Cooray, A; Spinoglio, L; Zhao, Y

    2014-01-01T23:59:59.000Z

    With the newly available SPIRE images at 250 and 500 micron from Herschel Space Observatory, we study quantitative correlations over a sub-kpc scale among three distinct emission components in the interstellar medium of the nearby spiral galaxy M 81 (NGC 3031): (a) $I_{8}$ or $I_{24}$, the surface brightness of the mid-infrared emission observed in the Spitzer IRAC 8 or MIPS 24 micron band, with $I_8$ and $I_{24}$ being dominated by the emissions from Polycyclic Aromatic Hydrocarbons (PAHs) and very small grains (VSGs) of dust, respectively; (b) $I_{500}$, that of the cold dust continuum emission in the Herschel SPIRE 500 micron band, dominated by the emission from large dust grains heated by evolved stars, and (c) $I_{{\\rm H}\\alpha}$, a nominal surface brightness of the H$\\alpha$ line emission, from gas ionized by newly formed massive stars. The results from our correlation study, free from any assumption on or modeling of dust emissivity law or dust temperatures, present solid evidence for significant heati...

  7. Pseudopotentials of the particles interactions in complex plasmas

    SciTech Connect (OSTI)

    Ramazanov, T. S.; Moldabekov, Zh. A.; Dzhumagulova, K. N.; Muratov, M. M. [Al Farabi Kazakh National University, IETP, Tole bi 96a, Almaty 050012 (Kazakhstan)

    2011-10-15T23:59:59.000Z

    This article discusses the effective interaction potentials in a complex dusty plasma. The interaction of electrons with atoms and the interaction between dusty particles are studied by the method of the dielectric response function. In the effective interaction, potential between electron and atom the quantum effects of diffraction were taken into account. On the curve of the interaction potential between dust particles under certain conditions the oscillations can be observed.

  8. ON THE EVOLUTION OF DUST MINERALOGY, FROM PROTOPLANETARY DISKS TO PLANETARY SYSTEMS

    SciTech Connect (OSTI)

    Oliveira, Isa; Van Dishoeck, Ewine F. [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands); Olofsson, Johan [Max-Planck Institut fuer Astronomie, Koenigstuhl 17, 69117 Heidelberg (Germany); Pontoppidan, Klaus M. [California Institute of Technology, Division for Geological and Planetary Sciences, MS 150-21, Pasadena, CA 91125 (United States); Augereau, Jean-Charles [UJF-Grenoble 1/CNRS-INSU, Institut de Planetologie et d'Astrophysique de Grenoble (IPAG) UMR 5274, Grenoble, F-38041 (France); MerIn, Bruno, E-mail: oliveira@strw.leidenuniv.nl [Herschel Science Center, European Space Agency (ESA), P.O. Box 78, 28691 Villanueva de la Canada (Madrid) (Spain)

    2011-06-10T23:59:59.000Z

    Mineralogical studies of silicate features emitted by dust grains in protoplanetary disks and solar system bodies can shed light on the progress of planet formation. The significant fraction of crystalline material in comets, chondritic meteorites, and interplanetary dust particles indicates a modification of the almost completely amorphous interstellar medium dust from which they formed. The production of crystalline silicates, thus, must happen in protoplanetary disks, where dust evolves to build planets and planetesimals. Different scenarios have been proposed, but it is still unclear how and when this happens. This paper presents dust grain mineralogy (composition, crystallinity, and grain size distribution) of a complete sample of protoplanetary disks in the young Serpens cluster. These results are compared to those in the young Taurus region and to sources that have retained their protoplanetary disks in the older Upper Scorpius and {eta} Chamaeleontis stellar clusters, using the same analysis technique for all samples. This comparison allows an investigation of the grain mineralogy evolution with time for a total sample of 139 disks. The mean cluster age and disk fraction are used as indicators of the evolutionary stage of the different populations. Our results show that the disks in the different regions have similar distributions of mean grain sizes and crystallinity fractions ({approx}10%-20%) despite the spread in mean ages. Furthermore, there is no evidence of preferential grain sizes for any given disk geometry nor for the mean cluster crystallinity fraction to increase with mean age in the 1-8 Myr range. The main implication is that a modest level of crystallinity is established in the disk surface early on ({<=}1 Myr), reaching an equilibrium that is independent of what may be happening in the disk midplane. These results are discussed in the context of planet formation, in comparison with mineralogical results from small bodies in our own solar system.

  9. FORMULATION OF NON-STEADY-STATE DUST FORMATION PROCESS IN ASTROPHYSICAL ENVIRONMENTS

    SciTech Connect (OSTI)

    Nozawa, Takaya [Kavli Institute for the Physics and Mathematics of the Universe (WPI), University of Tokyo, Kashiwa, Chiba 277-8583 (Japan); Kozasa, Takashi, E-mail: takaya.nozawa@ipmu.jp [Department of Cosmosciences, Graduate School of Science, Hokkaido University, Sapporo 060-0810 (Japan)

    2013-10-10T23:59:59.000Z

    The non-steady-state formation of small clusters and the growth of grains accompanied by chemical reactions are formulated under the consideration that the collision of key gas species (key molecule) controls the kinetics of dust formation process. The formula allows us to evaluate the size distribution and condensation efficiency of dust formed in astrophysical environments. We apply the formulation to the formation of C and MgSiO{sub 3} grains in the ejecta of supernovae, as an example, to investigate how the non-steady effect influences the formation process, condensation efficiency f{sub con,{sub ?}}, and average radius a{sub ave,{sub ?}} of newly formed grains in comparison with the results calculated with the steady-state nucleation rate. We show that the steady-state nucleation rate is a good approximation if the collision timescale of key molecule ?{sub coll} is much smaller than the timescale ?{sub sat} with which the supersaturation ratio increases; otherwise the effect of the non-steady state becomes remarkable, leading to a lower f{sub con,{sub ?}} and a larger a{sub ave,{sub ?}}. Examining the results of calculations, we reveal that the steady-state nucleation rate is applicable if the cooling gas satisfies ? ? ?{sub sat}/?{sub coll} ?> 30 during the formation of dust, and find that f{sub con,{sub ?}} and a{sub ave,{sub ?}} are uniquely determined by ?{sub on} at the onset time t{sub on} of dust formation. The approximation formulae for f{sub con,{sub ?}} and a{sub ave,{sub ?}} as a function of ?{sub on} could be useful in estimating the mass and typical size of newly formed grains from observed or model-predicted physical properties not only in supernova ejecta but also in mass-loss winds from evolved stars.

  10. Quantum Cellular Automata Without Particles

    E-Print Network [OSTI]

    David A. Meyer; Asif Shakeel

    2015-06-04T23:59:59.000Z

    Quantum Cellular Automata (QCA) constitute a natural discrete model for quantum field theory (QFT). Although QFTs are defined without reference to particles, computations are done in terms of Feynman diagrams, which are explicitly interpreted in terms of interacting particles. Similarly, the easiest QCA to construct are Quantum Lattice Gas Automata (QLGA). A natural question then is, "are all nontrivial QCA QLGA?". Here we show by construction that the answer is "no"; thus there are QCA, even in $1+1$ dimensions, that have no particle interpretation.

  11. Analysis of dust samples collected from spent nuclear fuel interim storage containers at Hope Creek, Delaware, and Diablo Canyon, California.

    SciTech Connect (OSTI)

    Bryan, Charles R.; Enos, David George

    2014-07-01T23:59:59.000Z

    Potentially corrosive environments may form on the surface of spent nuclear fuel dry storage canisters by deliquescence of deposited dusts. To assess this, samples of dust were collected from in-service dry storage canisters at two near-marine sites, the Hope Creek and Diablo Canyon storage installations, and have been characterized with respect to mineralogy, chemistry, and texture. At both sites, terrestrially-derived silicate minerals, including quartz, feldspars, micas, and clays, comprise the largest fraction of the dust. Also significant at both sites were particles of iron and iron-chromium metal and oxides generated by the manufacturing process. Soluble salt phases were minor component of the Hope Creek dusts, and were compositionally similar to inland salt aerosols, rich in calcium, sulfate, and nitrate. At Diablo Canyon, however, sea-salt aerosols, occurring as aggregates of NaCl and Mg-sulfate, were a major component of the dust samples. The seasalt aerosols commonly occurred as hollow spheres, which may have formed by evaporation of suspended aerosol seawater droplets, possibly while rising through the heated annulus between the canister and the overpack. The differences in salt composition and abundance for the two sites are attributed to differences in proximity to the open ocean and wave action. The Diablo Canyon facility is on the shores of the Pacific Ocean, while the Hope Creek facility is on the shores of the Delaware River, several miles from the open ocean.

  12. Radio Emitting Dust in the Free-Electron Layer of Spiral Galaxies: Testing the Disk/Halo Interface

    E-Print Network [OSTI]

    A. Ferrara; R. J. Dettmar

    1994-01-10T23:59:59.000Z

    We present a study of the radio emission from rotating, charged dust grains immersed in the ionized gas constituting the thick, H$\\alpha$-emitting disk of many spiral galaxies. Using up-to-date optical constants, the charge on the grains exposed to the diffuse galactic UV flux has been calculated. An analytical approximation for the grain charge has been derived, which is then used to obtain the grain rotation frequency. Grains are found to have substantial radio emission peaked at a cutoff frequency in the range 10-100~GHz, depending on the grain size distribution and on the efficiency of the radiative damping of the grain rotation. The dust radio emission is compared to the free-free emission from the ionized gas component; some constraints on the magnetic field strength in the observed dusty filaments are also discussed. The model can be used to test the disk-halo interface environment in spiral galaxies, to determine the amount and size distribution of dust in their ionized component, and to investigate the rotation mechanisms for the dust. Numerical estimates are given for experimental purposes.

  13. Dust en-route to Jupiter and the Galilean satellites

    E-Print Network [OSTI]

    Krüger, H; Krueger, Harald; Gruen, Eberhard

    2002-01-01T23:59:59.000Z

    Spacecraft investigations during the last ten years have vastly improved our knowledge about dust in the Jovian system. All Galilean satellites, and probably all smaller satellites as well, are sources of dust in the Jovian system. In-situ measurements with the dust detectors on board the Ulysses and Galileo spacecraft have for the first time demonstrated the electromagnetic interaction of charged dust grains with the interplanetary magnetic field and with a planetary magnetosphere. Jupiter's magnetosphere acts as a giant mass-velocity spectrometer for charged 10-nanometer dust grains. These dust grains are released from Jupiter's moon Io with typical rate of 1 kg s^1. The dust streams probe the plasma conditions in the Io plasma torus and can be used as a potential monitor of Io's volcanic plume activity. The other Galilean satellites are surrounded by tenuous impact-generated clouds of mostly sub-micrometer ejecta grains. Galileo measurements have demonstrated that impact-ejecta derived from hypervelocity i...

  14. AN INFRARED CENSUS OF DUST IN NEARBY GALAXIES WITH SPITZER (DUSTINGS). I. OVERVIEW

    SciTech Connect (OSTI)

    Boyer, Martha L.; Sonneborn, George [Observational Cosmology Laboratory, Code 665, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); McQuinn, Kristen B. W.; Gehrz, Robert D.; Skillman, Evan [Minnesota Institute for Astrophysics, School of Physics and Astronomy, 116 Church Street SE, University of Minnesota, Minneapolis, MN 55455 (United States); Barmby, Pauline [Department of Physics and Astronomy, University of Western Ontario, London, ON, N6A 3K7 (Canada); Bonanos, Alceste Z. [IAASARS, National Observatory of Athens, GR-15236 Penteli (Greece); Gordon, Karl D.; Meixner, Margaret [STScI, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Groenewegen, M. A. T. [Royal Observatory of Belgium, Ringlaan 3, B-1180 Brussels (Belgium); Lagadec, Eric [Laboratoire Lagrange, UMR7293, Univ. Nice Sophia-Antipolis, CNRS, Observatoire de la Côte d'Azur, F-06300 Nice (France); Lennon, Daniel [ESA—European Space Astronomy Centre, Apdo. de Correo 78, E-28691 Villanueva de la Cañada, Madrid (Spain); Marengo, Massimo [Department of Physics and Astronomy, Iowa State University, Ames, IA 50011 (United States); Sloan, G. C. [Astronomy Department, Cornell University, Ithaca, NY 14853-6801 (United States); Van Loon, Jacco Th. [Astrophysics Group, Lennard-Jones Laboratories, Keele University, Staffordshire ST5 5BG (United Kingdom); Zijlstra, Albert, E-mail: martha.boyer@nasa.gov [Jodrell Bank Centre for Astrophysics, Alan Turing Building, University of Manchester, Manchester M13 9PL (United Kingdom)

    2015-01-01T23:59:59.000Z

    Nearby resolved dwarf galaxies provide excellent opportunities for studying the dust-producing late stages of stellar evolution over a wide range of metallicity (–2.7 ? [Fe/H] ? –1.0). Here, we describe DUSTiNGS (DUST in Nearby Galaxies with Spitzer): a 3.6 and 4.5 ?m post-cryogen Spitzer Space Telescope imaging survey of 50 dwarf galaxies within 1.5 Mpc that is designed to identify dust-producing asymptotic giant branch (AGB) stars and massive stars. The survey includes 37 dwarf spheroidal, 8 dwarf irregular, and 5 transition-type galaxies. This near-complete sample allows for the building of statistics on these rare phases of stellar evolution over the full metallicity range. The photometry is >75% complete at the tip of the red giant branch for all targeted galaxies, with the exception of the crowded inner regions of IC 10, NGC 185, and NGC 147. This photometric depth ensures that the majority of the dust-producing stars, including the thermally pulsing AGB stars, are detected in each galaxy. The images map each galaxy to at least twice the half-light radius to ensure that the entire evolved star population is included and to facilitate the statistical subtraction of background and foreground contamination, which is severe at these wavelengths. In this overview, we describe the survey, the data products, and preliminary results. We show evidence for the presence of dust-producing AGB stars in eight of the targeted galaxies, with metallicities as low as [Fe/H] = –1.9, suggesting that dust production occurs even at low metallicity.

  15. Evaluating chemical and physical properties of grain dust for use in an explosion hazard indicator

    E-Print Network [OSTI]

    Plemons, Dorothy Sue

    1981-01-01T23:59:59.000Z

    . 06 iIm 15. 0 0 ) 15. 6 10. 0 5. 0 3 4 7. 2 8. 5 5 6 4 0 . . . 3. 3 1. 7 1. 7 14 1 ~ 5 12 3. 0 0. 0 O CV O Yl CO O CO O N I I I O O ICI I CI O CC I CI cn 4 0 CV ch I CO I O O CO I O I O C: CI I Particle Size Ranges... 3 Q 2. 1 0. 6 0. 6 I CI CI 6 IO Yl CD 0 CI P4 I I I I I I CI N N 0 Yl (O I CI C) I U3 CI co I I CI CI CI I m Particle Size Ranges, um FIG. 14 Coulter Counter particle size distribution of rice dust, 30. 0 25. 0 20. 0 Mean...

  16. THE DUST BUDGET OF THE SMALL MAGELLANIC CLOUD: ARE ASYMPTOTIC GIANT BRANCH STARS THE PRIMARY DUST SOURCE AT LOW METALLICITY?

    SciTech Connect (OSTI)

    Boyer, M. L.; Gordon, K. D.; Meixner, M.; Sargent, B. A. [STScI, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Srinivasan, S. [UPMC-CNRS UMR7095, Institut d'Astrophysique de Paris, F-75014 Paris (France); Riebel, D. [Department of Physics and Astronomy, The Johns Hopkins University, Homewood Campus, Baltimore, MD 21218 (United States); McDonald, I. [Jodrell Bank Centre for Astrophysics, Alan Turing Building, University of Manchester, Manchester M13 9PL (United Kingdom); Van Loon, J. Th. [Astrophysics Group, Lennard-Jones Laboratories, Keele University, Staffordshire ST5 5BG (United Kingdom); Clayton, G. C. [Department of Physics and Astronomy, Louisiana State University, 233-A Nicholson Hall, Tower Dr., Baton Rouge, LA 70803-4001 (United States); Sloan, G. C., E-mail: mboyer@stsci.edu [Astronomy Department, Cornell University, Ithaca, NY 14853-6801 (United States)

    2012-03-20T23:59:59.000Z

    We estimate the total dust input from the cool evolved stars in the Small Magellanic Cloud, using the 8 {mu}m excess emission as a proxy for the dust-production rate (DPR). We find that asymptotic giant branch (AGB) and red supergiant (RSG) stars produce (8.6-9.5) Multiplication-Sign 10{sup -7} M{sub Sun} yr{sup -1} of dust, depending on the fraction of far-infrared sources that belong to the evolved star population (with 10%-50% uncertainty in individual DPRs). RSGs contribute the least (<4%), while carbon-rich AGB stars (especially the so-called extreme AGB stars) account for 87%-89% of the total dust input from cool evolved stars. We also estimate the dust input from hot stars and supernovae (SNe), and find that if SNe produce 10{sup -3} M{sub Sun} of dust each, then the total SN dust input and AGB input are roughly equivalent. We consider several scenarios of SN dust production and destruction and find that the interstellar medium (ISM) dust can be accounted for solely by stellar sources if all SNe produce dust in the quantities seen around the dustiest examples and if most SNe explode in dense regions where much of the ISM dust is shielded from the shocks. We find that AGB stars contribute only 2.1% of the ISM dust. Without a net positive contribution from SNe to the dust budget, this suggests that dust must grow in the ISM or be formed by another unknown mechanism.

  17. Properties of comet 9P/Tempel 1 dust immediately following excavation by Deep Impact

    E-Print Network [OSTI]

    Nagdimunov, Lev; Wolff, Michael; A'Hearn, Michael F; Farnham, Tony L

    2014-01-01T23:59:59.000Z

    We analyzed Deep Impact High Resolution Instrument (HRI) images acquired within the first seconds after collision of the Deep Impact impactor with the nucleus of comet 9P/Tempel 1. These images reveal an optically thick ejecta plume that casts a shadow on the surface of the nucleus. Using the 3D radiative transfer code HYPERION we simulated light scattering by the ejecta plume, taking into account multiple scattering of light from the ejecta, the surrounding nuclear surface and the actual observational geometry (including an updated plume orientation geometry that accounts for the latest 9P/Tempel 1 shape model). Our primary dust model parameters were the number density of particles, their size distribution and composition. We defined the composition through the density of an individual particle and the ratio of its material constituents, which we considered to be refractories, ice and voids. The results of our modeling indicate a dust/ice mass ratio for the ejecta particles of at least 1. To further constrai...

  18. Evaluation of dust cake filtration at high temperature with effluence from an atmospheric fluidized-bed combustor

    SciTech Connect (OSTI)

    Dennis, R.A.

    1990-08-01T23:59:59.000Z

    In the spring of 1989, two separate test series were simultaneously conducted at the US Department of Energy's (DOE's) Morgantown Energy Technology Center (METC) to examine applied and fundamental behavior of dust cake filtration under high temperature and high pressure (HTHP) conditions. The purpose was to provide information on dust-cake filtration properties to gas stream cleanup researchers associated with the Tidd 70 megawatt (MW) pressurized fluidized-bed combustor (PFBC). The two test facilities included (1) a high-pressure natural-gas combustor with injected particulate, which was fed to two full-size candle filters; and (2) an atmospheric fluidized-bed combustor (AFBC) with coal and limestone sorbent to generate a particulate-laden combustion exhaust gas, which was sent to a single full-size candle filter and a small-scale disc filter. Several major conclusions from these studies are noted below. On average reducing the mean particulate size by 33% and the associated loading carried in the filtrate will increase the dust cake specific flow resistance (K{sub 2}) by 498%. High-temperature and high-pressure filtration can be successfully performed with ceramic candle filters at moderate filtration face velocities and reasonable system pressure drops. Off-line filter cleaning can produce a filter system with a higher apparent permeability than that produced from on-line filter cleaning at the same face velocity. 19 refs., 89 figs., 13 tabs.

  19. Structural properties of dusty plasma in direct current and radio frequency gas discharges

    SciTech Connect (OSTI)

    Ramazanov, T. S.; Dzhumagulova, K. N.; Jumabekov, A. N.; Dosbolayev, M. K. [Al Farabi Kazakh National University, IETP, Tole bi 96a, Almaty, 050012 (Kazakhstan)

    2008-05-15T23:59:59.000Z

    This paper presents radial distribution functions of dust particles obtained experimentally in dc and rf discharges. Pressure and interaction energy of dusty particles were calculated on the basis of these functions. The Langevin dynamics computer simulation for each experiment was performed. The comparisons with computer simulations are made.

  20. Old supernova dust factory revealed at the Galactic center

    E-Print Network [OSTI]

    Lau, Ryan M; Morris, Mark R; Li, Zhiyuan; Adams, Joseph D

    2015-01-01T23:59:59.000Z

    Dust formation in supernova ejecta is currently the leading candidate to explain the large quantities of dust observed in the distant, early Universe. However, it is unclear whether the ejecta-formed dust can survive the hot interior of the supernova remnant (SNR). We present infrared observations of ~0.02 $M_\\odot$ of warm (~100 K) dust seen near the center of the ~10,000 yr-old Sgr A East SNR at the Galactic center. Our findings signify the detection of dust within an older SNR that is expanding into a relatively dense surrounding medium ($n_e$ ~ 100 $\\mathrm{cm}^{-3}$) and has survived the passage of the reverse shock. The results suggest that supernovae may indeed be the dominant dust production mechanism in the dense environment of early Universe galaxies.

  1. Three-dimensional computer modeling of particulate flow around dust monitors

    SciTech Connect (OSTI)

    Nichols, B.D.; Gregory, W.S.

    1987-01-01T23:59:59.000Z

    SOLA-DM is a three-dimensional finite-difference computer code designed to model the dynamics of an incompressible fluid and the transport of discrete particulate material around obstacles impervious to flow. The numerical methods used in this code are described. SOLA-DM was used to predict the particle flux sampled by the 10-mm Dorr-Oliver Cyclone and MINIRAM dust monitors. Various geometric and dynamic variations of monitor and airflow combinations were tested. The code predictions are shown in computer-generated graphic plots.

  2. The effect of dust size distribution on quantum dust acoustic wave

    SciTech Connect (OSTI)

    El-Labany, S. K.; El-Taibany, W. F.; Behery, E. E. [Department of Physics, Faculty of Science, Mansoura University, Damietta Branch, Damietta El-Gedida, P.O. 34517 (Egypt); El-Siragy, N. M. [Department of Physics, Faculty of Science, Tanta University, Tanta, P.O. 31527 (Egypt)

    2009-09-15T23:59:59.000Z

    Based on the quantum hydrodynamics theory, a proposed model for quantum dust acoustic waves (QDAWs) is presented including the dust size distribution (DSD) effect. A quantum version of Zakharov-Kuznetsov equation is derived adequate for describing QDAWs. Two different DSD functions are applied. The relevance of the wave velocity, amplitude, and width to the DSD is investigated numerically. The quantum effect changes only the soliton width. A brief conclusion is presented to the current findings and their relevance to astrophysics data is also discussed.

  3. Brane world solutions of perfect fluid in the background of a bulk containing dust or cosmological constant

    E-Print Network [OSTI]

    Tanwi Bandyopadhyay; Subenoy Chakraborty; Asit Banerjee

    2006-09-18T23:59:59.000Z

    The paper presents some solutions to the five dimensional Einstein equations due to a perfect fluid on the brane with pure dust filling the entire bulk in one case and a cosmological constant (or vacuum) in the bulk for the second case. In the first case, there is a linear relationship between isotropic pressure, energy density and the brane tension, while in the second case, the perfect fluid is assumed to be in the form of chaplygin gas. Cosmological solutions are found both for brane and bulk scenarios and some interesting features are obtained for the chaplygin gas on the brane which are distinctly different from the standard cosmology in four dimensions.

  4. Dust acoustic shock waves in two temperatures charged dusty grains

    SciTech Connect (OSTI)

    El-Shewy, E. K. [Theoretical Physics Group, Faculty of Science, Mansoura University, Mansoura (Egypt); Science and Arts College in Al-Rass, Physics Department, Qassim University, Al-Rass Province (Saudi Arabia); Abdelwahed, H. G. [Theoretical Physics Group, Faculty of Science, Mansoura University, Mansoura (Egypt); College of Science and Humanitarian Studies, Physics Department, Alkharj University, Al-kharj (Saudi Arabia); Elmessary, M. A. [Engineering Mathematics and Physics Department, Faculty of Engineering, Mansoura University, Mansoura (Egypt)

    2011-11-15T23:59:59.000Z

    The reductive perturbation method has been used to derive the Korteweg-de Vries-Burger equation and modified Korteweg-de Vries-Burger for dust acoustic shock waves in a homogeneous unmagnetized plasma having electrons, singly charged ions, hot and cold dust species with Boltzmann distributions for electrons and ions in the presence of the cold (hot) dust viscosity coefficients. The behavior of the shock waves in the dusty plasma has been investigated.

  5. The parametric decay of Alfven waves into shear Alfven waves and dust lower hybrid waves

    SciTech Connect (OSTI)

    Jamil, M. [Department of Physics, Government College University, Lahore 54000 (Pakistan); Department of Physics, Crescent Model School Shadman, Lahore 54000 (Pakistan); Shah, H. A.; Zubia, K.; Zeba, I.; Uzma, Ch. [Department of Physics, Government College University, Lahore 54000 (Pakistan); Salimullah, M. [Department of Physics, Government College University, Lahore 54000 (Pakistan); Department of Physics, Jahangirnagar University, Savar, Dhaka 1342 (Bangladesh)

    2010-07-15T23:59:59.000Z

    The parametric decay instability of Alfven wave into low-frequency electrostatic dust-lower-hybrid and electromagnetic shear Alfven waves has been investigated in detail in a dusty plasma in the presence of external/ambient uniform magnetic field. Magnetohydrodynamic fluid equations of plasmas have been employed to find the linear and nonlinear response of the plasma particles for this three-wave nonlinear coupling in a dusty magnetoplasma. Here, relatively high frequency electromagnetic Alfven wave has been taken as the pump wave. It couples with other two low-frequency internal possible modes of the dusty magnetoplasma, viz., the dust-lower-hybrid and shear Alfven waves. The nonlinear dispersion relation of the dust-lower-hybrid wave has been solved to obtain the growth rate of the parametric decay instability. The growth rate is maximum for small value of external magnetic field B{sub s}. It is noticed that the growth rate is proportional to the unperturbed electron number density n{sub oe}.

  6. Zinc recovery by ultrasound acid leaching of double kiln treated electric arc furnace dust

    SciTech Connect (OSTI)

    Barrera Godinez, J.A.

    1989-01-01T23:59:59.000Z

    The need to convert 70,000 tons a year of electric arc furnace (EAF) dust into an environmentally safe or recyclable product has encouraged studies to reclaim zinc from this waste material. Successful characterization of a double-kiln calcine, produced from EAF dust, has shown that the calcine pellets consisted mainly of zinc oxide plates with some iron oxide particles. Preliminary leaching tests using hydrochloric and sulfuric acids indicated that this calcine is suitable for selective ultrasound leaching of zinc. A factorially designed screening test using hydrochloric acid showed that ultrasound significantly lowered iron dissolution and increased zinc dissolution, thus enhancing the selective leaching of zinc. Ultrasound, temperature, air bubbling rate and acidity increased the sulfuric acid selectivity, while fluorosilicic acid was not selective. Reactor characterization through ultrasonic field measurements led to the selection of reactor and ultrasound bath, which were utilized to enhance the selectivity of a laboratory scale sulfuric acid leaching of a double-kiln treated electric arc furnace dust. Results indicated that ultrasonic leaching of this calcine is a satisfactory technique to selectively separate zinc from iron. After further iron removal by precipitation and cementation of nickel, it was possible to electrowin zinc from the leach liquor under common industrial conditions, with current efficiencies from 86% through 92% being observed. Calcine washing showed that a substantial chloride removal is possible, but fluoride ion in the electrolyte caused deposit sticking during electrowinning.

  7. Modeling dust as component minerals in the Community Atmosphere Model: development of framework and impact on radiative forcing

    SciTech Connect (OSTI)

    Scanza, Rachel; Mahowald, N.; Ghan, Steven J.; Zender, C. S.; Kok, J. F.; Liu, Xiaohong; Zhang, Y.; Albani, Samuel

    2015-01-01T23:59:59.000Z

    The mineralogy of desert dust is important due to its effect on radiation, clouds and biogeochemical cycling of trace nutrients. This study presents the simulation of dust radiative forcing as a function of both mineral composition and size at the global scale using mineral soil maps for estimating emissions. Externally mixed mineral aerosols in the bulk aerosol module in the Community Atmosphere Model version 4 (CAM4) and internally mixed mineral aerosols in the modal aerosol module in the Community Atmosphere Model version 5.1 (CAM5) embedded in the Community Earth System Model version 1.0.5 (CESM) are speciated into common mineral components in place of total dust. The simulations with mineralogy are compared to available observations of mineral atmospheric distribution and deposition along with observations of clear-sky radiative forcing efficiency. Based on these simulations, we estimate the all-sky direct radiative forcing at the top of the atmosphere as +0.05Wm?2 for both CAM4 and CAM5 simulations with mineralogy and compare this both with simulations of dust in release versions of CAM4 and CAM5 (+0.08 and +0.17Wm?2) and of dust with optimized optical properties, wet scavenging and particle size distribution in CAM4 and CAM5, ?0.05 and ?0.17Wm?2, respectively. The ability to correctly include the mineralogy of dust in climate models is hindered by its spatial and temporal variability as well as insufficient global in-situ observations, incomplete and uncertain source mineralogies and the uncertainties associated with data retrieved from remote sensing methods.

  8. Aerosol Impacts on California Winter Clouds and Precipitation during CalWater 2011: Local Pollution versus Long-Range Transported Dust

    SciTech Connect (OSTI)

    Fan, Jiwen; Leung, Lai-Yung R.; DeMott, Paul J.; Comstock, Jennifer M.; Singh, Balwinder; Rosenfeld, Daniel; Tomlinson, Jason M.; White, Allen B.; Prather, Kimberly; Minnis, Patrick; Ayers, J. K.; Min, Qilong

    2014-01-03T23:59:59.000Z

    Mineral dust aerosols often observed over California in winter and spring, associated with long-range transport from Asia and Sahara, have been linked to enhanced precipitation based on observations. Local anthropogenic pollution, on the other hand, was shown in previous observational and modeling studies to reduce precipitation. Here we incorporate recent developments in ice nucleation parameterizations to link aerosols with ice crystal formation in a spectral-bin cloud microphysical model coupled with the Weather Research and Forecasting (WRF) model, to examine the relative and combined impacts of dust and local pollution particles on cloud properties and precipitation type and intensity. Simulations are carried out for two cloud cases with contrasting meteorology and cloud dynamics that occurred on February 16 (FEB16) and March 02 (MAR02) from the CalWater 2011 field campaign. In both cases, observations show the presence of dust and biological particles in a relative pristine environment. The simulated cloud microphysical properties and precipitation show reasonable agreement with aircraft and surface measurements. Model sensitivity experiments indicate that in the pristine environment, the dust and biological aerosol layers increase the accumulated precipitation by 10-20% from the Central Valley to the Sierra Nevada Mountains for both FEB16 and MAR02 due to a ~40% increase in snow formation, validating the observational hypothesis. Model results show that local pollution increases precipitation over the windward slope of the mountains by few percent due to increased snow formation when dust is present but reduces precipitation by 5-8% if dust is removed on FEB16. The effects of local pollution on cloud microphysics and precipitation strongly depend on meteorology including the strength of the Sierra Barrier Jet, and cloud dynamics. This study further underscores the importance of the interactions between local pollution, dust, and environmental conditions for assessing aerosol effects on cold season precipitation in California.

  9. aeolian dust archived: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    classifications of the ionizing stars to examine the role of stellar sources on dust heating and processing. Our infrared observations show surprisingly little correlation...

  10. adiabatic dust charge: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a transition between states. The first result Petta, Jason 12 Charging and Growth of Fractal Dust Grains CERN Preprints Summary: The structure and evolution of aggregate grains...

  11. Acid rain control strategists overlook dust removal benefits

    SciTech Connect (OSTI)

    Not Available

    1989-09-01T23:59:59.000Z

    Various strategies for controlling acid rain by reducing SO{sub 2} from existing utilities have failed to take into account the incidental particulate removal abilities of SO{sub 2} scrubbers. This has resulted in over-estimating the costs of acid rain control by 25% or more. This oversight has also caused utilities to invest in preliminary engineering of precipitator upgrades which will never have to be made if scrubbers are installed. While it seems inexplicable that a factor of this importance could have been overlooked by the industry, it is because of the unique situation in old U.S. utility power plants. These plants have relatively inefficient particulate control equipment which is not subject to new source performance standards. New power plants incorporate highly efficient particulate control devices so the ability of the downstream scrubbers to remove dust is irrelevant. The very small amount of particulate entering the scrubber from a highly efficient precipitator could be offset by escaping sulfate particles from a poorly operated scrubber. So an informal guideline was established to indicate that the scrubber had no overall effect on particulate emissions. The industry has generalized upon this guideline when, in fact, it only applies to new plants. The McIlvaine Company in its FGD Knowledge Network has thoroughly documented evidence that SO{sub 2} scrubbers will remove as much as 95% of the particulate being emitted from the relatively low efficiency precipitators operating on the nations existing coal-fired power plants.

  12. Particle detection systems and methods

    DOE Patents [OSTI]

    Morris, Christopher L.; Makela, Mark F.

    2010-05-11T23:59:59.000Z

    Techniques, apparatus and systems for detecting particles such as muons and neutrons. In one implementation, a particle detection system employs a plurality of drift cells, which can be for example sealed gas-filled drift tubes, arranged on sides of a volume to be scanned to track incoming and outgoing charged particles, such as cosmic ray-produced muons. The drift cells can include a neutron sensitive medium to enable concurrent counting of neutrons. The system can selectively detect devices or materials, such as iron, lead, gold, uranium, plutonium, and/or tungsten, occupying the volume from multiple scattering of the charged particles passing through the volume and can concurrently detect any unshielded neutron sources occupying the volume from neutrons emitted therefrom. If necessary, the drift cells can be used to also detect gamma rays. The system can be employed to inspect occupied vehicles at border crossings for nuclear threat objects.

  13. Ca depletion and the presence of dust in large scale nebulosities in radiogalaxies (I)

    E-Print Network [OSTI]

    M. Villar-Martin; L. Binette

    1995-11-24T23:59:59.000Z

    We show that the study of the Calcium depletion is a valid an highly sensitive method for investigating the chemical and physical history of the very extended ionized nebulae seen around radio galaxies (EELR), massive ellipticals and `cooling flow' galaxies. By observing the near IR spectrum of nebular regions characterized by low excitation emission lines (LINER-like), we can use the intensity of the [CaII]$\\lambda\\lambda 7291,7324$\\AA\\ doublet --relative to other lines, like H$\\alpha$-- to infer the amount of Calcium depletion onto dust grains. The presence of dust in these objects --which does not necessarily result in a measurable level of extinction-- would favour a `galactic debris' rather than a `cooling flow' origin for the emitting gas. Before aplying such test to our data, we study four possible alternative mechanisms to dust depletion and which could have explained the absence of the [CaII] lines: a) ionization of Ca$^+$ from its metastable level, b) thermal ionization of Ca$^+$, c) a high ionization parameter and/or a harder ionizing contiuum than usually asummed and d) matter bounded models associated to a hard ionizing continuum. We show that none of these alternative mechanisms explain the absence of the [CaII] lines, except possibly for the highly ionized EELR where a high ionization parameter is required combined with a soft power law. We thus conclude that for the other low excitation emission regions (cooling flows, liners, low excitation EELR), the abscence of the CaII lines {\\it must} be due to the depletion of Calcium onto dust grains.

  14. Particle Transport in Parallel-Plate Reactors

    SciTech Connect (OSTI)

    Rader, D.J.; Geller, A.S.

    1999-08-01T23:59:59.000Z

    A major cause of semiconductor yield degradation is contaminant particles that deposit on wafers while they reside in processing tools during integrated circuit manufacturing. This report presents numerical models for assessing particle transport and deposition in a parallel-plate geometry characteristic of a wide range of single-wafer processing tools: uniform downward flow exiting a perforated-plate showerhead separated by a gap from a circular wafer resting on a parallel susceptor. Particles are assumed to originate either upstream of the showerhead or from a specified position between the plates. The physical mechanisms controlling particle deposition and transport (inertia, diffusion, fluid drag, and external forces) are reviewed, with an emphasis on conditions encountered in semiconductor process tools (i.e., sub-atmospheric pressures and submicron particles). Isothermal flow is assumed, although small temperature differences are allowed to drive particle thermophoresis. Numerical solutions of the flow field are presented which agree with an analytic, creeping-flow expression for Re < 4. Deposition is quantified by use of a particle collection efficiency, which is defined as the fraction of particles in the reactor that deposit on the wafer. Analytic expressions for collection efficiency are presented for the limiting case where external forces control deposition (i.e., neglecting particle diffusion and inertia). Deposition from simultaneous particle diffusion and external forces is analyzed by an Eulerian formulation; for creeping flow and particles released from a planar trap, the analysis yields an analytic, integral expression for particle deposition based on process and particle properties. Deposition from simultaneous particle inertia and external forces is analyzed by a Lagrangian formulation, which can describe inertia-enhanced deposition resulting from particle acceleration in the showerhead. An approximate analytic expression is derived for particle velocity at the showerhead exit as a function of showerhead geometry, flow rate, and gas and particle properties. The particle showerhead-exit velocity is next used as an initial condition for particle transport between the plates to determine whether the particle deposits on the wafer, as a function of shower-head-exit particle velocity, the plate separation, flow rate, and gas and particle properties. Based on the numerical analysis, recommendations of best practices are presented that should help tool operators and designers reduce particle deposition in real tools. These guidelines are not intended to replace detailed calculations, but to provide the user with a general feel for inherently-clean practices.

  15. Ultrafast gas switching experiments

    SciTech Connect (OSTI)

    Frost, C.A.; Martin, T.H.; Patterson, P.E.; Rinehart, L.F.; Rohwein, G.J.; Roose, L.D.; Aurand, J.F.; Buttram, M.T.

    1996-11-01T23:59:59.000Z

    We describe recent experiments which studied the physics of ultrafast gas breakdown under the extreme overvoltages which occur when a high pressure gas switch is pulse charged to hundreds of kV in 1 ns or less. The highly overvolted peaking gaps produce powerful electromagnetic pulses with risetimes < 100 ps which can be used for ultrawideband radar systems, particle accelerators, laser drivers, bioelectromagnetic studies, electromagnetic effects testing, and for basic studies of gas breakdown physics. We have produced and accurately measured pulses with 50 to 100 ps risetimes to peak levels of 75 to 160 kV at pulse repetition frequencies (PRF) to I kHz. A unique gas switch was developed to hold off hundreds of kV with parasitic inductance less than I nH. An advanced diagnostic system using Fourier compensation was developed to measure single-shot risetimes below 35 ps. The complete apparatus is described and wave forms are presented. The measured data are compared with a theoretical model which predicts key features including dependence on gas species and pressure. We have applied this technology to practical systems driving ultrawideband radiating antennas and bounded wave simulators. For example, we have developed a thyristor/pulse transformer based system using a highly overvolted cable switch. This pulser driving a Sandia- designed TEM cell, provides an ultra wideband impulse with < 200 ps risetime to the test object at a PRF > 1 kHz at > 100 kV/m E field.

  16. Classical thermodynamics of particles in harmonic traps Martin Ligarea

    E-Print Network [OSTI]

    Ligare, Martin

    , and the heat capacities. I also consider cyclic thermodynamic processes in a harmonically confined gas. © 2010 of state for a gas of N noninteract- ing particles in a rigid volume V is derived in almost every text and pressure vary with position within such traps, and the volume of the gas is not well defined

  17. Measurement and modeling of the Saharan dust radiative impact: Overview of the Saharan Dust Experiment (SHADE)

    E-Print Network [OSTI]

    Highwood, Ellie

    on Climate Change (IPCC), 2001]. Among the different aerosol types, mineral dust is one of the major to their scattering and absorbing properties that affect the solar radiation, they also perturb the terrestrial but they still represent one of the largest uncer- tainties in climate change studies [Intergovernmental Panel

  18. The application of reflected light microscopy, scanning electron microscopy-energy dispersive spectroscopy, Auger electron spectroscopy and electron microprobe analysis to the study of dusts

    SciTech Connect (OSTI)

    Hagni, A.M.; Hagni, R.D. (Univ. of Missouri, Rolla, MO (United States). Dept. of Geology and Geophysics)

    1993-03-01T23:59:59.000Z

    Over 500,000 tons of electric arc furnace (EAF) dust is generated each year in the US. The mineralogy and characterization of this dust is being studied to determine the phases and relationships of the valuable zinc, the hazardous lead, cadmium, and chromium, and the deleterious chlorine and fluorine. EAF dust averages 15--20% zinc and is therefore a potential source for 100,000 tons of zinc per year. The major mineralogical phases of EAF dust are franklinite (ZnFe[sub 2]O[sub 4]), magnetite (FeFe[sub 2]O[sub 4]), jacobsite (MnFe[sub 2]O[sub 4]), solid solutions between franklinite-magnetite-jacobsite, and zincite (ZnO). Franklinite, magnetite, and jacobsite solid solutions commonly are cruciform or dendritic crystals in a Ca-Fe-Si matrix and contain up to 5% chromium. Magnetite also occurs as spheres partially oxidized to hematite (Fe[sub 2]O[sub 3]) along its octahedral planes. The dust particles are predominantly in the form of spheres and broken spheres, ranging in size from 200 [mu]m to less than 1 [mu]m. Although many spheres are in the size ranges of 40--50 [mu]m and 10--20 [mu]m, most are less than 1 [mu]m in diameter. Automated scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS) probed 118 particles in search of chlorine phases. Chlorine-bearing lime (CaO) was identified by that SEM study. In addition, chlorine is present as hydrophylite (CaCl[sub 2]) and sylvite (KCl). Auger electron spectroscopy (AES) was used to sputter the outer 180[angstrom] layer of the dust particles to search for the possible presence of cotunnite (PbCl[sub 2]) coatings, but none were detected. Minor phases detected include chalcopyrite (CuFeS[sub 2]), sphalerite (ZnS), pyrite (FeS[sub 2]), and coke.

  19. Effects of dust size distribution on dust negative ion acoustic solitary waves in a magnetized dusty plasma

    SciTech Connect (OSTI)

    Ma, Yi-Rong; Qi, Xin; Sun, Jian-An; Duan, Wen-Shan [Joint Laboratory of Atomic and Molecular Physics of NWNU and IMP CAS, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China and College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070 (China)] [Joint Laboratory of Atomic and Molecular Physics of NWNU and IMP CAS, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China and College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070 (China); Yang, Lei [Joint Laboratory of Atomic and Molecular Physics of NWNU and IMP CAS, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China and College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070 (China) [Joint Laboratory of Atomic and Molecular Physics of NWNU and IMP CAS, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China and College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070 (China); Department of Physics, Lanzhou University, Lanzhou 730000 (China)

    2013-08-15T23:59:59.000Z

    Dust negative ion acoustic solitary waves in a magnetized multi-ion dusty plasma containing hot isothermal electron, ions (light positive ions and heavy negative ions) and extremely massive charge fluctuating dust grains are investigated by employing the reductive perturbation method. How the dust size distribution affect the height and the thickness of the nonlinear solitary wave are given. It is noted that the characteristic of the solitary waves are different with the different dust size distribution. The magnitude of the external magnetic field also affects the solitary wave form.

  20. ARM - PI Product - Niamey Dust Observations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadap Documentation TDMADAP : XDCnarrowbandheatProductsISDAC MicrophysicsProductsNauruDust

  1. DOE/El%0297 Dust. Category

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration wouldDECOMPOSITION OF CALCIUMCOSTDOENuclear1382 THE HUMANlviA,'{ ' -297 Dust.

  2. Performance characteristics of PM??? samplers in the presence of agricultural dusts

    E-Print Network [OSTI]

    Pargmann, Amber Rae

    2001-01-01T23:59:59.000Z

    , these samplers are not tested in the presence of agriculture dusts, which have a larger mass median diameter (MMD) than urban dusts. This research addressed the performance characteristics of PM??? samplers in the presence of agricultural dusts. Tests in a...

  3. Dust production from sub-solar to super-solar metallicity in Thermally Pulsing Asymptotic Giant Branch Stars

    E-Print Network [OSTI]

    Ambra, Nanni; Paola, Marigo; Léo, Girardi; Atefeh, Javadi; Jacco, van Loon

    2014-01-01T23:59:59.000Z

    We discuss the dust chemistry and growth in the circumstellar envelopes (CSEs) of Thermally Pulsing Asymptotic Giant Branch (TP-AGB) star models computed with the COLIBRI code, at varying initial mass and metallicity (Z=0.001, 0.008, 0.02, 0.04, 0.06). A relevant result of our analysis deals with the silicate production in M-stars. We show that, in order to reproduce the observed trend between terminal velocities and mass-loss rates in Galactic M-giants, one has to significantly reduce the efficiency of chemisputtering by H2 molecules, usually considered as the most effective dust destruction mechanism. This indication is also in agreement with the most recent laboratory results, which show that silicates may condense already at T=1400 K, instead than at Tcond=1000 K, as obtained by models that include chemisputtering. From the analysis of the total dust ejecta, we find that the total dust-to-gas ejecta of intermediate-mass stars are much less dependent on metallicity than usually assumed. In a broader contex...

  4. Investigation of Techniques to Improve Continuous Air Monitors Under Conditions of High Dust Loading in Environmental Settings

    SciTech Connect (OSTI)

    Suilou Huang; Stephen D. Schery; John C. Rodgers

    2002-07-23T23:59:59.000Z

    A number of DOE facilities, such as the Los Alamos National Laboratory (LANL) and the Waste Isolation Pilot Plant (WIPP), use alpha-particle environmental continuous air monitors (ECAMs) to monitor air for unwanted releases of radioactive aerosols containing such materials as plutonium and uranium. High sensitivity, ease of operation, and lack of false alarms are all important for ECAMs. The object of the project was to conduct investigations to improve operation of ECAMs, particularly under conditions where a lot of nonradioactive dust may be deposited on the filters (conditions of high dust loading). The presence of such dust may increase the frequency with which filters must be changed and can lead to an increased incidence of false alarms due to deteriorated energy resolution and response specificity to the radionuclides of interest. A major finding of the investigation, not previously documented, was that under many conditions thick layers of underlying nonradioactive dust do not decrease energy resolution and specificity for target radionuclides if the radioactive aerosol arrives as a sudden thin burst deposit, as commonly occurs in the early-warning alarm mode. As a result, operators of ECAMs may not need to change filters as often as previously thought and have data upon which to base more reliable operating procedures.

  5. Soil water and particle size distribution influence laboratory-generated PM10 Nicholaus M. Madden a,*, Randal J. Southard a

    E-Print Network [OSTI]

    Ahmad, Sajjad

    Soil water and particle size distribution influence laboratory-generated PM10 Nicholaus M. Madden a Soil particle size distribution Soil water content a b s t r a c t Management of soils to reduce earlier work of predicting tillage-generated dust emissions based on soil properties. We focus

  6. ANALYSIS OF DUST DELIQUESCENCE FOR FEP SCREENING

    SciTech Connect (OSTI)

    C. Bryan

    2005-08-26T23:59:59.000Z

    The purpose of this report is to evaluate the potential for penetration of the Alloy 22 (UNS N06022) waste package outer barrier by localized corrosion due to the deliquescence of soluble constituents in dust present on waste package surfaces. The results support a recommendation to exclude deliquescence-induced localized corrosion (pitting or crevice corrosion) of the outer barrier from the total system performance assessment for the license application (TSPA-LA). Preparation of this report, and supporting laboratory studies and calculations, were performed as part of the planned effort in Work Package AEBM21, as implemented in ''Technical Work Plan for: Screening Evaluation for Dust Deliquescence and Localized Corrosion'' (BSC 2004 [DIRS 172804]), by Bechtel SAIC Company, LLC, and staff from three national laboratories: Sandia National Laboratories, Lawrence Livermore National Laboratory (LLNL), and Lawrence Berkeley National Laboratory (LBNL). The analysis and conclusions presented in this report are quality affecting, as determined in the controlling technical work plan. A summary of background information, based on work that was not performed under a quality assurance program, is provided as Appendix E. In this instance, the use of unqualified information is provided for transparency and corroboration only, and is clearly separated from uses of qualified information. Thus, the qualification status of this information does not affect the conclusions of this report. The acceptance criteria addressed in Sections 4.2 and 7.2 were changed from the technical work plan in response to review comments received during preparation of this report.

  7. Controlling dust when cutting fibre-cement board

    E-Print Network [OSTI]

    Knowles, David William

    Controlling dust when cutting fibre-cement board Page 1 of 2 Cutting fibre-cement board (e are not typically used when cutting and shaping fibre-cement board. To protect yourself you should: Use one of the methods described above for cutting fibre-· cement board Inspect the dust control equipment before you

  8. Dynamics of Finite Dust Clouds in a Magnetized Anodic Plasma

    SciTech Connect (OSTI)

    Piel, A.; Pilch, I.; Trottenberg, T. [Institute for Experimental and Applied Physics, Christian-Albrechts University, D-24098 Kiel (Germany); Koepke, M. E. [Department of Physics, West Virginia University, Morgantown, West Virginia 26505-6315 (United States)

    2008-09-07T23:59:59.000Z

    The response to an external modulation voltage of small dust clouds confined in an anodic plasma is studied. Dust density waves are excited when the cloud is larger than a wavelength, whereas a sloshing and stretching motion is found for smaller clouds. The wave dispersion shows similarities with waveguide modes.

  9. An Alternate Approach to Determine the Explosibility of Dusts

    E-Print Network [OSTI]

    Ganesan, Balaji

    2013-12-04T23:59:59.000Z

    protocol that more accurately characterizes the explosibility of dusts. The CAAQES protocol for determining MEC is to test a wide range of concentrations of a dust in a 28.3-L (1 ft^(3)) Plexiglas chamber with a diaphragm and a stationary ignition source...

  10. Dust en-route to Jupiter and the Galilean satellites

    E-Print Network [OSTI]

    Harald Krueger; Eberhard Gruen

    2002-05-28T23:59:59.000Z

    Spacecraft investigations during the last ten years have vastly improved our knowledge about dust in the Jovian system. All Galilean satellites, and probably all smaller satellites as well, are sources of dust in the Jovian system. In-situ measurements with the dust detectors on board the Ulysses and Galileo spacecraft have for the first time demonstrated the electromagnetic interaction of charged dust grains with the interplanetary magnetic field and with a planetary magnetosphere. Jupiter's magnetosphere acts as a giant mass-velocity spectrometer for charged 10-nanometer dust grains. These dust grains are released from Jupiter's moon Io with typical rate of 1 kg s^1. The dust streams probe the plasma conditions in the Io plasma torus and can be used as a potential monitor of Io's volcanic plume activity. The other Galilean satellites are surrounded by tenuous impact-generated clouds of mostly sub-micrometer ejecta grains. Galileo measurements have demonstrated that impact-ejecta derived from hypervelocity impacts onto satellites are the major -- if not the only -- constituent of dusty planetary rings. We review the in-situ dust measurements at Jupiter and give an update of most recent results.

  11. Gas distributor for fluidized bed coal gasifier

    DOE Patents [OSTI]

    Worley, Arthur C. (Mt. Tabor, NJ); Zboray, James A. (Irvine, CA)

    1980-01-01T23:59:59.000Z

    A gas distributor for distributing high temperature reaction gases to a fluidized bed of coal particles in a coal gasification process. The distributor includes a pipe with a refractory reinforced lining and a plurality of openings in the lining through which gas is fed into the bed. These feed openings have an expanding tapered shape in the downstream or exhaust direction which aids in reducing the velocity of the gas jets as they enter the bed.

  12. Direct Characterization of Airborne Particles Associated with Arsenic-rich Mine Tailings: Particle Size Mineralogy and Texture

    SciTech Connect (OSTI)

    M Corriveau; H Jamieson; M Parsons; J Campbell; A Lanzirotti

    2011-12-31T23:59:59.000Z

    Windblown and vehicle-raised dust from unvegetated mine tailings can be a human health risk. Airborne particles from As-rich abandoned Au mine tailings from Nova Scotia, Canada have been characterized in terms of particle size, As concentration, As oxidation state, mineral species and texture. Samples were collected in seven aerodynamically fractionated size ranges (0.5-16 {micro}m) using a cascade impactor deployed at three tailings fields. All three sites are used for recreational activities and off-road vehicles were racing on the tailings at two mines during sample collection. Total concentrations of As in the <8 {micro}m fraction varied from 65 to 1040 ng/m{sup 3} of air as measured by proton-induced X-ray emission (PIXE) analysis. The same samples were analysed by synchrotron-based microfocused X-ray absorption near-edge spectroscopy ({micro}XANES) and X-ray diffraction ({micro}XRD) and found to contain multiple As-bearing mineral species, including Fe-As weathering products. The As species present in the dust were similar to those observed in the near-surface tailings. The action of vehicles on the tailings surface may disaggregate material cemented with Fe arsenate and contribute additional fine-grained As-rich particles to airborne dust. Results from this study can be used to help assess the potential human health risks associated with exposure to airborne particles from mine tailings.

  13. AN EXTRACTION AND CURATION TECHNIQUE FOR PARTICLES CAPTURED IN AEROGEL COLLECTORS. A.

    E-Print Network [OSTI]

    unknown authors

    cometary, interplanetary and interstellar dust captured in aerogel collectors. The curation strategy (or strategies) for STAR-DUST remain to be defined. Here we present a technique for curation of particles captured in aerogel which will simultaneously preserve the entire particle track, and could allow for the elemental in situ analysis of both the particle residue at the terminus of the track and any particle residues located along the track. This builds on work that we have previously reported elsewhere[1]. developed a technique for extracting aerogel wedge-shaped “keystones ” that satisfy this requirement. In Fig. 1 we show top and side views of such an extracted wedge, containing a captured particle (Fig. 2) and its track. In Fig. 3, we show the excavated “pit”, demonstrating that there is essentially no disturbance beyond the extraction region. Even very long

  14. Sheath formation under collisional conditions in presence of dust

    SciTech Connect (OSTI)

    Moulick, R., E-mail: rakesh.moulick@gmail.com; Goswami, K. S. [Centre of Plasma Physics-Institute for Plasma Research, Sonapur-782402, Guwahati (India)

    2014-08-15T23:59:59.000Z

    Sheath formation is studied for collisional plasma in presence of dust. In common laboratory plasma, the dust acquires negative charges because of high thermal velocity of the electrons. The usual dust charging theory dealing with the issue is that of the Orbit Motion Limited theory. However, the theory does not find its application when the ion neutral collisions are significantly present. An alternate theory exists in literature for collisional dust charging. Collision is modeled by constant mean free path model. The sheath is considered jointly with the bulk of the plasma and a smooth transition of the plasma profiles from the bulk to the sheath is obtained. The various plasma profiles such as the electrostatic force on the grain, the ion drag force along with the dust density, and velocity are shown to vary spatially with increasing ion neutral collision.

  15. The ecology of dust: local- to global-scale perspectives

    SciTech Connect (OSTI)

    Whicker, Jeffrey J [Los Alamos National Laboratory; Field, Jason P [UA; Belnap, Jayne [NON LANL; Breshears, David D [UA; Neff, Jason [CU; Okin, Gregory S [UCLA; Painter, Thomas H [UNIV OF ARIZONA; Ravi, Sujith [UNIV OF ARIZONA; Reheis, Marith C [UCLA; Reynolds, Richard L [NON LANL

    2009-01-01T23:59:59.000Z

    Emission and redistribution of dust due to wind erosion in drylands drives major biogeochemical dynamics and provides important aeolian environmental connectivity at scales from individual plants up to the global scale. Yet, perhaps because most relevant research on aeolian processes has been presented in a geosciences rather than ecological context, most ecological studies do not explicitly consider dust-driven processes. To bridge this disciplinary gap, we provide a general overview of the ecological importance of dust, examine complex interactions between wind erosion and ecosystem dynamics from the plant-interspace scale to regional and global scales, and highlight specific examples of how disturbance affects these interactions and their consequences. Changes in climate and intensification of land use will both likely lead to increased dust production. To address these challenges, environmental scientists, land managers and policy makers need to more explicitly consider dust in resource management decisions.

  16. Existence domains of dust-acoustic solitons and supersolitons

    SciTech Connect (OSTI)

    Maharaj, S. K. [South African National Space Agency (SANSA) Space Science, PO Box 32, Hermanus 7200 (South Africa)] [South African National Space Agency (SANSA) Space Science, PO Box 32, Hermanus 7200 (South Africa); Bharuthram, R. [University of the Western Cape, Robert Sobukwe Road, Bellville 7535 (South Africa)] [University of the Western Cape, Robert Sobukwe Road, Bellville 7535 (South Africa); Singh, S. V.; Lakhina, G. S. [Indian Institute of Geomagnetism, New Panvel, Navi Mumbai 410218 (India)] [Indian Institute of Geomagnetism, New Panvel, Navi Mumbai 410218 (India)

    2013-08-15T23:59:59.000Z

    Using the Sagdeev potential method, the existence of large amplitude dust-acoustic solitons and supersolitons is investigated in a plasma comprising cold negative dust, adiabatic positive dust, Boltzmann electrons, and non-thermal ions. This model supports the existence of positive potential supersolitons in a certain region in parameter space in addition to regular solitons having negative and positive potentials. The lower Mach number limit for supersolitons coincides with the occurrence of double layers whereas the upper limit is imposed by the constraint that the adiabatic positive dust number density must remain real valued. The upper Mach number limits for negative potential (positive potential) solitons coincide with limiting values of the negative (positive) potential for which the negative (positive) dust number density is real valued. Alternatively, the existence of positive potential solitons can terminate when positive potential double layers occur.

  17. Processing electric arc furnace dust into saleable chemical products

    SciTech Connect (OSTI)

    NONE

    1998-04-01T23:59:59.000Z

    The modern steel industry uses electric arc furnace (EAF) technology to manufacture steel. A major drawback of this technology is the production of EAF dust, which is listed by the U.S. Environmental Protection Agency as a hazardous waste under the Resource Conservation and Recovery Act. The annual disposal of approximately 0.65 million tons of EAF dust in the United States and Canada is an expensive, unresolved problem for the steel industry. EAF dust byproducts are generated during the manufacturing process by a variety of mechanisms. The dust consists of various metals (e.g., zinc, lead, cadmium) that occur as vapors at 1,600{degrees}C (EAF hearth temperature); these vapors are condensed and collected in a baghouse. The production of one ton of steel will generate approximately 25 pounds of EAF dust as a byproduct, which is currently disposed of in landfills.

  18. Fundamental mechanisms in flue gas conditioning

    SciTech Connect (OSTI)

    Snyder, T.R.; Bush, P.V.

    1993-01-20T23:59:59.000Z

    We performed a wide variety of laboratory analyses during the past quarter. As with most of the work we performed during the previous quarter, our recent efforts were primarily directed toward the determination of the effects of adsorbed water on the cohesivity and tensile strength of powders. We also continued our analyses of dust cake ashes that have had the soluble compounds leached from their particle surfaces by repeated washings with water. Our analyses of leached and unleached dust cake ashes continued to provide some interesting insights into effects that compounds adsorbed on surfaces of ash particles can have on bulk ash behavior. As suggested by our literature review, our data indicate that water adsorption depends on particle morphology and on surface chemistry. Our measurements of tensile strength show, that for many of the samples we have analyzed a relative minimum in tensile strength exists for samples conditioned and tested at about 30% relative humidity. In our examinations of the effects of water conditioning on sample cohesivity, we determined that in the absence of absorption of water into the interior of the particles, cohesivity usually increases sharply when environments having relative humidities above 75% are used to condition and test the samples. Plans are under way to condition selected samples with (NH[sub 4])[sub 2]SO[sub 4], NH[sub 4]HSO[sub 4], CaCl[sub 2], organosiloxane, and SO[sub 3]. Pending approval, we will begin these conditioning experiments, and subsequent analyses of the conditioned samples.

  19. Particle Pile-ups and Planetesimal Formation

    E-Print Network [OSTI]

    Andrew N. Youdin; Eugene I. Chiang

    2004-02-09T23:59:59.000Z

    Solid particles in protoplanetary disks that are sufficiently super-solar in metallicity overcome turbulence generated by vertical shear to gravitationally condense into planetesimals. Super-solar metallicities result if solid particles pile up as they migrate starward as a result of aerodynamic drag. Previous analyses of aerodynamic drift rates that account for mean flow differences between gas and particles yield particle pile-ups. We improve on these studies not only by accounting for the collective inertia of solids relative to that of gas, but also by including the transport of angular momentum by turbulent stresses within the particle layer. These turbulent stresses are derived in a physically self-consistent manner from the structure of marginally Kelvin-Helmholtz turbulent flows. They are not calculated using the usual plate drag formulae, whose use we explain is inappropriate. Accounting for the relative inertia of solids to gas retards, but does not prevent, particle pile-ups, and generates more spatially extended regions of metal enrichment. Turbulent transport hastens pile-ups. We conclude that particle pile-up is a robust outcome in sufficiently passive protoplanetary disks. Connections to observations of circumstellar disks, including the Kuiper Belt, and the architectures of planetary systems are made.

  20. Particle Pressures in Fluidized Beds. Final report

    SciTech Connect (OSTI)

    Campbell, C.S.; Rahman, K.; Jin, C.

    1996-09-01T23:59:59.000Z

    This project studies the particle pressure, which may be thought of as the force exerted by the particulate phase of a multiphase mixture, independently of that exerted by other phases. The project is divided into two parts, one concerning gas and the other liquid fluidized beds. Previous work on gas fluidized beds had suggested that the particle pressures are generated by bubbling action. Thus, for these gas fluidized bed studies, the particle pressure is measured around single bubbles generated in 2-D fluidized beds, using special probes developed especially for this purpose. Liquid beds are immune from bubbling and the particle pressures proved too small to measure directly. However, the major interest in particle pressures in liquid beds lies in their stabilizing effect that arises from the effective elasticity (the derivative of the particle pressure with respect to the void fraction): they impart to the bed. So rather than directly measure the particle pressure, we inferred the values of the elasticity from measurements of instability growth in liquid beds the inference was made by first developing a generic stability model (one with all the normally modeled coefficients left undetermined)and then working backwards to determine the unknown coefficients, including the elasticity.

  1. Particle pressures in fluidized beds. Final report

    SciTech Connect (OSTI)

    Campbell, C.S.; Rahman, K.; Jin, C.

    1996-09-01T23:59:59.000Z

    This project studies the particle pressure, which may be thought of as the force exerted by the particulate phase of a multiphase mixture, independently of that exerted by other phases. The project is divided into two parts, one concerning gas and the other liquid fluidized beds. Previous work on gas fluidized beds had suggested that the particle pressures are generated by bubbling action. Thus, for these gas fluidized bed studies, the particle pressure is measured around single bubbles generated in 2-D fluidized beds, using special probes developed especially for this purpose. Liquid beds are immune from bubbling and the particle pressures proved too small to measure directly. However, the major interest in particle pressures in liquid beds lies in their stabilizing effect that arises from the effective elasticity (the derivative of the particle pressure with respect to the void fraction), they impart to the bed. So rather than directly measure the particle pressure, the authors inferred the values of the elasticity from measurements of instability growth in liquid beds; the inference was made by first developing a generic stability model (one with all the normally modeled coefficients left undetermined) and then working backwards to determine the unknown coefficients, including the elasticity.

  2. Gas sensitive materials for gas detection and method of making

    DOE Patents [OSTI]

    Trakhtenberg, Leonid Israilevich; Gerasimov, Genrikh Nikolaevich; Gromov, Vladimir Fedorovich; Rozenberg, Valeriya Isaakovna

    2012-12-25T23:59:59.000Z

    A gas sensitive material comprising SnO2 nanocrystals doped with In2O3 and an oxide of a platinum group metal, and a method of making the same. The platinum group metal is preferably Pd, but also may include Pt, Ru, Ir, and combinations thereof. The SnO2 nanocrystals have a specific surface of 7 or greater, preferably about 20 m2/g, and a mean particle size of between about 10 nm and about 100 nm, preferably about 40 nm. A gas detection device made from the gas sensitive material deposited on a substrate, the gas sensitive material configured as a part of a current measuring circuit in communication with a heat source.

  3. Gas sensitive materials for gas detection and methods of making

    DOE Patents [OSTI]

    Trakhtenberg, Leonid Israilevich; Gerasimov, Genrikh Nikolaevich; Gromov, Vladimir Fedorovich; Rozenberg, Valeriya Isaakovna

    2014-07-15T23:59:59.000Z

    A gas sensitive material comprising SnO.sub.2 nanocrystals doped with In.sub.2O.sub.3 and an oxide of a platinum group metal, and a method of making the same. The platinum group metal is preferably Pd, but also may include Pt, Ru, Ir, and combinations thereof. The SnO.sub.2 nanocrystals have a specific surface of 7 or greater, preferably about 20 m2/g, and a mean particle size of between about 10 nm and about 100 nm, preferably about 40 nm. A gas detection device made from the gas sensitive material deposited on a substrate, the gas sensitive material configured as a part of a current measuring circuit in communication with a heat source.

  4. Method for improved gas-solids separation

    DOE Patents [OSTI]

    Kusik, Charles L. (Lincoln, MA); He, Bo X. (Newton, MA)

    1990-01-01T23:59:59.000Z

    Methods are disclosed for the removal of particulate solids from a gas stream at high separation efficiency, including the removal of submicron size particles. The apparatus includes a cyclone separator type of device which contains an axially mounted perforated cylindrical hollow rotor. The rotor is rotated at high velocity in the same direction as the flow of an input particle-laden gas stream to thereby cause enhanced separation of particulate matter from the gas stream in the cylindrical annular space between the rotor and the sidewall of the cyclone vessel. Substantially particle-free gas passes through the perforated surface of the spinning rotor and into the hollow rotor, from when it is discharged out of the top of the apparatus. Separated particulates are removed from the bottom of the vessel.

  5. Method for improved gas-solids separation

    DOE Patents [OSTI]

    Kusik, C.L.; He, B.X.

    1990-11-13T23:59:59.000Z

    Methods are disclosed for the removal of particulate solids from a gas stream at high separation efficiency, including the removal of submicron size particles. The apparatus includes a cyclone separator type of device which contains an axially mounted perforated cylindrical hollow rotor. The rotor is rotated at high velocity in the same direction as the flow of an input particle-laden gas stream to thereby cause enhanced separation of particulate matter from the gas stream in the cylindrical annular space between the rotor and the sidewall of the cyclone vessel. Substantially particle-free gas passes through the perforated surface of the spinning rotor and into the hollow rotor, from where it is discharged out of the top of the apparatus. Separated particulates are removed from the bottom of the vessel. 4 figs.

  6. Condensed matter astrophysics: A prescription for determining the species-specific composition and quantity of interstellar dust using x-rays

    SciTech Connect (OSTI)

    Lee, Julia C.; Xiang, Jingen; Ravel, Bruce; Kortright, Jeffrey B; Flanagan, Kathryn

    2009-01-05T23:59:59.000Z

    We present a newtechnique for determining the quantity and composition of dust in astrophysical environments using<6 keV X-rays.We argue that high-resolution X-ray spectra as enabled by the Chandra and XMM-Newton gratings should be considered a powerful and viable new resource for delving into a relatively unexplored regime for directlydetermining dust properties: composition, quantity, and distribution.We present initial cross section measurements of astrophysically likely iron-based dust candidates taken at the Lawrence Berkeley National Laboratory Advanced Light Source synchrotron beamline, as an illustrative tool for the formulation of our technique for determining the quantity and composition of interstellar dust with X-rays. (Cross sections for the materials presented here will be made available for astrophysical modeling in the near future.) Focused at the 700 eV Fe LIII and LII photoelectric edges, we discuss a technique for modeling dust properties in the soft X-rays using L-edge data to complement K-edge X-ray absorption fine structure analysis techniques discussed by Lee& Ravel. The paper is intended to be a techniques paper of interest and useful to both condensed matter experimentalists andastrophysicists. For the experimentalists, we offer a new prescription for normalizing relatively low signal-to-noise ratio L-edge cross section measurements. For astrophysics interests, we discuss the use of X-ray absorption spectra for determining dust composition in cold and ionized astrophysical environments and a new method for determining species-specific gas and dust ratios. Possible astrophysical applications of interest, including relevance to Sagittarius A*, are offered. Prospects for improving on this work in future X-ray missions with higher throughput and spectral resolution are also presented in the context of spectral resolution goals for gratings and calorimeters, for proposed and planned missions such as Astro-H and the International X-ray Observatory.

  7. On the source of the dust extinction in type Ia supernovae and the discovery of anomalously strong Na I absorption

    SciTech Connect (OSTI)

    Phillips, M. M.; Morrell, Nidia; Hsiao, E. Y.; Campillay, Abdo; Contreras, Carlos [Carnegie Observatories, Las Campanas Observatory, Casilla 601, La Serena (Chile); Simon, Joshua D.; Burns, Christopher R.; Persson, Sven E.; Thompson, I. B.; Freedman, Wendy L. [Observatories of the Carnegie Institution for Science, 813 Santa Barbara St., Pasadena, CA 91101 (United States); Cox, Nick L. J. [Instituut voor Sterrenkunde, KU Leuven, Celestijnenlaan 200D bus 2401, 3001 Leuven (Belgium); Foley, Ryan J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Karakas, Amanda I. [Research School of Astronomy and Astrophysics, The Australian National University, Weston, ACT 2611 (Australia); Patat, F. [European Southern Observatory (ESO), Karl Schwarschild Strasse 2, D-85748, Garching bei München (Germany); Sternberg, A. [Max Planck Institute for Astrophysics, Karl Schwarzschild Strasse 1, D-85741 Garching bei München (Germany); Williams, R. E. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Gal-Yam, A. [Benoziyo Center for Astrophysics, Faculty of Physics, Weizmann Institute of Science, Rehovot 76100 (Israel); Leonard, D. C. [Department of Astronomy, San Diego State University, San Diego, CA 92182 (United States); Stritzinger, Maximilian [Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C (Denmark); Folatelli, Gastón, E-mail: mmp@lco.cl [Kavli Institute for the Physics and Mathematics of the Universe, Todai Institutes for Advanced Study, the University of Tokyo, Kashiwa 277-8583 (Japan); and others

    2013-12-10T23:59:59.000Z

    High-dispersion observations of the Na I D ??5890, 5896 and K I ??7665, 7699 interstellar lines, and the diffuse interstellar band at 5780 Å in the spectra of 32 Type Ia supernovae are used as an independent means of probing dust extinction. We show that the dust extinction of the objects where the diffuse interstellar band at 5780 Å is detected is consistent with the visual extinction derived from the supernova colors. This strongly suggests that the dust producing the extinction is predominantly located in the interstellar medium of the host galaxies and not in circumstellar material associated with the progenitor system. One quarter of the supernovae display anomalously large Na I column densities in comparison to the amount of dust extinction derived from their colors. Remarkably, all of the cases of unusually strong Na I D absorption correspond to 'Blueshifted' profiles in the classification scheme of Sternberg et al. This coincidence suggests that outflowing circumstellar gas is responsible for at least some of the cases of anomalously large Na I column densities. Two supernovae with unusually strong Na I D absorption showed essentially normal K I column densities for the dust extinction implied by their colors, but this does not appear to be a universal characteristic. Overall, we find the most accurate predictor of individual supernova extinction to be the equivalent width of the diffuse interstellar band at 5780 Å, and provide an empirical relation for its use. Finally, we identify ways of producing significant enhancements of the Na abundance of circumstellar material in both the single-degenerate and double-degenerate scenarios for the progenitor system.

  8. Ordered dust structures in a glow discharge

    SciTech Connect (OSTI)

    Karasev, V. Yu., E-mail: plasmadust@yandex.ru; Ivanov, A. Yu.; Dzlieva, E. S.; Eikhval'd, A. I. [St. Petersburg State University, Institute of Physics (Russian Federation)

    2008-02-15T23:59:59.000Z

    Highly ordered three-dimensional dust structures are created in a striated glow discharge, and their horizontal cross-sectional images are analyzed. Calculated correlation functions, local correlation parameters, and corresponding approximations are used to classify the state of a structure according to the Kosterlitz-Thouless-Halperin-Nelson-Young (KTHNY) two-dimensional melting theory and a phenomenological approach. An orientational map based on an orientational parameter is proposed to expose domains in a cross section of a structure. It is shown that a plasma crystal is a polycrystal consisting of hexagonal domains (crystallites). Thermophoretic forces are used to create corners of various angles in the perimeter of the structure. Transition between hexagonal and square cell shapes is observed.

  9. A New Dust Budget In The Large Magellanic Cloud

    E-Print Network [OSTI]

    Zhu, Chunhua; Wang, Zhaojun

    2015-01-01T23:59:59.000Z

    The origin of dust in a galaxy is poorly understood. Recently, the surveys of the Large Magellanic Cloud (LMC) provide astrophysical laboratories for the dust studies. By a method of population synthesis, we investigate the contributions of dust produced by asymptotic giant branch (AGB) stars, common envelope (CE) ejecta and type II supernovae (SNe II) to the total dust budget in the LMC. Based on our models, the dust production rates (DPRs) of AGB stars in the LMC are between about $2.5\\times10^{-5}$ and $4.0\\times10^{-6}M_\\odot{\\rm yr^{-1}}$. The uncertainty mainly results from different models for the dust yields of AGB stars. The DPRs of CE ejecta are about $6.3\\times10^{-6}$(The initial binary fraction is 50\\%). These results are within the large scatter of several observational estimates. AGB stars mainly produce carbon grains, which is consistent with the observations. Most of dust grains manufactured by CE ejecta are silicate and iron grains. The contributions of SNe II are very uncertain. Compared wi...

  10. A new method to generate dust with astrophysical properties

    SciTech Connect (OSTI)

    Hansen, J F; van Breugel, W; Bringa, E M; Graham, G A; Remington, B A; Taylor, E A; Tielens, A G

    2010-04-21T23:59:59.000Z

    In interstellar and interplanetary space, the size distribution and composition of dust grains play an important role. For example, dust grains determine optical and ultraviolet extinction levels in astronomical observations, dominate the cooling rate of our Galaxy, and sets the thermal balance and radiative cooling rates in molecular clouds, which are the birth place of stars. Dust grains are also a source of damage and failure to space hardware and thus present a hazard to space flight. To model the size distribution and composition of dust grains, and their effect in the above scenarios, it is vital to understand the mechanism of dust-shock interaction. We demonstrate a new experiment which employs a laser to subject dust grains to pressure spikes similar to those of colliding astrophysical dust, and which accelerates the grains to astrophysical velocities. The new method generates much larger data sets than earlier methods; we show how large quantities (thousands) of grains are accelerated at once, rather than accelerating individual grains, as is the case of earlier methods using electric fields.

  11. Controlling Silver Dust and Fumes at Mine Refinery

    E-Print Network [OSTI]

    R. A. Haney; M. P. Valoski

    ABSTRACT: As part of the refining of gold and silver molten metal, silver dust and fumes are released into the atmosphere. The Mine Safety and Health Administration (MSHA) enforces an 8-hour, equivalent Time Weighted Average concentration limit for silver dust and fumes of 10 µg/m 3. MSHA initiated a program to assess the controls that were being used to control silver dust and fume exposure. Refineries were visited at six mines. The layout of each refinery and the controls used varied at each refinery. At each operation, personal and area silver fume and dust samples were collected to assess worker exposures and to determine sources of fume. Primary source of silver dust and fume exposure was the pouring of molten metal from the furnace. Secondary sources of exposure included: precipitate mixing, bar cooling, and housekeeping. Guidelines were developed addressing housekeeping, exhaust ventilation, general ventilation, administrative controls, and system monitoring. In most cases, housekeeping and general ventilation were adequate; however, the exhaust ventilation systems needed to be improved. 1 INRODUCTION Silver dust and fumes become airborne during the refining step of producing gold and silver. The dust

  12. Contributed papers Study of gas-fluidization dynamics with laser-polarized 129

    E-Print Network [OSTI]

    Walsworth, Ronald L.

    Gas fluidization is a process in which solid particles experience fluid-like suspension in an upward. Bubbles, or void spaces with volume much larger than that of a single particle, emerge when the gas flowContributed papers Study of gas-fluidization dynamics with laser-polarized 129 Xe Ruopeng Wanga

  13. Theoretical study of head-on collision of dust acoustic solitary waves in a strongly coupled complex plasma

    SciTech Connect (OSTI)

    Jaiswal, S., E-mail: surabhi@ipr.res.in; Bandyopadhyay, P.; Sen, A. [Institute for Plasma Research, Bhat, Gandhinagar, Gujarat 382428 (India)

    2014-05-15T23:59:59.000Z

    We investigate the propagation characteristics of two counter propagating dust acoustic solitary waves (DASWs) undergoing a head-on collision, in the presence of strong coupling between micron sized charged dust particles in a complex plasma. A coupled set of nonlinear dynamical equations describing the evolution of the two DASWs using the extended Poincaré-Lighthill-Kuo perturbation technique is derived. The nature and extent of post collision phase-shifts of these solitary waves are studied over a wide range of dusty plasma parameters in a strongly and a weakly coupled medium. We find a significant change in the nature and amount of phase delay in the strongly coupled regime as compared to a weakly coupled regime. The phase shift is seen to change its sign beyond a threshold value of compressibility of the medium for a given set of dusty plasma parameters.

  14. On the dry deposition of submicron particles

    SciTech Connect (OSTI)

    Wesely, M. L.

    1999-10-08T23:59:59.000Z

    The air-surface exchange of particles can have a strong role in determining the amount, size, and chemical composition of particles in the troposphere. Here the authors consider only dry processes (deposition processes not directly aided by precipitation) and mostly address particles less than about 2 {micro}m in diameter (often referred to as submicron particles because most of such particles are less than 1 {micro}m in diameter). The processes that control the dry exchange of particulate material between the atmosphere and the surface of the Earth are numerous, highly varied, and sometimes poorly understood. As a result, determining which of the surface processes to parameterize or simulate in modeling the tropospheric mass budget of a particulate substance can be a significant challenge. Dry deposition, for example, can be controlled by a combination of Brownian diffusion, impaction, interception, and gravitational settling, depending on the size of the particles, the roughness of the surface on both micrometeorological and microscopic scales, the geometrical structure of vegetative canopies, and other surface characteristics such as wetness. Particles can be added to the lower atmosphere by resuspension from land surfaces and sea spray. The roles of rapid gas-to-particle conversion and growth or shrinkage of particles as a result of water condensation or evaporation in the lower few meters of the atmosphere can also have a significant impact on particle concentrations in the lower atmosphere. Here, a few micrometeorological observations and inferences on particle air-surface exchange are briefly addressed.

  15. Digital image processing applications in the ignition and combustion of char/coal particles

    E-Print Network [OSTI]

    Kharbat, Esam Tawfiq

    1992-01-01T23:59:59.000Z

    pressure, and reduced bed heights in fluidized beds increase the volatile yields. Once released, volatiles undergo oxidation in the gas phase. During the volatile combustion period, the gas temperature is much higher than the particle temperatures... still reach the particle surface and heterogeneous combustion of fixed carbon and in situ volatile matter can proceed in parallel with gas phase combustion. Extensive theoretical and experimental studies characterizing char/coal isolated particles...

  16. Slow dust in Enceladus' plume from condensation and wall collisions in tiger stripe fractures

    E-Print Network [OSTI]

    Potsdam, Universität

    Condensedmass(%) Condensed mass 0 200 400 600 800 Speed(ms­1) Sound speed Gas speed 230 240 250 260 270 280 are generally too low to support the measured particle fluxes2 . This in turn suggests liquid water below

  17. Reducing dust emissions at OAO Alchevskkoks coke battery 10A

    SciTech Connect (OSTI)

    T.F. Trembach; E.N. Lanina [Giprokoks, the State Institute for the Design of Coke-Industry Enterprises, Kharkov (Ukraine)

    2009-07-15T23:59:59.000Z

    Coke battery 10A with rammed batch is under construction at OAO Alchevskkoks. The design documentation developed by Giprokoks includes measures for reducing dust emissions to the atmosphere. Aspiration systems with dry dust trapping are employed in the new components of coke battery 10A and in the existing coke-sorting equipment. Two-stage purification of dusty air in cyclones and bag filters is employed for the coke-sorting equipment. This system considerably reduces coke-dust emissions to the atmosphere.

  18. Generalizations of the Störmer Problem for Dust Grain Orbits

    E-Print Network [OSTI]

    H. R. Dullin; M. Horányi; J. E. Howard

    2001-04-24T23:59:59.000Z

    We consider the generalized St\\"ormer Problem that includes the electromagnetic and gravitational forces on a charged dust grain near a planet. For dust grains a typical charge to mass ratio is such that neither force can be neglected. Including the gravitational force gives rise to stable circular orbits that encircle that plane entirely above/below the equatorial plane. The effects of the different forces are discussed in detail. A modified 3rd Kepler's law is found and analyzed for dust grains.

  19. On interaction of large dust grains with fusion plasma

    SciTech Connect (OSTI)

    Krasheninnikov, S. I.; Smirnov, R. D. [University of California at San Diego, La Jolla, California 92093 (United States)

    2009-11-15T23:59:59.000Z

    So far the models used to study dust grain-plasma interactions in fusion plasmas neglect the effects of dust material vapor, which is always present around dust in rather hot and dense edge plasma environment in fusion devices. However, when the vapor density and/or the amount of ionized vapor atoms become large enough, they can alter the grain-plasma interactions. Somewhat similar processes occur during pellet injection in fusion plasma. In this brief communication the applicability limits of the models ignoring vapor effects in grain-plasma interactions are obtained.

  20. Dust in the Ionized Medium of the Galaxy: GHRS Measurements of Al III and S III

    E-Print Network [OSTI]

    J. Christopher Howk; Blair D. Savage

    1998-10-27T23:59:59.000Z

    We present interstellar absorption line measurements of the ions S III and Al III towards six stars using archival Goddard High Resolution Spectrograph data. The ions Al III and S III trace heavily depleted and non-depleted elements, respectively, in ionized gas. We use the photoionization code CLOUDY to derive the ionization correction relating N(Al III)/N(S III) to the gas-phase abundance [Al/S]_i in the ionized gas. For spectral types considered here, the corrections are small and independent of the assumed ionization parameter. Using the results of these photoionization models, we find [Al/S]_i = -1.0 in the ionized gas towards three disk stars. These values of [Al/S]_i (=[Al/H]_i) imply that Al-bearing grains are present in the ionized nebulae around these stars. If the WIM of the Galaxy is photoionized by OB stars, our data for two halo stars imply [Al/S]_i = -0.4 to -0.5 in the WIM and thus the presence of dust grains containing Al in this important phase of the ISM. While photoionization appears to be the most likely origin of the ionization for Al III and S III, we cannot rule out confusion from the presence of hot, collisionally ionized gas along two sightlines. We find that [Al/S]_i in the ionized gas along the six sightlines is anti-correlated with the electron density and average sightline neutral density. The degree of grain destruction in the ionized medium of the Galaxy is not much higher than in the warm neutral medium. The existence of grains in the ionized regions studied here has important implications for the thermal balance of these regions. (Abstract Abridged)

  1. Excitation of dust acoustic waves by an ion beam in a plasma cylinder with negatively charged dust grains

    SciTech Connect (OSTI)

    Sharma, Suresh C. [Department of Applied Physics, Delhi Technological University (DTU), Shahbad Daulatpur, Bawana Road, Delhi-42 (India); Kaur, Daljeet [Department of Physics, Guru Teg Bahadur Institute of Technology, Rajouri Garden, New Delhi (India); Gahlot, Ajay [Department of Physics, Maharaja Surajmal Institute of Technology, Janakpuri, New Delhi (India); Sharma, Jyotsna [Department of Physics, KIIT College of Engineering, Bhondsi Gurgaon 122102 (India)

    2014-10-15T23:59:59.000Z

    An ion beam propagating through a plasma cylinder having negatively charged dust grains drives a low frequency electrostatic dust acoustic wave (DAW) to instability via Cerenkov interaction. The unstable wave frequencies and the growth rate increase with the relative density of negatively charged dust grains. The growth rate of the unstable mode scales to the one-third power of the beam density. The real part of the frequency of the unstable mode increases with the beam energy and scales to almost one-half power of the beam energy. The phase velocity, frequency, and wavelength results of the unstable mode are in compliance with the experimental observations.

  2. BioCoComb -- Gasification of biomass and co-combustion of the gas in a pulverized-coal-boiler

    SciTech Connect (OSTI)

    Anderl, H.; Zotter, T.; Mory, A.

    1999-07-01T23:59:59.000Z

    In a demonstration project supported by an European Community Thermie Fund a biomass gasifier for bark, wood chips, saw dust, etc. has been installed by Austrian Energy and Environment at the 137 MW{sub el} pulverized-coal fired power station in Zeltweg, Austria. The project title BioCoComb is an abbreviation for Preparation of Biofuel for Co-Combustion, where co-combustion means combustion together with coal in existing power plants. According to the thermal capacity of 10 MW the produced gas substitutes approx. 3% of the coal fired in the boiler. Only the coarse fraction of the biomass has to pass a shredder and is then fed together with the fine fraction without any further pretreatment into the gasifier. In the gasification process the biomass will combust in a substoichiometric atmosphere, create the necessary temperature of 820 C and partly gasify due to the lack of oxygen in the combustion chamber (autothermal operation). The gasifier uses circulating fluidized bed technology, which guarantees even relatively low temperatures in all parts of the gasifier to prevent slagging. The intense motion of the bed material also favors attrition of the biomass particles. Via a hot gas duct the produced low calorific value (LCV) gas is directly led into the furnace of the existing pulverized coal fired boiler for combustion. The gas also contains fine wood char particles, that can pass the retention cyclone and burn out in the furnace of the coal boiler. The main advantages of the BioCoComb concept are: low gas quality sufficient for co-firing; no gas cleaning or cooling; no predrying of the biomass; relatively low temperatures in the gasifier to prevent slagging; favorable effects on power plant emissions (CO{sub 2}, NO{sub x}); no severe modifications of the existing coal fired boiler; and high flexibility in arranging and integrating the main components into existing plants. The plant started its trial run in November 1997 and has been in successful commercial operation since January 1998.

  3. Shock processing of interstellar dust and polycyclic aromatic hydrocarbons in the supernova remnant N132D

    E-Print Network [OSTI]

    A. Tappe; J. Rho; W. T. Reach

    2006-09-06T23:59:59.000Z

    We observed the oxygen-rich Large Magellanic Cloud (LMC) supernova remnant N132D (SNR 0525-69.6), using all instruments onboard the Spitzer Space Telescope, IRS, IRAC, and MIPS (Infrared Spectrograph, Infrared Array Camera, Multiband Imaging Photometer for Spitzer). The 5-40 micron IRS spectra toward the southeastern shell of the remnant show a steeply rising continuum with [NeIII] and [OIV] as well as PAH emission. We also present the spectrum of a fast moving ejecta knot, previously detected at optical wavelengths, which is dominated by strong [NeIII] and [OIV] emission lines. We interpret the continuum as thermal emission from swept-up, shock-heated dust grains in the expanding shell of N132D, which is clearly visible in the MIPS 24 micron image. A 15-20 micron emission hump appears superposed on the dust continuum, and we attribute this to PAH C-C-C bending modes. We also detect the well-known 11.3 micron PAH C-H bending feature, and find the integrated strength of the 15-20 micron hump about a factor of seven stronger than the 11.3 micron band in the shell of the remnant. IRAC 3-9 micron images do not show clear evidence of large-scale, shell-like emission from the remnant, partly due to confusion with the ambient ISM material. However, we identified several knots of shocked interstellar gas based on their distinct infrared colors. We discuss the bright infrared continuum and the polycyclic aromatic hydrocarbon features with respect to dust processing in young supernova remnants.

  4. asthma dust mite: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    were compared to anti-cockroach, anti-mouse, and anti-dust mite IgE levels, wheeze, cough, eczema and asthma. Results: Correlations between CBMC and age 5 PBMC proliferation in...

  5. Dust-shell Universe in the modified gravity scenario

    E-Print Network [OSTI]

    Michael Maziashvili

    2005-04-15T23:59:59.000Z

    The dynamics of the dust-shell model of universe is exactly solved for the modified Schwarzschild solution. This solution is used to derive the cosmology corresponding to the modified gravity.

  6. Magnetorotational instability in plasmas with mobile dust grains

    SciTech Connect (OSTI)

    Ren Haijun [CAS Key Laboratory of Basic Plasma Physics, Department of Modern Physics, University of Science and Technology of China, Hefei 230026 (China); Cao Jintao [Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Li Ding [CAS Key Laboratory of Basic Plasma Physics, Department of Modern Physics, University of Science and Technology of China, Hefei 230026 (China); Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Chu, Paul K. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon (Hong Kong)

    2013-03-15T23:59:59.000Z

    The magnetorotational instability of dusty plasmas is investigated using the multi-fluid model and the general dispersion relation is derived based on local approximation. The dust grains are found to play an important role in the dispersion relation in the low-frequency mode and exhibit destabilizing effects on the plasma. Both the instability criterion and growth rate are affected significantly by the dust and when the dust is heavy enough to be unperturbed, the reduced dispersion relations are obtained. The instability criteria show that the dust grains have stabilizing effects on the instability when the rotation frequency decreases outwards and conversely lead to destabilizing effects when the rotation frequency increases outwards. The results are relevant to accession and protoplanetary disks.

  7. Introduction Dust aerosols affect visibility, perturb the radiative energy balance

    E-Print Network [OSTI]

    Wang, Jun

    Sunphotometer and air temperature from ground observations. Model Flow Chart GOES-8 06/28/00 1145 UTC -90 -80Introduction Dust aerosols affect visibility, perturb the radiative energy balance of the earth

  8. The sudden appearance of dust in the early Universe

    E-Print Network [OSTI]

    Mattsson, Lars

    2015-01-01T23:59:59.000Z

    Observations suggest that high-redshift galaxies are either very dusty or essentially dust free. The evolution from one regime to the other must also be very fast, since evolved and dusty galaxies show up at redshifts corresponding to a Universe which is only about 500 Myr old. In the present paper models which predicts the existence of an apparent dichotomy between dusty and dust-free galaxies at high redshift are considered. Galaxies become dusty as soon as they reach an evolved state and the transition is very rapid. A special case suggests that while stellar dust production is overall relatively insignificant -- contrary to what has been argued recently -- it can at the same time be consistent with efficient dust production in supernovae in the local Universe. Special attention will be given to the recent discovery of a dusty normal galaxy (A1689-zD1) at a very high redshift z = 7.5 +/- 0.2.

  9. african dust measured: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    swath of the HiRISE instrument has three separate charge-coupled devices (CCDs) and color filters that observe the surface in rapid cadence. Active features, such as dust devils,...

  10. Orbital elements for motion of real particle under the action of electromagnetic radiation

    E-Print Network [OSTI]

    Jozef Klacka

    2002-01-14T23:59:59.000Z

    Discussion of different types of osculating orbital elements for motion of real dust particle under the action of electromagnetic radiation in the central gravitational field is presented. It is shown that physically correct access is based on gravitational acceleration as the only radial acceleration -- ``radiation pressure'' is not included in the radial acceleration.

  11. Performance of Supply Airflow Entrainment for Particles in an Underfloor Air Distribution System

    E-Print Network [OSTI]

    Li, C.; Li, N.

    2006-01-01T23:59:59.000Z

    comfort conditions and energy conservation. However, the supply air outlet of UFAD system is set on the floor, such that the supply airflow may entrain the dust particles settled on the floor or suspended near the floor. This creates problems that need...

  12. The gravitational collapse of a dust ball

    E-Print Network [OSTI]

    Trevor W. Marshall

    2009-07-14T23:59:59.000Z

    It is shown that the description of collapse given by the classic model of Oppenheimer and Snyder fails to satisfy a crucial matching condition at the surface of the ball. After correcting the model so that the interior and exterior metrics match correctly, it is established that the contraction process stops at the Schwarzschild radius, that there is an accumulation of particles at the surface of the ball, and that in the limit of infinite time lapse the density of particles at the surface becomes infinite. A black hole cannot form. This result confirms the judgements of both Einstein and Eddington about gravitational collapse when the collapse velocity approaches that of light.

  13. Dust size distribution and concentrations with cottonseed oil mills

    E-Print Network [OSTI]

    Wiederhold, Lee Roy

    1976-01-01T23:59:59.000Z

    DUST SIZE DISTRIBUTION AND CONCENTRATIONS WITHIN COTTONSEED OIL MILLS A Thesis by LEE ROY WIEDERHOLD, JR. / I Submitted to the Graduate College of Texas ARM University in partial fulfillment of the requirement for the degree of MASTER... OF SCIENCE August 1976 Major Subject: Aqricultural Engineering DUST SIZE DISTRIBUTION AND CONCENTRATIONS WITHIN COTTONSEED OIL MILLS A Thesis by LEE ROY WIEDERHOLD, JR. Approved as to style and content by: Chairman of Committee ~Hd fdp t Member ber...

  14. The Connection Between Barstrength and Circumnuclear Dust Structure

    E-Print Network [OSTI]

    Molly Peeples; Paul Martini

    2006-08-03T23:59:59.000Z

    We present a comparison of barstrength Qb and circumnuclear dust morphology for 75 galaxies in order to investigate how bars affect the centers of galaxies. We trace the circumnuclear dust morphology and amount of dust structure with structure maps generated from visible-wavelength HST data, finding that tightly wound nuclear dust spirals are primarily found in weakly barred galaxies. While strongly barred galaxies sometimes exhibit grand design structure within the central 10 percent of D25, this structure rarely extends to within ~10 pc of the galaxy nucleus. In some galaxies, these spiral arms terminate at a circumnuclear starburst ring. Galaxies with circumnuclear rings are generally more strongly barred than galaxies lacking rings. Within these rings, the dust structure is fairly smooth and usually in the form of a loosely wound spiral. These data demonstrate that multiple nuclear morphologies are possible in the most strongly barred galaxies: chaotic central dust structure inconsistent with a coherent nuclear spiral, a grand design spiral that loses coherence before reaching the nucleus, or a grand design spiral that ends in a circumnuclear ring. These observations may indicate that not all strong bars are equally efficient at fueling material to the centers of their host galaxies. Finally, we investigate the longstanding hypothesis that SB(s) galaxies have weak bars and SB(r) galaxies have strong bars, finding the opposite to be the case: namely, SB(r) galaxies are less strongly barred and have less dust structure than SB(s) galaxies. In general, more strongly barred galaxies tend to have higher nuclear dust contrast.

  15. First-principles investigations of Ni3Al(111) and NiAl(110) surfaces at metal dusting conditions

    SciTech Connect (OSTI)

    Saadi, Souheil

    2011-03-01T23:59:59.000Z

    We investigate the structure and surface composition of the {gamma}{prime}-Ni{sub 3}Al(111) and {beta}-NiAl(110) alloy surfaces at conditions relevant for metal dusting corrosion related to catalytic steam reforming of natural gas. In regular service as protective coatings, nickel-aluminum alloys are protected by an oxide scale, but in case of oxide scale spallation, the alloy surface may be directly exposed to the reactive gas environment and vulnerable to metal dusting. By means of density functional theory and thermochemical calculations for both the Ni{sub 3}Al and NiAl surfaces, the conditions under which CO and OH adsorption is to be expected and under which it is inhibited, are mapped out. Because CO and OH are regarded as precursors for nucleating graphite or oxide on the surfaces, phase diagrams for the surfaces provide a simple description of their stability. Specifically, this study shows how the CO and OH coverages depend on the steam to carbon ratio (S/C) in the gas and thereby provide a ranking of the carbon limits on the different surface phases.

  16. Method for producing ceramic particles and agglomerates

    DOE Patents [OSTI]

    Phillips, Jonathan (Santa Fe, NM); Gleiman, Seth S. (Santa Fe, NM); Chen, Chun-Ku (Albuquerque, NM)

    2001-01-01T23:59:59.000Z

    A method for generating spherical and irregularly shaped dense particles of ceramic oxides having a controlled particle size and particle size distribution. An aerosol containing precursor particles of oxide ceramics is directed into a plasma. As the particles flow through the hot zone of the plasma, they melt, collide, and join to form larger particles. If these larger particles remain in the hot zone, they continue melting and acquire a spherical shape that is retained after they exit the hot zone, cool down, and solidify. If they exit the hot zone before melting completely, their irregular shape persists and agglomerates are produced. The size and size distribution of the dense product particles can be controlled by adjusting several parameters, the most important in the case of powder precursors appears to be the density of powder in the aerosol stream that enters the plasma hot zone. This suggests that particle collision rate is responsible for determining ultimate size of the resulting sphere or agglomerate. Other parameters, particularly the gas flow rates and the microwave power, are also adjusted to control the particle size distribution.

  17. 2007 OUTBURST OF 17P/HOLMES: THE ALBEDO AND THE TEMPERATURE OF THE DUST GRAINS

    SciTech Connect (OSTI)

    Ishiguro, Masateru; Watanabe, Jun-ichi; Fukushima, Hideo [National Astronomical Observatory, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Sarugaku, Yuki; Mito, Hiroyuki [Institute of Space and Astronautical Science, JAXA, 3-1-1, Yoshinodai, Chuo, Sagamihara, Kanagawa 252-5210 (Japan); Ootsubo, Takafumi [Graduate School of Science, Tohoku University, 6-3 Aramaki, Aoba-ku, Sendai 980-8578 (Japan); Kuroda, Daisuke; Yanagisawa, Kenshi [Okayama Astrophysical Observatory, NAOJ, 3037-5 Honjo, Kamogata, Asakuchi, Okayama 719-0232 (Japan); Honda, Mitsuhiko [Faculty of Science, Kanagawa University, 2946 Tsuchiya, Hiratsuka, Kanagawa 259-1293 (Japan); Miyata, Takashi [Institute of Astronomy, University of Tokyo, 2-21-1 Osawa, Mitaka, Tokyo 181-0015 (Japan); Niwa, Takahiro; Sakamoto, Makoto; Narusawa, Shin-ya [Nishi-Harima Astronomical Observatory, 407-2 Nishigaichi, Sayo, Hyogo 679-5313 (Japan); Akisawa, Hiroki, E-mail: ishiguro@astro.snu.ac.k [Himeji City Hoshinoko Yakata, Aoyama 1470-24, Himeji, Hyogo 671-2222 (Japan)

    2010-05-10T23:59:59.000Z

    Based on optical and infrared observations, we study the albedo and the temperature of the dust grains associated with the spectacular 2007 outburst of Jupiter-family comet 17P/Holmes. We found that the albedo at the solar phase angle {approx}16{sup 0} was 0.03-0.12. While the color temperature around 3-4 {mu}m was 360 {+-} 40 K, the color temperature at 12.4 {mu}m and 24.5 {mu}m was {approx}200 K, which is consistent with that of a blackbody. We studied the equilibrium temperature of the dust grains at 2.44 AU and found that the big discrepancy in the temperature was caused by the heterogeneity in particle size, that is, hotter components consist of submicron absorbing grains whereas colder components consist of large ({approx_gt}1 {mu}m) grains. The contemporaneous optical and mid-infrared observations suggest that the albedo and the temperature could decrease within {approx} 3 days after the outburst and stabilized at typical values of the other comets. We estimated the total mass injected into the coma by the outburst on the basis of the derived albedo and the optical magnitude for the entire dust cloud, and found that at least 4 x 10{sup 10} kg (equivalent to a few meter surface layer) was removed by the initial outburst event. The derived mass suggests that the outburst is explainable by neither the exogenetic asteroidal impact nor water ice sublimation driven by solar irradiation, but by an endogenic energy source. We conclude that the outburst was triggered by the energy sources several meters or more below the nuclear surface.

  18. Dual porosity gas evolving electrode

    DOE Patents [OSTI]

    Townsend, C.W.

    1994-11-15T23:59:59.000Z

    A dual porosity electrode is described for use in thermoelectrochemical systems where simultaneous transport of gas and liquid into and/or out of the electrode is required. The electrode includes catalytic electrode particles having diameters ranging from about 25 to 100 angstroms. The catalytic electrode particles are anchored to a support network in clusters which have internal pores ranging in size from 25 to 100 angstroms. The pores between the clusters range in size from between about 1 to 20 microns. A method for making the dual porosity electrodes is also disclosed.

  19. Evaluate fundamental approaches to longwall dust control. Phase III report

    SciTech Connect (OSTI)

    Babbitt, C.; Bartlett, P.; Kelly, J.; Ludlow, J.; Mangolds, A.; Rajan, S.; Ruggieri, S.; Varga, E.

    1984-03-31T23:59:59.000Z

    The overall objective of the contract is to evaluate the effectiveness of available dust control technology for double-drum shearer longwall sections in a coordinated, systematic program at a few longwall test sections and to make the results available to the entire coal mining industry. This program is investigating nine different dust control techniques. These nine subprograms encompass a broad range of dust control measures ranging from administrative controls to new hardware. They span not only presently employed methods but also those recently adopted in the United States and those proposed for the future. This report documents the Phase III effort on each of the subprograms. For clarity, the report is divided in sections by subprogram as follows: Section 2, Subprogram A - passive barriers/spray air movers for dust control; Section 3, Subprogram B - practical aspects of deep cutting; Section 4, Subprogram C - stage loader dust control; Section 5, Subprogram D - longwall automation technology; Section 6, Subprogram E - longwall application of ventilation curtains; Section 7, Subprogram F - reversed drum rotation; Section 8, Subprogram G - reduction of shield generated dust; Section 9, Subprogram H - air canopies for longwalls; and Section 10, Subprogram I - mining practices. 43 figures, 11 tables.

  20. Understanding environmental leachability of electric arc furnace dust

    SciTech Connect (OSTI)

    Stegemann, J.A.; Roy, A.; Caldwell, R.J.; Schilling, P.J.; Tittsworth, R.

    2000-02-01T23:59:59.000Z

    Dust from production of steel in an electric arc furnace (EAF) contains a mixture of elements that pose a challenge for both recovery and disposal. This paper relates the leachability of six Canadian EAF dusts in four leaching tests [distilled water, Ontario Regulation 347 Leachate Extraction Procedure, Amount Available for Leaching (AALT), and pH 5 Stat] to their mineralogy. Chromium and nickel contaminants in EAF dust are largely unleachable (<5% available in AALT and pH 5 Stat), as they are found with the predominant spinel ferrite phase in EAF dust. However, even a small proportion of oxidized chromium can result in significant leachate concentrations of highly toxic chromate. The leachability of zinc (7--50% available), lead (2--17% available), and cadmium (9--55% available) can be significant, as large fractions of these contaminants are found as chlorides and oxides. The leaching of these metals is largely controlled by pH. The acid neutralization capacity of the EAF dusts appeared to be controlled by dissolution of lime and zincite, and results from regulatory leaching tests can be misleading because the variable acid neutralization capacity of EAF dusts can lead to very different final leachate pHs (5--12.4). A more informative approach would be to evaluate the total amounts of contaminants available in the long term, and the acid neutralization capacity.