National Library of Energy BETA

Sample records for dupont danisco cellulosic

  1. DuPont Danisco Cellulosic Ethanol | Open Energy Information

    Open Energy Info (EERE)

    Danisco Cellulosic Ethanol Jump to: navigation, search Name: DuPont Danisco Cellulosic Ethanol Place: Itasca, Illinois Zip: 60143 Product: DuPont Danisco Cellulosic Ethanol is a...

  2. DuPont Cellulosic Ethanol Biorefinery Opening

    Broader source: Energy.gov [DOE]

    The DuPont cellulosic ethanol facility, opening in Nevada, Iowa, on October 30, will be the largest cellulosic ethanol plant in the world. The U.S. Department of Energy Bioenergy Technologies Office Director, Jonathan Male, alongside senior government officials, DuPont leaders and staff, and local farmers will attend the grand opening ceremony and plant tour.

  3. DuPont's Cellulosic Ethanol Grand Opening Marks a Milestone for the

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Biofuels Industry | Department of Energy DuPont's Cellulosic Ethanol Grand Opening Marks a Milestone for the Advanced Biofuels Industry DuPont's Cellulosic Ethanol Grand Opening Marks a Milestone for the Advanced Biofuels Industry November 20, 2015 - 12:49pm Addthis DuPont’s cellulosic ethanol biorefinery in Nevada, Iowa, opened on October 30, 2015. | Photo courtesy of DuPont DuPont's cellulosic ethanol biorefinery in Nevada, Iowa, opened on October 30, 2015. | Photo courtesy

  4. Development of a Bulk-Format System to Harvest, Handle, Store...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Laidig Systems, Inc., Marathon Equipment, Dupont-Danisco Cellulosic Ethanol, Deere & ... potential, and inhibitors will be determined by Dupont-Danisco Cellulosic Ethanol. ...

  5. DuPont's Journey to Build a Global Cellulosic BioFuel Business...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Business Enterprise William Provine, Director-Science and Technology External Affairs, DuPont PDF icon provinebiomass2014.pdf More Documents & Publications A Comparison of Key PV ...

  6. Itasca, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    6th congressional district.12 Registered Energy Companies in Itasca, Illinois DuPont Danisco Cellulosic Ethanol References US Census Bureau Incorporated place and...

  7. Dupont Fuel Cells | Open Energy Information

    Open Energy Info (EERE)

    Dupont Fuel Cells Jump to: navigation, search Name: Dupont Fuel Cells Place: Wilmington, Delaware Zip: DE 19880-0 Product: A subsidiary of Dupont which specializes in fuel cell...

  8. DuPont Biofuels | Open Energy Information

    Open Energy Info (EERE)

    Biofuels Jump to: navigation, search Name: DuPont Biofuels Place: Wilmington, Delaware Zip: 19898 Product: Biofuel technology development subsidiary of DuPont. Co-developing...

  9. Novel Biomass Conversion Process Results in Commercial Joint Venture; The Spectrum of Clean Energy Innovation (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-06-01

    Fact sheet describing DuPont/NREL cooperative research and development agreement that resulted in biomass-to-ethanol conversion process used as a basis for DuPont Danisco Cellulosic Ethanol, LLC and cellulosic ethanol demonstration plant.

  10. NREL Industry Partners Move Cellulosic Ethanol Technology Forward...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory (NREL) and DuPont will be put to use to develop and commercialize technology to produce cellulosic ethanol from non-food sources. DuPont and its partner Genencor, ...

  11. Applications attract DuPont

    SciTech Connect (OSTI)

    Rotman, D.

    1996-08-07

    Scientists at DuPont say they have demonstrated the first chemical processing application for high-temperature superconducting (HTS) magnets. DuPont says the work, which uses a HTS magnet to separate mineral contaminants from kaolin, points to the feasibility of a range of HTS applications in industrial processing, including those involving polymerization. DuPont`s success comes after 10 years of work to commercialize high-temperature superconductors. And while superconductors have lost much of their luster since the late 1980s, the company says it is still bullish on their prospects. {open_quotes}At the moment, there`s no real market for superconductors,{close_quotes} says Alan Lauder, general manager/superconductivity. But, he says, several potentially lucrative applications could be commercialized within the next several years.

  12. DuPont hikes butanediol

    SciTech Connect (OSTI)

    Morris, G.D.L.

    1997-05-14

    Butanediol (BDO) and its derivatives continue to be strong, a positive sign for the many companies planning expansions. DuPont - one of only two global producers not planning capacity additions - has announced that it will discontinue all off-schedule pricing for BDO and two important derivatives, tetrahydrofuran (THF) and polytetramethylene ether glycol (PTMEG). DuPont`s list prices are $1.00/lb fob for BDO, about $1.40/lb for THF, and $2.00/lb for PTMEG. The price adjustment is effective this month or as contracts allow.

  13. Making Biofuel From Corncobs and Switchgrass in Rural America | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Biofuel From Corncobs and Switchgrass in Rural America Making Biofuel From Corncobs and Switchgrass in Rural America June 11, 2010 - 4:48pm Addthis DuPont Danisco Cellulosic Ethanol (DDCE) opened a new biorefinery in Vonore, Tenn., last year. | Photo courtesy of DDCE DuPont Danisco Cellulosic Ethanol (DDCE) opened a new biorefinery in Vonore, Tenn., last year. | Photo courtesy of DDCE Lindsay Gsell Energy crops and agricultural residue, like corncobs and stover, are becoming part

  14. DuPont | Open Energy Information

    Open Energy Info (EERE)

    Zip: 19898 Product: US holding company; manufacturer of tedlar films used as a material for TPT backsheet in PV module production. Website: www2.dupont.com Coordinates:...

  15. Largest Cellulosic Ethanol Plant in the World Opens October 30

    Broader source: Energy.gov [DOE]

    The DuPont cellulosic ethanol facility, opening in Nevada, Iowa, on October 30, will be the largest cellulosic ethanol plant in the world. The U.S. Department of Energy (DOE) Bioenergy Technologies Office (BETO) Director, Jonathan Male, alongside senior government officials, DuPont leaders and staff, and local farmers will attend the grand opening ceremony and plant tour.

  16. DuPont Apollo | Open Energy Information

    Open Energy Info (EERE)

    Kong-based thin-film PV module manufacturer that provides solar energy solutions by doing research and development on PV technology and system. References: DuPont Apollo1 This...

  17. EERE Success Story-Largest Cellulosic Ethanol Plant in the World Opened

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in October | Department of Energy Largest Cellulosic Ethanol Plant in the World Opened in October EERE Success Story-Largest Cellulosic Ethanol Plant in the World Opened in October November 30, 2015 - 2:07pm Addthis The DuPont cellulosic ethanol facility in Nevada, Iowa, will produce about 30 million gallons of cellulosic ethanol per year. Photo courtesy of DuPont. The DuPont cellulosic ethanol facility in Nevada, Iowa, will produce about 30 million gallons of cellulosic ethanol per year.

  18. DuPont Chemical Vapor Technical Report

    SciTech Connect (OSTI)

    MOORE, T.L.

    2003-10-03

    DuPont Safety Resources was tasked with reviewing the current chemical vapor control practices and providing preventive recommendations on best commercial techniques to control worker exposures. The increased focus of the tank closure project to meet the 2024 Tri-Party Agreement (TPA) milestones has surfaced concerns among some CH2MHill employees and other interested parties. CH2MHill is committed to providing a safe working environment for employees and desires to safely manage the tank farm operations using appropriate control measures. To address worker concerns, CH2MHill has chartered a ''Chemical Vapors Project'' to integrate the activities of multiple CH2MHill project teams, and solicit the expertise of external resources, including an independent Industrial Hygiene expert panel, a communications consultant, and DuPont Safety Resources. Over a three-month time period, DuPont worked with CH2MHill ESH&Q, Industrial Hygiene, Engineering, and the independent expert panel to perform the assessment. The process included overview presentations, formal interviews, informal discussions, documentation review, and literature review. DuPont Safety Resources concluded that it is highly unlikely that workers in the tank farms are exposed to chemicals above established standards. Additionally, the conventional and radiological chemistry is understood, the inherent chemical hazards are known, and the risk associated with chemical vapor exposure is properly managed. The assessment highlighted management's commitment to addressing chemical vapor hazards and controlling the associated risks. Additionally, we found the Industrial Hygiene staff to be technically competent and well motivated. The tank characterization data resides in a comprehensive database containing the tank chemical compositions and relevant airborne concentrations.

  19. E I DuPont De Nemours & Co | Open Energy Information

    Open Energy Info (EERE)

    E I DuPont De Nemours & Co Jump to: navigation, search Name: E I DuPont De Nemours & Co Place: Tennessee Website: www.dupont.com Twitter: @dupontnews Facebook: https:...

  20. DuPont’s Journey to Build a Global Cellulosic BioFuel Business Enterprise

    Office of Energy Efficiency and Renewable Energy (EERE)

    Plenary I: Progress in Advanced Biofuels DuPont’s Journey to Build a Global Cellulosic BioFuel Business Enterprise William Provine, Director–Science and Technology External Affairs, DuPont

  1. DuPont Technology Breaks Away From Glass

    Broader source: Energy.gov [DOE]

    Delaware-based DuPont is working to develop ultra-thin moisture protective films for photovoltaic panels — so thin they’re about 1,000 times thinner than a human hair.

  2. Jump start: DuPont exports its energy management program

    SciTech Connect (OSTI)

    1994-11-23

    In August 1993, DuPont launched its innovative Jump Start program, which called for managers in its 25 largest plants to carry out a 120-day crash effort to find ways to reduce energy use at their facilities. The effort produced ideas that will result in $21.5 million in energy savings over six years, exceeding DuPont`s target. It also kicked off a longer-term program the company hopes will cut as much as $300 million, or 15% from energy bills through 2000.

  3. E I DuPont De Nemours & Co (Texas) | Open Energy Information

    Open Energy Info (EERE)

    E I DuPont De Nemours & Co (Texas) Jump to: navigation, search Name: E I DuPont De Nemours & Co Place: Texas References: EIA Form EIA-861 Final Data File for 2010 - File220101...

  4. Margins for Profit, Not Error: Corporate Energy Management at DuPont

    SciTech Connect (OSTI)

    2010-06-25

    Alliance to Save Energy case study on corporate energy management at DuPont sponsored by the U.S. Department of Energy Industrial Technologies Program.

  5. DuPont extends CFC production after EPA warns of scarcity

    SciTech Connect (OSTI)

    Kirschner, E.

    1994-01-05

    DuPont reversed its voluntary commitment to phase out CFC production at the end of 1994 to prevent a possible shortage for automotive air conditioning repairs. In a December letter, the US EPA asked Dupont to continue producing its full 1995 allowance of 76 million tons of CFC-12 under the Montreal Protocol.

  6. DuPont's Journey to Build a Global Cellulosic BioFuel Business...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... All rights reserved 5 AG & NUTRITION INDUSTRIAL BIOSCIENCES ADVANCED MATERIALS Three ... Inorganic- Organic Composites Polymer Processing Biochemistry Fermentation Engineering ...

  7. DuPont's Cellulosic Ethanol Grand Opening Marks a Milestone for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... The U.S. Department of Energy's Bioenergy Technologies Office played a part by ... The U.S. Department of Energy's Bioenergy Technologies Office has, over the years, ...

  8. Closing the gap: DuPont`s response to the 1991 industrial power benchmarking study

    SciTech Connect (OSTI)

    Bailey, W.F.

    1996-12-31

    In 1991, DuPont benchmarked its industrial power facilities against other industrial and independent power producers, identified key areas of weakness and developed a blueprint for change to improve its energy competitiveness. Since then, efforts have been undertaken to address the weaknesses identified in the benchmarking study and to capitalize on strengths in DuPont`s various industrial power operations. This paper provides an update to the DuPont Industrial Power Benchmarking Study and describes major focus areas such as competitive electricity sourcing, control technology, performance assessment tools and internal networking efforts.

  9. Manhattan Project: DuPont and Hanford, Hanford Engineer Works, 1942

    Office of Scientific and Technical Information (OSTI)

    The president of DuPont, Walter Carpenter, with Generals Levin H. Campbell, Everett Hughes, and Charles T. Harris. DUPONT AND HANFORD (Hanford Engineer Works, 1942) Events > The Plutonium Path to the Bomb, 1942-1944 Production Reactor (Pile) Design, 1942 DuPont and Hanford, 1942 CP-1 Goes Critical, December 2, 1942 Seaborg and Plutonium Chemistry, 1942-1944 Final Reactor Design and X-10, 1942-1943 Hanford Becomes Operational, 1943-1944 The scientists of the Met Lab had the technical expertise

  10. Energy Secretary Chu to Tour DuPont Clean Energy Innovation Facilities

    Broader source: Energy.gov [DOE]

    WASHINGTON – Tomorrow, Wednesday, May 23, 2012, U.S. Energy Secretary Steven Chu will visit DuPont in Wilmington, Delaware, where he will tour the company’s clean energy research and development...

  11. Outgassing rate of Reemay Spunbonded Polyester and DuPont Double Aluminized Mylar

    SciTech Connect (OSTI)

    Todd, R.J.; Pate, D.; Welch, K.M.

    1993-08-01

    This paper presents the outgassing rates of two commercially available multi-layer insulation (MLI) materials commonly used in cryogenic applications. Both Reemay Spunbonded Polyester and DuPont Double Aluminized Mylar (DAM) were studied for outgassing species and respective rates, and the total amount of outgassed material. Measurements were made using a Fixed Aperture Technique. A sample was pumped on through an aperture of known size with a turbomolecular pump. Pressure vs. time was plotted for both Reemay and DAM, as well as the baseline system, and data conveniently extrapolated to {approx}1,000 hrs. A quadrupole residual gas analyzer was used to measure the outgassing species.

  12. DuPont Displays Develops Low-Cost Method of Printing OLED Panels

    Broader source: Energy.gov [DOE]

    DuPont Displays Inc. (DDI) has developed a novel way of printing color-tunable OLED lighting panels that keeps manufacturing costs low. The method involves processing the organic layers from solution, with most of the process steps taking place under atmospheric conditions rather than in a high vacuum. Industry-standard slot-coating methods are used in conjunction with nozzle printing—in which the solutions of organic materials are continuously jetted through an array of nozzles moving at high speed—allowing the light-emitting materials to be spatially patterned.

  13. BIOENERGIZEME INFOGRAPHIC CHALLENGE: Cellulosic Ethanol | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    BIOENERGIZEME INFOGRAPHIC CHALLENGE: Cellulosic Ethanol BIOENERGIZEME INFOGRAPHIC CHALLENGE: Cellulosic Ethanol BIOENERGIZEME INFOGRAPHIC CHALLENGE: Cellulosic Ethanol This...

  14. Electrically conductive cellulose composite

    DOE Patents [OSTI]

    Evans, Barbara R.; O'Neill, Hugh M.; Woodward, Jonathan

    2010-05-04

    An electrically conductive cellulose composite includes a cellulose matrix and an electrically conductive carbonaceous material incorporated into the cellulose matrix. The electrical conductivity of the cellulose composite is at least 10 .mu.S/cm at 25.degree. C. The composite can be made by incorporating the electrically conductive carbonaceous material into a culture medium with a cellulose-producing organism, such as Gluconoacetobacter hansenii. The composites can be used to form electrodes, such as for use in membrane electrode assemblies for fuel cells.

  15. Cellulosic ethanol | Open Energy Information

    Open Energy Info (EERE)

    Cellulosic ethanol Jump to: navigation, search Cellethanol.jpg Cellulosic ethanol is identical to first generation bio ethanol except that it can be derived from agricultural...

  16. Cellulose binding domain proteins

    DOE Patents [OSTI]

    Shoseyov, Oded; Shpiegl, Itai; Goldstein, Marc; Doi, Roy

    1998-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  17. Cellulose binding domain proteins

    DOE Patents [OSTI]

    Shoseyov, O.; Shpiegl, I.; Goldstein, M.; Doi, R.

    1998-11-17

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques. 16 figs.

  18. Fulton Cellulosic Ethanol Biorefinery

    SciTech Connect (OSTI)

    Sumait, Necy; Cuzens, John; Klann, Richard

    2015-07-24

    Final report on work performed by BlueFire on the deployment of acid hydrolysis technology to convert cellulosic waste materials into renewable fuels, power and chemicals in a production facility to be located in Fulton, Mississippi.

  19. Method of saccharifying cellulose

    DOE Patents [OSTI]

    Johnson, E.A.; Demain, A.L.; Madia, A.

    1983-05-13

    A method is disclosed of saccharifying cellulose by incubation with the cellulase of Clostridium thermocellum in a broth containing an efficacious amount of thiol reducing agent. Other incubation parameters which may be advantageously controlled to stimulate saccharification include the concentration of alkaline earth salts, pH, temperature, and duration. By the method of the invention, even native crystalline cellulose such as that found in cotton may be completely saccharified.

  20. Method of saccharifying cellulose

    DOE Patents [OSTI]

    Johnson, Eric A.; Demain, Arnold L.; Madia, Ashwin

    1985-09-10

    A method of saccharifying cellulose by incubation with the cellulase of Clostridium thermocellum in a broth containing an efficacious amount of a reducing agent. Other incubation parameters which may be advantageously controlled to stimulate saccharification include the concentration of alkaline earth salts, pH, temperature, and duration. By the method of the invention, even native crystalline cellulose such as that found in cotton may be completely saccharified.

  1. Bioenergy Impacts … Cellulosic Ethanol

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for its cellulosic ethanol biorefinery. Farmers earned additional revenue from selling their leftover corn husks, stalks, and leaves to the POET-DSM biorefinery for production of ...

  2. Acid hydrolysis of cellulose to yield glucose

    DOE Patents [OSTI]

    Tsao, George T.; Ladisch, Michael R.; Bose, Arindam

    1979-01-01

    A process to yield glucose from cellulose through acid hydrolysis. Cellulose is recovered from cellulosic materials, preferably by pretreating the cellulosic materials by dissolving the cellulosic materials in Cadoxen or a chelating metal caustic swelling solvent and then precipitating the cellulose therefrom. Hydrolysis is accomplished using an acid, preferably dilute sulfuric acid, and the glucose is yielded substantially without side products. Lignin may be removed either before or after hydrolysis.

  3. Louisiana: Verenium Cellulosic Ethanol Demonstration Facility...

    Energy Savers [EERE]

    Louisiana: Verenium Cellulosic Ethanol Demonstration Facility Louisiana: Verenium Cellulosic Ethanol Demonstration Facility April 9, 2013 - 12:00am Addthis In 2010, Verenium...

  4. Cellulose binding domain fusion proteins

    DOE Patents [OSTI]

    Shoseyov, O.; Yosef, K.; Shpiegl, I.; Goldstein, M.A.; Doi, R.H.

    1998-02-17

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques. 16 figs.

  5. Cellulose binding domain fusion proteins

    DOE Patents [OSTI]

    Shoseyov, Oded; Shpiegl, Itai; Goldstein, Marc A.; Doi, Roy H.

    1998-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  6. Quantifying Contaminant Mass for the Feasibility Study of the DuPont Chambers Works FUSRAP Site - 13510

    SciTech Connect (OSTI)

    Young, Carl; Rahman, Mahmudur; Johnson, Ann; Owe, Stephan

    2013-07-01

    The U.S. Army Corps of Engineers (USACE) - Philadelphia District is conducting an environmental restoration at the DuPont Chambers Works in Deepwater, New Jersey under the Formerly Utilized Sites Remedial Action Program (FUSRAP). Discrete locations are contaminated with natural uranium, thorium-230 and radium-226. The USACE is proposing a preferred remedial alternative consisting of excavation and offsite disposal to address soil contamination followed by monitored natural attenuation to address residual groundwater contamination. Methods were developed to quantify the error associated with contaminant volume estimates and use mass balance calculations of the uranium plume to estimate the removal efficiency of the proposed alternative. During the remedial investigation, the USACE collected approximately 500 soil samples at various depths. As the first step of contaminant mass estimation, soil analytical data was segmented into several depth intervals. Second, using contouring software, analytical data for each depth interval was contoured to determine lateral extent of contamination. Six different contouring algorithms were used to generate alternative interpretations of the lateral extent of the soil contamination. Finally, geographical information system software was used to produce a three dimensional model in order to present both lateral and vertical extent of the soil contamination and to estimate the volume of impacted soil for each depth interval. The average soil volume from all six contouring methods was used to determine the estimated volume of impacted soil. This method also allowed an estimate of a standard deviation of the waste volume estimate. It was determined that the margin of error for the method was plus or minus 17% of the waste volume, which is within the acceptable construction contingency for cost estimation. USACE collected approximately 190 groundwater samples from 40 monitor wells. It is expected that excavation and disposal of contaminated soil will remove the contaminant source zone and significantly reduce contaminant concentrations in groundwater. To test this assumption, a mass balance evaluation was performed to estimate the amount of dissolved uranium that would remain in the groundwater after completion of soil excavation. As part of this evaluation, average groundwater concentrations for the pre-excavation and post-excavation aquifer plume area were calculated to determine the percentage of plume removed during excavation activities. In addition, the volume of the plume removed during excavation dewatering was estimated. The results of the evaluation show that approximately 98% of the aqueous uranium would be removed during the excavation phase. The USACE expects that residual levels of contamination will remain in groundwater after excavation of soil but at levels well suited for the selection of excavation combined with monitored natural attenuation as a preferred alternative. (authors)

  7. Compositions and methods for increasing cellulose production

    DOE Patents [OSTI]

    Yang, Zhenbiao; Karr, Stephen

    2012-05-01

    This disclosure relates to methods and compositions for genetically altering cellulose biosynthesis.

  8. Advanced Cellulosic Biofuels | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cellulosic Biofuels Advanced Cellulosic Biofuels Breakout Session 2-B: New/Emerging Pathways Advanced Cellulosic Biofuels Dr. Robert Graham, Chief Executive Officer and Chairman, Ensyn Corporation PDF icon graham_bioenergy_2015.pdf More Documents & Publications Cellulosic Liquid Fuels Commercial Production Today Production of Renewable Fuels from Biomass by FCC Co-processing 2013 Peer Review Presentations-Integrated Biorefineries

  9. Magnetic cellulose-derivative structures

    DOE Patents [OSTI]

    Walsh, M.A.; Morris, R.S.

    1986-09-16

    Structures to serve as selective magnetic sorbents are formed by dissolving a cellulose derivative such as cellulose triacetate in a solvent containing magnetic particles. The resulting solution is sprayed as a fine mist into a chamber containing a liquid coagulant such as n-hexane in which the cellulose derivative is insoluble but in which the coagulant is soluble or miscible. On contact with the coagulant, the mist forms free-flowing porous magnetic microspheric structures. These structures act as containers for the ion-selective or organic-selective sorption agent of choice. Some sorption agents can be incorporated during the manufacture of the structure. 3 figs.

  10. Magnetic cellulose-derivative structures

    DOE Patents [OSTI]

    Walsh, Myles A. (Falmouth, MA); Morris, Robert S. (Fairhaven, MA)

    1986-09-16

    Structures to serve as selective magnetic sorbents are formed by dissolving a cellulose derivative such as cellulose triacetate in a solvent containing magnetic particles. The resulting solution is sprayed as a fine mist into a chamber containing a liquid coagulant such as n-hexane in which the cellulose derivative is insoluble but in which the coagulant is soluble or miscible. On contact with the coagulant, the mist forms free-flowing porous magnetic microspheric structures. These structures act as containers for the ion-selective or organic-selective sorption agent of choice. Some sorbtion agents can be incorporated during the manufacture of the structure.

  11. Cellulose Pyrolysis A Literature, Review.

    Office of Scientific and Technical Information (OSTI)

    ... Polymer. Symp. 28, John Wiley and Sons, pp. 153-174, Syracuse, N.Y., May 19-23, 1975. J. K. Hamilton and R. L. Mitchell, "Cellulose," Encyclopedia of Chem. Tech., - 4, 593-616, ...

  12. Breaking the Biological Barriers to Cellulosic Ethanol, June...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Breaking the Biological Barriers to Cellulosic Ethanol, June 2006 Breaking the Biological Barriers to Cellulosic Ethanol, June 2006 Breaking the Biological Barriers to Cellulosic...

  13. Consolidated Online Data Management Strategy in Support of Environmental Remediation Activities at the Dupont Chambers Works Formerly Utilized Sites Remedial Action Program (Fusrap) Site

    SciTech Connect (OSTI)

    Nelson, K.A.; Desai, N.B.; Samus, J.E.; Bock, G.O.

    2007-07-01

    The U.S. Army Corps of Engineers (USACE) has developed and implemented an innovative online data management application in support of site characterization and remediation activities at the DuPont Chambers Works Formerly Utilized Sites Remedial Action Program (FUSRAP) Site. The password-protected, web-based application was implemented to centralize project data, facilitate project communications, and provide a large and diverse group of project team members with access to the data and analytical tools they need to efficiently and effectively manage the ongoing characterization and remediation efforts. Centralizing resources using the online application and web-based strategy streamlines data access and communications, allowing the team to effectively keep the project on track while reducing the costs associated with data requests, data duplication, document review and retrieval, software requirements, and lapses in communication or data transfer. (authors)

  14. Four Cellulosic Ethanol Breakthroughs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Four Cellulosic Ethanol Breakthroughs Four Cellulosic Ethanol Breakthroughs September 3, 2014 - 1:11pm Addthis Cellulosic ethanol biorefinery 1 of 10 Cellulosic ethanol biorefinery The mechanical building (front), solid/liquid separation building (left), and anaerobic digestion building (back) at POET-DSM's Project LIBERTY biorefinery in Emmetsburg, Iowa. Image: Courtesy of POET-DSM Stacking up biomass 2 of 10 Stacking up biomass The biomass stackyard, where corn waste is stored at POET-DSM's

  15. Compositions for saccharification of cellulosic material

    SciTech Connect (OSTI)

    McBrayer, Brett; Shaghasi, Tarana; Vlasenko, Elena

    2015-11-04

    The present invention relates to enzyme compositions for high temperature saccharification of cellulosic material and to uses thereof.

  16. Compositions for saccharification of cellulosic material

    SciTech Connect (OSTI)

    McBrayer, Brett; Shaghasi, Tarana; Vlasenko, Elena

    2013-11-12

    The present invention relates to enzyme compositions for high temperature saccharification of cellulosic material and to uses thereof.

  17. Method of producing thin cellulose nitrate film

    DOE Patents [OSTI]

    Lupica, S.B.

    1975-12-23

    An improved method for forming a thin nitrocellulose film of reproducible thickness is described. The film is a cellulose nitrate film, 10 to 20 microns in thickness, cast from a solution of cellulose nitrate in tetrahydrofuran, said solution containing from 7 to 15 percent, by weight, of dioctyl phthalate, said cellulose nitrate having a nitrogen content of from 10 to 13 percent.

  18. Industrial hygiene walk-through survey report of E. I. Dupont de Nemours and Company, Inc. , Chocolate Bayou Plant, Alvin, Texas

    SciTech Connect (OSTI)

    Fajen, J.M.

    1985-05-01

    A walkthrough survey of EI duPont deNemours and Company, Incorporated, Alvin, Texas was conducted in November, 1984. The purpose of the survey was to obtain information on the 1,3-butadiene monomer manufacturing process and the potential for exposure. The facility manufactured a crude product stream containing 1,3-butadiene as a coproduct of its ethylene process. The crude was refined to a 99.5% 1,3-butadiene product. The refining process occurred in a closed system, tightly maintained for economic, fire, and health-hazard reasons. The product was transferred by way of a pipeline to storage spheres for later transport off site. The facility used an open-loop cylinder (bomb) technique for quality control sampling. All pumps were equipped with single mechanical seals, which were in the process of being replaced by tandem seals. Since 1962, the facility had experienced process changes and three changes of ownership. Because of these changes, records from previous owners of industrial hygiene monitoring were not available. Job titles identified as having potential exposure were processors, wage employee supervisors, production engineers, and laboratory technicians. The author concludes that a closed-loop manual quality-control sampling system should be installed to reduce exposure from this source.

  19. BIOENERGIZEME INFOGRAPHIC CHALLENGE: Cellulosic Ethanol | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Cellulosic Ethanol BIOENERGIZEME INFOGRAPHIC CHALLENGE: Cellulosic Ethanol BIOENERGIZEME INFOGRAPHIC CHALLENGE: Cellulosic Ethanol This infographic was created by students from Williamsburg HS for Architecture and Design in Brooklyn, NY, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME Infographic Challenge encourages young people to improve their foundational understanding of bioenergy, which is a broad and complex topic. The ideas

  20. Alexa Fluor-labeled Fluorescent Cellulose Nanocrystals for Bioimaging Solid Cellulose in Spatially Structured Microenvironments

    SciTech Connect (OSTI)

    Grate, Jay W.; Mo, Kai-For; Shin, Yongsoon; Vasdekis, Andreas; Warner, Marvin G.; Kelly, Ryan T.; Orr, Galya; Hu, Dehong; Dehoff, Karl J.; Brockman, Fred J.; Wilkins, Michael J.

    2015-03-18

    Cellulose nanocrystal materials have been labeled with modern Alexa Fluor dyes in a process that first links the dye to a cyanuric chloride molecule. Subsequent reaction with cellulose nanocrystals provides dyed solid microcrystalline cellulose material that can be used for bioimaging and suitable for deposition in films and spatially structured microenvironments. It is demonstrated with single molecular fluorescence microscopy that these films are subject to hydrolysis by cellulose enzymes.

  1. Bacterial Cellulose Composites Opportunities and Challenges

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Vol. 205. Springer Berlin Heidelberg, 2006. 49-96. Peng, B L et al. "Chemistry and Applications of Nanocrystalline Cellulose and Its Derivatives: a Nanotechnology Perspective." Ed. ...

  2. Cellulosic Liquid Fuels Commercial Production Today

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    liquid fuel from wood and other non-food biomass Our key product is Renewable ... petroleum replacement from cellulosic non- food biomass Powerful unit economics - cash ...

  3. Less is more: Novel cellulose structure requires fewer enzymes...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cellulose requires fewer enzymes to process biomass to fuel Less is more: Novel cellulose structure requires fewer enzymes to process biomass to fuel Improved methods for breaking...

  4. Secretary Bodman Touts Importance of Cellulosic Ethanol at Georgia...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Secretary Bodman Touts Importance of Cellulosic Ethanol at Georgia Biorefinery Groundbreaking Secretary Bodman Touts Importance of Cellulosic Ethanol at Georgia Biorefinery...

  5. Belize-OAS Cellulosic Ethanol Market Assessment | Open Energy...

    Open Energy Info (EERE)

    OAS Cellulosic Ethanol Market Assessment Jump to: navigation, search Name Belize-OAS Cellulosic Ethanol Market Assessment AgencyCompany Organization Organization of American...

  6. Methods for enhancing the degradation or conversion of cellulosic material

    DOE Patents [OSTI]

    Harris, Paul; Rey, Michael; Ding, Hanshu

    2012-04-03

    The present invention relates to methods for degrading or converting a cellulosic material and for producing a substance from a cellulosic material.

  7. Methods for enhancing the degradation or conversion of cellulosic material

    DOE Patents [OSTI]

    Harris, Paul Rey, Michael; Ding, Hanshu

    2009-10-27

    The present invention relates to methods for degrading or converting a cellulosic material and for producing a substance from a cellulosic material.

  8. Compositions and methods relating to transgenic plants and cellulosic...

    Office of Scientific and Technical Information (OSTI)

    to transgenic plants and cellulosic ethanol production Citation Details In-Document Search Title: Compositions and methods relating to transgenic plants and cellulosic ...

  9. Nucleic acids encoding a cellulose binding domain

    DOE Patents [OSTI]

    Shoseyov, O.; Shpiegl, I.; Goldstein, M.A.; Doi, R.H.

    1996-03-05

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques. 15 figs.

  10. Nucleic acids encoding a cellulose binding domain

    DOE Patents [OSTI]

    Shoseyov, Oded; Shpiegl, Itai; Goldstein, Marc A.; Doi, Roy H.

    1996-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  11. Selective solvent extraction of cellulosic material

    DOE Patents [OSTI]

    Wang, Daniel I. C.; Avgerinos, George C.

    1983-01-01

    Cellulosic products having a high hemicellulose to lignin weight ratio are obtained by extracting a cellulosic composition with basic ethanol-water solution having a pH between about 12 and about 14 at a temperature between about 15.degree. and about 70.degree. C. and for a time period between about 2 and about 80 hours.

  12. Project LIBERTY Biorefinery Starts Cellulosic Ethanol Production

    Broader source: Energy.gov [DOE]

    Project LIBERTY, the nation’s first commercial-scale cellulosic ethanol plant to use corn waste as a feedstock, announced the start of production today. Once operating at full, commercial-scale, the biorefinery in Emmetsburg, Iowa will produce 25 million gallons of cellulosic ethanol per year - enough to avoid approximately 210,000 tons of CO2 emissions annually.

  13. Selective solvent extraction of cellulosic material

    DOE Patents [OSTI]

    Wang, D.I.C.; Avgerinos, G.C.

    1983-07-26

    Cellulosic products having a high hemicellulose to lignin weight ratio are obtained by extracting a cellulosic composition with basic ethanol-water solution having a pH between about 12 and about 14 at a temperature between about 15 and about 70 C and for a time period between about 2 and about 80 hours. 6 figs.

  14. Simulations of Cellulose Translocation in the Bacterial Cellulose Synthase Suggest a Regulatory Mechanism for the Dimeric Structure of Cellulose

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Knott, Brandon C.; Crowley, Michael F.; Himmel, Michael E.; Zimmer, Jochen; Beckham, Gregg T.

    2016-05-01

    The processive cycle of the bacterial cellulose synthase (Bcs) includes the addition of a single glucose moiety to the end of a growing cellulose chain followed by the translocation of the nascent chain across the plasma membrane. The mechanism of this translocation and its precise location within the processive cycle are not well understood. In particular, the molecular details of how a polymer (cellulose) whose basic structural unit is a dimer (cellobiose) can be constructed by adding one monomer (glucose) at a time are yet to be elucidated. Here, we have utilized molecular dynamics simulations and free energy calculations tomore » the shed light on these questions. We find that translocation forward by one glucose unit is quite favorable energetically, giving a free energy stabilization of greater than 10 kcal mol-1. In addition, there is only a small barrier to translocation, implying that translocation is not rate limiting within the Bcs processive cycle (given experimental rates for cellulose synthesis in vitro). Perhaps most significantly, our results also indicate that steric constraints at the transmembrane tunnel entrance regulate the dimeric structure of cellulose. Namely, when a glucose molecule is added to the cellulose chain in the same orientation as the acceptor glucose, the terminal glucose freely rotates upon forward motion, thus suggesting a regulatory mechanism for the dimeric structure of cellulose. We characterize both the conserved and non-conserved enzyme-polysaccharide interactions that drive translocation, and find that 20 of the 25 residues that strongly interact with the translocating cellulose chain in the simulations are well conserved, mostly with polar or aromatic side chains. Our results also allow for a dynamical analysis of the role of the so-called 'finger helix' in cellulose translocation that has been observed structurally. Taken together, these findings aid in the elucidation of the translocation steps of the Bcs processive cycle and may be widely relevant to polysaccharide synthesizing or degrading enzymes that couple catalysis with chain translocation.« less

  15. Production of permeable cellulose triacetate membranes

    DOE Patents [OSTI]

    Johnson, Bruce M.

    1986-01-01

    A phase inversion process for the preparation of cellulose triacetate (CTA) and regenerated cellulose membranes is disclosed. Such membranes are useful as supports for liquid membranes in facilitated transport processes, as microfiltration membranes, as dialysis or ultrafiltration membranes, and for the preparation of ion-selective electrodes. The process comprises the steps of preparing a casting solution of CTA in a solvent comprising a mixture of cyclohexanone and methylene chloride, casting a film from the casting solution, and immersing the cast film in a methanol bath. The resulting CTA membrane may then be hydrolyzed to regenerated cellulose using conventional techniques.

  16. Production of permeable cellulose triacetate membranes

    DOE Patents [OSTI]

    Johnson, B.M.

    1986-12-23

    A phase inversion process for the preparation of cellulose triacetate (CTA) and regenerated cellulose membranes is disclosed. Such membranes are useful as supports for liquid membranes in facilitated transport processes, as microfiltration membranes, as dialysis or ultrafiltration membranes, and for the preparation of ion-selective electrodes. The process comprises the steps of preparing a casting solution of CTA in a solvent comprising a mixture of cyclohexanone and methylene chloride, casting a film from the casting solution, and immersing the cast film in a methanol bath. The resulting CTA membrane may then be hydrolyzed to regenerated cellulose using conventional techniques.

  17. EERE Success Story-Pilot Plant Completes Two 1,000-Hour Ethanol...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Shipment The DuPont cellulosic ethanol facility in Nevada, Iowa, will produce about 30 million gallons of cellulosic ethanol per year. Photo courtesy of DuPont. EERE Success ...

  18. Breaking the Biological Barriers to Cellulosic Ethanol, June 2006 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Breaking the Biological Barriers to Cellulosic Ethanol, June 2006 Breaking the Biological Barriers to Cellulosic Ethanol, June 2006 Breaking the Biological Barriers to Cellulosic Ethanol, June 2006 PDF icon b2blowres63006.pdf More Documents & Publications Breaking the Biological Barriers to Cellulosic Ethanol, June 2006 Review of Recent Pilot Scale Cellulosic Ethanol Demonstration Biochemical Conversion: Using Hydrolysis, Fermentation, and Catalysis to Make Fuels and

  19. Conversion of cellulosic materials to sugar

    DOE Patents [OSTI]

    Wilke, Charles R.; Mitra, Gautam

    1976-08-03

    A process for the production of sugar, mainly glucose, by the enzymatic degradation of cellulosic materials, particularly cellulosic wastes, which comprises hydrolyzing the cellulosic material in the presence of cellulase enzyme to produce a sugar solution and recovering from the hydrolysis products a major proportion of the cellulase enzyme used in the hydrolysis reaction for re-use. At least a portion of the required makeup cellulase enzyme is produced in a two-stage operation wherein, in the first stage, a portion of the output sugar solution is utilized to grow a cellulase-secreting microorganism, and, in the second stage, cellulase enzyme formation is induced in the microorganism-containing culture medium by the addition of an appropriate inducer, such as a cellulosic material. Cellulase enzyme is precipitated from the culture liquid by the addition of an organic solvent material, such as a low molecular weight alkyl ketone or alcohol, and the cellulase precipitate is then fed to the hydrolysis reaction.

  20. Comparing alternative cellulosic biomass biorefining systems: Centralized

    Office of Scientific and Technical Information (OSTI)

    versus distributed processing systems (Journal Article) | SciTech Connect Comparing alternative cellulosic biomass biorefining systems: Centralized versus distributed processing systems Citation Details In-Document Search This content will become publicly available on May 5, 2017 Title: Comparing alternative cellulosic biomass biorefining systems: Centralized versus distributed processing systems Authors: Kim, Seungdo ; Dale, Bruce E. Publication Date: 2015-03-01 OSTI Identifier: 1250566

  1. Launching Green Entrepreneurship in New Hampshire | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    of Energy The DuPont cellulosic ethanol facility in Nevada, Iowa, will produce about 30 million gallons of cellulosic ethanol per year. Photo courtesy of DuPont. The DuPont cellulosic ethanol facility in Nevada, Iowa, will produce about 30 million gallons of cellulosic ethanol per year. Photo courtesy of DuPont. The DuPont cellulosic ethanol facility, opening in Nevada, Iowa, on October 30, will be the largest cellulosic ethanol plant in the world. The U.S. Department of Energy (DOE)

  2. Isolation and characterization of two cellulose morphology mutants of Gluconacetobacter hansenii ATCC23769 producing cellulose with lower crystallinity

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Deng, Ying; Nagachar, Nivedita; Fang, Lin; Luan, Xin; Catchmark, Jeffrey M.; Tien, Ming; Kao, Teh -hui; Lai, Hsin -Chih

    2015-03-19

    Gluconacetobacter hansenii, a Gram-negative bacterium, produces and secrets highly crystalline cellulose into growth medium, and has long been used as a model system for studying cellulose synthesis in higher plants. Cellulose synthesis involves the formation of β-1,4 glucan chains via the polymerization of glucose units by a multi-enzyme cellulose synthase complex (CSC). These glucan chains assemble into ordered structures including crystalline microfibrils. AcsA is the catalytic subunit of the cellulose synthase enzymes in the CSC, and AcsC is required for the secretion of cellulose. However, little is known about other proteins required for the assembly of crystalline cellulose. To addressmore » this question, we visually examined cellulose pellicles formed in growth media of 763 individual colonies of G. hansenii generated via Tn5 transposon insertion mutagenesis, and identified 85 that produced cellulose with altered morphologies. X-ray diffraction analysis of these 85 mutants identified two that produced cellulose with significantly lower crystallinity than wild type. The gene disrupted in one of these two mutants encoded a lysine decarboxylase and that in the other encoded an alanine racemase. Solid-state NMR analysis revealed that cellulose produced by these two mutants contained increased amounts of non-crystalline cellulose and monosaccharides associated with non-cellulosic polysaccharides as compared to the wild type. Monosaccharide analysis detected higher percentages of galactose and mannose in cellulose produced by both mutants. Field emission scanning electron microscopy showed that cellulose produced by the mutants was unevenly distributed, with some regions appearing to contain deposition of non-cellulosic polysaccharides; however, the width of the ribbon was comparable to that of normal cellulose. As both lysine decarboxylase and alanine racemase are required for the integrity of peptidoglycan, we propose a model for the role of peptidoglycan in the assembly of crystalline cellulose.« less

  3. Bioenergy Success Stories | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    EERE's bioenergy success stories below. November 30, 2015 The DuPont cellulosic ethanol facility in Nevada, Iowa, will produce about 30 million gallons of cellulosic ethanol...

  4. Largest Cellulosic Ethanol Plant in the World Opened in October

    Broader source: Energy.gov [DOE]

    TheDuPont cellulosic ethanol facility openedin Nevada, Iowa, last month and isthe largest cellulosic ethanol plant in the world. The U.S. Department of Energy (DOE) Bioenergy Technologies Office...

  5. Research Advances Cellulosic Ethanol, NREL Leads the Way (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2007-03-01

    This brochure highlights NREL's recent advances in cellulosic ethanol production. Research at NREL addresses both biochemical and thermochemical processes.

  6. Cellulosic Liquid Fuels Commercial Production Today | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cellulosic Liquid Fuels Commercial Production Today Cellulosic Liquid Fuels Commercial Production Today Keynote Success Story Robert Graham, Chairman and CEO, Ensyn Corporation PDF icon b13_graham_ensyn.pdf More Documents & Publications Advanced Cellulosic Biofuels Production of Renewable Fuels from Biomass by FCC Co-processing 2013 Peer Review Presentations-Integrated Biorefineries

  7. Method for separating the non-inked cellulose fibers from the inked cellulose fibers in cellulosic materials

    DOE Patents [OSTI]

    Woodward, J.

    1998-12-01

    A method for enzymatically separating the non-inked cellulose fibers from the inked cellulose fibers in cellulosic materials. The cellulosic material, such as newsprint, is introduced into a first chamber containing a plastic canvas basket. This first chamber is in fluid communication, via plastic tubing, with a second chamber containing cellobiase beads in a plastic canvas basket. Cellulase is then introduced into the first chamber. A programmable pump then controls the flow rate between the two chambers. The action of cellulase and stirring in the first chamber results in the production of a slurry of newsprint pulp in the first chamber. This slurry contains non-inked fibers, inked fibers, and some cellobiose. The inked fibers and cellobiose flow from the first chamber to the second chamber, whereas the non-inked fibers remain in the first chamber because they are too large to pass through the pores of the plastic canvas basket. The resulting non-inked and inked fibers are then recovered. 6 figs.

  8. Method for separating the non-inked cellulose fibers from the inked cellulose fibers in cellulosic materials

    DOE Patents [OSTI]

    Woodward, Jonathan

    1998-01-01

    A method for enzymatically separating the non-inked cellulose fibers from the inked cellulose fibers in cellulosic materials. The cellulosic material, such as newsprint, is introduced into a first chamber containing a plastic canvas basket. This first chamber is in fluid communication, via plastic tubing, with a second chamber containing cellobiase beads in a plastic canvas basket. Cellulase is then introduced into the first chamber. A programmable pump then controls the flow rate between the two chambers. The action of cellulase and stirring in the first chamber results in the production of a slurry of newsprint pulp in the first chamber. This slurry contains non-inked fibers, inked fibers, and some cellobiose. The inked fibers and cellobiose flow from the first chamber to the second chamber, whereas the non-inked fibers remain in the first chamber because they are too large to pass through the pores of the plastic canvas basket. The resulting non-inked and inked fibers are then recovered.

  9. Does the Cellulose-Binding Module Move on the Cellulose Surface?

    SciTech Connect (OSTI)

    Liu, Y. S.; Zeng, Y.; Luo, Y.; Xu, Q.; Himmel, M. E.; Smith, S. J.; Ding, S. Y.

    2009-01-01

    Exoglucanases are key enzymes required for the efficient hydrolysis of crystalline cellulose. It has been proposed that exoglucanases hydrolyze cellulose chains in a processive manner to produce primarily cellobiose. Usually, two functional modules are involved in the processive mechanism: a catalytic module and a carbohydrate-binding module (CBM). In this report, single molecule tracking techniques were used to analyze the molecular motion of CBMs labeled with quantum dots (QDs) and bound to cellulose crystals. By tracking the single QD, we observed that the family 2 CBM from Acidothermus cellulolyticus (AcCBM2) exhibited linear motion along the long axis of the cellulose fiber. This apparent movement was observed consistently when different concentrations (25 {micro}M to 25 nM) of AcCBM2 were used. Although the mechanism of AcCBM2 motion remains unknown, single-molecule spectroscopy has been demonstrated to be a promising tool for acquiring new fundamental understanding of cellulase action.

  10. High-Temperature Behavior of Cellulose I

    SciTech Connect (OSTI)

    Matthews, James F.; Bergenstråhle, Malin; Beckham, Gregg T.; Himmel, Michael E.; Nimlos, Mark R.; Brady, John W.; Crowley, Michael F.

    2011-03-17

    We use molecular simulation to elucidate the structural behavior of small hydrated cellulose Iβ microfibrils heated to 227 °C (500 K) with two carbohydrate force fields. In contrast to the characteristic two-dimensional hydrogen-bonded layer sheets present in the cellulose Iβ crystal structure, we show that at high temperature a three-dimensional hydrogen bond network forms, made possible by hydroxymethyl groups changing conformation from trans–gauche (TG) to gauche–gauche (GG) in every second layer corresponding to “center” chains in cellulose Iβ and from TG to gauche–trans (GT) in the “origin” layer. The presence of a regular three-dimensional hydrogen bond network between neighboring sheets eliminates the possibility of twist, whereas two-dimensional hydrogen bonding allows for microfibril twist to occur. Structural features of this high-temperature phase as determined by molecular simulation may explain several experimental observations for which no detailed structural basis has been offered. This includes an explanation for the observed temperature and crystal size dependence for the extent of hydrogen/deuterium exchange, and diffraction patterns of cellulose at high temperature.

  11. Method of forming an electrically conductive cellulose composite

    DOE Patents [OSTI]

    Evans, Barbara R.; O'Neill, Hugh M.; Woodward, Jonathan

    2011-11-22

    An electrically conductive cellulose composite includes a cellulose matrix and an electrically conductive carbonaceous material incorporated into the cellulose matrix. The electrical conductivity of the cellulose composite is at least 10 .mu.S/cm at 25.degree. C. The composite can be made by incorporating the electrically conductive carbonaceous material into a culture medium with a cellulose-producing organism, such as Gluconoacetobacter hansenii. The composites can be used to form electrodes, such as for use in membrane electrode assemblies for fuel cells.

  12. Method and apparatus for treating a cellulosic feedstock

    DOE Patents [OSTI]

    Nguyen, Quang A.; Burke, Murray J.; Hillier, Sunalie N.

    2015-09-08

    Methods and apparatus for treating, pre-treating, preparing and conveying a cellulosic feedstock, such as for ethanol production, are disclosed. More specifically, the invention relates to methods and apparatus for treating a cellulosic feedstock by mixing and heating the cellulosic feedstock and/or by moistening and heating the cellulosic feedstock. The invention also relates to a holding tank, and a method of utilizing the holding tank whereby bridging may be reduced or eliminated and may result in a product stream from autohydrolysis or hydrolysis having an improved yield. The invention further relates to methods and apparatus for obtaining and conveying a cellulosic feedstock, which may be used for the subsequent production of a fermentable sugar stream from the cellulose and hemicellulose in the cellulosic feedstock wherein the fermentable sugar stream may be used for subsequent ethanol production. The invention also relates to a method and apparatus for withdrawing one or more feedstock stream from a holding tank.

  13. IMPACTS OF BIOFILM FORMATION ON CELLULOSE FERMENTATION

    SciTech Connect (OSTI)

    Leschine, Susan

    2009-10-31

    This project addressed four major areas of investigation: i) characterization of formation of Cellulomonas uda biofilms on cellulose; ii) characterization of Clostridium phytofermentans biofilm development; colonization of cellulose and its regulation; iii) characterization of Thermobifida fusca biofilm development; colonization of cellulose and its regulation; and iii) description of the architecture of mature C. uda, C. phytofermentans, and T. fusca biofilms. This research is aimed at advancing understanding of biofilm formation and other complex processes involved in the degradation of the abundant cellulosic biomass, and the biology of the microbes involved. Information obtained from these studies is invaluable in the development of practical applications, such as the single-step bioconversion of cellulose-containing residues to fuels and other bioproducts. Our results have clearly shown that cellulose-decomposing microbes rapidly colonize cellulose and form complex structures typical of biofilms. Furthermore, our observations suggest that, as cells multiply on nutritive surfaces during biofilms formation, dramatic cell morphological changes occur. We speculated that morphological changes, which involve a transition from rod-shaped cells to more rounded forms, might be more apparent in a filamentous microbe. In order to test this hypothesis, we included in our research a study of biofilm formation by T. fusca, a thermophilic cellulolytic actinomycete commonly found in compost. The cellulase system of T. fusca has been extensively detailed through the work of David Wilson and colleagues at Cornell, and also, genome sequence of a T. fusca strain has been determine by the DOE Joint Genome Institute. Thus, T. fusca is an excellent subject for studies of biofilm development and its potential impacts on cellulose degradation. We also completed a study of the chitinase system of C. uda. This work provided essential background information for understanding how C. uda colonizes and degrades insoluble substrates. Major accomplishments of the project include: • Development of media containing dialysis tubing (described by the manufacturer as “regenerated cellulose”) as sole carbon and energy source and a nutritive surface for the growth of cellulolytic bacteria, and development of various microscopic methods to image biofilms on dialysis tubing. • Demonstration that cultures of C. phytofermentans, an obligate anaerobe, C. uda, a facultative aerobe, and T. fusca, a filamentous aerobe, formed microbial communities on the surface of dialysis tubing, which possessed architectural features and functional characteristics typical of biofilms. • Demonstration that biofilm formation on the nutritive surface, cellulose, involves a complex developmental processes, including colonization of dialysis tubing, formation of cell clusters attached to the nutritive surface, cell morphological changes, formation of complex structures embedded in extracellular polymeric matrices, and dispersal of biofilm communities as the nutritive surface is degraded. • Determination of surface specificity and regulatory aspects of biofilm formation by C. phytofermentans, C. uda, and T. fusca. • Demonstration that biofilm formation by T. fusca forms an integral part of the life cycle of this filamentous cellulolytic bacterium, including studies on the role of mycelial pellet formation in the T. fusca life cycle and a comparison of mycelial pellets to surface-attached T. fusca biofilms. • Characterization of T. fusca biofilm EPS, including demonstration of a functional role for EPS constituents. • Correlation of T. fusca developmental life cycle and cellulase gene expression.

  14. Metallization of bacterial cellulose for electrical and electronic device manufacture

    DOE Patents [OSTI]

    Evans, Barbara R.; O'Neill, Hugh M.; Jansen, Valerie Malyvanh; Woodward, Jonathan

    2011-06-07

    A method for the deposition of metals in bacterial cellulose and for the employment of the metallized bacterial cellulose in the construction of fuel cells and other electronic devices is disclosed. The method for impregnating bacterial cellulose with a metal comprises placing a bacterial cellulose matrix in a solution of a metal salt such that the metal salt is reduced to metallic form and the metal precipitates in or on the matrix. The method for the construction of a fuel cell comprises placing a hydrated bacterial cellulose support structure in a solution of a metal salt such that the metal precipitates in or on the support structure, inserting contact wires into two pieces of the metal impregnated support structure, placing the two pieces of metal impregnated support structure on opposite sides of a layer of hydrated bacterial cellulose, and dehydrating the three layer structure to create a fuel cell.

  15. Metallization of bacterial cellulose for electrical and electronic device manufacture

    DOE Patents [OSTI]

    Evans, Barbara R. [Oak Ridge, TN; O'Neill, Hugh M. [Knoxville, TN; Jansen, Valerie Malyvanh [Memphis, TN; Woodward, Jonathan [Knoxville, TN

    2010-09-28

    A method for the deposition of metals in bacterial cellulose and for the employment of the metallized bacterial cellulose in the construction of fuel cells and other electronic devices is disclosed. The method for impregnating bacterial cellulose with a metal comprises placing a bacterial cellulose matrix in a solution of a metal salt such that the metal salt is reduced to metallic form and the metal precipitates in or on the matrix. The method for the construction of a fuel cell comprises placing a hydrated bacterial cellulose support structure in a solution of a metal salt such that the metal precipitates in or on the support structure, inserting contact wires into two pieces of the metal impregnated support structure, placing the two pieces of metal impregnated support structure on opposite sides of a layer of hydrated bacterial cellulose, and dehydrating the three layer structure to create a fuel cell.

  16. The Current State of Technology for Cellulosic Ethanol | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy The Current State of Technology for Cellulosic Ethanol The Current State of Technology for Cellulosic Ethanol At the February 12, 2009 joint Web conference of DOE's Biomass and Clean Cities programs, Andy Aden (National Renewable Energy Laboratory) discussed the current state of technology for cellulosic ethanol - How close are we? PDF icon aden_20090212.pdf More Documents & Publications Integrated Biorefinery Process Process Design and Economics for Biochemical Conversion of

  17. Florida Project Produces Nation's First Cellulosic Ethanol at

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commercial-Scale | Department of Energy Florida Project Produces Nation's First Cellulosic Ethanol at Commercial-Scale Florida Project Produces Nation's First Cellulosic Ethanol at Commercial-Scale July 31, 2013 - 1:37pm Addthis News Media Contact (202) 586-4940 WASHINGTON - The Energy Department today recognized the nation's first commercial-scale cellulosic ethanol production at INEOS Bio's Indian River BioEnergy Center in Vero Beach, Florida. Developed through a joint venture between

  18. Metallization of bacterial cellulose for electrical and electronic device manufacture

    DOE Patents [OSTI]

    Evans, Barbara R.; O'Neill, Hugh M.; Jansen, Valerie Malyvanh; Woodward, Jonathan

    2006-01-17

    The employment of metallized bacterial cellulose in the construction of fuel cells and other electronic devices is disclosed. The fuel cell includes an electrolyte membrane comprising a membrane support structure comprising bacterial cellulose, an anode disposed on one side of the electrolyte membrane, and a cathode disposed on an opposite side of the electrolyte membrane. At least one of the anode and the cathode comprises an electrode support structure comprising bacterial cellulose, and a catalyst disposed in or on the electrode support structure.

  19. EERE Success Story-Louisiana: Verenium Cellulosic Ethanol Demonstration

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Facility | Department of Energy Louisiana: Verenium Cellulosic Ethanol Demonstration Facility EERE Success Story-Louisiana: Verenium Cellulosic Ethanol Demonstration Facility April 9, 2013 - 12:00am Addthis In 2010, Verenium Corporation received EERE funds to operate a 1.4 million gallon per year demonstration plant in Jennings, Louisiana, to convert agricultural residues and energy crops to cellulosic ethanol. The project's goal was to implement a technology that had been demonstrated in a

  20. The Journey to Commercializing Cellulosic Biofuels in the United...

    Broader source: Energy.gov (indexed) [DOE]

    ... representative from biofuels company POET-DSM stand between square and round bales of corn stover stock piled outside of POET-DSM's Project LIBERTY cellulosic ethanol biorefinery. ...

  1. Less is more: Novel cellulose structure requires fewer enzymes...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    enzymatic deconstruction; however, the recent observation that cellulose III increased sugar yields with reduced levels of bound enzyme was unexpected. To explain this finding,...

  2. The Arabidopsis Cellulose Synthase Complex: A Proposed Hexamer...

    Office of Scientific and Technical Information (OSTI)

    Synthase Complex: A Proposed Hexamer of CESA Trimers in an Equimolar Stoichiometry Citation Details In-Document Search Title: The Arabidopsis Cellulose Synthase Complex: A ...

  3. BETO Project Improves Production of Renewable Chemical from Cellulosic...

    Energy Savers [EERE]

    The process could also be applied to biofuel production to make a cellulosic ethanol facility more commercially viable. Learn more from the Genomatica press release....

  4. Less is more: Novel cellulose structure requires fewer enzymes...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    enzymes to process biomass to fuel Improved methods for breaking down cellulose nanofibers are central to cost-effective biofuel production. June 19, 2013 An enzyme (shown in...

  5. Largest Cellulosic Ethanol Plant in the World Opened in October...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... representative from biofuels company POET-DSM stand between square and round bales of corn stover stock piled outside of POET-DSM's Project LIBERTY cellulosic ethanol biorefinery. ...

  6. Breaking the Biological Barriers to Cellulosic Ethanol, June...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    .........104 Harvesting the Biochemical ... of Sc&24;ence and Office of Energy Effic&24;ency and Renewable ... cellulose chain is a linear collection of thousands of ...

  7. Appendix D: 2012 Cellulosic Ethanol Success, Bioenergy Technologies...

    Broader source: Energy.gov (indexed) [DOE]

    produce cellulosic ethanol at commercial-scale costs that are competitive with gasoline production at 110barrel of crude oil. Many industry partners are also demonstrating...

  8. Cellulosic emissions (kg of pollutant per km2 county area) -...

    Open Energy Info (EERE)

    Cellulosic emissions (kg of pollutant per km2 county area) Data reflects projected air emissions of nitrogen oxides (NOX), ammonia (NH3), carbon monoxide (CO), sulfur oxide (SOX),...

  9. Review of Recent Pilot Scale Cellulosic Ethanol Demonstration

    Broader source: Energy.gov [DOE]

    Opening Plenary Session: Celebrating Successes—The Foundation of an Advanced Bioindustry Cellulosic Technology Advances—Thomas Foust, Director, National Bioenergy Center, National Renewable Energy Laboratory

  10. Review of Recent Pilot Scale Cellulosic Ethanol Demonstration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Opening Plenary Session: Celebrating Successes-The Foundation of an Advanced Bioindustry Cellulosic Technology Advances-Thomas Foust, Director, National Bioenergy Center, National ...

  11. Cellulosic Fiber Composites Using Protein Hydrolysates and Methods...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cellulosic Fiber Composites Using Protein Hydrolysates and Methods of Making Same Battelle Memorial Institute Contact BMI About This Technology Technology Marketing Summary This...

  12. Cellulosic Fiber Composites Using Protein Hydrolysates and Methods...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Find More Like This Return to Search Cellulosic Fiber Composites Using Protein Hydrolysates and Methods of Making Same Battelle Memorial Institute Contact BMI About...

  13. Advanced and Cellulosic Biofuels and Biorefineries: State of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced and Cellulosic Biofuels and Biorefineries: State of the Industry, Policy and Politics Afternoon Plenary Introduction Brent Erickson, Executive Vice President, BIO PDF icon ...

  14. Cost-Effective Enzyme for Producing Biofuels from Cellulosic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The mixture is half as expensive as conventional inducers such as lactose and cellulose, significantly reducing the cost of cellulase and subsequently reducing the cost of ...

  15. Modeling of Carbohydrate Binding Modules Complexed to Cellulose

    SciTech Connect (OSTI)

    Nimlos, M. R.; Beckham, G. T.; Bu, L.; Himmel, M. E.; Crowley, M. F.; Bomble, Y. J.

    2012-01-01

    Modeling results are presented for the interaction of two carbohydrate binding modules (CBMs) with cellulose. The family 1 CBM from Trichoderma reesei's Cel7A cellulase was modeled using molecular dynamics to confirm that this protein selectively binds to the hydrophobic (100) surface of cellulose fibrils and to determine the energetics and mechanisms for locating this surface. Modeling was also conducted of binding of the family 4 CBM from the CbhA complex from Clostridium thermocellum. There is a cleft in this protein, which may accommodate a cellulose chain that is detached from crystalline cellulose. This possibility is explored using molecular dynamics.

  16. Regenerating cellulose from ionic liquids for an accelerated enzymatic hydrolysis

    SciTech Connect (OSTI)

    Zhao, Hua; Jones, Cecil L; Baker, Gary A; Xia, Shuqian; Olubajo, Olarongbe; Person, Vernecia

    2009-01-01

    The efficient conversion of lignocellulosic materials into fuel ethanol has become a research priority in producing affordable and renewable energy. The pretreatment of lignocelluloses is known to be key to the fast enzymatic hydrolysis of cellulose. Recently, certain ionic liquids (ILs)were found capable of dissolving more than 10 wt% cellulose. Preliminary investigations [Dadi, A.P., Varanasi, S., Schall, C.A., 2006. Enhancement of cellulose saccharification kinetics using an ionic liquid pretreatment step. Biotechnol. Bioeng. 95, 904 910; Liu, L., Chen, H., 2006. Enzymatic hydrolysis of cellulose materials treated with ionic liquid [BMIM]Cl. Chin. Sci. Bull. 51, 2432 2436; Dadi, A.P., Schall, C.A., Varanasi, S., 2007. Mitigation of cellulose recalcitrance to enzymatic hydrolysis by ionic liquid pretreatment. Appl. Biochem. Biotechnol. 137 140, 407 421] suggest that celluloses regenerated from IL solutions are subject to faster saccharification than untreated substrates. These encouraging results offer the possibility of using ILs as alternative and nonvolatile solvents for cellulose pretreatment. However, these studies are limited to two chloride-based ILs: (a) 1-butyl-3-methylimidazolium chloride ([BMIM]Cl), which is a corrosive, toxic and extremely hygroscopic solid (m.p. 70 C), and (b) 1-allyl-3-methylimidazolium chloride ([AMIM]Cl), which is viscous and has a reactive side-chain. Therefore, more in-depth research involving other ILs is much needed to explore this promising pretreatment route. For this reason, we studied a number of chloride- and acetate-based ILs for cellulose regeneration, including several ILs newly developed in our laboratory. This will enable us to select inexpensive, efficient and environmentally benign solvents for processing cellulosic biomass. Our data confirm that all regenerated celluloses are less crystalline (58 75% lower) and more accessible to cellulase (>2 times) than untreated substrates. As a result, regenerated Avicel cellulose, filter paper and cottonwere hydrolyzed 2 10 times faster than the respective untreated celluloses. A complete hydrolysis of Avicel cellulose could be achieved in 6 h given the Trichoderma reesei cellulase/substrate ratio (w/w) of 3:20 at 50 C. In addition,we observed that cellulase is more thermally stable (up to 60 C) in the presence of regenerated cellulose. Furthermore, our systematic studies suggest that the presence of various ILs during the hydrolysis induced different degrees of cellulase inactivation. Therefore, a thorough removal of IL residues after cellulose regeneration is highly recommended, and a systematic investigation on this subject is much needed.

  17. Evaluating models of cellulose degradation by Fibrobacter succinogenes S85

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Burnet, Meagan C.; Dohnalkova, Alice C.; Neumann, Anthony P.; Lipton, Mary S.; Smith, Richard D.; Suen, Garret; Callister, Stephen J.

    2015-12-02

    Fibrobacter succinogenes S85 is an anaerobic non-cellulosome utilizing cellulolytic bacterium originally isolated from the cow rumen microbial community. Efforts to elucidate its cellulolytic machinery have resulted in the proposal of numerous models which involve a combination of cell-surface attachment via a combination of cellulose-binding fibro-slime proteins and pili, the production of cellulolytic vesicles, and the entry of cellulose fibers into the periplasmic space. Here, we used a combination of RNA-sequencing, proteomics, and transmission electron microscopy (TEM) to further elucidate the cellulolytic mechanism of F. succinogenes. Our RNA-sequence analysis shows that genes encoding Type II and III secretion systems, fibro-slime proteins,more » and pili are differentially expressed on cellulose, relative to glucose. A subcellular fractionation of cells grown on cellulose revealed that carbohydrate active enzymes associated with cellulose deconstruction and fibro-slime proteins were greater in the extracellular media, as compared to the periplasm and outer membrane fractions. TEMs of samples harvested at mid-exponential and stationary phases of growth on cellulose and glucose showed the presence of grooves in the cellulose between the bacterial cells and substrate, suggesting enzymes work extracellularly for cellulose degradation. Membrane vesicles were only observed in stationary phase cultures grown on cellulose. Furthermore, these results provide evidence that F. succinogenes attaches to cellulose fibers using fibro-slime and pili, produces cellulases, such as endoglucanases, that are secreted extracellularly using type II and III secretion systems, and degrades the cellulose into cellodextrins that are then imported back into the periplasm for further digestion by β-glucanases and other cellulases.« less

  18. Methods for enhancing the degradation of cellulosic material with chitin binding proteins

    DOE Patents [OSTI]

    Xu, Feng

    2015-03-31

    The present invention relates to methods for degrading or converting a cellulosic material and for producing substances from the cellulosic material.

  19. Methods for enhancing the degradation of cellulosic material with chitin binding proteins

    DOE Patents [OSTI]

    Xu, Feng

    2015-08-25

    The present invention relates to methods for degrading or converting a cellulosic material and for producing substances from the cellulosic material.

  20. Methods of use of cellulose binding domain proteins

    DOE Patents [OSTI]

    Shoseyov, O.; Shpiegl, I.; Goldstein, M.A.; Doi, R.H.

    1997-09-23

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques. 16 figs.

  1. Methods of use of cellulose binding domain proteins

    DOE Patents [OSTI]

    Shoseyov, Oded; Shpiegl, Itai; Goldstein, Marc A.; Doi, Roy H.

    1997-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  2. Methods of detection using a cellulose binding domain fusion product

    DOE Patents [OSTI]

    Shoseyov, O.; Shpiegl, I.; Goldstein, M.A.; Doi, R.H.

    1999-01-05

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques. 34 figs.

  3. Methods of detection using a cellulose binding domain fusion product

    DOE Patents [OSTI]

    Shoseyov, Oded; Shpiegl, Itai; Goldstein, Marc A.; Doi, Roy H.

    1999-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  4. Single Molecule Study of Cellulase Hydrolysis of Crystalline Cellulose

    SciTech Connect (OSTI)

    Liu, Y.-S.; Luo, Y.; Baker, J. O.; Zeng, Y.; Himmel, M. E.; Smith, S.; Ding, S.-Y.

    2009-12-01

    This report seeks to elucidate the role of cellobiohydrolase-I (CBH I) in the hydrolysis of crystalline cellulose. A single-molecule approach uses various imaging techniques to investigate the surface structure of crystalline cellulose and changes made in the structure by CBH I.

  5. Production of ethanol from cellulose using Clostridum thermocellum

    SciTech Connect (OSTI)

    Zertuche, L.; Zall, R.R.

    1982-01-01

    Clostridium thermocellum was used to produce ethanol from cellulose in a continuous system. Batch fermentations were first performed to observe the effects of buffers and agitation on generation time and ethanol production. Continuous fermentations were carried out at 60/sup 0/C and pH 7 using pure cellulose as the limiting substrate. The maximum ethanol concentrations produced with 1.5 and 3% cellulose fermenting liquid were 0.3 and 0.9% respectively. The yield of ethanol was about 0.3 grams per gram of cellulose consumed. While the continuous fermentaion of cellulose with Clostridium thermocellum appears to be feasible, it may not be economically promising due to the slow growth of the organism.

  6. The Role of Cellulosic Ethanol in Transportation

    SciTech Connect (OSTI)

    Robert M. Neilson, Jr.

    2007-10-01

    Petroleum provides essentially all of the energy used today in the transportation sector. To reduce this dependence on fossil energy, other fuels are beginning to be used, notably ethanol and biodiesel. Almost all fuel ethanol is produced by the conversion of corn grain to starch with subsequent fermentation to ethanol. In 2006, almost 5 billion gallons of fuel ethanol were produced, which used 17% of domestic corn production. The DOE has a goal to displace 30% of motor gasoline demand or 60 billion gallons per year by 2030. To achieve this goal, production of ethanol from lignocellulosic sources (e.g., agricultural residues, forest residues, and dedicated energy crops) is needed. This paper will describe the production of cellulosic ethanol as well as the issues and benefits associated with its production.

  7. NREL Proves Cellulosic Ethanol Can Be Cost Competitive (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-11-01

    Ethanol from non-food sources - known as "cellulosic ethanol" - is a near-perfect transportation fuel: it is clean, domestic, abundant, and renewable, and it can potentially replace 30% of the petroleum consumed in the United States, but its relatively high cost has limited its market. That changed in 2012, when the National Renewable Energy Laboratory (NREL) demonstrated the technical advances needed to produce cellulosic ethanol at a minimum ethanol selling price of $2.15/gallon (in 2007 dollars). Through a multi-year research project involving private industry, NREL has proven that cellulosic ethanol can be cost competitive with other transportation fuels.

  8. Evaluating the effect of potassium on cellulose pyrolysis reaction kinetics

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Journal Article: Evaluating the effect of potassium on cellulose pyrolysis reaction kinetics Citation Details In-Document Search This content will become publicly available on April 21, 2017 Title: Evaluating the effect of potassium on cellulose pyrolysis reaction kinetics Authors: Trendewicz, Anna ; Evans, Robert ; Dutta, Abhijit ; Sykes, Robert ; Carpenter, Daniel ; Braun, Robert Publication Date: 2015-03-01 OSTI Identifier: 1250597 Grant/Contract

  9. Identification and Characterization of Non-Cellulose-Producing Mutants of

    Office of Scientific and Technical Information (OSTI)

    Gluconacetobacter hansenii Generated by Tn5 Transposon Mutagenesis (Journal Article) | SciTech Connect Identification and Characterization of Non-Cellulose-Producing Mutants of Gluconacetobacter hansenii Generated by Tn5 Transposon Mutagenesis Citation Details In-Document Search Title: Identification and Characterization of Non-Cellulose-Producing Mutants of Gluconacetobacter hansenii Generated by Tn5 Transposon Mutagenesis Authors: Deng, Ying ; Nagachar, Nivedita ; Xiao, Chaowen ; Tien,

  10. BETO Project Improves Production of Renewable Chemical from Cellulosic

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Feedstocks | Department of Energy Project Improves Production of Renewable Chemical from Cellulosic Feedstocks BETO Project Improves Production of Renewable Chemical from Cellulosic Feedstocks October 13, 2015 - 1:43pm Addthis Renewable chemical company Genomatica made significant progress toward increasing the range of feedstocks that can be used to commercially produce high-quality bio-based chemicals, in a project funded by the Energy Department's Bioenergy Technologies Office (BETO).

  11. Compositions and methods relating to transgenic plants and cellulosic

    Office of Scientific and Technical Information (OSTI)

    ethanol production (Patent) | SciTech Connect Patent: Compositions and methods relating to transgenic plants and cellulosic ethanol production Citation Details In-Document Search Title: Compositions and methods relating to transgenic plants and cellulosic ethanol production Transgenic lignocellulosic plants are provided according to embodiments of the present invention, the transgenic plants transformed with an expression cassette encoding a protein operably linked to a signal peptide which

  12. Compositions and methods relating to transgenic plants and cellulosic

    Office of Scientific and Technical Information (OSTI)

    ethanol production (Patent) | SciTech Connect Patent: Compositions and methods relating to transgenic plants and cellulosic ethanol production Citation Details In-Document Search Title: Compositions and methods relating to transgenic plants and cellulosic ethanol production Transgenic lignocellulosic plants are provided according to embodiments of the present invention, the transgenic plants transformed with an expression cassette encoding a protein operably linked to a signal peptide which

  13. The Arabidopsis Cellulose Synthase Complex: A Proposed Hexamer of CESA

    Office of Scientific and Technical Information (OSTI)

    Trimers in an Equimolar Stoichiometry (Journal Article) | SciTech Connect Journal Article: The Arabidopsis Cellulose Synthase Complex: A Proposed Hexamer of CESA Trimers in an Equimolar Stoichiometry Citation Details In-Document Search Title: The Arabidopsis Cellulose Synthase Complex: A Proposed Hexamer of CESA Trimers in an Equimolar Stoichiometry In this study, we show a 1:1:1 stoichiometry between the three Arabidopsis thaliana secondary cell wall isozymes: CESA4, CESA7, and CESA8. This

  14. Advanced and Cellulosic Biofuels and Biorefineries: State of the Industry,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Policy and Politics | Department of Energy and Cellulosic Biofuels and Biorefineries: State of the Industry, Policy and Politics Advanced and Cellulosic Biofuels and Biorefineries: State of the Industry, Policy and Politics Afternoon Plenary Introduction Brent Erickson, Executive Vice President, BIO PDF icon b13_erickson_day2-apintro.pdf More Documents & Publications Biomass 2013 Agenda Biomass 2012 Agenda U.S. Biofuels Industry: Mind the Gap

  15. Conversion of bagasse cellulose into ethanol

    SciTech Connect (OSTI)

    Cuzens, J.E.

    1997-11-19

    The study conducted by Arkenol was designed to test the conversion of feedstocks such as sugar cane bagasse, sorghum, napier grass and rice straw into fermentable sugars, and then ferment these sugars using natural yeasts and genetically engineered Zymomonis mobilis bacteria (ZM). The study did convert various cellulosic feedstocks into fermentable sugars utilizing the patented Arkenol Concentrated Acid Hydrolysis Process and equipment at the Arkenol Technology Center in Orange, California. The sugars produced using this process were in the concentration range of 12--15%, much higher than the sugar concentrations the genetically engineered ZM bacteria had been developed for. As a result, while the ZM bacteria fermented the produced sugars without initial inhibition, the completion of high sugar concentration fermentations was slower and at lower yield than predicted by the National Renewable Energy Laboratory (NREL). Natural yeasts performed as expected by Arkenol, similar to the results obtained over the last four years of testing. Overall, at sugar concentrations in the 10--13% range, yeast produced 850090% theoretical ethanol yields and ZM bacteria produced 82--87% theoretical yields in 96 hour fermentations. Additional commercialization work revealed the ability to centrifugally separate and recycle the ZM bacteria after fermentation, slight additional benefits from mixed culture ZM bacteria fermentations, and successful utilization of defined media for ZM bacteria fermentation nutrients in lieu of natural media.

  16. Conversion of cellulosic wastes to liquid fuels

    SciTech Connect (OSTI)

    Kuester, J.L.

    1980-09-01

    The current status and future plans for a project to convert waste cellulosic (biomass) materials to quality liquid hydrocarbon fuels is described. The basic approach is indirect liquefaction, i.e., thermal gasification followed by catalytic liquefaction. The indirect approach results in separation of the oxygen in the biomass feedstock, i.e., oxygenated compounds do not appear in the liquid hydrocarbon fuel product. The process is capable of accepting a wide variety of feedstocks. Potential products include medium quality gas, normal propanol, diesel fuel and/or high octane gasoline. A fluidized bed pyrolysis system is used for gasification. The pyrolyzer can be fluidized with recycle pyrolysis gas, steam or recycle liquefaction system off gas or some combination thereof. Tars are removed in a wet scrubber. Unseparated pyrolysis gases are utilized as feed to a modified Fischer-Tropsch reactor. The liquid condensate from the reactor consists of a normal propanol-water phase and a paraffinic hydrocarbon phase. The reactor can be operated to optimize for either product. The following tasks were specified in the statement of work for the contract period: (1) feedstock studies; (2) gasification system optimization; (3) waste stream characterization; and (4) liquid fuels synthesis. In addition, several equipment improvements were implemented.

  17. Comparison of Cellulose Ib Simulations with Three Carbohydrate Force Fields

    SciTech Connect (OSTI)

    Matthews, J. F.; Beckham, G. T.; Bergenstrahle, M.; Brady, J. W.; Himmel, M. E.; Crowley, M. F.

    2012-02-14

    Molecular dynamics simulations of cellulose have recently become more prevalent due to increased interest in renewable energy applications, and many atomistic and coarse-grained force fields exist that can be applied to cellulose. However, to date no systematic comparison between carbohydrate force fields has been conducted for this important system. To that end, we present a molecular dynamics simulation study of hydrated, 36-chain cellulose I{beta} microfibrils at room temperature with three carbohydrate force fields (CHARMM35, GLYCAM06, and Gromos 45a4) up to the near-microsecond time scale. Our results indicate that each of these simulated microfibrils diverge from the cellulose I{beta} crystal structure to varying degrees under the conditions tested. The CHARMM35 and GLYCAM06 force fields eventually result in structures similar to those observed at 500 K with the same force fields, which are consistent with the experimentally observed high-temperature behavior of cellulose I. The third force field, Gromos 45a4, produces behavior significantly different from experiment, from the other two force fields, and from previously reported simulations with this force field using shorter simulation times and constrained periodic boundary conditions. For the GLYCAM06 force field, initial hydrogen-bond conformations and choice of electrostatic scaling factors significantly affect the rate of structural divergence. Our results suggest dramatically different time scales for convergence of properties of interest, which is important in the design of computational studies and comparisons to experimental data. This study highlights that further experimental and theoretical work is required to understand the structure of small diameter cellulose microfibrils typical of plant cellulose.

  18. MICROBIAL FERMENTATION OF ABUNDANT BIOPOLYMERS: CELLULOSE AND CHITIN

    SciTech Connect (OSTI)

    Leschine, Susan

    2009-10-31

    Our research has dealt with seven major areas of investigation: i) characterization of cellulolytic members of microbial consortia, with special attention recently given to Clostridium phytofermentans, a bacterium that decomposes cellulose and produces uncommonly large amounts of ethanol, ii) investigations of the chitinase system of Cellulomonas uda; including the purification and characterization of ChiA, the major component of this enzyme system, iii) molecular cloning, sequence and structural analysis of the gene that encodes ChiA in C. uda, iv) biofilm formation by C. uda on nutritive surfaces, v) investigations of the effects of humic substances on cellulose degradation by anaerobic cellulolytic microbes, vi) studies of nitrogen metabolism in cellulolytic anaerobes, and vii) understanding the molecular architecture of the multicomplex cellulase-xylanase system of Clostridium papyrosolvens. Also, progress toward completing the research of more recent projects is briefly summarized. Major accomplishments include: 1. Characterization of Clostridium phytofermentans, a cellulose-fermenting, ethanol-producing bacterium from forest soil. The characterization of a new cellulolytic species isolated from a cellulose-decomposing microbial consortium from forest soil was completed. This bacterium is remarkable for the high concentrations of ethanol produced during cellulose fermentation, typically more than twice the concentration produced by other species of cellulolytic clostridia. 2. Examination of the use of chitin as a source of carbon and nitrogen by cellulolytic microbes. We discovered that many cellulolytic anaerobes and facultative aerobes are able to use chitin as a source of both carbon and nitrogen. This major discovery expands our understanding of the biology of cellulose-fermenting bacteria and may lead to new applications for these microbes. 3. Comparative studies of the cellulase and chitinase systems of Cellulomonas uda. Results of these studies indicate that the chitinase and cellulase systems of this bacterium are distinct in terms of the proteins involved and the regulation of their production. 4. Characterization of the chitinase system of C. uda. A 70,000-Mr endochitinase, designated ChiA, was purified from C. uda culture supernatant fluids and characterized. 5. Analysis of chiA, which codes for the major enzymatic component of the chitinase system of C. uda. The gene encoding the endochitinase ChiA in C. uda was cloned, its complete nucleotide sequence was determined and its implications were investigated. 6. Formation of biofilms by C. uda on cellulose and chitin. Microscopic observations indicated that, under conditions of nitrogen limitation, C. uda cells grew as a biofilm attached tightly to the surface of cellulose or chitin. 7. Development of tools for a genetic approach to studies of cellulose fermentation by cellulolytic clostridia. We have explored the potential of various techniques, and obtained evidence indicating that Tn916 mutagenesis may be particularly effective in this regard. As part of this research, we identified the presence of a plasmid in one strain, which was cloned, sequenced, and analyzed for its utility in the development of vectors for genetic studies. 8. Effects of humic substances on cellulose degradation by anaerobic cellulolytic microbes. We determined that humic substances play an important role in the anaerobic cellulose decomposition and in the physiology of cellulose-fermenting soil bacteria. 9. Nitrogenases of cellulolytic clostridia. We described a nitrogenase gene from a cellulolytic clostridium and presented evidence, based on sequence analyses and conserved gene order, for lateral gene transfer between this bacterium and a methanogenic archaeon. 10. Characterization of Clostridium hungatei, a new N2-fixing cellulolytic species isolated from a methanogenic consortium from soil. 11. Understanding the molecular architecture of the multicomplex cellulase-xylanase system of Clostridium papyrosolvens. We discovered that C. papyrosolvens produces a multiprotein, multicomplex cellulase-xylanase enzyme system that hydrolyzes crystalline cellulose, and we have described this system in detail.

  19. Fibril orientation redistribution induced by stretching of cellulose nanofibril hydrogels

    SciTech Connect (OSTI)

    Josefsson, Gabriella; Gamstedt, E. Kristofer; Ahvenainen, Patrik; Mushi, Ngesa Ezekiel

    2015-06-07

    The mechanical performance of materials reinforced by cellulose nanofibrils is highly affected by the orientation of these fibrils. This paper investigates the nanofibril orientation distribution of films of partly oriented cellulose nanofibrils. Stripes of hydrogel films were subjected to different amount of strain and, after drying, examined with X-ray diffraction to obtain the orientation of the nanofibrils in the films, caused by the stretching. The cellulose nanofibrils had initially a random in-plane orientation in the hydrogel films and the strain was applied to the films before the nanofibrils bond tightly together, which occurs during drying. The stretching resulted in a reorientation of the nanofibrils in the films, with monotonically increasing orientation towards the load direction with increasing strain. Estimation of nanofibril reorientation by X-ray diffraction enables quantitative comparison of the stretch-induced orientation ability of different cellulose nanofibril systems. The reorientation of nanofibrils as a consequence of an applied strain is also predicted by a geometrical model of deformation of nanofibril hydrogels. Conversely, in high-strain cold-drawing of wet cellulose nanofibril materials, the enhanced orientation is promoted by slipping of the effectively stiff fibrils.

  20. Enzymatic degradation of plutonium-contaminated cellulose products

    SciTech Connect (OSTI)

    Heintz, C.E.; Rainwater, K.A.; Swift, L.M.; Barnes, D.L.; Worl, L.A.

    1999-06-01

    Enzyme solutions produced for commercial purposes unrelated to waste management have the potential for reducing the volume of wastes in streams containing cellulose, lipid and protein materials. For example, the authors have shown previously that cellulases used in denim production and in detergent formulations are able to digest cellulose-containing sorbents and other cellulose-based wastes contaminated either with crude oil or with uranium. This presentation describes the use of one such enzyme preparation (Rapidase{trademark}, manufactured by Genencor, Rochester, NY) for the degradation of cotton sorbents intentionally contaminated with low levels of plutonium. This is part of a feasibility study to determine if such treatments have a role in reducing the volume of low level and transuranic wastes to minimize the amount of radionuclide-contaminated waste destined for costly disposal options.

  1. ZeaChem Pilot Project: High-Yield Hybrid Cellulosic Ethanol Process...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ZeaChem Pilot Project: High-Yield Hybrid Cellulosic Ethanol Process Using High-Impact Feedstock for Commercialization ZeaChem Pilot Project: High-Yield Hybrid Cellulosic Ethanol...

  2. Engineered microbes and methods for microbial oil overproduction from cellulosic materials

    DOE Patents [OSTI]

    Stephanopoulos, Gregory; Tai, Mitchell

    2015-08-04

    The invention relates to engineering microbial cells for utilization of cellulosic materials as a carbon source, including xylose.

  3. Department of Energy Delivers on R&D Targets around Cellulosic Ethanol

    Broader source: Energy.gov [DOE]

    Scientists at DOE national laboratories successfully demonstrated technical advances required to produce cellulosic ethanol that is cost competitive with petroleum.

  4. Less is more: Novel cellulose structure requires fewer enzymes to process

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    biomass to fuel Cellulose requires fewer enzymes to process biomass to fuel Less is more: Novel cellulose structure requires fewer enzymes to process biomass to fuel Improved methods for breaking down cellulose nanofibers are central to cost-effective biofuel production. June 19, 2013 An enzyme (shown in blue) pulls out individual cellulose chains (pink) from the pretreated nanofiber surface (green) and then breaks them apart into simple sugars. Image credit, Shishir Chundawat, Great Lakes

  5. Less is more: Novel cellulose structure requires fewer enzymes to process

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    biomass to fuel Cellulose requires fewer enzymes to process biomass to fuel Less is more: Novel cellulose structure requires fewer enzymes to process biomass to fuel Improved methods for breaking down cellulose nanofibers are central to cost-effective biofuel production. June 19, 2013 An enzyme (shown in blue) pulls out individual cellulose chains (pink) from the pretreated nanofiber surface (green) and then breaks them apart into simple sugars. Image credit, Shishir Chundawat, Great Lakes

  6. Thermostable cellulases, and mutants thereof, capable of hydrolyzing cellulose in ionic liquid

    DOE Patents [OSTI]

    Sapra, Rajat; Datta, Supratim; Chen, Zhiwei; Holmes, Bradley M.; Simmons, Blake A.; Blanch, Harvey W.

    2016-04-26

    The present invention provides for a composition comprising an ionic liquid and a thermostable cellulose, and a method of hydrolyzing a cellulose, comprising: (a) providing a composition comprising a solution comprising an ionic liquid and a cellulose, and (b) introducing a thermostable cellulase to the solution, such that the cellulose is hydrolyzed by the cellulase. The present invention also provides for a Thermatoga maritima thermostable cellulase mutant with increased cellulase activity.

  7. Process for converting cellulosic materials into fuels and chemicals

    DOE Patents [OSTI]

    Scott, Charles D.; Faison, Brendlyn D.; Davison, Brian H.; Woodward, Jonathan

    1994-01-01

    A process for converting cellulosic materials, such as waste paper, into fuels and chemicals utilizing enzymatic hydrolysis of the major constituent of paper, cellulose. A waste paper slurry is contacted by cellulase in an agitated hydrolyzer. The cellulase is produced from a continuous, columnar, fluidized-bed bioreactor utilizing immobilized microorganisms. An attritor and a cellobiase reactor are coupled to the agitated hydrolyzer to improve reaction efficiency. The cellulase is recycled by an adsorption process. The resulting crude sugars are converted to dilute product in a fluidized-bed bioreactor utilizing microorganisms. The dilute product is concentrated and purified by utilizing distillation and/or a biparticle fluidized-bed bioreactor system.

  8. Enhanced attrition bioreactor for enzyme hydrolysis or cellulosic materials

    DOE Patents [OSTI]

    Scott, T.C.; Scott, C.D.; Faison, B.D.; Davison, B.H.; Woodward, J.

    1996-04-16

    A process is described for converting cellulosic materials, such as waste paper, into fuels and chemicals, such as sugars and ethanol, utilizing enzymatic hydrolysis of the major carbohydrate of paper: cellulose. A waste paper slurry is contacted by cellulase in an agitated hydrolyzer. An attritor and a cellobiase reactor are coupled to the agitated hydrolyzer to improve reaction efficiency. Additionally, microfiltration, ultrafiltration and reverse osmosis steps are included to further increase reaction efficiency. The resulting sugars are converted to a dilute product in a fluidized-bed bioreactor utilizing a biocatalyst, such as microorganisms. The dilute product is then concentrated and purified. 1 fig.

  9. Enhanced attrition bioreactor for enzyme hydrolysis of cellulosic materials

    DOE Patents [OSTI]

    Scott, Timothy C.; Scott, Charles D.; Faison, Brendlyn D.; Davison, Brian H.; Woodward, Jonathan

    1997-01-01

    A process for converting cellulosic materials, such as waste paper, into fuels and chemicals, such as sugars and ethanol, utilizing enzymatic hydrolysis of the major carbohydrate of paper: cellulose. A waste paper slurry is contacted by cellulase in an agitated hydrolyzer. An attritor and a cellobiase reactor are coupled to the agitated hydrolyzer to improve reaction efficiency. Additionally, microfiltration, ultrafiltration and reverse osmosis steps are included to further increase reaction efficiency. The resulting sugars are converted to a dilute product in a fluidized-bed bioreactor utilizing a biocatalyst, such as microorganisms. The dilute product is then concentrated and purified.

  10. Enhanced attrition bioreactor for enzyme hydrolysis of cellulosic materials

    DOE Patents [OSTI]

    Scott, T.C.; Scott, C.D.; Faison, B.D.; Davison, B.H.; Woodward, J.

    1997-06-10

    A process is described for converting cellulosic materials, such as waste paper, into fuels and chemicals, such as sugars and ethanol, utilizing enzymatic hydrolysis of the major carbohydrate of paper: cellulose. A waste paper slurry is contacted by cellulase in an agitated hydrolyzer. An attritor and a cellobiase reactor are coupled to the agitated hydrolyzer to improve reaction efficiency. Additionally, microfiltration, ultrafiltration and reverse osmosis steps are included to further increase reaction efficiency. The resulting sugars are converted to a dilute product in a fluidized-bed bioreactor utilizing a biocatalyst, such as microorganisms. The dilute product is then concentrated and purified. 1 fig.

  11. Enhanced attrition bioreactor for enzyme hydrolysis or cellulosic materials

    DOE Patents [OSTI]

    Scott, Timothy C.; Scott, Charles D.; Faison, Brendlyn D.; Davison, Brian H.; Woodward, Jonathan

    1996-01-01

    A process for converting cellulosic materials, such as waste paper, into fuels and chemicals, such as sugars and ethanol, utilizing enzymatic hydrolysis of the major carbohydrate of paper: cellulose. A waste paper slurry is contacted by cellulase in an agitated hydrolyzer. An attritor and a cellobiase reactor are coupled to the agitated hydrolyzer to improve reaction efficiency. Additionally, microfiltration, ultrafiltration and reverse osmosis steps are included to further increase reaction efficiency. The resulting sugars are converted to a dilute product in a fluidized-bed bioreactor utilizing a biocatalyst, such as microorganisms. The dilute product is then concentrated and purified.

  12. Acid softening and hydrolysis of cellulose. Final report

    SciTech Connect (OSTI)

    Not Available

    1990-01-01

    The report describes the experimental and analytic work to develop a process to reduce the cost of producing ethanol from cellulose. Ethanol is a renewable liquid fuel with applications in transportation, including oxygenation of fuel to reduce carbon monoxide emissions. If produced from cellulose contained in New York State's abundant low-grade wood resources or waste paper, significant quantities of petroleum could be displaced while creating new economic opportunity. The focus of the project was evaluating acid softening and hydrolysis technology to make cellulose responsive to conversion to fermentable sugar, from which production of ethanol would then be conventional and economical. The procedure is competitive with other cellulose-to-ethanol approaches such as enzyme hydrolysis; however, overall economic feasibility is problematic. To produce ethanol at $1.00 per gallon, a cost that would be competitive with producing ethanol from corn, and at the same time earn a 15 percent return for the owners of the plant, one of the major coproducts, lignin, would have to sell for $0.21 to $0.24 per pound. Identification of a suitable lignin market, a rise in petroleum prices, or restricting fossil-based carbon dioxide emissions will affect the economic feasibility of this particular type of lignin.

  13. Can Delignification Decrease Cellulose Digestibility in Acid Pretreated Corn Stover?

    SciTech Connect (OSTI)

    Ishizawa, C. I.; Jeoh, T.; Adney, W. S.; Himmel, M. E.; Johnson, D. K.; Davis, M. F.

    2009-01-01

    It has previously been shown that the improved digestibility of dilute acid pretreated corn stover is at least partially due to the removal of xylan and the consequent increase in accessibility of the cellulose to cellobiohydrolase enzymes. We now report on the impact that lignin removal has on the accessibility and digestibility of dilute acid pretreated corn stover. Samples of corn stover were subjected to dilute sulfuric acid pretreatment with and without simultaneous (partial) lignin removal. In addition, some samples were completely delignified after the pretreatment step using acidified sodium chlorite. The accessibility and digestibility of the samples were tested using a fluorescence-labeled cellobiohydrolase (Trichoderma reesei Cel7A) purified from a commercial cellulase preparation. Partial delignification of corn stover during dilute acid pretreatment was shown to improve cellulose digestibility by T. reesei Cel7A; however, decreasing the lignin content below 5% (g g{sup -1}) by treatment with acidified sodium chlorite resulted in a dramatic reduction in cellulose digestibility. Importantly, this effect was found to be enhanced in samples with lower xylan contents suggesting that the near complete removal of xylan and lignin may cause aggregation of the cellulose microfibrils resulting in decreased cellulase accessibility.

  14. Methods of pretreating comminuted cellulosic material with carbonate-containing solutions

    DOE Patents [OSTI]

    Francis, Raymond

    2012-11-06

    Methods of pretreating comminuted cellulosic material with an acidic solution and then a carbonate-containing solution to produce a pretreated cellulosic material are provided. The pretreated material may then be further treated in a pulping process, for example, a soda-anthraquinone pulping process, to produce a cellulose pulp. The pretreatment solutions may be extracted from the pretreated cellulose material and selectively re-used, for example, with acid or alkali addition, for the pretreatment solutions. The resulting cellulose pulp is characterized by having reduced lignin content and increased yield compared to prior art treatment processes.

  15. Simulating Cellulose Structure, Properties, Thermodynamics, Synthesis, and Deconstruction with Atomistic and Coarse-Grain Models

    SciTech Connect (OSTI)

    Crowley, M. F.; Matthews, J.; Beckham, G.; Bomble, Y.; Hynninen, A. P.; Ciesielski, P. F.

    2012-01-01

    Cellulose is still a mysterious polymer in many ways: structure of microfibrils, thermodynamics of synthesis and degradation, and interactions with other plant cell wall components. Our aim is to uncover the details and mechanisms of cellulose digestion and synthesis. We report the details of the structure of cellulose 1-beta under several temperature conditions and report here the results of these studies and connections to experimental measurements and the measurement in-silico the free energy of decrystallization of several morphologies of cellulose. In spatially large modeling, we show the most recent work of mapping atomistic and coarse-grain models into tomographic images of cellulose and extreme coarse-grain modeling of interactions of large cellulase complexes with microfibrils. We discuss the difficulties of modeling cellulose and suggest future work both experimental and theoretical to increase our understanding of cellulose and our ability to use it as a raw material for fuels and materials.

  16. Transcriptomic analysis of Clostridium thermocellum ATCC 27405 cellulose fermentation

    SciTech Connect (OSTI)

    McKeown, Catherine K; Brown, Steven D

    2011-01-01

    The ability of Clostridium thermocellum ATCC 27405 wild-type strain to hydrolyze cellulose and ferment the degradation products directly to ethanol and other metabolic byproducts makes it an attractive candidate for consolidated bioprocessing of cellulosic biomass to biofuels. In this study, whole-genome microarrays were used to investigate the expression of C. thermocellum mRNA during growth on crystalline cellulose in controlled replicate batch fermentations. A time-series analysis of gene expression revealed changes in transcript levels of {approx}40% of genes ({approx}1300 out of 3198 ORFs encoded in the genome) during transition from early-exponential to late-stationary phase. K-means clustering of genes with statistically significant changes in transcript levels identified six distinct clusters of temporal expression. Broadly, genes involved in energy production, translation, glycolysis and amino acid, nucleotide and coenzyme metabolism displayed a decreasing trend in gene expression as cells entered stationary phase. In comparison, genes involved in cell structure and motility, chemotaxis, signal transduction and transcription showed an increasing trend in gene expression. Hierarchical clustering of cellulosome-related genes highlighted temporal changes in composition of this multi-enzyme complex during batch growth on crystalline cellulose, with increased expression of several genes encoding hydrolytic enzymes involved in degradation of non-cellulosic substrates in stationary phase. Overall, the results suggest that under low substrate availability, growth slows due to decreased metabolic potential and C. thermocellum alters its gene expression to (i) modulate the composition of cellulosomes that are released into the environment with an increased proportion of enzymes than can efficiently degrade plant polysaccharides other than cellulose, (ii) enhance signal transduction and chemotaxis mechanisms perhaps to sense the oligosaccharide hydrolysis products, and nutrient gradients generated through the action of cell-free cellulosomes and, (iii) increase cellular motility for potentially orienting the cells movement towards positive environmental signals leading to nutrient sources. Such a coordinated cellular strategy would increase its chances of survival in natural ecosystems where feast and famine conditions are frequently encountered.

  17. Process for converting cellulosic materials into fuels and chemicals

    DOE Patents [OSTI]

    Scott, C.D.; Faison, B.D.; Davison, B.H.; Woodward, J.

    1994-09-20

    A process is described for converting cellulosic materials, such as waste paper, into fuels and chemicals utilizing enzymatic hydrolysis of the major constituent of paper, cellulose. A waste paper slurry is contacted by cellulase in an agitated hydrolyzer. The cellulase is produced from a continuous, columnar, fluidized-bed bioreactor utilizing immobilized microorganisms. An attrition mill and a cellobiase reactor are coupled to the agitated hydrolyzer to improve reaction efficiency. The cellulase is recycled by an adsorption process. The resulting crude sugars are converted to dilute product in a fluidized-bed bioreactor utilizing microorganisms. The dilute product is concentrated and purified by utilizing distillation and/or a biparticle fluidized-bed bioreactor system. 1 fig.

  18. NREL, Chevron Establish Research Alliance to Advance Cellulosic Biofuels -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News Releases | NREL NREL, Chevron Establish Research Alliance to Advance Cellulosic Biofuels Collaboration to focus on next-generation production technologies for renewable fuels October 4, 2006 Chevron Corporation (NYSE: CVX) and the U.S. Department of Energy's National Renewable Energy Laboratory (NREL), headquartered in Golden, Colo., today announced a strategic research alliance to advance the development of renewable transportation fuels. Chevron Technology Ventures LLC (CTV), a

  19. Development of Cellulosic Biofuels (LBNL Summer Lecture Series)

    ScienceCinema (OSTI)

    Somerville, Chris [Director, Energy Biosciences Institute

    2011-04-28

    Summer Lecture Series 2007: Chris Somerville, Director of the Energy Biosciences Institute and an award-winning plant biochemist with Berkeley Lab's Physical Biosciences Division, is a leading authority on the structure and function of plant cell walls. He discusses an overview of some of the technical challenges associated with the production of cellulosic biofuels, which will require an improved understanding of a diverse range of topics in fields such as agronomy, chemical engineering, microbiology, structural biology, genomics, environmental sciences, and socioeconomics.

  20. Microbiology and physiology of anaerobic fermentations of cellulose. Progress report

    SciTech Connect (OSTI)

    Peck, H.D. Jr.; Ljungdahl, L.G.; Mortenson, L.E.; Wiegel, J.K.W.

    1994-11-01

    This project studies the biochemistry and physiology of four major groups (primary, secondary, ancillary and methane bacteria) of anaerobic bacteria, that are involved in the conversion of cellulose to methane or chemical feedstocks. The primary bacterium, Clostridium thermocellum, has a cellulolytic enzyme system capable of hydrolyzing crystalline cellulose and consists of polypeptide complexes attached to the substrate cellulose with the aid of a low molecular yellow affinity substance (YAS) produced by the bacterium in the presence of cellulose. Properties of the complexes and YAS are studied. Aspects of metabolism are being studied which appear to be relevant for the interactions on consortia and their bioenergetics, particularly related to hydrogen, formate, CO, and CO{sub 2}. The roles of metals in the activation of H{sub 2} are being investigated, and genes for the hydrogenases cloned and sequenced to established structural relationships among the hydrogenases. The goals are to understand the roles and regulation of hydrogenases in interspecies H{sub 2} transfer, H{sub 2} cycling and the generation of a proton gradient. The structures of the metal clusters and their role in the metabolism of formate will be investigated with the goal of understanding the function of formate in the total synthesis of acetate from CO{sub 2} and its role in the bioenergetics of these microorganisms. Additionally, the enzyme studies will be performed using thermophiles and also the isolation of some new pertinent species. The project will also include research on the mechanism of extreme thermophily (growth over 70{degrees}) in bacteria that grow over a temperature span of 40{degrees}C or more. These bacteria exhibit a biphasic growth response to temperature and preliminary evidence suggests that the phenomenon is due to the expression of a new set of enzymes. These initial observations will be extended employing techniques of molecular biology.

  1. Development of effective modified cellulase for cellulose hydrolysis process

    SciTech Connect (OSTI)

    Park, J.W.; Kajiuchi, Toshio . Dept. of Chemical Engineering)

    1995-02-20

    Cellulase was modified with amphilic copolymers made of [alpha]-allyl-[omega]-methoxy polyoxyalkylene (POA) and maleic acid anhydride (MAA) to improve the cellulose hydrolytic reactivity and cellulase separation. Amino groups of the cellulase molecule are covalently coupled with the MAA functional groups of the copolymer. At the maximum degree of modification (DM) of 55%, the modified cellulase activity retained more than 80% of the unmodified native cellulase activity. The modified cellulase shows greater stability against temperature, pH, and organic solvents, and demonstrated greater conversion of substrate than native cellulase does. Cellulase modification is also useful for controlling strong adsorption of cellulase onto substrate. Moreover, cellulase modified with the amphiphilic copolymer displays different separation characteristics which are new. One is a reactive two-phase partition and another is solubility in organic solvents. It appears that these characteristics of modified cellulase work very effectively in the hydrolysis of cellulose as a total system, which constitutes the purification of cellulase from culture broth, hydrolysis of cellulose, and recovery of cellulase from the reaction mixture.

  2. Method for producing ethanol and co-products from cellulosic biomass

    DOE Patents [OSTI]

    Nguyen, Quang A

    2013-10-01

    The present invention generally relates to processes for production of ethanol from cellulosic biomass. The present invention also relates to production of various co-products of preparation of ethanol from cellulosic biomass. The present invention further relates to improvements in one or more aspects of preparation of ethanol from cellulosic biomass including, for example, improved methods for cleaning biomass feedstocks, improved acid impregnation, and improved steam treatment, or "steam explosion."

  3. At $2.15 a Gallon, Cellulosic Ethanol Could Be Cost Competitive -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Continuum Magazine | NREL At $2.15 a Gallon, Cellulosic Ethanol Could Be Cost Competitive In NREL's new Energy Systems Integration Facility, the Insight Collaboration Laboratory shows a 3D model of cellulose microfibrils. Photo by Dennis Schroeder, NREL At $2.15 a Gallon, Cellulosic Ethanol Could Be Cost Competitive DOE challenge met-research advances cut costs to produce fuel from non-food plant sources. Imagine a near perfect transportation fuel-it's clean, domestic, abundant, and

  4. WPN 97-6: Approval of Wet-Spray Cellulose Insulation as an Allowable Weatherization Material

    Broader source: Energy.gov [DOE]

    To provide states with information about the approved use of wet-spray cellulose for use in the low-income Weatherization Assistance Program.

  5. The Effect of Cellulose Crystal Structure and Solid-State Morphology on the Activity of Cellulases

    SciTech Connect (OSTI)

    Stipanovic, Arthur J

    2014-11-17

    Consistent with the US-DOE and USDA “Roadmap” objective of producing ethanol and chemicals from cellulosic feedstocks more efficiently, a three year research project entitled “The Effect of Cellulose Crystal Structure and Solid-State Morphology on the Activity of Cellulases” was initiated in early 2003 under DOE sponsorship (Project Number DE-FG02-02ER15356). A three year continuation was awarded in June 2005 for the period September 15, 2005 through September 14, 2008. The original goal of this project was to determine the effect of cellulose crystal structure, including allomorphic crystalline form (Cellulose I, II, III, IV and sub-allomorphs), relative degree of crystallinity and crystallite size, on the activity of different types of genetically engineered cellulase enzymes to provide insight into the mechanism and kinetics of cellulose digestion by “pure” enzymes rather than complex mixtures. We expected that such information would ultimately help enhance the accessibility of cellulose to enzymatic conversion processes thereby creating a more cost-effective commercial process yielding sugars for fermentation into ethanol and other chemical products. Perhaps the most significant finding of the initial project phase was that conversion of native bacterial cellulose (Cellulose I; BC-I) to the Cellulose II (BC-II) crystal form by aqueous NaOH “pretreatment” provided an increase in cellulase conversion rate approaching 2-4 fold depending on enzyme concentration and temperature, even when initial % crystallinity values were similar for both allomorphs.

  6. Saccharification of wheat-straw cellulose by enzymatic hydrolysis following fermentative and chemical pretreatment

    SciTech Connect (OSTI)

    Detroy, R.W.; Lindenfelser, L.A.; St. Julian, G. Jr.; Orton, W.L.

    1980-01-01

    In our investigations, wheat straw fermentations were conducted using the edible, white-rot fungus commonly known as the oyster mushroom, Pleurotus ostreatus (Jacq. ex Fr.) Kummer, as fermentation organism. Fermented substrates were evaluated for degree of lignin and cellulose degradation and saccharification. In addition, since our primary objective in the P. ostreatus fermentation was to increase the amount of availabile cellulose in straw for further fermentation, cellulose hydrolysis rates were determined. Cellulose conversion to fermentable sugar was also determined on chemically modified straws by subjecting them to enzymatic hydrolysis. Progress and extent of delignification was follwed also by scanning electron microscopy (SEM), and structural changes were determined in treated-straw substrates.

  7. Department of Energy Delivers on R&D Targets around Cellulosic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Users Facility, where scientists led pilot-scale projects for two cellulosic ... Biochemical Waterfall Chart of Minimum Ethanol Selling Price (in 2007 dollars per gallon). ...

  8. Evaluating models of cellulose degradation by Fibrobacter succinogenes S85

    SciTech Connect (OSTI)

    Burnet, Meagan C.; Dohnalkova, Alice C.; Neumann, Anthony P.; Lipton, Mary S.; Smith, Richard D.; Suen, Garret; Callister, Stephen J.

    2015-12-02

    Fibrobacter succinogenes S85 is an anaerobic non-cellulosome utilizing cellulolytic bacterium originally isolated from the cow rumen microbial community. Efforts to elucidate its cellulolytic machinery have resulted in the proposal of numerous models which involve a combination of cell-surface attachment via a combination of cellulose-binding fibro-slime proteins and pili, the production of cellulolytic vesicles, and the entry of cellulose fibers into the periplasmic space. Here, we used a combination of RNA-sequencing, proteomics, and transmission electron microscopy (TEM) to further elucidate the cellulolytic mechanism of F. succinogenes. Our RNA-sequence analysis shows that genes encoding Type II and III secretion systems, fibro-slime proteins, and pili are differentially expressed on cellulose, relative to glucose. A subcellular fractionation of cells grown on cellulose revealed that carbohydrate active enzymes associated with cellulose deconstruction and fibro-slime proteins were greater in the extracellular media, as compared to the periplasm and outer membrane fractions. TEMs of samples harvested at mid-exponential and stationary phases of growth on cellulose and glucose showed the presence of grooves in the cellulose between the bacterial cells and substrate, suggesting enzymes work extracellularly for cellulose degradation. Membrane vesicles were only observed in stationary phase cultures grown on cellulose. Furthermore, these results provide evidence that F. succinogenes attaches to cellulose fibers using fibro-slime and pili, produces cellulases, such as endoglucanases, that are secreted extracellularly using type II and III secretion systems, and degrades the cellulose into cellodextrins that are then imported back into the periplasm for further digestion by β-glucanases and other cellulases.

  9. Kits and methods of detection using cellulose binding domain fusion proteins

    DOE Patents [OSTI]

    Shoseyov, Oded

    1998-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  10. Kits and methods of detection using cellulose binding domain fusion proteins

    DOE Patents [OSTI]

    Shoseyov, O.; Yosef, K.

    1998-04-14

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques. 16 figs.

  11. Silicon cantilever functionalization for cellulose-specific chemical force imaging of switchgrass

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lee, Ida; Evans, Barbara R; Foston, Marcus B; Ragauskas, Arthur J

    2015-01-01

    A method for direct functionalization of silicon and silicon nitride cantilevers with bifunctional silanes was tested with model surfaces to determine adhesive forces for different hydrogen-bonding chemistries. Application for biomass surface characterization was tested by mapping switchgrass and isolated switchgrass cellulose in topographic and force-volume mode using a cellulose-specific cantilever.

  12. Cellulosic Ethanol Technology on Track to Being Competitive With Other Transportation Fuels (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-02-01

    Researchers at the National Renewable Energy Laboratory (NREL) have been driving down the cost of cellulosic ethanol and overcoming the technical challenges that surround it-major milestones toward the Department of Energy (DOE) goal of making cellulosic ethanol cost-competitive by 2012.

  13. Compositions and methods comprising cellulase variants with reduced affinity to non-cellulosic materials

    SciTech Connect (OSTI)

    Cascao-Pereira, Luis G.; Kaper, Thijs; Kelemen, Bradley R; Liu, Amy D.

    2012-08-07

    The present disclosure relates to cellulase variants. In particular the present disclosure relates to cellulase variants having reduced binding to non-cellulosic materials. Also described are nucleic acids encoding the cellulase, compositions comprising said cellulase, methods of identifying cellulose variants and methods of using the compositions.

  14. Compositions and methods comprising cellulase variants with reduced affinity to non-cellulosic materials

    SciTech Connect (OSTI)

    Cascao-Pereira, Luis G; Kaper, Thijs; Kelemen, Bradley R; Liu, Amy D

    2015-04-07

    The present disclosure relates to cellulase variants. In particular the present disclosure relates to cellulase variants having reduced binding to non-cellulosic materials. Also described are nucleic acids encoding the cellulase, compositions comprising said cellulase, methods of identifying cellulose variants and methods of using the compositions.

  15. Cellulosic Biomass Feedstocks and Logistics for Ethanol Production

    SciTech Connect (OSTI)

    J. Richard Hess; Christopher T. Wright; Kevin L. Kenney

    2007-10-01

    The economic competitiveness of cellulosic ethanol production is highly dependent on feedstock cost, which constitutes 3550% of the total ethanol production cost, depending on various geographical factors and the types of systems used for harvesting, collecting, preprocessing, transporting, and handling the material. Consequently, as the deployment of cellulosic ethanol biorefi neries approaches, feedstock cost and availability are the driving factors that infl uence pioneer biorefi nery locations and will largely control the rate at which this industry grows. Initial scenarios were postulated to develop a pioneer dry feedstock supply system design case as a demonstration of the current state of technology. Based on this pioneer design, advanced scenarios were developed to determine key cost barriers, needed supply system improvements, and technology advancements to achieve government and private sector cost targets. Analysis of the pioneer supply system resulted in a delivered feedstock cost to the throat of the pretreatment reactor of $37.00 per dry tonne (2002 $). Pioneer supply systems will start by using current infrastructure and technologies and be individually designed for biorefi neries using specifi c feedstock types and varieties based on local geographic conditions. As the industry develops and cost barriers are addressed, the supply systems will incorporate advanced technologies that will eliminate downstream diversity and provide a uniform, tailored feedstock for multiple biorefi neries located in different regions.

  16. Development of efficient, integrated cellulosic biorefineries : LDRD final report.

    SciTech Connect (OSTI)

    Teh, Kwee-Yan; Hecht, Ethan S.; Shaddix, Christopher R.; Buffleben, George M.; Dibble, Dean C.; Lutz, Andrew E.

    2010-09-01

    Cellulosic ethanol, generated from lignocellulosic biomass sources such as grasses and trees, is a promising alternative to conventional starch- and sugar-based ethanol production in terms of potential production quantities, CO{sub 2} impact, and economic competitiveness. In addition, cellulosic ethanol can be generated (at least in principle) without competing with food production. However, approximately 1/3 of the lignocellulosic biomass material (including all of the lignin) cannot be converted to ethanol through biochemical means and must be extracted at some point in the biochemical process. In this project we gathered basic information on the prospects for utilizing this lignin residue material in thermochemical conversion processes to improve the overall energy efficiency or liquid fuel production capacity of cellulosic biorefineries. Two existing pretreatment approaches, soaking in aqueous ammonia (SAA) and the Arkenol (strong sulfuric acid) process, were implemented at Sandia and used to generated suitable quantities of residue material from corn stover and eucalyptus feedstocks for subsequent thermochemical research. A third, novel technique, using ionic liquids (IL) was investigated by Sandia researchers at the Joint Bioenergy Institute (JBEI), but was not successful in isolating sufficient lignin residue. Additional residue material for thermochemical research was supplied from the dilute-acid simultaneous saccharification/fermentation (SSF) pilot-scale process at the National Renewable Energy Laboratory (NREL). The high-temperature volatiles yields of the different residues were measured, as were the char combustion reactivities. The residue chars showed slightly lower reactivity than raw biomass char, except for the SSF residue, which had substantially lower reactivity. Exergy analysis was applied to the NREL standard process design model for thermochemical ethanol production and from a prototypical dedicated biochemical process, with process data supplied by a recent report from the National Research Council (NRC). The thermochemical system analysis revealed that most of the system inefficiency is associated with the gasification process and subsequent tar reforming step. For the biochemical process, the steam generation from residue combustion, providing the requisite heating for the conventional pretreatment and alcohol distillation processes, was shown to dominate the exergy loss. An overall energy balance with different potential distillation energy requirements shows that as much as 30% of the biomass energy content may be available in the future as a feedstock for thermochemical production of liquid fuels.

  17. Progressive structural changes of Avicel, bleached softwood, and bacterial cellulose during enzymatic hydrolysis

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kafle, Kabindra; Shin, Heenae; Lee, Christopher M.; Park, Sunkyu; Kim, Seong H.

    2015-10-14

    A comprehensive picture of structural changes of cellulosic biomass during enzymatic hydrolysis is essential for a better understanding of enzymatic actions and development of more efficient enzymes. In this study, a suite of analytical techniques including sum frequency generation (SFG) spectroscopy, infrared (IR) spectroscopy, x-ray diffraction (XRD), and x-ray photoelectron spectroscopy (XPS) were employed for lignin-free model biomass samples—Avicel, bleached softwood, and bacterial cellulose—to find correlations between the decrease in hydrolysis rate over time and the structural or chemical changes of biomass during the hydrolysis reaction. The results showed that the decrease in hydrolysis rate over time appears to correlatemore » with the irreversible deposition of non-cellulosic species (either reaction side products or denatured enzymes, or both) on the cellulosic substrate surface. The crystallinity, degree of polymerization, and meso-scale packing of cellulose do not seem to positively correlate with the decrease in hydrolysis rate observed for all three substrates tested in this study. Moreover, it was also found that the cellulose Iα component of the bacterial cellulose is preferentially hydrolyzed by the enzyme than the cellulose Iβ component.« less

  18. Progressive structural changes of Avicel, bleached softwood, and bacterial cellulose during enzymatic hydrolysis

    SciTech Connect (OSTI)

    Kafle, Kabindra; Shin, Heenae; Lee, Christopher M.; Park, Sunkyu; Kim, Seong H.

    2015-10-14

    A comprehensive picture of structural changes of cellulosic biomass during enzymatic hydrolysis is essential for a better understanding of enzymatic actions and development of more efficient enzymes. In this study, a suite of analytical techniques including sum frequency generation (SFG) spectroscopy, infrared (IR) spectroscopy, x-ray diffraction (XRD), and x-ray photoelectron spectroscopy (XPS) were employed for lignin-free model biomass samples—Avicel, bleached softwood, and bacterial cellulose—to find correlations between the decrease in hydrolysis rate over time and the structural or chemical changes of biomass during the hydrolysis reaction. The results showed that the decrease in hydrolysis rate over time appears to correlate with the irreversible deposition of non-cellulosic species (either reaction side products or denatured enzymes, or both) on the cellulosic substrate surface. The crystallinity, degree of polymerization, and meso-scale packing of cellulose do not seem to positively correlate with the decrease in hydrolysis rate observed for all three substrates tested in this study. Moreover, it was also found that the cellulose Iα component of the bacterial cellulose is preferentially hydrolyzed by the enzyme than the cellulose Iβ component.

  19. Method of making a cellulose acetate low density microcellular foam

    DOE Patents [OSTI]

    Rinde, James A.

    1978-01-01

    Low-density microcellular foam having a cell size of not greater than 2 .mu.m and method of making by dissolving cellulose acetate in an acetone-based solvent, gelling the solution in a water bath maintained at 0-10.degree. C for a selected period of time to allow impurities to diffuse out, freezing the gel, and then freeze-drying wherein water and solvents sublime and the gel structure solidifies into low-density microcellular foam. The foam has a density of 0.065 to 0.6.times.10.sup.3 kg/m.sup.3 and cell size of about 0.3 to 2 .mu.m. The small cell size foam is particularly adaptable for encapsulation of laser targets.

  20. Recyclable organic solar cells on substrates comprising cellulose nanocrystals (CNC)

    DOE Patents [OSTI]

    Kippelen, Bernard; Fuentes-Hernandez, Canek; Zhou, Yinhua; Moon, Robert; Youngblood, Jeffrey P

    2015-12-01

    Recyclable organic solar cells are disclosed herein. Systems and methods are further disclosed for producing, improving performance, and for recycling the solar cells. In certain example embodiments, the recyclable organic solar cells disclosed herein include: a first electrode; a second electrode; a photoactive layer disposed between the first electrode and the second electrode; an interlayer comprising a Lewis basic oligomer or polymer disposed between the photoactive layer and at least a portion of the first electrode or the second electrode; and a substrate disposed adjacent to the first electrode or the second electrode. The interlayer reduces the work function associated with the first or second electrode. In certain example embodiments, the substrate comprises cellulose nanocrystals that can be recycled. In certain example embodiments, one or more of the first electrode, the photoactive layer, and the second electrode may be applied by a film transfer lamination method.

  1. Microbiology and physiology of anaerobic fermentations of cellulose

    SciTech Connect (OSTI)

    Wiegel, J.

    1991-05-01

    The biochemistry and physiology of four major groups of anaerobic bacteria involved in the conversion of cellulose to methane or chemical feedstocks are examined. Aspects of metabolism which are relevant to the interactions and bioenergetics of consortia are being studied. Properties of the cellulolytic enzyme cluster of Clostridium thermocellum are investigated. Five different hydrogenases have been characterized in detail from anaerobic bacteria. Genes for different hydrogenases are being cloned and sequenced to determine their structural relationships. The role of metal clusters in activation of H{sub 2} is being investigated, as is the structure and role of metal clusters in formate metabolism. The function of formate in the total synthesis of acetate from CO{sub 2} and the role of this primary in anaerobes will be examined as well. Finally, these enzyme studies will be performed on thermophilic bacteria and new, pertinent species will be isolated. 50 refs., 3 figs., 1 tab.

  2. Fair Oaks Dairy Farms Cellulosic Ethanol Technology Review Summary

    SciTech Connect (OSTI)

    Andrew Wold; Robert Divers

    2011-06-23

    At Fair Oaks Dairy, dried manure solids (''DMS'') are currently used as a low value compost. United Power was engaged to evaluate the feasibility of processing these DMS into ethanol utilizing commercially available cellulosic biofuels conversion platforms. The Fair Oaks Dairy group is transitioning their traditional ''manure to methane'' mesophilic anaerobic digester platform to an integrated bio-refinery centered upon thermophilic digestion. Presently, the Digested Manure Solids (DMS) are used as a low value soil amendment (compost). United Power evaluated the feasibility of processing DMS into higher value ethanol utilizing commercially available cellulosic biofuels conversion platforms. DMS was analyzed and over 100 potential technology providers were reviewed and evaluated. DMS contains enough carbon to be suitable as a biomass feedstock for conversion into ethanol by gasification technology, or as part of a conversion process that would include combined heat and power. In the first process, 100% of the feedstock is converted into ethanol. In the second process, the feedstock is combusted to provide heat to generate electrical power supporting other processes. Of the 100 technology vendors evaluated, a short list of nine technology providers was developed. From this, two vendors were selected as finalists (one was an enzymatic platform and one was a gasification platform). Their selection was based upon the technical feasibility of their systems, engineering expertise, experience in commercial or pilot scale operations, the ability or willingness to integrate the system into the Fair Oaks Biorefinery, the know-how or experience in producing bio-ethanol, and a clear path to commercial development.

  3. Secretary Bodman Touts Importance of Cellulosic Ethanol at Georgia Biorefinery Groundbreaking

    Broader source: Energy.gov [DOE]

    SOPERTON, GA - U.S. Secretary of Energy Samuel W. Bodman today attended a groundbreaking ceremony for Range Fuels' biorefinery - one of the nation's first commercial-scale cellulosic ethanol...

  4. An Improved X-ray Diffraction Method For Cellulose Crystallinity Measurement

    SciTech Connect (OSTI)

    Ju, Xiaohui; Bowden, Mark E.; Brown, Elvie E.; Zhang, Xiao

    2015-06-01

    We show in this work a modified X-ray diffraction method to determine cellulose crystallinity index (CrI). Nanocrystalline cellulose (NCC) dervided from bleached wood pulp was used as a model substrate. Rietveld refinement was applied with consideration of March-Dollase preferred orientation at the (001) plane. In contrast to most previous methods, three distinct amorphous peaks identified from new model samples which are used to calculate CrI. A 2 theta range from 10° to 75° was found to be more suitable to determine CrI and crystallite structural parameters such as d-spacing and crystallite size. This method enables a more reliable measurement of CrI of cellulose and may be applicable to other types of cellulose polymorphs.

  5. Modified cellulose synthase gene from Arabidopsis thaliana confers herbicide resistance to plants

    DOE Patents [OSTI]

    Somerville, Chris R.; Scheible, Wolf

    2007-07-10

    Cellulose synthase ("CS"), a key enzyme in the biosynthesis of cellulose in plants is inhibited by herbicides comprising thiazolidinones such as 5-tert-butyl-carbamoyloxy-3-(3-trifluromethyl)phenyl-4-thiazolidinone (TZ), isoxaben and 2,6-dichlorobenzonitrile (DCB). Two mutant genes encoding isoxaben and TZ-resistant cellulose synthase have been isolated from isoxaben and TZ-resistant Arabidopsis thaliana mutants. When compared with the gene coding for isoxaben or TZ-sensitive cellulose synthase, one of the resistant CS genes contains a point mutation, wherein glycine residue 998 is replaced by an aspartic acid. The other resistant mutation is due to a threonine to isoleucine change at amino acid residue 942. The mutant CS gene can be used to impart herbicide resistance to a plant; thereby permitting the utilization of the herbicide as a single application at a concentration which ensures the complete or substantially complete killing of weeds, while leaving the transgenic crop plant essentially undamaged.

  6. EA-1705: Construction and Operation of a Proposed Cellulosic Biorefinery, Mascoma Corporation, Kinross Charter Township, Michigan

    Broader source: Energy.gov [DOE]

    The frontier Project consists of the design, construction and operation of a biorefinery producing ethanol and other co-products from cellulosic materials utilizing a proprietary pretreatment and fermentation process.

  7. Land-use change and greenhouse gas emissions from corn and cellulosic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Land-use change and greenhouse gas emissions from corn and cellulosic ethanol July 16, ... Estimates of LUC GHG emissions focus mainly on corn ethanol and vary widely. Increasing ...

  8. Recovery and reuse of cellulase catalyst in an exzymatic cellulose hydrolysis process

    DOE Patents [OSTI]

    Woodward, Jonathan

    1989-01-01

    A process for recovering cellulase from the hydrolysis of cellulose, and reusing it in subsequent hydrolyois procedures. The process utilizes a commercial adsorbent that efficiently removes cellulase from reaction products which can be easily removed by simple decantation.

  9. Evaluation of Exothermic Reactions from Bulk-Vitrification Melter Feeds Containing Cellulose

    SciTech Connect (OSTI)

    Scheele, Randall D.; McNamara, Bruce K.; Bagaasen, Larry M.; Bos, Stanley J.; Kozelisky, Anne E.; Berry, Pam

    2007-06-25

    PNNL has demonstrated that cellulose effectively reduces the amount of molten ionic salt during Bulk Vitrification of simulated Hanford Low Level Waste (LLW). To address concerns about the potential reactivity of cellulose-LLW, PNNL used thermogravimetric analysis, differential thermal analysis, and accelerating rate calorimetry to determine in these preliminary studies that these mixtures will support a self-sustaining reaction if heated to 110C at adiabatic conditions. Additional testing is recommended.

  10. Microbial Fuel Cells for Recycle of Process Water from Cellulosic Ethanol

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biorefineries - Energy Innovation Portal Microbial Fuel Cells for Recycle of Process Water from Cellulosic Ethanol Biorefineries Oak Ridge National Laboratory Contact ORNL About This Technology Technology Marketing SummaryA method was invented at ORNL for removing inhibitor compounds from process water in biomass-to-ethanol production. This invention can also be used to produce power for other industrial processes. DescriptionLarge amounts of water are used in the processing of cellulosic

  11. Genes and Mechanisms for Improving Cellulosic Ethanol Production in E. Coli

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - Energy Innovation Portal Biomass and Biofuels Biomass and Biofuels Find More Like This Return to Search Genes and Mechanisms for Improving Cellulosic Ethanol Production in E. Coli University of Colorado Contact CU About This Technology Publications: PDF Document Publication CU2104B (Engineered Microbe Tolerance) Marketing Summary_2.pdf (194 KB) Technology Marketing Summary Cellulosic biomass accounts for roughly 75% of all plant material, and can be used to produce biofuels. Sources of

  12. Spatial and temporal dynamics of cellulose degradation and biofilm formation by Caldicellulosiruptor obsidiansis and Clostridium thermocellum Caldicellulosiruptor obsidiansis

    SciTech Connect (OSTI)

    Wang, Zhiwu; Lee, Sueng-Hwan; Elkins, James G; Morrell-Falvey, Jennifer L

    2011-01-01

    Cellulose degradation is one of the major bottlenecks of a consolidated bioprocess that employs cellulolytic bacterial cells as catalysts to produce biofuels from cellulosic biomass. In this study, we investigated the spatial and temporal dynamics of cellulose degradation by Caldicellulosiruptor obsidiansis, which does not produce cellulosomes, and Clostridium thermocellum, which does produce cellulosomes. Results showed that the degradation of either regenerated or natural cellulose was synchronized with biofilm formation, a process characterized by the formation and fusion of numerous crater-like depressions on the cellulose surface. In addition, the dynamics of biofilm formation were similar in both bacteria, regardless of cellulosome production. Only the areas of cellulose surface colonized by microbes were significantly degraded, highlighting the essential role of the cellulolytic biofilm in cellulose utilization. After initial attachment, the microbial biofilm structure remained thin, uniform and dense throughout the experiment. A cellular automaton model, constructed under the assumption that the attached cells divide and produce daughter cells that contribute to the hydrolysis of the adjacent cellulose, can largely simulate the observed process of biofilm formation and cellulose degradation. This study presents a model, based on direct observation, correlating cellulolytic biofilm formation with cellulose degradation.

  13. Long-run effects of falling cellulosic ethanol production costs on the US agricultural economy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bryant, Henry L.; Campiche, Jody L.; Richardson, James W.

    2010-03-09

    Renewable energy production has been expanding at a rapid pace. New advances in cellulosic ethanol technologies have the potential to displace the use of petroleum as a transportation fuel, and could have significant effects on both the agricultural economy and the environment. In this letter, the effects of falling cellulosic ethanol production costs on the mix of ethanol feedstocks employed and on the US agricultural economy are examined. Results indicate that, as expected, cellulosic ethanol production increases by a substantial amount as conversion technology improves. Corn production increases initially following the introduction of cellulosic technology, because producers enjoy new revenuemore » from sales of corn stover. After cellulosic ethanol production becomes substantially cheaper, however, acres are shifted from corn production to all other agricultural commodities. Essentially, this new technology could facilitate the exploitation of a previously under-employed resource (corn stover), resulting in an improvement in overall welfare. Thus in the most optimistic scenario considered, 68% of US ethanol is derived from cellulosic sources, coarse grain production is reduced by about 2%, and the prices of all food commodities are reduced modestly.« less

  14. Long-run effects of falling cellulosic ethanol production costs on the US agricultural economy

    SciTech Connect (OSTI)

    Bryant, Henry L.; Campiche, Jody L.; Richardson, James W.

    2010-03-09

    Renewable energy production has been expanding at a rapid pace. New advances in cellulosic ethanol technologies have the potential to displace the use of petroleum as a transportation fuel, and could have significant effects on both the agricultural economy and the environment. In this letter, the effects of falling cellulosic ethanol production costs on the mix of ethanol feedstocks employed and on the US agricultural economy are examined. Results indicate that, as expected, cellulosic ethanol production increases by a substantial amount as conversion technology improves. Corn production increases initially following the introduction of cellulosic technology, because producers enjoy new revenue from sales of corn stover. After cellulosic ethanol production becomes substantially cheaper, however, acres are shifted from corn production to all other agricultural commodities. Essentially, this new technology could facilitate the exploitation of a previously under-employed resource (corn stover), resulting in an improvement in overall welfare. Thus in the most optimistic scenario considered, 68% of US ethanol is derived from cellulosic sources, coarse grain production is reduced by about 2%, and the prices of all food commodities are reduced modestly.

  15. High pressure HC1 conversion of cellulose to glucose

    SciTech Connect (OSTI)

    Antonoplis, Robert Alexander; Blanch, Harvey W.; Wilke, Charles R.

    1981-08-01

    The production of ethanol from glucose by means of fermentation represents a potential long-range alternative to oil for use as a transportation fuel. Today's rising oil prices and the dwindling world supply of oil have made other fuels, such as ethanol, attractive alternatives. It has been shown that automobiles can operate, with minor alterations, on a 10% ethanol-gasoline mixture popularly known as gasohol. Wood has long been known as a potential source of glucose. Glucose may be obtained from wood following acid hydrolysis. In this research, it was found that saturating wood particles with HCl gas under pressure was an effective pretreatment before subjecting the wood to dilute acid hydrolysis. The pretreatment is necessary because of the tight lattice structure of cellulose, which inhibits dilute acid hydrolysis. HCl gas makes the cellulose more susceptible to hydrolysis and the glucose yield is doubled when dilute acid hydrolysis is preceded by HCl saturation at high pressure. The saturation was most effectively performed in a fluidized bed reactor, with pure HCl gas fluidizing equal volumes of ground wood and inert particles. The fluidized bed effectively dissipated the large amount of heat released upon HCl absorption into the wood. Batch reaction times of one hour at 314.7 p.s.i.a. gave glucose yields of 80% and xylose yields of 95% after dilute acid hydrolysis. A non-catalytic gas-solid reaction model, with gas diffusing through the solid limiting the reaction rate, was found to describe the HCl-wood reaction in the fluidized bed. HCl was found to form a stable adduct with the lignin residue in the wood, in a ratio of 3.33 moles per mole of lignin monomer. This resulted in a loss of 0.1453 lb. of HCl per pound of wood. The adduct was broken upon the addition of water. A process design and economic evaluation for a plant to produce 214 tons per day of glucose from air-dried ground Populus tristi gave an estimated glucose cost of 15.14 cents per pound. This would correspond to $2.54 per gallon of ethanol if the glucose were fermented. Key factors contributing to the cost of glucose production were unrecovered HCl, which contributed 5.70 cents per pound of glucose, and the cost of wood, which at $25 per ton contribute 4.17 cents per pound.

  16. Isolation of levoglucosan from pyrolysis oil derived from cellulose

    DOE Patents [OSTI]

    Moens, Luc

    1994-01-01

    High purity levoglucosan is obtained from pyrolysis oil derived from cellulose by: mixing pyrolysis oil with water and a basic metal hydroxide, oxide, or salt in amount sufficient to elevate pH values to a range of from about 12 to about 12.5, and adding an amount of the hydroxide, oxide, or salt in excess of the amount needed to obtain the pH range until colored materials of impurities from the oil are removed and a slurry is formed; drying the slurry azeotropically with methyl isobutyl ketone solvent to form a residue, and further drying the residue by evaporation; reducing the residue into a powder; continuously extracting the powder residue with ethyl acetate to provide a levoglucosan-rich extract; and concentrating the extract by removing ethyl acetate to provide crystalline levoglucosan. Preferably, Ca(OH).sub.2 is added to adjust the pH to the elevated values, and then Ca(OH).sub.2 is added in an excess amount needed.

  17. Transgenic Plants Lower the Costs of Cellulosic Biofuels (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-11-01

    A new transgenic maize was observed to be less recalcitrant than wild-type biomass, as manifested through lower severity requirements to achieve comparable levels of conversion. Expression of a single gene derived from bacteria in plants has resulted in transgenic plants that are easier and cheaper to convert into biofuels. Part of the high production cost of cellulosic biofuels is the relatively poor accessibility of substrates to enzymes due to the strong associations between plant cell wall components. This biomass recalcitrance makes costly thermochemical pretreatment necessary. Scientists at the National Renewable Energy Laboratory (NREL) have created transgenic maize expressing an active glycosyl hydrolase enzyme, E1 endoglucanase, originally isolated from a thermophilic bacterium, Acidothermus cellulolyticus. This engineered feedstock was observed to be less recalcitrant than wild-type biomass when subjected to reduced severity pretreatments and post-pretreatment enzymatic hydrolysis. This reduction in recalcitrance was manifested through lower severity requirements to achieve comparable levels of conversion of wild-type biomass. The improvements observed are significant enough to positively affect the economics of the conversion process through decreased capital construction costs and decreased degradation products and inhibitor formation.

  18. Cellulose triacetate based novel optical sensor for uranium estimation

    SciTech Connect (OSTI)

    Joshi, J.M.; Pathak, P.N.; Pandey, A.K.; Manchanda, V.K.

    2008-07-01

    A cellulose triacetate (CTA) based optode has been developed by immobilizing tricapryl-methyl ammonium chloride (Aliquat 336) as the extractant and 2-(5-bromo-2-pyridylazo)-5- diethyl-aminophenol (Br-PADAP) as the chromophore. The optode changes color (from yellow to magenta) due to uranium uptake in bicarbonate medium ({approx}10{sup -4} M) at pH 7-8 in the presence of triethanolamine (TEA) buffer. The detection limit of the optode film (dimension: 3 cm x 1 cm) was determined to be {approx}0.3 {mu}g/mL for a 15 mL pure uranium sample at pH 7-8 (in TEA buffer). The effects of experimental parameters have been evaluated in terms of maximum uptake of U(VI), minimum response time, and reproducibility and stability of the Br-PADAP-U(VI ) complex formed in the optode matrix. The applicability of the optimized optode has been examined in the effluent samples obtained during magnesium diuranate precipitation step following the TBP purification cycle. (authors)

  19. Isolation of levoglucosan from pyrolysis oil derived from cellulose

    DOE Patents [OSTI]

    Moens, L.

    1994-12-06

    High purity levoglucosan is obtained from pyrolysis oil derived from cellulose by: mixing pyrolysis oil with water and a basic metal hydroxide, oxide, or salt in amount sufficient to elevate pH values to a range of from about 12 to about 12.5, and adding an amount of the hydroxide, oxide, or salt in excess of the amount needed to obtain the pH range until colored materials of impurities from the oil are removed and a slurry is formed; drying the slurry azeotropically with methyl isobutyl ketone solvent to form a residue, and further drying the residue by evaporation; reducing the residue into a powder; continuously extracting the powder residue with ethyl acetate to provide a levoglucosan-rich extract; and concentrating the extract by removing ethyl acetate to provide crystalline levoglucosan. Preferably, Ca(OH)[sub 2] is added to adjust the pH to the elevated values, and then Ca(OH)[sub 2] is added in an excess amount needed. 3 figures.

  20. A Comparison of Key PV Backsheet and Module Properties from Fielded Module

    Broader source: Energy.gov (indexed) [DOE]

    Exposures and Accelerated Test Conditions | Department of Energy dupont_gambogi.pdf More Documents & Publications Agenda for the PV Module Reliability Workshop, February 26 - 27 2013, Golden, Colorado DuPont's Journey to Build a Global Cellulosic BioFuel Business Enterprise Statistical and Domain Analytics Applied to PV Module Lifetime and Degradation Science

  1. ZeaChem Pilot Project: High-Yield Hybrid Cellulosic Ethanol Process Using High-Impact Feedstock for Commercialization

    Broader source: Energy.gov [DOE]

    This pilot-scale integrated biorefinery will produce 250,000 gallons per year of cellulosic ethanol when running at full operational status.

  2. The proteome and phosphoproteome of Neurospora crassa in response to cellulose, sucrose and carbon starvation

    SciTech Connect (OSTI)

    Xiong, Yi; Coradetti, Samuel T.; Li, Xin; Gritsenko, Marina A.; Clauss, Therese RW; Petyuk, Vladislav A.; Camp, David G.; Smith, Richard D.; Cate, Jamie H.; Yang, Feng; Glass, Louise

    2014-11-01

    Improving cellulolytic enzyme production by plant biomass degrading fungi holds great potential in reducing costs associated with production of next-generation biofuels generated from lignocellulose. How fungi sense cellulosic materials and respond by secreting enzymes has mainly been examined by assessing function of transcriptional regulators and via transcriptional profiling. Here, we obtained global proteomic and phosphoproteomic profiles of the plant biomass degrading filamentous fungus Neurospora crassa grown on different carbon sources, i.e. sucrose, no carbon, and cellulose, by performing isobaric tags for relative and absolute quantification (iTRAQ) -based LC-MS/MS analyses. A comparison between proteomes and transcriptomes under identical carbon conditions suggests that extensive post-transcriptional regulation occurs in N. crassa in response to exposure to cellulosic material. Several hundred amino acid residues with differential phosphorylation levels on crystalline cellulose (Avicel) or carbon-free medium versus sucrose medium were identified, including phosphorylation sites in a major transcriptional activator for cellulase genes, CLR1, as well as a cellobionic acid transporter, CBT1. Mutation of phosphorylation sites on CLR1 did not have a major effect on transactivation of cellulase production, while mutation of phosphorylation sites in CBT1 increased its transporting capacity. Our data provides rich information at both the protein and phosphorylation levels of the early cellular responses to carbon starvation and cellulosic induction and aids in a greater understanding of the underlying post-transcriptional regulatory mechanisms in filamentous fungi.

  3. Suite of Activity-Based Probes for Cellulose-Degrading Enzymes

    SciTech Connect (OSTI)

    Chauvigne-Hines, Lacie M.; Anderson, Lindsey N.; Weaver, Holly M.; Brown, Joseph N.; Koech, Phillip K.; Nicora, Carrie D.; Hofstad, Beth A.; Smith, Richard D.; Wilkins, Michael J.; Callister, Stephen J.; Wright, Aaron T.

    2012-12-19

    Microbial glycoside hydrolases play a dominant role in the biochemical conversion of cellulosic biomass to high-value biofuels. Anaerobic cellulolytic bacteria are capable of producing multicomplex catalytic subunits containing cell-adherent cellulases, hemicellulases, xylanases, and other glycoside hydrolases to facilitate the degradation of highly recalcitrant cellulose and other related plant cell wall polysaccharides. Clostridium thermocellum is a cellulosome producing bacterium that couples rapid reproduction rates to highly efficient degradation of crystalline cellulose. Herein, we have developed and applied a suite of difluoromethylphenyl aglycone, N-halogenated glycosylamine, and 2-deoxy-2-fluoroglycoside activity-based protein profiling (ABPP) probes to the direct labeling of the C. thermocellum cellulosomal secretome. These activity-based probes (ABPs) were synthesized with alkynes to harness the utility and multimodal possibilities of click chemistry, and to increase enzyme active site inclusion for LC-MS analysis. We directly analyzed ABP-labeled and unlabeled global MS data, revealing ABP selectivity for glycoside hydrolase (GH) enzymes in addition to a large collection of integral cellulosome-containing proteins. By identifying reactivity and selectivity profiles for each ABP, we demonstrate our ability to widely profile the functional cellulose degrading machinery of the bacterium. Derivatization of the ABPs, including reactive groups, acetylation of the glycoside binding groups, and mono- and disaccharide binding groups, resulted in considerable variability in protein labeling. Our probe suite is applicable to aerobic and anaerobic cellulose degrading systems, and facilitates a greater understanding of the organismal role associated within biofuel development.

  4. Results from tests of DuPont crossflow filter

    SciTech Connect (OSTI)

    Steimke, J.L.

    2000-05-05

    Crossflow filtration will be used to filter radioactive waste slurry as part of the Late Wash Process.

  5. Cationic quaternization of cellulose with methacryloyloxy ethyl trimethyl ammonium chloride via ATRP method

    SciTech Connect (OSTI)

    Supeno; Daik, Rusli; El-Sheikh, Said M.

    2014-09-03

    The synthesis of a cationic cellulose copolymer from cellulose macro-initiator (MCC-BiB) and quaternary compound monomer (METMA) via atom transfer radical polymerization (ATRP) was studied. By using dimethylformamide (DMF), the optimum condition for successful synthesis was at the mole ratio of MCC-BIB:Catalyst:METMA = 1:1:26. The highest copolymer recovery was 93.2 % for 6 h and at 40°C. The copolymer was insoluble in weak polar solvents such as THF and DMF but soluble in methanol and water. The chemistry of cellulose copolymer was confirmed by the FTIR and TGA in which the METMA monomer was used as a reference. The absence of CC bond in the CiB-g-METMA spectrum indicated that graft copolymerization occurred.

  6. Cellulose and cellobiose: adventures of a wandering organic chemist in theoretical chemistry

    SciTech Connect (OSTI)

    Baluyut, John

    2012-04-03

    The energies arising from the rotation of free hydroxyl groups in the central glucose residue of a cellulose crystalline assembly, calculated using RHF, DFT, and FMO2/MP2 methods, will be presented. In addition, interactions of this central glucose residue with some of the surrounding residues (selected on the basis of the interaction strengths) are analyzed. The mechanism of acid-catalyzed hydrolysis of cellobiose, which is the repeating unit of cellulose. Energies corresponding to the different steps of this mechanism calculated using RHF and DFT are compared with those previously reported using molecular dynamics calculations and with experimental data.

  7. Preliminary Economics for the Production of Pyrolysis Oil from Lignin in a Cellulosic Ethanol Biorefinery

    SciTech Connect (OSTI)

    Jones, Susanne B.; Zhu, Yunhua

    2009-04-01

    Cellulosic ethanol biorefinery economics can be potentially improved by converting by-product lignin into high valued products. Cellulosic biomass is composed mainly of cellulose, hemicellulose and lignin. In a cellulosic ethanol biorefinery, cellulose and hemicellullose are converted to ethanol via fermentation. The raw lignin portion is the partially dewatered stream that is separated from the product ethanol and contains lignin, unconverted feed and other by-products. It can be burned as fuel for the plant or can be diverted into higher-value products. One such higher-valued product is pyrolysis oil, a fuel that can be further upgraded into motor gasoline fuels. While pyrolysis of pure lignin is not a good source of pyrolysis liquids, raw lignin containing unconverted feed and by-products may have potential as a feedstock. This report considers only the production of the pyrolysis oil and does not estimate the cost of upgrading that oil into synthetic crude oil or finished gasoline and diesel. A techno-economic analysis for the production of pyrolysis oil from raw lignin was conducted. comparing two cellulosic ethanol fermentation based biorefineries. The base case is the NREL 2002 cellulosic ethanol design report case where 2000 MTPD of corn stover is fermented to ethanol (NREL 2002). In the base case, lignin is separated from the ethanol product, dewatered, and burned to produce steam and power. The alternate case considered in this report dries the lignin, and then uses fast pyrolysis to generate a bio-oil product. Steam and power are generated in this alternate case by burning some of the corn stover feed, rather than fermenting it. This reduces the annual ethanol production rate from 69 to 54 million gallons/year. Assuming a pyrolysis oil value similar to Btu-adjusted residual oil, the estimated ethanol selling price ranges from $1.40 to $1.48 (2007 $) depending upon the yield of pyrolysis oil. This is considerably above the target minimum ethanol selling price of $1.33 for the 2012 goal case process as reported in the 2007 State of Technology Model (NREL 2008). Hence, pyrolysis oil does not appear to be an economically attractive product in this scenario. Further research regarding fast pyrolysis of raw lignin from a cellulosic plant as an end product is not recommended. Other processes, such as high-pressure liquefaction or wet gasification, and higher value products, such as gasoline and diesel from fast pyrolysis oil should be considered in future studies.

  8. Process Design of Wastewater Treatment for the NREL Cellulosic Ethanol Model

    SciTech Connect (OSTI)

    Steinwinder, T.; Gill, E.; Gerhardt, M.

    2011-09-01

    This report describes a preliminary process design for treating the wastewater from NREL's cellulosic ethanol production process to quality levels required for recycle. In this report Brown and Caldwell report on three main tasks: 1) characterization of the effluent from NREL's ammonia-conditioned hydrolyzate fermentation process; 2) development of the wastewater treatment process design; and 3) development of a capital and operational cost estimate for the treatment concept option. This wastewater treatment design was incorporated into NREL's cellulosic ethanol process design update published in May 2011 (NREL/TP-5100-47764).

  9. Improvement of cellulose catabolism in Clostridium cellulolyticum by sporulation abolishment and carbon alleviation

    SciTech Connect (OSTI)

    Li, Yongchao; Xu, Tao; Tschaplinski, Timothy J; Engle, Nancy L; Graham, David E; He, Zhili; Zhou, Jizhong

    2014-01-01

    Background Clostridium cellulolyticum can degrade lignocellulosic biomass, and ferment the soluble sugars to produce valuable chemicals such as lactate, acetate, ethanol and hydrogen. However, the cellulose utilization efficiency of C. cellulolyticum still remains very low, impeding its application in consolidated bioprocessing for biofuels production. In this study, two metabolic engineering strategies were exploited to improve cellulose utilization efficiency, including sporulation abolishment and carbon overload alleviation. Results The spo0A gene at locus Ccel_1894, which encodes a master sporulation regulator was inactivated. The spo0A mutant abolished the sporulation ability. In a high concentration of cellulose (50 g/l), the performance of the spo0A mutant increased dramatically in terms of maximum growth, final concentrations of three major metabolic products, and cellulose catabolism. The microarray and gas chromatography mass spectrometry (GC-MS) analyses showed that the valine, leucine and isoleucine biosynthesis pathways were up-regulated in the spo0A mutant. Based on this information, a partial isobutanol producing pathway modified from valine biosynthesis was introduced into C. cellulolyticum strains to further increase cellulose consumption by alleviating excessive carbon load. The introduction of this synthetic pathway to the wild-type strain improved cellulose consumption from 17.6 g/l to 28.7 g/l with a production of 0.42 g/l isobutanol in the 50 g/l cellulose medium. However, the spo0A mutant strain did not appreciably benefit from introduction of this synthetic pathway and the cellulose utilization efficiency did not further increase. A technical highlight in this study was that an in vivo promoter strength evaluation protocol was developed using anaerobic fluorescent protein and flow cytometry for C. cellulolyticum. Conclusions In this study, we inactivated the spo0A gene and introduced a heterologous synthetic pathway to manipulate the stress response to heavy carbon load and accumulation of metabolic products. These findings provide new perspectives to enhance the ability of cellulolytic bacteria to produce biofuels and biocommodities with high efficiency and at low cost directly from lignocellulosic biomass.

  10. Method of separating lignocellulosic material into lignin, cellulose and dissolved sugars

    DOE Patents [OSTI]

    Black, S.K.; Hames, B.R.; Myers, M.D.

    1998-03-24

    A method is described for separating lignocellulosic material into (a) lignin, (b) cellulose, and (c) hemicellulose and dissolved sugars. Wood or herbaceous biomass is digested at elevated temperature in a single-phase mixture of alcohol, water and a water-immiscible organic solvent (e.g., a ketone). After digestion, the amount of water or organic solvent is adjusted so that there is phase separation. The lignin is present in the organic solvent, the cellulose is present in a solid pulp phase, and the aqueous phase includes hemicellulose and any dissolved sugars.

  11. Chapter 18: Understanding the Developing Cellulosic Biofuels Industry through Dynamic Modeling

    SciTech Connect (OSTI)

    Newes, E.; Inman, D.; Bush, B.

    2011-01-01

    The purpose of this chapter is to discuss a system dynamics model called the Biomass Scenario Model (BSM), which is being developed by the U.S. Department of Energy as a tool to better understand the interaction of complex policies and their potential effects on the burgeoning cellulosic biofuels industry in the United States. The model has also recently been expanded to include advanced conversion technologies and biofuels (i.e., conversion pathways that yield biomass-based gasoline, diesel, jet fuel, and butanol), but we focus on cellulosic ethanol conversion pathways here. The BSM uses a system dynamics modeling approach (Bush et al., 2008) built on the STELLA software platform.

  12. Method of separating lignocellulosic material into lignin, cellulose and dissolved sugars

    DOE Patents [OSTI]

    Black, Stuart K.; Hames, Bonnie R.; Myers, Michele D.

    1998-01-01

    A method for separating lignocellulosic material into (a) lignin, (b) cellulose, and (c) hemicellulose and dissolved sugars. Wood or herbaceous biomass is digested at elevated temperature in a single-phase mixture of alcohol, water and a water-immiscible organic solvent (e.g., a ketone). After digestion, the amount of water or organic solvent is adjusted so that there is phase separation. The lignin is present in the organic solvent, the cellulose is present in a solid pulp phase, and the aqueous phase includes hemicellulose and any dissolved sugars.

  13. Cellulose and lignin: biodegradation. January 1978-May 1987 (Citations from the Life Sciences Collection data base). Report for January 1978-May 1987

    SciTech Connect (OSTI)

    Not Available

    1988-09-01

    This bibliography contains citations concerning the biodegradation of waste cellulose, cellulose-containing substances, lignin, and lignin-containing substances. Attention is given to the organisms that decompose cellulose and lignin, and the processes by which this takes place. (This updated bibliography contains 379 citations, none of which are new entries to the previous edition.)

  14. Cellulose and lignin: biodegradation. June 1987-September 1988 (Citations from the Life Sciences Collection data base). Report for June 1987-September 1988

    SciTech Connect (OSTI)

    Not Available

    1988-09-01

    This bibliography contains citations concerning the biodegradation of waste cellulose, cellulose-containing substances, lignin, and lignin-containing substances. Attention is given to the organisms that decompose cellulose and lignin, and the processes by which this takes place. (This updated bibliography contains 65 citations, all of which are new entries to the previous edition.)

  15. Cellulose and lignin: Biodegradation. June 1987-September 1989 (Citations from the Life Sciences Collection data base). Report for June 1987-September 1989

    SciTech Connect (OSTI)

    Not Available

    1989-09-01

    This bibliography contains citations concerning the biodegradation of waste cellulose, cellulose-containing substances, lignin, and lignin-containing substances. Attention is given to the organisms that decompose cellulose and lignin, and the processes by which this takes place. (This updated bibliography contains 120 citations, 46 of which are new entries to the previous edition.)

  16. Recovery and reuse of cellulase catalyst in an enzymatic cellulose hydrolysis process

    DOE Patents [OSTI]

    Woodward, J.

    1987-09-18

    A process for recovering cellulase from the hydrolysis of cellulose, and reusing it in subsequent hydrolyois procedures. The process utilizes a commercial adsorbent that efficiently removes cellulase from reaction products which can be easily removed by simple decantation. 1 fig., 4 tabs.

  17. The structure of the catalytic domain of a plant cellulose synthase and its assembly into dimers

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Olek, Anna T.; Rayon, Catherine; Makowski, Lee; Kim, Hyung Rae; Ciesielski, Peter; Badger, John; Paul, Lake N.; Ghosh, Subhangi; Kihara, Daisuke; Crowley, Michael; et al

    2014-07-10

    Cellulose microfibrils are para-crystalline arrays of several dozen linear (1→4)-β-d-glucan chains synthesized at the surface of the cell membrane by large, multimeric complexes of synthase proteins. Recombinant catalytic domains of rice (Oryza sativa) CesA8 cellulose synthase form dimers reversibly as the fundamental scaffold units of architecture in the synthase complex. Specificity of binding to UDP and UDP-Glc indicates a properly folded protein, and binding kinetics indicate that each monomer independently synthesizes single glucan chains of cellulose, i.e., two chains per dimer pair. In contrast to structure modeling predictions, solution x-ray scattering studies demonstrate that the monomer is a two-domain, elongatedmore » structure, with the smaller domain coupling two monomers into a dimer. The catalytic core of the monomer is accommodated only near its center, with the plant-specific sequences occupying the small domain and an extension distal to the catalytic domain. This configuration is in stark contrast to the domain organization obtained in predicted structures of plant CesA. As a result, the arrangement of the catalytic domain within the CesA monomer and dimer provides a foundation for constructing structural models of the synthase complex and defining the relationship between the rosette structure and the cellulose microfibrils they synthesize.« less

  18. Yields and composition of syrups resulting from the flash pyrolysis of cellulosic materials using radiant energy

    SciTech Connect (OSTI)

    De Jenga, C.I.; Antal, M.J. Jr.; Jones, M. Jr.

    1982-11-01

    Cellulosic materials have been flash pyrolyzed using concentrated solar energy. The syrups obtained were composed mainly of levoglucosan. Radiant flash pyrolysis has thus been identified as a potentially attractive means of selectively degrading biomass material into good yields of relatively few products. The techniques and equipment employed to determine the composition of the pyrolyzates are described.

  19. Method of increasing the rate of hydration of activated hydroethyl cellulose compositions

    SciTech Connect (OSTI)

    House, R. F.; Hoover, L. D.

    1984-10-09

    A method of producing a well servicing fluid containing zinc bromide in which an activated hydroxyethyl cellulose is either admixed with a zinc bromide solution containing above about 30% by weight zinc bromide, or, in the alternative, is admixed with a non-zinc bromide containing solution to produce a viscosified solution which is then admixed with a zinc bromide containing solution.

  20. Homoacetogenic fermentation of cellulose by a coculture of Clostridium thermocellum and Acetogenium kivui

    SciTech Connect (OSTI)

    Le Ruyet, P.; Dubourguier, H.C.; Albagnac, G.

    1984-10-01

    Interrelationships between methanogens and fermentative or hydrolytic bacteria are well documented; however, such cocultures do not allow a complete fermentation shift to a peculiar metabolite. A new stable association between Clostridium thermocellum and Acetogenium kivui is described which converts 1 mol of cellulose (anhydroglucose equivalent) into a 2.7 mol of acetate.

  1. Conversion of cellulose to ethanol by mesophilic bacteria. Progress report, July 15, 1983-February 15, 1985

    SciTech Connect (OSTI)

    Canale-Parola, E.

    1985-03-15

    Highlights of accomplishments during the period from July 1983 to February 1985 are summarized. Research has dealt primarily with strains of obligately anaerobic, mesophilic cellulolytic bacteria that we isolated from various natural environments. Eight strains (referred to as C strains) were isolated from mud of freshwater environments. As described in the previous progress report, the C strains represented a species of Clostridium that was different from other described species. The C strains fermented cellulose with formation of ethanol. They differed from thermophilic cellulolytic clostridia (e.g. Clostridium thermocellum) not only in growth temperature range, but also because they fermented xylan and pentoses with formation of ethanol. This result indicated that these mesophilic clostridia can convert to ethanol both cellulosic and hemicellulosic components of biomass. In contrast, monocultures of Clostridium thermocellum ferment only the cellulosic component of biomass. Furthermore, cellulose was degraded by the C strains at a rate comparable to that of thermophilic cellulolytic clostridia. These observations indicated that the mesophilic cellulolytic isolates constituted potentially useful microorganisms for ethanol production from biomass.

  2. The structure of the catalytic domain of a plant cellulose synthase and its assembly into dimers

    SciTech Connect (OSTI)

    Olek, Anna T.; Rayon, Catherine; Makowski, Lee; Kim, Hyung Rae; Ciesielski, Peter; Badger, John; Paul, Lake N.; Ghosh, Subhangi; Kihara, Daisuke; Crowley, Michael; Himmel, Michael E.; Bolin, Jeffrey T.; Carpita, Nicholas C.

    2014-07-10

    Cellulose microfibrils are para-crystalline arrays of several dozen linear (1→4)-β-d-glucan chains synthesized at the surface of the cell membrane by large, multimeric complexes of synthase proteins. Recombinant catalytic domains of rice (Oryza sativa) CesA8 cellulose synthase form dimers reversibly as the fundamental scaffold units of architecture in the synthase complex. Specificity of binding to UDP and UDP-Glc indicates a properly folded protein, and binding kinetics indicate that each monomer independently synthesizes single glucan chains of cellulose, i.e., two chains per dimer pair. In contrast to structure modeling predictions, solution x-ray scattering studies demonstrate that the monomer is a two-domain, elongated structure, with the smaller domain coupling two monomers into a dimer. The catalytic core of the monomer is accommodated only near its center, with the plant-specific sequences occupying the small domain and an extension distal to the catalytic domain. This configuration is in stark contrast to the domain organization obtained in predicted structures of plant CesA. As a result, the arrangement of the catalytic domain within the CesA monomer and dimer provides a foundation for constructing structural models of the synthase complex and defining the relationship between the rosette structure and the cellulose microfibrils they synthesize.

  3. Binding Preferences, Surface Attachment, Diffusivity, and Orientation of a Family 1 Carbohydrate-Binding Module on Cellulose

    SciTech Connect (OSTI)

    Nimlos, M. R.; Beckham, G. T.; Matthews, J. F.; Bu, L.; Himmel, M. E.; Crowley, M. F.

    2012-06-08

    Cellulase enzymes often contain carbohydrate-binding modules (CBMs) for binding to cellulose. The mechanisms by which CBMs recognize specific surfaces of cellulose and aid in deconstruction are essential to understand cellulase action. The Family 1 CBM from the Trichoderma reesei Family 7 cellobiohydrolase, Cel7A, is known to selectively bind to hydrophobic surfaces of native cellulose. It is most commonly suggested that three aromatic residues identify the planar binding face of this CBM, but several recent studies have challenged this hypothesis. Here, we use molecular simulation to study the CBM binding orientation and affinity on hydrophilic and hydrophobic cellulose surfaces. Roughly 43 {mu}s of molecular dynamics simulations were conducted, which enables statistically significant observations. We quantify the fractions of the CBMs that detach from crystal surfaces or diffuse to other surfaces, the diffusivity along the hydrophobic surface, and the overall orientation of the CBM on both hydrophobic and hydrophilic faces. The simulations demonstrate that there is a thermodynamic driving force for the Cel7A CBM to bind preferentially to the hydrophobic surface of cellulose relative to hydrophilic surfaces. In addition, the simulations demonstrate that the CBM can diffuse from hydrophilic surfaces to the hydrophobic surface, whereas the reverse transition is not observed. Lastly, our simulations suggest that the flat faces of Family 1 CBMs are the preferred binding surfaces. These results enhance our understanding of how Family 1 CBMs interact with and recognize specific cellulose surfaces and provide insights into the initial events of cellulase adsorption and diffusion on cellulose.

  4. Ethanol production by thermophilic bacteria: fermentation of cellulosic substrates by cocultures of Clostridium thermocellum and Clostridium thermohydrosulfuricum

    SciTech Connect (OSTI)

    Ng, T.K.; Ben-Bassat, A.; Zeikus, J.G.

    1981-06-01

    The fermentation of various saccharides derived from cellulosic biomass to ethanol was examined in mono- and cocultures of Clostridium thermocellum strain LQRI and C. thermohydrosulfuricum strain 39E. C. thermohydrosulfuricum fermented glucose, cellobiose, and xylose, but not cellulose or xylan, and yielded ethanol/acetate ratios of >7.0 C. thermocellum fermented a variety of cellulosic substrates, glucose, and cellobiose, but not xylan or xylose, and yielded ethanol/acetate ratios of approx. 1.0. A stable coculture that contained nearly equal numbers of C. thermocellum and C. thermohydrosulfuricum was established that fermented a variety of cellulosic substrates, and the ethanol yield observed was twofold higher than in C. thermocellum monoculture fermentations. The metabolic basis for the enhanced fermentation effectiveness of the coculture on Solka Floc cellulose included: the ability of C. thermocellum cellulase to hydrolyze ..cap alpha..-cellulose and hemicellulose; the enhanced utilization of mono- and disaccharides by C. thermohydrosulfuricum; increased cellulose consumption; threefold increase in the ethanol production rate; and twofold decrease in the acetate production rate.

  5. The exometabolome of Clostridium thermocellum reveals overflow metabolism at high cellulose loading

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Holwerda, Evert K.; Thorne, Philip G.; Olson, Daniel G.; Amador-Noguez, Daniel; Engle, Nancy L.; Tschaplinski, Timothy J.; van Dijken, Johannes P.; Lynd, Lee R.

    2014-10-21

    Background: Clostridium thermocellum is a model thermophilic organism for the production of biofuels from lignocellulosic substrates. The majority of publications studying the physiology of this organism use substrate concentrations of ≤10 g/L. However, industrially relevant concentrations of substrate start at 100 g/L carbohydrate, which corresponds to approximately 150 g/L solids. To gain insight into the physiology of fermentation of high substrate concentrations, we studied the growth on, and utilization of high concentrations of crystalline cellulose varying from 50 to 100 g/L by C. thermocellum. Results: Using a defined medium, batch cultures of C. thermocellum achieved 93% conversion of cellulose (Avicel)more » initially present at 100 g/L. The maximum rate of substrate utilization increased with increasing substrate loading. During fermentation of 100 g/L cellulose, growth ceased when about half of the substrate had been solubilized. However, fermentation continued in an uncoupled mode until substrate utilization was almost complete. In addition to commonly reported fermentation products, amino acids - predominantly L-valine and L-alanine - were secreted at concentrations up to 7.5 g/L. Uncoupled metabolism was also accompanied by products not documented previously for C. thermocellum, including isobutanol, meso- and RR/SS-2,3-butanediol and trace amounts of 3-methyl-1-butanol, 2-methyl-1-butanol and 1-propanol. We hypothesize that C. thermocellum uses overflow metabolism to balance its metabolism around the pyruvate node in glycolysis. In conclusion: C. thermocellum is able to utilize industrially relevant concentrations of cellulose, up to 93 g/L. We report here one of the highest degrees of crystalline cellulose utilization observed thus far for a pure culture of C. thermocellum, the highest maximum substrate utilization rate and the highest amount of isobutanol produced by a wild-type organism.« less

  6. The exometabolome of Clostridium thermocellum reveals overflow metabolism at high cellulose loading

    SciTech Connect (OSTI)

    Holwerda, Evert K.; Thorne, Philip G.; Olson, Daniel G.; Amador-Noguez, Daniel; Engle, Nancy L.; Tschaplinski, Timothy J.; van Dijken, Johannes P.; Lynd, Lee R.

    2014-10-21

    Background: Clostridium thermocellum is a model thermophilic organism for the production of biofuels from lignocellulosic substrates. The majority of publications studying the physiology of this organism use substrate concentrations of ≤10 g/L. However, industrially relevant concentrations of substrate start at 100 g/L carbohydrate, which corresponds to approximately 150 g/L solids. To gain insight into the physiology of fermentation of high substrate concentrations, we studied the growth on, and utilization of high concentrations of crystalline cellulose varying from 50 to 100 g/L by C. thermocellum. Results: Using a defined medium, batch cultures of C. thermocellum achieved 93% conversion of cellulose (Avicel) initially present at 100 g/L. The maximum rate of substrate utilization increased with increasing substrate loading. During fermentation of 100 g/L cellulose, growth ceased when about half of the substrate had been solubilized. However, fermentation continued in an uncoupled mode until substrate utilization was almost complete. In addition to commonly reported fermentation products, amino acids - predominantly L-valine and L-alanine - were secreted at concentrations up to 7.5 g/L. Uncoupled metabolism was also accompanied by products not documented previously for C. thermocellum, including isobutanol, meso- and RR/SS-2,3-butanediol and trace amounts of 3-methyl-1-butanol, 2-methyl-1-butanol and 1-propanol. We hypothesize that C. thermocellum uses overflow metabolism to balance its metabolism around the pyruvate node in glycolysis. In conclusion: C. thermocellum is able to utilize industrially relevant concentrations of cellulose, up to 93 g/L. We report here one of the highest degrees of crystalline cellulose utilization observed thus far for a pure culture of C. thermocellum, the highest maximum substrate utilization rate and the highest amount of isobutanol produced by a wild-type organism.

  7. Apo- and Cellopentaose-bound Structures of the Bacterial Cellulose Synthase Subunit BcsZ

    SciTech Connect (OSTI)

    Mazur, Olga; Zimmer, Jochen

    2012-10-25

    Cellulose, a very abundant extracellular polysaccharide, is synthesized in a finely tuned process that involves the activity of glycosyl-transferases and hydrolases. The cellulose microfibril consists of bundles of linear {beta}-1,4-glucan chains that are synthesized inside the cell; however, the mechanism by which these polymers traverse the cell membrane is currently unknown. In Gram-negative bacteria, the cellulose synthase complex forms a trans-envelope complex consisting of at least four subunits. Although three of these subunits account for the synthesis and translocation of the polysaccharide, the fourth subunit, BcsZ, is a periplasmic protein with endo-{beta}-1,4-glucanase activity. BcsZ belongs to family eight of glycosyl-hydrolases, and its activity is required for optimal synthesis and membrane translocation of cellulose. In this study we report two crystal structures of BcsZ from Escherichia coli. One structure shows the wild-type enzyme in its apo form, and the second structure is for a catalytically inactive mutant of BcsZ in complex with the substrate cellopentaose. The structures demonstrate that BcsZ adopts an ({alpha}/{alpha}){sub 6}-barrel fold and that it binds four glucan moieties of cellopentaose via highly conserved residues exclusively on the nonreducing side of its catalytic center. Thus, the BcsZ-cellopentaose structure most likely represents a posthydrolysis state in which the newly formed nonreducing end has already left the substrate binding pocket while the enzyme remains attached to the truncated polysaccharide chain. We further show that BcsZ efficiently degrades {beta}-1,4-glucans in in vitro cellulase assays with carboxymethyl-cellulose as substrate.

  8. Energy Landscape for the Interaction of the Family 1 Carbohydrate-Binding Module and the Cellulose Surface is Altered by Hydrolyzed Glycosidic Bonds

    SciTech Connect (OSTI)

    Bu, L.; Beckham, G. T.; Crowley, M. F.; Chang, C. H.; Matthews, J. F.; Bomble, Y. J.; Adney, W. S.; Himmel, M. E.; Nimlos, M. R.

    2009-01-01

    A multiscale simulation model is used to construct potential and free energy surfaces for the carbohydrate-binding module [CBM] from an industrially important cellulase, Trichoderma reesei cellobiohydrolase I, on the hydrophobic face of a coarse-grained cellulose I{beta} polymorph. We predict from computation that the CBM alone exhibits regions of stability on the hydrophobic face of cellulose every 5 and 10 {angstrom}, corresponding to a glucose unit and a cellobiose unit, respectively. In addition, we predict a new role for the CBM: specifically, that in the presence of hydrolyzed cellulose chain ends, the CBM exerts a thermodynamic driving force to translate away from the free cellulose chain ends. This suggests that the CBM is not only required for binding to cellulose, as has been known for two decades, but also that it has evolved to both assist the enzyme in recognizing a cellulose chain end and exert a driving force on the enzyme during processive hydrolysis of cellulose.

  9. Cellulose and lignin: Biodegradation. January 1985-May 1989 (Citations from the Biobusiness data base). Report for January 1985-May 1989

    SciTech Connect (OSTI)

    Not Available

    1989-06-01

    This bibliography contains citations concerning the biodegradation of materials containing cellulose and lignin components. Natural wood decay and sludge digestion are considered. Detailed chemical and physical mechanisms of degradation and research on microorganisms involved are discussed for a variety of cellulose and lignin containing materials including straw, municipal wastes, living trees, paper, lumber, and grasses. Genetic engineering studies regarding the isolation, preparation, and characterization of suitable microorganisms for cellulose and lignin degradation are included. (Contains 87 citations fully indexed and including a title list.)

  10. Transcriptomic and genomic analysis of cellulose fermentation by Clostridium thermocellum ATCC 27405

    SciTech Connect (OSTI)

    Raman, Babu; McKeown, Catherine K; Rodriguez, Jr., Miguel; Brown, Steven D; Mielenz, Jonathan R

    2011-01-01

    The ability of Clostridium thermocellum ATCC 27405 wild-type strain to hydrolyze cellulose and ferment the degradation products directly to ethanol and other metabolic byproducts makes it an attractive candidate for consolidated bioprocessing of cellulosic biomass to biofuels. In this study, whole-genome microarrays were used to investigate the expression of C. thermocellum mRNA during growth on crystalline cellulose in controlled replicate batch fermentations. A time-series analysis of gene expression revealed changes in transcript levels of {approx}40% of genes ({approx}1300 out of 3198 ORFs encoded in the genome) during transition from early-exponential to late-stationary phase. K-means clustering of genes with statistically significant changes in transcript levels identified six distinct clusters of temporal expression. Broadly, genes involved in energy production, translation, glycolysis and amino acid, nucleotide and coenzyme metabolism displayed a decreasing trend in gene expression as cells entered stationary phase. In comparison, genes involved in cell structure and motility, chemotaxis, signal transduction and transcription showed an increasing trend in gene expression. Hierarchical clustering of cellulosome-related genes highlighted temporal changes in composition of this multi-enzyme complex during batch growth on crystalline cellulose, with increased expression of several genes encoding hydrolytic enzymes involved in degradation of non-cellulosic substrates in stationary phase. Overall, the results suggest that under low substrate availability, growth slows due to decreased metabolic potential and C. thermocellum alters its gene expression to (i) modulate the composition of cellulosomes that are released into the environment with an increased proportion of enzymes than can efficiently degrade plant polysaccharides other than cellulose, (ii) enhance signal transduction and chemotaxis mechanisms perhaps to sense the oligosaccharide hydrolysis products, and nutrient gradients generated through the action of cell-free cellulosomes and, (iii) increase cellular motility for potentially orienting the cells movement towards positive environmental signals leading to nutrient sources. Such a coordinated cellular strategy would increase its chances of survival in natural ecosystems where feast and famine conditions are frequently encountered.

  11. EA-1694: Department of Energy Loan Guarantee to Highlands Ethanol, LLC, for the Cellulosic Ethanol Facility in Highlands County, Florida

    Broader source: Energy.gov [DOE]

    This EA will evaluate the environmental impacts of a proposal to issue a Federal loan guarantee to Highlands Ethanol, LLC, for a cellulosic ethanol facility in Highlands County, Florida. This EA is on hold.

  12. Equilibrium Water Contents of Cellulose Films Determined via Solvent Exchange and Quartz Crystal Microbalance with Dissipation Monitoring

    SciTech Connect (OSTI)

    Kittle, Joshua D.; Du, Xiaosong; Jiang, Feng; Qian, Chen; Heinze, Thomas; Roman, Maren; Esker, Alan R.

    2011-08-08

    Model cellulose surfaces have attracted increasing attention for studying interactions with cell wall matrix polymers and as substrates for enzymatic degradation studies. Quartz crystal microbalance with dissipation monitoring (QCM-D) solvent exchange studies showed that the water content of regenerated cellulose (RC) films was proportional to the film thickness (d) and was consistent with about five water molecules per anhydroglucose unit. Sulfated nanocrystalline cellulose (SNC) and desulfated nanocrystalline cellulose (DNC) films had comparable water contents and contained about five times more water than RC films. A cellulase mixture served as a probe for studies of substrate accessibility and degradation. Cellulase adsorption onto RC films was independent of d, whereas degradation times increased with d. However, adsorption onto SNC and DNC films increased with d, whereas cellulase degradation times for DNC films were independent of studied d. Enhanced access to guest molecules for SNC and DNC films revealed they are more porous than RC films.

  13. Cellulosome: a discrete cell surface organelle of Clostridium thermocellum which exhibits separate antigenic, cellulose-binding and various cellulolytic activities

    SciTech Connect (OSTI)

    Lamed, R.; Setter, E.; Kenig, R.; Bayer, E.A.

    1983-01-01

    A cellulose-binding, cellulase-containing factor, previously demonstrated to be responsible for the adherence of Clostridium thermocellum to cellulose, has been partly purified from cellulose-grown cells of this organism. The biochemical properties of the cell-associated factor were compared to those of the previously isolated extracellular factor, and a high degree of similarity was found in the properties and behavior of the two forms. Partial denaturation of the purified extracellular factor by treatment with sodium dodecyl sulfate at 25/sup 0/C, broke the complex into a reproducible pattern of smaller subcomplexes which were analyzed for their respective cellulolytic activities and corresponding subunit composition. The data indicate that a defined arrangement of endo- and exo-cellulases are organized in the parent complex. The term cellulosome is proposed for the cell-associated, cellulose-binding, multicellulase complex. 20 references, 8 figures, 2 tables.

  14. Method of increasing the rate of hydration of activated hydroxyethyl cellulose compositions

    SciTech Connect (OSTI)

    House, R.F.; Hoover, L.D.

    1987-08-11

    This patent describes a method of producing a well servicing fluid wherein a first solution containing zing bromide is mixed with at least one second solution having dissolved therein a salt selected from the group consisting of calcium chloride, calcium bromide, and mixtures thereof, the improvement which comprises the following steps in the order indicated: (a) admixing a hydroxyethyl cellulose composition with the second solution to produce a viscosified solution and (b) thereafter admixing the viscosified solution with the first solution containing zinc bromide and having a density of at least 17.0 ppg to give the desired well servicing fluid having a density in the range from about 14.2 ppg to about 18.0 ppg, the hydroxyethyl cellulose being activated prior to admixture so as to substantially hydrate or solubilize in the second solution at ambient temperatures.

  15. Nonvolatile memory behavior of nanocrystalline cellulose/graphene oxide composite films

    SciTech Connect (OSTI)

    Valentini, L. Cardinali, M.; Fortunati, E.; Kenny, J. M.

    2014-10-13

    With the continuous advance of modern electronics, the demand for nonvolatile memory cells rapidly grows. In order to develop post-silicon electronic devices, it is necessary to find innovative solutions to the eco-sustainability problem of materials for nonvolatile memory cells. In this work, we realized a resistive memory device based on graphene oxide (GO) and GO/cellulose nanocrystals (CNC) thin films. Aqueous solutions of GO and GO with CNC have been prepared and drop cast between two metal electrodes. Such thin-film based devices showed a transition between low and high conductivity states upon the forward and backward sweeping of an external electric field. This reversible current density transition behavior demonstrates a typical memory characteristic. The obtained results open an easy route for electronic information storage based on the integration of nanocrystalline cellulose onto graphene based devices.

  16. Recovery and utilization of cellulosic feedstock from steam classified municipal solid wastes

    SciTech Connect (OSTI)

    Eley, M.H.; Guinn, G.R.; Bagchi, J.

    1994-12-31

    Steam classification is a process for treatment of commingled municipal solid wastes that transforms the pulp and paper materials and most food and soft yard wastes into a fairly uniform product. After processing and partial drying, most of the transformed cellulosic material can be easily separated from the non-biomass materials by conventional screening and air classification to yield a biomass feedstock. The focus of this report is the enzymatic hydrolysis of the cellulosic component of this feedstock to produce glucose for fermentation to ethanol. Several commercially available cellulases were tested on the feedstock, and optimum conditions were found for glucose production, including enzyme loading, feedstock concentration, hydrolysis rate, conversion efficiency, and glucose yield.

  17. Cellulose fermentation by an asporogenous mutant and an ethanol-tolerant mutant of Clostridium thermocellum

    SciTech Connect (OSTI)

    Tailliez, P.; Girard, H.; Longin, R.; Beguin, P.; Millet, J. )

    1989-01-01

    Two mutants of Clostridium thermocellum were isolated after UV light mutagenesis. Mutant A1, selected as asporogenous, exhibited a fermentation pattern similar to that of the wild type. However, at pH 6.5, the mutant degraded 12% more cellulose than did the wild type, leading to enhanced ethanol production. Mutant 647, selected as ethanol tolerant, was able to grow in medium containing 4% ethanol. During the early stage of the exponential growth phase, ethanol was produced as the main product, up to a concentration of about 9 g/liter. After 3 days of culture, 48.3 g (89% of the initial amount) of degraded cellulose per liter was fermented into 12.7 g of ethanol per liter.

  18. Pathway engineering and organism development for ethanol production from cellulosic biomass using thermophilic bacteria

    SciTech Connect (OSTI)

    Hogsett, D.A.L.; Klapatch, T.A.; Lynd, L.R.

    1995-12-01

    Thermophilic bacteria collectively exemplify organisms that produce both cellulose and ethanol while fermenting both the cellulose and hemicellulose components of biomass. As a result, thermophiles could be the basis for highly streamlined and cost-effective processes for production of renewable fuels and chemicals. Recent research results involving ethanol production from thermophilic bacteria will be presented, with a primary focus on work pursuant to molecularly-based pathway engineering to increase ethanol selectivity. Specifically, we will describe the restriction endonuclease systems operative in Clostridium thermocellum and C. thermosaccharolyticum, as well as efforts to document and improve transformation of these organisms and to clone key catabolic enzymes. In addition, selected results from fermentation studies will be presented as necessary in order to present a perspective on the status of thermophilic ethanol production.

  19. Catalytic Mechanism of Cellulose Degradation by a Cellobiohydrolase, CelS

    SciTech Connect (OSTI)

    Saharay, Moumita; Guo, Hong; Smith, Jeremy C

    2010-08-01

    The hydrolysis of cellulose is the bottleneck in cellulosic ethanol production. The cellobiohydrolase CelS from Clostridium thermocellum catalyzes the hydrolysis of cello-oligosaccharides via inversion of the anomeric carbon. Here, to examine key features of the CelS-catalyzed reaction, QM/MM (SCCDFTB/MM) simulations are performed. The calculated free energy profile for the reaction possesses a 19 kcal/mol barrier. The results confirm the role of active site residue Glu87 as the general acid catalyst in the cleavage reaction and show that Asp255 may act as the general base. A feasible position in the reactant state of the water molecule responsible for nucleophilic attack is identified. Sugar ring distortion as the reaction progresses is quantified. The results provide a computational approach that may complement the experimental design of more efficient enzymes for biofuel production.

  20. New process to convert lipids and cellulosic biomass to renewable diesel -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Innovation Portal Vehicles and Fuels Vehicles and Fuels Biomass and Biofuels Biomass and Biofuels Advanced Materials Advanced Materials Find More Like This Return to Search New process to convert lipids and cellulosic biomass to renewable diesel University of Colorado Contact CU About This Technology Technology Marketing SummaryA research team at the University of Colorado Denver led by Arunprakash Karunanithi has developed a decarboxylation process that will provide pathways to

  1. Thermal properties and use of cellulosic insulation produced from recycled paper

    SciTech Connect (OSTI)

    Yarbrough, D.W.; Wilkes, K.E.

    1996-10-01

    Information regarding the use of building insulation made from recycled paper is summarized. Results of previous experimental studies to determine thermal conductivities, settled density, and flammability are outlined, and calculation methods for thermal resistivity are presented in detail. Other performance factors affecting installed insulation are discussed. Industry data and information on the production, use, and economics of cellulosic insulation for residential and commercial buildings are provided. 34 refs., 4 figs., 1 tab.

  2. Physical Energy Accounting in California: A Case Study of Cellulosic Ethanol Production

    SciTech Connect (OSTI)

    Coughlin, Katie; Fridley, David

    2008-07-17

    California's target for greenhouse gas reduction in part relies on the development of viable low-carbon fuel alternatives to gasoline. It is often assumed that cellulosic ethanol--ethanol made from the structural parts of a plant and not from the food parts--will be one of these alternatives. This study examines the physical viability of a switchgrass-based cellulosic ethanol industry in California from the point of view of the physical requirements of land, water, energy and other material use. Starting from a scenario in which existing irrigated pastureland and fiber-crop land is converted to switchgrass production, the analysis determines the total acreage and water supply available and the resulting total biofuel feedstock output under different assumed yields. The number and location of cellulosic ethanol biorefineries that can be supported is also determined, assuming that the distance from field to biorefinery would be minimized. The biorefinery energy input requirement, available energy from the fraction of biomass not converted to ethanol, and energy output is calculated at various levels of ethanol yields, making different assumptions about process efficiencies. The analysis shows that there is insufficient biomass (after cellulose separation and fermentation into ethanol) to provide all the process energy needed to run the biorefinery; hence, the purchase of external energy such as natural gas is required to produce ethanol from switchgrass. The higher the yield of ethanol, the more external energy is needed, so that the net gains due to improved process efficiency may not be positive. On 2.7 million acres of land planted in switchgrass in this scenario, the switchgrass outputproduces enough ethanol to substitute for only 1.2 to 4.0percent of California's gasoline consumption in 2007.

  3. Enhanced cellulose fermentation by an asporogenous and ethanol-tolerant mutant of Clostridium thermocellum

    SciTech Connect (OSTI)

    Tailliez, P.; Girard, H.; Millet, J.; Beguin, P. )

    1989-01-01

    A mutant of Clostridium thermocellum isolated after UV mutagenesis and selection for resistance to fluoropyruvate was found to be asporogenous and ethanol tolerant. The mutant was also an ethanol hyperproducer, able to ferment 63 g of cellulose into 14.5 g of ethanol per liter of medium. The ratio of ethanol to total organic acids produced by the mutant was increased, and H{sub 2} production was decreased. Culture conditions were optimized for ethanol production by the new strain.

  4. Relationship between the fine structure of native cellulose and cellulose degradability by the cellulase complexes of Trichoderma reesei and Clostridium thermocellum

    SciTech Connect (OSTI)

    Weimer, P.J.; Weston, W.M.

    1985-11-01

    The initial rate of hydrolysis of six commercially available native (type 1) celluloses was determined for the crude cellulase complexes of the thermophilic anaerobic bacterium C. thermocellum and the mesophilic fungus T. reesei. These rates were then compared with certain physical features of the substrates in an attempt to determine the role of cellulose structure in its degradability. Within the substrate series tested, the Clostridium system showed a greater relative range in rate of enzymatic hydrolysis than did the Trichoderma system. Average correlation coefficients for the kinetic rates from bacterial and fungal cellulases, respectively, and the following physical parameters were obtained: relative crystallinity index (RCI) from acid hydrolysis, -0.61 and -0.85; RCI from x-ray diffraction, -0.75 and -0.89; accessibility to formylation at 4 degrees C, +0.49 and +0.60; nonaccessibility to formylation at 65 degrees, -0.40 and - 0.73; fiber saturation point, +0.83 and +0.85. Kinetic and pore volume distribution data suggest that the rate-limiting components of both the bacterial and fungal cellulase systems are of similar size, approximately 43 Angstroms along one axis. 32 references.

  5. Integration of Feedstock Assembly System and Cellulosic Ethanol Conversion Models to Analyze Bioenergy System Performance

    SciTech Connect (OSTI)

    Jared M. Abodeely; Douglas S. McCorkle; Kenneth M. Bryden; David J. Muth; Daniel Wendt; Kevin Kenney

    2010-09-01

    Research barriers continue to exist in all phases of the emerging cellulosic ethanol biorefining industry. These barriers include the identification and development of a sustainable and abundant biomass feedstock, the assembly of viable assembly systems formatting the feedstock and moving it from the field (e.g., the forest) to the biorefinery, and improving conversion technologies. Each of these phases of cellulosic ethanol production are fundamentally connected, but computational tools used to support and inform analysis within each phase remain largely disparate. This paper discusses the integration of a feedstock assembly system modeling toolkit and an Aspen Plus® conversion process model. Many important biomass feedstock characteristics, such as composition, moisture, particle size and distribution, ash content, etc. are impacted and most effectively managed within the assembly system, but generally come at an economic cost. This integration of the assembly system and the conversion process modeling tools will facilitate a seamless investigation of the assembly system conversion process interface. Through the integrated framework, the user can design the assembly system for a particular biorefinery by specifying location, feedstock, equipment, and unit operation specifications. The assembly system modeling toolkit then provides economic valuation, and detailed biomass feedstock composition and formatting information. This data is seamlessly and dynamically used to run the Aspen Plus® conversion process model. The model can then be used to investigate the design of systems for cellulosic ethanol production from field to final product.

  6. Life Cycle Assessment of Switchgrass Cellulosic Ethanol Production in the Wisconsin and Michigan Agricultural Contexts

    SciTech Connect (OSTI)

    Sinistore, Julie C.; Reinemann, D. J.; Izaurralde, Roberto C.; Cronin, Keith R.; Meier, Paul J.; Runge, Troy M.; Zhang, Xuesong

    2015-04-25

    Spatial variability in yields and greenhouse gas emissions from soils has been identified as a key source of variability in life cycle assessments (LCAs) of agricultural products such as cellulosic ethanol. This study aims to conduct an LCA of cellulosic ethanol production from switchgrass in a way that captures this spatial variability and tests results for sensitivity to using spatially averaged results. The Environment Policy Integrated Climate (EPIC) model was used to calculate switchgrass yields, greenhouse gas (GHG) emissions, and nitrogen and phosphorus emissions from crop production in southern Wisconsin and Michigan at the watershed scale. These data were combined with cellulosic ethanol production data via ammonia fiber expansion and dilute acid pretreatment methods and region-specific electricity production data into an LCA model of eight ethanol production scenarios. Standard deviations from the spatial mean yields and soil emissions were used to test the sensitivity of net energy ratio, global warming potential intensity, and eutrophication and acidification potential metrics to spatial variability. Substantial variation in the eutrophication potential was also observed when nitrogen and phosphorus emissions from soils were varied. This work illustrates the need for spatially explicit agricultural production data in the LCA of biofuels and other agricultural products.

  7. The improvement in functional characteristics of eco-friendly composites made of natural rubber and cellulose

    SciTech Connect (OSTI)

    Araki, Kunihiro; Kaneko, Shonosuke; Matsumoto, Koki; Tanaka, Tatsuya; Arao, Yoshihiko; Nagatani, Asahiro

    2015-05-22

    We investigated the efficient use of cellulose to resolve the problem of the depletion of fossil resources. In this study, as the biomass material, the green composite based on natural rubber (NR) and the flake-shaped cellulose particles (FSCP) was produced. In order to further improvement of functional characteristics, epoxidized natural rubber (ENR) was also used instead of NR. The FSCP were produced by mechanical milling in a planetary ball mill with a grinding aid as a cellulose aggregation inhibitor. Moreover, talc and mica particles were used to compare with FSCP. NR and ENR was mixed with vulcanizing agents and then each filler was added to NR compound in an internal mixer. The vulcanizing agents are as follows: stearic acid, zinc oxide, sulfur, and vulcanization accelerator. The functionalities of the composites were evaluated by a vibration-damping experiment and a gas permeability experiment. As a result, we found that FSCP filler has effects similar to (or more than) inorganic filler in vibration-damping and O{sub 2} barrier properties. And then, vibration- damping and O{sub 2} barrier properties of the composite including FSCP was increased with use of ENR. In particular, we found that ENR-50 composite containing 50 phr FSCP has three times as high vibration-damping property as ENR-50 without FSCP.

  8. Bioconversion of cellulose into ethanol by Clostridium thermocellum--product inhibition

    SciTech Connect (OSTI)

    Kundu, S.; Ghose, T.K.; Mukhopadhyay, S.N.

    1983-04-01

    Direct anaerobic bioconversion of cellulosic substances into ethanol by Clostridium thermocellum ATCC 27405 has been carried out at 60/sup 0/C and pH 7.0 (initial for 100 L under continuous sparging of oxygen free nitrogen in a culture vessel. Raw bagasse, mild alkali-treated bagasse, and solka floc were used as substrates. The extent of conversion of raw bagasse (cellulose, 50%; hemicellulose, 25%; lignin, 19%) was observed as 52% (w/w) and 79% (w/w) in the case of mild alkali and steam-treated bagasse (cellulose, 72%; hemicellulose, 11%; lignin, 12%), respectively. Use of bagasse concentration above 10 g/L showed a decreased rate in ethanol production. An inoculum age between 28-30 h and cell mass content of 0.027-0.036 g/L (dry basis) were used. The results obtained with raw and pretreated bagasse have been compared with those of highly pure Solka Floc (hemicellulose, 10%). Studies on the product inhibition indicated a linear fall of the percent of survivors with time. An Arrhenius type correlation between the cell decay rate constant and the product concentration was predicted. Even at low levels, the inhibitory effects of products on cell viability, the specific growth rate, and extracellular enzyme were observed.

  9. A pilot plant scale reactor/separator for ethanol from cellulosics. ERIP/DOE quarterly report no. 3 and 4

    SciTech Connect (OSTI)

    Dale, M.C.; Moelhman, M.; Butters, R.

    1998-12-01

    The objective of this project is to develop and demonstrate a continuous, low energy process for the conversion of cellulosics to ethanol. This process involves a pretreatment step followed by enzymatic release of sugars and the consecutive simultaneous saccharification/fermentation (SSF) of cellulose (glucans) followed by hemi-cellulose (pentosans) in a multi-stage continuous stirred reactor separator (CSRS). During quarters 3 and 4, we have completed a literature survey on cellulase production, activated one strain of Trichoderma reesei. We continued developing our proprietary Steep Delignification (SD) process for biomass pretreatment. Some problems with fermentations were traces to bad cellulase enzyme. Using commercial cellulase enzymes from Solvay & Genecor, SSF experiments with wheat straw showed 41 g/L ethanol and free xylose of 20 g/L after completion of the fermentation. From corn stover, we noted 36 g/L ethanol production from the cellulose fraction of the biomass, and 4 g/L free xylose at the completion of the SSF. We also began some work with paper mill sludge as a cellulose source, and in some preliminary experiments obtained 23 g/L ethanol during SSF of the sludge. During year 2, a 130 L process scale unit will be operated to demonstrate the process using straw or cornstalks. Co-sponsors of this project include the Indiana Biomass Grants Program, Bio-Process Innovation.

  10. Compositions for enhancing hydroysis of cellulosic material by cellulolytic enzyme compositions

    SciTech Connect (OSTI)

    Quinlan, Jason; Xu, Feng; Sweeney, Matthew; Johansen, Katja Salomon

    2014-09-30

    The present invention relates to compositions comprising a GH61 polypeptide having cellulolytic enhancing activity and an organic compound comprising a carboxylic acid moiety, a lactone moiety, a phenolic moiety, a flavonoid moiety, or a combination thereof, wherein the combination of the GH61 polypeptide having cellulolytic enhancing activity and the organic compound enhances hydrolysis of a cellulosic material by a cellulolytic enzyme compared to the GH61 polypeptide alone or the organic compound alone. The present invention also relates to methods of using the compositions.

  11. Breaking the Biological Barriers to Cellulosic Ethanol: A Joint Research Agenda

    SciTech Connect (OSTI)

    Houghton, John; Weatherwax, Sharlene; Ferrell, John

    2006-06-07

    The Biomass to Biofuels Workshop, held December 7–9, 2005, was convened by the Department of Energy’s Office of Biological and Environmental Research in the Office of Science; and the Office of the Biomass Program in the Office of Energy Efficiency and Renewable Energy. The purpose was to define barriers and challenges to a rapid expansion of cellulosic-ethanol production and determine ways to speed solutions through concerted application of modern biology tools as part of a joint research agenda. Although the focus was ethanol, the science applies to additional fuels that include biodiesel and other bioproducts or coproducts having critical roles in any deployment scheme.

  12. Morphological changes in the cellulose and lignin components of biomass occur at different stages of steam pretreatment

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Pingali, Sai Venkatesh; O'Neill, Hugh Michael; Nishiyama, Yoshiharu; He, Lilin; Melnichenko, Yuri B.; Urban, Volker S.; Petridis, Loukas; Davison, Brian H.; Langan, Paul

    2014-01-09

    Morphological changes to the different components of lignocellulosic biomass were observed as they occurred during steam pretreatment by placing a pressure reaction cell in a neutron beam and collecting time-resolved neutron scattering data. Changes to cellulose morphology occurred mainly in the heating phase, whereas changes in lignin morphology occurred mainly in the holding and cooling phases. During the heating stage, water is irreversibly expelled from cellulose microfibrils as the elementary fibrils coalesce. During the holding phase lignin aggregates begin to appear and they increase in size most noticeably during the cooling phase. This experiment demonstrates the unique information that inmore » situ small angle neutron scattering studies of pretreatment can provide. This approach is potentially useful in optimizing the heating, holding and cooling stages of pretreatments to allow the exact size and nature of lignin aggregates to be controlled in order to enhance enzyme accessibility to cellulose and therefore the efficiency of biomass conversion.« less

  13. Rapid response of tree cellulose radiocarbon content to changes in atmospheric /sup 14/CO/sub 2/ concentration

    SciTech Connect (OSTI)

    Grootes, P.M.; Farwell, G.W.; Schmidt, F.H.; Leach, D.D.; Stuiver, M.

    1987-01-01

    A detailed radial profile for the /sup 14/C concentration in tree cellulose, covering growth rings for the years 1962-1964, was obtained for a Sitka spruce of the US Pacific Coast using accelerator mass spectrometry. The tree cellulose /sup 14/C closely follows atmospheric /sup 14/CO/sub 2/ concentrations, responding to changes with a delay of not more than a few weeks. The delay in response is mostly due to the addition of between 13 and 28% of biospheric CO/sub 2/ to the canopy-air CO/sub 2/ used by the tree for stem cellulose. Delayed incorporation and the use of stored photosynthate of the previous fall appear less important. 63 refs., 4 figs., 3 tabs.

  14. Reducing Enzyme Costs Increases the Market Potential of Biofuels (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-08-01

    Cellulosic ethanol prices depend heavily on the cost of the cellulase enzymes used to break down the biomass into fermentable sugars. To reduce these costs, NREL partnered with two leading enzyme companies, Novozymes and Genencor, to engineer new cellulase enzymes that are exceptionally good at breaking down cellulose. Genencor is now part of DuPont Industrial Biosciences.

  15. Develop and Demonstrate the Cellulose to Ethanol Process: Executive Summary of the Final Technical Report, 17 September 1980 - 17 March 1982

    SciTech Connect (OSTI)

    Emert, George H.; Becker, Dana K.; Bevernitz, Kurt J.; Gracheck, Stephen J.; Kienholz, Eldon W.; Rivers, Dougals B.; Zoldak, Bernadette R.; Woodford, Lindley C.

    1982-01-01

    The Biomass Research Center at the University of Arkansas was contracted by the Solar Energy Research Institute to 'Develop and Demonstrate the Cellulose to Ethanol Process.' The purpose of the contract was to accelerate site selection, site specific engineering, and research and development leading to the determination of the feasibility of economically operating a cellulose to ethanol commercial scale plant.

  16. Draft Genome Sequences for Clostridium thermocellum Wild-Type Strain YS and Derived Cellulose Adhesion-Defective Mutant Strain AD2

    SciTech Connect (OSTI)

    Brown, Steven D; Lamed, Raphael; Morag, Ely; Borovok, Ilya; Shoham, Yuval; Klingeman, Dawn Marie; Johnson, Courtney M; Yang, Zamin; Land, Miriam L; Utturkar, Sagar M; Keller, Martin; Bayer, Edward A

    2012-01-01

    Clostridium thermocellum wild-type strain YS is an anaerobic, thermophilic, cellulolytic bacterium capable of directly converting cellulosic substrates into ethanol. Strain YS and a derived cellulose adhesion-defective mutant strain AD2 played pivotal roles in describing the original cellulosome concept. We present their draft genome sequences.

  17. NREL Proves Cellulosic Ethanol Can Be Cost Competitive (Fact Sheet), Innovation Impact: Bioenergy, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FS-6A42-60663 * November 2013 NREL prints on paper that contains recycled content. NREL Proves Cellulosic Ethanol Can Be Cost Competitive Ethanol from non-food sources-known as "cellulosic ethanol"-is a near-perfect transportation fuel: it is clean, domestic, abundant, and renewable, and it can poten- tially replace 30% of the petroleum consumed in the United States, but its relatively high cost has limited its market. That changed in 2012, when the National Renewable Energy Laboratory

  18. Modification of Corn Starch Ethanol Refinery to Efficiently Accept Various High-Impact Cellulosic Feedstocks

    SciTech Connect (OSTI)

    Derr, Dan

    2013-12-30

    The goal of the Corn-to-Cellulosic Migration (CCM) pilot facility was to demonstrate the implementation of advanced technologies and methods for conversion of non-food, cellulosic feedstocks into ethanol, assess the economics of the facility and evaluate potential environmental benefits for biomass to fuels conversion. The CCM project was comprised of design, build, and operate phases for the CCM pilot facility as well as research & development, and modeling components. The CCM pilot facility was designed to process 1 tonne per day of non-food biomass and biologically convert that biomass to ethanol at a rate of 70 gallons per tonne. The plant demonstrated throughputs in excess of 1 tonne per day for an extended run of 1400 hours. Although target yields were not fully achieved, the continuous operation validated the design and operability of the plant. These designs will permit the design of larger scale operations at existing corn milling operations or for greenfield plants. EdeniQ, a partner in the project and the owner of the pilot plant, continues to operate and evaluate other feedstocks.

  19. Effect of moisture on the traction-separation behavior of cellulose nanocrystal interfaces

    SciTech Connect (OSTI)

    Sinko, Robert; Keten, Sinan

    2014-12-15

    Interfaces and stress transfer between cellulose nanocrystals (CNCs) dictate the mechanical properties of hierarchical cellulose materials such as neat films and nanocomposites. An interesting question that remains is how the behavior of these interfaces changes due to environmental stimuli, most notably moisture. We present analyses on the traction-separation behavior between I? CNC elementary fibrils, providing insight into how the presence of a single atomic layer of water at these interfaces can drastically change the mechanical behavior. We find that molecular water at the interface between hydrophilic CNC surfaces has a negligible effect on the tensile separation adhesion energy. However, when water cannot hydrogen bond easily to the surface (i.e., hydrophobic surface), it tends to maintain hydrogen bonds with other water molecules across the interface and form a capillary bridge that serves to increase the energy required to separate the crystals. Under shear loading, water lowers the energy barriers to sliding by reducing the atomic friction and consequently the interlayer shear modulus between crystals. Our simulations indicate that these nanoscale interfaces and physical phenomena such as interfacial adhesion, interlayer shear properties, and stick-slip friction behavior can be drastically altered by the presence of water.

  20. Mixing behavior of a model cellulosic biomass slurry during settling and resuspension

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Crawford, Nathan C.; Sprague, Michael A.; Stickel, Jonathan J.

    2016-01-29

    Thorough mixing during biochemical deconstruction of biomass is crucial for achieving maximum process yields and economic success. However, due to the complex morphology and surface chemistry of biomass particles, biomass mixing is challenging and currently it is not well understood. This study investigates the bulk rheology of negatively buoyant, non-Brownian α-cellulose particles during settling and resuspension. The torque signal of a vane mixer across two distinct experimental setups (vane-in-cup and vane-in-beaker) was used to understand how mixing conditions affect the distribution of biomass particles. During experimentation, a bifurcated torque response as a function of vane speed was observed, indicating thatmore » the slurry transitions from a “settling-dominant” regime to a “suspension-dominant” regime. The torque response of well-characterized fluids (i.e., DI water) were then used to empirically identify when sufficient mixing turbulence was established in each experimental setup. The predicted critical mixing speeds were in agreement with measured values, suggesting that secondary flows are required in order to keep the cellulose particles fully suspended. In addition, a simple scaling relationship was developed to model the entire torque signal of the slurry throughout settling and resuspension. Furthermore, qualitative and semi-quantitative agreement between the model and experimental results was observed.« less

  1. Vertical Integration of Biomass Saccharification of Enzymes for Sustainable Cellulosic Biofuel Production in a Biorefinery

    SciTech Connect (OSTI)

    Manoj Kumar, PhD

    2011-05-09

    Lignocellulosic biomass is the most abundant, least expensive renewable natural biological resource for the production of biobased products and bioenergy is important for the sustainable development of human civilization in 21st century. For making the fermentable sugars from lignocellulosic biomass, a reduction in cellulase production cost, an improvement in cellulase performance, and an increase in sugar yields are all vital to reduce the processing costs of biorefineries. Improvements in specific cellulase activities for non-complexed cellulase mixtures can be implemented through cellulase engineering based on rational design or directed evolution for each cellulase component enzyme, as well as on the reconstitution of cellulase components. In this paper, we will provide DSM's efforts in cellulase research and developments and focus on limitations. Cellulase improvement strategies based on directed evolution using screening on relevant substrates, screening for higher thermal tolerance based on activity screening approaches such as continuous culture using insoluble cellulosic substrates as a powerful selection tool for enriching beneficial cellulase mutants from the large library. We will illustrate why and how thermostable cellulases are vital for economic delivery of bioproducts from cellulosic biomass using biochemical conversion approach.

  2. Integrated cellulosic enzymes hydrolysis and fermentative advanced yeast bioconversion solution ready for biomass biorefineries

    SciTech Connect (OSTI)

    Manoj Kumar, PhD

    2011-05-04

    Lignocellulosic biomass is the most abundant, least expensive renewable natural biological resource for the production of biobased products and bioenergy is important for the sustainable development of human civilization in 21st century. For making the fermentable sugars from lignocellulosic biomass, a reduction in cellulase production cost, an improvement in cellulase performance, and an increase in sugar yields are all vital to reduce the processing costs of biorefineries. Improvements in specific cellulase activities for non-complexed cellulase mixtures can be implemented through cellulase engineering based on rational design or directed evolution for each cellulase component enzyme, as well as on the reconstitution of cellulase components. In this paper, we will provide DSM's efforts in cellulase research and developments and focus on limitations. Cellulase improvement strategies based on directed evolution using screening on relevant substrates, screening for higher thermal tolerance based on activity screening approaches such as continuous culture using insoluble cellulosic substrates as a powerful selection tool for enriching beneficial cellulase mutants from the large library. We will illustrate why and how thermostable cellulases are vital for economic delivery of bioproducts from cellulosic biomass using biochemical conversion approach.

  3. Effect of yeast extract and vitamin B sub 12 on ethanol production from cellulose by Clostridium thermocellum I-1-B

    SciTech Connect (OSTI)

    Sato, Kanji; Goto, Shingo; Yonemura, Sotaro; Sekine, Kenji; Okuma, Emiko; Takagi, Yoshio; Honnami, Koyu; Saiki, Takashi )

    1992-02-01

    Addition to media of yeast extract, a vitamin mixture containing vitamin B{sub 12}, biotin, pyridoxamine, and p-aminobenzoic acid, or vitamin B{sub 12} alone enhanced formation of ethanol but decreased lactate production in the fermentation of cellulose by Clostridium thermocellum I-1-B. A similar effect was not observed with C. thermocellum ATCC 27405 and JW20.

  4. Improved oxidation resistance of organic/inorganic composite atomic layer deposition coated cellulose nanocrystal aerogels

    SciTech Connect (OSTI)

    Smith, Sean W.; Matthews, David J.; Conley, John F., E-mail: jconley@eecs.oregonstate.edu [School of Electrical Engineering and Computer Science, 1148 Kelley Engineering Center, Oregon State University, Corvallis, Oregon 97331 (United States); Buesch, Christian; Simonsen, John [Department of Wood Science and Engineering, Oregon State University, 119 Richardson Hall, Corvallis, Oregon 97331 (United States)

    2014-07-01

    Cellulose nanocrystal (CNC) aerogels are coated with thin conformal layers of Al{sub 2}O{sub 3} using atomic layer deposition to form hybrid organic/inorganic nanocomposites. Electron probe microanalysis and scanning electron microscopy analysis indicated the Al{sub 2}O{sub 3} penetrated more than 1500??m into the aerogel for extended precursor pulse and exposure/purge times. The measured profile of coated fiber radius versus depth from the aerogel surface agrees well with simulations of precursor penetration depth in modeled aerogel structures. Thermogravimetric analysis shows that Al{sub 2}O{sub 3} coated CNC aerogel nanocomposites do not show significant thermal degradation below 295?C as compared with 175?C for uncoated CNC aerogels, an improvement of over 100?C.

  5. Saccharification of complex cellulosic substrates by the cellulase system from Clostridium thermocellum

    SciTech Connect (OSTI)

    Johnson, E.A.; Sakajoh, M.; Halliwell, G.; Madia, A.; Demain, A.L.

    1982-05-01

    True cellulase activity has been demonstrated in cell-free preparations from the thermophilic anaerobe Clostridium thermocellum. Such activity depends upon the presence of Ca/sup 2 +/ and a thiol-reducing agent of which dithiothreitol is the most promising. Under these conditions, native (cotton) and derived forms of cellulose (Avicel and filter paper) were all extensively solubilized at rates comparable with cellulase from Trichoderma reesei. Maximum activity of the Clostridium cellulase was displayed at 70/sup 0/C and at pH 5.7 and 6.1 on Avicel and carboxymethylcellulose, respectively. In the absence of substrate at temperatures up to 70/sup 0/C, carboxymethylcellulase was much more unstable than the Avicel-hydrolyzing activity.

  6. Saccharification of complex cellulosic substrates by the cellulase system from Clostridium thermocellum

    SciTech Connect (OSTI)

    Johnson, E.A.; Sakajoh, M.; Halliwell, G.; Madia, A.; Demain, A.L.

    1982-05-01

    True cellulase activity has been demonstrated in cell-free preparations from the thermophilic anaerobe Clostridium thermocellum. Such activity depends upon the presence of CA/sub 2//sup +/ and a thiol-reducing agent of which dithiothreitol is the most promising. Under these conditions, native (cotton) and derived forms of cellulose (Avicel and filter paper) were all extensively solubilized at rates comparable with cellulase from Trichoderma reesei. Maximum activity of the Clostridium cellulase was displayed at 70 degrees C and at pH 5.7 and 6.1 on Avicel and carboxymethylcellulose, respectively. In the absence of substrate at temperatures up to 70 degrees C, carboxymethylcellulase was much more unstable than the Avicel-hydrolyzing activity. (Refs. 26).

  7. Phase II Nuclide Partition Laboratory Study Influence of Cellulose Degradation Products on the Transport of Nuclides from SRS Shallow Land Burial Facilities

    SciTech Connect (OSTI)

    Serkiz, S.M.

    1999-10-04

    Degradation products of cellulosic materials (e.g., paper and wood products) can significantly influence the subsurface transport of metals and radionuclides. Codisposal of radionuclides with cellulosic materials in the E-Area slit trenches at the Savannah River Site (SRS) is, therefore, expected to influence nuclide fate and transport in the subsurface. Due to the complexities of these systems and the scarcity of site-specific data, the effects of cellulose waste loading and its subsequent influence on nuclide transport are not well established.

  8. Cellulose and lignin: Biodegradation. December 1985-May 1990 (A Bibliography from the Biobusiness data base). Report for December 1985-May 1990

    SciTech Connect (OSTI)

    Not Available

    1990-06-01

    This bibliography contains citations concerning the biodegradation of materials containing cellulose and lignin components. Natural wood decay and sludge digestion are considered. Detailed chemical and physical mechanisms of degradation and research on microorganisms involved are discussed for a variety of cellulose and lignin containing materials including straw, municipal wastes, living trees, paper, lumber, and grasses. Genetic engineering studies regarding the isolation, preparation, and characterization of suitable microorganisms for cellulose and lignin degradation are included. (This updated bibliography contains 135 citations, 48 of which are new entries to the previous edition.)

  9. Neutron Reflectometry and QCM-D Study of the Interaction of Cellulase Enzymes with Films of Amorphous Cellulose

    SciTech Connect (OSTI)

    Halbert, Candice E; Ankner, John Francis; Kent, Michael S; Jaclyn, Murton K; Browning, Jim; Cheng, Gang; Liu, Zelin; Majewski, Jaroslaw; Supratim, Datta; Michael, Jablin; Bulent, Akgun; Alan, Esker; Simmons, Blake

    2011-01-01

    Improving the efficiency of enzymatic hydrolysis of cellulose is one of the key technological hurdles to reduce the cost of producing ethanol and other transportation fuels from lignocellulosic material. A better understanding of how soluble enzymes interact with insoluble cellulose will aid in the design of more efficient enzyme systems. We report a study involving neutron reflectometry (NR) and quartz crystal microbalance with dissipation (QCM-D) of the interaction of a commercial fungal enzyme extract (T. viride), two purified endoglucanses from thermophilic bacteria (Cel9A from A. acidocaldarius and Cel5A from T. maritima), and a mesophilic fungal endoglucanase (Cel45A from H. insolens) with amorphous cellulose films. The use of amorphous cellulose is motivated by the promise of ionic liquid pretreatment as a second generation technology that disrupts the native crystalline structure of cellulose. NR reveals the profile of water through the film at nm resolution, while QCM-D provides changes in mass and film stiffness. At 20 oC and 0.3 mg/ml, the T. viride cocktail rapidly digested the entire film, beginning from the surface followed by activity throughout the bulk of the film. For similar conditions, Cel9A and Cel5A were active for only a short period of time and only at the surface of the film, with Cel9A releasing 40 from the ~ 700 film and Cel5A resulting in only a slight roughening/swelling effect at the surface. Subsequent elevation of the temperature to the Topt in each case resulted in a very limited increase in activity, corresponding to the loss of an additional 60 from the film for Cel9A and 20 from the film for Cel5A, and very weak penetration into and digestion within the bulk of the film, before the activity again ceased. The results for Cel9A and Cel5A contrast sharply with results for Cel45A where very rapid and extensive penetration and digestion within the bulk of the film was observed at 20 C. We speculate that the large differences are due to the use of the thermophilic enzymes far below their optimal temperatures and also the presence of a cellulose binding module (CBM) on Cel45A while the thermophilic enzymes lack a CBM.

  10. Effects of Plant Cell Wall Matrix Polysaccharides on Bacterial Cellulose Structure Studied with Vibrational Sum Frequency Generation Spectroscopy and X-ray Diffraction

    SciTech Connect (OSTI)

    Park, Yong Bum; Lee, Christopher M; Kafle, Kabindra; Park, Sunkyu; Cosgrove, Daniel; Kim, Seong H

    2014-07-14

    The crystallinity, allomorph content, and mesoscale ordering of cellulose produced by Gluconacetobacter xylinus cultured with different plant cell wall matrix polysaccharides were studied with vibrational sum frequency generation (SFG) spectroscopy and X-ray diffraction (XRD).

  11. Combined enzyme mediated fermentation of cellulose and xylose to ethanol by Schizosaccharomyces pombe, cellulase, [beta]-glucosidase, and xylose isomerase

    DOE Patents [OSTI]

    Lastick, S.M.; Mohagheghi, A.; Tucker, M.P.; Grohmann, K.

    1994-12-13

    A process for producing ethanol from mixed sugar streams from pretreated biomass comprising xylose and cellulose using enzymes to convert these substrates to fermentable sugars; selecting and isolating a yeast Schizosaccharomyces pombe ATCC No. 2476, having the ability to ferment these sugars as they are being formed to produce ethanol; loading the substrates with the fermentation mix composed of yeast, enzymes and substrates; fermenting the loaded substrates and enzymes under anaerobic conditions at a pH range of between about 5.0 to about 6.0 and at a temperature range of between about 35 C to about 40 C until the fermentation is completed, the xylose being isomerized to xylulose, the cellulose being converted to glucose, and these sugars being concurrently converted to ethanol by yeast through means of the anaerobic fermentation; and recovering the ethanol. 2 figures.

  12. Tubular structured hierarchical mesoporous titania material derived from natural cellulosic substances and application as photocatalyst for degradation of methylene blue

    SciTech Connect (OSTI)

    Huang, Haiqing; Liu, Xiaoyan; Huang, Jianguo

    2011-11-15

    Graphical abstract: Bio-inspired, tubular structured hierarchical mesoporous titania material with high photocatalytic activity under UV light was fabricated employing natural cellulosic substance (cotton) as hard template and cetyltrimethylammonium bromide (CTAB) surfactant as soft template using a one-pot sol-gel method. Highlights: {yields} Tubular structured mesoporous titania material was fabricated by sol-gel method. {yields} The titania material faithfully recorded the hierarchical structure of the template substrate (cotton). {yields} The titania material exhibited high photocatalytic activity in decomposition of methylene blue. -- Abstract: Bio-inspired, tubular structured hierarchical mesoporous titania material was designed and fabricated employing natural cellulosic substance (cotton) as hard template and cetyltrimethylammonium bromide (CTAB) surfactant as soft template by one-pot sol-gel method. The tubular structured hierarchical mesoporous titania material processes large specific surface area (40.23 m{sup 2}/g) and shows high photocatalytic activity in the photodegradation of methylene blue under UV light irradiation.

  13. Nitrogen and Sulfur Requirements for Clostridium thermocellum and Caldicellulosiruptor bescii on Cellulosic Substrates in Minimal Nutrient Media

    SciTech Connect (OSTI)

    Kridelbaugh, Donna M; Nelson, Josh C; Engle, Nancy L; Tschaplinski, Timothy J; Graham, David E

    2013-01-01

    Growth media for cellulolytic Clostridium thermocellum and Caldicellulosiruptor bescii bacteria usually contain excess nutrients that would increase costs for consolidated bioprocessing for biofuel production and create a waste stream with nitrogen, sulfur and phosphate. C. thermocellum was grown on crystalline cellulose with varying concentrations of nitrogen and sulfur compounds, and growth rate and alcohol production response curves were determined. Both bacteria assimilated sulfate in the presence of ascorbate reductant, increasing the ratio of oxidized to reduced fermentation products. From these results, a low ionic strength, defined minimal nutrient medium with decreased nitrogen, sulfur, phosphate and vitamin supplements was developed for the fermentation of cellobiose, cellulose and acid-pretreated Populus. Carbon and electron balance calculations indicate the unidentified residual fermentation products must include highly reduced molecules. Both bacterial populations were maintained in co-cultures with substrates containing xylan or hemicellulose in defined medium with sulfate and basal vitamin supplements.

  14. Research into the pyrolysis of pure cellulose, lignin, and birch wood flour in the China Lake entrained-flow reactor

    SciTech Connect (OSTI)

    Diebold, J.

    1980-06-01

    This experimental program used the China Lake entrained-flow pyrolysis reactor to briefly investigate the pyrolysis of pure cellulose, pure lignin, and birch wood flour. The study determined that the cellulose and wood flour do pyrolyze to produce primarily gaseous products containing significant amounts of ethylene and other useful hydrocarbons. During attempts to pyrolyze powdered lignin, the material melted and bubbled to block the reactor entrance. The pure cellulose and wood flour produced C/sub 2/ + yields of 12% to 14% by weight, which were less than yields from an organic feedstock derived from processed municipal trash. The char yields were 0.1% by weight from cellulose and 1.5% from birch wood flour - one to two orders of magnitude less than were produced from the trash-derived feedstock. In scanning electron microscope photographs, most of the wood flour char had a sintered and agglomerated appearance, although some particles retained the gross cell characteristics of the wood flour. The appearance of the char particles indicated that the material had once been molten and possibly vapor before it formed spheroidal particles about 1 ..mu..m diameter which agglomerated to form larger char particles. The ability to completely melt or vaporize lignocellulosic materials under conditions of high heating rates has now been demonstrated in a continuous flow reactor and promises new techniques for fast pyrolysis. This char was unexpectedly attracted by a magnet, presumably because of iron contamination from the pyrolysis reactor tube wall. The production of water-insoluble tars was negligible compared to the tars produced from trash-derived feedstock. The production of water-soluble organic materials was fairly low and qualitatively appeared to vary inversely with temperature. This study was of a preliminary nature and additional studies are necessary to optimize ethylene production from these feedstocks.

  15. A study of cellulose gasification in a fluidized bed using a high-temperature solar furnace

    SciTech Connect (OSTI)

    Murray, J.P.

    1989-01-01

    A 4.2-meter solar furnace was used to study the gasification of cellulose with steam in a fluidized bed. The heating value of the high-temperature equilibrium products is about twenty percent higher than that of the reactants. The increase represents stored solar energy; and the product, synthesis gas, is valuable as a chemical feedstock or pipeline gas. All experiments were performed at atmospheric pressure. Pure tabular alumina as well as crushed automotive exhaust was used as a bed material. Microcrystalline {alpha}-cellulose, entrained in argon, entered the fluidized bed just above the distributor. Steam heated to the operating temperature in a 10 cm packed bed section below the fluidized bed. In all cases, the process ran with more steam than required to produce an equimolar mixture of carbon monoxide and hydrogen. We used a quartz reactor between 1100 and 1430 K; a steel reactor at 1500 K and an Inconel reactor at 1600 K. Reactor inside diameter, nominally 5 cm, varied slightly; the bed height was adjusted to keep the gas residence time constant. Hydrogen production rate was measured before and after experiments with steam alone, with this amount subtracted. Equilibrium mixtures were not achieved. Catalysts improved hydrogen yields with higher than expected concentrations of carbon monoxide, methane and lighter hydrocarbons such as ethylene and acetylene. Experiments performed without catalyst at 1300 K, achieved a mixture (dry, argon-free) of 46 mole% CO, 30% H{sub 2} 14% CH{sub 4} 5% CO{sub 2} and 5% C{sub 2}H{sub 4}. An equilibrium mixture at this temperature would have contained 39% CO, 30% H{sub 2} 7% CO{sub 2} and no CH{sub 4} or C{sub 2}H{sub 4}. With the catalyst, the CO and CH{sub 4} decreased to 40% and 2% respectively, the H{sub 2} increased to 47%, and CO{sub 2} remained the same. No ethylene was formed. The hydrocarbon-rich mixtures achieved are typical of rapid-pyrolysis processes.

  16. Addressing the Recalcitrance of Cellulose Degradation through Cellulase Discovery, Nano-scale Elucidation of Molecular Mechanisms, and Kinetic Modeling

    SciTech Connect (OSTI)

    Walker, Larry P., Bergstrom, Gary; Corgie, Stephane; Craighead, Harold; Gibson, Donna; Wilson, David

    2011-06-13

    This research project was designed to play a vital role in the development of low cost sugars from cellulosic biomass and contributing to the national effort to displace fossil fuel usage in the USA transportation sector. The goal was to expand the portfolio of cell wall degrading enzymes through innovative research at the nano-scale level, prospecting for novel cellulases and building a kinetic framework for the development of more effective enzymatic conversion processes. More precisely, the goal was to elucidate the molecular mechanisms for some cellulases that are very familiar to members of our research team and to investigate what we hope are novel cellulases or new enzyme combinations from the world of plant pathogenic fungi and bacteria. Hydrolytic activities of various cellulases and cellulase cocktails were monitored at the nanoscale of cellulose fibrils and the microscale of pretreated cellulose particles, and we integrated this insight into a heterogeneous reaction framework. The over-riding approach for this research program was the application of innovative and cutting edge optical and high-throughput screening and analysis techniques for observing how cellulases hydrolyze real substrates.

  17. Cellobiohydrolase 1 from Trichoderma reesei degrades cellulose in single cellobiose steps

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Brady, Sonia K.; Sreelatha, Sarangapani; Feng, Yinnian; Chundawat, Shishir P. S.; Lang, Matthew J.

    2015-12-10

    Cellobiohydrolase 1 from Trichoderma reesei (TrCel7A) processively hydrolyses cellulose into cellobiose. Although enzymatic techniques have been established as promising tools in biofuel production, a clear understanding of the motor’s mechanistic action has yet to be revealed. We develop an optical tweezers-based single-molecule (SM) motility assay for precision tracking of TrCel7A. Direct observation of motility during degradation reveals processive runs and distinct steps on the scale of 1 nm. Our studies suggest TrCel7A is not mechanically limited, can work against 20 pN loads and speeds up when assisted. Temperature-dependent kinetic studies establish the energy requirements for the fundamental stepping cycle, whichmore » likely includes energy from glycosidic bonds and other sources. Moreover, through SM measurements of isolated TrCel7A domains, we determine that the catalytic domain alone is sufficient for processive motion, providing insight into TrCel7A’s molecular motility mechanism.« less

  18. Microstructural characterization of low-density foams. [Silica, resorcinol/formaldehyde, cellulose/acetate

    SciTech Connect (OSTI)

    Price, C.W.

    1988-01-01

    Low-density foams (of the order 0.1 g/cm/sup 3/) synthesized from silica aerogel, resorcinol/formaldehyde, and cellulose acetate have fine, delicate microstructures that are extremely difficult to characterize. Improved low-voltage resolution of an SEM equipped with a field-emission gun (FESEM) does permit these materials to be examined directly without coating and at sufficient magnification to reveal the microstructures. Light coatings applied by ion-beam deposition can stabilize the specimens to some extent and reduce electron charging without seriously altering the microstructure, but coatings applied by conventional techniques usually obliterate these microstructures. Transmission electron microscopy (TEM) is required to provide unambiguous microstructural interpretations. However, TEM examinations of these materials can be severely restricted by specimen preparation difficulties and electron-beam damage, and considerable care must be taken to ensure that reasonably accurate TEM results have been obtained. This work demonstrates that low-voltage FESEM analyses can be used to characterize microstructures in these foams, but TEM analyses are required to confirm the FESEM analyses and perform quantitative measurements. 19 refs., 11 figs.

  19. Cellobiohydrolase 1 from Trichoderma reesei degrades cellulose in single cellobiose steps

    SciTech Connect (OSTI)

    Brady, Sonia K.; Sreelatha, Sarangapani; Feng, Yinnian; Chundawat, Shishir P. S.; Lang, Matthew J.

    2015-12-10

    Cellobiohydrolase 1 from Trichoderma reesei (TrCel7A) processively hydrolyses cellulose into cellobiose. Although enzymatic techniques have been established as promising tools in biofuel production, a clear understanding of the motor’s mechanistic action has yet to be revealed. We develop an optical tweezers-based single-molecule (SM) motility assay for precision tracking of TrCel7A. Direct observation of motility during degradation reveals processive runs and distinct steps on the scale of 1 nm. Our studies suggest TrCel7A is not mechanically limited, can work against 20 pN loads and speeds up when assisted. Temperature-dependent kinetic studies establish the energy requirements for the fundamental stepping cycle, which likely includes energy from glycosidic bonds and other sources. Moreover, through SM measurements of isolated TrCel7A domains, we determine that the catalytic domain alone is sufficient for processive motion, providing insight into TrCel7A’s molecular motility mechanism.

  20. Lignin-Derived Carbon Fiber as a Co-Product of Refining Cellulosic Biomass

    SciTech Connect (OSTI)

    Langholtz, Matthew H.; Downing, Mark; Graham, Robin Lambert; Baker, Fred S.; Compere, Alicia L.; William L. Griffith; Boeman, Raymond G.; Keller, Martin

    2014-01-15

    Lignin by-products from biorefineries has the potential to provide a low-cost alternative to petroleum-based precursors to manufacture carbon fiber, which can be combined with a binding matrix to produce a structural material with much greater specific strength and specific stiffness than conventional materials such as steel and aluminum. The market for carbon fiber is universally projected to grow exponentially to fill the needs of clean energy technologies such as wind turbines and to improve the fuel economies in vehicles through lightweighting. In addition to cellulosic biofuel production, lignin-based carbon fiber production coupled with biorefineries may provide $2,400 to $3,600 added value dry Mg-1 of biomass for vehicle applications. Compared to producing ethanol alone, the addition of lignin-derived carbon fiber could increase biorefinery gross revenue by 30% to 300%. Using lignin-derived carbon fiber in 15 million vehicles per year in the US could reduce fossil fuel consumption by 2-5 billion liters year-1, reduce CO2 emissions by about 6.7 million Mg year-1, and realize fuel savings through vehicle lightweighting of $700 to $1,600 per Mg biomass processed. The value of fuel savings from vehicle lightweighting becomes economical at carbon fiber price of $6.60 kg-1 under current fuel prices, or $13.20 kg-1 under fuel prices of about $1.16 l-1.

  1. Size, Shape, and Arrangement of Cellulose Microfibril in Higher Plant Cell Walls

    SciTech Connect (OSTI)

    Ding, S. Y.

    2013-01-01

    Plant cell walls from maize (Zea mays L.) are imaged using atomic force microscopy (AFM) at the sub-nanometer resolution. We found that the size and shape of fundamental cellulose elementary fibril (CEF) is essentially identical in different cell wall types, i.e., primary wall (PW), parenchyma secondary wall (pSW), and sclerenchyma secondary wall (sSW), which is consistent with previously proposed 36-chain model (Ding et al., 2006, J. Agric. Food Chem.). The arrangement of individual CEFs in these wall types exhibits two orientations. In PW, CEFs are horizontally associated through their hydrophilic faces, and the planar faces are exposed, forming ribbon-like macrofibrils. In pSW and sSW, CEFs are vertically oriented, forming layers, in which hemicelluloses are interacted with the hydrophobic faces of the CEF and serve as spacers between CEFs. Lignification occurs between CEF-hemicelluloses layers in secondary walls. Furthermore, we demonstrated quantitative analysis of plant cell wall accessibility to and digestibility by different cellulase systems at real-time using chemical imaging (e.g., stimulated Raman scattering) and fluorescence microscopy of labeled cellulases (Ding et al., 2012, Science, in press).

  2. Techno-Economic Analysis of Biochemical Scenarios for Production of Cellulosic Ethanol

    SciTech Connect (OSTI)

    Kazi, F. K.; Fortman, J.; Anex, R.; Kothandaraman, G.; Hsu, D.; Aden, A.; Dutta, A.

    2010-06-01

    A techno-economic analysis on the production of cellulosic ethanol by fermentation was conducted to understand the viability of liquid biofuel production processes within the next 5-8 years. Initially, 35 technologies were reviewed, then a two-step down selection was performed to choose scenarios to be evaluated in a more detailed economic analysis. The lignocellulosic ethanol process was selected because it is well studied and portions of the process have been tested at pilot scales. Seven process variations were selected and examined in detail. Process designs were constrained to public data published in 2007 or earlier, without projecting for future process improvements. Economic analysis was performed for an 'nth plant' (mature technology) to obtain total investment and product value (PV). Sensitivity analysis was performed on PV to assess the impact of variations in process and economic parameters. Results show that the modeled dilute acid pretreatment process without any downstream process variation had the lowest PV of $3.40/gal of ethanol ($5.15/gallon of gasoline equivalent) in 2007 dollars. Sensitivity analysis shows that PV is most sensitive to feedstock and enzyme costs.

  3. Cellulose nanocrystal-based composite electrolyte with superior dimensional stability for alkaline fuel cell membranes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lu, Yuan; Artmentrout, Aaron A.; Li, Juchuan; Tekinalp, Halil L.; Nanda, Jagjit; Ozcan, Soydan

    2015-05-13

    Cellulose nanocrystal (CNC)-based composite films were prepared as a solid electrolyte for alkaline fuel cells. Poly (vinyl alcohol) (PVA) and silica gel hybrid was used to bind the CNCs to form a robust composite film. The mass ratio (i.e., 1 : 1, 1 : 2) of PVA and silica gel was tuned to control the hydrophobicity of the resulting films. Composite films with a range of CNC content (i.e., 20 to 60%) were prepared to demonstrate the impact of CNC on the performance of these materials as a solid electrolyte for alkaline fuel cells. Different from previously reported cross-linked polymermore » films, CNC-based composite films with 40% hydrophobic binder (i.e., PVA : silica gel=1 : 2) exhibited simultaneous low water swelling (e.g., ~5%) and high water uptake (e.g., ~80%) due to the hydrophilicity and extraordinary dimensional stability of CNC. It also showed a conductivity of 0.044 and 0.065 S/cm at 20 and 60 oC, respectively. To the best of our knowledge, the film with 60% CNC and 40% binder is characterized by the lowest hydroxide conductivity-normalized swelling ratio. Decreased CNC content (i.e., 40 and 20%) resulted in comparable hydroxide conductivity but a greater swelling ratio. These results demonstrate the advantage of CNC as a key component for a solid electrolyte for alkaline fuel cells over conventional polymers, suggesting the great potential of CNCs in improving the dimensional stability while maintaining the conductivity of existing anion exchange membranes.« less

  4. Cellulose nanocrystal-based composite electrolyte with superior dimensional stability for alkaline fuel cell membranes

    SciTech Connect (OSTI)

    Lu, Yuan; Artmentrout, Aaron A.; Li, Juchuan; Tekinalp, Halil L.; Nanda, Jagjit; Ozcan, Soydan

    2015-05-13

    Cellulose nanocrystal (CNC)-based composite films were prepared as a solid electrolyte for alkaline fuel cells. Poly (vinyl alcohol) (PVA) and silica gel hybrid was used to bind the CNCs to form a robust composite film. The mass ratio (i.e., 1 : 1, 1 : 2) of PVA and silica gel was tuned to control the hydrophobicity of the resulting films. Composite films with a range of CNC content (i.e., 20 to 60%) were prepared to demonstrate the impact of CNC on the performance of these materials as a solid electrolyte for alkaline fuel cells. Different from previously reported cross-linked polymer films, CNC-based composite films with 40% hydrophobic binder (i.e., PVA : silica gel=1 : 2) exhibited simultaneous low water swelling (e.g., ~5%) and high water uptake (e.g., ~80%) due to the hydrophilicity and extraordinary dimensional stability of CNC. It also showed a conductivity of 0.044 and 0.065 S/cm at 20 and 60 oC, respectively. To the best of our knowledge, the film with 60% CNC and 40% binder is characterized by the lowest hydroxide conductivity-normalized swelling ratio. Decreased CNC content (i.e., 40 and 20%) resulted in comparable hydroxide conductivity but a greater swelling ratio. These results demonstrate the advantage of CNC as a key component for a solid electrolyte for alkaline fuel cells over conventional polymers, suggesting the great potential of CNCs in improving the dimensional stability while maintaining the conductivity of existing anion exchange membranes.

  5. An Integrated Modeling and Data Management Strategy for Cellulosic Biomass Production Decisions

    SciTech Connect (OSTI)

    David J. Muth Jr.; K. Mark Bryden; Joshua B. Koch

    2012-07-01

    Emerging cellulosic bioenergy markets can provide land managers with additional options for crop production decisions. Integrating dedicated bioenergy crops such as perennial grasses and short rotation woody species within the agricultural landscape can have positive impacts on several environmental processes including increased soil organic matter in degraded soils, reduced sediment loading in watersheds, lower green house gas (GHG) fluxes, and reduced nutrient loading in watersheds. Implementing this type of diverse bioenergy production system in a way that maximizes potential environmental benefits requires a dynamic integrated modeling and data management strategy. This paper presents a strategy for designing diverse bioenergy cropping systems within the existing row crop production landscape in the midwestern United States. The integrated model developed quantifies a wide range environmental processes including soil erosion from wind and water, soil organic matter changes, and soil GHG fluxes within a geospatial data management framework. This framework assembles and formats information from multiple spatial and temporal scales. The data assembled includes yield and productivity data from harvesting equipment at the 1m scale, surface topography data from LiDAR mapping at the less than 1m scale, soil data from US soil survey databases at the 10m to 100m scale, and climate data at the county scale. These models and data tools are assembled into an integrated computational environment that is used to determine sustainable removal rates for agricultural residues for bioenergy production at the sub-field scale under a wide range of land management practices. Using this integrated model, innovative management practices including cover cropping are then introduced and evaluated for their impact on bioenergy production and important environmental processes. The impacts of introducing dedicated energy crops onto high-risk landscape positions currently being manage in row crop production are also investigated.

  6. Construction of a bacterium to convert cellulose to ethanol. Final report

    SciTech Connect (OSTI)

    Bellamy, W.D.

    1984-03-01

    In the strains of thermophilic actinomycetes examined, cellobiase (CBase) and Beta-glucosidase (BGSase) were determined to be separate enzymes. Both enzymes are induced by cellulose, cellobiose and lactose. A number of strains do not utilize lactose. Lactose does not induce endocellulase (CMCase) in any of the strains examined. In all the strains examined, the CBase and BGSase were far more heat labile than the extracellular CMCase. The 50% survival time at 60/sup 0/C is as follows: CMCase, 24 hrs; CBase, 10 to 11 hrs; BGSase, 2 to 5 hrs. The BGSase and CBase of Clostridium thermocellum are more heat resistant with 50% survival times: BGSase, 14 hrs; CBase, 41 hrs. Whey permeate is an adequate substrate for a number of strains if supplemented with 0.1% yeast extract or biotin and thiamine. It is speculated that whey permeate could be used for commercial production of CBase and BGSase. All attempts to produce a thermophilic bacillus that was ethanol-tolerant and produced high yields of ethanol by induced mutation using ultraviolet radiation and N-methyl-N'-nitrosogunidine as mutagens were unsuccessful. No evidence was observed that the Acetyl-S-CoA metabolic pathway was deleted or suppressed. Some of the mutants appeared to have decreased yields of lactic acid. A satisfactory screening procedure for selection of high ethanol producing colonies was not found. The screening for low acid production was tedious and time consuming. Because of the failure to find or produce a thermophile with high yields of ethanol, and because all previous work as reported in the literature also yielded poor results, it may be impossible to produce an ethanol-tolerant high yielding thermophilic microorganism. The essential proteins may be unstable at greater than 7% ethanol at 55 to 66/sup 0/C. 48 references, 6 figures, 16 tables.

  7. Microbiology and physiology of anaerobic fermentation of cellulose. Annual report for 1990, 1992, 1993 and final report

    SciTech Connect (OSTI)

    Ljungdahl, L.G.; Wiegel, J.; Peck, H.D. Jr.; Mortenson, L.E.

    1993-08-31

    This report focuses on the bioconversion of cellulose to methane by various anaerobes. The structure and enzymatic activity of cellulosome and polycellulosome was studied in Clostridium thermocellum. The extracellular enzymes involved in the degradation of plant material and the physiology of fermentation was investigated in anaerobic fungi. Enzymes dealing with CO, CO{sub 2}, H{sub 2}, CH{sub 3}OH, as well as electron transport and energy generation coupled to the acetyl-CoA autotrophic pathway was studied in acetogenic clostridia.

  8. A pilot plant scale reactor/separator for ethanol from cellulosics. Quarterly report No. 1 & 2, October 1, 1997--March 30, 1998

    SciTech Connect (OSTI)

    Dale, M.C.

    1998-06-01

    The basic objective of this project is to develop and demonstrate a continuous, low energy process for the conversion of cellulosics to ethanol. This process involves a pretreatment step followed by enzymatic release of sugars and the consecutive saccharification/fermentation of cellulose (glucans) followed by hemi-cellulose (glucans) in a multi-stage continuous stirred reactor separator (CSRS). During year 1, pretreatment and bench scale fermentation trials will be performed to demonstrate and develop the process, and during year 2, a 130 L or larger process scale unit will be operated to demonstrate the process using straw or cornstalks. Co-sponsors of this project include the Indiana Biomass Grants Program, Bio-Process Innovation, Xylan Inc as a possible provider of pretreated biomass.

  9. The effect of clay catalyst on the chemical composition of bio-oil obtained by co-pyrolysis of cellulose and polyethylene

    SciTech Connect (OSTI)

    Solak, Agnieszka; Rutkowski, Piotr

    2014-02-15

    Highlights: • Non-catalytic and catalytic fast pyrolysis of cellulose/polyethylene blend was carried out in a laboratory scale reactor. • Optimization of process temperature was done. • Optimization of clay catalyst type and amount for co-pyrolysis of cellulose and polyethylene was done. • The product yields and the chemical composition of bio-oil was investigated. - Abstract: Cellulose/polyethylene (CPE) mixture 3:1, w/w with and without three clay catalysts (K10 – montmorillonite K10, KSF – montmorillonite KSF, B – Bentonite) addition were subjected to pyrolysis at temperatures 400, 450 and 500 °C with heating rate of 100 °C/s to produce bio-oil with high yield. The pyrolytic oil yield was in the range of 41.3–79.5 wt% depending on the temperature, the type and the amount of catalyst. The non-catalytic fast pyrolysis at 500 °C gives the highest yield of bio-oil (79.5 wt%). The higher temperature of catalytic pyrolysis of cellulose/polyethylene mixture the higher yield of bio-oil is. Contrarily, increasing amount of montmorillonite results in significant, almost linear decrease in bio-oil yield followed by a significant increase of gas yield. The addition of clay catalysts to CPE mixture has a various influence on the distribution of bio-oil components. The addition of montmorillonite K10 to cellulose/polyethylene mixture promotes the deepest conversion of polyethylene and cellulose. Additionally, more saturated than unsaturated hydrocarbons are present in resultant bio-oils. The proportion of liquid hydrocarbons is the highest when a montmorillonite K10 is acting as a catalyst.

  10. Energy recovery from the effluent of plants anaerobically digesting cellulosic urban solid waste. Final technical report, September 1978-September 1980

    SciTech Connect (OSTI)

    Doerr-Bullock, L.; Higgins, G.M.; Long, K.; Smith, R.B.; Swartzbaugh, J.T.

    1981-06-03

    The program objective was to study the parameters of concentration, time, temperature, and pH to find optimum conditions for enzymatically converting unreacted cellulose in the effluent of an anaerobic digester to glucose for ultimate conversion to methane, and then to project the economics to a 100 tons per day (TPD) plant. The data presented illustrate the amount of cellulose hydrolysis (in percent solubilized mass) for enzyme concentrations from 5 to 1000 C/sub 1/U/gram of substrate using either filter paper or anaerobically digested municipal solid waste (MSW) reacted over periods of time of from 0 to 72 hours. With an active bacterial culture present, the optimum temperature for the hydrolysis reaction was found to be 40/sup 0/C. The feasibility of recycling enzymes by ultrafilter capture was studied and shows that the recovered enzyme is not denatured by any of several possible enzyme loss mechanisms, either chemical, physical, or biological. Although rather stable enzyme-substrate complexes seem to be formed, various techniques permit a 55% enzyme recovery. Posttreatment of digested MSW by cellulase enzymes produces nearly a three-fold increase in biomethanation. However, the value of the additional methane produced in the process as studied is not sufficient to support the cost of enzymes. The feasibility of enzymatic hydrolysis as a biomethanation process step requires further process optimization or an entirely different process concept.

  11. SRL history, Volume 4, E.I. DuPont Nemours and Co. Inc.

    SciTech Connect (OSTI)

    1980-04-01

    This volume summarizes general information on personnel, safety, security, and service at the Savannah River Laboratory.

  12. Insights into the effect of dilute acid, hot water and alkaline pretreatment on cellulose accessible surface area and overall porosity of Populus

    SciTech Connect (OSTI)

    Meng, Xianzhi; Wells, Tyrone; Sun, Qining; Huang, Fang; Ragauskas, Arthur J.

    2015-06-19

    Pretreatment is known to render biomass more reactive to cellulase by altering the chemical compositions as well as physical structures of biomass. Simons stain technique along with mercury porosimetry were applied on the acid, neutral, and alkaline pretreated materials to measure the accessible surface area of cellulose and pore size distribution of Populus. Results indicated that acid pretreatment is much more effective than water and alkaline pretreatment in terms of cellulose accessibility increase. Further investigation suggests that lignin does not dictate cellulose accessibility to the extent that hemicellulose does, but it does restrict xylan accessibility which in turn controls the access of cellulase to cellulose. The most interesting finding is that severe acid pretreatment significantly decreases the average pore size, i.e., 90% average size decrease could be observed after 60 min dilute acid pretreatment at 160 °C; moreover, the nano-pore space formed between coated microfibrils is increased after pretreatment, especially for the acid pretreatment, suggesting this particular type of biomass porosity is probably the most fundamental barrier to effective enzymatic hydrolysis.

  13. Insights into the effect of dilute acid, hot water and alkaline pretreatment on cellulose accessible surface area and overall porosity of Populus

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Meng, Xianzhi; Wells, Tyrone; Sun, Qining; Huang, Fang; Ragauskas, Arthur J.

    2015-06-19

    Pretreatment is known to render biomass more reactive to cellulase by altering the chemical compositions as well as physical structures of biomass. Simons stain technique along with mercury porosimetry were applied on the acid, neutral, and alkaline pretreated materials to measure the accessible surface area of cellulose and pore size distribution of Populus. Results indicated that acid pretreatment is much more effective than water and alkaline pretreatment in terms of cellulose accessibility increase. Further investigation suggests that lignin does not dictate cellulose accessibility to the extent that hemicellulose does, but it does restrict xylan accessibility which in turn controls themore » access of cellulase to cellulose. The most interesting finding is that severe acid pretreatment significantly decreases the average pore size, i.e., 90% average size decrease could be observed after 60 min dilute acid pretreatment at 160 °C; moreover, the nano-pore space formed between coated microfibrils is increased after pretreatment, especially for the acid pretreatment, suggesting this particular type of biomass porosity is probably the most fundamental barrier to effective enzymatic hydrolysis.« less

  14. Processing of cellulosic material by a cellulase-containing cell-free fermentate produced from cellulase-producing bacteria, ATCC 55702

    DOE Patents [OSTI]

    Dees, H.C.

    1998-08-04

    Bacteria which produce large amounts of a cellulase-containing cell-free fermentate, have been identified. The original bacterium (ATCC 55703) was genetically altered using nitrosoguanidine (MNNG) treatment to produce the enhanced cellulase degrading bacterium ATCC 55702, which was identified through replicate plating. ATCC 55702 has improved characteristics and qualities for the degradation of cellulosic materials. 5 figs.

  15. Processing of cellulosic material by a cellulase-containing cell-free fermentate produced from cellulase-producing bacteria, ATCC 55702

    SciTech Connect (OSTI)

    Dees, H. Craig

    1998-01-01

    Bacteria which produce large amounts of a cellulase-containing cell-free fermentate, have been identified. The original bacterium (ATCC 55703) was genetically altered using nitrosoguanidine (MNNG) treatment to produce the enhanced cellulase degrading bacterium ATCC 55702, which was identified through replicate plating. ATCC 55702 has improved characteristics and qualities for the degradation of cellulosic materials.

  16. Combined inactivation of the Clostridium cellulolyticum lactate and malate dehydrogenase genes substantially increases ethanol yield from cellulose and switchgrass fermentations

    SciTech Connect (OSTI)

    Li, Yongchao; Tschaplinski, Timothy J; Engle, Nancy L; Hamilton, Choo Yieng; Rodriguez, Jr., Miguel; Liao, James C; Schadt, Christopher Warren; Guss, Adam M; Yang, Yunfeng; Graham, David E

    2012-01-01

    Background: The model bacterium Clostridium cellulolyticum efficiently hydrolyzes crystalline cellulose and hemicellulose, using cellulosomes to degrade lignocellulosic biomass. Although it imports and ferments both pentose and hexose sugars to produce a mixture of ethanol, acetate, lactate, H2 and CO2, the proportion of ethanol is low, which impedes its use in consolidated bioprocessing for biofuels. Therefore genetic engineering will likely be required to improve the ethanol yield. Random mutagenesis, plasmid transformation, and heterologous expression systems have previously been developed for C. cellulolyticum, but targeted mutagenesis has not been reported for this organism. Results: The first targeted gene inactivation system was developed for C. cellulolyticum, based on a mobile group II intron originating from the Lactococcus lactis L1.LtrB intron. This markerless mutagenesis system was used to disrupt both the paralogous L-lactate dehydrogenase (Ccel_2485; ldh) and L-malate dehydrogenase (Ccel_0137; mdh) genes, distinguishing the overlapping substrate specificities of these enzymes. Both mutations were then combined in a single strain. This double mutant produced 8.5-times more ethanol than wild-type cells growing on crystalline cellulose. Ethanol constituted 93% of the major fermentation products (by molarity), corresponding to a molar ratio of ethanol to organic acids of 15, versus 0.18 in wild-type cells. During growth on acid-pretreated switchgrass, the double mutant also produced four-times as much ethanol as wild-type cells. Detailed metabolomic analyses identified increased flux through the oxidative branch of the mutant s TCA pathway. Conclusions: The efficient intron-based gene inactivation system produced the first gene-targeted mutations in C. cellulolyticum. As a key component of the genetic toolbox for this bacterium, markerless targeted mutagenesis enables functional genomic research in C. cellulolyticum and rapid genetic engineering to significantly alter the mixture of fermentation products. The initial application of this system successfully engineered a strain with high ethanol productivity from complex biomass substrates.

  17. National Geo-Database for Biofuel Simulations and Regional Analysis of Biorefinery Siting Based on Cellulosic Feedstock Grown on Marginal Lands

    SciTech Connect (OSTI)

    Izaurralde, Roberto C.; Zhang, Xuesong; Sahajpal, Ritvik; Manowitz, David H.

    2012-04-01

    The goal of this project undertaken by GLBRC (Great Lakes Bioenergy Research Center) Area 4 (Sustainability) modelers is to develop a national capability to model feedstock supply, ethanol production, and biogeochemical impacts of cellulosic biofuels. The results of this project contribute to sustainability goals of the GLBRC; i.e. to contribute to developing a sustainable bioenergy economy: one that is profitable to farmers and refiners, acceptable to society, and environmentally sound. A sustainable bioenergy economy will also contribute, in a fundamental way, to meeting national objectives on energy security and climate mitigation. The specific objectives of this study are to: (1) develop a spatially explicit national geodatabase for conducting biofuel simulation studies and (4) locate possible sites for the establishment of cellulosic ethanol biorefineries. To address the first objective, we developed SENGBEM (Spatially Explicit National Geodatabase for Biofuel and Environmental Modeling), a 60-m resolution geodatabase of the conterminous USA containing data on: (1) climate, (2) soils, (3) topography, (4) hydrography, (5) land cover/ land use (LCLU), and (6) ancillary data (e.g., road networks, federal and state lands, national and state parks, etc.). A unique feature of SENGBEM is its 2008-2010 crop rotation data, a crucially important component for simulating productivity and biogeochemical cycles as well as land-use changes associated with biofuel cropping. ARRA support for this project and to the PNNL Joint Global Change Research Institute enabled us to create an advanced computing infrastructure to execute millions of simulations, conduct post-processing calculations, store input and output data, and visualize results. These computing resources included two components installed at the Research Data Center of the University of Maryland. The first resource was 'deltac': an 8-core Linux server, dedicated to county-level and state-level simulations and PostgreSQL database hosting. The second resource was the DOE-JGCRI 'Evergreen' cluster, capable of executing millions of simulations in relatively short periods. ARRA funding also supported a PhD student from UMD who worked on creating the geodatabases and executing some of the simulations in this study. Using a physically based classification of marginal lands, we simulated production of cellulosic feedstocks from perennial mixtures grown on these lands in the US Midwest. Marginal lands in the western states of the US Midwest appear to have significant potential to supply feedstocks to a cellulosic biofuel industry. Similar results were obtained with simulations of N-fertilized perennial mixtures. A detailed spatial analysis allowed for the identification of possible locations for the establishment of 34 cellulosic ethanol biorefineries with an annual production capacity of 5.6 billion gallons. In summary, we have reported on the development of a spatially explicit national geodatabase to conduct biofuel simulation studies and provided simulation results on the potential of perennial cropping systems to serve as feedstocks for the production of cellulosic ethanol. To accomplish this, we have employed sophisticated spatial analysis methods in combination with the process-based biogeochemical model EPIC. The results of this study will be submitted to the USDOE Bioenergy Knowledge Discovery Framework as a way to contribute to the development of a sustainable bioenergy industry. This work provided the opportunity to test the hypothesis that marginal lands can serve as sources of cellulosic feedstocks and thus contribute to avoid potential conflicts between bioenergy and food production systems. This work, we believe, opens the door for further analysis on the characteristics of cellulosic feedstocks as major contributors to the development of a sustainable bioenergy economy.

  18. Comparative Study of Corn Stover Pretreated by Dilute Acid and Cellulose Solvent-Based Lignocellulose Fractionation: Enzymatic Hydrolysis, Supramolecular Structure, and Substrate Accessibility

    SciTech Connect (OSTI)

    Zhu, Z.; Sathitsuksanoh, N.; Vinzant, T.; Schell, D. J.; McMillian, J. D.; Zhang, Y. H. P.

    2009-07-01

    Liberation of fermentable sugars from recalcitrant biomass is among the most costly steps for emerging cellulosic ethanol production. Here we compared two pretreatment methods (dilute acid, DA, and cellulose solvent and organic solvent lignocellulose fractionation, COSLIF) for corn stover. At a high cellulase loading [15 filter paper units (FPUs) or 12.3 mg cellulase per gram of glucan], glucan digestibilities of the corn stover pretreated by DA and COSLIF were 84% at hour 72 and 97% at hour 24, respectively. At a low cellulase loading (5 FPUs per gram of glucan), digestibility remained as high as 93% at hour 24 for the COSLIF-pretreated corn stover but reached only {approx}60% for the DA-pretreated biomass. Quantitative determinations of total substrate accessibility to cellulase (TSAC), cellulose accessibility to cellulase (CAC), and non-cellulose accessibility to cellulase (NCAC) based on adsorption of a non-hydrolytic recombinant protein TGC were measured for the first time. The COSLIF-pretreated corn stover had a CAC of 11.57 m{sup 2}/g, nearly twice that of the DA-pretreated biomass (5.89 m{sup 2}/g). These results, along with scanning electron microscopy images showing dramatic structural differences between the DA- and COSLIF-pretreated samples, suggest that COSLIF treatment disrupts microfibrillar structures within biomass while DA treatment mainly removes hemicellulose. Under the tested conditions COSLIF treatment breaks down lignocellulose structure more extensively than DA treatment, producing a more enzymatically reactive material with a higher CAC accompanied by faster hydrolysis rates and higher enzymatic digestibility.

  19. Expression of the Acidothermus cellulolyticus E1 endoglucanase in Caldicellulosiruptor bescii enhances its ability to deconstruct crystalline cellulose

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chung, Daehwan; Young, Jenna; Cha, Minseok; Brunecky, Roman; Bomble, Yannick J.; Himmel, Michael E.; Westpheling, Janet

    2015-08-13

    The Caldicellulosiruptor bescii genome encodes a potent set of carbohydrate-active enzymes (CAZymes), found primarily as multi-domain enzymes that exhibit high cellulolytic and hemicellulolytic activity on and allow utilization of a broad range of substrates, including plant biomass without conventional pretreatment. CelA, the most abundant cellulase in the C. bescii secretome, uniquely combines a GH9 endoglucanase and a GH48 exoglucanase in one protein. The most effective commercial enzyme cocktails used in vitro to pretreat biomass are derived from fungal cellulases (cellobiohydrolases, endoglucanases and a β-d-glucosidases) that act synergistically to release sugars for microbial conversion. The C. bescii genome contains six GH5more » domains in five different open reading frames. Four exist in multi-domain proteins and two as single catalytic domains. E1 is a GH5 endoglucanase reported to have high specific activity and simple architecture and is active at the growth temperature of C. bescii. E1 is an endo-1,4-β-glucanase linked to a family 2 carbohydrate-binding module shown to bind primarily to cellulosic substrates. As a result, we tested if the addition of this protein to the C. bescii secretome would improve its cellulolytic activity.« less

  20. Hydrolysis of dilute acid pretreated mixed hardwood and purified microcrystalline cellulose by cell-free broth from Clostridium thermocellum

    SciTech Connect (OSTI)

    Lynd, L.R.; Grethlein, H.E.

    1987-01-01

    The cellulase activity in cell-free broths from Clostridium thermocellum is examined on both dilute-acid-pretreated mixed hardwood (90% maple, 10% birch) and Avicel. Experiments were conducted in vitro in order to distinguish properties of the cellulase from properties of the organism and to evaluate the effectiveness of C. thermocellum cellulase in the hydrolysis of a naturally occurring, lignin-containing substrate. The results obtained establish that essentially quantitative hydrolysis of cellulose from pretreated mixed hardwood is possible using this enzyme system. Pretreatment with 1% H/sub 2/SO/sub 4/ and a 9-s residence time at 220, 210, 200, and 180/sup 0/C allowed yields after enzymatic hydrolysis (percentage of glucan solubilized/glucan potentially solubilized) of 97.8, 86.1, 82.0, and 34.6%, respectively. Enzymatic hydrolysis of mixed hardwood with no pretreatment resulted in a yield of 10.1%. Hydrolysis yields of greater than 95% were obtained from 0.6 g/l mixed hardwood pretreated at 220/sup 0/C in 7 hours at broth strengths of 60 and 80% (v/v) and in approximately 48 hours with 33% broth. Hydrolysis of pretreated mixed hardwood is compared to hydrolysis of Avicel. The initial rate of Avicel hydrolysis saturates with respect to enzyme, whereas the initial rate of hydrolysis of pretreated wood is proportional to the amount of enzyme present. Initial hydrolysis rates for pretreated wood and Avicel at 0.6 g/l are greater for wood at low broth dilutions (1.25:1 to 5:1) by up to 2.7-fold and greater for Avicel at high broth dilutions (5:1 to 50:1) by up to 4.3-fold. Maximum rates of hydrolysis are achieved at less than 2 g substrate/liter for both pretreated wood and Avicel).

  1. Microbiology and physiology of anaerobic fermentation of cellulose. Progress report (4/30/91--4/30/92) and outline of work for the period 9/1/92--9/1/93

    SciTech Connect (OSTI)

    Ljungdahl, L.G.

    1992-12-31

    The authors are continuing their efforts to partly dissociate the cellulolytic enzyme complex of C. thermocellum. This complex named cellulosome (also existing as polycellulosome) consists of perhaps as many as 26 different subunits. It is extremely resistant to dissociation and denaturation. Treatments with urea and SDS have little effect unless the latter treatment is at high temperature. Significantly, some of the subunits after SDS dissociation have CMCase (endoglucanase) activity but no activity toward crystalline cellulose. The only reported success of hydrolysis of crystalline cellulose by cellulosomal subunits is by Wu et al. who isolated two protein fractions labeled SL and SS which when combined exhibit a low (about 1% of the original cellulosome) activity toward crystalline cellulose. The long standing goal is still to determine the activities of the individual subunits, to characterize them, to find out how they are associated in the cellulosome, and to establish the minimum number of subunits needed for efficient hydrolysis of crystalline cellulose. This report also presents the results of experiments on cellulose hydrolysis in aerobic fungi, as well as other anaerobic bacteria.

  2. Advance Patent Waiver W(A)2008-045

    Broader source: Energy.gov [DOE]

    This is a request by DANISCO US, INC. for a DOE waiver of domestic and foreign patent rights under agreement DE-FC36-08GO18078

  3. Catalytic conversion of cellulose to liquid hydrocarbon fuels by progressive removal of oxygen to facilitate separation processes and achieve high selectivities

    DOE Patents [OSTI]

    Dumesic, James A.; Ruiz, Juan Carlos Serrano; West, Ryan M.

    2012-04-03

    Described is a method to make liquid chemicals, such as functional intermediates, solvents, and liquid fuels from biomass-derived cellulose. The method is cascading; the product stream from an upstream reaction can be used as the feedstock in the next downstream reaction. The method includes the steps of deconstructing cellulose to yield a product mixture comprising levulinic acid and formic acid, converting the levulinic acid to .gamma.-valerolactone, and converting the .gamma.-valerolactone to pentanoic acid. Alternatively, the .gamma.-valerolactone can be converted to a mixture of n-butenes. The pentanoic acid so formed can be further reacted to yield a host of valuable products. For example, the pentanoic acid can be decarboxylated yield 1-butene or ketonized to yield 5-nonanone. The 5-nonanone can be hydrodeoxygenated to yield nonane, or 5-nonanone can be reduced to yield 5-nonanol. The 5-nonanol can be dehydrated to yield nonene, which can be dimerized to yield a mixture of C.sub.9 and C.sub.18 olefins, which can be hydrogenated to yield a mixture of alkanes. Alternatively, the nonene may be isomerized to yield a mixture of branched olefins, which can be hydrogenated to yield a mixture of branched alkanes. The mixture of n-butenes formed from .gamma.-valerolactone can also be subjected to isomerization and oligomerization to yield olefins in the gasoline, jet and Diesel fuel ranges.

  4. Production, purification, and characterization of a fusion protein of carbonic anhydrase from Neisseria gonorrhoeae and cellulose binding domain from Clostridium thermocellum

    SciTech Connect (OSTI)

    Liu, Zhu; Bartlow, Patrick; Dilmore, Robert M.; Soong, Yee; Pan, Zhiwei; Koepsel, Richard; Ataai, Mohammad

    2009-01-01

    Carbon dioxide capture technologies have the potential to become an important climate change mitigation option through sequestration of gaseous CO2, A new concept for CO2 capture involves use of immobilized carbonic anhydrase (CA) that catalyzes the reversible hydration of CO2 to HCO3- and H+. Cost-efficient production of the enzyme and an inexpensive immobilization system are critical for development of economically feasible CA-based CO2 capture processes. An artificial, bifunctional enzyme containing CA from Neisseria gonorrhoeae and a cellulose binding domain (CBD) from Clostridium thermocellum was constructed with a His6 tag. The chimeric enzyme exhibited both CA activity and CBD binding affinity. This fusion enzyme is of particular interest due to its binding affinity for cellulose and retained CA activity, which could serve as the basis for improved technology to capture CO2 from flue gasses.

  5. Breaking the Biological Barriers to Cellulosic Ethanol: A Joint Research Agenda. A Research Roadmap Resulting from the Biomass to Biofuels Workshop

    SciTech Connect (OSTI)

    2006-06-30

    A robust fusion of the agricultural, industrial biotechnology, and energy industries can create a new strategic national capability for energy independence and climate protection. In his State of the Union Address (*Bush 2006), President George W. Bush outlined the Advanced Energy Initiative, which seeks to reduce our national dependence on imported oil by accelerating the development of domestic,renewable alternatives to gasoline and diesel fuels. The president has set a national goal of developing cleaner, cheaper, and more reliable alternative energy sources to substantially replace oil imports in the coming years.Fuels derived from cellulosic biomass—the fibrous, woody, and generally inedible portions of plant matter—offer one such alternative to conventional energy sources that can dramatically impact national economic growth, national energy security, and environmental goals. Cellulosic biomass is an attractive energy feedstock because it is an abundant, domestic, renewable source that can be converted to liquid transportation fuels.These fuels can be used readily by current-generation vehicles and distributed through the existing transportation-fuel infrastructure.

  6. THE SETTLERS PHOTOGRAPHIC COLLECTION 1894 - 1945 & THE DUPONT PHOTOGRAPHIC COLLECTION 1943 - 1945 BRINGING HISTORY TO LIFE IN SOUTH CENTRAL WASHINGTON

    SciTech Connect (OSTI)

    SHULTZ CR PH.D.

    2009-07-13

    Washington is called the 'Evergreen State' and it evokes images like this of lush forests, lakes and mountains. However, such images apply primarily to the half of the state west of the Cascade Mountains, where we are today. Eastern Washington state is quite a different matter and I want to draw your attention to a portion of Eastern Washington that is the focus ofmy presentation to you this morning. This image was taken on a part of the Department of Energy's Hanford Site, a 586-square mile government reservation, the second largest DOE facility in the nation . Here you can see where I am talking about, roughly 220 miles southeast of Seattle and about the same distance northeast of Portland.

  7. Catalytic conversion of cellulose to liquid hydrocarbon fuels by progressive removal of oxygen to facilitate separation processes and achieve high selectivities

    DOE Patents [OSTI]

    Dumesic, James A [Verona, WI; Ruiz, Juan Carlos Serrano [Madison, WI; West, Ryan M [Madison, WI

    2014-01-07

    Described is a method to make liquid chemicals. The method includes deconstructing cellulose to yield a product mixture comprising levulinic acid and formic acid, converting the levulinic acid to .gamma.-valerolactone, and converting the .gamma.-valerolactone to pentanoic acid. Alternatively, the .gamma.-valerolactone can be conveted to a mixture of n-butenes. The pentanoic acid can be decarboxylated yield 1-butene or ketonized to yield 5-nonanone. The 5-nonanone can be hydrodeoxygenated to yield nonane, or 5-nonanone can be reduced to yield 5-nonanol. The 5-nonanol can be dehydrated to yield nonene, which can be dimerized to yield a mixture of C.sub.9 and C.sub.18 olefins, which can be hydrogenated to yield a mixture of alkanes.

  8. Catalytic conversion of cellulose to liquid hydrocarbon fuels by progressive removal of oxygen to facilitate separation processes and achieve high selectivities

    DOE Patents [OSTI]

    Dumesic, James A.; Ruiz, Juan Carlos Serrano; West, Ryan M.

    2015-06-30

    Described is a method to make liquid chemicals. The method includes deconstructing cellulose to yield a product mixture comprising levulinic acid and formic acid, converting the levulinic acid to .gamma.-valerolactone, and converting the .gamma.-valerolactone to pentanoic acid. Alternatively, the .gamma.-valerolactone can be converted to a mixture of n-butenes. The pentanoic acid can be decarboxylated yield 1-butene or ketonized to yield 5-nonanone. The 5-nonanone can be hydrodeoxygenated to yield nonane, or 5-nonanone can be reduced to yield 5-nonanol. The 5-nonanol can be dehydrated to yield nonene, which can be dimerized to yield a mixture of C.sub.9 and C.sub.18 olefins, which can be hydrogenated to yield a mixture of alkanes.

  9. Effect of Sodium Carboxymethyl Celluloses on Water-catalyzed Self-degradation of 200-degree C-heated Alkali-Activated Cement

    SciTech Connect (OSTI)

    Sugama T.; Pyatina, T.

    2012-05-01

    We investigated the usefulness of sodium carboxymethyl celluloses (CMC) in promoting self-degradation of 200°C-heated sodium silicate-activated slag/Class C fly ash cementitious material after contact with water. CMC emitted two major volatile compounds, CO2 and acetic acid, creating a porous structure in cement. CMC also reacted with NaOH from sodium silicate to form three water-insensitive solid reaction products, disodium glycolate salt, sodium glucosidic salt, and sodium bicarbonate. Other water-sensitive solid reaction products, such as sodium polysilicate and sodium carbonate, were derived from hydrolysates of sodium silicate. Dissolution of these products upon contact with water generated heat that promoted cement’s self-degradation. Thus, CMC of high molecular weight rendered two important features to the water-catalyzed self-degradation of heated cement: One was the high heat energy generated in exothermic reactions in cement; the other was the introduction of extensive porosity into cement.

  10. A Pilot Plant Scale Reactor/Separator for Ethanol from Cellulosics. ERIP/DOE Quarterly Reports 5 and 6, October 1, 1998 through March 30, 1999

    SciTech Connect (OSTI)

    Dale, M. Clark; Moelhman, Mark

    1999-09-30

    The objective of this project was to develop and demonstrate a continuous low energy process for the conversion of cellulosics to ethanol. BPI's process involves a proprietary low temperature pretreatment step which allows recycle of the pretreatment chemicals and recovery of a lignin stream. The pretreated biomass is then converted to glucans and xylans enzymatically and these sugars simultaneously fermented to ethanol (SSF) in BPI's Continuous Stirred Reactor Separator (CSRS). The CSRS is a multi stage bio-reactor where the glucans are first converted to ethanol using a high temperature tolerant yeast, followed by xylan SSF on the lower stages using a second xylose fermenting yeast strain. Ethanol is simultaneously removed from the bio-reactor stages, speeding the fermentation, and allowing the complete utilization of the biomass.

  11. A Pilot Plant Scale Reactor/Separator for Ethanol from Cellulosics. ERIP/DOE Quarterly Reports 7, 8 and Final report

    SciTech Connect (OSTI)

    Cale, M. Clark; Moelhman, Mark

    1999-09-30

    The objective of this project was to develop and demonstrate a continuous low energy process for the conversion of cellulosics to ethanol. BPI's process involves a proprietary low temperature pretreatment step which allows recycle of the pretreatment chemicals and recovery of a lignin stream. The pretreated biomass is then converted to glucans and xylans enzymatically and these sugars simultaneously fermented to ethanol (SSF) in BPI's Continuous Stirred Reactor Separator (CSRS). The CSRS is a multi stage bio-reactor where the glucans are first converted to ethanol using a high temperature tolerant yeast stran, followed by xylan SSF on the lower stages using a second xylose fermenting yeast strain. Ethanol is simultaneously removed from the bio-reactor stages, speeding the fermentation, and allowing the complete utilization of the biomass.

  12. MN Center for Renewable Energy: Cellulosic Ethanol, Optimization of Bio-fuels in Internal Combustion Engines, & Course Development for Technicians in These Areas

    SciTech Connect (OSTI)

    John Frey

    2009-02-22

    This final report for Grant #DE-FG02-06ER64241, MN Center for Renewable Energy, will address the shared institutional work done by Minnesota State University, Mankato and Minnesota West Community and Technical College during the time period of July 1, 2006 to December 30, 2008. There was a no-cost extension request approved for the purpose of finalizing some of the work. The grant objectives broadly stated were to 1) develop educational curriculum to train technicians in wind and ethanol renewable energy, 2) determine the value of cattails as a biomass crop for production of cellulosic ethanol, and 3) research in Optimization of Bio-Fuels in Internal Combustion Engines. The funding for the MN Center for Renewable Energy was spent on specific projects related to the work of the Center.

  13. Construction of nerve guide conduits from cellulose/soy protein composite membranes combined with Schwann cells and pyrroloquinoline quinone for the repair of peripheral nerve defect

    SciTech Connect (OSTI)

    Luo, Lihua; Gan, Li; Liu, Yongming; Tian, Weiqun; Tong, Zan; Wang, Xiong; Huselstein, Celine; Chen, Yun

    2015-02-20

    Regeneration and functional reconstruction of peripheral nerve defects remained a significant clinical challenge. Nerve guide conduits, with seed cells or neurotrophic factors (NTFs), had been widely used to improve the repair and regeneration of injured peripheral nerve. Pyrroloquinoline quinone (PQQ) was an antioxidant that can stimulate nerve growth factors (NGFs) synthesis and accelerate the Schwann cells (SCs) proliferation and growth. In present study, three kinds of nerve guide conduits were constructed: one from cellulose/SPI hollow tube (CSC), another from CSC combined with SCs (CSSC), and the third one from CSSC combined with PQQ (CSSPC), respectively. And then they were applied to bridge and repair the sciatic nerve defect in rats, using autograft as control. Effects of different nerve guide conduits on the nerve regeneration were comparatively evaluated by general analysis, sciatic function index (SFI) and histological analysis (HE and TEM). Newly-formed regenerative nerve fibers were observed and running through the transparent nerve guide conduits 12 weeks after surgery. SFI results indicated that the reconstruction of motor function in CSSPC group was better than that in CSSC and CSC groups. HE images from the cross-sections and longitudinal-sections of the harvested regenerative nerve indicated that regenerative nerve fibers had been formed and accompanied with new blood vessels and matrix materials in the conduits. TEM images also showed that lots of fresh myelinated and non-myelinated nerve fibers had been formed. Parts of vacuolar, swollen and abnormal axons occurred in CSC and CSSC groups, while the vacuolization and swell of axons was the least serious in CSSPC group. These results indicated that CSSPC group had the most ability to repair and reconstruct the nerve structure and functions due to the comprehensive contributions from hollow CSC tube, SCs and PQQ. As a result, the CSSPC may have the potential for the applications as nerve guide conduits in the field of nerve tissue engineering. - Highlights: • A novel nerve conduit was constructed and applied to repair nerve defect in rats. • Transparent hollow cellulose/soy protein isolate tube was used as conduit matrix. • Pyrroloquinoline quinine was adsorbed into the hollow tube as nerve growth factor. • Schwann cells were cultured into the hollow tube as seed cells. • The new nerve conduit could repair and reconstruct the peripheral nerve defects.

  14. Expression of the Acidothermus cellulolyticus E1 endoglucanase in Caldicellulosiruptor bescii enhances its ability to deconstruct crystalline cellulose

    SciTech Connect (OSTI)

    Chung, Daehwan; Young, Jenna; Cha, Minseok; Brunecky, Roman; Bomble, Yannick J.; Himmel, Michael E.; Westpheling, Janet

    2015-08-13

    The Caldicellulosiruptor bescii genome encodes a potent set of carbohydrate-active enzymes (CAZymes), found primarily as multi-domain enzymes that exhibit high cellulolytic and hemicellulolytic activity on and allow utilization of a broad range of substrates, including plant biomass without conventional pretreatment. CelA, the most abundant cellulase in the C. bescii secretome, uniquely combines a GH9 endoglucanase and a GH48 exoglucanase in one protein. The most effective commercial enzyme cocktails used in vitro to pretreat biomass are derived from fungal cellulases (cellobiohydrolases, endoglucanases and a β-d-glucosidases) that act synergistically to release sugars for microbial conversion. The C. bescii genome contains six GH5 domains in five different open reading frames. Four exist in multi-domain proteins and two as single catalytic domains. E1 is a GH5 endoglucanase reported to have high specific activity and simple architecture and is active at the growth temperature of C. bescii. E1 is an endo-1,4-β-glucanase linked to a family 2 carbohydrate-binding module shown to bind primarily to cellulosic substrates. As a result, we tested if the addition of this protein to the C. bescii secretome would improve its cellulolytic activity.

  15. Assessment of fuel-cycle energy use and greenhouse gas emissions for Fischer-Tropsch diesel from coal and cellulosic biomass.

    SciTech Connect (OSTI)

    Xie, X.; Wang, M.; Han, J.

    2011-04-01

    This study expands and uses the GREET (Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation) model to assess the effects of carbon capture and storage (CCS) technology and cellulosic biomass and coal cofeeding in Fischer-Tropsch (FT) plants on energy use and greenhouse gas (GHG) emissions of FT diesel (FTD). To demonstrate the influence of the coproduct credit methods on FTD life-cycle analysis (LCA) results, two allocation methods based on the energy value and the market revenue of different products and a hybrid method are employed. With the energy-based allocation method, fossil energy use of FTD is less than that of petroleum diesel, and GHG emissions of FTD could be close to zero or even less than zero with CCS when forest residue accounts for 55% or more of the total dry mass input to FTD plants. Without CCS, GHG emissions are reduced to a level equivalent to that from petroleum diesel plants when forest residue accounts for 61% of the total dry mass input. Moreover, we show that coproduct method selection is crucial for LCA results of FTD when a large amount of coproducts is produced.

  16. Characterizing the Range of Extracellular Protein Post-Translational Modifications in a Cellulose-Degrading Bacteria Using a Multiple Proteolyic Digestion/Peptide Fragmentation Approach

    SciTech Connect (OSTI)

    Dykstra, Andrew B; Rodriguez, Jr., Miguel; Raman, Babu; Cook, Kelsey; Hettich, Robert {Bob} L

    2013-01-01

    Post-translational modifications (PTMs) are known to play a significant role in many biological functions. The focus of this study is to characterize the post-translational modifications of the cellulosome protein complex used by the bacterium Clostridium thermocellum to better understand how this protein machine is tuned for enzymatic cellulose solubilization. To enhance comprehensive characterization, the extracellular cellulosome proteins were analyzed using multiple proteolytic digests (trypsin, Lys-C, Glu-C) and multiple fragmentation techniques (collisionally-activated dissociation, electron transfer dissociation, decision tree). As expected, peptide and protein identifications were increased by utilizing alternate proteases and fragmentation methods, in addition to the increase in protein sequence coverage. The complementarity of these experiments also allowed for a global exploration of PTMs associated with the cellulosome based upon a set of defined PTMs that included methylation, oxidation, acetylation, phosphorylation, and signal peptide cleavage. In these experiments, 85 modified peptides corresponding to 28 cellulosome proteins were identified. Many of these modifications were located in active cellulolytic or structural domains of the cellulosome proteins, suggesting a level of possible regulatory control of protein function in various cellulotyic conditions. The use of multiple enzymes and fragmentation technologies allowed for independent verification of PTMs in different experiments, thus leading to increased confidence in PTM identifications.

  17. Microsoft PowerPoint - 060414_INSIC_DS2_Roadmap_Riedel

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... TORAY INDUSTRIES VEECO INSTRUMENTS VEECO INSTRUMENTS TEIJIN TEIJIN - - DUPONT FILMS DUPONT FILMS * * ADVANCED MICROSENSORS ADVANCED MICROSENSORS * * HITACHI GLOBAL STORAGE ...

  18. Overcoming the Recalcitrance of Cellulosic Biomass by Value Prior to Pulping: Cooperative Research and Development Final Report, CRADA Number CRD-07-221

    SciTech Connect (OSTI)

    Lowell, A.

    2012-04-01

    The Value Prior to Pulping (VPP) project goal was to demonstrate the technical and commercial feasibility of introducing a new value stream into existing pulp and paper mills. Essentially the intent was to transfer the energy content of extracted hemicellulose from electricity and steam generated in the recovery boiler to a liquid transportation fuel. The hemicellulose fraction was extracted prior to pulping, fractionated, or conditioned if necessary, and fermented to ethanol. Commercial adaptation of the process to wood hemicelluloses was a prerequisite for using this less currently valued component available from biomass and wood. These hemicelluloses are predominately glucurono-xylan in hardwoods and galactoglucomannan in softwoods (with a significant softwood component of an arabino-xylan) and will yield fermentation substrates different from cellulose. NREL provided its expertise in the area of fermentation host evaluation using its Zymomonas strains on the CleanTech Partner's (CTP) VPP project. The project was focused on the production of fuel ethanol and acetic acid from hemicellulose streams generated from wood chips of industrially important hardwood and softwood species. NREL was one of four partners whose ethanologen was tested on the hydrolyzed extracts. The use of commercially available enzymes to treat oligomeric sugar extracts was also investigated and coupled with fermentation. Fermentations by NREL were conducted with the Zymomonas mobilis organism with most of the work being performed with the 8b strain. The wood extracts hydrolyzed and/or fermented by NREL were those derived from maple, mixed southern hardwoods, and loblolly pine. An unhydrolyzed variant of the mixed southern hardwood extract possessed a large concentration of oligomeric sugars and enzymatic hydrolysis was performed with a number of enzymes, followed by fermentation. The fermentation of the wood extracts was carried out at bench scale in flasks or small bioreactors, with a maximum volume of 500 mL.

  19. A case study of agricultural residue availability and cost for a cellulosic ethanol conversion facility in the Henan province of China

    SciTech Connect (OSTI)

    Webb, Erin [ORNL; Wu, Yun [ORNL

    2012-05-01

    A preliminary analysis of the availability and cost of corn stover and wheat straw for the area surrounding a demonstration biorefinery in the Henan Province of China was performed as a case study of potential cooperative analyses of bioenergy feedstocks between researchers and industry in the US and China. Though limited in scope, the purpose of this analysis is to provide insight into some of the issues and challenges of estimating feedstock availability in China and how this relates to analyses of feedstocks in the U.S. Completing this analysis also highlighted the importance of improving communication between U.S. researchers and Chinese collaborators. Understanding the units and terms used in the data provided by Tianguan proved to be a significant challenge. This was further complicated by language barriers between collaborators in the U.S. and China. The Tianguan demonstration biorefinery has a current capacity of 3k tons (1 million gallons) of cellulosic ethanol per year with plans to scale up to 10k tons (3.34 million gallons) per year. Using data provided by Tianguan staff in summer of 2011, the costs and availability of corn stover and wheat straw were estimated. Currently, there are sufficient volumes of wheat straw and corn stover that are considered 'waste' and would likely be available for bioenergy in the 20-km (12-mile) region surrounding the demonstration biorefinery at a low cost. However, as the industry grows, competition for feedstock will grow and prices are likely to rise as producers demand additional compensation to fully recover costs.

  20. Cellulose Pyrolysis A Literature, Review.

    Office of Scientific and Technical Information (OSTI)

    ... tetrakishydroxymethylphosphonium chlorideureamethylol- melamine, 1:1 boraxboric acid, ... ZnC12 + Na2Cr207 NO difference from untreated wood. 172 Urea + Ammonium phos- Cell walls ...

  1. Induction of gene expression using a high concentration sugar...

    Office of Scientific and Technical Information (OSTI)

    Inventors: England, George R. ; Kelley, Aaron ; Mitchinson, Colin Issue Date: 2010-05-11 OSTI Identifier: 1176286 Assignee: Danisco US Inc. (Palo Alto, CA) OSTI Patent Number(s): ...

  2. Conditioning biomass for microbial growth (Patent) | DOEPatents

    Office of Scientific and Technical Information (OSTI)

    Inventors: Bodie, Elizabeth A ; England, George Issue Date: 2015-03-31 OSTI Identifier: 1177109 Assignee: Danisco US Inc. (Palo Alto, CA) GFO Patent Number(s): 8,993,267 ...

  3. Induction of gene expression using a high concentration sugar...

    Office of Scientific and Technical Information (OSTI)

    Inventors: England, George R. ; Kelley, Aaron ; Mitchinson, Colin Issue Date: 2015-05-19 OSTI Identifier: 1179798 Assignee: Danisco US Inc. (Palo Alto, CA) GFO Patent Number(s): ...

  4. Final Technical Report: Improvement of Zymomonas mobilis for Commercial Use in Corn-based Biorefineries

    SciTech Connect (OSTI)

    Hitz, William D.

    2010-12-07

    Between 2007 and 2010 DuPont conducted a program under DOE award DE-FC36-07GO17056 to develop and improve Zymomonas mobilis as an ethanologen for commercial use in biorefineries to produce cellulosic ethanol. This program followed upon an earlier DOE funded program in which DuPont, in collaboration with the National Renewable Energy Laboratory (NREL) had developed a Zymomonas strain in conjunction with the development of an integrated cellulosic ethanol process. In the current project, we sought to maximize the utility of Zymomonas by adding the pathway to allow fermentation of the minor sugar arabinose, improve the utilization of xylose, improve tolerance to process hydrolysate and reduce the cost of producing the ethanologen. We undertook four major work streams to address these tasks, employing a range of approaches including genetic engineering, adaptation, metabolite and pathway analysis and fermentation process development. Through this project, we have developed a series of strains with improved characteristics versus the starting strain, and demonstrated robust scalability to at least the 200L scale. By a combination of improved ethanol fermentation yield and titer as well as reduced seed train costs, we have been able to reduce the capital investment and minimum ethanol selling price (MESP) by approximately 8.5% and 11% respectively vs. our starting point. Furthermore, the new strains we have developed, coupled with the learnings of this program, provide a platform for further strain improvements and advancement of cellulosic ethanol technology.

  5. Investigating Commercial Cellulase Performances Toward Specific Biomass Recalcitrance Factors Using Reference Substrates

    SciTech Connect (OSTI)

    Ju, Xiaohui; Bowden, Mark E.; Engelhard, Mark H.; Zhang, Xiao

    2014-04-01

    Three commercial cellulase preparations, Novozymes Cellic® Ctec2, Dupont Accellerase® 1500, and DSM Cytolase CL, were evaluated for their hydrolytic activity using a set of reference biomass substrates with controlled substrate characteristics. It was found that lignin remains a significant recalcitrance factor to all the preparations, although different enzyme preparations respond to the inhibitory effect of lignin differently. Also, different types of biomass lignin can inhibit cellulose enzymes in different manners. Enhancing enzyme activity toward biomass fiber swelling is an area significantly contributing to potential improvement in cellulose performance. While the degree of polymerization of cellulose in the reference substrates did not present a major recalcitrance factor to Novozymes Cellic® Ctec2, cellulose crystallite has been shown to have a significant lower reactivity toward all enzyme mixtures. The presence of polysaccharide monooxygenases (PMOs) in Novozymes Ctec2 appears to enhance enzyme activity toward decrystallization of cellulose. This study demonstrated that reference substrates with controlled chemical and physical characteristics of structural features can be applied as an effective and practical strategy to identify cellulosic enzyme activities toward specific biomass recalcitrance factor(s) and provide specific targets for enzyme improvement.

  6. Prepared in response to formal guidance and a request by Sam...

    Energy Savers [EERE]

    ... member) Burrill & Company - Partner Ceres - VP, Trait Development DuPont Genencor - Head of BioChemistry DuPont - Director, DuPont Central R & D (early member) General Motors - GM ...

  7. Delaware's At-large congressional district: Energy Resources...

    Open Energy Info (EERE)

    Advanced Biofuels LLC Citizenre Group Delmarva Power Light Company Delmarva Power DuPont DuPont Biofuels Dupont Fuel Cells Galt Power Inc GlobalWatt Inc Ion Power Inc Naveen...

  8. The Defense Logistics Agency, Hydrogen-Powered Forklift Test...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... DuPont Value Proposition DuPont R&D and Manufacturing Military Universities DuPont CR&D Other Companies Materials Inventions Component Developments OEM's System Mfg's Systems & ...

  9. Table Definitions, Sources, and Explanatory Notes

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    and alcohol purity specifications (commonly referred to as the "DuPont" waiver). ... and alcohol purity specifications (commonly referred to as the "DuPont" waiver). ...

  10. Reducing Enzyme Costs Increases the Market Potential of Biofuels...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Novozymes and Genencor (now part of DuPont Industrial Biosciences), to engineer new ... Genencor is now part of DuPont Industrial Biosciences, headquartered in Wilmington, ...

  11. Department

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Travel Consultants Databases Other Total DUPONT- HANFORD NON-CLASS ACTION Lawfirm: Corr, ... Travel Consultants Databases Other Total DUPONT- HANFORD NON-CLASS ACTION Lawfirrn: ...

  12. STEAB January Meeting Agenda

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    JANUARY MEETING AGENDA January 13 - 14, 2015 Renaissance Washington DC Dupont Circle Hotel ... 13 - 14, 2015 Renaissance Washington DC Dupont Circle Hotel 1143 New Hampshire Ave, NW, ...

  13. Table Definitions, Sources, and Explanatory Notes

    Gasoline and Diesel Fuel Update (EIA)

    ... and alcohol purity specifications (commonly referred to as the "DuPont" waiver). ... and alcohol purity specifications (commonly referred to as the "DuPont" waiver). ...

  14. Biomass and Biofuels Success Stories - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    technology that has led companies such as DuPont, POET, and Abengoa to open ... DuPont National Renewable Energy Laboratory 02232015 Biomass and Biofuels Building ...

  15. Formerly Utilized Sites Remedial Action Program Fact Sheet

    Office of Environmental Management (EM)

    ... W.R. Grace at Curtis Bay Maywood Chemical Superfund DuPont Chambers Works Painesville ... Combustion Engineering Site Windsor, Connecticut DuPont Chambers Works Deepwater, New ...

  16. Building America Case Study: Measure Guideline: Guidance on Taped...

    Energy Savers [EERE]

    Building Science Corporation, buildingscience.com BASF, basf.com The Dow Chemical Company, dow.com Dupont, dupont.com CODE COMPLIANCE International Code Council Evaluation Service ...

  17. NREL: Hydrogen and Fuel Cells Research - Contaminants

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... (PA), polyphthalamide (PPA) (Nylon) DuPont, EMS, BASF 22 Structural Plastic ... Plastic Polybutylene terephthalate (PBT) DuPont 2 Structural Plastic Epoxy Sumitomo 1 ...

  18. 2014 Publications | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... C. Bruner, F. Novoa, S. Dupont and R. H. Dauskardt, "Decohesion Kinetics ... Mater. 24, 4515 (2014) doi: 10.1002adfm.201304247 S. R. Dupont, E. Voroshazi, D. ...

  19. Expert Meeting Report: Windows Options for New and Existing Homes

    Energy Savers [EERE]

    ... Baker of Building Science Corporation, and Theresa Weston of DuPont Building Innovations. ... Organization Email Address Theresa Weston DuPont Building Innovations ...

  20. SAND2011-6202

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fratoni, LLNL Joe Carter & Mark Dupont, Savannah River Rob Howard, ORNL Prepared ... Livermore, CA 94550 Joe Carter & Mark Dupont Savannah River Nuclear Solutions Building ...

  1. 2010 DOE Peer Review Update Conference LIST OF ATTENDEES Last...

    Energy Savers [EERE]

    ... Kinetics, Inc USA Choudhury Biswajit Dupont USA Christy Eddie DOE National Energy ... Energy Services USA Kountz Dennis DuPont USA Kraft Robert Energy Storage and Power ...

  2. Center to Research New Ways to Convert Sunshine to Power and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials, Ascent Solar Technologies, DuPont, Evident Technologies, Konarka, Lockheed ... "CRSP represents a wonderful opportunity for DuPont to participate in developing the next ...

  3. Center for Inverse Design: Staff Biographies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Project Leader, Dupont Central Research and Development, Experimental Station, Wilmington, ... Initiative leader for Chemical and Catalytic Technologies on DuPont Corporate ...

  4. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Submitter: Long, C. N., NOAA Global Monitoring DivisionCIRES Dupont, J., Laboratoire de ... Working Group(s): Radiative Processes Journal Reference: Dupont JC, M Haeffelin, and CN ...

  5. David W. Templeton | Bioenergy | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Templeton has collaborated on teams supporting outside companies, such as DuPont, ... He was the lead analyst for DuPont cooperative research and development agreement ...

  6. Browse by Discipline -- E-print Network Subject Pathways: Plasma...

    Office of Scientific and Technical Information (OSTI)

    Resources, University of Washington Dupont, R. Ryan (R. Ryan Dupont) - Department of Civil and Environmental Engineering, Utah State University Go back to Individual Researchers ...

  7. Unvented Roofs - Air Permeable Insulation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Owens Corning Dupont Johns Manville David Weekley Homes K. Hovnanian Homes Project Goal: ... and Collaborators: Manufacturing partners are Owens Corning, Johns Manville and Dupont. ...

  8. Advanced Cellulosic Biofuels - Leveraging Ensyn's Commercially...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to % Yields from VGO (ratio of yields) Gasoline + Diesel Diesel Gasoline Decant Oil Upstream Downstream Crude Oil Diesel Gasoline RFO 15 Refinery Coprocessing vs...

  9. Grand Challenges of Characterization & Modeling of Cellulose...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Rev, 38, 2046-2064,2009 Grand Challenge: CN Characterization 11 Technique Summary: *Microscopy: light, e-, ion, scanning probe *Diffraction: e-, neutron, x-ray *Inelastic ...

  10. Comparing alternative cellulosic biomass biorefining systems...

    Office of Scientific and Technical Information (OSTI)

    Additional Journal Information: Journal Volume: 74; Journal Issue: C; Journal ID: ISSN 0961-9534 Publisher: Elsevier Sponsoring Org: USDOE Office of Energy Efficiency and Renewable ...

  11. Production of High Value Cellulose from Tobacco

    SciTech Connect (OSTI)

    Berson, R Eric; Dvaid, Keith; McGinley, W Mark; Meduri, Praveen; Clark, Ezra; Dayalan, Ethirajulu; Sumanasekera, Gamini; Sunkara, Mahendra; Colliver, Donald

    2011-06-15

    The Kentucky Rural Energy Supply Program was established in 2005 by a federal direct appropriation to benefit the citizens of the Commonwealth by creating a unified statewide consortium to promote renewable energy and energy efficiency in Kentucky. The U.S. Department of Energy's (DOE) Office of Biomass Programs initially funded the consortium in 2005 with a $2 million operational grant. The Kentucky Rural Energy Consortium (KREC) was formed at the outset of the program to advance energy efficiency and comprehensive research on biomass and bioenergy of importance to Kentucky agriculture, rural communities, and related industries. In recognition of the successful efforts of the program, KREC received an additional $1.96 million federal appropriation in 2008 for renewal of the DOE grant. From the beginning, KREC understood the value of providing a statewide forum for the discussion of Kentucky's long term energy needs and economic development potential. The new funding allowed KREC to continue to serve as a clearinghouse and support new research and development and outreach programs for energy efficiency and renewable energy.

  12. 2016 Bioenergizeme Infographic Challenge: Cellulosic Ethanol

    Broader source: Energy.gov [DOE]

    This infographic was created by students from Smithtown High School East in St. James, NY, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME...

  13. Improvement of cellulose catabolism in Clostridium cellulolyticum...

    Office of Scientific and Technical Information (OSTI)

    carbon alleviation Background Clostridium cellulolyticum can degrade lignocellulosic biomass, and ferment the soluble sugars to produce valuable chemicals such as lactate,...

  14. Bacterial Cellulose Composites Opportunities and Challenges

    Broader source: Energy.gov [DOE]

    Presentation for the Sustainable Nanomaterials Workshop by Pacific Northwest National Laboratory (PNNL) Forest Service held on June 26, 2012

  15. [Zeolite catalysis in conversion of cellulosics

    SciTech Connect (OSTI)

    Tsao, G.T.

    1992-12-31

    To transform biomass into fermentable substrate for yeast, we are using zeolites instead of enzymes to catalyze the two bottleneck reactions in biomass conversion, xylose isomerization and ceuobiose hydrolysis. The experimental results on these reactions carried out over various zeolites and other catalysts are presented herein. The advantages and disadvantages of using these catalysts over enzymes are also discussed. Heterogeneous solid catalysts other than zeolites has been employed for cellobiose-to-glucose hydrolysis. The size and shape selectivity that makes zeoutes unique for some reactions can add diffusional hindrance. We have spent some time screening various known solid acidic catalysts. We report that a class of cationic ion exchange resins in the acidified form (e.g. Amberlite) has worked well as an acidic catalyst in hydrolyzing cellobiose to glucose. Our experimental results, together with those obtained from a homogeneous acid catalyst (e.g. sulfuric acid) for comparison are provided. Having succeeded in finding an alternative solid acid catalyst for hydrolysis, we explored other solid resin or other homogeneous but non-enzyme catalyst to carry out the xylose-to-xylulose isomerization. A fairly extensive search has been made. We explored the use of sodium aluminates in the homogeneous phase isomerization of glucose to fructose and obtained a very high conversion of glucose to fructose with the final mixture containing 85% of fructose instead of the common 45%. Fructose apparently complexes with aluminates, and its equilibrium concentration is shifted to considerably higher values than permitted by simple glucose/fructose equilibrium. We have recently found a number of catalysts capable of promoting isomerization between aldoses and ketoses. One solid resin, known as polyvinyl pyridine (PVP), is able to convert xylose to xylulose at a pH below 7. Our usage of alternative isomerization catalysts, including PVP, are described.

  16. [Zeolite catalysis in conversion of cellulosics

    SciTech Connect (OSTI)

    Tsao, G.T.

    1992-01-01

    To transform biomass into fermentable substrate for yeast, we are using zeolites instead of enzymes to catalyze the two bottleneck reactions in biomass conversion, xylose isomerization and ceuobiose hydrolysis. The experimental results on these reactions carried out over various zeolites and other catalysts are presented herein. The advantages and disadvantages of using these catalysts over enzymes are also discussed. Heterogeneous solid catalysts other than zeolites has been employed for cellobiose-to-glucose hydrolysis. The size and shape selectivity that makes zeoutes unique for some reactions can add diffusional hindrance. We have spent some time screening various known solid acidic catalysts. We report that a class of cationic ion exchange resins in the acidified form (e.g. Amberlite) has worked well as an acidic catalyst in hydrolyzing cellobiose to glucose. Our experimental results, together with those obtained from a homogeneous acid catalyst (e.g. sulfuric acid) for comparison are provided. Having succeeded in finding an alternative solid acid catalyst for hydrolysis, we explored other solid resin or other homogeneous but non-enzyme catalyst to carry out the xylose-to-xylulose isomerization. A fairly extensive search has been made. We explored the use of sodium aluminates in the homogeneous phase isomerization of glucose to fructose and obtained a very high conversion of glucose to fructose with the final mixture containing 85% of fructose instead of the common 45%. Fructose apparently complexes with aluminates, and its equilibrium concentration is shifted to considerably higher values than permitted by simple glucose/fructose equilibrium. We have recently found a number of catalysts capable of promoting isomerization between aldoses and ketoses. One solid resin, known as polyvinyl pyridine (PVP), is able to convert xylose to xylulose at a pH below 7. Our usage of alternative isomerization catalysts, including PVP, are described.

  17. Cellulosome preparations for cellulose hydrolysis - Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    thermocellum is added to a fungal cellulase mixture, such as those found in ... The bioethanol industry also is poised to utilize low cost cellulase enzyme mixtures by ...

  18. Morphological characterization of O-rings from the GCEP long-term test program. [Dupont 1141, 3M 4762 and 4768, and Parker V884-75 O-rings

    SciTech Connect (OSTI)

    Hughes, M.R.; Nolan, T.A.

    1984-07-30

    Based on the results of the morphological and structural characterizations reported herein the following conclusions have been reached. (1) O-rings of any of the four materials studied should last at least 10 years when employed in a standard static seal configuration utilizing a groove that holds the O-ring. (2) Such a static seal provides considerable protection from reaction. (3) The reaction of UF/sub 6/ with the O-ring material is the dominant degradation reaction; however there are effects on a least one compound that appear to be related to HF penetration into the O-ring matrix. The slow nature of the reaction of UF/sub 6/ with the flanged O-rings makes life projections quite difficult using any means. It would appear that one of the best methods for determining the life of these materials would be actual use combined with routine long-term inspection/sampling of a selected typical subset of O-rings. At GCEP conditions it would not be surprising to find the actual life of the O-rings is longer than any anticipated operation time of the plant facility. 16 figures, 1 table.

  19. F O R M E R L Y UTILIZED S ITE S

    Office of Legacy Management (LM)

    ... GRASSELLI RESEARCH LABORATORY OF E.I. DUPONT DE NEMOIJRS AND COMPANY Cleveland, Ohio ... FORMER GRASSELLI RESEARCH LABORATORY E.I. DUPONT DE NEMOURS AND COMPANY Cleveland, Ohio At ...

  20. OTS NOTE

    Office of Legacy Management (LM)

    ... characteristics of uranium metal, DuPont (as agent for Manhattan Engineering ... prior to completion of this work, DuPont placed Purchase Order RPG-800 l2 with ...

  1. Mr. James W. Wagoner II NSRAP Program Manager.

    Office of Legacy Management (LM)

    ... the only course of action is to direct DuPont to proceed'immediately vzith work leading ... the increased plant. 5. PRODUCT 616 The DuPont, pilot plant began operation 'on June ...

  2. jkpc171.tmp

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... There were overtones of the "Merchants of Death" stigma. Like DuPont, AT&T cof.dd suffer ... circumstances that led to charges against DuPont in the 1920s and motivated passage of the ...

  3. ORAU Team

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... The film badge dosimeters used at Y-12 from 1948 to 1963 contained DuPont type 552 film ... The DuPont 552 film packets were calibrated using x-rays, beta particles from a natural ...

  4. Radiative Processes Working Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    J-C. Dupont, M. Haeffelin Institut Pierre et Simon Laplace, Ecole Polytechnique, France ... clouds from the dataset hazy cases Dupont et al., 2008 ShortWave Clear-Sky Model ...

  5. Header Sheet Doc ID Z OAK RIDGE NATIONAL LABORATORY M. E. Murray

    Office of Legacy Management (LM)

    INTERNET: r'0 March 31, 1997 Mr. Andrew Meloy DuPont Environmental Remediation Services DuPont Chambers Works Route 130, Anti-Knocks Building G Deepwater, New Jersey 08023 Dear Mr. ...

  6. Présentation PowerPoint

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    M. Haeffelin 1 , J-C. Dupont 1 , C. Long 2 1 Institut Pierre et Simon Laplace, Ecole ... Outline Outline 4 Aerosols Water Vapor Dupont and Haeffelin, JGR 2008 Ground Observatory ...

  7. Fluid Interface Reactions, Structures and Transport

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Joel Rosenthal is a DuPont Young Professor in the Department of Chemistry and Biochemistry ... in 2011. Rosenthal also received a DuPont Young Professor Award in 2012 and was ...

  8. FUSRAP Stakeholder Report_3.cdr

    Energy Savers [EERE]

    ... Beverly Indian Orchard New York Shpack Landfill E.I. DuPont Site Columbus East Niagara ... Albany Research Center, Albany, OR E.I. DuPont, Deepwater, NJ KellexPierpont, Jersey ...

  9. Profile for Timothy C. Germann

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... V. Dupont and T. C. Germann, Strain rate and orientation dependencies of the strength of ... G. Dimonte, G. Terrones, F. J. Cherne, T. C. Germann, V. Dupont, K. Kadau, W. T. Buttler, ...

  10. Microsoft Word - Remedial Action Program Update.rtf

    Office of Legacy Management (LM)

    ... The Delaware Memorial Twin Bridges stand majestically in front of the DuPont Chambers Works Site complex in Deepwater, N.J., as shown in a 2001 aerial photograph. The DuPont site ...

  11. Susan Martindale

    Office of Environmental Management (EM)

    ... Burke (Cherry) mcash@adph.state.al.us DuPont Company SHE Excellence Center Margaret S. ... (302) 774-2778 cherry.burke@usa.dupont.com Waste Management 1000 Independence ...

  12. Columbus East, Ohio, Site Fact Sheet

    Office of Legacy Management (LM)

    an intermediate product) under contract to E.I. du Pont de Nemours and Company (DuPont). ... Upon completion of the extrusion project, representatives of MED and DuPont visually ...

  13. Research To Develop Both Fuels And Value-Added Chemicals From...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Renewable Energy Laboratory (NREL) and DuPont today announced a joint research ... The 7.7 million Cooperative Research and Development Agreement calls for DuPont and NREL ...

  14. Microsoft Word - BLM WAPA Herbicide Use FINAL working20160119...

    Energy Savers [EERE]

    ... Ceannard Bromacil 80DF Ceannard, Inc. 58035-19 Hyvar X DuPont Crop Protection 352-287 Hyvar XL DuPont Crop Protection 352-346 Bromacil + Diuron BromacilDiuron Alligare, LLC ...

  15. THE AEROSPACE CORPORATION

    Office of Legacy Management (LM)

    the University of Chicago (Metallurgical Laboratory) andor DuPont during this period. ... on the Metallur- gical ,Laboratory and DuPont, as agents of the government, to provide ...

  16. I

    Office of Legacy Management (LM)

    ... and subcontracts with the University of Chicago (Metallurgical Laboratory) and DuPont. ... by the University of Chicago and DuPont and approved by a Government contracting officer. ...

  17. STEAB August 2014 Meeting Agenda

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1221 22 nd Street, NW, Washington, DC Dupont Salon FG DAY 1 - August 20 th 8:00 - ... 1221 22 nd Street, NW, Washington, DC Dupont Salon FG DAY 2 - August 21 st 8:00 - ...

  18. FORMERLY REMEDIAL UTILIZED SITES ACTION PROGRAM ELIMINATION REPORT

    Office of Legacy Management (LM)

    Site Function Through DuPont, the Carpenter Steel Company was under contract to the ... material had been handled at the site as part of work for the ME0 through DuPont. ...

  19. I-J

    Office of Legacy Management (LM)

    ... Site Function (Williams, 1991) In February 1943, the DuPont Company, acting as an agent of ... Upon completion of the project, MED and DuPont representatives visually inspected the site ...

  20. I

    Office of Legacy Management (LM)

    FORMER GRASSELLI RESEARCH LABORATORY E.I. DUPONT DE NEMOURS AND COMPANY Cleveland, Ohio At ... The facilities (shown in Fig. 2) were owned by E.I. duPont de Nemours Company at the time ...

  1. Poster Abstract of Nineteenth ARM STM: Sort by Title

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... and Global Scale ABSTRACT Haeffelin, M., Dupont, J., and Long, C. Climate Modeling Best ... A., Haeffelin, M., Morille, Y., Noel, V., Dupont, J., Turner, D., Wang, Z., Comstock, J., ...

  2. I I

    Office of Legacy Management (LM)

    I DOEQR20722-22 RADIOLOGICAL SURVEY OF THE E. 1. DUPONT DE NEMOURS AND COMPANY CHAMBERS ... in six separate areas of the DuPont Chambers Works Plant in Deepwater, New Jersey. ...

  3. nro31b2.tmp

    Energy Savers [EERE]

    ... Input From DuPont Final input for the November meetings of the Military Policy Committee and the S-1 Executive Committee came from DuPont. One of the fust things Groves did when he ...

  4. United States Government DATE:

    Office of Legacy Management (LM)

    ... and subcontracts with the University of Chicago (Metallurgical Laboratory) and DuPont. ... by the University of Chicago and DuPont and approved by a Government contracting officer. ...

  5. FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT

    Office of Legacy Management (LM)

    ... April 1944 DuPont placed an order with Pratt to finish rough-turned slugs by centerless grinding for the priority project to provide 48,000 unbonded Hanford slugs. DuPont also ...

  6. DOE/OR/20722-22 UC-70A DBaffu Formerly Utilized Sites Remedial...

    Office of Legacy Management (LM)

    DE-ACO5-81OR20722 c P c P RADIOLOGICAL SURVEY REPORT FOR THE DUPONT CHAMBER WORKS PLANT ... RADIOLOGICAL SURVEY OF THE E. I. DUPONT DE NEMOURS AND COMPANY CHAMBERS WORKS ...

  7. Microsoft Word - S07566_Requirements

    Office of Environmental Management (EM)

    ... District through a contract with E.I. DuPont de Nemours and Co., Inc., in 1943. ... University of Chicago in 1943 and E.I. DuPont de Nemours and Co., Inc., in 1951. ...

  8. OAK RIDGE : I NATIONAL LABORATORY

    Office of Legacy Management (LM)

    ... commercial metal fabricators engaged by DuPont, a MED prime contractor, to fabricate a ... IL?, included machining and finishing slugs from uranium metal rod supplied by DuPont. ...

  9. Manhattan Project: Final Approval to Build the Bomb, Washington...

    Office of Scientific and Technical Information (OSTI)

    to head a final review committee, comprised of himself and three DuPont representatives. ... and one day after Groves instructed DuPont to move into pile design and construction. ...

  10. I I

    Office of Legacy Management (LM)

    SUBJECT: Uranium Authorized Limits for the DuPont site, Deepwater, New Jersey R. Kirk, OR TO: This is in response to the request for approval of uranium guidelines for the DuPont ...

  11. DOE - Office of Legacy Management -- E I Du Pont Grasselli Plant...

    Office of Legacy Management (LM)

    of the Former DuPont Graselli Research Laboratory from FUSRAP; January 7, 1986 OH.03-3 - DOE Report; FUSRAP Elimination Report for the Former E.I. DuPont DeNemours and ...

  12. M

    Office of Legacy Management (LM)

    ... characteristics of uranium metal, DuPont (as agent for Manhattan Engineering ... prior to completion of this work, DuPont placed Purchase Order RPG-800 l2 with ...

  13. Microsoft Word - NETL-TRS-5-2014_High-Temperature, High-Pressure...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... determined that the perfluorpolyether oil known as DuPont Krytox 102 is a good candidate. ... lubricating oils was obtained from the DuPont Company, and the structure is shown in ...

  14. Fleming gift creates graduate fellowships in biomolecular engineering...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a trip sponsored by Walter Carpenter, the DuPont executive for whom Carpenter Hall and ... father worked as an engineer at DuPont and whose family also had strong ties to Cornell. ...

  15. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    DuPont, John" Name Name ORCID Search Authors Type: All BookMonograph ConferenceEvent ... Search for: All records CreatorsAuthors contains: "DuPont, John" Sort by Relevance ...

  16. Waupaca County, Wisconsin: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Dupont, Wisconsin Embarrass, Wisconsin Farmington, Wisconsin Fremont, Wisconsin Harrison, Wisconsin Helvetia, Wisconsin Iola, Wisconsin Larrabee, Wisconsin Lebanon, Wisconsin...

  17. Circleville, Ohio Solar Plant Shows Value of Clean Energy Tax Credits

    Broader source: Energy.gov [DOE]

    Energy Secretary Applauds DuPont Solar Manufacturing Plant Expansion, Calls for Extension of Manufacturing Tax Credit

  18. SSRL BEAM PORT SCHEDULE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... BEAM LINE 8-2 Mar. 18, 2013 Mar. 19, 2013 Mar. 20, 2013 Mar. 21, 2013 Mar. 22, 2013 Mar. 23, 2013 Mar. 24, 2013 8053 D.NORDLUND 3769 S.Dupont 3769 S.Dupont 3769 S.Dupont 3731 ...

  19. Preliminary Economics for Hydrocarbon Fuel Production from Cellulosic Sugars

    SciTech Connect (OSTI)

    Collett, James R.; Meyer, Pimphan A.; Jones, Susanne B.

    2014-05-18

    Biorefinery process and economic models built in CHEMCAD and a preliminary, genome-scale metabolic model for the oleaginous yeast Lipomyces starkeyi were used to simulate the bioconversion of corn stover to lipids, and the upgrading of these hydrocarbon precursors to diesel and jet fuel. The metabolic model was based on the recently released genome sequence for L. starkeyi and on metabolic pathway information from the literature. The process model was based on bioconversion, lipid extraction, and lipid oil upgrading data found in literature, on new laboratory experimental data, and on yield predictions from the preliminary L. starkeyi metabolic model. The current plant gate production cost for a distillate-range hydrocarbon fuel was estimated by the process model Base Case to be $9.5/gallon ($9.0 /gallon of gasoline equivalent) with assumptions of 2011$, 10% internal return on investment, and 2205 ton/day dry feed rate. Opportunities for reducing the cost to below $5.0/gallon, such as improving bioconversion lipid yield and hydrogenation catalyst selectivity, are presented in a Target Case. The process and economic models developed for this work will be updated in 2014 with new experimental data and predictions from a refined metabolic network model for L. starkeyi. Attaining a production cost of $3.0/gallon will require finding higher value uses for lignin other than power generation, such as conversion to additional fuel or to a co-product.

  20. Pilot Integrated Cellulosic Biorefinery Operations to Fuel Ethanol

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Office(BETO) IBR Project Peer Review * 2015 ICM, Inc. All Rights Reserved. *1 Recovery ... All Rights Reserved. Project Relevance and Outcomes Demonstrate Fully Integrated ...

  1. BETO Project Improves Production of Renewable Chemical from Cellulosic Feedstocks

    Broader source: Energy.gov [DOE]

    Renewable chemical company Genomatica made significant progress toward increasing the range of feedstocks that can be used to commercially produce high-quality bio-based chemicals, in a project...

  2. EERE Success Story-Louisiana: Verenium Cellulosic Ethanol Demonstratio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    spectrum of industrial, academic, agricultural, and nonprofit partners across the United States to develop and deploy commercially viable, high-performance biofuels, bioproducts, ...

  3. Florida Project Produces Nation's First Cellulosic Ethanol at...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Committee, Energy Department Green Racing Series Revs Engines with Renewable Fuel from INEOS Bio Grand Opening for Project LIBERTY: Nation's First Plant to Use Corn Waste as a ...

  4. Making Cellulose More Accessible for Bioconversion | U.S. DOE...

    Office of Science (SC) Website

    Biological and Environmental Research U.S. Department of Energy SC-23Germantown Building ... trunks, stems, and leaves) holds great promise as a renewable alternative fuel source. ...

  5. Identification and Characterization of Non-Cellulose-Producing...

    Office of Scientific and Technical Information (OSTI)

    Citation Details In-Document Search Title: Identification and Characterization of ... membrane, carbon sequestration, materials and chemistry by design, synthesis ...

  6. BETO Project Improves Production of Renewable Chemical from Cellulosic...

    Broader source: Energy.gov (indexed) [DOE]

    Renewable chemical company Genomatica made significant progress toward increasing the ... sugars to 1,4-butanediol (BDO), a chemical used in products such as hard plastics ...

  7. Grand Challenges of Characterization & Modeling of Cellulose Nanomaterials

    Broader source: Energy.gov [DOE]

    Presentation for the Sustainable Nanomaterials Workshop by U.S. Forest Service and Purdue University held on June 26, 2012

  8. Secretary Bodman Touts Importance of Cellulosic Ethanol at Georgia...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    such as Range Fuels, are blending science and technology to advance the President's ... will lead to the wide-scale use of non-food based biomass, such as agricultural waste, ...

  9. Cellulose Nanomaterials: The Sustainable Material of Choice for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    63,882 -1.6% Germany 37,043 47,265 58,788 +58.7% Finland 43,840 55,721 55,152 +25.8% India 35,055 41,173 45,957 +31.1% Chile 16,455 28,862 36,032 +119.0% Global Production for ...

  10. Watershed Scale Optimization to Meet Sustainable Cellulosic Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Calibrated SWAT Model Sustainability Metrics of Alternative Watershed Landscape Scenarios Future Climate Scenarios Calibrated SWAT Model Sustainability Metrics of Baseline ...

  11. Evaluating the effect of potassium on cellulose pyrolysis reaction...

    Office of Scientific and Technical Information (OSTI)

    APA Chicago Bibtex Export Metadata Endnote Excel CSV XML Save to My Library Send to Email Send to Email Email address: Content: Close Send Cite: MLA Format Close Cite: APA ...

  12. Advanced Biofuels from Cellulose via Genetic Engineering of Clostridiu...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    goals (3gge, 2022 cost goal) toward developing commercially viable bioenergy ... (Comp.)* 0 0 0 0 4 Project Overview History: A Seed project started in FY14, using a ...

  13. Numberical studies of the radiant flash pyrolysis of cellulose

    SciTech Connect (OSTI)

    Kothari, V.; Antal, M.J. Jr.

    1983-01-01

    When biomass particles are heated very rapidly (>1000/sup 0/ C/s) in an oxygen free environment, they undergo pyrolysis with the formation of little or no char. If concentrated solar energy is used to rapidly heat the particles their temperature may exceed that of the surrounding gaseous environment by several hundred degrees Celsius when pyrolysis occurs. This ''two temperature'' effect gives rise to the formation of high yields of syrups from the pyrolyzing biomass. Numberical exploration of the combined effects of heat and mass transfer on the radiative flash pyrolysis phenonmena are described in this paper. (5 tables, 8 figs, 12 refs.)

  14. Numerical studies of the radiant flash pyrolysis of cellulose

    SciTech Connect (OSTI)

    Kothari, V.; Antal, M.J. Jr.

    1983-01-01

    When biomass particles are heated very rapidly (temperatures greater than 1000 degrees/s) in an oxygen free environment, they undergo pyrolysis with the formation of little or no char. If concentrated solar energy is used to rapidly heat the particles their temperature may exceed that of the surrounding gaseous environment by several hundred degrees Celsius when pyrolysis occurs. This two temperature effect gives rise to the formation of high yields of syrups from the pyrolyzing biomass. Numerical exploration of the combined effects of heat and mass transfer on the radiative flash pyrolysis phenonmena are described in this paper. 12 references.

  15. Numerical studies of the radiant flash pyrolysis of cellulose

    SciTech Connect (OSTI)

    Kothari, V.; Antal, M.J.

    1983-01-01

    When biomass particles are heated very rapidly (>1000/sup 0/C/s) in an oxygen free environment, they undergo pyrolysis with the formation of little or no char. If concentrated solar energy is used to rapidly heat the particles, their temperature may exceed that of the surrounding gaseous environment by several hundred degrees Celsius when pyrolysis occurs. This ''two temperature'' effect gives rise to the formation of high yields of sirups from the pyrolyzing biomass. Interest in the selective formation of sirups during the radiative flash pyrolysis of biomass caused the authors to initiate numerical explorations of the combined effects of heat and mass transfer on the radiative flash pyrolysis phenomena. These explorations are described in this paper.

  16. Secretary Moniz Dedicates Innovative Commercial-Scale Cellulosic Biofuel Plant

    Broader source: Energy.gov [DOE]

    WASHINGTON — Marking another milestone in the Administration’s support of clean energy technologies that will diversify our energy portfolio and help transition the U.S. toward a low-carbon future,...

  17. 2016 Bioenergizeme Infographic Challenge: Renewable Alternatives: Cellulosic Ethanol

    Broader source: Energy.gov [DOE]

    This infographic was created by students from General Douglas MacArthur High School in Levittown, NY, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME...

  18. Secretary Moniz Dedicates Innovative Commercial-Scale Cellulosic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    that will diversify our energy portfolio and help transition the U.S. toward a ... helps diversify our energy portfolio, and moves us closer to a low-carbon energy future." ...

  19. Understanding the Growth of the Cellulosic Ethanol Industry

    SciTech Connect (OSTI)

    Sandor, D.; Wallace, R.; Peterson, S.

    2008-04-01

    This report identifies, outlines, and documents a set of plausible scenarios for producing significant quantities of lignocellulosic ethanol in 2017. These scenarios can provide guidance for setting government policy and targeting government investment to the areas with greatest potential impact.

  20. Cellulosic Biomass Sugars to Advantaged Jet Fuel Presentation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Continue to work on improving yields to lower effect of biomass price volatility on final fuel product. Prolonged Depression of Crude Oil Prices Strive to be the low cost producer ...

  1. Biomass Deconstruction and Pretreatment | Bioenergy | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Cargill Codexis DSM DuPont Ecopetrol Green Earth Institute Idaho National Laboratory JGC MBG Novozymes North Carolina State University Pacific Northwest National Laboratory Poet ...

  2. May 12, 2011, Visiting Speakers Program Events - Special Report...

    Energy Savers [EERE]

    ... Cubic Defense Applications Curtiss-Wright Corporation Curtiss-Wright Controls, Inc. Metal Improvement Company Deloitte Consulting LLP Ducommun Incorporated DuPont Company DynCorp ...

  3. Table Definitions, Sources, and Explanatory Notes

    Gasoline and Diesel Fuel Update (EIA)

    ... by weight, and the blend must meet ASTM volatility specifications as well as phase separation and alcohol purity specifications (commonly referred to as the "DuPont" waiver). ...

  4. Tunable Laser Reaches Record Power Level | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Initial industrial users of the FEL include DuPont (polymer processing), ArmcoNorthrop-GrummanVirginia Power (metals processing) and Aerospace3M (microfabrication). These ...

  5. Affiliates - Joint Center for Energy Storage Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Connecticut Proton OnSite Delaware DuPont Central Research and Development Florida NextEra Energy Resources Georgia Georgia Institute of Technology Southern Company Services Idaho ...

  6. DOE Announces Secretary of Energy Advisory Board | Department...

    Energy Savers [EERE]

    IBM Alexis Herman Former Secretary of Labor Chad Holliday, Jr. Former CEO of Dupont Michael McQuade Senior VP, United Technologies Corporation William Perry Former ...

  7. ORISE: Peer-Reviewed Journal Articles in the field of worker...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ellis ED, Watkins J, Tankersley W, Phillips J, and Girardi D. Mortality among titanium dioxide workers at three DuPont plants. Journal of Occupational and Environmental Medicine ...

  8. DOE Announces Selections for SSL Core Technology (Round 6), Product...

    Energy Savers [EERE]

    ... Recipient: GE Global Research Title: Roll-to-Roll Solution-Processable Small-Molecule OLEDs Team Members: Dupont Displays Inc. Summary: This project seeks to integrate the ...

  9. Table Definitions, Sources, and Explanatory Notes

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    by weight, and the blend must meet ASTM volatility specifications as well as phase separation and alcohol purity specifications (commonly referred to as the "DuPont" waiver). ...

  10. THE AEROSPACE CORPORA-iION

    Office of Legacy Management (LM)

    ... Queen City Barrel Company Ohmart Brush Beryllium (Chester Street) Brush Berylliunl (Perkins Avenue) Clecon Metals, Inc. (horizons, Inc.) DuPont Grasselle Plant Harshaw Chemical ...

  11. Industry, academic collaborators push for energy solutions |...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Attendees at the meeting included representatives of the six current E-ffiliates member companies: Dupont, Lockheed Martin, PSEG, Southern Company, Archewild and Power Survey ...

  12. Prepared in response to formal guidance and a request by Sam...

    Energy Savers [EERE]

    ... 66), Chemical companies (Eastman, Air Products, and previously DuPont), Software companies (AspenTech, PSE, Ansys, Schneider Electric) and others (EPRI and previously Boeing). ...

  13. Mr. Ken Blower, Manager Corporate Environmental Affairs Standard...

    Office of Legacy Management (LM)

    Blower: The Department of Energy (DOE), as part of its Fomerly Utilized Sites Remedial Action Program (FUSRAP), has reviewed information on the former DuPont Grasselli Research ...

  14. The HonorableZ William S. Cohen

    Office of Legacy Management (LM)

    ... Site Name Latty Ave. Properties St. Louis Airport Vicinity Properties St. Louis Downtown Site DuPont Maywood Wayne : Middlesex Sampling Plant Ashland 1 Ashland 2 Seaway Industrial ...

  15. New Laser's "First Light" Shatters Record | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Initial users include DuPont (polymer processing) and ArmcoNorthrop-GrummanVirginia Power (metals processing). In addition, Old Dominion University, the college of William and ...

  16. Development of Probabilistic Risk Assessments for Nuclear Safety...

    Energy Savers [EERE]

    ... "Tornado Windspeed Frequency Analysis of the Savannah River Plant," Savannah River Plant Report, prepared for E. I. DuPont de Nemours and Company, Aiken, South Carolina (1985). ...

  17. The Secretary of Energy

    Office of Legacy Management (LM)

    ... Latty Ave. Properties' St. Louis Airport Vicinity Properties St. Louis Downtown Site' . . DuPont Maywood Wayne : . Middlesex Sampling Plant ' Ashland 1 Ashland 2 Seaway Industrial ...

  18. With low projected manufacturing costs, high ion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    is the only hydrocarbon membrane with performance meeting or exceeding the current state-of-the- art Nafion (Dupont) based membranes, with a projected cost structure below Nafion. ...

  19. Microsoft PowerPoint - 2 McFarlane_VAP Update.ppt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - Results of AMFGNDRAD Reconfiguration on Upwelling Irradiances. 2:10 Jean-Charles Dupont - Observed cirrus cloud radiative forcing on surface-level shortwave and longwave ...

  20. The .Hoiorable William S. Cohen'

    Office of Legacy Management (LM)

    ... Site Name Latty Ave. Properties. St. Louis Airport ,Vicinity Properties . St. Louis Downtown Site' ' DuPont Maywooh a . . Wayne 1 . M iddlesex Sampling Plant ' ' Ashland 1 ...

  1. En/ant Plaza. S. W,. Washington. D.C. 20024.2174, Telephones...

    Office of Legacy Management (LM)

    ... Queen City Barrel Company Ohmart Brush Beryllium (Chester Street) Brush Beryllium (Perkins Avenue) Clecon bletals, Inc. (Horizons, Inc.) DuPont Grasselle Plant Harshaw Chemical ...

  2. I,.

    Office of Legacy Management (LM)

    ... Queen City BarrelCompany Ohmart Brush Beryllium (Chester Street) Brush Beryllium (Perkins Avenue) Clecon Metals, Inc. (Horizons, Inc.) DuPont Grasselle Plant Harshaw Chemical ...

  3. NREL Science Central to Success of New Biofuels Projects: - Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL Science Central to Success of New Biofuels Projects: DuPont-NREL Partnership ... Partner Location Agreement Type Publication Date DuPont Delaware Other February 23, 2015 ...

  4. The Honorable, William S . Cohen

    Office of Legacy Management (LM)

    ... - ' . -2. , - - - 7 * - I -r* -: - ' * . . . -. m I Site Name Latty Ave. Properties St. Louis Airport .Vicinity Properties St. Louis Downtown Site. DuPont Maywood Wayne : . ...

  5. The .HonorabIe Wdliam S. Cohen

    Office of Legacy Management (LM)

    ... Current Sites . 1 : Latty Ave. Properties St. Louis Airport Vicinity Properties St. Louis Downtown Site. DuPont Maywood . Wayne 1 . M iddlesex Sampling Plant ' Ashland 1 Ashland ...

  6. fem | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Manuscript Presentation Improving the Weldability of Fe-Cr-Al Alloys Through TiC Additions John Dupont, Lehigh University Manuscript Presentation Session 2 - Corrosion & Protection ...

  7. DOE Announces Selections for SSL Core Technology and Product...

    Energy Savers [EERE]

    ... This synergistic approach will establish a technology platform capable of providing high efficiency components, drivers and luminaires. Recipient: Dupont Displays, Inc. Title: ...

  8. Prestigious Council to Advise National Renewable Energy Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Alexander MacLachlan Former DOE Under Secretary for Research and Development Management; former DuPont Chief Technology Manager Dr. Walter E. Massey President, Morehouse College ...

  9. Mary Ann Franden | Bioenergy | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Franden also collaborated with DuPont on the Integrated Corn-Based Biorefinery cooperative research and development agreement (CRADA) toward the development of a proprietary ...

  10. Biochemical Process Development and Integration | Bioenergy ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Enzyme and Microbial Development Techno-Economic Analysis Sustainability Analysis Collaborators DuPont EcoPetrol Genomatica Japanese Gas Corporation Lygos Membrane Science, ...

  11. QN&-ll.

    Office of Legacy Management (LM)

    ... Site Name Latty Ave. Properties St. Louis Airport Vicinity Properties St. Louis Downtown Site DuPont Maywood Wayne . . M iddlesex Sampling Plant Ashland 1 Ashland 2 Seaway ...

  12. Edward W. Jennings | Bioenergy | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ed is the lead in the pilot plant fermentation area for the DuPont cooperative research and development agreement campaign that included experimental production work along with ...

  13. CoverSheet

    Office of Environmental Management (EM)

    ... be exempted because they recently completed an extensive DuPont Safety Culture Assessment. ... demonstrated and supported. 26 Appendix A-DuPont Culture Review of Environmental Programs ...

  14. The FIonorable W

    Office of Legacy Management (LM)

    ... FORMERLY UTILIZED.SITES REMEDIAL ACTION PROGRAM (FUSRAP) . ,Current Sites . . : . St. Louis Airport Vicinity Properties St. Louis Downtown Site. . DuPont Maywood . Wayne i . M ...

  15. A Comparison of Key PV Backsheet and Module Properties from Fielded...

    Broader source: Energy.gov (indexed) [DOE]

    dupontgambogi.pdf More Documents & Publications Agenda for the PV Module Reliability Workshop, February 26 - 27 2013, Golden, Colorado DuPont's Journey to Build a Global ...

  16. The Honorable, William S . Cohen

    Office of Legacy Management (LM)

    ... Latty Ave. Properties St. Louis Airport Vicinity Properties St. Louis Downtown Site. DuPont Maywood . Wayne i '. M iddlesex Sampling Plant ' Ashland 1 Ashland 2 Seaway Industrial ...

  17. THE AEROSPACE CORPORATION

    Office of Legacy Management (LM)

    ... Queen City Barrel Company Ohmart Brush Beryllium (Chester Street) Brush Berylliunl (Perkins Avenue) Clecon Metals, Inc. (Horizons, Inc.1 DuPont Grasselle Plant Harshaw Chemical ...

  18. Secretary Chu Announces 150 Students to Receive Graduate Fellowships...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    IBM Alexis Herman Former Secretary of Labor Chad Holliday, Jr. Former CEO of Dupont Michael McQuade Senior VP, United Technologies Corporation William Perry Former ...

  19. EC Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Blink, Harris Greenberg, Mark Sutton & Massimiliano Fratoni, LLNL Joe Carter & Mark Dupont, Savannah River Rob Howard, ORNL report-id SAND2011-6202 location SNL, Albuquerque, ...

  20. CRSP Funds 10 New Advanced Solar Research Projects, Announces...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Fourteen companies currently belong to CRSP: Abengoa Solar PV, Applied Materials, Ascent Solar Technologies, DuPont, Evident Technologies, G24 Innovations, General Motors, Konarka, ...

  1. NREL Recognized by FLC for Technology Transfer Activities - News...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL has several industrial partnerships related to this technology, including a 7.7 million cooperative research and development agreement and license agreement with DuPont. The ...

  2. Collaboratory Funds 12 New Solar Research Projects - News Releases...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Fourteen companies now belong to CRSP: Applied Materials, Inc., Ascent Solar Technologies, DuPont, Evident Technologies, General Motors, Konarka, Lockheed Martin, Motech ...

  3. ARM - Journal Articles 2011

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... ratios provide constraints (Citation) Environmental Science & Technology Yes ARM ASR Dupont Cloud properties derived from two lidars over the ARM SGP site (Citation) Geophysical ...

  4. The Honorable W

    Office of Legacy Management (LM)

    ... Louis Downtown Site. . .,' ' . f 0 EN-CLOSURE FORMERLY UTILSZED.SITES REMEDIAL ACTION PROGRAM (FUSRAP) DuPont Maywood . Wayne . Middlesex Sampling Plant ' Ashland 1 Ashland 2 ...

  5. Expert Meeting Report: Transforming Existing Buildings through...

    Energy Savers [EERE]

    ... DuPont Building Innovations Real Estate Mortgagee Network Home Energy RESNET HomeFree Nevada SIPS IBACOS Southwest Energy Efficiency Project Interplay Energy Steven Winter ...

  6. materials | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Investigation of Iron Aluminide Weld Overlays Arnold R. Marder, Jonathan R. Regina, and John N. DuPont, Lehigh University Coating Microstructure Property Issues Richard N. Wright, ...

  7. September 2004 Water Sampling

    Office of Legacy Management (LM)

    ... No maintenance or deferred maintenance needs were identified for this real property asset. (DLSlcg) cc: (electronic) Jalena Dayvault, DOE Steve Donivan, Stoller Dennis Dupont, ...

  8. THE AEROSPACE

    Office of Legacy Management (LM)

    ... (Perkins Avenue) Cleveland, OH Clecon Metals, Inc. (Horizons, Inc.1 Cleveland, OH DuPont Grasselle Plant Cleveland, Oh Harshaw Chemical Company Cleveland, OH Brush Beryllium ...

  9. Members

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... He has also held faculty appointments at Purdue University and the University of Delaware, and held visiting positions at DuPont, Weyerhaeuser, and Stuttgart University. He has ...

  10. Suite 4000. 9.5 L%nfcinr Pi& S. Ic:, W

    Office of Legacy Management (LM)

    ... Queen City Barre,lCompany Ohmart Brush Beryllium (Chester Street) Brush Beryllium (Perkins Avenue) Clecon Metals, Inc. (Horizons, Inc.) DuPont Grasselle Plant Harshaw Chemical ...

  11. THE

    Office of Legacy Management (LM)

    ... Queen City Barre-l;.Company Ohmart Brush Beryllium (Chester Street) Brush Berylliunl (Perkins Avenue) Clecon bletals, Inc. (Horizons, Inc.). DuPont Grasselle Plant Harshaw Chemical ...

  12. Hamilton, Ohio, Site Fact Sheet

    Office of Legacy Management (LM)

    machined and shaped uranium metal under subcontract to Manhattan Engineer District (MED) contractors E.I. du Pont de Nemours and Company (Dupont) and the University of Chicago. ...

  13. THE AEROSPACE CORPORATION

    Office of Legacy Management (LM)

    ... Street) Brush Beryllium (Perkins Avenue) Clecon Eletals, Inc. (Horizons, Inc.) DuPont Grasselle Plant Harshaw Chemical Company Brush Beryllium Company Brush Beryllium ...

  14. I*

    Office of Legacy Management (LM)

    ... Properties St. Louis Airport Vicinity Properties St. Louis Downtown Site DuPont Maywood Wayne . . Middlesex Sampling Plant Ashland 1 Ashland 2 Seaway Industrial Park Linde Air ...

  15. THE AEROSPACE CORPORATION

    Office of Legacy Management (LM)

    ... Inc.) DuPont Grasselle Plant Harshaw Chemical Company Brush Beryllium Company Brush Beryllium Company Clifton Products Company Superior Steel Company Rohm & Haas Company ...

  16. Mitigation and Remediation of Mercury Contamination at the Y...

    Office of Environmental Management (EM)

    ... consortium of scientists, engineers, NGOs, state and federal regulators and industry (Dupont) managers formed to address legacy mercury issues in the South River and South Fork ...

  17. Biochemical Conversion Pilot Plant (Fact Sheet), NREL (National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... NREL's Zymo work has included successful collaborations with the National Corn Growers Association, the Corn Refiners Association, and DuPont. Associated publications Chen, X.; ...

  18. Other Participants 2001 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Falls , MT Chaska High School , Chaska , MN Creighton Preparatory School , Omaha , NE DuPont Manual Magnet High School , Louisville , KY East Brunswick High School , East ...

  19. Comparison of Water-Hydrogen Catalytic Exchange Processes vs...

    Office of Environmental Management (EM)

    SC 6 * Most of the heavy water produced during WW II was by water distillation. * DuPont built heavy water production facilities at: - Morgantown Ordnance Works, near ...

  20. The IIonorable W

    Office of Legacy Management (LM)

    ... Latty Ave. Properties St, Louis Airport Vicinity Properties St. Louis Downtown Site' . DuPont Maywood Wayne T . Middlesex Sampling Plant ' Ashland 1 Ashland 2 Seaway Industrial ...

  1. THE AEROSPACE CORPORATION

    Office of Legacy Management (LM)

    ... Barrel-..Company.,...- e i- Ohmart Brush Beryllium (Chester Street) Brush Beryllium (Perkins Avenue) Clecon Metals, Inc. (Horizons, Inc.1 DuPont Grasselle Plant Harshaw Chemical ...

  2. 2012 Solid-State Lighting R&D Workshop Presentations and Materials...

    Energy Savers [EERE]

    Energy Saving Phosphorescent Luminaires Mike Weaver, Universal Display Corporation Solution-Processed, Small-Molecule OLED Luminaire for Interior Illumination Ian Parker, DuPont ...

  3. Neutron Scattering Data Vickie Lynch, Jose Borreguero-Calvo,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... U.S. Department of Energy Testing with friendly users Jose Borreguero * Mike Crawford (Dupont) & Niina Jalarvo (Julich) BASIS experiment MD simulation studies of Methyl rotations ...

  4. Annual Postdoctoral Research and Career Symposium | Argonne National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cabot Microelectronics, Chicago Council on Science and Technology, Clean Energy Trust, DuPont, Dow, Euclid TechLabs, Exxon Mobil, GE Healthcare, GE Research, Illinois Science and ...

  5. SSRL HEADLINES Jun 2012

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... The results of the recent NUFO Steering Committee elections were also announced, acknowledging retiring members Cathy Knotts (SLAC), Al Ekkebus (ORNL), Mike Crawford (DuPont), and ...

  6. Annual Report 2008.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... oral history tapesfilms, safety films, historic maps, construction histories created by DuPont and the various subcontractors who helped create the Site, and the Site newspapers. ...

  7. CRSP and Colorado School of Mines REMRSEC Form Relationship ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... research programs including Applied Materials, Inc., Ascent Solar Technologies, Inc., DuPont, Evident Technologies, Inc., Konarka Technologies, Inc., Lockheed Martin, Motech ...

  8. Other Participants 2000 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Lake South High School , Crystal Lake , IL Dulles High School , Sugar Land , TX DuPont Manual Magnet High School , Louisville , KY East Brunswick High School , East ...

  9. Contents A

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... accidents at Honeywell International, DuPont, General Electric, and Bechtel Jacobs. ... October 9 December 2004 SiteLines Bechtel Nevada 35 years Las Vegas - Jerome Blair 30 ...

  10. HTGR Pebble Fuel at SRS E. N. Moore R. H. Jones T. F. Severynse

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... proven "Interim-23" flowsheet, demonstrated in the 60s (Karakker 1960 and Dupont 1966). ... Preliminary discussion with the Nevada National Security Site (NNSS) and Waste Control ...

  11. VP 100: Growth in solar means growth in Ohio | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Growth in solar means growth in Ohio VP 100: Growth in solar means growth in Ohio October 6, 2010 - 10:57am Addthis DuPont is betting on major growth in the market for solar energy -- and therefore for its Tedlar film, a durable backing for silicon solar panels. | Photo Courtesy of DuPont DuPont is betting on major growth in the market for solar energy -- and therefore for its Tedlar film, a durable backing for silicon solar panels. | Photo Courtesy of DuPont Lorelei Laird Writer, Energy

  12. Advance Patent Waiver W(A)2008-012

    Broader source: Energy.gov [DOE]

    This is a request by DUPONT for a DOE waiver of domestic and foreign patent rights under agreement DE-FC36-07GOI7056

  13. Long Range Interactions in Nanoscale Science (Journal Article...

    Office of Scientific and Technical Information (OSTI)

    less + Show Author Affiliations DuPont Company National Institutes of Health Massachusetts Institute of Technology (MIT) Lehigh University, Bethlehem, PA Clemson University...

  14. Athens, Ohio: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Ohio American Hydrogen Corporation Carbon Cycle Engineering Dovetail Solar and Wind DuPont Electronic Technologies, Inc. Global Cooling Inc. Panich + Noel Architects Panich,...

  15. Building Media, Inc. (Du Pont) (Building America Retrofit Alliance...

    Open Energy Info (EERE)

    America Retrofit Alliance) Place: Wilmington, DE Website: www.prweb.comreleasesDuPont References: Building America Retrofit Alliance Press Release1 BMI Website2 DuPont...

  16. Athens County, Ohio: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Ohio American Hydrogen Corporation Carbon Cycle Engineering Dovetail Solar and Wind DuPont Electronic Technologies, Inc. Global Cooling Inc. Panich + Noel Architects Panich,...

  17. Jefferson County, Indiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    4 Climate Zone Subtype A. Places in Jefferson County, Indiana Brooksburg, Indiana Dupont, Indiana Hanover, Indiana Madison, Indiana Retrieved from "http:en.openei.orgw...

  18. Breakout Session: Bringing Solutions to the Solar Industry: Startups...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cheryl Martin Acting Director of ARPA-e Speakers: Dr. Thomas Earnest Global Market Development Manager, DuPont Photovoltaic Solutions Dr. Karina Edmonds Executive Director for ...

  19. DOE-DOD Emergency Backup Power Fuel Cell Installations

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... cell compo- nents such as catalysts and membranes at several companies including 3M, Dupont, Gore, Johnson Matthey, and BASF. This research has helped decrease the amount of ...

  20. Predicting sigma formation in mo-bearing stainless steels. (Conference...

    Office of Scientific and Technical Information (OSTI)

    Title: Predicting sigma formation in mo-bearing stainless steels. No abstract prepared. Authors: Perricone, Matthew ; Dupont, John Neuman ; Anderson, T. D. 1 ; Robino, Charles ...