National Library of Energy BETA

Sample records for duf6 storage safety

  1. DUF6 Project Continues on Success Track | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DUF6 Project Continues on Success Track DUF6 Project Continues on Success Track January 29, 2014 - 12:00pm Addthis The Paducah plant processed this DUF6 cylinder, its first, in...

  2. DOE Seeks Contractor for Depleted Uranium Hexafluoride (DUF6...

    Energy Savers [EERE]

    DOE Seeks Contractor for Depleted Uranium Hexafluoride (DUF6) Operations at Ohio and Kentucky Facilities DOE Seeks Contractor for Depleted Uranium Hexafluoride (DUF6) Operations at...

  3. Depleted Uranium Hexafluoride (DUF6) Fully Operational at the...

    Broader source: Energy.gov (indexed) [DOE]

    Jack Zimmerman, DUF6 at the PortsmouthPaducah Project Office. DUF6 is depleted uranium hexafluoride, a byproduct of uranium enrichment that has taken place at U.S. gaseous...

  4. DUF6 Materials Use Roadmap

    SciTech Connect (OSTI)

    Haire, M.J.

    2002-09-04

    The U.S. government has {approx}500,000 metric tons (MT) of surplus depleted uranium (DU) in various chemical forms stored at U.S. Department of Energy (DOE) sites across the United States. This DU, most of which is DU hexafluoride (DUF{sub 6}) resulting from uranium enrichment operations, is the largest amount of nuclear material in DOE's inventory. On July 6, 1999, DOE issued the ''Final Plan for the Conversion of Depleted Uranium Hexafluoride as required by Public Law 105-204'', in which DOE committed to develop a ''Depleted Uranium Hexafluoride Materials Use Roadmap'' in order to establish a strategy for the products resulting from conversion of DUF{sub 6} to a stable form. This report meets the commitment in the Final Plan by providing a comprehensive roadmap that DOE will use to guide any future research and development activities for the materials associated with its DUF{sub 6} inventory. The Roadmap supports the decision presented in the ''Record of Decision for Long-Term Management and Use of Depleted Uranium Hexafluoride'', namely to begin conversion of the DUF{sub 6} inventory as soon as possible, either to uranium oxide, uranium metal, or a combination of both, while allowing for future uses of as much of this inventory as possible. In particular, the Roadmap is intended to explore potential uses for the DUF{sub 6} conversion products and to identify areas where further development work is needed. It focuses on potential governmental uses of DUF{sub 6} conversion products but also incorporates limited analysis of using the products in the private sector. The Roadmap builds on the analyses summarized in the recent ''Programmatic Environmental Impact Statement for Alternative Strategies for the Long-Term Management and Use of Depleted Uranium Hexafluoride''. It also addresses other surplus DU, primarily in the form of DU trioxide and DU tetrafluoride. The DU-related inventory considered here includes the following: (1) Components directly associated with the DUF{sub 6} presently being stored at gaseous diffusion plant sites in Paducah, Kentucky; Portsmouth, Ohio; and Oak Ridge, Tennessee--470,500 MT of DU, 225,000 MT of fluorine chemically combined with the DU, and 74,000 MT of carbon steel comprising the storage cylinders; (2) Approximately 27,860 MT of DU in the form of uranium trioxide, tetrafluoride, and various other forms containing varying amounts of radioactive and chemical impurities, presently stored primarily at DOE's Savannah River Site. This Roadmap characterizes and analyzes alternative paths for eventual disposition of these materials, identifies the barriers that exist to implementing the paths, and makes recommendations concerning the activities that should be undertaken to overcome the barriers. The disposition paths considered in this roadmap and shown in Fig. ES.1 are (a) implementation of cost-effective and institutionally feasible beneficial uses of DU using the products of DUF{sub 6} conversion and other forms of DU in DOE's inventory, (b) processing the fluorine product resulting from DUF{sub 6} conversion to yield an optimal mix of valuable fluorine compounds [e.g., hydrogen fluoride (hydrofluoric acid), boron trifluoride] for industrial use, and (c) processing emptied cylinders to yield intact cylinders that are suitable for reuse, while maintaining an assured and cost-effective direct disposal path for all of the DU-related materials. Most paths consider the potential beneficial use of the DU and other DUF{sub 6} conversion products for the purpose of achieving overall benefits, including cost savings to the federal government, compared with simply disposing of the materials. However, the paths provide for assured direct disposal of these products if cost-effective and institutionally feasible beneficial uses are not found.

  5. DUF6 Operations | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergy Webinar:IAbout Us| Department ofDisposition SchedulesDUF6

  6. DUF6 Project Doubles Production in 2013 | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    year 2013 goal by converting 13,679 metric tons of depleted uranium hexafluoride (DUF6), more than doubling production a year earlier. EM's Portsmouth Paducah Project Office...

  7. Safety Issues Chemical Storage

    E-Print Network [OSTI]

    Cohen, Robert E.

    Safety Issues · Chemical Storage ·Store in compatible containers that are in good condition to store separately. #12;Safety Issues · Flammable liquid storage -Store bulk quantities in flammable storage cabinets -UL approved Flammable Storage Refrigerators are required for cold storage · Provide

  8. DUF6 Project Doubles Production in 2013 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based| Department8, 20153 METHODSDOE/LaborSeptemberEnergy DS02: A NewDUF6

  9. Energy Storage Safety Strategic Plan - December 2014 | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Storage Safety Strategic Plan - December 2014 Energy Storage Safety Strategic Plan - December 2014 Energy storage is emerging as an integral component to a resilient and efficient...

  10. Depleted uranium storage and disposal trade study: Summary report

    SciTech Connect (OSTI)

    Hightower, J.R.; Trabalka, J.R.

    2000-02-01

    The objectives of this study were to: identify the most desirable forms for conversion of depleted uranium hexafluoride (DUF6) for extended storage, identify the most desirable forms for conversion of DUF6 for disposal, evaluate the comparative costs for extended storage or disposal of the various forms, review benefits of the proposed plasma conversion process, estimate simplified life-cycle costs (LCCs) for five scenarios that entail either disposal or beneficial reuse, and determine whether an overall optimal form for conversion of DUF6 can be selected given current uncertainty about the endpoints (specific disposal site/technology or reuse options).

  11. September 10th Webinar for the Energy Storage Safety Working...

    Broader source: Energy.gov (indexed) [DOE]

    (OE), together with Sandia National Laboratories, will present a kick-off webinar for the Energy Storage Safety Working Group on Safety Validation and Risk Assessment Research and...

  12. January 14 ESTAP Webinar: DOE OE Energy Storage Safety Strategic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    January 14 ESTAP Webinar: DOE OE Energy Storage Safety Strategic Plan January 14 ESTAP Webinar: DOE OE Energy Storage Safety Strategic Plan January 8, 2015 - 11:40am Addthis On...

  13. Evaluation of residue drum storage safety risks

    SciTech Connect (OSTI)

    Conner, W.V.

    1994-06-17

    A study was conducted to determine if any potential safety problems exist in the residue drum backlog at the Rocky Flats Plant. Plutonium residues stored in 55-gallon drums were packaged for short-term storage until the residues could be processed for plutonium recovery. These residues have now been determined by the Department of Energy to be waste materials, and the residues will remain in storage until plans for disposal of the material can be developed. The packaging configurations which were safe for short-term storage may not be safe for long-term storage. Interviews with Rocky Flats personnel involved with packaging the residues reveal that more than one packaging configuration was used for some of the residues. A tabulation of packaging configurations was developed based on the information obtained from the interviews. A number of potential safety problems were identified during this study, including hydrogen generation from some residues and residue packaging materials, contamination containment loss, metal residue packaging container corrosion, and pyrophoric plutonium compound formation. Risk factors were developed for evaluating the risk potential of the various residue categories, and the residues in storage at Rocky Flats were ranked by risk potential. Preliminary drum head space gas sampling studies have demonstrated the potential for formation of flammable hydrogen-oxygen mixtures in some residue drums.

  14. Secure Pesticide Storage: Security and Safety-promoting Features of Pesticide Storage Facilities1

    E-Print Network [OSTI]

    Hill, Jeffrey E.

    PI32 Secure Pesticide Storage: Security and Safety-promoting Features of Pesticide Storage pesticide storage facility security and safety. Introduction In actual practice, the fundamental goal of "security" is always the same: effective safeguard. Therefore, certain features of a pesticide storage

  15. Safety analysis report for the Waste Storage Facility. Revision 2

    SciTech Connect (OSTI)

    Bengston, S.J.

    1994-05-01

    This safety analysis report outlines the safety concerns associated with the Waste Storage Facility located in the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory. The three main objectives of the report are: define and document a safety basis for the Waste Storage Facility activities; demonstrate how the activities will be carried out to adequately protect the workers, public, and environment; and provide a basis for review and acceptance of the identified risk that the managers, operators, and owners will assume.

  16. Energy Storage System Safety Reports - August 2014 and September...

    Broader source: Energy.gov (indexed) [DOE]

    Energy storage for stationary applications is one of the fastest growing areas in the utility field. As the technology expands, the need for safety and uniformity in standards also...

  17. Fuel Storage Facility Final Safety Analysis Report. Revision 1

    SciTech Connect (OSTI)

    Linderoth, C.E.

    1984-03-01

    The Fuel Storage Facility (FSF) is an integral part of the Fast Flux Test Facility. Its purpose is to provide long-term storage (20-year design life) for spent fuel core elements used to provide the fast flux environment in FFTF, and for test fuel pins, components and subassemblies that have been irradiated in the fast flux environment. This Final Safety Analysis Report (FSAR) and its supporting documentation provides a complete description and safety evaluation of the site, the plant design, operations, and potential accidents.

  18. Comparative safety analysis of LNG storage tanks

    SciTech Connect (OSTI)

    Fecht, B.A.; Gates, T.E.; Nelson, K.O.; Marr, G.D.

    1982-07-01

    LNG storage tank design and response to selected release scenarios were reviewed. The selection of the scenarios was based on an investigation of potential hazards as cited in the literature. A review of the structure of specific LNG storage facilities is given. Scenarios initially addressed included those that most likely emerge from the tank facility itself: conditions of overfill and overflow as related to liquid LNG content levels; over/underpressurization at respective tank vapor pressure boundaries; subsidence of bearing soil below tank foundations; and crack propagation in tank walls due to possible exposure of structural material to cryogenic temperatures. Additional scenarios addressed include those that result from external events: tornado induced winds and pressure drops; exterior tank missile impact with tornado winds and rotating machinery being the investigated mode of generation; thermal response due to adjacent fire conditions; and tank response due to intense seismic activity. Applicability of each scenario depended heavily on the specific tank configurations and material types selected. (PSB)

  19. Documented Safety Analysis for the Waste Storage Facilities March 2010

    SciTech Connect (OSTI)

    Laycak, D T

    2010-03-05

    This Documented Safety Analysis (DSA) for the Waste Storage Facilities was developed in accordance with 10 CFR 830, Subpart B, 'Safety Basis Requirements,' and utilizes the methodology outlined in DOE-STD-3009-94, Change Notice 3. The Waste Storage Facilities consist of Area 625 (A625) and the Decontamination and Waste Treatment Facility (DWTF) Storage Area portion of the DWTF complex. These two areas are combined into a single DSA, as their functions as storage for radioactive and hazardous waste are essentially identical. The B695 Segment of DWTF is addressed under a separate DSA. This DSA provides a description of the Waste Storage Facilities and the operations conducted therein; identification of hazards; analyses of the hazards, including inventories, bounding releases, consequences, and conclusions; and programmatic elements that describe the current capacity for safe operations. The mission of the Waste Storage Facilities is to safely handle, store, and treat hazardous waste, transuranic (TRU) waste, low-level waste (LLW), mixed waste, combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL (as well as small amounts from other DOE facilities).

  20. Documented Safety Analysis for the Waste Storage Facilities

    SciTech Connect (OSTI)

    Laycak, D

    2008-06-16

    This documented safety analysis (DSA) for the Waste Storage Facilities was developed in accordance with 10 CFR 830, Subpart B, 'Safety Basis Requirements', and utilizes the methodology outlined in DOE-STD-3009-94, Change Notice 3. The Waste Storage Facilities consist of Area 625 (A625) and the Decontamination and Waste Treatment Facility (DWTF) Storage Area portion of the DWTF complex. These two areas are combined into a single DSA, as their functions as storage for radioactive and hazardous waste are essentially identical. The B695 Segment of DWTF is addressed under a separate DSA. This DSA provides a description of the Waste Storage Facilities and the operations conducted therein; identification of hazards; analyses of the hazards, including inventories, bounding releases, consequences, and conclusions; and programmatic elements that describe the current capacity for safe operations. The mission of the Waste Storage Facilities is to safely handle, store, and treat hazardous waste, transuranic (TRU) waste, low-level waste (LLW), mixed waste, combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL (as well as small amounts from other DOE facilities).

  1. Criticality safety evaluation for Portsmouth X-345 High-Enriched-Uranium storage area

    SciTech Connect (OSTI)

    Koponen, B.L.

    1993-09-20

    This report evaluates nuclear criticality safety for the High-Enriched Uranium storage area of the X-345 building of the Portsmouth Gaseous Diffusion Plant. The effects of loss of moderation or mass control are examined for storage units in or out of the storage receptacles. Recommendations are made for decreasing criticality hazards under some conditions of storage or handling considered to be hazardous.

  2. Demonstrating the Safety of Long-Term Dry Storage - 13468

    SciTech Connect (OSTI)

    McCullum, Rod; Brookmire, Tom; Kessler, John; Leblang, Suzanne; Levin, Adam; Martin, Zita; Nesbit, Steve; Nichol, Marc; Pickens, Terry

    2013-07-01

    Commercial nuclear plants in the United States were originally designed with the expectation that used nuclear fuel would be moved directly from the reactor pools and transported off site for either reprocessing or direct geologic disposal. However, Federal programs intended to meet this expectation were never able to develop the capability to remove used fuel from reactor sites - and these programs remain stalled to this day. Therefore, in the 1980's, with reactor pools reaching capacity limits, industry began developing dry cask storage technology to provide for additional on-site storage. Use of this technology has expanded significantly since then, and has today become a standard part of plant operations at most US nuclear sites. As this expansion was underway, Federal programs remained stalled, and it became evident that dry cask systems would be in use longer than originally envisioned. In response to this challenge, a strong technical basis supporting the long term dry storage safety has been developed. However, this is not a static situation. The technical basis must be able to address future challenges. Industry is responding to one such challenge - the increasing prevalence of high burnup (HBU) used fuel and the need to provide long term storage assurance for these fuels equivalent to that which has existed for lower burnup fuels over the past 25 years. This response includes a confirmatory demonstration program designed to address the aging characteristics of HBU fuel and set a precedent for a learning approach to aging management that will have broad applicability across the used fuel storage landscape. (authors)

  3. Safety Aspects of Dry Spent Fuel Storage and Spent Fuel Management - 13559

    SciTech Connect (OSTI)

    Botsch, W.; Smalian, S.; Hinterding, P.

    2013-07-01

    Dry storage systems are characterized by passive and inherent safety systems ensuring safety even in case of severe incidents or accidents. After the events of Fukushima, the advantages of such passively and inherently safe dry storage systems have become more and more obvious. As with the storage of all radioactive materials, the storage of spent nuclear fuel (SF) and high-level radioactive waste (HLW) must conform to safety requirements. Following safety aspects must be achieved throughout the storage period: - safe enclosure of radioactive materials, - safe removal of decay heat, - securing nuclear criticality safety, - avoidance of unnecessary radiation exposure. The implementation of these safety requirements can be achieved by dry storage of SF and HLW in casks as well as in other systems such as dry vault storage systems or spent fuel pools, where the latter is neither a dry nor a passive system. Furthermore, transport capability must be guaranteed during and after storage as well as limitation and control of radiation exposure. The safe enclosure of radioactive materials in dry storage casks can be achieved by a double-lid sealing system with surveillance of the sealing system. The safe removal of decay heat must be ensured by the design of the storage containers and the storage facility. The safe confinement of radioactive inventory has to be ensured by mechanical integrity of fuel assembly structures. This is guaranteed, e.g. by maintaining the mechanical integrity of the fuel rods or by additional safety measures for defective fuel rods. In order to ensure nuclear critically safety, possible effects of accidents have also to be taken into consideration. In case of dry storage it might be necessary to exclude the re-positioning of fissile material inside the container and/or neutron moderator exclusion might be taken into account. Unnecessary radiation exposure can be avoided by the cask or canister vault system itself. In Germany dry storage of SF in casks fulfills both transport and storage requirements. Mostly, storage facilities are designed as concrete buildings above the ground, but due to regional constraints, one storage facility has also been built as a rock tunnel. The decay heat is always removed by natural air flow; further technical equipment is not needed. The removal of decay heat and shielding had been modeled and calculated by state-of-the-art computer codes before such a facility has been built. TueV and BAM present their long experience in the licensing process for sites and casks and inform about spent nuclear fuel management and issues concerning dry storage of spent nuclear fuel. Different storage systems and facilities in Germany, Europe and world-wide are compared with respect to the safety aspects mentioned above. Initial points are the safety issues of wet storage of SF, and it is shown how dry storage systems can ensure the compliance with the mentioned safety criteria over a long storage period. The German storage concept for dry storage of SF and HLW is presented and discussed. Exemplarily, the process of licensing, erection and operation of selected German dry storage facilities is presented. (authors)

  4. Open Issues in the Development of Safety Standards for Compressed Hydrogen Storage

    E-Print Network [OSTI]

    Open Issues in the Development of Safety Standards for Compressed Hydrogen Storage at SAE -- energy efficiency ·Support basic research ·Support technology development Support deployment (vehicles in fireControlled release in fire : Vehicle context RISK = Probability of Occurrence x Severity

  5. Annex D-200 Area Interim Storage Area Final Safety Analysis Report [FSAR] [Section 1 & 2

    SciTech Connect (OSTI)

    CARRELL, R D

    2002-07-16

    The 200 Area Interim Storage Area (200 Area ISA) at the Hanford Site provides for the interim storage of non-defense reactor spent nuclear fuel (SNF) housed in aboveground dry cask storage systems. The 200 Area ISA is a relatively simple facility consisting of a boundary fence with gates, perimeter lighting, and concrete and gravel pads on which to place the dry storage casks. The fence supports safeguards and security and establishes a radiation protection buffer zone. The 200 Area ISA is nominally 200,000 ft{sup 2} and is located west of the Canister Storage Building (CSB). Interim storage at the 200 Area ISA is intended for a period of up to 40 years until the materials are shipped off-site to a disposal facility. This Final Safety Analysis Report (FSAR) does not address removal from storage or shipment from the 200 Area ISA. Three different SNF types contained in three different dry cask storage systems are to be stored at the 200 Area ISA, as follows: (1) Fast Flux Test Facility Fuel--Fifty-three interim storage casks (ISC), each holding a core component container (CCC), will be used to store the Fast Flux Test Facility (FFTF) SNF currently in the 400 Area. (2) Neutron Radiography Facility (NRF) TRIGA'--One Rad-Vault' container will store two DOT-6M3 containers and six NRF TRIGA casks currently stored in the 400 Area. (3) Commercial Light Water Reactor Fuel--Six International Standards Organization (ISO) containers, each holding a NAC-I cask4 with an inner commercial light water reactor (LWR) canister, will be used for commercial LWR SNF from the 300 Area. An aboveground dry cask storage location is necessary for the spent fuel because the current storage facilities are being shut down and deactivated. The spent fuel is being transferred to interim storage because there is no permanent repository storage currently available.

  6. DUF6 News | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-in electricLaboratory | version of the1996of EnergyIdahoS . D E P A

  7. DUF6 Conversion | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergy Webinar:IAbout Us| Department ofDisposition Schedules

  8. Energy Storage Safety Strategic Plan Now Available | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015 Infographic courtesyEducationNevada |Storage Activities in theand

  9. Office of Environmental Health and Safety Page 1 of 3 Chemical Storage Guidelines

    E-Print Network [OSTI]

    Chan, Hue Sun

    Glacial acetic acid On shelf in secondary containment, separate from other groups. Odourous volatile and Safety Page 3 of 3 Chemical Storage Guidelines Version 1.4, January 2014 Air Reactives F T-butyl lithium Lithium aluminum hydride Store in inert atmosphere away from all other groups. Follow supplier

  10. Passive safety device and internal short tested method for energy storage cells and systems

    DOE Patents [OSTI]

    Keyser, Matthew; Darcy, Eric; Long, Dirk; Pesaran, Ahmad

    2015-09-22

    A passive safety device for an energy storage cell for positioning between two electrically conductive layers of the energy storage cell. The safety device also comprising a separator and a non-conductive layer. A first electrically conductive material is provided on the non-conductive layer. A first opening is formed through the separator between the first electrically conductive material and one of the electrically conductive layers of the energy storage device. A second electrically conductive material is provided adjacent the first electrically conductive material on the non-conductive layer, wherein a space is formed on the non-conductive layer between the first and second electrically conductive materials. A second opening is formed through the non-conductive layer between the second electrically conductive material and another of the electrically conductive layers of the energy storage device. The first and second electrically conductive materials combine and exit at least partially through the first and second openings to connect the two electrically conductive layers of the energy storage device at a predetermined temperature.

  11. Assessment of enriched uranium storage safety issues at the Oak Ridge Y-12 Plant

    SciTech Connect (OSTI)

    NONE

    1996-08-01

    This document is an assessment of the technical safety issues pertaining to the storage of EU at the Oak Ridge Y-12 Plant. The purpose of the assessment is to serve as the basis for defining the technical standards for storage of EU at Y-12. A formal assessment of the Y-12 materials acceptance criteria for EU is currently being conducted by a task force cochaired by B. G. Eddy of DOE Oak Ridge Operations and S. 0. Cox of Y-12 Defense Programs. The mission of this technical assessment for storage is obviously dependent on results of the acceptance assessment. Clearly, the two efforts require coordination to avoid inconsistencies. In addition, both these Assessments must be consistent with the Environmental Assessment for EU storage at Y-12.1 Both the Storage Assessment and the Criteria for Acceptance must take cognizance of the fact that a portion of the EU to be submitted for storage in the future is expected to be derived from foreign sources and to include previously irradiated uranium containing significant levels of transuranics, radioactive daughter products, and unstable uranium isotopes that do not occur in the EU stream of the DOE weapons complex. National security considerations may dictate that these materials be accepted despite the fact that they fail to conform to the Acceptance Criteria. This document will attempt to address the complexities inherent in this situation.

  12. Standard review plan for reviewing safety analysis reports for dry metallic spent fuel storage casks

    SciTech Connect (OSTI)

    Not Available

    1988-01-01

    The Cask Standard Review Plan (CSRP) has been prepared as guidance to be used in the review of Cask Safety Analysis Reports (CSARs) for storage packages. The principal purpose of the CSRP is to assure the quality and uniformity of storage cask reviews and to present a well-defined base from which to evaluate proposed changes in the scope and requirements of reviews. The CSRP also sets forth solutions and approaches determined to be acceptable in the past by the NRC staff in dealing with a specific safety issue or safety-related design area. These solutions and approaches are presented in this form so that reviewers can take consistent and well-understood positions as the same safety issues arise in future cases. An applicant submitting a CSAR does not have to follow the solutions or approaches presented in the CSRP. However, applicants should recognize that the NRC staff has spent substantial time and effort in reviewing and developing their positions for the issues. A corresponding amount of time and effort will probably be required to review and accept new or different solutions and approaches.

  13. Farm Fuel Safety Accidents in the handling, use and storage of gasoline, gasohol, diesel fuel, LP-gas and

    E-Print Network [OSTI]

    Tullos, Desiree

    112 Farm Fuel Safety Accidents in the handling, use and storage of gasoline, gasohol, diesel fuel and by keeping fuel storage facilities in top condition. Flammable Liquids and Gases Gasoline, diesel fuel, LP, deterioration or damage. Never store fuel in food or drink containers. When transferring farm fuels, bond

  14. Canister storage building (CSB) safety analysis report phase 3: Safety analysis documentation supporting CSB construction

    SciTech Connect (OSTI)

    Garvin, L.J.

    1997-04-28

    The Canister Storage Building (CSB) will be constructed in the 200 East Area of the U.S. Department of Energy (DOE) Hanford Site. The CSB will be used to stage and store spent nuclear fuel (SNF) removed from the Hanford Site K Basins. The objective of this chapter is to describe the characteristics of the site on which the CSB will be located. This description will support the hazard analysis and accident analyses in Chapter 3.0. The purpose of this report is to provide an evaluation of the CSB design criteria, the design's compliance with the applicable criteria, and the basis for authorization to proceed with construction of the CSB.

  15. Stanford University Department of Environmental Health and Safety G:\\CAP\\CAP Team Forms \\StorageAreaInspFillableForm.pdf Enter Inspection Date

    E-Print Network [OSTI]

    as Hazardous Materials Storage Areas (not laboratories or work areas). 2. Evaluate the storage area during-9999 (24 hours). Building Number Building Name Room Number HAZARDOUS MATERIALS STORAGE AREA: MONTHLYStanford University Department of Environmental Health and Safety G:\\CAP\\CAP Team Forms \\StorageArea

  16. Mathematical models as tools for probing long-term safety of CO2 storage

    E-Print Network [OSTI]

    Pruess, Karsten

    2010-01-01

    and depth, and proximity to gas storage fields as well as toof oil and gas production and storage, geothermal energyfor the Storage of Greenhouse Gases in Sedimentary Basins,

  17. Inventory of Safety-Related Codes and Standards for Energy Storage...

    Office of Environmental Management (EM)

    system EPT EaglePicher Technologies ESA Energy Storage Association ESIC Energy Storage Integration Council ESS energy storage systems vi EUC equipment under control FAT factory...

  18. Overview of Development and Deployment of Codes, Standards and Regulations Affecting Energy Storage System Safety in the United States

    SciTech Connect (OSTI)

    Conover, David R.

    2014-08-22

    This report acquaints stakeholders and interested parties involved in the development and/or deployment of energy storage systems (ESS) with the subject of safety-related codes, standards and regulations (CSRs). It is hoped that users of this document gain a more in depth and uniform understanding of safety-related CSR development and deployment that can foster improved communications among all ESS stakeholders and the collaboration needed to realize more timely acceptance and approval of safe ESS technology through appropriate CSR.

  19. Mathematical models as tools for probing long-term safety of CO2 storage

    E-Print Network [OSTI]

    Pruess, Karsten

    2010-01-01

    for CO2 geological storage, Int. J. Greenhouse Gas Control,1008, DOI Bachu, S. CO2 Storage in Geological Media: Role,R.H. Worden. Geological Storage of Carbon Dioxide, in: S.J.

  20. Mathematical models as tools for probing long-term safety of CO2 storage

    E-Print Network [OSTI]

    Pruess, Karsten

    2010-01-01

    Issue on Site Characterization for Geological Storage ofgeological model needs to be acknowledged. Further site characterization

  1. Inventory of Safety-related Codes and Standards for Energy Storage Systems with some Experiences related to Approval and Acceptance

    SciTech Connect (OSTI)

    Conover, David R.

    2014-09-11

    The purpose of this document is to identify laws, rules, model codes, codes, standards, regulations, specifications (CSR) related to safety that could apply to stationary energy storage systems (ESS) and experiences to date securing approval of ESS in relation to CSR. This information is intended to assist in securing approval of ESS under current CSR and to identification of new CRS or revisions to existing CRS and necessary supporting research and documentation that can foster the deployment of safe ESS.

  2. Assessment of plutonium storage safety issues at Department of Energy facilities

    SciTech Connect (OSTI)

    Not Available

    1994-01-01

    The Department of Energy (DOE) mission for utilization and storage of nuclear materials has recently changed as a result of the end of the ``Cold War`` era. Past and current plutonium storage practices largely reflect a temporary, in-process, or in-use storage condition which must now be changed to accommodate longer-term storage. This report summarizes information concerning current plutonium metal and oxide storage practices which was presented at the Office of Defense programs (DP) workshop in Albuquerque, New Mexico on May 26-27, 1993 and contained in responses to questions by DP-62 from the field organizations.

  3. DUF6 Project Continues on Success Track | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-in electricLaboratory | version of the1996of EnergyIdahoS . D E Pplant

  4. Milestones Keep DUF6 Plants Moving Ahead | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAand DOE SafetyofDepartment. "NationalTechnology |

  5. Depleted Uranium Hexafluoride (DUF6) Fully Operational at the Portsmouth

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based| Department8, 20153Danielthrough theK APolicyonStates | Department

  6. Resolution of safety issues associated with the storage of high-level radioactive waste at the Hanford Site

    SciTech Connect (OSTI)

    Mellinger, G.B. (Pacific Northwest Lab., Richland, WA (United States)); Tseng, J.C. (USDOE Assistant Secretary for Environmental Restoration and Waste Management, Washington, DC (United States))

    1992-08-01

    A number of high-level radioactive waste (HLW) safety issues have been identified at the Hanford Site in southeastern Washington State. Resolution of these issues is one of the Highest Priorities of the US Department of Energy. The most urgent issues are the potential for explosions in certain tanks (due to periodic venting of large quantities of flammable gases, or the presence of substantial quantities of ferrocyanide and/or organic compounds in combination with nitrates-nitrites). Other safety issues have been identified as well, such as the requirement for periodic water additions to one tank to control its temperature and the release of noxious vapors from a number of tanks. Substantial progress has been made toward safety issue resolution. Potential mechanisms have been identified for the generation, retention and periodic venting of flammable gas mixtures; potential methods for controlling the periodic release behavior have been identified and in-tank testing will be initiated in 1992. Research is being conducted to determine the initiation temperatures, energetics, reaction sequences and effects of catalysts and initiators on ferrocyanide-nitrate/nitrite reactions; waste characterization on a tank-by-tank basis will be required to identify whether ferrocyanide-containing wastes are safe to store as-is or will require further treatment to eliminate safety concerns. Resolution of all of the Hanford Site HLW safety issues will be accomplished as an integral part of the Hanford Tank Waste Remediation System, that has been established to manage the storage of these wastes and their preparation for disposal.

  7. Safety Evaluation Report: Development of Improved Composite Pressure Vessels for Hydrogen Storage, Lincoln Composites, Lincoln, NE, May 25, 2010

    SciTech Connect (OSTI)

    Fort, III, William C.; Kallman, Richard A.; Maes, Miguel; Skolnik, Edward G.; Weiner, Steven C.

    2010-12-22

    Lincoln Composites operates a facility for designing, testing, and manufacturing composite pressure vessels. Lincoln Composites also has a U.S. Department of Energy (DOE)-funded project to develop composite tanks for high-pressure hydrogen storage. The initial stage of this project involves testing the permeation of high-pressure hydrogen through polymer liners. The company recently moved and is constructing a dedicated research/testing laboratory at their new location. In the meantime, permeation tests are being performed in a corner of a large manufacturing facility. The safety review team visited the Lincoln Composites site on May 25, 2010. The project team presented an overview of the company and project and took the safety review team on a tour of the facility. The safety review team saw the entire process of winding a carbon fiber/resin tank on a liner, installing the boss and valves, and curing and painting the tank. The review team also saw the new laboratory that is being built for the DOE project and the temporary arrangement for the hydrogen permeation tests.

  8. Managing Environmental and Human Safety Risks Associated with Geologic Storage of CO2

    E-Print Network [OSTI]

    London School of Economics, 2001 Submitted to the Engineering Systems Division in partial fulfillment transportation, injection and storage has been operational and scaling up in size and geographical distribution, transportation and injection, which have been successfully deployed in existing applications. Once CO2

  9. Energy Storage Safety Strategic Plan U.S. Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015 Infographic courtesyEducationNevada |Storage Activities in theandEnergy

  10. Plutonium solution storage in plastic bottles: Operational experience and safety issues

    SciTech Connect (OSTI)

    Conner, W.V.

    1995-03-15

    Computer spread sheet models were developed to gain a better understanding of the factors that lead to pressurization and failure of plastic bottles containing plutonium solutions. These models were developed using data obtained from the literature on gas generation rates for plutonium solutions. Leak rates from sealed plastic bottles were obtained from bottle leak tests conducted at Rocky Flats. Results from these bottle leak tests showed that narrow mouth four liter bottles will seal much better than wide mouth four liter bottles. The gas generation rate and leak rate data were used to develop models for predicting the rate of pressurization and maximum pressures expected in sealed bottles of plutonium solution containing various plutonium and acid concentrations. The computer models were used to develop proposed time limits for storing or transporting plutonium solutions in sealed plastic bottles. For plutonium solutions containing < 1.5 g/l, maximum safe storage times from 4 weeks to 12 months are proposed. The maximum safe storage times vary depending upon the plutonium concentration in the solution. Low concentration plutonium solutions can be stored safely for longer periods of time than high concentration plutonium solutions. For solutions containing > 1.5 g/l plutonium, storage in sealed bottles should not be allowed. However, transportation of higher concentration plutonium solution in sealed bottles is required, and safe transportation times of 1 shift to 6 days are proposed.

  11. Safety

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    General Employee Radiological HS4240-W Chemical Safety HS4680-W PPE To access these training modules link here LTRAIN from inside LLNL, or here from anywhere. All JLF...

  12. Orientation Visit to the Portsmouth Gaseous Diffusion Plant

    Office of Environmental Management (EM)

    Service Activity (UESA) Storage Building and Associated Outside Storage, and the DUF6 Conversion Facility. The tours gave the site lead the opportunity to interact with...

  13. Environment, safety, and health considerations for a neutrino source based on a muon storage ring

    SciTech Connect (OSTI)

    J. Donald Cossairt

    2000-05-15

    The Neutrino Source presents a number of challenges in the general area of environment, safety, and health. It is the intent of this paper to identify these challenges and make a preliminary, but not detailed assessment of how they might be addressed and of their potential impact on the project. Some of the considerations which must be taken into account are very similar to those that have been encountered and solved during the construction and operation of other facilities at Fermilab and at similar laboratories elsewhere in the US and worldwide. Other considerations have not been encountered previously in connection with the construction and operation of accelerator laboratories. These novel issues will require particular attention as such a project proceeds to assure their timely resolution in a manner that is cost-effective and that meets the approval of the public. In this paper, both the conventional and the novel issues are discussed, with more emphasis on the latter. It is concluded here that with adequate planning in the design stages, these problems can be adequately addressed in a manner that merits the support of the Laboratory, the Department of Energy, and the public. An abbreviated version of this paper appears as Chapter 14 in the report of a recent feasibility study (Ho 00)and the figures have come from that work.

  14. Targeting adequate thermal stability and fire safety in selecting ionic liquid-based electrolytes for energy storage

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    for energy storage L. Chancelier,a,b A.O. Diallo,c,d C.C. Santini,*a G. Marlair,*c T. Gutel,b S. Mailley,b C Abstract The energy storage market relating to lithium based systems regularly grows in size and expands for the promotion of a new generation of energy storage systems. These systems must be capable of addressing

  15. Fact Sheet: Codes and Standards for Energy Storage System Performance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sheet: Codes and Standards for Energy Storage System Performance and Safety (June 2014) Fact Sheet: Codes and Standards for Energy Storage System Performance and Safety (June 2014)...

  16. Energy Department Releases Strategic Plan for Energy Storage...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department Releases Strategic Plan for Energy Storage Safety Energy Department Releases Strategic Plan for Energy Storage Safety December 23, 2014 - 10:16am Addthis Dr. Imre Gyuk...

  17. Fact Sheet: Codes and Standards for Energy Storage System Performance...

    Office of Environmental Management (EM)

    Codes and Standards for Energy Storage System Performance and Safety (June 2014) Fact Sheet: Codes and Standards for Energy Storage System Performance and Safety (June 2014) The...

  18. Pantex Plant final safety analysis report, Zone 4 magazines. Staging or interim storage for nuclear weapons and components: Issue D

    SciTech Connect (OSTI)

    Not Available

    1993-04-01

    This Safety Analysis Report (SAR) contains a detailed description and evaluation of the significant environmental, safety, and health (ES&H) issues associated with the operations of the Pantex Plant modified-Richmond and steel arch construction (SAC) magazines in Zone 4. It provides (1) an overall description of the magazines, the Pantex Plant, and its surroundings; (2) a systematic evaluations of the hazards that could occur as a result of the operations performed in these magazines; (3) descriptions and analyses of the adequacy of the measures taken to eliminate, control, or mitigate the identified hazards; and (4) analyses of potential accidents and their associated risks.

  19. Data Storage Data Storage

    E-Print Network [OSTI]

    Jiang, Anxiao "Andrew"

    I Data Storage #12;#12;Data Storage Edited by Prof. Florin Balasa In-Tech intechweb.org #12 Jakobovic Cover designed by Dino Smrekar Data Storage, Edited by Prof. Florin Balasa p. cm. ISBN 978-953-307-063-6 #12;V Preface Many different forms of storage, based on various natural phenomena, has been invented

  20. Paducah and Portsmouth Sites Advance Operations at DUF6 Plants | Department

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested PartiesBuilding energy codes havePUBLIC ADMINISTRATIONPaducahSiteof Energy

  1. PPPO Cleanup Projects - Portsmouth, Paducah, & DUF6 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof EnergyAprilEnergy EEREPlateau TrainingeTrack,1 POLICY

  2. DOE Seeks Contractor for Depleted Uranium Hexafluoride (DUF6) Operations at

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-in electric vehicle10nominateEnergyThis memoEnergy TheDepartment

  3. Open Issues in the Development of Safety Standards for Compressed...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Issues in the Development of Safety Standards for Compressed Hydrogen Storage at SAE-International Open Issues in the Development of Safety Standards for Compressed Hydrogen...

  4. Environmental, safety, and health engineering

    SciTech Connect (OSTI)

    Woodside, G.; Kocurek, D.

    1997-12-31

    A complete guide to environmental, safety, and health engineering, including an overview of EPA and OSHA regulations; principles of environmental engineering, including pollution prevention, waste and wastewater treatment and disposal, environmental statistics, air emissions and abatement engineering, and hazardous waste storage and containment; principles of safety engineering, including safety management, equipment safety, fire and life safety, process and system safety, confined space safety, and construction safety; and principles of industrial hygiene/occupational health engineering including chemical hazard assessment, personal protective equipment, industrial ventilation, ionizing and nonionizing radiation, noise, and ergonomics.

  5. CHEMICAL LABORATORY SAFETY AND METHODOLOGY

    E-Print Network [OSTI]

    Northern British Columbia, University of

    CHEMICAL LABORATORY SAFETY AND METHODOLOGY MANUAL August 2013 #12;ii Emergency Numbers UNBC Prince-Emergency Numbers UNBC Prince George Campus Chemstores 6472 Chemical Safety 6472 Radiation Safety 6472 Biological the safe use, storage, handling, waste and emergency management of chemicals on the University of Northern

  6. hz.genium.com Proper Chemical Storage

    E-Print Network [OSTI]

    Cohen, Robert E.

    Lab Safety 1 hz.genium.com #12;Proper Chemical Storage · Store in compatible groups. Consult above flammables and reactives. · Label storage areas, and label all chemicals being stored. · Store hazardous with contents. · Lids should be tightly closed. · Secondary containment for floor storage. · Do not store

  7. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1996-10-24

    Establishes facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation.

  8. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-11-16

    Establishes facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation.

  9. Canister Storage Building (CSB) Design Basis Accident Analysis Documentation

    SciTech Connect (OSTI)

    CROWE, R.D.; PIEPHO, M.G.

    2000-03-23

    This document provided the detailed accident analysis to support HNF-3553, Spent Nuclear Fuel Project Final Safety Analysis Report, Annex A, ''Canister Storage Building Final Safety Analysis Report''. All assumptions, parameters, and models used to provide the analysis of the design basis accidents are documented to support the conclusions in the Canister Storage Building Final Safety Analysis Report.

  10. Radioactive waste storage issues

    SciTech Connect (OSTI)

    Kunz, D.E.

    1994-08-15

    In the United States we generate greater than 500 million tons of toxic waste per year which pose a threat to human health and the environment. Some of the most toxic of these wastes are those that are radioactively contaminated. This thesis explores the need for permanent disposal facilities to isolate radioactive waste materials that are being stored temporarily, and therefore potentially unsafely, at generating facilities. Because of current controversies involving the interstate transfer of toxic waste, more states are restricting the flow of wastes into - their borders with the resultant outcome of requiring the management (storage and disposal) of wastes generated solely within a state`s boundary to remain there. The purpose of this project is to study nuclear waste storage issues and public perceptions of this important matter. Temporary storage at generating facilities is a cause for safety concerns and underscores, the need for the opening of permanent disposal sites. Political controversies and public concern are forcing states to look within their own borders to find solutions to this difficult problem. Permanent disposal or retrievable storage for radioactive waste may become a necessity in the near future in Colorado. Suitable areas that could support - a nuclear storage/disposal site need to be explored to make certain the health, safety and environment of our citizens now, and that of future generations, will be protected.

  11. Energy Storage Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Energy Storage Laboratory at the Energy Systems Integration Facility. At NREL's Energy Storage Laboratory in the Energy Systems Integration Facility (ESIF), research focuses on the integration of energy storage systems (both stationary and vehicle-mounted) and interconnection with the utility grid. Focusing on battery technologies, but also hosting ultra-capacitors and other electrical energy storage technologies, the laboratory will provide all resources necessary to develop, test, and prove energy storage system performance and compatibility with distributed energy systems. The laboratory will also provide robust vehicle testing capability, including a drive-in environmental chamber, which can accommodate commercial-sized hybrid, electric, biodiesel, ethanol, compressed natural gas, and hydrogen fueled vehicles. The Energy Storage Laboratory is designed to ensure personnel and equipment safety when testing hazardous battery systems or other energy storage technologies. Closely coupled with the research electrical distribution bus at ESIF, the Energy Storage Laboratory will offer megawatt-scale power testing capability as well as advanced hardware-in-the-loop and model-in-the-loop simulation capabilities. Some application scenarios are: The following types of tests - Performance, Efficiency, Safety, Model validation, and Long duration reliability. (2) Performed on the following equipment types - (a) Vehicle batteries (both charging and discharging V2G); (b) Stationary batteries; (c) power conversion equipment for energy storage; (d) ultra- and super-capacitor systems; and (e) DC systems, such as commercial microgrids.

  12. SAFETY DATA SHEET LAUNDRI DESTAINER

    E-Print Network [OSTI]

    Wikswo, John

    clothing/ eye protection/ face protection. Mixing this product with acid or ammonia releases chlorine gas a POISON CENTER or doctor/ physician. Wash contaminated clothing before reuse. Storage: #12;SAFETY DATA thoroughly after handling. Response: Get medical advice/ attention if you feel unwell. Storage: Store

  13. Activities Related to Storage of Spent Nuclear Fuel | Department...

    Office of Environmental Management (EM)

    Related to Storage of Spent Nuclear Fuel More Documents & Publications Nuclear Regulatory Commission Fifth National Report for the Joint Convention on the Safety of Spent...

  14. Fact Sheet Available: Codes and Standards for Energy Storage...

    Broader source: Energy.gov (indexed) [DOE]

    Codes and Standards for Energy Storage System Performance and Safety (June 2014) Wave Energy Simulation Team Carries Home International Award Now Available: Evaluating...

  15. Safety & Environmental Protection Services

    E-Print Network [OSTI]

    Glasgow, University of

    of care in waste storage and disposal is available on Safety and Environmental Protection Service's (SEPS sustainably and to protect the environment and, in line with this, recycles waste wherever practicable to biological properties). In addition some activities produce radioactive waste. Radioactive waste

  16. Job Safety

    Broader source: Energy.gov (indexed) [DOE]

    Job Safety and Health It's the law EMPLOYEES: Must have access to: DOE safety and health publications; The worker safety and health program for their location; This...

  17. Assessment of technologies for hazardous waste site remediation: Non-treatment technologies and pilot scale facility implementation -- excavation -- storage technology -- safety analysis and review statement. Final report

    SciTech Connect (OSTI)

    Johnson, H.R.; Overbey, W.K. Jr.; Koperna, G.J. Jr.

    1994-02-01

    The purpose of this study is to assess the state-of-the-art of excavation technology as related to environmental remediation applications. A further purpose is to determine which of the excavation technologies reviewed could be used by the US Corp of Engineers in remediating contaminated soil to be excavated in the near future for construction of a new Lock and Dam at Winfield, WV. The study is designed to identify excavation methodologies and equipment which can be used at any environmental remediation site but more specifically at the Winfield site on the Kanawha River in Putnam County, West Virginia. A technical approach was determined whereby a functional analysis was prepared to determine the functions to be conducted during the excavation phase of the remediation operations. A number of excavation technologies were identified from the literature. A set of screening criteria was developed that would examine the utility and ranking of the technologies with respect to the operations that needed to be conducted at the Winfield site. These criteria were performance, reliability, implementability, environmental safety, public health, and legal and regulatory compliance. The Loose Bulk excavation technology was ranked as the best technology applicable to the Winfield site. The literature was also examined to determine the success of various methods of controlling fugitive dust. Depending upon any changes in the results of chemical analyses, or prior remediation of the VOCs from the vadose zone, consideration should be given to testing a new ``Pneumatic Excavator`` which removes the VOCs liberated during the excavation process as they outgas from the soil. This equipment however would not be needed on locations with low levels of VOC emissions.

  18. Safety, Codes and Standards - Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Office Hydrogen Production Hydrogen Delivery Hydrogen Storage Fuel Cells Technology Validation Manufacturing Safety, Codes & Standards Basics Safe Use of Hydrogen Codes...

  19. Revised 4/15/2002 _____________________________ Environment, Health, & Safety _________ __________________

    E-Print Network [OSTI]

    Eisen, Michael

    , and the areas for storage of various hazardous, radioactive and mixed wastes. Instructors: Howard Hansen RudyardRevised 4/15/2002 _____________________________ Environment, Health, & Safety at Building 85, the Hazardous Waste Handling Facility (HWHF), regarding the safety, alarm, fire detection

  20. Primer on lead-acid storage batteries

    SciTech Connect (OSTI)

    1995-09-01

    This handbook was developed to help DOE facility contractors prevent accidents caused during operation and maintenance of lead-acid storage batteries. Major types of lead-acid storage batteries are discussed as well as their operation, application, selection, maintenance, and disposal (storage, transportation, as well). Safety hazards and precautions are discussed in the section on battery maintenance. References to industry standards are included for selection, maintenance, and disposal.

  1. Energy Storage

    ScienceCinema (OSTI)

    Paranthaman, Parans

    2014-06-23

    ORNL Distinguished Scientist Parans Paranthaman is discovering new materials with potential for greatly increasing batteries' energy storage capacity and bring manufacturing back to the US.

  2. Energy Storage

    SciTech Connect (OSTI)

    Paranthaman, Parans

    2014-06-03

    ORNL Distinguished Scientist Parans Paranthaman is discovering new materials with potential for greatly increasing batteries' energy storage capacity and bring manufacturing back to the US.

  3. Terrestrial Water Storage

    E-Print Network [OSTI]

    Rodell, M; Chambers, D P; Famiglietti, Jay

    2013-01-01

    T. E. Reilly, 2002: Flow and storage in groundwater systems.storage ..2013: Global ocean storage of anthropogenic carbon.

  4. Stasis: Flexible Transactional Storage

    E-Print Network [OSTI]

    Sears, Russell C.

    2009-01-01

    storage . . . . . . . . . . . . . . . . . . . . . .example system based on log-structured storage 10.1 SystemA storage bottleneck. . . . . . . . . . . . . . . .

  5. Canister storage building hazard analysis report

    SciTech Connect (OSTI)

    Krahn, D.E.; Garvin, L.J.

    1997-07-01

    This report describes the methodology used in conducting the Canister Storage Building (CSB) hazard analysis to support the final CSB safety analysis report (SAR) and documents the results. The hazard analysis was performed in accordance with DOE-STD-3009-94, Preparation Guide for US Department of Energy Nonreactor Nuclear Facility Safety Analysis Report, and implements the requirements of DOE Order 5480.23, Nuclear Safety Analysis Report.

  6. Health & Safety

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Health & Safety Health & Safety1354608000000Health & SafetySome of these resources are LANL-only and will require Remote Access.NoQuestions? 667-5809library@lanl.gov Health &...

  7. Hydrogen Storage

    Fuel Cell Technologies Publication and Product Library (EERE)

    This 2-page fact sheet provides a brief introduction to hydrogen storage technologies. Intended for a non-technical audience, it explains the different ways in which hydrogen can be stored, as well a

  8. A Korarchael Genome Reveals Insights into the Evolution of the Archaea

    E-Print Network [OSTI]

    Elkins, James G.

    2008-01-01

    protein of unknown function DUF6, transmembrane hypotheticalprotein of unknown function DUF6, transmembrane Gene Nameprotein of unknown function DUF6, transmembrane hypothetical

  9. Functional genomics of the bacterial degradation of the emerging water contaminants: 1,4-dioxane and N-nitrosodimethylamine (NDMA)

    E-Print Network [OSTI]

    Sales, Christopher Michael

    2012-01-01

    drugs protein of unknown function DUF6 trans- drugs membraneprotein of unknown function DUF6 trans- drugs membraneprotein of unknown function DUF6 trans- putative membrane

  10. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-11-20

    The objective of this Order is to establish facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation. The Order has Change 1 dated 11-16-95, Change 2 dated 10-24-96, and the latest Change 3 dated 11-22-00 incorporated. The latest change satisfies a commitment made to the Defense Nuclear Facilities Safety Board (DNFSB) in response to DNFSB recommendation 97-2, Criticality Safety.

  11. Spent Fuel Working Group report on inventory and storage of the Department`s spent nuclear fuel and other reactor irradiated nuclear materials and their environmental, safety and health vulnerabilities. Volume 2, Working Group Assessment Team reports; Vulnerability development forms; Working group documents

    SciTech Connect (OSTI)

    Not Available

    1993-11-01

    The Secretary of Energy`s memorandum of August 19, 1993, established an initiative for a Department-wide assessment of the vulnerabilities of stored spent nuclear fuel and other reactor irradiated nuclear materials. A Project Plan to accomplish this study was issued on September 20, 1993 by US Department of Energy, Office of Environment, Health and Safety (EH) which established responsibilities for personnel essential to the study. The DOE Spent Fuel Working Group, which was formed for this purpose and produced the Project Plan, will manage the assessment and produce a report for the Secretary by November 20, 1993. This report was prepared by the Working Group Assessment Team assigned to the Hanford Site facilities. Results contained in this report will be reviewed, along with similar reports from all other selected DOE storage sites, by a working group review panel which will assemble the final summary report to the Secretary on spent nuclear fuel storage inventory and vulnerability.

  12. Energy Storage

    SciTech Connect (OSTI)

    Mukundan, Rangachary

    2014-09-30

    Energy storage technology is critical if the U.S. is to achieve more than 25% penetration of renewable electrical energy, given the intermittency of wind and solar. Energy density is a critical parameter in the economic viability of any energy storage system with liquid fuels being 10 to 100 times better than batteries. However, the economical conversion of electricity to fuel still presents significant technical challenges. This project addressed these challenges by focusing on a specific approach: efficient processes to convert electricity, water and nitrogen to ammonia. Ammonia has many attributes that make it the ideal energy storage compound. The feed stocks are plentiful, ammonia is easily liquefied and routinely stored in large volumes in cheap containers, and it has exceptional energy density for grid scale electrical energy storage. Ammonia can be oxidized efficiently in fuel cells or advanced Carnot cycle engines yielding water and nitrogen as end products. Because of the high energy density and low reactivity of ammonia, the capital cost for grid storage will be lower than any other storage application. This project developed the theoretical foundations of N2 catalysis on specific catalysts and provided for the first time experimental evidence for activation of Mo 2N based catalysts. Theory also revealed that the N atom adsorbed in the bridging position between two metal atoms is the critical step for catalysis. Simple electrochemical ammonia production reactors were designed and built in this project using two novel electrolyte systems. The first one demonstrated the use of ionic liquid electrolytes at room temperature and the second the use of pyrophosphate based electrolytes at intermediate temperatures (200 – 300 ºC). The mechanism of high proton conduction in the pyrophosphate materials was found to be associated with a polyphosphate second phase contrary to literature claims and ammonia production rates as high as 5X 10-8 mol/s/cm2 were achieved.

  13. Energy storage, Thermal energy storage (TES)

    E-Print Network [OSTI]

    Zevenhoven, Ron

    Energy storage, Thermal energy storage (TES) Ron Zevenhoven Åbo Akademi University Thermal and Flow 8, 20500 Turku 2/32 4.1 Energy storage #12;Energy storage - motivations Several reasons motivate the storage of energy, either as heat, cold, or electricity: ­ Supplies of energy are in many cases

  14. AQUIFER THERMAL ENERGY STORAGE

    E-Print Network [OSTI]

    Tsang, C.-F.

    2011-01-01

    aquifers for thermal energy storage. Problems outlined abovean Aquifer Used for Hot Water Storage: Digital Simulation ofof Aquifer Systems for Cyclic Storage of Water," of the Fall

  15. AQUIFER THERMAL ENERGY STORAGE

    E-Print Network [OSTI]

    Tsang, C.-F.

    2011-01-01

    of such an aquifer thermal storage system were studied andusing aquifers for thermal energy storage. Problems outlinedmatical Modeling of Thermal Energy Storage in Aquifers,"

  16. Stasis: Flexible Transactional Storage

    E-Print Network [OSTI]

    Sears, Russell C.

    2009-01-01

    AutoRAID hierarchical storage system,” in SOSP, 1995. [147]next-generation storage systems, and to use segments andclasses of distributed storage systems. Bibliography [1] D.

  17. SUPERCONDUCTING MAGNETIC ENERGY STORAGE

    E-Print Network [OSTI]

    Hassenzahl, W.

    2011-01-01

    Superconducting 30-MJ Energy Storage Coil", Proc. 19 80 ASC,Superconducting Magnetic Energy Storage Plant", IEEE Trans.SlIperconducting Magnetic Energy Storage Unit", in Advances

  18. AQUIFER THERMAL ENERGY STORAGE

    E-Print Network [OSTI]

    Tsang, C.-F.

    2011-01-01

    aquifers for thermal energy storage. Problems outlined aboveModeling of Thermal Energy Storage in Aquifers," Proceed-ings of Aquifer Thermal Energy Storage Workshop, Lawrence

  19. Sandia Energy - Transportation Safety

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation Safety Home Stationary Power Nuclear Fuel Cycle Nuclear Energy Safety Technologies Risk and Safety Assessment Transportation Safety Transportation SafetyTara...

  20. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-12-22

    The order establishes facility and programmatic safety requirements for nuclear and explosives safety design criteria, fire protection, criticality safety, natural phenomena hazards (NPH) mitigation, and the System Engineer Program.Chg 1 incorporates the use of DOE-STD-1189-2008, Integration of Safety into the Design Process, mandatory for Hazard Category 1, 2 and 3 nuclear facilities. Cancels DOE O 420.1A.

  1. Biological Safety

    Broader source: Energy.gov [DOE]

    The DOE's Biological Safety Program provides a forum for the exchange of best practices, lessons learned, and guidance in the area of biological safety. This content is supported by the Biosurety Executive Team. The Biosurety Executive Team is a DOE-chartered group. The DOE Office of Worker Safety and Health Policy provides administrative support for this group. The group identifies biological safety-related issues of concern to the DOE and pursues solutions to issues identified.

  2. Vehicle Battery Safety Roadmap Guidance

    SciTech Connect (OSTI)

    Doughty, D. H.

    2012-10-01

    The safety of electrified vehicles with high capacity energy storage devices creates challenges that must be met to assure commercial acceptance of EVs and HEVs. High performance vehicular traction energy storage systems must be intrinsically tolerant of abusive conditions: overcharge, short circuit, crush, fire exposure, overdischarge, and mechanical shock and vibration. Fail-safe responses to these conditions must be designed into the system, at the materials and the system level, through selection of materials and safety devices that will further reduce the probability of single cell failure and preclude propagation of failure to adjacent cells. One of the most important objectives of DOE's Office of Vehicle Technologies is to support the development of lithium ion batteries that are safe and abuse tolerant in electric drive vehicles. This Roadmap analyzes battery safety and failure modes of state-of-the-art cells and batteries and makes recommendations on future investments that would further DOE's mission.

  3. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-10-13

    Establishes facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation. Cancels DOE 5480.7A, DOE 5480.24, DOE 5480.28 and Division 13 of DOE 6430.1A. Canceled by DOE O 420.1A.

  4. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-12-22

    This Order establishes facility and programmatic safety requirements for Department of Energy facilities, which includes nuclear and explosives safety design criteria, fire protection, criticality safety, natural phenomena hazards mitigation, and the System Engineer Program. Cancels DOE O 420.1A. DOE O 420.1B Chg 1 issued 4-19-10.

  5. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2012-12-04

    The Order establishes facility and programmatic safety requirements for DOE and NNSA for nuclear safety design criteria, fire protection, criticality safety, natural phenomena hazards (NPH) mitigation, and System Engineer Program. Cancels DOE O 420.1B, DOE G 420.1-2 and DOE G 420.1-3.

  6. Cool Storage Performance 

    E-Print Network [OSTI]

    Eppelheimer, D. M.

    1985-01-01

    . This article covers three thermal storage topics. The first section catalogs various thermal storage systems and applications. Included are: load shifting and load leveling, chilled water storage systems, and ice storage systems using Refrigerant 22 or ethylene...

  7. Portsmouth/Paducah Project Office | Department of Energy

    Office of Environmental Management (EM)

    Paducah Site Background Paducah Site Cleanup Paducah Community Outreach green-bar.png DUF6 Conversion DUF6 facility at sunset.jpg DUF6 Conversion Operations DUF6 Conversion...

  8. Storage System and IBM System Storage

    E-Print Network [OSTI]

    IBM® XIV® Storage System and IBM System Storage® SAN Volume Controller deliver high performance and smart management for SAP® landscapes IBM SAP International Competence Center #12;"The combination of the XIV Storage System and SAN Volume Controller gives us a smarter way to manage our storage. If we need

  9. Gas storage materials, including hydrogen storage materials

    DOE Patents [OSTI]

    Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji

    2014-11-25

    A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material, such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.

  10. Gas storage materials, including hydrogen storage materials

    DOE Patents [OSTI]

    Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji

    2013-02-19

    A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.

  11. Safety Engineer

    Broader source: Energy.gov [DOE]

    A successful candidate in this position will ensure DOE Federal personnel and contractors develop effective safety programs and continuously evaluates those activities to ensure compliance with DOE...

  12. Flywheel energy storage workshop

    SciTech Connect (OSTI)

    O`Kain, D.; Carmack, J.

    1995-12-31

    Since the November 1993 Flywheel Workshop, there has been a major surge of interest in Flywheel Energy Storage. Numerous flywheel programs have been funded by the Advanced Research Projects Agency (ARPA), by the Department of Energy (DOE) through the Hybrid Vehicle Program, and by private investment. Several new prototype systems have been built and are being tested. The operational performance characteristics of flywheel energy storage are being recognized as attractive for a number of potential applications. Programs are underway to develop flywheels for cars, buses, boats, trains, satellites, and for electric utility applications such as power quality, uninterruptible power supplies, and load leveling. With the tremendous amount of flywheel activity during the last two years, this workshop should again provide an excellent opportunity for presentation of new information. This workshop is jointly sponsored by ARPA and DOE to provide a review of the status of current flywheel programs and to provide a forum for presentation of new flywheel technology. Technology areas of interest include flywheel applications, flywheel systems, design, materials, fabrication, assembly, safety & containment, ball bearings, magnetic bearings, motor/generators, power electronics, mounting systems, test procedures, and systems integration. Information from the workshop will help guide ARPA & DOE planning for future flywheel programs. This document is comprised of detailed viewgraphs.

  13. Storage Statistics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation ofAlbuquerque|SensitiveAprilPhoton Source Parameters Storage Ringsrlogo_t.gif

  14. Plutonium Finishing Plant safety evaluation report

    SciTech Connect (OSTI)

    Not Available

    1995-01-01

    The Plutonium Finishing Plant (PFP) previously known as the Plutonium Process and Storage Facility, or Z-Plant, was built and put into operation in 1949. Since 1949 PFP has been used for various processing missions, including plutonium purification, oxide production, metal production, parts fabrication, plutonium recovery, and the recovery of americium (Am-241). The PFP has also been used for receipt and large scale storage of plutonium scrap and product materials. The PFP Final Safety Analysis Report (FSAR) was prepared by WHC to document the hazards associated with the facility, present safety analyses of potential accident scenarios, and demonstrate the adequacy of safety class structures, systems, and components (SSCs) and operational safety requirements (OSRs) necessary to eliminate, control, or mitigate the identified hazards. Documented in this Safety Evaluation Report (SER) is DOE`s independent review and evaluation of the PFP FSAR and the basis for approval of the PFP FSAR. The evaluation is presented in a format that parallels the format of the PFP FSAR. As an aid to the reactor, a list of acronyms has been included at the beginning of this report. The DOE review concluded that the risks associated with conducting plutonium handling, processing, and storage operations within PFP facilities, as described in the PFP FSAR, are acceptable, since the accident safety analyses associated with these activities meet the WHC risk acceptance guidelines and DOE safety goals in SEN-35-91.

  15. Photon Storage Cavities

    E-Print Network [OSTI]

    Kim, K.-J.

    2008-01-01

    Sessler, "Analysis of Photon Storage Cavities for a Free-configuration of coupled storage cavity and PEL cavity. TheFig. 2. A ring resonator storage cavity coupled through a

  16. AQUIFER THERMAL ENERGY STORAGE

    E-Print Network [OSTI]

    Tsang, C.-F.

    2011-01-01

    and Zakhidov, 1971. "Storage of Solar Energy in a Sandy-Aquifer Storage of Hot Water from Solar Energy Collectors,"with solar energy systems, aquifer energy storage provides a

  17. Safety, Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II) byMultidayAlumni > The2/01/12University SafetyHealthSafetySafety,

  18. Spent Fuel Working Group report on inventory and storage of the Department`s spent nuclear fuel and other reactor irradiated nuclear materials and their environmental, safety and health vulnerabilities. Volume 3, Site team reports

    SciTech Connect (OSTI)

    Not Available

    1993-11-01

    A self assessment was conducted of those Hanford facilities that are utilized to store Reactor Irradiated Nuclear Material, (RINM). The objective of the assessment is to identify the Hanford inventories of RINM and the ES & H concerns associated with such storage. The assessment was performed as proscribed by the Project Plan issued by the DOE Spent Fuel Working Group. The Project Plan is the plan of execution intended to complete the Secretary`s request for information relevant to the inventories and vulnerabilities of DOE storage of spent nuclear fuel. The Hanford RINM inventory, the facilities involved and the nature of the fuel stored are summarized. This table succinctly reveals the variety of the Hanford facilities involved, the variety of the types of RINM involved, and the wide range of the quantities of material involved in Hanford`s RINM storage circumstances. ES & H concerns are defined as those circumstances that have the potential, now or in the future, to lead to a criticality event, to a worker radiation exposure event, to an environmental release event, or to public announcements of such circumstances and the sensationalized reporting of the inherent risks.

  19. AQUIFER THERMAL ENERGY STORAGE

    E-Print Network [OSTI]

    Tsang, C.-F.

    2011-01-01

    varying solar energy inputs and thermal or power demands. Itusing aquifers for thermal energy storage. Problems outlinedmatical Modeling of Thermal Energy Storage in Aquifers,"

  20. SUPERCONDUCTING MAGNETIC ENERGY STORAGE

    E-Print Network [OSTI]

    Hassenzahl, W.

    2011-01-01

    to MW/40 MWI-IR Battery Energy Storage Facility", proc. 23rdcompressed air, and battery energy storage are all only 65

  1. Compressed gas fuel storage system

    DOE Patents [OSTI]

    Wozniak, John J. (Columbia, MD); Tiller, Dale B. (Lincoln, NE); Wienhold, Paul D. (Baltimore, MD); Hildebrand, Richard J. (Edgemere, MD)

    2001-01-01

    A compressed gas vehicle fuel storage system comprised of a plurality of compressed gas pressure cells supported by shock-absorbing foam positioned within a shape-conforming container. The container is dimensioned relative to the compressed gas pressure cells whereby a radial air gap surrounds each compressed gas pressure cell. The radial air gap allows pressure-induced expansion of the pressure cells without resulting in the application of pressure to adjacent pressure cells or physical pressure to the container. The pressure cells are interconnected by a gas control assembly including a thermally activated pressure relief device, a manual safety shut-off valve, and means for connecting the fuel storage system to a vehicle power source and a refueling adapter. The gas control assembly is enclosed by a protective cover attached to the container. The system is attached to the vehicle with straps to enable the chassis to deform as intended in a high-speed collision.

  2. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2002-05-20

    To establish facility safety requirements for the Department of Energy, including National Nuclear Security Administration. Cancels DOE O 420.1. Canceled by DOE O 420.1B.

  3. Regulatory Concerns on the In-Containment Water Storage System of the Korean Next Generation Reactor

    SciTech Connect (OSTI)

    Ahn, Hyung-Joon; Lee, Jae-Hun; Bang, Young-Seok; Kim, Hho-Jung

    2002-07-15

    The in-containment water storage system (IWSS) is a newly adopted system in the design of the Korean Next Generation Reactor (KNGR). It consists of the in-containment refueling water storage tank, holdup volume tank, and cavity flooding system (CFS). The IWSS has the function of steam condensation and heat sink for the steam release from the pressurizer and provides cooling water to the safety injection system and containment spray system in an accident condition and to the CFS in a severe accident condition. With the progress of the KNGR design, the Korea Institute of Nuclear Safety has been developing Safety and Regulatory Requirements and Guidances for safety review of the KNGR. In this paper, regarding the IWSS of the KNGR, the major contents of the General Safety Criteria, Specific Safety Requirements, Safety Regulatory Guides, and Safety Review Procedures were introduced, and the safety review items that have to be reviewed in-depth from the regulatory viewpoint were also identified.

  4. Thermal Storage Applications for Commercial/Industrial Facilities 

    E-Print Network [OSTI]

    Knipp, R. L.

    1986-01-01

    as the refrigerant) at -57?C or -70?F. In essence the storage device relies upon a system of creating phase change of carbon dioxide crystals to liquid and limited liquid to gas ex change. Carbon dioxide will store approximately 85 htu/lb dt'ring the solid... to liquid transformation. (Figure 7) In terms of space requirements, a storage vessel at 60 psig would require a tank capacity of 28 gallons per ton hour of storage. This includes a safety factor to allow storage space for carbon dioxide gas in the top...

  5. Electrochemical hydrogen Storage Systems

    SciTech Connect (OSTI)

    Dr. Digby Macdonald

    2010-08-09

    As the global need for energy increases, scientists and engineers have found a possible solution by using hydrogen to power our world. Although hydrogen can be combusted as a fuel, it is considered an energy carrier for use in fuel cells wherein it is consumed (oxidized) without the production of greenhouse gases and produces electrical energy with high efficiency. Chemical storage of hydrogen involves release of hydrogen in a controlled manner from materials in which the hydrogen is covalently bound. Sodium borohydride and aminoborane are two materials given consideration as chemical hydrogen storage materials by the US Department of Energy. A very significant barrier to adoption of these materials as hydrogen carriers is their regeneration from 'spent fuel,' i.e., the material remaining after discharge of hydrogen. The U.S. Department of Energy (DOE) formed a Center of Excellence for Chemical Hydrogen Storage, and this work stems from that project. The DOE has identified boron hydrides as being the main compounds of interest as hydrogen storage materials. The various boron hydrides are then oxidized to release their hydrogen, thereby forming a 'spent fuel' in the form of a lower boron hydride or even a boron oxide. The ultimate goal of this project is to take the oxidized boron hydrides as the spent fuel and hydrogenate them back to their original form so they can be used again as a fuel. Thus this research is essentially a boron hydride recycling project. In this report, research directed at regeneration of sodium borohydride and aminoborane is described. For sodium borohydride, electrochemical reduction of boric acid and sodium metaborate (representing spent fuel) in alkaline, aqueous solution has been investigated. Similarly to literature reports (primarily patents), a variety of cathode materials were tried in these experiments. Additionally, approaches directed at overcoming electrostatic repulsion of borate anion from the cathode, not described in the previous literature for electrochemical reduction of spent fuels, have been attempted. A quantitative analytical method for measuring the concentration of sodium borohydride in alkaline aqueous solution has been developed as part of this work and is described herein. Finally, findings from stability tests for sodium borohydride in aqueous solutions of several different compositions are reported. For aminoborane, other research institutes have developed regeneration schemes involving tributyltin hydride. In this report, electrochemical reduction experiments attempting to regenerate tributyltin hydride from tributyltin chloride (a representative by-product of the regeneration scheme) are described. These experiments were performed in the non-aqueous solvents acetonitrile and 1,2-dimethoxyethane. A non-aqueous reference electrode for electrolysis experiments in acetonitrile was developed and is described. One class of boron hydrides, called polyhedral boranes, became of interest to the DOE due to their ability to contain a sufficient amount of hydrogen to meet program goals and because of their physical and chemical safety attributes. Unfortunately, the research performed here has shown that polyhedral boranes do not react in such a way as to allow enough hydrogen to be released, nor do they appear to undergo hydrogenation from the spent fuel form back to the original hydride. After the polyhedral boranes were investigated, the project goals remained the same but the hydrogen storage material was switched by the DOE to ammonia borane. Ammonia borane was found to undergo an irreversible hydrogen release process, so a direct hydrogenation was not able to occur. To achieve the hydrogenation of the spent ammonia borane fuel, an indirect hydrogenation reaction is possible by using compounds called organotin hydrides. In this process, the organotin hydrides will hydrogenate the spent ammonia borane fuel at the cost of their own oxidation, which forms organotin halides. To enable a closed-loop cycle, our task was then to be able to hydrogenate the organotin halides back to th

  6. Transportation Storage Interface | Department of Energy

    Office of Environmental Management (EM)

    Storage Interface Transportation Storage Interface Regulation of Future Extended Storage and Transportation. Transportation Storage Interface More Documents & Publications Gap...

  7. Construction safety in DOE. Part 1, Students guide

    SciTech Connect (OSTI)

    Handwerk, E C

    1993-08-01

    This report is the first part of a compilation of safety standards for construction activities on DOE facilities. This report covers the following areas: general safety and health provisions; occupational health and environmental control/haz mat; personal protective equipment; fire protection and prevention; signs, signals, and barricades; materials handling, storage, use, and disposal; hand and power tools; welding and cutting; electrical; and scaffolding.

  8. Recommended research on LNG safety

    SciTech Connect (OSTI)

    Carpenter, H.J.; Gilmore, F.R.

    1981-03-01

    The US Department of Energy (DOE) is conducting research on the safety and other environmental aspects of liquefied energy gases including liquefied natural gas (LNG). The effort reported here was conducted as part of the planning for further research into the safety aspects of transporting and storing LNG, with primary emphasis on public safety. Although the modern LNG industry has enjoyed excellent success in providing for safe operations, significant questions remain on the part of many, the expressions of which were intensified with the addition of marine-based LNG import terminals. Public safety with regard to large-scale importation of this fuel has received widespread attention in the US Congress, state legislatures, county and city governments, and from various individuals and public groups, with coverage in all the news media, including books published on the subject. The safety concerns have centered around the consequences to the public of a large spill of the cryogenic liquid from an ocean tanker or a larger storage tank, either of which might hold as much as 125,000 m/sup 3/ of LNG.

  9. LNG Safety Assessment Evaluation Methods

    SciTech Connect (OSTI)

    Muna, Alice Baca; LaFleur, Angela Christine

    2015-05-01

    Sandia National Laboratories evaluated published safety assessment methods across a variety of industries including Liquefied Natural Gas (LNG), hydrogen, land and marine transportation, as well as the US Department of Defense (DOD). All the methods were evaluated for their potential applicability for use in the LNG railroad application. After reviewing the documents included in this report, as well as others not included because of repetition, the Department of Energy (DOE) Hydrogen Safety Plan Checklist is most suitable to be adapted to the LNG railroad application. This report was developed to survey industries related to rail transportation for methodologies and tools that can be used by the FRA to review and evaluate safety assessments submitted by the railroad industry as a part of their implementation plans for liquefied or compressed natural gas storage ( on-board or tender) and engine fueling delivery systems. The main sections of this report provide an overview of various methods found during this survey. In most cases, the reference document is quoted directly. The final section provides discussion and a recommendation for the most appropriate methodology that will allow efficient and consistent evaluations to be made. The DOE Hydrogen Safety Plan Checklist was then revised to adapt it as a methodology for the Federal Railroad Administration’s use in evaluating safety plans submitted by the railroad industry.

  10. Plutonium working group report on environmental, safety and health vulnerabilities associated with the department`s plutonium storage. Volume II, Appendix B, Part 9: Oak Ridge site site team report

    SciTech Connect (OSTI)

    1994-09-01

    This report provides the input to and results of the Department of Energy (DOE) - Oak Ridge Operations (ORO) DOE Plutonium Environment, Safety and Health (ES & H) Vulnerability Assessment (VA) self-assessment performed by the Site Assessment Team (SAT) for the Oak Ridge National Laboratory (ORNL or X-10) and the Oak Ridge Y-12 Plant (Y-12) sites that are managed by Martin Marietta Energy Systems, Inc. (MMES). As initiated (March 15, 1994) by the Secretary of Energy, the objective of the VA is to identify and rank-order DOE-ES&H vulnerabilities associated for the purpose of decision making on the interim safe management and ultimate disposition of fissile materials. This assessment is directed at plutonium and other co-located transuranics in various forms.

  11. Distributed storage with communication costs

    E-Print Network [OSTI]

    Armstrong, Craig Kenneth

    2011-01-01

    5 Introduction to Coding for Distributed Storage The Repairflow graph for 1 repair with varying storage capac- itythe Capacity of Storage Nodes . . . 4.1 Characterizing

  12. Quantifying and Addressing the DOE Material Reactivity Requirements with Analysis and Testing of Hydrogen Storage Materials & Systems

    SciTech Connect (OSTI)

    Khalil, Y. F

    2015-01-05

    The objective of this project is to examine safety aspects of candidate hydrogen storage materials and systems being developed in the DOE Hydrogen Program. As a result of this effort, the general DOE safety target will be given useful meaning by establishing a link between the characteristics of new storage materials and the satisfaction of safety criteria. This will be accomplished through the development and application of formal risk analysis methods, standardized materials testing, chemical reactivity characterization, novel risk mitigation approaches and subscale system demonstration. The project also will collaborate with other DOE and international activities in materials based hydrogen storage safety to provide a larger, highly coordinated effort.

  13. OCCUPATIONAL HEALTH AND SAFETY

    E-Print Network [OSTI]

    OCCUPATIONAL HEALTH AND SAFETY MANAGEMENT SYSTEM Department of Occupational Health and Safety Revised December 2009 #12;Occupational Health and Safety (OHS) Management System 1. Introduction.............................................................................................................. 3 2.2 Management of Health and Safety

  14. Student manual, Book 2: Orientation to occupational safety compliance in DOE

    SciTech Connect (OSTI)

    Colley, D.L.

    1993-10-01

    This is a student hand-book an Occupational Safety Compliance in DOE. Topics include the following: Electrical; materials handling & storage; inspection responsibilities & procedures; general environmental controls; confined space entry; lockout/tagout; office safety, ergonomics & human factors; medical & first aid, access to records; construction safety; injury/illness reporting system; and accident investigation procedures.

  15. Safety harness

    DOE Patents [OSTI]

    Gunter, Larry W. (615 Sand Pit Rd., Leesville, SC 29070)

    1993-01-01

    A safety harness to be worn by a worker, especially a worker wearing a plastic suit thereunder for protection in a radioactive or chemically hostile environment, which safety harness comprises a torso surrounding portion with at least one horizontal strap for adjustably securing the harness about the torso, two vertical shoulder straps with rings just forward of the of the peak of the shoulders for attaching a life-line and a pair of adjustable leg supporting straps releasibly attachable to the torso surrounding portion. In the event of a fall, the weight of the worker, when his fall is broken and he is suspended from the rings with his body angled slightly back and chest up, will be borne by the portion of the leg straps behind his buttocks rather than between his legs. Furthermore, the supporting straps do not restrict the air supplied through hoses into his suit when so suspended.

  16. Pumped Storage Hydropower

    Broader source: Energy.gov [DOE]

    In addition to traditional hydropower, pumped-storage hydropower (PSH)—A type of hydropower that works like a battery, pumping water from a lower reservoir to an upper reservoir for storage and...

  17. Multiported storage devices 

    E-Print Network [OSTI]

    Grande, Marcus Bryan

    2000-01-01

    and intelligence than the traditional block storage device. A multiported storage device allows application-specific code that we call filter applets to be downloaded to the device while still maintaining the simple block-level interface. The device contains...

  18. Transportation Storage Interface

    Office of Environmental Management (EM)

    in above- ground bunkers, each of which is about the size of a one-car garage. Spent Fuel Storage: Dual Purpose Cask Systems 8 Spent Fuel Storage and Transportation: Framework...

  19. Unit 35 - Raster Storage

    E-Print Network [OSTI]

    Unit 35, CC in GIS; Peuquet, Donna

    1990-01-01

    in GIS - 1990 Page 8 Unit 35 - Raster Storage GIS to whichNCGIA Core Curriculum in GIS - 1990 Page 9 Unit 35 - RasterStorage UNIT 35 IMAGES NCGIA Core Curriculum in GIS - 1990

  20. Safety valve

    DOE Patents [OSTI]

    Bergman, Ulf C. (Malmoe, SE)

    1984-01-01

    The safety valve contains a resilient gland to be held between a valve seat and a valve member and is secured to the valve member by a sleeve surrounding the end of the valve member adjacent to the valve seat. The sleeve is movable relative to the valve member through a limited axial distance and a gap exists between said valve member and said sleeve.

  1. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2013-06-21

    DOE-STD-1104 contains the Department's method and criteria for reviewing and approving nuclear facility's documented safety analysis (DSA). This review and approval formally document the basis for DOE, concluding that a facility can be operated safely in a manner that adequately protects workers, the public, and the environment. Therefore, it is appropriate to formally require implementation of the review methodology and criteria contained in DOE-STD-1104.

  2. Standard review plan for dry cask storage systems. Final report

    SciTech Connect (OSTI)

    NONE

    1997-01-01

    The Standard Review Plan (SRP) For Dry Cask Storage Systems provides guidance to the Nuclear Regulatory Commission staff in the Spent Fuel Project Office for performing safety reviews of dry cask storage systems. The SRP is intended to ensure the quality and uniformity of the staff reviews, present a basis for the review scope, and clarification of the regulatory requirements. Part 72, Subpart B generally specifies the information needed in a license application for the independent storage of spent nuclear fuel and high level radioactive waste. Regulatory Guide 3.61 {open_quotes}Standard Format and Content for a Topical Safety Analysis Report for a Spent Fuel Dry Storage Cask{close_quotes} contains an outline of the specific information required by the staff. The SRP is divided into 14 sections which reflect the standard application format. Regulatory requirements, staff positions, industry codes and standards, acceptance criteria, and other information are discussed.

  3. Energy Storage Systems

    SciTech Connect (OSTI)

    Conover, David R.

    2013-12-01

    Energy Storage Systems – An Old Idea Doing New Things with New Technology article for the International Assoication of ELectrical Inspectors

  4. Accountable Storage Giuseppe Ateniese

    E-Print Network [OSTI]

    International Association for Cryptologic Research (IACR)

    Accountable Storage Giuseppe Ateniese Michael T. Goodrich Vassilios Lekakis Charalampos Papamanthou§ Evripidis Paraskevas§ Roberto Tamassia¶ Abstract We introduce Accountable Storage (AS), a framework allowing. Such protocols offer "provable storage insurance" to a client: In case of a data loss, the client can

  5. Groundwater and Terrestrial Water Storage

    E-Print Network [OSTI]

    Rodell, M; Chambers, D P; Famiglietti, J S

    2011-01-01

    T. E. Reilly, 2002: Flow and storage in groundwater systems.Estimating ground water storage changes in the Mississippistorage..

  6. Safety Share from National Safety Council

    Broader source: Energy.gov [DOE]

    Slide Presentation by Joe Yanek, Fluor Government Group. National Safety Council Safety Share. The Campbell Institute is the “Environmental, Health and Safety (EHS) Center of Excellence” at the National Safety Council and provides a Forum for Leaders in EHS to exchange ideas and collaborate across industry sectors and organizational types.

  7. Storage Ring Revised March 1994

    E-Print Network [OSTI]

    Brookhaven National Laboratory - Experiment 821

    Chapter 8. Storage Ring Revised March 1994 8.1. Introduction -- 107 -- #12; 108 Storage Ring 8.2. Magnetic Design and Field Calculations 8.2.1. Conceptual Approach #12; Storage Ring 109 #12; 110 Storage Ring 8.2.2. Computer Aided Refined Pole Designs #12; Storage Ring 111 #12; 112 Storage Ring #12

  8. Storage : DAS / SAN / NAS Dploiement

    E-Print Network [OSTI]

    Collette. Sébastien

    CH8 Divers 2 Agenda · Storage : DAS / SAN / NAS · Déploiement · VLAN ­ 802.1Q · Gestion d · Sécurisation de Windows · Sécurisation de UNIX · Qu'est-ce que... ­ Firewall, VPN, IDS/IPS, PKI Storage : DAS, NAS, SAN #12;3 Storage : DAS, NAS, SAN · Direct Attached Storage · Network Attached Storage · Storage

  9. Delivering safety

    SciTech Connect (OSTI)

    Baldwin, N.D.; Spooner, K.G.; Walkden, P.

    2007-07-01

    In the United Kingdom there have been significant recent changes to the management of civil nuclear liabilities. With the formation in April 2005 of the Nuclear Decommissioning Authority (NDA), ownership of the civil nuclear licensed sites in the UK, including the Magnox Reactor Stations, passed to this new organisation. The NDAs mission is to seek acceleration of the nuclear clean up programme and deliver increased value for money and, consequently, are driving their contractors to seek more innovative ways of performing work. British Nuclear Group manages the UK Magnox stations under contract to the NDA. This paper summarises the approach being taken within its Reactor Sites business to work with suppliers to enhance working arrangements at sites, improve the delivery of decommissioning programmes and deliver improvements in safety and environmental performance. The UK Magnox stations are 1. generation gas-graphite reactors, constructed in the 1950's and 1960's. Two stations are currently still operating, three are shut-down undergoing defueling and the other five are being decommissioned. Despite the distractions of industry restructuring, an uncompromising policy of demanding improved performance in conjunction with improved safety and environmental standards has been adopted. Over the past 5 years, this policy has resulted in step-changes in performance at Reactor Sites, with increased electrical output and accelerated defueling and decommissioning. The improvements in performance have been mirrored by improvements in safety (DACR of 0 at 5 sites); environmental standards (reductions in energy and water consumption, increased waste recycling) and the overall health of the workforce (20% reduction in sickness absence). These achievements have, in turn, been recognised by external bodies, resulting in several awards, including: the world's first ISRS and IERS level 10 awards (Sizewell, 2006), the NUMEX plant maintenance award (Bradwell, 2006), numerous RoSPA awards at site and sector level and nomination, at Company level, for the RoSPA George Earle trophy for outstanding performance in Health and Safety (Reactor Sites, 2006). After 'setting the scene' and describing the challenges that the company has had to respond to, the paper explains how these improvements have been delivered. Specifically it explains the process that has been followed and the parts played by sites and suppliers to deliver improved performance. With the experience of already having transitioned several Magnox stations from operations to defueling and then to decommissioning, the paper describes the valuable experience that has been gained in achieving an optimum change process and maintaining momentum. (authors)

  10. Safety Issues

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-Throughput Analysis of Protein1-0845*RV6STATDecember29/2011 Page 1 of 6Site Safety

  11. Radiation Safety

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMassR&D100 Winners * Impacts on GlobalRachel Ruggirello RachelRadiation DrySafety Home

  12. Job Safety

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nA Guidephysics_today_article.pdf MoreEnergy JulyTemansonupdatedJob Safety

  13. SAFETY MANUAL Fishermen, Captains, and Owners

    E-Print Network [OSTI]

    ..... , ..... , ... , .. , .. , ... ,',." .... , ... ,.. 32 Storage batteries ....... , , .. , ..... , , ... , ... , , , , ... , , , , , , . , , , 33 Alarms

  14. 2011 Annual Criticality Safety Program Performance Summary

    SciTech Connect (OSTI)

    Andrea Hoffman

    2011-12-01

    The 2011 review of the INL Criticality Safety Program has determined that the program is robust and effective. The review was prepared for, and fulfills Contract Data Requirements List (CDRL) item H.20, 'Annual Criticality Safety Program performance summary that includes the status of assessments, issues, corrective actions, infractions, requirements management, training, and programmatic support.' This performance summary addresses the status of these important elements of the INL Criticality Safety Program. Assessments - Assessments in 2011 were planned and scheduled. The scheduled assessments included a Criticality Safety Program Effectiveness Review, Criticality Control Area Inspections, a Protection of Controlled Unclassified Information Inspection, an Assessment of Criticality Safety SQA, and this management assessment of the Criticality Safety Program. All of the assessments were completed with the exception of the 'Effectiveness Review' for SSPSF, which was delayed due to emerging work. Although minor issues were identified in the assessments, no issues or combination of issues indicated that the INL Criticality Safety Program was ineffective. The identification of issues demonstrates the importance of an assessment program to the overall health and effectiveness of the INL Criticality Safety Program. Issues and Corrective Actions - There are relatively few criticality safety related issues in the Laboratory ICAMS system. Most were identified by Criticality Safety Program assessments. No issues indicate ineffectiveness in the INL Criticality Safety Program. All of the issues are being worked and there are no imminent criticality concerns. Infractions - There was one criticality safety related violation in 2011. On January 18, 2011, it was discovered that a fuel plate bundle in the Nuclear Materials Inspection and Storage (NMIS) facility exceeded the fissionable mass limit, resulting in a technical safety requirement (TSR) violation. The TSR limits fuel plate bundles to 1085 grams U-235, which is the maximum loading of an ATR fuel element. The overloaded fuel plate bundle contained 1097 grams U-235 and was assembled under an 1100 gram U-235 limit in 1982. In 2003, the limit was reduced to 1085 grams citing a new criticality safety evaluation for ATR fuel elements. The fuel plate bundle inventories were not checked for compliance prior to implementing the reduced limit. A subsequent review of the NMIS inventory did not identify further violations. Requirements Management - The INL Criticality Safety program is organized and well documented. The source requirements for the INL Criticality Safety Program are from 10 CFR 830.204, DOE Order 420.1B, Chapter III, 'Nuclear Criticality Safety,' ANSI/ANS 8-series Industry Standards, and DOE Standards. These source requirements are documented in LRD-18001, 'INL Criticality Safety Program Requirements Manual.' The majority of the criticality safety source requirements are contained in DOE Order 420.1B because it invokes all of the ANSI/ANS 8-Series Standards. DOE Order 420.1B also invokes several DOE Standards, including DOE-STD-3007, 'Guidelines for Preparing Criticality Safety Evaluations at Department of Energy Non-Reactor Nuclear Facilities.' DOE Order 420.1B contains requirements for DOE 'Heads of Field Elements' to approve the criticality safety program and specific elements of the program, namely, the qualification of criticality staff and the method for preparing criticality safety evaluations. This was accomplished by the approval of SAR-400, 'INL Standardized Nuclear Safety Basis Manual,' Chapter 6, 'Prevention of Inadvertent Criticality.' Chapter 6 of SAR-400 contains sufficient detail and/or reference to the specific DOE and contractor documents that adequately describe the INL Criticality Safety Program per the elements specified in DOE Order 420.1B. The Safety Evaluation Report for SAR-400 specifically recognizes that the approval of SAR-400 approves the INL Criticality Safety Program. No new source requirements were released in 2011. A revision to LRD-18001 is

  15. Monitored Retrievable Storage System Requirements Document. Revision 1

    SciTech Connect (OSTI)

    Not Available

    1994-03-01

    This Monitored Retrievable Storage System Requirements Document (MRS-SRD) describes the functions to be performed and technical requirements for a Monitored Retrievable Storage (MRS) facility subelement and the On-Site Transfer and Storage (OSTS) subelement. The MRS facility subelement provides for temporary storage, at a Civilian Radioactive Waste Management System (CRWMS) operated site, of spent nuclear fuel (SNF) contained in an NRC-approved Multi-Purpose Canister (MPC) storage mode, or other NRC-approved storage modes. The OSTS subelement provides for transfer and storage, at Purchaser sites, of spent nuclear fuel (SNF) contained in MPCs. Both the MRS facility subelement and the OSTS subelement are in support of the CRWMS. The purpose of the MRS-SRD is to define the top-level requirements for the development of the MRS facility and the OSTS. These requirements include design, operation, and decommissioning requirements to the extent they impact on the physical development of the MRS facility and the OSTS. The document also presents an overall description of the MRS facility and the OSTS, their functions (derived by extending the functional analysis documented by the Physical System Requirements (PSR) Store Waste Document), their segments, and the requirements allocated to the segments. In addition, the top-level interface requirements of the MRS facility and the OSTS are included. As such, the MRS-SRD provides the technical baseline for the MRS Safety Analysis Report (SAR) design and the OSTS Safety Analysis Report design.

  16. Construction safety program for the National Ignition Facility, Appendix A

    SciTech Connect (OSTI)

    Cerruti, S.J.

    1997-06-26

    Topics covered in this appendix include: General Rules-Code of Safe Practices; 2. Personal Protective Equipment; Hazardous Material Control; Traffic Control; Fire Prevention; Sanitation and First Aid; Confined Space Safety Requirements; Ladders and Stairways; Scaffolding and Lift Safety; Machinery, Vehicles, and Heavy Equipment; Welding and Cutting-General; Arc Welding; Oxygen/Acetylene Welding and Cutting; Excavation, Trenching, and Shoring; Fall Protection; Steel Erection; Working With Asbestos; Radiation Safety; Hand Tools; Electrical Safety; Nonelectrical Work Performed Near Exposed High-Voltage Power-Distribution Equipment; Lockout/Tagout Requirements; Rigging; A-Cranes; Housekeeping; Material Handling and Storage; Lead; Concrete and Masonry Construction.

  17. ENVIRONMENTAL, HEALTH AND SAFETY

    E-Print Network [OSTI]

    California at Davis, University of

    ENVIRONMENTAL, HEALTH AND SAFETY PROGRAMS SPRING 2012 Including: Free Information Session New Program in Health and Safety CONTINUING AND PROFESSIONAL EDUCATION #12;2 Our Health and Safety Programs Workplace Health and Safety Certificate Program For every dollar invested in workplace safety, organizations

  18. Removal plan for Shippingport pressurized water reactor core 2 blanket fuel assemblies form T plant to the canister storage building

    SciTech Connect (OSTI)

    Lata

    1996-09-26

    This document presents the current strategy and path forward for removal of the Shippingport Pressurized Water Reactor Core 2 blanket fuel assemblies from their existing storage configuration (wet storage within the T Plant canyon) and transport to the Canister Storage Building (designed and managed by the Spent Nuclear Fuel. Division). The removal plan identifies all processes, equipment, facility interfaces, and documentation (safety, permitting, procedures, etc.) required to facilitate the PWR Core 2 assembly removal (from T Plant), transport (to the Canister storage Building), and storage to the Canister Storage Building. The plan also provides schedules, associated milestones, and cost estimates for all handling activities.

  19. Nuclear Safety | Department of Energy

    Office of Environmental Management (EM)

    Nuclear Safety Nuclear Safety The Office of Nuclear Safety establishes and maintains nuclear safety policy, requirements, and guidance including policy and requirements relating to...

  20. Heat storage duration

    SciTech Connect (OSTI)

    Balcomb, J.D.

    1981-01-01

    Both the amount and duration of heat storage in massive elements of a passive building are investigated. Data taken for one full winter in the Balcomb solar home are analyzed with the aid of sub-system simulation models. Heat storage duration is tallied into one-day intervals. Heat storage location is discussed and related to overall energy flows. The results are interpreted and conclusions drawn.

  1. Culex quinquefasciatus Storage Proteins

    E-Print Network [OSTI]

    2013-01-01

    and hemolymph proteins of Cx. quinquefasciatus . A and B:of typical storage proteins in Cx. quinquefasciatus.Fourth-instar Cx. quinquefasciatus larvae and early pupae

  2. Transmission and Storage Operations

    Energy Savers [EERE]

    Transmission and Storage Operations Natural Gas Infrastructure R&D and Methane Mitigation Workshop Mary Savalle, PMP, LSSGB Compression Reliability Engineer November 12, 2014...

  3. SUPERCONDUCTING MAGNETIC ENERGY STORAGE

    E-Print Network [OSTI]

    Hassenzahl, W.

    2011-01-01

    and R. W . BOOIll, "Superconductive Energy Storage Inducand H. A. Peterson, "Superconductive E nergy S torage forMeeting, Janua ry N. Mohan, "Superconductive Energy S torage

  4. HEATS: Thermal Energy Storage

    SciTech Connect (OSTI)

    2012-01-01

    HEATS Project: The 15 projects that make up ARPA-E’s HEATS program, short for “High Energy Advanced Thermal Storage,” seek to develop revolutionary, cost-effective ways to store thermal energy. HEATS focuses on 3 specific areas: 1) developing high-temperature solar thermal energy storage capable of cost-effectively delivering electricity around the clock and thermal energy storage for nuclear power plants capable of cost-effectively meeting peak demand, 2) creating synthetic fuel efficiently from sunlight by converting sunlight into heat, and 3) using thermal energy storage to improve the driving range of electric vehicles (EVs) and also enable thermal management of internal combustion engine vehicles.

  5. Hydrogen Storage Challenges

    Broader source: Energy.gov [DOE]

    For transportation, the overarching technical challenge for hydrogen storage is how to store the amount of hydrogen required for a conventional driving range (>300 miles) within the vehicular...

  6. AQUIFER THERMAL ENERGY STORAGE

    E-Print Network [OSTI]

    Tsang, C.-F.

    2011-01-01

    thermal energy becomes apparent with the development of solarsolar energy systems, aquifer energy storage provides a buffer between time-varying solar energy inputs and thermal

  7. SHIPBOARD LABORATORY SAFETY PROGRAM

    E-Print Network [OSTI]

    SHIPBOARD LABORATORY SAFETY PROGRAM INTEGRATED OCEAN DRILLING PROGRAM U.S. IMPLEMENTING ORGANIZATION AUGUST 2013 #12;IODP Shipboard Laboratory Safety: Introduction 2 CONTENTS Introduction ................................................................................................................................6 TAMU EHSD: Laboratory Safety Manual

  8. Distributed Generation with Heat Recovery and Storage

    E-Print Network [OSTI]

    Siddiqui, Afzal S.; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

    2008-01-01

    Weekday Total Electricity Generation (Storage AdoptionWeekday Total Electricity Generation (Storage Adoptionrecovery and storage) utility electricity and natural gas

  9. Project plan for resolution of the organic waste tank safety issues at the Hanford Site

    SciTech Connect (OSTI)

    Meacham, J.E.

    1996-10-03

    A multi-year project plan for the Organic Safety Project has been developed with the objective of resolving the organic safety issues associated with the High Level Waste (HLW) in Hanford`s single-shell tanks (SSTS) and double-shell tanks (DSTs). The objective of the Organic Safety Project is to ensure safe interim storage until retrieval for pretreatment and disposal operations begins, and to resolve the organic safety issues by September 2001. Since the initial identification of organics as a tank waste safety issue, progress has been made in understanding the specific aspects of organic waste combustibility, and in developing and implementing activities to resolve the organic safety issues.

  10. Andrew Weisberg DOE-Annual-030520-1 Hydrogen Storage

    E-Print Network [OSTI]

    Andrew Weisberg DOE-Annual-030520-1 Hydrogen Storage Using Lightweight Tanks DOE Hydrogen Program Myers, Gene Berry This work was performed under the auspices of the U.S. Department of Energy · Risk of `suppressed' failure modes with higher variance is neglected in current safety standards

  11. Commercial Vehicle Safety Alliance Commercial Vehicle Safety...

    Office of Environmental Management (EM)

    Program Update: Ensuring Safe Transportation of Radioactive Material Carlisle Smith Director, Hazardous Materials Programs Commercial Vehicle Safety Alliance Email:...

  12. Hydrogen Safety Panel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    or otherwise restricted information. Project ID: scs07weiner PNNL-SA-65397 2 IEA HIA Task 19 Working Group Hydrogen Safety Training Props Hydrogen Safety Panel Incident...

  13. August 2012 Safety Forecast

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    During the month of August, the focus safety areas be ramp safety and seat belt awareness. Heat continues to be a factor during the month of August. Continue...

  14. FIRE SAFETY REPORT ENVIRONMENTAL HEALTH & SAFETY SERVICES

    E-Print Network [OSTI]

    Hong, Don

    FIRE SAFETY REPORT 2014 ENVIRONMENTAL HEALTH & SAFETY SERVICES #12;1 | M T S U F I R E S A F E T Y R E P O R T FIRE SAFETY REPORT TABLE OF CONTENTS INTRODUCTION 2 RESPONSIBILITIES AND DUTIES OF THE MTSU FIRE MARSHAL 2 GENERAL 3 SMOKING POLICY 3 CLASS A COMBUSTIBLES 4 CLASS B COMBUSTIBLES 4 FIRE

  15. Ice Bear® Storage Module | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ice Bear Storage Module Ice Bear Storage Module Thermal Energy Storage for Light Commercial Refrigerant-Based Air Conditioning Units The Ice Bear storage technology was...

  16. Sandia Energy - Energy Storage Test Pad (ESTP)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Storage Test Pad (ESTP) Home Energy Permalink Gallery Evaluating Powerful Batteries for Modular Electric Grid Energy Storage Energy, Energy Storage, Energy Storage Systems, Energy...

  17. Storage resource manager

    SciTech Connect (OSTI)

    Perelmutov, T.; Bakken, J.; Petravick, D.; /Fermilab

    2004-12-01

    Storage Resource Managers (SRMs) are middleware components whose function is to provide dynamic space allocation and file management on shared storage components on the Grid[1,2]. SRMs support protocol negotiation and reliable replication mechanism. The SRM standard supports independent SRM implementations, allowing for a uniform access to heterogeneous storage elements. SRMs allow site-specific policies at each location. Resource Reservations made through SRMs have limited lifetimes and allow for automatic collection of unused resources thus preventing clogging of storage systems with ''orphan'' files. At Fermilab, data handling systems use the SRM management interface to the dCache Distributed Disk Cache [5,6] and the Enstore Tape Storage System [15] as key components to satisfy current and future user requests [4]. The SAM project offers the SRM interface for its internal caches as well.

  18. ,"Underground Natural Gas Storage by Storage Type"

    U.S. Energy Information Administration (EIA) Indexed Site

    Sourcekey","N5030US2","N5010US2","N5020US2","N5070US2","N5050US2","N5060US2" "Date","U.S. Natural Gas Underground Storage Volume (MMcf)","U.S. Total Natural Gas in Underground...

  19. Energy Storage | Clean Energy | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage SHARE Energy Storage Development Growing popularity and education about the benefits of alternative, sustainable transportation options-such as electric and hybrid...

  20. Monitoring, safety systems for LNG and LPG operators

    SciTech Connect (OSTI)

    True, W.R.

    1998-11-16

    Operators in Korea and Australia have chosen monitoring and control systems in recent contracts for LNG and LPG storage. Korea Gas Corp. (Kogas) has hired Whessoe Varec, Calais, to provide monitoring systems for four LNG storage tanks being built at Kogas` Inchon terminal. For Elgas Ltd., Port Botany, Australia, Whessoe Varec has already shipped a safety valve-shutdown system to a new LPG cavern-storage facility under construction. The paper describes the systems, terminal monitoring, dynamic approach to tank management, and meeting the growing demand for LPG.

  1. Secure Storage Architectures

    SciTech Connect (OSTI)

    Aderholdt, Ferrol; Caldwell, Blake A; Hicks, Susan Elaine; Koch, Scott M; Naughton, III, Thomas J; Pogge, James R; Scott, Stephen L; Shipman, Galen M; Sorrillo, Lawrence

    2015-01-01

    The purpose of this report is to clarify the challenges associated with storage for secure enclaves. The major focus areas for the report are: - review of relevant parallel filesystem technologies to identify assets and gaps; - review of filesystem isolation/protection mechanisms, to include native filesystem capabilities and auxiliary/layered techniques; - definition of storage architectures that can be used for customizable compute enclaves (i.e., clarification of use-cases that must be supported for shared storage scenarios); - investigate vendor products related to secure storage. This study provides technical details on the storage and filesystem used for HPC with particular attention on elements that contribute to creating secure storage. We outline the pieces for a a shared storage architecture that balances protection and performance by leveraging the isolation capabilities available in filesystems and virtualization technologies to maintain the integrity of the data. Key Points: There are a few existing and in-progress protection features in Lustre related to secure storage, which are discussed in (Chapter 3.1). These include authentication capabilities like GSSAPI/Kerberos and the in-progress work for GSSAPI/Host-keys. The GPFS filesystem provides native support for encryption, which is not directly available in Lustre. Additionally, GPFS includes authentication/authorization mechanisms for inter-cluster sharing of filesystems (Chapter 3.2). The limitations of key importance for secure storage/filesystems are: (i) restricting sub-tree mounts for parallel filesystem (which is not directly supported in Lustre or GPFS), and (ii) segregation of hosts on the storage network and practical complications with dynamic additions to the storage network, e.g., LNET. A challenge for VM based use cases will be to provide efficient IO forwarding of the parallel filessytem from the host to the guest (VM). There are promising options like para-virtualized filesystems to help with this issue, which are a particular instances of the more general challenge of efficient host/guest IO that is the focus of interfaces like virtio. A collection of bridging technologies have been identified in Chapter 4, which can be helpful to overcome the limitations and challenges of supporting efficient storage for secure enclaves. The synthesis of native filesystem security mechanisms and bridging technologies led to an isolation-centric storage architecture that is proposed in Chapter 5, which leverages isolation mechanisms from different layers to facilitate secure storage for an enclave. Recommendations: The following highlights recommendations from the investigations done thus far. - The Lustre filesystem offers excellent performance but does not support some security related features, e.g., encryption, that are included in GPFS. If encryption is of paramount importance, then GPFS may be a more suitable choice. - There are several possible Lustre related enhancements that may provide functionality of use for secure-enclaves. However, since these features are not currently integrated, the use of Lustre as a secure storage system may require more direct involvement (support). (*The network that connects the storage subsystem and users, e.g., Lustre s LNET.) - The use of OpenStack with GPFS will be more streamlined than with Lustre, as there are available drivers for GPFS. - The Manilla project offers Filesystem as a Service for OpenStack and is worth further investigation. Manilla has some support for GPFS. - The proposed Lustre enhancement of Dynamic-LNET should be further investigated to provide more dynamic changes to the storage network which could be used to isolate hosts and their tenants. - The Linux namespaces offer a good solution for creating efficient restrictions to shared HPC filesystems. However, we still need to conduct a thorough round of storage/filesystem benchmarks. - Vendor products should be more closely reviewed, possibly to include evaluation of performance/protection of select products. (Note, we are investigation the opti

  2. Ultrafine hydrogen storage powders

    DOE Patents [OSTI]

    Anderson, Iver E. (Ames, IA); Ellis, Timothy W. (Doylestown, PA); Pecharsky, Vitalij K. (Ames, IA); Ting, Jason (Ames, IA); Terpstra, Robert (Ames, IA); Bowman, Robert C. (La Mesa, CA); Witham, Charles K. (Pasadena, CA); Fultz, Brent T. (Pasadena, CA); Bugga, Ratnakumar V. (Arcadia, CA)

    2000-06-13

    A method of making hydrogen storage powder resistant to fracture in service involves forming a melt having the appropriate composition for the hydrogen storage material, such, for example, LaNi.sub.5 and other AB.sub.5 type materials and AB.sub.5+x materials, where x is from about -2.5 to about +2.5, including x=0, and the melt is gas atomized under conditions of melt temperature and atomizing gas pressure to form generally spherical powder particles. The hydrogen storage powder exhibits improved chemcial homogeneity as a result of rapid solidfication from the melt and small particle size that is more resistant to microcracking during hydrogen absorption/desorption cycling. A hydrogen storage component, such as an electrode for a battery or electrochemical fuel cell, made from the gas atomized hydrogen storage material is resistant to hydrogen degradation upon hydrogen absorption/desorption that occurs for example, during charging/discharging of a battery. Such hydrogen storage components can be made by consolidating and optionally sintering the gas atomized hydrogen storage powder or alternately by shaping the gas atomized powder and a suitable binder to a desired configuration in a mold or die.

  3. PROPER SAFETY EQUIPMENT Safety Glasses -Proper eye

    E-Print Network [OSTI]

    Jia, Songtao

    be managed as Hazardous Waste. Paint Material Storage location: Right side of Grove tunnel heading towards. Universal Waste not placed in proper storage locations is a violation of environmental regulations and is punishable by a fine, it also poses a hazard to the many people and vehicles that use the Grove everyday

  4. E.O. Lawrence Berkeley National Laboratory Environment, Health, and Safety Division

    E-Print Network [OSTI]

    material areas (work areas where unsealed radioactive material is handled) and radioactive material storage) 75A Old Hazardous Waste Facility 75S Tritium Storage Locker 76 Radioanalytical Laboratory 83 LifeE.O. Lawrence Berkeley National Laboratory Environment, Health, and Safety Division Environmental

  5. Storage and Assay of Tritium in STAR

    SciTech Connect (OSTI)

    Longhurst, Glen R.; Anderl, Robert A.; Pawelko, Robert J.; Stoots, Carl J.

    2005-07-15

    The Safety and Tritium Applied Research (STAR) facility at the Idaho National Engineering and Environmental Laboratory (INEEL) is currently being commissioned to investigate tritium-related safety questions for fusion and other technologies. The tritium inventory for the STAR facility will be maintained below 1.5 g to avoid the need for STAR to be classified as a Category 3 nuclear facility. A key capability in successful operation of the STAR facility is the ability to receive, inventory, and dispense tritium to the various experiments underway there. The system central to that function is the Tritium Storage and Assay System (SAS).The SAS has four major functions: (1) receiving and holding tritium, (2) assaying, (3) dispensing, and (4) purifying hydrogen isotopes from non-hydrogen species.This paper describes the design and operation of the STAR SAS and the procedures used for tritium accountancy in the STAR facility.

  6. Storage Exchange: A Global Trading Platform for Storage Services

    E-Print Network [OSTI]

    Melbourne, University of

    Storage Exchange: A Global Trading Platform for Storage Services Martin Placek and Rajkumar Buyya}@csse.unimelb.edu.au Abstract. The Storage Exchange (SX) is a new platform allowing stor- age to be treated as a tradeable resource. Organisations with varying storage requirements can use the SX platform to trade and exchange

  7. Building Trust in Storage Outsourcing: Secure Accounting of Utility Storage

    E-Print Network [OSTI]

    Minnesota, University of

    Building Trust in Storage Outsourcing: Secure Accounting of Utility Storage Vishal Kher Yongdae Kim are witnessing a revival of Storage Service Providers (SSP) in the form of new vendors as well as traditional players. While storage outsourcing is cost-effective, many companies are hesitating to outsource

  8. Storage Exchange: A Global Trading Platform for Storage Services

    E-Print Network [OSTI]

    Melbourne, University of

    Storage Exchange: A Global Trading Platform for Storage Services Martin Placek and Rajkumar Buyya,raj}@csse.unimelb.edu.au Abstract. The Storage Exchange (SX) is a new platform allowing stor- age to be treated as a tradeable resource. Organisations with varying storage requirements can use the SX platform to trade and exchange

  9. Superconductive magnetic energy storage (SMES) external fields and safety considerations

    SciTech Connect (OSTI)

    Polk, C. . Dept. of Electrical Engineering); Boom, R.W.; Eyssa, Y.M. . Applied Superconductivity Center)

    1992-01-01

    This paper addresses preferred SMES configurations and the external magnetic fields which they generate. Possible biological effects of fields are reviewed briefly. It is proposed that SMES units be fenced at the 10 gauss (1 mT) level to keep unrestricted areas safe, even for persons with cardiac pacemakers. For a full size 5000 MWh (1.8 {times} 10 {sup 13} J) SMES the magnetic field decreases to 10 gauss at a radial distance of 2 km from the center of the coil. Other considerations related to the environmental impact of large SMES magnetic fields are discussed briefly.

  10. Energy Department Releases Strategic Plan for Energy Storage Safety |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-inPPLfor Innovative Solar Power PlantEnergy PerformancePublic Comment

  11. Energy Storage Safety Strategic Plan - December 2014 | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-inPPLfor Innovative SolarSavingsAugust 26, 2013 Energy SecretaryJulyMap

  12. Energy Storage System Safety Reports - August 2014 and September 2014 |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-inPPLfor Innovative SolarSavingsAugust 26, 2013 Energy

  13. Sandia Energy - DOE OE Energy Storage Safety Strategic Plan Webinar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-Throughput Analysis ofSample SULIColin Humphreys HomeWednesday, Jan. 14 OE

  14. TWRS safety program plan

    SciTech Connect (OSTI)

    Calderon, L.M., Westinghouse Hanford

    1996-08-01

    Management of Nuclear Safety, Industrial Safety, Industrial Hygiene, and Fire Protection programs, functions, and field support resources for Tank Waste Remediation Systems (TWRS) has, until recently, been centralized in TWRS Safety, under the Emergency, Safety, and Quality organization. Industrial hygiene technician services were also provided to support operational needs related to safety basis compliance. Due to WHC decentralization of safety and reengineering efforts in West Tank Farms, staffing and safety responsibilities have been transferred to the facilities. Under the new structure, safety personnel for TWRS are assigned directly to East Tank Farms, West Tank Farms, and a core Safety Group in TWRS Engineering. The Characterization Project Operations (CPO) safety organization will remain in tact as it currently exists. Personnel assigned to East Tank Farms, West Tank Farms, and CPO will perform facility-specific or project-specific duties and provide field implementation of programs. Those assigned to the core group will focus on activities having a TWRS-wide or programmatic focus. Hanford-wide activities will be the responsibility of the Safety Center of Expertise. In order to ensure an effective and consistent safety program for TWRS under the new organization program functions, goals, organizational structure, roles, responsibilities, and path forward must be clearly established. The purpose of the TWRS Safety Program Plan is to define the overall safety program, responsibilities, relationships, and communication linkages for safety personnel under the new structure. In addition, issues associated with reorganization transition are addressed, including training, project ownership, records management, and dissemination of equipment. For the purpose of this document ``TWRS Safety`` refers to all safety professionals and technicians (Industrial Safety, Industrial Hygiene, Fire Protection, and Nuclear Safety) within the TWRS organization, regardless of their location in the organization.

  15. APS Storage Ring Parameters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    next up previous Next: Main Parameters APS Storage Ring Parameters M. Borland, G. Decker, L. Emery, W. Guo, K. Harkay, V. Sajaev, C.-Y. Yao Advanced Photon Source September 8, 2010...

  16. Thermal Energy Storage

    SciTech Connect (OSTI)

    Rutberg, Michael; Hastbacka, Mildred; Cooperman, Alissa; Bouza, Antonio

    2013-06-05

    The article discusses thermal energy storage technologies. This article addresses benefits of TES at both the building site and the electricity generation source. The energy savings and market potential of thermal energy store are reviewed as well.

  17. Hydrogen storage compositions

    DOE Patents [OSTI]

    Li, Wen; Vajo, John J.; Cumberland, Robert W.; Liu, Ping

    2011-04-19

    Compositions for hydrogen storage and methods of making such compositions employ an alloy that exhibits reversible formation/deformation of BH.sub.4.sup.- anions. The composition includes a ternary alloy including magnesium, boron and a metal and a metal hydride. The ternary alloy and the metal hydride are present in an amount sufficient to render the composition capable of hydrogen storage. The molar ratio of the metal to magnesium and boron in the alloy is such that the alloy exhibits reversible formation/deformation of BH.sub.4.sup.- anions. The hydrogen storage composition is prepared by combining magnesium, boron and a metal to prepare a ternary alloy and combining the ternary alloy with a metal hydride to form the hydrogen storage composition.

  18. Wet storage integrity update

    SciTech Connect (OSTI)

    Bailey, W.J.; Johnson, A.B. Jr.

    1983-09-01

    This report includes information from various studies performed under the Wet Storage Task of the Spent Fuel Integrity Project of the Commercial Spent Fuel Management (CSFM) Program at Pacific Northwest Laboratory. An overview of recent developments in the technology of wet storage of spent water reactor fuel is presented. Licensee Event Reports pertaining to spent fuel pools and the associated performance of spent fuel and storage components during wet storage are discussed. The current status of fuel that was examined under the CSFM Program is described. Assessments of the effect of boric acid in spent fuel pool water on the corrosion and stress corrosion cracking of stainless steel and the stress corrosion cracking of stainless steel piping containing stagnant water at spent fuel pools are discussed. A list of pertinent publications is included. 84 references, 21 figures, 11 tables.

  19. U.S. Gap Analysis to Support Extended Storage of Used Nuclear Fuel

    SciTech Connect (OSTI)

    Hanson, Brady D.; Alsaed, Abdelhalim -.; Stockman, Christine T.; Sorenson, Ken B.

    2012-06-27

    Dry storage of used nuclear fuel in the United States will continue until a disposition pathway is chosen and implemented. As such, the duration of dry storage will be much longer than originally anticipated. This paper reviews the methodology used in and the results of an analysis to determine the technical data gaps that need to be addressed to assure the continued safe and secure storage of used nuclear fuel for extended periods. Six high priority and eleven medium priority mechanisms were identified that may degrade the safety functions of the dry storage structures, systems, and components.

  20. Analog storage integrated circuit

    DOE Patents [OSTI]

    Walker, J.T.; Larsen, R.S.; Shapiro, S.L.

    1989-03-07

    A high speed data storage array is defined utilizing a unique cell design for high speed sampling of a rapidly changing signal. Each cell of the array includes two input gates between the signal input and a storage capacitor. The gates are controlled by a high speed row clock and low speed column clock so that the instantaneous analog value of the signal is only sampled and stored by each cell on coincidence of the two clocks. 6 figs.

  1. Analog storage integrated circuit

    DOE Patents [OSTI]

    Walker, J. T. (Palo Alto, CA); Larsen, R. S. (Menlo Park, CA); Shapiro, S. L. (Palo Alto, CA)

    1989-01-01

    A high speed data storage array is defined utilizing a unique cell design for high speed sampling of a rapidly changing signal. Each cell of the array includes two input gates between the signal input and a storage capacitor. The gates are controlled by a high speed row clock and low speed column clock so that the instantaneous analog value of the signal is only sampled and stored by each cell on coincidence of the two clocks.

  2. Marketing Cool Storage Technology 

    E-Print Network [OSTI]

    McCannon, L.

    1987-01-01

    -09-74 Proceedings from the Ninth Annual Industrial Energy Technology Conference, Houston, TX, September 16-18, 1987 Utility Cool Storage Inducement Progra~ ,.,.. ?? ,.. ,., Utilities With Inducement~ CA -- Southern California Edison San Diego Gas &Electric..., electric utilities have been faced with risin~ construction costs, more strin~ent re~ulations, and increasin~ environmental constraints re~ardin~ development of new generatin~ facilities. As the viability of cool storage has been substantiated. bv...

  3. Criticality Safety Evaluation of Hanford Tank Farms Facility

    SciTech Connect (OSTI)

    WEISS, E.V.

    2000-12-15

    Data and calculations from previous criticality safety evaluations and analyses were used to evaluate criticality safety for the entire Tank Farms facility to support the continued waste storage mission. This criticality safety evaluation concludes that a criticality accident at the Tank Farms facility is an incredible event due to the existing form (chemistry) and distribution (neutron absorbers) of tank waste. Limits and controls for receipt of waste from other facilities and maintenance of tank waste condition are set forth to maintain the margin subcriticality in tank waste.

  4. Storage In C Matt Bishop

    E-Print Network [OSTI]

    Bishop, Matt

    Storage In C Matt Bishop Research Institute for Advanced Computer Science NASA Ames Research Center. Intimately bound with the idea of scope is that of storage. When a program deÞnes a variable, the compiler storage (such as on a stack) or as more permanent storage (in data space.) Recall that the format of a C

  5. Storage In C Matt Bishop

    E-Print Network [OSTI]

    Bishop, Matt

    Storage In C Matt Bishop Research Institute for Advanced Computer Science NASA Ames Research Center. Intimately bound with the idea of scope is that of storage. When a program defines a variable, the compiler storage (such as on a stack) or as more permanent storage (in data space.) Recall that the format of a C

  6. Savannah River Hydrogen Storage Technology

    Broader source: Energy.gov [DOE]

    Presentation from the Hydrogen Storage Pre-Solicitation Meeting held June 19, 2003 in Washington, DC.

  7. Design and installation manual for thermal energy storage

    SciTech Connect (OSTI)

    Cole, R L; Nield, K J; Rohde, R R; Wolosewicz, R M

    1980-01-01

    The purpose of this manual is to provide information on the design and installation of thermal energy storage in active solar systems. It is intended for contractors, installers, solar system designers, engineers, architects, and manufacturers who intend to enter the solar energy business. The reader should have general knowledge of how solar heating and cooling systems operate and knowledge of construction methods and building codes. Knowledge of solar analysis methods such as f-Chart, SOLCOST, DOE-1, or TRNSYS would be helpful. The information contained in the manual includes sizing storage, choosing a location for the storage device, and insulation requirements. Both air-based and liquid-based systems are covered with topics on designing rock beds, tank types, pump and fan selection, installation, costs, and operation and maintenance. Topics relevant to latent heat storage include properties of phase-change materials, sizing the storage unit, insulating the storage unit, available systems, and cost. Topics relevant to heating domestic water include safety, single- and dual-tank systems, domestic water heating with air- and liquid-based space heating systems, and stand alone domestics hot water systems. Several appendices present common problems with storage systems and their solutions, heat transfer fluid properties, economic insulation thickness, heat exchanger sizing, and sample specifications for heat exchangers, wooden rock bins, steel tanks, concrete tanks, and fiberglass-reinforced plastic tanks.

  8. MATERIAL SAFETY DATA SHEET Glance SC Glass Multi-Surface Cleaner (1:20 Dilution)

    E-Print Network [OSTI]

    Wikswo, John

    under normal use conditions. Handling: Handle in accordance with good industrial hygiene and safety practice. FOR COMMERCIAL AND INDUSTRIAL USE ONLY. Hygiene measures: Handle in accordance with good industrial hygiene and safety practice. 6. ACCIDENTAL RELEASE MEASURES Storage: Protect from freezing. Keep

  9. Environmental Health and Safety -Safety Manual Table of Contents

    E-Print Network [OSTI]

    Li, X. Rong

    1 Environmental Health and Safety - Safety Manual Table of Contents I. Assignment of Responsibility Management Program..................................81 XIX. Water Vessel Safety Program

  10. Environmental Health and Safety Department

    E-Print Network [OSTI]

    . Fire Safety, Radiation Safety and Hazardous Materials Facility are at other locations on campus://www.ehs.gatech.edu/EHS_Policy_Statement.pdf #12;EHS The main Georgia Tech Environmental Health and Safety Office is located at 490 Tenth Street: Radiation Safety Fire SafetyHazardous Materials #12;SAFETY RESPONSIBILITY Safety is a shared responsibility

  11. DOE Global Energy Storage Database

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The DOE International Energy Storage Database has more than 400 documented energy storage projects from 34 countries around the world. The database provides free, up-to-date information on grid-connected energy storage projects and relevant state and federal policies. More than 50 energy storage technologies are represented worldwide, including multiple battery technologies, compressed air energy storage, flywheels, gravel energy storage, hydrogen energy storage, pumped hydroelectric, superconducting magnetic energy storage, and thermal energy storage. The policy section of the database shows 18 federal and state policies addressing grid-connected energy storage, from rules and regulations to tariffs and other financial incentives. It is funded through DOE’s Sandia National Laboratories, and has been operating since January 2012.

  12. Interim Storage of Plutonium in Existing Facilities

    SciTech Connect (OSTI)

    Woodsmall, T.D.

    1999-05-10

    'In this era of nuclear weapons disarmament and nonproliferation treaties, among many problems being faced by the Department of Energy is the safe disposal of plutonium. There is a large stockpile of plutonium at the Rocky Flats Environmental Technology Center and it remains politically and environmentally strategic to relocate the inventory closer to a processing facility. Savannah River Site has been chosen as the final storage location, and the Actinide Packaging and Storage Facility (APSF) is currently under construction for this purpose. With the ability of APSF to receive Rocky Flats material an estimated ten years away, DOE has decided to use the existing reactor building in K-Area of SRS as temporary storage to accelerate the removal of plutonium from Rocky Flats. There are enormous cost savings to the government that serve as incentive to start this removal as soon as possible, and the KAMS project is scheduled to receive the first shipment of plutonium in January 2000. The reactor building in K-Area was chosen for its hardened structure and upgraded seismic qualification, both resulting from an effort to restart the reactor in 1991. The KAMS project has faced unique challenges from Authorization Basis and Safety Analysis perspectives. Although modifying a reactor building from a production facility to a storage shelter is not technically difficult, the nature of plutonium has caused design and safety analysis engineers to make certain that the design of systems, structures and components included will protect the public, SRS workers, and the environment. A basic overview of the KAMS project follows. Plutonium will be measured and loaded into DOT Type-B shipping packages at Rocky Flats. The packages are 35-gallon stainless steel drums with multiple internal containment boundaries. DOE transportation vehicles will be used to ship the drums to the KAMS facility at SRS. They will then be unloaded, stacked and stored in specific locations throughout the reactor building. The storage life is projected to be ten years to allow the preparation of APSF. DOE has stipulated that there be no credible release during storage, since there are no design features in place to mitigate a release of plutonium (i.e. HEPA filters, facility containment boundaries, etc.). This mandate has presented most of the significant challenges to the safety analysis team. The shipping packages are designed to withstand certain accidents and conditions, but in order to take credit for these the storage environment must be strictly controlled. Damages to the packages from exposure to fire, dropping, crushing and other impact accidents have been analyzed, and appropriate preventative design features have been incorporated. Other efforts include the extension of the shipping life (roughly two years) to a suitable storage life of ten years. These issues include the effects of internal pressure increases, seal degradation and the presence of impurities. A process known as the Container Qualification Program has been conducted to address these issues. The KAMS project will be ready to receive the first shipment from Rocky Flats in January 2000. No credible design basis scenarios resulting in the release of plutonium exist. This work has been useful in the effort to provide a safer disposition of plutonium, but also the lessons learned and techniques established by the team will help with the analysis of future facility modifications.'

  13. UNIVERSITY OF WASHINGTON Hazardous Materials Environmental Health & Safety

    E-Print Network [OSTI]

    Wilcock, William

    UNIVERSITY OF WASHINGTON Hazardous Materials Environmental Health & Safety Design Guide Site of specifications for projects in areas with site contamination. Overview Many locations on University of Washington industrial activities such as fuel storage or dispensing or hazardous material spills prior to University

  14. UNIVERSITY OF WASHINGTON Hazardous Materials Environmental Health & Safety

    E-Print Network [OSTI]

    Wilcock, William

    UNIVERSITY OF WASHINGTON Hazardous Materials Environmental Health & Safety Design Guide Fluorescent are hazardous waste, so take care to ensure the tubes remain intact during removal and storage. Fluorescent offsite locations, the EH&S Environmental Programs Office (EPO) will arrange directly with the recycling

  15. Compressed Gas Cylinder Safety I. Background. Due to the nature

    E-Print Network [OSTI]

    Zhang, Zhongfei "Mark"

    Compressed Gas Cylinder Safety I. Background. Due to the nature of gas cylinders hazards of a ruptured cylinder. There are almost 200 different types of materials in gas cylinders, there are several general procedures to follow for safe storage and handling of a compressed gas cylinder: II

  16. SRS K-AREA MATERIAL STORAGE - EXPANDING CAPABILITIES

    SciTech Connect (OSTI)

    Koenig, R.

    2013-07-02

    In support of the Department of Energy’s continued plans to de-inventory and reduce the footprint of Cold War era weapons’ material production sites, the K-Area Material Storage (KAMS) facility, located in the K-Area Complex (KAC) at the Savannah River Site reservation, has expanded since its startup authorization in 2000 to accommodate DOE’s material consolidation mission. During the facility’s growth and expansion, KAMS will have expanded its authorization capability of material types and storage containers to allow up to 8200 total shipping containers once the current expansion effort completes in 2014. Recognizing the need to safely and cost effectively manage other surplus material across the DOE Complex, KAC is constantly evaluating the storage of different material types within K area. When modifying storage areas in KAC, the Documented Safety Analysis (DSA) must undergo extensive calculations and reviews; however, without an extensive and proven security posture the possibility for expansion would not be possible. The KAC maintains the strictest adherence to safety and security requirements for all the SNM it handles. Disciplined Conduct of Operations and Conduct of Projects are demonstrated throughout this historical overview highlighting various improvements in capability, capacity, demonstrated cost effectiveness and utilization of the KAC as the DOE Center of Excellence for safe and secure storage of surplus SNM.

  17. Georgia Institute of Laboratory Safety

    E-Print Network [OSTI]

    ENVIRONMENTAL HEALTH AND SAFETY POLICY.......................................10 Purpose Institute Council for Environmental Health and Safety (IC.........................................................................................12 Chemical and Environmental Safety Committee (CESC

  18. Criticality Safety | Department of Energy

    Office of Environmental Management (EM)

    Nuclear Safety Management American Nuclear Society, Nuclear Criticality Safety Division ANSIANS-8 Standards U.S. Department of Energy Nuclear Criticality Safety Program Orders,...

  19. Occupational Health and Safety Manual

    E-Print Network [OSTI]

    Occupational Health and Safety Manual #12;1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 York University Occupational Health and Safety Policy and Programs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Occupational Health and Safety Legislation

  20. Optical Safety of LEDs

    SciTech Connect (OSTI)

    none,

    2013-06-01

    Solid-state lighting program technology fact sheet that clarifies the issue of LED lighting safety for the human eye and takes a look at current standards for photobiological safety.

  1. Aviation safety analysis

    E-Print Network [OSTI]

    Ausrotas, Raymond A.

    1984-01-01

    Introduction: Just as the aviation system is complex and interrelated, so is aviation safety. Aviation safety involves design of aircraft and airports, training of ground personnel and flight crew members' maintenance of ...

  2. Complete Safety Training

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Complete Safety Training Print All users are required to take online safety training before they may begin work at the ALS. It is the responsibility of the Principal Investigator...

  3. Hydrogen Safety Knowledge Tools

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Data Partners Best Practices - LANL, SNL, NREL, NASA, Hydrogen Safety Panel, and IEA HIA Tasks 19 and 22 Incident Reporting - NASA and Hydrogen Safety Panel 3 Objectives H2...

  4. Preliminary Safety Design RM

    Office of Environmental Management (EM)

    Preliminary Safety Design Review Module March 2010 CD-0 O 0 OFFICE OF Pr C CD-1 F ENVIRO Standard R reliminar Rev Critical Decis CD-2 M ONMENTAL Review Plan ry Safety view Module...

  5. Office of Nuclear Safety

    Broader source: Energy.gov [DOE]

    The Office of Nuclear Safety establishes nuclear safety requirements and expectations for the Department to ensure protection of workers and the public from the hazards associated with nuclear operations with all Department operations.

  6. DOE Cites Safety and Ecology Corp. for Violating Nuclear Safety...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Cites Safety and Ecology Corp. for Violating Nuclear Safety Rules DOE Cites Safety and Ecology Corp. for Violating Nuclear Safety Rules June 14, 2005 - 4:53pm Addthis...

  7. Energy storage connection system

    DOE Patents [OSTI]

    Benedict, Eric L.; Borland, Nicholas P.; Dale, Magdelena; Freeman, Belvin; Kite, Kim A.; Petter, Jeffrey K.; Taylor, Brendan F.

    2012-07-03

    A power system for connecting a variable voltage power source, such as a power controller, with a plurality of energy storage devices, at least two of which have a different initial voltage than the output voltage of the variable voltage power source. The power system includes a controller that increases the output voltage of the variable voltage power source. When such output voltage is substantially equal to the initial voltage of a first one of the energy storage devices, the controller sends a signal that causes a switch to connect the variable voltage power source with the first one of the energy storage devices. The controller then causes the output voltage of the variable voltage power source to continue increasing. When the output voltage is substantially equal to the initial voltage of a second one of the energy storage devices, the controller sends a signal that causes a switch to connect the variable voltage power source with the second one of the energy storage devices.

  8. Generic safety documentation model

    SciTech Connect (OSTI)

    Mahn, J.A.

    1994-04-01

    This document is intended to be a resource for preparers of safety documentation for Sandia National Laboratories, New Mexico facilities. It provides standardized discussions of some topics that are generic to most, if not all, Sandia/NM facilities safety documents. The material provides a ``core`` upon which to develop facility-specific safety documentation. The use of the information in this document will reduce the cost of safety document preparation and improve consistency of information.

  9. Electrical safety guidelines

    SciTech Connect (OSTI)

    Not Available

    1993-09-01

    The Electrical Safety Guidelines prescribes the DOE safety standards for DOE field offices or facilities involved in the use of electrical energy. It has been prepared to provide a uniform set of electrical safety standards and guidance for DOE installations in order to affect a reduction or elimination of risks associated with the use of electrical energy. The objectives of these guidelines are to enhance electrical safety awareness and mitigate electrical hazards to employees, the public, and the environment.

  10. Nuclear Explosive Safety Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-04-14

    This Manual provides supplemental details to support the requirements of DOE O 452.2D, Nuclear Explosive Safety.

  11. DOE handbook electrical safety

    SciTech Connect (OSTI)

    1998-01-01

    Electrical Safety Handbook presents the Department of Energy (DOE) safety standards for DOE field offices or facilities involved in the use of electrical energy. It has been prepared to provide a uniform set of electrical safety guidance and information for DOE installations to effect a reduction or elimination of risks associated with the use of electrical energy. The objectives of this handbook are to enhance electrical safety awareness and mitigate electrical hazards to employees, the public, and the environment.

  12. Annual Fire Safety Report

    E-Print Network [OSTI]

    Al Faruque, Mohammad Abdullah

    1 2014 Annual Fire Safety Report University of California Campus Fire Marshals HIGHER EDUCATION to the Fire Safety in Student Housing Buildings of current or perspective students and employees be reported INTRODUCTION Fire Safety is an essential tool in protecting a campus community from injuries, deaths, business

  13. Annual Fire Safety Report

    E-Print Network [OSTI]

    2014 Annual Fire Safety Report University of California, Santa Barbara Fire Marshals) requires that certain information pertaining to the Fire Safety in Student Housing Buildings of current. #12; 2 9/19/14 HIGHER EDUCATION OPPORTUNITY ACT INTRODUCTION Fire Safety is an essential tool

  14. Fire Safety January 2011

    E-Print Network [OSTI]

    Lennard, William N.

    1 Fire Safety PROCEDURES January 2011 firesafety@uwo.ca Campus Phones ­ EMERGENCY ­ Dial 911 Fire Safety Service is the focal point for the coordinated administration of the University Fire Safety program and plans, and is the University's representative in contacts dealing with all aspects of Fire

  15. Residence Hall Fire Safety

    E-Print Network [OSTI]

    Residence Hall Fire Safety Information Department of Public Safety Residential Life & Housing #12;Part 1 ! Building Information Pursuant to New York City Fire Code and Local Law 10, this Fire Safety, as well as what to do in a fire emergency. Building Construction Residential buildings built before 1968

  16. SYSTEM SAFETY PROGRESS REPORT,

    E-Print Network [OSTI]

    Rathbun, Julie A.

    . The Lead Assembly contains between 150 and 200 mg of HNS and, therefore, will require manufacturing explosive potential. The additional safety effort required has been defined to the LSP Experiment Manager will be tested for manufacturing safety. System Safety will participate in the test which will consist 26 July

  17. Health, Safety & Wellbeing Policy

    E-Print Network [OSTI]

    Mottram, Nigel

    Health, Safety & Wellbeing Policy Statement The University of Glasgow is one of the four oldest our very best to minimise the risk to the health, safety and wellbeing of staff, students, researchers resource and our students as our valued customers and partners. We acknowledge health and safety as a core

  18. OCCUPATIONAL SAFETY and HEALTH

    E-Print Network [OSTI]

    MARYLAND OCCUPATIONAL SAFETY and HEALTH ACT safety and health protection on the job STATE OCCUPATIONAL SAFETY AND HEALTH STANDARDS, AND OTHER APPLICABLE REGULATIONS MAY BE OBTAINED FROM and Health Administration, The Curtis Center, Suite 740 West, 170 S. Independence Mall West, Philadelphia, PA

  19. Storage battery systems analysis

    SciTech Connect (OSTI)

    Murphy, K.D.

    1982-01-01

    Storage Battery Systems Analysis supports the battery Exploratory Technology Development and Testing Project with technical and economic analysis of battery systems in various end-use applications. Computer modeling and simulation techniques are used in the analyses. Analysis objectives are achieved through both in-house efforts and outside contracts. In-house studies during FY82 included a study of the relationship between storage battery system reliability and cost, through cost-of-investment and cost-of-service interruption inputs; revision and update of the SOLSTOR computer code in standard FORTRAN 77 form; parametric studies of residential stand-alone photovoltaic systems using the SOLSTOR code; simulation of wind turbine collector/storage battery systems for the community of Kalaupapa, Molokai, Hawaii.

  20. Storage monitoring systems for the year 2000

    SciTech Connect (OSTI)

    Nilsen, C.; Pollock, R.

    1997-12-31

    In September 1993, President Clinton stated the US would ensure that its fissile material meet the highest standards of safety, security, and international accountability. Frequent human inspection of the material could be used to ensure these standards. However, it may be more effective and less expensive to replace these manual inspections with virtual inspections via remote monitoring technologies. To prepare for this future, Sandia National Laboratories has developed several monitoring systems, including the Modular Integrated Monitoring System (MIMS) and Project Straight-Line. The purpose of this paper is to describe a Sandia effort that merges remote monitoring technologies into a comprehensive storage monitoring system that will meet the near-term as well as the long-term requirements for these types of systems. Topics discussed include: motivations for storage monitoring systems to include remote monitoring; an overview of the needs and challenges of providing a storage monitoring system for the year 2000; an overview of how the MIMS and Straight-Line can be enhanced so that together they create an integrated and synergistic information system by the end of 1997; and suggested milestones for 1998 and 1999 to assure steady progress in preparing for the needs of 2000.

  1. Safety Criteria and Safety Lifecycle for Artificial Neural Networks

    E-Print Network [OSTI]

    Kelly, Tim

    Safety Criteria and Safety Lifecycle for Artificial Neural Networks Zeshan Kurd, Tim Kelly and Jim performance based techniques that aim to improve the safety of neural networks for safety critical for safety assurance. As a result, neural networks are typically restricted to advisory roles in safety

  2. September 2013 Laboratory Safety Manual Section 7 -Safety Training

    E-Print Network [OSTI]

    Wilcock, William

    September 2013 Laboratory Safety Manual Section 7 - Safety Training UW Environmental Health and Safety Page 7-1 Section 7 - Safety Training Contents A. SAFETY TRAINING REQUIREMENTS ......................................................7-1 B. EH&S SAFETY TRAINING AND RECORDS ..............................................7-1 C

  3. Spent-fuel-storage alternatives

    SciTech Connect (OSTI)

    Not Available

    1980-01-01

    The Spent Fuel Storage Alternatives meeting was a technical forum in which 37 experts from 12 states discussed storage alternatives that are available or are under development. The subject matter was divided into the following five areas: techniques for increasing fuel storage density; dry storage of spent fuel; fuel characterization and conditioning; fuel storage operating experience; and storage and transport economics. Nineteen of the 21 papers which were presented at this meeting are included in this Proceedings. These have been abstracted and indexed. (ATT)

  4. Neptunium storage at Hanford

    SciTech Connect (OSTI)

    Alderman, C.J.; Shiraga, S.S.; Schwartz, R.A.; Smith, R.J.; Wootan, D.W.

    1993-06-01

    A decision must be made regarding whether the United State`s stockpile of neptunium should be discarded into the waste stream or kept for the production of Pu-238. Although the cost of long term storage is not inconsequential, to dispose of the material means the closing of our option to maintain control over our Pu-238 stockpile. Within the Fuels and Materials Examination Facility at Hanford there exists a remotely operated facility that can be converted for neptunium storage. This paper describes the facility and the anticipated handling requirements.

  5. Storage tracking refinery trends

    SciTech Connect (OSTI)

    Saunders, J.

    1996-05-01

    Regulatory and marketplace shakeups have made the refining and petrochemical industries highly competitive. The fight to survive has forced refinery consolidations, upgrades and companywide restructurings. Bulk liquid storage terminals are following suit. This should generate a flurry of engineering and construction by the latter part of 1997. A growing petrochemical industry translates into rising storage needs. Industry followers forecasted flat petrochemical growth in 1996 due to excessive expansion in 1994 and 1995. But expansion is expected to continue throughout this year on the strength of several products.

  6. Carbon Storage Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B LReports from thecarbon captureCarbon Storage AtlasStorage

  7. Storage Ring Parameters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effect Photovoltaics -7541C.3X-rays3 Prepared by:'!TransportStorage RingStorage Ring

  8. Storage | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterFinancialInvestingRenewable EnergyStaff andState andStorage Storage

  9. Mescalero Apache Tribe Monitored Retrievable Storage (MRS)

    SciTech Connect (OSTI)

    Peso, F.

    1992-03-13

    The Nuclear Waste Policy Act of 1982, as amended, authorizes the siting, construction and operation of a Monitored Retrievable Storage (MRS) facility. The MRS is intended to be used for the temporary storage of spent nuclear fuel from the nation's nuclear power plants beginning as early as 1998. Pursuant to the Nuclear Waste Policy Act, the Office of the Nuclear Waste Negotiator was created. On October 7, 1991, the Nuclear Waste Negotiator invited the governors of states and the Presidents of Indian tribes to apply for government grants in order to conduct a study to assess under what conditions, if any, they might consider hosting an MRS facility. Pursuant to this invitation, on October 11, 1991 the Mescalero Apache Indian Tribe of Mescalero, NM applied for a grant to conduct a phased, preliminary study of the safety, technical, political, environmental, social and economic feasibility of hosting an MRS. The preliminary study included: (1) An investigative education process to facilitate the Tribe's comprehensive understanding of the safety, environmental, technical, social, political, and economic aspects of hosting an MRS, and; (2) The development of an extensive program that is enabling the Tribe, in collaboration with the Negotiator, to reach an informed and carefully researched decision regarding the conditions, (if any), under which further pursuit of the MRS would be considered. The Phase 1 grant application enabled the Tribe to begin the initial activities necessary to determine whether further consideration is warranted for hosting the MRS facility. The Tribe intends to pursue continued study of the MRS in order to meet the following objectives: (1) Continuing the education process towards a comprehensive understanding of the safety, environmental, technical, social and economic aspects of the MRS; (2) Conducting an effective public participation and information program; (3) Participating in MRS meetings.

  10. AQUIFER THERMAL ENERGY STORAGE-A SURVEY

    E-Print Network [OSTI]

    Tsang, Chin Fu

    2012-01-01

    1978, High temperature underground thermal energy storage,in Proceedings, Thermal Energy Storage in Aquifers Workshop:High temperature underground thermal energy storage, in ATES

  11. Distributed Generation with Heat Recovery and Storage

    E-Print Network [OSTI]

    Siddiqui, Afzal S.; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

    2008-01-01

    tiles for thermal energy storage,” working paper, Colorado1991). Wallboard with latent heat storage for passive solarR. (2000). Thermal energy storage for space cooling, Pacific

  12. Carbon Nanotube Films for Energy Storage Applications

    E-Print Network [OSTI]

    Kozinda, Alina

    2014-01-01

    Silicon Nanotubes and their Application to Energy Storage,&as an energy storage application of the amorphous-siliconof silicon nanowires hinders the energy storage capability [

  13. THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01

    Survey of Thermal Energy Storage in Aquifers Coupled withGeneration and Energy Storage," presented at Frontiers ofStudy of Underground Energy Storage Using High-Pressure,

  14. Carbon-based Materials for Energy Storage

    E-Print Network [OSTI]

    Rice, Lynn Margaret

    2012-01-01

    based Materials for Energy Storage A dissertation submittedbased Materials for Energy storage by Lynn Margaret Ricewind are intermittent. Energy storage systems, then, that

  15. Water Heaters (Storage Oil) | Department of Energy

    Energy Savers [EERE]

    Oil) Water Heaters (Storage Oil) Water Heater, Storage Oil - v1.0.xlsx More Documents & Publications Water Heaters (Tankless Electric) Water Heaters (Storage Electric)...

  16. Electric Storage in California's Commercial Buildings

    E-Print Network [OSTI]

    Stadler, Michael

    2014-01-01

    Effect of Heat and Electricity Storage and Reliability onNM, USA. [37] Electricity Storage Association, Morgan Hill,dimensionless d. electricity storage loss factor for the EV

  17. Storage Viability and Optimization Web Service

    E-Print Network [OSTI]

    Stadler, Michael

    2010-01-01

    Effect of Heat and Electricity Storage and Reliability onthe final report for the Electricity Storage Viability andof utility electricity purchase, on-site generation, storage

  18. Hydrogen Storage Research and Development Activities | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Storage Research and Development Activities Hydrogen Storage Research and Development Activities DOE's hydrogen storage research and development (R&D) activities are aimed...

  19. MASS STORAGE SYSTEMS AND LARGE RESEARCH LIBRARIES

    E-Print Network [OSTI]

    Baker, James A.

    2013-01-01

    Symposium on Mass Storage Systems, Denver, CO, April15-17, 1980 MASS STORAGE SYSTEMS AND LARGE RESEARCHSymposium on Mass Storage Systems, Denver, Colorado, April

  20. THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01

    D. Todd, (1973). Heat storage Systems in the L - Temperaturements for Energy Storage Systems, Los Alamos Scientificdirector for Physi- cal Storage Systems. Under Jim are three

  1. AQUIFER THERMAL ENERGY STORAGE-A SURVEY

    E-Print Network [OSTI]

    Tsang, Chin Fu

    2012-01-01

    the prob- lem of seasonal storage of thermal energy (Matheyto study seasonal storage of thermal energy: winter storagewithin the Seasonal Thermal Energy Storage Program managed

  2. Nanostructured Materials for Energy Generation and Storage

    E-Print Network [OSTI]

    Khan, Javed Miller

    2012-01-01

    for Electrochemical Energy Storage Nanostructured Electrodesof the batteries and their energy storage efficiency. viifor Nanostructure-Based Energy Storage and Generation Tech-

  3. AQUIFER THERMAL ENERGY STORAGE-A SURVEY

    E-Print Network [OSTI]

    Tsang, Chin Fu

    2012-01-01

    High temperature underground thermal energy storage, inProceedings, Thermal Energy Storage in Aquifers Workshop:underground thermal energy storage, in ATES newsletter:

  4. THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01

    Survey of Thermal Energy Storage in Aquifers Coupled withLow Temperature Thermal Energy Storage Program of Oak Ridgefor Seasonal Thermal Energy Storage: An Overview of the DOE-

  5. Pest Management For Grain Storage and Fumigation

    E-Print Network [OSTI]

    Dyer, Bill

    Pest Management For Grain Storage and Fumigation Seed Treatment -Pest Control- Grain Storage & Seed MANAGEMENT FOR GRAIN STORAGE AND FUMIGATION Introduction .................................................................................................................................................................. 12 Resistance Management Issues

  6. EIA - Natural Gas Storage Data & Analysis

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Storage Weekly Working Gas in Underground Storage U.S. Natural gas inventories held in underground storage facilities by East, West, and Producing regions (weekly). Underground...

  7. Distributed Generation with Heat Recovery and Storage

    E-Print Network [OSTI]

    Siddiqui, Afzal S.; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

    2008-01-01

    Distributed Generation with Heat Recovery and Storage AfzalGeneration with Heat Recovery and Storage Manuscript Numberhere in order to focus on heat recovery and storage) utility

  8. NV Energy Electricity Storage Valuation

    SciTech Connect (OSTI)

    Ellison, James F.; Bhatnagar, Dhruv; Samaan, Nader A.; Jin, Chunlian

    2013-06-30

    This study examines how grid-level electricity storage may benet the operations of NV Energy in 2020, and assesses whether those benets justify the cost of the storage system. In order to determine how grid-level storage might impact NV Energy, an hourly production cost model of the Nevada Balancing Authority (\\BA") as projected for 2020 was built and used for the study. Storage facilities were found to add value primarily by providing reserve. Value provided by the provision of time-of-day shifting was found to be limited. If regulating reserve from storage is valued the same as that from slower ramp rate resources, then it appears that a reciprocating engine generator could provide additional capacity at a lower cost than a pumped storage hydro plant or large storage capacity battery system. In addition, a 25-MW battery storage facility would need to cost $650/kW or less in order to produce a positive Net Present Value (NPV). However, if regulating reserve provided by storage is considered to be more useful to the grid than that from slower ramp rate resources, then a grid-level storage facility may have a positive NPV even at today's storage system capital costs. The value of having storage provide services beyond reserve and time-of-day shifting was not assessed in this study, and was therefore not included in storage cost-benefit calculations.

  9. Storage and Infrastructure

    E-Print Network [OSTI]

    Madey, Gregory R.

    ;Cheaper to Collect RFIDs Sensor Nets The WWW, Screen Scraping, Google Searches Life in CyberSpace - Log Files, Digital Traces, MetaData Faster Computers ==> More Data to Study #12;Data Driven Discovery Organizations, Cyberinfrastructure #12;Research Opportunities & Challenges Sensors, Sensor Networks Storage

  10. Chit-based Remote Storage

    E-Print Network [OSTI]

    Paluska, Justin Mazzola

    We propose a model for reliable remote storage founded on contract law. Consumers submit their bits to storage providers in exchange for a chit. A chit is a cryptographically secure, verifiable contract between a consumer ...

  11. Hydrogen Storage Technical Team Roadmap

    SciTech Connect (OSTI)

    2013-06-01

    The mission of the Hydrogen Storage Technical Team is to accelerate research and innovation that will lead to commercially viable hydrogen-storage technologies that meet the U.S. DRIVE Partnership goals.

  12. Status of Hydrogen Storage Technologies

    Office of Energy Efficiency and Renewable Energy (EERE)

    The current status in terms of weight, volume, and cost of various hydrogen storage technologies is shown below. These values are estimates from storage system developers and the R&D community...

  13. Compressed natural gas storage optimization for natural gas vehicles. Final report, August 1993-December 1996

    SciTech Connect (OSTI)

    Richards, M.E.; Blazek, C.F.; Webster, C.; Wong, J.; Gambone, L.

    1996-12-01

    A major obstacle confronting the widespread acceptance of natural gas vehicles (NGV) is their substantial cost premium over conventionally fueled vehicles. Currently, as much as 70 percent of the cost premium can be related to on-board storage costs. Market growth is dependent on making NGVs more affordable and storage costs are the primary element. This report identifies and assesses the market potential of compressed natural gas storage technologies that will reduce the cost of on-board storage into the range of $0.35 to $0.50 per standard cubic foot of gas while also reducing weight. Based on weight, cost, and safety evaluations, a number of cylinder optimization options were identified with the most potential to reduce cylinder cost and weight while maintaining a high level of safety. These options included high strength steel cylinders, high strength aluminum cylinders, all-steel cylinders from tube stock, and low-cost carbon fiber.

  14. Silo Storage Preconceptual Design

    SciTech Connect (OSTI)

    Stephanie L. Austad; Patrick W. Bragassa; Kevin M Croft; David S Ferguson; Scott C Gladson; Annette L Shafer; John H Weathersby

    2012-09-01

    The National Nuclear Security Administration (NNSA) has a need to develop and field a low-cost option for the long-term storage of a variety of radiological material. The storage option’s primary requirement is to provide both environmental and physical protection of the materials. Design criteria for this effort require a low initial cost and minimum maintenance over a 50-year design life. In 1999, Argonne National Laboratory-West was tasked with developing a dry silo storage option for the BN-350 Spent Fuel in Aktau Kazakhstan. Argon’s design consisted of a carbon steel cylinder approximately 16 ft long, 18 in. outside diameter and 0.375 in. wall thickness. The carbon steel silo was protected from corrosion by a duplex coating system consisting of zinc and epoxy. Although the study indicated that the duplex coating design would provide a design life well in excess of the required 50 years, the review board was concerned because of the novelty of the design and the lack of historical use. In 2012, NNSA tasked Idaho National Laboratory (INL) with reinvestigating the silo storage concept and development of alternative corrosion protection strategies. The 2012 study, “Silo Storage Concepts, Cathodic Protection Options Study” (INL/EST-12-26627), concludes that the option which best fits the design criterion is a passive cathotic protection scheme, consisting of a carbon steel tube coated with zinc or a zinc-aluminum alloy encapsulated in either concrete or a cement grout. The hot dipped zinc coating option was considered most efficient, but the flame-sprayed option could be used if a thicker zinc coating was determined to be necessary.

  15. Webinar: Hydrogen Storage Materials Requirements

    Broader source: Energy.gov [DOE]

    Video recording and text version of the webinar titled, Hydrogen Storage Materials Requirements, originally presented on June 25, 2013.

  16. The Power of Energy Storage

    E-Print Network [OSTI]

    Sadoulet, Elisabeth

    The Power of Energy Storage How to Increase Deployment in California to Reduce Greenhouse Gas;1Berkeley Law \\ UCLA Law The Power of Energy Storage: How to Increase Deployment in California to Reduce Greenhouse Gas Emissions Executive Summary: Expanding Energy Storage in California Sunshine and wind, even

  17. HIERARCHICAL STORAGE SYSTEMS FOR INTERACTIVE

    E-Print Network [OSTI]

    Chan, Shueng-Han Gary

    HIERARCHICAL STORAGE SYSTEMS FOR INTERACTIVE VIDEO­ON­DEMAND Shueng­Han Gary Chan and Fouad A; Hierarchical Storage Systems for Interactive Video­On­Demand Shueng­Han Gary Chan and Fouad A. Tobagi Technical­9040 pubs@shasta.stanford.edu Abstract On­demand video servers based on hierarchical storage systems

  18. Electrical Energy Storage: Stan Whittingham

    E-Print Network [OSTI]

    Suzuki, Masatsugu

    1 p. 1 Electrical Energy Storage: Stan Whittingham Report of DOE workshop, April 2007 A Cleaner and Energy Independent America through Chemistry Chemical Storage: Batteries, today and tomorrow http needed in Energy Storage Lithium Economy not Hydrogen Economy #12;9 p. 9 Batteries are key to an economy

  19. Energy Storage: Current landscape for alternative energy

    E-Print Network [OSTI]

    Energy Storage: Current landscape for alternative energy storage technologies and what the future may hold for multi-scale storage applications Presented by: Dave Lucero, Director Alternative Energy · Industry initiatives · Technology · Energy Storage Market · EaglePicher initiatives · Summary #12

  20. Project Profile: Carbon Dioxide Shuttling Thermochemical Storage...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project Profile: Carbon Dioxide Shuttling Thermochemical Storage Using Strontium Carbonate Project Profile: Carbon Dioxide Shuttling Thermochemical Storage Using Strontium...

  1. Fact Sheet: Energy Storage Technology Advancement Partnership...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Advancement Partnership (October 2012) Fact Sheet: Energy Storage Technology Advancement Partnership (October 2012) The Energy Storage Technology Advancement Partnership...

  2. Combinatorial Approaches for Hydrogen Storage Materials (presentation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Approaches for Hydrogen Storage Materials (presentation) Combinatorial Approaches for Hydrogen Storage Materials (presentation) Presentation on NIST Combinatorial Methods at the...

  3. Thermal reactor safety

    SciTech Connect (OSTI)

    Not Available

    1980-06-01

    Information is presented concerning new trends in licensing; seismic considerations and system structural behavior; TMI-2 risk assessment and thermal hydraulics; statistical assessment of potential accidents and verification of computational methods; issues with respect to improved safety; human factors in nuclear power plant operation; diagnostics and activities in support of recovery; LOCA transient analysis; unresolved safety issues and other safety considerations; and fission product transport.

  4. Hydrogen Technologies Safety Guide

    SciTech Connect (OSTI)

    Rivkin, C.; Burgess, R.; Buttner, W.

    2015-01-01

    The purpose of this guide is to provide basic background information on hydrogen technologies. It is intended to provide project developers, code officials, and other interested parties the background information to be able to put hydrogen safety in context. For example, code officials reviewing permit applications for hydrogen projects will get an understanding of the industrial history of hydrogen, basic safety concerns, and safety requirements.

  5. TWRS safety management plan

    SciTech Connect (OSTI)

    Popielarczyk, R.S., Westinghouse Hanford

    1996-08-01

    The Tank Waste Remediation System (TWRS) Safety Management Program Plan for development, implementation and maintenance of the tank farm authorization basis is described. The plan includes activities and procedures for: (a) Updating the current Interim Safety Basis, (b) Development,implementation and maintenance of a Basis for Interim Operations, (c) Development, implementation and maintenance of the Final Safety Analyses Report, (d) Development and implementation of a TWRS information Management System for monitoring the authorization basis.

  6. DOE Explosives Safety Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1996-03-29

    This Manual describes DOE's explosives safety requirements applicable to operations involving the development, testing, handling, and processing of explosives or assemblies containing explosives.

  7. Coiled Tubing Safety Manual

    SciTech Connect (OSTI)

    Crow, W.

    1999-04-06

    This document addresses safety concerns regarding the use of coiled tubing as it pertains to the preservation of personnel, environment and the wellbore.

  8. Aviation Management and Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-06-15

    To establish a policy framework that will ensure safety, efficiency and effectiveness of government or contractor aviation operations. Supersedes DOE O 440.2B.

  9. Aviation Management and Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-06-15

    To establish a policy framework that will ensure safety, efficiency and effectiveness of government or contractor aviation operations. Cancels DOE O 440.2B.

  10. 1 Food Safety Policy July 2010 Food Safety Policy

    E-Print Network [OSTI]

    Sussex, University of

    1 Food Safety Policy July 2010 Food Safety Policy Food Safety Policy 19.7.2010 19.7.2014 #12;2 Food 5. Organisational Responsibilities 6. The Legal References 7. Glossary of Terms #12;3 Food Safety Policy July 2010 Food Safety Policy 1. Introduction 1.1 The University has a duty to assess the risks

  11. Nanoscale data storage

    E-Print Network [OSTI]

    J. C. Li

    2007-01-29

    The object of this article is to review the development of ultrahigh-density, nanoscale data storage, i.e., nanostorage. As a fundamentally new type of storage system, the recording mechanisms of nanostorage may be completely different to those of the traditional devices. Currently, two types of molecules are being studied for potential application in nanostorage. One is molecular electronic elements including molecular wires, rectifiers, switches, and transistors. The other approach employs nanostructured materials such as nanotubes, nanowires, and nanoparticles. The challenges for nanostorage are not only the materials, ultrahigh data-densities, fabrication-costs, device operating temperatures and large-scale integration, but also the development of the physical principles and models. There are already some breakthroughs obtained, but it is still unclear what kind of nanostorage systems can ultimately replace the current silicon based transistors. A promising candidate may be a molecular-nanostructure hybrid device with sub-5 nm dimensions.

  12. Superconducting magnetic energy storage

    SciTech Connect (OSTI)

    Hassenzahl, W.

    1988-08-01

    Recent programmatic developments in Superconducting Magnetic Energy Storage (SMES) have prompted renewed and widespread interest in this field. In mid 1987 the Defense Nuclear Agency, acting for the Strategic Defense Initiative Office, issued a request for proposals for the design and construction of SMES Engineering Test Model (ETM). Two teams, one led by Bechtel and the other by Ebasco, are now engaged in the first phase of the development of a 10 to 20 MWhr ETM. This report presents the rationale for energy storage on utility systems, describes the general technology of SMES, and explains the chronological development of the technology. The present ETM program is outlined; details of the two projects for ETM development are described in other papers in these proceedings. The impact of high T/sub c/ materials on SMES is discussed. 69 refs., 3 figs., 3 tabs.

  13. Waste encapsulation storage facility (WESF) standards/requirements identification document (S/RIDS)

    SciTech Connect (OSTI)

    Maddox, B.S., Westinghouse Hanford

    1996-07-29

    This Standards/Requirements Identification Document (S/RID) sets forth the Environmental Safety and Health (ES{ampersand}H) standards/requirements for the Waste Encapsulation Storage Facility (WESF). This S/RID is applicable to the appropriate life cycle phases of design, construction, operation, and preparation for decommissioning. These standards/requirements are adequate to ensure the protection of the health and safety of workers, the public, and the environment.

  14. Uncertainties in the effects of burnup and their impact on criticality safety licensing criteria

    SciTech Connect (OSTI)

    Carlson, R.W.; Fisher, L.E.

    1990-07-13

    Current criteria for criticality safety for spent fuel shipping and storage casks are conservative because no credit is permitted for the effects of burnup of the fuel inside the cask. Cask designs that will transport and store large numbers of fuel assemblies (20 or more) must devote a substantial part of their payload to criticality control measures if they are to meet this criteria. The Department of Energy is developing the data necessary to support safety analyses that incorporate the effects of burnup for the next generation of spent fuel shipping casks. The efforts described here are devoted to the development of acceptance criteria that will be the basis for accepting safety analyses. Preliminary estimates of the uncertainties of the effects of burnup have been developed to provide a basis for the consideration of critically safety criteria. The criticality safety margins in a spent fuel shipping or storage cask are dominated by the portions of a fuel assembly that are in low power regions of a reactor core, and the reactor operating conditions are very different from spent fuel storage or transport cask conditions. Consequently, the experience that has been gathered during years of reactor operation does not apply directly to the prediction of criticality safety margins for spent fuel shipping or storage casks. The preliminary estimates of the uncertainties presented in this paper must be refined by both analytical and empirical studies that address both the magnitude of the uncertainties and their interdependence. 9 refs., 5 figs.

  15. Gas Generation Test Support for Transportation and Storage of Plutonium Residue Materials - Part 1: Rocky Flats Sand, Slag, and Crucible Residues

    SciTech Connect (OSTI)

    Livingston, R.R.

    1999-08-24

    The purpose of this report is to present experimental results that can be used to establish one segment of the safety basis for transportation and storage of plutonium residue materials.

  16. Safety issues relating to the liquefied petroleum gas, compressed natural gas and liquefied natural gas

    SciTech Connect (OSTI)

    Petru, T.D.

    1995-12-31

    The Railroad Commission of Texas, LP-Gas Division, is statutorily responsible for the safety aspects of liquefied petroleum gas (LPG) most commonly known as LP-gas or propane, compressed natural gas (CNG) and liquefied natural gas (LNG). This presentation will address the safety issues relating to their use as alternative fuels. The paper discusses the safety of pressure vessels used for storage of the fuels at refueling facilities and the containers mounted in vehicles. Other topics include the lack of odorants in LNG, the use of protective clothing when handling cryogenic fluids, and where to obtain a copy of the safety regulations for handling these three fuels.

  17. Maui energy storage study.

    SciTech Connect (OSTI)

    Ellison, James; Bhatnagar, Dhruv; Karlson, Benjamin

    2012-12-01

    This report investigates strategies to mitigate anticipated wind energy curtailment on Maui, with a focus on grid-level energy storage technology. The study team developed an hourly production cost model of the Maui Electric Company (MECO) system, with an expected 72 MW of wind generation and 15 MW of distributed photovoltaic (PV) generation in 2015, and used this model to investigate strategies that mitigate wind energy curtailment. It was found that storage projects can reduce both wind curtailment and the annual cost of producing power, and can do so in a cost-effective manner. Most of the savings achieved in these scenarios are not from replacing constant-cost diesel-fired generation with wind generation. Instead, the savings are achieved by the more efficient operation of the conventional units of the system. Using additional storage for spinning reserve enables the system to decrease the amount of spinning reserve provided by single-cycle units. This decreases the amount of generation from these units, which are often operated at their least efficient point (at minimum load). At the same time, the amount of spinning reserve from the efficient combined-cycle units also decreases, allowing these units to operate at higher, more efficient levels.

  18. Lab Safety/Hazardous Waste Training Persons (including faculty, staff and students) working in a lab and work-

    E-Print Network [OSTI]

    Tennessee, University of

    Lab Safety/Hazardous Waste Training Persons (including faculty, staff and students) working in a lab and work- ing with hazardous materials should receive annual training that address- es lab safety, personal protective equipment, storage, use, and disposal of hazardous materials, emergency procedures

  19. Storage of H.sub.2 by absorption and/or mixture within a fluid medium

    DOE Patents [OSTI]

    Berry, Gene David; Aceves, Salvador Martin

    2007-03-20

    For the first time, a hydrogen storage method, apparatus and system having a fluid mixture is provided. At predetermined pressures and/or temperatures within a contained substantially fixed volume, the fluid mixture can store a high density of hydrogen molecules, wherein a predetermined phase of the fluid mixture is capable of being withdrawn from the substantially fixed volume for use as a vehicle fuel or energy storage having reduced and/or eliminated evaporative losses, especially where storage weight, vessel cost, vessel shape, safety, and energy efficiency are beneficial.

  20. Lithium Ion Cell Development for Photovoltaic Energy Storage Applications

    SciTech Connect (OSTI)

    Susan Babinec

    2012-02-08

    The overall project goal is to reduce the cost of home and neighborhood photovoltaic storage systems by reducing the single largest cost component â?? the energy storage cells. Solar power is accepted as an environmentally advantaged renewable power source. Its deployment in small communities and integrated into the grid, requires a safe, reliable and low cost energy storage system. The incumbent technology of lead acid cells is large, toxic to produce and dispose of, and offer limited life even with significant maintenance. The ideal PV storage battery would have the safety and low cost of lead acid but the performance of lithium ion chemistry. Present lithium ion batteries have the desired performance but cost and safety remain the two key implementation barriers. The purpose of this project is to develop new lithium ion cells that can meet PVES cost and safety requirements using A123Systems phosphate-based cathode chemistries in commercial PHEV cell formats. The cost target is a cell design for a home or neighborhood scale at <$25/kWh. This DOE program is the continuation and expansion of an initial MPSC (Michigan Public Service Commission) program towards this goal. This program further pushes the initial limits of some aspects of the original program â?? even lower cost anode and cathode actives implemented at even higher electrode loadings, and as well explores new avenues of cost reduction via new materials â?? specifically our higher voltage cathode. The challenge in our materials development is to achieve parity in the performance metrics of cycle life and high temperature storage, and to produce quality materials at the production scale. Our new cathode material, M1X, has a higher voltage and so requires electrolyte reformulation to meet the high temperature storage requirements. The challenge of thick electrode systems is to maintain adequate adhesion and cycle life. The composite separator has been proven in systems having standard loading electrodes; the challenge with this material will be to maintain proven performance when this composite is coated onto a thicker electrode; as well the high temperature storage must meet application requirements. One continuing program challenge was the lack of specific performance variables for this PV application and so the low power requirements of PHEV/EV transportation markets were again used.

  1. Hanford Site Waste Storage Tank Information Notebook

    SciTech Connect (OSTI)

    Husa, E.I.; Raymond, R.E.; Welty, R.K.; Griffith, S.M.; Hanlon, B.M.; Rios, R.R.; Vermeulen, N.J.

    1993-07-01

    This report provides summary data on the radioactive waste stored in underground tanks in the 200 East and West Areas at the Hanford Site. The summary data covers each of the existing 161 Series 100 underground waste storage tanks (500,000 gallons and larger). It also contains information on the design and construction of these tanks. The information in this report is derived from existing reports that document the status of the tanks and their materials. This report also contains interior, surface photographs of each of the 54 Watch List tanks, which are those tanks identified as Priority I Hanford Site Tank Farm Safety Issues in accordance with Public Law 101-510, Section 3137*.

  2. Safety of Accelerator Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2004-07-23

    To establish accelerator-specific safety requirements which, when supplemented by other applicable safety and health requirements, will serve to prevent injuries and illnesses associated with Department of Energy (DOE) or National Nuclear Security Administration (NNSA) accelerator operations. Cancels DOE O 420.2A. Certified 5-13-08. Canceled by DOE O 420.2C.

  3. Integrated Safety Management Policy

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-04-25

    The policy establishes DOE's expectation for safety, including integrated safety management that will enable the Department’s mission goals to be accomplished efficiently while ensuring safe operations at all departmental facilities and activities. Supersedes DOE P 450.4, DOE P 411.1, DOE P 441.1, DOE P 450.2A, and DOE P 450.7

  4. Safety of Accelerator Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-07-21

    The order defines accelerators and establishes accelerator specific safety requirements and approval authorities which, when supplemented by other applicable safety and health requirements, promote safe operations to ensure protection of workers, the public, and the environment. Supersedes DOE O 420.2B.

  5. Safety of Accelerator Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-01-08

    To establish accelerator-specific safety requirements which, when supplemented by other applicable safety and health requirements, will serve to prevent injuries and illnesses associated with Department of Energy (DOE) or National Nuclear Security Administration (NNSA) accelerator operations. Cancels DOE O 420.2. Canceled by DOE O 420.2B.

  6. Sandia Energy - Risk and Safety Assessment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Risk and Safety Assessment Home Stationary Power Nuclear Fuel Cycle Nuclear Energy Safety Technologies Risk and Safety Assessment Risk and Safety AssessmentTara...

  7. Office of Nuclear Facility Safety Programs

    Broader source: Energy.gov [DOE]

    The Office of Nuclear Facility Safety Programs establishes nuclear safety requirements related to safety management programs that are essential to the safety of DOE nuclear facilities.

  8. Standardized Testing Program for Solid-State Hydrogen Storage Technologies

    SciTech Connect (OSTI)

    Miller, Michael A.; Page, Richard A.

    2012-07-30

    In the US and abroad, major research and development initiatives toward establishing a hydrogen-based transportation infrastructure have been undertaken, encompassing key technological challenges in hydrogen production and delivery, fuel cells, and hydrogen storage. However, the principal obstacle to the implementation of a safe, low-pressure hydrogen fueling system for fuel-cell powered vehicles remains storage under conditions of near-ambient temperature and moderate pressure. The choices for viable hydrogen storage systems at the present time are limited to compressed gas storage tanks, cryogenic liquid hydrogen storage tanks, chemical hydrogen storage, and hydrogen absorbed or adsorbed in a solid-state material (a.k.a. solid-state storage). Solid-state hydrogen storage may offer overriding benefits in terms of storage capacity, kinetics and, most importantly, safety.The fervor among the research community to develop novel storage materials had, in many instances, the unfortunate consequence of making erroneous, if not wild, claims on the reported storage capacities achievable in such materials, to the extent that the potential viability of emerging materials was difficult to assess. This problem led to a widespread need to establish a capability to accurately and independently assess the storage behavior of a wide array of different classes of solid-state storage materials, employing qualified methods, thus allowing development efforts to focus on those materials that showed the most promise. However, standard guidelines, dedicated facilities, or certification programs specifically aimed at testing and assessing the performance, safety, and life cycle of these emergent materials had not been established. To address the stated need, the Testing Laboratory for Solid-State Hydrogen Storage Technologies was commissioned as a national-level focal point for evaluating new materials emerging from the designated Materials Centers of Excellence (MCoE) according to established and qualified standards. Working with industry, academia, and the U.S. government, SwRI set out to develop an accepted set of evaluation standards and analytical methodologies. Critical measurements of hydrogen sorption properties in the Laboratory have been based on three analytical capabilities: 1) a high-pressure Sievert-type volumetric analyzer, modified to improve low-temperature isothermal analyses of physisorption materials and permit in situ mass spectroscopic analysis of the sample’s gas space; 2) a static, high-pressure thermogravimetric analyzer employing an advanced magnetic suspension electro-balance, glove-box containment, and capillary interface for in situ mass spectroscopic analysis of the sample’s gas space; and 3) a Laser-induced Thermal Desorption Mass Spectrometer (LTDMS) system for high thermal-resolution desorption and mechanistic analyses. The Laboratory has played an important role in down-selecting materials and systems that have emerged from the MCoEs.

  9. OVERVIEW OF CRITERIA FOR INTERIM WET & DRY STORAGE OF RESEARCH REACTOR SPENT NUCLEAR FUEL

    SciTech Connect (OSTI)

    Sindelar, R.; Vinson, D.; Iyer, N.; Fisher, D.

    2010-11-03

    Following discharge from research reactors, spent nuclear fuel may be stored 'wet' in water pools or basins, or it may be stored 'dry' in various configurations including non-sealed or sealed containers until retrieved for ultimate disposition. Interim safe storage practices are based on avoiding degradation to the fuel that would impact functions related to safety. Recommended practices including environmental controls with technical bases, are outlined for wet storage and dry storage of aluminum-clad, aluminum-based research reactor fuel. For wet storage, water quality must be maintained to minimize corrosion degradation of aluminum fuel. For dry storage, vented canister storage of aluminum fuel readily provides a safe storage configuration. For sealed dry storage, drying must be performed so as to minimize water that would cause additional corrosion and hydrogen generation. Consideration must also be given to the potential for radiolytically-generated hydrogen from the bound water in the attendant oxyhydroxides on aluminum fuel from reactor operation for dry storage systems.

  10. Safety analysis report for packaging (onsite) multicanister overpack cask

    SciTech Connect (OSTI)

    Edwards, W.S.

    1997-07-14

    This safety analysis report for packaging (SARP) documents the safety of shipments of irradiated fuel elements in the MUlticanister Overpack (MCO) and MCO Cask for a highway route controlled quantity, Type B fissile package. This SARP evaluates the package during transfers of (1) water-filled MCOs from the K Basins to the Cold Vacuum Drying Facility (CVDF) and (2) sealed and cold vacuum dried MCOs from the CVDF in the 100 K Area to the Canister Storage Building in the 200 East Area.

  11. CRAD, Facility Safety- Technical Safety Requirements

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) that can be used for assessment of a contractor's Technical Safety Requirments (TSA).

  12. CRAD, Facility Safety- Unreviewed Safety Question Requirements

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) that can be used for assessment of a contractor's Unreviewed Safety Question (USQ) process.

  13. CRAD, Facility Safety- Nuclear Facility Safety Basis

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) that can be used for assessment of a contractor's Nuclear Facility Safety Basis.

  14. An assessment of criticality safety at the Department of Energy Rocky Flats Plant, Golden, Colorado, July--September 1989

    SciTech Connect (OSTI)

    Mattson, Roger J.

    1989-09-01

    This is a report on the 1989 independent Criticality Safety Assessment of the Rocky Flats Plant, primarily in response to public concerns that nuclear criticality accidents involving plutonium may have occurred at this nuclear weapon component fabrication and processing plant. The report evaluates environmental issues, fissile material storage practices, ventilation system problem areas, and criticality safety practices. While no evidence of a criticality accident was found, several recommendations are made for criticality safety improvements. 9 tabs.

  15. Neutrino signals in electron-capture storage-ring experiments

    E-Print Network [OSTI]

    Avraham Gal

    2015-05-26

    Neutrino signals in electron-capture storage-ring experiments at GSI are reconsidered, with special emphasis placed on the quasi-circular motion of the daughter ions in two-body decays. Whereas parent-ion decay rates cannot exhibit modulation with the several-second period reported in these experiments, the time evolution of the detected daughter ions is shown to produce oscillations that under certain conditions may provide resolution of the `GSI Oscillations' puzzle. New dedicated storage-ring or trap experiments could look up for these oscillations.

  16. Normalization of Process Safety Metrics 

    E-Print Network [OSTI]

    Wang, Mengtian

    2012-10-19

    and organizational risks, there is an emerging need to evaluate the process safety implementation across an organization through measurements. Thus, the process safety metric is applied as a powerful tool that measures safety activities, status, and performance...

  17. Safe Home Food Storage 

    E-Print Network [OSTI]

    Van Laanen, Peggy

    2002-08-22

    leftovers? The charts in this publication give storage times for many leftover foods. Planning and us- ing leftovers carefully can save money and time. To prevent food-borne illness, it is important to prepare and handle foods properly: a78 Wash your hands.... Cooked fish or shellfish 2-3 days 3 months Canned fish or shellfish (unopened) 12 months (opened) 1 day Surimi seafood 2 weeks 9 months Fruits Fresh Do not wash fruit before storing?mois- Apples 1 month ture encourages spoilage?but wash Apricots, avocados...

  18. Entanglement Storage Units

    E-Print Network [OSTI]

    T. Caneva; T. Calarco; S. Montangero

    2012-09-27

    We introduce a protocol based on optimal control to drive many body quantum systems into long-lived entangled states, protected from decoherence by big energy gaps, without requiring any apriori knowledge of the system. With this approach it is possible to implement scalable entanglement-storage units. We test the protocol in the Lipkin-Meshkov-Glick model, a prototype many-body quantum system that describes different experimental setups, and in the ordered Ising chain, a model representing a possible implementation of a quantum bus.

  19. Gas Storage Technology Consortium

    SciTech Connect (OSTI)

    Joel Morrison; Elizabeth Wood; Barbara Robuck

    2010-09-30

    The EMS Energy Institute at The Pennsylvania State University (Penn State) has managed the Gas Storage Technology Consortium (GSTC) since its inception in 2003. The GSTC infrastructure provided a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. The GSTC received base funding from the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL) Oil & Natural Gas Supply Program. The GSTC base funds were highly leveraged with industry funding for individual projects. Since its inception, the GSTC has engaged 67 members. The GSTC membership base was diverse, coming from 19 states, the District of Columbia, and Canada. The membership was comprised of natural gas storage field operators, service companies, industry consultants, industry trade organizations, and academia. The GSTC organized and hosted a total of 18 meetings since 2003. Of these, 8 meetings were held to review, discuss, and select proposals submitted for funding consideration. The GSTC reviewed a total of 75 proposals and committed co-funding to support 31 industry-driven projects. The GSTC committed co-funding to 41.3% of the proposals that it received and reviewed. The 31 projects had a total project value of $6,203,071 of which the GSTC committed $3,205,978 in co-funding. The committed GSTC project funding represented an average program cost share of 51.7%. Project applicants provided an average program cost share of 48.3%. In addition to the GSTC co-funding, the consortium provided the domestic natural gas storage industry with a technology transfer and outreach infrastructure. The technology transfer and outreach were conducted by having project mentoring teams and a GSTC website, and by working closely with the Pipeline Research Council International (PRCI) to jointly host technology transfer meetings and occasional field excursions. A total of 15 technology transfer/strategic planning workshops were held.

  20. Interim storage study report

    SciTech Connect (OSTI)

    Rawlins, J.K.

    1998-02-01

    High-level radioactive waste (HLW) stored at the Idaho Chemical Processing Plant (ICPP) in the form of calcine and liquid and liquid sodium-bearing waste (SBW) will be processed to provide a stable waste form and prepare the waste to be transported to a permanent repository. Because a permanent repository will not be available when the waste is processed, the waste must be stored at ICPP in an Interim Storage Facility (ISF). This report documents consideration of an ISF for each of the waste processing options under consideration.

  1. Storage Ring Parameters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation ofAlbuquerque|SensitiveApril 2,BL4-2StefanLightsource504,103FormulaStorage

  2. Storage Ring Parameters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation ofAlbuquerque|SensitiveAprilPhoton Source Parameters Storage Ring Parameters

  3. Storage Ring Parameters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation ofAlbuquerque|SensitiveAprilPhoton Source Parameters Storage Ring

  4. Storage Trends and Summaries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation ofAlbuquerque|SensitiveAprilPhoton Source Parameters Storage

  5. Storage by Scientific Discipline

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation ofAlbuquerque|SensitiveAprilPhoton Source Parameters StorageHeat & Cool »

  6. Storage Ring Parameters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effect Photovoltaics -7541C.3X-rays3 Prepared by:'!TransportStorage Ring Parameters

  7. Storage Ring Parameters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effect Photovoltaics -7541C.3X-rays3 Prepared by:'!TransportStorage Ring

  8. National Energy Storage Strategy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAand DOEDepartment ofProgram | DepartmentEnergy6 3Energy Storage Strategy

  9. Article for thermal energy storage

    DOE Patents [OSTI]

    Salyer, Ival O. (Dayton, OH)

    2000-06-27

    A thermal energy storage composition is provided which is in the form of a gel. The composition includes a phase change material and silica particles, where the phase change material may comprise a linear alkyl hydrocarbon, water/urea, or water. The thermal energy storage composition has a high thermal conductivity, high thermal energy storage, and may be used in a variety of applications such as in thermal shipping containers and gel packs.

  10. Gas hydrate cool storage system

    DOE Patents [OSTI]

    Ternes, M.P.; Kedl, R.J.

    1984-09-12

    The invention presented relates to the development of a process utilizing a gas hydrate as a cool storage medium for alleviating electric load demands during peak usage periods. Several objectives of the invention are mentioned concerning the formation of the gas hydrate as storage material in a thermal energy storage system within a heat pump cycle system. The gas hydrate was formed using a refrigerant in water and an example with R-12 refrigerant is included. (BCS)

  11. Chemical Hygiene and Safety Plan

    E-Print Network [OSTI]

    Ricks Editor, R.

    2009-01-01

    V. , Ed. , Safety in the Chemical Laboratory. J. Chem.£d. Amer/can Chemical Society. Easlon. PA. 18042. Vol. Lof Laboratory Safety. the Chemical Rubber Company Cleveland.

  12. The Petascale Data Storage Institute

    SciTech Connect (OSTI)

    Gibson, Garth; Long, Darrell; Honeyman, Peter; Grider, Gary; Kramer, William; Shalf, John; Roth, Philip; Felix, Evan; Ward, Lee

    2013-07-01

    Petascale computing infrastructures for scientific discovery make petascale demands on information storage capacity, performance, concurrency, reliability, availability, and manageability.The Petascale Data Storage Institute focuses on the data storage problems found in petascale scientific computing environments, with special attention to community issues such as interoperability, community buy-in, and shared tools.The Petascale Data Storage Institute is a collaboration between researchers at Carnegie Mellon University, National Energy Research Scientific Computing Center, Pacific Northwest National Laboratory, Oak Ridge National Laboratory, Sandia National Laboratory, Los Alamos National Laboratory, University of Michigan, and the University of California at Santa Cruz.

  13. Holographic Storage of Biphoton Entanglement

    E-Print Network [OSTI]

    Han-Ning Dai; Han Zhang; Sheng-Jun Yang; Tian-Ming Zhao; Jun Rui; You-Jin Deng; Li Li; Nai-Le Liu; Shuai Chen; Xiao-Hui Bao; Xian-Min Jin; Bo Zhao; Jian-Wei Pan

    2012-04-06

    Coherent and reversible storage of multi-photon entanglement with a multimode quantum memory is essential for scalable all-optical quantum information processing. Although single photon has been successfully stored in different quantum systems, storage of multi-photon entanglement remains challenging because of the critical requirement for coherent control of photonic entanglement source, multimode quantum memory, and quantum interface between them. Here we demonstrate a coherent and reversible storage of biphoton Bell-type entanglement with a holographic multimode atomic-ensemble-based quantum memory. The retrieved biphoton entanglement violates Bell's inequality for 1 microsecond storage time and a memory-process fidelity of 98% is demonstrated by quantum state tomography.

  14. Automotive Energy Storage Systems 2015

    Broader source: Energy.gov [DOE]

    Automotive Energy Storage Systems 2015, the ITB Group’s 16th annual technical conference, was held from March 4–5, 2015, in Novi, Michigan.

  15. Storage and Assay of Tritium in STAR

    SciTech Connect (OSTI)

    Glen R. Longhurst; Robert A. Anderl; Robert J. Pawelko

    2004-09-01

    The Safety and Tritium Applied Research (STAR) facility has recently been commissioned to investigate tritium-related safety questions for fusion and other technologies. The authorized inventory of tritium is 1.6 grams, the threshold quantity for nuclear facility classification. A key capability in successful operation of the STAR facility is the ability to receive, inventory, and dispense tritium to the various experiments underway there. The system central to that function is the Tritium Storage and Assay System (SAS). The SAS has four major functions: (1) receiving and holding tritium from shipping containers brought into the STAR facility, (2) assaying the amount of tritium in the SAS, (3) dispensing tritium to secondary beds or containers used for transferring it to the experimental systems in the STAR facility, and (4) purifying hydrogen isotopes from non-hydrogen species. To that may be added a fifth, optional function, isotopic separation of hydrogen isotopes using bed-to-bed transfer techniques. This paper documents the design and operation of the STAR SAS and the procedures used for tritium accountancy in the STAR facility.

  16. Safety shutdown separators

    DOE Patents [OSTI]

    Carlson, Steven Allen; Anakor, Ifenna Kingsley; Farrell, Greg Robert

    2015-06-30

    The present invention pertains to electrochemical cells which comprise (a) an anode; (b) a cathode; (c) a solid porous separator, such as a polyolefin, xerogel, or inorganic oxide separator; and (d) a nonaqueous electrolyte, wherein the separator comprises a porous membrane having a microporous coating comprising polymer particles which have not coalesced to form a continuous film. This microporous coating on the separator acts as a safety shutdown layer that rapidly increases the internal resistivity and shuts the cell down upon heating to an elevated temperature, such as 110.degree. C. Also provided are methods for increasing the safety of an electrochemical cell by utilizing such separators with a safety shutdown layer.

  17. Nano- and Microscale Architectures for Energy Storage Systems

    E-Print Network [OSTI]

    Dudek, Lisa

    2014-01-01

    Host for Emerging Energy Storage Systems Introduction Li-ionStorage Systems …………………………………………………………………………………………………………85Architectures for Energy Storage Systems A dissertation

  18. LABORATORY CHEMICAL WASTE DISPOSAL POSTER (Post Near Chemical Waste Storage Area)

    E-Print Network [OSTI]

    WSTPS.rtf LABORATORY CHEMICAL WASTE DISPOSAL POSTER (Post Near Chemical Waste Storage Area) Excess Chemicals and Chemical Wastes · Toxic and Flammable Chemicals - These cannot go down the drain. Call Environmental Health and Safety (EHSO) at x-2723 for collection. · Corrosive Chemicals (Acids & Bases) - When

  19. Shielding and criticality characterization of ALR8(SI) plutonium storage containers 

    E-Print Network [OSTI]

    Terekhin, Yevgeniy Vasilyevich

    1999-01-01

    An examination of the shielding and criticality safety performance of the Pantex-designed ALR8(SI) container for storage of ex-weapons pits is described. Both experimental and calculational studies were performed. The MCNP-4A code was used...

  20. Thermal Analysis of a Dry Storage Concept for Capsule Dry Storage Project

    SciTech Connect (OSTI)

    JOSEPHSON, W S

    2003-09-04

    There are 1,936 cesium (Cs) and strontium (Sr) capsules stored in pools at the Waste Encapsulation and Storage Facility (WESF). These capsules will be moved to dry storage on the Hanford Site as an interim measure to reduce risk. The Cs/Sr Capsule Dry Storage Project is conducted under the assumption that the capsules will eventually be moved to the repository at Yucca Mountain, and the design criteria include requirements that will facilitate acceptance at the repository. The storage system must also permit retrieval of capsules in the event that vitrification of the capsule contents is pursued. The Capsule Advisory Panel (CAP) was created by the Project Manager for the Hanford Site Capsule Dry Storage Project (CDSP). The purpose of the CAP is to provide specific technical input to the CDSP; to identify design requirements; to ensure design requirements for the project are conservative and defensible; to identify and resolve emerging, critical technical issues, as requested; and to support technical reviews performed by regulatory organizations, as requested. The CAP will develop supporting and summary documents that can be used as part of the technical and safety bases for the CDSP. The purpose of capsule dry storage thermal analysis is to: (1) Summarize the pertinent thermal design requirements sent to vendors, (2) Summarize and address the assumptions that underlie those design requirements, (3) Demonstrate that an acceptable design exists that satisfies the requirements, (4) Identify key design features and phenomena that promote or impede design success, (5) Support other CAP analyses such as corrosion and integrity evaluations, and (6) Support the assessment of proposed designs. It is not the purpose of this report to optimize or fully analyze variations of postulated acceptable designs. The present evaluation will indicate the impact of various possible design features, but not systematically pursue design improvements obtainable through analysis refinements and/or relaxation of conservatisms. However, possible design improvements will be summarized for future application. All assumptions and related design features, while appropriate for conceptual designs, must be technically justified for the final design. The pertinent thermal design requirements and underlying assumptions are summarized in Section 1.3. The majority of the thermal analyses, as described in Sections 4.2 and 4.3, focus on an acceptable conceptual design arrived at by refinement of a preliminary but unacceptable design. The results of the subject thermal analyses, as presented in Section 4.0, satisfy items 3 and 4 above.

  1. Chemical Hydrogen Storage Center Center of Excellence

    E-Print Network [OSTI]

    Carver, Jeffrey C.

    Chemical Hydrogen Storage Center Center of Excellence for Chemical Hydrogen Storage William Tumas proprietary or confidential information #12;2 Chemical Hydrogen Storage Center Overview Project Start Date: FY Barriers Addressed #12;3 Chemical Hydrogen Storage Center Chemical Hydrogen Storage Center National

  2. Social Media: Flood #FloodSafety #SummerSafety

    E-Print Network [OSTI]

    Social Media: Flood #FloodSafety #SummerSafety Please help the NWS spread these important.weather.gov/floodsafety #FloodSafety Twitter: A trickling creek could turn into a roaring waterway within minutes. www.weather.gov/floodsafety #FloodSafety #12; Facebook: It's important to know what kind of flooding you can expect in your

  3. Laboratory Health and Safety Procedure -1 -Bishop's University Safety Policy

    E-Print Network [OSTI]

    Laboratory Health and Safety Procedure - 1 - Bishop's University Safety Policy 1.03 Laboratory community. This manual is intended to provide basic rules for safe practices in a laboratory. Individual and training specific to the needs of their laboratory safety programs when the safety subject

  4. Radiation Safety Training Basic Radiation Safety Training for

    E-Print Network [OSTI]

    Dai, Pengcheng

    Radiation Safety Training Basic Radiation Safety Training for X-ray Users for Physics 461 & 462 Protocol Title: Basic Radiation Safety Training for X-ray Users Drafted By: Chris Millsaps, RSS Reviewers: ZB, TU, GS Purpose: To provide basic radiation safety training to the users of x-ray producing

  5. Health and Safety Policy Statement4 Health and Safety Policy

    E-Print Network [OSTI]

    Haase, Markus

    Health and Safety Policy Statement4 Health and Safety Policy Statement UnIVERSITY OF LEEDS-based health and safety management system and workplace health framework, and by allocating the resources as a minimum l the development of a health and safety management framework based upon the University protocols

  6. Safety-Oriented Design of Component Assemblies using Safety Interfaces

    E-Print Network [OSTI]

    FACS 2006 Safety-Oriented Design of Component Assemblies using Safety Interfaces Jonas Elmqvist compositional rules and derived safety interfaces for each component. The derivation of safety interfaces and the automatically generated interfaces. The component model uses reactive modules as the formal notation

  7. Fact Sheet: Tehachapi Wind Energy Storage Project (May 2014)...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tehachapi Wind Energy Storage Project (May 2014) Fact Sheet: Tehachapi Wind Energy Storage Project (May 2014) The Tehachapi Wind Energy Storage Project (TSP) Battery Energy Storage...

  8. Grid Storage and the Energy Frontier Research Centers | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Grid Storage and the Energy Frontier Research Centers Grid Storage and the Energy Frontier Research Centers DOE: Grid Storage and the Energy Frontier Research Centers Grid Storage...

  9. SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT

    E-Print Network [OSTI]

    Baldwin, Thomas F.

    2011-01-01

    rates between the gas and the storage unit are specified forcontrol valves. two gas-distribution storage mani- folds andmanifold Main gas compressor Storage manifold Storage flow-

  10. Packaging and Transportation Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-09-27

    Establishes safety requirements for the proper packaging and transportation of Department of Energy (DOE) offsite shipments and onsite transfers of hazardous materials and for modal transport. Canceled by DOE 460.1A

  11. Packaging and Transportation Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2010-05-14

    The order establishes safety requirements for the proper packaging and transportation of DOE, including NNSA, offsite shipments and onsite transfers of radioactive and other hazardous materials and for modal transportation. Supersedes DOE O 460.1B.

  12. Earth Sciences Safety Handbook

    E-Print Network [OSTI]

    Cambridge, University of

    - 14 Lasers 25 Lifts 15 Manual Handling 23 No Smoking Policy 2 Office Safety and Use of Computer and Good Conduct 49 Visitors and Contractors 13 Water Supplies and Drainage 25 Workshop 23 Workstation Risk

  13. Reliability and Safety

    Broader source: Energy.gov [DOE]

    DOE solar reliability and safety research and development (R&D) focuses on testing photovoltaic (PV) modules, inverters, and systems for long-term performance, and helping investors, consumers,...

  14. Nuclear Explosive Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2014-07-10

    The Order establishes requirements to implement the nuclear explosive safety (NES) elements of DOE O 452.1E, Nuclear Explosive and Weapon Surety Program, for routine and planned nuclear explosive operations (NEOs).

  15. Packaging and Transportation Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-09-27

    Establishes safety requirements for the proper packaging and transportation of offsite shipments and onsite transfers of hazardous materials andor modal transport. Cancels DOE 1540.2 and DOE 5480.3

  16. Packaging and Transportation Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1996-10-02

    Establishes safety requirements for the proper packaging and transportation of Department of Energy (DOE) offsite shipments and onsite transfers of hazardous materials and for modal transport. Cancels DOE O 460.1.

  17. Nuclear Explosive Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2006-06-12

    The directive provides supplemental details to support the requirements of DOE O 452.2C, Nuclear Explosive Safety, dated 6-12-06. Canceled by DOE M 452.2-1A.

  18. Safety in Buildings 

    E-Print Network [OSTI]

    Hutcheon, N. B.

    Building codes are essentially sets of safety regulations in respect of structure, fire, and health. They were originally developed in response to frequently demonstrated hazards of structural collapse, catastrophic fires, ...

  19. Promulgating Nuclear Safety Requirements

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1996-05-15

    Applies to all Nuclear Safety Requirements Adopted by the Department to Govern the Conduct of its Nuclear Activities. Cancels DOE P 410.1. Canceled by DOE N 251.85.

  20. LABORATORY SAFETY October 2012

    E-Print Network [OSTI]

    Chan, Hue Sun

    of the program are: 1) the adherence to appropriate design criteria when designing and constructing a laboratoryLABORATORY SAFETY PROGRAM October 2012 #12;OUTLINE 1.0 INTRODUCTION AND SCOPE ...................................................................................................................................6 4.0 LABORATORY DESIGN, CONSTRUCTION, DECOMMISSIONING

  1. Safety evaluation for packaging CPC metal boxes

    SciTech Connect (OSTI)

    Romano, T.

    1995-05-15

    This Safety Evaluation for Packaging (SEP) provides authorization for the use of Container Products Corporation (CPC) metal boxes, as described in this document, for the interarea shipment of radioactive contaminated equipment and debris for storage in the Central Waste Complex (CWC) or T Plant located in the 200 West Area. Authorization is granted until November 30, 1995. The CPC boxes included in this SEP were originally procured as US Department of Transportation (DOT) Specification 7A Type A boxes. A review of the documentation provided by the manufacturer revealed the documentation did not adequately demonstrate compliance to the 4 ft drop test requirement of 49 CFR 173.465(c). Preparation of a SEP is necessary to document the equivalent safety of the onsite shipment in lieu of meeting DOT packaging requirements until adequate documentation is received. The equivalent safety of the shipment is based on the fact that the radioactive contents consist of contaminated equipment and debris which are not dispersible. Each piece is wrapped in two layers of no less than 4 mil plastic prior to being placed in the box which has an additional 10 mil liner. Pointed objects and sharp edges are padded to prevent puncture of the plastic liner and wrapping.

  2. East Carolina University ENVIRONMENTAL SAFETY COMMITTEE

    E-Print Network [OSTI]

    Gopalakrishnan, K.

    as workers' compensation, accident prevention, industrial hygiene, occupational safety, fire and life safety

  3. Technology, safety, and costs of decommissioning reference nuclear research and test reactors. Main report

    SciTech Connect (OSTI)

    Konzek, G.J.; Ludwick, J.D.; Kennedy, W.E. Jr.; Smith, R.I.

    1982-03-01

    Safety and Cost Information is developed for the conceptual decommissioning of two representative licensed nuclear research and test reactors. Three decommissioning alternatives are studied to obtain comparisons between costs (in 1981 dollars), occupational radiation doses, potential radiation dose to the public, and other safety impacts. The alternatives considered are: DECON (immediate decontamination), SAFSTOR (safe storage followed by deferred decontamination), and ENTOMB (entombment). The study results are presented in two volumes. Volume 1 (Main Report) contains the results in summary form.

  4. Nanostructured materials for hydrogen storage

    DOE Patents [OSTI]

    Williamson, Andrew J. (Pleasanton, CA); Reboredo, Fernando A. (Pleasanton, CA)

    2007-12-04

    A system for hydrogen storage comprising a porous nano-structured material with hydrogen absorbed on the surfaces of the porous nano-structured material. The system of hydrogen storage comprises absorbing hydrogen on the surfaces of a porous nano-structured semiconductor material.

  5. Ferrocyanide Safety Program: Safety criteria for ferrocyanide watch list tanks

    SciTech Connect (OSTI)

    Postma, A.K.; Meacham, J.E.; Barney, G.S. [and others] [and others

    1994-01-01

    This report provides a technical basis for closing the ferrocyanide Unreviewed Safety Question (USQ) at the Hanford Site. Three work efforts were performed in developing this technical basis. The efforts described herein are: 1. The formulation of criteria for ranking the relative safety of waste in each ferrocyanide tank. 2. The current classification of tanks into safety categories by comparing available information on tank contents with the safety criteria; 3. The identification of additional information required to resolve the ferrocyanide safety issue.

  6. Cooperative Repair with Minimum-Storage Regenerating Codes for Distributed Storage

    E-Print Network [OSTI]

    Li, Baochun

    Cooperative Repair with Minimum-Storage Regenerating Codes for Distributed Storage Jun Li, Baochun--Distributed storage systems store redundant data to tolerate failures of storage nodes and lost data should be repaired when storage nodes fail. A class of MDS codes, called minimum- storage regenerating (MSR) codes

  7. March 29, 2008 OS: Mass Storage Structure 1 Mass-Storage Structure

    E-Print Network [OSTI]

    Adam, Salah

    March 29, 2008 OS: Mass Storage Structure 1 Mass-Storage Structure Chapter 12 #12;March 29, 2008 OS: Mass Storage Structure 2 Objectives Describe the physical structure of secondary and tertiary storage of mass-storage devices Discuss operating-system services provided for mass storage, including RAID

  8. Core assembly storage structure

    DOE Patents [OSTI]

    Jones, Jr., Charles E. (Northridge, CA); Brunings, Jay E. (Chatsworth, CA)

    1988-01-01

    A structure for the storage of core assemblies from a liquid metal-cooled nuclear reactor. The structure comprises an enclosed housing having a substantially flat horizontal top plate, a bottom plate and substantially vertical wall members extending therebetween. A plurality of thimble members extend downwardly through the top plate. Each thimble member is closed at its bottom end and has an open end adjacent said top plate. Each thimble member has a length and diameter greater than that of the core assembly to be stored therein. The housing is provided with an inlet duct for the admission of cooling air and an exhaust duct for the discharge of air therefrom, such that when hot core assemblies are placed in the thimbles, the heat generated will by convection cause air to flow from the inlet duct around the thimbles and out the exhaust duct maintaining the core assemblies at a safe temperature without the necessity of auxiliary powered cooling equipment.

  9. Superconducting energy storage

    SciTech Connect (OSTI)

    Giese, R.F.

    1993-10-01

    This report describes the status of energy storage involving superconductors and assesses what impact the recently discovered ceramic superconductors may have on the design of these devices. Our description is intended for R&D managers in government, electric utilities, firms, and national laboratories who wish an overview of what has been done and what remains to be done. It is assumed that the reader is acquainted with superconductivity, but not an expert on the topics discussed here. Indeed, it is the author`s aim to enable the reader to better understand the experts who may ask for the reader`s attention, support, or funding. This report may also inform scientists and engineers who, though expert in related areas, wish to have an introduction to our topic.

  10. Reversible hydrogen storage materials

    DOE Patents [OSTI]

    Ritter, James A. (Lexington, SC); Wang, Tao (Columbia, SC); Ebner, Armin D. (Lexington, SC); Holland, Charles E. (Cayce, SC)

    2012-04-10

    In accordance with the present disclosure, a process for synthesis of a complex hydride material for hydrogen storage is provided. The process includes mixing a borohydride with at least one additive agent and at least one catalyst and heating the mixture at a temperature of less than about 600.degree. C. and a pressure of H.sub.2 gas to form a complex hydride material. The complex hydride material comprises MAl.sub.xB.sub.yH.sub.z, wherein M is an alkali metal or group IIA metal, Al is the element aluminum, x is any number from 0 to 1, B is the element boron, y is a number from 0 to 13, and z is a number from 4 to 57 with the additive agent and catalyst still being present. The complex hydride material is capable of cyclic dehydrogenation and rehydrogenation and has a hydrogen capacity of at least about 4 weight percent.

  11. Toolbox Safety Talk Lead Awareness

    E-Print Network [OSTI]

    Pawlowski, Wojtek

    Toolbox Safety Talk Lead Awareness Environmental Health & Safety Facilities Safety & Health Section Health & Safety for recordkeeping. Lead based paint is commonly found in homes built before 1978 and many industrial paints today still contain lead. Lead overexposure is one of the leading causes of workplace

  12. COLUMBIA UNIVERSITY Radiation Safety Program

    E-Print Network [OSTI]

    Jia, Songtao

    this form to Radiation Safety's Dosimetry Program.) ___ Yes ___ No 1. Was the Dosimeter placed or stored

  13. 2015 Construction Safety Workshop Presentations

    Broader source: Energy.gov [DOE]

    2015 Construction Safety Workshop Presentations, June 16, 2015 - Forrestal Building - Washington, DC

  14. HEALTH AND SAFETY INDUCTION Introduction

    E-Print Network [OSTI]

    Mucina, Ladislav

    HEALTH AND SAFETY INDUCTION Introduction Welcome to Curtin's online health and safety induction University is committed to providing and maintaining high standards of health and safety so we can prevent with staff, and by continually improving our health and safety management system. This course is designed

  15. On Storage Rings for Short Wavelength FELs

    E-Print Network [OSTI]

    Chattopadhyay, S.

    2010-01-01

    for a hypothetical 144 m long storage ring optimized for FELin the Proceedings On Storage Rings for Short WavelengthLBL-28483 ESG Note-92 ON STORAGE RINGS FOR SHORT WAVELENGTH

  16. Hopper File Storage and I/O

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    File Storage and IO File Storage and IO Disk Quota Change Request Form Hopper File Systems Hopper has 5 user file systems which provide different degrees of storage, performance...

  17. Storage Viability and Optimization Web Service

    E-Print Network [OSTI]

    Stadler, Michael

    2010-01-01

    of Heat and Electricity Storage and Reliability on MicrogridEPRI-DOE Handbook of Energy Storage for Transmission andLong- vs. Short-Term Energy Storage Technologies Analysis, A

  18. THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01

    Resources Res. 14: 273-280. THERMAL STORAGE OF COLD WATER INR.C. HARE, 1972. Thermal Storage for Eco-Energy Utilities,W.J. MASICA, 1977. "Thermal Storage for Electric Utilities,"

  19. AQUIFER THERMAL ENERGY STORAGE-A SURVEY

    E-Print Network [OSTI]

    Tsang, Chin Fu

    2012-01-01

    R. C. 1 1972 1 Thermal storage for eco=energy utilities: GE-and Harris, w. B. 0 1978 0 Thermal storage of cold water induration EXPERIMENTS Thermal storage radius (m) thickness

  20. Nanostructured Materials for Energy Generation and Storage

    E-Print Network [OSTI]

    Khan, Javed Miller

    2012-01-01

    energy generation and battery storage via the use ofenergy generation and battery storage via the use of nanos-and storage (e.g lithium-ion rechargeable battery)

  1. Storage Water Heaters | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Storage Water Heaters Storage Water Heaters June 15, 2012 - 6:00pm Addthis Consider energy efficiency when selecting a conventional storage water heater to avoid paying more over...

  2. THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01

    20) E. B. Quale. Seasonal storage of thermal energy in waterE.B. , 1976. "Seasonal Storage of Thermal Energy in Water ina truly worthwhile goal. Seasonal Storage of Thermal Energy

  3. Functional Carbon Materials for Electrochemical Energy Storage

    E-Print Network [OSTI]

    Zhou, Huihui

    2015-01-01

    Temperature Dense Phase Hydrogen Storage Materials withinJugroot, Review of hydrogen storage techniques for on boardFigure 1.2 Plot of hydrogen storage materials as a function

  4. AQUIFER THERMAL ENERGY STORAGE-A SURVEY

    E-Print Network [OSTI]

    Tsang, Chin Fu

    2012-01-01

    aquifers for heat storage, solar captors for heat productionZakhidov, R. A. 8 1971, Storage of solar energy in a sandy-thermal energy storage for cogeneration and solar systems,

  5. THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01

    associat~ ed with solar thermal storage. Now this system canand R.A. Zakhidov, "Storage of Solar Energy in a Sandy-Heat as Related to the Storage of Solar Energy. Sharing the

  6. Safety evaluation of a hydrogen fueled transit bus

    SciTech Connect (OSTI)

    Coutts, D.A.; Thomas, J.K.; Hovis, G.L.; Wu, T.T.

    1997-12-31

    Hydrogen fueled vehicle demonstration projects must satisfy management and regulator safety expectations. This is often accomplished using hazard and safety analyses. Such an analysis has been completed to evaluate the safety of the H2Fuel bus to be operated in Augusta, Georgia. The evaluation methods and criteria used reflect the Department of Energy`s graded approach for qualifying and documenting nuclear and chemical facility safety. The work focused on the storage and distribution of hydrogen as the bus motor fuel with emphases on the technical and operational aspects of using metal hydride beds to store hydrogen. The safety evaluation demonstrated that the operation of the H2Fuel bus represents a moderate risk. This is the same risk level determined for operation of conventionally powered transit buses in the United States. By the same criteria, private passenger automobile travel in the United States is considered a high risk. The evaluation also identified several design and operational modifications that resulted in improved safety, operability, and reliability. The hazard assessment methodology used in this project has widespread applicability to other innovative operations and systems, and the techniques can serve as a template for other similar projects.

  7. Safety, Reliability and Risk Analysis: Beyond the Horizon Steenbergen et al. (Eds) 2014 Taylor & Francis Group, London, ISBN 978-1-138-00123-7

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    properties of the individual components (as wind or solar energy equipment, on-site storage etc.), which may, as well as distributed energy-storage systems (Chen, duan, Cai, Liu, & Hu 2011), (Katiraei & Iravani 20062919 Safety, Reliability and Risk Analysis: Beyond the Horizon ­ Steenbergen et al. (Eds) © 2014

  8. FY2011 Annual Report for NREL Energy Storage Projects

    SciTech Connect (OSTI)

    Pesaran, A.; Ban, C.; Dillon, A.; Gonder, J.; Ireland, J.; Keyser, M.; Kim, G. H.; Lee, K. J.; Long, D.; Neubauer, J.; Santhangopalan, S.; Smith, K.

    2012-04-01

    This report describes the work of NREL's Energy Storage group for FY2011. The National Renewable Energy Laboratory (NREL) supports energy storage R&D under the Vehicle Technologies Program at the U.S. Department of Energy (DOE). The DOE Energy Storage program's charter is to develop battery technologies that will enable large market penetration of electric drive vehicles. These vehicles could have a significant impact on the nation's goal of reducing dependence on imported oil and gaseous pollutant emissions. DOE has established several program activities to address and overcome the barriers limiting the penetration of electric drive battery technologies: cost, performance, safety, and life. These programs are: (1) Advanced Battery Development [through the United States Advanced Battery Consortium (USABC)]; (2) Testing, Design and Analysis (TDA); (3) Applied Battery Research (ABR); and (4) Focused Fundamental Research, or Batteries for Advanced Transportation Technologies (BATT). In FY11, DOE funded NREL to make technical contributions to all of these R&D activities. This report summarizes NREL's R&D projects in FY11 in support of the USABC, TDA, ABR, and BATT program elements. In addition, we continued the enhancement of NREL's battery testing facilities funded through the American Reinvestment and Recovery Act (ARRA) of 2009. The FY11 projects under NREL's Energy Storage R&D program are briefly described below. Each of these is discussed in depth in the main sections of this report.

  9. BALLISTICS TESTING OF THE 9977 SHIPPING PACKAGE FOR STORAGE APPLICATIONS

    SciTech Connect (OSTI)

    Loftin, B.; Abramczyk, G.; Koenig, R.

    2012-06-06

    Radioactive materials are stored in a variety of locations throughout the DOE complex. At the Savannah River Site (SRS), materials are stored within dedicated facilities. Each of those facilities has a documented safety analysis (DSA) that describes accidents that the facility and the materials within it may encounter. Facilities at the SRS are planning on utilizing the certified Model 9977 Shipping Package as a long term storage package and one of these facilities required ballistics testing. Specifically, in order to meet the facility DSA, the radioactive materials (RAM) must be contained within the storage package after impact by a .223 caliber round. In order to qualify the Model 9977 Shipping Package for storage in this location, the package had to be tested under these conditions. Over the past two years, the Model 9977 Shipping Package has been subjected to a series of ballistics tests. The purpose of the testing was to determine if the 9977 would be suitable for use as a storage package at a Savannah River Site facility. The facility requirements are that the package must not release any of its contents following the impact in its most vulnerable location by a .223 caliber round. A package, assembled to meet all of the design requirements for a certified 9977 shipping configuration and using simulated contents, was tested at the Savannah River Site in March of 2011. The testing was completed and the package was examined. The results of the testing and examination are presented in this paper.

  10. Hydrogen Compression, Storage, and Dispensing Cost Reduction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Publications 2013 Hydrogen Compression, Storage, and Dispensing Cost Reduction Workshop Final Report Storage - Challenges and Opportunities Hydro-Pac Inc., A High Pressure Company...

  11. Webinar Presentation: Energy Storage Solutions for Microgrids...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Webinar Presentation: Energy Storage Solutions for Microgrids (November 2012) Webinar Presentation: Energy Storage Solutions for Microgrids (November 2012) On November 7, 2012,...

  12. Fact Sheet: Energy Storage Technology Advancement Partnership...

    Energy Savers [EERE]

    More Documents & Publications Webinar Presentation: Energy Storage Solutions for Microgrids (November 2012) Energy Storage Systems 2014 Peer Review Presentations - Session 11...

  13. Integrated Renewable Energy and Energy Storage Systems

    E-Print Network [OSTI]

    Integrated Renewable Energy and Energy Storage Systems Prepared for the U.S. Department of Energy and Energy Storage Systems TABLE OF CONTENTS 1

  14. Energy Storage Systems 2010 Update Conference Presentations ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Conference Presentations - Day 1, Session 1 Energy Storage Systems 2010 Update Conference Presentations - Day 1, Session 1 The U.S. DOE Energy Storage Systems Program (ESS)...

  15. Analytic Challenges to Valuing Energy Storage

    SciTech Connect (OSTI)

    Ma, Ookie; O'Malley, Mark; Cheung, Kerry; Larochelle, Philippe; Scheer, Rich

    2011-10-25

    Electric grid energy storage value. System-level asset focus for mechanical and electrochemical energy storage. Analysis questions for power system planning, operations, and customer-side solutions.

  16. National Hydrogen Storage Project | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Hydrogen Storage Project National Hydrogen Storage Project In July 2003, the Department of Energy (DOE) issued a "Grand Challenge" to the global scientific community for...

  17. Hydrogen Storage Materials Workshop Proceedings Workshop, October...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Proceedings Workshop, October 16th, 2002 Hydrogen Storage Materials Workshop Proceedings Workshop, October 16th, 2002 A workshop on compressed and liquefied hydrogen storage was a...

  18. Overview of Gridscale Rampable Intermittent Dispatchable Storage...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in Washington, DC. flowcells2012johnson.pdf More Documents & Publications Energy Storage Systems 2010 Update Conference Presentations - Day 1, Session 1 Energy Storage Systems...

  19. THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01

    A New Concept in Electric Generation and Energy Storage,"A New Concept in Electric Generation and Energy Storage,"of Solar Energy for Electric Power Generation," Proceedings

  20. Hydrogen Storage - Current Technology | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cell Technologies Office Hydrogen Production Hydrogen Delivery Hydrogen Storage Basics Current Technology Gaseous and Liquid Hydrogen Storage Materials-Based Hydrogen...

  1. DRAFT "Energy Advisory Committee" - Energy Storage Subcommittee...

    Energy Savers [EERE]

    Report: Revision 2 DRAFT "Energy Advisory Committee" - Energy Storage Subcommittee Report: Revision 2 Energy storage plays a vital role in all forms of business and affects the...

  2. Energy Storage Systems 2010 Update Conference Presentations ...

    Broader source: Energy.gov (indexed) [DOE]

    Superconducting Magnetic Bearing - Mike Strasik, Boeing.pdf More Documents & Publications Energy Storage Systems 2006 Peer Review - Day 1 morning presentations Energy Storage...

  3. EIA - Analysis of Natural Gas Storage

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Prices This presentation provides information about EIA's estimates of working gas peak storage capacity, and the development of the natural gas storage industry....

  4. Combinatorial Approach for Hydrogen Storage Materials (presentation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Approach for Hydrogen Storage Materials (presentation) Combinatorial Approach for Hydrogen Storage Materials (presentation) Presented at the U.S. Department of Energy's Hydrogen...

  5. Energy Storage Systems 2010 Update Conference Presentations ...

    Energy Savers [EERE]

    Electricity Storage - Sanjoy Banerjee, CUNY.pdf PDF icon ESS 2010 Update Conference - Hydrogen-Bromine Flow Batteries for Grid-Scale Energy Storage - Venkat Srinivasan,...

  6. THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01

    Scale Thermal Energy Storage for Cogeneration and Solarsolar captors, thermal effluents, low cost energy duringSeale Thermal Energy Storage for Cogeneration and Solar

  7. Migrating enterprise storage applications to the cloud

    E-Print Network [OSTI]

    Vrable, Michael Daniel

    2011-01-01

    2.1 Cloud Providers . . . . . . . . . . . .2.1.1 Cloud Storage . . . . . . . . .2.1.2 Cloud Computation . . . . . . 2.2 Enterprise Storage

  8. Recommendations on the proposed Monitored Retrievable Storage Facility

    SciTech Connect (OSTI)

    Not Available

    1985-10-01

    Following the Department of Energy's announcement in April 1985 that three Tennessee sites were to be considered for the Monitored Retrievable Storage facility, Governor Lamar Alexander initiated a review of the proposal to be coordinated by his Safe Growth Team. Roane County and the City of Oak Ridge, the local governments sharing jurisdiction over DOE's primary and secondary sites, were invited to participate in the state's review of the MRS proposal. Many issues related to the proposed MRS are being considered by the Governor's Safe Growth Team. The primary objective of the Clinch River MRS Task Force has been to determine whether the proposed Monitored Retrievable Storage facility should be accepted by the local governments, and if so, under what conditions. The Clinch River MRS Task Force is organized into an Executive Committee cochaired by the Roane County Executive and Mayor of Oak Ridge and three Study Groups focusing on environmental (including health and safety), socioeconomic, and transportation issues.

  9. Ferrocyanide Safety Project: FY 1991 annual report

    SciTech Connect (OSTI)

    Hallen, R.T.; Burger, L.L.; Hockey, R.L.; Lilga, M.A.; Scheele, R.D.; Tingey, J.M.

    1992-06-01

    The Hanford Ferrocyanide Task Team is addressing issues involving ferrocyanide precipitates in the single-shell waste storage tanks (SSTs), in particular the risk of explosion. This Task Team, which is composed of researchers from Westinghouse Hanford Company (WHC), Pacific Northwest Laboratory (PNL), an outside consultants, was formed in response to the need for an updated analysis of safety questions on the Hanford SSTSs. The Ferrocyanide Safety Project, discussed in this report, is being conducted by PNL as part of the Waste Tank Safety Program led by WHC. The overall purpose of the WHC program, which is sponsored by the US Department of Energy's Tank Safety Project Office, is to provide technical information on ferrocyanide chemistry and its interaction and reactive behavior with other tank constituents. Ultimately, this information will be used to maintain the tanks in a safe condition, implement interim stabilization strategies, and identify optimal disposal options. While by itself ferrocyanide is a stable complex of ferrous ion and cyanide, it can be made to explode in the laboratory in the presence of oxidizing materials such as nitrates and/or nitrites temperatures above 280{degree}C or by sufficient electrical spark. The specific goal of the PNL project is so determine the conditions necessary for the ferrocyanide-bearing wastes in Hanford SSTs to represent a hazard, to determine the conditions where these same wastes am not a hazard, or to determine the conditions which are necessary to assure the wastes are safe prior to treatment for permanent disposal. This annual report gives the results of the work conducted by PNL in FY 1991. The activities mainly focused on preparing and characterizing synthetic wastes and alkali nickel ferrocyanides produced using the In-Farm cesium scavenging flowsheet and pure potential nickel ferrocyanides that could be produced by all of the cesium scavenging flowsheets.

  10. Ferrocyanide Safety Project: FY 1991 annual report

    SciTech Connect (OSTI)

    Hallen, R.T.; Burger, L.L.; Hockey, R.L.; Lilga, M.A.; Scheele, R.D.; Tingey, J.M.

    1992-06-01

    The Hanford Ferrocyanide Task Team is addressing issues involving ferrocyanide precipitates in the single-shell waste storage tanks (SSTs), in particular the risk of explosion. This Task Team, which is composed of researchers from Westinghouse Hanford Company (WHC), Pacific Northwest Laboratory (PNL), an outside consultants, was formed in response to the need for an updated analysis of safety questions on the Hanford SSTSs. The Ferrocyanide Safety Project, discussed in this report, is being conducted by PNL as part of the Waste Tank Safety Program led by WHC. The overall purpose of the WHC program, which is sponsored by the US Department of Energy`s Tank Safety Project Office, is to provide technical information on ferrocyanide chemistry and its interaction and reactive behavior with other tank constituents. Ultimately, this information will be used to maintain the tanks in a safe condition, implement interim stabilization strategies, and identify optimal disposal options. While by itself ferrocyanide is a stable complex of ferrous ion and cyanide, it can be made to explode in the laboratory in the presence of oxidizing materials such as nitrates and/or nitrites temperatures above 280{degree}C or by sufficient electrical spark. The specific goal of the PNL project is so determine the conditions necessary for the ferrocyanide-bearing wastes in Hanford SSTs to represent a hazard, to determine the conditions where these same wastes am not a hazard, or to determine the conditions which are necessary to assure the wastes are safe prior to treatment for permanent disposal. This annual report gives the results of the work conducted by PNL in FY 1991. The activities mainly focused on preparing and characterizing synthetic wastes and alkali nickel ferrocyanides produced using the In-Farm cesium scavenging flowsheet and pure potential nickel ferrocyanides that could be produced by all of the cesium scavenging flowsheets.

  11. Radioactive Waste Storage Facility at the Armenian NPP - 12462

    SciTech Connect (OSTI)

    Grigoryan, G.; Amirjanyan, A.; Gondakyan, Y. [Nuclear and Radiation Safety Center (NRSC), 4 Tigran Mets, 375010 Yerevan (Armenia); Stepanyan, A. [Armenian Nuclear Regulatory Authority(ANRA), 4 Tigran Mets, 375010 Yerevan (Armenia)

    2012-07-01

    We present a detailed contaminant transfer dynamics model for radionuclide in geosphere and biosphere medium. The model describes the transport of radionuclides using full equation for the processes of advection, diffusion, decay and sorption. The overall objective is to establish, from a post-closure radiological safety point of view, whether it is practical to convert an existing radioactive waste storage facility at Armenian NPP, to a waste disposal facility. The calculation includes: - Data sources for: the operational waste-source term; options for refurbishment and completion of the waste storage facility as a waste disposal facility; the site and its environs; - Development of an assessment context for the safety assessment, and identification of waste treatment options; - A description of the conceptual and mathematical models, and results calculated for the base case scenario relating to the release of contaminants via the groundwater pathway and also precipitation especially important for this site. The results of the calculations showed that the peak individual dose is < 7 E-8 Sv/y arising principally from I-129 after 700 years post closure. Other significant radionuclides, in terms of their contribution to the total dose are I-129, Tc-99 and in little C-14 (U- 234 and Po-210 are not relevant). The study does not explore all issues that might be expected to be presented in a safety case for a near surface disposal facility it mainly focuses on post- closure dose impacts. Most emphasis has been placed on the development of scenarios and conceptual models rather than the presentation and analyses of results and confidence building (only deterministic results are presented). The calculations suggest that, from a perspective the conversion of the waste-storage facility is feasible such that all the predicted doses are well below internationally recognized targets, as well as provisional Armenian regulatory objectives. This conclusion applies to the disposal of the ANPP present and future arising of L/ILW operating wastes. (authors)

  12. Combined cooling and purification system for nuclear reactor spent fuel pit, refueling cavity, and refueling water storage tank

    DOE Patents [OSTI]

    Corletti, Michael M. (New Kensington, PA); Lau, Louis K. (Monroeville, PA); Schulz, Terry L. (Murrysville Boro, PA)

    1993-01-01

    The spent fuel pit of a pressured water reactor (PWR) nuclear power plant has sufficient coolant capacity that a safety rated cooling system is not required. A non-safety rated combined cooling and purification system with redundant branches selectively provides simultaneously cooling and purification for the spent fuel pit, the refueling cavity, and the refueling water storage tank, and transfers coolant from the refueling water storage tank to the refueling cavity without it passing through the reactor core. Skimmers on the suction piping of the combined cooling and purification system eliminate the need for separate skimmer circuits with dedicated pumps.

  13. Combined cooling and purification system for nuclear reactor spent fuel pit, refueling cavity, and refueling water storage tank

    DOE Patents [OSTI]

    Corletti, M.M.; Lau, L.K.; Schulz, T.L.

    1993-12-14

    The spent fuel pit of a pressured water reactor (PWR) nuclear power plant has sufficient coolant capacity that a safety rated cooling system is not required. A non-safety rated combined cooling and purification system with redundant branches selectively provides simultaneously cooling and purification for the spent fuel pit, the refueling cavity, and the refueling water storage tank, and transfers coolant from the refueling water storage tank to the refueling cavity without it passing through the reactor core. Skimmers on the suction piping of the combined cooling and purification system eliminate the need for separate skimmer circuits with dedicated pumps. 1 figures.

  14. Health and Safety Manual Civil and Environmental Engineering Dept.

    E-Print Network [OSTI]

    Eberhard, Marc O.

    ..........................................................................................................................14 MILLING MACHINE SAFETY RULES

  15. Safety & Environmental Protection Services

    E-Print Network [OSTI]

    Glasgow, University of

    or to the environment, that is, to ensure that it is not special waste or radioactive waste. Waste electronic FOR THE CURRENT REVISION. Duty of Care in Waste Storage and Disposal This Note should be read in conjunction of controlled waste (also sometimes known as directive waste). With the exception of radioactive waste all waste

  16. Carbon Capture and Storage

    SciTech Connect (OSTI)

    Friedmann, S

    2007-10-03

    Carbon capture and sequestration (CCS) is the long-term isolation of carbon dioxide from the atmosphere through physical, chemical, biological, or engineered processes. This includes a range of approaches including soil carbon sequestration (e.g., through no-till farming), terrestrial biomass sequestration (e.g., through planting forests), direct ocean injection of CO{sub 2} either onto the deep seafloor or into the intermediate depths, injection into deep geological formations, or even direct conversion of CO{sub 2} to carbonate minerals. Some of these approaches are considered geoengineering (see the appropriate chapter herein). All are considered in the 2005 special report by the Intergovernmental Panel on Climate Change (IPCC 2005). Of the range of options available, geological carbon sequestration (GCS) appears to be the most actionable and economic option for major greenhouse gas reduction in the next 10-30 years. The basis for this interest includes several factors: (1) The potential capacities are large based on initial estimates. Formal estimates for global storage potential vary substantially, but are likely to be between 800 and 3300 Gt of C (3000 and 10,000 Gt of CO{sub 2}), with significant capacity located reasonably near large point sources of the CO{sub 2}. (2) GCS can begin operations with demonstrated technology. Carbon dioxide has been separated from large point sources for nearly 100 years, and has been injected underground for over 30 years (below). (3) Testing of GCS at intermediate scale is feasible. In the US, Canada, and many industrial countries, large CO{sub 2} sources like power plants and refineries lie near prospective storage sites. These plants could be retrofit today and injection begun (while bearing in mind scientific uncertainties and unknowns). Indeed, some have, and three projects described here provide a great deal of information on the operational needs and field implementation of CCS. Part of this interest comes from several key documents written in the last three years that provide information on the status, economics, technology, and impact of CCS. These are cited throughout this text and identified as key references at the end of this manuscript. When coupled with improvements in energy efficiency, renewable energy supplies, and nuclear power, CCS help dramatically reduce current and future emissions (US CCTP 2005, MIT 2007). If CCS is not available as a carbon management option, it will be much more difficult and much more expensive to stabilize atmospheric CO{sub 2} emissions. Recent estimates put the cost of carbon abatement without CCS to be 30-80% higher that if CCS were to be available (Edmonds et al. 2004).

  17. Field Survey of Cactus Crater Storage Facility (Runit Dome)

    SciTech Connect (OSTI)

    Douglas Miller, Terence Holland

    2008-10-31

    The US Department of Energy, Office of Health and Safety (DOE/HS-10), requested that National Security Technologies, LLC, Environmental Management directorate (NSTec/EM) perform a field survey of the Cactus Crater Storage Facility (Runit Dome), similar to past surveys conducted at their request. This field survey was conducted in conjunction with a Lawrence Livermore National Laboratory (LLNL) mission on Runit Island in the Enewetak Atoll in the Republic of the Marshall Islands (RMI). The survey was strictly a visual survey, backed up by digital photos and a written description of the current condition.

  18. ADVANCED UNDERGROUND GAS STORAGE CONCEPTS REFRIGERATED-MINED CAVERN STORAGE

    SciTech Connect (OSTI)

    1998-09-01

    Limited demand and high cost has prevented the construction of hard rock caverns in this country for a number of years. The storage of natural gas in mined caverns may prove technically feasible if the geology of the targeted market area is suitable; and economically feasible if the cost and convenience of service is competitive with alternative available storage methods for peak supply requirements. It is believed that mined cavern storage can provide the advantages of high delivery rates and multiple fill-withdrawal cycles in areas where salt cavern storage is not possible. In this research project, PB-KBB merged advanced mining technologies and gas refrigeration techniques to develop conceptual designs and cost estimates to demonstrate the commercialization potential of the storage of refrigerated natural gas in hard rock caverns. Five regions of the U.S.A. were studied for underground storage development and PB-KBB reviewed the literature to determine if the geology of these regions was suitable for siting hard rock storage caverns. Area gas market conditions in these regions were also studied to determine the need for such storage. Based on an analysis of many factors, a possible site was determined to be in Howard and Montgomery Counties, Maryland. The area has compatible geology and a gas industry infrastructure for the nearby market populous of Baltimore and Washington D.C.. As Gas temperature is lowered, the compressibility of the gas reaches an optimum value. The compressibility of the gas, and the resultant gas density, is a function of temperature and pressure. This relationship can be used to commercial advantage by reducing the size of a storage cavern for a given working volume of natural gas. This study looks at this relationship and and the potential for commercialization of the process in a storage application. A conceptual process design, and cavern design were developed for various operating conditions. Potential site locations were considered and a typical plant layout was developed. In addition a geomechanical review of the proposed cavern design was performed, evaluating the stability of the mine rooms and shafts, and the effects of the refrigerated gas temperatures on the stability of the cavern. Capital and operating cost estimates were also developed for the various temperature cases considered. The cost estimates developed were used to perform a comparative market analysis of this type of gas storage system to other systems that are commercially used in the region of the study.

  19. High Density Hydrogen Storage System Demonstration Using NaAlH4 Based Complex Compound Hydrides

    SciTech Connect (OSTI)

    Daniel A. Mosher; Xia Tang; Ronald J. Brown; Sarah Arsenault; Salvatore Saitta; Bruce L. Laube; Robert H. Dold; Donald L. Anton

    2007-07-27

    This final report describes the motivations, activities and results of the hydrogen storage independent project "High Density Hydrogen Storage System Demonstration Using NaAlH4 Based Complex Compound Hydrides" performed by the United Technologies Research Center under the Department of Energy Hydrogen Program, contract # DE-FC36-02AL67610. The objectives of the project were to identify and address the key systems technologies associated with applying complex hydride materials, particularly ones which differ from those for conventional metal hydride based storage. This involved the design, fabrication and testing of two prototype systems based on the hydrogen storage material NaAlH4. Safety testing, catalysis studies, heat exchanger optimization, reaction kinetics modeling, thermochemical finite element analysis, powder densification development and material neutralization were elements included in the effort.

  20. Application of advanced composites for efficient on-board storage of fuel in natural gas vehicles

    SciTech Connect (OSTI)

    Sirosh, S.N. [EDO Canada Ltd., Calgary, Alberta (Canada)

    1995-11-01

    The following outlines the performance requirements for high pressure containers for on-board storage of fuel in Natural Gas Vehicles. The construction of state-of-the-art carbon-fiber reinforced all-composite cylinders is described and the validation testing and key advantages are discussed. Carbon-fiber reinforced advanced composite technology offers a number of key advantages to the NGV industry, by providing: improved range, including up to 30% more fuel storage for a given storage envelope and up to 300% more fuel storage for a given weight allowance; life-cycle cost advantages, including savings in non-recurring costs (installation), savings in recurring costs (fuel and maintenance), and increased revenues from more passengers/payload; and uncompromising safety, namely, superior resistance to degradation from fatigue or stress rupture and inherent resistance to corrosion; proven toughness/impact resistance.

  1. EIS-0360: Depleted Uranium Oxide Conversion Product at the Portsmouth, Ohio Site

    Broader source: Energy.gov [DOE]

    This site-specific EIS analyzes the construction, operation, maintenance, and decontamination and decommissioning of the proposed depleted uranium hexafluoride (DUF6) conversion facility at three alternative locations within the Paducah site; transportation of all cylinders (DUF6, enriched, and empty) currently stored at the East Tennessee Technology Park (ETTP) near Oak Ridge, Tennessee, to Portsmouth; construction of a new cylinder storage yard at Portsmouth (if required) for ETTP cylinders; transportation of depleted uranium conversion products and waste materials to a disposal facility; transportation and sale of the hydrogen fluoride (HF) produced as a conversion coproduct; and neutralization of HF to calcium fluoride and its sale or disposal in the event that the HF product is not sold.

  2. Conductive lithium storage electrode

    DOE Patents [OSTI]

    Chiang, Yet-Ming; Chung, Sung-Yoon; Bloking, Jason T; Andersson, Anna M

    2014-10-07

    A compound comprising a composition A.sub.x(M'.sub.1-aM''.sub.a).sub.y(XD.sub.4).sub.z, A.sub.x(M'.sub.1-aM''.sub.a).sub.y(DXD.sub.4).sub.z, or A.sub.x(M'.sub.1-aM''.sub.a).sub.y(X.sub.2D.sub.7).sub.z, (A.sub.1-aM''.sub.a).sub.xM'.sub.y(XD.sub.4).sub.z, (A.sub.1-aM''.sub.a).sub.xM'.sub.y(DXD.sub.4).sub.z, or (A.sub.1-aM''.sub.a).sub.xM'.sub.y(X.sub.2D.sub.7).sub.z. In the compound, A is at least one of an alkali metal and hydrogen, M' is a first-row transition metal, X is at least one of phosphorus, sulfur, arsenic, molybdenum, and tungsten, M'' any of a Group IIA, IIIA, IVA, VA, VIA, VIIA, VIIIA, IB, IIB, IIIB, IVB, VB, and VIB metal, D is at least one of oxygen, nitrogen, carbon, or a halogen, 0.0001storage batteries.

  3. Thermal energy storage apparatus

    SciTech Connect (OSTI)

    Thoma, P.E.

    1980-04-22

    A thermal energy storage apparatus and method employs a container formed of soda lime glass and having a smooth, defectfree inner wall. The container is filled substantially with a material that can be supercooled to a temperature greater than 5* F., such as ethylene carbonate, benzophenone, phenyl sulfoxide, di-2-pyridyl ketone, phenyl ether, diphenylmethane, ethylene trithiocarbonate, diphenyl carbonate, diphenylamine, 2benzoylpyridine, 3-benzoylpyridine, 4-benzoylpyridine, 4methylbenzophenone, 4-bromobenzophenone, phenyl salicylate, diphenylcyclopropenone, benzyl sulfoxide, 4-methoxy-4prmethylbenzophenone, n-benzoylpiperidine, 3,3pr,4,4pr,5 pentamethoxybenzophenone, 4,4'-bis-(Dimethylamino)-benzophenone, diphenylboron bromide, benzalphthalide, benzophenone oxime, azobenzene. A nucleating means such as a seed crystal, a cold finger or pointed member is movable into the supercoolable material. A heating element heats the supercoolable material above the melting temperature to store heat. The material is then allowed to cool to a supercooled temperature below the melting temperature, but above the natural, spontaneous nucleating temperature. The liquid in each container is selectively initiated into nucleation to release the heat of fusion. The heat may be transferred directly or through a heat exchange unit within the material.

  4. Seismic Safety Guide

    SciTech Connect (OSTI)

    Eagling, D.G.

    1983-09-01

    This guide provides managers with practical guidelines for administering a comprehensive earthquake safety program. The Guide is comprehensive with respect to earthquakes in that it covers the most important aspects of natural hazards, site planning, evaluation and rehabilitation of existing buildings, design of new facilities, operational safety, emergency planning, special considerations related to shielding blocks, non-structural elements, lifelines, fire protection and emergency facilities. Management of risk and liabilities is also covered. Nuclear facilities per se are not dealt with specifically. The principles covered also apply generally to nuclear facilities but the design and construction of such structures are subject to special regulations and legal controls.

  5. Measuring Process Safety Management

    SciTech Connect (OSTI)

    Sweeney, J.C. (ARCO Chemical Co., Newtown Square, PA (United States))

    1992-04-01

    Many companies are developing and implementing Process Safety Management (PSM) systems. Various PSM models, including those by the Center for Chemical Process Safety (CCPS), the American Petroleum Institute (API), the Chemical Manufacturers Association (CMA) and OSHA have emerged to guide the design, development and installation of these systems. These models represent distillations of the practices, methods and procedures successfully used by those who believed that a strong correlation exists between sound PSM practices and achieving reductions in the frequency and severity of process incidents. This paper describes the progress of CCPS research toward developing a PSM performance measurement model. It also provides a vision for future CCPS research to define effectiveness indices.

  6. SSC Safety Review Document

    SciTech Connect (OSTI)

    Toohig, T.E. [ed.

    1988-11-01

    The safety strategy of the Superconducting Super Collider (SSC) Central Design Group (CDG) is to mitigate potential hazards to personnel, as far as possible, through appropriate measures in the design and engineering of the facility. The Safety Review Document identifies, on the basis of the Conceptual Design Report (CDR) and related studies, potential hazards inherent in the SSC project independent of its site. Mitigative measures in the design of facilities and in the structuring of laboratory operations are described for each of the hazards identified.

  7. Safety Staff Contact Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II) byMultidayAlumni > The2/01/12University Safety NumerousSafety

  8. RISMC ADVANCED SAFETY ANALYSIS WORKING PLAN – FY 2015 – FY 2019

    SciTech Connect (OSTI)

    Szilard, Ronaldo H; Smith, Curtis L

    2014-09-01

    SUMMARY In this report, the Advanced Safety Analysis Program (ASAP) objectives and value proposition is described. ASAP focuses on modernization of nuclear power safety analysis (tools, methods and data); implementing state-of-the-art modeling techniques (which include, for example, enabling incorporation of more detailed physics as they become available); taking advantage of modern computing hardware; and combining probabilistic and mechanistic analyses to enable a risk informed safety analysis process. The modernized tools will maintain the current high level of safety in our nuclear power plant fleet, while providing an improved understanding of safety margins and the critical parameters that affect them. Thus, the set of tools will provide information to inform decisions on plant modifications, refurbishments, and surveillance programs, while improving economics. The set of tools will also benefit the design of new reactors, enhancing safety per unit cost of a nuclear plant. As part of the discussion, we have identified three sets of stakeholders, the nuclear industry, the Department of Energy (DOE), and associated oversight organizations. These three groups would benefit from ASAP in different ways. For example, within the DOE complex, the possible applications that are seen include the safety of experimental reactors, facility life extension, safety-by-design in future generation advanced reactors, and managing security for the storage of nuclear material. This report provides information in five areas: 1. A value proposition (“why is this important?”) that will make the case for stakeholder’s use of the ASAP research and development (R&D) products. 2. An identification of likely end users and pathway to adoption of enhanced tools by the end-users. 3. A proposed set of practical and achievable “use case” demonstrations. 4. A proposed plan to address ASAP verification and validation (V&V) needs. 5. A proposed schedule for the multi-year ASAP.

  9. Approach for tank safety characterization of Hanford site waste

    SciTech Connect (OSTI)

    Meacham, J.E.; Babad, H.; Cash, R.J.; Dukelow, G.T.; Eberlein, S.J.; Hamilton, D.W.; Johnson, G.D.; Osborne, J.W.; Payne, M.A.; Sherwood, D.J. [and others

    1995-03-01

    The overall approach and associated technical basis for characterizing Hanford Site waste to help identify and resolve Waste Tank Safety Program safety issues has been summarized. The safety issues include flammable gas, noxious vapors, organic solvents, condensed-phase exothermic reactions (ferrocyanide and organic complexants), criticality, high heat, and safety screening. For the safety issues involving chemical reactions (i.e., flammable gas, organic solvents, ferrocyanide, and organic complexants), the approach to safety characterization is based on the fact that rapid exothermic reactions cannot occur if either fuel, oxidizer, or temperature (initiators) is not sufficient or controlled. The approach to characterization has been influenced by the progress made since mid-1993: (1) completion of safety analyses on ferrocyanide, criticality, organic solvent in tank 241-C-103, and sludge dryout. (2) successful mitigation of tank 241-SY-101; (3) demonstration of waste aging in laboratory experiments and from waste sampling, and (4) increased understanding of the information that can be obtained from headspace sampling. Headspace vapor sampling is being used to confirm that flammable gas does not accumulate in the single-shell tanks, and to determine whether organic solvents are present. The headspaces of tanks that may contain significant quantities of flammable gas will be monitored continuously using standard hydrogen monitors. For the noxious vapors safety issue, characterization will consist of headspace vapor sampling of most of the Hanford Site waste tanks. Sampling specifically for criticality is not required to confirm interim safe storage; however, analyses for fissile material will be conducted as waste samples are obtained for other reasons. High-heat tanks will be identified through temperature monitoring coupled with thermal analyses.

  10. Vermont Yankee experience with interim storage of low level radioactive waste in concrete modules

    SciTech Connect (OSTI)

    Berger, S.; Weyman, D. [Vermont Yankee Nuclear Power Corporation, Vernon, VT (United States)

    1995-05-01

    This paper discusses the implementation of interim storage of low level radioactive waste using concrete modules at the Vermont Yankee Nuclear Power Station in Vernon, Vermont. Under the threat of possible loss of disposal capability in 1986, Vermont Yankee first considered the on-site storage option in 1985. prior to settling on a design, an investigation and economic analysis was performed of several designs. Modular concrete storage on a gravel pad was chosen as the most economical and the one providing the greatest flexibility. The engineering work, safety analysis, and pad construction were completed in 1985. Because of the passage of the Low Level Radioactive Waste Policy amendments Act in 1985, the loss of disposal capability did not occur in 1986. However, because the State of Vermont failed to meet the milestones of the Amendments Act, Vermont Yankee was restricted from the existing disposal sites on January 31, 1989. As a result, modules were purchased and waste was stored on site from 1989 until 1991. In 1991, the State of Vermont came back into compliance with the Amendments Act, and all waste stored on-site was shipped for burial. During the storage period 2 types of modules (1 box type and 1 cylinder type) were used. Lessons were learned, and changes were made to better control the off-site dose contribution of the waste. Recommendations are made to enhance the usability of the facility, such s lighting power, phones, etc. A shortcoming of the module storage concept is the inability to move waste during inclement weather. Despite this, the modules have provided an economical, technically sound, method of waste storage. The storage pad has not been used since 1991, but work is under way to review, and update as necessary, the safety analysis and procedures in preparation for reuse of the on-site storage facility after June 30, 1994.

  11. Final Report: Metal Perhydrides for Hydrogen Storage

    SciTech Connect (OSTI)

    Hwang, J-Y.; Shi, S.; Hackney, S.; Swenson, D.; Hu, Y.

    2011-07-26

    Hydrogen is a promising energy source for the future economy due to its environmental friendliness. One of the important obstacles for the utilization of hydrogen as a fuel source for applications such as fuel cells is the storage of hydrogen. In the infrastructure of the expected hydrogen economy, hydrogen storage is one of the key enabling technologies. Although hydrogen possesses the highest gravimetric energy content (142 KJ/g) of all fuels, its volumetric energy density (8 MJ/L) is very low. It is desired to increase the volumetric energy density of hydrogen in a system to satisfy various applications. Research on hydrogen storage has been pursed for many years. Various storage technologies, including liquefaction, compression, metal hydride, chemical hydride, and adsorption, have been examined. Liquefaction and high pressure compression are not desired due to concerns related to complicated devices, high energy cost and safety. Metal hydrides and chemical hydrides have high gravimetric and volumetric energy densities but encounter issues because high temperature is required for the release of hydrogen, due to the strong bonding of hydrogen in the compounds. Reversibility of hydrogen loading and unloading is another concern. Adsorption of hydrogen on high surface area sorbents such as activated carbon and organic metal frameworks does not have the reversibility problem. But on the other hand, the weak force (primarily the van der Waals force) between hydrogen and the sorbent yields a very small amount of adsorption capacity at ambient temperature. Significant storage capacity can only be achieved at low temperatures such as 77K. The use of liquid nitrogen in a hydrogen storage system is not practical. Perhydrides are proposed as novel hydrogen storage materials that may overcome barriers slowing advances to a hydrogen fuel economy. In conventional hydrides, e.g. metal hydrides, the number of hydrogen atoms equals the total valence of the metal ions. One LiH molecule contains one hydrogen atom because the valence of a Li ion is +1. One MgH2 molecule contains two hydrogen atoms because the valence of a Mg ion is +2. In metal perhydrides, a molecule could contain more hydrogen atoms than expected based on the metal valance, i.e. LiH1+n and MgH2+n (n is equal to or greater than 1). When n is sufficiently high, there will be plenty of hydrogen storage capacity to meet future requirements. The existence of hydrogen clusters, Hn+ (n = 5, 7, 9, 11, 13, 15) and transition metal ion-hydrogen clusters, M+(H2)n (n = 1-6), such as Sc(H2)n+, Co(H2)n+, etc., have assisted the development of this concept. Clusters are not stable species. However, their existence stimulates our approach on using electric charges to enhance the hydrogen adsorption in a hydrogen storage system in this study. The experimental and modeling work to verify it are reported here. Experimental work included the generation of cold hydrogen plasma through a microwave approach, synthesis of sorbent materials, design and construction of lab devices, and the determination of hydrogen adsorption capacities on various sorbent materials under various electric field potentials and various temperatures. The results consistently show that electric potential enhances the adsorption of hydrogen on sorbents. NiO, MgO, activated carbon, MOF, and MOF and platinum coated activated carbon are some of the materials studied. Enhancements up to a few hundred percents have been found. In general, the enhancement increases with the electrical potential, the pressure applied, and the temperature lowered. Theoretical modeling of the hydrogen adsorption on the sorbents under the electric potential has been investigated with the density functional theory (DFT) approach. It was found that the interaction energy between hydrogen and sorbent is increased remarkably when an electric field is applied. This increase of binding energy offers a potential solution for DOE when looking for a compromise between chemisorption and physisorption for hydrogen storage. Bonding of chemisorption is too

  12. OSHA`s process safety management standard

    SciTech Connect (OSTI)

    Morelli, J.A.

    1994-12-31

    On February 24, 1992, OSHA published the final rule for its Process Safety Management Standard (PSM) mandated by the Clean Air Act Amendments of 1990. (see Federal Register 57 FR 6356-6417). This standard imposes several responsibilities upon employers whose processes can cause large accident releases that could result in processes can cause large accident releases that could result in catastrophes. In contrast to OSHA`s Hazard Communication standard which focuses on routine daily exposures to hazardous materials, the PSM Standard is concerned with processes whereby the use, storage, manufacturing, handling or on-site movement of highly hazardous chemicals which exceed threshold quantities, provides potential for a catastrophic release. The PSM Standard requires: a written program, plans, training, hazard analysis and compliance auditing. This paper outlines the provisions under this Standard pursuant to OSHA regulation 29 Code of Federal Regulation 1910.119.

  13. Production, Storage, and FC Analysis

    Broader source: Energy.gov [DOE]

    Presentation on Production, Storage, and FC Analysis to the DOE Systems Analysis Workshop held in Washington, D.C. July 28-29, 2004 to discuss and define role of systems analysis in DOE Hydrogen Program.

  14. Efficient storage of versioned matrices

    E-Print Network [OSTI]

    Seering, Adam B

    2011-01-01

    Versioned-matrix storage is increasingly important in scientific applications. Various computer-based scientific research, from astronomy observations to weather predictions to mechanical finite-element analyses, results ...

  15. Device-transparent personal storage

    E-Print Network [OSTI]

    Strauss, Jacob A. (Jacob Alo), 1979-

    2010-01-01

    Users increasingly store data collections such as digital photographs on multiple personal devices, each of which typically presents the user with a storage management interface isolated from the contents of all other ...

  16. A Successful Cool Storage Rate 

    E-Print Network [OSTI]

    Ahrens, A. C.; Sobey, T. M.

    1994-01-01

    local natural gas distribution company. The end result is a very successful cool storage program with 52 projects and 31 megawatts of demand reduction in the first three and one-half years of program implementation....

  17. Hydrogen Storage "Think Tank" Report

    Broader source: Energy.gov [DOE]

    This report is a compilation of information exchanged at a forum on March 14, 2003 in Washington, DC. The forum was assembled for innovative and non-conventional brainstorming on this issue of hydrogen storage technologies.

  18. Lead Safety Awareness This Bulletin provides information on the safe handling of lead

    E-Print Network [OSTI]

    Lead Safety Awareness PURPOSE This Bulletin provides information on the safe handling of lead and lead compounds during use and storage. Improper handling of lead and lead compounds may impact operations at Department of Energy (DOE) facilities. BACKGROUND Lead is found in batteries, pipes, solder

  19. Safety Topic Chemical Hood General purpose: prevent exposure to toxic, irritating, or noxious chemical

    E-Print Network [OSTI]

    Cohen, Robert E.

    Safety Topic ­ Chemical Hood General purpose: prevent exposure to toxic, irritating, or noxious chemical vapors and gases. A face velocity of 100 feet per minute (fpm) provides efficient vapor capture the better. (T) (F) A chemical hood can be used for storage of volatile, flammable, or odiferous materials

  20. EH&S Safety Alert Managing Nitric Acid Waste December 3, 2014

    E-Print Network [OSTI]

    Kroll, Kristen L.

    EH&S Safety Alert Managing Nitric Acid Waste December 3, 2014 On Tuesday November 25th, a research laboratory had a chemical waste container rupture with violent force. The incident occurred when, and contacted EH&S for assistance in the spill cleanup. The waste container was in a chemical storage cabinet

  1. 004.29.2010 | Presented by Joe Wong, P.Eng. DOE Tank Safety Workshop

    E-Print Network [OSTI]

    #12;1 POWERTECH ­ Hydrogen & CNG Services Certification testing of individual high pressure Discuss CNG Field Performance Data Discuss Safety Testing of Type 4 Tanks Current work to support Codes;5 CNG Experience In-service Failures Powertech has been testing CNG storage systems since 1983

  2. CRAD, Nuclear Safety Delegations for Documented Safety Analysis...

    Broader source: Energy.gov (indexed) [DOE]

    January 8, 2015 Nuclear Safety Delegations for Documented Safety Analysis Approval (EA CRAD 31-09, Rev. 0) This Criteria Review and Approach Document (EA CRAD 31-09, Rev. 0)...

  3. Compressed air energy storage system

    DOE Patents [OSTI]

    Ahrens, Frederick W. (Naperville, IL); Kartsounes, George T. (Naperville, IL)

    1981-01-01

    An internal combustion reciprocating engine is operable as a compressor during slack demand periods utilizing excess power from a power grid to charge air into an air storage reservoir and as an expander during peak demand periods to feed power into the power grid utilizing air obtained from the air storage reservoir together with combustible fuel. Preferably the internal combustion reciprocating engine is operated at high pressure and a low pressure turbine and compressor are also employed for air compression and power generation.

  4. Lih thermal energy storage device

    DOE Patents [OSTI]

    Olszewski, Mitchell (Knoxville, TN); Morris, David G. (Knoxville, TN)

    1994-01-01

    A thermal energy storage device for use in a pulsed power supply to store waste heat produced in a high-power burst operation utilizes lithium hydride as the phase change thermal energy storage material. The device includes an outer container encapsulating the lithium hydride and an inner container supporting a hydrogen sorbing sponge material such as activated carbon. The inner container is in communication with the interior of the outer container to receive hydrogen dissociated from the lithium hydride at elevated temperatures.

  5. Safety Enhancements for TRU Waste Handling - 12258

    SciTech Connect (OSTI)

    Cannon, Curt N. [Perma-Fix Northwest Richland, Inc., Richland, WA 99354 (United States)

    2012-07-01

    For years, proper Health Physics practices and 'As Low As Reasonably Achievable' (ALARA) principles have fostered the use of glove boxes or other methods of handling (without direct contact) high activities of radioactive material. The physical limitations of using glove boxes on certain containers have resulted in high-activity wastes being held in storage awaiting a path forward. Highly contaminated glove boxes and other remote handling equipment no longer in use have also been added to the growing list of items held for storage with no efficient method of preparation for proper disposal without creating exposure risks to personnel. This is especially true for wastes containing alpha-emitting radionuclides such as Plutonium and Americium that pose significant health risks to personnel if these Transuranic (TRU) wastes are not controlled effectively. Like any good safety program or root cause investigation PFNW has found that the identification of the cause of a negative change, if stopped, can result in a near miss and lessons learned. If this is done in the world of safety, it is considered a success story and is to be shared with others to protect the workers. PFNW believes that the tools, equipment and resources have improved over the past number of years but that the use of them has not progressed at the same rate. If we use our tools to timely identify the effect on the work environment and immediately following or possibly even simultaneously identify the cause or some of the causal factors, we may have the ability to continue to work rather than succumb to the start and stop-work mentality trap that is not beneficial in waste minimization, production efficiency or ALARA. (authors)

  6. FAFCO Ice Storage test report

    SciTech Connect (OSTI)

    Stovall, T.K.

    1993-11-01

    The Ice Storage Test Facility (ISTF) is designed to test commercial ice storage systems. FAFCO provided a storage tank equipped with coils designed for use with a secondary fluid system. The FAFCO ice storage system was tested over a wide range of operating conditions. Measured system performance during charging showed the ability to freeze the tank fully, storing from 150 to 200 ton-h. However, the charging rate showed significant variations during the latter portion of the charge cycle. During discharge cycles, the storage tank outlet temperature was strongly affected by the discharge rate and tank state of charge. The discharge capacity was dependent upon both the selected discharge rate and maximum allowable tank outlet temperature. Based on these tests, storage tank selection must depend on both charge and discharge conditions. This report describes FAFCO system performance fully under both charging and discharging conditions. While the test results reported here are accurate for the prototype 1990 FAFCO Model 200, currently available FAFCO models incorporate significant design enhancements beyond the Model 200. At least one major modification was instituted as a direct result of the ISTF tests. Such design improvements were one of EPRI`s primary goals in founding the ISTF.

  7. Thermal storage module for solar dynamic receivers

    DOE Patents [OSTI]

    Beatty, Ronald L. (Farragut, TN); Lauf, Robert J. (Oak Ridge, TN)

    1991-01-01

    A thermal energy storage system comprising a germanium phase change material and a graphite container.

  8. Hydrogen Storage Technologies Roadmap, November 2005

    Fuel Cell Technologies Publication and Product Library (EERE)

    Document describing plan for research into and development of hydrogen storage technology for transportation applications.

  9. Electric Storage in California's Commercial Buildings

    E-Print Network [OSTI]

    Stadler, Michael

    2014-01-01

    microgrid can be fuel cells, PV, solar thermal, stationary storage, absorption cooling, combined heat and power,

  10. 1 Files and Databases mass storage

    E-Print Network [OSTI]

    Verschelde, Jan

    Outline 1 Files and Databases mass storage hash functions 2 Dictionaries logical key values nested Jan Verschelde, 28 January 2015 Intro to Computer Science (MCS 260) mass storage and dictionaries L-7 28 January 2015 1 / 32 #12;mass storage dictionaries in Python 1 Files and Databases mass storage

  11. Addressing the Grand Challenges in Energy Storage

    SciTech Connect (OSTI)

    Liu, Jun

    2013-02-25

    The editorial summarizes the contents of the special issue for energy storage in Advanced Functional Materials.

  12. Optimize Storage Placement in Sensor Networks

    E-Print Network [OSTI]

    Li, Qun

    of limited storage, communication capacity, and battery power is ameliorated. Placing storage nodesOptimize Storage Placement in Sensor Networks Bo Sheng, Member, IEEE, Qun Li, Member, IEEE, and Weizhen Mao Abstract--Data storage has become an important issue in sensor networks as a large amount

  13. Hydrogen Storage at Lawrence Berkeley National Laboratory

    Broader source: Energy.gov [DOE]

    Presentation from the Hydrogen Storage Pre-Solicitation Meeting held June 19, 2003 in Washington, DC.

  14. Energy Storage Management for VG Integration (Presentation)

    SciTech Connect (OSTI)

    Kirby, B.

    2011-10-01

    This presentation describes how you economically manage integration costs of storage and variable generation.

  15. New York's Energy Storage System Gets Recharged

    Broader source: Energy.gov [DOE]

    Jonathan Silver and Matt Rogers on a major breakthrough for New York state's energy storage capacity.

  16. AQUIFER STORAGE SITE EVALUATION AND MONITORING

    E-Print Network [OSTI]

    Edwards, Mike

    on the market sectors of electricity transmission, gas transmission, storage and distribution and process

  17. Integrating Safety into Design and Construction | Department...

    Office of Environmental Management (EM)

    Integrating Safety into Design and Construction Integrating Safety into Design and Construction DepSecMemoIntegratingSafetyInDesignAndConstruction05Dec2005.pdf More Documents &...

  18. Commercial Vehicle Safety Alliance | Department of Energy

    Office of Environmental Management (EM)

    Commercial Vehicle Safety Alliance Commercial Vehicle Safety Alliance Commercial Vehicle Safety Alliance More Documents & Publications North American Standard Level VI Inspection...

  19. Community Pedestrian Safety Engagement Workshops in California

    E-Print Network [OSTI]

    Babka, Rhianna JoIris; Cooper, Jill F; Alfsen, Wendy; Sabin, Marilyn

    2011-01-01

    Highway Administration. Pedestrian & Bicycle Safety. http://How to Develop a Pedestrian Safety Action Plan. 2006.Developing and Implementing a Pedestrian Safety Action Plan.

  20. Laser Pointer Safety INTRODUCTION

    E-Print Network [OSTI]

    Laser Pointer Safety INTRODUCTION The use of laser diode pointers that operate in the visible to the retractable, metal pointer, the laser pointer beam will produce a small dot of light on whatever object at which it is aimed. It can draw an audience¹s attention to a particular key point in a slide show. Laser

  1. DOE Explosives Safety Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2006-01-09

    The Manual describes the Departments explosive safety requirements applicable to operations involving the development, testing, handling, and processing of explosives or assemblies containing explosives. Cancels DOE M 440.1-1. Canceled by DOE O 440.1B Chg 1.

  2. Nuclear Explosive Safety Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-04-14

    This Department of Energy (DOE) Manual provides supplemental details on selected topics to support the requirements of DOE O 452.2D, Nuclear Explosive Safety, dated 4/14/09. Cancels DOE M 452.2-1. Admin Chg 1, dated 7-10-13, cancels DOE M 452.2-1A.

  3. Nuclear Explosive Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2006-06-12

    The directive establishes specific nuclear explosive safety (NES) program requirements to implement the DOE NES standards and other NES criteria for routine and planned nuclear explosive operations. Cancels DOE O 452.2B. Canceled by DOE O 452.2D.

  4. Nuclear Explosive Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-04-14

    This Department of Energy (DOE) Order establishes requirements to implement the nuclear explosive safety (NES) elements of DOE O 452.1D, Nuclear Explosive and Weapon Surety Program, for routine and planned nuclear explosive operations (NEOs). Cancels DOE O 452.2C. Admin Chg 1, dated 7-10-13, cancels DOE O 452.2D.

  5. Nuclear Explosive Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-01-26

    This Department of Energy (DOE) Order establishes requirements to implement the nuclear explosive safety (NES) elements of DOE O 452.1E, Nuclear Explosive and Weapon Surety Program, or successor directive, for routine and planned nuclear explosive operations (NEOs). Supersedes DOE O 452.2D and DOE M 452.2-1A.

  6. Nuclear Explosive Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-04-14

    This Order establishes requirements to implement the nuclear explosive safety elements of DOE O 452.1D, Nuclear Explosive and Weapon Surety Program, for routine and planned nuclear explosive operations. Cancels DOE O 452.2C. Admin Chg 1, 7-10-13

  7. Integrated Safety Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-04-25

    The order ensures that DOE/NNSA, systematically integrates safety into management and work practices at all levels, so that missions are accomplished efficiently while protecting the workers, the public, and the environment. Supersedes DOE M 450.4-1 and DOE M 411.1-1C

  8. Module Safety Issues (Presentation)

    SciTech Connect (OSTI)

    Wohlgemuth, J.

    2012-02-01

    Description of how to make PV modules so that they are less likely to turn into safety hazards. Making modules inherently safer with minimum additional cost is the preferred approach for PV. Safety starts with module design to ensure redundancy within the electrical circuitry to minimize open circuits and proper mounting instructions to prevent installation related ground faults. Module manufacturers must control the raw materials and processes to ensure that that every module is built like those qualified through the safety tests. This is the reason behind the QA task force effort to develop a 'Guideline for PV Module Manufacturing QA'. Periodic accelerated stress testing of production products is critical to validate the safety of the product. Combining safer PV modules with better systems designs is the ultimate goal. This should be especially true for PV arrays on buildings. Use of lower voltage dc circuits - AC modules, DC-DC converters. Use of arc detectors and interrupters to detect arcs and open the circuits to extinguish the arcs.

  9. Packaging and Transportation Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2003-04-04

    To establish safety requirements for the proper packaging and transportation of Department of Energy (DOE)/National Nuclear Security Administration (NNSA) offsite shipments and onsite transfers of hazardous materials and for modal transport. Cancels DOE O 460.1A. Canceled by DOE O 460.1C.

  10. Reactor safety method

    DOE Patents [OSTI]

    Vachon, Lawrence J. (Clairton, PA)

    1980-03-11

    This invention relates to safety means for preventing a gas cooled nuclear reactor from attaining criticality prior to start up in the event the reactor core is immersed in hydrogenous liquid. This is accomplished by coating the inside surface of the reactor coolant channels with a neutral absorbing material that will vaporize at the reactor's operating temperature.

  11. Safety Lifecycle for Developing Safety Critical Artificial Neural Networks

    E-Print Network [OSTI]

    Kelly, Tim

    Safety Lifecycle for Developing Safety Critical Artificial Neural Networks Zeshan Kurd, Tim Kelly.kelly}@cs.york.ac.uk Abstract. Artificial neural networks are employed in many areas of industry such as medicine and defence. There are many techniques that aim to improve the performance of neural networks for safety-critical systems

  12. Radiation Safety Training Basic Radiation Safety Training for

    E-Print Network [OSTI]

    Dai, Pengcheng

    Radiation Safety Training Basic Radiation Safety Training for Sealed Source Users for Physics 461 Protocol Title: Training for Sealed Source Users Drafted By: Chris Millsaps, RSS Reviewers: ZB, TU, GS Purpose: To provide basic radiation safety training to the users of sealed sources located

  13. SAFETY PROCEDURE & GUIDELINES SUBJECT: Health and Safety Training

    E-Print Network [OSTI]

    Sinnamon, Gordon J.

    SAFETY PROCEDURE & GUIDELINES SUBJECT: Health and Safety Training APPLIES TO: All Departments that the health and safety training program is effective and is in compliance with the applicable federal for conducting training Establish who is responsible for determining the level and type of training required

  14. Safety Logics I: Absolute Safety Zhisheng Huang and John Bell #

    E-Print Network [OSTI]

    Huang, Zhisheng

    Support Systems, Safety and Liability, and is supported by the United Kingdom Engineering and Physical extensions of it. We then give an example of reasoning about safety in nuclear power stations, and conclude which agents can reason about safety. This # This research forms part of the RED project, Decision

  15. Technology, safety and costs of decommissioning a reference boiling water reactor power station. Volume 1. Main report. Technical report, September 1977-October 1979

    SciTech Connect (OSTI)

    Oak, H.D.; Holter, G.M.; Kennedy, W.E. Jr.; Konzek, G.J.

    1980-06-01

    Technology, safety and cost information is given for the conceptual decommissioning of a large (1100MWe) boiling water reactor (BWR) power station. Three approaches to decommissioning, immediate dismantlement, safe storage with deferred dismantlement and entombment, were studied to obtain comparisons between costs, occupational radiation doses, potential dose to the public and other safety impacts. It also shows the sensitivity of decommissioning safety and costs to the power rating of a BWR in the range of 200 to 1100 MWE.

  16. Investigations in cool thermal storage: storage process optimization and glycol sensible storage enhancement 

    E-Print Network [OSTI]

    Abraham, Michaela Marie

    1993-01-01

    of 10'F, the irreversibility developed from the heat transfer between the tank water and the refrigerant increases with lower freezing temperatures. The second part of this study presents a simplified optimization method for a pure water, ice storage...

  17. Building Trust in Storage Outsourcing: Secure Accounting of Utility Storage Vishal Kher and Yongdae Kim

    E-Print Network [OSTI]

    Kim, Yongdae

    Building Trust in Storage Outsourcing: Secure Accounting of Utility Storage Vishal Kher and Yongdae are witnessing a revival of Storage Service Providers in the form of new vendors as well as traditional players. While storage outsourcing is cost-effective, many compa- nies are hesitating to outsource their storage

  18. Remote I/O Optimization and Evaluation for Tertiary Storage Systems through Storage Resource Broker

    E-Print Network [OSTI]

    Liao, Wei-keng

    Remote I/O Optimization and Evaluation for Tertiary Storage Systems through Storage Resource Broker storage systems emerge as a popular place to hold them. SRB, a uniform interface to various storage systems including tertiary storage systems such as HPSS, UniTree etc., becomes an important and convenient

  19. SPEK: A Storage Performance Evaluation Kernel Module for Block Level Storage Systems under

    E-Print Network [OSTI]

    Yang, Qing "Ken"

    1 SPEK: A Storage Performance Evaluation Kernel Module for Block Level Storage Systems under Faulty), for evaluating the performance of block-level storage systems in the presence of faults as well as under normal operations. SPEK can work on both Direct Attached Storage (DAS) and block level networked storage systems

  20. SPEK: A Storage Performance Evaluation Kernel Module for Block Level Storage Systems

    E-Print Network [OSTI]

    He, Xubin "Ben"

    SPEK: A Storage Performance Evaluation Kernel Module for Block Level Storage Systems Ming Zhang storage systems at block level. It can be used for both DAS (Direct Attached Storage) and block level networked storage systems. Each SPEK tool consists of a controller, several workers, and one or more probers

  1. Routing, Storage Management and Caching, and Security of Peer-to-Peer Storage Systems

    E-Print Network [OSTI]

    Zhu, Yingwu "Jason"

    Routing, Storage Management and Caching, and Security of Peer-to-Peer Storage Systems Yingwu Zhu such as Napster, Gnutella and Freenet, has inspired a whole new breed of P2P storage systems, which aims-tolerant, and highly-available storage without centralized servers. Many P2P storage systems have been proposed

  2. FLUOR HANFORD SAFETY MANAGEMENT PROGRAMS

    SciTech Connect (OSTI)

    GARVIN, L J; JENSEN, M A

    2004-04-13

    This document summarizes safety management programs used within the scope of the ''Project Hanford Management Contract''. The document has been developed to meet the format and content requirements of DOE-STD-3009-94, ''Preparation Guide for US. Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses''. This document provides summary descriptions of Fluor Hanford safety management programs, which Fluor Hanford nuclear facilities may reference and incorporate into their safety basis when producing facility- or activity-specific documented safety analyses (DSA). Facility- or activity-specific DSAs will identify any variances to the safety management programs described in this document and any specific attributes of these safety management programs that are important for controlling potentially hazardous conditions. In addition, facility- or activity-specific DSAs may identify unique additions to the safety management programs that are needed to control potentially hazardous conditions.

  3. Safety Training for Shop Personnel

    E-Print Network [OSTI]

    Sniadecki, Nathan J.

    3 Electrical Safety, Basic Online Initial 4 Lockout Tag-Out Initial 5 Globally Harmonized System Extinguisher - Hands-On Yes No 3 Electrical Safety, Basic-Online Yes No 4 Lockout Tag-Out Yes No 5 Globally

  4. Nuclear Explosive Safety Evaluation Processes

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-04-14

    This Manual provides supplemental details to support the nuclear explosive safety evaluation requirement of DOE O 452.2D, Nuclear Explosive Safety. Does not cancel other directives. Admin Chg 1, 7-10-13.

  5. _____________________________ Environment, Health, & Safety _________ __________________ Training Program

    E-Print Network [OSTI]

    _____________________________ Environment, Health, & Safety _________ __________________ Training-based Training Frequency: One Time Course Purpose: This training contains general requirements and information. This training will familiarize you with the hazards of electricity and the requirements for electrical safety

  6. CRAD, NNSA- Safety Basis (SB)

    Broader source: Energy.gov [DOE]

    CRAD for Safety Basis (SB). Criteria Review and Approach Documents (CRADs) that can be used to conduct a well-organized and thorough assessment of elements of safety and health programs.

  7. pamphlet04.doc SAFETY INFORMATION

    E-Print Network [OSTI]

    pamphlet04.doc SAFETY INFORMATION EMPLOYEE HANDOUT EMERGENCY ASSISTANCE (Fire, Police, Accident of Hazardous Materials Into/Outside the UCHC #12;pamphlet04.doc 1. SAFETY POLICY: The Health Center continually

  8. LASER Safety Manual August 2007

    E-Print Network [OSTI]

    UW LASER Safety Manual August 2007 Radiation Safety Office Environmental Health and Safety;Contents 1. Laser Basics 1.1 Laser Theory 1.2 Types of Lasers 2. Hazards and Safety Standards 2 2.6.4 Other Hazards 2.7 Hazard Classes 2.7.1 Introduction 2.7.2 Class 3B Lasers 2.7.3 Class 4 Lasers

  9. Receiving Basin for Offsite Fuels and the Resin Regeneration Facility Safety Analysis Report, Executive Summary

    SciTech Connect (OSTI)

    Shedrow, C.B.

    1999-11-29

    The Safety Analysis Report documents the safety authorization basis for the Receiving Basin for Offsite Fuels (RBOF) and the Resin Regeneration Facility (RRF) at the Savannah River Site (SRS). The present mission of the RBOF and RRF is to continue in providing a facility for the safe receipt, storage, handling, and shipping of spent nuclear fuel assemblies from power and research reactors in the United States, fuel from SRS and other Department of Energy (DOE) reactors, and foreign research reactors fuel, in support of the nonproliferation policy. The RBOF and RRF provide the capability to handle, separate, and transfer wastes generated from nuclear fuel element storage. The DOE and Westinghouse Savannah River Company, the prime operating contractor, are committed to managing these activities in such a manner that the health and safety of the offsite general public, the site worker, the facility worker, and the environment are protected.

  10. Residential Fire Safety Policies Introduction

    E-Print Network [OSTI]

    Johnson Jr.,, Ray

    Residential Fire Safety Policies Introduction University Housing and Campus Code Compliance and Fire Safety at the City University of New York at Queens College in compliance with the Higher Education Opportunity Act (HEOA) have developed an annual fire safety report. This document summarizes

  11. ANNUAL FIRE SAFETY RESIDENCE HALLS

    E-Print Network [OSTI]

    Fernandez, Eduardo

    1 2013 ANNUAL FIRE SAFETY REPORT FOR RESIDENCE HALLS As Required by the Higher Education Opportunity Act (HEOA) #12;2 INTRODUCTION Contents of this annual fire safety report reflect the requirements outlined in the HEOA, which are included in Florida Atlantic University's (FAU) campus fire safety program

  12. Toolbox Safety Talk Heat Stress

    E-Print Network [OSTI]

    Pawlowski, Wojtek

    Toolbox Safety Talk Heat Stress Environmental Health & Safety Facilities Safety & Health Section for inducing heat stress. When the body is unable to cool itself by sweating, several heat-induced illnesses Stress · Know signs/symptoms of heat-related illnesses; monitor yourself and coworkers. · Block out

  13. Health and Safety Training Reciprocity

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2014-04-14

    Establishes a policy for reciprocity of employee health and safety training among DOE entities responsible for employee health and safety at DOE sites and facilities to increase efficiency and effectiveness of Departmental operations while meeting established health and safety requirements. Does not cancel other directives.

  14. Safety-Critical Universit at

    E-Print Network [OSTI]

    Peleska, Jan - Fachbereich 3

    . Hazard Analysis and Risk Assessment 5. Design Criteria for Safety-Critical Systems 6. Validation, Veri#12. Hazard Analysis and Risk Assessment 5. Design Criteria for Safety-Critical Systems 6. Validation, Veri#12Safety-Critical Systems Prof. Dr. Jan Peleska Universit at Bremen | TZI Dr. Ing. Cornelia Zahlten

  15. Conductive lithium storage electrode

    DOE Patents [OSTI]

    Chiang, Yet-Ming (Framingham, MA); Chung, Sung-Yoon (Seoul, KR); Bloking, Jason T. (Cambridge, MA); Andersson, Anna M. (Uppsala, SE)

    2008-03-18

    A compound comprising a composition A.sub.x(M'.sub.1-aM''.sub.a).sub.y(XD.sub.4).sub.z, A.sub.x(M'.sub.1-aM''.sub.a).sub.y(DXD.sub.4).sub.z, or A.sub.x(M'.sub.1-aM''.sub.a).sub.y(X.sub.2D.sub.7).sub.z, and have values such that x, plus y(1-a) times a formal valence or valences of M', plus ya times a formal valence or valence of M'', is equal to z times a formal valence of the XD.sub.4, X.sub.2D.sub.7, or DXD.sub.4 group; or a compound comprising a composition (A.sub.1-aM''.sub.a).sub.xM'.sub.y(XD.sub.4).sub.z, (A.sub.1-aM''.sub.a).sub.xM'.sub.y(DXD.sub.4).sub.z(A.sub.1-aM''.sub.a).s- ub.xM'.sub.y(X.sub.2D.sub.7).sub.z and have values such that (1-a).sub.x plus the quantity ax times the formal valence or valences of M'' plus y times the formal valence or valences of M' is equal to z times the formal valence of the XD.sub.4, X.sub.2D.sub.7 or DXD.sub.4 group. In the compound, A is at least one of an alkali metal and hydrogen, M' is a first-row transition metal, X is at least one of phosphorus, sulfur, arsenic, molybdenum, and tungsten, M'' any of a Group IIA, IIIA, IVA, VA, VIA, VIIA, VIIIA, IB, IIB, IIIB, IVB, VB, and VIB metal, D is at least one of oxygen, nitrogen, carbon, or a halogen, 0.0001storage batteries and can have a gravimetric capacity of at least about 80 mAh/g while being charged/discharged at greater than about C rate of the compound.

  16. Conductive lithium storage electrode

    DOE Patents [OSTI]

    Chiang, Yet-Ming (Framingham, MA); Chung, Sung-Yoon (Incheon, KR); Bloking, Jason T. (Mountain View, CA); Andersson, Anna M. (Vasteras, SE)

    2012-04-03

    A compound comprising a composition A.sub.x(M'.sub.1-aM''.sub.a).sub.y(XD.sub.4).sub.z, A.sub.x(M'.sub.1-aM''.sub.a).sub.y(DXD.sub.4).sub.z, or A.sub.x(M'.sub.1-aM''.sub.a).sub.y(X.sub.2D.sub.7).sub.z, and have values such that x, plus y(1-a) times a formal valence or valences of M', plus ya times a formal valence or valence of M'', is equal to z times a formal valence of the XD.sub.4, X.sub.2D.sub.7, or DXD.sub.4 group; or a compound comprising a composition (A.sub.1-aM''.sub.a).sub.xM'.sub.y(XD.sub.4).sub.z, (A.sub.1-aM''.sub.a).sub.xM'.sub.y(DXD.sub.4).sub.z (A.sub.1-aM''.sub.a).sub.xM'.sub.y(X.sub.2D.sub.7).sub.z and have values such that (1-a).sub.x plus the quantity ax times the formal valence or valences of M'' plus y times the formal valence or valences of M' is equal to z times the formal valence of the XD.sub.4, X.sub.2D.sub.7 or DXD.sub.4 group. In the compound, A is at least one of an alkali metal and hydrogen, M' is a first-row transition metal, X is at least one of phosphorus, sulfur, arsenic, molybdenum, and tungsten, M'' any of a Group IIA, IIIA, IVA, VA, VIA, VIIA, VIIIA, IB, IIB, IIIB, IVB, VB, and VIB metal, D is at least one of oxygen, nitrogen, carbon, or a halogen, 0.0001storage batteries and can have a gravimetric capacity of at least about 80 mAh/g while being charged/discharged at greater than about C rate of the compound.

  17. Resolution of the Hanford site ferrocyanide safety issue

    SciTech Connect (OSTI)

    Cash, R.J.; Lilga, M.A.; Babad, H., Fluor Daniel Hanford

    1997-02-27

    The Ferrocyanide Safety Issue at the Hanford Site was officially resolved in December 1996. This paper summarizes the key activities that led to final resolution of this safety hazard, a process that began in 1990 after it and other safety concerns were identified for the underground high-level waste storage tanks at the Hanford Site. At the time little was known about ferrocyanide-nitrate/nitrite reactions and their potential to cause offsite releases of radioactivity. The ferrocyanide hazard was a perceived problem, but it took six years of intense studies and analyses of tank samples to prove that the problem no longer exists. The issue revolved around the fact that ferrocyanide and nitrate mixtures can be made to explode violently if concentrated, dry, and heated to temperatures of at least 250 {degrees}C. The studies conducted over the last six years have shown that the combined effects of temperature, radiation, and pH during 40 or more years of storage have destroyed almost all of the ferrocyanide originally added to tanks. This was shown in laboratory experiments using simulant wastes and confirmed by actual samples taken from the ferrocyanide tanks. The tank waste sludges are now too dilute to support a sustained exothermic reaction, even if dried out and heated to high temperatures. 2 tabs., 18 refs.

  18. Safety evaluation for packaging (onsite) for concrete-shielded RHTRU waste drum for the 327 postirradiation testing laboratory

    SciTech Connect (OSTI)

    Adkins, H.E.

    1996-10-29

    This safety evaluation for packaging authorizes onsite transport of Type B quantities of radioactive material in the Concrete- Shielded Remote-Handled Transuranic Waste (RH TRU) Drum per WHC-CM-2-14, Hazardous Material Packaging and Shipping. The drum will be used for transport of 327 Building legacy waste from the 300 Area to the Transuranic Waste Storage and Assay Facility in the 200 West Area and on to a Solid Waste Storage Facility, also in the 200 Area.

  19. Events Beyond Design Safety Basis Analysis

    Broader source: Energy.gov [DOE]

    This Safety Alert provides information on a safety concern related to the identification and mitigation of events that may fall outside those analyzed in the documented safety analysis. [Safety Bulletin 2011-01

  20. Grid Applications for Energy Storage Flow Cells for Energy Storage Workshop

    E-Print Network [OSTI]

    Storage #12;Competitive Electric Market Structure Power Generation Distributed Generation Grid Management Power Mkts. & Reliability Micro-Grids Power Quality Grid Reliability Competitive State Regulated FERCGrid Applications for Energy Storage Flow Cells for Energy Storage Workshop Washington DC 7