National Library of Energy BETA

Sample records for dupont danisco cellulosic

  1. DuPont Danisco Cellulosic Ethanol | Open Energy Information

    Open Energy Info (EERE)

    Danisco Cellulosic Ethanol Jump to: navigation, search Name: DuPont Danisco Cellulosic Ethanol Place: Itasca, Illinois Zip: 60143 Product: DuPont Danisco Cellulosic Ethanol is a...

  2. DuPont Cellulosic Ethanol Biorefinery Opening

    Broader source: Energy.gov [DOE]

    The DuPont cellulosic ethanol facility, opening in Nevada, Iowa, on October 30, will be the largest cellulosic ethanol plant in the world. The U.S. Department of Energy Bioenergy Technologies Office Director, Jonathan Male, alongside senior government officials, DuPont leaders and staff, and local farmers will attend the grand opening ceremony and plant tour.

  3. DuPont's Journey to Build a Global Cellulosic BioFuel Business...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DuPont's Journey to Build a Global Cellulosic BioFuel Business Enterprise DuPont's Journey to Build a Global Cellulosic BioFuel Business Enterprise Plenary I: Progress in Advanced ...

  4. DuPont's Cellulosic Ethanol Grand Opening Marks a Milestone for the

    Office of Environmental Management (EM)

    Advanced Biofuels Industry | Department of Energy DuPont's Cellulosic Ethanol Grand Opening Marks a Milestone for the Advanced Biofuels Industry DuPont's Cellulosic Ethanol Grand Opening Marks a Milestone for the Advanced Biofuels Industry November 20, 2015 - 12:49pm Addthis DuPont’s cellulosic ethanol biorefinery in Nevada, Iowa, opened on October 30, 2015. | Photo courtesy of DuPont DuPont's cellulosic ethanol biorefinery in Nevada, Iowa, opened on October 30, 2015. | Photo courtesy

  5. DuPont's Journey to Build a Global Cellulosic BioFuel Business Enterprise

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy DuPont's Journey to Build a Global Cellulosic BioFuel Business Enterprise DuPont's Journey to Build a Global Cellulosic BioFuel Business Enterprise Plenary I: Progress in Advanced Biofuels DuPont's Journey to Build a Global Cellulosic BioFuel Business Enterprise William Provine, Director-Science and Technology External Affairs, DuPont PDF icon provine_biomass_2014.pdf More Documents & Publications A Comparison of Key PV Backsheet and Module Properties from Fielded

  6. DuPont's Journey to Build a Global Cellulosic BioFuel Business Enterprise

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DuPont's Journey to Build a Global Cellulosic BioFuel Business Enterprise Copyright © 2014 DuPont. All rights reserved 1 William D. Provine, Director - Science & Technology Biomass 2014 - Washington, DC | July 29 th , 2014 2 2 Regulation G The attached charts include company information that does not conform to generally accepted accounting principles (GAAP). Management believes that an analysis of this data is meaningful to investors because it provides insight with respect to ongoing

  7. Itasca, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    6th congressional district.12 Registered Energy Companies in Itasca, Illinois DuPont Danisco Cellulosic Ethanol References US Census Bureau Incorporated place and...

  8. Dupont Fuel Cells | Open Energy Information

    Open Energy Info (EERE)

    Dupont Fuel Cells Jump to: navigation, search Name: Dupont Fuel Cells Place: Wilmington, Delaware Zip: DE 19880-0 Product: A subsidiary of Dupont which specializes in fuel cell...

  9. DuPont Biofuels | Open Energy Information

    Open Energy Info (EERE)

    Biofuels Jump to: navigation, search Name: DuPont Biofuels Place: Wilmington, Delaware Zip: 19898 Product: Biofuel technology development subsidiary of DuPont. Co-developing...

  10. Largest Cellulosic Ethanol Plant in the World Opens October 30 | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Largest Cellulosic Ethanol Plant in the World Opens October 30 Largest Cellulosic Ethanol Plant in the World Opens October 30 October 26, 2015 - 2:52pm Addthis The DuPont cellulosic ethanol facility in Nevada, Iowa, will produce about 30 million gallons of cellulosic ethanol per year. Photo courtesy of DuPont. The DuPont cellulosic ethanol facility in Nevada, Iowa, will produce about 30 million gallons of cellulosic ethanol per year. Photo courtesy of DuPont. The DuPont cellulosic

  11. Novel Biomass Conversion Process Results in Commercial Joint Venture; The Spectrum of Clean Energy Innovation (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-06-01

    Fact sheet describing DuPont/NREL cooperative research and development agreement that resulted in biomass-to-ethanol conversion process used as a basis for DuPont Danisco Cellulosic Ethanol, LLC and cellulosic ethanol demonstration plant.

  12. Largest Cellulosic Ethanol Plant in the World Opened in October |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Largest Cellulosic Ethanol Plant in the World Opened in October Largest Cellulosic Ethanol Plant in the World Opened in October November 30, 2015 - 2:07pm Addthis The DuPont cellulosic ethanol facility in Nevada, Iowa, will produce about 30 million gallons of cellulosic ethanol per year. Photo courtesy of DuPont. The DuPont cellulosic ethanol facility in Nevada, Iowa, will produce about 30 million gallons of cellulosic ethanol per year. Photo courtesy of DuPont. The

  13. Making Biofuel From Corncobs and Switchgrass in Rural America | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Biofuel From Corncobs and Switchgrass in Rural America Making Biofuel From Corncobs and Switchgrass in Rural America June 11, 2010 - 4:48pm Addthis DuPont Danisco Cellulosic Ethanol (DDCE) opened a new biorefinery in Vonore, Tenn., last year. | Photo courtesy of DDCE DuPont Danisco Cellulosic Ethanol (DDCE) opened a new biorefinery in Vonore, Tenn., last year. | Photo courtesy of DDCE Lindsay Gsell Energy crops and agricultural residue, like corncobs and stover, are becoming part

  14. DuPont | Open Energy Information

    Open Energy Info (EERE)

    Zip: 19898 Product: US holding company; manufacturer of tedlar films used as a material for TPT backsheet in PV module production. Website: www2.dupont.com Coordinates:...

  15. DuPont Apollo | Open Energy Information

    Open Energy Info (EERE)

    Kong-based thin-film PV module manufacturer that provides solar energy solutions by doing research and development on PV technology and system. References: DuPont Apollo1 This...

  16. EERE Success Story-Largest Cellulosic Ethanol Plant in the World Opened

    Office of Environmental Management (EM)

    in October | Department of Energy Largest Cellulosic Ethanol Plant in the World Opened in October EERE Success Story-Largest Cellulosic Ethanol Plant in the World Opened in October November 30, 2015 - 2:07pm Addthis The DuPont cellulosic ethanol facility in Nevada, Iowa, will produce about 30 million gallons of cellulosic ethanol per year. Photo courtesy of DuPont. The DuPont cellulosic ethanol facility in Nevada, Iowa, will produce about 30 million gallons of cellulosic ethanol per year.

  17. E I DuPont De Nemours & Co | Open Energy Information

    Open Energy Info (EERE)

    E I DuPont De Nemours & Co Jump to: navigation, search Name: E I DuPont De Nemours & Co Place: Tennessee Website: www.dupont.com Twitter: @dupontnews Facebook: https:...

  18. DuPont Technology Breaks Away From Glass

    Broader source: Energy.gov [DOE]

    Delaware-based DuPont is working to develop ultra-thin moisture protective films for photovoltaic panels — so thin they’re about 1,000 times thinner than a human hair.

  19. E I DuPont De Nemours & Co (Texas) | Open Energy Information

    Open Energy Info (EERE)

    E I DuPont De Nemours & Co (Texas) Jump to: navigation, search Name: E I DuPont De Nemours & Co Place: Texas References: EIA Form EIA-861 Final Data File for 2010 - File220101...

  20. DuPont's Cellulosic Ethanol Grand Opening Marks a Milestone for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... More than 10 joint DuPont-NREL U.S. patents were issued from collaborative innovations. At ... local community members in attendance were thrilled-as was I-to see this new plant open. ...

  1. Manhattan Project: DuPont and Hanford, Hanford Engineer Works, 1942

    Office of Scientific and Technical Information (OSTI)

    The president of DuPont, Walter Carpenter, with Generals Levin H. Campbell, Everett Hughes, and Charles T. Harris. DUPONT AND HANFORD (Hanford Engineer Works, 1942) Events > The Plutonium Path to the Bomb, 1942-1944 Production Reactor (Pile) Design, 1942 DuPont and Hanford, 1942 CP-1 Goes Critical, December 2, 1942 Seaborg and Plutonium Chemistry, 1942-1944 Final Reactor Design and X-10, 1942-1943 Hanford Becomes Operational, 1943-1944 The scientists of the Met Lab had the technical expertise

  2. Development of a Bulk-Format System to Harvest, Handle, Store, and Deliver High-Tonnage

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Abstract Development of a Bulk-Format System to Harvest, Handle, Store, and Deliver High- Tonnage Low-Moisture Switchgrass Feedstock Genera Energy (Lead), University of Tennessee, Laidig Systems, Inc., Marathon Equipment, Dupont-Danisco Cellulosic Ethanol, Deere & Company, Idaho National Lab, Oak Ridge National Lab Prepared by Alvin Womac, Biosystems Engineering, Univ. Tenn. A high-tonnage feedstock supply system was developed using agricultural, transportation, and industrial technologies

  3. Energy Secretary Chu to Tour DuPont Clean Energy Innovation Facilities

    Broader source: Energy.gov [DOE]

    WASHINGTON – Tomorrow, Wednesday, May 23, 2012, U.S. Energy Secretary Steven Chu will visit DuPont in Wilmington, Delaware, where he will tour the company’s clean energy research and development...

  4. DuPont Displays Develops Low-Cost Method of Printing OLED Panels

    Broader source: Energy.gov [DOE]

    DuPont Displays Inc. (DDI) has developed a novel way of printing color-tunable OLED lighting panels that keeps manufacturing costs low. The method involves processing the organic layers from solution, with most of the process steps taking place under atmospheric conditions rather than in a high vacuum. Industry-standard slot-coating methods are used in conjunction with nozzle printing—in which the solutions of organic materials are continuously jetted through an array of nozzles moving at high speed—allowing the light-emitting materials to be spatially patterned.

  5. Outgassing rate of Reemay Spunbonded Polyester and DuPont Double Aluminized Mylar

    SciTech Connect (OSTI)

    Todd, R.J.; Pate, D.; Welch, K.M.

    1993-08-01

    This paper presents the outgassing rates of two commercially available multi-layer insulation (MLI) materials commonly used in cryogenic applications. Both Reemay Spunbonded Polyester and DuPont Double Aluminized Mylar (DAM) were studied for outgassing species and respective rates, and the total amount of outgassed material. Measurements were made using a Fixed Aperture Technique. A sample was pumped on through an aperture of known size with a turbomolecular pump. Pressure vs. time was plotted for both Reemay and DAM, as well as the baseline system, and data conveniently extrapolated to {approx}1,000 hrs. A quadrupole residual gas analyzer was used to measure the outgassing species.

  6. BIOENERGIZEME INFOGRAPHIC CHALLENGE: Cellulosic Ethanol | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    BIOENERGIZEME INFOGRAPHIC CHALLENGE: Cellulosic Ethanol BIOENERGIZEME INFOGRAPHIC CHALLENGE: Cellulosic Ethanol BIOENERGIZEME INFOGRAPHIC CHALLENGE: Cellulosic Ethanol This...

  7. Electrically conductive cellulose composite

    DOE Patents [OSTI]

    Evans, Barbara R.; O'Neill, Hugh M.; Woodward, Jonathan

    2010-05-04

    An electrically conductive cellulose composite includes a cellulose matrix and an electrically conductive carbonaceous material incorporated into the cellulose matrix. The electrical conductivity of the cellulose composite is at least 10 .mu.S/cm at 25.degree. C. The composite can be made by incorporating the electrically conductive carbonaceous material into a culture medium with a cellulose-producing organism, such as Gluconoacetobacter hansenii. The composites can be used to form electrodes, such as for use in membrane electrode assemblies for fuel cells.

  8. Cellulosic ethanol | Open Energy Information

    Open Energy Info (EERE)

    Cellulosic ethanol Jump to: navigation, search Cellethanol.jpg Cellulosic ethanol is identical to first generation bio ethanol except that it can be derived from agricultural...

  9. Cellulose binding domain proteins

    DOE Patents [OSTI]

    Shoseyov, Oded (Karmey Yosef, IL); Shpiegl, Itai (Rehovot, IL); Goldstein, Marc (Davis, CA); Doi, Roy (Davis, CA)

    1998-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  10. Cellulose binding domain proteins

    DOE Patents [OSTI]

    Shoseyov, O.; Shpiegl, I.; Goldstein, M.; Doi, R.

    1998-11-17

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques. 16 figs.

  11. Fulton Cellulosic Ethanol Biorefinery

    SciTech Connect (OSTI)

    Sumait, Necy; Cuzens, John; Klann, Richard

    2015-07-24

    Final report on work performed by BlueFire on the deployment of acid hydrolysis technology to convert cellulosic waste materials into renewable fuels, power and chemicals in a production facility to be located in Fulton, Mississippi.

  12. Method of saccharifying cellulose

    DOE Patents [OSTI]

    Johnson, E.A.; Demain, A.L.; Madia, A.

    1983-05-13

    A method is disclosed of saccharifying cellulose by incubation with the cellulase of Clostridium thermocellum in a broth containing an efficacious amount of thiol reducing agent. Other incubation parameters which may be advantageously controlled to stimulate saccharification include the concentration of alkaline earth salts, pH, temperature, and duration. By the method of the invention, even native crystalline cellulose such as that found in cotton may be completely saccharified.

  13. Method of saccharifying cellulose

    DOE Patents [OSTI]

    Johnson, Eric A. (Brookline, MA); Demain, Arnold L. (Wellesley, MA); Madia, Ashwin (Decatur, IL)

    1985-09-10

    A method of saccharifying cellulose by incubation with the cellulase of Clostridium thermocellum in a broth containing an efficacious amount of a reducing agent. Other incubation parameters which may be advantageously controlled to stimulate saccharification include the concentration of alkaline earth salts, pH, temperature, and duration. By the method of the invention, even native crystalline cellulose such as that found in cotton may be completely saccharified.

  14. Louisiana: Verenium Cellulosic Ethanol Demonstration Facility...

    Energy Savers [EERE]

    Louisiana: Verenium Cellulosic Ethanol Demonstration Facility Louisiana: Verenium Cellulosic Ethanol Demonstration Facility April 9, 2013 - 12:00am Addthis In 2010, Verenium...

  15. Advanced Cellulosic Biofuels | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Cellulosic Biofuels Breakout Session 2-B: NewEmerging Pathways Advanced Cellulosic Biofuels Dr. Robert Graham, Chief Executive Officer and Chairman, Ensyn Corporation PDF ...

  16. Quantifying Contaminant Mass for the Feasibility Study of the DuPont Chambers Works FUSRAP Site - 13510

    SciTech Connect (OSTI)

    Young, Carl; Rahman, Mahmudur; Johnson, Ann; Owe, Stephan

    2013-07-01

    The U.S. Army Corps of Engineers (USACE) - Philadelphia District is conducting an environmental restoration at the DuPont Chambers Works in Deepwater, New Jersey under the Formerly Utilized Sites Remedial Action Program (FUSRAP). Discrete locations are contaminated with natural uranium, thorium-230 and radium-226. The USACE is proposing a preferred remedial alternative consisting of excavation and offsite disposal to address soil contamination followed by monitored natural attenuation to address residual groundwater contamination. Methods were developed to quantify the error associated with contaminant volume estimates and use mass balance calculations of the uranium plume to estimate the removal efficiency of the proposed alternative. During the remedial investigation, the USACE collected approximately 500 soil samples at various depths. As the first step of contaminant mass estimation, soil analytical data was segmented into several depth intervals. Second, using contouring software, analytical data for each depth interval was contoured to determine lateral extent of contamination. Six different contouring algorithms were used to generate alternative interpretations of the lateral extent of the soil contamination. Finally, geographical information system software was used to produce a three dimensional model in order to present both lateral and vertical extent of the soil contamination and to estimate the volume of impacted soil for each depth interval. The average soil volume from all six contouring methods was used to determine the estimated volume of impacted soil. This method also allowed an estimate of a standard deviation of the waste volume estimate. It was determined that the margin of error for the method was plus or minus 17% of the waste volume, which is within the acceptable construction contingency for cost estimation. USACE collected approximately 190 groundwater samples from 40 monitor wells. It is expected that excavation and disposal of contaminated soil will remove the contaminant source zone and significantly reduce contaminant concentrations in groundwater. To test this assumption, a mass balance evaluation was performed to estimate the amount of dissolved uranium that would remain in the groundwater after completion of soil excavation. As part of this evaluation, average groundwater concentrations for the pre-excavation and post-excavation aquifer plume area were calculated to determine the percentage of plume removed during excavation activities. In addition, the volume of the plume removed during excavation dewatering was estimated. The results of the evaluation show that approximately 98% of the aqueous uranium would be removed during the excavation phase. The USACE expects that residual levels of contamination will remain in groundwater after excavation of soil but at levels well suited for the selection of excavation combined with monitored natural attenuation as a preferred alternative. (authors)

  17. Cellulose binding domain fusion proteins

    DOE Patents [OSTI]

    Shoseyov, O.; Yosef, K.; Shpiegl, I.; Goldstein, M.A.; Doi, R.H.

    1998-02-17

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques. 16 figs.

  18. Cellulose binding domain fusion proteins

    DOE Patents [OSTI]

    Shoseyov, Oded (Karmey Yosef, IL); Shpiegl, Itai (Rehovot, IL); Goldstein, Marc A. (Davis, CA); Doi, Roy H. (Davis, CA)

    1998-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  19. Bioenergy Impacts … Cellulosic Ethanol

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for its cellulosic ethanol biorefinery. Farmers earned additional revenue from selling their leftover corn husks, stalks, and leaves to the POET-DSM biorefinery for production of cellulosic ethanol-a type of biofuel. Biofuels have created extra revenue for farmers

  20. Compositions and methods for increasing cellulose production

    DOE Patents [OSTI]

    Yang, Zhenbiao (Riverside, CA); Karr, Stephen (Camarillo, CA)

    2012-05-01

    This disclosure relates to methods and compositions for genetically altering cellulose biosynthesis.

  1. Magnetic cellulose-derivative structures

    DOE Patents [OSTI]

    Walsh, M.A.; Morris, R.S.

    1986-09-16

    Structures to serve as selective magnetic sorbents are formed by dissolving a cellulose derivative such as cellulose triacetate in a solvent containing magnetic particles. The resulting solution is sprayed as a fine mist into a chamber containing a liquid coagulant such as n-hexane in which the cellulose derivative is insoluble but in which the coagulant is soluble or miscible. On contact with the coagulant, the mist forms free-flowing porous magnetic microspheric structures. These structures act as containers for the ion-selective or organic-selective sorption agent of choice. Some sorption agents can be incorporated during the manufacture of the structure. 3 figs.

  2. Magnetic cellulose-derivative structures

    DOE Patents [OSTI]

    Walsh, Myles A. (Falmouth, MA); Morris, Robert S. (Fairhaven, MA)

    1986-09-16

    Structures to serve as selective magnetic sorbents are formed by dissolving a cellulose derivative such as cellulose triacetate in a solvent containing magnetic particles. The resulting solution is sprayed as a fine mist into a chamber containing a liquid coagulant such as n-hexane in which the cellulose derivative is insoluble but in which the coagulant is soluble or miscible. On contact with the coagulant, the mist forms free-flowing porous magnetic microspheric structures. These structures act as containers for the ion-selective or organic-selective sorption agent of choice. Some sorbtion agents can be incorporated during the manufacture of the structure.

  3. Cellulose Pyrolysis A Literature, Review.

    Office of Scientific and Technical Information (OSTI)

    Fed. Sci. Tech. Inform., AD 1968, AD-676351, 44 pp. 194. Kwang-Shaun Huang, Kee-Chuan Pan and Chao-Nan Perng, "Pyrolysis of Cellulose. I. Effect of Diamrnonium Phos- phate...

  4. Compositions for saccharification of cellulosic material

    DOE Patents [OSTI]

    McBrayer, Brett; Shaghasi, Tarana; Vlasenko, Elena

    2015-11-04

    The present invention relates to enzyme compositions for high temperature saccharification of cellulosic material and to uses thereof.

  5. Compositions for saccharification of cellulosic material

    DOE Patents [OSTI]

    McBrayer, Brett; Shaghasi, Tarana; Vlasenko, Elena

    2013-11-12

    The present invention relates to enzyme compositions for high temperature saccharification of cellulosic material and to uses thereof.

  6. Bacterial Cellulose Composites Opportunities and Challenges

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bacterial Cellulose Composites Opportunities and Challenges (An important & exciting area that needs more public/private partnership) LEONARD S. FIFIELD, PHD PNNL Applied Materials Science Group Richland, WA June 26, 2012 1 Leonard.Fifield@PNNL.gov What is bacterial cellulose? Why is it unique? June 26, 2012 2 Leonard.Fifield@PNNL.gov Bacterial cellulose-a naturally occurring material: Microbial Exo Poly Saccharides: Dextran, Xanthan, Gellan, Cellulose Gluconacetobacter, Agrobacterium,

  7. Four Cellulosic Ethanol Breakthroughs | Department of Energy

    Office of Environmental Management (EM)

    Four Cellulosic Ethanol Breakthroughs Four Cellulosic Ethanol Breakthroughs September 3, 2014 - 1:11pm Addthis Cellulosic ethanol biorefinery 1 of 10 Cellulosic ethanol biorefinery The mechanical building (front), solid/liquid separation building (left), and anaerobic digestion building (back) at POET-DSM's Project LIBERTY biorefinery in Emmetsburg, Iowa. Image: Courtesy of POET-DSM Stacking up biomass 2 of 10 Stacking up biomass The biomass stackyard, where corn waste is stored at POET-DSM's

  8. Industrial hygiene walk-through survey report of E. I. Dupont de Nemours and Company, Inc. , Chocolate Bayou Plant, Alvin, Texas

    SciTech Connect (OSTI)

    Fajen, J.M.

    1985-05-01

    A walkthrough survey of EI duPont deNemours and Company, Incorporated, Alvin, Texas was conducted in November, 1984. The purpose of the survey was to obtain information on the 1,3-butadiene monomer manufacturing process and the potential for exposure. The facility manufactured a crude product stream containing 1,3-butadiene as a coproduct of its ethylene process. The crude was refined to a 99.5% 1,3-butadiene product. The refining process occurred in a closed system, tightly maintained for economic, fire, and health-hazard reasons. The product was transferred by way of a pipeline to storage spheres for later transport off site. The facility used an open-loop cylinder (bomb) technique for quality control sampling. All pumps were equipped with single mechanical seals, which were in the process of being replaced by tandem seals. Since 1962, the facility had experienced process changes and three changes of ownership. Because of these changes, records from previous owners of industrial hygiene monitoring were not available. Job titles identified as having potential exposure were processors, wage employee supervisors, production engineers, and laboratory technicians. The author concludes that a closed-loop manual quality-control sampling system should be installed to reduce exposure from this source.

  9. Project LIBERTY Biorefinery Starts Cellulosic Ethanol Production |

    Energy Savers [EERE]

    Department of Energy Project LIBERTY Biorefinery Starts Cellulosic Ethanol Production Project LIBERTY Biorefinery Starts Cellulosic Ethanol Production September 3, 2014 - 12:05pm Addthis News Media Contact 202-586-4940 WASHINGTON - Project LIBERTY, the nation's first commercial-scale cellulosic ethanol plant to use corn waste as a feedstock, announced the start of production today. Once operating at full, commercial-scale, the biorefinery in Emmetsburg, Iowa will produce 25 million gallons

  10. BIOENERGIZEME INFOGRAPHIC CHALLENGE: Cellulosic Ethanol | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Cellulosic Ethanol BIOENERGIZEME INFOGRAPHIC CHALLENGE: Cellulosic Ethanol BIOENERGIZEME INFOGRAPHIC CHALLENGE: Cellulosic Ethanol This infographic was created by students from Williamsburg HS for Architecture and Design in Brooklyn, NY, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME Infographic Challenge encourages young people to improve their foundational understanding of bioenergy, which is a broad and complex topic. The ideas

  11. Louisiana: Verenium Cellulosic Ethanol Demonstration Facility | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Louisiana: Verenium Cellulosic Ethanol Demonstration Facility Louisiana: Verenium Cellulosic Ethanol Demonstration Facility April 9, 2013 - 12:00am Addthis In 2010, Verenium Corporation received EERE funds to operate a 1.4 million gallon per year demonstration plant in Jennings, Louisiana, to convert agricultural residues and energy crops to cellulosic ethanol. The project's goal was to implement a technology that had been demonstrated in a laboratory at commercial scale. The plant

  12. Alexa Fluor-labeled Fluorescent Cellulose Nanocrystals for Bioimaging Solid Cellulose in Spatially Structured Microenvironments

    SciTech Connect (OSTI)

    Grate, Jay W.; Mo, Kai-For; Shin, Yongsoon; Vasdekis, Andreas; Warner, Marvin G.; Kelly, Ryan T.; Orr, Galya; Hu, Dehong; Dehoff, Karl J.; Brockman, Fred J.; Wilkins, Michael J.

    2015-03-18

    Cellulose nanocrystal materials have been labeled with modern Alexa Fluor dyes in a process that first links the dye to a cyanuric chloride molecule. Subsequent reaction with cellulose nanocrystals provides dyed solid microcrystalline cellulose material that can be used for bioimaging and suitable for deposition in films and spatially structured microenvironments. It is demonstrated with single molecular fluorescence microscopy that these films are subject to hydrolysis by cellulose enzymes.

  13. Less is more: Novel cellulose structure requires fewer enzymes...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cellulose requires fewer enzymes to process biomass to fuel Less is more: Novel cellulose structure requires fewer enzymes to process biomass to fuel Improved methods for breaking...

  14. Methods for enhancing the degradation or conversion of cellulosic material

    DOE Patents [OSTI]

    Harris, Paul (Carnation, WA); Rey, Michael (Davis, CA); Ding, Hanshu (Davis, CA)

    2012-04-03

    The present invention relates to methods for degrading or converting a cellulosic material and for producing a substance from a cellulosic material.

  15. Secretary Bodman Touts Importance of Cellulosic Ethanol at Georgia...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Secretary Bodman Touts Importance of Cellulosic Ethanol at Georgia Biorefinery Groundbreaking Secretary Bodman Touts Importance of Cellulosic Ethanol at Georgia Biorefinery...

  16. Review of Recent Pilot Scale Cellulosic Ethanol Demonstration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Review of Recent Pilot Scale Cellulosic Ethanol Demonstration Review of Recent Pilot Scale Cellulosic Ethanol Demonstration Opening Plenary Session: Celebrating Successes-The...

  17. Belize-OAS Cellulosic Ethanol Market Assessment | Open Energy...

    Open Energy Info (EERE)

    OAS Cellulosic Ethanol Market Assessment Jump to: navigation, search Name Belize-OAS Cellulosic Ethanol Market Assessment AgencyCompany Organization Organization of American...

  18. Methods for enhancing the degradation or conversion of cellulosic material

    DOE Patents [OSTI]

    Harris, Paul (Carnation, WA) Rey, Michael (Davis, CA); Ding, Hanshu (Davis, CA)

    2009-10-27

    The present invention relates to methods for degrading or converting a cellulosic material and for producing a substance from a cellulosic material.

  19. Secretary Moniz Dedicates Innovative Commercial-Scale Cellulosic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovative Commercial-Scale Cellulosic Biofuel Plant Secretary Moniz Dedicates Innovative Commercial-Scale Cellulosic Biofuel Plant October 17, 2014 - 6:32pm Addthis WASHINGTON - ...

  20. Nucleic acids encoding a cellulose binding domain

    DOE Patents [OSTI]

    Shoseyov, O.; Shpiegl, I.; Goldstein, M.A.; Doi, R.H.

    1996-03-05

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques. 15 figs.

  1. Nucleic acids encoding a cellulose binding domain

    DOE Patents [OSTI]

    Shoseyov, Oded (Karmey Yosef, IL); Shpiegl, Itai (Rehovot, IL); Goldstein, Marc A. (Davis, CA); Doi, Roy H. (Davis, CA)

    1996-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  2. Selective solvent extraction of cellulosic material

    DOE Patents [OSTI]

    Wang, D.I.C.; Avgerinos, G.C.

    1983-07-26

    Cellulosic products having a high hemicellulose to lignin weight ratio are obtained by extracting a cellulosic composition with basic ethanol-water solution having a pH between about 12 and about 14 at a temperature between about 15 and about 70 C and for a time period between about 2 and about 80 hours. 6 figs.

  3. Selective solvent extraction of cellulosic material

    DOE Patents [OSTI]

    Wang, Daniel I. C. (Belmont, MA); Avgerinos, George C. (Newton Center, MA)

    1983-01-01

    Cellulosic products having a high hemicellulose to lignin weight ratio are obtained by extracting a cellulosic composition with basic ethanol-water solution having a pH between about 12 and about 14 at a temperature between about 15.degree. and about 70.degree. C. and for a time period between about 2 and about 80 hours.

  4. Cellulose Pyrolysis A Literature, Review.

    Office of Scientific and Technical Information (OSTI)

    Reaction Mechanisms in Cellulose Pyrolysis A Literature, Review. - - pacific N o r t h ~ ~ ~ , baboratwies I - - bCL-T-,,;, .,- , . . . I ' I . - " 1- jl,! # . .' , . - --h 1 , i b - . "I 1.- . . ., .. ' N O T - I C E , , If PACIF tC NORTHWLST U B O R A T ~ R Y .4peiild by B h m E far c h t ,EP4ERGY RESEARCH AN0 PEVELOPMEM ADMtNlSTRAnQN U m h Contract Z Y - ~ ~ - C ~ & I # D w n : m a , m & l 3 Q j l m OIdrfrn m y - !*? 1SI71Y9 1 - m-u3 2s-m .**-2?3 ,Sbca lcPa w m *a0 Iffy

  5. Bacterial Cellulose Composites Opportunities and Challenges | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Bacterial Cellulose Composites Opportunities and Challenges Bacterial Cellulose Composites Opportunities and Challenges PDF icon Bacterial Cellulose Composites: Opportunities and Challenges - Leonard Fifield, Pacific Northwest National Laboratory More Documents & Publications Sustainable Nanomaterials Workshop Grand Challenges of Characterization & Modeling of Cellulose Nanomaterials Integrating Nanomaterial Applications in the Field of Sustainable Biomaterials

  6. Production of permeable cellulose triacetate membranes

    DOE Patents [OSTI]

    Johnson, B.M.

    1986-12-23

    A phase inversion process for the preparation of cellulose triacetate (CTA) and regenerated cellulose membranes is disclosed. Such membranes are useful as supports for liquid membranes in facilitated transport processes, as microfiltration membranes, as dialysis or ultrafiltration membranes, and for the preparation of ion-selective electrodes. The process comprises the steps of preparing a casting solution of CTA in a solvent comprising a mixture of cyclohexanone and methylene chloride, casting a film from the casting solution, and immersing the cast film in a methanol bath. The resulting CTA membrane may then be hydrolyzed to regenerated cellulose using conventional techniques.

  7. Production of permeable cellulose triacetate membranes

    DOE Patents [OSTI]

    Johnson, Bruce M. (Bend, OR)

    1986-01-01

    A phase inversion process for the preparation of cellulose triacetate (CTA) and regenerated cellulose membranes is disclosed. Such membranes are useful as supports for liquid membranes in facilitated transport processes, as microfiltration membranes, as dialysis or ultrafiltration membranes, and for the preparation of ion-selective electrodes. The process comprises the steps of preparing a casting solution of CTA in a solvent comprising a mixture of cyclohexanone and methylene chloride, casting a film from the casting solution, and immersing the cast film in a methanol bath. The resulting CTA membrane may then be hydrolyzed to regenerated cellulose using conventional techniques.

  8. Isolation and characterization of two cellulose morphology mutants of Gluconacetobacter hansenii ATCC23769 producing cellulose with lower crystallinity

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Deng, Ying; Nagachar, Nivedita; Fang, Lin; Luan, Xin; Catchmark, Jeffrey M.; Tien, Ming; Kao, Teh -hui; Lai, Hsin -Chih

    2015-03-19

    Gluconacetobacter hansenii, a Gram-negative bacterium, produces and secrets highly crystalline cellulose into growth medium, and has long been used as a model system for studying cellulose synthesis in higher plants. Cellulose synthesis involves the formation of β-1,4 glucan chains via the polymerization of glucose units by a multi-enzyme cellulose synthase complex (CSC). These glucan chains assemble into ordered structures including crystalline microfibrils. AcsA is the catalytic subunit of the cellulose synthase enzymes in the CSC, and AcsC is required for the secretion of cellulose. However, little is known about other proteins required for the assembly of crystalline cellulose. To addressmore » this question, we visually examined cellulose pellicles formed in growth media of 763 individual colonies of G. hansenii generated via Tn5 transposon insertion mutagenesis, and identified 85 that produced cellulose with altered morphologies. X-ray diffraction analysis of these 85 mutants identified two that produced cellulose with significantly lower crystallinity than wild type. The gene disrupted in one of these two mutants encoded a lysine decarboxylase and that in the other encoded an alanine racemase. Solid-state NMR analysis revealed that cellulose produced by these two mutants contained increased amounts of non-crystalline cellulose and monosaccharides associated with non-cellulosic polysaccharides as compared to the wild type. Monosaccharide analysis detected higher percentages of galactose and mannose in cellulose produced by both mutants. Field emission scanning electron microscopy showed that cellulose produced by the mutants was unevenly distributed, with some regions appearing to contain deposition of non-cellulosic polysaccharides; however, the width of the ribbon was comparable to that of normal cellulose. As both lysine decarboxylase and alanine racemase are required for the integrity of peptidoglycan, we propose a model for the role of peptidoglycan in the assembly of crystalline cellulose.« less

  9. Bioenergy Success Stories | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    EERE's bioenergy success stories below. November 30, 2015 The DuPont cellulosic ethanol facility in Nevada, Iowa, will produce about 30 million gallons of cellulosic ethanol...

  10. Research Advances Cellulosic Ethanol, NREL Leads the Way (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2007-03-01

    This brochure highlights NREL's recent advances in cellulosic ethanol production. Research at NREL addresses both biochemical and thermochemical processes.

  11. Method for separating the non-inked cellulose fibers from the inked cellulose fibers in cellulosic materials

    DOE Patents [OSTI]

    Woodward, Jonathan (Kingston, TN)

    1998-01-01

    A method for enzymatically separating the non-inked cellulose fibers from the inked cellulose fibers in cellulosic materials. The cellulosic material, such as newsprint, is introduced into a first chamber containing a plastic canvas basket. This first chamber is in fluid communication, via plastic tubing, with a second chamber containing cellobiase beads in a plastic canvas basket. Cellulase is then introduced into the first chamber. A programmable pump then controls the flow rate between the two chambers. The action of cellulase and stirring in the first chamber results in the production of a slurry of newsprint pulp in the first chamber. This slurry contains non-inked fibers, inked fibers, and some cellobiose. The inked fibers and cellobiose flow from the first chamber to the second chamber, whereas the non-inked fibers remain in the first chamber because they are too large to pass through the pores of the plastic canvas basket. The resulting non-inked and inked fibers are then recovered.

  12. Method for separating the non-inked cellulose fibers from the inked cellulose fibers in cellulosic materials

    DOE Patents [OSTI]

    Woodward, J.

    1998-12-01

    A method for enzymatically separating the non-inked cellulose fibers from the inked cellulose fibers in cellulosic materials. The cellulosic material, such as newsprint, is introduced into a first chamber containing a plastic canvas basket. This first chamber is in fluid communication, via plastic tubing, with a second chamber containing cellobiase beads in a plastic canvas basket. Cellulase is then introduced into the first chamber. A programmable pump then controls the flow rate between the two chambers. The action of cellulase and stirring in the first chamber results in the production of a slurry of newsprint pulp in the first chamber. This slurry contains non-inked fibers, inked fibers, and some cellobiose. The inked fibers and cellobiose flow from the first chamber to the second chamber, whereas the non-inked fibers remain in the first chamber because they are too large to pass through the pores of the plastic canvas basket. The resulting non-inked and inked fibers are then recovered. 6 figs.

  13. Cellulosic Liquid Fuels Commercial Production Today | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cellulosic Liquid Fuels Commercial Production Today Cellulosic Liquid Fuels Commercial Production Today Keynote Success Story Robert Graham, Chairman and CEO, Ensyn Corporation PDF icon b13_graham_ensyn.pdf More Documents & Publications Advanced Cellulosic Biofuels Production of Renewable Fuels from Biomass by FCC Co-processing UOP Pilot-Scale Biorefinery

  14. Grand Challenges of Characterization & Modeling of Cellulose Nanomaterials

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Grand Challenges of Characterization & Modeling of Cellulose Nanomaterials Robert Moon Adjunct Assistant Professor Materials Engineering Purdue University Materials Research Engineer US Forest Service Forest Products Laboratory DOE- Sustainable Nanomaterials Workshop, 26 June, 2012 Cellulose Nanomaterials (CN) 2 * Influence: * Cellulose Source * Extraction Process * Two Particle Morphologies: * Rod: CNC, NCC, NCW, NCXLS * Fibrillar: CNF, NFC, MFC, BC, AC * Questions: * What to Characterize?

  15. High-Temperature Behavior of Cellulose I

    SciTech Connect (OSTI)

    Matthews, James F.; Bergenstråhle, Malin; Beckham, Gregg T.; Himmel, Michael E.; Nimlos, Mark R.; Brady, John W.; Crowley, Michael F.

    2011-03-17

    We use molecular simulation to elucidate the structural behavior of small hydrated cellulose Iβ microfibrils heated to 227 °C (500 K) with two carbohydrate force fields. In contrast to the characteristic two-dimensional hydrogen-bonded layer sheets present in the cellulose Iβ crystal structure, we show that at high temperature a three-dimensional hydrogen bond network forms, made possible by hydroxymethyl groups changing conformation from trans–gauche (TG) to gauche–gauche (GG) in every second layer corresponding to “center” chains in cellulose Iβ and from TG to gauche–trans (GT) in the “origin” layer. The presence of a regular three-dimensional hydrogen bond network between neighboring sheets eliminates the possibility of twist, whereas two-dimensional hydrogen bonding allows for microfibril twist to occur. Structural features of this high-temperature phase as determined by molecular simulation may explain several experimental observations for which no detailed structural basis has been offered. This includes an explanation for the observed temperature and crystal size dependence for the extent of hydrogen/deuterium exchange, and diffraction patterns of cellulose at high temperature.

  16. IMPACTS OF BIOFILM FORMATION ON CELLULOSE FERMENTATION

    SciTech Connect (OSTI)

    Leschine, Susan

    2009-10-31

    This project addressed four major areas of investigation: i) characterization of formation of Cellulomonas uda biofilms on cellulose; ii) characterization of Clostridium phytofermentans biofilm development; colonization of cellulose and its regulation; iii) characterization of Thermobifida fusca biofilm development; colonization of cellulose and its regulation; and iii) description of the architecture of mature C. uda, C. phytofermentans, and T. fusca biofilms. This research is aimed at advancing understanding of biofilm formation and other complex processes involved in the degradation of the abundant cellulosic biomass, and the biology of the microbes involved. Information obtained from these studies is invaluable in the development of practical applications, such as the single-step bioconversion of cellulose-containing residues to fuels and other bioproducts. Our results have clearly shown that cellulose-decomposing microbes rapidly colonize cellulose and form complex structures typical of biofilms. Furthermore, our observations suggest that, as cells multiply on nutritive surfaces during biofilms formation, dramatic cell morphological changes occur. We speculated that morphological changes, which involve a transition from rod-shaped cells to more rounded forms, might be more apparent in a filamentous microbe. In order to test this hypothesis, we included in our research a study of biofilm formation by T. fusca, a thermophilic cellulolytic actinomycete commonly found in compost. The cellulase system of T. fusca has been extensively detailed through the work of David Wilson and colleagues at Cornell, and also, genome sequence of a T. fusca strain has been determine by the DOE Joint Genome Institute. Thus, T. fusca is an excellent subject for studies of biofilm development and its potential impacts on cellulose degradation. We also completed a study of the chitinase system of C. uda. This work provided essential background information for understanding how C. uda colonizes and degrades insoluble substrates. Major accomplishments of the project include: Development of media containing dialysis tubing (described by the manufacturer as regenerated cellulose) as sole carbon and energy source and a nutritive surface for the growth of cellulolytic bacteria, and development of various microscopic methods to image biofilms on dialysis tubing. Demonstration that cultures of C. phytofermentans, an obligate anaerobe, C. uda, a facultative aerobe, and T. fusca, a filamentous aerobe, formed microbial communities on the surface of dialysis tubing, which possessed architectural features and functional characteristics typical of biofilms. Demonstration that biofilm formation on the nutritive surface, cellulose, involves a complex developmental processes, including colonization of dialysis tubing, formation of cell clusters attached to the nutritive surface, cell morphological changes, formation of complex structures embedded in extracellular polymeric matrices, and dispersal of biofilm communities as the nutritive surface is degraded. Determination of surface specificity and regulatory aspects of biofilm formation by C. phytofermentans, C. uda, and T. fusca. Demonstration that biofilm formation by T. fusca forms an integral part of the life cycle of this filamentous cellulolytic bacterium, including studies on the role of mycelial pellet formation in the T. fusca life cycle and a comparison of mycelial pellets to surface-attached T. fusca biofilms. Characterization of T. fusca biofilm EPS, including demonstration of a functional role for EPS constituents. Correlation of T. fusca developmental life cycle and cellulase gene expression.

  17. Method of forming an electrically conductive cellulose composite

    DOE Patents [OSTI]

    Evans, Barbara R. (Oak Ridge, TN); O'Neill, Hugh M. (Knoxville, TN); Woodward, Jonathan (Ashtead, GB)

    2011-11-22

    An electrically conductive cellulose composite includes a cellulose matrix and an electrically conductive carbonaceous material incorporated into the cellulose matrix. The electrical conductivity of the cellulose composite is at least 10 .mu.S/cm at 25.degree. C. The composite can be made by incorporating the electrically conductive carbonaceous material into a culture medium with a cellulose-producing organism, such as Gluconoacetobacter hansenii. The composites can be used to form electrodes, such as for use in membrane electrode assemblies for fuel cells.

  18. Method and apparatus for treating a cellulosic feedstock

    DOE Patents [OSTI]

    Nguyen, Quang A.; Burke, Murray J.; Hillier, Sunalie N.

    2015-09-08

    Methods and apparatus for treating, pre-treating, preparing and conveying a cellulosic feedstock, such as for ethanol production, are disclosed. More specifically, the invention relates to methods and apparatus for treating a cellulosic feedstock by mixing and heating the cellulosic feedstock and/or by moistening and heating the cellulosic feedstock. The invention also relates to a holding tank, and a method of utilizing the holding tank whereby bridging may be reduced or eliminated and may result in a product stream from autohydrolysis or hydrolysis having an improved yield. The invention further relates to methods and apparatus for obtaining and conveying a cellulosic feedstock, which may be used for the subsequent production of a fermentable sugar stream from the cellulose and hemicellulose in the cellulosic feedstock wherein the fermentable sugar stream may be used for subsequent ethanol production. The invention also relates to a method and apparatus for withdrawing one or more feedstock stream from a holding tank.

  19. Cellulosome preparations for cellulose hydrolysis - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Portal Cellulosome preparations for cellulose hydrolysis National Renewable Energy Laboratory Contact NREL About This Technology Technology Marketing Summary With the annual potential of over 1.3 billion dry tons of biomass, the prospective growth of biomass related industries is tremendous. The National Renewable Energy Laboratory (NREL) leads the DOE's National Bioenergy Center, with research spanning the full spectrum from fundamental science to demonstration in fully integrated pilot

  20. Metallization of bacterial cellulose for electrical and electronic device manufacture

    DOE Patents [OSTI]

    Evans, Barbara R. (Oak Ridge, TN) [Oak Ridge, TN; O'Neill, Hugh M. (Knoxville, TN) [Knoxville, TN; Jansen, Valerie Malyvanh (Memphis, TN) [Memphis, TN; Woodward, Jonathan (Knoxville, TN) [Knoxville, TN

    2010-09-28

    A method for the deposition of metals in bacterial cellulose and for the employment of the metallized bacterial cellulose in the construction of fuel cells and other electronic devices is disclosed. The method for impregnating bacterial cellulose with a metal comprises placing a bacterial cellulose matrix in a solution of a metal salt such that the metal salt is reduced to metallic form and the metal precipitates in or on the matrix. The method for the construction of a fuel cell comprises placing a hydrated bacterial cellulose support structure in a solution of a metal salt such that the metal precipitates in or on the support structure, inserting contact wires into two pieces of the metal impregnated support structure, placing the two pieces of metal impregnated support structure on opposite sides of a layer of hydrated bacterial cellulose, and dehydrating the three layer structure to create a fuel cell.

  1. Metallization of bacterial cellulose for electrical and electronic device manufacture

    DOE Patents [OSTI]

    Evans, Barbara R. (Oak Ridge, TN); O'Neill, Hugh M. (Knoxville, TN); Jansen, Valerie Malyvanh (Memphis, TN); Woodward, Jonathan (Knoxville, TN)

    2011-06-07

    A method for the deposition of metals in bacterial cellulose and for the employment of the metallized bacterial cellulose in the construction of fuel cells and other electronic devices is disclosed. The method for impregnating bacterial cellulose with a metal comprises placing a bacterial cellulose matrix in a solution of a metal salt such that the metal salt is reduced to metallic form and the metal precipitates in or on the matrix. The method for the construction of a fuel cell comprises placing a hydrated bacterial cellulose support structure in a solution of a metal salt such that the metal precipitates in or on the support structure, inserting contact wires into two pieces of the metal impregnated support structure, placing the two pieces of metal impregnated support structure on opposite sides of a layer of hydrated bacterial cellulose, and dehydrating the three layer structure to create a fuel cell.

  2. Metallization of bacterial cellulose for electrical and electronic device manufacture

    DOE Patents [OSTI]

    Evans, Barbara R.; O'Neill, Hugh M.; Jansen, Valerie Malyvanh; Woodward, Jonathan

    2006-01-17

    The employment of metallized bacterial cellulose in the construction of fuel cells and other electronic devices is disclosed. The fuel cell includes an electrolyte membrane comprising a membrane support structure comprising bacterial cellulose, an anode disposed on one side of the electrolyte membrane, and a cathode disposed on an opposite side of the electrolyte membrane. At least one of the anode and the cathode comprises an electrode support structure comprising bacterial cellulose, and a catalyst disposed in or on the electrode support structure.

  3. Secretary Bodman Touts Importance of Cellulosic Ethanol at Georgia

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biorefinery Groundbreaking | Department of Energy Touts Importance of Cellulosic Ethanol at Georgia Biorefinery Groundbreaking Secretary Bodman Touts Importance of Cellulosic Ethanol at Georgia Biorefinery Groundbreaking October 6, 2007 - 4:21pm Addthis SOPERTON, GA - U.S. Secretary of Energy Samuel W. Bodman today attended a groundbreaking ceremony for Range Fuels' biorefinery - one of the nation's first commercial-scale cellulosic ethanol biorefineries - and made the following statement.

  4. Cellulosic Fiber Composites Using Protein Hydrolysates and Methods of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Making Same - Energy Innovation Portal Advanced Materials Advanced Materials Find More Like This Return to Search Cellulosic Fiber Composites Using Protein Hydrolysates and Methods of Making Same Battelle Memorial Institute Contact BMI About This Technology Technology Marketing SummaryThis technology relates to cellulosic fiber composites using protein hydrolysates. DescriptionCellulosic fiber composites currently use petroleum-derived binders such as isocyanates and phenol formaldehyde.

  5. Cellulosic Fiber Composites Using Protein Hydrolysates and Methods of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Making Same - Energy Innovation Portal Cellulosic Fiber Composites Using Protein Hydrolysates and Methods of Making Same Battelle Memorial Institute Contact BMI About This Technology Technology Marketing Summary This technology relates to cellulosic fiber composites using protein hydrolysates. Cellulosic fiber composites currently use petroleum-derived binders such as isocyanates and phenol formaldehyde. This work fills a need for a new fiber-adhesive, resin binder system that reduces the

  6. Cost-Effective Enzyme for Producing Biofuels from Cellulosic Biomass -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Innovation Portal Cost-Effective Enzyme for Producing Biofuels from Cellulosic Biomass Inventors: Ming Woei Lau, Bruce Dale Great Lakes Bioenergy Research Center Contact GLBRC About This Technology Technology Marketing SummaryProducing biofuels from cellulosic materials, such as corn stalks, wood chips, and other biomass, requires the use of enzymes to degrade the cellulosic biomass into its molecular components. The cost to produce these enzymes is high, a factor contributing to the

  7. Review of Recent Pilot Scale Cellulosic Ethanol Demonstration | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Review of Recent Pilot Scale Cellulosic Ethanol Demonstration Review of Recent Pilot Scale Cellulosic Ethanol Demonstration Opening Plenary Session: Celebrating Successes-The Foundation of an Advanced Bioindustry Cellulosic Technology Advances-Thomas Foust, Director, National Bioenergy Center, National Renewable Energy Laboratory PDF icon b13_foust_op-1.pdf More Documents & Publications Advanced Bio-based Jet Fuel Cross-cutting Technologies for Advanced Biofuels Process Design

  8. Center for Lignocellulose Structure and Function - Symposium: Cellulose

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    synthesis, structure, matrix interactions and technology Symposium: Cellulose synthesis, structure, matrix interactions and technology International symposium on the structure of cellulose in primary and secondary cell walls, the mechanism of its synthesis and its interactions with matrix polymers, and new uses of cellulose for energy and material applications. May 16-18, 2013 at Penn State University. For more information and registration, see the symposium site at

  9. The Current State of Technology for Cellulosic Ethanol | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy The Current State of Technology for Cellulosic Ethanol The Current State of Technology for Cellulosic Ethanol At the February 12, 2009 joint Web conference of DOE's Biomass and Clean Cities programs, Andy Aden (National Renewable Energy Laboratory) discussed the current state of technology for cellulosic ethanol - How close are we? PDF icon aden_20090212.pdf More Documents & Publications Integrated Biorefinery Process Process Design and Economics for Biochemical Conversion of

  10. Florida Project Produces Nation's First Cellulosic Ethanol at

    Office of Environmental Management (EM)

    Commercial-Scale | Department of Energy Florida Project Produces Nation's First Cellulosic Ethanol at Commercial-Scale Florida Project Produces Nation's First Cellulosic Ethanol at Commercial-Scale July 31, 2013 - 1:37pm Addthis News Media Contact (202) 586-4940 WASHINGTON - The Energy Department today recognized the nation's first commercial-scale cellulosic ethanol production at INEOS Bio's Indian River BioEnergy Center in Vero Beach, Florida. Developed through a joint venture between

  11. EERE Success Story-Louisiana: Verenium Cellulosic Ethanol Demonstration

    Office of Environmental Management (EM)

    Facility | Department of Energy Louisiana: Verenium Cellulosic Ethanol Demonstration Facility EERE Success Story-Louisiana: Verenium Cellulosic Ethanol Demonstration Facility April 9, 2013 - 12:00am Addthis In 2010, Verenium Corporation received EERE funds to operate a 1.4 million gallon per year demonstration plant in Jennings, Louisiana, to convert agricultural residues and energy crops to cellulosic ethanol. The project's goal was to implement a technology that had been demonstrated in a

  12. BETO Project Improves Production of Renewable Chemical from Cellulosic...

    Energy Savers [EERE]

    The process could also be applied to biofuel production to make a cellulosic ethanol facility more commercially viable. Learn more from the Genomatica press release....

  13. Cellulosic emissions (kg of pollutant per km2 county area) -...

    Open Energy Info (EERE)

    Cellulosic emissions (kg of pollutant per km2 county area) Data reflects projected air emissions of nitrogen oxides (NOX), ammonia (NH3), carbon monoxide (CO), sulfur oxide (SOX),...

  14. Less is more: Novel cellulose structure requires fewer enzymes...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    enzymes to process biomass to fuel Improved methods for breaking down cellulose nanofibers are central to cost-effective biofuel production. June 19, 2013 An enzyme (shown in...

  15. Less is more: Novel cellulose structure requires fewer enzymes...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    enzymatic deconstruction; however, the recent observation that cellulose III increased sugar yields with reduced levels of bound enzyme was unexpected. To explain this finding,...

  16. BETO Project Improves Production of Renewable Chemical from Cellulosic...

    Energy Savers [EERE]

    The process could also be applied to biofuel production to make a cellulosic ethanol facility more commercially viable. Learn more from the Genomatica press release. ...

  17. NREL Industry Partners Move Cellulosic Ethanol Technology Forward...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL Industry Partners Move Cellulosic Ethanol Technology Forward Lab Contributes Scientific Foundation for Making Biofuel from Non-Food Sources May 15, 2008 Collaborative ...

  18. Largest Cellulosic Ethanol Plant in the World Opened in October...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... representative from biofuels company POET-DSM stand between square and round bales of corn stover stock piled outside of POET-DSM's Project LIBERTY cellulosic ethanol biorefinery. ...

  19. Appendix D: 2012 Cellulosic Ethanol Success, Bioenergy Technologies...

    Broader source: Energy.gov (indexed) [DOE]

    produce cellulosic ethanol at commercial-scale costs that are competitive with gasoline production at 110barrel of crude oil. Many industry partners are also demonstrating...

  20. Cellulosic Liquid Fuels Commercial Production Today

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cellulosic Liquid Fuels Commercial Production Today DOE Conference Washington DC, Aug 1, 2013 Our Business 2  We produce a renewable liquid fuel from wood and other non-food biomass  Our key product is Renewable Fuel Oil(tm) (RFO(tm))  RFO is a flexible petroleum-replacement with multiple uses including heating and for production of drop-in transportation fuels Commercial Status  Commercial production for over 20 years  Over 35 million gallons produced to date  Five commercial

  1. Methods for enhancing the degradation of cellulosic material with chitin binding proteins

    DOE Patents [OSTI]

    Xu, Feng

    2015-08-25

    The present invention relates to methods for degrading or converting a cellulosic material and for producing substances from the cellulosic material.

  2. Methods for enhancing the degradation of cellulosic material with chitin binding proteins

    DOE Patents [OSTI]

    Xu, Feng

    2015-03-31

    The present invention relates to methods for degrading or converting a cellulosic material and for producing substances from the cellulosic material.

  3. Methods of use of cellulose binding domain proteins

    DOE Patents [OSTI]

    Shoseyov, O.; Shpiegl, I.; Goldstein, M.A.; Doi, R.H.

    1997-09-23

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques. 16 figs.

  4. Methods of use of cellulose binding domain proteins

    DOE Patents [OSTI]

    Shoseyov, Oded (Karmey Yosef, IL); Shpiegl, Itai (Rehovot, IL); Goldstein, Marc A. (Davis, CA); Doi, Roy H. (Davis, CA)

    1997-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  5. Methods of detection using a cellulose binding domain fusion product

    DOE Patents [OSTI]

    Shoseyov, Oded (Shimshon, IL); Shpiegl, Itai (North Gallilea, IL); Goldstein, Marc A. (Davis, CA); Doi, Roy H. (Davis, CA)

    1999-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  6. Single Molecule Study of Cellulase Hydrolysis of Crystalline Cellulose

    SciTech Connect (OSTI)

    Liu, Y.-S.; Luo, Y.; Baker, J. O.; Zeng, Y.; Himmel, M. E.; Smith, S.; Ding, S.-Y.

    2009-12-01

    This report seeks to elucidate the role of cellobiohydrolase-I (CBH I) in the hydrolysis of crystalline cellulose. A single-molecule approach uses various imaging techniques to investigate the surface structure of crystalline cellulose and changes made in the structure by CBH I.

  7. Methods of detection using a cellulose binding domain fusion product

    DOE Patents [OSTI]

    Shoseyov, O.; Shpiegl, I.; Goldstein, M.A.; Doi, R.H.

    1999-01-05

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques. 34 figs.

  8. The Role of Cellulosic Ethanol in Transportation

    SciTech Connect (OSTI)

    Robert M. Neilson, Jr.

    2007-10-01

    Petroleum provides essentially all of the energy used today in the transportation sector. To reduce this dependence on fossil energy, other fuels are beginning to be used, notably ethanol and biodiesel. Almost all fuel ethanol is produced by the conversion of corn grain to starch with subsequent fermentation to ethanol. In 2006, almost 5 billion gallons of fuel ethanol were produced, which used 17% of domestic corn production. The DOE has a goal to displace 30% of motor gasoline demand or 60 billion gallons per year by 2030. To achieve this goal, production of ethanol from lignocellulosic sources (e.g., agricultural residues, forest residues, and dedicated energy crops) is needed. This paper will describe the production of cellulosic ethanol as well as the issues and benefits associated with its production.

  9. NREL Proves Cellulosic Ethanol Can Be Cost Competitive (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-11-01

    Ethanol from non-food sources - known as "cellulosic ethanol" - is a near-perfect transportation fuel: it is clean, domestic, abundant, and renewable, and it can potentially replace 30% of the petroleum consumed in the United States, but its relatively high cost has limited its market. That changed in 2012, when the National Renewable Energy Laboratory (NREL) demonstrated the technical advances needed to produce cellulosic ethanol at a minimum ethanol selling price of $2.15/gallon (in 2007 dollars). Through a multi-year research project involving private industry, NREL has proven that cellulosic ethanol can be cost competitive with other transportation fuels.

  10. Advanced Biofuels from Cellulose via Genetic Engineering of Clostridiu...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    * Isoprene is nontoxic and a gas at 34 C - helping its harvesting. * Theoretical ... G3P DMAPP IspS Isoprene cellulosome Cellulosic Biomass (3 C's) (3 C's) (5 C's) Objective: ...

  11. BETO Project Improves Production of Renewable Chemical from Cellulosic

    Office of Environmental Management (EM)

    Feedstocks | Department of Energy Project Improves Production of Renewable Chemical from Cellulosic Feedstocks BETO Project Improves Production of Renewable Chemical from Cellulosic Feedstocks October 13, 2015 - 1:43pm Addthis Renewable chemical company Genomatica made significant progress toward increasing the range of feedstocks that can be used to commercially produce high-quality bio-based chemicals, in a project funded by the Energy Department's Bioenergy Technologies Office (BETO).

  12. Identification and Characterization of Non-Cellulose-Producing Mutants of

    Office of Scientific and Technical Information (OSTI)

    Gluconacetobacter hansenii Generated by Tn5 Transposon Mutagenesis (Journal Article) | SciTech Connect Identification and Characterization of Non-Cellulose-Producing Mutants of Gluconacetobacter hansenii Generated by Tn5 Transposon Mutagenesis Citation Details In-Document Search Title: Identification and Characterization of Non-Cellulose-Producing Mutants of Gluconacetobacter hansenii Generated by Tn5 Transposon Mutagenesis Authors: Deng, Ying ; Nagachar, Nivedita ; Xiao, Chaowen ; Tien,

  13. Pilot Integrated Cellulosic Biorefinery Operations to Fuel Ethanol

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Office(BETO) IBR Project Peer Review *© 2015 ICM, Inc. All Rights Reserved. *1 Recovery Act: Pilot Integrated Cellulosic Biorefinery Operations to Fuel Ethanol Award Number: DE-EE0002875 March 23, 2015 Demonstration and Market Transformation Program Douglas B. Rivers, Ph.D. ICM, Inc. Project Goal Statement  Leverage its existing pilot plant  Operate the pilot cellulosic integrated biorefinery using a biochemical platform with pretreatment and enzymatic hydrolysis technology coupled with

  14. Compositions and methods relating to transgenic plants and cellulosic

    Office of Scientific and Technical Information (OSTI)

    ethanol production (Patent) | SciTech Connect Patent: Compositions and methods relating to transgenic plants and cellulosic ethanol production Citation Details In-Document Search Title: Compositions and methods relating to transgenic plants and cellulosic ethanol production Transgenic lignocellulosic plants are provided according to embodiments of the present invention, the transgenic plants transformed with an expression cassette encoding a protein operably linked to a signal peptide which

  15. Compositions and methods relating to transgenic plants and cellulosic

    Office of Scientific and Technical Information (OSTI)

    ethanol production (Patent) | SciTech Connect Patent: Compositions and methods relating to transgenic plants and cellulosic ethanol production Citation Details In-Document Search Title: Compositions and methods relating to transgenic plants and cellulosic ethanol production Transgenic lignocellulosic plants are provided according to embodiments of the present invention, the transgenic plants transformed with an expression cassette encoding a protein operably linked to a signal peptide which

  16. Advanced and Cellulosic Biofuels and Biorefineries: State of the Industry,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Policy and Politics | Department of Energy and Cellulosic Biofuels and Biorefineries: State of the Industry, Policy and Politics Advanced and Cellulosic Biofuels and Biorefineries: State of the Industry, Policy and Politics Afternoon Plenary Introduction Brent Erickson, Executive Vice President, BIO PDF icon b13_erickson_day2-apintro.pdf More Documents & Publications Biomass 2013 Agenda Biomass 2012 Agenda U.S. Biofuels Industry: Mind the Gap

  17. The Arabidopsis Cellulose Synthase Complex: A Proposed Hexamer of CESA

    Office of Scientific and Technical Information (OSTI)

    Trimers in an Equimolar Stoichiometry (Journal Article) | SciTech Connect Journal Article: The Arabidopsis Cellulose Synthase Complex: A Proposed Hexamer of CESA Trimers in an Equimolar Stoichiometry Citation Details In-Document Search Title: The Arabidopsis Cellulose Synthase Complex: A Proposed Hexamer of CESA Trimers in an Equimolar Stoichiometry In this study, we show a 1:1:1 stoichiometry between the three Arabidopsis thaliana secondary cell wall isozymes: CESA4, CESA7, and CESA8. This

  18. BETO Project Improves Production of Renewable Chemical from Cellulosic

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Feedstocks | Department of Energy BETO Project Improves Production of Renewable Chemical from Cellulosic Feedstocks BETO Project Improves Production of Renewable Chemical from Cellulosic Feedstocks October 20, 2015 - 11:18am Addthis Renewable chemical company Genomatica made significant progress toward increasing the range of feedstocks that can be used to commercially produce high-quality bio-based chemicals, in a project funded by the Energy Department's Bioenergy Technologies Office

  19. The Journey to Commercializing Cellulosic Biofuels in the United States |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy The Journey to Commercializing Cellulosic Biofuels in the United States The Journey to Commercializing Cellulosic Biofuels in the United States October 17, 2014 - 1:28pm Addthis Secretary Moniz (center) tours the Abengoa Biorefinery in Hugoton, Kansas.| Photo Courtesy of Abengoa. Secretary Moniz (center) tours the Abengoa Biorefinery in Hugoton, Kansas.| Photo Courtesy of Abengoa. David Danielson David Danielson Assistant Secretary for Energy Efficiency and Renewable

  20. Conversion of bagasse cellulose into ethanol

    SciTech Connect (OSTI)

    Cuzens, J.E.

    1997-11-19

    The study conducted by Arkenol was designed to test the conversion of feedstocks such as sugar cane bagasse, sorghum, napier grass and rice straw into fermentable sugars, and then ferment these sugars using natural yeasts and genetically engineered Zymomonis mobilis bacteria (ZM). The study did convert various cellulosic feedstocks into fermentable sugars utilizing the patented Arkenol Concentrated Acid Hydrolysis Process and equipment at the Arkenol Technology Center in Orange, California. The sugars produced using this process were in the concentration range of 12--15%, much higher than the sugar concentrations the genetically engineered ZM bacteria had been developed for. As a result, while the ZM bacteria fermented the produced sugars without initial inhibition, the completion of high sugar concentration fermentations was slower and at lower yield than predicted by the National Renewable Energy Laboratory (NREL). Natural yeasts performed as expected by Arkenol, similar to the results obtained over the last four years of testing. Overall, at sugar concentrations in the 10--13% range, yeast produced 850090% theoretical ethanol yields and ZM bacteria produced 82--87% theoretical yields in 96 hour fermentations. Additional commercialization work revealed the ability to centrifugally separate and recycle the ZM bacteria after fermentation, slight additional benefits from mixed culture ZM bacteria fermentations, and successful utilization of defined media for ZM bacteria fermentation nutrients in lieu of natural media.

  1. Conversion of cellulosic wastes to liquid fuels

    SciTech Connect (OSTI)

    Kuester, J.L.

    1980-09-01

    The current status and future plans for a project to convert waste cellulosic (biomass) materials to quality liquid hydrocarbon fuels is described. The basic approach is indirect liquefaction, i.e., thermal gasification followed by catalytic liquefaction. The indirect approach results in separation of the oxygen in the biomass feedstock, i.e., oxygenated compounds do not appear in the liquid hydrocarbon fuel product. The process is capable of accepting a wide variety of feedstocks. Potential products include medium quality gas, normal propanol, diesel fuel and/or high octane gasoline. A fluidized bed pyrolysis system is used for gasification. The pyrolyzer can be fluidized with recycle pyrolysis gas, steam or recycle liquefaction system off gas or some combination thereof. Tars are removed in a wet scrubber. Unseparated pyrolysis gases are utilized as feed to a modified Fischer-Tropsch reactor. The liquid condensate from the reactor consists of a normal propanol-water phase and a paraffinic hydrocarbon phase. The reactor can be operated to optimize for either product. The following tasks were specified in the statement of work for the contract period: (1) feedstock studies; (2) gasification system optimization; (3) waste stream characterization; and (4) liquid fuels synthesis. In addition, several equipment improvements were implemented.

  2. Comparison of Cellulose Ib Simulations with Three Carbohydrate Force Fields

    SciTech Connect (OSTI)

    Matthews, J. F.; Beckham, G. T.; Bergenstrahle, M.; Brady, J. W.; Himmel, M. E.; Crowley, M. F.

    2012-02-14

    Molecular dynamics simulations of cellulose have recently become more prevalent due to increased interest in renewable energy applications, and many atomistic and coarse-grained force fields exist that can be applied to cellulose. However, to date no systematic comparison between carbohydrate force fields has been conducted for this important system. To that end, we present a molecular dynamics simulation study of hydrated, 36-chain cellulose I{beta} microfibrils at room temperature with three carbohydrate force fields (CHARMM35, GLYCAM06, and Gromos 45a4) up to the near-microsecond time scale. Our results indicate that each of these simulated microfibrils diverge from the cellulose I{beta} crystal structure to varying degrees under the conditions tested. The CHARMM35 and GLYCAM06 force fields eventually result in structures similar to those observed at 500 K with the same force fields, which are consistent with the experimentally observed high-temperature behavior of cellulose I. The third force field, Gromos 45a4, produces behavior significantly different from experiment, from the other two force fields, and from previously reported simulations with this force field using shorter simulation times and constrained periodic boundary conditions. For the GLYCAM06 force field, initial hydrogen-bond conformations and choice of electrostatic scaling factors significantly affect the rate of structural divergence. Our results suggest dramatically different time scales for convergence of properties of interest, which is important in the design of computational studies and comparisons to experimental data. This study highlights that further experimental and theoretical work is required to understand the structure of small diameter cellulose microfibrils typical of plant cellulose.

  3. Fibril orientation redistribution induced by stretching of cellulose nanofibril hydrogels

    SciTech Connect (OSTI)

    Josefsson, Gabriella; Gamstedt, E. Kristofer; Ahvenainen, Patrik; Mushi, Ngesa Ezekiel

    2015-06-07

    The mechanical performance of materials reinforced by cellulose nanofibrils is highly affected by the orientation of these fibrils. This paper investigates the nanofibril orientation distribution of films of partly oriented cellulose nanofibrils. Stripes of hydrogel films were subjected to different amount of strain and, after drying, examined with X-ray diffraction to obtain the orientation of the nanofibrils in the films, caused by the stretching. The cellulose nanofibrils had initially a random in-plane orientation in the hydrogel films and the strain was applied to the films before the nanofibrils bond tightly together, which occurs during drying. The stretching resulted in a reorientation of the nanofibrils in the films, with monotonically increasing orientation towards the load direction with increasing strain. Estimation of nanofibril reorientation by X-ray diffraction enables quantitative comparison of the stretch-induced orientation ability of different cellulose nanofibril systems. The reorientation of nanofibrils as a consequence of an applied strain is also predicted by a geometrical model of deformation of nanofibril hydrogels. Conversely, in high-strain cold-drawing of wet cellulose nanofibril materials, the enhanced orientation is promoted by slipping of the effectively stiff fibrils.

  4. MICROBIAL FERMENTATION OF ABUNDANT BIOPOLYMERS: CELLULOSE AND CHITIN

    SciTech Connect (OSTI)

    Leschine, Susan

    2009-10-31

    Our research has dealt with seven major areas of investigation: i) characterization of cellulolytic members of microbial consortia, with special attention recently given to Clostridium phytofermentans, a bacterium that decomposes cellulose and produces uncommonly large amounts of ethanol, ii) investigations of the chitinase system of Cellulomonas uda; including the purification and characterization of ChiA, the major component of this enzyme system, iii) molecular cloning, sequence and structural analysis of the gene that encodes ChiA in C. uda, iv) biofilm formation by C. uda on nutritive surfaces, v) investigations of the effects of humic substances on cellulose degradation by anaerobic cellulolytic microbes, vi) studies of nitrogen metabolism in cellulolytic anaerobes, and vii) understanding the molecular architecture of the multicomplex cellulase-xylanase system of Clostridium papyrosolvens. Also, progress toward completing the research of more recent projects is briefly summarized. Major accomplishments include: 1. Characterization of Clostridium phytofermentans, a cellulose-fermenting, ethanol-producing bacterium from forest soil. The characterization of a new cellulolytic species isolated from a cellulose-decomposing microbial consortium from forest soil was completed. This bacterium is remarkable for the high concentrations of ethanol produced during cellulose fermentation, typically more than twice the concentration produced by other species of cellulolytic clostridia. 2. Examination of the use of chitin as a source of carbon and nitrogen by cellulolytic microbes. We discovered that many cellulolytic anaerobes and facultative aerobes are able to use chitin as a source of both carbon and nitrogen. This major discovery expands our understanding of the biology of cellulose-fermenting bacteria and may lead to new applications for these microbes. 3. Comparative studies of the cellulase and chitinase systems of Cellulomonas uda. Results of these studies indicate that the chitinase and cellulase systems of this bacterium are distinct in terms of the proteins involved and the regulation of their production. 4. Characterization of the chitinase system of C. uda. A 70,000-Mr endochitinase, designated ChiA, was purified from C. uda culture supernatant fluids and characterized. 5. Analysis of chiA, which codes for the major enzymatic component of the chitinase system of C. uda. The gene encoding the endochitinase ChiA in C. uda was cloned, its complete nucleotide sequence was determined and its implications were investigated. 6. Formation of biofilms by C. uda on cellulose and chitin. Microscopic observations indicated that, under conditions of nitrogen limitation, C. uda cells grew as a biofilm attached tightly to the surface of cellulose or chitin. 7. Development of tools for a genetic approach to studies of cellulose fermentation by cellulolytic clostridia. We have explored the potential of various techniques, and obtained evidence indicating that Tn916 mutagenesis may be particularly effective in this regard. As part of this research, we identified the presence of a plasmid in one strain, which was cloned, sequenced, and analyzed for its utility in the development of vectors for genetic studies. 8. Effects of humic substances on cellulose degradation by anaerobic cellulolytic microbes. We determined that humic substances play an important role in the anaerobic cellulose decomposition and in the physiology of cellulose-fermenting soil bacteria. 9. Nitrogenases of cellulolytic clostridia. We described a nitrogenase gene from a cellulolytic clostridium and presented evidence, based on sequence analyses and conserved gene order, for lateral gene transfer between this bacterium and a methanogenic archaeon. 10. Characterization of Clostridium hungatei, a new N2-fixing cellulolytic species isolated from a methanogenic consortium from soil. 11. Understanding the molecular architecture of the multicomplex cellulase-xylanase system of Clostridium papyrosolvens. We discovered that C. papyrosolvens produces a multiprotein, multicom

  5. ZeaChem Pilot Project: High-Yield Hybrid Cellulosic Ethanol Process...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ZeaChem Pilot Project: High-Yield Hybrid Cellulosic Ethanol Process Using High-Impact Feedstock for Commercialization ZeaChem Pilot Project: High-Yield Hybrid Cellulosic Ethanol...

  6. Process for converting cellulosic materials into fuels and chemicals

    DOE Patents [OSTI]

    Scott, Charles D. (Oak Ridge, TN); Faison, Brendlyn D. (Knoxville, TN); Davison, Brian H. (Knoxville, TN); Woodward, Jonathan (Oak Ridge, TN)

    1994-01-01

    A process for converting cellulosic materials, such as waste paper, into fuels and chemicals utilizing enzymatic hydrolysis of the major constituent of paper, cellulose. A waste paper slurry is contacted by cellulase in an agitated hydrolyzer. The cellulase is produced from a continuous, columnar, fluidized-bed bioreactor utilizing immobilized microorganisms. An attritor and a cellobiase reactor are coupled to the agitated hydrolyzer to improve reaction efficiency. The cellulase is recycled by an adsorption process. The resulting crude sugars are converted to dilute product in a fluidized-bed bioreactor utilizing microorganisms. The dilute product is concentrated and purified by utilizing distillation and/or a biparticle fluidized-bed bioreactor system.

  7. Enhanced attrition bioreactor for enzyme hydrolysis of cellulosic materials

    DOE Patents [OSTI]

    Scott, Timothy C. (Knoxville, TN); Scott, Charles D. (Oak Ridge, TN); Faison, Brendlyn D. (Knoxville, TN); Davison, Brian H. (Knoxville, TN); Woodward, Jonathan (Oak Ridge, TN)

    1997-01-01

    A process for converting cellulosic materials, such as waste paper, into fuels and chemicals, such as sugars and ethanol, utilizing enzymatic hydrolysis of the major carbohydrate of paper: cellulose. A waste paper slurry is contacted by cellulase in an agitated hydrolyzer. An attritor and a cellobiase reactor are coupled to the agitated hydrolyzer to improve reaction efficiency. Additionally, microfiltration, ultrafiltration and reverse osmosis steps are included to further increase reaction efficiency. The resulting sugars are converted to a dilute product in a fluidized-bed bioreactor utilizing a biocatalyst, such as microorganisms. The dilute product is then concentrated and purified.

  8. Enhanced attrition bioreactor for enzyme hydrolysis of cellulosic materials

    DOE Patents [OSTI]

    Scott, T.C.; Scott, C.D.; Faison, B.D.; Davison, B.H.; Woodward, J.

    1997-06-10

    A process is described for converting cellulosic materials, such as waste paper, into fuels and chemicals, such as sugars and ethanol, utilizing enzymatic hydrolysis of the major carbohydrate of paper: cellulose. A waste paper slurry is contacted by cellulase in an agitated hydrolyzer. An attritor and a cellobiase reactor are coupled to the agitated hydrolyzer to improve reaction efficiency. Additionally, microfiltration, ultrafiltration and reverse osmosis steps are included to further increase reaction efficiency. The resulting sugars are converted to a dilute product in a fluidized-bed bioreactor utilizing a biocatalyst, such as microorganisms. The dilute product is then concentrated and purified. 1 fig.

  9. Enhanced attrition bioreactor for enzyme hydrolysis or cellulosic materials

    DOE Patents [OSTI]

    Scott, T.C.; Scott, C.D.; Faison, B.D.; Davison, B.H.; Woodward, J.

    1996-04-16

    A process is described for converting cellulosic materials, such as waste paper, into fuels and chemicals, such as sugars and ethanol, utilizing enzymatic hydrolysis of the major carbohydrate of paper: cellulose. A waste paper slurry is contacted by cellulase in an agitated hydrolyzer. An attritor and a cellobiase reactor are coupled to the agitated hydrolyzer to improve reaction efficiency. Additionally, microfiltration, ultrafiltration and reverse osmosis steps are included to further increase reaction efficiency. The resulting sugars are converted to a dilute product in a fluidized-bed bioreactor utilizing a biocatalyst, such as microorganisms. The dilute product is then concentrated and purified. 1 fig.

  10. Enhanced attrition bioreactor for enzyme hydrolysis or cellulosic materials

    DOE Patents [OSTI]

    Scott, Timothy C. (Knoxville, TN); Scott, Charles D. (Oak Ridge, TN); Faison, Brendlyn D. (Knoxville, TN); Davison, Brian H. (Knoxville, TN); Woodward, Jonathan (Oak Ridge, TN)

    1996-01-01

    A process for converting cellulosic materials, such as waste paper, into fuels and chemicals, such as sugars and ethanol, utilizing enzymatic hydrolysis of the major carbohydrate of paper: cellulose. A waste paper slurry is contacted by cellulase in an agitated hydrolyzer. An attritor and a cellobiase reactor are coupled to the agitated hydrolyzer to improve reaction efficiency. Additionally, microfiltration, ultrafiltration and reverse osmosis steps are included to further increase reaction efficiency. The resulting sugars are converted to a dilute product in a fluidized-bed bioreactor utilizing a biocatalyst, such as microorganisms. The dilute product is then concentrated and purified.

  11. Engineered microbes and methods for microbial oil overproduction from cellulosic materials

    SciTech Connect (OSTI)

    Stephanopoulos, Gregory; Tai, Mitchell

    2015-08-04

    The invention relates to engineering microbial cells for utilization of cellulosic materials as a carbon source, including xylose.

  12. Less is more: Novel cellulose structure requires fewer enzymes to process

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    biomass to fuel Cellulose requires fewer enzymes to process biomass to fuel Less is more: Novel cellulose structure requires fewer enzymes to process biomass to fuel Improved methods for breaking down cellulose nanofibers are central to cost-effective biofuel production. June 19, 2013 An enzyme (shown in blue) pulls out individual cellulose chains (pink) from the pretreated nanofiber surface (green) and then breaks them apart into simple sugars. Image credit, Shishir Chundawat, Great Lakes

  13. Less is more: Novel cellulose structure requires fewer enzymes to process

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    biomass to fuel Cellulose requires fewer enzymes to process biomass to fuel Less is more: Novel cellulose structure requires fewer enzymes to process biomass to fuel Improved methods for breaking down cellulose nanofibers are central to cost-effective biofuel production. June 19, 2013 An enzyme (shown in blue) pulls out individual cellulose chains (pink) from the pretreated nanofiber surface (green) and then breaks them apart into simple sugars. Image credit, Shishir Chundawat, Great Lakes

  14. Less is more: Novel cellulose structure requires fewer enzymes to process

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    biomass to fuel Cellulose requires fewer enzymes to process biomass to fuel Less is more: Novel cellulose structure requires fewer enzymes to process biomass to fuel Improved methods for breaking down cellulose nanofibers are central to cost-effective biofuel production. June 19, 2013 An enzyme (shown in blue) pulls out individual cellulose chains (pink) from the pretreated nanofiber surface (green) and then breaks them apart into simple sugars. Image credit, Shishir Chundawat, Great Lakes

  15. Department of Energy Delivers on R&D Targets around Cellulosic Ethanol |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Delivers on R&D Targets around Cellulosic Ethanol Department of Energy Delivers on R&D Targets around Cellulosic Ethanol April 19, 2013 - 11:24am Addthis In September 2012, scientists at DOE national laboratories successfully demonstrated technical advances required to produce cellulosic ethanol that is cost competitive with petroleum. Cellulosic ethanol is fuel produced from the inedible, organic material abundant in agricultural waste, including grasses, farm

  16. Acid softening and hydrolysis of cellulose. Final report

    SciTech Connect (OSTI)

    Not Available

    1990-01-01

    The report describes the experimental and analytic work to develop a process to reduce the cost of producing ethanol from cellulose. Ethanol is a renewable liquid fuel with applications in transportation, including oxygenation of fuel to reduce carbon monoxide emissions. If produced from cellulose contained in New York State's abundant low-grade wood resources or waste paper, significant quantities of petroleum could be displaced while creating new economic opportunity. The focus of the project was evaluating acid softening and hydrolysis technology to make cellulose responsive to conversion to fermentable sugar, from which production of ethanol would then be conventional and economical. The procedure is competitive with other cellulose-to-ethanol approaches such as enzyme hydrolysis; however, overall economic feasibility is problematic. To produce ethanol at $1.00 per gallon, a cost that would be competitive with producing ethanol from corn, and at the same time earn a 15 percent return for the owners of the plant, one of the major coproducts, lignin, would have to sell for $0.21 to $0.24 per pound. Identification of a suitable lignin market, a rise in petroleum prices, or restricting fossil-based carbon dioxide emissions will affect the economic feasibility of this particular type of lignin.

  17. Methods of pretreating comminuted cellulosic material with carbonate-containing solutions

    DOE Patents [OSTI]

    Francis, Raymond

    2012-11-06

    Methods of pretreating comminuted cellulosic material with an acidic solution and then a carbonate-containing solution to produce a pretreated cellulosic material are provided. The pretreated material may then be further treated in a pulping process, for example, a soda-anthraquinone pulping process, to produce a cellulose pulp. The pretreatment solutions may be extracted from the pretreated cellulose material and selectively re-used, for example, with acid or alkali addition, for the pretreatment solutions. The resulting cellulose pulp is characterized by having reduced lignin content and increased yield compared to prior art treatment processes.

  18. Process for converting cellulosic materials into fuels and chemicals

    DOE Patents [OSTI]

    Scott, C.D.; Faison, B.D.; Davison, B.H.; Woodward, J.

    1994-09-20

    A process is described for converting cellulosic materials, such as waste paper, into fuels and chemicals utilizing enzymatic hydrolysis of the major constituent of paper, cellulose. A waste paper slurry is contacted by cellulase in an agitated hydrolyzer. The cellulase is produced from a continuous, columnar, fluidized-bed bioreactor utilizing immobilized microorganisms. An attrition mill and a cellobiase reactor are coupled to the agitated hydrolyzer to improve reaction efficiency. The cellulase is recycled by an adsorption process. The resulting crude sugars are converted to dilute product in a fluidized-bed bioreactor utilizing microorganisms. The dilute product is concentrated and purified by utilizing distillation and/or a biparticle fluidized-bed bioreactor system. 1 fig.

  19. Development of Cellulosic Biofuels (LBNL Summer Lecture Series)

    ScienceCinema (OSTI)

    Somerville, Chris [Director, Energy Biosciences Institute

    2011-04-28

    Summer Lecture Series 2007: Chris Somerville, Director of the Energy Biosciences Institute and an award-winning plant biochemist with Berkeley Lab's Physical Biosciences Division, is a leading authority on the structure and function of plant cell walls. He discusses an overview of some of the technical challenges associated with the production of cellulosic biofuels, which will require an improved understanding of a diverse range of topics in fields such as agronomy, chemical engineering, microbiology, structural biology, genomics, environmental sciences, and socioeconomics.

  20. NREL, Chevron Establish Research Alliance to Advance Cellulosic Biofuels -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News Releases | NREL NREL, Chevron Establish Research Alliance to Advance Cellulosic Biofuels Collaboration to focus on next-generation production technologies for renewable fuels October 4, 2006 Chevron Corporation (NYSE: CVX) and the U.S. Department of Energy's National Renewable Energy Laboratory (NREL), headquartered in Golden, Colo., today announced a strategic research alliance to advance the development of renewable transportation fuels. Chevron Technology Ventures LLC (CTV), a

  1. Watershed Scale Optimization to Meet Sustainable Cellulosic Energy Crop Demands

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Watershed Scale Optimization to Meet Sustainable Cellulosic Energy Crop Demands March 23, 2015 Analysis and Sustainability Peer Review Drs. Indrajeet Chaubey and Ben Gramig Purdue University This presentation does not contain any proprietary, confidential, or otherwise restricted information Goal Statement 2 * Overall goal is to conduct a watershed-scale sustainability assessment of multiple energy crops and removal of crop residues * Assessment conducted in two watersheds representative of

  2. Method for producing ethanol and co-products from cellulosic biomass

    DOE Patents [OSTI]

    Nguyen, Quang A

    2013-10-01

    The present invention generally relates to processes for production of ethanol from cellulosic biomass. The present invention also relates to production of various co-products of preparation of ethanol from cellulosic biomass. The present invention further relates to improvements in one or more aspects of preparation of ethanol from cellulosic biomass including, for example, improved methods for cleaning biomass feedstocks, improved acid impregnation, and improved steam treatment, or "steam explosion."

  3. NREL Finds a New Cellulose Digestion Mechanism by a Fast-eating Enzyme -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News Releases | NREL Finds a New Cellulose Digestion Mechanism by a Fast-eating Enzyme CelA digests cellulose faster than enzymes from commercial preparations January 2, 2014 Researchers at the Energy Department's National Renewable Energy Laboratory (NREL) have discovered that an enzyme from a microorganism first found in the Valley of Geysers on the Kamchatka Peninsula in Russia in 1990 can digest cellulose almost twice as fast as the current leading component cellulase enzyme on the

  4. The Effect of Cellulose Crystal Structure and Solid-State Morphology on the Activity of Cellulases

    SciTech Connect (OSTI)

    Stipanovic, Arthur J

    2014-11-17

    Consistent with the US-DOE and USDA Roadmap objective of producing ethanol and chemicals from cellulosic feedstocks more efficiently, a three year research project entitled The Effect of Cellulose Crystal Structure and Solid-State Morphology on the Activity of Cellulases was initiated in early 2003 under DOE sponsorship (Project Number DE-FG02-02ER15356). A three year continuation was awarded in June 2005 for the period September 15, 2005 through September 14, 2008. The original goal of this project was to determine the effect of cellulose crystal structure, including allomorphic crystalline form (Cellulose I, II, III, IV and sub-allomorphs), relative degree of crystallinity and crystallite size, on the activity of different types of genetically engineered cellulase enzymes to provide insight into the mechanism and kinetics of cellulose digestion by pure enzymes rather than complex mixtures. We expected that such information would ultimately help enhance the accessibility of cellulose to enzymatic conversion processes thereby creating a more cost-effective commercial process yielding sugars for fermentation into ethanol and other chemical products. Perhaps the most significant finding of the initial project phase was that conversion of native bacterial cellulose (Cellulose I; BC-I) to the Cellulose II (BC-II) crystal form by aqueous NaOH pretreatment provided an increase in cellulase conversion rate approaching 2-4 fold depending on enzyme concentration and temperature, even when initial % crystallinity values were similar for both allomorphs.

  5. Department of Energy Delivers on R&D Targets around Cellulosic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Users Facility, where scientists led pilot-scale projects for two cellulosic ... Biochemical Waterfall Chart of Minimum Ethanol Selling Price (in 2007 dollars per gallon). ...

  6. WPN 97-6: Approval of Wet-Spray Cellulose Insulation as an Allowable Weatherization Material

    Broader source: Energy.gov [DOE]

    To provide states with information about the approved use of wet-spray cellulose for use in the low-income Weatherization Assistance Program.

  7. Saccharification of wheat-straw cellulose by enzymatic hydrolysis following fermentative and chemical pretreatment

    SciTech Connect (OSTI)

    Detroy, R.W.; Lindenfelser, L.A.; St. Julian, G. Jr.; Orton, W.L.

    1980-01-01

    In our investigations, wheat straw fermentations were conducted using the edible, white-rot fungus commonly known as the oyster mushroom, Pleurotus ostreatus (Jacq. ex Fr.) Kummer, as fermentation organism. Fermented substrates were evaluated for degree of lignin and cellulose degradation and saccharification. In addition, since our primary objective in the P. ostreatus fermentation was to increase the amount of availabile cellulose in straw for further fermentation, cellulose hydrolysis rates were determined. Cellulose conversion to fermentable sugar was also determined on chemically modified straws by subjecting them to enzymatic hydrolysis. Progress and extent of delignification was follwed also by scanning electron microscopy (SEM), and structural changes were determined in treated-straw substrates.

  8. Progressive structural changes of Avicel, bleached softwood, and bacterial cellulose during enzymatic hydrolysis

    SciTech Connect (OSTI)

    Kafle, Kabindra; Shin, Heenae; Lee, Christopher M.; Park, Sunkyu; Kim, Seong H.

    2015-10-14

    A comprehensive picture of structural changes of cellulosic biomass during enzymatic hydrolysis is essential for a better understanding of enzymatic actions and development of more efficient enzymes. In this study, a suite of analytical techniques including sum frequency generation (SFG) spectroscopy, infrared (IR) spectroscopy, x-ray diffraction (XRD), and x-ray photoelectron spectroscopy (XPS) were employed for lignin-free model biomass samplesAvicel, bleached softwood, and bacterial celluloseto find correlations between the decrease in hydrolysis rate over time and the structural or chemical changes of biomass during the hydrolysis reaction. The results showed that the decrease in hydrolysis rate over time appears to correlate with the irreversible deposition of non-cellulosic species (either reaction side products or denatured enzymes, or both) on the cellulosic substrate surface. The crystallinity, degree of polymerization, and meso-scale packing of cellulose do not seem to positively correlate with the decrease in hydrolysis rate observed for all three substrates tested in this study. Moreover, it was also found that the cellulose I? component of the bacterial cellulose is preferentially hydrolyzed by the enzyme than the cellulose I? component.

  9. Kits and methods of detection using cellulose binding domain fusion proteins

    DOE Patents [OSTI]

    Shoseyov, O.; Yosef, K.

    1998-04-14

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques. 16 figs.

  10. Compositions and methods comprising cellulase variants with reduced affinity to non-cellulosic materials

    DOE Patents [OSTI]

    Cascao-Pereira, Luis G; Kaper, Thijs; Kelemen, Bradley R; Liu, Amy D

    2015-04-07

    The present disclosure relates to cellulase variants. In particular the present disclosure relates to cellulase variants having reduced binding to non-cellulosic materials. Also described are nucleic acids encoding the cellulase, compositions comprising said cellulase, methods of identifying cellulose variants and methods of using the compositions.

  11. Kits and methods of detection using cellulose binding domain fusion proteins

    DOE Patents [OSTI]

    Shoseyov, Oded (Karmey Yosef, IL)

    1998-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  12. Cellulosic Ethanol Technology on Track to Being Competitive With Other Transportation Fuels (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-02-01

    Researchers at the National Renewable Energy Laboratory (NREL) have been driving down the cost of cellulosic ethanol and overcoming the technical challenges that surround it-major milestones toward the Department of Energy (DOE) goal of making cellulosic ethanol cost-competitive by 2012.

  13. Compositions and methods comprising cellulase variants with reduced affinity to non-cellulosic materials

    DOE Patents [OSTI]

    Cascao-Pereira, Luis G.; Kaper, Thijs; Kelemen, Bradley R; Liu, Amy D.

    2012-08-07

    The present disclosure relates to cellulase variants. In particular the present disclosure relates to cellulase variants having reduced binding to non-cellulosic materials. Also described are nucleic acids encoding the cellulase, compositions comprising said cellulase, methods of identifying cellulose variants and methods of using the compositions.

  14. Cellulose Nanomaterials: The Sustainable Material of Choice for the 21st Century

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Theodore H. Wegner, Ph.D. Assistant Director USDA Forest Service Forest Products Laboratory June 26, 2012 Cellulose Nanomaterials: The Sustainable Material of Choice for the 21 st Century Sustainable Nanomaterials Workshop * Wood: a Sustainable & Renewable Material * Cellulosic Nanomaterials From Wood Overview 3 Top 5 forested countries: Russian Federation........................809 million ha.......20.6% world's forests Brazil................................................520 million

  15. Cellulosic Biomass Feedstocks and Logistics for Ethanol Production

    SciTech Connect (OSTI)

    J. Richard Hess; Christopher T. Wright; Kevin L. Kenney

    2007-10-01

    The economic competitiveness of cellulosic ethanol production is highly dependent on feedstock cost, which constitutes 3550% of the total ethanol production cost, depending on various geographical factors and the types of systems used for harvesting, collecting, preprocessing, transporting, and handling the material. Consequently, as the deployment of cellulosic ethanol biorefi neries approaches, feedstock cost and availability are the driving factors that infl uence pioneer biorefi nery locations and will largely control the rate at which this industry grows. Initial scenarios were postulated to develop a pioneer dry feedstock supply system design case as a demonstration of the current state of technology. Based on this pioneer design, advanced scenarios were developed to determine key cost barriers, needed supply system improvements, and technology advancements to achieve government and private sector cost targets. Analysis of the pioneer supply system resulted in a delivered feedstock cost to the throat of the pretreatment reactor of $37.00 per dry tonne (2002 $). Pioneer supply systems will start by using current infrastructure and technologies and be individually designed for biorefi neries using specifi c feedstock types and varieties based on local geographic conditions. As the industry develops and cost barriers are addressed, the supply systems will incorporate advanced technologies that will eliminate downstream diversity and provide a uniform, tailored feedstock for multiple biorefi neries located in different regions.

  16. Development of efficient, integrated cellulosic biorefineries : LDRD final report.

    SciTech Connect (OSTI)

    Teh, Kwee-Yan; Hecht, Ethan S.; Shaddix, Christopher R.; Buffleben, George M.; Dibble, Dean C.; Lutz, Andrew E.

    2010-09-01

    Cellulosic ethanol, generated from lignocellulosic biomass sources such as grasses and trees, is a promising alternative to conventional starch- and sugar-based ethanol production in terms of potential production quantities, CO{sub 2} impact, and economic competitiveness. In addition, cellulosic ethanol can be generated (at least in principle) without competing with food production. However, approximately 1/3 of the lignocellulosic biomass material (including all of the lignin) cannot be converted to ethanol through biochemical means and must be extracted at some point in the biochemical process. In this project we gathered basic information on the prospects for utilizing this lignin residue material in thermochemical conversion processes to improve the overall energy efficiency or liquid fuel production capacity of cellulosic biorefineries. Two existing pretreatment approaches, soaking in aqueous ammonia (SAA) and the Arkenol (strong sulfuric acid) process, were implemented at Sandia and used to generated suitable quantities of residue material from corn stover and eucalyptus feedstocks for subsequent thermochemical research. A third, novel technique, using ionic liquids (IL) was investigated by Sandia researchers at the Joint Bioenergy Institute (JBEI), but was not successful in isolating sufficient lignin residue. Additional residue material for thermochemical research was supplied from the dilute-acid simultaneous saccharification/fermentation (SSF) pilot-scale process at the National Renewable Energy Laboratory (NREL). The high-temperature volatiles yields of the different residues were measured, as were the char combustion reactivities. The residue chars showed slightly lower reactivity than raw biomass char, except for the SSF residue, which had substantially lower reactivity. Exergy analysis was applied to the NREL standard process design model for thermochemical ethanol production and from a prototypical dedicated biochemical process, with process data supplied by a recent report from the National Research Council (NRC). The thermochemical system analysis revealed that most of the system inefficiency is associated with the gasification process and subsequent tar reforming step. For the biochemical process, the steam generation from residue combustion, providing the requisite heating for the conventional pretreatment and alcohol distillation processes, was shown to dominate the exergy loss. An overall energy balance with different potential distillation energy requirements shows that as much as 30% of the biomass energy content may be available in the future as a feedstock for thermochemical production of liquid fuels.

  17. Progressive structural changes of Avicel, bleached softwood, and bacterial cellulose during enzymatic hydrolysis

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kafle, Kabindra; Shin, Heenae; Lee, Christopher M.; Park, Sunkyu; Kim, Seong H.

    2015-10-14

    A comprehensive picture of structural changes of cellulosic biomass during enzymatic hydrolysis is essential for a better understanding of enzymatic actions and development of more efficient enzymes. In this study, a suite of analytical techniques including sum frequency generation (SFG) spectroscopy, infrared (IR) spectroscopy, x-ray diffraction (XRD), and x-ray photoelectron spectroscopy (XPS) were employed for lignin-free model biomass samples—Avicel, bleached softwood, and bacterial cellulose—to find correlations between the decrease in hydrolysis rate over time and the structural or chemical changes of biomass during the hydrolysis reaction. The results showed that the decrease in hydrolysis rate over time appears to correlatemore » with the irreversible deposition of non-cellulosic species (either reaction side products or denatured enzymes, or both) on the cellulosic substrate surface. The crystallinity, degree of polymerization, and meso-scale packing of cellulose do not seem to positively correlate with the decrease in hydrolysis rate observed for all three substrates tested in this study. Moreover, it was also found that the cellulose Iα component of the bacterial cellulose is preferentially hydrolyzed by the enzyme than the cellulose Iβ component.« less

  18. Recyclable organic solar cells on substrates comprising cellulose nanocrystals (CNC)

    DOE Patents [OSTI]

    Kippelen, Bernard; Fuentes-Hernandez, Canek; Zhou, Yinhua; Moon, Robert; Youngblood, Jeffrey P

    2015-12-01

    Recyclable organic solar cells are disclosed herein. Systems and methods are further disclosed for producing, improving performance, and for recycling the solar cells. In certain example embodiments, the recyclable organic solar cells disclosed herein include: a first electrode; a second electrode; a photoactive layer disposed between the first electrode and the second electrode; an interlayer comprising a Lewis basic oligomer or polymer disposed between the photoactive layer and at least a portion of the first electrode or the second electrode; and a substrate disposed adjacent to the first electrode or the second electrode. The interlayer reduces the work function associated with the first or second electrode. In certain example embodiments, the substrate comprises cellulose nanocrystals that can be recycled. In certain example embodiments, one or more of the first electrode, the photoactive layer, and the second electrode may be applied by a film transfer lamination method.

  19. Fair Oaks Dairy Farms Cellulosic Ethanol Technology Review Summary

    SciTech Connect (OSTI)

    Andrew Wold; Robert Divers

    2011-06-23

    At Fair Oaks Dairy, dried manure solids (''DMS'') are currently used as a low value compost. United Power was engaged to evaluate the feasibility of processing these DMS into ethanol utilizing commercially available cellulosic biofuels conversion platforms. The Fair Oaks Dairy group is transitioning their traditional ''manure to methane'' mesophilic anaerobic digester platform to an integrated bio-refinery centered upon thermophilic digestion. Presently, the Digested Manure Solids (DMS) are used as a low value soil amendment (compost). United Power evaluated the feasibility of processing DMS into higher value ethanol utilizing commercially available cellulosic biofuels conversion platforms. DMS was analyzed and over 100 potential technology providers were reviewed and evaluated. DMS contains enough carbon to be suitable as a biomass feedstock for conversion into ethanol by gasification technology, or as part of a conversion process that would include combined heat and power. In the first process, 100% of the feedstock is converted into ethanol. In the second process, the feedstock is combusted to provide heat to generate electrical power supporting other processes. Of the 100 technology vendors evaluated, a short list of nine technology providers was developed. From this, two vendors were selected as finalists (one was an enzymatic platform and one was a gasification platform). Their selection was based upon the technical feasibility of their systems, engineering expertise, experience in commercial or pilot scale operations, the ability or willingness to integrate the system into the Fair Oaks Biorefinery, the know-how or experience in producing bio-ethanol, and a clear path to commercial development.

  20. Recovery and reuse of cellulase catalyst in an exzymatic cellulose hydrolysis process

    DOE Patents [OSTI]

    Woodward, Jonathan (Oak Ridge, TN)

    1989-01-01

    A process for recovering cellulase from the hydrolysis of cellulose, and reusing it in subsequent hydrolyois procedures. The process utilizes a commercial adsorbent that efficiently removes cellulase from reaction products which can be easily removed by simple decantation.

  1. EA-1705: Construction and Operation of a Proposed Cellulosic Biorefinery, Mascoma Corporation, Kinross Charter Township, Michigan

    Broader source: Energy.gov [DOE]

    The frontier Project consists of the design, construction and operation of a biorefinery producing ethanol and other co-products from cellulosic materials utilizing a proprietary pretreatment and fermentation process.

  2. Modified cellulose synthase gene from Arabidopsis thaliana confers herbicide resistance to plants

    DOE Patents [OSTI]

    Somerville, Chris R. (Portola Valley, CA); Scheible, Wolf (Golm, DE)

    2007-07-10

    Cellulose synthase ("CS"), a key enzyme in the biosynthesis of cellulose in plants is inhibited by herbicides comprising thiazolidinones such as 5-tert-butyl-carbamoyloxy-3-(3-trifluromethyl)phenyl-4-thiazolidinone (TZ), isoxaben and 2,6-dichlorobenzonitrile (DCB). Two mutant genes encoding isoxaben and TZ-resistant cellulose synthase have been isolated from isoxaben and TZ-resistant Arabidopsis thaliana mutants. When compared with the gene coding for isoxaben or TZ-sensitive cellulose synthase, one of the resistant CS genes contains a point mutation, wherein glycine residue 998 is replaced by an aspartic acid. The other resistant mutation is due to a threonine to isoleucine change at amino acid residue 942. The mutant CS gene can be used to impart herbicide resistance to a plant; thereby permitting the utilization of the herbicide as a single application at a concentration which ensures the complete or substantially complete killing of weeds, while leaving the transgenic crop plant essentially undamaged.

  3. Evaluation of Exothermic Reactions from Bulk-Vitrification Melter Feeds Containing Cellulose

    SciTech Connect (OSTI)

    Scheele, Randall D.; McNamara, Bruce K.; Bagaasen, Larry M.; Bos, Stanley J.; Kozelisky, Anne E.; Berry, Pam

    2007-06-25

    PNNL has demonstrated that cellulose effectively reduces the amount of molten ionic salt during Bulk Vitrification of simulated Hanford Low Level Waste (LLW). To address concerns about the potential reactivity of cellulose-LLW, PNNL used thermogravimetric analysis, differential thermal analysis, and accelerating rate calorimetry to determine in these preliminary studies that these mixtures will support a self-sustaining reaction if heated to 110C at adiabatic conditions. Additional testing is recommended.

  4. Microbial Fuel Cells for Recycle of Process Water from Cellulosic Ethanol

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biorefineries - Energy Innovation Portal Microbial Fuel Cells for Recycle of Process Water from Cellulosic Ethanol Biorefineries Oak Ridge National Laboratory Contact ORNL About This Technology Technology Marketing SummaryA method was invented at ORNL for removing inhibitor compounds from process water in biomass-to-ethanol production. This invention can also be used to produce power for other industrial processes. DescriptionLarge amounts of water are used in the processing of cellulosic

  5. Long-run effects of falling cellulosic ethanol production costs on the US agricultural economy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bryant, Henry L.; Campiche, Jody L.; Richardson, James W.

    2010-03-09

    Renewable energy production has been expanding at a rapid pace. New advances in cellulosic ethanol technologies have the potential to displace the use of petroleum as a transportation fuel, and could have significant effects on both the agricultural economy and the environment. In this letter, the effects of falling cellulosic ethanol production costs on the mix of ethanol feedstocks employed and on the US agricultural economy are examined. Results indicate that, as expected, cellulosic ethanol production increases by a substantial amount as conversion technology improves. Corn production increases initially following the introduction of cellulosic technology, because producers enjoy new revenuemore » from sales of corn stover. After cellulosic ethanol production becomes substantially cheaper, however, acres are shifted from corn production to all other agricultural commodities. Essentially, this new technology could facilitate the exploitation of a previously under-employed resource (corn stover), resulting in an improvement in overall welfare. Thus in the most optimistic scenario considered, 68% of US ethanol is derived from cellulosic sources, coarse grain production is reduced by about 2%, and the prices of all food commodities are reduced modestly.« less

  6. Long-run effects of falling cellulosic ethanol production costs on the US agricultural economy

    SciTech Connect (OSTI)

    Bryant, Henry L.; Campiche, Jody L.; Richardson, James W.

    2010-03-09

    Renewable energy production has been expanding at a rapid pace. New advances in cellulosic ethanol technologies have the potential to displace the use of petroleum as a transportation fuel, and could have significant effects on both the agricultural economy and the environment. In this letter, the effects of falling cellulosic ethanol production costs on the mix of ethanol feedstocks employed and on the US agricultural economy are examined. Results indicate that, as expected, cellulosic ethanol production increases by a substantial amount as conversion technology improves. Corn production increases initially following the introduction of cellulosic technology, because producers enjoy new revenue from sales of corn stover. After cellulosic ethanol production becomes substantially cheaper, however, acres are shifted from corn production to all other agricultural commodities. Essentially, this new technology could facilitate the exploitation of a previously under-employed resource (corn stover), resulting in an improvement in overall welfare. Thus in the most optimistic scenario considered, 68% of US ethanol is derived from cellulosic sources, coarse grain production is reduced by about 2%, and the prices of all food commodities are reduced modestly.

  7. Isolation of levoglucosan from pyrolysis oil derived from cellulose

    DOE Patents [OSTI]

    Moens, L.

    1994-12-06

    High purity levoglucosan is obtained from pyrolysis oil derived from cellulose by: mixing pyrolysis oil with water and a basic metal hydroxide, oxide, or salt in amount sufficient to elevate pH values to a range of from about 12 to about 12.5, and adding an amount of the hydroxide, oxide, or salt in excess of the amount needed to obtain the pH range until colored materials of impurities from the oil are removed and a slurry is formed; drying the slurry azeotropically with methyl isobutyl ketone solvent to form a residue, and further drying the residue by evaporation; reducing the residue into a powder; continuously extracting the powder residue with ethyl acetate to provide a levoglucosan-rich extract; and concentrating the extract by removing ethyl acetate to provide crystalline levoglucosan. Preferably, Ca(OH)[sub 2] is added to adjust the pH to the elevated values, and then Ca(OH)[sub 2] is added in an excess amount needed. 3 figures.

  8. Cellulose triacetate based novel optical sensor for uranium estimation

    SciTech Connect (OSTI)

    Joshi, J.M.; Pathak, P.N.; Pandey, A.K.; Manchanda, V.K.

    2008-07-01

    A cellulose triacetate (CTA) based optode has been developed by immobilizing tricapryl-methyl ammonium chloride (Aliquat 336) as the extractant and 2-(5-bromo-2-pyridylazo)-5- diethyl-aminophenol (Br-PADAP) as the chromophore. The optode changes color (from yellow to magenta) due to uranium uptake in bicarbonate medium ({approx}10{sup -4} M) at pH 7-8 in the presence of triethanolamine (TEA) buffer. The detection limit of the optode film (dimension: 3 cm x 1 cm) was determined to be {approx}0.3 {mu}g/mL for a 15 mL pure uranium sample at pH 7-8 (in TEA buffer). The effects of experimental parameters have been evaluated in terms of maximum uptake of U(VI), minimum response time, and reproducibility and stability of the Br-PADAP-U(VI ) complex formed in the optode matrix. The applicability of the optimized optode has been examined in the effluent samples obtained during magnesium diuranate precipitation step following the TBP purification cycle. (authors)

  9. Isolation of levoglucosan from pyrolysis oil derived from cellulose

    DOE Patents [OSTI]

    Moens, Luc (Lakewood, CO)

    1994-01-01

    High purity levoglucosan is obtained from pyrolysis oil derived from cellulose by: mixing pyrolysis oil with water and a basic metal hydroxide, oxide, or salt in amount sufficient to elevate pH values to a range of from about 12 to about 12.5, and adding an amount of the hydroxide, oxide, or salt in excess of the amount needed to obtain the pH range until colored materials of impurities from the oil are removed and a slurry is formed; drying the slurry azeotropically with methyl isobutyl ketone solvent to form a residue, and further drying the residue by evaporation; reducing the residue into a powder; continuously extracting the powder residue with ethyl acetate to provide a levoglucosan-rich extract; and concentrating the extract by removing ethyl acetate to provide crystalline levoglucosan. Preferably, Ca(OH).sub.2 is added to adjust the pH to the elevated values, and then Ca(OH).sub.2 is added in an excess amount needed.

  10. ZeaChem Pilot Project: High-Yield Hybrid Cellulosic Ethanol Process Using High-Impact Feedstock for Commercialization

    Broader source: Energy.gov [DOE]

    This pilot-scale integrated biorefinery will produce 250,000 gallons per year of cellulosic ethanol when running at full operational status.

  11. Results from tests of DuPont crossflow filter

    SciTech Connect (OSTI)

    Steimke, J.L.

    2000-05-05

    Crossflow filtration will be used to filter radioactive waste slurry as part of the Late Wash Process.

  12. Cationic quaternization of cellulose with methacryloyloxy ethyl trimethyl ammonium chloride via ATRP method

    SciTech Connect (OSTI)

    Supeno; Daik, Rusli; El-Sheikh, Said M.

    2014-09-03

    The synthesis of a cationic cellulose copolymer from cellulose macro-initiator (MCC-BiB) and quaternary compound monomer (METMA) via atom transfer radical polymerization (ATRP) was studied. By using dimethylformamide (DMF), the optimum condition for successful synthesis was at the mole ratio of MCC-BIB:Catalyst:METMA = 1:1:26. The highest copolymer recovery was 93.2 % for 6 h and at 40C. The copolymer was insoluble in weak polar solvents such as THF and DMF but soluble in methanol and water. The chemistry of cellulose copolymer was confirmed by the FTIR and TGA in which the METMA monomer was used as a reference. The absence of CC bond in the CiB-g-METMA spectrum indicated that graft copolymerization occurred.

  13. Cellulose and cellobiose: adventures of a wandering organic chemist in theoretical chemistry

    SciTech Connect (OSTI)

    Baluyut, John

    2012-04-03

    The energies arising from the rotation of free hydroxyl groups in the central glucose residue of a cellulose crystalline assembly, calculated using RHF, DFT, and FMO2/MP2 methods, will be presented. In addition, interactions of this central glucose residue with some of the surrounding residues (selected on the basis of the interaction strengths) are analyzed. The mechanism of acid-catalyzed hydrolysis of cellobiose, which is the repeating unit of cellulose. Energies corresponding to the different steps of this mechanism calculated using RHF and DFT are compared with those previously reported using molecular dynamics calculations and with experimental data.

  14. Method of separating lignocellulosic material into lignin, cellulose and dissolved sugars

    DOE Patents [OSTI]

    Black, Stuart K. (Denver, CO); Hames, Bonnie R. (Westminster, CO); Myers, Michele D. (Dacono, CO)

    1998-01-01

    A method for separating lignocellulosic material into (a) lignin, (b) cellulose, and (c) hemicellulose and dissolved sugars. Wood or herbaceous biomass is digested at elevated temperature in a single-phase mixture of alcohol, water and a water-immiscible organic solvent (e.g., a ketone). After digestion, the amount of water or organic solvent is adjusted so that there is phase separation. The lignin is present in the organic solvent, the cellulose is present in a solid pulp phase, and the aqueous phase includes hemicellulose and any dissolved sugars.

  15. Method of separating lignocellulosic material into lignin, cellulose and dissolved sugars

    DOE Patents [OSTI]

    Black, S.K.; Hames, B.R.; Myers, M.D.

    1998-03-24

    A method is described for separating lignocellulosic material into (a) lignin, (b) cellulose, and (c) hemicellulose and dissolved sugars. Wood or herbaceous biomass is digested at elevated temperature in a single-phase mixture of alcohol, water and a water-immiscible organic solvent (e.g., a ketone). After digestion, the amount of water or organic solvent is adjusted so that there is phase separation. The lignin is present in the organic solvent, the cellulose is present in a solid pulp phase, and the aqueous phase includes hemicellulose and any dissolved sugars.

  16. Process Design of Wastewater Treatment for the NREL Cellulosic Ethanol Model

    SciTech Connect (OSTI)

    Steinwinder, T.; Gill, E.; Gerhardt, M.

    2011-09-01

    This report describes a preliminary process design for treating the wastewater from NREL's cellulosic ethanol production process to quality levels required for recycle. In this report Brown and Caldwell report on three main tasks: 1) characterization of the effluent from NREL's ammonia-conditioned hydrolyzate fermentation process; 2) development of the wastewater treatment process design; and 3) development of a capital and operational cost estimate for the treatment concept option. This wastewater treatment design was incorporated into NREL's cellulosic ethanol process design update published in May 2011 (NREL/TP-5100-47764).

  17. Preliminary Economics for the Production of Pyrolysis Oil from Lignin in a Cellulosic Ethanol Biorefinery

    SciTech Connect (OSTI)

    Jones, Susanne B.; Zhu, Yunhua

    2009-04-01

    Cellulosic ethanol biorefinery economics can be potentially improved by converting by-product lignin into high valued products. Cellulosic biomass is composed mainly of cellulose, hemicellulose and lignin. In a cellulosic ethanol biorefinery, cellulose and hemicellullose are converted to ethanol via fermentation. The raw lignin portion is the partially dewatered stream that is separated from the product ethanol and contains lignin, unconverted feed and other by-products. It can be burned as fuel for the plant or can be diverted into higher-value products. One such higher-valued product is pyrolysis oil, a fuel that can be further upgraded into motor gasoline fuels. While pyrolysis of pure lignin is not a good source of pyrolysis liquids, raw lignin containing unconverted feed and by-products may have potential as a feedstock. This report considers only the production of the pyrolysis oil and does not estimate the cost of upgrading that oil into synthetic crude oil or finished gasoline and diesel. A techno-economic analysis for the production of pyrolysis oil from raw lignin was conducted. comparing two cellulosic ethanol fermentation based biorefineries. The base case is the NREL 2002 cellulosic ethanol design report case where 2000 MTPD of corn stover is fermented to ethanol (NREL 2002). In the base case, lignin is separated from the ethanol product, dewatered, and burned to produce steam and power. The alternate case considered in this report dries the lignin, and then uses fast pyrolysis to generate a bio-oil product. Steam and power are generated in this alternate case by burning some of the corn stover feed, rather than fermenting it. This reduces the annual ethanol production rate from 69 to 54 million gallons/year. Assuming a pyrolysis oil value similar to Btu-adjusted residual oil, the estimated ethanol selling price ranges from $1.40 to $1.48 (2007 $) depending upon the yield of pyrolysis oil. This is considerably above the target minimum ethanol selling price of $1.33 for the 2012 goal case process as reported in the 2007 State of Technology Model (NREL 2008). Hence, pyrolysis oil does not appear to be an economically attractive product in this scenario. Further research regarding fast pyrolysis of raw lignin from a cellulosic plant as an end product is not recommended. Other processes, such as high-pressure liquefaction or wet gasification, and higher value products, such as gasoline and diesel from fast pyrolysis oil should be considered in future studies.

  18. Chapter 18: Understanding the Developing Cellulosic Biofuels Industry through Dynamic Modeling

    SciTech Connect (OSTI)

    Newes, E.; Inman, D.; Bush, B.

    2011-01-01

    The purpose of this chapter is to discuss a system dynamics model called the Biomass Scenario Model (BSM), which is being developed by the U.S. Department of Energy as a tool to better understand the interaction of complex policies and their potential effects on the burgeoning cellulosic biofuels industry in the United States. The model has also recently been expanded to include advanced conversion technologies and biofuels (i.e., conversion pathways that yield biomass-based gasoline, diesel, jet fuel, and butanol), but we focus on cellulosic ethanol conversion pathways here. The BSM uses a system dynamics modeling approach (Bush et al., 2008) built on the STELLA software platform.

  19. Recovery and reuse of cellulase catalyst in an enzymatic cellulose hydrolysis process

    DOE Patents [OSTI]

    Woodward, J.

    1987-09-18

    A process for recovering cellulase from the hydrolysis of cellulose, and reusing it in subsequent hydrolyois procedures. The process utilizes a commercial adsorbent that efficiently removes cellulase from reaction products which can be easily removed by simple decantation. 1 fig., 4 tabs.

  20. Energy Department Announces $9 Million to Improve Sustainability of Cellulosic Bioenergy Systems

    Broader source: Energy.gov [DOE]

    The Energy Department today announced up to $9 million for the design of sustainable bioenergy systems that maintain or enhance the environmental and socio-economic sustainability of cellulosic bioenergy through the improvement of feedstock production, logistics systems, and technology development.

  1. The structure of the catalytic domain of a plant cellulose synthase and its assembly into dimers

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Olek, Anna T.; Rayon, Catherine; Makowski, Lee; Kim, Hyung Rae; Ciesielski, Peter; Badger, John; Paul, Lake N.; Ghosh, Subhangi; Kihara, Daisuke; Crowley, Michael; et al

    2014-07-10

    Cellulose microfibrils are para-crystalline arrays of several dozen linear (1→4)-β-d-glucan chains synthesized at the surface of the cell membrane by large, multimeric complexes of synthase proteins. Recombinant catalytic domains of rice (Oryza sativa) CesA8 cellulose synthase form dimers reversibly as the fundamental scaffold units of architecture in the synthase complex. Specificity of binding to UDP and UDP-Glc indicates a properly folded protein, and binding kinetics indicate that each monomer independently synthesizes single glucan chains of cellulose, i.e., two chains per dimer pair. In contrast to structure modeling predictions, solution x-ray scattering studies demonstrate that the monomer is a two-domain, elongatedmore » structure, with the smaller domain coupling two monomers into a dimer. The catalytic core of the monomer is accommodated only near its center, with the plant-specific sequences occupying the small domain and an extension distal to the catalytic domain. This configuration is in stark contrast to the domain organization obtained in predicted structures of plant CesA. As a result, the arrangement of the catalytic domain within the CesA monomer and dimer provides a foundation for constructing structural models of the synthase complex and defining the relationship between the rosette structure and the cellulose microfibrils they synthesize.« less

  2. Method of increasing the rate of hydration of activated hydroethyl cellulose compositions

    SciTech Connect (OSTI)

    House, R. F.; Hoover, L. D.

    1984-10-09

    A method of producing a well servicing fluid containing zinc bromide in which an activated hydroxyethyl cellulose is either admixed with a zinc bromide solution containing above about 30% by weight zinc bromide, or, in the alternative, is admixed with a non-zinc bromide containing solution to produce a viscosified solution which is then admixed with a zinc bromide containing solution.

  3. EA-1694: Department of Energy Loan Guarantee to Highlands Ethanol, LLC, for the Cellulosic Ethanol Facility in Highlands County, Florida

    Office of Energy Efficiency and Renewable Energy (EERE)

    This EA will evaluate the environmental impacts of a proposal to issue a Federal loan guarantee to Highlands Ethanol, LLC, for a cellulosic ethanol facility in Highlands County, Florida. This EA is on hold.

  4. Nonvolatile memory behavior of nanocrystalline cellulose/graphene oxide composite films

    SciTech Connect (OSTI)

    Valentini, L. Cardinali, M.; Fortunati, E.; Kenny, J. M.

    2014-10-13

    With the continuous advance of modern electronics, the demand for nonvolatile memory cells rapidly grows. In order to develop post-silicon electronic devices, it is necessary to find innovative solutions to the eco-sustainability problem of materials for nonvolatile memory cells. In this work, we realized a resistive memory device based on graphene oxide (GO) and GO/cellulose nanocrystals (CNC) thin films. Aqueous solutions of GO and GO with CNC have been prepared and drop cast between two metal electrodes. Such thin-film based devices showed a transition between low and high conductivity states upon the forward and backward sweeping of an external electric field. This reversible current density transition behavior demonstrates a typical memory characteristic. The obtained results open an easy route for electronic information storage based on the integration of nanocrystalline cellulose onto graphene based devices.

  5. Method of increasing the rate of hydration of activated hydroxyethyl cellulose compositions

    SciTech Connect (OSTI)

    House, R.F.; Hoover, L.D.

    1987-08-11

    This patent describes a method of producing a well servicing fluid wherein a first solution containing zing bromide is mixed with at least one second solution having dissolved therein a salt selected from the group consisting of calcium chloride, calcium bromide, and mixtures thereof, the improvement which comprises the following steps in the order indicated: (a) admixing a hydroxyethyl cellulose composition with the second solution to produce a viscosified solution and (b) thereafter admixing the viscosified solution with the first solution containing zinc bromide and having a density of at least 17.0 ppg to give the desired well servicing fluid having a density in the range from about 14.2 ppg to about 18.0 ppg, the hydroxyethyl cellulose being activated prior to admixture so as to substantially hydrate or solubilize in the second solution at ambient temperatures.

  6. Physical Energy Accounting in California: A Case Study of Cellulosic Ethanol Production

    SciTech Connect (OSTI)

    Coughlin, Katie; Fridley, David

    2008-07-17

    California's target for greenhouse gas reduction in part relies on the development of viable low-carbon fuel alternatives to gasoline. It is often assumed that cellulosic ethanol--ethanol made from the structural parts of a plant and not from the food parts--will be one of these alternatives. This study examines the physical viability of a switchgrass-based cellulosic ethanol industry in California from the point of view of the physical requirements of land, water, energy and other material use. Starting from a scenario in which existing irrigated pastureland and fiber-crop land is converted to switchgrass production, the analysis determines the total acreage and water supply available and the resulting total biofuel feedstock output under different assumed yields. The number and location of cellulosic ethanol biorefineries that can be supported is also determined, assuming that the distance from field to biorefinery would be minimized. The biorefinery energy input requirement, available energy from the fraction of biomass not converted to ethanol, and energy output is calculated at various levels of ethanol yields, making different assumptions about process efficiencies. The analysis shows that there is insufficient biomass (after cellulose separation and fermentation into ethanol) to provide all the process energy needed to run the biorefinery; hence, the purchase of external energy such as natural gas is required to produce ethanol from switchgrass. The higher the yield of ethanol, the more external energy is needed, so that the net gains due to improved process efficiency may not be positive. On 2.7 million acres of land planted in switchgrass in this scenario, the switchgrass outputproduces enough ethanol to substitute for only 1.2 to 4.0percent of California's gasoline consumption in 2007.

  7. Thermal properties and use of cellulosic insulation produced from recycled paper

    SciTech Connect (OSTI)

    Yarbrough, D.W.; Wilkes, K.E.

    1996-10-01

    Information regarding the use of building insulation made from recycled paper is summarized. Results of previous experimental studies to determine thermal conductivities, settled density, and flammability are outlined, and calculation methods for thermal resistivity are presented in detail. Other performance factors affecting installed insulation are discussed. Industry data and information on the production, use, and economics of cellulosic insulation for residential and commercial buildings are provided. 34 refs., 4 figs., 1 tab.

  8. Land-use change and greenhouse gas emissions from corn and cellulosic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ethanol | Argonne National Laboratory Land-use change and greenhouse gas emissions from corn and cellulosic ethanol July 16, 2013 Tweet EmailPrint The greenhouse gas (GHG) emissions that may accompany land-use change (LUC) from increased biofuel feedstock production are a source of debate in the discussion of drawbacks and advantages of biofuels. Estimates of LUC GHG emissions focus mainly on corn ethanol and vary widely. Increasing the understanding of LUC GHG impacts associated with both

  9. Making Cellulose More Accessible for Bioconversion | U.S. DOE Office of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science (SC) Making Cellulose More Accessible for Bioconversion Biological and Environmental Research (BER) BER Home About Research Facilities Science Highlights Searchable Archive of BER Highlights External link Benefits of BER Funding Opportunities Biological & Environmental Research Advisory Committee (BERAC) Community Resources Contact Information Biological and Environmental Research U.S. Department of Energy SC-23/Germantown Building 1000 Independence Ave., SW Washington, DC 20585

  10. Cellulosic Biomass Sugars to Advantaged Jet Fuel Presentation for BETO 2015 Project Peer Review

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cellulosic Biomass Sugars to Advantaged Jet Fuel 25 March, 2015 Technology Area Review: Biochemical Conversion Randy Cortright PhD Virent, Inc WBS: 2.4.1.200 This presentation does not contain any proprietary, confidential, or otherwise restricted information © Virent 2015 Slide 2 Goal Statement Project Goal - Integrate Virent's Catalytic BioForming® Process with NREL's Biochemical deconstruction technology to efficiently produce cost effective "drop-in" fuels from corn stover with

  11. Life Cycle Assessment of Switchgrass Cellulosic Ethanol Production in the Wisconsin and Michigan Agricultural Contexts

    SciTech Connect (OSTI)

    Sinistore, Julie C.; Reinemann, D. J.; Izaurralde, Roberto C.; Cronin, Keith R.; Meier, Paul J.; Runge, Troy M.; Zhang, Xuesong

    2015-04-25

    Spatial variability in yields and greenhouse gas emissions from soils has been identified as a key source of variability in life cycle assessments (LCAs) of agricultural products such as cellulosic ethanol. This study aims to conduct an LCA of cellulosic ethanol production from switchgrass in a way that captures this spatial variability and tests results for sensitivity to using spatially averaged results. The Environment Policy Integrated Climate (EPIC) model was used to calculate switchgrass yields, greenhouse gas (GHG) emissions, and nitrogen and phosphorus emissions from crop production in southern Wisconsin and Michigan at the watershed scale. These data were combined with cellulosic ethanol production data via ammonia fiber expansion and dilute acid pretreatment methods and region-specific electricity production data into an LCA model of eight ethanol production scenarios. Standard deviations from the spatial mean yields and soil emissions were used to test the sensitivity of net energy ratio, global warming potential intensity, and eutrophication and acidification potential metrics to spatial variability. Substantial variation in the eutrophication potential was also observed when nitrogen and phosphorus emissions from soils were varied. This work illustrates the need for spatially explicit agricultural production data in the LCA of biofuels and other agricultural products.

  12. The improvement in functional characteristics of eco-friendly composites made of natural rubber and cellulose

    SciTech Connect (OSTI)

    Araki, Kunihiro; Kaneko, Shonosuke; Matsumoto, Koki; Tanaka, Tatsuya; Arao, Yoshihiko; Nagatani, Asahiro

    2015-05-22

    We investigated the efficient use of cellulose to resolve the problem of the depletion of fossil resources. In this study, as the biomass material, the green composite based on natural rubber (NR) and the flake-shaped cellulose particles (FSCP) was produced. In order to further improvement of functional characteristics, epoxidized natural rubber (ENR) was also used instead of NR. The FSCP were produced by mechanical milling in a planetary ball mill with a grinding aid as a cellulose aggregation inhibitor. Moreover, talc and mica particles were used to compare with FSCP. NR and ENR was mixed with vulcanizing agents and then each filler was added to NR compound in an internal mixer. The vulcanizing agents are as follows: stearic acid, zinc oxide, sulfur, and vulcanization accelerator. The functionalities of the composites were evaluated by a vibration-damping experiment and a gas permeability experiment. As a result, we found that FSCP filler has effects similar to (or more than) inorganic filler in vibration-damping and O{sub 2} barrier properties. And then, vibration- damping and O{sub 2} barrier properties of the composite including FSCP was increased with use of ENR. In particular, we found that ENR-50 composite containing 50 phr FSCP has three times as high vibration-damping property as ENR-50 without FSCP.

  13. Integration of Feedstock Assembly System and Cellulosic Ethanol Conversion Models to Analyze Bioenergy System Performance

    SciTech Connect (OSTI)

    Jared M. Abodeely; Douglas S. McCorkle; Kenneth M. Bryden; David J. Muth; Daniel Wendt; Kevin Kenney

    2010-09-01

    Research barriers continue to exist in all phases of the emerging cellulosic ethanol biorefining industry. These barriers include the identification and development of a sustainable and abundant biomass feedstock, the assembly of viable assembly systems formatting the feedstock and moving it from the field (e.g., the forest) to the biorefinery, and improving conversion technologies. Each of these phases of cellulosic ethanol production are fundamentally connected, but computational tools used to support and inform analysis within each phase remain largely disparate. This paper discusses the integration of a feedstock assembly system modeling toolkit and an Aspen Plus conversion process model. Many important biomass feedstock characteristics, such as composition, moisture, particle size and distribution, ash content, etc. are impacted and most effectively managed within the assembly system, but generally come at an economic cost. This integration of the assembly system and the conversion process modeling tools will facilitate a seamless investigation of the assembly system conversion process interface. Through the integrated framework, the user can design the assembly system for a particular biorefinery by specifying location, feedstock, equipment, and unit operation specifications. The assembly system modeling toolkit then provides economic valuation, and detailed biomass feedstock composition and formatting information. This data is seamlessly and dynamically used to run the Aspen Plus conversion process model. The model can then be used to investigate the design of systems for cellulosic ethanol production from field to final product.

  14. Breaking the Biological Barriers to Cellulosic Ethanol: A Joint Research Agenda

    SciTech Connect (OSTI)

    Houghton, John; Weatherwax, Sharlene; Ferrell, John

    2006-06-07

    The Biomass to Biofuels Workshop, held December 79, 2005, was convened by the Department of Energys Office of Biological and Environmental Research in the Office of Science; and the Office of the Biomass Program in the Office of Energy Efficiency and Renewable Energy. The purpose was to define barriers and challenges to a rapid expansion of cellulosic-ethanol production and determine ways to speed solutions through concerted application of modern biology tools as part of a joint research agenda. Although the focus was ethanol, the science applies to additional fuels that include biodiesel and other bioproducts or coproducts having critical roles in any deployment scheme.

  15. Compositions for enhancing hydroysis of cellulosic material by cellulolytic enzyme compositions

    DOE Patents [OSTI]

    Quinlan, Jason; Xu, Feng; Sweeney, Matthew; Johansen, Katja Salomon

    2014-09-30

    The present invention relates to compositions comprising a GH61 polypeptide having cellulolytic enhancing activity and an organic compound comprising a carboxylic acid moiety, a lactone moiety, a phenolic moiety, a flavonoid moiety, or a combination thereof, wherein the combination of the GH61 polypeptide having cellulolytic enhancing activity and the organic compound enhances hydrolysis of a cellulosic material by a cellulolytic enzyme compared to the GH61 polypeptide alone or the organic compound alone. The present invention also relates to methods of using the compositions.

  16. High-Yield Hybrid Cellulosic Ethanol Process Using High-Impact Feedstock

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    a d e b y N a t u r e , R e f i n e d b y Z e a C h e m DOE Bioenergy Technologies Office (BETO) 2015 Project Peer Review High-Yield Hybrid Cellulosic Ethanol Process Using High- Impact Feedstock March 24, 2015 Demonstration and Market Transformation Program Tim Eggeman, Ph.D., P.E. ZeaChem Inc. This presentation does not contain any proprietary, confidential, or otherwise restricted information Goal Statement * Goals of IBR Project: - Mitigate risks so that a 1 st Commercial Plant can be

  17. Rapid response of tree cellulose radiocarbon content to changes in atmospheric /sup 14/CO/sub 2/ concentration

    SciTech Connect (OSTI)

    Grootes, P.M.; Farwell, G.W.; Schmidt, F.H.; Leach, D.D.; Stuiver, M.

    1987-01-01

    A detailed radial profile for the /sup 14/C concentration in tree cellulose, covering growth rings for the years 1962-1964, was obtained for a Sitka spruce of the US Pacific Coast using accelerator mass spectrometry. The tree cellulose /sup 14/C closely follows atmospheric /sup 14/CO/sub 2/ concentrations, responding to changes with a delay of not more than a few weeks. The delay in response is mostly due to the addition of between 13 and 28% of biospheric CO/sub 2/ to the canopy-air CO/sub 2/ used by the tree for stem cellulose. Delayed incorporation and the use of stored photosynthate of the previous fall appear less important. 63 refs., 4 figs., 3 tabs.

  18. Reducing Enzyme Costs Increases the Market Potential of Biofuels (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-08-01

    Cellulosic ethanol prices depend heavily on the cost of the cellulase enzymes used to break down the biomass into fermentable sugars. To reduce these costs, NREL partnered with two leading enzyme companies, Novozymes and Genencor, to engineer new cellulase enzymes that are exceptionally good at breaking down cellulose. Genencor is now part of DuPont Industrial Biosciences.

  19. Develop and Demonstrate the Cellulose to Ethanol Process: Executive Summary of the Final Technical Report, 17 September 1980 - 17 March 1982

    SciTech Connect (OSTI)

    Emert, George H.; Becker, Dana K.; Bevernitz, Kurt J.; Gracheck, Stephen J.; Kienholz, Eldon W.; Rivers, Dougals B.; Zoldak, Bernadette R.; Woodford, Lindley C.

    1982-01-01

    The Biomass Research Center at the University of Arkansas was contracted by the Solar Energy Research Institute to 'Develop and Demonstrate the Cellulose to Ethanol Process.' The purpose of the contract was to accelerate site selection, site specific engineering, and research and development leading to the determination of the feasibility of economically operating a cellulose to ethanol commercial scale plant.

  20. Vertical Integration of Biomass Saccharification of Enzymes for Sustainable Cellulosic Biofuel Production in a Biorefinery

    SciTech Connect (OSTI)

    Manoj Kumar, PhD

    2011-05-09

    Lignocellulosic biomass is the most abundant, least expensive renewable natural biological resource for the production of biobased products and bioenergy is important for the sustainable development of human civilization in 21st century. For making the fermentable sugars from lignocellulosic biomass, a reduction in cellulase production cost, an improvement in cellulase performance, and an increase in sugar yields are all vital to reduce the processing costs of biorefineries. Improvements in specific cellulase activities for non-complexed cellulase mixtures can be implemented through cellulase engineering based on rational design or directed evolution for each cellulase component enzyme, as well as on the reconstitution of cellulase components. In this paper, we will provide DSM's efforts in cellulase research and developments and focus on limitations. Cellulase improvement strategies based on directed evolution using screening on relevant substrates, screening for higher thermal tolerance based on activity screening approaches such as continuous culture using insoluble cellulosic substrates as a powerful selection tool for enriching beneficial cellulase mutants from the large library. We will illustrate why and how thermostable cellulases are vital for economic delivery of bioproducts from cellulosic biomass using biochemical conversion approach.

  1. Integrated cellulosic enzymes hydrolysis and fermentative advanced yeast bioconversion solution ready for biomass biorefineries

    SciTech Connect (OSTI)

    Manoj Kumar, PhD

    2011-05-04

    Lignocellulosic biomass is the most abundant, least expensive renewable natural biological resource for the production of biobased products and bioenergy is important for the sustainable development of human civilization in 21st century. For making the fermentable sugars from lignocellulosic biomass, a reduction in cellulase production cost, an improvement in cellulase performance, and an increase in sugar yields are all vital to reduce the processing costs of biorefineries. Improvements in specific cellulase activities for non-complexed cellulase mixtures can be implemented through cellulase engineering based on rational design or directed evolution for each cellulase component enzyme, as well as on the reconstitution of cellulase components. In this paper, we will provide DSM's efforts in cellulase research and developments and focus on limitations. Cellulase improvement strategies based on directed evolution using screening on relevant substrates, screening for higher thermal tolerance based on activity screening approaches such as continuous culture using insoluble cellulosic substrates as a powerful selection tool for enriching beneficial cellulase mutants from the large library. We will illustrate why and how thermostable cellulases are vital for economic delivery of bioproducts from cellulosic biomass using biochemical conversion approach.

  2. Modification of Corn Starch Ethanol Refinery to Efficiently Accept Various High-Impact Cellulosic Feedstocks

    SciTech Connect (OSTI)

    Derr, Dan

    2013-12-30

    The goal of the Corn-to-Cellulosic Migration (CCM) pilot facility was to demonstrate the implementation of advanced technologies and methods for conversion of non-food, cellulosic feedstocks into ethanol, assess the economics of the facility and evaluate potential environmental benefits for biomass to fuels conversion. The CCM project was comprised of design, build, and operate phases for the CCM pilot facility as well as research & development, and modeling components. The CCM pilot facility was designed to process 1 tonne per day of non-food biomass and biologically convert that biomass to ethanol at a rate of 70 gallons per tonne. The plant demonstrated throughputs in excess of 1 tonne per day for an extended run of 1400 hours. Although target yields were not fully achieved, the continuous operation validated the design and operability of the plant. These designs will permit the design of larger scale operations at existing corn milling operations or for greenfield plants. EdeniQ, a partner in the project and the owner of the pilot plant, continues to operate and evaluate other feedstocks.

  3. Effect of moisture on the traction-separation behavior of cellulose nanocrystal interfaces

    SciTech Connect (OSTI)

    Sinko, Robert; Keten, Sinan

    2014-12-15

    Interfaces and stress transfer between cellulose nanocrystals (CNCs) dictate the mechanical properties of hierarchical cellulose materials such as neat films and nanocomposites. An interesting question that remains is how the behavior of these interfaces changes due to environmental stimuli, most notably moisture. We present analyses on the traction-separation behavior between I? CNC elementary fibrils, providing insight into how the presence of a single atomic layer of water at these interfaces can drastically change the mechanical behavior. We find that molecular water at the interface between hydrophilic CNC surfaces has a negligible effect on the tensile separation adhesion energy. However, when water cannot hydrogen bond easily to the surface (i.e., hydrophobic surface), it tends to maintain hydrogen bonds with other water molecules across the interface and form a capillary bridge that serves to increase the energy required to separate the crystals. Under shear loading, water lowers the energy barriers to sliding by reducing the atomic friction and consequently the interlayer shear modulus between crystals. Our simulations indicate that these nanoscale interfaces and physical phenomena such as interfacial adhesion, interlayer shear properties, and stick-slip friction behavior can be drastically altered by the presence of water.

  4. Improved oxidation resistance of organic/inorganic composite atomic layer deposition coated cellulose nanocrystal aerogels

    SciTech Connect (OSTI)

    Smith, Sean W.; Matthews, David J.; Conley, John F., E-mail: jconley@eecs.oregonstate.edu [School of Electrical Engineering and Computer Science, 1148 Kelley Engineering Center, Oregon State University, Corvallis, Oregon 97331 (United States); Buesch, Christian; Simonsen, John [Department of Wood Science and Engineering, Oregon State University, 119 Richardson Hall, Corvallis, Oregon 97331 (United States)

    2014-07-01

    Cellulose nanocrystal (CNC) aerogels are coated with thin conformal layers of Al{sub 2}O{sub 3} using atomic layer deposition to form hybrid organic/inorganic nanocomposites. Electron probe microanalysis and scanning electron microscopy analysis indicated the Al{sub 2}O{sub 3} penetrated more than 1500??m into the aerogel for extended precursor pulse and exposure/purge times. The measured profile of coated fiber radius versus depth from the aerogel surface agrees well with simulations of precursor penetration depth in modeled aerogel structures. Thermogravimetric analysis shows that Al{sub 2}O{sub 3} coated CNC aerogel nanocomposites do not show significant thermal degradation below 295?C as compared with 175?C for uncoated CNC aerogels, an improvement of over 100?C.

  5. Effects of Plant Cell Wall Matrix Polysaccharides on Bacterial Cellulose Structure Studied with Vibrational Sum Frequency Generation Spectroscopy and X-ray Diffraction

    SciTech Connect (OSTI)

    Park, Yong Bum; Lee, Christopher M; Kafle, Kabindra; Park, Sunkyu; Cosgrove, Daniel; Kim, Seong H

    2014-07-14

    The crystallinity, allomorph content, and mesoscale ordering of cellulose produced by Gluconacetobacter xylinus cultured with different plant cell wall matrix polysaccharides were studied with vibrational sum frequency generation (SFG) spectroscopy and X-ray diffraction (XRD).

  6. Combined enzyme mediated fermentation of cellulose and xylose to ethanol by Schizosaccharomyces pombe, cellulase, [beta]-glucosidase, and xylose isomerase

    DOE Patents [OSTI]

    Lastick, S.M.; Mohagheghi, A.; Tucker, M.P.; Grohmann, K.

    1994-12-13

    A process for producing ethanol from mixed sugar streams from pretreated biomass comprising xylose and cellulose using enzymes to convert these substrates to fermentable sugars; selecting and isolating a yeast Schizosaccharomyces pombe ATCC No. 2476, having the ability to ferment these sugars as they are being formed to produce ethanol; loading the substrates with the fermentation mix composed of yeast, enzymes and substrates; fermenting the loaded substrates and enzymes under anaerobic conditions at a pH range of between about 5.0 to about 6.0 and at a temperature range of between about 35 C to about 40 C until the fermentation is completed, the xylose being isomerized to xylulose, the cellulose being converted to glucose, and these sugars being concurrently converted to ethanol by yeast through means of the anaerobic fermentation; and recovering the ethanol. 2 figures.

  7. Tubular structured hierarchical mesoporous titania material derived from natural cellulosic substances and application as photocatalyst for degradation of methylene blue

    SciTech Connect (OSTI)

    Huang, Haiqing; Liu, Xiaoyan; Huang, Jianguo

    2011-11-15

    Graphical abstract: Bio-inspired, tubular structured hierarchical mesoporous titania material with high photocatalytic activity under UV light was fabricated employing natural cellulosic substance (cotton) as hard template and cetyltrimethylammonium bromide (CTAB) surfactant as soft template using a one-pot sol-gel method. Highlights: {yields} Tubular structured mesoporous titania material was fabricated by sol-gel method. {yields} The titania material faithfully recorded the hierarchical structure of the template substrate (cotton). {yields} The titania material exhibited high photocatalytic activity in decomposition of methylene blue. -- Abstract: Bio-inspired, tubular structured hierarchical mesoporous titania material was designed and fabricated employing natural cellulosic substance (cotton) as hard template and cetyltrimethylammonium bromide (CTAB) surfactant as soft template by one-pot sol-gel method. The tubular structured hierarchical mesoporous titania material processes large specific surface area (40.23 m{sup 2}/g) and shows high photocatalytic activity in the photodegradation of methylene blue under UV light irradiation.

  8. A study of cellulose gasification in a fluidized bed using a high-temperature solar furnace

    SciTech Connect (OSTI)

    Murray, J.P.

    1989-01-01

    A 4.2-meter solar furnace was used to study the gasification of cellulose with steam in a fluidized bed. The heating value of the high-temperature equilibrium products is about twenty percent higher than that of the reactants. The increase represents stored solar energy; and the product, synthesis gas, is valuable as a chemical feedstock or pipeline gas. All experiments were performed at atmospheric pressure. Pure tabular alumina as well as crushed automotive exhaust was used as a bed material. Microcrystalline {alpha}-cellulose, entrained in argon, entered the fluidized bed just above the distributor. Steam heated to the operating temperature in a 10 cm packed bed section below the fluidized bed. In all cases, the process ran with more steam than required to produce an equimolar mixture of carbon monoxide and hydrogen. We used a quartz reactor between 1100 and 1430 K; a steel reactor at 1500 K and an Inconel reactor at 1600 K. Reactor inside diameter, nominally 5 cm, varied slightly; the bed height was adjusted to keep the gas residence time constant. Hydrogen production rate was measured before and after experiments with steam alone, with this amount subtracted. Equilibrium mixtures were not achieved. Catalysts improved hydrogen yields with higher than expected concentrations of carbon monoxide, methane and lighter hydrocarbons such as ethylene and acetylene. Experiments performed without catalyst at 1300 K, achieved a mixture (dry, argon-free) of 46 mole% CO, 30% H{sub 2} 14% CH{sub 4} 5% CO{sub 2} and 5% C{sub 2}H{sub 4}. An equilibrium mixture at this temperature would have contained 39% CO, 30% H{sub 2} 7% CO{sub 2} and no CH{sub 4} or C{sub 2}H{sub 4}. With the catalyst, the CO and CH{sub 4} decreased to 40% and 2% respectively, the H{sub 2} increased to 47%, and CO{sub 2} remained the same. No ethylene was formed. The hydrocarbon-rich mixtures achieved are typical of rapid-pyrolysis processes.

  9. Addressing the Recalcitrance of Cellulose Degradation through Cellulase Discovery, Nano-scale Elucidation of Molecular Mechanisms, and Kinetic Modeling

    SciTech Connect (OSTI)

    Walker, Larry P., Bergstrom, Gary; Corgie, Stephane; Craighead, Harold; Gibson, Donna; Wilson, David

    2011-06-13

    This research project was designed to play a vital role in the development of low cost sugars from cellulosic biomass and contributing to the national effort to displace fossil fuel usage in the USA transportation sector. The goal was to expand the portfolio of cell wall degrading enzymes through innovative research at the nano-scale level, prospecting for novel cellulases and building a kinetic framework for the development of more effective enzymatic conversion processes. More precisely, the goal was to elucidate the molecular mechanisms for some cellulases that are very familiar to members of our research team and to investigate what we hope are novel cellulases or new enzyme combinations from the world of plant pathogenic fungi and bacteria. Hydrolytic activities of various cellulases and cellulase cocktails were monitored at the nanoscale of cellulose fibrils and the microscale of pretreated cellulose particles, and we integrated this insight into a heterogeneous reaction framework. The over-riding approach for this research program was the application of innovative and cutting edge optical and high-throughput screening and analysis techniques for observing how cellulases hydrolyze real substrates.

  10. Lignin-Derived Carbon Fiber as a Co-Product of Refining Cellulosic Biomass

    SciTech Connect (OSTI)

    Langholtz, Matthew H; Downing, Mark; Graham, Robin Lambert; Baker, Fred S; Compere, A L; Griffith, William {Bill} L; Boeman, Raymond G; Keller, Martin

    2014-01-01

    Lignin by-products from biorefineries has the potential to provide a low-cost alternative to petroleum-based precursors to manufacture carbon fiber, which can be combined with a binding matrix to produce a structural material with much greater specific strength and specific stiffness than conventional materials such as steel and aluminum. The market for carbon fiber is universally projected to grow exponentially to fill the needs of clean energy technologies such as wind turbines and to improve the fuel economies in vehicles through lightweighting. In addition to cellulosic biofuel production, lignin-based carbon fiber production coupled with biorefineries may provide $2,400 to $3,600 added value dry Mg-1 of biomass for vehicle applications. Compared to producing ethanol alone, the addition of lignin-derived carbon fiber could increase biorefinery gross revenue by 30% to 300%. Using lignin-derived carbon fiber in 15 million vehicles per year in the US could reduce fossil fuel consumption by 2-5 billion liters year-1, reduce CO2 emissions by about 6.7 million Mg year-1, and realize fuel savings through vehicle lightweighting of $700 to $1,600 per Mg biomass processed. The value of fuel savings from vehicle lightweighting becomes economical at carbon fiber price of $6.60 kg-1 under current fuel prices, or $13.20 kg-1 under fuel prices of about $1.16 l-1.

  11. Microstructural characterization of low-density foams. [Silica, resorcinol/formaldehyde, cellulose/acetate

    SciTech Connect (OSTI)

    Price, C.W.

    1988-01-01

    Low-density foams (of the order 0.1 g/cm/sup 3/) synthesized from silica aerogel, resorcinol/formaldehyde, and cellulose acetate have fine, delicate microstructures that are extremely difficult to characterize. Improved low-voltage resolution of an SEM equipped with a field-emission gun (FESEM) does permit these materials to be examined directly without coating and at sufficient magnification to reveal the microstructures. Light coatings applied by ion-beam deposition can stabilize the specimens to some extent and reduce electron charging without seriously altering the microstructure, but coatings applied by conventional techniques usually obliterate these microstructures. Transmission electron microscopy (TEM) is required to provide unambiguous microstructural interpretations. However, TEM examinations of these materials can be severely restricted by specimen preparation difficulties and electron-beam damage, and considerable care must be taken to ensure that reasonably accurate TEM results have been obtained. This work demonstrates that low-voltage FESEM analyses can be used to characterize microstructures in these foams, but TEM analyses are required to confirm the FESEM analyses and perform quantitative measurements. 19 refs., 11 figs.

  12. Techno-Economic Analysis of Biochemical Scenarios for Production of Cellulosic Ethanol

    SciTech Connect (OSTI)

    Kazi, F. K.; Fortman, J.; Anex, R.; Kothandaraman, G.; Hsu, D.; Aden, A.; Dutta, A.

    2010-06-01

    A techno-economic analysis on the production of cellulosic ethanol by fermentation was conducted to understand the viability of liquid biofuel production processes within the next 5-8 years. Initially, 35 technologies were reviewed, then a two-step down selection was performed to choose scenarios to be evaluated in a more detailed economic analysis. The lignocellulosic ethanol process was selected because it is well studied and portions of the process have been tested at pilot scales. Seven process variations were selected and examined in detail. Process designs were constrained to public data published in 2007 or earlier, without projecting for future process improvements. Economic analysis was performed for an 'nth plant' (mature technology) to obtain total investment and product value (PV). Sensitivity analysis was performed on PV to assess the impact of variations in process and economic parameters. Results show that the modeled dilute acid pretreatment process without any downstream process variation had the lowest PV of $3.40/gal of ethanol ($5.15/gallon of gasoline equivalent) in 2007 dollars. Sensitivity analysis shows that PV is most sensitive to feedstock and enzyme costs.

  13. Cellobiohydrolase 1 from Trichoderma reesei degrades cellulose in single cellobiose steps

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Brady, Sonia K.; Sreelatha, Sarangapani; Feng, Yinnian; Chundawat, Shishir P. S.; Lang, Matthew J.

    2015-12-10

    Cellobiohydrolase 1 from Trichoderma reesei (TrCel7A) processively hydrolyses cellulose into cellobiose. Although enzymatic techniques have been established as promising tools in biofuel production, a clear understanding of the motor’s mechanistic action has yet to be revealed. We develop an optical tweezers-based single-molecule (SM) motility assay for precision tracking of TrCel7A. Direct observation of motility during degradation reveals processive runs and distinct steps on the scale of 1 nm. Our studies suggest TrCel7A is not mechanically limited, can work against 20 pN loads and speeds up when assisted. Temperature-dependent kinetic studies establish the energy requirements for the fundamental stepping cycle, whichmore » likely includes energy from glycosidic bonds and other sources. Moreover, through SM measurements of isolated TrCel7A domains, we determine that the catalytic domain alone is sufficient for processive motion, providing insight into TrCel7A’s molecular motility mechanism.« less

  14. Cellobiohydrolase 1 from Trichoderma reesei degrades cellulose in single cellobiose steps

    SciTech Connect (OSTI)

    Brady, Sonia K.; Sreelatha, Sarangapani; Feng, Yinnian; Chundawat, Shishir P. S.; Lang, Matthew J.

    2015-12-10

    Cellobiohydrolase 1 from Trichoderma reesei (TrCel7A) processively hydrolyses cellulose into cellobiose. Although enzymatic techniques have been established as promising tools in biofuel production, a clear understanding of the motor’s mechanistic action has yet to be revealed. We develop an optical tweezers-based single-molecule (SM) motility assay for precision tracking of TrCel7A. Direct observation of motility during degradation reveals processive runs and distinct steps on the scale of 1 nm. Our studies suggest TrCel7A is not mechanically limited, can work against 20 pN loads and speeds up when assisted. Temperature-dependent kinetic studies establish the energy requirements for the fundamental stepping cycle, which likely includes energy from glycosidic bonds and other sources. Moreover, through SM measurements of isolated TrCel7A domains, we determine that the catalytic domain alone is sufficient for processive motion, providing insight into TrCel7A’s molecular motility mechanism.

  15. An Integrated Modeling and Data Management Strategy for Cellulosic Biomass Production Decisions

    SciTech Connect (OSTI)

    David J. Muth Jr.; K. Mark Bryden; Joshua B. Koch

    2012-07-01

    Emerging cellulosic bioenergy markets can provide land managers with additional options for crop production decisions. Integrating dedicated bioenergy crops such as perennial grasses and short rotation woody species within the agricultural landscape can have positive impacts on several environmental processes including increased soil organic matter in degraded soils, reduced sediment loading in watersheds, lower green house gas (GHG) fluxes, and reduced nutrient loading in watersheds. Implementing this type of diverse bioenergy production system in a way that maximizes potential environmental benefits requires a dynamic integrated modeling and data management strategy. This paper presents a strategy for designing diverse bioenergy cropping systems within the existing row crop production landscape in the midwestern United States. The integrated model developed quantifies a wide range environmental processes including soil erosion from wind and water, soil organic matter changes, and soil GHG fluxes within a geospatial data management framework. This framework assembles and formats information from multiple spatial and temporal scales. The data assembled includes yield and productivity data from harvesting equipment at the 1m scale, surface topography data from LiDAR mapping at the less than 1m scale, soil data from US soil survey databases at the 10m to 100m scale, and climate data at the county scale. These models and data tools are assembled into an integrated computational environment that is used to determine sustainable removal rates for agricultural residues for bioenergy production at the sub-field scale under a wide range of land management practices. Using this integrated model, innovative management practices including cover cropping are then introduced and evaluated for their impact on bioenergy production and important environmental processes. The impacts of introducing dedicated energy crops onto high-risk landscape positions currently being manage in row crop production are also investigated.

  16. Cellulose nanocrystal-based composite electrolyte with superior dimensional stability for alkaline fuel cell membranes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lu, Yuan; Artmentrout, Aaron A.; Li, Juchuan; Tekinalp, Halil L.; Nanda, Jagjit; Ozcan, Soydan

    2015-05-13

    Cellulose nanocrystal (CNC)-based composite films were prepared as a solid electrolyte for alkaline fuel cells. Poly (vinyl alcohol) (PVA) and silica gel hybrid was used to bind the CNCs to form a robust composite film. The mass ratio (i.e., 1 : 1, 1 : 2) of PVA and silica gel was tuned to control the hydrophobicity of the resulting films. Composite films with a range of CNC content (i.e., 20 to 60%) were prepared to demonstrate the impact of CNC on the performance of these materials as a solid electrolyte for alkaline fuel cells. Different from previously reported cross-linked polymermore » films, CNC-based composite films with 40% hydrophobic binder (i.e., PVA : silica gel=1 : 2) exhibited simultaneous low water swelling (e.g., ~5%) and high water uptake (e.g., ~80%) due to the hydrophilicity and extraordinary dimensional stability of CNC. It also showed a conductivity of 0.044 and 0.065 S/cm at 20 and 60 oC, respectively. To the best of our knowledge, the film with 60% CNC and 40% binder is characterized by the lowest hydroxide conductivity-normalized swelling ratio. Decreased CNC content (i.e., 40 and 20%) resulted in comparable hydroxide conductivity but a greater swelling ratio. These results demonstrate the advantage of CNC as a key component for a solid electrolyte for alkaline fuel cells over conventional polymers, suggesting the great potential of CNCs in improving the dimensional stability while maintaining the conductivity of existing anion exchange membranes.« less

  17. Cellulose nanocrystal-based composite electrolyte with superior dimensional stability for alkaline fuel cell membranes

    SciTech Connect (OSTI)

    Lu, Yuan; Artmentrout, Aaron A.; Li, Juchuan; Tekinalp, Halil L.; Nanda, Jagjit; Ozcan, Soydan

    2015-05-13

    Cellulose nanocrystal (CNC)-based composite films were prepared as a solid electrolyte for alkaline fuel cells. Poly (vinyl alcohol) (PVA) and silica gel hybrid was used to bind the CNCs to form a robust composite film. The mass ratio (i.e., 1 : 1, 1 : 2) of PVA and silica gel was tuned to control the hydrophobicity of the resulting films. Composite films with a range of CNC content (i.e., 20 to 60%) were prepared to demonstrate the impact of CNC on the performance of these materials as a solid electrolyte for alkaline fuel cells. Different from previously reported cross-linked polymer films, CNC-based composite films with 40% hydrophobic binder (i.e., PVA : silica gel=1 : 2) exhibited simultaneous low water swelling (e.g., ~5%) and high water uptake (e.g., ~80%) due to the hydrophilicity and extraordinary dimensional stability of CNC. It also showed a conductivity of 0.044 and 0.065 S/cm at 20 and 60 oC, respectively. To the best of our knowledge, the film with 60% CNC and 40% binder is characterized by the lowest hydroxide conductivity-normalized swelling ratio. Decreased CNC content (i.e., 40 and 20%) resulted in comparable hydroxide conductivity but a greater swelling ratio. These results demonstrate the advantage of CNC as a key component for a solid electrolyte for alkaline fuel cells over conventional polymers, suggesting the great potential of CNCs in improving the dimensional stability while maintaining the conductivity of existing anion exchange membranes.

  18. A pilot plant scale reactor/separator for ethanol from cellulosics. Quarterly report No. 1 & 2, October 1, 1997--March 30, 1998

    SciTech Connect (OSTI)

    Dale, M.C.

    1998-06-01

    The basic objective of this project is to develop and demonstrate a continuous, low energy process for the conversion of cellulosics to ethanol. This process involves a pretreatment step followed by enzymatic release of sugars and the consecutive saccharification/fermentation of cellulose (glucans) followed by hemi-cellulose (glucans) in a multi-stage continuous stirred reactor separator (CSRS). During year 1, pretreatment and bench scale fermentation trials will be performed to demonstrate and develop the process, and during year 2, a 130 L or larger process scale unit will be operated to demonstrate the process using straw or cornstalks. Co-sponsors of this project include the Indiana Biomass Grants Program, Bio-Process Innovation, Xylan Inc as a possible provider of pretreated biomass.

  19. The effect of clay catalyst on the chemical composition of bio-oil obtained by co-pyrolysis of cellulose and polyethylene

    SciTech Connect (OSTI)

    Solak, Agnieszka; Rutkowski, Piotr

    2014-02-15

    Highlights: Non-catalytic and catalytic fast pyrolysis of cellulose/polyethylene blend was carried out in a laboratory scale reactor. Optimization of process temperature was done. Optimization of clay catalyst type and amount for co-pyrolysis of cellulose and polyethylene was done. The product yields and the chemical composition of bio-oil was investigated. - Abstract: Cellulose/polyethylene (CPE) mixture 3:1, w/w with and without three clay catalysts (K10 montmorillonite K10, KSF montmorillonite KSF, B Bentonite) addition were subjected to pyrolysis at temperatures 400, 450 and 500 C with heating rate of 100 C/s to produce bio-oil with high yield. The pyrolytic oil yield was in the range of 41.379.5 wt% depending on the temperature, the type and the amount of catalyst. The non-catalytic fast pyrolysis at 500 C gives the highest yield of bio-oil (79.5 wt%). The higher temperature of catalytic pyrolysis of cellulose/polyethylene mixture the higher yield of bio-oil is. Contrarily, increasing amount of montmorillonite results in significant, almost linear decrease in bio-oil yield followed by a significant increase of gas yield. The addition of clay catalysts to CPE mixture has a various influence on the distribution of bio-oil components. The addition of montmorillonite K10 to cellulose/polyethylene mixture promotes the deepest conversion of polyethylene and cellulose. Additionally, more saturated than unsaturated hydrocarbons are present in resultant bio-oils. The proportion of liquid hydrocarbons is the highest when a montmorillonite K10 is acting as a catalyst.

  20. SRL history, Volume 4, E.I. DuPont Nemours and Co. Inc.

    SciTech Connect (OSTI)

    1980-04-01

    This volume summarizes general information on personnel, safety, security, and service at the Savannah River Laboratory.

  1. Processing of cellulosic material by a cellulase-containing cell-free fermentate produced from cellulase-producing bacteria, ATCC 55702

    DOE Patents [OSTI]

    Dees, H.C.

    1998-08-04

    Bacteria which produce large amounts of a cellulase-containing cell-free fermentate, have been identified. The original bacterium (ATCC 55703) was genetically altered using nitrosoguanidine (MNNG) treatment to produce the enhanced cellulase degrading bacterium ATCC 55702, which was identified through replicate plating. ATCC 55702 has improved characteristics and qualities for the degradation of cellulosic materials. 5 figs.

  2. Insights into the effect of dilute acid, hot water and alkaline pretreatment on cellulose accessible surface area and overall porosity of Populus

    SciTech Connect (OSTI)

    Meng, Xianzhi; Wells, Tyrone; Sun, Qining; Huang, Fang; Ragauskas, Arthur J.

    2015-06-19

    Pretreatment is known to render biomass more reactive to cellulase by altering the chemical compositions as well as physical structures of biomass. Simons stain technique along with mercury porosimetry were applied on the acid, neutral, and alkaline pretreated materials to measure the accessible surface area of cellulose and pore size distribution of Populus. Results indicated that acid pretreatment is much more effective than water and alkaline pretreatment in terms of cellulose accessibility increase. Further investigation suggests that lignin does not dictate cellulose accessibility to the extent that hemicellulose does, but it does restrict xylan accessibility which in turn controls the access of cellulase to cellulose. The most interesting finding is that severe acid pretreatment significantly decreases the average pore size, i.e., 90% average size decrease could be observed after 60 min dilute acid pretreatment at 160 oC; however, the nano-pore space formed between coated microfibrils is increased after pretreatment, especially for the acid pretreatment, suggesting this particular type of biomass porosity is probably the most fundamental barrier to effective enzymatic hydrolysis.

  3. Insights into the effect of dilute acid, hot water and alkaline pretreatment on cellulose accessible surface area and overall porosity of Populus

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Meng, Xianzhi; Wells, Tyrone; Sun, Qining; Huang, Fang; Ragauskas, Arthur J.

    2015-06-19

    Pretreatment is known to render biomass more reactive to cellulase by altering the chemical compositions as well as physical structures of biomass. Simons stain technique along with mercury porosimetry were applied on the acid, neutral, and alkaline pretreated materials to measure the accessible surface area of cellulose and pore size distribution of Populus. Results indicated that acid pretreatment is much more effective than water and alkaline pretreatment in terms of cellulose accessibility increase. Further investigation suggests that lignin does not dictate cellulose accessibility to the extent that hemicellulose does, but it does restrict xylan accessibility which in turn controls themore » access of cellulase to cellulose. The most interesting finding is that severe acid pretreatment significantly decreases the average pore size, i.e., 90% average size decrease could be observed after 60 min dilute acid pretreatment at 160 °C; moreover, the nano-pore space formed between coated microfibrils is increased after pretreatment, especially for the acid pretreatment, suggesting this particular type of biomass porosity is probably the most fundamental barrier to effective enzymatic hydrolysis.« less

  4. Processing of cellulosic material by a cellulase-containing cell-free fermentate produced from cellulase-producing bacteria, ATCC 55702

    DOE Patents [OSTI]

    Dees, H. Craig (Lenoir City, TN)

    1998-01-01

    Bacteria which produce large amounts of a cellulase-containing cell-free fermentate, have been identified. The original bacterium (ATCC 55703) was genetically altered using nitrosoguanidine (MNNG) treatment to produce the enhanced cellulase degrading bacterium ATCC 55702, which was identified through replicate plating. ATCC 55702 has improved characteristics and qualities for the degradation of cellulosic materials.

  5. Combined inactivation of the Clostridium cellulolyticum lactate and malate dehydrogenase genes substantially increases ethanol yield from cellulose and switchgrass fermentations

    SciTech Connect (OSTI)

    Li, Yongchao; Tschaplinski, Timothy J; Engle, Nancy L; Hamilton, Choo Yieng; Rodriguez, Jr., Miguel; Liao, James C; Schadt, Christopher Warren; Guss, Adam M; Yang, Yunfeng; Graham, David E

    2012-01-01

    Background: The model bacterium Clostridium cellulolyticum efficiently hydrolyzes crystalline cellulose and hemicellulose, using cellulosomes to degrade lignocellulosic biomass. Although it imports and ferments both pentose and hexose sugars to produce a mixture of ethanol, acetate, lactate, H2 and CO2, the proportion of ethanol is low, which impedes its use in consolidated bioprocessing for biofuels. Therefore genetic engineering will likely be required to improve the ethanol yield. Random mutagenesis, plasmid transformation, and heterologous expression systems have previously been developed for C. cellulolyticum, but targeted mutagenesis has not been reported for this organism. Results: The first targeted gene inactivation system was developed for C. cellulolyticum, based on a mobile group II intron originating from the Lactococcus lactis L1.LtrB intron. This markerless mutagenesis system was used to disrupt both the paralogous L-lactate dehydrogenase (Ccel_2485; ldh) and L-malate dehydrogenase (Ccel_0137; mdh) genes, distinguishing the overlapping substrate specificities of these enzymes. Both mutations were then combined in a single strain. This double mutant produced 8.5-times more ethanol than wild-type cells growing on crystalline cellulose. Ethanol constituted 93% of the major fermentation products (by molarity), corresponding to a molar ratio of ethanol to organic acids of 15, versus 0.18 in wild-type cells. During growth on acid-pretreated switchgrass, the double mutant also produced four-times as much ethanol as wild-type cells. Detailed metabolomic analyses identified increased flux through the oxidative branch of the mutant s TCA pathway. Conclusions: The efficient intron-based gene inactivation system produced the first gene-targeted mutations in C. cellulolyticum. As a key component of the genetic toolbox for this bacterium, markerless targeted mutagenesis enables functional genomic research in C. cellulolyticum and rapid genetic engineering to significantly alter the mixture of fermentation products. The initial application of this system successfully engineered a strain with high ethanol productivity from complex biomass substrates.

  6. Building America Case Study: Hygrothermal Performance of a Double-Stud Cellulose Wall, Devens, Massachusetts (Fact Sheet), Technology Solutions for New and Existing Homes, Energy Efficiency & Renewable Energy (EERE)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hygrothermal Performance of a Double-Stud Cellulose Wall Devens, Massachusetts PROJECT INFORMATION Project Name: Monitored Performance of a High-R Wall Location: Devens, MA Partners: Consortium for Advanced Residential Buildings, carb-swa.com Metric Development Corporation Building Component: Double-stud cellulose walls Application: New; single- and multifamily Year Tested: 2012 Climate Zone: Cold (5A) ASSEMBLY CONSTRUCTION Interior Vapor Retarder: Vapor retarder paint, 0.5 perm per manufacturer

  7. National Geo-Database for Biofuel Simulations and Regional Analysis of Biorefinery Siting Based on Cellulosic Feedstock Grown on Marginal Lands

    SciTech Connect (OSTI)

    Izaurralde, Roberto C.; Zhang, Xuesong; Sahajpal, Ritvik; Manowitz, David H.

    2012-04-01

    The goal of this project undertaken by GLBRC (Great Lakes Bioenergy Research Center) Area 4 (Sustainability) modelers is to develop a national capability to model feedstock supply, ethanol production, and biogeochemical impacts of cellulosic biofuels. The results of this project contribute to sustainability goals of the GLBRC; i.e. to contribute to developing a sustainable bioenergy economy: one that is profitable to farmers and refiners, acceptable to society, and environmentally sound. A sustainable bioenergy economy will also contribute, in a fundamental way, to meeting national objectives on energy security and climate mitigation. The specific objectives of this study are to: (1) develop a spatially explicit national geodatabase for conducting biofuel simulation studies and (4) locate possible sites for the establishment of cellulosic ethanol biorefineries. To address the first objective, we developed SENGBEM (Spatially Explicit National Geodatabase for Biofuel and Environmental Modeling), a 60-m resolution geodatabase of the conterminous USA containing data on: (1) climate, (2) soils, (3) topography, (4) hydrography, (5) land cover/ land use (LCLU), and (6) ancillary data (e.g., road networks, federal and state lands, national and state parks, etc.). A unique feature of SENGBEM is its 2008-2010 crop rotation data, a crucially important component for simulating productivity and biogeochemical cycles as well as land-use changes associated with biofuel cropping. ARRA support for this project and to the PNNL Joint Global Change Research Institute enabled us to create an advanced computing infrastructure to execute millions of simulations, conduct post-processing calculations, store input and output data, and visualize results. These computing resources included two components installed at the Research Data Center of the University of Maryland. The first resource was 'deltac': an 8-core Linux server, dedicated to county-level and state-level simulations and PostgreSQL database hosting. The second resource was the DOE-JGCRI 'Evergreen' cluster, capable of executing millions of simulations in relatively short periods. ARRA funding also supported a PhD student from UMD who worked on creating the geodatabases and executing some of the simulations in this study. Using a physically based classification of marginal lands, we simulated production of cellulosic feedstocks from perennial mixtures grown on these lands in the US Midwest. Marginal lands in the western states of the US Midwest appear to have significant potential to supply feedstocks to a cellulosic biofuel industry. Similar results were obtained with simulations of N-fertilized perennial mixtures. A detailed spatial analysis allowed for the identification of possible locations for the establishment of 34 cellulosic ethanol biorefineries with an annual production capacity of 5.6 billion gallons. In summary, we have reported on the development of a spatially explicit national geodatabase to conduct biofuel simulation studies and provided simulation results on the potential of perennial cropping systems to serve as feedstocks for the production of cellulosic ethanol. To accomplish this, we have employed sophisticated spatial analysis methods in combination with the process-based biogeochemical model EPIC. The results of this study will be submitted to the USDOE Bioenergy Knowledge Discovery Framework as a way to contribute to the development of a sustainable bioenergy industry. This work provided the opportunity to test the hypothesis that marginal lands can serve as sources of cellulosic feedstocks and thus contribute to avoid potential conflicts between bioenergy and food production systems. This work, we believe, opens the door for further analysis on the characteristics of cellulosic feedstocks as major contributors to the development of a sustainable bioenergy economy.

  8. Expression of the Acidothermus cellulolyticus E1 endoglucanase in Caldicellulosiruptor bescii enhances its ability to deconstruct crystalline cellulose

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chung, Daehwan; Young, Jenna; Cha, Minseok; Brunecky, Roman; Bomble, Yannick J.; Himmel, Michael E.; Westpheling, Janet

    2015-08-13

    The Caldicellulosiruptor bescii genome encodes a potent set of carbohydrate-active enzymes (CAZymes), found primarily as multi-domain enzymes that exhibit high cellulolytic and hemicellulolytic activity on and allow utilization of a broad range of substrates, including plant biomass without conventional pretreatment. CelA, the most abundant cellulase in the C. bescii secretome, uniquely combines a GH9 endoglucanase and a GH48 exoglucanase in one protein. The most effective commercial enzyme cocktails used in vitro to pretreat biomass are derived from fungal cellulases (cellobiohydrolases, endoglucanases and a β-d-glucosidases) that act synergistically to release sugars for microbial conversion. The C. bescii genome contains six GH5more » domains in five different open reading frames. Four exist in multi-domain proteins and two as single catalytic domains. E1 is a GH5 endoglucanase reported to have high specific activity and simple architecture and is active at the growth temperature of C. bescii. E1 is an endo-1,4-β-glucanase linked to a family 2 carbohydrate-binding module shown to bind primarily to cellulosic substrates. As a result, we tested if the addition of this protein to the C. bescii secretome would improve its cellulolytic activity.« less

  9. Advance Patent Waiver W(A)2008-045

    Broader source: Energy.gov [DOE]

    This is a request by DANISCO US, INC. for a DOE waiver of domestic and foreign patent rights under agreement DE-FC36-08GO18078

  10. Breaking the Biological Barriers to Cellulosic Ethanol: A Joint Research Agenda. A Research Roadmap Resulting from the Biomass to Biofuels Workshop

    SciTech Connect (OSTI)

    2006-06-30

    A robust fusion of the agricultural, industrial biotechnology, and energy industries can create a new strategic national capability for energy independence and climate protection. In his State of the Union Address (*Bush 2006), President George W. Bush outlined the Advanced Energy Initiative, which seeks to reduce our national dependence on imported oil by accelerating the development of domestic,renewable alternatives to gasoline and diesel fuels. The president has set a national goal of developing cleaner, cheaper, and more reliable alternative energy sources to substantially replace oil imports in the coming years.Fuels derived from cellulosic biomassthe fibrous, woody, and generally inedible portions of plant matteroffer one such alternative to conventional energy sources that can dramatically impact national economic growth, national energy security, and environmental goals. Cellulosic biomass is an attractive energy feedstock because it is an abundant, domestic, renewable source that can be converted to liquid transportation fuels.These fuels can be used readily by current-generation vehicles and distributed through the existing transportation-fuel infrastructure.

  11. Catalytic conversion of cellulose to liquid hydrocarbon fuels by progressive removal of oxygen to facilitate separation processes and achieve high selectivities

    DOE Patents [OSTI]

    Dumesic, James A.; Ruiz, Juan Carlos Serrano; West, Ryan M.

    2012-04-03

    Described is a method to make liquid chemicals, such as functional intermediates, solvents, and liquid fuels from biomass-derived cellulose. The method is cascading; the product stream from an upstream reaction can be used as the feedstock in the next downstream reaction. The method includes the steps of deconstructing cellulose to yield a product mixture comprising levulinic acid and formic acid, converting the levulinic acid to .gamma.-valerolactone, and converting the .gamma.-valerolactone to pentanoic acid. Alternatively, the .gamma.-valerolactone can be converted to a mixture of n-butenes. The pentanoic acid so formed can be further reacted to yield a host of valuable products. For example, the pentanoic acid can be decarboxylated yield 1-butene or ketonized to yield 5-nonanone. The 5-nonanone can be hydrodeoxygenated to yield nonane, or 5-nonanone can be reduced to yield 5-nonanol. The 5-nonanol can be dehydrated to yield nonene, which can be dimerized to yield a mixture of C.sub.9 and C.sub.18 olefins, which can be hydrogenated to yield a mixture of alkanes. Alternatively, the nonene may be isomerized to yield a mixture of branched olefins, which can be hydrogenated to yield a mixture of branched alkanes. The mixture of n-butenes formed from .gamma.-valerolactone can also be subjected to isomerization and oligomerization to yield olefins in the gasoline, jet and Diesel fuel ranges.

  12. THE SETTLERS PHOTOGRAPHIC COLLECTION 1894 - 1945 & THE DUPONT PHOTOGRAPHIC COLLECTION 1943 - 1945 BRINGING HISTORY TO LIFE IN SOUTH CENTRAL WASHINGTON

    SciTech Connect (OSTI)

    SHULTZ CR PH.D.

    2009-07-13

    Washington is called the 'Evergreen State' and it evokes images like this of lush forests, lakes and mountains. However, such images apply primarily to the half of the state west of the Cascade Mountains, where we are today. Eastern Washington state is quite a different matter and I want to draw your attention to a portion of Eastern Washington that is the focus ofmy presentation to you this morning. This image was taken on a part of the Department of Energy's Hanford Site, a 586-square mile government reservation, the second largest DOE facility in the nation . Here you can see where I am talking about, roughly 220 miles southeast of Seattle and about the same distance northeast of Portland.

  13. A Pilot Plant Scale Reactor/Separator for Ethanol from Cellulosics. ERIP/DOE Quarterly Reports 5 and 6, October 1, 1998 through March 30, 1999

    SciTech Connect (OSTI)

    Dale, M. Clark; Moelhman, Mark

    1999-09-30

    The objective of this project was to develop and demonstrate a continuous low energy process for the conversion of cellulosics to ethanol. BPI's process involves a proprietary low temperature pretreatment step which allows recycle of the pretreatment chemicals and recovery of a lignin stream. The pretreated biomass is then converted to glucans and xylans enzymatically and these sugars simultaneously fermented to ethanol (SSF) in BPI's Continuous Stirred Reactor Separator (CSRS). The CSRS is a multi stage bio-reactor where the glucans are first converted to ethanol using a high temperature tolerant yeast, followed by xylan SSF on the lower stages using a second xylose fermenting yeast strain. Ethanol is simultaneously removed from the bio-reactor stages, speeding the fermentation, and allowing the complete utilization of the biomass.

  14. A Pilot Plant Scale Reactor/Separator for Ethanol from Cellulosics. ERIP/DOE Quarterly Reports 7, 8 and Final report

    SciTech Connect (OSTI)

    Cale, M. Clark; Moelhman, Mark

    1999-09-30

    The objective of this project was to develop and demonstrate a continuous low energy process for the conversion of cellulosics to ethanol. BPI's process involves a proprietary low temperature pretreatment step which allows recycle of the pretreatment chemicals and recovery of a lignin stream. The pretreated biomass is then converted to glucans and xylans enzymatically and these sugars simultaneously fermented to ethanol (SSF) in BPI's Continuous Stirred Reactor Separator (CSRS). The CSRS is a multi stage bio-reactor where the glucans are first converted to ethanol using a high temperature tolerant yeast stran, followed by xylan SSF on the lower stages using a second xylose fermenting yeast strain. Ethanol is simultaneously removed from the bio-reactor stages, speeding the fermentation, and allowing the complete utilization of the biomass.

  15. MN Center for Renewable Energy: Cellulosic Ethanol, Optimization of Bio-fuels in Internal Combustion Engines, & Course Development for Technicians in These Areas

    SciTech Connect (OSTI)

    John Frey

    2009-02-22

    This final report for Grant #DE-FG02-06ER64241, MN Center for Renewable Energy, will address the shared institutional work done by Minnesota State University, Mankato and Minnesota West Community and Technical College during the time period of July 1, 2006 to December 30, 2008. There was a no-cost extension request approved for the purpose of finalizing some of the work. The grant objectives broadly stated were to 1) develop educational curriculum to train technicians in wind and ethanol renewable energy, 2) determine the value of cattails as a biomass crop for production of cellulosic ethanol, and 3) research in Optimization of Bio-Fuels in Internal Combustion Engines. The funding for the MN Center for Renewable Energy was spent on specific projects related to the work of the Center.

  16. Effect of Sodium Carboxymethyl Celluloses on Water-catalyzed Self-degradation of 200-degree C-heated Alkali-Activated Cement

    SciTech Connect (OSTI)

    Sugama T.; Pyatina, T.

    2012-05-01

    We investigated the usefulness of sodium carboxymethyl celluloses (CMC) in promoting self-degradation of 200C-heated sodium silicate-activated slag/Class C fly ash cementitious material after contact with water. CMC emitted two major volatile compounds, CO2 and acetic acid, creating a porous structure in cement. CMC also reacted with NaOH from sodium silicate to form three water-insensitive solid reaction products, disodium glycolate salt, sodium glucosidic salt, and sodium bicarbonate. Other water-sensitive solid reaction products, such as sodium polysilicate and sodium carbonate, were derived from hydrolysates of sodium silicate. Dissolution of these products upon contact with water generated heat that promoted cements self-degradation. Thus, CMC of high molecular weight rendered two important features to the water-catalyzed self-degradation of heated cement: One was the high heat energy generated in exothermic reactions in cement; the other was the introduction of extensive porosity into cement.

  17. Catalytic conversion of cellulose to liquid hydrocarbon fuels by progressive removal of oxygen to facilitate separation processes and achieve high selectivities

    DOE Patents [OSTI]

    Dumesic, James A [Verona, WI; Ruiz, Juan Carlos Serrano [Madison, WI; West, Ryan M [Madison, WI

    2014-01-07

    Described is a method to make liquid chemicals. The method includes deconstructing cellulose to yield a product mixture comprising levulinic acid and formic acid, converting the levulinic acid to .gamma.-valerolactone, and converting the .gamma.-valerolactone to pentanoic acid. Alternatively, the .gamma.-valerolactone can be conveted to a mixture of n-butenes. The pentanoic acid can be decarboxylated yield 1-butene or ketonized to yield 5-nonanone. The 5-nonanone can be hydrodeoxygenated to yield nonane, or 5-nonanone can be reduced to yield 5-nonanol. The 5-nonanol can be dehydrated to yield nonene, which can be dimerized to yield a mixture of C.sub.9 and C.sub.18 olefins, which can be hydrogenated to yield a mixture of alkanes.

  18. Catalytic conversion of cellulose to liquid hydrocarbon fuels by progressive removal of oxygen to facilitate separation processes and achieve high selectivities

    DOE Patents [OSTI]

    Dumesic, James A.; Ruiz, Juan Carlos Serrano; West, Ryan M.

    2015-06-30

    Described is a method to make liquid chemicals. The method includes deconstructing cellulose to yield a product mixture comprising levulinic acid and formic acid, converting the levulinic acid to .gamma.-valerolactone, and converting the .gamma.-valerolactone to pentanoic acid. Alternatively, the .gamma.-valerolactone can be converted to a mixture of n-butenes. The pentanoic acid can be decarboxylated yield 1-butene or ketonized to yield 5-nonanone. The 5-nonanone can be hydrodeoxygenated to yield nonane, or 5-nonanone can be reduced to yield 5-nonanol. The 5-nonanol can be dehydrated to yield nonene, which can be dimerized to yield a mixture of C.sub.9 and C.sub.18 olefins, which can be hydrogenated to yield a mixture of alkanes.

  19. NREL Science Central to Success of New Biofuels Projects: - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal Biomass and Biofuels Biomass and Biofuels Return to Search NREL Science Central to Success of New Biofuels Projects: DuPont-NREL Partnership Delivered Key Innovations for Large Scale Cellulosic Ethanol Facility in Iowa National Renewable Energy Laboratory Success Story Details Partner Location Agreement Type Publication Date DuPont Delaware Other February 23, 2015 Summary The Energy Department's National Renewable Energy Laboratory (NREL) played crucial roles in developing

  20. Bioenergy Success Stories | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sustainable Transportation » Bioenergy Success Stories Bioenergy Success Stories RSS The Office of Energy Efficiency and Renewable Energy's (EERE) successes in developing sustainable, cost-competitive biofuels, bioproducts, and biopower translate into clean, affordable fuels for the cars and trucks of today and tomorrow, and products and power that can help reduce dependence on fossil fuels. Explore EERE's bioenergy success stories below. November 30, 2015 The DuPont cellulosic ethanol facility

  1. Construction of nerve guide conduits from cellulose/soy protein composite membranes combined with Schwann cells and pyrroloquinoline quinone for the repair of peripheral nerve defect

    SciTech Connect (OSTI)

    Luo, Lihua; Gan, Li; Liu, Yongming; Tian, Weiqun; Tong, Zan; Wang, Xiong; Huselstein, Celine; Chen, Yun

    2015-02-20

    Regeneration and functional reconstruction of peripheral nerve defects remained a significant clinical challenge. Nerve guide conduits, with seed cells or neurotrophic factors (NTFs), had been widely used to improve the repair and regeneration of injured peripheral nerve. Pyrroloquinoline quinone (PQQ) was an antioxidant that can stimulate nerve growth factors (NGFs) synthesis and accelerate the Schwann cells (SCs) proliferation and growth. In present study, three kinds of nerve guide conduits were constructed: one from cellulose/SPI hollow tube (CSC), another from CSC combined with SCs (CSSC), and the third one from CSSC combined with PQQ (CSSPC), respectively. And then they were applied to bridge and repair the sciatic nerve defect in rats, using autograft as control. Effects of different nerve guide conduits on the nerve regeneration were comparatively evaluated by general analysis, sciatic function index (SFI) and histological analysis (HE and TEM). Newly-formed regenerative nerve fibers were observed and running through the transparent nerve guide conduits 12 weeks after surgery. SFI results indicated that the reconstruction of motor function in CSSPC group was better than that in CSSC and CSC groups. HE images from the cross-sections and longitudinal-sections of the harvested regenerative nerve indicated that regenerative nerve fibers had been formed and accompanied with new blood vessels and matrix materials in the conduits. TEM images also showed that lots of fresh myelinated and non-myelinated nerve fibers had been formed. Parts of vacuolar, swollen and abnormal axons occurred in CSC and CSSC groups, while the vacuolization and swell of axons was the least serious in CSSPC group. These results indicated that CSSPC group had the most ability to repair and reconstruct the nerve structure and functions due to the comprehensive contributions from hollow CSC tube, SCs and PQQ. As a result, the CSSPC may have the potential for the applications as nerve guide conduits in the field of nerve tissue engineering. - Highlights: • A novel nerve conduit was constructed and applied to repair nerve defect in rats. • Transparent hollow cellulose/soy protein isolate tube was used as conduit matrix. • Pyrroloquinoline quinine was adsorbed into the hollow tube as nerve growth factor. • Schwann cells were cultured into the hollow tube as seed cells. • The new nerve conduit could repair and reconstruct the peripheral nerve defects.

  2. Assessment of fuel-cycle energy use and greenhouse gas emissions for Fischer-Tropsch diesel from coal and cellulosic biomass.

    SciTech Connect (OSTI)

    Xie, X.; Wang, M.; Han, J.

    2011-04-01

    This study expands and uses the GREET (Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation) model to assess the effects of carbon capture and storage (CCS) technology and cellulosic biomass and coal cofeeding in Fischer-Tropsch (FT) plants on energy use and greenhouse gas (GHG) emissions of FT diesel (FTD). To demonstrate the influence of the coproduct credit methods on FTD life-cycle analysis (LCA) results, two allocation methods based on the energy value and the market revenue of different products and a hybrid method are employed. With the energy-based allocation method, fossil energy use of FTD is less than that of petroleum diesel, and GHG emissions of FTD could be close to zero or even less than zero with CCS when forest residue accounts for 55% or more of the total dry mass input to FTD plants. Without CCS, GHG emissions are reduced to a level equivalent to that from petroleum diesel plants when forest residue accounts for 61% of the total dry mass input. Moreover, we show that coproduct method selection is crucial for LCA results of FTD when a large amount of coproducts is produced.

  3. Overcoming the Recalcitrance of Cellulosic Biomass by Value Prior to Pulping: Cooperative Research and Development Final Report, CRADA Number CRD-07-221

    SciTech Connect (OSTI)

    Lowell, A.

    2012-04-01

    The Value Prior to Pulping (VPP) project goal was to demonstrate the technical and commercial feasibility of introducing a new value stream into existing pulp and paper mills. Essentially the intent was to transfer the energy content of extracted hemicellulose from electricity and steam generated in the recovery boiler to a liquid transportation fuel. The hemicellulose fraction was extracted prior to pulping, fractionated, or conditioned if necessary, and fermented to ethanol. Commercial adaptation of the process to wood hemicelluloses was a prerequisite for using this less currently valued component available from biomass and wood. These hemicelluloses are predominately glucurono-xylan in hardwoods and galactoglucomannan in softwoods (with a significant softwood component of an arabino-xylan) and will yield fermentation substrates different from cellulose. NREL provided its expertise in the area of fermentation host evaluation using its Zymomonas strains on the CleanTech Partner's (CTP) VPP project. The project was focused on the production of fuel ethanol and acetic acid from hemicellulose streams generated from wood chips of industrially important hardwood and softwood species. NREL was one of four partners whose ethanologen was tested on the hydrolyzed extracts. The use of commercially available enzymes to treat oligomeric sugar extracts was also investigated and coupled with fermentation. Fermentations by NREL were conducted with the Zymomonas mobilis organism with most of the work being performed with the 8b strain. The wood extracts hydrolyzed and/or fermented by NREL were those derived from maple, mixed southern hardwoods, and loblolly pine. An unhydrolyzed variant of the mixed southern hardwood extract possessed a large concentration of oligomeric sugars and enzymatic hydrolysis was performed with a number of enzymes, followed by fermentation. The fermentation of the wood extracts was carried out at bench scale in flasks or small bioreactors, with a maximum volume of 500 mL.

  4. A case study of agricultural residue availability and cost for a cellulosic ethanol conversion facility in the Henan province of China

    SciTech Connect (OSTI)

    Webb, Erin [ORNL; Wu, Yun [ORNL

    2012-05-01

    A preliminary analysis of the availability and cost of corn stover and wheat straw for the area surrounding a demonstration biorefinery in the Henan Province of China was performed as a case study of potential cooperative analyses of bioenergy feedstocks between researchers and industry in the US and China. Though limited in scope, the purpose of this analysis is to provide insight into some of the issues and challenges of estimating feedstock availability in China and how this relates to analyses of feedstocks in the U.S. Completing this analysis also highlighted the importance of improving communication between U.S. researchers and Chinese collaborators. Understanding the units and terms used in the data provided by Tianguan proved to be a significant challenge. This was further complicated by language barriers between collaborators in the U.S. and China. The Tianguan demonstration biorefinery has a current capacity of 3k tons (1 million gallons) of cellulosic ethanol per year with plans to scale up to 10k tons (3.34 million gallons) per year. Using data provided by Tianguan staff in summer of 2011, the costs and availability of corn stover and wheat straw were estimated. Currently, there are sufficient volumes of wheat straw and corn stover that are considered 'waste' and would likely be available for bioenergy in the 20-km (12-mile) region surrounding the demonstration biorefinery at a low cost. However, as the industry grows, competition for feedstock will grow and prices are likely to rise as producers demand additional compensation to fully recover costs.

  5. Final Technical Report: Improvement of Zymomonas mobilis for Commercial Use in Corn-based Biorefineries

    SciTech Connect (OSTI)

    Hitz, William D.

    2010-12-07

    Between 2007 and 2010 DuPont conducted a program under DOE award DE-FC36-07GO17056 to develop and improve Zymomonas mobilis as an ethanologen for commercial use in biorefineries to produce cellulosic ethanol. This program followed upon an earlier DOE funded program in which DuPont, in collaboration with the National Renewable Energy Laboratory (NREL) had developed a Zymomonas strain in conjunction with the development of an integrated cellulosic ethanol process. In the current project, we sought to maximize the utility of Zymomonas by adding the pathway to allow fermentation of the minor sugar arabinose, improve the utilization of xylose, improve tolerance to process hydrolysate and reduce the cost of producing the ethanologen. We undertook four major work streams to address these tasks, employing a range of approaches including genetic engineering, adaptation, metabolite and pathway analysis and fermentation process development. Through this project, we have developed a series of strains with improved characteristics versus the starting strain, and demonstrated robust scalability to at least the 200L scale. By a combination of improved ethanol fermentation yield and titer as well as reduced seed train costs, we have been able to reduce the capital investment and minimum ethanol selling price (MESP) by approximately 8.5% and 11% respectively vs. our starting point. Furthermore, the new strains we have developed, coupled with the learnings of this program, provide a platform for further strain improvements and advancement of cellulosic ethanol technology.

  6. Delaware's At-large congressional district: Energy Resources...

    Open Energy Info (EERE)

    Advanced Biofuels LLC Citizenre Group Delmarva Power Light Company Delmarva Power DuPont DuPont Biofuels Dupont Fuel Cells Galt Power Inc GlobalWatt Inc Ion Power Inc Naveen...

  7. Production of High Value Cellulose from Tobacco

    SciTech Connect (OSTI)

    Berson, R Eric; Dvaid, Keith; McGinley, W Mark; Meduri, Praveen; Clark, Ezra; Dayalan, Ethirajulu; Sumanasekera, Gamini; Sunkara, Mahendra; Colliver, Donald

    2011-06-15

    The Kentucky Rural Energy Supply Program was established in 2005 by a federal direct appropriation to benefit the citizens of the Commonwealth by creating a unified statewide consortium to promote renewable energy and energy efficiency in Kentucky. The U.S. Department of Energy's (DOE) Office of Biomass Programs initially funded the consortium in 2005 with a $2 million operational grant. The Kentucky Rural Energy Consortium (KREC) was formed at the outset of the program to advance energy efficiency and comprehensive research on biomass and bioenergy of importance to Kentucky agriculture, rural communities, and related industries. In recognition of the successful efforts of the program, KREC received an additional $1.96 million federal appropriation in 2008 for renewal of the DOE grant. From the beginning, KREC understood the value of providing a statewide forum for the discussion of Kentucky's long term energy needs and economic development potential. The new funding allowed KREC to continue to serve as a clearinghouse and support new research and development and outreach programs for energy efficiency and renewable energy.

  8. Improvement of cellulose catabolism in Clostridium cellulolyticum...

    Office of Scientific and Technical Information (OSTI)

    carbon alleviation Background Clostridium cellulolyticum can degrade lignocellulosic biomass, and ferment the soluble sugars to produce valuable chemicals such as lactate,...

  9. Grand Challenges of Characterization & Modeling of Cellulose...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... neutron, x-ray *Inelastic Scattering: Raman *Scattering: DLS, *Spectroscopy: NMR, IR, FTIR, *Rheology: *Thermal: TGADTA * Etc Key Challenges: * Increased Fidelity * ...

  10. Advanced Cellulosic Biofuels - Leveraging Ensyn's Commercially...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to % Yields from VGO (ratio of yields) Gasoline + Diesel Diesel Gasoline Decant Oil Upstream Downstream Crude Oil Diesel Gasoline RFO 15 Refinery Coprocessing vs...

  11. Morphological characterization of O-rings from the GCEP long-term test program. [Dupont 1141, 3M 4762 and 4768, and Parker V884-75 O-rings

    SciTech Connect (OSTI)

    Hughes, M.R.; Nolan, T.A.

    1984-07-30

    Based on the results of the morphological and structural characterizations reported herein the following conclusions have been reached. (1) O-rings of any of the four materials studied should last at least 10 years when employed in a standard static seal configuration utilizing a groove that holds the O-ring. (2) Such a static seal provides considerable protection from reaction. (3) The reaction of UF/sub 6/ with the O-ring material is the dominant degradation reaction; however there are effects on a least one compound that appear to be related to HF penetration into the O-ring matrix. The slow nature of the reaction of UF/sub 6/ with the flanged O-rings makes life projections quite difficult using any means. It would appear that one of the best methods for determining the life of these materials would be actual use combined with routine long-term inspection/sampling of a selected typical subset of O-rings. At GCEP conditions it would not be surprising to find the actual life of the O-rings is longer than any anticipated operation time of the plant facility. 16 figures, 1 table.

  12. Waupaca County, Wisconsin: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Dupont, Wisconsin Embarrass, Wisconsin Farmington, Wisconsin Fremont, Wisconsin Harrison, Wisconsin Helvetia, Wisconsin Iola, Wisconsin Larrabee, Wisconsin Lebanon, Wisconsin...

  13. Breaking the Biological Barriers to Cellulosic Ethanol, June 2006 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy bhighres

  14. Breaking the Biological Barriers to Cellulosic Ethanol, June 2006 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy blowres

  15. Watershed Scale Optimization to Meet Sustainable Cellulosic Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... that could be implemented in a watershed (e.g. switchgrass in grassed waterways, vegetated ... 1.15 Truck Wait 1.329 19.68 0.87 0.87 Thompson & Tyner (2014) Oversize Permit 0.02 0.02 ...

  16. Advanced and Cellulosic Biofuels and Biorefineries: State of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Afternoon Plenary Introduction Brent Erickson, Executive Vice President, BIO PDF icon b13ericksonday2-apintro.pdf More Documents & Publications Biomass 2013 Agenda Biomass 2012 ...

  17. Compositions and methods relating to transgenic plants and cellulosic...

    Office of Scientific and Technical Information (OSTI)

    transformed with an expression cassette encoding a protein operably linked to a signal peptide which targets the protein to a cell wall of the transgenic plant, where at least ...

  18. The Arabidopsis Cellulose Synthase Complex: A Proposed Hexamer...

    Office of Scientific and Technical Information (OSTI)

    Resource Type: Journal Article Resource Relation: Journal Name: Plant Cell; Journal ... algae and biomass), bio-inspired, membrane, carbon sequestration, materials and ...

  19. Preliminary Economics for Hydrocarbon Fuel Production from Cellulosic Sugars

    SciTech Connect (OSTI)

    Collett, James R.; Meyer, Pimphan A.; Jones, Susanne B.

    2014-05-18

    Biorefinery process and economic models built in CHEMCAD and a preliminary, genome-scale metabolic model for the oleaginous yeast Lipomyces starkeyi were used to simulate the bioconversion of corn stover to lipids, and the upgrading of these hydrocarbon precursors to diesel and jet fuel. The metabolic model was based on the recently released genome sequence for L. starkeyi and on metabolic pathway information from the literature. The process model was based on bioconversion, lipid extraction, and lipid oil upgrading data found in literature, on new laboratory experimental data, and on yield predictions from the preliminary L. starkeyi metabolic model. The current plant gate production cost for a distillate-range hydrocarbon fuel was estimated by the process model Base Case to be $9.5/gallon ($9.0 /gallon of gasoline equivalent) with assumptions of 2011$, 10% internal return on investment, and 2205 ton/day dry feed rate. Opportunities for reducing the cost to below $5.0/gallon, such as improving bioconversion lipid yield and hydrogenation catalyst selectivity, are presented in a Target Case. The process and economic models developed for this work will be updated in 2014 with new experimental data and predictions from a refined metabolic network model for L. starkeyi. Attaining a production cost of $3.0/gallon will require finding higher value uses for lignin other than power generation, such as conversion to additional fuel or to a co-product.

  20. Grand Challenges of Characterization & Modeling of Cellulose Nanomaterials

    Broader source: Energy.gov [DOE]

    Presentation for the Sustainable Nanomaterials Workshop by U.S. Forest Service and Purdue University held on June 26, 2012

  1. Identification and Characterization of Non-Cellulose-Producing...

    Office of Scientific and Technical Information (OSTI)

    Country of Publication: United States Language: English Subject: biofuels (including algae and biomass), bio-inspired, membrane, carbon sequestration, materials and chemistry by ...

  2. Understanding the Growth of the Cellulosic Ethanol Industry

    SciTech Connect (OSTI)

    Sandor, D.; Wallace, R.; Peterson, S.

    2008-04-01

    This report identifies, outlines, and documents a set of plausible scenarios for producing significant quantities of lignocellulosic ethanol in 2017. These scenarios can provide guidance for setting government policy and targeting government investment to the areas with greatest potential impact.

  3. New process to convert lipids and cellulosic biomass to renewable...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contact CU About This Technology Technology Marketing SummaryA research team at the University of Colorado Denver led by Arunprakash Karunanithi has developed a decarboxylation ...

  4. Secretary Bodman Touts Importance of Cellulosic Ethanol at Georgia...

    Energy Savers [EERE]

    This new facility, one of six commercial scale biorefineries to be constructed with the Department of Energy's support, will expand the use of home-grown alternative fuels - ...

  5. Genes and Mechanisms for Improving Cellulosic Ethanol Production...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    fuels and chemicals faster and cheaper is vital for biofuel and biorefining applications. ... biomass, and ethanol tolerance is important for the production of ethanol as a biofuel. ...

  6. Florida Project Produces Nation's First Cellulosic Ethanol at...

    Office of Environmental Management (EM)

    to bring innovative, cost-cutting biofuel technologies on line, test the latest ... future INEOS Bio facilities as well as other advanced biofuel projects across the country. ...

  7. Secretary Moniz Dedicates Innovative Commercial-Scale Cellulosic Biofuel Plant

    Broader source: Energy.gov [DOE]

    WASHINGTON — Marking another milestone in the Administration’s support of clean energy technologies that will diversify our energy portfolio and help transition the U.S. toward a low-carbon future,...

  8. Breaking the Biological Barriers to Cellulosic Ethanol, June...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... scientist at NIH National Institute of Diabetes and Digestive and Kidney Diseases until ... cells with emphasis on obesity and diabetes, and bioinformatics and functional ...

  9. Advance Patent Waiver W(A)2009-055

    Broader source: Energy.gov [DOE]

    This is a request by DUPONT COMPANY for a DOE waiver of domestic and foreign patent rights under agreement DE-EE0002593

  10. Athens, Ohio: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Ohio American Hydrogen Corporation Carbon Cycle Engineering Dovetail Solar and Wind DuPont Electronic Technologies, Inc. Global Cooling Inc. Panich + Noel Architects Panich,...

  11. A New Route to Nano Self-Assembly

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Japan). Research funding: Army Research Office; National Science Foundation; DuPont; 3M; Japan Ministry of Education, Science, Sports, and Culture; and the U.S....

  12. Building Media, Inc. (Du Pont) (Building America Retrofit Alliance...

    Open Energy Info (EERE)

    America Retrofit Alliance) Place: Wilmington, DE Website: www.prweb.comreleasesDuPont References: Building America Retrofit Alliance Press Release1 BMI Website2 DuPont...

  13. Athens County, Ohio: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Ohio American Hydrogen Corporation Carbon Cycle Engineering Dovetail Solar and Wind DuPont Electronic Technologies, Inc. Global Cooling Inc. Panich + Noel Architects Panich,...

  14. Jefferson County, Indiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    4 Climate Zone Subtype A. Places in Jefferson County, Indiana Brooksburg, Indiana Dupont, Indiana Hanover, Indiana Madison, Indiana Retrieved from "http:en.openei.orgw...

  15. Long Range Interactions in Nanoscale Science (Journal Article...

    Office of Scientific and Technical Information (OSTI)

    less + Show Author Affiliations DuPont Company National Institutes of Health Massachusetts Institute of Technology (MIT) Lehigh University, Bethlehem, PA Clemson University...

  16. Advance Patent Waiver W(A)2008-012

    Office of Energy Efficiency and Renewable Energy (EERE)

    This is a request by DUPONT for a DOE waiver of domestic and foreign patent rights under agreement DE-FC36-07GOI7056

  17. March 2015 Most Viewed Documents for Energy Storage, Conversion...

    Office of Scientific and Technical Information (OSTI)

    Process Equipment Cost Estimation, Final Report H.P. Loh; Jennifer Lyons; Charles W. ... Resistance and Mechanical Properties John N. DuPont; Jeffrey D. Farren; Andrew W. ...

  18. VP 100: Growth in solar means growth in Ohio | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Growth in solar means growth in Ohio VP 100: Growth in solar means growth in Ohio October 6, 2010 - 10:57am Addthis DuPont is betting on major growth in the market for solar energy -- and therefore for its Tedlar film, a durable backing for silicon solar panels. | Photo Courtesy of DuPont DuPont is betting on major growth in the market for solar energy -- and therefore for its Tedlar film, a durable backing for silicon solar panels. | Photo Courtesy of DuPont Lorelei Laird Writer, Energy

  19. Energy At Work: Plant Expansion Creates Job Opportunities in Ohio |

    Office of Environmental Management (EM)

    Department of Energy Energy At Work: Plant Expansion Creates Job Opportunities in Ohio Energy At Work: Plant Expansion Creates Job Opportunities in Ohio May 24, 2012 - 5:08pm Addthis Wade Reichelderfer is among the recent hires at DuPont's newly expanded solar manufacturing plant in Circleville, Ohio. | Photo courtesy of DuPont. Wade Reichelderfer is among the recent hires at DuPont's newly expanded solar manufacturing plant in Circleville, Ohio. | Photo courtesy of DuPont. Erin R. Pierce

  20. 2010 New Fuel Cell Projects Meeting | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Investigation of Micro- and Macro-Scale Transport, Jon Owejan, General Motors Durability Analysis of Durability of PEM FC Membrane Electrodes, Randal Perry, DuPont Innovative ...

  1. DOE Announces Secretary of Energy Advisory Board | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Former CEO of Dupont Michael McQuade Senior VP, United Technologies Corporation William Perry Former Secretary of Defense, Stanford University Professor Arthur Rosenfeld Former ...

  2. Cellulose Nanomaterials: The Sustainable Material of Choice for the 21st Century

    Broader source: Energy.gov [DOE]

    Presentation for the Sustainable Nanomaterials Workshop by USDA Forest Service held on June 26, 2012

  3. Compositions and methods relating to transgenic plants and cellulosic ethanol production

    DOE Patents [OSTI]

    Tien, Ming; Carlson, John; Liang, Haiying

    2012-04-24

    Transgenic lignocellulosic plants are provided according to embodiments of the present invention, the transgenic plants transformed with an expression cassette encoding a protein operably linked to a signal peptide which targets the protein to a cell wall of the transgenic plant, where at least 5% of the total amino acid residues of the protein are tyrosine, lysine, serine, threonine or cysteine. Methods of increasing lignin-protein bonds in a lignocellulosic plant are provided according to embodiments of the present invention which include expressing a recombinant nucleic acid in a lignocellulosic plant, the recombinant nucleic acid encoding a protein operably linked to a signal peptide which targets the protein to the cell wall of a plant, where at least 5% of the total amino acid residues of the protein are tyrosine, lysine, serine, threonine or cysteine.

  4. Compositions and methods relating to transgenic plants and cellulosic ethanol production

    DOE Patents [OSTI]

    Tien, Ming; Carlson, John; Liang, Haiying

    2015-06-02

    Transgenic lignocellulosic plants are provided according to embodiments of the present invention, the transgenic plants transformed with an expression cassette encoding a protein operably linked to a signal peptide which targets the protein to a cell wall of the transgenic plant, where at least 5% of the total amino acid residues of the protein are tyrosine, lysine, serine, threonine or cysteine. Methods of increasing lignin-protein bonds in a lignocellulosic plant are provided according to embodiments of the present invention which include expressing a recombinant nucleic acid in a lignocellulosic plant, the recombinant nucleic acid encoding a protein operably linked to a signal peptide which targets the protein to the cell wall of a plant, where at least 5% of the total amino acid residues of the protein are tyrosine, lysine, serine, threonine or cysteine.

  5. Catalytic conversion of cellulose to fuels and chemicals using boronic acids

    DOE Patents [OSTI]

    Raines, Ronald; Caes, Benjamin; Palte, Michael

    2015-10-20

    Methods and catalyst compositions for formation of furans from carbohydrates. A carbohydrate substrate is heating in the presence of a 2-substituted phenylboronic acid (or salt or hydrate thereof) and optionally a magnesium or calcium halide salt. The reaction is carried out in a polar aprotic solvent other than an ionic liquid, an ionic liquid or a mixture thereof. Additional of a selected amount of water to the reaction can enhance the yield of furans.

  6. Methods for simultaneous control of lignin content and composition, and cellulose content in plants

    DOE Patents [OSTI]

    Chiang, Vincent Lee C.; Li, Laigeng

    2005-02-15

    The present invention relates to a method of concurrently introducing multiple genes into plants and trees is provided. The method includes simultaneous transformation of plants with multiple genes from the phenylpropanoid pathways including 4CL, CAld5H, AldOMT, SAD and CAD genes and combinations thereof to produce various lines of transgenic plants displaying altered agronomic traits. The agronomic traits of the plants are regulated by the orientation of the specific genes and the selected gene combinations, which are incorporated into the plant genome.

  7. Co-cultured Synechococcus and Shewanella Produce Hydrocarbons without Cellulosic Feedstock

    Energy Innovation Portal (Marketing Summaries) [EERE]

    2012-03-06

    The Shewanella bacteria naturally produce hydrocarbons but the University of Minnesota clarified the key protein responsible for fuel production, OleA and recently obtained the proteins’s crystal structure. Based on this knowledge, experiments are currently in process to optimize fuel production through both metabolic engineering and optimization of OleA....

  8. Header Sheet Doc ID Z OAK RIDGE NATIONAL LABORATORY M. E. Murray

    Office of Legacy Management (LM)

    Dames & Moore Header Sheet Doc ID Z OAK RIDGE NATIONAL LABORATORY M. E. Murray MANAGED BY LOCKHEED MARTIN rNERGY RESEARCH CORPORATION PHONE: (423) 574-5838 FOR THE U.S. DEPARTMENT OF ENERGY FAX: (423) POST OFFICE Box 2 INTERNET: r'0 March 31, 1997 Mr. Andrew Meloy DuPont Environmental Remediation Services DuPont Chambers Works Route 130, Anti-Knocks Building G Deepwater, New Jersey 08023 Dear Mr. Meloy: Radiological Sampling Requirements for the B Ditch Remediation Project, DuPont Chamber

  9. Chad Holliday, Jr. | Department of Energy

    Office of Environmental Management (EM)

    Chad Holliday, Jr. About Us Chad Holliday, Jr. - Former CEO of Dupont Photo of Chad Holliday, Jr. Charles O. Holliday, Jr. "Chad" is chairman of the board of directors of Bank of America. He has served as a director since September 2009. He is the former chairman of the board of directors of E.I. du Pont de Nemours and Co., a position he had held for approximately 10 years. He served as chief executive officer of DuPont from 1998 until 2008. He joined DuPont in 1970 as an engineer and

  10. Chapter 7: Advancing Systems and Technologies to Produce Cleaner...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... including POET-DSM, DuPont, and INEOS (see the Integrated Biorefinery Section below). ... stover at a cost of 2.15 per gallon ethanol (3.20 gge) when modeled at commercial scale. ...

  11. A New Route to Nano Self-Assembly

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Office; National Science Foundation; DuPont; 3M; Japan Ministry of Education, Science, Sports, and Culture; and the U.S. Department of Energy, Office of Basic Energy Sciences...

  12. Ohio's 6th congressional district: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    DuPont Electronic Technologies, Inc. Global Cooling Inc. McCarthy Systems Co. Michael Bradley Co. Michael Bradley Co.,Inc Morning Mist LLC Panich + Noel Architects Panich, Noel +...

  13. Staff > Center Alumni > The Energy Materials Center at Cornell

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    River National Lab ttt45@cornell.edu List Image Giang Vo Research Investigator - Dupont gdv8@cornell.edu List Image Deli Wang Professor - Huazhong University of Science &...

  14. Radiative Processes Working Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    J-C. Dupont, M. Haeffelin Institut Pierre et Simon Laplace, Ecole Polytechnique, France The authors would like to thank the Office National d'Etudes et de Recherche en...

  15. 2014 EFRC NEES KICKOFF MEETING AGENDA

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4:30pm LAB TOURS RUBLOFF ALD LAB, NISP LAB BY CUMINGS, GHODSSI MSAL BY KOSTAS (MSAL, MEMS SENSORS & ACTUATORS LAB) 5:30pm 7 O'CLOCK DINNER RESERVATION @ AGORA, DUPONT CIRCLE,...

  16. E

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and cost cutting. She has industry experience with DuPont, TRW, Xerox, Coca-Cola Enterprises, and BAE Systems (formerly Lockheed Martin Sanders). Kim earned her MS in...

  17. Sandia National Laboratories: About Sandia: Leadership: Deputy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and cost cutting. She has industry experience with DuPont, TRW, Xerox, Coca-Cola Enterprises, and BAE Systems (formerly Lockheed Martin Sanders). Kim earned her MS in...

  18. Germ-Killing or Germ-Attracting? (Daily Press) | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    fabric first researched by DuPont loses its effectiveness with just a simple coating of dust. The synthetic material was first considered for its germ-killing properties...

  19. Building America Case Study: Measure Guideline: Guidance on Taped Insulating Sheathing Drainage Planes (Fact Sheet), Technology Solutions for New and Existing Homes, Energy Efficiency & Renewable Energy (EERE)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Measure Guideline: Guidance on Taped Insulating Sheathing Drainage Planes PROJECT INFORMATION Construction: New and retrofit Type: Residential Climate Zones: All TEAM MEMBERS Building Science Corporation, buildingscience.com BASF, basf.com The Dow Chemical Company, dow.com Dupont, dupont.com CODE COMPLIANCE International Code Council Evaluation Service AC71-Acceptance Criteria for Foam Plastic Sheathing Panels Used as Water-Resistive Barriers The energy effciency-based fnancial benefts of adding

  20. Major DOE Biofuels Project Locations | Department of Energy

    Office of Environmental Management (EM)

    Slide 1 The Current State of Technology for Cellulosic Ethanol

  1. Department of Energy Offers Abengoa Bioenergy a Conditional Commitment for a $133.9 Million Loan Guarantee

    Broader source: Energy.gov [DOE]

    Groundbreaking Cellulosic Ethanol Project Expected to Create Over 300 Jobs and Build Nation’s Capacity for Cellulosic Ethanol Production

  2. Energy and greenhouse gas emission effects of corn and cellulosic ethanol with technology improvements and land use changes.

    SciTech Connect (OSTI)

    Wang, M.; Han, J.; Haq, Z; Tyner, .W.; Wu, M.; Elgowainy, A.

    2011-05-01

    Use of ethanol as a transportation fuel in the United States has grown from 76 dam{sup 3} in 1980 to over 40.1 hm{sup 3} in 2009 - and virtually all of it has been produced from corn. It has been debated whether using corn ethanol results in any energy and greenhouse gas benefits. This issue has been especially critical in the past several years, when indirect effects, such as indirect land use changes, associated with U.S. corn ethanol production are considered in evaluation. In the past three years, modeling of direct and indirect land use changes related to the production of corn ethanol has advanced significantly. Meanwhile, technology improvements in key stages of the ethanol life cycle (such as corn farming and ethanol production) have been made. With updated simulation results of direct and indirect land use changes and observed technology improvements in the past several years, we conducted a life-cycle analysis of ethanol and show that at present and in the near future, using corn ethanol reduces greenhouse gas emission by more than 20%, relative to those of petroleum gasoline. On the other hand, second-generation ethanol could achieve much higher reductions in greenhouse gas emissions. In a broader sense, sound evaluation of U.S. biofuel policies should account for both unanticipated consequences and technology potentials. We maintain that the usefulness of such evaluations is to provide insight into how to prevent unanticipated consequences and how to promote efficient technologies with policy intervention.

  3. Phenotypic Data Collection and Sample Preparation for Genomics of Wood Formation and Cellulosic Biomass Traits in Sunflower: Ames, IA location.

    SciTech Connect (OSTI)

    Marek, Laura F.

    2011-06-17

    Three fields were planted in Ames in 2010, two association mapping fields, N3 and A, and a recombinant inbred line field, N13. Phenotype data and images were transferred to UGA to support genetic and genomic analyses of woody biomass-related traits.

  4. Department of Energy to Make Available up to $33.8 Million to Support Commercial Production of Cellulosic Biofuels

    Broader source: Energy.gov [DOE]

    WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced a Funding Opportunity Announcement (FOA) that will make available up to $33.8 million to support the development of commercially...

  5. DOE/EV-0005/8

    Office of Legacy Management (LM)

    8 Au* k.3 dJ o b /< (/),s:x ,' , -1 3 Formerly Utilized MED/AEC Sites Remedial Action Program Radiological Survey of the E.I. DuPont DeNemours and Co., Deepwater, New Jersey December 1978 . - FINAL REPORT Prepared for U.S. Department of Energy Assistant Secretary for Environment Division of Environmental Control Technology Washington, DC 20545 -.- _"_" .---_" DOE/EV-0005/8 UC-70 I Formerly Utilized MED/AEC Sites . Remedial Action Program Radiilogical Survey of the E.I. DuPont

  6. DOE - Office of Legacy Management -- E I Du Pont - NJ 06

    Office of Legacy Management (LM)

    - NJ 06 FUSRAP Considered Sites E.I. Dupont, NJ Alternate Name(s): E.I. Du Pont De Nemours and Company E.I. Du Pont Company Dupont Chambers Works Plant NJ.06-1 NJ.06-5 Location: Pennsville and Carney Townships, Southeast bank of the Delaware River, Deepwater, New Jersey NJ.06-5 Historical Operations: Development of a process for converting uranium oxide to uranium tetraflouride, production of uranium tetraflouride, research into conversion of uranium oxide to uranium metal, and production of

  7. OFFICE OF CIVIL RIGHTS NA-1.2 VIDEO LIBRARY Item Title

    National Nuclear Security Administration (NNSA)

    OFFICE OF CIVIL RIGHTS NA-1.2 VIDEO LIBRARY Item # Title # of copies DVD / CD Length Year Publisher 1 A Clear Picture - Harassment in the Public Sector- Una Imagen Clara Acosoen el Sector Publico 1 DVD 2008 Coastal Training Technologies Corp. A Dupont Company 2 Harassment Hurts: It's Personal 1 DVD 16 min 2009 ATS Media 3 Harassment Is .. (government version) 1 DVD 21 min 2005 Coastal Training Technologies Corp. A Dupont Company 4 Harassment Made Simple 1 DVD 6 min 2011 TrainingABC 5 Harassment

  8. Slide 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cellulose Synthesis Complex (CSC) is made of Three Cellulose Synthases (CesAs) in a 1:1:1 ratio Significance and Impact The arrangement of cellulose synthase proteins is one key...

  9. Section 2, Bioenergy Technologies Office Multi-Year Program Plan...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Route Feedstock Abengoa 25 Cellulosic Ethanol Biochemical Agricultural Residue POET-DSM 25 Cellulosic Ethanol Biochemical Agricultural Residue INEOS New Planet Bioenergy 8 ...

  10. Bioenergy Technologies Office Multi-Year Program Plan, March...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Route Feedstock Abengoa 25 Cellulosic Ethanol Biochemical Agricultural Residue POET-DSM 25 Cellulosic Ethanol Biochemical Agricultural Residue INEOS New Planet Bioenergy 8 ...

  11. Department of Energy Offers Abengoa Bioenergy a Conditional Commitment...

    Energy Savers [EERE]

    Million Loan Guarantee August 19, 2011 - 11:15am Addthis Groundbreaking Cellulosic Ethanol Project Expected to Create Over 300 Jobs and Build Nation's Capacity for Cellulosic...

  12. Bioenergy Success Stories

    Office of Environmental Management (EM)

    61 Bioenergy Success Stories en Largest Cellulosic Ethanol Plant in the World Opened in October http:energy.goveeresuccess-storiesarticleslargest-cellulosic-ethanol-plant-wor...

  13. Breakthrough in Bioenergy: American Process Sells First RIN-qualified...

    Broader source: Energy.gov (indexed) [DOE]

    API ships first RIN-qualified cellulosic ethanol from their Alpena Biorefinery. Photo: Alex Wisniewski API ships first RIN-qualified cellulosic ethanol from their Alpena...

  14. BioEnergy Blog | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    most exciting, recent accomplishments. September 3, 2014 Cellulosic ethanol biorefinery Four Cellulosic Ethanol Breakthroughs Today, the nation's first ever commercial-scale...

  15. USDA - Biorefinery Assistance Program | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    must be an advanced biofuels Eligible advanced biofuels include: Biofuel derived from cellulose, hemicellulose, or lignin, or other fuels derived from cellulose Biofuel derived...

  16. Energy Department Finalizes $132 Million Loan Guarantee to Support the Abengoa Bioenergy Project

    Broader source: Energy.gov [DOE]

    Groundbreaking cellulosic ethanol project expected to fund more than 300 jobs and build nations capacity for cellulosic ethanol production

  17. Bonded polyimide fuel cell package and method thereof

    DOE Patents [OSTI]

    Morse, Jeffrey D.; Jankowski, Alan; Graff, Robert T.; Bettencourt, Kerry

    2005-11-01

    Described herein are processes for fabricating microfluidic fuel cell systems with embedded components in which micron-scale features are formed by bonding layers of DuPont Kapton.TM. polyimide laminate. A microfluidic fuel cell system fabricated using this process is also described.

  18. Method of preparation of bonded polyimide fuel cell package

    DOE Patents [OSTI]

    Morse, Jeffrey D. (Martinez, CA); Jankowski, Alan (Livermore, CA); Graff, Robert T. (Modesto, CA); Bettencourt, Kerry (Dublin, CA)

    2011-04-26

    Described herein are processes for fabricating microfluidic fuel cell systems with embedded components in which micron-scale features are formed by bonding layers of DuPont Kapton.TM. polyimide laminate. A microfluidic fuel cell system fabricated using this process is also described.

  19. Bonded polyimide fuel cell package

    DOE Patents [OSTI]

    Morse, Jeffrey D.; Jankowski, Alan; Graff, Robert T.; Bettencourt, Kerry

    2010-06-08

    Described herein are processes for fabricating microfluidic fuel cell systems with embedded components in which micron-scale features are formed by bonding layers of DuPont Kapton.TM. polyimide laminate. A microfluidic fuel cell system fabricated using this process is also described.

  20. Natural Phenomena Hazards Design Criteria and Other Characterization Information for the MFFF at SRS

    SciTech Connect (OSTI)

    Wyatt, D.E.

    2000-12-01

    This report is a comprehensive complication applicable to the general Savannah River Site area, developed by both the original contractor, the DuPont Company, and by the current plant operator, Westinghouse Savannah River Company, over the full plant lifetime period (1950 - 2000).

  1. High School Academic Competition - Round Robin | U.S. DOE Office...

    Office of Science (SC) Website

    ... Back to Top Back to Top Hypatia Division Team 1 2 3 4 5 6 7 8 Total Points DTC Rank 1. Edwin O. Smith High School 2 2 2 2 0 2 2 12 7 2. duPont Manual High School 0 2 0 2 2 0 2 8 5 ...

  2. Secretary Chu, Intel President Discuss Need for More U.S. Engineers

    Broader source: Energy.gov [DOE]

    The President’s Council on Jobs and Competitiveness announced that 45 industry leaders, including Boeing, DuPont, AT&T and Facebook, have committed to doubling engineering internships at their companies in 2012, strengthening the skills and talent of our students with hands-on, technical opportunities.

  3. DOE Offers Conditional Commitment for a $105 Million Loan Guarantee for First-of-its-Kind Cellulosic Bio-Refinery in Iowa

    Broader source: Energy.gov [DOE]

    Project Will Create Over 200 Jobs and Displace an Estimated 13.5 Million Gallons of Gasoline Annually

  4. Conversion of cellulosic wastes to liquid hydrocarbon fuels: Vol. 6, The modeling and design of a staged indirect liquefaction reactor: Final report

    SciTech Connect (OSTI)

    Kuester, J.L.

    1986-11-01

    A staged reactor was designed to convert biomass to useful fuels. The reactor consists of three stages. The first stage is a concentric combustor/pyrolyzer system where the biomass is gasified in a fluidized bed at high temperatures in the absence of oxygen. The second stage is a cyclonic scrubber where particulates and condensable materials are removed from the gas stream while the gas is cooled. In the final stage the gas undergoes a Fischer-Tropsch synthesis in a fluidized bed or slurry reactor. Mathematical models of the system were developed and used to create computer programs that would predict the behavior of the bed. The models were based on fundamental phenomena and were used to predict key dimensions of the staged reactor system. A transparent plastic, full-scale, cold flow reactor simulator was built using the models' predictions. The simulator was used to refine the models and determine the operating characteristics of the reactor. The design was determined to be workable and potentially useful. The reactor was, however, difficult to operate and would require extensive automated control systems.

  5. EA-1705: Finding of No Significant Impact

    Broader source: Energy.gov [DOE]

    Construction and Operation of a Proposed Cellulosic Biorefinery, Mascoma Corporation, Kinross Charter Township, Michigan

  6. EA-1705: Final Environmental Assessment

    Broader source: Energy.gov [DOE]

    Construction and Operation of a Proposed Cellulosic Biorefinery, Mascoma Corporation, Kinross Charter Township, Michigan

  7. EA-1705: Draft Environmental Assessment

    Broader source: Energy.gov [DOE]

    Construction and Operation of a Proposed Cellulosic Biorefinery, Mascoma Corporation, Kinross Charter Township, Michigan

  8. EA-1597: Finding of No Significant Impact

    Broader source: Energy.gov [DOE]

    Construction and Operation of a Proposed Cellulosic Ethanol Plant, Range Fuels, Inc., Treutlen County, Georgia

  9. Lignol Innovations, Inc. Demonstration-Scale Biorefinery

    Broader source: Energy.gov [DOE]

    The Lignol Innovations, Inc., biorefinery will produce cellulosic ethanol, high purity lignin, and furfural from hardwoods.

  10. DOE Selects 3 Small-Scale Biorefinery Projects for up to $86 Million of Federal Funding in Maine, Tennessee and Kentucky

    Broader source: Energy.gov [DOE]

    Projects Demonstrate Continued Commitment to Advancing Development of Sustainable, Cost-Competitive Cellulosic Ethanol

  11. Slide 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    hydroxymethyl" "ring" A Counterintuitive Result: Hydrated Cellulose is more Rigid than Dry Cellulose due to Increased Surface Fluctuations Significance and Impact The structural role of cellulose in plant cell walls is directly linked to its rigidity. A detailed description is provided of how hydration- dependent fluctuations (structure) and disorder (dynamics) at the cellulose surface lead to enhancement of cellulose microfibril rigidity (mechanics). This result adds novel

  12. Breakthrough in Bioenergy: American Process Sells First RIN-qualified

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cellulosic Ethanol Shipment | Department of Energy Breakthrough in Bioenergy: American Process Sells First RIN-qualified Cellulosic Ethanol Shipment Breakthrough in Bioenergy: American Process Sells First RIN-qualified Cellulosic Ethanol Shipment May 9, 2014 - 12:01pm Addthis API ships first RIN-qualified cellulosic ethanol from their Alpena Biorefinery. Photo: Alex Wisniewski API ships first RIN-qualified cellulosic ethanol from their Alpena Biorefinery. Photo: Alex Wisniewski Christy

  13. EERE Success Story-Department of Energy Delivers on R&D Targets around

    Office of Environmental Management (EM)

    Cellulosic Ethanol | Department of Energy Delivers on R&D Targets around Cellulosic Ethanol EERE Success Story-Department of Energy Delivers on R&D Targets around Cellulosic Ethanol April 19, 2013 - 11:24am Addthis In September 2012, scientists at DOE national laboratories successfully demonstrated technical advances required to produce cellulosic ethanol that is cost competitive with petroleum. Cellulosic ethanol is fuel produced from the inedible, organic material abundant in

  14. Miniature lowpass filters in low loss 9k7 LTCC

    SciTech Connect (OSTI)

    Dai, Steve; Hsieh, Lung -Hwa

    2015-04-01

    DuPont 9k7 low temperature cofired ceramic (LTCC) is a low loss, or high quality factor Q, tape system targeting at radio frequency (RF) applications. This paper reports the effect of a critical process parameter, heating rate, on the densification and dielectric properties of the 9k7 LTCC. The role of competing densification and crystallization during the sintering of 9k7 is discussed. The high Q of DuPont 9K7 can be used to improve RF system performance, for example a better receiver noise figure, by designing embedded passive RF components such as inductors, capacitors and filters. As a result, miniaturized multilayer low pass filters (LPF) with a wide stopband were fabricated to showcase the technology.

  15. Miniature lowpass filters in low loss 9k7 LTCC

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dai, Steve; Hsieh, Lung -Hwa

    2015-04-01

    DuPont 9k7 low temperature cofired ceramic (LTCC) is a low loss, or high quality factor Q, tape system targeting at radio frequency (RF) applications. This paper reports the effect of a critical process parameter, heating rate, on the densification and dielectric properties of the 9k7 LTCC. The role of competing densification and crystallization during the sintering of 9k7 is discussed. The high Q of DuPont 9K7 can be used to improve RF system performance, for example a better receiver noise figure, by designing embedded passive RF components such as inductors, capacitors and filters. As a result, miniaturized multilayer low passmore » filters (LPF) with a wide stopband were fabricated to showcase the technology.« less

  16. Methods of saccharification of polysaccharides in plants

    DOE Patents [OSTI]

    Howard, John; Fake, Gina

    2014-04-29

    Saccharification of polysaccharides of plants is provided, where release of fermentable sugars from cellulose is obtained by adding plant tissue composition. Production of glucose is obtained without the need to add additional .beta.-glucosidase. Adding plant tissue composition to a process using a cellulose degrading composition to degrade cellulose results in an increase in the production of fermentable sugars compared to a process in which plant tissue composition is not added. Using plant tissue composition in a process using a cellulose degrading enzyme composition to degrade cellulose results in decrease in the amount of cellulose degrading enzyme composition or exogenously applied cellulase required to produce fermentable sugars.

  17. Research To Develop Both Fuels And Value-Added Chemicals From Corn & Other

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Renewable Resources - News Releases | NREL Research To Develop Both Fuels And Value-Added Chemicals From Corn & Other Renewable Resources October 6, 2003 Golden, Colo. and Wilmington, Del. - The U.S. Department of Energy's National Renewable Energy Laboratory (NREL) and DuPont today announced a joint research agreement leading toward the development of the world's first integrated "bio-refinery" that uses corn or other renewable resources-rather than traditional

  18. A Comparison of Key PV Backsheet and Module Properties from Fielded Module

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exposures and Accelerated Test Conditions | Department of Energy A Comparison of Key PV Backsheet and Module Properties from Fielded Module Exposures and Accelerated Test Conditions A Comparison of Key PV Backsheet and Module Properties from Fielded Module Exposures and Accelerated Test Conditions Presented at the PV Module Reliability Workshop, February 26 - 27 2013, Golden, Colorado PDF icon pvmrw13_ps5_dupont_gambogi.pdf More Documents & Publications Agenda for the PV Module

  19. Manhattan Project: Hanford Becomes Operational, 1943-1944

    Office of Scientific and Technical Information (OSTI)

    F Reactor Plutonium Production Complex at Hanford, 1945 HANFORD BECOMES OPERATIONAL (Hanford Engineer Works, 1943-1944) Events > The Plutonium Path to the Bomb, 1942-1944 Production Reactor (Pile) Design, 1942 DuPont and Hanford, 1942 CP-1 Goes Critical, December 2, 1942 Seaborg and Plutonium Chemistry, 1942-1944 Final Reactor Design and X-10, 1942-1943 Hanford Becomes Operational, 1943-1944 The plutonium production facilities at the Hanford Engineer Works took shape with the same wartime

  20. Analysis of the Durability of PEM FC Membrane Electrode Assemblies in

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Automotive Applications | Department of Energy the Durability of PEM FC Membrane Electrode Assemblies in Automotive Applications Analysis of the Durability of PEM FC Membrane Electrode Assemblies in Automotive Applications These slides were presented at the 2010 New Fuel Cell Projects Meeting on September 28, 2010. PDF icon 10_dupont_perry.pdf More Documents & Publications DOE Fuel Cell Pre-Solicitation Workshop - Breakout Group 2: MEAs, Components, and Integration Membranes and MEAs for

  1. Attic Retrofits Using Nail-Base Insulated Panels | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Attic Retrofits Using Nail-Base Insulated Panels Attic Retrofits Using Nail-Base Insulated Panels Photo courtesy of the Structural Insulated Panel Association. Photo courtesy of the Structural Insulated Panel Association. Lead Performer: Home Innovation Research Labs-Upper Marlboro, MD Partners: Structural Insulated Panel Association, American Chemistry Council, Forest Products Laboratory, DuPont, APA-The Engineered Wood Association, Insurance Institute for Business and Home Safety, Remodeling

  2. Lynden Archer > Marjorie L. Hart Chair

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemical and Biomolecular Engineering > Faculty Directory > The Energy Materials Center at Cornell Lynden Archer Marjorie L. Hart Chair Chemical and Biomolecular Engineering Research Group Webpage laa25@cornell.edu Professor Archer received the Career Award from the National Science Foundation, 1996, Dupont Young Professor Award 1996-1999, 3M Company Non-Tenured Faculty Award 1995, and the George Armistead Faculty Fellowship 1999-2000. Research Polymer liquids are classified as complex

  3. Program Management Review Steering Committee Observations

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program Management Review Jim Dooley Forest Concepts, LLC Steering Committee Observations 2 Members Steering Committee: Member Affiliation Jim Dooley Forest Concepts, LLC Dean Dreamel ExxonMobil/University of California, Berkeley Jim Kellis DuPont Mike Lakeman Boeing and Algae Biomass Organization Valri Lightner DOE Loan Programs Office Jack McDonald Independent Shelie Miller University of Michigan Carol Werner Environmental and Energy Study Institute 3 Outline I. BETO Portfolio II. Coordination

  4. DOE/OR/20722-22 UC-70A DBaffu Formerly Utilized Sites Remedial Action Program (FUSRAP)

    Office of Legacy Management (LM)

    22 UC-70A DBaffu Formerly Utilized Sites Remedial Action Program (FUSRAP) Contract No. DE-ACO5-81OR20722 c P c P RADIOLOGICAL SURVEY REPORT FOR THE DUPONT CHAMBER WORKS PLANT Deepwater, New Jersey Bechtel National, Inc. Advanced Technology Division June 1984 Technical Information Center Office of Scientific and Technical Information U.S. Department of Energy -- .,,.... - ~S",.W -. - - -. _ -- --- --.- ----.-- ___ ..---. -.~ LEGAL NOTICE ' I91i.m report war prepared u M account of work

  5. Silicon Ink Technology Offers Path to Higher Efficiency Solar Cells at

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lower Cost | Department of Energy Silicon Ink Technology Offers Path to Higher Efficiency Solar Cells at Lower Cost Silicon Ink Technology Offers Path to Higher Efficiency Solar Cells at Lower Cost April 18, 2013 - 12:00am Addthis Silicon Ink Technology Offers Path to Higher Efficiency Solar Cells at Lower Cost Partnering with Sunnyvale-based Innovalight, which was acquired by DuPont in July 2011, EERE supported the development of the first commercially available liquid silicon offering a

  6. Mr. Ken Blower, Manager Corporate Environmental Affairs Standard Oil Company of Ohio

    Office of Legacy Management (LM)

    ad. 3 0 II, 0 s 3 = & Mr. Ken Blower, Manager Corporate Environmental Affairs Standard Oil Company of Ohio Midland Building Cleveland, Ohio 44115 qITIALS/SIG Jhitman )ATE 1/ /86 ITG SYMBOL NE-23 Dear Mr. Blower: The Department of Energy (DOE), as part of its Fomerly Utilized Sites Remedial Action Program (FUSRAP), has reviewed information on the former DuPont Grasselli Research Laboratory (now Standard Oil Company of Ohio) to determine whether it contains residual radioactivity traceable to

  7. Pilot Plant Completes Two 1,000-Hour Ethanol Performance Runs...

    Broader source: Energy.gov (indexed) [DOE]

    1,000-hour performance runs of its patent-pending Generation 2.0 Co-Located Cellulosic Ethanol process at its cellulosic ethanol pilot plant in St. Joseph, Missouri. This is an...

  8. Slide 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cellulose-Pectin Spatial Contacts in Never-Dried Plant Primary Cell Walls Significance and Impact The cellulose-pectin interactions detected here by ssNMR are an important feature...

  9. Pilot Plant Completes Two 1,000-Hour Ethanol Performance Runs

    Broader source: Energy.gov [DOE]

    ICM Inc. announced successful completion of two 1,000-hour performance runs of its patent-pending Generation 2.0 Co-Located Cellulosic Ethanol process at its cellulosic ethanol pilot plant in St....

  10. Microsoft Word - TM2012-003-0 35 dollar in TM format .docx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cellulose, 16:599-619. Hess, J.R., Wright C.T., Kenney K.L. 2007. Cellulosic Biomass Feedstocks and Logistics for Ethanol Production. Biofuels, Bioproducts and Biorefining,...

  11. Enzymes for improved biomass conversion

    DOE Patents [OSTI]

    Brunecky, Roman; Himmel, Michael E.

    2016-02-02

    Disclosed herein are enzymes and combinations of the enzymes useful for the hydrolysis of cellulose and the conversion of biomass. Methods of degrading cellulose and biomass using enzymes and cocktails of enzymes are also disclosed.

  12. EA-1704: Finding of No Significant Impact

    Broader source: Energy.gov [DOE]

    Construction and Operation of a Proposed Cellulosic Biorefinery, BlueFire Fulton Renewable Energy, LLC, Fulton, Mississippi

  13. Integrating and Piloting Lignocellulose Biomass Conversion Technology (Presentation)

    SciTech Connect (OSTI)

    Schell, D. J.

    2009-06-15

    Presentation on NREL's integrated biomass conversion capabilities. Presented at the 2009 Advanced Biofuels Workshop in Denver, CO, Cellulosic Ethanol session.

  14. SweetWater Energy | Open Energy Information

    Open Energy Info (EERE)

    company creating concentrated feedstocks for biofuels and biochemical refineries using a liquid feedstock from the cellulosic portion of sorghum. References:...

  15. Range Fuels Commercial-Scale Biorefinery

    Broader source: Energy.gov [DOE]

    The Range Fuels commercial-scale biorefinery will use a variety of feedstocks to create cellulosic ethanol, methanol, and power.

  16. Integrating Nanomaterial Applications in the Field of Sustainable...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of molecularly thin cellulose 1 nanoparticles." ... food, and other life science industries. ... from lignocellulosic materials Highly ordered mesoporous ...

  17. EA-1704: Final Environmental Assessment

    Broader source: Energy.gov [DOE]

    Construction and Operation of a Proposed Cellulosic Biorefinery, BlueFire Fulton Renewable Energy, LLC, Fulton, Mississippi

  18. Production and secretion of glucose in photosynthetic prokaryotes (cyanobacteria)

    DOE Patents [OSTI]

    Nobles, Jr., David R. (Austin, TX), Brown, Jr., R. Malcolm (Austin, TX)

    2010-09-28

    The present invention includes compositions and methods for making and using an isolated cyanobacterium that includes a portion of an exogenous bacterial cellulose operon sufficient to express bacterial cellulose, whereby the cyanobacterium produces extracellular glucose. The compositions and methods of the present invention may be used as a new global crop for the manufacture of cellulose, CO.sub.2 fixation, for the production of alternative sources of conventional cellulose as well as a biofuel and precursors thereof.

  19. Energy Department Announces Up to $14 Million for Applying Landscape Design

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to Cellulosic Bioenergy | Department of Energy Up to $14 Million for Applying Landscape Design to Cellulosic Bioenergy Energy Department Announces Up to $14 Million for Applying Landscape Design to Cellulosic Bioenergy October 20, 2014 - 1:00pm Addthis The Energy Department today announced up to $14 million to support landscape design approaches that maintain or enhance the environmental and socio-economic sustainability of cellulosic bioenergy through the improvement of feedstock

  20. Slide 1 | Department of Energy

    Energy Savers [EERE]

    Major DOE Biofuels Project Locations Major DOE Biofuels Project Locations The Current State of Technology for Cellulosic Ethanol

  1. Insulation Materials | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Materials Insulation Materials Cellulose, a fiber insulation material with a high recycled content, is blown into a home attic. | Photo courtesy of Cellulose Insulation Manufacturers Association. Cellulose, a fiber insulation material with a high recycled content, is blown into a home attic. | Photo courtesy of Cellulose Insulation Manufacturers Association. Blown-in fiberglass insulation thoroughly fills the stud cavities in this home. | Photo courtesy of Bob Hendron, NREL. Blown-in fiberglass

  2. Cellulosic Biomass Sugars to Advantage Jet Fuel: Catalytic Conversion of Corn Stover to Energy Dense, Low Freeze Point Paraffins and Naphthenes: Cooperative Research and Development Final Report, CRADA Number CRD-12-462

    SciTech Connect (OSTI)

    Elander, Rick

    2015-08-04

    NREL will provide scientific and engineering support to Virent Energy Systems in three technical areas: Process Development/Biomass Deconstruction; Catalyst Fundamentals; and Technoeconomic Analysis. The overarching objective of this project is to develop the first fully integrated process that can convert a lignocellulosic feedstock (e.g., corn stover) efficiently and cost effectively to a mix of hydrocarbons ideally suited for blending into jet fuel. The proposed project will investigate the integration of Virent Energy Systems novel aqueous phase reforming (APR) catalytic conversion technology (BioForming) with deconstruction technologies being investigated by NREL at the 1-500L scale. Corn stover was chosen as a representative large volume, sustainable feedstock.

  3. Technical Support to SBIR Phase II Project: Improved Conversion of Cellulose Waste to Ethanol Using a Dual Bioreactor System: Cooperative Research and Development Final Report, CRADA Number CRD-08-310

    SciTech Connect (OSTI)

    Zhang, M.

    2013-04-01

    Over-dependence on fossil fuel has spurred research on alternative energy. Inedible plant materials such as grass and corn stover represent abundant renewable natural resources that can be transformed into biofuel. Problems in enzymatic conversion of biomass to sugars include the use of incomplete synergistic enzymes, end-product inhibition, and adsorption and loss of enzymes necessitating their use in large quantities. Technova Corporation will develop a defined consortium of natural microorganisms that will efficiently break down biomass to energy-rich soluble sugars, and convert them to cleaner-burning ethanol fuel. The project will also develop a novel biocatalytic hybrid reactor system dedicated to this bioprocess, which embodies recent advances in nanotechnology. NREL will participate to develop a continuous fermentation process.

  4. Polypeptides having endoglucanase activity and polynucleotides encoding same

    DOE Patents [OSTI]

    Spodsberg, Nikolaj; Shagasi, Tarana

    2015-06-30

    The present invention relates to isolated polypeptides having endoglucanase activity, catalytic domains, cellulose binding domains and polynucleotides encoding the polypeptides, catalytic domains or cellulose binding domains. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides, catalytic domains or cellulose binding domains.

  5. Process for the production of superconductor containing filaments

    DOE Patents [OSTI]

    Tuominen, Olli P. (Candler, NC); Hoyt, Matthew B. (Arden, NC); Mitchell, David F. (Asheville, NC); Morgan, Carol W. (Asheville, NC); Roberts, Clyde Gordon (Asheville, NC); Tyler, Robert A. (Canton, NC)

    2002-01-01

    Superconductor containing filaments having embedments of superconducting material surrounded by a rayon matrix are formed by preparing a liquid suspension which contains at least 10 weight percent superconducting material; forming a multicomponent filament having a core of the suspension and a viscose sheath which contains cellulose xanthate; and thereafter, regenerating cellulose from the cellulose xanthate to form a rayon matrix.

  6. STEAB August 2014 Meeting Agenda

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    STEAB AUGUST MEETING AGENDA August 20 - 21, 2014 Washington Marriott Georgetown, 1221 22 nd Street, NW, Washington, DC Dupont Salon F/G DAY 1 - August 20 th 8:00 - 9:00 Breakfast, hotel meeting room 9:00 - 9:30 Welcome and Meeting Overview Julie and Frank 9:30 - 10:45 Discussion with EERE's Deputy Assistant Secretary for Energy Efficiency Dr. Kathleen Hogan 10:45 - 11:00 Break 11:00 - 12:00 Discussion and Follow-up to STEAB's Recommendations on a National Lab Voucher Program Joyce Yang and

  7. STEAB January Meeting Agenda

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    JANUARY MEETING AGENDA January 13 - 14, 2015 Renaissance Washington DC Dupont Circle Hotel 1143 New Hampshire Ave, NW, Washington, DC 20037 DAY 1 January 13th 8:00 - 9:00 Breakfast, hotel meeting room 9:00 - 9:30 Welcome and Meeting Overview Monica and Frank 9:30 - 10:15 Discussion with EERE's Deputy Assistant Secretary for Energy Efficiency Dr. Kathleen Hogan 10:15 - 11:00 Update on new HUD EE incentives and efforts Arah Schuur (DOE) 11:00 - 11:15 Break 11:15 - 12:00 Discussion on Year 1 QER

  8. Haef_poster.ppt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    TOWARDS A GLOBAL CLIMATOLOGY OF OPTICALLY THIN CLOUDS DERIVED FROM NETWORKS OF GROUND-BASED LIDARS HAEFFELIN M. (1) , DUPONT J-C. (2) , KECKHUT P. (3) , MORILLE Y. (2) , NOËL V. (2) (1)Institut Pierre-Simon Laplace, Paris, FRANCE. (2) Laboratoire de Météorologie Dynamique, Palaiseau, France (3) Service d'Aéronomie, Paris, France CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE (CNRS) Introduction Over 100 Lidar stations can be found around the globe. Only few are equipped with fully automated

  9. Manhattan Project: CP-1 Goes Critical, Met Lab, December 2, 1942

    Office of Scientific and Technical Information (OSTI)

    CP-1 GOES CRITICAL (Met Lab, December 2, 1942) Events > The Plutonium Path to the Bomb, 1942-1944 Production Reactor (Pile) Design, 1942 DuPont and Hanford, 1942 CP-1 Goes Critical, December 2, 1942 Seaborg and Plutonium Chemistry, 1942-1944 Final Reactor Design and X-10, 1942-1943 Hanford Becomes Operational, 1943-1944 While arrangements were proceeding for the construction of full-size plutonium production reactors, critical questions remained about their basic design. The Italian physicist

  10. Manhattan Project: Final Reactor Design and X-10, 1942-1943

    Office of Scientific and Technical Information (OSTI)

    Schematic of the X-10 Graphite Reactor, Oak Ridge FINAL REACTOR DESIGN AND X-10 (Met Lab and Oak Ridge [Clinton], 1942-1943) Events > The Plutonium Path to the Bomb, 1942-1944 Production Reactor (Pile) Design, 1942 DuPont and Hanford, 1942 CP-1 Goes Critical, December 2, 1942 Seaborg and Plutonium Chemistry, 1942-1944 Final Reactor Design and X-10, 1942-1943 Hanford Becomes Operational, 1943-1944 Before any plutonium could be chemically separated from uranium for a bomb, however, that uranium

  11. Manhattan Project: Seaborg and Plutonium Chemistry, Met Lab, 1942-1944

    Office of Scientific and Technical Information (OSTI)

    Glenn T. Seaborg looks through a microscope at the world's first sample of pure plutonium, Met Lab, August 20, 1942. SEABORG AND PLUTONIUM CHEMISTRY (Met Lab, 1942-1944) Events > The Plutonium Path to the Bomb, 1942-1944 Production Reactor (Pile) Design, 1942 DuPont and Hanford, 1942 CP-1 Goes Critical, December 2, 1942 Seaborg and Plutonium Chemistry, 1942-1944 Final Reactor Design and X-10, 1942-1943 Hanford Becomes Operational, 1943-1944 While the Met Lab labored to make headway on pile

  12. Manhattan Project: The Plutonium Path to the Bomb, 1942-1944

    Office of Scientific and Technical Information (OSTI)

    THE PLUTONIUM PATH TO THE BOMB (1942-1944) Events > The Plutonium Path to the Bomb, 1942-1944 Production Reactor (Pile) Design, 1942 DuPont and Hanford, 1942 CP-1 Goes Critical, December 2, 1942 Seaborg and Plutonium Chemistry, 1942-1944 Final Reactor Design and X-10, 1942-1943 Hanford Becomes Operational, 1943-1944 Plutonium, produced in a uranium-fueled reactor (pile), was the second path taken toward achieving an atomic bomb. Design work on a full-scale plutonium production reactor began

  13. Microsoft Word - Subtask 5.7 Corrosion Testing Practices.docx

    Office of Scientific and Technical Information (OSTI)

    Optimization of Heat Treatments on Stainless Steel Castings for Improved Corrosion Resistance and Mechanical Properties DOE Award No: DE-FC36-04GO14230 November 1, 2004 - June 1, 2012 John N. DuPont, (610)-758-4270, JND1@lehigh.edu - Principal Investigator Jeffrey D. Farren, (610)-758-4270, JDF3@lehigh.edu - Author Andrew W. Stockdale, (610)-758-4270, AWS3@lehigh.edu - Author Brett M. Leister, (610)-758-4270, BML204@lehigh.edu - Author Department of Materials Science and Engineering Lehigh

  14. Circleville, Ohio Solar Plant Shows Value of Clean Energy Tax Credits |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Department of Energy Circleville, Ohio Solar Plant Shows Value of Clean Energy Tax Credits Circleville, Ohio Solar Plant Shows Value of Clean Energy Tax Credits May 22, 2012 - 5:03pm Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON -- As part of the Obama Administration's all-out, all-of-the-above approach to American energy, U.S. Energy Secretary Steven Chu today recognized the grand opening of DuPont's expanded manufacturing plant in Circleville, Ohio and called on Congress to extend

  15. Agenda31708 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    7, 2008 Nuclear Science Advisory Committee (NSAC) NSAC Home Meetings Members Charges/Reports Charter .pdf file (78KB) NP Committees of Visitors Federal Advisory Committees NP Home Meetings March 17, 2008 Print Text Size: A A A FeedbackShare Page DOE/NSF Nuclear Science Advisory Committee Meeting March 17, 2008 Where: Doubletree Hotel, 1515 Rhode Island Avenue, NW, Washington, D.C. (3 blocks off Dupont Circle Metro Stop) Telephone Number: 202-232-7000 Fax Number: 202-332-8436 Purpose/Topics:

  16. Microsoft Word - FRAbstract.docx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    RECOVERY OF WATER FROM BOILER FLUE GAS USING CONDENSING HEAT EXCHANGERS FINAL TECHNICAL REPORT October 1, 2008 to March 31, 2011 by Edward Levy, Harun Bilirgen and John DuPont Report Issued June 2011 DOE Award Number DE-NT0005648 Energy Research Center Lehigh University 117 ATLSS Drive Bethlehem, PA 18015 ii DISCLAIMER "This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any

  17. Building America Update - January 4, 2013

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    January 4, 2013 This announcement brings you the latest information about news, activities, and publications from the U.S. Department of Energy's Building America program. Building America Sessions at International Builders Show If you are planning to attend the International Builders' Show on January 22-24, 2013, don't miss these dynamic Building America presentations taking place there: Date/Time/Location Title/Speaker Summary Jan. 22-24; 3:15-4:00 PM each day DuPont Booth Home of the Future

  18. DOE - Office of Legacy Management -- Colorado Fuel and Iron - NY 0-08

    Office of Legacy Management (LM)

    Fuel and Iron - NY 0-08 FUSRAP Considered Sites Site: Colorado Fuel and Iron (NY.0-08 ) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Watervliet , New York NY.0-08-1 Evaluation Year: 1987 NY.0-08-1 Site Operations: Site was a contractor to DuPont. Exact nature of operations is not clear. No records to indicate that radioactive materials were handled at the site. NY.0-08-1 Site Disposition: Eliminated NY.0-08-1 Radioactive Materials

  19. I I

    Office of Legacy Management (LM)

    I Header Sheet Doc ID # -leo 7 I/ o - Xi "BECHTEL RADIOLOGICAL SURVEY REPORTII 1 9 8 5 MANHATTAN PROJECT I DOE/QR/20722-22 RADIOLOGICAL SURVEY OF THE E. 1. DUPONT DE NEMOURS AND COMPANY CHAMBERS WORKS PLANT DEEPWATER, NEW JERSEY MARCH 1985 Prepared for UNITED STATES DEPAATMENT OF ENERGY OAK RIDGE OPERATIONS OFeICE Under Contract No. DE-AC05-81OR20722 By BeChtel Hationalt Inc. Advanced Technology DiVision Oak Ridgep Tennessee Bechtel Job NO. 14501 ABSTRACT During October and November 1983, a

  20. MACHINE AND FOUNDRY COMPANY

    Office of Legacy Management (LM)

    MACHINE AND FOUNDRY COMPANY kt '- : :'~ ENGINEERING DIVISIOJ ---. Cl FIELD iRIP ,REP@?T ,' ~ i;~:z;~zy~ MEETING REPORT : .I.-.-' ~Y ::,:I :. &, .I7 ENGINEERING REPORT- : $T, ~ suBJ:m~i-c n-..*~~.~n~ 9r.1 _ P,Y.~.I~ ADDRESS: :'~.'"I .- .._ c. Plans for - ,:, ..-; .:.j s ,PERSON CONTACTED . . .' ., I : /LV cliq 22: PLPCZS w: - American Machine & Fouudq Co., i3ue Termlual. Office ;s& $' PRI?sI?,NT: S. P~:Chartland - DuPont D. B. Craxford - AW ..x.i "7.7, J. J* Crata - LHF 1, .

  1. EERE Success Story-Silicon Ink Technology Offers Path to Higher

    Office of Environmental Management (EM)

    Efficiency Solar Cells at Lower Cost | Department of Energy Silicon Ink Technology Offers Path to Higher Efficiency Solar Cells at Lower Cost EERE Success Story-Silicon Ink Technology Offers Path to Higher Efficiency Solar Cells at Lower Cost April 18, 2013 - 12:00am Addthis EERE Success Story—Silicon Ink Technology Offers Path to Higher Efficiency Solar Cells at Lower Cost Partnering with Sunnyvale-based Innovalight, which was acquired by DuPont in July 2011, EERE supported the

  2. Siloxane-grafted membranes

    DOE Patents [OSTI]

    Friesen, D.T.; Obligin, A.S.

    1989-10-31

    Composite cellulosic semipermeable membranes are disclosed which are the covalently bonded reaction product of an asymmetric cellulosic semipermeable membrane and a polysiloxane containing reactive functional group. The two reactants chemically bond by ether, ester, amide or acrylate linkages to form a siloxane-grafted cellulosic membrane having superior selectivity and flux stability. Selectivity may be enhanced by wetting the surface with a swelling agent such as water.

  3. Multifunctional cellulase and hemicellulase

    DOE Patents [OSTI]

    Fox, Brian G.; Takasuka, Taichi; Bianchetti, Christopher M.

    2015-09-29

    A multifunctional polypeptide capable of hydrolyzing cellulosic materials, xylan, and mannan is disclosed. The polypeptide includes the catalytic core (cc) of Clostridium thermocellum Cthe_0797 (CelE), the cellulose-specific carbohydrate-binding module CBM3 of the cellulosome anchoring protein cohesion region (CipA) of Clostridium thermocellum (CBM3a), and a linker region interposed between the catalytic core and the cellulose-specific carbohydrate binding module. Methods of using the multifunctional polypeptide are also disclosed.

  4. Slide 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    allele of korrigan1 abolishes endoglucanase activity and affects the organization of cellulose microfibrils Significance and Impact This study advances our understanding of how plant cells establish and maintain the transverse orientation of cellulose microfibrils during cell expansion. Our study also suggests the potential for discovery of additional roles for KOR1 in plant development and cellulose synthesis. Research Details - Identified a novel A577V missense mutation in the cellulase

  5. Slide 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    QM/MM Investigation of the Molecular Mechanism of Cellulose Polymerization in Bacterial CESA Significance and Impact This study provides detailed insights into how cellulose is formed which provides us with better ability to understand the effects of enzyme mutations and ability to engineering cellulose formation. Research Details - Identified a S N -2-type transition structure corresponding to the nucleophilic attack of the non-reducing end O 4 on the anomeric C 1 , the breaking of the

  6. 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Less is more: Novel cellulose structure requires fewer enzymes to process biomass to fuel June 19, 2013 LOS ALAMOS, N.M., June 19, 2013-Improved methods for breaking down cellulose nanofibers are central to cost-effective biofuel production and the subject of new research from Los Alamos National Laboratory (LANL) and the Great Lakes Bioenergy Research Center (GLBRC). Scientists are investigating the unique properties of crystalline cellulose nanofibers to develop novel chemical pretreatments

  7. Reducing Enzyme Costs Increases Market Potential of Biofuels, The Spectrum of Clean Energy Innovation (Fact Sheet)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reducing Enzyme Costs Increases Market Potential of Biofuels Cellulosic ethanol prices depend heavily on the cost of the cellulase enzymes used to break down the cellulosic biomass into fermentable sugars. To reduce these costs, the National Renewable Energy Laboratory (NREL) partnered with two leading enzyme companies, Novozymes and Genencor, to engineer new cellulase enzymes that are exceptionally good at breaking down cellulose. This innovative research has led to improvements in sugar yields

  8. Clostridium Thermocellum CbhA- Amino acid sequence modified for enhanced

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    catalytic activity in the saccharification of cellulose - Energy Innovation Portal Biomass and Biofuels Biomass and Biofuels Find More Like This Return to Search Clostridium Thermocellum CbhA- Amino acid sequence modified for enhanced catalytic activity in the saccharification of cellulose National Renewable Energy Laboratory Contact NREL About This Technology Technology Marketing Summary The efficient action of cellulases to release fermentable sugars from biomass cellulose is an important

  9. Co-cultured Synechococcus and Shewanella Produce Hydrocarbons without

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cellulosic Feedstock - Energy Innovation Portal Co-cultured Synechococcus and Shewanella Produce Hydrocarbons without Cellulosic Feedstock DOE Grant Recipients University of Minnesota Contact University of Minnesota About This Technology <span id="Caption"><span id="ctl00_MainContentHolder_zoomimage_defaultCaption">Shewanella Oneidensis naturally produces hydrocarbons without cellulosic feedstock.</span></span> Shewanella Oneidensis naturally

  10. Building America Technology Solutions for New and Existing Homes:

    Energy Savers [EERE]

    Hygrothermal Performance of a Double-Stud Cellulose Wall, Devens, Massachusetts | Department of Energy Hygrothermal Performance of a Double-Stud Cellulose Wall, Devens, Massachusetts Building America Technology Solutions for New and Existing Homes: Hygrothermal Performance of a Double-Stud Cellulose Wall, Devens, Massachusetts In this project, the Building America research team Consortium for Advanced Residential Buildings monitored a double-stud assembly in climate zone 5A to determine the

  11. Sustainable Nano-Materials: What is happening at the cellular level?

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nano-Materials What is happening at the cellular level? Art J. Ragauskas, Institute of Paper Science and Technology Georgia Institute of Technology Advanced Materials: Cellular Level Chemicals Enzymes Mechanical 1 cm 10 m 1 m 10 nm 100 m mm nm Micro Fibrillated Cellulose NanoCellulose Balls Cellulose Whiskers Composite Whisker Films Water Based polymer + Whiskers>> Easy Dispersions Matrix = hydrosoluble polymers Water evaporation nanocomposite film Poly(oxyethylene) Xylans; Hemis

  12. Types of Insulation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Weatherize » Insulation » Types of Insulation Types of Insulation In existing homes, cellulose (here) or other loose-fill materials can be installed in building cavities through holes drilled (usually) on the exterior of the house. After the installation, the holes are plugged and finish materials replaced. | Photo courtesy of Cellulose Insulation Manufacturers Association. In existing homes, cellulose (here) or other loose-fill materials can be installed in building cavities through holes

  13. EERE Success Story-BETO Project Improves Production of Renewable Chemical

    Office of Environmental Management (EM)

    from Cellulosic Feedstocks | Department of Energy BETO Project Improves Production of Renewable Chemical from Cellulosic Feedstocks EERE Success Story-BETO Project Improves Production of Renewable Chemical from Cellulosic Feedstocks October 20, 2015 - 11:18am Addthis Renewable chemical company Genomatica made significant progress toward increasing the range of feedstocks that can be used to commercially produce high-quality bio-based chemicals, in a project funded by the Energy Department's

  14. Energy Department Announces $10 Million to Develop Innovative...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and carbon conversion through novel metabolic engineering of two different pathways. ... and synthetic oils) from cellulosic sugars via novel metabolic engineering pathways. ...

  15. Slide 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    performed at the SNS, probe nanosecond dynamics of cellulose hydrogen atoms; - Molecular dynamics simulations, performed at NERSC, are first compared to experiments by...

  16. Energy Department Announces $9 Million to Improve Sustainability...

    Broader source: Energy.gov (indexed) [DOE]

    the environmental and socio-economic sustainability of cellulosic bioenergy through the ... research to quantify and improve sustainability metrics, and assess logistics systems ...

  17. One- and Two-Phase Conversion of Biomass to Furfural - Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center Contact GLBRC About This Technology Technology Marketing SummaryExploiting the energy potential of biomass high in cellulose and lignin-including grasses, shrubs, husks,...

  18. Chimeric enzymes with improved cellulase activities - Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a strong desire to produce bio-based fuels from renewable cellulosic materials from non-food based feedstocks such as crop residues, woodchips, dedicated energy crops, industrial...

  19. Transcriptome and Biochemical Analyses of Fungal Degradation...

    Office of Scientific and Technical Information (OSTI)

    Fundamental understanding of how nature gains access to cellulose and hemicellulose will ... Nature has evolved different fungal mechanisms for enzymatic hydrolysis of wood. Most ...

  20. JGI Fungal Genomics Program (Technical Report) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    agents) and biorefinery processes (cellulose degradation, sugar fermentation, industrial hosts), and explores fungal diversity by means of genome sequencing and analysis....

  1. Genomic Encyclopedia of Fungi (Conference) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    agents) and biorefinery processes (cellulose degradation, sugar fermentation, industrial hosts), and explores fungal diversity by means of genome sequencing and analysis....

  2. Range Fuels Inc formerly Kergy Inc | Open Energy Information

    Open Energy Info (EERE)

    80021 Sector: Biofuels Product: A Khosla Ventures-backed company that is developing gasification technology for the production of cellulosic biofuels. Coordinates: 39.920863,...

  3. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Search results Enter terms Search Showing 1 - 2 of 2 results. Video A New Biofuels Technology Blooms in Iowa Cellulosic biofuels made from agricultural waste have caught the...

  4. EA 1647: Supplemental Environmental Assessment

    Broader source: Energy.gov [DOE]

    Construction and Operation of a Proposed Cellulosic Ethanol Plant, Range Fuels Soperton Plant, LLC (formerly Range Fuels Inc.) Treutlen County, Georgia

  5. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Sources Search results Search results Enter terms Search Showing 1 - 1 of 1 result. Video A New Biofuels Technology Blooms in Iowa Cellulosic biofuels made from...

  6. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Sources Search results Search results Enter terms Search Showing 1 - 2 of 2 results. Video A New Biofuels Technology Blooms in Iowa Cellulosic biofuels made from...

  7. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Sources Energy Efficiency Search results Search results Enter terms Search Showing 1 - 2 of 2 results. Video A New Biofuels Technology Blooms in Iowa Cellulosic...

  8. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Sources Search results Search results Enter terms Search Showing 1 - 4 of 4 results. Video A New Biofuels Technology Blooms in Iowa Cellulosic biofuels made from...

  9. Energy Department Announces Up to $14 Million for Applying Landscape...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the environmental and socio-economic sustainability of cellulosic bioenergy through the ... ecosystem health, as well as foodfeedfiber production, and profitability for landowners. ...

  10. Bioenergy Technologies Office Fiscal Year 2014 Annual Report

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... * POET-DSM: Grand Opening of Second U.S.Commercial-Scale Cellulosic Ethanol Biorefinery * Defense Production Act Biorefineries Advance to Construction Stage 2013 2014 5 ...

  11. BETO Monthly News Blast, August 2013r

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Two other commercial-scale biorefineries, POET- DSM and Abengoa, will complete ... production capacity of more than 50 million gallons of cellulosic ethanol per year. ...

  12. Biological lignocellulose solubilization: Comparative evaluation of biocatalysts and enhancement via cotreatment

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Paye, Julie M. D.; Guseva, Anna; Hammer, Sarah K.; Gjersing, Erica; Davis, Mark F.; Davison, Brian H.; Olstad, Jessica; Donohoe, Bryon S.; Nguyen, Thanh Yen; Wyman, Charles E.; et al

    2016-01-12

    Feedstock recalcitrance is the most important barrier impeding cost-effective production of cellulosic biofuels. Pioneer commercial cellulosic ethanol facilities employ thermochemical pretreatment and addition of fungal cellulase, reflecting the main research emphasis in the field. However, it has been suggested that it may be possible to process cellulosic biomass without thermochemical pretreatment using thermophilic, cellulolytic bacteria. Thus, to further explore this idea, we examine the ability of various biocatalysts to solubilize autoclaved but otherwise unpretreated cellulosic biomass under controlled but not industrial conditions.

  13. Biomass IBR Fact Sheet: Archer Daniels Midland

    Broader source: Energy.gov [DOE]

    Archer Daniels Midland will develop a pilot plant to demonstrate the continuous production of cellulosic ethanol and butyl acrylate from densified corn stover.

  14. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Blooms in Iowa Cellulosic biofuels made from agricultural waste have caught the attention of many farmers and could be the next revolution in renewable biofuels...

  15. Biofuels | Open Energy Information

    Open Energy Info (EERE)

    process requires significant energy input for heat (often unsustainable natural gas fossil fuel, but cellulosic biomass such as bagasse, the waste left after sugar cane is...

  16. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... Monosaccharide analysis detected higher percentages of galactose and mannose in cellulose produced by both mutants. Field emission scanning electron microscopy showed that ...

  17. Engineered microbes and methods for microbial oil overproduction...

    Office of Scientific and Technical Information (OSTI)

    Engineered microbes and methods for microbial oil overproduction from cellulosic materials Citation Details In-Document Search Title: Engineered microbes and methods for microbial...

  18. Allopartis Biotechnologies Inc | Open Energy Information

    Open Energy Info (EERE)

    California Zip: 94111 Sector: Biofuels Product: Allopartis is a San Francisco-based startup company that is developing enzymes for use in cellulosic biofuels production....

  19. Grand Opening of Abengoa's Biorefinery: Nation's Third Commercial...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Abengoa Photo courtesy of Abengoa The nation's third commercial-scale cellulosic ethanol biorefinery celebrates its grand opening on October 17, 2014, in Hugoton, Kansas. The...

  20. DOE Offers Conditional Commitment for a $105 Million Loan Guarantee...

    Office of Environmental Management (EM)

    guarantee to support the development of the nation's first commercial-scale cellulosic ethanol plant. Project LIBERTY, sponsored by POET, LLC, will produce up to 25 million gallons...

  1. Energy Department Finalizes $132 Million Loan Guarantee to Support...

    Broader source: Energy.gov (indexed) [DOE]

    of Kansas, LLC (ABBK) to support the development of a commercial-scale cellulosic ethanol plant. ABBK's parent company and project sponsor, Abengoa Bioenergy US Holding, Inc.,...

  2. EERE Blog | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    bales of corn stover stock piled outside of POET-DSM's PROJECT LIBERTY cellulosic ethanol biorefinery. Selling the corn plant residue after their corn harvest has generated a...

  3. Gulf Alternative Energy Corporation | Open Energy Information

    Open Energy Info (EERE)

    Houston, Texas Zip: 77055 Product: Texas-based firm that has developed a cellulosic ethanol processing technology and plans to retrofit existing ethanol plants. Coordinates:...

  4. C2 Biofuels | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: C2 Biofuels Place: Atlanta, Georgia Product: Ethanol production from cellulose. Coordinates: 33.748315, -84.391109 Show Map Loading...

  5. Bioenergy News | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    June 9, 2015 Cropped view of the winning infographic "Cellulosic Ethanol." Winning Team Announced for 2015 BioenergizeME Infographic Challenge Pilot Bioenergy Technologies Office...

  6. Celunol Corp formerly BCI | Open Energy Information

    Open Energy Info (EERE)

    and other value added products from cellulosic waste derived from pulp and paper, wood, agriculture and various other waste streams. References: Celunol Corp (formerly...

  7. Lousiana Green Fuels LLC | Open Energy Information

    Open Energy Info (EERE)

    Lousiana Green Fuels LLC Jump to: navigation, search Name: Lousiana Green Fuels LLC Place: Louisiana Sector: Biomass Product: Developing a cellulosic biomass-to-ethanol plant in...

  8. Compositions and methods useful for ionic liquid treatment of biomass

    DOE Patents [OSTI]

    Dibble, Dean C.; Cheng, Aurelia; George, Anthe

    2014-07-29

    The present invention provides for novel compositions and methods for recycling or recovering ionic liquid used in IL pretreated cellulose and/or lignocellulosic biomass (LBM).

  9. Slide 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cellulose Synthesis Complex (CSC) is made of Three Cellulose Synthases (CesAs) in a 1:1:1 ratio Significance and Impact The arrangement of cellulose synthase proteins is one key factor controlling the final structure of the cellulose microfibril. Plants utilize a hexameric rosette composed of an unknown number of CesAs in an unidentified stoichiometry. Our results show CesAs exist in an equimolar stoichiometry, supporting a 18-CesA model of the complex. This information is essential for

  10. EERE Success Story-Department of Energy Delivers on R&D Targets...

    Office of Environmental Management (EM)

    Users Facility, where scientists led pilot-scale projects for two cellulosic ... Biochemical Waterfall Chart of Minimum Ethanol Selling Price (in 2007 dollars per gallon). ...

  11. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Innovation Search results Search results Enter terms Search Showing 1 - 10 of 10 results. Video A New Biofuels Technology Blooms in Iowa Cellulosic biofuels made from...

  12. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Innovation Search results Search results Enter terms Search Showing 1 - 3 of 3 results. Video A New Biofuels Technology Blooms in Iowa Cellulosic biofuels made from agricultural...

  13. Biomass IBR Fact Sheet: POET

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biofuels plans to expand cellulosic ethanol production within the POET network and license the technology to other ethanol producers in America and around the world. If...

  14. Building America Technology Solutions for New and Existing Homes...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Performance of a Double-Stud Cellulose Wall, Devens, Massachusetts In this project, the Building America research team Consortium for Advanced Residential Buildings monitored a...

  15. PureVision Technology Inc | Open Energy Information

    Open Energy Info (EERE)

    Lupton, Colorado Zip: 80621 Region: Rockies Area Sector: Biofuels Product: Cellulosic bio-refining Website: www.purevisiontechnology.com Coordinates: 40.084111, -104.814094...

  16. BGT Biogasoline | Open Energy Information

    Open Energy Info (EERE)

    converting sugars (from corn or cellulose matters) into fuels like ethanol and bio-gasoline. BGT have the intellectual property for the creation of hexane and heptanol -...

  17. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Sources Search results Search results Enter terms Search Showing 1 - 6 of 6 results. Video A New Biofuels Technology Blooms in Iowa Cellulosic biofuels made from...

  18. Zymetis | Open Energy Information

    Open Energy Info (EERE)

    Zymetis Place: College Park, Maryland Zip: 20742 Product: Maryland-based developer of industrial enzymes and process engineering solutions for production of cellulosic ethanol....

  19. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biofuels Energy Literacy Principle 4 Search results Search results Enter terms Search Showing 1 - 1 of 1 result. Video A New Biofuels Technology Blooms in Iowa Cellulosic...

  20. Mascoma: Frontier Biorefinery Project

    Broader source: Energy.gov [DOE]

    This project involves the construction and operation of a biorefinery that produces ethanol and other co-products from cellulosic materials through advanced consolidated bioprocessing.

  1. Slide 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    proteins; - Increased yield of functional, BcsAB cellulose synthase 10-fold over E. coli - based system; - Demonstrated expression of functional forms of challenging membrane...

  2. PMMpart1.PDF

    Gasoline and Diesel Fuel Update (EIA)

    bblcd Planned marginal refinery capacity HBIOCAP(MNUMPR) M bblcd BTL utilized capacity LEARNING PARAMETERS CELLULOSIC NAME UNITS DEFINITION FASTLRN Logical (not used, replaced...

  3. DOE/EIA-M059(2008)

    Gasoline and Diesel Fuel Update (EIA)

    M bblcd Planned marg ref'y capacity HBIOCAP(MNUMPR) M bblcd BTL utilized capacity Learning Parameters Cellulosic FASTLRN Logical (not used, replaced with CELLFASTLRN)...

  4. Arzeda Corporation | Open Energy Information

    Open Energy Info (EERE)

    Washington Zip: 98105 Region: Pacific Northwest Area Sector: Biofuels Product: Makes enzymes for cellulosic biofuels Website: www.arzeda.com Coordinates: 47.6163159,...

  5. Centro de Pesquisa de Bioetanol | Open Energy Information

    Open Energy Info (EERE)

    Pesquisa de Bioetanol Jump to: navigation, search Name: Centro de Pesquisa de Bioetanol Place: Campinas, Sao Paulo, Brazil Product: Develops and researchers cellulosic ethanol,...

  6. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Efficiency Search results Search results Enter terms Search Showing 1 - 1 of 1 result. Video A New Biofuels Technology Blooms in Iowa Cellulosic biofuels made from...

  7. Energy Department Finalizes $105 Million Loan Guarantee forFirst...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project LIBERTY's innovative process uses enzymes to convert cellulose from corncobs, corn leaves and corn husks into ethanol. The facility will produce enough biogas to power both ...

  8. EA-1647: Finding of No Significant Impact

    Broader source: Energy.gov [DOE]

    Construction and Operation of a Proposed Cellulosic Ethanol Plant, Range Fuels Soperton Plant, LLC (formerly Range Fuels Inc.), Treutlen County, Georgia

  9. DOE to Provide up to $40 Million in Funding for Small-Scale Biorefiner...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    cellulosic biorefinery projects in Park Falls, Wis. and Jennings, La. for federal ... Flambeau River Biofuels (FRB), LLC of Park Falls, Wis. The proposed biorefinery will be ...

  10. Cobalt discovery replaces precious metals as industrial catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    process biomass to fuel June, 19 2013 - Improved methods for breaking down cellulose nanofibers are central to cost-effective biofuel production. A high-resolution microscopic...

  11. Los Alamos National Laboratory begins pumping tests on chromium...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    process biomass to fuel June, 19 2013 - Improved methods for breaking down cellulose nanofibers are central to cost-effective biofuel production. A high-resolution microscopic...

  12. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of hydrogen peroxide, which will be used as a model system for the breaking down of cellulose into sugar. After identifying other potential catalysts, students will develop their...

  13. C5 6 Technologies Inc | Open Energy Information

    Open Energy Info (EERE)

    Wisconsin Zip: 53562 Product: Develops and clones enzymes to break down starch and cellulose in corn grain not reachable by traditional enzymes. Coordinates: 39.033545,...

  14. Soil Gas Sampling At Kilauea East Rift Geothermal Area (Cox,...

    Open Energy Info (EERE)

    the ground in the Lower East Rift Zone were measured using alpha particle sensitive cellulose nitrate films. The survey was successful in defining an area of geothermal...

  15. Special Feature: Energy - The Spark that Ignited DOE Supercomputing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biofuels: Turning Grass into Gas If researchers can unlock the sugars stored in plant cellulose, then crops like this switchgrass could be turned into biofuels, rather than using...

  16. Ground radon survey of a geothermal area in Hawaii | Open Energy...

    Open Energy Info (EERE)

    on the lower east riftof Kilauea volcano, were measured by alpha particle sensitive cellulose nitrate films. The survey successfully defined an area of thermal significance...

  17. Sandia Energy - Sandia Research to Be Featured on Upcoming Cover...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    have published, "Theoretical insights into the role of water in the dissolution of cellulose using ILwater mixed solvent systems," which the editors selected for Journal of...

  18. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Search results Search results Enter terms Search Showing 1 - 2 of 2 results. Video A New Biofuels Technology Blooms in Iowa Cellulosic biofuels made from agricultural...

  19. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sources Search results Search results Enter terms Search Showing 1 - 2 of 2 results. Video A New Biofuels Technology Blooms in Iowa Cellulosic biofuels made from agricultural...

  20. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Search results Search results Enter terms Search Showing 1 - 10 of 10 results. Video A New Biofuels Technology Blooms in Iowa Cellulosic biofuels made from agricultural...

  1. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4 Search results Search results Enter terms Search Showing 1 - 2 of 2 results. Video A New Biofuels Technology Blooms in Iowa Cellulosic biofuels made from agricultural waste...

  2. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    7 Search results Search results Enter terms Search Showing 1 - 2 of 2 results. Video A New Biofuels Technology Blooms in Iowa Cellulosic biofuels made from agricultural waste...

  3. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Video Search results Search results Enter terms Search Showing 1 - 2 of 2 results. Video A New Biofuels Technology Blooms in Iowa Cellulosic biofuels made from agricultural...

  4. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Video Search results Search results Enter terms Search Showing 1 - 1 of 1 result. Video A New Biofuels Technology Blooms in Iowa Cellulosic biofuels made from agricultural waste...

  5. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    7 Search results Search results Enter terms Search Showing 1 - 10 of 10 results. Video A New Biofuels Technology Blooms in Iowa Cellulosic biofuels made from agricultural waste...

  6. Integrated Biorefinery Research Facility: Advancing Biofuels Technology (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-03-01

    The Integrated Biorefinery Research Facility (IBRF) at the National Renewable Energy Laboratory (NREL) expands NREL's cellulosic ethanol research and development and collaboration capabilities.

  7. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biofuels Search results Search results Enter terms Search Showing 1 - 1 of 1 result. Video A New Biofuels Technology Blooms in Iowa Cellulosic biofuels made from agricultural...

  8. AEO2014 - Legislation and Regulations articles - U.S. Energy...

    Gasoline and Diesel Fuel Update (EIA)

    and diesel fuel sold. There are four interrelated requirements, for cellulosic biofuels, biomass-based diesel, advanced biofuels, and total renewable fuels. State renewable...

  9. Advantages of Enzyme Could Lead to Improved Biofuels Production (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-01-01

    Cellulase C. bescii CelA, a highly active and stable enzyme, exhibits a new cellulose digestion paradigm promoting inter-cellulase synergy.

  10. Argonne model analyzes water footprint of biofuels | Argonne...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    tool predicts the amount of water required to generate various types of cellulosic biofuels. Image courtesy May Wu; click to view larger. An Argonne-developed online analysis...

  11. --No Title--

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    and diesel fuel sold. There are four interrelated requirements, for cellulosic biofuels, biomass-based diesel, advanced biofuels, and total renewable fuels. Compliance with...

  12. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biofuels Energy Literacy Principle 7 Search results Search results Enter terms Search Showing 1 - 1 of 1 result. Video A New Biofuels Technology Blooms in Iowa Cellulosic...

  13. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Search results Enter terms Search Showing 1 - 10 of 15 results. Video A New Biofuels Technology Blooms in Iowa Cellulosic biofuels made from agricultural waste have caught the...

  14. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Search results Search results Enter terms Search Showing 1 - 1 of 1 result. Video A New Biofuels Technology Blooms in Iowa Cellulosic biofuels made from agricultural waste...

  15. Weatherization Saves Families Energy and Money | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Addthis William Stewart, with Veterans Green Jobs, blows cellulose insulation in the ... Weatherization Day Tammara Thayer thanks Steve Lemaire (left) and Zump Urycki for ...

  16. Microsoft Word - Index of PDs.docx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Silks Poster Title: Model System Studies of Cellulose Conversion to Biofuel via Garcia-Gonzalez Reaction Name: Alex Koglin, Oppenheimer Distinguished Postdoc Fellow - B-8B-7...

  17. SuGanit Systems Inc | Open Energy Information

    Open Energy Info (EERE)

    Product: Cellulosic ethanol technology developer that licenses its pretreatment and fermentation technologies from the University of Toledo, in Ohio, where it also operates a...

  18. Insulation Materials | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Insulation and Energy Efficiency Information: Home Energy: The Magazine of Residential Energy Conservation Addthis Related Articles In existing homes, cellulose (here) or other...

  19. Mitigation Action Plans (MAP) and Related Documents | Department...

    Broader source: Energy.gov (indexed) [DOE]

    EA-1704: Mitigation Action Plan Construction and Operation of a Proposed Cellulosic Biorefinery, BlueFire Fulton Renewable Energy, LLC, Fulton, Mississippi March 10, 2010...

  20. United Biorefineries Corp UBC | Open Energy Information

    Open Energy Info (EERE)

    physical & biological research. Involved in the project development of an Integrated Biorefinery Complex utilizing algae and cellulosic-based second generation biofuels technology....

  1. DOE Selects 3 Small-Scale Biorefinery Projects for up to $86...

    Energy Savers [EERE]

    goal of making cellulosic ethanol cost-competitive by 2012, and reduce America's gasoline use by expanding the availability of alternative and renewable transportation fuels. ...

  2. Greenwood Resources | Open Energy Information

    Open Energy Info (EERE)

    Zip: 97201 Region: Pacific Northwest Area Sector: Biofuels Product: Aims to grow poplar trees for cellulosic ethanol Website: www.greenwoodresources.com Coordinates: 45.5123956,...

  3. Slide 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    influence water's interactions with cellulose and hemicelluloses. ABOVE: Comparisons of water-polysaccharide spin diffusion buildup curves of wall samples after serial extraction...

  4. Biomass IBR Fact Sheet: BlueFire

    Broader source: Energy.gov [DOE]

    This project involves the development, construction, and operation of a biorefinery producing ethanol and other coproducts from cellulosic materials that utilize a patented concentrated acidhydrolysis process.

  5. Iowa farmer hopes corn cobs will bring in extra cash

    Broader source: Energy.gov [DOE]

    Todd Mathisen is at the forefront of American farmers helping to supply the United States with a biofuel that may have a promising future: cellulosic ethanol.

  6. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Iowa Cellulosic biofuels made from agricultural waste have caught the attention of many farmers and could be the next revolution in renewable biofuels production. http:...

  7. Nationwide: The Nation's First Commercial-Scale Biorefineries...

    Broader source: Energy.gov (indexed) [DOE]

    EERE supports 25 integrated biorefineries that are specifically focused on producing cellulosic ethanol, drop-in hydrocarbon biofuel, and bioproducts. As of July 2013, INEOS opened ...

  8. EERE Success Story-Nationwide: The Nation's First Commercial...

    Energy Savers [EERE]

    EERE supports 25 integrated biorefineries that are specifically focused on producing cellulosic ethanol, drop-in hydrocarbon biofuel, and bioproducts. As of July 2013, INEOS opened ...

  9. Clean Fractionation - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    separation, Clean Fractionation segregates cellulose, hemicellulose, and lignin into three high-purity streams for conversion into value-added products, including ethanol biofuel. ...

  10. Consumer Choice of E85: Lessons from Minnesota's Experience

    Gasoline and Diesel Fuel Update (EIA)

    Billions of Gallons EPA Renewable Fuels Volume Requirements Total Renewable Fuel Advanced Biofuel Cellulosic biofuel Increasing ethanol use to 36 billion gallons is a key objective ...

  11. The outlook for crops (and biofuels and policy and...)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    biofuel markets Stochastic process to account for different assumptions in oil price, weather patterns, etc. Cellulosic model basics Key assumptions in the biofuel ...

  12. 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    nanofibers are central to cost-effective biofuel production and the subject of new ... pretreatments and designer enzymes for biofuel production from cellulosic-or ...

  13. Education Module 2007: Cell Wall Chemistry of Biomass

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    discussion, and diagrams demonstrating structural characteristics of the following cellular components . a. Starch: http:en.wikipedia.orgwikiStarch b. Cellulose: 38%-50%...

  14. Type B Accident Investigation on the August 5, 2003, Pu-238 Multiple...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    direct cause of the accident was the release of airborne contamination from a degraded package that contained cellulose material and plutonium-238 residues. PDF icon Type B...

  15. NREL: Awards and Honors - PAGE_TITLE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Enzymatic Hydrolysis of Biomass Cellulose to Sugars Principal Developers: Dr. Michael Himmel, Dr. James McMillan, and Dr. Rafael Nieves, National Renewable Energy Laboratory; Dr....

  16. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... ; Liu, Jilang ; Makowski, Lee ; NWU) January 2016 , 2015 IEEE Biomedical Circuits and Systems Conference (BioCAS);IEEE;1-4 Breakdown of Hierarchical Architecture in Cellulose ...

  17. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ; Liu, Jilang ; Makowski, Lee ; NWU) January 2016 , 2015 IEEE Biomedical Circuits and Systems Conference (BioCAS);IEEE;1-4 Breakdown of Hierarchical Architecture in Cellulose ...

  18. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Innovation Search results Search results Enter terms Search Showing 1 - 1 of 1 result. Video A New Biofuels Technology Blooms in Iowa Cellulosic biofuels made from agricultural...

  19. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biofuels Search results Search results Enter terms Search Showing 1 - 4 of 4 results. Video A New Biofuels Technology Blooms in Iowa Cellulosic biofuels made from agricultural...

  20. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Innovation Search results Search results Enter terms Search Showing 1 - 10 of 55 results. Video A New Biofuels Technology Blooms in Iowa Cellulosic biofuels made from...